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1. Introduction
This is now the third edition of this critique; it has
been four years since the last edition. The main
factor to precipitate a new edition is that there are
now more environments and languages available
that rectify the problems of C++. The last edition
was addressed to people who were considering
adopting C++, in particular managers who would
have to fund projects. There are now more choices,
so comparison to the alternatives makes the critique
less hypothetical. The critique was not meant as an
academic treatise, although some of the aspects
relating to inheritance, etc., required a bit of
technical knowledge.

The critique is long; it would be good if it were
shorter, but that would be possible only if there were
less flaws in C++. Even so, the critique is not
exhaustive of the flaws: I find new traps all the time.
Instead of documenting every trap, the critique
attempts to arrange the traps into categories and
principles. This is because the traps are not just one
off things, but more deeply rooted in the principles
of C++. Neither is the critique a repository of ‘guess
what this obscure code does’ examples.

One desired outcome of this critique is that it
should awaken the industry about the C++ myth and
the fact that there are now viable alternatives to C++
that do not suffer from as many technical problems.
The industry needs less hype and more sensible
programming practices. No language can be perfect
in every situation, and tradeoffs are sometimes
necessary, but you can now feel freer to choose a
language which is more closely suited to your needs.
The alternatives to C++ provide no silver bullet, but
significantly reduce the risks and costs of software
development compared to C++. The alternatives do
not suffer under the complexities of C++ and do not
burden the programmer with many trivialities which
the compiler should handle; and they avoid many of
the flaws and inanities of C/C++.

The language events which have made an update
desirable are the introduction of Java, the wider
availability of more stable versions of Eiffel, and the
finalisation of the Ada 95 standard. Java in
particular set out to correct the flaws of C++, and
most sections in the original critique now make
some comment on how Java addresses the problems.
Eiffel never did have the same flaws as C++, and
has been around since long before the original
critique. Eiffel was designed to be object-oriented
from the ground up, rather than a bolt-on. Java
offers better integration with OO than C++. Now
that there are language comparisons in the critique
the arguments are less hypothetical, and the
criticisms of C++ are more concrete.

Another factor has been the publishing of Bjarne
Stroustrup’s “Design and Evolution of C++”
[Stroustrup 94]. This has many explanations of the
problems of extending C with object-oriented
extensions while retaining compatibility with C. In
many ways, Stroustrup reinforces comments that I
made in the original critique, but I differ from

Stroustrup in that I do not view the flaws of C++ as
acceptable, even if they are widely known, and
many programmers know how to avoid the traps.
Programming is a complex endeavour: complex and
flawed languages do not help.

A question which has been on my mind in the
last few years is when is OO applicable? OO is a
universal paradigm. It is very general and powerful.
There is nothing that you could not program in it.
But is this always appropriate? Lower level
programmers have tended to keep writing such
things as device drivers in C. It is not lower levels
that I am interested in, but the higher levels. OO
might still be too low level for a number of
applications. A recent book [Shaw 96] suggests that
software engineers are too busy designing systems
in terms of stacks, lists, queues, etc., instead of
adopting higher level, domain-oriented
architectures. [Shaw 96] offers some hope to the
industry that we are learning how to architect to
solve problems, rather than distorting problems to fit
particular technologies and solutions.

For instance, commercial and business
programming might be faster using a paradigm
involving business objects. While these could be
provided in an OO framework, the generality is not
needed in commercial processing, and will slow and
limit the flexibility of the development process. By
analogy, walking is a fine mode of transport, but do
I choose to walk everywhere? There seems to be a
potentially large market for specialised paradigms,
which support rapid application development (RAD)
techniques. These paradigms may be based on some
OO language, framework and libraries in the
background. In anything though, we should be
cautious, as this is an industry particularly prone to
buzzwords and fads.

The second edition generated a lot of interest,
and it was published in a number of places:
Software Design in Japan translated it into Japanese,
and published it over a series of months in 1993; it
was published in an abridged form in TOOLS
Pacific 1992; it was also published in Gregory’s A
Series Technical Journal. However, I resisted
handing over copyright to anyone, as I wanted the
paper to be freely available on the Internet; it is now
available on more sites than I know about. My
thanks to all those who have been so supportive of
the 2nd edition.

Another reason for the 3rd edition is that the
original critique was very much a product of
newsgroup discussions. In this edition, I have
attempted to at least improve the readability and
flow, while not changing the overall structure or
embarking on a complete rewrite. The primary goal
has been to annotate the original with comparisons
to Java and Eiffel.

C++ has become even more widely used over
the last few years. However, people are starting to
realise that it is not the answer to all programming
problems, or that retaining compatibility with C is a
good thing. In some sectors there has been a
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backlash, precipitated by the fact that people have
found the production of defect free quality software
an extremely difficult and costly task. OO has been
over-hyped, but neither are its real benefits present
in C++.

It is important and timely to question C++’s suc-
cess. Several books are already published on the
subject [Sakkinen 92], [Yoshida 92], and [Wiener
95]. A paper on the recommended practices for use
in C++ [Ellemtel 92] suggests “C++ is a difficult
language in which there may be a very fine line
between a feature and a bug. This places a large
responsibility upon the programmer.” Is this a
responsibility or a burden? The ‘fine line’ is a result
of an unnecessarily complicated language definition.
The C++ standardisation committee warns “C++ is
already too large and complicated for our taste”
[X3J16 92].

Sun’s Java White Paper [Sun 95] says that in
designing Java, “The first step was to eliminate
redundancy from C and C++. In many ways, the C
language evolved into a collection of overlapping
features, providing too many ways to do the same
thing, while in many cases not providing needed
features. C++, even in an attempt to add “classes in
C” merely added more redundancy while retaining
the inherent problems of C.”

The designer of Eiffel, Bertrand Meyer, states in
the appendix “On language design and evolution” in
[Meyer 92] some guiding principles of language
design: simplicity vs complexity, uniqueness,
consistency. “The Principle of Uniqueness,” Meyer
says, “is easily expressed: the language should
provide one good way to express every operation of
interest; it should avoid providing two.”

Meyer has produced a seminal work on OO:
Object-oriented Software Construction, [Meyer 88].
All software engineers and object-oriented
practitioners should read and absorb this work. A
completely revised 2nd edition is soon to appear. A
later short book “Object Success” is directed to
managers (probably the reason for the pun in the
name), with an overview of OO, [Meyer 95].

While C programmers can immediately use C++
to write and compile C programs, this does not take
advantage of OO. Many see this as a strength, but it
is often stated that the C base is C++’s greatest
weakness. However, C++ adds its own layers of
complexity, like its handling of multiple inheritance,
overloading, and others. I am not so sure that C is
C++’s greatest weakness. Java has shown that in
removing C constructs that do not fit with object-
oriented concepts, that C can provide an acceptable,
albeit not perfect base.

Adoption of C++ does not suddenly transform C
programmers into object-oriented programmers. A
complete change of thinking is required, and C++
actually makes this difficult. A critique of C++
cannot be separated from criticism of the C base
language, as it is essential for the C++ programmer
to be fluent in C. Many of C’s problems affect the
way that object-orientation is implemented and used

in C++. This critique is not exhaustive of the
weaknesses of C++, but it illustrates the practical
consequences of these weaknesses with respect to
the timely and economic production of quality
software.

This paper is structured as follows: section 2
considers the role of a programming language;
section 3 examines some specific aspects of C++;
section 4 looks specifically at C; and the conclusion
examines where C++ has left us, and considers the
future.

I have tried to keep the sections reasonably self
contained, so that you can read the sections that
interest you, and use the critique in a reference style.
There are some threads that occur throughout the
critique, and you will find some repetition of ideas
to achieve self contained sections.

Having said that, I hope that you find this
critique useful, and enjoyable: so please feel free to
distribute it to your management, peers and friends.

2. The Role of a Programming
Language
A programming language functions at many
different levels and has many roles, and should be
evaluated with respect to those levels and roles.
Historically, programming languages have had a
limited role, that of writing executable programs. As
programs have grown in complexity, this role alone
has proved insufficient. Many design and analysis
techniques have arisen to support other necessary
roles.

Object-oriented techniques help in the analysis
and design phases; object-oriented languages to
support the implementation phase of OO, but in
many cases these lack uniformity of concepts,
integration with the development environment and
commonality of purpose. Traditional problematic
software practices are infiltrating the object-oriented
world with little thought. Often these techniques
appeal to management because they are outwardly
organised: people are assigned organisational roles
such as project manager, team leader, analyst,
designer and programmer. But these techniques are
simplistic and insufficient, and result in demotivated
and uncreative environments.

Object-orientation, however, offers a better
rational approach to software development. The
complementary roles of analysis, design,
implementation and project organisation should be
better integrated in the object-oriented scheme. This
results in economical software production, and more
creative and motivated environments.

The organisation of projects also required tools
external to the language and compiler, like ‘make.’
A re-evaluation of these tools shows that often the
division of labour between them has not been done
along optimal lines: firstly, programmers need to do
extra bookkeeping work which could be automated;
and secondly, inadequate separation of concerns has
resulted in inflexible software systems.
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C++ is an interesting experiment in adapting the
advantages of object-orientation to a traditional
programming language and development
environment. Bjarne Stroustrup should be
recognised for having the insight to put the two
technologies together; he ventured into OO not only
before solutions were known to many issues, but
before the issues were even widely recognised. He
deserves better than a back full of arrows. But in
retrospect, we now treat concepts such as multiple
inheritance with a good deal of respect, and realise
that the Unix development environment with limited
linker support does not provide enough compiler
support for many of the features that should be in a
high level language.

There are solutions to the problems that C++
uncovered. C++ has gone down a path in research,
but now we know what the problems are and how to
solve them. Let’s adopt or develop such languages.
Fortunately, such languages have been developed,
which are of industrial strength, meant for
commercial projects, and are not just academic
research projects. It is now up to the industry to
adopt them on a wider scale.

C++, however, retains the problems of the old
order of software production. C++ has an advantage
over C as it supports many facets of object-
orientation. These can be used for some analysis and
design. The processes of analysis, design, and
organisation, however, are still largely external to
C++. C++ has not realised the important advantages
of integrated software development that leads to
improved economies  of software production.

Java is an interesting development taking a
different approach to C++: strict compatibility with
C is not seen as a relevant goal. Java is not the only
C based alternative to C++ in the object-oriented
world. There has also been Objective-C from Brad
Cox, and mainly used in NeXT’s OpenStep
environment. Objective-C is more like Smalltalk, in
that all binding is done dynamically at run time.

A language should not only be evaluated from a
technical point of view, considering its syntactic and
semantic features; it should also be analysed from
the viewpoint of its contribution to the entire
software development process. A language should
enable communication between project members
acting at different levels, from management, who set
enterprise level policies, to testers, who must test the
result. All these people are involved in the general
activity of programming, so a language should
enable communication between project members
separated in space and time. A single programmer is
not often responsible for a task over its entire
lifetime.

2.1 Programming
Programming and specification are now seen as the
same task. One man’s specification is another’s
program. Eventually you get to the point of
processing a specification with a compiler, which
generates a program which actually runs on a

computer. Carroll Morgan banishes the distinction
between specifications and programs: “To us they
are all programs.” [Morgan 90]. Programming is a
term that not only refers to implementation;
programming refers to the whole process of
analysis, design and implementation.

