Modula-2 Handbook

A Guide for Modula-2 Users and Programmers

May 1582
October 1982 (revision)
November 1983 (FC revision}

Lyie Bingham

Leo Geissman
Christian Jacobi)
Svend Erik Knodsen
Radney L. Riges
MNiklaus Wirth

A \poqula |2

Research Institute

950 N. University Avenue
Provo, Utah 84604
801-375-7402

Copyright Modula Research Institute, 1983

Reproduced by Permission. CFB Software, Dec 2003
www.cfbsoftware.com

Table of Contents

0. Implementation Notes

1. Introduction

1.1 Handbook Orgsnization
1.2 Overview of M2 Interpreter Software
1.3 References

2. Running Programs

2.1 The Command Interpreter
2.2 Command Files
2.3 Program Loading

3. Things to Know

1.1 Special Keys
3.2 File Names

3.3 Program Options

4, Utility Programs

4.1 Taspect
4.2 Xref
43 Link
4.4 Decode

5. The Compiler

5.1 Glossary and Examples

5.2 Compilation of a Program Module
£3 Compilation of a Definition Module
5.4 Symbe) Files Needed for Compilation
$5 Compller Quiput Files

5.6 Program Options for the Compiler
5.7 Compilation Options In Compilation Units
5.8 Module Key

5.9 Program Execution

5,10 Value Ranges of Standard Types
5.11 Differences and Restrictions

5.12 Compiler Error Messages

6. The Medos-2 Interface

6.1 Module FileSystem
6.2 Module Program
6.3 Storage

6.4 Terminal

IR SN NERE S RN -

FEER TSRS

LI B R N LR R NN

AAEARBTERDD NN

oooooooooooo

AR EASFIFERAS

LR BN IR B N NN

WEN SRR

Of w3 =~ ~¥ et W Pl b gt

EEEE e

7. LibraryModules ... ceeree

TIWOut hieevesrsnss
172 ReallsQut evesans aenae
T3MsthLIW® aieereaerens
7.4 OutTerminal areaaas sesne
7.5 OutFile chedruirurae
76 Bytel0 seeeens caner
7.7 ByteBlockIO eiieeeseees
7.8 FlleNames Paremrrereay
79 0ptions esesesenenas
8. Modula-2 under the M-2 Interpreter PSPPI
8.1 Code Procedures
82 The Module SYSTEM = tevssvussnns
8.3 Dats Representation and Parameter Transfer fasnsananeas
9. Assembly Language Interface enerasasnes
9.1 GeneraiDescription ™~ cicvaicvnens
9.2 Implementation
9.3 ParameterPassing = Leeeeseneens
8.4 An Example T aaaas

289U 9 TUA B BELARERLE &

Implementation notes for the M2M-PC Compiler
And Interpreter running under IBM PC DOS »

Rodney L. Riggs 3.9.83

These notes preface and refer 1o a generic version of @ Modula-2 interpreter handbook. The reader may wish
to familiarize himself with that handbook material (Chapters 1-8) before reading further,

1. Getting Started

In addition to this handbook you should have received two diskettes labeled M2MPC-J and M2MPC-]1.
The following files should be found on the diskettes:

MIMPC-1

SEK ABS COMINT ABS HMODULA ABS INIT ABS
PASSY ABS PASS2 ABS PASS3 ABS PASS4 ABS
LISTER ABS QLISTER ABS SYSTEM SYM CONFIG SYS~
SEK SYM SYMFILE ABS PROGRAM SYM INTERP COM
IKCUT SYM INQUT 083 REALINOU SYM REALINOU 0OBJ
MATHLIBO SYM MATHLIBO 0BJ QUTFILE SYM QUTFILE OBJ
CONVERSI SYM CONVERSI OBJ OPTIONS SYM OPTIONS (BJ
FILENAME SYM FILENAME OBJ OUTTERMI SYM QUTTERMI 0BJ
BYTEBLOC SYM BYTEBLOC 083 BYTEIG SYM BYTEIG O0BJ
STORAGE SYM STORAGE 0BJ CARDINAL SYM TERMINAL SYM
MONITOR SYM FILESYST SYM

MZMPC-I

LINK 0BJ XREF DB DECODE 0BJ INOUT MOD~~
INSPECT OBJ CALENDAR 0BJ TIME CBJ IROUT DEF~—
CLOCK 0BJ- COMMANDF 0B8J INTERP (OBJ INTEXT 0BJ
SYSTH OBJ NEWSYS OBJ READBYFL OBJ FLOAT oBJ

ESCAPE 0BJ LIRKIN BAT ASMLEK ASM TL MOD
TL ASM

~ This file must be on the diskette used to boot the machine.

~~ Do not Compilef!!

The diskettes are single sided double density. Before proceeding it is recommended that you BACKUP
BOTH DISKXETTES. To back up the diskettes put the original diskerte (M2MPC-1) in drive "A’ and the
backup diskette in drive 'B". If your system uses double sided diskettes then type

A> copy *.* b;

and hit the <enter> key. When the process it finished remove MIMPC-I from drive A and insert
MZMPC-11 into drive A, Type the same command a3 above to complete the backup process.

« IBM PC - Copyright International Business Machines Corp. 1983
DOS - Copyright Microsoft, Inc. 1983

If your system uses single sided diskettes then type

A> diskcopy a: b:\1

and hit the <enter> key. When the process is finished remove M2MPC-I from drive A and insert
M2MPC-11 into drive A. Alsc put the second backup diskette into drive B. Type the same command as
above to complete the backup process.

The two diskettes you received do not have the resident DOS system files needed to boot up your system.
For future convenience you will want fo copy the distribution diskettes (o0 a diskette(s) that also has the
DOS system files resident. To do this you will first need 1o format a disk and install the DOS system files,
This is done by typing the following:

A> format a&:/5/[%]

If you are using double sided diskettes the '1° should be replaced with 2’2", After the digkette is formatted
execute the backup procedurs for double sided diskettes. DO NOT USE DISKCOPY, it will copy the
entire source diskette and arase the just installed DOS system files from the destination diskette. Thereisa
file, CONFIG.SYS, on M2MPC-1 that must be on the digkette that is used to boot the system.

Now that you have a disketie with the system files and the interpreter files, you must soft boot the system
5o that CONFIG.SYS is executed. Make sure that the new copy of MIZMPC-I is in drive *A’ and the new
copy of M2IMPC-II (if you have singie sided disk drives) is in drive "B’, When the diskettes are in place
soft boot the systerm: by pressing {ctrl><alt> simultaneously. When the prompt "A> appears the
system is now ready to run the M2M-PC Interpreter. In the future, to run the interpreter you will only
need to ingert the diskettes in the proper drives and turn on the gystem,

On M2MPC-1 yvou will find the executable file INTERP.COM, and its data file SEX.ABS. Both these files
are necessary for the interpreter to mun, If the file SEK.ABS is not on the same digkette with
INTERP.COM the following error message will be displayed: File not found please retry.... One other
necessary file is COMINT ABS. If COMINT.ABS is not found, the program will search forever in a
continuous loop trying to find the file. No error message is displayed. The rest of the files on MIMPC-1
are support files for the Modula-2 compiler or language., The files on M2IMPC-II are utility files or
example files. A description of each of these files is found hereinafter.

To run the interpreter, type inferp and hit the <enterd> key. After approximately 20 seconds (for a double
digk drive system, less for a hard disk system) the following will appear on the screen:

Comint IV@ 29.9.83

Modula - 2 Interpreter
Version 1.3¢ {{)Copyright Modula Research Institute 1983

The interpreter is now running and the Command Interpreter (COMINT.ABS) is waiting for a command.
The ’¢’is the prompt. Te run a program simply type in the program fame and hit the <enter> key. The
command interpreter then invokes the loader and, if found, the file is executed. This process is explained
in mare detail in chapter 2,

2. The Distribution diskettes

On your two distribution diskettes are all the files needed to run the interpreter, plus a3 number of
programming tools in the form of modules which may be imported by other modules, The compiler
consists of nine (9) files: Modula, Intt, Symfile Passl, Pass2, Pass3, Passd, Lister and QLister. Each of
these files has an extension of .4BS (instead of the usual extension of .OBJ). They have been specially
formatted to load five times faster than a normal .QBJ file. .ABS files have also been created for a few
other system files to reduce execution time.

The .MOD and .DEF files for the module JnOut have been included on the diskette, as well ag the .OBJ
and . SYM files, ax an example of good Modula - 2 programming. These are ONLY sn EXAMPLE. If you
try to compile the .DEF file, InOut will become INCOMPATIBLE WITH ALL OTHER UTILITY FILES
ON THE DISK! The OBJ files for the interpreter have been included to allow assembly language Hinking.
The use of these files is discussed in chapter 9. Also found on the distribution diskettes are three
demonstration programs: Clock, Time, and Calendar. Clock wil! set the PC’s clock and Time will read the
current time. Calendar i$ a simple program to demonstrate the screen output under the interpreter,

3. Program Creation and Execution

Currently there is not an editor available to run under the interpreter. To edit a program it is pecessary to
leave the interpreter and invoke the editor you normally use, then return to the interpreter (This should not
be any real inconvenience because of the escape-to-the-operating-system feature explained in section 5
below). Another problem related to the absence of an editor is the ceation of LST files. Under the
current system the <tab> character is handled rather clumsily. As z result, the error messages
corresponding to an error in a line of source code with tabs (instead of spaces) will point to the wrong
position. This is not a major probiem, but is something 10 be aware of when correcting a program with
Syntax errors.

if by some accident {or on purpose) you kalt the compiler (<ctrl-¢> or <ctri-break>) in the middle of 4
compilation, there will be several temporary files left on your diskette with the name WWXXYYZZ. TM?,
These are intermediate files that the compiler creates and then renames or deletes before finishing. These
files may be left alone or deleted. The compiler will recreate them new on each run regardless of whether
they currently exist or not. When compiling there must be adequate space on the default diskette. If the
diskette is full or almost full the compiler will hang because it is trying to write to a full diskette.

When executing a program, the object file may reside on either disk drive and in any directory, If the file
is not found on the default drive in the defanlt directory, then specify the complete path name ag part of
the file name (2.8, »B:\mod\calendar). When executing a program, all imported modules must be found on
the default drive in the current directory regardless of where the executable file is located. If the imported
files are not found in the current directory, an error meggage will be displayed saying that the module(s) are
not found, even though they exist on or in another drive or directory. It would be best to keep all
executable files (debugged and runable) on s diskette separate from the one holding the interpreter, and all
library modules on the same diskette as the interpreter. The two distribution diskettes have already been
sctup following this convention: the inmterpreter, compiler and all library modules are on M2ZMPC-1, and
the utility and example files are on M2MPC-11.

4. Compiler Modifications

Instead of .OBJ files, .ABS files have been created for the compiler. The ABS files have been restructured
10 significantly decreage the compile time (see section 2 sbove), Because of the nature of the .ABY files,
the compiler can not be run from a command file. This is a smal! inconvenience when compared with a
compile time that is 4 times faster than It would be with ,OBJ files.

Asnother change in the compiler is the listing mode default value. Normally, as explained in chapter §, the
compiler automatically defauits to include the listing phase at the end of a compilatdon. Because of slow
file IO, the compiler has been modified to default to the /nolist option. The nolist option haz also been
changed 1o include a Quick-List pass. The QLister flags errors the same ag the normal listing pass, but
instead of writing the whole source file to the diskette with the errors marked, only the erroneous line of
source code is written to the screen. Below it the error message pointing to the error is also written, By
writing the lister phase to the screen ingtead of 1o 3 .LST file, and only writing the errors, a great amount of
time is saved. If, for some reason, a normal LST file is desired, the //ist option may be specified. Thus
the compiler, if errors occur, always executes s listing pass whether the /list or /nolist option is specified.
Under the nolist option {default mode) errors, if there are any, are written to the screen.

5. Escape to Operating System

In order to take advantage of the various utilities offered by DOS, an escape-to-the-operating-system
gequence has been implemented. By typing exclamation mark (!) <enter> in response to the prompt (s) a
secondary copy of the DOS command processar {see 10-9 jn the DOS handbook) is invoked and the normal
system prompt, *AD’, is displayed. It is now possible to execute any DOS commands including program
exscution, editing, copying etc. In order to facilifate this feature there must be a copy of
COMMAND.COM on the default diskette. If COMMAND.COM is not found on the default disk, the
error message some load error will appear and the normal prompt () will return. If you type an
exclamation mark (1) followed by a DOS command, the command will be executed, if valid, and control
will immediately return to the interpreter,

The only factor limiting this feature is the amount of memory in the machine. The
escape-to-the-operating-system feature will not work reliably on machines with less than 192K. To return
to the interpreter type ‘exit’ and hit the {enter> key. Control will then return to the interpreter and the
prompt (+)} will be displayed. If a DOS command was entered after the exclamation mark the system
prompt, 'A>", is never displayed, and ‘exit” does not need to be entered, The advantage of this feature i3
the saving of time. If, to get a directory listing, copy a file, rename a file, edit a program etc., it was
necessary to quit the interpreter and then subsequently reinvoke it, much time would be lost. It takes
approximately 20 seconds to boot the interpreter, and less than 2 seconds to return to the interpreter from
the secondary copy of the command processor.

6. Program Name Restrictions

The DOS file system will allow file pames of at most 8 characters, with an optional extension of up to
three characters. Because of this restriction none of the LIBrary modules or SYStem modules will have the
LIB. or SYS. prefixes used by other implementations, Also all modules with identifier names longer than 8
characters must be unique for the first 8 characters. The correct syntax for PC filenames follows:

Fileldant .

FileNama =

Fileldent = Ident { ".” Extension } .
ident = Latter { Latter |Digit }.
Extension = Latter { Letter | Digi }.

Capital and lower case letters are not treated ag distinct by the DOS filer (but the compiler does make the
distinction within the source code files).

