C++77

A Critique of C++

and Programming and Language Trends of the 1990s

3rd Edition

lan Joyner

The views in this critique in no way reflect the position of my employer

© lan Joyner 1996

C++7?7? il

O LA I O T 10 L@ 1T] T 1

2. THE ROLE OF A PROGRAMMING LANGUAGE .. .ottt e e e e e et et e e e e e e an 2
DA N = 2T €T =N 1,1 N 3
2.2 COMMUNICATION, ABSTRACTION AND PRECISION. .. tuttttuittntttneteneseaenessensssnsssnssaeassasaetsttttesitesirsesreeseneneen 4
P22 T 1N @ 17 111 5
A T T T 1 I =TeT 27 o [5
B L@ o L] o] =3 5
220 S T 2 =] =1 T 7
2.7 REDUNDANCY AND CHECKING .. euittuititttinsttastetasttststaetseast s ta s ta s ea s easaa s sa st sa s aa st assasa ettt eta e steenssssnensensseenaes 7
DA B = T =TT U 1y T N P 8
2.9 SAFETY AND COURTESY CONCERNS. ...ttt titittttttettt et eastateeaat et st ea et ea st ea st ta et sa e ea st sa st ea st tastttasttetrenesstneaaenesnsnns 8
2.10 MPLEMENTATION AND DEPLOYMENT CONCERNSt tuitititttitttttttntttts e tsteeaaassatesasesstttteattesneseeetreesrrnasees 9
2.11 CONCLUDING REMARKS ...t titititttit ettt ettt ea e e et e e et e st et s b s e e b eea s e e s s e e s s e e s e e e s e e s s e e s b s b s s s b e s st eensb e sssenenrenasnns 9

R O o Y = O | ol (O O = I I (1 157 1Y P 9
TR 1= U 7Y IR] T 1T N £ TN 9
I € W)= I N Y IR 25 1N 12
G TG T R =E S o S I N Y =S 13
3.4 FUNCTION OVERLOADING ... tuittittitet ittt tasaeasassaeassaeas s ss s saeasssessesas s s s s s e as s s s s s s s s s s s esa st ssssn st esnsbesnssrenesrenanarnns 14
3.5 THE NATURE OF INHERITANCE ... ttuitttttttttetaete et et et eae st et s e s e sttt s s easa e b s aa s s e s s s ea s s e s e s e s e s e b ean st e e b e e s b e s et s eneneenanens 15
3.0 MULTIPLE INHERITANCE ...t tuittittttte ettt eet et e e et e e et s s ea s s et e e st e e e b ee b e e e b e e e b e e e b s e et e e e ae e e b et e e s be s e b e e et e e esrenenennanns 16
A /[O 7Y I X1 = T 17
BT TR 1Y =1y =1 PR 17
3.9 INAME OVERLOADING .. tutuittitititetiteatte s ssseasaeasssa s s sa s s sa s ase s st ta e s ta s s ss s s s s s s s s s sas s st aasssbesnsbesn st eenstsenesrnnsananns 19
G T 0 I AN S 1 = o LY 21
G T I € X)Y I = AV AT =T LY = = 22
3.12 FOLYMORPHISM AND INHERITANCE ...t uittuittniteneteeeteestts e st ee sttt es e s st ea s s ea s s st e s st et st eea et stastsenstsensenesseneaaenanns 23
B T RS T 1= = O3 = 23
T I o I I VN N o T IR 0 NS 24
T ST A LV I =T = X S = N 25
G T I 7N N o 7N S 26
G T R YN o 26
3.18 ANONYMOUS PARAMETERS INCLASS DEFINITIONS cuitiuitiitetittetite e eseeaeseasaeasaeassasseastessatts et tteaeseeesrenanaens 27
3.1 NAMELESS CONSTRUCTORS. ...ttt tttittttttenetttaeteas e assas s st e st e sttea sttt e s e et e st s st st esastettesstsenstreesrensaennanns 27
3.20 CONSTRUCTORS ANDT EMPORARIES. cuittittittttetttt ittt st sttt s st e ettt e st e sata sttt st ettt era st staettenrenssernsaernaes 27
I N o 0 N I Y oY Y T i =P 28
I = Y ol L= I = 1T N 1P 28
3.23 LOCAL ENTITY DECLARATIONS ..t tuttttuitttuetttaetttassta e as e as et st eas st ea et ta st ea e easea st ssesastesnstetnst et senesrensssrnesarnaanes 28
BT AV Y 1= =1 TP 29
B T2 TN N 1= 29
B B2 T 341 = T 03 30
3.27 CONTROLLED EXPORTS VS FRIENDS. ...t tuittuittnttenasttnsttsentseensstenesstassteasssassssesssessteenststetseettireaessrtesernanns 30
BT < T 7 [31
G T2 S U N TP 32
BTG {0 I 1 5T 32
G TG 3 I 1= = 0= =0 32
B TR F2A AN Y Y 1 =E5 =Y =L 32
BTG T I 7Y = T 33
BT Z @ N1 N1 =2 =708 = 34
3.35 G ASS HEADER DECLARATIONS. ...ttt ittt et ettt ettt e et ettt ettt e s b s e e st e s s s e e et e e s s s st eaa st eaa st e aa st eb e et renssseneaennanns 34
RG] € Y 227Xt =X o N (o [] T 34
3.37 LOW LEVEL CODING . .t utttuittnittnitttttensstessassa s ssseaas s sa s ss e s st s s eata e s s b san s s s e e s s e e s e s s s sa s s e be s st esn st eansbsenstsenrenanes 35
3.38 SONATURE V ARIANCE ...t titttnittnetteet et et eeaaa e e st taa st eea s b e e e b s ea s st ea s ea e s e e s ae s s s e e s beea st e eae b et s eae b s eae s ea e s eb e e sassnebsnnaans 35
RGeS I =T AV AT = U I = N[0 T N T 36
3.40 FROGRAMMING BY CONTRACT 1t tuittttttttuettttettaeataseaas e sttt sttt sttt ta st ea e ea st sa et etastesnstetnst et stnetsenesrrnesernsanes 36
3.41 CHHAND THE SOFTWARE LIFECY CLE 1. tuiuituiuitititiit ittt ttstt et ts s stseasas e sas e ss s ssaass s st s stetnatsenststnstreasenesaeasaenss 37
I O 0] i T TR 38
3.43 REUSABILITY AND COMMUNICATION u.tutuituiutniuttnettsestatsessssanssssnsssenesssassssasssssssssssteensteetesirtesietretesrenesaens 39
Bu44 REUSABILITY AND TRUS .t tuititittitititetiatt et set et st ea et eae s ta st ta e s ta s ea s s ea s s ea s s ea s s sa s s aa e s st sa s e sb e s sbeanebeenetrenannns 39
3.45 REUSABILITY AND COMPATIBILITY ttttuittiuttiueutuestnesenstssensstenssstnessesestaestsseassssteenstetsttttetttesieiaestrrearaesnes 40

3rd Edition © lan Joyner 1996

C++7?7? iii

3,40 REUSABILITY AND PORT ABILITY 1itittiuititiiitiiet ettt ettt ettt ettt s e et e e e s e e s e s s ea s s et e s et e s st e e st ean et s eb e e ebrenateenanesnaes 40
3.47 DIOMATIC PROGRAMMING.cutuititnitttnittttt ettt sttt e st st eas e ss s ea s ea e sa s saesa st ta st aa et aaet s ssstaesstaestsesetssnsnsananns 41
3.48 CONCURRENTPROGRAMMING ...t ttuittnittnittaatttnat ettt st e e st ea st ea s ea s e s aa s ea st aa s s ta et sas s tteen st etaeansssensssenessenanes 41
3.49 SANDARDISATION, STABILITY AND M ATURITY L.iuititnitiiitiiit ittt ett et et e e et e et s e et e aa e st st e st e e sbeanstesneneenanns 42
IR YO I oY 1= =5t 122 43
3.51 C++.THE OVERWHELMING OOL OF CHOICE? . ouitiiitiiii ittt et e et e et et et et e e et et e et et et st et e e et ea e e eaeanenss 44
] o N | = (O O O = I [0 157 1Y, T 45
g = NV =11 TP 45
T Y N TP 46
2.3 FUNCTION A RGUMENT S, 1ttt tttttitttettaettaea et ssasaeastta et ta et tae st aa s sseea s ea s ea s sa s aas s ssesn st ssestsesnsssensssenssrensssenannns 47
.4 NVOID AND VOID * o titiiit ittt et et e et et et et e et e e ettt et e a e e et st e a e e e e e ea e e a e et et eh e ea et ea e eh e eh e e e eaaaaaras 48
SR o] [l = N TSR TUPPURTRRRUPIIN 48
Y = N T TSP 49
o N (Y0) ORI 50
2.8 IVIETADATA IN STRINGS. 1 it ttitittitititettt ettt ea e ta st ea et ta s ta ettt ettt ta s ta s ea s sa e sa s stesaststetstean st eeastsenstreneseenernses 50
e T 50
g O T = =1 N] R 51
I R N L1 I Y= O TR 51
A @ NST = = NEST i AV 1720 N 52
.13 ASSIGNMENTOPERATOR ..t .tuitttuitttntttenetteneaea e et e aa e st ea st ta st sttt essea st ea st easasa s sa st sast st senstsenstsenesseaessrnesaenses 53
4. 1ACHAR; SIGNED AND UNSIGNED. ... ututututntutnentntstsnesenestsestseetsssnessenes e s s sasesssesntteeettrsttetteetrtesieresarnesaens 53
g ST = 1 o @ T £ 3 53
g G = T I =Y N 54
A € 1Y 1Y 1= N N 54
IS T2 Y 1= N 54
R T R O o T To | 1T I o] (1 SRR 54
4.18.2 Cpaghe++i GIOBAIScoeiiiiiiiiiiiiiti ettt a e e e e e e e e e e e e e aaaae et aaaaa———_ 55
R R O oF-To | o 1=k I = o] o] (=] £ TSRS 55
ST 0 1\ [L] [0 1 TR 56
LS ST =TI @ L2 N o T 58
AT A 1S I (@ 1€ = Y AN = = /2P 59

3rd Edition © lan Joyner 1996

C++2? 1

1. Introduction Stroustrup in that | do not view the flaws of C++ as
This is now the third edition of this critique; it has acceptable, even if they are widely known, and
been four years since the last edition. The maidnany programmers know how to avoid the traps.
factor to precipitate a new edition is that there ard’rogramming is a complex endeavour: complex and
now more environments and languages availabl#awed languages do not help.
that rectify the problems of C++. The last edition A question which has been on my mind in the
was addressed to people who were considerintst few years is when is OO applicable? OO is a
adopting C++, in particular managers who woulduniversal paradigm. It is very general and powerful.
have to fund projects. There are now more choiceslhere is nothing that you could not program in it.
so comparison to the alternatives makes the critiquBut is this always appropriate? Lower level
less hypothetical. The critique was not meant as aprogrammers have tended to keep writing such
academic treatise, although some of the aspecthings as device drivers in C. It is not lower levels
relating to inheritance, etc., required a bit ofthat | am interested in, but the higher levels. OO
technical knowledge. might still be too low level for a number of
The critique is long; it would be good ifvtere applications. A recent book [Shaw 96] suggests that
shorter, but that would be possible only if therre ~ Software engineers are too busy designing systems
less flaws in C++. Even so, the critique is notin terms of stacks, lists, queues, etc., instead of
exhaustive of the flaws: | find new traps all the time.adopting higher level, domain-oriented
Instead of documenting every trap, the critiquearchitectures. [Shaw 96] offers some hope to the
attempts to arrange the traps into categories an@dustry that we are learning how to architect to
principles. This is because the traps arejusit one solve problems, rather than distorting problems to fit
off things, but more deeply rooted in the principlesparticular technologies and solutions.
of C++. Neither is the critique a repository of ‘guess ~ For instance, commercial and business
what this obscure code does’ examples. programming might be faster using a paradigm
One desired outcome of this critique is that itinvolving business objects. While these could be
should awaken the industry about the C++ myth andprovided in an OO framework, the generality is not
the fact that there are now viable alternatives to C+#€eded in commercial processing, and will slow and
that do not suffer from as many technical problemslimit the flexibility of the development process. By
The industry needs less hype and more sensibinalogy, walking is a fine mode of transport, but do
programming practices. No language can be perfedtchoose to walk everywhere? There seems to be a
in every situation, and tradeoffs are sometimegotentially large market for specialised paradigms,
necessary, but you can now fdmer to choose a Which support rapid application development (RAD)
language which is more closely suited to your needgechniques. These paradigms may be based on some
The alternatives to C++ provide siver bullet but OO language, framework and libraries in the
significantly reduce the risks and costs of softwaréackground. In anything though, we should be
development compared to C++. The alternatives d@autious, as this is an industry particularly prone to
not suffer under the complexities of C++ and do notouzzwords and fads.
burden the programmer with many trivialities whicn ~ The second edition generated a lot of interest,
the compiler should handle; and they avoid many ofind it was published in a number of places:
the flaws and inanities of C/C++. Software Design in Japan translated it into Japanese,
The language events which have made an upda@nd published it over a series of months in 1993; it
desirable are the introduction of Java, the widetwas published in an abridged form in TOOLS
availability of more stable versions of Eiffel, and the Pacific 1992; it was also published in Gregory’s A
finalisation of the Ada 95 standard. Java inSeries Technical Journal. However, | resisted
particular set out to correct the flaws ©f+, and handing over copyright to anyone, as | wanted the
most sections in the original critique nomake Paper to be freely available on the Internet; it is now
some comment on how Java addresses the problenfailable on more sites than | know about. My
Eiffel never did have the same flaws @s+, and thanks to all those who have been so supportive of
has been around since long before the originalhe 2nd edition.
critique. Eiffel was designed to be object-oriented Another reason for the 3rd edition is that the
from the ground up, rather than klt-on Java original critique was very much a product of
offers better integration with OO tha@++. Now newsgroup discussions. In this edition, have
that there are language comparisons in the critiquattempted to at least improve the readability and
the arguments are less hypothetical, and th&dow, while not changing the overall structure or
criticisms of C++ are more concrete. embarking on a complete rewrite. The primary goal
Another factor has been the publishing of Bjarnehas been to annotate the original with comparisons
Stroustrup’s “Design and Evolution of C++” toJava and Eiffel.
[Stroustrup 94]. This has many explanations of the C++ has become even more widely useer
problems of extending C with object-oriented the last few years. However, people are starting to
extensions while retainingompatibility with C. In realise that it is not the answer to all programming
many ways, Stroustrup reinforces comments that problems, or that retaining compatibility with C is a
made in the original critique, but | differ from good thing. In some sectors there has been a

3rd Edition © lan Joyner 1996

C++2? 2

backlash, precipitated by the fact that people haven C++. This critique is not exhaustive of the
found the production of defect free quality softwareweaknesses of C++, but it illustrates thectical

an extremely difficult and costly task. OO has beerconsequences of these weaknesses with respect to
over-hyped, but neither aits real benefits present the timely and economic production of quality
in C++. software.

It is important and timely to question C++'s suc- This paper is structured as follows: section 2
cess. Several books are already published on theonsiders the role of a programming language;
subject [Sakkinen 92], [Yoshida 92], and [Wienersection 3 examines some specific aspects of C++;
95]. A paper on the recommended practices for useection 4 looks specifically at C; and the conclusion
in C++ [Ellemtel 92] suggests “C++ is a difficult examines wher€++ has left us, and considers the
language in which there may be a very fine linefuture.
between a feature and a bug. This places a large | have tried to keep the sections reasonably self
responsibility upon the programmer.” Is this acontained, so that you can read the sections that
responsibility or a burden? The ‘fine line’ is a resultinterest you, and use the critique in a reference style.
of an unnecessarily complicated language definitionThere are some threads that occur throughout the
The C++ standardisation committee warns “C++ iscritique, and you will find some repetition of ideas
already too large and complicated for our tasteto achieve self contained sections.

[X3J16 92]. Having said that, | hope that you find this

Sun’s Java White Paper [Sun 95] says that ircritique useful, and enjoyable: so please feel free to
designing Java, “The first step was &timinate distribute it to your management, peers and friends.
redundancyfrom C and C++. In many ways, the C

language evolved into a collection of overlapping2. The Role of a Programming
features, providing too many ways to do the sam¢ anguage

thing, while in many cases not providingeeded programming language functions at many

features. C++, even in an attempt to add “classes ifferent levels and has man

,, . o= y roles, and should be
tCrllerirrlﬁr:rlé/n?dcriggler%c;r%fr(e:qyndancy while retaininge, auated with respect to those levels and roles.
- P . : . _Historically, programming languages have had a

The designer of Eiffel, Bertrand Meyer, states injimiteq role, that of writing executable programs. As

the appendix "On language design and evolution” iy 5arams have grown in complexity, this role alone
[Meyer 92] some guiding principles of language h,q"hroved insufficient. Many design and analysis
design: simplicity vs complexity, uniqueness, yechniques have arisen to support other necessary
consistency. “The Principle of Uniqueness, Meyer(rjmes

says, “is easily expressed: the language should™"qp.oqt oriented techniques help in the analysis
_prowde.c.)ne good way to express every operation O<I;md design phases; object-oriented languages to
interest; it should avoid providing two. support the implementation phase of OO, but in
Meyer has produced a seminal work on OO:nany cases these lack uniformity of concepts,
Object-oriented Software ConstructidMeyer 88]. inieqration with the development environment and
All " software engineers and object-oriented commonality of purpose. Traditional problematic
practitioners should read and absorb this work. Ajggware practices are infiltrating the object-oriented
completely revised 2nd edition is soon to appear. Ayorld with little thought. Often these techniques
later short book “Object Success” is directed toappeal to management because they are outwardly
managers (probably the reason for the pun in thgroanised: people are assigned organisational roles
name), with an overview of OO, [Meyer 95]. such as project manager, team leader, analyst,
While C programmers can immediately use C++gesigner and programmer. But these techniques are

to write and compile C programs, this doestaéie simplistic and insufficient, and result in demotivated
advantage of OO. Many see this as a strength, but §,d uncreative environments.

is often stated that the C base is C++'s greatest opjgct-orientation, however, offers a better

weakness. However, C++ adds its own layers ofational approach to software development. The
complexity, like its handling of multiple inheritance, complementary roles of analysis, design
oC\iei_r’Ioadlng, and othkers. | aBn nothso s%re thathC Ifmplementation and project organisation should be

s_gre%test wea neshs. é:lva a? S .OAN” bt' at Kktter integrated in the object-oriented scheme. This
removing C constructs that do not fit with object- regjts in economical software production, and more
oriented concepts, that C can provide an acceptabl@ aative and motivated environments.

albeit not perfect base. o : .
. The organisation of projects also required tools
Adoption of C++ does not suddenly transform C oyiarnal to the language and compiler, like ‘make.’

programmers into object-oriented programmers. Anre_eyaluation of these tools shows that often the
complete change of thinking is required, and C++givision of labour between them has not been done
actually makes this difficult. A critique of C++ 4504 gntimal lines: firstly, programmers need to do
cannot be separated from criticism of the C bas%xtrabookkeepingNork which could be automated:

language, as it is essential for the C++ programmef g secondly, inadequateparation of concernsas
to be fluent in C. Many of C’s problems affect the .o ited in ir%"lexibleqsoftwgre systems.

way that object-orientation is implemented and used

3rd Edition © lan Joyner 1996

C++2? 3

C++ is an interesting experiment in adapting thecomputer. Carroll Morgan banishes the distinction
advantages of object-orientation to a traditionalbetween specifications and programs: “To us they
programming language and developmentare all programs.” [Morgan 90]. Programming is a
environment. Bjarne Stroustrup should beterm that not only refers to implementation;
recognised for having the insight to put the twoprogramming refers to the whole process of
technologies together; he ventured into OO not onlyanalysis, design and implementation.
before solutions were known to many issues, but The Eiffel language integrates the concept of
before the issues were even widely recognised. Hepecification and programming, rejecting the
deserves better than a back full of arrows. But individed models of the past in favour of a new
retrospect, we now treat concepts such as multiplintegrated approach to projects. Eiffel achieves this
inheritance with a good deal of respect, and realisin several ways: it has a clean clear syntax which is
that the Unix development environment with limited easy to read, even by non-programmers; it has
linker support does not provide enough compilertechniques such as preconditions and postconditions
support for many of the features that should be in 8o that the semantics of a routine can be clearly
high level language. documented, these being borrowed from formal

There are solutions to the problems that C++specification techniques, but made easy for the ‘rest
uncovered. C++ has gone down a patheisearch, of us’ to use; and it has tools to extract the abstract
but now we know what the problems are and how tepecification from the implementation details of a
solve them. Let's adopt or develop such languagegrogram. Thus Eiffel is more than just a language,
Fortunately, such languages have been developegroviding a whole integrated development
which are of industrial strength, meant for environment.

commercial projects, and are ng@ist academic Chris Reade [Reade 89] gives the following
research projects. It is now up to the industry toexplanation of programming and languages. “One,
adopt them on a wider scale. rather narrow, view is that@rogram is a sequence

C++, however, retains the problems of the oldof instructions for a machine. We hope to show that
order of software production. C++ hasadvantage there is much to be gained from taking the much
over C as it supports many facets of object-broader view that programs are descriptions of
orientation. These can be used for some analysis anglues, properties, methods, problems and solutions.
design. The processes of analysis, design, an@lhe role of the machine is to speed up the
organisation, however, argtill largely external to manipulation of these descriptions to provide so-
C++. C++ has not realised the importadivantages lutions to particular problems. Aorogramming
of integrated software development that leads tdanguageis a convention for writing descriptions
improved economies of software production. which can be evaluated.”

Java is an interesting development taking a [Reade 89] also describes programming as being
different approach to C++: strict compatibility with a “Separation of concerns”. He says:

C is not seen as a relevant goal. Java is not the only «The programmer is having to do several things
C based alternative to C++ in the object-orientetqt the same time, namely

world. There has also been Objective-C from Brad 1) describ ’ hat i . b q

Cox, and mainly used in NeXT's OpensStep (1) describe whatisto be computed;
environment. Objective-C is more like Smalltalk, in ~ (2) organise the computation sequencing into

that all binding is done dynamically at run time. small steps; .
A language should not only be evaluated from a (3) organise memory management during the
technical point of view, considering its syntactic and computation.

semantic features; it should also be analysed frorReade continues, “ldeally, the programmer should
the viewpoint of its contribution to the entire be able to concentrate on the first of the three tasks
software development process. A language shoul@escribing what is to be computed) without being

enable communication between project memberslistracted by the other two, more administrative,

acting at different levels, from management, who setasks. Clearly, administration is important but by

enterprise level policies, to testers, who must test theeparating it from the main task we are likely to get

result. All these people are involved in the generamore reliable results and we can ease the
activity of programming, so a language shouldprogramming problem by automating much of the

enable communication between project memberadministration.

separated in space and time. A single programmer is “The separation of concerns has other

not often responsible for a task over its entireadvantages as well. For example, program proving

lifetime. becomes much more feasible when details of
sequencing and memory management are absent
2.1 Programming from the program. Furthermore, descriptions of what

Programming and specification are now seen as thi§ 0 be computed should be free of such detailed
same task. One man’'s specification is another’%tep'by'Step descriptions of how to do it if they are

program. Eventually you get to the point of (O be evaluated with different machine architectures.

processing a specification with a compiler, WhiChseS?green?ﬁaS Of)grgﬁ”iﬁga”%esri;?ea d%itcariotti){)endo?ﬂgv&n
generates a program which actually runs on & y pprop p

3rd Edition © lan Joyner 1996

C++7?2? 4

to compute something when a highly parallelmuch of the bookkeeping instead of it being
machine is being used with thousands of processoutomated.

distributed throughout the machine and local rather The industry should be moving towards these
than global storage facilities. ideals, which will help in the economic production

“Automating the administrative aspects meansof software, rather than the costly techniques of
that the language implementor has to deal withoday. We should consider what we need, and assess
them, but he/she has far more opportunity to makéhe problems of what we have against that. Object-
use of very different computation mechanisms withorientation provides one solution to these problems.
different machine architectures.” The effectiveness of OO, however, depends on the

These quotes from Reade are a good summarguality of its implementation.
of the principles from which | criticise C+¥Vhat
Reade calls administrative tasks, | dadokkeeping 2.2 Communication, abstraction and
Bookkeeping adds to the cost of softwareprecision
production, and reduces flexibility which in turn The primary purpose of any language is
adds more to the cost. C and C++ are often criticisedommunication. A specification is communication
for being cryptic. The reason is that C concentrategom one person to another entity of a task to be
on points 2 and 3, while the description of what is tofy|filled. At the lowest level, the task to be fulfilled
be computed is obscured. . , is the execution of a program by a computer. At the

High level languages describe ‘what’ is to benext level it is the compilation of a program by a
computed; that is_the problem domain. ‘How' acompiler. At higher levels, specifications
computation is achieved is in the low-level machine-communicate to other people what is to be
oriented deployment domain. Automating theaccomplished by the programming task. At the
bookkeeping tasks enhances correctnesowest level, instructions must be precisely
compatibility, ~ portability ~— and efficiency. executed, but there is no understanding; it is purely
Bookkeeping tasks arise from having to specifymechanical. At higher levels, understanding is
‘how’ a computation is done. Specifying ‘how’ important, as human intelligence is involved, which
things are done in one environment hindersis why enlightened management practices emphasise
portability to other platforms. training rather than forced processes. This is not to

The most significant way high level languagessay that precision is not important; precision at the
replace bookkeeping is using a declarative approacthigher levels is of utmost importance, or the rest of
whereas low level languages use operators, whicthe endeavour will fail. Most projects fail due to
make them more like assemblers. C and C+#ack of precision in the requirements and other early
provide operators rather than the declarativestages.
approach, so are low level. The declarative approach Unfortunately, often those who are least skilled
centralises decisions and lets the compiler generaig programming work at the higher levels, so
the underlying machine operators. With the operatogpecifications lack the desirable properties of
approach, the bookkeeping is on the programmer t@bstraction and precision. Just as in Dibert
use the correct operator to access an entity, and if@rinciple [Adams 96], the least effective
decision changes, the programmer will have toprogrammers are promoted to where they will
change all operators, rather than change the singseemingly do the least damage. This is not quite the
declaration and simply recompiling. Thus in C andwinning strategy that it seems, as that is where they
C++ the programmer is ofteconcerned with the actually do the most damage, as teams of confused
access mechanisms to data, whereas high levekogrammers are then left to straighten out their
languages hide the implementation detail, makingpecifications, while the so called analysts move
program development and maintenance far morento the next project or company to sew the seeds of
flexible. o _ disaster there.

While C and C++ syntax is similar to high level (Indeed, since many managers have not read or
language syntax, C and C++ cannot be considereghderstood the works of Deming [Deming 82],
high level, as they do not remove bookkeeping fronJ| &S 95], De Marco and Lister [DM&L 87], and
the programmer that high level languages shouldTom Peters’ later works, the message that the
requiring the compiler to take care of these_ deta”Sphysical environment and attitudes of the work
The low level nature of C and C++ severely impactsplace leads to quality has not got through. Perhaps
the development process. the humour of Scott Adams is now the only way this

The most important quality_ of a high level message will have impact.)
language is to remove bookkeeping burden from the At higher levels, abstraction facilitates
programmer in order to enhance speed o{understanding. Abstraction and precision are both
development, maintainability and flexibility. This jmportant qualities of high level specifications.
attribute is more important than object-orientationApstraction does not mean vagueness, nor the
itself, and should be intrinsic to any moderngbandonment of precision. Abstraction means the
programming paradigm. C++ more than cancels thgemoval of irrelevant detail from a certain
benefits of OO by requiring programmers to performyiewpoint. With an abstract specification, you are

3rd Edition © lan Joyner 1996

C++7?7? 5

left with a precise specification; precisely the Programming languages also provide notations
properties of the system that are relevant. to formally document a system. Program source is

Abstraction is a fundamental concept inthe only reliable documentation of a system, so a
computing. Aho and Ullman say “An important part language should explicitly support documentation,
of the field [computer science] deals with how tonot just in the form of comments. As with all
make programming easier and software mordanguage, the effectiveness of communication is
reliable. But fundamentally, computer science is adependent upon the skill of the writer. Good
science ofibstraction-- creating the right model for program writers require languages that support the
a problem and devising the appropriaterole of documentation, and that the language
mechanizable techniques to solve it.” [Aho 92].notation is perspicuous, and easy to learn. Those not
They also say “Abstraction in the sense we use itrained in the skill of ‘writing” programs, caread
often implies simplification, the replacement of athem to gain understanding of the system. After all,
complex and detailed real-world situation by anit is not necessary for newspaper readers to be
understandable model within which we can solveournalists.
the problem.”

A well known example that exhibits both 2.4 Tool Integration
abstraction and precision is the LondonA language definition should enable the
Underground map designed by Harold Beck. This isjevelopment of integrated automated tools to
a diagrammatic map that has abstracted irrelevajupport software development. For example,
details from the real London geography to result in gyrowsers, editors and debuggers. The compiler is
conveniently sized and more readable map. Yet thjist another tool, having a twofold role. Firstly, code
map precisely shows the underground stations ang‘eneration for the target machine. The role of the
where passengers can change trains. Many other Cififachine is to execute the produced programs. A
transport systems have adopted the principles odompiler has to check that a program conforms to
Beck’s map. Using this model passengers can easiye |language syntax and grammar, so it can
solve such problems as “How do | get from‘understand”the program in order to translate it into

Knightsbridge to Baker Street?” an executable form. Secondly, and more
importantly, the compiler should check that the
2.3 Notation programmers expression of the system is valid,

A programming language should support the excomplete, and consistent; ie., perform semantics

change of ideas, intentions, and decisions betweeghecks that a program is internally consistent.

project members; it should provide a formal, yetGenerating a system that has detectable

readable, notation to support consistent description§consistencies is pointless.

of systems that satisfy the requirements of diverse

problems. A language should also provide method2.5 Correctness

for automated project tracking. This ensures thabeciding what constitutes an inconsistency and how

modules (classes and functionality) that satisfyto detect it often raises passionate debate. The

project requirements are completed in a timely andjiscord arises because the detectable inconsistencies

economic fashion. A programming language aidsjo not exactly match real inconsistencies. There are

reasoning about the design, implementationswo opposing views: firstly, languages that

extension, correction, and optimisation of a system. gvercompensate are restrictive, you should trust
During requirements analysis and design phasesour programmers; secondly, that programmers are

formal and semi-formal notations are desirablehuman and make mistakes and program crashes at

Notations used in analysis, design, andrun-time are intolerable.

implementation phases should be complementary,

rather than contradictory. Currently, analysis, desigirpjs js the key to the following diagrams:

and modelling notations are too far removed from

implementation, while programming languages are

in general too low level. Both designers and Real , Obscure

programmers must compromise to fill the gap. Inconsistencies failures

Many current notations provide difficult transition

paths between stages. This ‘semantic gap’

contributes to errors and omissions between the False
requirements, design and implementation phases. Alarms
Better programming languages are an

implementation extension of the high level notations

used for requirements analysis and design, which Superfluous

will lead to improved consistency between analysis, - run-time

design and implementation. Object-oriented checks/inefficiency
techniques emphasise the importance of this, as

abstract definition and concrete implementation can

be separate, yet provided in the same notation.

3rd Edition © lan Joyner 1996

C++2? 6

In the first figure the black box represents teal has detected and removed, which results in run-time
inconsistencies, which must be covered by eithemefficiency. The language will be seen as
compile-time checks or run-time checks. restrictive, and the run-time as inefficient. You
won't get any obscure crashes, but the language will
get in the way of some useful computations. Pascal
is often (somewhat unfairly) criticised for being too
restrictive.

Compile

In the scenario of this diagram, checks are
insufficient so obscure failures occur at run-time,
varying from obscure run-time crashes to strangely
wrong results to being lucky and getting away with
it. Currently too muchsoftware development is
based on programming until you are in the luckyThe above figure shows an even worse situation,
state, known akacking This sorry situation in the where the compiler generates false alarms on
industry must change by the adoption of betteffictional inconsistencies, does superfluous checks at
languages to remove thexd hoc nature of run-time, but fails to detect real inconsistencies.
development.