The Eiffel language integrates the concept of
specification and programming, rejecting the
divided models of the past in favour of a new
integrated approach to projects. Eiffel achieves this
in several ways: it has a clean clear syntax which is
easy to read, even by non-programmers; it has
techniques such as preconditions and postconditions
so that the semantics of a routine can be clearly
documented, these being borrowed from formal
specification techniques, but made easy for the ‘rest
of us’ to use; and it has tools to extract the abstract
specification from the implementation details of a
program. Thus Eiffel is more than just a language,
providing a whole integrated development
environment.

Chris Reade [Reade 89] gives the following
explanation of programming and languages. “One,
rather narrow, view is that a program is a sequence
of instructions for a machine. We hope to show that
there is much to be gained from taking the much
broader view that programs are descriptions of
values, properties, methods, problems and solutions.
The role of the machine is to speed up the
manipulation of these descriptions to provide so-
lutions to particular problems. A programming
language is a convention for writing descriptions
which can be evaluated.”

[Reade 89] also describes programming as being
a “Separation of concerns”. He says:

“The programmer is having to do several things
at the same time, namely,

(1)  describe what is to be computed;
(2) organise the computation sequencing into

small steps;
(3) organise memory management during the

computation.”
Reade continues, “Ideally, the programmer should
be able to concentrate on the first of the three tasks
(describing what is to be computed) without being
distracted by the other two, more administrative,
tasks. Clearly, administration is important but by
separating it from the main task we are likely to get
more reliable results and we can ease the
programming problem by automating much of the
administration.

“The separation of concerns has other
advantages as well. For example, program proving
becomes much more feasible when details of
sequencing and memory management are absent
from the program. Furthermore, descriptions of what
is to be computed should be free of such detailed
step-by-step descriptions of how to do it if they are
to be evaluated with different machine architectures.
Sequences of small changes to a data object held in
a store may be an inappropriate description of how
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to compute something when a highly parallel
machine is being used with thousands of processors
distributed throughout the machine and local rather
than global storage facilities.

“Automating the administrative aspects means
that the language implementor has to deal with
them, but he/she has far more opportunity to make
use of very different computation mechanisms with
different machine architectures.”

These quotes from Reade are a good summary
of the principles from which I criticise C++. What
Reade calls administrative tasks, I call bookkeeping.
Bookkeeping adds to the cost of software
production, and reduces flexibility which in turn
adds more to the cost. C and C++ are often criticised
for being cryptic. The reason is that C concentrates
on points 2 and 3, while the description of what is to
be computed is obscured.

High level languages describe ‘what’ is to be
computed; that is the problem domain. ‘How’ a
computation is achieved is in the low-level machine-
oriented deployment domain. Automating the
bookkeeping tasks enhances correctness,
compatibility, portability and efficiency.
Bookkeeping tasks arise from having to specify
‘how’ a computation is done. Specifying ‘how’
things are done in one environment hinders
portability to other platforms.

The most significant way high level languages
replace bookkeeping is using a declarative approach,
whereas low level languages use operators, which
make them more like assemblers. C and C++
provide operators rather than the declarative
approach, so are low level. The declarative approach
centralises decisions and lets the compiler generate
the underlying machine operators. With the operator
approach, the bookkeeping is on the programmer to
use the correct operator to access an entity, and if a
decision changes, the programmer will have to
change all operators, rather than change the single
declaration and simply recompiling. Thus in C and
C++ the programmer is often concerned with the
access mechanisms to data, whereas high level
languages hide the implementation detail, making
program development and maintenance far more
flexible.

While C and C++ syntax is similar to high level
language syntax, C and C++ cannot be considered
high level, as they do not remove bookkeeping from
the programmer that high level languages should,
requiring the compiler to take care of these details.
The low level nature of C and C++ severely impacts
the development process.

The most important quality of a high level
language is to remove bookkeeping burden from the
programmer in order to enhance speed of
development, maintainability and flexibility. This
attribute is more important than object-orientation
itself, and should be intrinsic to any modern
programming paradigm. C++ more than cancels the
benefits of OO by requiring programmers to perform

much of the bookkeeping instead of it being
automated.

The industry should be moving towards these
ideals, which will help in the economic production
of software, rather than the costly techniques of
today. We should consider what we need, and assess
the problems of what we have against that. Object-
orientation provides one solution to these problems.
The effectiveness of OO, however, depends on the
quality of its implementation.

2.2 Communication, abstraction and
precision
The primary purpose of any language is
communication. A specification is communication
from one person to another entity of a task to be
fulfilled. At the lowest level, the task to be fulfilled
is the execution of a program by a computer. At the
next level it is the compilation of a program by a
compiler. At higher levels, specifications
communicate to other people what is to be
accomplished by the programming task. At the
lowest level, instructions must be precisely
executed, but there is no understanding; it is purely
mechanical. At higher levels, understanding is
important, as human intelligence is involved, which
is why enlightened management practices emphasise
training rather than forced processes. This is not to
say that precision is not important; precision at the
higher levels is of utmost importance, or the rest of
the endeavour will fail. Most projects fail due to
lack of precision in the requirements and other early
stages.

Unfortunately, often those who are least skilled
in programming work at the higher levels, so
specifications lack the desirable properties of
abstraction and precision. Just as in the Dilbert
Principle [Adams 96], the least effective
programmers are promoted to where they will
seemingly do the least damage. This is not quite the
winning strategy that it seems, as that is where they
actually do the most damage, as teams of confused
programmers are then left to straighten out their
specifications, while the so called analysts move
onto the next project or company to sew the seeds of
disaster there.

(Indeed, since many managers have not read or
understood the works of Deming [Deming 82],
[L&S 95], De Marco and Lister [DM&L 87], and
Tom Peters’ later works, the message that the
physical environment and attitudes of the work
place leads to quality has not got through. Perhaps
the humour of Scott Adams is now the only way this
message will have impact.)

At higher levels, abstraction facilitates
understanding. Abstraction and precision are both
important qualities of high level specifications.
Abstraction does not mean vagueness, nor the
abandonment of precision. Abstraction means the
removal of irrelevant detail from a certain
viewpoint. With an abstract specification, you are
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left with a precise specification; precisely the
properties of the system that are relevant.

Abstraction is a fundamental concept in
computing. Aho and Ullman say “An important part
of the field [computer science] deals with how to
make programming easier and software more
reliable. But fundamentally, computer science is a
science of abstraction -- creating the right model for
a problem and devising the appropriate
mechanizable techniques to solve it.” [Aho 92].
They also say “Abstraction in the sense we use it
often implies simplification, the replacement of a
complex and detailed real-world situation by an
understandable model within which we can solve
the problem.”

A well known example that exhibits both
abstraction and precision is the London
Underground map designed by Harold Beck. This is
a diagrammatic map that has abstracted irrelevant
details from the real London geography to result in a
conveniently sized and more readable map. Yet the
map precisely shows the underground stations and
where passengers can change trains. Many other city
transport systems have adopted the principles of
Beck’s map. Using this model passengers can easily
solve such problems as “How do I get from
Knightsbridge to Baker Street?”

2.3 Notation
A programming language should support the ex-
change of ideas, intentions, and decisions between
project members; it should provide a formal, yet
readable, notation to support consistent descriptions
of systems that satisfy the requirements of diverse
problems. A language should also provide methods
for automated project tracking. This ensures that
modules (classes and functionality) that satisfy
project requirements are completed in a timely and
economic fashion. A programming language aids
reasoning about the design, implementation,
extension, correction, and optimisation of a system.

During requirements analysis and design phases,
formal and semi-formal notations are desirable.
Notations used in analysis, design, and
implementation phases should be complementary,
rather than contradictory. Currently, analysis, design
and modelling notations are too far removed from
implementation, while programming languages are
in general too low level. Both designers and
programmers must compromise to fill the gap.
Many current notations provide difficult transition
paths between stages. This ‘semantic gap’
contributes to errors and omissions between the
requirements, design and implementation phases.

Better programming languages are an
implementation extension of the high level notations
used for requirements analysis and design, which
will lead to improved consistency between analysis,
design and implementation. Object-oriented
techniques emphasise the importance of this, as
abstract definition and concrete implementation can
be separate, yet provided in the same notation.

Programming languages also provide notations
to formally document a system. Program source is
the only reliable documentation of a system, so a
language should explicitly support documentation,
not just in the form of comments. As with all
language, the effectiveness of communication is
dependent upon the skill of the writer. Good
program writers require languages that support the
role of documentation, and that the language
notation is perspicuous, and easy to learn. Those not
trained in the skill of ‘writing’ programs, can read
them to gain understanding of the system. After all,
it is not necessary for newspaper readers to be
journalists.

2.4 Tool Integration
A language definition should enable the
development of integrated automated tools to
support software development. For example,
browsers, editors and debuggers. The compiler is
just another tool, having a twofold role. Firstly, code
generation for the target machine. The role of the
machine is to execute the produced programs. A
compiler has to check that a program conforms to
the language syntax and grammar, so it can
‘understand’ the program in order to translate it into
an executable form. Secondly, and more
importantly, the compiler should check that the
programmers expression of the system is valid,
complete, and consistent; ie.,  perform semantics
checks that a program is internally consistent.
Generating a system that has detectable
inconsistencies is pointless.

2.5 Correctness
Deciding what constitutes an inconsistency and how
to detect it often raises passionate debate. The
discord arises because the detectable inconsistencies
do not exactly match real inconsistencies. There are
two opposing views: firstly, languages that
overcompensate are restrictive, you should trust
your programmers; secondly, that programmers are
human and make mistakes and program crashes at
run-time are intolerable.

This is the key to the following diagrams:

Real
Inconsistencies

Obscure
failures

False
Alarms

Superfluous
run-time
checks/inefficiency
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In the first figure the black box represents the real
inconsistencies, which must be covered by either
compile-time checks or run-time checks.

In the scenario of this diagram, checks are
insufficient so obscure failures occur at run-time,
varying from obscure run-time crashes to strangely
wrong results to being lucky and getting away with
it. Currently too much software development is
based on programming until you are in the lucky
state, known as hacking. This sorry situation in the
industry must change by the adoption of better
languages to remove the ad hoc nature of
development.

Some feel that compiler checks are restrictive
and that run-time checks are not efficient, so
passionately defend this model, as programmers are
supposedly trustworthy enough to remove the rest of
the real consistencies. Although most programmers
are conscientious and trustworthy people, this leaves
too much to chance. You can produce defect-free
software this way, as long as the programmer does
not introduce the inconsistencies in the first place,
but this becomes much more difficult as the size and
complexity of a software system increases, and
many programmers become involved. The real
inconsistencies are often removed by hacking until
the program works, with a resultant dependency on
testing to find the errors in the first place.
Sometimes companies depend on the customers to
actually do the testing and provide feedback about
the problems. While fault reporting is an essential
path of communication from the customer, it must
be regarded as the last and most costly line of
defence.

C and C++ are in this category. Software
produced in these languages is prone to obscure
failures.