7. File Procedures
SetWrite, SetRead, SetOpen, SetModify, Dolo

Because of the lack of compatibility betweers DOS and Medos-2, the above named procedures do not
behave as described in this handbook. It would, whea appropriate, be good programming practice to
include these calls in your programs 1o keep the code compatible with other implementations of Modula-2,
but these procedures are not needed on the PC; i.e. they act as dummy procedures with no effect on the
files or the program.

Final Note:

These instructions specify sewup procedures for a system with two(2) floppy disk drives. For specifics on hard
disk setup see the section in the IBM manuals on "Preparing Your Fixed Disk.”

1. Introduction

Leo Geissmann 155,82

Revised Modula Research Institute 24.5.83

This guide will give an introduction to the use of the Af-2 Interpreter aud the basic software environment
runaing under it.

The readers of the handbook are invited to report detected errors to the authors. Any comments on content
and style are also welcome.

1.1. Handbook Organization

As the range of users ppans from the non-programmer, who wants only to execute already existing
programs, to the active (system-) programmer, who designs and implements new programs and thereby
extends the computer’s capabilities, this guide is compiled such that general information is given at the
beginning and more specific information toward the end. Thiz allows the non-programmer to stop reading
after chapter 4,

1.L1. Overview of the Chapters
Chapter 1 gives introductory comments on the haadbook and on the M-2 Interpreter,

Chaprer 2 describes how programs are called with the command interpreter.

Chupter 3 provides information about the general behaviour of programs.

Chapter 4 s a collection of important utility programs needed by all M-2 Interpreter users.
Chapter 5 describes the uge of the Modula-2 compiler,

Chapter 6 is a collection of library modules constituting the Medos-2 interface,

Chapter 7 i3 a collection of further commeonly used library modules.

Chapter 8 describes the M-2 Interpreter-specific features of Modula-2,

1.2. Overview of M-2 Interpreter Software

The M-2 Interpreter allows the programming language Moduia-2, which is defined in the Moduia-2 manual
{1}, to be run on your machipe. Some specifics of Modula-2 under the M-2 Interpreter are mentioned in
chapter 8 of this handbook.

The operating system run under the interpreter is called Medos-2. 1t is reaponsible for program execution
and general memaory allocation. It also provides 2 general interface for input/output on files and to the
terminal,

The M-2 Interpreter does aot currently support a text editor, Therefore all creation and editing of files
must be performed outside the interpreter, _

A large number of utility programs and library modules already exist.

1.3. References

[1] Programming Is Modula-2
M. Wirth, Springer-Verlag, Heidelberg, NewYork, 1982. ISBN 3-540-12206-0

{2} The personal computer Lilith
N. Wirth, in
- Sofware Development Environments, Al Wassermann, Ed,, IEEE Computer Society Press, 1981,
-~ Proc. Sth International Conf, on Sofiware Engineering, IEEE Computer Society Press, 1981,

2. Running Programs

Svend Erik Knudsen 15582

Revised Modula Research Institote 24.8.83

This chapter describes, how programs are called with the command inserpreter of the Medos-2 operating
gsystem,

2.1. The Command Interpreter

The command interpreter is the main program of the Medos-2 operating system. After the initialization of
the operating system, the command interpreter repeatedly executes the following tasks:

~ Read and interpret 2 command, i.e. read a program name and activate the corregponding program,

- Report errors which occured during program execution,
In order to keep the resident system smali, a part of the command interpreter is implemented as 3
nonresident program. This fact, however, is transparent to most users of Medos-2,
2.1.1. Program Cali

The command interpreter indicates by an asterisk » that it is ready 10 accept the next command. Actually,
there exists only one type of command: program calls.

To call a program, type a program name on the keyboard and terminate the input by hitting the RETURN
key.

=time

The program with the typed name is activated; Le. loaded and started for execution, If the program was
executed correctly, the command interpreter returns with an asterisk and waits for the next program cail, If
some load or execution error occured, an error message is displayed, before the asterigk appears.

=1 imex

program not found

stime

17.8.83 18:2:45 time program is running

A program name is an identifier or a sequence of identifiers separated by periods. An identifier itself
beging with a letter (A .. Z, a .. z) followed by further letters or digits (0 .. 9). At most 16 characters are
allowed for a program name, and capital and lower case letters are treated as distinct.

ProgramMame = Identifier {=."identifier} .
identifier - = letter { lotter | digit } .

Programs are loaded from files on the disk cartridge. In order to find the file from whick the program
should be loaded, the Medos-2 loader converts the program name into a file name by appending the
extengion 08J and gearches for a file with this name. If no guch file exists, the loader ingerts the prefix SYS
into the file name and searches for 2 file with this name

Accepted name time
First file name time.0BJ
Second file pame SYS5.time.0BY

1f neither of the searched files exists, the command interpreter displays the error message program not
found.

2.1.2, Typing Alds

The command interpreter provides some typing aids which make the calling of a program more convenient.
Mogt typing errors are handled by simply ignoring unexpected characters. There are also some special keys.
Special Keys

While typing a program name, the command interpreter accepts some special keys which are immediately
executed. These special keys and their definitions follow:

DEL
Delete the last typed character,

CTRL-X
Cancel. Delete the whole character sequence which has besn typed
CTRL-L

Form feed. Clear the screen and accept a new command at the upper left corner of the screen.
This key must be typed directly gfter an asterisk. It is not accepted within a character sequence,

CTRL-C
Kil character. This key may be typed at any time, The currently executed program will be

killed and control will be returned to the computers original operating system, CTRL-C is NOT
THE NORMAL WAY TO LEAVE A PROGRAM.
2.1.3. Loading and Ezecution Errors
Messages about loading and execution errors are displayed on the screen, They are reported either by the
command interpreter, the resident system, or the running program itself,
Loading Errory

It is possible that a called program cannot be loaded. It may be that the corresponding file is not found,
that some separate modules imported by the program are not found, or that the module keys of the
separate modules do not match,

The following types of loading errors may be mported

cail error Darameler error at program call

program act found

program already loaded @ program must not be loaded twice

module not found

incompatible module a module found with a wrong module key

not encugh space Pprogram needs loo much memory space

to0 many modules muaximal number of loaded modulex exceeded
illegal type of code code of a module is not from the same generation
error in filestructure a file may be damaged :

some file error
some load error maximal number of imported, not yet loaded modules exceeded

Execution Errors

If a program is successfully loaded, it is possible that the execution of the program is terminated
abnormally. A run ime overflow may ocour or the program may call the standard procedure HALT,

The following types of execution errors may be reported

stack overflow available memory space exceeded

REAL overflow

CARDINAL overflow

INTEGER overflow

range error

address overflow HHlegal pointer access

function return error Juncrion not terminated by a RETURN statement
priority error call of a procedure on lower priority

HALT called standard procedure HALT was called

assertion error program terminated with an assertion error
instruction error illegal instruction, i.e. the code may be overwritten
warning program detected some unexpected errors - no memory dump

Errors Reported by the Command Interpreter

The error messages displayed by the command interpreter are intended to be self-explanatory, They are
written just before the asterisk whick indicates that the next command will be accepted.

Errors Reported by the Resident System

The messages directly displayed by the resident systems (and possibly other non-resident modules and
programs}) appear according to the following example:

- Storage.ALLOCATE: heap overflow

This example indicates that procedm ALLOCATE in module Storage had detected that the requwted
space could not be allocated in the heap.

Some modules {¢.g. module Frogram) indicate on which execution ievel the error was detected by the
nurnber of hyphens in front of the message.

Errors Reported by Other Programs
It is possible that other programs report loading and ¢xecution errors in their own manner,

2.2. Command Files

It is possible that 5 sequence of program executions must be repeated several times, Consider for example
the transfer of a set of files between two computers, Instead of typing all commands interactively, it Is in
this case more appropriate to substitute these commands as a batch to the procedures which normally read
Jc?gﬁacm from the keyboard. For thiz purpose the operating system allows the gubstitution of command

A command file must contain exactly the same sequence of characters which originally would be typed on
the keyboard. This includes the commands to call programs and the answers given in the expected dialog
with the called programs. To initialize the command file input, the program commandfile must be started,
This program prompts for the name of a command file {default extension is COM) and substitutes the
accepied file to the input procedires. '

ecommandfile

Compand Tile> transfer COM _

. input characters are read from the command file.
instead of from the keyboard

After all characters have been read from the substituted command file, the input is read again from the
keyboard. Reading from the command file is also stopped when a program does not load correctly or a
program terminates abnormally.

With one exception, command files must not be nested. If the call of program commandfile and the
subsequent file name are the last information on the current command file, it is possible to start a new
command file. In all other cases the execution of the current command file would fail.

2.3. Program Loading
This chapter is intended {0 be read by programmers only.

Programs are normally executed on the top of the resident operating system. After the program name i3
accepted by the command interpreter, the loader of Medos-2 loads the program into the memory and, after
successful loading, starts its execution, Medos-2 also allows a program to call apother program, This
chapter describes, how programs are loaded on the top of Medos-2. More details about program calls,
program loading, and program execution are given in the description of module Program (see chapter 6.2.).

Usually, a program consists of several separate modules. Thess are the main module, which constitutes the
main program, and all modules which are, directly or iadirectly, imported by the main module.

Upon compilation of a separate module, the generated code is written on an object file (extension 0BJ).
This file can be accepted by the loader of Medos-2 directly. A program is ready for execution if it and all
imported modules are compiled. To execute the program, the main module must be called. The loader
will first load the main module from the substituted object file, and afterwards the imported modules from
their corresponding object files.

The names of the object files belonging to the imported modules are derived from the module names (the
number of unique characters in the module name depends upon the implementation). If a first search is
~ not successful, a prefix LIB is ingerted into the file name and the Joader tries again to find the object file.

Moduie name Bufferfool
First file pame Bufferfool, 083
Second file name LIB. BufferPool.OBJ

A module cannot be loaded twice, If an Imported module is already loaded with the resident system (e.g.
module FileSysiem), the loader connects the program with this module,

1f a module cannot be loaded because of a missing object file, a loading error is signalled. The loader also
signals an error if a module found on an object file is incompatible with the other modules. For correct
program execution, it is important that the references across the module boundaries refer to the same
interface descriptions, i.e. the same symbol file versions of the separate modules. The compiler generates
for each separate modile a module key (see chapter 5.7.) which is also known to the importing modules.
For successful loading, ali module keys refering to the same module must match.,

After termination of the program, the memory space occupied by the previously ivaded modules is
released. This also happens with the resources used by the program (e.g. heap, files).

The loading speed may be improved if a program is linked before its execution. The linker collects the
imported modules in the same manner as the lcader and writes themn altogether on one file, It is aiso
possible, to substitute a user selected file name for an imported module to the linker. If a program is
linked, the loader can read all imported modules frons the same object file, and therefore it is not necessary
1o search for other object files. For a description of program Jink refer 1o chapter 4.7,

3. Things to Know

Leo Geisymane 15.5.82

Revised Modulz Research Tnstitute 24.8.83

This chapter provides you with information about different things which are worth knowing if you want to
get along with M2-Interpreter. There are some conventions which have been observed when utility
programs or library modules were designed. Knowing these should allow you to be more familiar with the
behaviar of the programs.

3.1. Special Keys

Consider the following situations: you want to stop the execution of your program, because something is
going wrong; or, yon want to cancel your current keyboard input, because you typed a wroag key; or, you
want {0 get information about the active commands of a program because you actually forgot them. In all
these situations it is very heipful to know a way out.

For these problems, several keys on the keyboard can have a special mesning, when they are typed in an
appropriate situation. Some of these special keys are always active, others have their special meaning only
if 3 program is ready to accept them. The following iist should give you an idea of which keys are used for
what features in programs and to invite you to use the same meanings for the special keys in your own

programs.

DEL
Key to delete the last typed character in a keyboard input sequence, This key I8 active in most
programs when they expect input from keyboard,

CIRLX
Key to cancel the current keyboard input Hoe, This key is active in special situations, e.g. whena
file name is expected by a program,

ESC
Eey 1o tell the running program that it should terminate more or less immediately in a soft
manner, This key is active in most programs when they expect input from keyboard,

CTRL-C
Key 1o stop the execution of a program immediately, Typing CTRL-C is useful if the actions of
a prograrn are no longer under control. Nevertheless it ig considered bad taste to terminate a
program in this way.

CTRL-L
Key to clear the screen area on which a program is writing. This key is active in special
situations, ¢.g. when the command interpreter Is waiting for a new program name,

3.2. File Names «

3.2.1, File Names Accepted by the Module FileSystem

Most programs work with files, This means that they have to assign files on a device. For this purpose the
module FileSystem provides some procedures to identify files by their names. File names accepted by
these procedures have the following syntax:

FileName = Flieldant.
Fileldent = ident{"." ident}.
ident = Letter { Lotter | Digit } .

Capital and fower case letters ave treated as distinet,
Fileident means the name of a file under which it is registered in the name directory of the device.

3.2.2. File Name Extensions

The syntax of a FileIdent, with identifiers separated by periods, allows structuring of the file names. On
Lilith, the following rule is respected by programs dealing with file names:

The last identifier in a Fileldent is called the extension of the file name. If a FileIdent consists of just
one identifier, then this is the extension.

File name extensions allow file categorization of specific types i.e. 0BJ for obiect code files, SYM for
symbol files. There are programs such as the compiler which automatically set the extension, when they
generate new files,

3.2.3. File Name Input from Eeyboard

Many programs prompt for the names of the files they work with. In this case you have to type a file name
from the keyboard according t0 the following syatax:

InputFileName w« Filgident.

Many programs offer a default file name or a default extension when they expect the specification of a file
name. So, it is possible to solely press the RETURN key to specify the whole default file name, or to press
the RETURN key after a period to specify the default extension.

