
BlackBox: A New Object-Oriented Framework for CSl/CS2

J. Stanley Warford
Pepperdine University

warford@pepperdine.edu

1. Abstract
This paper describes the BlackBox framework, an object-
oriented application development environment, and our
experience with its use over the past several years in the
CSlKS2 course. This little-known framework features: (1)
a graphical user interface that is simple enough for begin-
ning students to program, (2) true cross-platform capability,
(3) guaranteed memory-safe pointers with automatic gar-
bage collection, (4) a new language, Component Pascal,
that combines the best of Java and Pascal, (5) fast, native-
code compilation, and (6) lowest possible cost (free to edu-
cational users). The paper concludes with a guide to further
resources for those who wish to pursue this promising new
framework in their curricula for the first year.

1.1 Keywords
BlackBox, Component Pascal, CSl, CS2, frameworks,
programming languages, formal methods.

2. Introduction
In the Fall semester of 1996, we began an experiment with a
new programming language and application development
environment for our introductory computer science courses.
The environment was called Oberon/F, and the language on
which it was based was called Oberon/L. Both the language
and the framework changed significantly the following
year. The framework is now named BlackBox Component
Builder and the language has evolved to Component Pascal.
The pedigree of the language is:

Pascal + Modula + Oberon + Component Pascal

The power of the system lies in the simplicity of the
programming language and the synergy that it has with the
framework. The development environment was designed
for professional programming, and its emphasis on
components (sometimes referred to as “beyond objects”) is
for programmers with expertise much greater than what
would be expected of students in an introductory course.

Permeson to make dIgItal or hard copes of all or part of this work for
personal or classroom use IS granted wthout fee provided that
copes are not made or dastnbuted for profll or commercial advan-
tage and that copes bear thts notice and the full cltatlon on the first page.
To copy othervase, to republish, to post on servers or to
redlstrlbule to 11sts. reqwres pnor specific perm~ss~o” and/or a fee.
SIGCSE ‘99 3/99 New Orleans, LA, USA
0 1999 ACM 1.58113.085.6/99/0003...$5.00

However, we have discovered that the combination of the
simplicity of the language and the power of the framework
combine to make an excellent vehicle to carry students
through the first year of our curriculum. By the time this
paper is published, we will be completing our third year of
what has been an eminently successful experiment.

This paper begins by describing the philosophy of our
curriculum and how the framework and language support
that philosophy. The following sections describe those
aspects of the language and the graphical user interface that
are incorporated into the CSl/CS2 course. The paper
concludes with a guide to further resources.

3. The CSl/CSP Curriculum
Our department recently reviewed the computer science
curriculum and identified four areas of the discipline that
needed to be integrated more fully into the course of study:

l Human/computer interaction
l Formal methods
l Object-oriented programming
l Computer networks
The new curriculum is designed to introduce the first three
of these areas during the freshman year. Formal methods is
presented in a separate course that runs parallel with CSl!
CS2. BlackBox is the tool in CSlKS2 with which we teach
human/computer interaction using the framework’s
graphical user interface, and Component Pascal is the
vehicle for teaching object-oriented programming.

3.1 Philosophy of the Curriculum
Our curriculum is based three themes

l abstraction
l integration
l languages and paradigms
Two of these themes-abstraction, and languages and
paradigms-are relevant to our use of BlackBox in the
introductory course.

3.1. I Abstraction
Abstraction is based on the concept of layers in which the
details of one layer of abstraction are hidden from layers at
a higher level. A computer scientist uses abstraction as a
thinking tool to understand a system, to model a problem,
and to master complexity. The ability to abstract cannot be
acquired in a single course, but must be developed over

271

several years. Consequently, all courses in the curriculum
emphasize the abstraction process, not only as a framework
to understand the discipline but also as a tool to solve
problems.