Some feel that compiler checks are restrictive :
and that run-time checks are not efficient, so Co_mplle
passionately defend this model, as programmers are Time
supposedly trustworthy enough to remove the rest of
the real consistencies. Although most programmers .
are conscientious and trustworthy people, this leaves Run Time
too much to chance. You can produdefect-free
software this way, as long as the programmer does]]]
not introduce the inconsistencies in the first placelhe best situation would be for a compiler to
but this becomes much more difficult as the size angtatically detect all inconsistencies without false
Comp|exity of a software system increases, andalarms. However,_ It IS not pOSSlble to statlcally
many programmers become involved. The readetect all errors with the current state of technology,
inconsistencies are often removed by hacking unti®s @ significant class of inconsistencies can only be
the program works, with a resultant dependency offletected at run-time; inconsistencies such as: divide
testing to find the errors in the first place. by zero; array index out of bounds; and a class of
Sometimes companies depend on the customers f¥P€ checks that are discussed in the section on
actually do the testing and provide feedback abouRTT! and type casts.
the problems. While fault reporting is an essential The current ideal is to have the detectable and
path of communication from the customer, it mustreal inconsistency domains exactly coincide, with as
be regarded as the last and most costly line ofew checks left to run-time as possible. This has two
defence. advantages: firstly, that your run-time environment

C and C++are in this category. Software will be a lot more |Ike|y to work without exceptions,
produced in these languages is prone to obscurg0 your software is safer; and secondly, that your
failures. software is more efficient, as you don't need so
many run-time checks. A good language will
correctly classify inconsistencies that can be
— detected at compile time, and those that must be left
Compile Time until run-time.

This analysis shows that as some inconsistencies
can only be detected at run-time, and that such
detection results in exceptions that exception
handling is an exceedingly important part of
software. Unfortunately, exception handling has not
received serious enough attention in most
programming languages.

The second figure, shows that the language detects Eiffel has been chosen for comparison in this
inconsistencies beyond the real inconsistency boxcritique as the language that is as close to the ideal
These are false alarms. The run-time environmenas possible; that is, all inconsistencée covered,
also doubles up on inconsistencies that the compilerhile false alarms are minimised, and the detectable

Run Time

3rd Edition © lan Joyner 1996

C++7? 7

inconsistencies are correctly categorised as compile- Object-oriented programming also provides two
time or run-time. Eiffel also pays serious attentionspecific ways to assemble new and complex types:

to exception handling. “objects can be combined with other types in
expressive and efficient ways (composition and
2.6 Types hierarchy) to define new, more complex types.”

In order to produce correct programs, syntax checkEE9e 96].
for conformance to a language grammar are not _
sufficient: we should also check semantics. Som&.7 Redundancy and Checking
semantics can be built into the language, but mostliRedundant information is often needed to enable
this must be specified by the programmer about theorrectness checking. Type definitions define the
system being developed. elements in a system'’s universe, and the properties
Semantics checking is done by ensuring that governing the valid combinations and interactions of
specification conforms to some schema. Foithe elements. Declarations define the entities in a
example, the sentence: “The boy drank the computegystem’s universe. The compiler uses redundant
and switched on the glass of water” is grammaticallyinformation for consistency checking, and strips it
correct, but nonsense: it does not conform to th@way to produce efficient executable systems. Types
mental schema we have of computers and glasses afe redundant information. You can program in an
water. A programming language should includeentirely typeless language: however, this would be
techniques for the detection of similar nonsense. Théo deny the progress that has been made in making
technique that enables detection of the abov@rogramming a disciplined craft, that produces
nonsense is types. We know from the computer'sorrect programs economically.
type that it does not have the property ‘drinkable’. It is a misconception that consistency checks are
Types define an entity’s properties and behaviour. ‘training wheels’ for student programmers, and that
Programming languages can either be typed oisyntax’ errors are a hindrance to professional
untyped; typed languages can be statically typed oprogrammers. Languages that exploit techniques of
dynamically typed. Static typing ensures at compileschema checking are often criticised as being
time that only valid operations are applied to anrestrictive and therefore unusable for real world
entity. In dynamically typed languages, type software. This is nonsense and misunderstands the
inconsistencies are not detected until run-timepower of these languages. It is an immature
Smalltalk is a dynamically typed language, not anconception; the best programmers realise that
untyped language. Eiffel is statically typed. programming is difficult. As a whole, the computing
C++ is statically typed, but therare many profession is still learning to program.
mechanisms that allow the programmer to render it While C++ is a step in this direction, it is
effectively untyped, which means errors are nothindered by its C base, importing such mechanisms
detected until a serious failure. Some argue thaas pointers with which you can undermine the logic
sometimes you might want to force someone tof the type system. Java has abandoned these C
drink a computer, so without these facilities, themechanisms where they hinder: “The Java compiler
language is not flexible enough. The correct solutioremploys stringent compile-time checking so that
though is to modify the design, so that now thesyntax-related errors can be detected early, before a
computer has the property drinkable. Underminingorogram is deployed in service” [Sun 95]. The
the type system is not needed, as the type system psogramming community has matured in the last
where the flexibility should be, not in the ability to few years, and while there was vehement argument
undermine the ‘type system. Providing ~andagainst such checking in the past by those who saw
modifying declarations is declarative programming.it as restrictive and disciplinarian, the majority of
Eiffel tends to be declarative with a simple the industry now accepts, and even demands it.
operational syntax, whereas C++ provides a plethora Checking has also been criticised from another
of operators. point of view. This point of view says that checking
Defining complex types is a central concept ofcannot guarantee software quality, so why bother?
object-oriented programming: “Perhaps the mosilThe premise is correct, but the conclusion is wrong.
important development [in programming languages]Checking is neither necessary, nor sufficient to
has been the introduction of features that supporeroduce quality software. However, it is helpful and
abstract data types (ADTs). These features allowsseful, and is a piece in a complicated jig-saw which
programmers to add new types to languages that cafould not be ignored.
be treated as though they were primitive types of the In fact there are few things that are necessary for
language. The programmer can define a type and guality software production. Mainly, software
collection of constants, functions, and procedures onuality is dependent on the skill and dedication of
the type, while prohibiting any program using thisthe people involved, not methodologies or
type from gaining access to the implementation oftechniques. There is nothing that is sufficient. As
the type. In particular, access to values of the type iBred Brooks has pointed out, there is 8idver
available only through the provided constants,Bullet[Brooks 95]. Good craftsmen choose the right
functions, and procedures.” [Bruce 96]. tools and techniques, but the result is dependent on
the skill used in applying the tools. Any tool is

3rd Edition © lan Joyner 1996

C++2? 8

worthless in itself. But th&ilver Bulletrationale is data which should be hidden. Interface data are any
not a valid rationale against adopting bettercharacteristics which might be of interest to the
programming languages, tools and environmentsputside world. For example when buying a car, the
unfortunately, Brooks’ article has been misused. purchaser might want to know data such as the
Another example of consistency checking comesngine capacity and horse-power, etc. However, the
from the user interface world. Instead of correcting dact that it took John Engineer six days to design the
user after an erroneous action, a good user interfagngine block is of no interest.
will not offer the action as a possibility in the first Implementation hiding means that data can only
place. It is cheaper to avoid error than toifiMost ~ be manipulated, that is updated, within the class, but
people drive their cars with this principle in mind: it does not mean hiding interface data. If the data
smash repair is time consuming and expensive. were hidden, you could never reiadin which case,
Program development is a dynamic processglasses would perform no useful function as you
program descriptions are constantly modified duringcould only put data into them, but never get
development. Modifications often lead to information out.
inconsistencies and error. Consistency checks help In order to provide implementation hiding in
prevent such ‘bugs’, which can ‘creep’ into a C++ you shouldaccess your data through C
previously working system. These checks helpfunctions. This is known as data hiding in C++. It is
verify that as a program is modified, previousnot the data that is actually being hidden, but the
decisions and work are not invalidated. access mechanism to the data. The access
It is interesting to consider how much checkingmechanism is the implementation detail that you are
could be integrated in an editor. The focus of manyhiding. C++ has visibledifferences between the
current generation editors is text. What happens ificcess mechanisms of constants, variables and
we change this focus from text to programfunctions. There is even a typographic convention of
components? Such editors might check not onlyjpper case constant names, which makes the
syntax, but semantics. Signalling potenta&tors differences between constants and variables visible.
earlier and interactively will shorten developmentThe fact that an item is implemented as a constant
times, alerting programmers to problems, rather thashould also be hidden. Most non-C languages
wasting hours on changes which later have to bgrovide uniform functional access to constants,
undone. Future languages should be defined veryariables and value returning routines. In the case of
cleanly in order to enable such editor technology. Variables, functional access means they can be read
from the outside, but not updated. An important
2.8 Encapsulation principle is that updates are centralised within the

: : . class.
There is much confusion about encapsulation, Above | indicated that encapsulation was

isi ++ i i 4 . . ;
mostly arising from C equating enc{’IDS’UI‘T[")”grouplng operations and information together.

with data hiding The Macquarie dictionary defines ; .)
the verbto encgpsulatas ‘?o enclose in oryas in a VWhere do functions fit into this? The wroagswer
capsule, The objectoriented meaning of iS_that functions are operations. Functions are

encapsulation is to enclose related data, routines arftually part of the information, as a function returns
definitions in a class capsule. This does notnformation derived from an object’s data to the

necessarily mean hiding. outside world. .

Implementation hiding is an orthogonal concept , 1NiS theme and its adverse consequences, that
which is possible because of encapsulation. BotRlace the ‘burden of = encapsulation on the
data and routines in a class are classified accordingfogrammer rather than being transparent, recur
to their role in the class as interface ort'roughoutthis critique.
implementation.

To put this another way: first you encapsulate?-9 Safety and Courtesy Concerns o
information and operations together in a class, themhis critique makes two general types of criticism
you decide what is visible, and what is hiddenabout ‘safety’ concerns and ‘courtesy’ concerns.
because it is implementation detail. Most often onlyThese themes recur throughout this critique, as C
the interface routines and data should appear @nd C++ have flaws that often compromise them.
design time, the implementation details appearingsafety concerns affect tlexternal perception of the
later. quality of the program; failure to meet them results

Encapsulation provides the means to separaté unfulfilled requirements, unsatisfied customers
the abstract interface of a class from itsand program failures. _ .
implementation: the interface is the visible surface Courtesy concerns affect theternal view of
of the capsule; the implementation is hidden in théhe quality of a program in the development and
capsule. The interface describes the essentidghaintenance process. Courtesy concerns are usually
characteristics of objects of the class which arestylistic and syntactic, whereas safety concerns are
visible to the exterior world. Like routines, data in asemantic. The two often go together. It is a courtesy
class can also be divided into characteristic interfacgoncern for an airline to keep its fleet clean and well
data which should be visible, and implementation

3rd Edition © lan Joyner 1996

C++2? 9

maintained, which is also very much a safetyand they have clashes of any kind, you can resolve
concern. this deployment issue without having to change the
Courtesy issues are even more important in thdbraries, which you might not be able to do anyway.
context of reusable software. Reusability depends on Programmers should not only be separated from
the clear communication of the purpose of a moduleimplementation concerns of other units, but
Courtesy is important to establish social separated from deployment concerns as well.
interactions, such as communication. Courtesy
implies inconvenience to the provider, but provides2 11 Concluding Remarks

convenience to others. Courtesy issues includg s yelevant to ask if grafting OO concepts onto a
choosing meaningful identifiers, consistent layout;,nyentional language realises the full benefits of
and typography, meaningful and non-redundanfyo, The following parable seems apt: “No one
commentary, etc. Courtesy issues are more than jusbws a patch of unshrunk cloth on to an old
a style consideration: a language design shoul@siment: if he does, the patch tears away fitpthe

directly support courtesy issues. A languageney from the old, and leaves a bigger hole. No one
however, cannot enforce courtesy issues, and it iSis new wine into old wineskins: if he does. the

often pointed out that poor, discourteous programsyine will burst the skins, and then wine and skins

can be written in any language. But this isr@@son gre hoth lost. New wine goes into fresh skindark
for being careless about the languages that we.5o

develop and choose for software development. We must abandon disorganised amebr-prone

Programmers fulfiling courtesy and safety , aciices, not adapt them to new contexts. How well
concerns provide a high quality service fulfilling can hybrid languages support the sophisticated
their obligations by providing benefits to other yoqirements of modern software production? In my
programmers who must read, reuse and maintain thgeriencebolt-on approaches to object-orientation
code; and by producing programs that delight the,gually end in disaster, with the new tearmgay
end-user. . from the old leaving a bigger hole.

The programming by contracmodel has been Surely a basic premise of object-oriented
advocated in the last few years as a model fogrogramming is to enable the development of
programming by which safety and courtesy concernggphisticated systems through the adoption of the
can be Jormally dogum%rr_ted._ Progfamrpmg b{fimplest techniques possible? Software development
contract documents the obligations of a client anGechnglogies and methodologies should not impede

the benefits to a provider in preconditions; and th ; ot
benefits to the client and obligations of the provide?the production of such sophisticated systems.

in postconditions [Meyer 88], [Kilov and Ross 94]. 3. C++ Specific Criticisms

2.10 Implementation and Deployment . .
Concem‘; pioy 3.1 Virtual Functions
Class implementors are concerned with thel his is the most complicated section in the critique,
implementation of the class. Clients of the clasue to C++'s complex mechanisms. Although this
only need to know as much information about theg/SSUe is central as polymorphism is a key concept of
class as is documented in the abstract interface. THeOP. feel free teskim if you want an overview,
implementation is otherwise hidden. without the details. ,

Another aspect that is just as important to shield N C++ the keywordvirtual enables the
programmers from is deployment concerns Possibility for a function to be polymorphic when it
Deployment is how a system is installed on the'S overridden (redefined) in one or more descendant

underlying technology. If deployment issues areclasses, but theirtual —~ keyword is unnecessary,
built into a program, then the program lacks@S any function which is redefined in a descendant
portability, and flexibility. One kind of deployment Class could be polymorphic. A compiler only needs
concern is how a system is mapped to the availablt9 9enerate dynamic dispatch for truly polymorphic
computing resources. For example, in a distributedOutines.) _ ,
system, this is what parts of the systare run in The problem in C++ is that if a parent class
which location. As things can move around adesigner does not foresee that a descendant class
distributed system, programmers should not buildnight want to redefine a function, then the
into their code location knowledge of other entities.descendant ~ class cannot make the function
Locations should be looked up in a directory. polymorphic. This is a most serious flaw in C++
Another deployment issue is how individual because it reduces the flexibility of software
units of a system are plugged together to form agomponents and therefore the ability to write
integrated whole. This is particularly important in reusable and extensible libraries. _
00, where several libraries can come from different C++ also allows functions to be overloaded, in
vendors, but their combination results in conflicts. AWhich case the correct function to call depends on
solution to this is some kind of language that bindghe arguments. The actual arguments in the function

the units. Thus if you purchase two OO libraries,call must match the formal arguments of one of the
overloaded functions. The difference between

3rd Edition © lan Joyner 1996

C++7?

10

overloaded functions and polymorphic (overridden)
functions is that with overloaded functions, the
correct function to call is determined at compile-
time; with polymorphic functions the correct
function to call is determined at run-time.

When a parent class is designed the programmer
can only guess that a descendant class might
override or overload a function. A descendant class
can overload a function at any time, but this is not
the case for the more important mechanism of
polymorphism, where the parent class programmer
must specify that the routine vsrtual in order
for the compiler to set up a dispatch entry for the
function in the class jump table. So the burden is on
the programmer for something which could be
automatically done by the compiler, and is done by
the compiler in other languages. However, this is a
relic from how C++ was originally implemented
with Unix tools, rather than specialised compiler
and linker support.

There are three options for overriding, corresponding
to ‘must not’, ‘can’, and ‘must’ be overridden:

1) Overriding a routine is prohibited;
descendant classes must use the routine as is.

2) A routine can be overridden. Descendant
classes can use the routine as provided, or provide
their own implementation as long as it conforms to
the original interface definition and accomplishes at
least as much.

3) A routine is abstract. No implementation is routines in class AB::nonvirt

class A

public:
void nonvirt ();
virtual void virt ();

}

class B : public A
{
public:
void nonvirt ();
void virt ();

}

A a;
B b;
A *ap = &b;
B *bp = &b;

bp->nonvirt (); // calls B::nonvirt as

// you would expect.
ap->nonvirt (); // calls Az:nonvirt,

/I even though this

/l object is of type B.
ap->virt (); // calls B::virt, the

/Il correct version of

/I the routine for B

// objects.

In this example, class B has extendedreplaced

is the routine

provided and each non-abstract descendent claggat should be called for objects of type B. It could

must provide its own implementation. be pqlnted out that C++ gives the clle_nt programmer
The base class designer must decide options fexibility to call either A:nonvirt. or

and 3. Descendant class designers mileside B::nonvirt . but this can be provided in a

option 2. A language should provide direct syntaxSimpler more direct way:A::nonvirt and
for these options. B::nonvirt should be given different names.

That way the programmer calls the correct routine
explicitly, not by an obscure and error prone trick of

Option 1 the language. The different name approach is as

C++ does notater for the prohibition of overriding

a routine in a descendant class. Eymivate
virtual routines can be overridden. [Sakkinen

follows:

92] points out that a descendant class can redefine a ¢lass B : public A

private virtual function even though it
cannot access the function in other ways.

Not using a virtual function is the closest, but in
that case the routine can be completely replaced.
This causes two problems. Firstly, a routine can be
unintentionally replaced in a descendent. The
redeclaration of a name within the same scope
should cause a name clash; the compiler should
report a ‘duplicate declaration’ syntax error as the
entities inherited from the parent are included in the

public:
void b_nonvirt ();
void virt ();
}
B b;
B *bp = &b
bp->nonvirt (); // calls A::nonvirt
bp->b_nonvirt (); // calls B::b_nonvirt

descendants namespace. Allowing two entities t&low the designer of class B has direct control over
have the same name within one scope causd®'s interface. The application requires that clients of
ambiguity and other problems. (See the section o8 can call both A:nonvirt , and
name overloading.) B::b_nonvirt , which B’s designer has explicitly

The following example illustrates the secondprovided for. This is good object-oriented design,

problem: which provides strongly defined interfaces. C++
allows client programmers to play tricks with the
class interfaces, external to the class, and B’s
3rd Edition © lan Joyner 1996

C++7?7? 11

designer cannot preveAt:nonvirt from being should be made as late as possible. This strategy
called. Objects of class B have their own specialisegprevents mistakes being built into the system at
nonvirt , but B’s designer does not have controlearly stages. By making early decisions, you are
over B’s interface to ensure that the correct versiomften stuck with assumptions that later prove to be
of nonvirt s called. incorrect; or the assumptions could be correct in one

C++ also does not protect class B from otherenvironment, but false in another, making software
changes in the system. Suppose we need to writekittle and non-reusable.

class C that need®nvirt to bevirtual . Then C++ requires the parent class to specify potential
nonvirt in A will be changed twirtual . But polymorphism by virtual (although an intermediate
this breaks the B::nonvirt trick. The class in the inheritance chain can introduce virtual).

requirement of class C to haveigual function This prejudges that a routine might feelefined in
forces a change in the base class, which affects allescendants. This can be a problem because routines
other descendants of the base class, instead of tiigat aren’t actually polymorphic are accessed via the
specific new requirement being localised to the newslightly less efficient virtual table technique instead
class. This is against to the reason for OOP havingf a straight procedure call. (This is never a large
loosely coupled classes, so that new requirementgyverhead but object-oriented programs tend to use
and modifications will have localised effects, andmore and smaller routines making routine
not require changes elsewhere which can potentiallinvocation a more significant overhead.) The policy
break other existing parts of the system. in C++ should be that routines that might be
Another problem is that statements shouldredefined should be declared virtual. What is worse
consistently have the same semantics. Thés that it says that non-virtual routines cannot be
polymorphic interpretation of a statement likeredefined, so the descendant class programmer has
a->f() is that the most suitable implementation of no control.
f() is invoked for the object referred to by ‘a’, Rumbaugh et al put their criticism of C++'s
whether the object is of typ® or a descendent &f virtual as follows: “C++ contains facilities for
In C++, however, the programmer must knowinheritance and run-time method resolution, but a
whether the functiof) is defined virtual or non- C++ data structure is not automatically object-
virtual in order to interpret exactly what>f() oriented. Method resolution and the ability to
means. Therefore, the statementf() iS not override an operation in a subclass are only
implementation independent and the principle ofavailable if the operation is declared virtual in the
implementation hiding is broken. A change in thesuperclass. Thus, the need to override a method
declaration off() changes the semantics of the must be anticipated and written into the origin class
invocation. Implementation independence meangefinition. Unfortunately, the writer of a class may
that a change in the implementation DOES NOTnot expect the need to define specialised subclasses
change the semantics, of executable statements. or may not know what operations will have to be
If a change in the declaration changes thgedefined by a subclass. This means that the
semantics, this should generate a compiler detectegtiperclass often must be modified when a subclass
error. The programmer should make the statemens defined and places a serious restriction on the
semantically consistent with the changedability to reuse library classes by creating sub-
declaration. This reflects the dynamic nature ofclasses, especially if the source code library is not
software development, where you'll see perpetuafvailable. (Of course, you could declare all

change in program text. operations as virtual, at a slight cost in memory and
For yet another case of the inconsistentfunction-calling overhead.)” [RBPEL91]
semantics of the statememt>f() vs constructors, Virtual, however, is the wrong mechanism for

consult section 10.9c, p 232 of the C++ ARM.the programmer to deal with. A compiler can detect
Neither Eiffel nor Java have these problems. Theipolymorphism, and generate the underlying virtual
mechanisms are clearer and simpler, and don't leadode, where and only where necessary. Having to
to the surprises of C++. In Java, everything isspecify virtual burdens the programmer with another
virtual , and to gain the effect where a methodbookkeeping task. This is the main reason why C++

must not be overridden, the method may be defineis a weak object-oriented language as the
with the qualifierfinal . programmer must constantly be concerned with low

Eiffel allows the programmer to specify a level details, which should be automatically handled
routine asfrozen, in which case the routine cannot by the compiler.

be redefined in descendants. Another problem in C++ is mistaken overriding.
The base class routine can be overridden
Option 2 unwittingly. The compiler should report an

erroneous name redefinition within the same name
space unless the descendant class programmer
Specifies that the routine redefinition is really
intended. The same name can be used, but the pro-
grammer must be conscious of this, and state this
£xplicitly, especially in environments where systems

Using the function as is or overriding it should be
left open for the programmers of descendant classe
In C++, the possibility must be enabled in these
class by specifyingvirtual . In object-oriented
design, the decisions you decide not to make are
important as the decisions you make. Decision

3rd Edition © lan Joyner 1996

C++7?7? 12

are assembled out of preexisting componentsmight be polymorphic in one or more derived
Unless the programmer explicitly overrides theclasses. If this requirement is not foreseen, or not
original name a syntax error should report that thencluded as an optimisation to avoid dynamically
name is a duplicate declaration. C+iowever, dispatched calls, the possibility is effectively closed,
adopted the original approach of Simula. Thisrather than being left open. As implemented in C++,
approach has been improved upon, and othevirtual coupled with the independent notion of
languages have adopted better, more explicibverloading make an error prone combination.
approaches, that avoid the error of mistaken Virtual is a difficult notion to grasp. The
redefinition. related concepts of polymorphism and dynamic
The solution is thawirtual should not be binding, redefinition, and overridingre easier to
specified in the parent. Where run-time polymorphicgrasp, being oriented towards the problem domain.
dynamic-binding is required, the child class shouldVirtual routines are an implementation mechanism
specifyoverride on the function. When compile- which instruct the compiler to set up entries in the
time static-binding is required, the child class shouldclass’s virtual table; where global analysis is not
specify overload on the function. This has the done by the compiler, leaving this burden to the
advantages: in the case of polymorphic functionsprogrammer. Polymorphism is the ‘what’, and
the compiler can check that the function signaturesirtual is the ‘how’. Smalltalk, Objective-C, Java,
conform; and in the case of overloaded functionsand Eiffel all use a different mechanism to
that the function signatures are different in some@mplement polymorphism.
respect. The second advantage would be that during Virtual is an example of where C++ obscures the
the maintenance phases of a program, the originaoncepts of OOP. The programmer has to come to
programmer’s intention is clear. As is, later terms with low level concepts, rather than the higher
programmers must guess if the original programmefevel object-oriented concepts. Virtual leaves
had made some kind of error in choosing a duplicateptimisation to the programmer. Other approaches
name, or whether overloading was intended. leave the optimisation of dynamic dispatch to the
In Java, there is nwirtual keyword; all compiler, which can remove 100% of cases where
methods are potentially polymorphic. Java useglynamic dispatch is not required. Interesting as
direct call instead of dynamic method lookup whenunderlying mechanisms might be for the theoretician
the method istatic , private orfinal . This or compiler implementor, the practitioner should not
means that there will be non-polymorphic routinesbe required to understand or use them to make sense
that must be called dynamically, but the dynamicof the higher level concepts. Having to use them in
nature of Java means further optimisation is nopractice is tedious and error-prone, and can prevent
possible. the adaptation of software to further advances in the
Eiffel and Object Pascal cater for this option asunderlying technology and execution mechanisms
the descendant class programmer must specify thggee concurrent programming), and reduces the
redefinition is intended. This has the extra benefiflexibility and reusability of the software.
that a later reader or maintainer of the class can
easily identify the routines that have been redefined3.2 Global Analysis
and that this definition is related to a definition in anjpg s 94] note that therare twoworld assumptions
ancestor class without having to refer to ancestoppout type safety. The first is thelosed-world
ClaSS deﬁni_tions. ThUS Option 2 iS exaCtly Whel’e itassumption, Where a" parts of the program are
should be, in descendant classes. . known at compilation time, and type checking is
Both Eiffel and Object Pascal optimise calls: done for the entire program. The second isofen-
they only generate dispatch table entries for dynamigyorld assumption, where type checking is done
binding where a routine is truly polymorphic. How jndependently for each module. The open-world
this is possible is covered in the section on globahssumption “is useful when developing and

analysis. prototyping. However, “When a finished product
has matured, it makes sense to adopt the closed-

Option 3 world assumption, since it enables more advanced

The pure virtual function caters for leaving a compilation techniques. Only when the entire

function abstract, that is a descendent class mugrrogram is known, is it possible to perform global
provide its implementation if it is to be instantiated. register allocation, flow analysis, or dead code
Any descendants that do not define the routine ardetection.” [P&S 94].

also abstract classes. This concept is correct, but see One of the major problems with C++ is the way

the section onpure virtual functions for analysis is divided between the compiler, which
criticism of the terminology and syntax. works under the open-world assumption, and the
Java also has abstract methods, and in Eiffel, thénker which is depended on to do very limited
implementation is marked aeferred. closed-world analysis. Closed-world oglobal
Summary analysis is essential for two reasons: firstly, to
The main problem wittvirtual is that it forces ensure that the assembled system is consistent; and

the base class designer to guess that a functio¥condly to remove burden from the programmer by
providing automatic optimisations.

3rd Edition © lan Joyner 1996

C++7?7? 13

The main burden that can be removed from th&.3 Type-safe linkage

programmer is that of a base class designer havinghe C++ ARM explains that type-safe linkage is not
to help the compiler build class virtual tables with 100% type safe. If it is not 100% type-safe, then it is
the virtual function modifier. As explained in the unsafe. Statistical analysis showed that in the
section on virtual functions, this adversedffects Challenger disaster, the probability against an
software flexibility. Virtual tables should not be individual O-ring failure was .997. But in a
built when a class is compiled: rather virtual tablescombination of 6 this small margin for failure
should only be built when the entire system ishecame significant, meaning the combination was
assembled. During the system assembly (linkeryery likely to fail. In software, we often find strange

phase, the compiler and linker can entirelycombinations cause failure. It is the primary
determine which functions need virtual table entriesobjective of OO to reduce these strange

Other burdens are that the programmaust use combinations.

operators to help the compiler with information in It is the subtle errors that cause the most
other modules it cannot see, and the maintenance Bfroblems, not the simple or obvious ones. Often
header files. _ ~ such errors remain undetected in the system until

In Eiffel and Object Pascal, global analysis of critical moments. The seriousness of this situation
the entire system is done to determine the trulyannot be underestimated. Many forms of transport,
polymorphic calls and accordingly construct thesuch as planes, and space programs depend on
virtual tables. In Eiffel this is done by the compiler. software to provide safety in their operation. The
In Object Pascal, Apple extended the linker tofinancial survival of organisations can also depend
perform global analysis. Such global analysis ison software. To accept such unsafe situations is at
difficult in-a C/Unix style environment, so in C++ it pest irresponsible.
was not included, leaving this burden to the C++ type safe linkage is a huge improvement
programmer. _ over C, where the linker will link a function f (p1,

In order to remove this burden from the) with parameters to any function f (), maybe one
programmer, global analysis should have been pukith no or different parameters. This results in
in the linker. However, as C++ was originally failure at run time. However, since C++ typafe
implemented as the Cfront preprocessor, necessafyhkage is a linker trick, it does not deal with all
changes to the linker weren’t undertaken. The earlynconsistencies like this.
implementations of C+were a patchwork, and this ~~ The C++ ARM summarises the situation as
has resulted in many holes. The design of C++ wagllows - “Handling all inconsistencies - thus
severely limited by its implementation technology, making a C++ implementation 100% type-safe -
rather than being guided by the principles of bettetyould require either linker support or a mechanism
language design, which _would require dedicatedan environment) allowing the compiler access to
compilers and linkers. That is, C++ hd®en jnformation from separate compilations.”
severely limited by its original experimental So why do C++ compilers (at least AT&T’s) not
implementation. _ provide for accessing information from separate

| am now convinced that such technology compilations? Why is there not a specialised linker
dependence has severely damaged C++ as an objefdr C++, that actually provides 100% tygafety?
oriented language and as a high level language. &++ |acks the global analysis of the previous
high level language removes the bookkeepingection. Building systems out of preexisting
burden from the programmer and places them in thglements is the common Unix style of software
compiler, which is the primary aim of high level production. This implements a form of reusability,
languages. Lack of global or closed-world analysisyyt not in the truly flexible and consistent manner of
is a major deficiency of C++, which leaves C++ object-oriented réusability.
substantially lacking when compared to languages " |, the future, Unix might be replaced by object-
such as Eiffel. As Eiffel insists osystem level g jented operating systems, that are indeed ‘open’ to
validity and therefore global analysis, it means thalyg tajlored to best suit the purpose at hand. By the
Eiffel implementations are more ambitious thanse of pipes and flags, Unix software elements can
C++ implementations, and this is a maj@ason pe reysed to provide functionality that approximates
why Eiffel implementations have been slower to\nat is desired. This approach is valid and works
appear. _ _ ith efficacy in some instances, like small in-house
_Java dynamically loads pieces of software anchpplications, or perhaps for research prototyping,
links them into a running system as required. Thugyt is unacceptable for widespread and expensive
static compile-time global analysis is not possible.software, or safety critical applications. In the last
as Java is designed to be dynamic. However, Jaugn years the advantages of integrated software have
has made the valid assumption that all methods angeen acknowledged. Classic Unix systems don’t
virtual. This is one reason why Java and Eiffel argyrovide those advantages. Integrated systems are
substantially different tools, although Eiffel has more ambitious, and place more demands on their
recently introducedDynamic Linking in Eiffel developers, but this is the sort of software now
(DLE). being demanded by end users. Systems that are

cobbled together are unacceptable. Today the

3rd Edition © lan Joyner 1996

C++?? 14

emphasis is orsoftware component technologies oriented programming, however, provides a variant
such as the public domaf@penDocor Microsoft's on this. Since the object is passed to the routine as a
OLE. hidden parameter (‘this’ in C++), an equivalent but
A further problem with linking is that different more restricted form is already implicitly included
compilation and linking systems should usein object-oriented concepts. A simple example such
different name encoding schemes. This problem igs the above would be expressed as:
related to type-safe linkage, but is covered in the
section on ‘reusability and compatibility’.
Java uses a different dynamic linking : ;
mechanism, which is well defined and does not use -max (i);
the Unix linker. Eiffel does not depend on the Unix -max(s);
or other platform linkers to detect such problemsyyt jmax (1) and r.max (j) result in compilation
The compiler must detect these problems. errors because the types of the arguments do not
Eiffel definessystem-level validity An Eiffel agree. By operator overloading of course, these can
compiler is therefore required to perform closed-pe better expressed, i max j and r max s, but min
world analysis, and not rely on linker tricks. You and max are peculiar functions that could accept two
can thus be sure that Eiffel programs are 100% typgr more parameters of the same type so they can be
safe. A disadvantage of Eiffel is that compilers haveapplied to a arbitrarily sized list. So the most general

a lot of work to do. (The common terminology is code in Eiffel style syntax will be something like:
‘slow’, but that is inaccurate.) This is overcome to

some extent by Eiffel's melting-ice technology, il: COMPARABLE_LISTINTEGER
where changes can be made to a system, and tested rl: COMPARABLE_LISTREAL
without the need to recompile every time.