The second figure, shows that the language detects
inconsistencies beyond the real inconsistency box.
These are false alarms. The run-time environment
also doubles up on inconsistencies that the compiler

has detected and removed, which results in run-time
inefficiency. The language will be seen as
restrictive, and the run-time as inefficient. You
won’t get any obscure crashes, but the language will
get in the way of some useful computations. Pascal
is often (somewhat unfairly) criticised for being too
restrictive.

The above figure shows an even worse situation,
where the compiler generates false alarms on
fictional inconsistencies, does superfluous checks at
run-time, but fails to detect real inconsistencies.

The best situation would be for a compiler to
statically detect all inconsistencies without false
alarms. However, it is not possible to statically
detect all errors with the current state of technology,
as a significant class of inconsistencies can only be
detected at run-time; inconsistencies such as: divide
by zero; array index out of bounds; and a class of
type checks that are discussed in the section on
RTTI and type casts.

The current ideal is to have the detectable and
real inconsistency domains exactly coincide, with as
few checks left to run-time as possible. This has two
advantages: firstly, that your run-time environment
will be a lot more likely to work without exceptions,
so your software is safer; and secondly, that your
software is more efficient, as you don’t need so
many run-time checks. A good language will
correctly classify inconsistencies that can be
detected at compile time, and those that must be left
until run-time.

This analysis shows that as some inconsistencies
can only be detected at run-time, and that such
detection results in exceptions that exception
handling is an exceedingly important part of
software. Unfortunately, exception handling has not
received serious enough attention in most
programming languages.

Eiffel has been chosen for comparison in this
critique as the language that is as close to the ideal
as possible; that is, all inconsistencies are covered,
while false alarms are minimised, and the detectable
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inconsistencies are correctly categorised as compile-
time or run-time. Eiffel also pays serious attention
to exception handling.

2.6 Types
In order to produce correct programs, syntax checks
for conformance to a language grammar are not
sufficient: we should also check semantics. Some
semantics can be built into the language, but mostly
this must be specified by the programmer about the
system being developed.

Semantics checking is done by ensuring that a
specification conforms to some schema. For
example, the sentence: “The boy drank the computer
and switched on the glass of water” is grammatically
correct, but nonsense: it does not conform to the
mental schema we have of computers and glasses of
water. A programming language should include
techniques for the detection of similar nonsense. The
technique that enables detection of the above
nonsense is types. We know from the computer’s
type that it does not have the property ‘drinkable’.
Types define an entity’s properties and behaviour.

Programming languages can either be typed or
untyped; typed languages can be statically typed or
dynamically typed. Static typing ensures at compile
time that only valid operations are applied to an
entity. In dynamically typed languages, type
inconsistencies are not detected until run-time.
Smalltalk is a dynamically typed language, not an
untyped language. Eiffel is statically typed.

C++ is statically typed, but there are many
mechanisms that allow the programmer to render it
effectively untyped, which means errors are not
detected until a serious failure. Some argue that
sometimes you might want to force someone to
drink a computer, so without these facilities, the
language is not flexible enough. The correct solution
though is to modify the design, so that now the
computer has the property drinkable. Undermining
the type system is not needed, as the type system is
where the flexibility should be, not in the ability to
undermine the type system. Providing and
modifying declarations is declarative programming.
Eiffel tends to be declarative with a simple
operational syntax, whereas C++ provides a plethora
of operators.

Defining complex types is a central concept of
object-oriented programming: “Perhaps the most
important development [in programming languages]
has been the introduction of features that support
abstract data types (ADTs). These features allow
programmers to add new types to languages that can
be treated as though they were primitive types of the
language. The programmer can define a type and a
collection of constants, functions, and procedures on
the type, while prohibiting any program using this
type from gaining access to the implementation of
the type. In particular, access to values of the type is
available only through the provided constants,
functions, and procedures.” [Bruce 96].

Object-oriented programming also provides two
specific ways to assemble new and complex types:
“objects can be combined with other types in
expressive and efficient ways (composition and
hierarchy) to define new, more complex types.”
[Ege 96].

2.7 Redundancy and Checking
Redundant information is often needed to enable
correctness checking. Type definitions define the
elements in a system’s universe, and the properties
governing the valid combinations and interactions of
the elements. Declarations define the entities in a
system’s universe. The compiler uses redundant
information for consistency checking, and strips it
away to produce efficient executable systems. Types
are redundant information. You can program in an
entirely typeless language: however, this would be
to deny the progress that has been made in making
programming a disciplined craft, that produces
correct programs economically.

It is a misconception that consistency checks are
‘training wheels’ for student programmers, and that
‘syntax’ errors are a hindrance to professional
programmers. Languages that exploit techniques of
schema checking are often criticised as being
restrictive and therefore unusable for real world
software. This is nonsense and misunderstands the
power of these languages. It is an immature
conception; the best programmers realise that
programming is difficult. As a whole, the computing
profession is still learning to program.

While C++ is a step in this direction, it is
hindered by its C base, importing such mechanisms
as pointers with which you can undermine the logic
of the type system. Java has abandoned these C
mechanisms where they hinder: “The Java compiler
employs stringent compile-time checking so that
syntax-related errors can be detected early, before a
program is deployed in service” [Sun 95]. The
programming community has matured in the last
few years, and while there was vehement argument
against such checking in the past by those who saw
it as restrictive and disciplinarian, the majority of
the industry now accepts, and even demands it.

Checking has also been criticised from another
point of view. This point of view says that checking
cannot guarantee software quality, so why bother?
The premise is correct, but the conclusion is wrong.
Checking is neither necessary, nor sufficient to
produce quality software. However, it is helpful and
useful, and is a piece in a complicated jig-saw which
should not be ignored.

In fact there are few things that are necessary for
quality software production. Mainly, software
quality is dependent on the skill and dedication of
the people involved, not methodologies or
techniques. There is nothing that is sufficient. As
Fred Brooks has pointed out, there is no Silver
Bullet [Brooks 95]. Good craftsmen choose the right
tools and techniques, but the result is dependent on
the skill used in applying the tools. Any tool is
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worthless in itself. But the Silver Bullet rationale is
not a valid rationale against adopting better
programming languages, tools and environments;
unfortunately, Brooks’ article has been misused.

Another example of consistency checking comes
from the user interface world. Instead of correcting a
user after an erroneous action, a good user interface
will not offer the action as a possibility in the first
place. It is cheaper to avoid error than to fix it. Most
people drive their cars with this principle in mind:
smash repair is time consuming and expensive.

Program development is a dynamic process;
program descriptions are constantly modified during
development. Modifications often lead to
inconsistencies and error. Consistency checks help
prevent such ‘bugs’, which can ‘creep’ into a
previously working system. These checks help
verify that as a program is modified, previous
decisions and work are not invalidated.

It is interesting to consider how much checking
could be integrated in an editor. The focus of many
current generation editors is text. What happens if
we change this focus from text to program
components? Such editors might check not only
syntax, but semantics. Signalling potential errors
earlier and interactively will shorten development
times, alerting programmers to problems, rather than
wasting hours on changes which later have to be
undone. Future languages should be defined very
cleanly in order to enable such editor technology.

2.8 Encapsulation
There is much confusion about encapsulation,
mostly arising from C++ equating encapsulation
with data hiding. The Macquarie dictionary defines
the verb to encapsulate as “to enclose in or as in a
capsule.” The object-oriented meaning of
encapsulation is to enclose related data, routines and
definitions in a class capsule. This does not
necessarily mean hiding.

Implementation hiding is an orthogonal concept
which is possible because of encapsulation. Both
data and routines in a class are classified according
to their role in the class as interface or
implementation.

To put this another way: first you encapsulate
information and operations together in a class, then
you decide what is visible, and what is hidden
because it is implementation detail. Most often only
the interface routines and data should appear at
design time, the implementation details appearing
later.

Encapsulation provides the means to separate
the abstract interface of a class from its
implementation: the interface is the visible surface
of the capsule; the implementation is hidden in the
capsule. The interface describes the essential
characteristics of objects of the class which are
visible to the exterior world. Like routines, data in a
class can also be divided into characteristic interface
data which should be visible, and implementation

data which should be hidden. Interface data are any
characteristics which might be of interest to the
outside world. For example when buying a car, the
purchaser might want to know data such as the
engine capacity and horse-power, etc. However, the
fact that it took John Engineer six days to design the
engine block is of no interest.

Implementation hiding means that data can only
be manipulated, that is updated, within the class, but
it does not mean hiding interface data. If the data
were hidden, you could never read it, in which case,
classes would perform no useful function as you
could only put data into them, but never get
information out.

In order to provide implementation hiding in
C++ you should access your data through C
functions. This is known as data hiding in C++. It is
not the data that is actually being hidden, but the
access mechanism to the data. The access
mechanism is the implementation detail that you are
hiding. C++ has visible differences between the
access mechanisms of constants, variables and
functions. There is even a typographic convention of
upper case constant names, which makes the
differences between constants and variables visible.
The fact that an item is implemented as a constant
should also be hidden. Most non-C languages
provide uniform functional access to constants,
variables and value returning routines. In the case of
variables, functional access means they can be read
from the outside, but not updated. An important
principle is that updates are centralised within the
class.

Above I indicated that encapsulation was
grouping operations and information together.
Where do functions fit into this? The wrong answer
is that functions are operations. Functions are
actually part of the information, as a function returns
information derived from an object’s data to the
outside world.

This theme and its adverse consequences, that
place the burden of encapsulation on the
programmer rather than being transparent, recur
throughout this critique.

2.9 Safety and Courtesy Concerns
This critique makes two general types of criticism
about ‘safety’ concerns and ‘courtesy’ concerns.
These themes recur throughout this critique, as C
and C++ have flaws that often compromise them.
Safety concerns affect the external  perception of the
quality of the program; failure to meet them results
in unfulfilled requirements, unsatisfied customers
and program failures.

Courtesy concerns affect the internal  view of
the quality of a program in the development and
maintenance process. Courtesy concerns are usually
stylistic and syntactic, whereas safety concerns are
semantic. The two often go together. It is a courtesy
concern for an airline to keep its fleet clean and well
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maintained, which is also very much a safety
concern.

Courtesy issues are even more important in the
context of reusable software. Reusability depends on
the clear communication of the purpose of a module.
Courtesy is important to establish social
interactions, such as communication. Courtesy
implies inconvenience to the provider, but provides
convenience to others. Courtesy issues include
choosing meaningful identifiers, consistent layout
and typography, meaningful and non-redundant
commentary, etc. Courtesy issues are more than just
a style consideration: a language design should
directly support courtesy issues. A language,
however, cannot enforce courtesy issues, and it is
often pointed out that poor, discourteous programs
can be written in any language. But this is no reason
for being careless about the languages that we
develop and choose for software development.

Programmers fulfilling courtesy and safety
concerns provide a high quality service fulfilling
their obligations by providing benefits to other
programmers who must read, reuse and maintain the
code; and by producing programs that delight the
end-user.

The programming by contract model has been
advocated in the last few years as a model for
programming by which safety and courtesy concerns
can be formally documented. Programming by
contract documents the obligations of a client and
the benefits to a provider in preconditions; and the
benefits to the client and obligations of the provider
in postconditions [Meyer 88], [Kilov and Ross 94].