3.1.2 Languages and paradigms
Because of the continued evolution of programming
languages and paradigms we would do our students a
disservice by emphasizing only one programming language
or paradigm throughout the curriculum. Students should be
multilingual and should experience multiple paradigms in
their undergraduate careers. Our curriculum seeks to strike
the proper balance between breadth and depth. Too much
breadth will not equip students with the detailed skills
necessary to solve realistic problems. Too much depth in
one language or paradigm will give students a narrow
vision that makes it difficult to consider multiple
approaches to a problem.

The curriculum emphasizes in-depth proficiency the first
two years and more breadth the last two years. The balance
is achieved by choosing one programming language for
both semesters of the first year and another language for
both semesters of the second year. Courses in the third and
fourth years introduce other programming paradigms based
on different languages.

The language choice for the first year is driven primarily by
pedagogical concerns. Pedagogical concerns are important
during the first year, since this is when students begin to
form algorithmic thinking patterns and develop problem-
solving skills. The criteria are that the language should be
simple to learn yet powerful enough to illustrate
fundamental concepts of computing. The language for the
second year is a mainstream language widely used in the
industry (C++). Skill in a practical language is necessary
for students to be well equipped for their post graduate
careers. The languages for the third and fourth years
(primarily Java, but also Lisp and Prolog) are chosen for the
variety of programming paradigms on which they are
based.

3.2 CSlICSP Topics

The selection of BlackBox as the development environment
and Component Pascal as the programming language is
motivated by the philosophy expressed in the previous
section. Unlike Java or Smalltalk, Component Pascal is by
design a hybrid language that incorporates both the
procedural and the object-oriented paradigms. In this
respect, it is more akin to Ada and C++, which are also
mixed-paradigm languages. However, its type safety and
memory protection with automatic garbage collection make
much of its semantics closer to Java than to either Ada or
c++.

Our CSl/CS2 course follows a sequence of topics whose
goal is to guide the student from the imperative paradigm to
the object-oriented paradigm. The framework permits
students to begin with the procedural approach to
programming, continue through successively higher levels
of abstraction, and culminate with the object-oriented
paradigm. It therefore satisfies our goal of students learning

multiple paradigms in the curricuhmr.

Some will find our curriculum philosophy and its
implementation beginning with the procedural paradigm
and advancing through successively higher levels of
abstraction to the object-oriented paradigm to be
controversial at best and ill-conceived at worst. It is beyond
the scope of this paper to engage in the religious debate
between those who believe that a pure object-oriented
language should be taught at the outset and those who favor
a journey from low to high levels of abstraction.

Our choice of the latter approach is based on the belief that
to truly understand abstraction, students must experience it
at several levels. BlackBox provides that experience by its
elegant use of interfaces in the framework, which permit
students to use objects from the outset. Furthermore,
because the Component Pascal language is not pure object-
oriented, it permits this approach of using objects within a
procedural paradigm before implementing objects and
programming with the full power of polymorphism at the
end of their one-year journey.

1 .The BlackBox Framework
2. Languages and Grammars
3. Modules and Interfaces
4. Variables
5. Dialog Boxes
6. Abstract Stacks and Lists
7. Selection
8. Nested Selection
9. Objects and the MVC Paradigm

10. Loops
11. Nested Loops
12. Proper Procedures
13. Function Procedures
14. Random Numbers
15. One-Dimensional Arrays
16. Stack and List Implementations
17. Iterative Searching and Sorting
18. Two-Dimensional Arrays
19. Recursion
20. Recursive Searching and Sorting
2 1. Linked Lists
22. Binary Trees
23. Objects and Methods
24. The State Design Pattern

Figure 1: CSVCS2 Topics

Figure 1 shows the sequence of topics in the first-year
course. Programming to an interface is mandatory from the
beginning because of the structure of the framework. By the
third week of the first course, students program with dialog
boxes. Before loops are introduced, students learn how to
use the model/view/controller @WC) paradigm on which
the BlackBox windowing system is based. From this point
on, the sequence of topics is similar to the sequence in a
course based on a traditional command line interface,
except that student are applying the topics in a graphical
user interface environment.