To summarise the last two sections: global or
closed-world analysis is needed for two reasons:
consistency checks and optimisations. This removephe above examples show that the object-oriented
many burdens from the programmer, and its lack igaradigm, particularly with genericity can achieve

inti, j;
realr, s;

a great shortcoming of C++. function overloading, without the need for the
function overloading of C++. C++, however, does
3.4 Function Overloading make the notion more general. The advantage is that

C++ allows functions to be overloaded if the more than one parameter can overload a function,
arguments in the signature are different typeshot just the implicit current object parameter.
Overloaded functions are different to polymorphic ~ Another factor to consider is that overloading is
functions: for each invocation the correct function isresolved at compile time, but overriding at run-time,
selected at compile time; with polymorphic so it looks as if overloading has a performance
functions, the correct function is bound dynamicallyadvantage. However, global analysis can determine
at run-time. Polymorphism is achieved by redefiningwhether themin andmaxfunctions are at the end of
or overriding routines. Be careful not to confusethe inheritance line, and therefore can call them
overriding and overloading. Overloading arisesdirectly. That is, the compilezxamines the objects
when two or more functions share a name. These aand r, looks at their correspondingpax function,
disambiguated by the number and types of thesees that at that point no polymorphism is involved,
arguments. Overloading is different to multiple and so generates a direct calhtax By contrast, if
dispatching in CLOS, as multiple dispatching onthe object wasn which was defined to be a
argument types is done dynamically at run-time. ~ NUMBERwhich provided the abstrantax function
[Reade 89] points out the difference betweenfrom which REAL.max and INTEGER.maxwere
overloading and polymorphism. Overloading meanglerived, then the compiler would need to generate a
the use of the same name in the same context félynamically bound call, as could refer to either a
different entities with completely different INTEGERor aREAL
definitions and types. Polymorphism though has one If it is felt that C++'s scheme of having
definition, and all types are subtypes of a principleparameters of different types is useful, it should be
type. C. Strachey referred to polymorphism asrealised that object-oriented programming provides
parametric polymorphism and overloading as ad hothis in a more restricted and disciplined form. This
polymorphism. The qualification mechanism for is done by specifying that the parameter needs to

overloaded functions is the function signature. conform to a base class. Any parameter passed to
Overloading can be useful as these examplethe routine can only be a type of the base class, or a
show: subclass of the base class. For example:
max (int, int); A.f (B someB) {..};
max (real, real); class B ...;
This will ensure that the best max routine for the classD: publicB ...
types int and real will be invoked. Object- Aa;

3rd Edition © lan Joyner 1996

C++7?7? 15

D d;
a.f (d); max (other. like Curreni: like Current

The entity ‘d’ must conform to the class ‘B’, and the
compiler checks this.

The alternative to function overloading by
signature, is to require functions with different
signatures to have different names. Names should
the basis of distinction of entities. The compiler can
cross check that the parameters supplied are corre
for the given routine name. This also results in
better self-documented software. It is often difficult ,
to choose appropriate names for entities, but it i$-> The Nature of Inheritance

This says that the type of the argument to max must
conform to the type of the current class. Therefore
you get the same effect by redefinition without the
b%verloading concept. You also get type checking to
ee that the parameter conforms to the current
pject. Genericity is also a mechanism that
vercomes most of the need for overloading.

well worth the effort. Inheritance is a close relationship providing a
[Wiener 95] contributes a nice example on thefundamental OO way to assemble software
hazards of virtual functions with overloading: components, along with composition and genericity.
Objects that are instances of a class are also
class Parent instances of all ancestors of that class. For effective
{ object-oriented design the consistency of this
public: relationship should be preserved. Each redefinition
virtual int dolt (int v) in a subclass should be checked for consistency with

{ the original definition in an ancestor class. A
return v * v- subclass should preserve the requirements of an
} ’ ancestor class. Requirements that cannot be
, preserved indicate a design error and perhaps
g inheritance is not appropriate. Consistency due to
, . inheritance is fundamental to object-oriented design.

class Child : public Parent C++'s implementation of non-virtual overloading,
{ means that the compiler does not check for this
public: consistency. C++ does not provide this aspect of

int dolt (int v, object-oriented design.

int av = 20) Inheritance has been classified as ‘syntactic’

{ inheritance and ‘semantic’ inheritance. Saake et al
return v * av: describe these as follows: “Syntactic inheritance

} denotes inheritance of structure or method

. definitions and is therefore related to the reuse of

’ code (and to overriding of code for inherited
void main(methods). Semantic inheritance denotes inheritance
of object semantics, ie of objects themselves. This

{ kind of inheritance is known from semantic data
int1; _ models, where it is used to model one object that
Parent *p = new Child(); appears in several roles in an application.” [SJE 91].
i = p->dolt(3); Saake et al concentrate on the semantic form of
} inheritance. Behavioural or semantic inheritance

expresses the role of an object within a system.
Wegner, however, believes code inheritance to
of more practical value. He classifies the
difference between syntactic and semantic
inheritance as code and behaviour hierarchies [Weg
91] (p43). He suggests these are rarely compatible
. : with each other and are often negatively correlated.
Java also providemethod overloadingwhere : p
several methogs can have the same ngr%dlebm Wegner also poses the question of “How _shoulgl
different signatures : goglflcat_lorr: of inherited attr_lgutes be cogst(amet%l?

h o , . ode inheritance provides a asis for
tecr;l;1 qgulglffilu?htI(IJOSl,(I)SpehygleSnreul’)it(:itt())/ mitr:ﬁglrjifaengen%vx odularisation. Behavioural inheritance provides

e . . B ; odelling by the ‘is-a’ relationship. Botre useful

redefinition. Eiffel provides covariant signatures, iy their place. Both require consistency checks that

which means the signatures of descendant routine$mpinations due to inheritance actually make
do not have to match exactly, but they do have tQgnse.

conform, according to Eiffel's strong typing scheme. It seems that inheritance is most powerful in the

__ Eiffel uses covariance with anchored types togmst restrictive form of a semantics preserving
implement examples such as max. The Vintage 9

Kernel Library specifies max as:

What is the value ini after execution of this
program? One might expect 60, but it is 9 as theD

signature ofdolt in Child does not match the e
signature inParent . It therefore does not override
the Parent dolt , merely overloadst, and the

default is unusable.

3rd Edition © lan Joyner 1996

C++7?7? 16

relationship; a subclass should preserve théhat no ambiguity arises, but what happens if the
assumptions of ancestor classes. constants have different values?

Meyer [Meyer 96a and 96b] has also produced a Since Java does not have multiple inheritance,
classification of inheritance technigques. In hisyou cannot danixinsas you can in C++ and Eiffel.
taxonomyhe identifies 12 uses of inheritance, all of Mixin is the ability to inherit sets of non-abstract
which he finds useful. This analysis also gives aoutines from different classes to build a new
good idea of when inheritance can be used, andomplex class. For example, you might want to
when it should not. import utility routines from a number of different

Software components are like jig-saw pieces.sources. However, you can achieve the seffext
When assembling a jig-saw the shape of the pieces$sing composition instead of inheritance, so this is
must fit, but more importantly, the resulting picture probably not a great minus against Java.
must make sense. Assembling software components Eiffel solves multiple inheritance problems
is more difficult. A jig-saw is reassembling a picture without having to introduce a separate, interface
that was complete before. Assembling softwaremechanism.
components is building a picture that has never been Some feel that single inheritance is elegant by
seen before. What is worse, is that often the jig-savitself, but that multiple inheritance is not. This is
pieces are made by different programmers, so wheone particular standpoint.
the whole system is assembled, the pictures must fit. BETA [Madsen 93] falls into the ‘multiple

Inheritance in C++ is like a jig-sawhere the inheritance is inelegant’ category: “Beta does not
pieces fit together, but the compiler has no way ohave multiple inheritance, due to the lack of a
checking that the resultant picture makes sense. lprofound theoretical understanding, and also
other words C++ has provided the syntax for classeBecause the current proposals seem technically very
and inheritance but not the semantics. Reusable C+gomplicated.” They cite Flavors as a language that
libraries have been slow to appear, which suggestsiixes classes together, where according to Madsen,
that C++ might not support reusability as well asthe order of inheritance matters, that is inheriting
possible. By contrast Java, Eiffel and Object PascalA, B) is different from inheriting (B, A).
are packaged with libraries. Object Pascal went very Ada 95 is also a language that avoids multiple
much in hand with the MacApp application inheritance. Ada 95 supports single inheritance as
framework. Java has been released coupled with thietagged type extension
Java API, a comprehensive library. Eiffel is also Others feel that multiple inheritance can provide
integrated with an extremely comprehensive library.ejegant solutions to particular modelling problems
which is even larger than Java’s. In fact the concepio s worth the effort. Although, the above list of
of the library preceded Eiffel as a project to questions arising from multiple inheritance is not
reclassify and produce a taxonomy of all commoncomplete, it shows that the problems with multiple
structures used in computer science. [Meyer 94]. jnheritance can be systematically identified, and

once the problems are recognised, they can be
3.6 Multiple Inheritance solved elegantly. While [Sakkinen 92] goes into the
Both Eiffel and C++ provide multiple inheritance. problems of multiple inheritance in great depth, he
Java does not, claiming it results in many problemsdefends it.
Instead Java providdasterfaces which are similar Eiffel has taken the approach that multiple
to Objective C’s protocols. Sun clainisterfaces inheritance poses some interesting and challenging
provide all the desirable features of multiple problems, but rises to the challenge, and solves them
inheritance. elegantly. Nor does the order of inheritance matter.

Sun’s claim that multiple inheritance results in All resolutions that the programmer must specify are
problems is true particularly in the way that C++ hasgiven in the inheritance clause of a class. This
implemented multiple inheritance. What seems likeincludesrenamingto ensure that multiple features
a simple generalisation of inheriting from multiple inherited with the same name end up as multiple
classes instead of just one, turns out to be norfeatures with unambiguous namesdefining new
trivial. For example, what should be the policy if export policies for inherited featuresjndefining
you inherit an item of the same name from twoand disambiguating wittselect In all cases, the
classes? Are they compatible? If so should they bection taken by the compiler, whether using fork or
merged into a single entity? If not, how do youjoin semantics is made clear, and the programmer
disambiguate them? And so the list goes on. has complete control. o _

Java’s interface mechanism implements multiple ~ C++ has a different disambiguation mechanism
inheritance, with one important difference: theto Eiffel. In Eiffel, one or both of the features must
inherited interfaces must be abstract. This doe®e given a different name in the renames clause. In
obviate the need to choose between differen€++ the members must be disambiguated using the
implementations, as with interfaces there are n@cope resolution operator.’. The advantage of the
implementations. Java allows the declaration ofEiffel approach is that the ambiguity is dealt with
constant fields in an interface. Where these argleclaratively in one place. Eiffel’s inheritance clause

multiply inherited, they merge to form one entity sois considerably more complex than C++'s, but the
code is considerably simpler, more robust and

3rd Edition © lan Joyner 1996

C++7?7? 17

flexible, which is the advantage of the declarativethe inheritance of A must be specifiedvasual
approach as against the operator approach. In C+#) both B and C. C++ virtual classes raise two
you must use the scope resolution operator in thguestions. Firstly, what happens if A declared
code, every time you run into an ambiguity problemvirtual in only one of B or C? Secondly, what if
between two or more members. This clutters thenother class E wants to inherit multiple copies of A
code, and makes it less malleable, as if anythingia B and C? In C++, the virtual class decision must
changes that affects the ambiguity, you potentiallypbe made early, reducing the flexibility that might be
have to change the code everywhere, where theequired in the assembly of derived classes. In a
ambiguity occurs. shared software environment different vendors
According to [Stroustrup 94] section 12.8, the might supply classes B and C. It should be left to
ANSI committee considered renaming, but thethe implementor of class D or E, exactly how to
suggestion was blocked by one member whagesolve this problem. And this is the simplease:
insisted that the rest of the committee go away anwhat if A is inherited via more than two paths, with
think about it for two weeks. The example in sectionmore than two levels of inheritance? Flexibility is
12.8 shows how the effect of renaming is achievedkey to reusable software. You cannot envisage when
without explicit renaming. The problem is, if it took designing a base class all the possible uses in
this group of experts two weeks to work this out,derived classes, and attempting to do so
what chance is there for the rest of us? considerably complicates design.
The scope resolution operator is used for more As Java has no multiple inheritance, there is no
than just multiple inheritance disambiguation. Sinceproblem to be solved here.
ambiguities could be avoided by cleaner language The Eiffel mechanism allows two classes D and
design, the scope resolution operator is an uglE inheriting multiple copies of A to inherit A in the
complication. appropriate way independently. You do not have to
The question of whether the order of declarationchoose in intermediate classes whether A is virtual,
of multiple parents matters in C++ is complex. Itie., inherited as a single copy, or not. The
does affect the order in which constructors argnheritance is more flexible and done on a feature by
called, and can cause problems if the programmelieature basis, and each feature from A will either
does really want to get low level. However, thisfork, in which it becomes two new features; or join,
would be considered poor programming practice. in which case there is only one resultant feature. The
Another difference betweeG++ and Eiffel is programmer of each descendant class can decide

direct repeated inheritance. Eiffel allows: whether it is appropriate to fork or join eaelature
independently of the other descendants, or any
class B inherit A, A end policy in A.
but The fine grained approach of Eiffel is a
significant benefit over C++. While théiffel
class B : public A, public A{ }; approach is more sophisticated and flexible, the
‘o : syntax is far simpler, and the concepts are easier to
is disallowed in C++. understand.

3.7 Virtual Classes

The meaning of the keywordirtual is quite
different when used in the context of a class to th
context of a function: with a class it means tha
multiply inherited features are merged; with a
function it means polymorphism. Virtual class does
not mean that members in the class are aladdition t0 C4+. Some see genericity asnare
polymorphic. In fact the two uses of virtual actually 4o mental ~software assem%l meghanism than
mean quite the opposite of each other: virtual y

functions mean that there could be more than onin€ritance, and certainly less problematic. Ada is
function; virtual classes mean that if the class i€ €xample where genericity is more fundamental

P - : han inheritance. In C++'s Standard Template
multiply inherited, you only get a single copy. . o)

CFH saves or?/ kengr?js by o%erloa%)i/ng one_I_|brary (STL), genericity is used almost exclusively
keyword in several contexts, even though the use stead of inheritance. Meyer [Meyer 88] states that
have different or even opposite meanings. Static i enericity is an essential part of an object-oriented
another case, which is used in three differen{dnJu29¢- [P&S 94] see genericity as a mechanism
contexts. The keyword count metric does not sho hat achieves type substitution, which you cannot do
that C++ is a small non-complex language: les ith inheritance. Thus genericity is essential as a

keywords have made C++ more compiex and-omplementary concepttoinheritance. =~
confusing. Genericity allows you to build collections of

So what do virtual classes do? If class Ditems, where the type of items is known, and items

multiply inherits class A via classes B and C, then jfcan be retrieved from the collection as that type,

- : . without type casting. In a language without
D wants to inherit only a single shared copy of A’genericity you code BIST class, and objects of any

3.8 Templates

demplates are C++'s mechanism to implement the
tfconcept ofgenericity Templates are much the same
as parameterised classesvhich is the mechanism
Eiffel uses for genericity. Genericity is a major
feature of Ada and Algol 68 and is a valuable

3rd Edition © lan Joyner 1996

C++7?7? 18

type can be added to lists. If the list is only for List<List<int> > a;
shopping items, it makes semantic nonsense to ad
person to the list. Without genericity there is no
static type check to ensure you can't add people t
your shopping list. You might be able to catch this
occurrence at run time, but the advantage of stati

typing is lost. This | ;
4 .- T is is not the meaning of the C++ term template,
Without genericity you could code specific lists which refers to genericity.

for shopping items, people, and every other item Another more serious problem is that there is no

you could put in lists. The basic functionality of all .

lists is the same, but you must duplicate effort, an(fg?asgg'tgtr sotr(]) EES téynqefatéhsatth%ag 082 . g?eadt e?r? I?t%

manually replicate code. That is you must dupIicateOIaSS S T assp O e Al (e Da o?‘ rige

effort if you are going to preserve semantics and b { umpti u ype o
eneric parameter. Thus the class coder cannot issue

type safe. . LT
. a function call from within the template class to the
Languages such as Eiffel and C++ allow you togeneric type without a type cast.

declare aLIST of shopping itemsso the compiler . —_— o

can ensure that you cannot add people to such a i ségtitgr?sAEr'\]A Sv?ﬁ’ astort] the'z t%%'r?' rﬁgteccr:fylgg tno o

You can also easily add lists that contain any othe \ yp P
rgument gives the programmer the maximum

type Orf entity, just by a ?Iimple dl_eclaratior?. Ycl)ou d-oflexibility. The cost is that errors - such as
Puor;[ctior?gl?ty (t)(l2 the list for e\sgfylct?/tpee otf ‘element ﬁg%nrégrrﬁq ;?is%%rtoogj%%(t)srsof \;?/iI}yr?gt mat e%%ergl %Oet
you are going to put in it. p P g

- s detected until link time.”
mec-:rhhalliigr?]S :ﬁg? ;[/%l? ggilqlcsonc}embtlggt’ctlfhini]sp l?ct)? This shows the need for at least an optional type
: constraint on the actual types passed to the template.

every type based on a template definition theZ: . . :
compiler might replicate the code. Seeing that th%éfgzltrgﬁlsegljgjcehngrlci)(t:li?yrllgr c(:ac))(r;sr;[]ragts in the form of

purpose of templates is to save the programmer fro
manual replication, this does not seem like a bad

thing. A good implementation of C++ will avoid classSORTED_LISTT -> COMPARABLE
‘code bloat’ where possible. In fact it is allowed for

in the C++ ARM: “This can cause the generation of feature

unnecessarily many function definitions. A good insert(item T) is ...end
implementation might take advantage of the end

similarity of such functions to suppress spurious

replications.” o ensures that the type of the item to insert has
Thus | don’t criticise C++ as others have doneappropriate comparison operators from type
on the basis of ‘code bloat'. The whole concept ofCOMPARABLEIn order to insert item in the right
generics and templates is simple and yet powerfulplace in the SORTED_LIST Note that multiple
and allows the generation of quite sophisticatednheritance is important, so that any type eligible for
programs from simple specifications. If you areinsertion in the SORTED_LIST includes the
overly worried about ‘code bloat’, simply do not use comparison operators.
genericity. As [Stroustrup 94] points out "What you java, alas has no genericity mechanism. The
don't use, you don't pay for." This is a good java recommendation is to use type casts when ever
principle for compiler implementors. Many people retrieving an object from a container class [Flan 96].
will use genericity though, as few will find it [P&S 94] have a good chapter on genericity.
practical to code a different kind @iST for every Genericity is the ability to build a derived class from
possible list element. . _a base class by type substitution. Compare this with
While the concept of genericity and templates isinheritance, where you can add class members and
correct, there are several problems with templates ifedefine inherited ~routines. They criticise the
C++. The syntax leaves a lot to be desiiReaders parameterised class/template mechanisms of Eiffel
can Of COUI’SG_ fOI’m thell’ own Op.|n|0ns. Of that nd C++ for three reasons: ﬁrstly, tham two
However, again C++ masks what is a simple andginds of class, generic and non-generic; secondly,
powerful mechanism with complicated syntax, Soyoy can apply generic instantiation only once; and
people will baulk at using ifThere are examples of thirdly, a generic instance is not a subclass.
where the quirky syntax is a trap for young players gETA uses a different mechanisnyirtual
[Stroustrup 94]. For example, declaring a list of apinding which is more flexible than the Eiffel/C++
list of integers would easily be notated: parameterised classes, but [P&S 94] shows that you
List<List<int>> a: can produce derived classes that are not statically
_ , _ type correct.
However, this results in a syntax error as >>"is the” " A sjgnificant problem with the parameterised

rigr); S>hift or output operator. You must notate thisclass mechanism is that the base class designer must
as > >"

rther, “template” is confusing terminology, as the
gonceptual view is that a class is a template for a set
f objects. “Object-oriented languages allow one to

escribe a template, if you will, for an entire set of
bjects. Such a template is called a class.” [Ege 96].

3rd Edition © lan Joyner 1996

C++7?7? 19

think about it in advance, and then only the typedundamental in freeing programmers from low level
nominated in the parameter list can be substitutednanipulation of addresses. Naming is the basis for
This reduces flexibility. [P&S 94] suggests a differentiating between different entities in a
genericity mechanism known a$ass substitution software module. In programming, when we use the
which make inheritance and genericity orthogonalterm name, we usually mean identifier. To be
rather than independent concepts. Class substitutiqorecise, a name is a label which can refer to more
has the advantage that a base class designer does ti@n one entity, in which case the name is
need to design genericity into the base class, angmbiguous. An identifier is a name that
subclass can perform class substitution; and anynambiguously identifies an entity. (To be
type in the base class may be substituted, not onlgnathematical, a name is a relation, an identifier is a
those given in the parametéest. Furthermore, class function.) Where a name is ambiguous, it needs
substitution can be applied repeatedly, whereagualification to form an identifier to the entity. For
instantiation of a parameterised class can be donexample, there could be two people named John

only once. Doe; to disambiguate the reference, you would
An example of class substitution in Eiffel like qualify each as John Doef Washingtonor John
syntax is: Doeof New York
Name overloading allows the same name to refer
classA to two or more different entities. The problem with
feature an ambiguous name is whether the resultant
Xy T ambiguity is useful, and how to resolie as

ambiguity weakens the usefulness of names to
distinguish entities.

ass%rc])ls Name overloading is useful for two purposes.
o Firstly, it allows programmers to work on two or

X.=y more modules without concern about name clashes.

end The ambiguity can be tolerated as within the context

end of each module the name unambiguously refers to a
unique entity; the name is qualified by its

This can be modified using class substitution: surrounding environment. Secondly, name
overloading provides polymorphism, where the

A[T <-INTEGER same name applied to different types refers to
A [T <- ANIMAL] different implementations for those types.

Polymorphism allows one word to describe ‘what’ is

: P ; omputed. Different classes might have different
You can also use constrained genericity with exac“implementations of ‘how’ a computation is done.

the same syntax that Eiffel now has, as in th : o : - /
SORTED Ll)éTexample except that semantically 0" example ‘draw’ is an operation that is applicable
the [T —>_COMPARABL1I35 only specifies that any to all different shapes,, even though circles and
class substituingT must be a subclass of Sduares, etc., are ‘drawn’ differently. .

COMPARABLE [T -> COMPARABLE is not a These two uses of name overloading provide a
parameter list though. You can build new types ouPowerful concept. The use of the same name in the

of sorted list: same context must be resolved. Errors can result
' from ambiguity, in which case the programmer must
SORTED_LISTT <- INTEGER differentiate between entities with some form of

gualification of the name. A common way to do this
is to introduce extra distinguishing names. For

)] -) _example, in a group of people where two or more
Java might be in the best position to implement thishare the same first name, they can be distinguished
flexible class substitution mechanism for genericity,py their surname. Similarly a unique first name will
as it has not implemented genericity yet. Eiffel anddistinguish the members of a family with a common
C++ could extend their mechanisms, but thiegre syrname.

would be two ways of doing the same thing, except Thjs js analogous to classes, where each class in
the class substitution mechanism is more flexibley system is given a unique name. Each member
than parameterised classes. | do not know of anyithin a class is also given a unique naméhere

languages that implement class substitution as ye[]i,,\é0 objects with members of the same name are
and other consequences must be thought throughsed within the same context, the object name can
before adding it to languages, so don't dispose Ofyalify the members. In this case the dot operator

SORTED_LISTT <- STRING

your Eiffel and C++ compilers just yet! acts as a qualifier, for example, a.mem and b.mem.
_ Locals in a recursive environment are an
3.9 Name Overloading example of ambiguity which is resolved at run-time.

Clear names are fundamental in producing selfA single local identifier in the static text of a
documenting software helping to produce maintainfunction can refer to many entities. When the
able and reusable software components. Names afenction is called recursively, the name is qualified

3rd Edition © lan Joyner 1996

C++7?7? 20

by the call history of the function to give the exactcomponents, which quickly leads to an
memory cell where it resides. exponentiation in the number of tests required.
Many block structured languages provide In Eiffel, overloading is recognised as being
overloading by scoping. Scoping allows the sameproblematic, so even this form is disallowed: routine
name to be used in different contexts without clastarguments and local variables cannot overload
or confusion, but nested blocks have a subtlanames of class features.
problem. Names in an outer block are in scope in C++ has another analogous form of hiding: a
inner blocks, but many languages allow a name t@on-virtual function in a derived class hides a
be overloaded in an inner block, creating a ‘scopdunction with the same signature in an ancestor
hole’ hiding the outer entity, preventing it from class. This hiding is explained in section 13.1 of the
being accessed. The name in the inner block has no++ ARM. This is confusing ancderror prone.
relationship with the entity of the same name in the_earning all these ins and outs of the language is
outer block. Textually nested blocks ‘inherit' extremely burdensome to the programmer, often
named entities from outer blocks. Inheritancebeing learnt only after falling into a trap. Java does
accomplishes this in object-oriented languagespot have this problem as everything is virtual, so a
eliminates the need to textually nest entities, andunction with the same signature will overriggher
accomplishes textual loose coupling. Nesting resultshan hide the ancestor function.
in tightly coupled text. In order to overcome the effects of hiding, you
Contrary to most languages, a name should natan use the scope resolution operator “::’. The scope
be overloaded while it is in scope. The following resolution operator of C++ provides an interesting

example illustrates why: twist to the above argument. Consider the following
(example from p16 of the ARM:
int i; intg = 99;
{
inti; // hide the outer i. int f(int g) // hide the outer g.
i = 13; // assign to the inner i. {
/I Can't get to the outer i here. returng?g::g;
/I It is in scope, but hidden. /l return argument if it
} Il is nonzero otherwise
} /I return global g

}
Now delete the inner declaration:
(This would be simpler if the compiler reported an
error on the redefinition of in the parameter list:

int i the programmer would simply change the name of

{. .) one of the entities with no need for the scope
i=13; /I Syntactlcally Va'ld, resolution Operator:
/I but not the intention.
} intg = 99;

}
The inner overloaded declaration is removed, and I{m flint b
references to that name do not result in syetasrs
due to the same name being in the outer
environment. The inner instruction now mistakenly }
changes the value of the outer entity. A compiler . . , .
cannot detect this situation unless the languag/ith the introduction of namespaces in 1993, the
definition forbids nested redeclarations. E.W. :: ' Operator now resolves names in namespaces.
Dijkstra uses similar reasoning in ‘An essay on theOr €xample A:x , means the entity x in
Notion: “The Scope of Variables™ in “A Discipline namespace A. Aboveg means the entity in the
of Programming,” [Dijkstra 76]. global namespace. Since declarations in a
The above example demonstrates how nesting@mespace are realljust members of a fixed
results in less maintainable programs due to tighpt'ucture, it would have been cleaner to just use the
coupling between the inner and outer blocksaccess operator “’, and avoid the ugly scope
making each sensitive to changes in the other. ThEESOlution operator. : .
advantage of keeping components decoupled and Java does not provide a scope resolution
separate is that a programmer can confidently mak@Perator. However, there are no globals, so the only
other components. Testing can be limited to théneémbers, and method parameters or locals.

changed component, rather than a combination of Java does have a similar problem though. The
problem is with shadowed variables With

returnh ? h:g;

3rd Edition © lan Joyner 1996

C++7?

21

shadowed variables, a variable namedin a You should decouple depending on the modelling
superclass can be hidden from the current class yequirements:

another variable named You can still access both
variables by the use dtiis.x and super.x which are

the equivalents of scope resolution. The ambiguity
problem would have been better avoided altogether
by reporting a duplicate identifier.

Eiffel also has no globals, so a construct such as
namespaces is not needed. Eiffel does not allow
name clashes: you must either change the name of
one of the entities, or when combining classes with

inherit A

w |

inheritance, use eename clause. With this scheme

there is no need for scope resolution or ‘super +— or
operators, making the imperative part of the —

language simpler, by using declarative technigues.

3.10 Nested Classes

O
ol]

inherit A a A

Simula provided textually nested classes similar to -
nested procedures in ALGOL. Textual (syntactic)
nesting should not be confused with semantic

nesting, nor static modelling with dynamic run-time
nesting. Modelling is done in the semantic domain

’

and should be divorced from syntax; you do not |7 7
need textually nested classes to have nested objects. inherit A a A
Nested classes are contrary to good object-oriented ’

design, and the free spirit of object-oriented
decomposition, where classes should be loosel
coupled, to support software reusability.

Instead of tightly coupled environments:

A

Yy

is-a component-of/
related-to

This is a more flexible arrangement, both in terms of
modelling and program maintenance.

There are two problems with nested classes:
firstly, the inner class is dependent on the outer
class, and so is not reusable, contrary to good
object-oriented design, where classes are
independent; secondly, the inner class has access to
the implementation of the outer class, so
implementation hiding is violated. Where access to
a class’s implementation is needed, you should use
inheritance, but note this models the is-a
relationship, not the component-of relationship that
nested classes do.

Semantic nesting is achieved independently of
textual nesting. In object-oriented design all objects
should interact only via well defined interfaces, but
objects of a class that is textually nested in another
class have access to the outer object without the
benefit of a clean interface. C avoided the
complexity of nested functions, but C++ has chosen
to implement this complexity for classes, which is
of less use than nested functions, and is contrary to
good object-oriented design.

Pascal and ALGOL programmers sometimes use
nested procedures in order to group things together,
but nested procedures are not necessary, and if you
want to use a nested procedure in another
environment, you have to dig it out of where it is
and make it global, which is a maintenance problem.
If the procedure uses locals from the outer
environment, you have more problems. You will

3rd Edition

© lan Joyner 1996

C++7?7? 22

have to change these to parameters, which is different kinds of composition in the problem
cleaner approach anyway, and you will probablydomain.

have to unindent all the text by one or more levels.