For programmers: Module FileNames supports the reading of file names,

3.3. Program Options

To run correctly, programas often need, apart from a file name, some additional information which must be

supplied by the user. For this purpose so-called program options are accepted by the programs. Program
options are an appendix typed after the file name, The following syntax is applied,

FileNameAndOptions = inputFileName { ProgramOption }.
ProgramOption = "/" OptionValue .
OptionVaiue = {Letter]Digit}.

Every program has its own set of program options, and often a default set of OptionValues is valid. This
has the advantage that for frequently used choices o options must be specified explicitly.

Harmony .MOD/query/notist

For programmers: Module Options supports the reading of program options,

» Depending on the machine, there are different rules for the filenames. Please see release notes for
implementation varigtions.

4, Utility Programs

15.5.82

This chapter gives an overview of some utility programs which provide important services under the
interpreter, Utility programs are stored on the disk. Programs are called for execution by their name,

List of the Pragrams
inspect Inspect the contents of a file 4.1,
xref Generate a reference list of a text file 42,
link Link separate modules to a program 43,
decode Disassembles object files 44,

Most programs operate on files; they will therefore prompt for a file nome and probably also accept
program options. 'The syntax of file names and program options ig given in chapter 3.

10

4.1. inspect

Peter Lamb 15.5.82
Revised Modula Research Institute 24.8.83

The program inspect displays the contents of a file in several formats on the screen. It is normally used to
inspect files consisting of encoded information much like an editor. The program repeatedly prompts for a
file name and for program options.

L 4

inspect> Salary.DATA/octal

If the file name is not specified, the previously accepted name is used. If no program options specifying
the output format are given, the previous format is used. The default output format at the beginning is set
according to the program options Octal and Word.

If more than one display format (Ascii, Octal or Hexadecimal) is given, each dumped item will be
displayed in each of the formats given. For example

inspect> /byte/asdii/hex
will display bytes as both ASCII characters and hexadecimal numbers.

ASCII codes from 0C to 40C are displayed as the corresponding control code (1C is displayed as +A).
ASCII codes >= 177C are displayed as octal numbers.

The leftmost column of the output is the address of the data and is in octal, unless program option
Hexadecimal has been used, and then it is in hexadecimal. Unless program option OUtput is used, the
dump will appear on the screen.

The output may be paused by typing any character except ESC or CTRL-C and restarted by typing another
character. Typing ESC will stop the printout and ask for another file to dump.

Program options

Byte .
Information on file is displayed as a sequence of bytes.

Word
Information on file is displayed as a sequence of words. Default.

Ascii
Displayed values are represented ag ASCII characters.

Octal
Displayed values are represented as octal numbers. Default.

Hexadecimal
Displayed values are represented as hexadecimal numbers.

Startaddress

Information is displayed from this file position. Will prompt for specification of the start
position. Default value is the beginning of the file,

Endaddress

Information is displayed until thig file position. Will prompt for specification of the start
position. Default value is the end of the file.

OUtput
Information is written on an output. Will prompt for a file name.

HELP
— Program will display information concerning its operation.

Capitals mark the abbreviations of the option values.

11

42 xref

Leo Geissmann 15.5.82
Revised Modula Research Institute 24.8.83

Program xref generates cross reference information tables of text files, especially of Modula-2 compilation
units,

The program reads a text file and generates a table with line number references to all identifiers occuring in
the text. It respects the Modula-2 syntax. This means that all word symbols of Modula-2 are omitted from
the table. The program also skips strings (enclosed by quote marks " or apostrophes *) and comments (from
(» to the corresponding »)).

The program prompts for the name of the input file. Default extension is LST.

sxref
input file> BinaryTree.LST

The generated table is listed on a reference file in alphabetical order. In identical character sequences,
capitals are defined greater than lower case letters.

If the lines on the input file start with 2 number, these numbers are taken as referencing line numbers,
otherwise a listing file with line numbers is generated (see aiso program options L and N).

The names of the cutput files are derived from the input file name with the extension changed as follows

XRF for the reference file
ST for the listing file

Program Options
S
Display statistics on the terminal.
L

Generate a listing file with new line numbers.

Generate no listing file. The line numbers in the reference table will refer to the line numbers on
the input file. All lines on the input file without leading line numbers are skipped (e.g. error

message lines).

12

4.3. link

Svend Erik Knudsen 15.5.82
Revised Modula Research Institute 24.8.83

The program link collects the codes of separate modules of a program and writes them on one file. The:
program link is called linker in this chapter. Upon compilation of a separate module, the code generated
by the Modula-2 compiler is written to an object file. An object file may be loaded by Medos-2 directly.

As a program usually consists of several separate modules, the loader reads the code of the modules from
several object files which are searched according to a defaulr strategy. On the one hand, this is time
consuming because several files must be searched, on the other hand, it allows subsitution of a module
from a file with a non-default name.

The linker simulates the loading process and collects the codes of all (nonresident) modules which are,
directly or indirectly, imported by the so-called main module, i.e. the module which constitutes the main
program. The linker applies the same default strategy as the loader to find an object file. A file name is
derived from the module name (the number of unique characters depends upon the implementation). Ifa
first search is not successful, the prefix LIB is inserted into the file name, and a file with this name is
searched,

Module name Options
First default file name Options.0BJ
Second default filename LIB.Options.0BJ

The linker first prompts for the object file of the main module (default extension 0BJ). Next, it displays
the name of the main module. If the file already contains some linked modules, the names of these
modules are displayed next. Afterwards, a name of a not yet linked imported module is displayed,
followed by the file name of the corresponding object file. On the next lines the names of the modules
linked from this file are listed. This is repeated until all imported modules are linked.

s1ink
Linker V3.1 for MEDOS-2 V3
object file> delete.0BJ

Delete main module
NameSearch: LIB.NameSearch.0BJ second default file name
NameSearch
~Options: Options.0BJ first default file name
Options
FileNames module was linked to Options

end of linkage
After successful linking, all linked modules are written on the object file of the main module!

The linker accepts the program option Q (query) when it prompts for the main module. If this option is set,
the linker aiso prompts for the file names of the imported modules. Type a file name (default extension
0BJ) or simply press the RETURN key to apply the default strategy. A prompt is repeated until an
adequate object file is found, or the ESC key is pressed. The latter means that this module should not be
linked. With the query option the linker also asks whether or not a module on a object file should be
linked. Type y or RETURN to accept the module, otherwise type n.

object file> delete.0BJ/q query option set
Delete
NameSearch)> NameSearch.new.0BJ own file substituted
NameSearch ? yes
Options> Options.0BJ default file name
Options ? yes
FileNames ? no module not linked from this file

FileNames> FileNames.own.0BJ
FileNames 7 yes

13

4.4, decode

Christian Jacobi 10.5.82
Revised Modula Research Institute 24.3.83

Program decode disassembles an object file.

The program reads an object code file and generates a textfile with mnemonics for the machine
instructions. It respects the structure of the object file as generated from the compiler.

The program prompts for the name of the input file, The default extension is OBJ.

sdecode
decode > program.CBJ

The name of the output file is derived from the input file name with the extension changed to DEC.

The intended use of this program is to check the compiler after modifications of the code generation;
however this program may aiso be used to learn about the code generation. Normally there is no need to
know the code generated by the compiler.

14

5. The Compiler

Leo Gelssmann 15582

Revised Modula Research Institute 24.8.53

This chapter describes the use of the Modula-2 compiler. For the language definition refer to
Programming in Modula-2 (see 1.3), M2-Interpreter specific language features are mentioned in chapter 8
of this handbock.

5.1. Glossary and Examples

Glossary

compilation unit

Unit accepted by compiler for compilation, i.e. definition module or program module (see
Modula-2 syntax in [1]).

deflnition module
Part of a separate module gpecifying the exported objects.

program module
Implementation part of a separate module (cailed implementation module) or main module,

source flie
Input file of the compiler, i.e, a compilation ynit. The default extension is MOD.

listing file
Compiler output file with ligt of the compiled unit. The assigned extension is LST.

symbol file

Compiler output file with symbol table information. This information is generated during
compilation of a definition module, The assigned extension is SYM.

reference file

Compiler output file with debugger Information, generated during compilation of a program
module. The assigned extension ig REF.

object file
Compiler output file with the generated M-code in loader format, Assigned extension is OBJ.

Examples
The examples given in this chapter to explain compiler execution refer to foliowing compilation units:

MODULE Prog1;
ENé.ﬁrogl.
MODULE Prog?;
BEGIN

a := 2
ENDY PROG2.

RDEFINITION MODULE Progd;
EXPORT QUALIFIED ...

ENb‘Prog3.

15

IMPLEMENTATION MDDULE Progd;
IMPORT Storage:

Eﬁé'éruga.

5.2. Compilation of a Program Module

The compiler is called by typing modula. After displaying the string source file> the compiler is ready
to accept the filename of the compilation unit to be compiled.

smoduia
source file> Progl.MOD name Progl. MOD is accepted

p2 the succession of the activated
p3 compiler passes is indicated
pd

1ister

end compilation

*

Defanlt extension is MOD.

If syntactic errors are detected by the compiler, the compilation is stopped after the third pass and a listing
file with error messages is generated.

smgduia
source file> Prog2.MoD
p1

=== grror errar detected by passl
p2
p3

---- arrop error detecied by pass3
lister

end compilation
w

5.3. Compilation of a Definition Module

For definition modules the use of filename extension DEF is recommended. The definition part of a
module must be compiled prior to its implementation part, A symbol file is generated for definition
modules.

smoduta

source file> Prog3.DEF definition module
pl

p2 -

symfile

Tister

end compilation
*

5.4. Symbol Files Needed for Compilation

Upon compilation of a definition module, 2 symbol file containing symbol table information is generated.
This information is needed by the compiler in tweo cases;

At compilation of the implementation part of the module.

16

At compilation of another unit, importing objects from this separate module.

According to a program option, set when the compilation is started (see chapter 5.6.), the compiler either
explicitly prompts for the names of the needed symbol files, or searches for a needed symbol file
(extension SYM) by a default name, which is constructed from (the first 16 characters of) the module
aame. In the former case the guery for a symboi file is repeated until an adequate file is found or the ESC
key is typed, If in the latter case the gearch fails, the default name is combined with a prefix LIB and the
compiler tries again to find a corresponding file. A second failure would cause an error message,

Module name Storage
Qbject of First file name gearch Storage.SYM
Object of Second file name search LIB.Storage.SYM
If all needed symbol files are not available, the compilation process is stopped immediately.
sgodula
source file> Prog3.MOD implementation module
pl

Progd: Prog3.SYM
Storage: LIB.Storage.SYM
pe
pd
pd
lister
end compilation

5.5. Compiler Qutput Files

Several files are generated by the compiler. They get the same file name as the source file with an
extension changed as follows

LST listing fiie
SYM symbol file
REF reference file
08J object file

The reference file may be used by a debugger to obtain names of objects.

5.6. Program Options for the Compiler

When reading the source file name, the compiler also accepts some program options from the keyboard,
Program options are marked with a leading character / and must be typed sequentially after the file name
{see chapter 3.).

The compiler accepts the option values:

LIST
A listing file must be generated,

N
No listing file must be generated. Default.

Q
the compiler explicitly promps for the names of the needed symbol files, belonging to modules ‘
imported by the compiled unit.

NOQ
No query for symbol file names, Files are searched corresponding to a default strategy. Defauls,

17

Y
The compiler has to display information about the running version of processor and operating

system flags.
5.7. Compilation Options in Compilation Units
Comments in a Modula-2 compilation unit may be used o specify certain compilation options for tests,
The following syntax is accepted for compilation options:

CompQptions = CompOgption { °," CompOgption }.
CompOntion = "$" Lelter Switch .
Switch IR L

Compilation options must be the first information within 2 comment. They are not recognized by the
compiler, if other information precedes the options.

Letter

R Subrange and type conversion test,
T Index test (arrays, case).

Switchk

+ Test code is generated.
- No test code is generated.
Previous switch becomes valid again.

All switchas are set to + by default,
MODULE x: (» $T+ =)

test code generated

(» §T- +}

a[i] := afi+1]; no test code is generated

(» §T= *))

test code is generated
ERD x

5.8. Module Key

With each compilation unit the compiler generates a 30 called module key. This key ig unique and is
needed to distinguigh different compiled versions of the same module. The module key is written on the
symbol file and on the object file.

For an implementation module the key of the associated definition module is adopted. The module keys of
imported modules are also recorded on the generated symbol files and the object files.

Any mismatch of moduie keys belonging to the same module will cause an error message at compilation or
loading time.
WARNING

Recompilation of a definition module will produce & new symbol file with & new module key. In thig
case the implementation module and all units importing this module must be recompiled as well.

Recompilation of an implementation module does not affect the module key,

5.9. Program Execution
Programs are normally executed on the top of the resident operating system Medos-2, The command

18

interpreter accepts a program name and causes the Joader to load the module on the corresponding object
file into the memory and to start its execution.

If a program consists of several separate modules, no explicit linking is necessary. The object files
generated by the compiler are mevely ready to be loaded. The main module, the module which is called to
be cxecuted and therefore constitutes the main program, as well as all modules which are directly or
indirectly imported, is loaded, . The loader establishes the links between the modules and organizes the
initialization of the loaded modules.

Usually some of the imported modules are part of the aiready loaded, resident, Medos-2 cfpexatmg system
(e.g. module FileSystem). In this case the loader sets up the links to these modules, but prohibits their
reinitialization. A module cannot be loaded twice.

After termination of the program, all separate modules which have been loaded together with the main
module are removed from the memory. More details concerning program execution are given in chapter 2.

Although it is not necessary 10 link programs explicitly, it is sometimes more convenient to do so. Linking
collects all modules which are 1o be loaded together and writes them to the same file, If a program is
pre-linked, it will accelerate the loading. Linking is provided by the program link (see chapter 4.7).