272

4. Component Pascal
Component Pascal is typical of the languages designed by
Niklaus Wirth-small, simple, elegant, yet powerful. Here
are some characteristics of the language:

Modules-The module is the basic unit of compilation. A
module can contain one or more classes and can export
types, constants, variables, procedures, classes and objects.
Any item not exported corresponds to a protected field in
C++/Java, except that the protection extends over the entire
module, not just a class. There are two modes of export,
read-only and read/write. An item that is exported read-only
can be accessed but its value cannot be changed by the
importing module. This feature eliminates the need of
methods whose sole purpose is to return the value of a state
variable of a class.

Znte@?zces--Interfaces are central to the language. Unlike
header files in a C++ environment, the compiler, rather than
the programmer, creates the interface of a module. Hence,
the programmer need not worry about textual consistency
between her module and its interface. The framework
automatically keeps track of consistency between compiled
and recompiled modules.

Memory protection-The C++ language provides explicit
pointers but cannot insure against memory leaks. The Java
language does not provide explicit pointers, but guarantees
memory protection with its automatic garbage collection.
Component Pascal provides both explicit pointers as well as
automatic garbage collection. Only type-safe operations on
pointers are allowed (i.e. no pointer arithmetic), and all
pointers are initialized automatically to NIL. There is no
memory delete or dispose operation. Component Pascal
provides run-time checks on array bounds.

Types-The primitive numeric types are identical to those
of Java. Integers are defined as fixed-range, platform-
independent 32-bit quantities. Reals are IEEE double-
precision. Characters are Unicode. Because Component
Pascal is not a pure object-oriented language, it retains
arrays and records as primitive types. Strings are null-
terminated arrays of characters, not objects, and the +
operator provides the concatenation operation. The $
modifier provides efficient assignment of strings. If a
designates an array of character type, then a$ denotes the
null terminated string contained in a. The equivalent of C’s
library call to copy strings is unnecessary.

Parameter pa.wing mechanisms-There are four parameter
passing mechanisms: call by value (default), call by
constant reference (IN), call by result (OUT) and call by
reference (VAR).

Object-oriented-Component Pascal is fully object-
oriented with polymorphism and single inheritance. The
syntax for methods differs from most object-oriented
languages. There is no need for the concept of “self’ or
“this” in a method because the object of the method is
passed as an explicit parameter. Templates are not yet part
of the language, but may be in the future [2].

Llynamic linker/loader-The compiler generates native

code. There is no virtual machine or byte code intermediate
language. Modules are loaded on demand within the
framework. The module architecture eliminates the need for
the static members of Java. Because the module is the unit
of compilation, and a module can contain more than a
single class, it can contain the single persistent state
variable or object shared by all the other objects of a class.

Debugging-Each method or procedure in BlackBox is
documented with pre- and postconditions. When a
precondition is violated or a run-time error occurs, a trap
window is generated that provides a snapshot of the run-
time stack at the time of the fault. The trap window contains
the current value of all the variables and hypertext links to
the offending source code. Component Pascal supports this
style of documentation with the ASSERT statement.

These features of the language further the goals of our
curriculum. The central roles of modules and interfaces
support the concept of abstraction as one of its themes.
Automatic garbage collection and native array bounds
checking minimize errors beginning programmers can
make, and provide helpful support when run-time errors
occur.

Because the language in the second year is C++,
Component Pascal provides a convenient transition to that
language. As in C++ and Ada, there is more than one
parameter passing mechanism, pointers are explicit, and the
language embraces without apology a mixed procedural/
object paradigm.

The ASSERT statement in the language furthers the goal of
an early exposure of formal methods. Students learn to
program to a specification with pre- and postconditions and
learn how to use assertions to establish preconditions for
their own procedures and methods. Connection is made to
the Hoare Triple of formal methods in the parallel course.