Textually nested classes have worse problems. 3.11 Global Environments

Semantically, OOP achieves nesting in twoThere are two important properties of globals:
ways: by inheritance and object-orientedfirstly, a global is visible to the whole program,
composition. Modelling nesting is achieved withoutwhich is a compile-time view; and secondly, a
tight textual coupling. Consider a car. In treal global is active for the entire execution of a
world the engine is embedded in the car, but irprogram, which is a run-time property. The first
object-oriented modelling_embedding is modelledproperty is not desirable in the object-oriented
without textual nesting. Botltar and engine are paradigm, as will be explained below. The second
separate classes: the car contains a reference to gfbperty can easily be provided. The life of any
engine object. This allows the vehicle and enginesntity is the life of the enclosing object, so to have
hierarchy to be independently defined. Engine isentities that are active for the whole execution of the
derived independently into petrol, diesel, andprogram, you create some objects when the program
electric engines. This is simpler, cleaner and morgtarts, which don't get deallocated until the program
flexible than having to define a petrol engine car, acompletes.
diesel engine car, etc., which you have to do if you The global environment provides a special case
textually nest the engine class in the car. In the realf nested classes. When classes are nested in a
world you can change the cars engine, so it does N@lobal environment, dependencies can arise that
even make sense to tightly couple the car and thfyake the classes difficult to decouple from the
engine. . original program, and therefore not reusable, by

In C++, not onlycan classes be nested within themselves. You might be forced to relocate a large
other classes, but also within functions, therebyamount of the global environment as well. There are
tightly coupling a class to a function. This confusesalso problems with the related mechanisms of
class definition with object declaration. The class isheader files and namespaces. Even if a class is not
the fundamental structure in object-orientedintended for use in another context, it will benefit
programming and nothing has existence separatgom the discipline of object-oriented design. Each
from a class (including globals). class is designed independently of the surrounding

Neither Java, nor Eiffel provide nested classesenvironment, and relationships and dependencies
and yet everything you can model@*+, you can between classes are explicitly stated.
also model in these languages, without the problems |n C++ functions can change the global
associated with textual nesting. environment, beyond the object in which they are
~ Chapter 18 of [Madsen 93] provides very goodencapsulated. Such changes are side-effects that
insights about modelling; classification and limit the opportunity to produce loosely-coupled
composition are the means to organise complexity imbjects, which is essential to enable reusable
terms of hierarchies. [Madsen 93] enumerates fougoftware. This is a drawback of both global and
kinds of composition: whole-part composition, nested environmeni&.good OO language will only
reference composition, localisation, and conceppermit routines in an object to change its state.
composition. They say that these are not altogether Removing the global environment is trivial:
independent as one composition relationship couldimply encapsulate it in an object or set of objects.
fall into two or more categories. Whole-part The previously global entities are then subject to the
composition models the car example above, whergiscipline of object-oriented design; globals
the engine is part of the car. Reference compositiogircumvent OOD. Objects can also provide a clean
is illustrated where a person makes a hote|nterface to the external environment, or operating
reservation. The person is not a part of thesystem, without loss of generality, for a negligible
reservation, but the reservation references thgerformance penalty. Classes are independent of the
person. [Madsen 93] can be consulted for definitionsurrounding environment, and the project for which
of localisation and concept composition. they were first developed, and are more easily

As examples can be given of composition thatadaptable to new environments and projects.
can be modelled in terms of more than one of the java has removed globals from the language
categories of composition, it is better not to provideajtogether. Eiffel is another example of a language
direct modelling of this in the programming where there are no globalBoth these languages
language; your opinion might later change. BETAshow that globals are not needed for, awn

does have mechanisms for modelling the whole-pargetrimental to the development of large computer
composition as embedded objects, and reference agstems.

references. However, this is quite different to textual * 5 concurrent and distributed environments you

nesting. There is no real need to support thesgre petter off without globals. In a distributed

different categories in your programming language enyironment, the global state of the system may be

It is more important for the analyst to be cogniscenimpossible to determine. In order to develop
Similarly with concurrent environments, problems

3rd Edition © lan Joyner 1996

C++7?7? 23

arise when two or more process threads accedgping, and makes inheritance a much more
shared resources at the same time. Shared resourgesverful concept.

should only be accessed via an object which

manages the resource, and prevents contention fgr13 Type Casts

g;gbﬂ;ared resource. Such a resource should not beégy niactically and semantically, casts are one of the

ugliest features of C and C++.” not my words or any
_ , other detractor of C++, but from [Stroustrup 94].
3.12 Polymorphism and Inheritance Mathematical functions map values from one
Inheritance provides a textually decoupled form oftype to values of another type. For example
subblock. The scope of a name is the class in whiclrithmetic multiplication maps the type ‘pair of
it occurs. If a name occurs twice in a class, it is antegers’ to an integer:

syntax error. Inheritance introduces some questions

over and above this simple consideration of scope. ,,.: - INTEGERx INTEGER-> INTEGER

Should a hame declared in a base class be in scope '

in a derived class? There are three choices:
1) Names are in scope only in the immediatég‘ language type system enables a programmer to

: pecify which mappings make sense. Like functions,
Feuoe NaMBS becauss there i no potontial or 4 cladipe, Casts map Values of one type onto values of
P other type, but thisorces one type to another,

This precludes software reusability. Since subclass gainst the defined mappings, undermining the

will not inherit definitions of implementation, case 1 |3, e of the type system. A strongly typed language
Is not Wﬁrth considering. . belass. but thiith @ well defined type system does not need casts:
2) The name is in scope in a subclass, but thg| | yyne to type mapping is achieved with functions

name can be overloaded without restriction. This ispat’ are defined within the type system; no casts
closest to the overloading of names in nested blocks, tside the type system are needed. ’

This is C++’s approach. Two problems arise: firstly, Type casts have been useful in computer sys-
the name can be reused so the inherited entity ig 5" Sometimes it is required to map one type onto
unintentionally hidden; secondly, because the newi,,iner “\where theit representation of the value

entity is not assumed to have any relationship to the, ~-io < the same. Type casts are a trick to optimise

original, its signature cannot be typbecked with : - ,
theg original gentity anne cong?stency ChanysCertain operations, but provide no useful concept
between the superclass and subclass are nbgat generalhfunctlons don't provide. In _manyl
possible, the tight relationship that inher_itancedé}?nue%gegb tpr%g%rr)nemesryss'[?ergl Itshatn c;;pgorgglssttsen;r)é
gnphes, which & fu?damgnta_ll_ht_o object—lon%ntetd necessary, or the language would be restrictive.
esign, is not enforced. is can lead to ’ . o
inconsistencies between the abstract definition of 'tA‘T) example hoften used 'g programm_ll_ng Is to
base class, and the implementation of a derive ast between characters and integers. Type casts
! etween integers and characters are easily expressed

class. If the derived class does not conform to th ; :
base class in this way, it should be questioned wh s functions using abstract data types (ADTSs).

the derived class is inheriting from the base class in Typg

the first place. (See the nature of inheritance.) CHARACTER
3) The name is in scope in the subclass, but can

only be overridden in a disciplined way to provide a FUNCTIONS

specialisation of the original. Other uses of the name ord: CHARACTER> INTEGER

are reported as duplicate name errors. This form of /I convert input character to integer
overriding in a subclass ensures the entity referred to char INTEGER/-> CHARACTER

in the subclass is closely related to the entity in the /I convert input integer to character

ancestor class. This helps ensure design consistency.

The relationship of name scope is not symmetric. PRECONDITION

Names in a subclass are not in scope in a superclass /I checki is in range

(although this is not the case in dynamically typed pre char (i: INTEGER =

languages such as Smalltalk). In order to provide the 0 <=i andi <= ord (last charactey

consistent customisation of reusable software _ ,
components, the same name should only be uséde notation ‘->" means every character will map to
when explicitly redefining the original entity. The an integer. The partial function notation /->" means
programmer of the descendant class should indicatéat not every integer will map to a character, and a
that this is not a syntax error due to a duplicatéPrecondition, given in thepre char statement,
name, but that redefinition is intended, (thespecifies the subset of integers that maps to
suggested keywordverride has already been characters. O_bject-orlented syntax provides this
covered in the virtual section.) This choice ensuregonsistently with member functions on a class:

that the resultant class is logically constructed. This .. \\TEGER

might seem restrictive, but is analogous to strong oh: CHARACTER

3rd Edition © lan Joyner 1996

C++?? 24

i :=ch.ord objects list of animals etc. These are types built
Il'i becomes the integer value of the character. from the generidist class.
ch:=i.char In the list of animals, you might know that

squirrels occur in even numbered slots in the list.
, _ You could then assign an even numbered list
but a routine char would probably not be defined orglement to a variable of type squirrel. Dynamically,
the integer type so this would more likely be: this is correct, but statically the compiler mreject

ch.char (i) it as ilt does not khnoY_v that only squirrels occur in

/I setchto the character corresponding to even pcatlons |n:[e list. . .

Things aren't always this simple. The

The hardware of many machines cater for such basisrogrammer probably won’t know the pattern of
data types as character and integer, and it is probabi®w particular animals are stored in tHist.
that a compiler will generate code that is optimal forConsider a vet's waiting room. The vet might view
any target hardware architecture. Thus many lanhis waiting room as being the typest of animals
guages have characters and integers as built in typeSalling in the first animal from the waiting room, it
An object-oriented language can treat such basifs important to know whether the animal is a cat or a
data types consistently and elegantly, by the implicihamster if the vet is to perform an operation on the
definition of their own classes. animal. For many such cases object-oriented

Another example of type conversion is from realdynamic binding and polymorphism will suffice, so
to integer; but there are several options. Do youhat the programmer does not have to know the
truncate or round? exact type of the object, as long as the objects are
sufficiently the same that the same operations can be

/I ch becomes the character corresponding to

TYPE applied, even though the implementations might be
REAL different.
However, this is not always sufficient, and
FUNCTIONS sometimes it is important to know that you have

truncate REAL-> INTEGER
round REAL-> INTEGER

retrieved a hamster from a list of animals.
For example, once our vet has performed the
operation on the hamster or cat, he must know

r- REAL enough about their type to decide whether to now
I INTEGER put the animal in the hamster cage, or the cat basket.
i = r truncate Casting can solve this problem, but it is a

L : sledgehammer approach where much more elegant
Z' becomes the closest integer and precise solutions exist. [Stroustrup 94] notes:
: f‘r iound “The C and C++ cast is a sledgehammer.”

Eiffel has such an elegant and precise solution
called the assignment attemptnotated as ‘“?='
Again many hardware platforms provide specificinstead of “=". A simple example is:
instructions to achieve this, and an efficient object-

/l'i becomes the closest integer to

oriented language compiler will generate code best
optimised for the target machine. Such inbuilt class
definitions might be a part of the standard language
definition.

3.14 RTTI and Type casts

Since the second edition of this critique in 1992,
C++ added Run-Time Type Information (RTTI) in
March 1993. This is a good and necessary feature,
and a discussion of it helps clarify the notion of
casts.

[P&S 94] makes acase against rejecting all
programs that are not statically type correct. If a
program is shown to be statically type correct, its
type correctness igyuaranteed but static type
checks can reject a class of programs that are
otherwise type valid.

List classes are an example of where static type
checking can reject a valid program. A list class can
contain objects of many different types. Genericity
and templates allow constructions suchlias of

waiting_room LIST [ANIMAL]
fluffy: HAMSTER
h_cage HAMSTER_CAGE

fluffy := waiting_room.first -- error.

-- The above assignment will be rejected by the
-- compiler agype (fluffy) = HAMSTER and

-- ANIMAL is not a subtype diAMSTER. Even
-- though we know that the animal will be a

-- HAMSTER and the program is valid, static

-- type checking considers it invalid.

fluffy ?=waiting_room.first

-- If the first animal in the waiting room is
-- indeed HAMSTER thenfluffy will refer
-- to that animal, elsBuffy will be Void.

if fluffy /= Void then

h_cage.puffluffy)
end

3rd Edition

© lan Joyner 1996

C++7?7? 25

The Eiffelassignment attemytrovides a precise and Thus Eiffel's assignment attempt is safer and
elegant solution to the dynamic type problem. Sincesyntactically cleaner. And there is another reason for
the assignment attempt has the desired effect of bythis remark: if you don’t put thé& fluffy /= Void
passing static type checking and leaving it to rurthen test in, either deliberately obecause you
time, type casting is not needed. forgot, then the precondition that is most likely in
If you want to be as flexible as Smalltalk, you the Eiffel version of h_cageput tests that the
could use assignment attempt instead of straighargument is not Void. If you deliberately left out the
assignment everywhere, but as this invokes run tim¥oid test, you will have included scueclause to
type checks, and you must check fafoid handle this exception.
references, there is a large overhead to assignment Although the Eiffel syntax ‘?=' for assignment
attempt over straight assignment. This shows thaattempt is cleaner, [Stroustrup 94] points out that
not only is static typing important for proving such clean syntax would be inappropriate for C++.
compile-time correctness, but also for run-timeThis is because the ‘?=" would be “difficult to spot”
efficiency. The only real effect of ?= as far as thein C++'s otherwise clumsy syntax. This is why it is
programmer is concerned is that it suppresses thgossible to use this neat notation in Eiffel, as
compiler's static type checking and puts in a run-Eiffel's syntax is much clearer, and since
time check. programmers will code small routines, the ‘?=' is
As | said, C++ introduced Run-Tim&ype not difficult to spot in an Eiffel program. The
Information (RTTI) in March 1993. RTTI has the reasoning against “?=" in C++ is strange, since C
operator dynamic_cast , which achieves the already provides assignment operators like' ‘and
same effect as the Eiffel assignment attempt:-=", which are just a small syntactic convenience.
dynamic_cast returns a pointer to a derived Another RTTI feature is théypeid operator.
class from a pointer to a base class if the object is gistroustrup 94] warns against using this to
object of the derived class; otherwise it retdn®r determine program flow control based on type
should that be null? Bt isn't really zero, but any information. You should not use switch statements,

bit pattern representing null). but use dynamic binding on polymorphic (virtual)
In C++, the above assignment attempt would bdunctions. This will need to be built into your style
coded: rules that programmers will hate, or you will end up
having to fix the dirty deed after the fact, which
fluffy = adds to the expense of your software developments.
dynamic_cast<hamster<> Eiffel has no built in operator to achieve this, so
(waiting_room.first()); the object-oriented principle of using dynamic

A few observations. Wow! Eiffel uses an operator,bir}ding dirllis'?elld of switch _s(;[ate_r]pen'_[s ifs betr;[er
and C++ uses a keyword. It should be noted thougiiOTCeC. BTt Emoves type identification from the

: : i anguage, but places it in the libraries in some
g]sagigr:nmer?togﬁgm/pt dr?((sﬂ;?r?aer?“c pégg{am:\sl\,li” rE)%Itherroutines built into th&SENERALclass. So in Eiffel,

used very often. So this is a small point. it is harder to commit the bad programming
The second observation is that in C++ you musPractices that [Stroustrup 94] warns about.

specify the type. In this example it is superfluous a%)
the compiler can determinetype (fluffy) = .15 New Type Casts
HAMSTER as it does in Eiffel. Not only did C++ introduce RTTI and

In C++ you can dynamically cast to any deriveddynamic_cast in March 1993, but also three
class fromhamster* = but that does not seem to more cast operators in November 1993. These
gain anything. A second point is that you don’t needoperators are:
to usedynamic_cast directly in an assignment, static_cast<T>(e))
but can use it in a general expression. However, reinterpret_cast<T>(e) , and
again it is stressed that run time casting should be so const_cast<T>(e)

little used that this is of little advantage. Perhaps thagain for all these the specification of the <type>

only small advantage is the ability to be able to passeems superfluous, as the compiler can derive that

a dynamically cast pointer: from the context. These casts just about cover all the

cases where you would need to use C style casts.
[Stroustrup 94] indicates a desire to discard the

C casts: “I intended the new-style casts as a

complete replacement for thé€lNe notation. |

Looks good right? But remember, if the first animalproposed to deprecat¢T)e ; that is, for the

out of the waiting room is not a hamster, but a ratcommittee to give users warning that t{iEe

you getO (well null...etc) returned which witause notation would most likely not be part of a future

h_cage.put() to fail. revision of the C++ standard. However, that idea
This shows that the use dfnamic_cast in didn’t gain a majority, so that cleanup of C++ will

an expression is not such a good idea, as it mighrobably never happen.”

cause the whole expression to fail.

h_cage.put
(dynamic_cast<hamster*>
(waiting_room.first());

3rd Edition © lan Joyner 1996

C++7?7? 26

The bottom line to these sections on type casts error:.OBJ:y' : left operand points
comes again from [Stroustrup 94]: “In all cases, it to ‘class’, use '->'
would be better if the cast - new or old - could be
eliminated.” It can! Use Eiffel or another one of the|n these examples, ‘what' is to be computed is

languages in which the type system is more cleanlyaccess the element y of object x.” @++,

defined. however, the programmer must specify farery
access the detail of ‘how’ this is done. That is the
3.16 Java and Casts accessnechanisnto the member is made visible to
Unfortunately, Java needs casts in the abovéhe programmer, which is an implementation detail.
examples, but has improved the situation: “Not allThus the distinction between °' and->*

casts are permitted by the Java language. Some casgmpromises implementation hiding, and very
result in an error at compile time. For example, aseriously the benefit of encapsulation. We will see
primitive value may not be cast toreference type. in the section on inlines how the visible difference
Some casts can be proven, at compile time, alwaysf access mechanisms between constants, variables
to be correct at run time. For example, it is alwaysand functions also breaks the implementation hiding
correct to convert a value of a class type to the typgrinciple, and how the burden is on the programmer
of its superclass; such a cast should require nto restore hiding, rather than fix the language.
special action at run time. Finally, some casts cannot The compiler could easily restore
be proven to be either always correct or alwaysmplementation hiding by providing uniform access
incorrect at compile time. Such casts require a test @&nd remove this burden from the programmer, as in
run time. A ClassCastException is thrown if a castfact most languages do. The major benefit of
is found at run time to be impermissible.” - from theimplementation hiding is that if the implementation

Java Language Specification. changes, the effect is contained within the class
itself; not manifest beyond the interfacé/here
3.17 '’ and ‘>’ implementation hiding is broken, the effects of

The ‘.’ and ‘->' member access syntax came from cmplementation change become visible, and this
structures, and illustrates where the C base adversef§duces flexibility. , o
affects flexibility. Semantically both access a _ For example, if theOBJ x ' declaration is
member of an object. They are, however,changed toOBJ *x ’, the effect is widespread as
operationally defined in terms of how they work. all occurrences ofx'y ' must be changed tox-

The dot (*.") syntax accesses a member in an objety’- Since the compiler gives a syntax error if the
directly: ‘x.y’ means access the member y in thewrong access mechanism is used, this shows that the

object x. compiler already knows what access code is
required and can generate it automatically. Good
programming centralises decisions: the decision to
access the object directly or via a pointer should be
centralised in the declaration. So again, C++ uses
low level operators, rather than the high level

OBJ x; // declare object x of
/I class obj
/I with a member y.

x.y; Il'accessy in object x declarative approach of letting the compiler hide the
/I directly implementation and take care of the detail for us.
X->y; Il syntax error “. expected” Java only supports the dot form of access. The
‘->* form is superfluous. Java objects are only
The specific error is: accessed by reference; there are no embedded
objects.
error: type 'OBJ' does not have an Eiffel provides a more interesting case. In Eiffel
overloaded member ‘operator ->' an optimisation is provided as an object can be
error: left of ->y' must point expanded in line in another object, in order to save a
to class/struct/union reference. Eiffel calls such objectexpanded

obje(f:ts. There his still I nok need forI eerJIi(ﬂt
. : . dereferencing. The compiler knows exactly whether
The > synlax means access, & mepmber n a0 9bieia ofyect s expanded or refeenced. and ihus e
*(x).y) means access the mempein the object dot accessor is used for both, so uniform access is
ointed to b provided, and the access mechanism is hidden. This
P . makes the program more malleable, as the
programmer can later change an object to expanded,

OBJ *x; /I declare a pointer x to an and not have to worry about changing every*‘to
/I object of class obj. a dot. Conversely, if expansion turns out to be
X->y; [l accessy via pointer x inappropriate, as in the case of a circular reference,
x.y; Il syntax error “-> expected” then the expanded status of the object can be
removed from the declaration, without having to
The specific error is: change another single line of code. Thus Eiffel

3rd Edition © lan Joyner 1996

C++7?7? 27

preserves the implementation hiding principle,interface clientmust know the intention of the
which results in convenience for the programmer. interface for it to be used effectively.

There is even more to Eiffel's scheme, which is Both Java and Eiffel do away with the
particularly relevant to concurrent and distributeddistinction between a function definition and
processing. Meyer points out in [Meyer 96c¢] that thedeclaration. The first reason for this is that you don’t
form x.f means passing the messége the objeck. = need forward declarations, as entities can be
X may be anywhere on the network. In other wordsreferenced before they are declared. The second
x might not be a reference that is implemented by areason is that in Eiffel, there are tools to
underlying C pointer, but it may be a network automatically extract abstract interface definitions

address, for example a URL. from the main code.
3.18 Anonymous parameters in Class 3.19 Nameless Constructors
Definitions Multiple constructors must have different signatures,

C++ does not require parameters in functionsimilar to overloaded functions. This precludes two
declarations to be named. The type alone can ber more constructors having the same signature.
specified. For example a functiénin a class header Constructors are also not named (apart from the
can be declared dqint, int, char) . This same name as the class), which makes it difficult to
gives the client no clue to the purpose of thetell from the class header the purpose of the different
parameters, without referring to the implementationconstructors. Constructors suffer from all of the
of the function. Meaningful identifiers are essentialproblems described with regards to overloaded
in this situation, because this is the abstractunctions. Firstly, it would be easy to mark routines
definition of a routine; a client of the class andas constructors, for example:

routine must know that the firéht represents a
‘count of apples’, etc. It is true that well known
routines might not require a name, for example constructor clone (...)...
sqrt (int) . But this is not appropriate fdarge constructor initialise (...)...

scale software development. _ where each constructor leaves the object in valid, but

The use of anonymous parameters handicaps thgotentially different states. Named constructors
purpose of abstract descriptions of classes an@ould aid comprehension as to what the constructor
members: to facilitate the reusability of software.is used for in the same way as function names

This is covered in more detail in the section ondocument the purpose of a function. Secondly,
‘Reusability and Communication’. Program text named constructors would allow multiple
captures the meaning of the system for some futureonstructors with the same signature. Thirdly, it is
activity, such as extension or maintenance. Tasier to match up an object creation with the
achieve reusability, communication of intent of aconstructor actually called. "Fourthly, the compiler
software element is essential. could check the arguments given in the invocation
Names are not strictly necessary into the constructor signature.

programming. Naming exists to help the human java’s constructor scheme is the same as C++.
reader identify different entities within the program, Eiffe| allows a series ofreationroutines. These are
and to reason about their function. For ttéason indeed independently named as suggested above.
naming is essential; without it, development of Eiffe| has another advantage in that creation
sophisticated systems would be nearly impossibleoytines can also be exported as normal routines
Some languages access parameters by their addreggich can be called to reinitialize an object. In C++

(position) in the parameter list ($1, $2, etc). This isyoy cannot call a constructor, after the object is

unsatisfactory, even for shell scripts. Anonymouscreated.
parameters can save typing in a function template,
but then programming is not a matter of conve-
nience as it is inconvenient for later readers. Th
redundancy is beneficial and saves late
programmers having to look up the information in
another place. A real convenience in function D p A
templates would be that abstract function template§XPression is converted, as in an initialisation, to the
be automatically generated from the implementatiof (U type of the function in which it appears. This
text (see header files for more details). may mvolvg_ theSlcgnZstEuctlon and copy of a

Anonymous parameters illustrate the link temporary object (I ;)'_ y . .
between courtesy and safety issues in programming, _ S€ction 12.2 explains: “In some circumstances |t
Due to pressure of work, a client programmer migh?nay be necessary or convenient for the compiler to
wrongly guess the purpose of a parameter from thg€nerate a temporary object. Such introduction of
type. The failure of the original programmer to lemporaries is implementation dependent. When a
provide a courtesy has caused a client programméCMPiler introduces a temporary object of a class
to breach safety. However, the client programmef @t has a colrllsérl#ctoL It must en%l_Jre that a
will probably be blamed for not taking due care. AnConstructor is called for the temporary object.

constructor make (...)...

.20 Constructors and Temporaries

‘return <expression>' can result in a different
value than the result of <expression>. In section
6.6.3, the C++ ARM says: “If required the

3rd Edition © lan Joyner 1996

C++7?7? 28

A note says: “The implementation’s use of3.22 Bad Deletions

temporaries can be observed, therefore, through thene following example is given on p.63 in the C++
side effects produced by constructors andARM as a warning about bad deletions that cannot
destructors.” be caught at compile-time, and probably not
Putting this together, creation of a temporary isimmediately at run-time:
implementation dependent, so might or might not be ,
done. If a temporary is created, a constructor is P =newint[10];
called as a side effect, which can change the state of p++;
the object. Different C++ implementations could delete p; // error
therefore return different results for the same code. p=0;
delete p; // ok

3'21 Optional Parameters One of the restrictions of the design of C++ is that it
Optional parameters that assume a default valugyst remain compatible with C. This results in
according to the routines declaration are supposed t&xamples like the above, that are ill-defined
provide a shorthand notation. Shorthand notationganguage constructs, that can only be covered by
are intended to speed up software developmeniyamings of potential disaster. Removal of such
Such shorthand notations can be convenient in shelanguage deficiencies would result in loss of
scripts, and interactive systems. In large scalgompatibility with C. This might be a good thing if
software production, —however, precision s proplems such as the above disappear. But then the
mandatory, and defaults can lead to ambiguities a”ﬁesultant language might be so far removed from C
mistakes. With optional parameters the programmeghat C might be best abandoned altogether.

could assume the wrong default for a parameter. gaq deletions are the kind of problem the Java
More importantly, optional parameters undermineqegigners set out to avoid. You do not get bad
type safety. The type of a function is defined by thejeletions in either Java or Eiffel for two reasons:
composition of its input types, and its output type: firstiy “they do not have pointers; secondly, they

FTIXT2XT3.. ->T4 provide garbage collection so don't delete objects.

The entire signature determines the type of thg o3 | gcal entity declarations
function, not just the return type. Optional ~

parameters mean that C++ is not type safe, and th% claring an entity close to where it is used, has

vantages and disadvantages as it is convenient,
ut can make a routine appear more complex and
luttered. A problem is that an identifier can be
istakenly overloaded within a nested block in a
nction, with the resultant problems covered in the
ction on name overloading. C does atve
sted routines or blocks so does not have this
roblem. ALGOL uses this simple form ofame
verloading. (A block in the ALGOL sense contains
both declarations and instructions.)
t (@ b. default. default.): The ARM explains problems of local
(2, b, default, default, e); declarations with branching, which shows the
Other means, already in the language, can easilgomplications in intermingling declarations and
provide this mechanism. For example, a call toinstructions. Caveats cannot make up for or fix a
another (possibly inline) function could provide the faulty language definition.

the compiler cannot check that the parameters in th
call exactly match the function signature.
Furthermore, they do not provide a great deal o
convenience. If a routine has five parameters, th
last three of which are optional, and the caller want
to assume the defaults for parameters 3 and 4, b E
must specify parameter 5, then all five parameter
must be specified. A better scheme would be to hav
a ‘default’ keyword in function calls:

defaults for the optional parameters: In well written object-oriented software, routines
will be small, typically performing one atomic

g(a b,e); /thecal operation per routine, so localised declarations will

g(inta, b, e) // the function not be of much value. Small routines that implement

{f(a, b, 0, 0, e);} atomic operations are fundamental to loose

coupling. For example, a base class that provides a

This not only provides the convenience of optlonalPingle routine that logically performs operations A

parameters, but is more powerful. Any parameter o

combination can be filled in with any combination @nd 5’ .',;5 not u_sef?l to ?t.SUbd?SBS Eha;tdneeds ;[0
of defaults, not just the last parameters. MultipleP'OVIO€ IS own Impiementation of B, but does no

intermediate routines can provide multiple sets of¥a@nt to change A: the descendant must reimplement
defaults. the logic of both A and B, missing an opportunity to

- : - reuse the logic of A. Splitting A and B into different
parglrﬁg?eerrs. é]ﬁ\é?]g tr;/%ring Eigfeelnforr]?g; sgpttrgt]etlh outines accomplishes loose coupling, and therefore

parameters of a call must match the routine exibility. Tight coupling reduces flexibility.
signature. Efficiency is also attained without the mess of

local entity declarations. Good design and clean
modularisation achieve efficiency, as the entities

3rd Edition © lan Joyner 1996

C++7?7? 29

which would be locals to a block in C+are only object reference you should not access the data
created when the routine is entered. Furthermorenemberdi directly:
small routines can be inlined, and in this case, the .)
locals will only be created when the expanded inline | = c.di;// Not recommended C++ style.
block is entered, which is the same effect as if thehstead di should be private and accessed as
programmer had included the block manually. follows:

Java implements locals in the same way as C++. .
In Eiffel the philosophy is to use good design to i=c.get_di();
make routines sufficiently small and atomic. That iSynereget_di is:
one operation, one routine. With this approach, - '
having local declarations only in one place in the int C:get_di() {return di;}
routine and not throughout is sufficient. If you find a
plaﬁe V\r/]heredyouh_/vant to ir:jt_rodyce rI]ocal variﬁbl?d
within the code, this is an indication that you shou : Ay
write it as a separate routine. An objection could be \{ergeadd_of a function call. So inlinesere
that small routines with lots of overhead calling ntrodauced:
them is not efficient. Eiffel compilers solve this by inline int C::get_di() {return di:}
automatically inlining routines. Thus the integrity of . -
efficiency is retained. In C++ you could manually SPace and text of a class.

owever, Stroustrup found that some programmers
ere not using an access function because of the

inline such functions. The inline mechanism has two conceptual
mistakes and a practical one. Firstly, data hiding and
3.24 Members implementation hiding are not the same.

Implementation hiding is more to do with hiding the

Care should be taken with the C++ use of the termhachanics of the access mechanism, so that you
member. In general use, an object is a member of :

class. For example, squirrels are a member of th@an’t- tell whether it Is_a constant, variable of
o ple, sq . nction you are accessing. Inlines are the wrong
class animal. This corresponds to members in s

: olution to this problem: the correct solution is
theory. But in C++, the term member mearda® | nitorm access. The OO concept is to hide

|tem£hor£ fursci'ﬂon of the cl{arlss. St()mt]e people mightyhiementation: data need not be private, but may
say that set tnheory 1S one thing, but programming 1ye fnctionally exported from the classes interface.

another, so there is no problem with using the - -
0 . This leads to the second conceptual mistake that
terminology. However, set theory underpins thefunctional access and C functions are different

theory of computation and programming, and sets,, . : :
classes and types are related. Sets are a means '3f9S- Functional = access hides thaccess

e o : hanism. C functions, however, make the access
describing groups of entities which have some chanl A ’ ’ : ;
similarity. Supersets group entities according tomechanlsm visible: you know you are invoking a

broad concepts; subsets group entities according @lece of code that will be jumpetb. Functional

narrower concepts, th&, morerestrictive criteria. ccess by contrast is any entity name that can occur

- - in the context of an expression. This entity could be
gr?dssel}gc?gssgeténderpm our understanding of classég constant, variable or value returning routine, but

In set theory we say: @ N, or 3 is a member of you can't tell which if the implementation of the

. access mechanism is hidden. The staternent
the set of natural numbers. In objects we would say 4" s finctional access. C++ has solved this

matf!:rlad Is a mehr_ntr)]elt of the clag_s il n %ﬁéroblem in exactly the wrong way in order to stay
strein Ie“Frgg’r’nig ;V%Cemgérsgfqﬁeocljaescs Cg?S%'QSThiScompatible with the flawed concept of function in C.
9 P : The programmer is required to bear this burden,

is not mathematically correct, and the confusion .. in tirn makes software development more
could have been avoided. ostly for every company usin@++, andagain

Java does not seem to use the term member. lexibility i : :
. : . xibility is reduced. In order to restore information
might stick from C++. Eiffel uses the tefeatures hiding, ythat is access transparency between

. constants, variables and C functions, programmers

3.25 Inlines _ _ _ _ must as a matter of style hide constants and
The problems described in this secti@ame a variables behind a C function, as is the case with
consequence of placing the burden of encapsulatioget_di() . A fix to the language would have been
on the programmer. You might wish to review thepetter, but not possible to keep compatibility with C.
section on encapsulation at this point. _ The practical mistake is that a compiler can

The main reason inlines were introduced in C++automatically generate inlines. Requiring a
was to alleviate the cost of crossing the ‘protectionprogrammer to specifyinline is a manual
barrier’, [Stroustrup 94]. The protection barrier in bookkeeping task. It is not hard for a compiler or
C++ is data hiding. When accessing a data item imptimiser to work out thatC::get_di()
C++, it is recommended not to do it directly, but via{return di;} or even more complex routines
a class member function. For example, given amcould be inlined. This is exactly the kind of

3rd Edition © lan Joyner 1996

C++7?7? 30

optimisation that Eiffel and other sophisticatedmembers. An alternative to friends is multiple
languages perform. interfaces which provide the functionality of friends
[Flan 96] says: “A good Java compiler shouldand avoid the above problems. Each interface to a
automatically be able to “inline” short Java methodsclass can be exported to everything, or to selected
where appropriate.” An article in Byte of Septemberclasses only. A selective export mechanism is more
1996 suggests that to optimise Java method callgieneral than public, private, protected and friend,
“you should make liberal use of thénal and explicitly documents the couplings between
keyword.” Byte also suggests that instead of smaléntities in the system. Selective export specifies not
functions, programmers should inline by hand smallnly that a member is exported but to which classes
methods. Byte further says: “The trade-off, then, igt is exported.
either better performance or code flexibility. You One reason given for friends is they allow more
must decide which is most important to theefficient access to data members than a member
program’s operation in that situation.” function call. The way C++ is often used is tHata
In this respect, Eiffel again proves itself members are not put in the public sectibacause
superior. Eiffel automatically determines that athis breaks the data hiding principle.
routine isfinal , or in C++’'s terminology, that a As mentioned in the section on inlines,
routine is notvirtual . Also Eiffel automatically implementation hiding is different to data hiding. As
inlines. Therefore the Eiffel programmer does notlong as you access your data functionally, you do
need to bend the code to gain performance, onot have to hide your data, just thaccess
consider trade-offs: you do not have to trade-offmechanism.
flexibility to gain performance. Another questionis, sincethere are inlines, is
Eiffel has a further advantage that it understandshere a need for the similar mechanism of friends? If
the difference between implementation hiding andyou mark a function inline, it is going to expand
data hiding and provides implementation hiding. Itinline, and avoid the function call overhead. So in
also accesses data and constants functionally, so this case, friend is a superfluous mechanism.
the instruction: In Java, classes in the same package can access
i = cdi instance variables from other classes ifriandly
T fashion. This is contrary to good programming
you can't tell and don't need to know whettieris ~ practice and OO design, as it means you can access
implemented as a constant, variable or routindhings without going through the published interface
function. The implementation is hidden: access i®f a class. However, in Java, explicit friends are
uniform as access to a constant or variable looks thgone.
same as a value returning routine, and the different Eiffel offers the pure OO approach, where
access mechanisms behind these is hidden areVerything must go through publicised interfaces.
automatically generated by the compiler. And sinceNote in Eiffel that data attributes in a class may be
this implementation distinction is hidden, theed exported in the published interface, as access is
is greatly reduced for either the programmer touniform. In that case, external entities can read the
manually inline, or for the compiler to automatically data, as if it were invoking a function, but you
inline. In this case Eiffel provides the maximum cannot write to a data item in an external class. To
flexibility. update a data item, you must call an update
Since C functions are poor cousins toprocedure. Part of the purpose of friend is to update
mathematical functions, and C++ also confusam an item directly, without the overhead of a
hiding and implementation hiding, the languageprocedure call. In Eiffel the compiler ~will
includes otherwise unnecessary mechanisms likautomatically inline procedures where possible, so

inline. the efficiency concern is addressed.
To summarise: Eiffel does not need the friend
3.26 Friends mechanism for two reasons: firstly, external classes

Friends are a mechanism to override data hidin
Friends of a class have accessitfoprivate data.
Friend is a ‘limited export’ mechanism. Friends
have three problems:
1) They can change the internal state of object
from outside the definition of the class.
2) They introduce extra coupling between
components, and therefore should be use

sparingly.

gﬁan access data attributes for reading; secondly, for
ipdate, a procedure is expanded inline where
practical. Accessing a data item does not contravene
encapsulation or implementation hiding. Data hiding
%rsnnot encapsulation, although with encapsulation

plementationdata is hidden, the operative word
being ‘implementation’, not ‘data’.