Medos-2 also supports a type of program sack. A program may call another program, which will be
executed on the top of the calling program, After termination of the called program, control will be
returned to the calling program. For more details refer to the library module Program (see chapter 6.2.).

5.10. Value Ranges of the Standard Types

The value ranges of the Modula-2 standard types under the interpreter are defined according to a 16 bit
word size,

TNTEGER
The value range of type INTEGER i [-32768..32767]. Sign inversion is an operation within
constant expressions. Therefore the compiler does not allow the direct definition of -32768.
This vaiue must be computed indirectly; for example: -32767-1.

CARDINAL .
The value range of type CARDINAL is [9. .65535].

REAL
Values of type REAL are represented in 2 words, The value range expands from -1.7¢14E38 o
1,7814E38.

CHAR
The character set of type CHAR is defined according to the ISO - ASCII standard with ordinal
values in the range [0..255]. The compiler processes character constants in the range
[ec..377C]

BITSET
The type BITSET is defined as SET OF [9..15]. Consider that sets are represented from the
high order bits to the low order bits, i.e. {15} corresponds to the ordinal value 1.

19

5.11. Differences and Restrictions

For the implementation of Modula-2 under the interpreter some differences and restrictions must be
considered.

Constant expressions with real sumbers

Constant expressions with real numbers are nor evaluated by the compiler (except sign
invergion). The compiler generates an error message.,

Character arrays

In arrays with element type CHAR two characters are packed into one word. This implies the
restriction that a variable parameter of type CHAR may nof be substituted by an element of a
character array.

Sets
Maximal ordinal value for set elements is 15,

FOR statement

‘The values of both expressions of the for statement must not be greater than 32767 {(777778).
The values are checked at run time, if the compilation option R + is specified. The step must be
within the range [~128..127], the value ¢ excepted.

CASE statement
The labels of a case statement must not be greater than 32767 (777718},

Value ARRAY OF WORD parameter

Constants {with the exception of constant strings) must not be substituted for a value dynamic
ARRAY OF WORD parameter.

Function procedures
‘The result type of a function procedure must neither be a record nor an array.

5.12, Compiler Error Messages

ROPNLECANLLLELE5RDR 588U REBRUBBRIBRRPRUG o~vonsrwn~o

o
pui

33

. illegal character in source file

: constant out of range

: open comment at end of file

+ string terminator not on this line

! too many ermrors

: string too long

: too many identifiers {identifier table full)
: too many identifiers (hash tabie fuil)

: identiiier expected

. integer constant expectec

: *] expected

1 % sxpecied

: bloek name at the END does not mateh
: arvor in block

: =’ axpecied

1 error in exprassion

: THEN expected

: error in LOOP statement

. ponstant must not be CARDINAL
: grror in REPEAT statement

: UNTIL expected

: error in WHILE statement

: DO expected

: error in CASE statement

: QF sxpected

1 U expected

: BEGIN expected

1 efror i WITH statement

: END expected

1Y expected

: eeror in constant

: "=" expected

1 orror in TYPE declaration

: (" expected '

: MODLLE expectad

: QUALIFIED expecitad

. arror infactor

1 efror in simpie ype

: ! expectad

: eiror in formal type

* arror in statement sequence

: L expected

: export at globai level not allowed
1 body in definition modula not allowed
: TO expected

. nested module in definition module not allowed
: 'Y expected

. .. expected

: error in FOR statement

1 IMPORT expected

: identifier specified twice in impaortiist
: identifier not exported from qualifying module

B B B e R
doddarnan

SEERIEERBR2E

a2

124
125
128
127
128
120
130
131
132

134

: identifier declarad twice

: idantifier not declared

: type not deciared

: igentifier already deciared in moduls environment

: oo many nesting levels

: value of absolute address must be of typs CARDINAL

: scope table overfiow in compiler

: illegat priority

: definition moduie belonging to implementation not found

: structure not aliowed for implementation of hidden type

: procedure impiementation different from definition

: not ali defined procedures or hidden types implamented

: namne conflict of axporied cbject or enumeration constant in environment
: incompatible versions of symbolic modules

: function type is not scalar or basic type

: pointar-referenced type not deciared

: tagfieidtype expected

: incompatibla type of variant-constant

: constant used twice

: arithmetic error in evaluation of constant expression
: incorrect range

: range onily with scalar types

! type-incompatible constructor slement

: alement value out of bounds

: set-type identifier expected

: structured type too large

. undeciared identiier in export list of the module
: range not beloenging to base fype

: wrong class of identifier

: no such module name found

! module name expected

: set too large ' -

: scalar or subrange type expected

: case label cut of bounds

: iliegal export from program modula
: code block for modules not aliowed

: incompatibie types in conversion

; this typer is not expected

: variable expected

;incorrect constant

! ne procadure found for substitution

: unsatisfving paramaeters of substituted procedure
: set constant out of range

: efror in standard procedure parameters
: type incompatibility

: type identifier expected

. type impossibie to index

: fisid not balonging to a record variable
1 too many pararmneters

133

1 reference not to a variable

21

135 : iliegal parameter substitution

136 : constan expected

137 : expected parameters

138 : BOOLEAN type expected

138 : scaiar types expected

140 : operation with incompatible type

141 : only giobal procedure or function allowed in expression
142 ; incommpatible element type

143 : type incompatible operands

144 : no salectors allowed for procedires

145 ; only function cail allowed in expression

146 : arrow not belonging to a pointer variable

147 . standard function or procedure must not be assigned
148 : constant not allowed as variant

148 : SET type expected

150 . iilegai substitution to WORD parameter

181 @ EXIT only in LOOP

152 : RETURN only in PROCEBURE

1583 : exprassion expected

154 : expressicn not allowed

185 : type of function expected

156 : inieger constant expected

157 : procedure call axpected

158 : identifier not exported from qualifying moduie
188 : code buffer averflow

160 : iliegal value for code

161 : call of procedure with lower priority not gllowed

200 : compiler arror
201 : implementation restriction
202 : implementation restriction: for step too large
203 : implementation restriction: boolean expression too iong
204 : implementation restriction: expression stack overflow,
Lo, exprassion too complicated or too many parameters
205 : implementation restriction: procedure too long
206 : implementation restriction: packed eiement used for var parameter
207 : implementation restriction: illegal type conversion

220 : notiurther speciied error

221 . division by zero

222 . index out of range or conversion error
223 : case label defined twice

6. The Medos-2 Interface

Svend Exik Enudsen 15382

Revised Moduia Research Institute 24.8.83
This chapter describes the interface to the Medos-2 operating system. It containg the following modules:

FileSystem Standard module for the use of files 6.1
Program Facilities for the execution of programs upon Medos-2 6.2,
Storage Standard module for storage allocation in the heap 6.3,

Terminal Standard module for sequential terminal input/output 6.4,

6.1. Module FileSystem

Svernd Erik Enudsen 155.82

6.1.1. Introduction

A (Medos-2) file i3 a sequence of bytes stored on a certain medium, Module FileSystem is the interface the
normal programmer should know in order to use files, The definition module is listed in chapter 6.1.2.
The explanations needed for simple usage of sequentizl (text or binary) files are given in chapter 6,1.3, The
file system supports several implementations of files,

6.1.2. Definition Module FileSystem
DEFIMITION MODULE FileSystem; (» Medos-2 V3 S. E. Knudsen 1.6.81 s)

FROM SYSTEM IMPORT ADDRESS, WORD;

EXPORT QUALIFIED
File, Response,

Create, Close,

tookup, Rename,

SetRead, SetWrite, SetModify, Set0pen,
Doio,

SetPos, GetPos, teagth,

Reset, Again,
ReadWord, WriteWord,
ReadChar, WriteChar,

TYPE
Response = {done, notdone, notsupported, callerror,
unknownmedium, unknownfile, paramerror,
toomanyfiles, eom, deviceoff,
softparityerror, sofiprotected,
softerror, hardparityerror,
hardprotected, timeocut, harderror);

File = RECORD
id: CARDINAL;
eof: BOOLEAN;
res: Response;
END;

PROCEDURE Create{VAR f: File; mediumname: ARRAY OF CHAR);
PROCEDURE Close{VAR f: File);

PROCEDURE Lookup{VAR f: File; filename: ARRAY OF CHAR; new: BOOLEAN);
PROCEDURE Renam&{VAR f: File: filename: ARRAY OF CHAR);

PROCEDURE ReadWord{VAR f: File; VAR w: WORD);
___PROCEDURE WriteWord{VAR f: File; w: WORD);

PROCEDURE ReadChar{VAR f: File; VAR ch: CHAR);

PROCEDURE WriteChar{VAR f: File; ch: CHAR);

PROCEDURE Reset{VAR f: File),

PROCEDURE Again{VAR f: File);

PROCEDURE SetPos{VAR f: File; highpos, lowpos: CARDINAL);
PROCEDURE GetPos{VAR f: File; VAR highpos, lowpos: CARDINAL);
PROCEDURE Length{VAR f: File; VAR highpes, lowpos: CARDINAL);

PROCEDURE SetRead(VAR F: File):
PROCEDURE SetWrite(VAR f: File);
PROCEDURE SetModify(VAR f: File);
PROCEDURE SetOpen(VAR f: File);
PROCEDURE Doio(VAR f: File);

END FileSystem.

26

6.1.3. Simple Use of Files

6.1.3.1. Opening, Closing, and Rezamicg of Files

A file is either permanent or temporary. A permanent file remains stored on its medium after it is closed
and normally has an external {or symbolic) name. A temporary file is removed from the medium as soon as
it is no longer referenced by a program, and normally it is nameless, Within a program, a file is referenced
by a variable of type File. From the programmer’s point of view, the variazble of type File simply is the
file. Several routines coanect a file variable to an actual file (e.g, on a disk). The actual file either has to
be created or looked up by its file name. The syntax of file name is

jdentifier = Tetter { Tetter | digit } .
file name = local name .
local same = identifier { "." identifier } .

Capital and lower case letters are treated as being different. The local name i3 the name of the fileon a
specific medium, The last (and maybe the only) identifier within a local file name iz often called the file
name extension or simply extension. The file system does, however, not treat file name extensions in a
special way., Many programs and users use the extensions to classify flles according to their content and
treat extensions in a special way (¢.g. assume defauits, change them automatically, etc.).

SYS.directory. OBl
File name of file SYS.directory.OBJ. lis extension is OBJ,
Create(f, mediumname)

Procedure Creare creates s new temporary (and nameless) file. mediumnam is a dummy parameter
left over from the Lilith, After the call the variable fires has the following value:

fres = done if file f is created,
fres = .. if some error occured.
Close(f)

Procedure Close terminates any actual input or output operation on file f and disconnects the variable
f from the actual file. If the actual file is temporary, Close also deietes the file,

Lookup(f, filename, new}
Procedure Lookup looks for the actual file with the given file name. If the file exists, it is connected
to f (opened). If the requested file is not found and new is TRUE, a permanent file is created with the
given name, After the call the variable fires has the following value:

fres = done if file fis connected,
fres = potdone if the named file does not exist,
foes = .., if some error occured.

Rename(f, filename)
Procedure Rename changes the name of file f to filename. If filename is empty, { is chanped to a
temporary and nameless file, If filename contains a Jocal name, the actual file will be permanent after
a successful call of Rename, Afer the call the variabie f.res has the following value:

fres = done if file f'is renamed,
f.res = notdone if a file with fiiename already existy,
fres = ... if some error occured.

Related Module

Module FifeNames makes it easier to read file names from the keyboard (i.e. from module Terminal, see
chapter 6.4.) and to handie defaults (see chapter 7.11.). {

27

6.1.3.2. Reading and Writing of Files

At this level of programming, we consider a file to be either a sequence of characters (fext file) or a
sequence of words (binary file), although this is mor enforced by the file system, The first cailed routine
causing any input or output on a file (i.e. ReadChar, WriteChar, ReadWord, WriteWord) determines
whether the file iz to be considered as a text or a binary file,

Characters read from and written to a text file are from the ASCII set. Lines are terminated by character
36C (= eol RS).

Resei(f)
Procedure Reser terminates any actual input or output and sets the current position of file f to the
beginning of f.

WriteChar(f, ch), WriteWord(f, w)
Procedure WriteChar (WriteWord) appends character ck (word w) to file f.

ReadChar(f, ck), ReadWord(f, w)
Procedure ReadChar (ReadWord) reads the next character (word) from file f and assigns it to the
variable ch (w). If ReadChar has been called without success, OC is assigned to ch. feof implies ck
= 0C, The opposite, however, is not true; ch = 0C does not imply feof. After the call

f.eof = FALSE ch {w) has been read
f.eof = TRUE Read uperation was not successful
If f.eof is TRUE:
fres = done End of file has been reached
fres = .. Some error occured

Again(f)

This procedure is not supported by the M-2 Interpreter,

Related Modules

Module By1elO provides routines for reading and writing of bytes on files. This is valuable for the packing
of information on files, if it is known that the ordinal values of the transferred elements are in the range 0 ..
255,

Module ByteBlocklQ makes it easier (and more efficient) to transfer elements of any given type (size).

6.1.3.3, Positioning of Flles

All input and output routines cperate at the current position of a file, After a call to Lookup, Create or
Reser, the current position of a file is at its beginning. Most of the routines operating upon a file change
the current position of the file as a normal part of their action, Positions are encoded into Jong cardinals,
and a file is positioned at ii3 beginning, if its current position is equal to zero, Each call to a procedure,
which reads or writes a character (a word) on a file, increments the current file position by 1 (2) for each
character (word) transferred, A character (word) is stored in 1 (2) byte(s) on a file, and the position of the
clement ig the sumber of the (first) byte(s) holding the element, By aid of the procedures GetPos, Length
and SetPos it is possible to get the current position of a file, the position just after the last element in the
filé, and to change explicitly the current position of a file,

SetPos(f, highpos, lowpos)
A call to procedure SetFos sets the current position of file { 10 Aighpos » 2ee16 + lowpos. The new
position must be iess or equal the length of the file. IF the last operation before the call of SerFos was
a write operation (i.e. if file f iy in the writing state}, the file ig cut at its new current position, and the
elements from current position 1o the end of the file are lost.