5. The Graphical User Interface
Using an object-oriented framework in the first year caused
us to reassess the entire issue of input/output. We
reconsidered what is important for students to learn about
the human/computer interface. As it turned out, there was a
natural one-to-one replacement of topics. In place of
interactive I/O, where the program prompts the user for
input with a command line interface, is dialog box I/O. In
place of file I/O is window IZO using the MVC paradigm.

5.1 Dialog Box l/O
One of the most gratifying experiences with BlackBox in
the introductory sequence is the ease with which students
can program a modern GUI. Figure 2 gives an idea of how
easy it is to program a dialog box. The same program
compiles without change on a Windows or Mac platform.
Indeed, students are free to use whichever platform they
like, and either platform can be used to test students’
programs and dialog boxes. Dialog boxes retain the host
platform look and feel, even if originally developed on a
different platform.

Dialog boxes are an example of BlackBox component

273

Nickels: 1

Pennies: 4

MODULE Sigcse99Fig2;
IMPORT Dialog;

VAR
d*: RECORD

change*: INTEGER;
dimes-, nickels-, pennies-: INTEGER

END;

PROCEDURE MakeChange’;
VAR

cents: INTEGER;
BEGIN

cents := d.change;
d.dimes := cents DIV 10;
cents := cents MOD 10;
d.nickels := cents DIV 5;
d.pennies := cents MOD 5;
Dialog.Update(d)

END MakeChange;

BEGIN
d.change := 0;
d.dimes := 0; d.nickels := 0; d.pennies := 0

END Sigcse99Fig2.

Figure 2: A Component Pascal program and its dialog box.

containers. Students design them with graphic layout tools
and link their controls to exported items of a module. In
Figure 2, d.change is exported read/write (with the *), and
linked to the input field of the dialog box. d.dimes,
d.nickels, and d.pennies are exported read-only (with the -)
and linked to the output fields of the dialog box. Procedure
MakeChange is linked to the button labeled Compute. We
discovered that the process of programming with dialog
boxes is so simple in Component Pascal that programs are
frequently shorter than equivalent programs in other
languages using a command line prompt.

Figure 2 shows that BlackBox is a true framework, not just
a library with a collection of classes and objects. ‘Ihe event
loop is completely hidden. There is no main program. This
central characteristic of a true framework is frequently
called “The Hollywood Principle”, that is, Don’t call us,
we’ll call you. Note that the framework calls the procedure
in response to the user clicking a button on the dialog box.
The programmer does not write a main program, which in
turn calls the procedure.

5.2 Window l/O with the MVC Paradigm

In BlackBox, files take a secondary role to the GUI and are
available at a lower level of abstraction than are windows.
Although it is possible to perform file I/O in BlackBox we
decided that students’ time would be better spent learning
the MVC paradigm on which the windowing system is
based. The MVC technique, pioneered at the Xerox Palo
Alto Research Center in conjunction with the Smalltalk
language, has proven its worth in many systems and is
referred to extensively in [l] and [3].

The primary design concept in the MVC paradigm is the
dissection of a data object into three parts-its model,
which contains the data, its view, which presents the data on
a display device, and its controller, which controls the
interaction between the user and the view.

A full understanding of the MVC paradigm is obviously
beyond the reach of beginning programmers. However, the
basic concept is not that difficult to grasp. Furthermore,
programs that perform window I/O are easy to write and
understand in Component Pascal with a minimum of
handwaving. Figure 3 shows a program presented early in
CSl.

MODULE Sigcse99Fig3;
IMPORT TextModels, TextControllers, PboxMappers,

PboxStrings, Out;

PROCEDURE ComputeTotal*;
VAR

md: TextModels.Model;
cn: TextControllers.Controller;
SC: PboxMappersScanner;
balance: REAL;
sum: REAL;
sumstring: ARRAY 16 OF CHAR;

BEGIN
cn := TextControllers.Focus();
IF cn # NIL THEN

md := cn.text;
sc.ConnectTo(md);
sum := 0.0;
sc.ScanReal(balance);
WHILE -sc.eot DO

sum := sum + balance;
sc.ScanReal(balance)

END;
PboxStrings.RealToString(sum, 1,2,

sumstring);
Out.String(“Total is $“);
Out.String(sumString); Out.Ln

END
END ComputeTotal;

END Sigcse99Fig3.