2.10 Implementation and Deployment
Concerns
Class implementors are concerned with the
implementation of the class. Clients of the class
only need to know as much information about the
class as is documented in the abstract interface. The
implementation is otherwise hidden.

Another aspect that is just as important to shield
programmers from is deployment concerns.
Deployment is how a system is installed on the
underlying technology. If deployment issues are
built into a program, then the program lacks
portability, and flexibility. One kind of deployment
concern is how a system is mapped to the available
computing resources. For example, in a distributed
system, this is what parts of the system are run in
which location. As things can move around a
distributed system, programmers should not build
into their code location knowledge of other entities.
Locations should be looked up in a directory.

Another deployment issue is how individual
units of a system are plugged together to form an
integrated whole. This is particularly important in
OO, where several libraries can come from different
vendors, but their combination results in conflicts. A
solution to this is some kind of language that binds
the units. Thus if you purchase two OO libraries,

and they have clashes of any kind, you can resolve
this deployment issue without having to change the
libraries, which you might not be able to do anyway.

Programmers should not only be separated from
implementation concerns of other units, but
separated from deployment concerns as well.

2.11 Concluding Remarks
It is relevant to ask if grafting OO concepts onto a
conventional language realises the full benefits of
OO? The following parable seems apt: “No one
sews a patch of unshrunk cloth on to an old
garment; if he does, the patch tears away from it, the
new from the old, and leaves a bigger hole. No one
puts new wine into old wineskins; if he does, the
wine will burst the skins, and then wine and skins
are both lost. New wine goes into fresh skins.” Mark
2:22

We must abandon disorganised and error-prone
practices, not adapt them to new contexts. How well
can hybrid languages support the sophisticated
requirements of modern software production?  In my
experience bolt-on approaches to object-orientation
usually end in disaster, with the new tearing away
from the old leaving a bigger hole.

Surely a basic premise of object-oriented
programming is to enable the development of
sophisticated systems through the adoption of the
simplest techniques possible? Software development
technologies and methodologies should not impede
the production of such  sophisticated systems.

3.  C++ Specific Criticisms

3.1 Virtual Functions
This is the most complicated section in the critique,
due to C++’s complex mechanisms. Although this
issue is central as polymorphism is a  key concept of
OOP, feel free to skim if you want an overview,
without the details.

In C++ the keyword virtual  enables the
possibility for a function to be polymorphic when it
is overridden (redefined) in one or more descendant
classes, but the virtual  keyword is unnecessary,
as any function which is redefined in a descendant
class could be polymorphic. A compiler only needs
to generate dynamic dispatch for truly polymorphic
routines.

The problem in C++ is that if a parent class
designer does not foresee that a descendant class
might want to redefine a function, then the
descendant class cannot make the function
polymorphic. This is a most serious flaw in C++
because it reduces the flexibility of software
components and therefore the ability to write
reusable and extensible libraries.

C++ also allows functions to be overloaded, in
which case the correct function to call depends on
the arguments. The actual arguments in the function
call must match the formal arguments of one of the
overloaded functions. The difference between
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overloaded functions and polymorphic (overridden)
functions is that with overloaded functions, the
correct function to call is determined at compile-
time; with polymorphic functions the correct
function to call is determined at run-time.

When a parent class is designed the programmer
can only guess that a descendant class might
override or overload a function. A descendant class
can overload a function at any time, but this is not
the case for the more important mechanism of
polymorphism, where the parent class programmer
must specify that the routine is virtual  in order
for the compiler to set up a dispatch entry for the
function in the class jump table. So the burden is on
the programmer for something which could be
automatically done by the compiler, and is done by
the compiler in other languages. However, this is a
relic from how C++ was originally implemented
with Unix tools, rather than specialised compiler
and linker support.

There are three options for overriding, corresponding
to ‘must not’, ‘can’, and ‘must’ be overridden:

1) Overriding a routine is prohibited;
descendant classes must use the routine as is.

2) A routine can be overridden. Descendant
classes can use the routine as provided, or provide
their own implementation as long as it conforms to
the original interface definition and accomplishes at
least as much.

3) A routine is abstract. No implementation is
provided and each non-abstract descendent class
must provide its own implementation.

The base class designer must decide options 1
and 3.  Descendant class designers must decide
option 2. A language should provide direct syntax
for these options.

Option 1
C++ does not cater for the prohibition of overriding
a routine in a descendant class. Even private
virtual  routines can be overridden. [Sakkinen
92] points out that a descendant class can redefine a
private virtual  function even though it
cannot access the function in other ways.

Not using a virtual function is the closest, but in
that case the routine can be completely replaced.
This causes two problems. Firstly, a routine can be
unintentionally replaced in a descendent. The
redeclaration of a name within the same scope
should cause a name clash; the compiler should
report a ‘duplicate declaration’ syntax error as the
entities inherited from the parent are included in the
descendants namespace. Allowing two entities to
have the same name within one scope causes
ambiguity and other problems. (See the section on
name overloading.)

The following example illustrates the second
problem:

class A
{

public:
void nonvirt ();
virtual void virt ();

}

class B : public A
{

public:
void nonvirt ();
void virt ();

}

A a;
B b;
A *ap = &b;
B *bp = &b;

bp->nonvirt (); // calls B::nonvirt as
                // you would expect.
ap->nonvirt (); // calls A::nonvirt,
                // even though this
                // object is of type B.
ap->virt ();    // calls B::virt, the
                // correct version of
                // the routine for B
                // objects.

In this example, class B has extended or replaced
routines in class A. B::nonvirt  is the routine
that should be called for objects of type B. It could
be pointed out that C++ gives the client programmer
flexibility to call either A::nonvirt  or
B::nonvirt , but this can be provided in a
simpler more direct way: A::nonvirt  and
B::nonvirt  should be given different names.
That way the programmer calls the correct routine
explicitly, not by an obscure and error prone trick of
the language. The different name approach is as
follows:

class B : public A
{

public:
void b_nonvirt ();
void virt ();

}
B b;
B *bp = &b;
bp->nonvirt ();   // calls A::nonvirt
bp->b_nonvirt (); // calls B::b_nonvirt

Now the designer of class B has direct control over
B’s interface. The application requires that clients of
B can call both A::nonvirt , and
B::b_nonvirt , which B’s designer has explicitly
provided for. This is good object-oriented design,
which provides strongly defined interfaces. C++
allows client programmers to play tricks with the
class interfaces, external to the class, and B’s
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designer cannot prevent A::nonvirt  from being
called. Objects of class B have their own specialised
nonvirt , but B’s designer does not have control
over B’s interface to ensure that the correct version
of nonvirt  is called.

C++ also does not protect class B from other
changes in the system. Suppose we need to write a
class C that needs nonvirt  to be virtual . Then
nonvirt  in A will be changed to virtual . But
this breaks the B::nonvirt  trick. The
requirement of class C to have a virtual  function
forces a change in the base class, which affects all
other descendants of the base class, instead of the
specific new requirement being localised to the new
class. This is against to the reason for OOP having
loosely coupled classes, so that new requirements,
and modifications will have localised effects, and
not require changes elsewhere which can potentially
break other existing parts of the system.

Another problem is that statements should
consistently have the same semantics. The
polymorphic  interpretation  of  a  statement   like
a->f()  is that the most suitable implementation of
f()  is invoked for the object referred to by ‘a’,
whether the object is of type A, or a descendent of A.
In C++, however, the programmer must know
whether the function f()  is defined virtual or non-
virtual in order to interpret exactly what a->f()
means. Therefore, the statement a->f()  is not
implementation independent and the principle of
implementation hiding is broken. A change in the
declaration of f()  changes the semantics of the
invocation. Implementation independence means
that a change in the implementation DOES NOT
change the semantics, of executable statements.

If a change in the declaration changes the
semantics, this should generate a compiler detected
error. The programmer should make the statement
semantically consistent with the changed
declaration. This reflects the dynamic nature of
software development, where you’ll see perpetual
change in program text.

For yet another case of the inconsistent
semantics of the statement a->f()  vs constructors,
consult section 10.9c, p 232 of the C++ ARM.
Neither Eiffel nor Java have these problems. Their
mechanisms are clearer and simpler, and don’t lead
to the surprises of C++. In Java, everything is
virtual , and to gain the effect where a method
must not be overridden, the method may be defined
with the qualifier final .

Eiffel allows the programmer to specify a
routine as frozen, in which case the routine cannot
be redefined in descendants.

Option 2
Using the function as is or overriding it should be
left open for the programmers of descendant classes.
In C++, the possibility must be enabled in the base
class by specifying virtual . In object-oriented
design, the decisions you decide not to make are as
important as the decisions you make. Decisions

should be made as late as possible. This strategy
prevents mistakes being built into the system at
early stages. By making early decisions, you are
often stuck with assumptions that later prove to be
incorrect; or the assumptions could be correct in one
environment, but false in another, making software
brittle and non-reusable.

C++ requires the parent class to specify potential
polymorphism by virtual (although an intermediate
class in the inheritance chain can introduce virtual).
This prejudges that a routine might be redefined in
descendants. This can be a problem because routines
that aren’t actually polymorphic are accessed via the
slightly less efficient virtual table technique instead
of a straight procedure call. (This is never a large
overhead but object-oriented programs tend to use
more and smaller routines making routine
invocation a more significant overhead.) The policy
in C++ should be that routines that might be
redefined should be declared virtual. What is worse
is that it says that non-virtual routines cannot be
redefined, so the descendant class programmer has
no control.

Rumbaugh et al put their criticism of C++’s
virtual as follows: “C++ contains facilities for
inheritance and run-time method resolution, but a
C++ data structure is not automatically object-
oriented. Method resolution and the ability to
override an operation in a subclass are only
available if the operation is declared virtual in the
superclass. Thus, the need to override a method
must be anticipated and written into the origin class
definition. Unfortunately, the writer of a class may
not expect the need to define specialised subclasses
or may not know what operations will have to be
redefined by a subclass. This means that the
superclass often must be modified when a subclass
is defined and places a serious restriction on the
ability to reuse library classes by creating sub-
classes, especially if the source code library is not
available. (Of course, you could declare all
operations as virtual, at a slight cost in memory and
function-calling overhead.)” [RBPEL91]

Virtual, however, is the wrong mechanism for
the programmer to deal with. A compiler can detect
polymorphism, and generate the underlying virtual
code, where and only where necessary. Having to
specify virtual burdens the programmer with another
bookkeeping task. This is the main reason why C++
is a weak object-oriented language as the
programmer must constantly be concerned with low
level details, which should be automatically handled
by the compiler.

Another problem in C++ is mistaken overriding.
The base class routine can be overridden
unwittingly. The compiler should report an
erroneous name redefinition within the same name
space unless the descendant class programmer
specifies that the routine redefinition is really
intended. The same name can be used, but the pro-
grammer must be conscious of this, and state this
explicitly, especially in environments where systems
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are assembled out of preexisting components.
Unless the programmer explicitly overrides the
original name a syntax error should report that the
name is a duplicate declaration. C++, however,
adopted the original approach of Simula. This
approach has been improved upon, and other
languages have adopted better, more explicit
approaches, that avoid the error of mistaken
redefinition.