GetPos(f, highpos, lowpos)
ProcedureGerPos returns the current file position. It is equal to kighpos » 2eei6 + lowpos.

Length(f, highpos, lowpos)
Procedure Length gets the position just behind the last element of the file (i.e. the number of bytes
stored on the file). The position is equal to Aighpos « 2#16 + lowpos.

6.1.3.4, Examples
Writing a Text File

VAR
£ File;
ch: CHAR: endoftext: BOOLEAN:

Lookup{f, "newfile", TRUE);
IF f.res <> done THEN
(+ ¥ was not created by this call to "Lookup™ *)
IF f.res = done THEN Close(f) END
ELSE
LoOP
{* Tind next character to write --> endoftext, ch »)
IF endoftext THEN EXIT END;
WriteChar{f, ch)
END; .
Close{f)
END

Reading a Text File

VAR
F: File;
ch: CHAR;

Lookup{f, "oldfile™, FALSE):
IF f.res <> done THEN
(= file not found =)
ELSE
Loop
ReadChar{f, ch};
IF f.eof THEN EXIT END;
(* use ch =)
END;
Clese(F)
END

SetOpen(f}

A call to SetGpen flushes all changed bufTers assigned to file £, and the file is set into state opened. A
call to SerOpen is needed only if it is desirable for some reason o flush the buffers (e.g. within
database systems or for “replay™ files), or if the file is in state writing, and it has to be positioned
backward without truncation. If an 1/0 error occured since the last time the file was in state opened,

29

thig is indicated by field res.

fres = done Previous 170 operations successfisl
fres = .. An error has occured since the last time the file was in state opened.
SetRead(f) «

A call to SetRead sets the file into state rending. This implies that a buffer iz assigned to the file and
the byte at the current position is in the assigned buffer,

SetWrite(f) »
A call 10 SetWrite sets the file into state writing. In this state, the length of a file i3 always (set) equal
to its current position, i.e. the file is always written at itz end, and the file will be rruncated, if its
current position is set to a value less than its length,

SetModify(f) »
A call to SetModify sets the file into state modifying. This implies that a buffer is assigned to the file
and the byte at the current position is read into the buffer, The length of the file might hereby be
increased but never decreased!

Doie{f) »
Not implemented.

o The implementations of these procedures vary greatly between machines. Please see the release
notes for implemeniation specifics.

30

6.2. Module Program
Svend Erik Koudsen 15.5.82

6.2.1. Introduction

A Moduia-2 program consists of 4 main module and of all separate modules imported directly or indirectly
by the main module. Module Program provides facilities aceded for the execution of Modula-2 programs
- upon Medos-2. The definition module is glven in chapter 6.2.2. The program concept and explanations
needed for the activation of a program are given in chapter 6.2.3. The heap and two routines handling the
heap are explained in chapter 6.2.4, Possible error messages are listed in 6.2.5. The object file format may

be inspected in 6.2.6,

6.2.2 Definition Module Program
DEFINITION MODULE Program; (* Hedos-2 V3 S. E. Knudsen 1.6.81 #)

FROM SYSTEM IMPORT ADDRESS;

EXPORT QUALIFIED
Call, Terminate, Status,
MainProcess,
Currentlevel, Sharedlevel,
AllocateHeap, DeallocateHeap;

TYPE

Status = {normal,
instructionerr, priorityerr, spaceerr, rangeerr, addressoverflow
realoverflow, cardinaloverflow, integeroverfiow, functionerr,
halted, asserted, warned, stopped,
callerr,
programnotfound, programalreadyloaded, modulenotfound,
codekeyerr, incompatiblemodule, maxspaceerr, maxmoduleerr,
filestructureersy, fileerr,
Toaderr) ;

PROCEDURE Cali(programname: ARRAY OF CHAR; shared: BOQOLEAN; VAR st: Status):
PROCEDURE Terminate(st: Status);

PROCEDURE MainProcess(): BOOLEAN;
PROCEDURE Currentlevel{): CARDINAL;
PROCEDURE SharedLevel{): CARDINAL;

PROCEDURE AllocateHeap(gquantum: CARDINAL): ADDRESS;
PROCEDURE DeallocateHeap{quantum: CARDINAL): ADDRESS;

END Program.

-4

6.2.3. Execution of Programs

A Modula program consists of a maia module and all separate modules imported directly and/or indirectly
by the main module, Within Medos-2, any 'running program may activate another program just like a call
of a procedure. The calling program is suspended while the called program is runnidg, and it is resumed,
when the called program terminates.

All active programs form a stack of activated programs. The first program in the stack is the resident part
of the operating system, i.e, the {resident part of the) command interpreter topether with all imporied
modules. The topmost program in the stack is the currently runaing program,

Typical Execution of Programs

&

Bynamic

Activation
fevel

Init Pass1 | |Pass2 JSym Uusxer
Comint | |edit Comint moduia {compiler base)
SEK ({resident program}
' firre

The figure illustrates, how programs may be activated. At any time, the dynamic activation level or simply
the leve! identifies the active program in the stack,

Some essential differences exist, however, between programs and procedure activations,
A program is identified by a computable progrem name.
The calling program is resumed, when a program terminates (exception handling).

Resoyrces like memory and connected files are owned by programs and are retrieved again, when the
owning program terminates (resource management).

At any given time only one instance of a program can be active {programs are nof reentrant).

The code for a program is foaded, when the program is activated and is removed, when the program
terminates.

A program is activated by a call to procedure Call. Whenever a program is activated, its main moduls is
loaded from a file. All directly or indirectly imported moduies are also loaded from files, if they are not
used by already active programs i.e, if they are not already loaded, in the latter case, the just called
program is bound to the already loaded modules, This is analogous to nested procedures where the scope
rules guarantee that objects declared in an enclosing block may be accessed {rom an inner procedure,

After the execution of a program, all its resources are returned, The modules, which were loaded, when the
program was activated, are removed again.

The calling program may, by a parameter to Call, specify that the called program shares resources with the
calling program, This means, that all sharable resources allocated by the called program are actually
owned by the active program on the deepest activation level, which still shares resources with the currently
running program. The most common resources, namely dynamically allocated memory space (from the
heap) and (connected) files, are shared. Any feature implemented by use of procedure variables can
essentially not be sharable, since the code for an assigned routing may be removed, when the program

k¥

containirgg it terminates.

A program is identitied by a program name, which consists of an identifieror a
sequence of identifiers separated by periods. (see implementation notes for specifics)

Program name = Identifier { "." Identifier } .
Identifier = Letter { Letter | Digit } .

In order to find the object code file, from which a program must be loaded, the program name is convertad
into a2 file name as follows: The extension OB/ is appended after the program name. If no such file exists,
prefix SYS. is ingerted, and a second search is carried out.

An object code file may contain the object code of several separate modules. Imporsted but not already
loaded modules are searched sequentially on the object code file, which the loader is just reading.

Missing object code 1o imported modules is gearched for like programs, The module name is converted to
a file name by appending the extension .Q8J to it. If the file is not found, a second search is made afier the
prefix LIB. has been inserted. If the oblect code file ix not yet found, the object code file for ancther
missing module is searched, This is tried once for all imported and still not loaded modules.

Program name time

First searched file time.0BJ
Second searched file SYS.time.OBJ
Module name Storage

First searched file _ Storage.OBJ
Second searched file LIB.Storage. OB

Call(programname, shared, status)
Procedure Call loads and starts the execution of program programname. 1f shared is TRUE, the called
program shares (sharabie) resources with the calling program. The starus indicates if a program was

executed successfuily, .

status = normal Program executed normally

status in {ingtructionerr .. stopped} Some execution error detected

status in {callerr .. loaderr} Some 1oad error detected
Terminate{status)

‘The execution of a program may be terminated by a call to Terminate, The status given as parameter
to Terminate is returned ag status to the calling program.

CurrentLevel(): CARDINAL _
Function CurrentLevel returns the (dynamic activation) leve!/ of the running program,

SharedLevel(): CARDINAL
Function Sharedl.evel returns the leve] of the lowest program, which shares resources with the current
program.

MainProcess(): BOOLEAN
Function MainProcess returns TRUE if the currently executed coroutine (Modula-2 PROCESS) is the
one which executes the initialisation part of the main module in the running program.

Implementation Notes

The current implementation of procedure Call may only be calied from the main coroutine, i.e. the
coroutine within which function MainProcess returns TRUE.

The module Storage may be loaded several times by module Program. This is the only exception to the
rule, that a module may be loaded only once. Module Storage may be loaded once for each set of shared

33

programs {i.e. once for cach heap).

Only up to 96 modules may be loaded at any time. The resident part of Medos-2 consists of 6 modules.
The loader can handie up to 40 already imported but not yet loaded moduies,

The maximum number of active programs is 16,

Related Program

The program Jink collects the object code from several separate modules onto one single object code file.
{ink enables the pser to substitute interactively an object code file with a non-default file name. “Linked”
object code files might also be loaded faster and be more robust against changes and errors in the
environment,

Example: Command Interpreter
MODULE Comint; {* SEK 15.5.82 +}

FROM Terminal IMPORT Write, WriteString, Writeln;
FROM Program IMPORT Call, Status;

CONST
programnamelength = 16; {+ This number wil) vary depending on the impieme

VAR
programname: ARRAY [@..programnamelengih-1}] OF CHAR;
st: Status;

BEGIN
LooP
Write('*'};
(* read programname »}
Calil({programname, TRUE, st);
IF st <& normal THEN
Writeln;
WriteString("- some error occured”); Writeln
END
END (+ LOOP =)
END Comint.

6.2.4. Heap

The main memory under the interpreter i3 divided into two parts, a stack and a heap, The stack grows
from address 0 towards the stack limit, and the heap area is allocated between the stack limit and the
highest address of the machine (64k-1), The stack and the heap are separated by the stack limit,

‘The areg between the actual fop of stack and the stack limit is free and may be allocated for both the stack
and the heap.

Module Program handles the heap simply as a "reverse™ stack, which may be enlarged by decrementing the
stack limit address or reduced by incrementing iv. This may be achieved by the rontines AllocateHeap and
DeallocateHeap.

Whenever a program is called, an activation record for that program is pushed onto the stack., Currently
the activation record contains beside the "working stack™ (main process) also the code and data for all
modules loaded for the called program. The activation record of the running program is limited at the high
end by top of stack. —

If the call is a shared call, i.e. if the parameter shared of procedure Call is set TRUE, nothing specially is

34

made with the heap: The heap may grow and shrink as if no new program had been activated. If the callis
not shared, however, (parameter shared set 10 FALSE) the current valpe of stack limit is saved, and a new
heap is created for the program on the top of the previous heap, i.¢. at stack limit.

When a program terminates, its activation record is popped from the stack, and if the program is not
shared with its calling program, its heap is releaged as well,

AllocateHeap(quantum); ADDRESS

Function AllocateHenp allocates an area to the heap by decrementing stack limit by MIN(available
space, quantum). The resulting stack lmit is returned.

DeallocateHeap{quantum): ADDRESS

Function DeallocateHeap deallocates an area in the heap by incrementing stack limit by MIN(size of
heap, quantum). The resulting stack limit is returned.

Implementation Note

The current implementation of the functions AllocateHeap and DeallocateHeap may only be called from
the main coroutine, i.e. the coroutine, within which function MainProcess returns TRUE.

Related Module

Module Szorage is normally used for the allocation and deallocation of variables referenced by pointers, It
maintains a list of free areas in the heap.

Examples: Procedures ALLOCATE and DEALLOCATE

PROCEDURE ALLOCATE(VAR addr: ADDRESS; size: CARDINALY,
VAR top: ADDRESS;
BEGIN
top := AllocateHeap(@8); (* current stack limit)
addr := AllocateHeap{size};
IF top - addr < size THEN
top := DeallocateHeap(top - addr};
WriteStiring("- Heap gverfiow"); Writein;
Terminate{spaceerr)
END
END ALLQCATE;

PROCEDURE DEALLOCATE(VAR addr: ADDRESS; size: CARDINAL);
BEGIN

addr := NIL
END DEALLOCATE;

6.2.5. Error Handling

All detected errors are normally handled by returning an error-indicating Status 10 the caller of procedure
Call. Some errors detected by the loader are also displayed on the screen in order to give the user more
detailed information. This is done according to the following format:

- Program.Call: errorindicating text
The number of hyphens at the beginning of the message indicates the level of the called program,

- Program.Call: incompatible module
*module name® on file 'file name’

Imporied module module name found on file file neme has an unexpected module key.

35

- Program.Call: incompatibie moduie
‘moduiel name’ imported by ‘module? name' on file ’file name’

Module moduiel name imported by module? name on file file name has another key ag the already
loaded {or imported but not yet loaded) module with the same name.

- Program.Call: module(s) not found:
modulel name
modulel name

The listed modules were not found.,

6.2.6. Object Code Format
The format of the object code file generally has the following syntax:

LoadFile ={ Frame }.

Frame =FrameType FrameSize { FrameWord }.
FrameType ="2008" | "2018"|....} "87IB".
FrameSize =Nurnber. /number of FrameWords/
FrameWord = Number.

The load file i a word file. FrameType and Number are each represented in one word,
The object code file obeys a syntactic structure, called ObjectFile.