§.27 Controlled exports vs friends

3) They have access to everything, rather tha s noted in the section on friends, there is a case for

being restricted to the members of interest tolN€r grained control of exports thapublic ,
them. private and protected . Except for friends,

Friends are useful, and a case can be made fd@va uses the same mechanism as C++, but adds two
shades of grey between public, protected and privatd10ré — categories, default and private

3rd Edition © lan Joyner 1996

C++7?7? 31

protected . This complicates the mechanism, andsuch a method bear any relationship to those of the
it is difficult to remember exactly what each private method in the superclass.” [Sun 96].
category does. Eiffel does not have friends, it allows A further complication in C++ is thatublic
classes to be related by a finer grained exporprivate , protected can be specified when
mechanism, for any set of features, you can specifynheriting a base class. This gives one policy for
exactly what classes they are exported Classes how every inherited member from the base class is
that are closely related export to each otheto be treated in the new class. A problem with this is
interfaces that are not available to other classethat once a member is private or protected, it cannot
outside of that group. be reexported, ie.protected cannot be made
Also in Eiffel, you can export a routine to a public , and private cannot be made
different set of classes based on whether it is callegrotected orpublic . Thus the temptation for a
as a creation routine (constructor), or normal routin€C++ programmer is to keep things public, as a
call. derived class might want something to be public,
In Eiffel all features are implicitlypublic . even though it does not make sense to be public in
Public can also be explicitly stated by exporting tothe base class. Again decisions must be nezalky
classANY, ie., the universal set. If a set fefatures on issues you don’t know about.
is to beprotected , ie., internal and not visible to Java has no equivalent. Each member is
clients, it is exported to cla®¢ONE Such a set of inherited with the samepublic , private
features issecret NONE is the equivalent of the protected attribute as the base class.
empty set in set theory, which is notionally a subset Eiffel again has a more fine grained approach.
of all sets andNONE is a subclass of all other The export policy for each feature inherited from a
classes, and has only one possible valiaéd. parent class can be reviewed on a case by case basis.
There is no equivalent girivate in Eiffel, = The export status of each feature can be changed and
where features can be hidden from sub-classes. Batade more or less restrictive. If there is no new
this is not necessary, and in most cagseste is export policy, the default is the same as the parent
undesirable. The Eiffel philosophy is that with class. The designer of a parent class does not have to
inheritance you get unrestricted access to theonsider what descendant classes need, or worry
implementation as this is key to the flexibility of about the case where their needs will be in conflict
reuse and extension. As a subclass, you can redefimgth each other, as the designer of the descendant
any routine inherited from a parent. When youclass has complete flexibility, which enhances reuse
redefine a routine, you are changing theand extensibility. Eiffel's export mechanism is
implementation. Since you are changing thetherefore vastly superior to the C++ approach.
implementation, the private restriction could be a
nuisance to some subclass that hasn't been writtef128 Static

yet. If you need to access a variable, and the parefthe word ‘static’ is confusing in C++. Page 98 of
class designer has madgitvate , you are out of {46 C++ AnnotatedReference Manual (ARM)
luck. At the best you could go to the programmermentions this confusion and gives two meanings: a
who owns that class, and try to convince them Q|55 can have static members, and a function can
make the variableprotected . Good luck: that pave static entities: and the second meaning comes
kind of request often generates a lot of heat. At the,om C"where a static entity is local in scope to the
worst you can do nothing about it because the clasg,rent file. The choice of different keywords would

gight ﬁ)e from outlside %nd_closefc_j to é/ou. Aga|1<in Neasily solve this confusing use of the same keyword
++ the parent class designer frced to make fqr geveral meanings. There is also a third ‘more

decisions that should be left open. | wouldgeneral meaning that objects are statically or
recommend ~against usingprivate , US€ 3iomatically allocated and deallocated on the stack
protected instead. At leasprotected leaves \hen a block is entered and exited, as opposed to
the class open under inheritance. _ dynamically allocated in free space. Another general

In C++, private only restricts access, it does yse of the word ‘static’ is in ‘static type checking’,
not restrict visibility in a subclass. Withrivate , \yhich obviously has no relation to the C uses, but
it is still possible to redefine aprivate overloads the language even further.

virtual function from a base class in a subclass. gyt class members are useful. Page 181 of the
This is not a problem, but you cannot preveniapn states that statics reduce the need for global
redefinition in a subclass, as you can with the Eiffel,5riaples. which is good thing, but the C syntax
frozen mechanism. . . obscures the purpose.

b In Java you Fanﬁqghoverﬂde a private m%thé)d, Locals declared in functions can also be static.
but you can overload: “Note that a private metnod Thage are not needed in an object-oriented language.
is never accessible to subclasses and so cannot $ge " reason and history is this: ALGOL has the
hidden or overridden in the technical sense of thosggtion of ‘OWN’ locals in blocks. The semantics of

terms. This means that a subclass can declare & oOwN entity is that when a block is exited, the
method with the same signature as a private methogh e of the OWN is preserved for the next entry to

in one of its superclasses, and there is NQne plock. ie.. the value is persistent. The
requirement that the return type or throws clause o ' v '

3rd Edition © lan Joyner 1996

C++7?7? 32

implementation is that at compile time, the OWN3.30 Structs

entity is limited in scope to the block, but at runStruct is only in C++ as a compatibility mechanism

time, it is located in the global stack frame. Theto C. When you have classes you don't need structs.

same instance of the variable is used in allAgain, C++ is unnecessarily complicated with

invocations of the procedure, rather thaach unneeded features.

invocation using separate local storage on the stack. [Sun 95] says: “The Java language has no

This causes complication in recursion. structures or unions as complex data types. You
Simula’s designers generalised the ALGOLdon't need structures and unions when you have

notion of block into class, and so object-orientationclasses - you can achieve the same effect simply by

was born. Instead of discarding a class block on exitusing instance variables of a class.”

it is made ‘persistent’. Declarations within the class Ejffel and Smalltalk similarly have no

block are persistent, and therefore provide th%quivalents to struct.

functionality of static and OWN, which was

removed from Simula. Classes are more flexibles 37 Typedefs

than statics. Statics are persistent in the same way ‘T"?pedef is yet another mechanism not needed. Java,

globals, ie., for the duration of the program. Class= : : :
member lifetime is governed by the lifetime of the arlgfﬁlngncollaigneillltalk all build their type mechanisms

object so object-oriented languages do netd
globals, OWNSs or statics. 332 N
Java implements class variables with static>: amespaces

i i i i+ Namespaces are a new concept introduced in July
gllgfgglg.sesonce foutines in order to do away with 1993. Namespaces address the problem that global

names imported from different .h header files can
329 Union clash. The C++ solution is namespacegere
S . . globals are put in a namespace. Access to these
Union is another construct that is superfluous ingntities must be qualified with the namespace name.
OOP. Similar constructs in other languages arg-qr example, A::Xx means access entity in
recognised as problematic: for ~example,namespaca. Another namespad® might alsohave

FORTRAN'S equivalences, COBOL’s an entity named, but these names will not clash.
REDEFINES, and Pascal's variant records. Whergntities not in a namespace are considered to be in

used to overload memory space these force thgheglobal namespace.
programmer to think about memory allocation. In pure OO languages, namespaces are not

Recursive languages use a stack mechanism thﬁ%eded; classes themselves are namespaces. There
makes overloading memory space unnecessary, asjfe no global environments, s6++ introduces
is allocated and deallocated automatically for |Ocal%omplexities not needed in Java. Eiffel and

when procedures are entered and exited. Themalitalk
compiler and run time system automatically allocate Java énd Smalltalk have class variables. which

and deallocate storage as required, ensuring that twa, : : :

. ’ n be used in place of globals. Eiffel providese
pieces of data never clash for the same memory, yines “so that you can access object instances
space at one time. This is essential so that thﬁ/here your ‘globals’ are stored

programmer can concentrate on the problem
domain, rather than machine oriented details. When, asT]ﬁ]rgesgr?t(i:tieeSs aﬂ%rv(\a;?/ertheth gror?éemnés ofofnztarr]\;e
union is used similarly to FORTRAN's namespaces themselves can clash. For example, if

equivalences it is not needed. .
; ; , two header files have namespaces called MY_NS,
Union is also not needed to provide theyou have a clash.

equivalent to COBOL REDEFINES or Pascal’s As you might beaware by now, name clashes

variants. Inheritance and polymorphism provide this . .

in OOP. A reference to a superclass can also be usgif? a nuisance Whehnever yauix Iand Rwatch

to refer to any subclass, and thus provides the samyTware entities together. An example we have seen
semantics as union, only in a type safe manner, Imultlple |rr1]her|tarr1]ceh Eiffel prowdles a _gooﬁ
the alternatives can never be confused. An objec Oh:trli(t);n Ctg c}ahssewn the rename clause in the

reference is implicitly a union of all subclasses. : .
plicity Eiffel could also have a problem with class

Union can also be used to suppress typ
: “ ame clashes, as class names are global. The
checking. [Stroustrup 94] says “programmers shoul olution to this is to use a deployment language

know that unions and unchecked function argument eparate from Eiffel itself. This language is called

are inherently dangerous, should be avoide -
whenever possible, and should be handled wit ﬁf((:aF’Th%nggr?cgeerrfocr)ftEiCAésinglxr/ni?(f a%ﬁlsri?d']n
spegll?:]ca:reei(\;vhneigea;ctttjﬁgi/ Qﬁgdidr{ion construct i class libraries together, and it provides mechanisms
unnecessar gand has removed it from Java. NIP_rename classes, and resolve other conflicts. That

. Y, and ' ay, deployment concerns are kept separate from
equivalent exists in Eiffel. the programming concerns

3rd Edition © lan Joyner 1996

C++7?7? 33

While namespaces in C++ address a problem, .. rest of header
they rely on programmers to be courteous, and place #endif
globals in namespaces. Perhaps a better way, wou|
be to have a separate mechanism equivalent fgeaders show howZ++ addresses the problem of
Eiffel's LACE where such conflicts are resolved, INdependent modules with a non-object-oriented

rather than making the language even moréPProach that is sub-optimal; the programmer must
complex. supply this bookkeeping information manually.

#include relates to the organisation and
administration of a project. Rational language de-

3.33 Header Files _ . sign eliminates such manual bookkeeping
In C++ a class interface must be maintainednechanisms.

separately from its body. An abstract clagerface A class interface is equivalent to a module

is just the class with the implementation detailyaager. A module header contains data and routines
removed so the interface and implementation cagynorted to other modules. This is exactly the
both be maintained in one source. In C++ thoughyrpose of the class interface. Furthermore, in C++

programmers must maintain the two sets of5 tool like make must be used to specify the
information. This is because of the C/Unix style of dependencies. pecify

programming with separate modules but little or no —_— :
global analysis. Replicated information has the well A class definition contains all knowledge of

. ccessed classes and their dependencies (inheritance
known drawback that in the event of change, bot ; : g
copies must be updated. Sun calls this “The Fragilgnd client) in the class text. Dependency analysis is

» ; erivable from the class text, and much of the
Superclass Problem.” [Sun 95] This can lead 1q,,ctionality of tools likemake can be integrated
inconsistencies that must be detected and correctegt, ;™ 1o compiler, so the errors and tedium
Classes that depend on another class must countered in the use ahake are avoided
recompiled if the layout of that class changes. Tool ependency analysis also implements a level of
can automatically extract abstract class description

. . ead code elimination
];:rcc))rrlgistgle(l:sys implementations, and guarantee A traditional system is assembled by combining

L , : modules; an object-oriented system is assembled by
Splitting C and C++ programs into a myriad of%ombining classes. Modules are a primitive form of

small, separately compiled files turns out not to be . g
good way to organise projects, and not a good Wa}%asses, classes are more sophisticated. They express

to program, as you must maintain many header files#i
Some people are now finding it more convenient t
keep an entire large system in one file as it solv%
many maintenance problems, and also makes |
easier to find things during editing. Unfortunately,
while this scheme on many systems allows fo
global analysis, this will still not solve the problems
arising from lack of global analysis in C++.

The programmer must also uginclude to
manually import class headerginclude is an
old and unsophisticated mechanism to provid
mﬁdularity. #ir&clude is a IIWeak Lorm of
inheritance and import. C++ still uses this ya€ar : L
old techniqgue for modularisation, while other sepa_rately. When Eiffel sees any declaration:
languages have adopted more sophisticated © C

approaches, for example, Pascal with Units, Moduld knows the current class has a dependency on the
with modules, Ada with packages. In Eiffel the unit ¢lassC. C is implicitly imported, so there is no

of modularisation is the class itself, and includes aréfinclude mechanism: Eiffel has done the

handled automatically. The OOP class is a morélependency analysis for you. If you add a new
sophisticated way to modularise programs.declaration to a class that hasn't be used before, the

Inheritance implements reusability and dependency is automatically generated the next time

modularisation, sé&include is superfluous. the class is compiled.

Another problem is that if header A includes. Java maps qualified class names such as
header B, and header B includes header A, a circuld@va.lang.Math to the environments file directory
dependency occurs. The same problem occurs ftructure, for example java/lang/Math in Unix.
header A includes headers B and C, and header B Eiffel provides a utilityshort that extracts class
also includes header C. A Simp|e but messy fix in a|interface definitions from the class implementation.

ore precisely relationships with other classes. C++
nclude and modules have problems. This
rimitive method is not required in an object-
riented language.

According to Stroustrup C++ would be a better
rJanguage without the C preprocessor. Most uses of
#define are now covered by other mechanisms.
To remove#include would require some other
import mechanism. [Stroustrup 94] says: “I'd like to
see Cpp abolished.”

e Neither Java, nor Eiffel need header files or the
#include mechanism. This means that
programmers do not have to maintain headers

headers solves this pr0b|em: However, the function of this is for human
readability, not to provide the compiler with class
#ifndef thismod definitions as in a C header file. _
#define thismod Eiffel also separates the bookkeeping concerns

from the language. These functions are provided by

3rd Edition © lan Joyner 1996

C++?? 34

the LACE language] anguage for the Assembly of logical as a real world example illustrates: imagine
Classes in Eiffel LACE is used separately to the if a dictionary was published where the keywords
Eiffel language, but is processed by the compiler tavere not placed first, but rather the entry order is -
map class names to their location (directory and file _

name in Unix style systems.) noun /obvrzen/ obversion, the act or

Java and Eiffel also remove the need rftake result of obverting

Gone is the manual dependency analysis, OSuch a dictionary would not sell many copies, unless
remembering to rerunmakemake when your the marketeers managed to fool many people that

dependencies change. the explanation of the meaning was better because
the order of layout was mysteriously magical. This
3.34 Class Interfaces example illustrates how important subtle syntax

Section 9.1c of the C++ ARM points out that C++ decisions are, and why Pascal style languages have
has no direct support for “interface definition” and ordered things contrary to FORTRAN, ALGOL and
“implementation module”. In a C++ class definition, others. The language designer must consider these
all private and protected members must be includedfivial but important alternatives. The layout of
in the public text of the class. The ARM points outprogramming entities is essential for effective
that whenever the private or protected parts aré0mmunication. The dual roles of language syntax,
changed, the whole program must be recompiled@nd programming style affect comprehension. A
Further to what the ARM says, all modules that aredictionary or index style layout suggests placing
dependent on the header file must be recompilecgntity names first, followed by their definition.
even though the private and protected members do Java obviously has to retain this problem since it
not affect other modules. Private members shoulds C based. In fact thieello world program in Java
not be in the abstract class interface, as this exposefows how putting an entity name after modifiers
implementation details to programmers of clientcan obscure the program:
modules. : N .

public static void main(...)
3.35 Class Header Declarations Eiffel mostly puts the feature name first, except for
C’s syntax for function declarations is [<type>] the frozen case, so that features are easier to find.
<identifier> (<parameters>). For (a very simple) Thefrozen modifier is not used very often though.
example:
3.36 Garbage Collection

class C One of the hallmarks of high level languages is that

{ programmers declare data without regard to how the
a (); data is allocated in memory. In block structured
b (); languages, local variables are automatically
int c (); allocated on the stack, and automatically deallocated
d (); when the block exits. This relieves the programmer
char e (); of the burden of allocating and deallocating
virtual void f (); memory. Garbage collection provides equivalent

} relief in languages with dynamic entity allocation.

, . e . In C++ the programmer must manuathanage
To find an identifier in this layout, the eye must storage due to the lack of garbage collection. This is
trace a course around the type specifications anghe “most difficult bookkeeping task C++
modifiers, which is a tiring activity. There is a programmers face that leads to two opposite
greater chance of missing the sought identifier, an‘groblems: firstly, an object can be deallocated
the programmer must resort to using tsearch prematurely, while valid referencestill exist

function of a text editor to help out. _ (dangling pointers); secondly, dead objects might
Other languages place the entity names first. Fofiot be deallocated leading tomemory filling up with

example: dead objects (memory leaks). Attempts to correct
class C either problem can lead to overcompensation and the
(opposite problem occurring. A correct system is a

a0 fine balance. This is illustrated in the figure below.

b ();

c()int;

d();

e () char;

f () virtual void;

Dangling Correct Memory
Pointers ¥ Systeml > Leaks

These problems contribute to the fragility of C++
programs, and usually result in system failure.
} Garbage-collection solves both problems, but has an
To those used to the ALGOL and FORTRAN styleundeserved bad reputation due to some early
of type first, this seems backwards. But name first igarbage-collectors having performance problems,

3rd Edition © lan Joyner 1996

C++7?7? 35

instead of working transparently in the backgroundenvironment level details, in the language itself.
as they can and should. These problems are ofteYiou can use libraries that provide access to routines
over-emphasised as a justification for C++ ignoringwritten in external languages like C. You can still
garbage collection. A possible solution is to buildwrite your low level C routines, and easily access
garbage collection into the run-time architecture, buthis level from Eiffel. The major advantage of this
allow the programmer to activate and deactivate iapproach is that all system level code is centralised
manually. Garbage collection can be disabled irin a few places, and this provides g@egaration of
systems where it is inappropriate. concerns If you have to port your system, you
In C++ it might be argued that the lack of know exactly which parts of code wilheed
garbage-collection is not an engineeringattention. System interfaces are thus provided in a
compromise. Its inclusion is nearly an engineeringset of well designed classes and routines. In C++
impossibility, as a programmer can undermine theyou can only enforce this as a matter of discipline
structures required for implementing correctly over your programmers.
working garbage-collection. While garbage-
collection might not actually be an impossibility in 3.38 Signature Variance

C++ (EC++), it is difficult, and programmers would \xhen redefining a routine, there is an opportunity to
have to settle for a more restricted way ofredefine the signature as well. There are three ways
programming. This could be a good thing. But theny |anguage can do this known as: no variance,
the compromise to remain compatible with Ccontra-variance, and co-variance. This is an issue of
becomes difficult, if the compiler is to detect type safety.

practices inconsistent with the operation of garbage-"" Ng variance means that the language does not

collection. o permit the signature to change. The signature must
[Sun 95] states that “explicit memory exactly match the signature inherited from the
management has proved to be a fruitful source Olgarent.
bugs, crashes, = memory leaks and poor contra-variance means that the signature in a
performance.” Sun have built garbage collection intoghclass can modify each argument so that it is a
Java. : . superclass of the matching parent argument. For
Bertrand Meyer lists garbage collection in his example, if you have classes A and B, and B inherits
steps to object-oriented happiness. This is Nofrom A, then given a parameter of type B in your
surprising in a language that has exception hﬁmd“”%arent, you can keep it as B or modify it to A. This
keeping track of live and dead objects is even morgpes seem counter intuitive, but there are some good
difficult, so Eiffel is also based on built-in garbage examples of where it works.
collection. _ _ Co-variance is the opposite of contra-variance.
Stroustrup is also an advocate of optionaliy the above example, if your parent has a parameter
garbage collection. In [Stroustrup 94] he statesyf type A, you can keep it as A, or redefine it to any
When (not if) garbage collection becomes gescendant of A. This is more intuitive than contra-
available, we will have two ways of writing C++ yariance. In either scheme, a compiler can check for
programs.” My question is not if or when, but how? type_safety.
Unless you restrict pointers and pointer operations,”” ¢+ and Javaffer no variance for polymorphic
garbage collection will be very difficult, and methods. The reason for this is that if you have a
probably |neff|10|ent. By inefficient, | mean either ,oiiine with a different signature, even if the
slow, or it won’t clean up very well, or even both. 5rameters of the parent and child are type
In Eiffel garbage collection is also optional. The conformant, the method overloads rather than
garbage collector can be disabled during critical reahyerrides the original method. Overloading can be a
time phases of program execution. It cannot benajor cause of confusion and errors. Many other
completely disabled, as if a program runs out oflanguages require that a redefined routine must be
memory in this state, the garbage collector will begypiicitly marked as redefined or overridden.
invoked, which is always preferable to the = "ag “stated before a simple solution to the

application crashing irrecoverably. overloading problem would be to require that
_ programmers mark the methodsverride or
3.37 Low level coding overload . The compiler could then check for

One of the stated advantages of C++ is that you catonsistency, that the parameters for an overriding
get free and easy access to machine level detailmethod are an exact, or co/contra-variant match, and
This comes with a down side: if you make a greathat for an overloaded method, the parameters are
deal of use of low level coding your programs will different. Making overriding and overloading
not be economically portable. explicit is also good documentation, as it is a double

Java has removed all of this from C, and one otheck of what the original programmer really
Java’s great strengths is its portabilibetween intended. Remember that overriding chooses
systems, even without recompilation. between the alternative methods at run-time, based

The Eiffel solution is somewhat different again. on the type of the owning object; overloading
In Eiffel you have no access to machine and

3rd Edition © lan Joyner 1996

C++7?7? 36

chooses between the alternative methods at compitbat are somewhat opposite in meaning. Pure means

time based on the argument types. something that really is what it appears to be, as in
Eiffel is an interesting case. Contrary to manypure gold Virtual means something that appears to

strong opinions and theoretical arguments in suppoite what it actually is not, as mirtual memory

of contra-variance, Eiffel chooses the intuitive co-Perhapspure virtual ~ gold is fools gold. As

variant approach, claiming this is useful in manyhas been said before, virtual is a difficult concept to

more situations. Eiffel has also implemented co-grasp. When it is combined with a word such as

variance in such a way that it is type safe. ‘pure’, the meaning becomes more obscure.
[Stroustrup 94] gives the curious tale about the
3.39 Pure Virtual Functions ‘curious =0’ syntax: “The curious=0 syntax was

hosen over the obvious alternative of introducing a

function undefined and abstract. While the concept€YWord pure ombstract because at the time |

is correct, this section shows both the syntax, an@a"(‘j’ rllo chance of gettinlg ‘EI‘ new gegwordlglccepted.
the terminology ‘pure virtual’ leave something to bead | suggestegoure , Release 2.0 wouldave
desired. A class that has such an abstract functioﬂ“'pped without abstract classes. Rather than risking
cannot be directly instantiated. A non-abstractd€l@y and incurring the certain fights oymrre , |

descendant class must define the function. The C+%Sed the traditional C and C++ convention of using
: o to represent “not there.

pure virtual syntax is: ;

Mathematically, 0 does not normally represent

virtual void fn () = 0; “not there”. Usually, 0 is just another number. Using

This leaves the reader new @++ to guess its 0 to represent “not there” leads to semantic

; - : ; roblems which lead to many interesting discussions
meaning, even those well versed in object-oriente : :
concepts. ‘=0’ might make sense for the compiler@n topics such as 3 value and 4 value logic, etc. In

writer, as the implementation is to put a zero entrQVCﬁet%erW(I)\erI’_Lthgeo a(r)(? gcc))rrlnsézt:llglitngarg?srger}tr? %veer

in the virtual table. This shows how implementation - p ”
; ; atabase world, a value is needed for “not known.
details which should not concern the programmelﬂ(0 is used for “not known,” then there is a problem

are visible in C++. if the value is known, but happens to be 0. e

A better choice would have been a keyword suc ; ;
as ‘abstract’. Abstract should have syntacticrtg;f,%rdlg agugﬁgrgg%EL?SaFf errc;rr?d I\IS?;tic():nly are

significance as abstract functions are an importanhyeyjoaded, but worse a number such as zero to
concept in object-oriented design. The C++ decisionnean ™ things that it does not mathematically
in keeping with the C philosophy of avoiding represent

keywords is at the expense of clarity. A keyword j -

would implement this concept more clearly. For_. J?va anq Eiffel use much clearer syntax. Java
example: simply uses:

Pure virtual functions provide a means of leaving i
p

abstract void fn ();

In Eiffel you specify the routine asleferred,
meaning the details of implementation are deferred
abstract void fn (); to a descendant class:

pure virtual void fn ();

or

The mathematical notation used in C++ suggests r isdeferred end

that values other than zero could be used. What |-f- and’ i ; ;
Al : - he ‘end’ might look like syntactic baggage, but
the function is equated (or is that assigned) to 13? you can specify other abstract properties of a

virtual void fn () = 13; deferred routine in the form of pre and post
L . , ._conditions.
A function is either implemented or undefined. This Eifta| uses the best terminology, ateferred

to any analyst suggests a boolean state, which @eans the implementation is deferred. A routine that
single keyword conveys. A simple suggestion t0 fiXa5"an implementation still has an abstract form.

this is to define *= 0" as abstract: The abstract definition of the routine is obtained by
#define abstract = 0 the short tool, which extracts the routine signature,
that is name, parameters, type, and pre and post
then conditions from the other details. The term abstract

virtual void fn () abstract: does not necessarily mean ‘not implemented'.