The solution is that virtual  should not be
specified in the parent. Where run-time polymorphic
dynamic-binding is required, the child class should
specify override  on the function. When compile-
time static-binding is required, the child class should
specify overload  on the function. This has the
advantages: in the case of polymorphic functions,
the compiler can check that the function signatures
conform; and in the case of overloaded functions
that the function signatures are different in some
respect. The second advantage would be that during
the maintenance phases of a program, the original
programmer’s intention is clear. As it is, later
programmers must guess if the original programmer
had made some kind of error in choosing a duplicate
name, or whether overloading was intended.

In Java, there is no virtual  keyword; all
methods are potentially polymorphic. Java uses
direct call instead of dynamic method lookup when
the method is static , private  or final . This
means that there will be non-polymorphic routines
that must be called dynamically, but the dynamic
nature of Java means further optimisation is not
possible.

Eiffel and Object Pascal cater for this option as
the descendant class programmer must specify that
redefinition is intended. This has the extra benefit
that a later reader or maintainer of the class can
easily identify the routines that have been redefined,
and that this definition is related to a definition in an
ancestor class without having to refer to ancestor
class definitions. Thus option 2 is exactly where it
should be, in descendant classes.

Both Eiffel and Object Pascal optimise calls:
they only generate dispatch table entries for dynamic
binding where a routine is truly polymorphic. How
this is possible is covered in the section on global
analysis.

Option 3
The pure virtual  function caters for leaving a
function abstract, that is a descendent class must
provide its implementation if it is to be instantiated.
Any descendants that do not define the routine are
also abstract classes. This concept is correct, but see
the section on pure virtual  functions for
criticism of the terminology and syntax.

Java also has abstract methods, and in Eiffel, the
implementation is marked as deferred.
Summary
The main problem with virtual  is that it forces
the base class designer to guess that a function

might be polymorphic in one or more derived
classes. If this requirement is not foreseen, or not
included as an optimisation to avoid dynamically
dispatched calls, the possibility is effectively closed,
rather than being left open. As implemented in C++,
virtual coupled with the independent notion of
overloading make an error prone combination.

Virtual  is a difficult notion to grasp. The
related concepts of polymorphism and dynamic
binding, redefinition, and overriding are easier to
grasp, being oriented towards the problem domain.
Virtual routines are an implementation mechanism
which instruct the compiler to set up entries in the
class’s virtual table; where global analysis is not
done by the compiler, leaving this burden to the
programmer. Polymorphism is the ‘what’, and
virtual is the ‘how’. Smalltalk, Objective-C, Java,
and Eiffel all use a different mechanism to
implement polymorphism.

Virtual is an example of where C++ obscures the
concepts of OOP. The programmer has to come to
terms with low level concepts, rather than the higher
level object-oriented concepts. Virtual leaves
optimisation to the programmer. Other approaches
leave the optimisation of dynamic dispatch to the
compiler, which can remove 100% of cases where
dynamic dispatch is not required. Interesting as
underlying mechanisms might be for the theoretician
or compiler implementor, the practitioner should not
be required to understand or use them to make sense
of the higher level concepts. Having to use them in
practice is tedious and error-prone, and can prevent
the adaptation of software to further advances in the
underlying technology and execution mechanisms
(see concurrent programming), and reduces the
flexibility and reusability of the software.

3.2 Global Analysis
[P&S 94] note that there are two world assumptions
about type safety. The first is the closed-world
assumption, where all parts of the program are
known at compilation time, and type checking is
done for the entire program. The second is the open-
world assumption, where type checking is done
independently for each module. The open-world
assumption is useful when developing and
prototyping. However, “When a finished product
has matured, it makes sense to adopt the closed-
world assumption, since it enables more advanced
compilation techniques. Only when the entire
program is known, is it possible to perform global
register allocation, flow analysis, or dead code
detection.” [P&S 94].

One of the major problems with C++ is the way
analysis is divided between the compiler, which
works under the open-world assumption, and the
linker which is depended on to do very limited
closed-world analysis. Closed-world or global
analysis is essential for two reasons: firstly, to
ensure that the assembled system is consistent; and
secondly to remove burden from the programmer by
providing automatic optimisations.



C++?? 13

3rd Edition © Ian Joyner 1996

The main burden that can be removed from the
programmer is that of a base class designer having
to help the compiler build class virtual tables with
the virtual function modifier. As explained in the
section on virtual functions, this adversely effects
software flexibility. Virtual tables should not be
built when a class is compiled: rather virtual tables
should only be built when the entire system is
assembled. During the system assembly (linker)
phase, the compiler and linker can entirely
determine which functions need virtual table entries.
Other burdens are that the programmer must use
operators to help the compiler with information in
other modules it cannot see, and the maintenance of
header files.

In Eiffel and Object Pascal, global analysis of
the entire system is done to determine the truly
polymorphic calls and accordingly construct the
virtual tables. In Eiffel this is done by the compiler.
In Object Pascal, Apple extended the linker to
perform global analysis. Such global analysis is
difficult in a C/Unix style environment, so in C++ it
was not included, leaving this burden to the
programmer.

In order to remove this burden from the
programmer, global analysis should have been put
in the linker. However, as C++ was originally
implemented as the Cfront preprocessor, necessary
changes to the linker weren’t undertaken. The early
implementations of C++ were a patchwork, and this
has resulted in many holes. The design of C++ was
severely limited by its implementation technology,
rather than being guided by the principles of better
language design, which would require dedicated
compilers and linkers. That is, C++ has been
severely limited by its original experimental
implementation.

I am now convinced that such technology
dependence has severely damaged C++ as an object-
oriented language and as a high level language. A
high level language removes the bookkeeping
burden from the programmer and places them in the
compiler, which is the primary aim of high level
languages. Lack of global or closed-world analysis
is a major deficiency of C++, which leaves C++
substantially lacking when compared to languages
such as Eiffel. As Eiffel insists on system level
validity and therefore global analysis, it means that
Eiffel implementations are more ambitious than
C++ implementations, and this is a major reason
why Eiffel implementations have been slower to
appear.

Java dynamically loads pieces of software and
links them into a running system as required. Thus
static compile-time global analysis is not possible,
as Java is designed to be dynamic. However, Java
has made the valid assumption that all methods are
virtual. This is one reason why Java and Eiffel are
substantially different tools, although Eiffel has
recently introduced Dynamic Linking in Eiffel
(DLE).

3.3 Type-safe linkage
The C++ ARM explains that type-safe linkage is not
100% type safe. If it is not 100% type-safe, then it is
unsafe. Statistical analysis showed that in the
Challenger disaster, the probability against an
individual O-ring failure was .997. But in a
combination of 6 this small margin for failure
became significant, meaning the combination was
very likely to fail. In software, we often find strange
combinations cause failure. It is the primary
objective of OO to reduce these strange
combinations.

It is the subtle errors that cause the most
problems, not the simple or obvious ones. Often
such errors remain undetected in the system until
critical moments. The seriousness of this situation
cannot be underestimated. Many forms of transport,
such as planes, and space programs depend on
software to provide safety in their operation. The
financial survival of organisations can also depend
on software. To accept such unsafe situations is at
best irresponsible.

C++ type safe linkage is a huge improvement
over C, where the linker will link a function f (p1,
...) with parameters to any function f (), maybe one
with no or different parameters. This results in
failure at run time. However, since C++ type safe
linkage is a linker trick, it does not deal with all
inconsistencies like this.

The C++ ARM summarises the situation as
follows - “Handling all inconsistencies - thus
making a C++ implementation 100% type-safe -
would require either linker support or a mechanism
(an environment) allowing the compiler access to
information from separate compilations.”

So why do C++ compilers (at least AT&T’s) not
provide for accessing information from separate
compilations? Why is there not a specialised linker
for C++, that actually provides 100% type safety?
C++ lacks the global analysis of the previous
section. Building systems out of preexisting
elements is the common Unix style of software
production. This implements a form of reusability,
but not in the truly flexible and consistent manner of
object-oriented reusability.

In the future, Unix might be replaced by object-
oriented operating systems, that are indeed ‘open’ to
be tailored to best suit the purpose at hand. By the
use of pipes and flags, Unix software elements can
be reused to provide functionality that approximates
what is desired. This approach is valid and works
with efficacy in some instances, like small in-house
applications, or perhaps for research prototyping,
but is unacceptable for widespread and expensive
software, or safety critical applications. In the last
ten years the advantages of integrated software have
been acknowledged. Classic Unix systems don’t
provide those advantages. Integrated systems are
more ambitious, and place more demands on their
developers, but this is the sort of software now
being demanded by end users. Systems that are
cobbled together are unacceptable. Today the
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emphasis is on software component technologies
such as the public domain OpenDoc or Microsoft’s
OLE.

A further problem with linking is that different
compilation and linking systems should use
different name encoding schemes. This problem is
related to type-safe linkage, but is covered in the
section on ‘reusability and compatibility’.

Java uses a different dynamic linking
mechanism, which is well defined and does not use
the Unix linker. Eiffel does not depend on the Unix
or other platform linkers to detect such problems.
The compiler must detect these problems.

Eiffel defines system-level validity. An Eiffel
compiler is therefore required to perform closed-
world analysis, and not rely on linker tricks. You
can thus be sure that Eiffel programs are 100% type
safe. A disadvantage of Eiffel is that compilers have
a lot of work to do. (The common terminology is
‘slow’, but that is inaccurate.) This is overcome to
some extent by Eiffel’s melting-ice technology,
where changes can be made to a system, and tested
without the need to recompile every time.

To summarise the last two sections: global or
closed-world analysis is needed for two reasons:
consistency checks and optimisations. This removes
many burdens from the programmer, and its lack is
a great shortcoming of C++.

3.4 Function Overloading
C++ allows functions to be overloaded if the
arguments in the signature are different types.
Overloaded functions are different to polymorphic
functions: for each invocation the correct function is
selected at compile time; with polymorphic
functions, the correct function is bound dynamically
at run-time. Polymorphism is achieved by redefining
or overriding routines. Be careful not to confuse
overriding and overloading. Overloading arises
when two or more functions share a name. These are
disambiguated by the number and types of the
arguments. Overloading is different to multiple
dispatching in CLOS, as multiple dispatching on
argument types is done dynamically at run-time.

[Reade 89] points out the difference between
overloading and polymorphism. Overloading means
the use of the same name in the same context for
different entities with completely different
definitions and types. Polymorphism though has one
definition, and all types are subtypes of a principle
type. C. Strachey referred to polymorphism as
parametric polymorphism and overloading as ad hoc
polymorphism. The qualification mechanism for
overloaded functions is the function signature.

Overloading can be useful as these examples
show:

max (int, int);
max (real, real);

This will ensure that the best max routine for the
types int  and real  will be invoked. Object-

oriented programming, however, provides a variant
on this. Since the object is passed to the routine as a
hidden parameter (‘this’ in C++), an equivalent but
more restricted form is already implicitly included
in object-oriented concepts. A simple example such
as the above would be expressed as:

int i, j;
real r, s;
i.max (j);
r.max (s);

but i.max (r) and r.max (j) result in compilation
errors because the types of the arguments do not
agree. By operator overloading of course, these can
be better expressed, i max j and r max s, but min
and max are peculiar functions that could accept two
or more parameters of the same type so they can be
applied to a arbitrarily sized list. So the most general
code in Eiffel style syntax will be something like:

il : COMPARABLE_LIST [INTEGER]
rl: COMPARABLE_LIST [REAL]

i := il.max
r := rl.max

The above examples show that the object-oriented
paradigm, particularly with genericity can achieve
function overloading, without the need for the
function overloading of C++. C++, however, does
make the notion more general. The advantage is that
more than one parameter can overload a function,
not just the implicit current object parameter.