ObjectFile = Module { Module } .
Module =[VersionFrame] HeaderFrame [impoitFrame]
{ ModuieCode | DataFrame }.
VersionFrame = VERSION FrameSize VersionNumber.
FrameSize = Number,
VarsionNumber =Number,
HeaderFrama = MODULE FrameSize ModulaName DataSize.
ModuleName = Moduleident ModuleKey,
Moduleldent = Letter { Letter | Digit } { "0C" }. -
ModilakKay = Number Number Number.
DataSize =Number. /in words/
ImportFrame =IMPORT FrameSize {ModuleName},
ModuleCode =CodeFrame [FixupFrame .
CodeFrame =CODETEXT FrameSize WordQffset { CodeWord .
Word(OHiset = Number, /in words from the heginning of the module/
CodeWord = Number,
FixupFrame = FIXUP FrameSize {ByieOffset}).
ByteOffset =Number, /in bytes from the beginning of the module/
DataFrame =DATATEXT FrameSize WordOffset { DataWord }.
DataWord =Number.
VERSION ="2008".
MODULE =" 2018",
iIMPORT ="2028",
CODETEXT = "2038".
DATATEXT ="2048".
FIXUP ="208B"

Currently the VersionNumber is equal 10 3.

The Byte(Offsets in FixupFrame point 10 bytes in the code containing local moduyle numbers. The local
module numbers must be replaced by the geruef numbers of the corresponding modules. Loczl module

36

number 0 stands for the module itself, local module number i {i > 0) stands for the i'th module in the
ImportFrame.

A program is activated by a call to procedure { of its main moduie,

37

6.3. Storage
Svend Erik Knudsen 15.5.82

Calls to the Modula-2 standard procedures NEW and DISPOSE are translated into calls to ALLOCATE
and DEALLOCATE. The standard way of doing this is to import ALLOCATE and/or DEALLOCATE
from module Storage.

DEFINITION HODULE Storage; (» Medos-2 V3 1.6.8% §. E. Knudsen *)
FROM SYSTEM IMPORT ADDRESS;
EXPORT QUALIFIED ALLOCATE, DEALLOCATE, Available;
PROCEDURE ALLOCATE(VAR a: ADDRESS; size: CARDINALY:
PROCEDURE DEALLOCATE(VAR a: ADDRESS; size: CARDINAL}Y;
PROCEDURE Available{size: CARDIKAL): BOOLEAN;
END Storage.

Explarnations

ALLOCATE(addr, size))
Procedure ALLOCATE allocates an area of the given size and assigns its address (0 aZdr. If no space
is available, the calling program is kiiled.

DEALLOCATE(zddr, size)
Procedure DEALLOCATE frees the area with the given size at address addr.

Available(size): BOOLEAN
Function Available returns TRUE if an area of the given size is available.

Example
MODULE Storagebemo; (* SEK 15.5.82 »}
FROM Storage IMPORYT ALLOCAYE;
TYPE
Pointer = POINTER TO Element:
flement = RECORD next: Pointer; value: INTEGER EIND;
VAR root: Pointer;

PROCEDURE NewInteger(i: INTEGER};
VAR p: Pointer;

BEGIN
NEW{p): {» tmplicit call to ALLOCATE =)
pr.next := root; pr.value :» 1,
root = p

END Newinteger;

BEGIH
root := NIL;
(= ... =)

ERD StorageDemo.

38

Restrictions
The behaviour of the given implementation is only defined, if its procedures are (directly or
indirectly) activated by the main program (and not from one of its coroutines),
DEALLOCATE checks only roughly the validity of the call.

Module Storage can only handle the heap for the running program. Other heaps created for programs

not sharing the heap with the running program can not be handled by module Storage (3ee module
Program, chapter 6.2.).

Loading of Module Storage

Module Storage may be loaded once for each heap it should handle. For more details see moduls
Program, chapter 6.2,

Error Messages

- Storage.BALLOCATE: heap overflow
- Storage.DEALLOCATE: bad pointer

Imported Modules

SYSTEM
Program
Terminal

Algorithms

ProcedureStorgge maintaing a list of available areas sorted by addresses in the heap. When an
element has to be allocated, the list is searched from the highest towards lower addresses for a large
enough available area. If such an area is found, the needed memory space is allocated in that area
(first fit algorithm). Otherwise Srorage tries to get more memory space allocated from module
Program {Program. AllocateHeap).

Procedure DEALLOCATE inserts the deallocated area into the sorted list of available areas.
Adjacent available areas are collapsed during the insertion,

39

6.4. Terminal
Svend Erik Knudsen 15.5.82

Module Terminal provides the routines normally used for reading from the keyboard (or a commandfile)
and for the sequential writing of text on the screen,

DEFINITION MODULE Terminal, (* Medos~2 V3 S. E. Knudsen 1.6.81 =)

EXPORT QUALIFIED
Read, BusyRead, ReadAgain,
Write, WriteString, Writeln;

PROCEDURE Read{VAR ch: CHAR};
PROCEDURE BusyRead{VAR ch: CHAR);

PROCEDURE Write{ch: CHAR);
PROCEDURE WriteString{string: ARRAY OF CHAR);
PROCEDURE Writeln;

END_TerminaT.

Explanations

Read(ch)
Procedure Read geots the next character from the keyboard (or the commandfile) and assigns it to ch.
Lines are terminated with character 36C {=eol, RS). The procedure Regd does not "echoe™ the read
character on the screen.

BusyRead(ch)
Procedure BusyRead assigns 0C 10 ok if no character has been typed. Otherwise procedure BusyRead
ig identical o procedure Read.

Write(ch)
Procedure Write writes the given character on the screen at its current writing position. The screen
scrolls, if the writing position reaches its end. Besides the following lay-out characters, it is left
undefined what happens, if non printable ASCII characters and non ASCH characters are written out.

eol 36C Sets the writing position at the beginning of the next line

CR 15C Sets the writing position at the beginning of the current line

LF 12C Sets the writing position to the same column in the next line

FF 14C Clears the screen and sets the writing position into its upper left corner

BS 10C Sets the writing position one character backward

DEL 177C Sets the writing position one character backward anid erases the character there

WriteString(string)
Procedure WriteSiring writes out the given string, The string may be terminated with character 0C.

WriteLn
A call to procedurs WriteLn is equivalent to the call Writefeol).

7. Library Modules

15.5.82

This chapter is a coilection of some commonly used library modules under the interpreter. For each
library module a symbof file and an object file is stored on the distribution disk. The file names are derived
from (the first 16 characters of) the module name, beginning with the prefix LIB and ending with the
extension SYM for symbol files and the extension 0BJ for object files, It is possible that some object files
are pre-linked and therefore also contain the code of the imported modules. »

Module name FileNames
Symbol file name LIB. FileNames,SYN
Obiect file name LIB.FileNames.0BJ

List of the Library Modules
InQut Simple handling of formatted input/output 7.1
ReallnOut Formated input/output of real numbers 7.2.
MathLib0 Rasic mathematical functions 7.3.
OutTerminal Formated output to the terminal 7.4,
OutFile Formated output {o files 7.5,
BytelO Input/output of bytes on files 7.6.
ByteBlock1O Input/output of byte blocks on files 7.7.
FileNames Input of file names from the terminal 1.8.
Options Input of program options and file names 7.9.

The first two modules are considered to be used by small programs and for introductory exercises. They
provide access to the terminal and to files by a simple interface.

« The 'LIB’ prefix is ommitted on systems where the resident filesystem does not allow such filenames.

41

7.1. InOut
Niklaus Wirth 15.5.82

Library module for formatted input/output on terminal or files. A description of tliis module is included
in Programming in Modula-2 [1}.

Imporied Library Modules

Terminal
FileSystem

Definition Module

DEFINITION MODULE In0ut; (*NW 11.18.81»)
FROM FileSystem IMPORT File;
EXPORT QUALIFIED
EQOL, Done, in, ocut, termCH,
OpenInput, OpenOuiput, Closelnput, Closelutput,
Read, ReadString, ReadInt, ReadCard,
Write, Writeln, WriteString, WriteInt, WriteCard, WriteOct, WriteHex;

CONST EOL = 36C;

_ VAR Done: BOOLEAN;
. termCH: CHAR;
in, out: File;

PROCEDURE OpenInput{defext: ARRAY OF CHAR);
{srequest a file name and open input file “in".
Done := "file was successfully opened”.
If open, subsequent input is read from this file.
1f name ends with ".", append exiension defexte)

PROCEDURE OpenQutput{defext: ARRAY OF CHAR};
{*request a file name and open ocutpul file “out™
Done := "File was-successfully opened.
1f open, subsequent output is written on this filee)

PROCEDURE Closelnput;
{*closes input file; returns input to terminale)

PROCEDURE £1oselutput;
{*closes output file; returns output to terminals)

PROCEDURE Read(VAR ch: CHAR);
(*Done := NOT in.eof+)

PROCEDURE ReadString(VAR s: ARRAY OF CHAR};

{sread string, i.e. sequence of characters not containing
blanks ner control characters; leading blanks are ignored.
Input is terminated by any character <= " *;
this character is assigned to termCH.

DEL is used for backspacing when input from terminals)

PROCEDURE ReadInt{VAR x: INTEGER);
{*read string and convert to integer. 3Syntax:
integer = ["+"|{"-"] digit {digit}.
Leading blanks are ignored.

42

Bone := "integer was read"s)

PROCEDURE ReadCard(VAR x: CARDINAL};
(*read string and convert toc cardinal. Syntsx:
cardinal = digit {digit},
Leading blanks are ignored.
Dane := "cardinal was read™s)

PROCEDURE Write(ch: CHAR);
s PROCEDURE Writeln: {sterminate lines)
PROCEDURE WriteString{s: ARRAY OF CHAR);

PROCEDURE WritelInt(x: INTEGER; n: CARDINAL):
{(*write integer x with {(at least) n characters on file "out™.
If n is greater than the number of digits needed,
blanks are added preceding the numbers)

PROCEDURE wWritelard{x,n: CARDINAL);

PROCEDURE WriteOct{x,n: CARDINAL);

PROCEDURE WriteHex{x,n: CARDINAL);
END InQut.

43

7.2. ReallnQOut
Niklaus Wirth 15.5.82
Library module for formatted input/output of real numbers on terminal or files. It works together with the
module InQut. A description of this module is included in Programming in Modula-2 [1}.
Imported Library Module
InQut

Definition Module

DEFINITION MODULE RealInQut; (*N.Wirth 16.8.81s)
EXPORT QUALIFIED ReadReal, WriteReal, WriteRealOct, Done:

VAR Done: BOOLEAN;

PROCEDURE ReadReal(VAR x: REAL};
{*Read REAL number x from keyboard according to syntax:

Cetir-r] digit {digit} [".” digit {digit}] ["E"["+«"|"-"1] digit [digit]]}

Done := “"a number was read”.

At most 7 digits are significant, leading zeros not
counting. Haximum exponent is 38. Input terminates
with a blank or any control character. DEL is used
for backspacing«)

PROCEDURE WriteReal(x: REAL; n: CARDINAL);

{*Write x using n characters. If fewer than n characters
are needed, leading blanks are inserteds)}

PROCEDURE WriteRealDct(x: REAL};
{*Write x in octal form with exponent and mantissas)

ERD ReallnQut.

7.3, MathLib0
Niklaus Wirth 15.5.82

Library module providing some basic mathematical functions. A description of this module is included in
Programming in Modula-2 [1].

Imporied Library Maodule
Terminal

Definition Module

DEFINITION MODULE MathLibd;
{*standard functions; J.Waldvogel/N.Wirth, 18.12.80s)

EXPORT QUALIFIED sqrt, exp, In, 3in, cos, arctan, real, eniier;

PROCEDURE sqrt{x: REAL}: REAL;
PROCEDURE exp(x: REAL): REAL;
PROCEDURE In(x: REAL}: REAL;
PROCEDURE sin(x: REAL}: REAL;
PROCEDURE cos(x: REAL}: REAL;
PROCEDURE arctaa(x: REAL}: REAL;
PROCEDURE real(x: INTEGER): REAL;
PROCEDURE entier(x: REAL}: INTEGER;
END Mathlihe.

45

7.4. QutTerminal
Christian Jacobi 15.5.82

This module contains a small collection of output conversion routines for numbers and strings. The output
is written to the terminal.

Procedures:

Write writes a character
‘WriteLn writes an end of line
WriteT writes a string (T =text)
Writel writes an integer
WriteC writes a cardinal
WriteO writes octal

length 0: oneleading blank
<0: no leading blank, the output is right adjusted in a field of “length” characters;
if the field is too small its size is augmented.
WwriteT does left adjustment and has oo leading blanks

Definition Module

DEFINITION MODULE OutTerminal; (+ Ch. Jacebi, S.E. Knudsen 18.8.80 =)
FROM SYSTEM IMPQRT WORD:
EXPORT QUALIFIED
Write, Writeln, WriteT,
Writel, WriteC, Write(;
PROCEDURE Write{ch: CHAR);
PROCEDURE Writeln;
PROCEDURE writeT{s: ARRAY OF CHAR; Tength: CARDINAL);
PROCEDURE WriteI{value: INTEGER; length: CARDINAL);
PROCEDURE WriteC{value: CARDINAL; length: CARDINAL);
PROCEDURE WriteQ{value: WORD; length: CARDINAL};
END QuiTerminal.

Jmported Module
Terminal

7.5. QutFile
Christian Jacobi 15.5.82
This module containg a small collection of cutput conversion routines for mumbers and strings to a fle.

The procedures have different names than the corresponding procedure of the module QutTerminal. This
simplifies combined imports of the module QutFile with one of the other formatting modules.