Let's look at=0 a slightly different way, as a key 3.40 Programming by Contract

phrase, or a keyword which is spelt with thea common problem programmers face is that
characters=0" . If you do that, then the objection 10 jyplementation hiding is very nice in theory, but
keywords becomes a non-issue. o often, you actually have to look at the internals of a
As for the terminology, ‘pure virtual’ is & class and its routines to determine what the class
contortion of natural language. It combines wordsgoes and how to use @ften you must examine the

3rd Edition © lan Joyner 1996

C++7?7? 37

internals of a routine before you call the routine soconstructs are inappropriate, and make adopting
that it works correctly, and to determine @sact more advanced and necessary concepts difficult.
effect after the routine has executed. The signature
specification of a routine is not enough; routines3.41 C++ and the software lifecycle
often have side effects. o The software lifecycle has attracted a great deal of
Eiffel extends the concept of routine signature:attention. It is at least generally accepted that the
what you must set up prior to calling a routine isactivites in the lifecycle are analysis of
documented as preconditions in tleguires clause, requirements, design, implementation, testing and
and the exact effect of a routine is documented agrror correction, extension. Unfortunately, the result
postconditions in thensuresclause. Thehorttool, ~ of identifying these activites has resulted in a
extracts the preconditions and postconditions withschool of thought that the boundaries between these
the abstract part of a routine signature, asctivities are fixed, and that they should be
documentation for clients of a class. Precond|t|onssystematica||y separate, each being completed
document the obligations of the caller and benefitgefore the next is commenced. It is often argued that
to the called routine, and postconditions documenis they are not cleanly separated, then you are not
the obligations of the called routine and benefits tracticing disciplined system development.
the caller: hence the term programming by contract.” Thjs view is incorrect; someone who writes a
Programming by contract is a major technique inprogram straight away is actually doing all the steps
saving programmers from having to look atin parallel. It might not be the best way to do things
implementation code, and is most important toin many circumstances, might or might not suit the
library vendors who don’t want to give away the style and thinking of different people, but this works
internals of their implementation, but do wantin some scenarios, and can be the methodology of
people to buy and use their library. choice of disciplined thinkers. While that is an
Programming by contract is not justfancy extreme example, the ideal way to work probably
documentation scheme, but the preconditions antles between that and a strictly regimented
postconditions provide run time checks to ensurenvironment that assigns different people or teams
that all units of the program are behaving correctlyto the lifecycle phases.
and thus fulfilling their contracts. This is the Some people can hold a whole problem and
mechanism that detects the run-time inconsistenciesolution in their head and work in a disciplined
discussed in the section on correctness. In Eiffelfashion until the solution is complete. Mozart is said
this mechanism is integrated with the exceptiong have composed this way, producing his taste
handling mechanism. In C++ and Java you can useymphonies in as many months in 1788. Beethoven
assertions for run time checks, but these are nabiled far more over the production of his works,
integrated into the programmers mindset as Inaking years to complete one symphony. Both
Eiffel. composers produced masterpieces. Mozart wrote
Programming by contract is the equivalent tomusic directly, whereas Beethoven wrote themes
integrated circuit specifications in the electronicand ideas In his famous sketchbooks. While
component world, and also tolerances in moreBeethoven and Mozart had their own methods, the
physical engineering disciplines. In Eiffel, the production of masterpieces depends on skill, not on
combination of static type checking with methodologies.
preconditions and postconditions, integrated with A view that is gaining acceptance is that the
exception handling form a significant way to testseftware lifecycle should be an integrated process.
that the software jig-saw puzzle fits together, andanalysis, design and implementation should be a
that the resulting picture makes sense. Thesgeamless continuum. The activities of the lifecycle
techniques significantly reduce dependence on ‘afteshould progress in parallel to expedite software
the fact’ manual testing. development. Facts found out only as late as the
Neither Java nor C++ have this mechanismimplementation stage can be fed back into the
Another interesting case is CORBA IDL, which analysis and design stages. The object-oriented
being an interface language for distributed objectsapproach supports this process. Artificial separation
contract information is important. It is a glaring of the steps leads to a large semantic gap between
omission from CORBA IDL which has glaring the steps. The transformations required to bridge
inclusions of struct, typedef, union, etc., all of whichsuch semantic gaps are prone to misinterpretation,
aren’'t helpful in a distributed object environment, time consuming and costly.
where the concept of programming by contract is We should cease dependence on testing. This is
even more important in considering how to connechot to say that systematic or even random testing by
all the system components together, and you wardgn independent test group is not important, but we
more confidence that the distributed jig-saw fitSshould rely more on better techniques in the
together. In fact this biases CORBA to C preceding phases. Software testing can never prove
implementations. The industry should stop andthe absence of error, it can only be used to detect
think, design things carefully and correctly, and stoperrors if they are there.
designing things to look like C. So often C The same people should be responsible for all
stages, so that they take responsibility for the system

3rd Edition © lan Joyner 1996

C++7?7? 38

as a whole, rather than passing the buck and blame Eiffel is specifically designed around the
which occurs when analysts, designers andlusterfall model of the project lifecycle. In this
implementors are different groups. This is not amodel, several subparts of a project may be in
popular view in traditional hierarchical managementdifferent phases at any instant. It also recognises that
structures where organisational structure is prizedeedback occurs from later phases to earlier phases.
over quality and programmers get promoted toEiffel itself is quite a good specification language.
designers who get promoted to analysts, andts assertions and invariants are something like you
managers stay aloof from the technical process, justould see in a formal specification language like Z.
making sure the old structure is maintainede@n While not as comprehensive as Z, Eiffel's
worse, those who become analysts, designers argpecification mechanisms suffice in most cases.
managers have little knowledge or experience ofBertrand Meyer was involved in the early work on
programming and large scale software engineeringZ). Thus you can use Eiffel as a documentation
Since the second edition of the critique, Scottlanguage in phases as early as analysis. The problem
Adams’ Dilbert comics have become widely known of different notations in different phases, and error-
as accurate comments on such organisationgirone translation between them is removed.
problems. Hierarchical management discourages The mechanism that Eiffel includes tmease
people from feeling responsible for a product. Thisdependence on testing is the assertion mechanism,
culture must radically change if ware to produce integrated with exception handling. Organisations
quality systems. will find it difficult to make significant progress
We should have learnt from the extremes oftowards the higher Ilevels of the Software
SA/SD. Some quarters believed that methodologyEngineering Institute Capability Maturity Model
was all important, while programming and (SEI CMM) until techniques such as this in Eiffel
programming languages were unimportant. Arcanere in widespread use.
and machine-oriented programming languages Eiffel is also integrated with a graphical CASE
strengthened this attitude, concentrating on theool called BON (Business Object Notation) for
‘how’ of computation, whereas the modellersthose who feel more comfortable with classification
correctly demand notations that express the ‘what'and component relationship diagrams. Most
in order to be implementation independent. Aimportantly, Eiffel and BON are based on the same
modern software language supports the integrationnderlying abstract concepts. Eiffel can be generated
of the activities of design and implementation byfrom BON and vice-versa. This means you can
being readable, and problem-oriented. A languageasily “reverse engineer” your text, but the major
should be as close to design as possible. The needdvantage is that your diagrams and your text are
and requirements of an enterprise can change mueiways synchronised. There is no costly
more rapidly than programmers can keep upmaintenance when your program changes, and
especially in a highly competitive and commercialdiagrams have to be updated to reflect this fact.
world. Thus Eiffel is a step towards seamless software
So how does C++ fit into this picture? Well it is engineering.
based on C that was designed mainly as an
implementation and machine-oriented language. It i8. 42 CASE Tools

an old language, that did not need to consider th¢ne previous section raises the question of CASE
integrated lifecycle approach. C++ might have somggo|s. [Madsen 93] has a good discussion on
of the trappings of object-oriented concepts, but it '(%raphical notation (18.8). BETA is a language that
an uncomfortable marriage of a problem-orienteccan be used for analysis, modelling and design. To a
technique with a machine-oriented language. licertain extent, this comes with any language that
addresses implementation, but does not addresgpports classes, as these are the elements of OO
other aspects of the software lifecycle so well. Sincenalysis and design, but it is important to develop
C++ is not so well integrated with analysis andihe [anguage with analysis and design specifically in
design, the transformation required to go frommjng.
analysis and design to implementation is costly. you are using both graphics and textual
There is a large semantic gap between desigfotations, it is important that both are based on the
languages and the implementation language. same underlying abstract language: text and
We should have learnt from the structured worldgraphics should represent the same concepts. A
that this is the incorrect approach to the sqftwarq%]ajor problem with SA/SD was the graphical
lifecycle. But in the OO world ware again falling notations and programming notations were so far
into the trap of dividing the lifecycle into artificially apart that costly and error-prone manual translation
distinct activities of OOA, OOD and OOP, insteadyas required between the two. Unfortunately, this
of adopting an integrated approach. Modempas set up the precedence in peoples minds that

languages provide a much more integrated approachyaphical and textual notations are necessarily far
to the complete software development process tha

) ! art, and are surprised to see how close these are in
C++. C++ supports classes and inheritance and oth?g

. : . : od object-oriented systems.
concepts of object-orientation, but fails to addres It should not be thought that graphics are high

the entire software lifecycle. level, and text is low level; that is the nature of

3rd Edition © lan Joyner 1996

C++7?7? 39

abstractions, not the tools or notations. In fact itanguage must be based on the same abstract
should be pointed out that text is a highly evolvedconcepts.

form of graphics; both forms of information enter

our brains through our eyes Because of the nature gf43 Reusability and Communication

graphical notations less detail can be shown. Wiﬂheusability is a matter of communication
an integrated editor detail in text can be suppressed. Clear communication is a courtesy éoncern In

In identifying classes during analysis, it really rd
: ! er to use a software component, you must be able

makes no difference whether you document them a2 <25 *Te uriter must communicate the
a series of graphical boxes with class names in thg,, o5 “intent, and correct usage of the component
middle, or a textual list of class names. In fact many,"e"client. In'the object-oriented world, clear and
people will find the list easier to work with afader o, ciqe definition of software modules is nahere
irr?taeorl'ch ;ﬁt e%rt]))lle stﬁ]ge s (;[R]ee n(%tgélgnsih eShOLr‘;d hité;rﬂcety, but essential for reusability. Arising out of

-nangeapie. . _grap e iSsue of reusability is extendibility. In order to
notation will abstract away details, Which is an ayimise the reuse of software, it must often be
advantage, when you don't want to see the detail ’

: . ailored for new applications. The client programmer
As you add details though, graphical forms becom ust decide whether a software component is

unwieldy, and text is easier to manage.,, : :
Unfortunately, many sectors of the industry haveélsvlg;agee;?én% ﬂgw task, and if so, what is the best
h :

become convinced that graphical forms are mo Communication is aided by having integrated

Ig;rpgéua}cglerﬁtssu't in magically better designs tha ext and graphics environments, where the concrete
- : . . anguages of both are based on the same underlying
Graphics and text are best in an integrate bstract languages, or object models.

g%\grrgrr‘rznggt' aAst grt[(i)ngg;ag]ori?ﬁr IiTgyGB?Vf?I o ai Cg:]afSCorpmunication is also dependent on clear and clean
: . ' . syntax.

Selecting a class will expand the class so that thaY :

: ; As C/C++ suffer from arcane and cryptic syntax,

interface of the class can be seen. At a differen does not support the goal of clear communication,

level, internal features of the class might be seer. A
Eventually, a level where text is seen is reached, Java cleans up a fair bit of C/C++. The mess that

The major failing of most CASE tools is they do not 'S caused by the preprocessor is removed. However,
support this level of seamless integration. For the)ava still suffers from some of the deficiencies of C
most benefit they should flow into the programming'n this regard. . . o
language. So called ‘visual' environments do litttle . Eiffel has been designed with communication in
better than putting program text in a GUI window. mind, and is not bound by the shackles of C syntax.
Why bother with graphics then? For the simple!t borrowed from the clean syntax of Ada. Along
reason that looking at the same problem in differenfVith the —Eiffel syntax were designed —style
ways aids understanding. It is also a matter of tasteg_wdellnes, so the Eiffel syntax lends itself to a clear
Some people will find they understand graphicsSY!€: L
better, and some text. It is a good idea to cater for, Eiffel also has uitilities likeshor, where the
options, in which case everyone will end upth€ full details. o _
speaking their own language, and there will be no Eiffel provides an extra significant mechanism,
effective communication, a tower of Babel. But thisthat of integrated assertions. The short tool will
has already been the case in the industry, as desig¥tract the assertions with the interface descriptions.
methodology notations are far apart, with the'his has been described in the section on
analysts/designers not wanting to read programdg}rogramming by contract. Programming by contract
and programmers not wanting to read structurd€lps _decide whether a class is useable in a new
charts and data flow diagrams. situation, and then how to use it, so this is an
A common design method with C++ is to useimportant tool for communicating the purpose,
OMT (UML) or some equivalent methodology. Intent and correct usage of a software module. Thus
However, the object models are different as theSSertions are very much a courtesy concern.
graphical and textual languages are not based on the Reusability is well supported withclear
same underlying abstract language. Thus there is @mmunication in Eiffel.
semantic gap between the text and graphics. This
results in more costly and error-prone developmenB.44 Reusability and Trust
But then as the OMT people have said “Eiffel isReusability is a matter of trust.

arguably the best commercial OO language in terms yjiding trustworthy components is a safety
of its technical capabilities.” [RBPEL91], p327. The concern. Trust results from confidence that safety
than C++.))) confidence in a software component, then you won't

In conclusion, if CASE tools and graphical want to reusét. You could doubt that theoftware
notations are to be of use, they and the programmingomponent provides enough functionality, or correct
functionality. You could doubt that the component

3rd Edition © lan Joyner 1996

C++?2? 40

is efficient enough, or worse it might fail. As so This can be solved in two ways: firstly, a library

many traps in C++ result in ‘bugs’, it is difficult to vendor could provide the entire source of a library

trust a software module, so it is less reusable. so it can be compiled with the customers compiler;
In the real world of reusability, the ideal of if the sources are proprietary the vendor will need a

trusting programmers is inappropriate, and results igeparate release for every environment, and every
less trustworthy software; in reality, customerscompiler in that environment. _
doubt the claims of suppliers. It is the onus of the Because of this problem a strong case exists for
supplier to prove their claims, and thusa universal intermediate machine readable
trustworthiness of the software. The client is notrepresentation of programs. Interestingly, some
required to trust the supplier's programmers.systems are already using C as a ‘universal
Potential clients of a software component, requireassembler’, notably AT&T C++ and Eiffel. But this
assurance that the component is trustworthy. cannot solve the above problems of compatibility

Trusting programmers is against the commerciaPetween components without a standardisation effort
interest of both parties. This is not to cast dispersio®n run time layouts and name encoding schemes.
on programmers, but merely recognises that An important feature of Java is that it is
computers are good at performing mundane taskarchitecture neutral as Java compilers produce byte
and checks, but people amet. If peoplewere good code instructions for a virtual machine. Java
at such things, we would not need computers in th@rovides a “universal intermediate machine readable
first place. representation of programs” as | called for in this

Even though you might not trust your Papers second edition.
programmers, this ‘is not an excuse to employ Eiffel implementations provide a high level of
anything but the best skilled programmers, andsource code compatibility. However, the generated
programmers should also be given the best trainingz from different implementations can have different
Consider a Stradivarius violin: it will sound bad in object layouts. Thus a class library will have to be
the hands of a bad violinist. But a good violinist will recompiled if it is to be used in a system compiled
insist on a Stradivarius, rather than a cheap branwith a different vendors implementation.
where he won't sound his best. In computing, we Another form of incompatibility between
frequently argue whether it is the tools or thelibraries is incompatibility of type definitions. A
programmers. It is a combination of the two; if glaring example in C++ is the number of ways the
either is lacking, trustworthy software will not simple typebooleancan be defined. For more on
result. this see the section on booleans.

Java “eliminates entire classes of programming
errors that bedevil C and C++ programmers” [SurB.46 Reusability and Portability

95]. This means that you can better rely ongince true OOP ensures that objects are loosely
externally developed Java packages. coupled to the external environment, portability to
Eiffel also is not bedevilled by the same classesjiverse environments is possible. C is highly
of errors. Thus you are more likely to producecoupled to Unix style environments, and as such is
software that can be used in other contexts, and bot particularly portable to diverse environments.
able to find software that can be reused in your java is also the winner in this category, due to
context. _ _ its virtual machine, and removal of pointers. Eiffel
Eiffel assertions are also important here. Ascode is also highly portable, but you are currently
assertions are checked at run time, they ensure thagnfined to systems where Eiffel compilers exist of
the software is working correctly, so the level of which there are many. Amost Eiffel compilers
trust in external components is higher, and you reusgenerate C, you can port the generated C to

them with more confidence. platforms where there is no Eiffel compiler. With
Java, only a virtual machine interpreter needs to be
3.45 Reusability and Compatibility available on the system in order to run Java

Different compiler implementations need to beprograms.

compatible in order to realise reusability between As the Java virtual machine seems to be
libraries and components. Different C++ compilerssufficiently semantically rich, it could be that other
generate different class layouts, virtual functionlanguages target the Java virtual machine, and that it
calling techniques, etc. The name encoding schemdsecomes a universal machine code. Such a marriage
used for type safe linkage can also be different. linight not be as easy as it appears, if the object
two different compilers generate different run-timemodels of different languages are sufficiently
organisations, then different name encodings areifferent from the Java model. Sun does seem to
desirable as it will prevent two incompatible have kept the virtual machine independent of
libraries from being linked. The C++ ARM (p122) physical object layout, and any assumptions that
states: “If two C++ implementations for tleame would make this too hard.

system use different calling sequences or in other

ways are not link compatible it would be unwise to

use identical encodings of type signatures.”

3rd Edition © lan Joyner 1996

C++7?7? 41

3.47 Idiomatic Programming resources. Keeping all processors busy is an
The ability to program in different idioms is argued inherently dynamic problem, which the programmer
as a strength of C++. Idiomatic programming, cannot determine statically at compile time. All the
however, is a weak form of paradigmatic Processors can be kept busy, as long as there are
programming; it is programming in a paradigm €nough threads in the system. _ _
without necessarily having compiler support for that In concurrent programming, a thread is a unit of
paradigm. The compiler cannot check forsequential execution. Concurrency is achieved by
inconsistencies with the idiom, or paradigm. Definesthe splitting of threads. A thread can be split when a
can often be used to invent idioms. Anyone who hastate changing routine is invoked, but not a value
attempted to do object-oriented programming in aeturning function, because it must wait for the
conventional language using defines will realise thavalue. State changing routines can easily be invoked
it is impossible to realise the benefits easily, if at all,on another processor. Object level granularity seems
without compiler support. to be a natural candidate for concurrent processing.
Both Java and Eiffelare strongly object- An object can have only one update thread at a time
oriented: the idiom is OO. You don't have to bring to avoid simultaneous update problems. Other levels
together various sub-projects each of which migh©f concurrency are instruction level, and task or

have used their own favourite idiom. process level. Task or process level is the level used
in conventional multi-processing systems currently
3.48 Concurrent Programming commercially produced, and instruction level is

: ; ; uite difficult, best left to instruction pipelines.
The object of concurrent programming is @hatq Object level is natural for the r%prammer and
compuf[lng resgijrces Ct%n tbe har?desset(r:i] to efﬂmeg tlp{as thé advantage that a program?ne?j can imp’lement
compute problems at would otherwise be h ; :
|trr1]eff|C|ert1ttto compute uiynlg a single processor.trllr;;roscfétsei;ng \ell\{tltg(l)IUtngklsr;gmem;g?ogar;?uvr\)ﬁ| I?L?r:agﬁld
e next ten years multiple processor arrays . all . .
execute programs concurrently will likely become prociluce identical results |rre_sp(|ect|ve of whether the
common. Concurrency requires much cleanelcugc‘é?SeOrr Isarrr;;nm'%hig %Lg%e tﬁéociiggrré rr?rgle?
Itagguages, than the single processor languages ancentrates on the model and design of the
oday.
; ; roblem, not on deployment concerns.

Object-oriented concepts support concurre_mp Side effects rr?us)t/ be avoided in concurrent
prc()jgrar_nréung. gbjﬁds (f:an eﬁecuiﬁ stat(e: Cham‘:]mgystems Suppose a computation depends on
code independently of each other. Concurren A .
programming il be enabled by he diviion of the COMEINNY e esule of o nclotands, suer
state space of a system into modules to achieve e -
ngh degree of ndopendent processing. Object€0ine parameters can be compuied concurenty,
(pj)rowdedat?]cr;eme totﬁ_leanlg dl\é[d_edsgat(_a ?palces. T effects. Iff andg are independent, then they can be
eman at everything be divided into loosely - ’ :
defined interfaces might be perceived as inefficient, dall g dep » ey P
but it is precisely this scheme that will mean that>€duentiaty.
concurrent solutions can be developed efficiently C*+ does not preclude the use of a global
and transparently to the programmer. environment. Access to shared global data

Concurrency should be transparent to thaPotentially causes a thread to lock, and if many such
programmer, as concurrency is a low level2CCeSSes oceur, the advantage of concurrency is lost.
implementation consideration; concurrency is how al NiS i because updates to a global environment are
computation is done, not what is to be computedSide €ffects. Programming in such an environment
However, there are examples where concurrency i£duires complex locking mechanisms to ensure that
manifest in the problem domain, such as manyfings happen in the correct order. Locks are rather
simulation problems like multiple queues, for K€ waiting for a plane to take off when it has to
example check-outs in a supermarket Thewait for another connecting flight. This cannot be
implementation issue of concurrency is how entirely avoided, but should be reduced as much as
processes are allocated to processors. Theossible. . . .
programmer should not be concerned with this, |t might not be impossible to implement
rather what is to be computed, not how. HowConcurrent processing in C++, but it is difficult as in
something is computed is the concern of the targef@ny ways C++ is not suited teoncurrent
environment, ie., the compilers, operating systemProcessing.
and hardware. ~Java provides threads. It also removes C features

The aim of concurrent processing is to keep allike globals that are problematic to concurrency.
the processors in a processor array as fully utilised Eiffel has a recommendation [Meyer 96c] that
as possible, so that processor resources are néxtends Eiffel with a single keyworseparate to
wasted. There is nothing more mysterious toProvide concurrency. Both Java and Eiffedve

concurrent programming than the efficient use ofsimple concurrency mechanisms due to their cleaner
base than C++.

3rd Edition © lan Joyner 1996

C++7?7? 42

3.49 Standardisation, Stability and and environment, and ISE has announced version 4
Maturity of its environment, which addresses many issues
Object-orientation is now nearly 30 years old, sincghat users did not like previously, and now includes
Simula 67. Smalltalk is about 20 years old, Ada 95menus and other facilities, which gives it a more
is only one yeaold, but based on Ada 83, which is Macintosh/Windows look and feel. SIG Computer
about 13 years old. C++ is 13 years old. Eiffel is 10has also announced ifgisual Eiffel for release
years old, and Java is just one year old. October 1996. There is also an independent
The age of a language does not relate to it§xperimental version known as SmallEiffel, which
stability and maturity. Java is the youngestcan be downloaded for free. _
language, but Java appears to have a well thought Another problem that Eiffel has had is the lack
out and stable language base, also having @f titles. [Meyer 88] is the classic book on OO,
comprehensive set of OO libraries. Thus Java is offiowever, it is based on Eiffel 2.0, not version 3.
to a good start, but only time will tell. It already hasMeyer’s next book “Eiffel: The Language” [Meyer
quite a number of books. 92] is the language lawyer's reference, but it is
Ada 95 is one yeaold. But that is oneyear Possible to navigate for an overview. However, there
since the standard was ratified, so it is a good dedfe now over ten titles on programming in Eiffel,
older than a year. Ada 95 is the product of arduite a few of which are used to teach university
ISO/ANSI/DoD standard. Thus Ada 95 vendorscourses on OO. _
have a very stable base from which to implement. Smalltalk is now a widely used language, and
This gives Ada 95 a good start over other language$ias proven to be very effective in some
where there might be implementations, but they ar€nvironments. Different implementations of
shooting at a moving target. Smalltalk do not share libraries, and do not
Eiffel is not subject to the ‘formal’ ISO/ANSI| Interoperate.
standards; it has its own non-aligned standards body Out of all the languages here, C++ although 12
NICE (Non-profit International Consortium for years old, provides the fastest moving target for
Eiffel). Eiffel is now in its third incarnation, Eiffel 3 vendors. It is claimed to be standardised, as it is
that is fully described inEiffel: The Language subject to ANSI/ISO standardisation, but this work
[Meyer 92], the Eiffel equivalent of the C++ ARM. is still very much in progress. You can check status
However, the definition of Eiffel 3 has been very of the standard on the X3J16 WEB page in the
stable since 1992, requiring only a few extra validity WEBIliography). The number of issues to be
rules, and small clarifications: Eiffel is probably the addressed by the committee keeps increasing, rather
best designed language ever intended fothan decreasing. C++ was submitted to the
commercial use. The largest change to the languaggiandardisation process too early, and the committee
is now under consideration, which is to add thehas had to do too much design work that should
separate keyword to allow support for concurrent have been done befo@++ was submitted to the
and distributed processing. This will naiffect standardisation process.
existing programs, and early releases of The committee hopes to progress the standard to
implementations with this mechanismre now CD (Committee Draft) this year (1996). The FAQ
available. Eiffel also has a standard library. Theshows a timetable which will produce an IS by
standard library is more changeable than the baseecember 1998 (see WEBIliography:
language, but is also under the control of NICE.http://reality.sgi.com/employees/austern_mti/std-
Thus Eiffel has attained a great deal of maturity ovec++/faq.html#B8). After IS is achieved, it will
10 years, and the standards are very stable. Thjmobably be several more years before a significant
gives Eiffel a considerable advantage in thathumber of vendors are fully compliant. By that
libraries are much easier to update to address nestage, users will probably be clamouring for more
and changed requirements than compilersfeatures and fixes to old problems. | have already
Therefore, Eiffel should evolve more quickly into heard stories of C++ tool vendors complaining that
new problem domains, without the traditional the standard is too horrendous to understand, and
resistance from compiler vendors. then to implement anything compliant.
The most serious problem that Eiffel Hased Standardisation should stabilise the specification,
in the past was stability of implementations. Asbut C++ has continued to become less stable. The
Eiffel is an ambitious language and environmentfact that the C++ standard is so unstable indicates
many new and difficult concepts have beenthat the C++ committee realises theaee many
pioneered and made into industrial strengthshortcomings in C++ that they must rectifyhere
packages. Eiffel is very demanding on compilersare many flaws that the committee knows about that
which need to do things like global analysis, whichl do not cover in this critique, but also many of the
is an issue that C++ conveniently avoids. Eiffel doedlaws that are covered in this critique, the committee
not concede to compromises which place burdens opave no intention of addressing, as that would break
the programmer in the same way that C++ does. t00 many existing programs and C compatibility.
However, stable forms of Eiffel environments In the preface to [Stroustrup 94], Bjarne
are now becoming widely available. In 1996 TowerStroustrup writes “C++ is still a young language.
Technology has released version 2 of its compileSome of the issues discussed here are yet unknown

3rd Edition © lan Joyner 1996

C++7?7? 43

to many users. Many implications of decisions3.50 Complexity
described here will not become obvious for years tdhere are several kinds of complexity. This critique
come.” focuses mainly on the complexity of the C++
Coming to consensus in the C++ world is alanguage itself. When considering complexity, one
difficult task. [Stroustrup 94] states this frustration needs to consider the complexity of the development
as “Dealing with stubborn old-time C users, would-task as a whole. The complexity of the language
be C experts, and genuine C/C++ compatibilitymight only be a small part of that.
issues has been one of the most difficult and Apart from the language, we need to consider
frustrating aspects of developing C++. It stillis.” the programming environment, that is editors, tools
Many comments in [Stroustrup 94] show thatfor example make, etc., the methodologies and
C++ is still a moving targetGarbage collection is tools, and the supporting libraries.
mentioned as “when (not if)”. Thus when GC is With C++ the conventional wisdom is often to
fitted to C++, developers will bfaced with quite a use a methodology such as OMT. Here the concepts
transition in paradigm. All of this uncertainty in of the methodology do not exactly match the
C++ might keep the programmers busy, after allconcepts in the programming language. Thus you
many of them want to code exclusively in C++, have a semantic gap, where translation must occur.
while ignoring all else; but it will be very costly for This translation is costly, and frequently ends in

the companies that are locked into C++. specifications that do not match what was eventually
There arestill unresolved things the X3J16 implemented.
committee must sort out, especially in Hrea of C Both Eiffel and BETA see it as important to

compatibility. [Stroustrup 94] says “The develop their methodologies and graphical notations
“compatibility wars” now seem petty and boring, based on the same underlying concepts. The
but some of the underlying issues are stillimportance of this integrated approach should not be
unresolved, and we astill struggling with them in under-appreciated.
the ANSI/ISO standards committee. | strongly As for environments, [Stroustrup 94] has the
suspect that the reason the compatibility waese following to say: “Every language in nontrivial use
drawn out and curiously inconclusive was that wegrows to meet the needs of its user community. This
never quite faced the deeper issues related to thRvariably implies an increase of complexity. C++ is
differing goals of C and C++ and saw compatibility part of a trend towards greater language complexity
as a set of separate issues to be resolve@ deal with the even greater complexity of the
individually.” Since C compatibility results in so programming tasks attempted. If the complexity
many problems, serious consideration should beloesn't appear in the language itself, it appears in
given to this basic tenet of C++. libraries and tools. Examples of languages/systems
The C++ community seems to think using athat have grown enormously compared to their
fundamentally flawed tool is acceptable and that th&impler origins are Ada, Eiffel, Lisp (CLOS), and
rest of the world must wait for them to straightenSmalltalk. Because of C++'s emphasis on static type
these issues out, which in many cases isw#n checking, much of the increase in complexity has
possible. It is also a hidden cost to companies thadppeared in the form of language extensions.”
their programmers must continually keep up to date, “C++ was designed for serious programmers and
and abreast of the arguments for and against certajjtew to serve them in the increasing large and
constructs. Many other languages have solved thesgsmplex tasks they face.”
problems. _ _ _ _ P.J. Plauger in [Plauger 93] argues that the
As a postscript to this section, | will remark that complexity of C++ has put it on par with PL/I, Ada
a lot of argument for or against particular language$g3) and Algol 68. He does noaccept the
seems to come from people who believe that thereomplexity in C++ as a good thing. Criticising the
will be an eventual winner in the evolution of complexity of Ada is somewhat unfair. An amount
languages, and they want it to be their favourite, s@f Ada’s” complexity is due to its support of
will fight for dominance. | can see no evidence thatmultitasking and real-time programming. Simula
this will happen. | think new languages will also has facilities for co-routines and processes, and
continue to be invented: some will be based omda and Simula are reasonably unique for their
continuing mistakes from old languages whileinbuilt support of these facilities.” In the 1980s, the
adding new features for compatibility; others will need for such facilities was not widely recognised.
avoid previous errors while adopting new However, the need for concurrency and distribution
paradigms. | can't see that the programmingis now becoming recognised.
language world will ever become stable. If people in another feature of Ada that might contribute to
the industry can accept that, then we Wikive the perception of complexity is genericity. Again the
programmers that are more amenable to changeharge that this makes the language over complex is
language, being able to use the language that is beshsed on not understanding genericity. have
suited for the purpose, and the maturity of languag@iready covered this topic in the section on
criticism will improve, as we see each language as gmplates. Thus Ada has been criticised for being

gﬁgsgggcghase, to which we owe no long termcomplex, but most of this criticism is due to not

3rd Edition © lan Joyner 1996

C++?? 44

understanding essential features such as genericity C++ can to some extent be extracted from the
and concurrency. complexity of its environment. But as long as the
Many C programmers have been guilty of mechanisms of #include persist, the
dismissing features they don't understand agnvironments that C++ is ported to will have to
complexity, and Ada has been a favourite target. Rdapt to the C/Unix way of doing things. Where the
am not saying that Plauger is in this category, as henvironment is separate from the language, there is
makes some valid points about Ada. But theno enwronmenta}l _adaptatlon that needs to be done,
accusation of complexity against Ada should not beand less retraining of programmers faach
overstated as it has too frequently emotionbthgn environment they need to program in.
in the past. In the computing industry, there is a low | can accept thaC++ was designed for serious
level of understanding and experience that one mugirogrammers. However, Ada 95 and Eiffel are both
have before becoming and expert or vocal criticdesigned for the serious software engineer. (Java
particularly of languages like Pascal and Ada. remains to prove itself in this arena.) Eiffel in
C++’s complexity is not solely due to static type particular shows that complexity can be dealt with
checking. Eiffel is more strongly type checked thanin a serious industrial strength software engineering
C++, but doesn’suffer from the same complexity environment.
problems. Complexity is not the necessary companion of
As for the environment. The burden of seriousness. This does not ignore the complexity of
environment is far less for the cases of Eiffel, Javany application domain; in fact it enables you to
and Ada 95. In Eiffel, a separate simple languagdocus on the complexity of the programming task in
exists, LACE to specify to the compiler how to hand, not on the complexity of the tool.
compile the program. This contains such things as
environment variables, debug and other options, et@.51 C++: the Overwhelming OOL of
It also provides the basis feeparation of concerns Choice?
so that environmental details are completelyThis headline comes from Cutter Information Corps
removed from the Eiffel language. Eiffel is also “Opject-oriented Strategies” May 1996 edition.
integrated with complete editing and developmentBased on their findings, C++ accounts for 80% of
environments. _ all OOLs, with Smalltalk running a distant second at
Java has removed such environmentalll%. They claim that in 1995 OO software
considerations aginclude and make. Edmond development products hit $1.3 billion. However,
Schonberg writes that the environmental baggaget's examine how C++ is used: many C
for Ada and Ada 95 is far smaller th&w+ (see programmers have not wanted to touch C++, but
WEBIiography for his Ada contrast to C++). they do use a C++ compiler to compile their C. This
The Eiffel libraries are very large and greatly exaggerates the market penetration of C++
comprehensive; but this only reflects the richness oand the size of the OO market, so it is impossible to
data structures that exist, and the number otletermine the true market penetration of OO. You
application domains. Eiffel libraries are available forare not doing OQust because yoare compiling
networking, compiling and parsing, Windows with C++.
programming as well as platform independent user Microsoft and Borland have put most of their
interfaces and many other things. The Eiffel librariesdevelopment environment energies into C++, so this
simplify naming complexity by standardising the makes it attractive to buy a C++ environmeawen
vocabulary between classes. For exampla, is if you arejust programming C. Probably the true
used to enter an item in any collection data structuraumber of C++ installations being used for OO
like ARRAYLIST, QUEUE, and everSTACKwhere would be between 10-50%, which cuts down the
the routine would normally be namegulish The size of the OO market by a large amount, the size of
libraries enable the complexity of specific domainsC++'s predominance in that market, and means the
to be removed from the language, which is simpleother OOLs in the market have a much higher
and yet general purpose. significance than Cutter makes out. Smalltalk and
Smalltalk also has a large library, which extendskiffel are pure OOLs, so every one of their sales you
an otherwise small and simple language. Classesan count as an OO installation, whereas the same is
that a programmer adds also become part of theot true of C++. Measured C++ sak@® riding on
Smalltalk environment. C's success. C++'s success is less than
Java also provides a comprehensive library toverwhelming. It is a marketing success, rather than
deal with many aspects, including java.net, java.aw@a technical or programming success. Companies
(abstract windows toolkit), etc. Eiffel, Smalltalk and using C++ are paying for it with longer cycle
Java do not ignore the issue of complexity; they putievelopment times, and less reliable end product.
it where it should be: in the libraries. In terms of One way a manager might perce@®@e+ to be a
complexity, they implement Stroustrup’s principle winner is the sheer number of books one sees in a
that “what you don’t use, you don't pay for.” In bookshop on C++. This is matched by hage
C++ you pay very much for complexity, as it is in number of courses. An observation about the nature
the language. of many of these books is that they are often titled
something like “How to build a widget in C++,” or

3rd Edition © lan Joyner 1996

C++?2? 45

“Compiler Construction in C++.” “Booksappear 4. Generic C Criticisms

like mushrooms after rain” [Plauger 93]. These criticisms apply to the C base language, but in
The mushrooming book market is a great boorgeneral adversely affe€++. R.P. Mody{Mody 91]
for publishers, as it implies that for every possiblegives an excellent general criticism of C. Mody says
software artefact you can build, they can publish &hat to properly understand C you must understand
book about it in every possible programmingthe insides of the compiler, giving many examples
language. All you really need is the booksof how C obscures rather than clarifies software
“Programming in C++” and “How to build engineering. He concludes that he is “appalled at the
widgets,” or _ “Compiler Principles and monstrous messes that computer scientists can
Construction.” Then your programmer needsproduce under the name of ‘improvements’. It is to
experience, lots of it. Don't be fooled by this trick to efforts such as C++ thathlere refer. These artefacts
get a high title count. are filled with frills and features but lack coherence,
Many C++ booksare on how to avoid the traps simplicity, understandability and implementability.
and pitfalls, and develop rigorous coding standardslf computer scientists could see that art is at the root
which might appeal to management as the solutiomf the best science, such ugly creatures could never
but they don't solve the root cause of the problemtake birth.”
Making sure everyone is well trained and versed in
these style standards is an expensive and usually1 Pointers

i(?_ﬁffectitve band-aid Whagari etspetcia(ljly dwher pointers are a low level mechanism that should
Iierent companies have difierent standards angi pe the concern of programmers. Pointers mean

expectations, so you need to refrain every NéWhe nrogrammer must manipulate low level address
recruit, who will probably decide they don't like achanisms, and be concerned with Ilvalue and
your way of doing it anyway, and leave after a short,,o,e semantics, which are machine oriented and
period. Of course you can satisfy yourself that his,o¢ hroblem oriented as you would expect of a high
dissatisfaction was due to his inappropriateness fojge| |anguage. A compiler can easily handle such
your organisation, which is better organised thangg,es” without loss of generality or efficiency.
most. After all, youare 1ISO 9000 accredited and are vjemory models of different environments often
turning out a very successful line of ‘concrete life- g¢tact the definition of pointers. Memory model
jackets’ (a Tom Peters quote). _ details such as near and far pointers should be
[Sakkinen 92] observes the “Endemic C++transparent to the programmer.