Another factor to consider is that overloading is
resolved at compile time, but overriding at run-time,
so it looks as if overloading has a performance
advantage. However, global analysis can determine
whether the min and max functions are at the end of
the inheritance line, and therefore can call them
directly. That is, the compiler examines the objects i
and r, looks at their corresponding max function,
sees that at that point no polymorphism is involved,
and so generates a direct call to max. By contrast, if
the object was n which was defined to be a
NUMBER which provided the abstract max function
from which REAL.max and INTEGER.max were
derived, then the compiler would need to generate a
dynamically bound call, as n could refer to either a
INTEGER or a REAL.

If it is felt that C++’s scheme of having
parameters of different types is useful, it should be
realised that object-oriented programming provides
this in a more restricted and disciplined form. This
is done by specifying that the parameter needs to
conform to a base class. Any parameter passed to
the routine can only be a type of the base class, or a
subclass of the base class. For example:

A.f (B someB) {...};
class B ...;
class D : public B ...
A a;
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D d;
a.f (d);

The entity ‘d’ must conform to the class ‘B’, and the
compiler checks this.

The alternative to function overloading by
signature, is to require functions with different
signatures to have different names. Names should be
the basis of distinction of entities. The compiler can
cross check that the parameters supplied are correct
for the given routine name. This also results in
better self-documented software. It is often difficult
to choose appropriate names for entities, but it is
well worth the effort.

[Wiener 95] contributes a nice example on the
hazards of virtual functions with overloading:

class Parent
{
   public:
      virtual int doIt (int v)
      {
         return v * v;
      }
};

class Child : public Parent
{
   public:
      int doIt (int v,
                int av = 20)
      {
         return v * av;
      }
};

void main()
{
   int i;
   Parent *p = new Child();
   i = p->doIt(3);
}

What is the value in i  after execution of this
program? One might expect 60, but it is 9 as the
signature of doIt  in Child  does not match the
signature in Parent . It therefore does not override
the Parent doIt , merely overloads it, and the
default is unusable.

Java also provides method overloading, where
several methods can have the same name, but have
different signatures.

The Eiffel philosophy is not to introduce a new
technique, but to use genericity, inheritance and
redefinition. Eiffel provides covariant signatures,
which means the signatures of descendant routines
do not have to match exactly, but they do have to
conform, according to Eiffel’s strong typing scheme.

Eiffel uses covariance with anchored types to
implement examples such as max. The Vintage 95
Kernel Library specifies max as:

max (other: like Current): like Current

This says that the type of the argument to max must
conform to the type of the current class. Therefore
you get the same effect by redefinition without the
overloading concept. You also get type checking to
see that the parameter conforms to the current
object. Genericity is also a mechanism that
overcomes most of the need for overloading.

3.5 The Nature of Inheritance
Inheritance is a close relationship providing a
fundamental OO way to assemble software
components, along with composition and genericity.
Objects that are instances of a class are also
instances of all ancestors of that class. For effective
object-oriented design the consistency of this
relationship should be preserved. Each redefinition
in a subclass should be checked for consistency with
the original definition in an ancestor class. A
subclass should preserve the requirements of an
ancestor class. Requirements that cannot be
preserved indicate a design error and perhaps
inheritance is not appropriate. Consistency due to
inheritance is fundamental to object-oriented design.
C++’s implementation of non-virtual overloading,
means that the compiler does not check for this
consistency. C++ does not provide this aspect of
object-oriented design.

Inheritance has been classified as ‘syntactic’
inheritance and ‘semantic’ inheritance. Saake et al
describe these as follows: “Syntactic inheritance
denotes inheritance of structure or method
definitions and is therefore related to the reuse of
code (and to overriding of code for inherited
methods). Semantic inheritance denotes inheritance
of object semantics, ie of objects themselves. This
kind of inheritance is known from semantic data
models, where it is used to model one object that
appears in several roles in an application.” [SJE 91].
Saake et al concentrate on the semantic form of
inheritance. Behavioural or semantic inheritance
expresses the role of an object within a system.

Wegner, however, believes code inheritance to
be of more practical value. He classifies the
difference between syntactic and semantic
inheritance as code and behaviour hierarchies [Weg
91] (p43). He suggests these are rarely compatible
with each other and are often negatively correlated.
Wegner also poses the question of “How should
modification of inherited attributes be constrained?”
Code inheritance provides a basis for
modularisation. Behavioural inheritance provides
modelling by the ‘is-a’ relationship. Both are useful
in their place. Both require consistency checks that
combinations due to inheritance actually make
sense.

It seems that inheritance is most powerful in the
most restrictive form of a semantics preserving
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relationship; a subclass should preserve the
assumptions of ancestor classes.

Meyer [Meyer 96a and 96b] has also produced a
classification of inheritance techniques. In his
taxonomy he identifies 12 uses of inheritance, all of
which he finds useful. This analysis also gives a
good idea of when inheritance can be used, and
when it should not.

Software components are like jig-saw pieces.
When assembling a jig-saw the shape of the pieces
must fit, but more importantly, the resulting picture
must make sense. Assembling software components
is more difficult. A jig-saw is reassembling a picture
that was complete before. Assembling software
components is building a picture that has never been
seen before. What is worse, is that often the jig-saw
pieces are made by different programmers, so when
the whole system is assembled, the pictures must fit.

Inheritance in C++ is like a jig-saw where the
pieces fit together, but the compiler has no way of
checking that the resultant picture makes sense. In
other words C++ has provided the syntax for classes
and inheritance but not the semantics. Reusable C++
libraries have been slow to appear, which suggests
that C++ might not support reusability as well as
possible. By contrast Java, Eiffel and Object Pascal
are packaged with libraries. Object Pascal went very
much in hand with the MacApp application
framework. Java has been released coupled with the
Java API, a comprehensive library. Eiffel is also
integrated with an extremely comprehensive library,
which is even larger than Java’s. In fact the concept
of the library preceded Eiffel as a project to
reclassify and produce a taxonomy of all common
structures used in computer science. [Meyer 94].

3.6 Multiple Inheritance
Both Eiffel and C++ provide multiple inheritance.
Java does not, claiming it results in many problems.
Instead Java provides interfaces, which are similar
to Objective C’s protocols. Sun claims interfaces
provide all the desirable features of multiple
inheritance.

Sun’s claim that multiple inheritance results in
problems is true particularly in the way that C++ has
implemented multiple inheritance. What seems like
a simple generalisation of inheriting from multiple
classes instead of just one, turns out to be non-
trivial. For example, what should be the policy if
you inherit an item of the same name from two
classes? Are they compatible? If so should they be
merged into a single entity? If not, how do you
disambiguate them? And so the list goes on.

Java’s interface mechanism implements multiple
inheritance, with one important difference: the
inherited interfaces must be abstract. This does
obviate the need to choose between different
implementations, as with interfaces there are no
implementations. Java allows the declaration of
constant fields in an interface. Where these are
multiply inherited, they merge to form one entity so

that no ambiguity arises, but what happens if the
constants have different values?

Since Java does not have multiple inheritance,
you cannot do mixins as you can in C++ and Eiffel.
Mixin is the ability to inherit sets of non-abstract
routines from different classes to build a new
complex class. For example, you might want to
import utility routines from a number of different
sources. However, you can achieve the same effect
using composition instead of inheritance, so this is
probably not a great minus against Java.

Eiffel solves multiple inheritance problems
without having to introduce a separate, interface
mechanism.

Some feel that single inheritance is elegant by
itself, but that multiple inheritance is not. This is
one particular standpoint.

BETA [Madsen 93] falls into the ‘multiple
inheritance is inelegant’ category: “Beta does not
have multiple inheritance, due to the lack of a
profound theoretical understanding, and also
because the current proposals seem technically very
complicated.” They cite Flavors as a language that
mixes classes together, where according to Madsen,
the order of inheritance matters, that is inheriting
(A, B) is different from inheriting (B, A).

Ada 95 is also a language that avoids multiple
inheritance. Ada 95 supports single inheritance as
the tagged type extension.

Others feel that multiple inheritance can provide
elegant solutions to particular modelling problems
so is worth the effort. Although, the above list of
questions arising from multiple inheritance is not
complete, it shows that the problems with multiple
inheritance can be systematically identified, and
once the problems are recognised, they can be
solved elegantly. While [Sakkinen 92] goes into the
problems of multiple inheritance in great depth, he
defends it.

Eiffel has taken the approach that multiple
inheritance poses some interesting and challenging
problems, but rises to the challenge, and solves them
elegantly. Nor does the order of inheritance matter.
All resolutions that the programmer must specify are
given in the inheritance clause of a class. This
includes renaming to ensure that multiple features
inherited with the same name end up as multiple
features with unambiguous names, redefining, new
export policies for inherited features, undefining,
and disambiguating with select. In all cases, the
action taken by the compiler, whether using fork or
join semantics is made clear, and the programmer
has complete control.

C++ has a different disambiguation mechanism
to Eiffel. In Eiffel, one or both of the features must
be given a different name in the renames clause. In
C++ the members must be disambiguated using the
scope resolution operator ‘::’. The advantage of the
Eiffel approach is that the ambiguity is dealt with
declaratively in one place. Eiffel’s inheritance clause
is considerably more complex than C++’s, but the
code is considerably simpler, more robust and
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flexible, which is the advantage of the declarative
approach as against the operator approach. In C++,
you must use the scope resolution operator in the
code, every time you run into an ambiguity problem
between two or more members. This clutters the
code, and makes it less malleable, as if anything
changes that affects the ambiguity, you potentially
have to change the code everywhere, where the
ambiguity occurs.

According to [Stroustrup 94] section 12.8, the
ANSI committee considered renaming, but the
suggestion was blocked by one member who
insisted that the rest of the committee go away and
think about it for two weeks. The example in section
12.8 shows how the effect of renaming is achieved,
without explicit renaming. The problem is, if it took
this group of experts two weeks to work this out,
what chance is there for the rest of us?

The scope resolution operator is used for more
than just multiple inheritance disambiguation. Since
ambiguities could be avoided by cleaner language
design, the scope resolution operator is an ugly
complication.

The question of whether the order of declaration
of multiple parents matters in C++ is complex. It
does affect the order in which constructors are
called, and can cause problems if the programmer
does really want to get low level. However, this
would be considered poor programming practice.

Another difference between C++ and Eiffel is
direct repeated inheritance. Eiffel allows:

class B inherit A, A end

but

class B : public A, public A {  };

is disallowed in C++.

3.7 Virtual Classes
The meaning of the keyword virtual  is quite
different when used in the context of a class to the
context of a function: with a class it means that
multiply inherited features are merged; with a
function it means polymorphism. Virtual class does
not mean that members in the class are all
polymorphic. In fact the two uses of virtual actually
mean quite the opposite of each other: virtual
functions mean that there could be more than one
function; virtual classes mean that if the class is
multiply inherited, you only get a single copy.