Procedures for formatted output onto the files:

WriteChar writes a character
WriteLine writes an end of line
WriteText writes a string
Writelnt writes an integer
WriteCard writes a cardinal
WriteQct writes octal

length ©0: one leading blank
£30: no leading blank, the output is right adjusted in a field of "length™ characters;
if the field is too small ifs size i augmented.
WriteText does left adjustment and has no leading blanks

Definition Module

DEFINITION MODULE OutFile; (* Ch, Jacobi, 5.E. Knudsen 18.8.86 #)
FROM SYSTEM IMPORT WORD;
FROM FileSystem IMPORT File:
EXPORT QUALIFIED
WriteChar, Writel.ine, WriteText,
Writelnt, WriteCard, Writelct;
PROCEDURE WriteChar(VAR f: File; ch: CHAR}),
PROCEDURE Writeline(VAR f: File);
PROCEDURE WriteTexi(VAR f: File; s: ARRAY OF CHAR; lengih: CARDINAL);
PROCEDURE WriteInt(VAR f: File; value: INTEGER; length: CARDINAL);
PROCEDURE WriteCard(VAR f: File; value: CARDINAL; length: CARDINAL);
PROCEIDURE WriteDci(VAR f: File: value: WORD; Yength: CARDINAL};
END QutFile.

{mported Module
FileSystem

47

7.6. BytelO
Svend Erik Knudsen 15.5.82

Module ByrelQ provides routines for reading and writing bytes on files, This is valuable for the packing of
information on flles, if it is known that the ordinal values of the {ransferred elements are in the range
0..255.

DEFINITION MODULE BytelO: (* Medos-2 V3 S. E. Knudsen 1.6.81)

FROM FileSystam IMPORT File.
FROM SYSTEM IMPORT WORD:

EXPORT QUALIFIED ReadByte, WriteByte;

PROCEDURE ReadByte(VAR T: File; VAR w: WORD);
PROCEDURE WriteByte(VAR T: File; w: WORD};

EKD Bytell,

Explanations

ReadByte(f, w)
Procedure ReadByte reads & byte from file f and agsigns its value to w, i.e, 0 <= ORIXw) (= 255,

WriteByte(f, w)
Procedure WrireByte writes the low order byte of w (bits 8..15) on file f,

Example
MODULE BytelODemo; {+ SEK 15.5.82 »)

FROM FileSystem IMPORT File, Lookup, Close;
FROM Bytel0 IMPORT ReadByte, WriteByte;

VAR
inf, outf: File;
byte: CARDINAL;

BEGIN
Lookup{inf., 'Demo.from’, FALSE);
Lookup{outf, 'Demo.to’, TRUE};
1.O0P
ReadByie(inf byte);
IF inf.eof THEN EXIT END;
WriteByte(outf, byte);
END;
Close{outf};
Close{int}
END ByielDDenmo,

Imported Moduies

SYSTEM
FileSystem

7.7. ByteBlockIO
Svend Erik Knudsen 15.5.82

Module ByieBlockIO provides routizes for efficient reading and writing of elements of any type on files.
Areas, given by their address and size in bytes, may be transierred efficiently as well.

DEFINITION MODULE ByteBlocklO; {* Medos-2 V2 5. E. Knudsen 1.6.81)

FROM FileSystem IMPORT file;
FROM SYSTEM IMPORY WORD, ADDRESS;

EXPORT QUALIFIED
ReadByteBlock, WriteByteBlock,
ReadBytes, WriteByles;

PROCEDURE ReadByteBlock(VAR f: ¥File; VAR block: ARRAY OF WORD}:
PROCEDURE WriteByteBlock{VAR f: File; VAR block: ARRAY OF WORD};

PROCEDURE ReadBytes{VAR f: File; addr: ADDRESS; count: CARDINAL;
VAR actualcount: CARDINAL);
PROCEDURE WriteBytes{VAR f: File; sddr: ADDRESS: count: CARDINAL};

END ByteBlocklO.

Explanations

ReadByteBliock(f, block); WriteByteblock{f, block) -
ReadByreBlock and WriteByteBlock iransfer the given block (ARRAY OF WORD) to or from file £
The bytes are transferred according to the description given for ReadByres and WriteBytes.

ReadBytes(f, addr, count, actualcount); WriteBytes(f, addr, count)
ReadBytes and WriteBytes transfer the given area (beginning at address addr and with count bytes
(stored in (count+ 1) DIV 2 words) to or from the file f. The number of the actually read bytes is
assigned to getualeouns. ReadBytes and WriteBytes transfer two bytes to or from each word; first the
high order byte (bits 0..7), afterwards the low order byte (bits 8..15). If actualcount is odd, only the
high order byte is transferred to or from the last word.

Exampie
MODULE ByteBlockIODemo; (* SEX 15.5.82 »)

FROM FileSystem IMPORT File, Response, lookup, Closze;
FROM ByteBlockI(Q IMPQRT ReadByteBlock:

VAR r: RECORD {=...s) END;
f: File;

BEGIRN
Lookup(f, 'Demo’, FALSE}:
IF f.res = done THEN
LOGP
ReadByteBlock(f, r};
If f.eof THEN EXIT END;
(* ise r =)
END;
Close(f)

49

ELSE (» file not found »)
END
END ByteBlockIODemo.

Restriction

The longest block which can be transferred by a dingle call to ReadByreBlock or WriteByteBlock
containg 2«15 - 1 words.

Imported Modules
SYSTEM
FileSystem

Algorithm

The routines repeatedly determinates the longest segment of bytes, which can be moved to or from
the file buffer and move this segment by use of a CODE-procedures (MOV, LXB and
SXB-instructions). , '

7.8. FileNames
Svend Bk Xnudsen 15.5.82

Module FileNames makes it easier t0 read in file namey from the keyboard (i.e. from module Terminal)
and 1o handle defaults for such file names.

DEFINITION MODULE FileNames; {* Medos-2 V3 5. E. Knudsen 1.6.81 #)

EXPORT QUALIFIED
ReadFileName, Identifiers, IdentifierPosition;

PROCEDURE ReadfileName(VAR fn: ARRAY OF CHAR; dfn: ARRAY OF CHAR);

PROCEDURE Identifiers(fn: ARRAY OF CHAR): CARDINAL;
PROCEDURE IdentifierPosition(fn: ARRAY OF CHAR; identno: CARDINAL): CARDINAL;

END FileNames.

Explanations

ReadFileName(fn, dfn)
Procedure ReadFileNante reads the file name fr according to the given default file name dfa. If no
valid file pame could be returned, 0] is set to OC. The character typed in in order to terminate the
file name, may be read after the call io RendFileName. One of the characters eol, * *, “/", CAN and
ESC terminates the input of a file name, If CAN or ESC has been typed, fnf0] is set 6C too.

ldentifiers(filename)
Function Xdentifiers returns the sumber of identifiers in the given file name.

IdentifierPosition(filename, identifierno)
Function IdemiifierPosition returns the index of the first character of the identifier identifierno in the
given file name. The first identifier in the file name is given number 0. The length of a given file
name fn is returned by the following function cail: IdentifierPosition(fn, Identifiers(in)).

Syniax of the Different Names
FileName = [LocalFileName J{[OC |~ " }].
LocalFileName = [Qualldentifier ".”] Extension ,
Qualldentifier = Identifier { ”.” Identifier } .
Extension = Jdentifier.
Identifier = WildcardLetter { Letter | Digit } .
PefaultFileName = | MediumName } | "." [DefaultLocalName JT{QC]" " }.
DefaultLocalName = [[Qualldentifier] *."] Extension.
InputFileName = ["#" [MediumName | [".” InputLocalName] | InputLocalName] .
InputiocaiName = [QualInput "." } Extension .
Quallnput = { Qualldentifier [".” 1 1["." Qualldentifier].

The scanning of the typed in InputFileName is terminated by the characters ESC and CAN or at a
syntatically correct position by the characters eol, * ™ and “/". The termination character may be read after
the call. For correction of typing errors, DEL is accepted at any place in the input. Typed in characters
not fitting into the syntax are simply ignored and not echoed on the screen.

For routine ReadFileName a file name consists of a medium name part and of an optional local file name
part, The local file name part consists of an extension and optionally of a sequence of identifiers delimited
by periods before the extension.

51

When typing in an InputFileName, an omitted part in the InputFileName is substituted by the
corresponding part in the given default file name whenever the part is needed for building a syntactically
correct FileName. If the corresponding part in the default file name is empty, the part must be typed.
Exampies .
ReadFileName{fn, ".MOD") Defaults for medium name and extension
ReadFileName(fn, "Temp.MOD") Defaults for ail parts of a file name
Error Message

Readf ilelame called with incorrect defauit

Imported Module
Terminal

52

7.9. Options
Leo Geissmann 15,5.82
Library module for reading a file name followed by program options from the keyboard. File name and
options are accepted according to the syntax given in 4.2.3. and 4.3,
Imported Library Modules
Terminal
FileNames
Definition Module
DEFINITION WMODULE Options; (= AKG 28.95.80,; LG 10.10.86 =)

EXPORY QUALIFIED Termination, FileNameAndOptions, GetOption;
TYPE Termination = (normal, empty, can, esc};

PROCEDURE FileNameAndOptions(default: ARRAY OF CHAR; VAR name: ARRAY OF CHAR
VAR term: Termination; acceptOption: BOOLEAN);

PROCEDURE GetOption(VAR optStr: ARRAY OF CHAR; VAR length: CARDINAL);

ENE Options.

Procedure FileNameAndOptions reads a file name and, if acceptOption is TRUE, options from the terminal,
It reads all characters from termninal until one of the keys RETURN, BLANK (space-bar), CTRL-X, or ESC
is typed. For the file name, a defauls file name may be proposed. The accepted name is returmed with
parameter name, and term indicates, how the iaput was terminated. The meaning of the values of type
Termination is

rormsl input normally terminated

empty input normaily terminated, but name is empty

can CTR1-X was typed, input line is cancelled

e8¢ ESC was typed, no file is specified.

Procedurs GetOption may be called repeatedly after FileNameAndOptions to get the accepted options. It
returns the next option string in opiStr and its length in length. The string is terminated with a 0C
character, if length <= HIGH(optStr). Length gets the value 0, if no option is returned.

33

8. Modula-2 under the M-2 Interpreter
1o Gelssmann 15582

Revised Modula Research Institute 24.8.83
Differences in programming uader vatious implementations can be attributed 1o the following causes:
1. Extensions of the language proper, i.e, new syntactic constructs.

2. Differences in the sets of available standard procedures and data types, particularly those of the
standard module SYSTEM.

3. Differences in the internal representation of data,

4, Differences in the sety of available lbrary modules, in particular those for handling files and
peripheral devices,

Whereas the first three causes affect "low-level” programming only, the fourth pervades all levels, because
it reflects directly an entire system's avallable resourves in software as well as hardware. This chapter gives
an overview of the M-2 Iaterpreter specific low-ievel features.

WARNING

The following feature should be applied with utmost care since it i3 easy 10 introduce errors into the
infernal stack if not used properdy.

8.1. Code Procedures

A code procedure is a declaration in which the procedure baddy has been replaced by a (sequence of) code
number(s), representing machine instructions (see Lilith report [2[). Code procedures are a facility to make
micro-coded routines available at the level of Modula-2,

This facility is reflected by the following extension 1o the syntax of the procedure declaration :
$ ProcedureDeciaration = ProcedureHeading *;" (block | codeblock) ident.

$ codeblock = CODE CodeSequence END .
$ CodeSequence = code {";" code}.
$ code = [ConstExpression].

The following are typical examples of code procedure declarations:

PROCEDURE ShiftlLeft({VAR num: CARDINAL; count: INTEGER});
{# Shift "num’ left ’count’ places »)

CODE 276B

END Shiftlefy

PROCEDURE ShiftRight{VAR num: CARDINAL: count: INTEGER};
(* Shift 'num’ right ‘count’ places =}

CODE 2778

END ShiftRight

Parameters of code procedures are written on the expression stack of the Lilith machine, where they must
be read by the code instructions. The compiler does not check to insure that the parameters correspond to
the instructions. The responsibility is left to the programmer.

8.2. The Module SYSTEM

The module SYSTEM offers additional tools for Modula-2. Most of them are impimen?a_ticn and/or
processor dependent. Such fools are sometimes necessary for low-level programming. SYSTEM also

54

contains types aad procedures which allow very basic coroutine handling.

The module SYSTEM is known to the compiler, because its exported objects obey special rules that must
be checked by the compiler. If a compilation unit imports objects from module SYSTEM, then no symbol

. file must be supplied for this module,

For more detailed information refer to Programming in Modula-2 (see 1.3),

Objects Exported from Module SYSTEM

Types
WORD
Representation of an individually accessible storage unit (one word). No operations are aliowed
for variables of type WORD., A WORD parameter may be substituted by an actual parameter of any
type that uses one word in storage.
ADDRESS
Word address of any location in the storage. The type ADDRESS is compatible with all pointer
types and is itself defined as POINTER TO WORD. All integer arithmetic operators apply to this
type.
PROCESS
Type used for process handling,
Procedures

NEWPROCESS{p:PROC; a: ADDRESS; n: CARDINAL; VAR p1: PROCESS)
Procedure to instantiate a new process. Af least 50 words are needed for the workspace of a
process.

TRANSFER(VAR p1, p2: PROCESS)
Transfer of control between two procssses.

Functions

ADR{variable}: ADDRESS
Storage address of the substituted variable.

SIZE(variable}: CARDINAL

Number of words used by the substituted variable in the storage. If the variable is of a record
type with variants, then the variant with maximal size is assumed.

T517E{type}: CARDINAL

TSIZE{type, taglconst, tag2const, ... }: CARDINAL
Number of words used by a variable of the substituted type in the storage. If the type is a record
with variants, then tag constants of the last FieldList (see Modula-2 syntax in {1]) may be
substituted in their nesting order. If tag constants are not specified or are partially specified,
then the remaining variagt with mazimal size is assumed.