Culture.” He notes that too many COUrSes ON The programmer must also be concerned with
“design” have the appended clause “with C++.” ThiScqrract " dereferencing of pointers to access
is because C++ has its own curious terminology eferenced entitied)se of pointers to emulate by

which is in many ways different to the rest of the afarence function parameters are an example. The
OO world. He makes a case that concepts ag_g}ogrammer has to worry about the correct use of
principles should be taught, then how to map thenggs 34 *s. (See the section on function parameters.)

onto any particular language. Pointer arithmetic is error prone. Pointers can be

Of course books are aimed at differenti,cromented past the end of the entities they

audiences: professiqnals versus those who JUSbference, with subsequent updates possibly
program for a hobby; those who have an academicqnting other entities, which is a major source of

interest in languages; implementors of compilerspe \indetected inconsistencies, which result in
and other language processing tools, wieed opscyre failures, discussed in the section on
formal non-ambiguous statements about how theqgrrectness. In ‘the STL library, iterators are
language works; beginners versus those for whomi,oyided as the generalisation of C pointers for

this is their fourth or fifth language. C++ should not ;-ess to elements of structures such as arrays
be for beginners, as it is better to learn the principles '

from a clearer language than be confused by what aBoi Programmers can by-pass_encapsulation with

- - nters; C undermines OOP by providing a
the syntacticknobs and dials and superfluous ! - AP
constructs do in C++. mechanism where state outside an object's

A f Cit h difficul boundaries can be changed. Since pointers are
S Tor courses, as proven so difficult t0nyringic to writing software in C thiexacerbates
learn that you need lots of courses. Not only do yol:e problem. Pointers as implemented in C make the

need to learn the language, but the complexities ghiroquction of advanced concepts like garbage
the environment add an even more substantial,ection and concurrency difficult.

overhead. It will probably be best to start on C++ Another consideration is that dynamic memory

with a course. However, with simpler languages. plementations vary between platforms. Some

such as Java and Eiffel, buying a good book, ang .t - -
- - R : nvironments make memory block relocation easier
self experimentation will quickly cover every aspect y having all pointers reference objects via a master

of the language. It is a bonus if you can get a course.”. - :
e - ointer which contains the actual address of the
but it is not essential to get started. block. The location of the master pointer never
changes, so relocation of the block is hidden from
all pointers that referencé. When the block is

3rd Edition © lan Joyner 1996

C++?2? 46

relocated, only the master pointer needs to be upsoftware. This compromises safety and undermines
dated. the semantics of an array declarati@n, an array is

On the Macintosh, for example, the doublea particular size, and can only be indexed by values
indirection mechanism of ‘handles’ facilitates within the bounds of the array. The array size might
relocation of objects. Object Pascal makes handlesot be determined at compile-time, but dynamically
transparent to the programmer. This is similar to theat run-time. An index to an array is a parameter in
Unisys A Series approach where objdescriptors the domain of the array function. An index out of
access target objects via master descriptors that stop@unds is not a member of the domain, and should
the actual addresses of objects. On the A Series thide treated as severely as divide by zero. But in C
is transparent to programmers in all languages, athis is another significant source of undetected
this transparency is realised at a level lower tharinconsistency, which can result in obscure failures.
languages. The A series descriptor mechanism also C has no notion of dynamically allocated arrays,
provides hardware safety checks that mean thawhose bounds are determined at run time, as in
pointers cannot overrun, and arrays cannot b@&LGOL 60. This limits the flexibility of arrays.
indexed out of bounds. C cannot be implemented’ou cannot resize C arrays. Multidimensional arrays
particularly well on such machines, as C's pointerare only really one dimensional. You cannot
mechanisms are lower level than the targeindividually resize the rows of a multidimensional
environment. array. The C definition of arrays compromises both

Simpler environments might not provide object safety and flexibility.
relocation, so double indirection would be an There are many ways you can undermine arrays
unnecessary overhead. In order for programs to b@ C and C++, as aarray declaration is really just
portable and efficient in different target equivalent to a pointer. The following example
environments, such system details should be theomes from [GWS 94]:
concern of the target compilation system, not of the L
programmer. char *str = “bugy”;

C’s pointer declaration syntax causes anothethen the following are true:
small problem:

) . O[str] =='b’;
_int* L),)) *(str+l) ==‘u’;
This does not mean, as might be easily read - *(2+str) =='g";
int i, %; str[3] ==y’
but This is amazingly flexible syntax for something as
inflexible as C arrays, which is against Meyer's
int i, §; “Principle of Uniqueness” (see introduction),

and should be written thus to avoid confusion. providing several ways to do the same thing, but

. : p ._still not doing it particularly well.

Java has abolished pointers as “Most studied . :
agree thapointersare one of the primary features Thel unsafeness of C arrays is shown in the next
that enable programmers to put bugs into their cod&X@mple:

Given that structures are gone, and arrays and ginclude <stdio.h>
strings are objects, the need for pointers to these ginciude <string.h>
constructs goes away,” [Sun 95] main ()

Eiffel also has no pointers only object {
references. In Eiffel, the exact referencing o
mechanism does not matter. For example in the C:ar ftr[lf TEST,,,’
expressiork.f the referencex might be a pointer to char *p = "TEST2",)
an object in the same address space, or it might be ~ constchar str3[] = "TEST3",
an Internet address of an object. References enable char *p3;
the location and access method of an object to be

transparent. printf ("str = %s p = %s str3 =
%s\n", str, p, str3);
4.2 Arrays p3 = &str;

Page 137 of the C++ ARM notes that C arrays are strcpy (p3, "some junk”);
low level, yet not very general, and unsafe. Page printf ("str3 = %s\n", str3);

212 admits, “the Carray concept is weak and str[6] = 'X;

beyond repair.” Modern software production is less

dependent on arrays, especially in the object- printf ("str = %s p = %s str3 =
oriented environment. The trade off to be optimal, %s\n", str, p, str3):

rather than general and safe no longer applies for }
most applications. C arrays provide no run-time _
bounds checking, not even in test versions offhe results (at least from my C compiler) are:

3rd Edition © lan Joyner 1996

C++?2? 47

This shows how Eiffel's assertion mechanism is
str= TEST p = TEST2 str3 = TEST3 used to document semantics in the interface, as well
str3 = junk as for a checking mechanism.

str = some Xunk p = TEST2 str3 = Xunk _
4.3 Function Arguments

One view of arrays is just another object-orientedArguments are a fundamental mechanism for reuse
entity which should be treated in an object-orientedn software construction. Without arguments you
manner as a class of data structure. It should hawould be forced to write a different routine for every
interface definitions, and consistency checkspossible input parameter. Arguments allow one
inherent in object-oriented systems. Another view isalgorithm to be reused on sets of input values.
that an array is an implementation of a function, Arguments pass routines simple values (by-
where pairs of values explicity map the domainvalue arguments), or references to entities (by-refer-
uniquely to the range, rather than being computedence arguments). (Actually, there are more
This suggests that Algol was incorrect in possibilities than this. [Hext 90] is an excellent text
syntactically distinguishing arrays by using squareon the possibilities.) Arguments are inputs to
brackets. An array just maps the input argument (theoutines, and should not be changed. When memory
index) to the value stored in that location in thewas expensive, reusing parameter space could
array. conserve space. Changing arguments, however, is
[Ince 92] considers that arrays and pointers neegdemantic nonsense, and most languages get this
not be relied upon so heavily in modern softwarewrong.
production, as higher level abstractions such as sets, By reference arguments enable a routine to
sequences, etc., are better suited to the problechange the value of an entity external to the routine.
domain. Arrays, and pointers can be provided in arBuch updates beyond the environment of a routine
object-oriented framework, and used as low levekre side-effects. This introduces a mechanism of
implementation techniques for the higher level dataupdating the state space, other than straight
abstractions. Ince suggests that arrays and pointeassignment (although the routine can use assignment
should be regarded in the same way as gotos in the achieve the ‘dirty deed’.) The problem is that the
seventies. He suggests that languages such as Pastate of an object can be changed without using the
and Modula-2 should be regarded in the same wawell defined interface of the object, so encapsulation
as assembler languages in the seventies. This applisscompromised. By-reference arguments should not
even more to C and C+4hecause pointers and be used to change external entities. Values should
arrays are far more intrinsic in the use of C andonly be passed to external entities by the return
C++, with lower level, less flexible arrays. Although value of a function. Semantically, this is different to
Pascal arrays are weak compared to those ddssignment to a reference parameter; data flows
ALGOL, they are still much better than C arrays. through the program in one direction, in via
In both Eiffel and Java, arrays are first classarguments, and out via return values.
objects. Both languages have no need of the sizedflathematically this maps a value of an input type to
function. In Java to get the size of an array you usa value of an output type. Both input and output
myArray.length In Eiffel this is my_array.count types can be compositions of other typesfid], x
Arrays can also be resized. 12X ...Im->01x 02x ...0On. Abstract data types
Both Eiffel and Java provide bounds checkingCan be used to design such systems. This will also
on arrays. Java’s checking is built-in. Eiffel's help target environments to increase parallelism and
checking is integrated with the assertion mechanismgoncurrency in a way transparent to programmers.
Eiffel goes a step further in array element In object-oriented programming, by reference
access. You access an element with theen arguments are used to pass the original object, not a

function as follows: copy. The called routine, however, should not
change the state of the referenced object. Only
v:=my_array.iterm(i) calling a routine in the passed objects interface can

change the state, although introducing side effects
into arguments like this Is dubious and should be
avoided. Passing objects by-reference has the
desired effect of the object being given to you,

This can also be accessed by an infix operd@or,

vi=my_array @ i without being yours to change, although you can
_ o _ effect change in the objedC++ does have aice
The item function is defined as: concept callecconst correctnesswhich provides a
modifier on argumentsonst which disallows any
item(i: INTEGER) G changes to that argument.
require C shares faulty arguments with many other
lower <= i: languages. The interaction of C’s pointer
i <= upper mechanism with a faulty parameter mechanism,

however, makes C considerably worse than most
other languages. In C, pointers are used to simulate

3rd Edition © lan Joyner 1996

C++7?7? 48

by-reference arguments with by-value argumentsand in Eiffel it iSANY. Any object can be assigned
The programmer must perform tedious bookkeepindo a reference of these types. In C++ this is provided
by specifying *s and &s for referencing and by void*, but void* is not at the root of the
dereferencing. Distinguishing between by-value andnheritance tree, hence its type unsafeness.
by-reference arguments is not just a syntactic nicety, Eiffel also defines the typONE at the bottom
included in most high level languages, but aof the inheritance tree, which is a class to which no
valuable compiler technique, as the compiler carobjects belongNONE is the complement oANY
automatically generate the referencing andand vice versa. Typ&lONE has the single value
dereferencing, without burdening the programmerVoid, which signifies no object.Void is the
Again C adopts operators to provide theequivalent of 0 (meaning NULL) in C++. This
functionality, rather than a declarative approachmeans that Eiffel's type system is more consistent,
which would centralise decisions and let theasANY andNONE reside within the type hierarchy
compiler do the rest. at the top and bottom respectively. Howewarid

In Java arguments can only be passed by-valuand void* do not fit into the type hierarchy in
(as in C). However, ther@e no pointers, so passing C++.
by-reference cannot be simulated.

Eiffel routine arguments are read-only. This4.5 void fn ()

means that they are pass-by-constant which ig$he default return type of a function ist . A

stronger than pass-by-value, where the argumentgpeless routine returning nothing should be the
are treated as local variables which may be updatedefault, but this must be specified byoid .

pass-by-constant disallows this. Syntactically no <type> suggests nothing to return.

_ _ This is an example of where C’s syntax is not well
4.4 void and void * matched to the concepts and semantics. Also a typed
“Passing paths that climb half way into the void” - function can be invoked independently of an
Close to the Edge, Yes. expression, which is a shorthand way of discarding

Is void* the C equivalent of an oxymoron? A the returned value, but compromises type safety.
pointer to void suggests some sort of semanti¢/sing a typed function as a void should result in a
nonsense, a dangling pointer perhaps? Maybe w&pe error.) _
should tell the astronomers we have found a black In fact there should be no such thing as a void
hole! While we can have some fun conjecturingfunction. A void function is a procedure. Procedures
what some of the obscure syntax of C suggests, @and functions should be distinguished. This
serious problem is thabid* declaréions are used distinction belongs to the problem ‘what’ domain. A
to compromise the purpose of the type system. Aprocedure is a routine that changes the state of its
consistent strongly-typed system does not requir@bject, but returns no value. A function should, in
such facilities. In object-oriented type systems, thegeneral, not cause any change to the state of an
root class of the inheritance hierarchy provides thebject, but just return some result dependent upon
equivalent of void. the objects state. Mathematically, a function is an

When an entity is assigned to a reference ofntity that returns a value of a given type.
void* | it looses its type information. When it is as- Procedures are untyped, and do not return a value,
signed back to a typed reference the programmegO it is incorrect to regard procedures as functions.
must explicitly specify the type information with a Functions have more in common with variables than

type cast. This is error prone and should at leagprocedures. Procedures may have side effects,
result in a run-time check. Without a runtime typefunctions should not cause side effects. These
check, the routines of one class can be mistakenlgistinctions —are useful ~when considering
applied to objects of another class, which results ioncurrency. . o
undetected inconsistencies leading to obscure [Stroustrup 94] also voices the opinion that
failures. defaultint is bad. He had tried to make the type
As [Stroustrup 94] points out: “havingpid* specifier explicit, but was forced to withdraw by
unsafe can be considered acceptable becaussers: ‘I backed out the change. | don’t think | had a
everybody knows - or at least ought to know - thatchoice. Allowing that implicit int is the source of
castsfromvoid* are inherently tricky.” many of the annoying problems with Cgrammar
Interestingly, void* is the exact opposite of today. Note the pressure came from users, not
void , so yes this is a programming oxymoron. management or arm-chair language experts. Finally,
Void means no object of any type; that is the emptyjen Yyears later, the C++ ANSI/ISO standard
set.Void* on the other hand means any object ofcommittee has decided to deprecate implicit int.
any type; that is all objects of the all encompassing . One improvement in Java is that the result type

set, or the universal set of all objects that can exigef the method is not optional. That is you don’t get
in a system. Sovoid and void* represent int by default. Otherwise, Java does not clean up

complementary sets. most of the deficiencies of C. In order to specify a
Eiffel and Java both provide a class that is at thérocedure rather than function, Java still requires the
root of the inheritance tree. In Java itQbject , Vvoid specifier. Java does discard the C term

function (which was wrongly used anyway), but

3rd Edition © lan Joyner 1996

C++?2? 49

makes the situation no better by calling both Languages that have an invocation command or
procedures and functiomsethods Thus there is no operator have an unnecessary distinction between
clear distinction between procedure and functionvalue returning routines and constants and variables.
Java also allows you to ignore returned values. It is trivial for a compiler to provide
Eiffel uses the termoutine for called units of transparency of view for constant and variable
code and distinguishes that there are two kinds oficcess and function invocation. In ALGOL style
routine, procedures and functions It is languages, the compiler automatically deduces
recommended practice that only procedures changevocation when it sees a name that was declared as
object state, and functions do not. Functions alwaysa routine, rather than a variable. The compiler
return a value. That is they follow the mathematicalkknows that the identifier refers to a routine because
definition of function that takes a value of one typethe compiler stores much information about an
(the type may be compound, hence multipleentity. A compiler can check that the programmer
arguments), and maps it to a value of another type. uses the entity consistently with the declaration. A
compiler can generate correct code, without
4.6 fn () burdening the programmer with having to use an

We have already seen that C functions are a po;ﬁXp.“C.'f‘ invocation operator. This enhances
cousin of mathematical functions in the section orf'€Xibility and implementation independence.
inlines. C functions expose implementation detail; Variables —and functions should be
that is, whether an entity is implemented as ainterchangeable for optimisation. ‘()’ is a good
constant, variable or value returning routine. céxample of where the operator approach of low level
functions are different to the mathematical concept@nguages adversely affects flexibility as opposed to
of a function. C functions are really parameterisedne declarative approach of high level languages. In
invokable code, which other languages callC. it is not possible to change a function to a
procedures, subroutines, etc. Java calls thenfariable without removing all the (), or a variable
methods Data can be accessed functionally in thel@ @ function without adding ()’ to all the
mathematical sense, but this is different to insistingnvocations. This might be spread over many files,
that all data is accessed through a C functionand the programmer might not bother with
Functional access to data really means that data ngphmlsatlon to avoid the tedium of the task. So the
only be retrieved, not assigned to. operator reduces flexity. The () operator is
Empty parentheses represent the function caffnother bookkeeping task imposed on the C

operator in C. Even though ‘() is mathematical Programmer. The C++ recommended style is to
looking, it is semantically equivalent to code superfluous accessor functions to blur the

FORTRAN's CALL. COBOL’'s PERFORM. and distinction. Pure functional languages such as SML
JSR in assembler. The design of theperatoré was remove the variable/function distinction altogether,
influenced by the underlying machine architecturesPY Not having variables at all. .

The function call operator is low level, machine and, _Java has made no improvement here. The visible
execution oriented, and in the ‘how’ domain. TrueiMplementation difference between variables and
compiler realises from the declaration that the entityconstants and variables are accessed functionally. A

referenced is a function and automatically generate?rogr.""mmer can flexibly change a variable to a
the machine call operator. unction in a class interface and vice versa for

This is opposite to most Unix shellsshere optimisation or extension, without the need for all

invocation operators such as ‘run’ and ‘exec’ are nof!i€nts to change their code. Thus even though
needed. One of the nice things about Unix shells ichanges have been made, the class interface remains
that the set of in-built commands is extensible. Th&/Nchanged. . . .
ability to execute file names as commands extends . C also has pointers to functions. Function
the command repertoire. The shell runs executablgointers are analogous to the call by name facility in
and interprets shell scripts. Unix shells do notALGOL, and this was recognised as having pitfalls.
distinguish between inbuilt commands, shell script$Consistent application of the object-oriented
and executable programs. This is a widely accepteBaradigm avoids the need for function pointers. A
as an elegant and effective convenience. C’s (Eommon use of function pointers is to explicitly set
n

operator introduces the equivalent of a run comman§P, jump tables. Jump tables are the mechanism
into the language. ehind virtual functions. The design of a program

No invocation operator exists in the problem can take advantage of this fact, without resorting to

oriented domain of high level languages. This is€XPlicit jump tabkl)(?s. ﬁnother udse i% tg jump to a
because the semantics of a function is to return %nctlon mAa tal eht at Is Iindexed by anf 'npﬁ.t
value of a given type. How this value is computed jcharacter. A switch statement can cater for this
unimportant: it could be computed by a routine Mechanism that makes what is meant explicit, while

invocation; by sending a message across a networKE€PINg underlying mechanisms (and = possibly
ptimisations) transparent. C++ allows function

gypfr(étérrlr?p%rge?jsyr/ggm{%?ggsap{r?gfnsosr;yolgBgtirgrt]rlGirg/ n ointers to member functions to be stored in tables
' 77 (via the .* and ->* operators).

variable.

3rd Edition © lan Joyner 1996

C++7?7? 50

4.7 fn (void) surprising effects, and can lead to program errors.
In Cf() means the functioh can take any number The following example is given on p.46 of the C++
of arguments of any type without type check. ANSIARM -

C has adopted(void) to mean a function that

really has no arguments. C++ sensibly differs from | = VIi++]; // the value of T"is

this in thatf() now means a function that has no /I undefined

arguments [Stroustrup 94]. The ARM points out that compilers should detect
such cases, but the exact interpretation appears to be

4.8 Metadata in Strings left to the implementation, which contributes to non-

The implementation of strings in C mixes metadataPortability. If this can’t be defined for a sequential
with data. Metadata is information about an objectprocessor, then it is even worse for a concurrent
but is not part of the data itself. Examples ofénvironment.
metadata are addresses, size and type information. The shorthand-= and-= are more powerful as
Such metadata is often referred to as dataalues other than 1 can increment the variable. It has
descriptors, and can be kept independently of thdeen suggested that there should als&&e and
data, with the advantage that the programmer canndf= operators.
mistakenly corrupt the metadata. If it is believed that a multiplicity of operators is

In C strings, metadata about where stringsrequired to produce more optimal code, then it
terminate is stored in the string data as a terminatinghould be pointed out that code generators,
null byte. This means that the distinction betweerespecially for expressions, can produce the best code
data and metadata is lost. The value chosen as tifier a target architecture. A plethora of operators
terminator cannot occur in the data itself. Sincecomplicates the task of an optimiser. A compiler can
inserting a null is often the responsibility of the optimise well beyond what a programmer can do.
programmer, not the run-time environment, there isAn optimising ~ compiler will ~ analyse the
the potential for more undetected inconsistenciesurrounding code, and if an entity is used several
resulting in obscure failures. times in a local scope, it will keep the value of that

A common alternative is to store a length byte inentity handy locally at the top of a stack, or in a
a fixed location preceding the string as Pascal doegegister, rather than retrieve it from slow main
The advantage is that the length of a string is easiljnemory several times. The nature of such
obtained, without having to count the number ofoptimisations depends on the machines architecture,
elements up to the terminating null. Another Which a programmer should not need to be aware of.
advantage is that 0 is a valid value in a string. Thi$pen systems demands that programs can be ported
implementation is hidden from the programmer and@mongst diverse architectures and environments,
other methods could be used without thevery different to the original machine, and not only
programmers having to change the program. C’$un, but run efficiently. Optimisers work best with
null terminator makes the implementation visible tosimple, well defined languages.
the programmer. In fact constructs such as:

Java’s strings are first class objects. You can'’t
determine the length of a string by scanning for a
null. You use thestring.lengthmethod (function). might look optimal to C programmers, but are the

while (*s1++ = *s2++);

Eiffel's strings are also first class objects. antithesis of efficiency. Such constructs preclude
compiler optimisation for processors with specific
4.9 ++, -- string handling instructions. A simple assignment is

etter for strings, as it will allow the compiler to

The increment and decrement operators are oftea , ,
’ -generate optimal code for different target platforms.
used as an example that C was designed as a hi the target processor does not have string

level assembler for DEC PDP machinéshese . : : .
: ; structions, then the compiler should be responsible
operators provide a shorthand convenience, but ai%r generating the above loop code, rather than

Bgﬂgﬁ%sfhiﬁaggfﬁfngr_e no less than four ways requiring the programmer to write such low level
constructs. The above loop construct for string

aza+1 copying is contrary to safety, as there is no check
a+=1 that the destination does not overflow, again an
at+ undetected inconsistency which could lead to
+1a obscure failures. The above code also makes explicit

) _ . . the underlying C implementation of strings, that are
For full generality, only the first form is required; null terminated. Such examples show why C cannot
the last two forms a++ and ++a are the postfix anthe regarded as a high level language, but rather as a
prefix forms, which can be used in the context ofhigh level assembler.
another expression. Thus several updates can be Memory update is a problematic, but necessary
performed in one expression. This is a verypart of programming. A language should provide it
powerful and convenient feature, but introduces siden a consistent and expected way. Many languages
effects into an expression that sometimtesve recognise that memory update is problematic, and

3rd Edition © lan Joyner 1996

C++7?7? 51

typically only provide the assignment operator as a printf (i = %d j = %d k = %d\n",

sufficient update mechanism. (Many languages have i, j, K);
block memory copies as well, but assignment can

provide block copy.) Furthermore, many languages i=0; j=5
avoid side-effects by limiting updates to only one K = dfn (i+;,j);

per statement. C provides too many ways to update
memory. These add nothing to the generality of the NP o _ R
Ianguage, increase the om?portunityg for err)(;r, and ~ Printf (1= %dj=9%d k= %dn",
complicate automatic optimisation. Restrictive 1 1, K);
practices are justifiable in order to accomplish
correctly functioning and efficient software.

Java retains the ++ and -- operators, althougffhe results are as follows:
with the removal of pointers and the addition of a

decent string class, they are less necessary for i=1 j=0 k=0
idioms such as string and array manipulation. Itis i=1 j=-1 k=-1
not clear whether they could cause side effects and j=2 j=5 k=1

subsequent problems as in C.
Eiffel has no such operators. They would merelyrhjs is even worse, if the actual parameter you pass

be an unnecessary shorthand in Eiffel. is a function that updates other variables.” All the
variables will be updated the number of times the
4.10 Defines formal argument appears in the body of the define.
The define declaration - C++ at least reduces the need for defines by
. having inline functions. The problems with inlines
#define d(<parameters>) have been discussed in their own section.
has a different effect to - Java and Eiffel have no such preprocessing
facilities. Where#defines are used as ‘cheap’
#define d (<parameters>) functions, ie., the code of the define égpanded

The second form defines d as ‘(<parameters>)yiniine in the invoking code, Eiffel and Java inline
Extra white space between tokens should afteict routines that meet certain criteria, without the side
semantics of constructs. effects of#define .
#defines are poorly integrated with the . #defines have often been used to provide a
language. The#define ’ must be in column 1, form of unrestricted genericity. In languages where
and is not subject to scope rules. Defines can lead @ENericity and templates are providedis use for
obscure errors, as the preprocessor does not detécd€fines disappears. .
them, but leaves them for the compiler. [Stroustrup 94] says he would like to see the
Programmers must be familiar with the particularPreprocessor abolished: “The character and file
preprocessor implementation on their system, aSrientation of the preprocessor is fundamentally at
preprocessor implementations are different,0dds with a programming language designed around

particularly between Classic C and ANSI C. the notions of scopes, types, and interfaces.”
#define also exhibits a multiple update
problem: 4.11 NULLvsO
[Ellemtel 92] recommends that pointers should not
#include <stdio.h> be comparedo, or assigned to NULL, but to O.
#include <string.h> Stylistically, NULL would be preferable. It would
also allow for environments where null pointers
#define din(y) ()<(y)?(9):(¥)) have a value other than 0. ANSI-C, however, has

subtle problems with the definition of NULL.
[Stroustrup 94] adds that “nothing seems to

main () create more heat than a discussion of the proper way
t to express a pointer that doesn’t point to an object,
inti, j, k; the null pointer.” And, “The ARM further warns
“Note that the null pointer need not be represented
k = dfn (i++, j); by the same bit pattern as the integer 0.”
Continuing on: “The warning reflects the common
printf ("i = %d j = %d k = %d\n", misapprehension that =0 assigns the null pointer
i, j, K); to the pointemp, then the representation of the null
pointer must be the same as the integer zero, that is,
i=0; j=-1: a bit pattern of all zeros. This is not so. C++ is
k= dfn (i++, j): sufficiently strongly typed that concept such as the

null pointer can be represented in whichever way the
implementation chooses, independently of how that

3rd Edition © lan Joyner 1996

C++7?7? 52

concept is represented in the source text.” Nadentity is lost. As every programmer wihave
wonder people are confused, and there is muckxperienced, one character errors are more
heated debate. difficult to find than one would think. For
In Javanull is a reserved word. Eiffel uses example, if an identifier is declared Fred, another
Void, the single value of typMONE to indicate no one can be declared fred, which are easily mistyped

object is referenced. and confused.
We are generally poor proof-readers. The
4.12 Case Sensitivity psychological reason for this is that the the brain

i i ; tends to straighten out errors for our perception
It is good to adopt typographic conventions for[ﬂutomatically. The human brain is an excellent
should not affect semantics. Distinguishing betweer'Strument for working out what was intendesen
upper and lower case in names can cause confusioff, the presence of radical error. (This makes us good
which leads to errors and systems that are difficulgl difficult tasks like speech recognition.)
to maintain and modify. Case distinction is based or} Fogrammers must use their powers of concentration

the implementation paradigm of how charactert© Override the natural tendency of the brain.
entities identity, and aid our memory of that!anguage design takes into account such
identity. Philosophically, case distinction is contrary PSychological considerations in these small but

disambiguating mechanism being the underlyingf cognitive science make a big difference to the
character codes. effediveness of people, but do not have any impact

Case distinction makes names harder tft @ll on the efficiency of code generated for the

remember so is contrary to the purpose of a memorgCMpPUter. 7Wh'at is more important, people or
aid. Remembering command mnemonics or filecOmputers? With C the answer is often computers,

names is difficult enough, let alone exactly the letter®S Case distinction saves compiler processor cycles.

case. Your brain remembers theund fred, not the Case distinction provides a form of name
characters used in spelling. In a case sensitivgverloading which is a double-edged sword as it
system, you must remember the letter case, whethé§@ds to ambiguity, confusion and error. Name
it was fred, Fred or fREd, etc., greatly complicating@Verloading, as has been suggested in the section on
the memory process. name overloading, should only be provided in
Names are easier to remember than addresses.g¢ntrolled and expected ways, where overloading
we did not have names, we would have to retrievd@ovides a useful function such as module

fles by addresses, access all machines on thgdependence or polymorphism. Where a name is

Internet by their TCP address instead of host namé&Verloaded in the same scope the compiler should

or call people by their social security number. report an error. . .
Case distinction in interactive systems is a poor Another example of name overloading error is:

user interface, being clumsy to continually use the 555 ob;

shift key, which slows typing. Case sensitivity is {

one of the worst features of the Unix interface.

Consider the paradigm of letters and words. it Entty;
Words are spelt by assembling letters in order. . ,
There are 26 distinct letters. With the addition of void set_entry (int entry)
digits 0 to 9, and the underscore characterhae {
a complete lexical definition for identifiers. Letters entry = Entry;
can be written in a number of styles. They can be }

bold, italic, upper or lower case. Such typographic }

representations, however, do not change thg o, have not spotted the error in the above
meaning of a word. Thus if we write ALGOL, exgmple, what wasFi)t supposed to mean?

Algol, algol, Algol or Algol (or maybe a starle A common practice in C is to represent

recognise the word to represent a computer nstants in upper case. This is actually bad

Ir?cﬂgcuhagnegjeTt?\% gg?r?ar?{iége letters or type style Oloegr)actice, as a calling programmer should invoke a

e . constant as a function that returns a value. The
ar;:dailssn g:‘St::?](z:at;ggtelrs ngzgds[?cnh tgse A%Vénlel}’seégalling programmer does not need to know whether
ﬁ\ternagll in the computer. This weakens thec, GasS has implemented a feature as a constant,
Yy £ usi P 0o I dd %gerlable or value returning routine. This means that
purpose ot using names 10 replace addresses, class is free to change the implementation of the
names are reduced to a string of character codes.