C++ saves on keywords by overloading one
keyword in several contexts, even though the uses
have different or even opposite meanings. Static is
another case, which is used in three different
contexts. The keyword count metric does not show
that C++ is a small non-complex language: less
keywords have made C++ more complex and
confusing.

So what do virtual classes do? If class D
multiply inherits class A via classes B and C, then if
D wants to inherit only a single shared copy of A,

the inheritance of A must be specified as virtual
in both B and C. C++ virtual classes raise two
questions. Firstly, what happens if A is declared
virtual in only one of B or C? Secondly, what if
another class E wants to inherit multiple copies of A
via B and C? In C++, the virtual class decision must
be made early, reducing the flexibility that might be
required in the assembly of derived classes. In a
shared software environment different vendors
might supply classes B and C. It should be left to
the implementor of class D or E, exactly how to
resolve this problem. And this is the simplest case:
what if A is inherited via more than two paths, with
more than two levels of inheritance? Flexibility is
key to reusable software. You cannot envisage when
designing a base class all the possible uses in
derived classes, and attempting to do so
considerably complicates design.

As Java has no multiple inheritance, there is no
problem to be solved here.

The Eiffel mechanism allows two classes D and
E inheriting multiple copies of A to inherit A in the
appropriate way independently. You do not have to
choose in intermediate classes whether A is virtual,
ie., inherited as a single copy, or not. The
inheritance is more flexible and done on a feature by
feature basis, and each feature from A will either
fork, in which it becomes two new features; or join,
in which case there is only one resultant feature. The
programmer of each descendant class can decide
whether it is appropriate to fork or join each feature
independently of the other descendants, or any
policy in A.

The fine grained approach of Eiffel is a
significant benefit over C++. While the Eiffel
approach is more sophisticated and flexible, the
syntax is far simpler, and the concepts are easier to
understand.

3.8 Templates
Templates are C++’s mechanism to implement the
concept of genericity. Templates are much the same
as parameterised classes, which is the mechanism
Eiffel uses for genericity. Genericity is a major
feature of Ada and Algol 68 and is a valuable
addition to C++. Some see genericity as a more
fundamental software assembly mechanism than
inheritance, and certainly less problematic. Ada is
an example where genericity is more fundamental
than inheritance. In C++’s Standard Template
Library (STL), genericity is used almost exclusively
instead of inheritance. Meyer [Meyer 88] states that
genericity is an essential part of an object-oriented
language. [P&S 94] see genericity as a mechanism
that achieves type substitution, which you cannot do
with inheritance. Thus genericity is essential as a
complementary concept to inheritance.

Genericity allows you to build collections of
items, where the type of items is known, and items
can be retrieved from the collection as that type,
without type casting. In a language without
genericity you code a LIST class, and objects of any
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type can be added to lists. If the list is only for
shopping items, it makes semantic nonsense to add a
person to the list. Without genericity there is no
static type check to ensure you can’t add people to
your shopping list. You might be able to catch this
occurrence at run time, but the advantage of static
typing is lost.

Without genericity you could code specific lists
for shopping items, people, and every other item
you could put in lists. The basic functionality of all
lists is the same, but you must duplicate effort, and
manually replicate code. That is you must duplicate
effort if you are going to preserve semantics and be
type safe.

Languages such as Eiffel and C++ allow you to
declare a LIST of shopping items, so the compiler
can ensure that you cannot add people to such a list.
You can also easily add lists that contain any other
type of entity, just by a simple declaration. You do
not have to manually replicate the basic
functionality of the list for every type of element
you are going to put in it.

This has lead to a criticism of the C++ template
mechanism that you get ‘code bloat’. That is for
every type based on a template definition the
compiler might replicate the code. Seeing that the
purpose of templates is to save the programmer from
manual replication, this does not seem like a bad
thing. A good implementation of C++ will avoid
‘code bloat’ where possible. In fact it is allowed for
in the C++ ARM: “This can cause the generation of
unnecessarily many function definitions. A good
implementation might take advantage of the
similarity of such functions to suppress spurious
replications.”

Thus I don’t criticise C++ as others have done
on the basis of ‘code bloat’. The whole concept of
generics and templates is simple and yet powerful,
and allows the generation of quite sophisticated
programs from simple specifications. If you are
overly worried about ‘code bloat’, simply do not use
genericity. As [Stroustrup 94] points out “What you
don’t use, you don’t pay for.” This is a good
principle for compiler implementors. Many people
will use genericity though, as few will find it
practical to code a different kind of LIST for every
possible list element.

While the concept of genericity and templates is
correct, there are several problems with templates in
C++. The syntax leaves a lot to be desired. Readers
can of course form their own opinions of that.
However, again C++ masks what is a simple and
powerful mechanism with complicated syntax, so
people will baulk at using it. There are examples of
where the quirky syntax is a trap for young players
[Stroustrup 94]. For example, declaring a list of a
list of integers would easily be notated:

List<List<int>> a;

However, this results in a syntax error as ‘>>‘ is the
right shift or output operator. You must notate this
as ‘> >‘:

List<List<int> > a;

Further, “template” is confusing terminology, as the
conceptual view is that a class is a template for a set
of objects. “Object-oriented languages allow one to
describe a template, if you will, for an entire set of
objects. Such a template is called a class.” [Ege 96].
This is not the meaning of the C++ term template,
which refers to genericity.

Another more serious problem is that there is no
constraint on the types that can be used as the
parameters to the templates; the coder of a template
class can make no assumptions about the type of the
generic parameter. Thus the class coder cannot issue
a function call from within the template class to the
generic type without a type cast.

As the ARM says on this topic: “Specifying no
restrictions on what types can match a type
argument gives the programmer the maximum
flexibility. The cost is that errors - such as
attempting to sort objects of a type that does not
have comparison operators - will not in general be
detected until link time.”

This shows the need for at least an optional type
constraint on the actual types passed to the template.
Eiffel has such optional constraints in the form of
constrained genericity. For example:

class SORTED_LIST [T -> COMPARABLE]
...
feature
     insert (item: T) is ... end

end

ensures that the type of the item to insert has
appropriate comparison operators from type
COMPARABLE in order to insert item in the right
place in the SORTED_LIST. Note that multiple
inheritance is important, so that any type eligible for
insertion in the SORTED_LIST includes the
comparison operators.

Java, alas has no genericity mechanism. The
Java recommendation is to use type casts when ever
retrieving an object from a container class [Flan 96].

[P&S 94] have a good chapter on genericity.
Genericity is the ability to build a derived class from
a base class by type substitution. Compare this with
inheritance, where you can add class members and
redefine inherited routines. They criticise the
parameterised class/template mechanisms of Eiffel
and C++ for three reasons: firstly, there are two
kinds of class, generic and non-generic; secondly,
you can apply generic instantiation only once; and
thirdly, a generic instance is not a subclass.

BETA uses a different mechanism, virtual
binding, which is more flexible than the Eiffel/C++
parameterised classes, but [P&S 94] shows that you
can produce derived classes that are not statically
type correct.

A significant problem with the parameterised
class mechanism is that the base class designer must
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think about it in advance, and then only the types
nominated in the parameter list can be substituted.
This reduces flexibility. [P&S 94] suggests a
genericity mechanism known as class substitution,
which make inheritance and genericity orthogonal
rather than independent concepts. Class substitution
has the advantage that a base class designer does not
need to design genericity into the base class, any
subclass can perform class substitution; and any
type in the base class may be substituted, not only
those given in the parameter list. Furthermore, class
substitution can be applied repeatedly, whereas
instantiation of a parameterised class can be done
only once.

An example of class substitution in Eiffel like
syntax is:

class A
feature
     x, y: T

     assign is
do
     x := y
end

end

This can be modified using class substitution:

A [T <- INTEGER]
A [T <- ANIMAL]

You can also use constrained genericity with exactly
the same syntax that Eiffel now has, as in the
SORTED_LIST example, except that semantically
the [T -> COMPARABLE] only specifies that any
class substituting T must be a subclass of
COMPARABLE. [T -> COMPARABLE] is not a
parameter list though. You can build new types out
of sorted list:

SORTED_LIST [T <- INTEGER]
SORTED_LIST [T <- STRING]

Java might be in the best position to implement this
flexible class substitution mechanism for genericity,
as it has not implemented genericity yet. Eiffel and
C++ could extend their mechanisms, but then there
would be two ways of doing the same thing, except
the class substitution mechanism is more flexible
than parameterised classes. I do not know of any
languages that implement class substitution as yet,
and other consequences must be thought through
before adding it to languages, so don’t dispose of
your Eiffel and C++ compilers just yet!

3.9 Name Overloading
Clear names are fundamental in producing self-
documenting software helping to produce maintain-
able and reusable software components. Names are

fundamental in freeing programmers from low level
manipulation of addresses. Naming is the basis for
differentiating between different entities in a
software module. In programming, when we use the
term name, we usually mean identifier. To be
precise, a name is a label which can refer to more
than one entity, in which case the name is
ambiguous. An identifier is a name that
unambiguously identifies an entity. (To be
mathematical, a name is a relation, an identifier is a
function.) Where a name is ambiguous, it needs
qualification to form an identifier to the entity. For
example, there could be two people named John
Doe; to disambiguate the reference, you would
qualify each as John Doe of Washington or John
Doe of New York.

Name overloading allows the same name to refer
to two or more different entities. The problem with
an ambiguous name is whether the resultant
ambiguity is useful, and how to resolve it, as
ambiguity weakens the usefulness of names to
distinguish entities.

Name overloading is useful for two purposes.
Firstly, it allows programmers to work on two or
more modules without concern about name clashes.
The ambiguity can be tolerated as within the context
of each module the name unambiguously refers to a
unique entity; the name is qualified by its
surrounding environment. Secondly, name
overloading provides polymorphism, where the
same name applied to different types refers to
different implementations for those types.
Polymorphism allows one word to describe ‘what’ is
computed. Different classes might have different
implementations of ‘how’ a computation is done.
For example ‘draw’ is an operation that is applicable
to all different shapes, even though circles and
squares, etc., are ‘drawn’ differently.

These two uses of name overloading provide a
powerful concept. The use of the same name in the
same context must be resolved. Errors can result
from ambiguity, in which case the programmer must
differentiate between entities with some form of
qualification of the name. A common way to do this
is to introduce extra distinguishing names. For
example, in a group of people where two or more
share the same first name, they can be distinguished
by their surname. Similarly a unique first name will
distinguish the members of a family with a common
surname.

This is analogous to classes, where each class in
a system is given a unique name. Each member
within a class is also given a unique name. Where
two objects with members of the same name are
used within the same context, the object name can
qualify the members. In this case the dot operator
acts as a qualifier, for example, a.mem and b.mem.

Locals in a recursive environment are an
example of ambiguity which is resolved at run-time.
A single local identifier in the static text of a
function can refer to many entities. When the
function is called recursively, the name is qualified
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by the call history of the function to give the exact
memory cell where it resides.