8.3. Data Representation and Parameter Transfer

8.3.1. Data Representation

The basic memory unit for data is the word. One word contains 16 bits, Every word in data memory can
be accessed explicitly. In the following list for sack data type the number of words needed in memory and
the representation of the values is indicated, The bits within a word are enumerated from left to right, i.e.
the ordinal value 1 is represented by bit 15, _

INTEGER

55

Integer variables are represented in one memory word. Minint = -32788 (octal
INTEGER(1080008)); maxint = 32767 (octal 777778). Bit 0 is the sign bir; bit 1 the most
significant bil.

CARDINAL

Cardinal variables are represented in one memory word, Maxcard = 65536 {octal 1777778).
Bit 0 is the most significant bit. '

BOOLEAN
Boolean variables are represented in one memory word. This type must be coasidered as an
enumeration (FALSE, TRUE) with the values FALSE = @ and TRUE = 1 (bit 15). Other values
Imay CaUSE eITOrs.

CHAR
Character variabies are represented in one memory word. In arrays two characters are packed
into one word, The ISO - ASCII character gt is used with ordinal values in the range [@. . 256)
{octal {¢B..37787). The compiler accepts character constants in the range [0, .377C].

REAL
Real variables are represented in two memory words (32 bits). Bit 0 of the first word iz the sign
bit. Bits 1.8 of the first word represent an 8-bjf exponent in excess 128 notation. Bits 9..15 of the
first word represent the high part of the mantissa and the second word represents the Jow part of
the mansissa. The mantissa is assumed to be normalized (0.5 <= mantissa < 1.0). The most
significant bit of the mantissa is not stowed (it iy always 1).

Enumeration Types

Enumerations are represented in one memory word. The first value of the enumeration is
represeated by the integer value 0; the subsequent enumeration values get the subsequent integer
values accordingly.

Subrange Types
Subranges are represented according to their base types.

Array Types

Arrays are usually accessed indirectly. A pointer to an array points to the first element of the
array. 1n character arrays two characters are packed into one word, The first character is stored
in the high crder byte of the first word (bits 0..7), the second character in the low ordu‘ hyte
(bits 8..15), etc.

Record Types

Records are usually sccessed indirectly. Apointarto&rmdpointstothcﬁxszﬁeld of the
record. Consecutive fields of a record get consecutive memory locations. Every field needs at
least one word.

Set Types
Sets are implemented in one word. The set e¢lement i ig represented in bit i, le. {15}
corresponds to the ordinal value 1. INCL(s, i) means: bit i in s is set to the value 1.

Pointer Types

Pointers are represented in one memory word. They are implemented ag absolute addresses,
The pointer constant NI L is represented by the ordinal value 1777778,

frocedure Types
Procedure Types are represented in one memory word. The high order hyte (bits 0..7) represents
the module number, the low order byte (bits 8..15) the procedure number of the assigned
procedure.
Warning Do not use this information,

{paque Types
Opaque Types are represented in one memory word.

1

WORD
Ward variableg are represested in one memory word,

ADDRESS
Address variables are represented in one memory word. The value is an absoiute address.

PROCESS
Process variables are represented in one memory word. The value i3 an absolute address
pointing to a process descriptor.

8.3.2, Parameter Transfer

Varighle Parameters

The address is transferred to the expression stack.

For dynamic arrays also the value HIGH is submitted to the expression stack. The push operation for
the address is executed first,

Vaiue Parameters

Records and Arrays
The address is trangferred to the expression stack (regardless of size). The procedure allocates
the memory space and copies the parameter.
For dyramic arrays the value HIGH Is submitted to the expression stack. The push operation for
the address is executed first,

HEAL
The value itself is passed to the expresgion stack (two words), The procedure copies the value
into its proper location.

Jther Types with One Word Size

The value itself is passed to the expresgion stack, The procedure copies the value into its proper
location,

57

9. Assembly Language Interface

Rod Schiffman 22.11.83
Rod Riggs 19.12.83

This chapter describes the assembly language intexface for the M-2 Interpreter. It allows external
to be written {n 3088 assembly lanuage and to be called from Modula programs. This chapter
will describe how the interface works, how (0 pass parameters between 8088 assembly and Modula and,
finally, how the program linkage works at an assembly language level. Under normal circumstances, it is
not necessary for a programmer to use the information in this chapter. It is provided as a service to
experienced programmers who must access special features of the host operating system that are not
supported by the interpreter, It can also be used if it is absolutely necessary that short sections of a
Modula program must run in a more real-time environment than possible using only the interpreter,

9.1 Genersl Description

As can be expected, the procedure calling conventions used between procedures written in Modula and the
calling conventions between 3088 procedures are incompatible. Therefore, the interpreter provides special
code that facilitates the linkages. This is done through the use of Modula code procedures. The Escape
M-Code allows up to 256 different routines written in 8088 assembly to be linked into the interpreter and
called by Modula programs. Before an assembly procedure can be called by a Modula program
information about the procedure must be made available to the interpreter. This is done through a table
that can be accessed by both the interpreter and an external program.

The interpreter is supplied in both a linked and executable image, as well as in an unlinked form that
allows new procedures to be linked into the interpreter, When a sew procedure is to be made available for
use by a Modula program, there are two main steps to follow. First the procedurs must be written and
assembled. Then it must be bound into the interpreter. The binding is accomplished by making an entry
into a table in the program ASMLNK ASM, then assembling ASMLNK.ASM and linking all of the object
files of the interpreter into a single executable program, This process is described in more detail below.

9.2 Implementation

It is possible, through the use of Code Procedures, fo access various special purpose M-Codes that the
compiler does not generate. These are described in section 8.1 of the manual, The Escape M-Code
(2461) is the M-Code that provides the linkage to external programs. The Escape M-Code takes the next
byte of code following it as sn entry into 2 table that contains information about the assembly procedure
that is to be executed. The table containg four entries. The first is the offset of the procedure in the code
segment, the second is the code segment of the procedute. The third is the sumber of parameters and the
fourth indicates whether the procedure Is a function and returns a value, If the entry in the table is
non-zero, the specified number of parameters are removed from the internal interpreter stack and placed
on the machine stack. Upon returet from the procedure, the returned value, if it exists, iy placed on the
internal interpreter stack and control is returned 1o the Modula program,

The table that contains the information sbout the procedure to be called is in the program ASMINK ASM.
It has been supplied in source form, and contains an example procedure entry, The exampie procedure is
called TestLink ASM and is also supplied in source form, The table in ASMLNK.ASM is called ESCTAR
and contains 256 entries, Each entry is formatted as follows:

DW OFFSET testlink, SEG testlink, 1, 1

* + 1+ teeee 1 = Funclion, 0 = Not a Function
+ + + 2o s Number of Parameters
+ + + 9+ Stores the value of testiink’s Code Segment

+ »» 0 e Stores the OFFSET of festlink in its Code Segment
The mazimum number of parameters is 16, and the function return value must fit into one 16 bit word,

38

9.3 Parameter Passing

Modula allows parameters to be passed by both value and by reference, A parameter passed by value can
be modified without reflecting the changes in the original. This is the default method of parameter
passing in Modula. A VAR in the formal parameter list declares a parameter that is passed by reference,
When a reference parameter is modified, the changes may be reflected in the original, Generally, a value
parameter is passed by placing a copy of the parameter on the stack, and a reference parameter is passed
by placing a pmnm to the origmai value on the gtack. This is important t0 know when an assembly
language procedure iz receiving parameters from a Modula procedure.

Even though Modula has two different types of parameter pasging, there are several ways different types
of parnmeters are passed; i.e. an array is passed differently than a single parameter. Also, Modula allows
unbounded arrays to be used as formal parameters, and they have additional information on the stack,
Section 8.3 describes how each different Modula type is represented in memory, and it describes how
parameters are passed. The important distinction to be made iz the difference between dynamic arrays
and types with known sizes. All types and variables with a known size can be pasted without the size being
passed, because the gize is known at the compile time. All unbounded array types must pass a length with
the actual value or pointer because the actual length is not known until run time. This value can be
accessed in a Modula procedure through the standard procedure HIGH. It is also used by the virtual
machine to know how to copy a value parameter with different lengths each time the procedure is called.
Whenever an external procedure accepts an unbounded parameter like ARRAY OF CHAR or ARRAY
OF WORD, it must aiso handle the length word that will be on the stack.

When the actual value for a parameter is passed the values on the interpreter stack are removed in reverse
order and pushed onto the machine stack. This means that a parameter must fit into one word. Currently
tke only type requiring more than one word is REAL. If a REAL ig 1o be passed as 3 parameter, it must be
passed by reference and not by vaiue, When an unbounded array i3 passed a8 a parameter the address of
the array will be first and the length will be second. A character passed as 4 value parameter will be in the
bottom 8 bits, The first parameter in the formal parameter list of a procedure deciaration will be the first
parameter on the stack when the assembly procedure receives control,

Problems with passing pointer parameters can be avoided if one carefully remembers the following: The
M-Codes in the interpreter reside in a separate address space from the rest of the process, and Modula
pointery and assembly pointers are different. Thus, Moduia pointers must be mapped into the process
address space before they are used. Since, the interpreter does not understand what parameters are values
and what parameters are pointers this must be done by the 3088 procedure being called. This is done
through the use of the procedure VAMAP that is global to the interpeter. It accepts a Moduls pointer from
an 8088 procedure in AX and returns an 8088 pointer. The segment value will be returned in AX and the
offset will be returned in BX. The following exampie should help make things clearer,

9.4 An Example

This section contains an example procedure written in assembly and called by a Modula program. The
8088 procedure we will use a3 an example will accept a character as a reference parameter and, if it iz a
lower case letter it will return TRUE and change the letter to upper case otherwige it will return FALSE,

The first step is to write the assembly procedure and verify that it works.

59

EXTRN VMAPFAR :Maks VMAP accessible

WORKAREA SEGMENT BYTE PUBLIC 'DATA’
;The data segment MUST be named WORKAREA and be, PUBLIC, with class of 'DATA’

08 DW 2 Storage for the return address
NDOS DwW ? Storage for the return address
SVES DW 7 Storage for interpreter's ES value
SoS Dw ? Storage for interpreter’s DS value
WORKAREA ENDS

;eesw for 1 parameter, this is a function see
UserSeg SEGMENT BYTE PUBLIC 'PROG
;The code segment MUST be named UserSeg and he, PUBLIC, with class of 'PROG’

ASSUME CS:UserSeq,DSIWORKAREA

PUBLIC Testlink
Testlink PROC FAR

MOV
MOV
MOV
MOV
PGP
MOV
POP -
MOV
POP
CALL

MOV
MOV
MOV
MOV
CMP

BX,D3

AXWORKAREA

DS.AX
8DS.BX
X
TOB,CX
CX
NOS,CX
AX
VMAP

SVESES
ES,AX
AX,ES:[BX]
CX,00H
AX,1410

Ji. TONT

CMP

AL 1720

JG TONT

suB
MOV
MOV
TONT;
MOV
PUSH
MOV
PUSH
MOV
MOV
MOV
MOV
MOV
RET
Teasthink

AlL,32
ES:[BXLAX
CX,01H

DX,NOS
DX

DX, TOS
DX
AX.SVES
ES,AX
AX,SDS
DS,AX
AX,CX

ENDP

UserSeg ENDS

The Data Segment for all assembly programs linked into the interpreter must be declared with the same
name and parameters as in the exampie above. The code segment must alo be exactly the same as the

example.

;Must be publtic to be callad externaliy

Must be FAR since it is i a different code segment

;:Get the DS value for the interpreter

:Get the DS vaius for this procedure

Store itinto DS

Store the old DS after current DS value has been loaded
Save the SEG and OFFSET values

Hor the returm: to the interpreter,

1Get the first parameter off the stack

;i is a reference parameter, 50 get the pointer to it
1BX contains the offsat of the parameler

;AX containg the SEG value

‘Save the old inlerpreter ES value

iLoad the SEG value into ES

iGet the actual value of this parameter

;Assume it’s not iower case, retum vaiue of FALSE
Js it jess than 4 lower case 'a’?

;Is it greater than a iower case 'zZ'?
;Sub 32 to get Upper case lettor
+Store it the original variabie

il is TRUE that we changed the value

‘Heastore the RETum address

:Restore the interpreters ES vaive
:Restore tha interpraters DS value

;Functions return values in AX

&0

Next the agsembly procedure must be made available to the interpreter. This is done by putting an entry
in ASMLNK.ASM.

DW OFFSET testlink, SEG testlink, 1, 1

Next assemble ASMLNE . ASM and your assembly language procedure. When all necessary files have
been assembled you must now re-link the interpreter. LINKIN.BAT has been provided. Simply type
LINKIN foliowed by the list of JOBJ files t0 also be linked into the interpreter, There will be one warning
error that there is no stack segment. Thig is expected since the interpreter has been written to share the
data segment with the stack and therefore does not have a separate stack segment. The files that make up
the core of the interpreter are INTERP, INTEXT, READBTFL, SYSTM, NEWSYS, FLOAT and
ESCAPE. The .OBI file for each of these has been provided. One additional file needed 1o use the
linkage facility is ASMLNK, The source for this file has been provided. ASMLNK.ASM will need 10 be
re-assembled each time a new assembiy procedure is added.

Finally, write and compile a Modula-2 program to use the procedure. The procedure declaration and
simple program are listed below,

MODULE TL;
FROM Terminai IMPORT Read, Writeln, WriteString, Write;

VAR ch: CHAR;
lowercase: BOOLEAN;

PROCEDURE TestLink(VAR ct: CHAR):BOOLEAN,;
CODE 2468; Q
END Testl.ink;

BEGIN
LOOP
Writeln;
WriteString(‘Character>),
Read{ch); Write{ch);
IF CAP{ch) = (3’ THEN EXIT END;
lowercase : = Testlink{ch);
IF lowercase THEN
Writel.n: -
WriteString("Converted to. ');
Write{ch)
END:
END;
END TL.

The program will loop until 8 °q’ is hit.