Figure 3: Using the MVC paradigm for input from a window.

The program assumes that a window is open and contains a

274

sequence of real numbers that represent dollar amounts. No
sentinel at the end is required, nor is an initial count of how
many real numbers are in the list. The procedure is activated
by the user selecting a menu option.

In the first statement of the procedure, text controller cn
attempts to connect to the focus window. If the focus
window contains text, cn will not be NIL, and the body of
the IF statement executes. cn is an object that contains
(class composition) a reference (exported read-only) to its
model. In the first statement in the body of the IF, md gets
the reference to the model.

Object SC is a scanner, an iterator that traverses the text
model. The next statement connects the scanner to the
model. Its position is now before the first character of text.
Performing a scan when the iterator is at the end of text
does not trigger a trap. It simply sets sc.eot, a boolean field
of the scanner exported read-only, to TRUE. Hence, the
program terminates correctly even if the focus window is
empty or contains only white space.

The first year we used the framework we attempted to use
the scanner supplied by the BlackBox framework. It is
powerful for experienced programmers to use, but proved
too difficult to understand for beginners. Scanner SC in
Figure 3 is an extension (using the decorator pattern of [11)
of the BlackBox scanner, and is designed for the
introductory course. The scanner can scan integers, reals,
characters, strings, one-dimensional arrays of integers and
reals, and two-dimensional arrays of integers and reals.

Space limitations preclude showing an example of a
program that creates a new text model, attaches a view to it,
and opens the view in a new window. Iterators for
modifying a text model are called formatters, and the
methods are similar in concept to formatted writes in other
languages. For example, if fm is a text formatter the
statement

fm.WriteReal(x, 10, 2)

writes to the text model the value of real variable x with a
field width of 10 and 2 places past the decimal point.

6. Conclusion
There is a real synergy between the BlackBox Component
Builder framework and the Component Pascal language.
The language is not a toy designed only for pedagogical
use, as evidenced by the fact that the entire framework
including the compiler is written in Component Pascal.

Nevertheless, the framework has proved to be an ideal

vehicle to carry our students through the CSlKS2
sequence. The language is simple and small with clean
syntax, yet has the power of full object-orientation with
polymorphism. Students are excited to learn how to
program a modern GUI, instead of being bored with the old
command line interface. The language and the framework
combine the best of Pascal and Java and deserve serious
consideration as tools to further our educational goals at the
CS l/CS2 level.

6.1 Resources
One of the best features of BlackBox is that the complete
development system is available from Oberon
microsystems at

http://www.oberon.cW

and is free for educational use. The on-line documentation
contains the defining language report and a sequence of
tutorials (although geared to the experienced programmer,
not the typical CSl/CS2 student). Applications written in
BlackBox with the educational version must be run from
within the framework. The company derives its revenue by
selling a developer’s version that enables the construction
of a stand-alone executable application. The educational
version has the full programming capability of the
developer version.

The largest obstacle we had to overcome was the lack of a
textbook appropriate for the CSlKS2 sequence. A
manuscript [4] is in development with chapters available at

ftp://ftp.pepperdine.edu/pub/compscilprog-bboxl

in PDF format. Figure 1 is essentially a list of chapter titles
of the manuscript.

7. References

[II

PI

[31

[41

Gamma, E, Helm, R, Johnson, R, Vlissides, J. Design
Patterns, Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1995.
Roe, P, Szyperski, C. Lightweight Parametric Polymor-
phism for Oberon. Fourth Joint Modular Languages
Conference (JMLC’97), Linz, Austria, March 1997.
Szyperski, C. Component Software-Beyond Object-
Oriented Programming, Addison-Wesley and ACM
Press, 1998.
Warford, S. Programming in BlackBox. Prepublication,
Pepperdine University, 1996.

275