C distincti | b feature later, without having to bother all
_Case distinction also contributes 10 errors,,.ogrammers to change the case of all occurrences
introducing ambiguity, which as has already bee

! f the identifier in order to follow some style rule.
mentioned, weakens the purpose of names, as

3rd Edition © lan Joyner 1996

C++7?7? 53

It is amazing the passion that comes from thosd.14 char; signed and unsigned
who defend case sensitivity. In fact, since | haveynhat is the meaning of'a’ , -'b’ , etc.; there is
argued for case insensitivity, some have said thagimply no real world equivalent. In Ghar ,
this invalidates the whole of my critique of C++ ynsigned char , and signed char yield
because | don’t agree with them tms point. The three distinct types all occupying 8 bits. These types
only point that is close to being valid faase are integers rather than characters. The definition is
sensitivity is that it forces all programmers to follow highly platform dependent, and the semantics is
the same typographic convention for identifiers.nonsense. Pascals technique of specifying integer
This assumes that the burden of typographigubranges: 0..255, -127..+127, -63..+154, and so
considerations must be on programmers. | don’forth is far superior.
think it should be. This burden should be on the
presentation medium, that is the editor or prin 15 semicolons

formatter. For example, a program editor will know
what an identifier is pannrespen? it in lower case. Or AS With case sensitivity any discussion of this topic
; ' arouses passions that you wouldn't believe. Bjarne

it could even do this optionally, as some .
programmers might like to see identifiers in upperStroustrup makes a very good observation on such

: : PR ebates: “Curiously enough, the volume of interest
Case, i oters n oter case, Tni sves te bedid ubic debate s o Inversey proporional
theizc individual taste, and silly fights over style rules mhﬁ C'rr‘n%‘gé?gc?ooLgvl;ea;u?ﬁngepiL?gﬁogn's athrerlmtirllto;s
are forgotten. . e :

Java has not improved this situation. In fact it Isf(?retetgtr@ }2%“ tﬁg gurrrgﬁjtorstgtnee’ op]g:‘?e{ir;?ﬁélrjézg fit
even worse, as Java uses Unicode instead of ASCIL i7" 1as ™. by definition - do hot.”
The typographic form ‘a’ and ‘a’ could be different JI y | 'd heth h
identifiers if one represents LATIN small letter a, am not overly concerned whether the

; semicolon is defined as a terminator or separator.
ag?dtggr%ﬂ;grsg %Zéhl‘sligvzma” letter a. In Eiffel all Arguments that languages which define the

semicolon as terminator are superior to those that
. define it as separator are, however, baseless. The
4.13 Assignment Operator , semicolon as separator is really quite logical,
Using the mathematical equality symbol for theviewing the semicolon as a statement sequencing or
assignment operator is a poor choice of symbolsgoncatenation operator. It is therefore a binary
assignment is not equality (:= != =). Designers ofoperator, requiring both a left and a right hand side.
ALGOL style languages realised theyere Some people claim to find this concept difficult to
semantically different, so took the care tounderstand, but if we consider it in the context of a

distinguish, only using ‘=" in the sense of mathematical expre®n, it would be silly taexpect
mathematical equality assertion. In C the confusiorthat an addition be written as:

of notation leads to error, being easy to use =
(assignment) where == (equality) is intended. atb+

This leads to a more general criticism of C, inanother way to look at a separator is to consider the
that it has a pseudo mathematical appearance. Bufrycture of a program. A program is a list of
then C is not very mathematical at all, as =" doeSglements. The executable part of a program is a list
not represent equality, and C functions are not reallyf sequentially executed instructions. Elements in a
functions. Few people are proficient at interpreting|ist must beseparated, and the semicolon is syntax
mathematical theorems, most passing over sucty separate elements in lst. The semicolon is
sections in text, making the assumption that thnerefore part of the syntax of the list, not part of the
mathematics proves the surrounding text. Theyntax of the individual instructions. Languages
pseudo-mathematical appearance of C is difficult t%uch as FORTRAN separated instructions by
read, while lacking the semantic consistency anqequiring that they be placed on different lines or
precision of mathematical notation. One of the keygards. If an instruction overflowed a line, a
of reusability is readability. _ continuation character was required, like the

Java also uses the = symbol to mean assignmemfackslash in C. Well defined languages do not
so this has not improved. However, the = vs =Zequire continuation chars, as line breaks are
confusion has been improved as in the syntax: unimportant, and have no effect on semantics.
Languages should have very regular grammars, so
that the semicolon could be an entirely optional
the Expression must have type boolean, or dypographic separator.

if (Expression) Statement

compile-time error occurs. In natural language both the comma and

Eiffel makes the clear distinction between thesemicolon are separators, only the full stop is a
assignment operator choosing the “:=' symbol anderminator. If the comma were an expression
mathematical equality ‘=". terminator rather than separator, function

invocations would look like:

3rd Edition © lan Joyner 1996

C++?? 54

fn (a, b+c, d, e,); into an Eiffel compiler so that there is no run-time

. . erformance penalty. This illustrates Eiffel's
It is often argued that the semicolon as separatd,.: ;
leads to irregularities. C’s handling of the grammar hilosophy of keeping the language as small as

. , . '@ possible, and as open as possible, so that
of semicolons, however, leads to an irregularity 'nprogrammers can build their own powerful types.

IHfelse’s: Recently the ANSI/ISO C++ committee has
if (condition) acceptedool as a distinct integral type. Before the
statement1; /* Semicolon definition of a boolean type in C/C++ could be any
required */ number of definitions which had slightly different
clse semantics. If you were combining libraries that used
statement2: these slightly different definitions, life could be
’ difficult. This is probably a fundamental reason why
if (condition) libraries have not been as successful in C++ as they
{ should be in an OO environment. Not all compiler
statement1: implementations have implementdaol vyet, so
} /* Semicolon must be omitted */ you can expect it to be years before this mess is
clse cleaned up.
statement?;

4.17 Comments

This is an irregularity, as a parser will reduce bothype following example comes from [GWS 94]
of the above to the grammatical form: '

. .y main ()

“if” <condition> <statement> {

else” <statement> int i, %
In fact why do conditions in C if and while int k;
statements have to have parentheses around them?
Why also must a semicolon follow the closimgce k = *il%j;
of a class, but must not follow the closibigace of a }
function?

Java being C based retains the semicolon a8S they point out: what a goodcharacter
terminator. Eiffel views the semicolon as a COmbination /* was for delimiting comments.
separator, but has one advantage: semicolons are .
optional. The semicolon can be used to visuall.18 Cpaghe++i
emphasise the separation between two commandshere are three kinds afpaghetti that occur in
for example, where two commands are placed oprograms: gotos, globals, and pointers.

one line.)
4.18.1 Cpaghe++i Gotos

4.16 Booleans Most people know about spaghettode that is

, o present in programs which use gotos in an
éoscﬁggr?ss omission df;%n;n?alw?g t?)?og%%ergi?] g;[ypaeundisciplined fashion. As Donald Knuth has pointed

conditions inif..then and loop constructs. C++ also Dut it is entirely possible to produce well structured

has no built in boolean. It is interesting to see lon :ﬁg{ggg h\?S}]h Iegv(()etlozltru-lc-:g?;veed” si:grrféﬁ?sggb%h as
Internet discussions on how booleans should b

; onditionals, loops, switch or case statements in
built, and how to represent the values, true and falsﬁigher level languages.

Using O to mean faise, but any other value to mea Where a language provides the correct control

true is unsatisfactory. .
Java includes the basic type boolean, and so h X r?gélijr?ns’ argzotshea?éogrzg{nT}zreé)é?jgra_lmk%/glrtge that
rectified this situation. To accomplish C-style argumgnt’coguld also be made: if gotos cover all uses
conversions you can use the expressions: of high level control structures and even more, why
b = (i 1= 0); have the high level control structures at all; why not
i = (b)21:0; just use gotos? The problem with gotos is that they
, ’ _ _ aretoo powerful. They are too powerful in the same
Eiffel takes a slightly different approach. As away assembler language is too powerful.
language, Eiffel provides the mechanisms for “you can do everything with assembler or gotos,
building types. It has no assumptions aboutyyt it takes more work, and the result is often less
particular types built into the language. Types likethan structured, difficult to understand and
BOOLEAN are defined as classes in the Elffelunmaintainable_ The more work you dO, the less

Kernel Library, as_are other basic types such agfficient you are. It is not working harder that makes
INTEGER REAL STRING ARRAY etc. This view you more efficient, it is working smarter. I'm a great
is very similar to Smalltalk. These types are notfgn of laziness!

built into the language but they are usually built

3rd Edition © lan Joyner 1996

C++7?7? 55

Consider what you must do to construct a loopmust test that the divisor is not zero before a divide
with gotos: you must declare a label, then place theperation. With exception handling, you assume that
label and the goto somewhere; you also have tthe division will work in most cases, and so do not
think about identifiers for labels that are non-have to test. If the divisor is zero, you simplgan
ambiguous. For label identifiers, some languagesip in the exception handler. Only if there is no
use names, others numbers. With a high level loopxception handler does the software fail.
construct, labels are implicit, meaning the The bottom line is that with the common high
programmer does not have this extra bookkeepingevel language constructs @f.then, loops, cases,
overhead. Then making changes becomesmdo¢ you can avoidnostuses of goto. Add a high level
difficult, as you mustreate new labels, move them construct for exception handling, and you can avoid
around, and delete others. gotos altogether.

One legitimate use for gotos is to avoid overly .
complex nesting. Complex nesting usually occuré-18.2 Cpaghe++i Globals
where there are many checks that result in multiplyf e second kind of spaghetti is globals. Where two
nesting if...thens, which often arise becauserodr ~ Of more objects access the same set of globals,
checking. Proponents of gotos legitimately defendnterdependencies arise between those objects. This
them for this situation. However, where the controlmakes it far more difficult to determine the
structures are right, evethis use of gotos is not correctness of a program, even more so in
needed. concurrent environments. These interdependencies

Both Java and Eiffel abandon gotodava sho_uld be viewed as strands of s_paghettl worming
provides an extension to control structures whicHn€ir way through a system, which are going to
allows control structures to be named, and mum_make maintenance, extension, and reuse difficult in

level break and continue statements can be used tBe future.

jump to an outer level conditional or loop. Globals can be abandoned. Objects are to
In Eiffel the philosophy is to program in globals as control structures are to gotos.
sufficiently small atomic routines, so that multi- Agdain Java and Eiffel abandon globals, and thus

level control structures are avoided. Thus Eiffel'sease the problems of maintenance, extension and
solution to the nesting problem is integrated with itsreuse. Note that | use the word ease, not solve. Even
routine mechanism and the way programmers arfough Java and Eiffel make significant
expected to use routines. In object-orientedMprovements, there are no silver bullets to solve
programming, it is good practice to keep routinesthe€ problems involved in programming. Java and
small, with only one operation in a routine, as thisEiffel are significant improvements.

enhances the possibility of reuse. Some 1g4 Cpaghe++i Pointers

programmers will object to small routines, as thereryg thirg'kind of spaghetti is pointers. The problems
Is an overhead to routine calls, particularly in ith pointer based programming are well known.
register based mt?chlnes, dwhere envwonments_ﬁaI e kind of spaghetti you get worming through the
E%gn'%ﬁ; vr\?iHStautgm :t?(\:’aﬁly i;'ﬁr\{‘éevg% al?n nc';:r']_esystem is undisciplined pointers pointing to other
polymorphic routines ' elements, by-passing the whole concept of interfaces
. ' and object-orientation. Pointers introduce
The high level language concept to remove thejependencies that would not otherwise be there.
need for gotos altogether for error checking iSkyrthermore, this can of worms results in dangling
exception handling. In this mechanism, t&gor —oterences and memory leaks. In order to do away
condition triggers an exception. When an exceptionyiiy the problems of pointers, garbage collection is
is raised, a search fgs handler occurs. Thisearch necessary. In order to implement good garbage

progresses down the run-time stack until ancgjection pointers must be abandoned. C++ is
embedded exception handler is found. In E'ffellcaught in thi<Catch-22

exception handlers are specified rigscue clauses. Nei : :
: - : either Eiffel nor Java have pointers. Bbidve
Note that in an environment where exceptions ca arbage collection built in from scratch.

interrupt the flow of the code, garbage collection is . . .
even r%ore important, as in agsyste%n with manual _, While C++ overlays object-oriented concepts
memory management, it is even more difficult toonto C, it is one of its greatest weaknesses that

: : : overlays OO on top of the spaghetti of a now old,
giests(r)rsnér?e where to clearp, and which objects to low-level and flawed language. C++ does not
If exception raising and handling sounds enforce Lhe adva;)r;tagesb of the OO apprloach_ to
expensive, then it should be realised that it ofte erglt_)vr(]a td ese pfro emshy pr(;)grammlng ?mr’] using
works out cheaper. Most of the time, the code run ublished interfaces. The advantages of the OO
normally, an exception being raised is éxeeption aradigm are so effectively undermined in C++ as to
Only then is the stack search for the handie WOrSE than useless. Many C programmers have

performed. The mechanism actually works out hus stuck to C, and people |ikeJ. Plauger have

: - s een motivated to write papers such as
cheaper in many cases. Consider divide by zero. It : - :
most systems, this exception is detected by th rogramming Language Guessing Games: If C++

processor. If you don’t have exception handling, yo the answer, what's the question?” [Plauger 93]

3rd Edition © lan Joyner 1996

C++7?7? 56

5. Conclusions A programming language should embody the
C++ is complex including too many constructs tocollective wisdom of common sense practices that
overcome problems with itself and C, while lacking have been learnt over many years, by common and
sophisticated mechanisms such as garbageainful experience. C++ does not implement much
collection, global analysis and automatic Of this wisdom. [Sakkinen 92] observes that much
optimisations. C is thought of as being a simpleof the C++ literature has feveferences to external
language; but this is doubtful, as it has manywork or research. It fails to draw on the insights and
operators, and a difficult precedence system. C'§rogress made by many researchers. This leads me
pointer style of programming is low level and to believe that C++ is parochial and removed from
difficult. Overall, C has many traps that lead tothe many advances that will make production of
difficult to detect errors in software. Now C++ as asSystems easier and more cost effective.
language is looking like the equivalent of computers C encourages gurus who spout false wisdom on
of the 1950s, with large knobs, dials and patchobscure subjects. Writing programs in C is often
panels; the C++ equivalents being pointerscalled ‘coding’. Coding is writing obscure
structures, unionsttdefines , etc., all of which encryptions that will later have to be decoded, by
have no place in a modern OO language, and are nopne else than a guru! C also encourages
in Java and Eiffel. programming by guesswork. C programmers often
Compared to other OO languages, C++ lookssolve ‘bugs’ by adding extra ()s, *s a&d, without
more and more like an anachronism. C++ is nowdnderstanding the problem, but then ‘test’ the
impeding the progress of the programmingChange to see if it miraculously ‘cures’ the problem.
technology. People who attain proficiency at this guesswork, are
Object-oriented languages should provideknown as, well you guessed it, gurus!! o
sophisticated concepts in the simplest possible The view that correctness checks are training
framework. In C++ the framework is not simple andwheels for students, which gurus don’t need must be
the concepts are obscured. OOP addresses ma#ligpelled. Many disciplines have techniques to
issues in order to facilitate the production of€nsure correctness. For example, the metronome in
complex and sophisticated programs. Many of thes@wsic is not just for students, but will help an
issues are addressed in implicit and subtle’ ways, b@dvanced musician ensure that the tempo of a piece
arelost in C++. Subtlerrors can be introduced into iS correct, and since playing with a metronome is
C++ software in many ways; the combination ofmore difficult it will help sharpen the musicians
these causes further problems. C++ has devices f@erformance of the piece. The musician does not
petty convenience, even the ‘++ itself, while just view the metronome as an aid for beginners, or
sacrificing major conveniences, long-term @s something that restricts him to a set beat, but as a
correctness and safety, and the convenience d@ol that helps produce a polished and professional
declarative programming, rather than operators. C+Performance. C should not be seen as a language to
forces the programmer to perform many Which you graduate after you have learnt to program
administrative bookkeeping tasks that a compilerin languages with safety checks. In fact changing to
should automate. C or C++ is a great step backwards. Languages with
It can be considered: what application domain isconsistency and semantic checks are essential aids to
C++ relevant for? The answer to this is that C++the production of professional software. _
might be used as a better C. But for what A A programming language cannot be seriously
applications is C relevant? C is relevant for lowviewed as some authoritarian that stops us doing
level Unix style programming, and is not an idealwhat we want or need to do. This view is still quite
language in view of its low level nature, and flaws.prevalent about languages with type safety and
C is not applicable for large project organisation:consistency checks.

hence C++'s attempt to improve C++, however, This paper has shown many cases where C++
has not solved C’s flaws, as | once hoped it woulduses old C mechanisms to provide things that can
but painfully magnified them. and should be expressed consistently within the

Better languages exist for higher level functionsobject-oriented paradigm. For example type casting.
such as communications and networks, scientific’he move to pure object-oriented languages will
work, compilers, etc. | envisage that C has a place dé&cilitate more consistent programming and avoid
a high level assembler that can be used to implemefitany typical errors that occur in sofire
small pieces of code, where efficiency is of primeproductlon. C++ also makes distinctions that belong
importance, on suitable platforms. Thus the use of @1 the ‘how’ implementation domain. For example,
would be limited and well controlled, rather like .© vs ‘->', and variables vs functions. These
small assembler routines are currently used in som@istinctions make bookkeeping ~ work for
systems. Indeed the move to C++ should only b@rogrammers, which a compiler should handle. But
considered in the case of upgrading a body of ghen C++ fails to make distinctions that belong in
programs for backwards compatibility. In the case othe ‘what’ problem domain. For example,
new projects alternatives to C and C++ shouldProcedures vs functions. Making distinctions in the
seriously be considered. ‘how’ domain adds inconvenience to the language.

Failing to make distinctions in the ‘what’ domain

3rd Edition © lan Joyner 1996

C++7?7? 57

limits the expressiveness of the language. Thepplications development. Eiffel is a language for
amount of change required in C++ to address théhe serious software engineer who wants to get on
issues raised in this paper is seen as largelwith the job, not be bogged down in syntactic and
insurmountable, and Sun agrees with this. machine-oriented obscurities, weird ‘bugs’ and
A programming language is just a tool, in the endless maintenance cycles to get things right.
same way that an axe is a tool. If the axe is blunt Java is still an unproven entity for large projects,
when chopping down a tree, then proceduresand the byte code is interpreted. Eiffel and C++ are
processes and methodologies could be invented tmughly equivalent in performance. Interpreted Java
make it as effective as possible; but that leaves theill be around 10 times slower. But Java byteles
real problem unsolved: that the axe that does the reabuld be compiled into native code.
work is blunt. So it is with programming languages. For small applets and other Internet loaded
To develop a system, it must be implemented, and applications, Java is a good choice. Some people
programming language is the tool to do tte&l have predicated that Java will sweep all away, and
work. If the language is blunt, then procedures.that even Eiffel will die because of this. | cannot see
processes and methodologies might alleviate the sithis, as Eiffel and Javare really significantly
uation, but they do not solve the problem. Once thelifferent tools. Java has still to be tested inlénge
axe is sharpened, then real progress is made, and tbeale Eiffel league.
procedures, processes and methodologies might | have not yet mentioned languages such as
become more effective, although the need for manBETA, Ada 95 or Smalltalk. BETA is still really in
of them will disappear. A good axeman wilave academia. It might make a stronger presence in the
good axe wielding technique, but given a choice oimarket place in the coming years. If not BETA
axes will choose the sharpest implement. A pooinight have the same profound influence as Simula.
axeman could be ineffective with even a sharp axejt is certainly something to be watched. Ada 95 is
but the axe maker will still strive to produce the certainly aimed at serious software engineering.
sharpest axe for the good axeman. The argument smalltalk is already firmly in the market place,
that poor programmers will produce bad programsand there are a significant number of systems that it
in any language so we shouldn’t bother with bettelis ysed for. Smalltalk is still a language for serious
languages is fallacious. _ _ consideration. The biggest question here is do you
As mentioned in the introduction, both sides ofwant the development speed and flexibility of a
the analysis/design vs implementation debate needynamically typed system as opposed to the
to compromise in order to bridge the semantic gaprobustness and run-time speed of a statically typed
The perpetuation of low level languages such as @ystem? Having answered these questions for
into OOP is proof that the implementation yourself the choice between Smalltalk and Eiffel
community has not compromised, or sharpened it§hould be easier.
axe to bridge this costly gap. On the other hand the The most important aspect of C++ that the
analysis/design community must realise that whafndustry must realise is that the definition of C++ is
they do is part of the general practice ofynstable. As the X3J16 committee work on C++,
programming. _ - more problems are uncovered. It will be years before
It has been four years since the 2nd edition of stable standard is reached, and probably years after
this critique. The criticismarestill valid, but now that before compiler vendors are compliant with the
many people have had first hand experience of beingtandard.
burnt by the OO hype and trying to implement Today’s C++ programs will be tomorrow’s
systems in C++. __unmaintainable legacy code. As [GWS 94] says of
The work on languages such as Java and Eiffet++: “The seeds of software disasters for decades to
has vindicated the criticisms previously made in thecome have already been planted and well fertilised.”
critique. [Stroustrup 94] lists as current C++ They compare C++ to COBOL in terms of
problems many of the criticisms | have also made inuinmaintainable legacy code which we have now in
the critique. Java has recognised many shortcomingsOBOL's case, and we will have in the future for
in C++ and rectified them. Many of the problems C++.
that Java fixes are the same problems as addressed Perhaps the most important realisation | had
in the original critique. while developing this critique is that high level
Eiffel serves as another example of bettenanguages are more important to programming than
language design than C++. It has none of thebject-orientation. That Iis, languages which have the
problems of C++. In Java there still remain a fewattribute that they remove the burden of
deficiencies, but it is a major advance. bookkeeping from ‘the programmer to enhance
Since the last edition of the critique, many maintainability and flexibility are more significant
people have asked what do | recommend. Whathan languages which just add object-oriented
should people choose then? Certainly Eiffel is thefeatures. While C++ adds object-orientation to C, it
best out of these three languages. If you are doinfgils in the more important attribute of being high
large scale system software and applicatiorlevel. This greatly diminishes any benefits of the
development, then the choice is Eiffel, althoughobject-oriented paradigm.
Eiffel is also simple and elegant enough for small

3rd Edition © lan Joyner 1996

C++7?7? 58

In a nutshell, an object-oriented language thafDijkstra 76] E.W. DJKSTRA A Discipline of
lacks the qualities of a high level language entirelyProgramming Prentice Hall 1976.

misses the point of why we have progressed fro
machine coding to symbolic assembler and beyon M&IL 87] Tg'\" (?E ':AAREO ano{ -WMOJHTY LrgTER’t
Without the essential high level qualities, OO ingﬂgS"l"Sg; roductive Frojects and 1eamsrse

nothing but hype. Eiffel shows that it is important to
be high level as well as OO, and | hope that th¢Ege 96] STUART HIRSHFIELD and RAIMUND K.
lesson to be learned by any programming paradignEGE Object-Oriented Programming In ACM
not just OO, is that the fundamental is to make theComputing Surveys, Vol. 28, No. 1, March 1996.

task of programming (that is system development(e)aﬁznemteI 92] Programming in C++: Rules and

a whole) easier by the removal of the burden . S dl
) y Recommendations Ellemtel Telecommunication

bookkeeping. .
C++ adds object-orientation to a low level SYStems Laboratories, Sweden.

language, so you still have all the bookkeepingFlan 96] DAVID FLANAGAN Java in a Nutshell
burden of C. Java improves this situation byQ’'Reilly & Associates 1996.
removing many of the low level features that have

level base for object-oriented programming.

known bad track record. Eiffel provides a true highéiGWS 94] GARFINKEL, WEISS STRASSMANN The

Unix-Haters HandboakiDG books 1994.

The concluding advice of this critique is clear.[Hext 90] J.B. HEXT Programming Structures:

Be wary of C++. Seriously consider th#ernative
languages.

Machines and Programs. VolumeHrentice Hall of
Australia 1990.

Bjarne Stroustrup writes “My hope is that it will : .
help Jc++ becomacgepted intoyaregs that C failed[Ince 92] D.C.INCE Arrays and Pointers Considered

to penetrate, and thus support programmers whbl@mful, ACM SigPlan Notices, January 1992.

have not been represented in the C and C+fKilov and Ross 94]HAIM KiLov and AMES ROSS
culture.” [Stroustrup 94] 6.5.3.1. My hope is that the|nformation ~ Modelling: An Object-oriented
industry ~ establishes a professional softwareapproach Prentice Hall 1994.

engineering culture, not a programming Ianguagil_

culture based on seriously flawed and arcané-&S 95] WILLIAM J. LATZKO and DaviD M.

languages. The software engineering culture is no?AUNDERS Four days with Dr. Deming: A strategy
well represented in C++. or modern methods of managememddison

Wesley 1995.

[Madsen 93] MADSEN, M@LLER-PEDERSEN
NYGAARD, Object-Oriented Programming in the
BETA Programming LanguageAddison Wesley
1993.

[Meyer 88] BERTRAND MEYER Object-oriented
Software ConstructignPrentice Hall 1988. (2nd
edition soon to appear.)

[Meyer 92] BERTRAND MEYER Eiffel:
Language Prentice Hall 1992.

[Meyer 94] BERTRAND MEYER Reusable Software:
The Base Object-oriented Component Libraries
Prentice Hall 1994.

[Meyer 95] BERTRAND MEYER Object Success
Prentice Hall 1995.

[Meyer 96a] BERTRAND MEYER A Taxonomy of
Inheritance IEEE Computer vol 29 No 5 May 1996.

[Meyer 96b] BERTRAND MEYER Using Inheritance
Well, Chapter 25 of forthcomingbject-oriented
Software Constructign2nd edition Prentice Hall.
Dratft available on internet at
http://lwww.eiffel.com/doc/manuals/technology/
ooscl/inheritance-design/

[Meyer 96¢] BERTRAND MEYER Concurrency,
Distribution and the Internet Chapter 28 of
forthcomingObject-oriented Software Constructjon

lan Joyner
October 1996

6. Bibliography
C++ ARM ELLIS and STROUSTRUP The annotated
C++ Reference ManualAT&T 1990.

[Adams 96] ScoTT ADAMS The Dilbert Principle
Harper Collins 1996.

[Aho 92] AHO and ULLMAN Foundations of
Computer Scieng&€€omputer Science Press 1992.

[Brooks 95] FREDERICK P. BROOKS The Mythical
Man-Month 20th Anniversary Edition, Addison
Wesley.

[Bruce 96] KiMm B. BRUCE Progress in
Programming Languagesin ACM Computing
Surveys, Vol. 28, No. 1, March 1996.

[Capretz 87] PERRE J. CAPRETZ French in Action,
A Beginning Course in Language and Culturale
University Press.

[Cline] MARSHALL CLINE C++ Frequently Asked
Questionscomp.lang.c++ newsgroup.

[DDH 72] DAHL, DIKSTRA, HOARE Structured
Programming.

[Deming 82] W. EDWARDS DEMING Out of the
Crisis, Cambridge University Press 1982.

The

3rd Edition © lan Joyner 1996

C++7?7? 59

2nd edition Prentice Hall. Draft available on internet/. \Webliography
at:

http://lwww.eiffel.com/doc/manuals/technology/conc Ada 95:
urrency/CONCURRENCY .html

[Mody 91] R.P.MoDY C in Education and Software)
Engineering ACM SIGCSE Bulletin Vol.23 No. 3 http://lglwww.epfl.ch/Ada/

September 1991. Ada 95 Guide for C/C++ Programmers

[Morgan 90] CARROLL MORGAN Programming http://lal epfl.ch/Ada/A
from SpecificationsPrentice Hall 1990. pi//igiwww.epfl.ch/Ada/Ammof
Cplpl2Ada.html

[P&S 94] JENS PALSBERG and MICHAEL |.
SCHWARTZBACH Object-oriented Type Systems Contrast to C++ by Edmond Schonberg

Wiley 1994. http://www.csci.unt.edu/faculty/ryan/languages/ada/
[Plauger 93] P.J. RAUGER Programming Language 9x-cplus.txt

Guessing Games: If C++ is the Answer, what's theBeta;

guestion? Dr Dobb’s Journal, October 1993.

[Reade 89]CHRIS READE Elements of Functional http://www.daimi.aau.dk/~beta/
Programming Addison-Wesley, 1989. C++:

[RBPEL91] RUMBAUGH, BLAHA, PREMERLANI, FAQ

EDDY, LORENSEN Object-Oriented modelling and) »
Design Prentice-Hall, 1991, http://www.cs.bham.ac.uk/~jdm/CPP/cppfaq.html

[Sakkinen 92] MARKKU SAKKINEN Inheritance and ISO 5C22/WG21 standards
Other Main Principles of C++ and Other Object- ftp://research.att.com/dist/c++std/WP

oriented LanguagedUJniversity of Jyvaskyla, 1992. . :
(Also published as selected papers in ECOOP ‘Sg‘,tp.//ftp.maths.warW|ck.ac.uk/pub/c++/std/WP

Computing Systems Vol. 5 No. 1, and Structurechttp://www.cygnus.com/misc/wp/index.html

Programming Vol. 13 (1992).) : . .
http://reality.sgi.com/employees/austern_mti/std-
[Shaw 96] MARY SHAw and DAVID GARLAN c++/fag.htmi#B8

Software Architecture: Perspectives on an emergin%
discipline Prentice Hall 1996. TL

[SJE 91] SAAKE, JUNGCLAUS, EHRICH Object- http://www.cs.rpi.edu/~musser/stl.html
Oriented Specification and Stepwise Refinement comments on Critique

IFIP Workshop on Open Distributed Processingh] i »
Berlin, 1991. ttp://www.cs.oberlin.edu/students/jbasney/critique/

. critique.html
[Stroustrup 94] BJARNE STROUSTRUP The Design _I qu
and Evolution of C++ Addison Wesley 1994. Dilbert:

[Sun 95] The Java Language Environment: A WhiteThe Dilbert Zone

Paper, Sun 1995. (http:/java.sun.com) http://www.unitedmedia.com/comics/dilbert/
[Sun 96] The Java Language SpecificatioSun giffel-
1996. See WEB address. '

[Weg 91] PETERWEGNER Concepts and Paradigms EiffelWworld n.1agazme)
of Object-Oriented ProgrammingACM SIGPLAN http://www.eiffel.com/doc/eiffelworld/
OOPS Messenger Volume 1 no. 1 August 1990.

[Wiener 95] RICHARD WIENER Software) . . ; .
Development Using Eiffel: There can be life otherftp.//ftp.Iorla.fr/pub/Iorla/genleIog/SmaIIEn"feI/
than C++, Prentice Hall 1995. Interactive Software Engineering

[X3J16 92] Members of the X3J16 working group http://www.eiffel.com/

on extensionsHow to write a C++ Language .

Extension Proposal for ANSI-X3j16/1SO-WG21 Dynamic Linking in Eiffel

ACM SIGPLAN Notices Vol. 27 No. 6 June 1992. http://www.eiffel.com/doc/manuals/die/book

[Yoshida 92] KOICHIRO YOSHIDA Title and book in Vendor independent home page
Japanese.
P http://arachnid.cs.cf.ac.uk/CLE/
Books on Eiffel

Home page

Downline load site for SmallEiffel

3rd Edition © lan Joyner 1996

C++7?

60

http://www.eiffel.com/doc/documentation.html
SIG computer and Visual Eiffel
http://www.sigco.com/

Tower Technology

http://www.twr.com/

Eiffel locater page

http://www.progsoc.uts.edu.au/~geldridg/stop-
press.html

Java:

Main page

http://java.sun.com/

Demonstration Applets
http://www.gamelan.com/index.shtml
Java Language Specification

http://java.sun.com/doc/language_specification/

index.html

Oberon:

The Oberon Reference Site
http://www.math.tau.ac.il/~laden/oberon/
Sakkinen, Markku:
http://www.cs.jyu.fi/~sakkinen/

References to other papers on C++ and other topics

by Dr. Sakkinen.
X3J16 C++ ISO standardisation:
http://www.x3.org/tc_home/x3j16.html

3rd Edition

© lan Joyner 1996