Many block structured languages provide
overloading by scoping. Scoping allows the same
name to be used in different contexts without clash
or confusion, but nested blocks have a subtle
problem. Names in an outer block are in scope in
inner blocks, but many languages allow a name to
be overloaded in an inner block, creating a ‘scope
hole’ hiding the outer entity, preventing it from
being accessed. The name in the inner block has no
relationship with the entity of the same name in the
outer block. Textually nested blocks ‘inherit’
named entities from outer blocks. Inheritance
accomplishes this in object-oriented languages,
eliminates the need to textually nest entities, and
accomplishes textual loose coupling. Nesting results
in tightly coupled text.

Contrary to most languages, a name should not
be overloaded while it is in scope. The following
example illustrates why:

{
  int i;
  {

 int i;  // hide the outer i.
 i = 13; // assign to the inner i.

    // Can’t get to the outer i here.
    // It is in scope, but hidden.
  }
}

Now delete the inner declaration:

{
int i;
{
   i = 13; // Syntactically valid,

              // but not the intention.
}

}

The inner overloaded declaration is removed, and
references to that name do not result in syntax errors
due to the same name being in the outer
environment. The inner instruction now mistakenly
changes the value of  the outer entity. A compiler
cannot detect this situation unless the language
definition forbids nested redeclarations. E.W.
Dijkstra uses similar reasoning in ‘An essay on the
Notion: “The Scope of Variables”’ in “A Discipline
of Programming,” [Dijkstra 76].

The above example demonstrates how nesting
results in less maintainable programs due to tight
coupling between the inner and outer blocks,
making each sensitive to changes in the other. The
advantage of keeping components decoupled and
separate is that a programmer can confidently make
modifications to one component without affecting
other components. Testing can be limited to the
changed component, rather than a combination of

components, which quickly leads to an
exponentiation in the number of tests required.

In Eiffel, overloading is recognised as being
problematic, so even this form is disallowed: routine
arguments and local variables cannot overload
names of class features.

C++ has another analogous form of hiding: a
non-virtual function in a derived class hides a
function with the same signature in an ancestor
class. This hiding is explained in section 13.1 of the
C++ ARM. This is confusing and error prone.
Learning all these ins and outs of the language is
extremely burdensome to the programmer, often
being learnt only after falling into a trap. Java does
not have this problem as everything is virtual, so a
function with the same signature will override rather
than hide the ancestor function.

In order to overcome the effects of hiding, you
can use the scope resolution operator ‘::’. The scope
resolution operator of C++ provides an interesting
twist to the above argument. Consider the following
example from p16 of the ARM:

int g = 99;

int f(int g)  // hide the outer g.
{

 return g ? g : :: g;
        // return argument if it
        // is nonzero otherwise
        // return global g
}

This would be simpler if the compiler reported an
error on the redefinition of g in the parameter list:
the programmer would simply change the name of
one of the entities with no need for the scope
resolution operator:

int g = 99;

int f(int h)
{

 return h ? h : g;
}

With the introduction of namespaces in 1993, the
‘ :: ’ operator now resolves names in namespaces.
For example A::x , means the entity x in
namespace A. Above ::g  means the entity g in the
global namespace. Since declarations in a
namespace are really just members of a fixed
structure, it would have been cleaner to just use the
access operator ‘.’, and avoid the ugly scope
resolution operator.

Java does not provide a scope resolution
operator. However, there are no globals, so the only
case where the above is a problem is between class
members, and method parameters or locals.

Java does have a similar problem though. The
problem is with shadowed variables. With
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shadowed variables, a variable named x in a
superclass can be hidden from the current class by
another variable named x. You can still access both
variables by the use of this.x and super.x, which are
the equivalents of scope resolution. The ambiguity
problem would have been better avoided altogether
by reporting a duplicate identifier.

Eiffel also has no globals, so a construct such as
namespaces is not needed. Eiffel does not allow
name clashes: you must either change the name of
one of the entities, or when combining classes with
inheritance, use a rename clause. With this scheme
there is no need for scope resolution or ‘super’
operators, making the imperative part of the
language simpler, by using declarative techniques.

3.10 Nested Classes
Simula provided textually nested classes similar to
nested procedures in ALGOL. Textual (syntactic)
nesting should not be confused with semantic
nesting, nor static modelling with dynamic run-time
nesting. Modelling is done in the semantic domain,
and should be divorced from syntax; you do not
need textually nested classes to have nested objects.
Nested classes are contrary to good object-oriented
design, and the free spirit of object-oriented
decomposition, where classes should be loosely
coupled, to support software reusability.

Instead of tightly coupled environments:

A

B

C

.

.

Z

You should decouple depending on the modelling
requirements:

A

B B
inherit A       a: A

or

C C
inherit A       a: A

. .

. .

Z Z
inherit A       a: A

is-a component-of/
related-to

This is a more flexible arrangement, both in terms of
modelling and program maintenance.

There are two problems with nested classes:
firstly, the inner class is dependent on the outer
class, and so is not reusable, contrary to good
object-oriented design, where classes are
independent; secondly, the inner class has access to
the implementation of the outer class, so
implementation hiding is violated. Where access to
a class’s implementation is needed, you should use
inheritance, but note this models the is-a
relationship, not the component-of relationship that
nested classes do.

Semantic nesting is achieved independently of
textual nesting. In object-oriented design all objects
should interact only via well defined interfaces, but
objects of a class that is textually nested in another
class have access to the outer object without the
benefit of a clean interface. C avoided the
complexity of nested functions, but C++ has chosen
to implement this complexity for classes, which is
of less use than nested functions, and is contrary to
good object-oriented design.

Pascal and ALGOL programmers sometimes use
nested procedures in order to group things together,
but nested procedures are not necessary, and if you
want to use a nested procedure in another
environment, you have to dig it out of where it is
and make it global, which is a maintenance problem.
If the procedure uses locals from the outer
environment, you have more problems. You will
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have to change these to parameters, which is a
cleaner approach anyway, and you will probably
have to unindent all the text by one or more levels.
Textually nested classes have worse problems.

Semantically, OOP achieves nesting in two
ways: by inheritance and object-oriented
composition. Modelling nesting is achieved without
tight textual coupling. Consider a car. In the real
world the engine is embedded in the car, but in
object-oriented modelling embedding is modelled
without textual nesting. Both car and engine are
separate classes: the car contains a reference to an
engine object. This allows the vehicle and engine
hierarchy to be independently defined. Engine is
derived independently into petrol, diesel, and
electric engines. This is simpler, cleaner and more
flexible than having to define a petrol engine car, a
diesel engine car, etc., which you have to do if you
textually nest the engine class in the car. In the real
world you can change the cars engine, so it does not
even make sense to tightly couple the car and the
engine.

In C++, not only can classes be nested within
other classes, but also within functions, thereby
tightly coupling a class to a function. This confuses
class definition with object declaration. The class is
the fundamental structure in object-oriented
programming and nothing has existence separate
from a class (including globals).

Neither Java, nor Eiffel provide nested classes,
and yet everything you can model in C++, you can
also model in these languages, without the problems
associated with textual nesting.

Chapter 18 of [Madsen 93] provides very good
insights about modelling; classification and
composition are the means to organise complexity in
terms of hierarchies. [Madsen 93] enumerates four
kinds of composition: whole-part composition,
reference composition, localisation, and concept
composition. They say that these are not altogether
independent as one composition relationship could
fall into two or more categories. Whole-part
composition  models the car example above, where
the engine is part of the car. Reference composition
is illustrated where a person makes a hotel
reservation. The person is not a part of the
reservation, but the reservation references the
person. [Madsen 93] can be consulted for definitions
of localisation and concept composition.

As examples can be given of composition that
can be modelled in terms of more than one of the
categories of composition, it is better not to provide
direct modelling of this in the programming
language; your opinion might later change. BETA
does have mechanisms for modelling the whole-part
composition as embedded objects, and reference as
references. However, this is quite different to textual
nesting. There is no real need to support these
different categories in your programming language.
It is more important for the analyst to be cogniscent
of these different flavours so that he can recognise

different kinds of composition in the problem
domain.

3.11  Global Environments
There are two important properties of globals:
firstly, a global is visible to the whole program,
which is a compile-time view; and secondly, a
global is active for the entire execution of a
program, which is a run-time property. The first
property is not desirable in the object-oriented
paradigm, as will be explained below. The second
property can easily be provided. The life of any
entity is the life of the enclosing object, so to have
entities that are active for the whole execution of the
program, you create some objects when the program
starts, which don’t get deallocated until the program
completes.

The global environment provides a special case
of nested classes. When classes are nested in a
global environment, dependencies can arise that
make the classes difficult to decouple from the
original program, and therefore not reusable, by
themselves. You might be forced to relocate a large
amount of the global environment as well. There are
also problems with the related mechanisms of
header files and namespaces. Even if a class is not
intended for use in another context, it will benefit
from the discipline of object-oriented design. Each
class is designed independently of the surrounding
environment, and relationships and dependencies
between classes are explicitly stated.

In C++ functions can change the global
environment, beyond the object in which they are
encapsulated. Such changes are side-effects that
limit the opportunity to produce loosely-coupled
objects, which is essential to enable reusable
software. This is a drawback of both global and
nested environments. A good OO language will only
permit routines in an object to change its state.

Removing the global environment is trivial:
simply encapsulate it in an object or set of objects.
The previously global entities are then subject to the
discipline of object-oriented design; globals
circumvent OOD. Objects can also provide a clean
interface to the external environment, or operating
system, without loss of generality, for a negligible
performance penalty. Classes are independent of the
surrounding environment, and the project for which
they were first developed, and are more easily
adaptable to new environments and projects.

Java has removed globals from the language
altogether. Eiffel is another example of a language
where there are no globals. Both these languages
show that globals are not needed for, and even
detrimental to the development of large computer
systems.

In concurrent and distributed environments you
are better off without globals. In a distributed
environment, the global state of the system may be
impossible to determine. In order to develop
distributed systems, you cannot have globals.
Similarly with concurrent environments, problems
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arise when two or more process threads access
shared resources at the same time. Shared resources
should only be accessed via an object which
manages the resource, and prevents contention for
the shared resource. Such a resource should not be a
global.

3.12 Polymorphism and Inheritance
Inheritance provides a textually decoupled form of
subblock. The scope of a name is the class in which
it occurs. If a name occurs twice in a class, it is a
syntax error. Inheritance introduces some questions
over and above this simple consideration of scope.
Should a name declared in a base class be in scope
in a derived class? There are three choices:

1) Names are in scope only in the immediate
class but not in subclasses. Subclasses can freely
reuse names because there is no potential for a clash.
This precludes software reusability. Since subclasses
will not inherit definitions of implementation, case 1
is not worth considering.

2) The name is in scope in a subclass, but the
name can be overloaded without restriction. This is
closest to the overloading of names in nested blocks.
This is C++’s approach. Two problems arise: firstly,
the name can be reused so the inherited entity is
unintentionally hidden; secondly, because the new
entity is not assumed to have any relationship to the
original, its signature cannot be type checked with
the original entity. Since consistency checks
between the superclass and subclass are not
possible, the tight relationship that inheritance
implies, which is fundamental to object-oriented
design, is not enforced. This can lead to
inconsistencies between the abstract definition of a
base class, and the implementation of a derived
class. If the derived class does not conform to the
base class in this way, it should be questioned why
the derived class is inheriting from the base class in
the first place. (See the nature of inheritance.)

3) The name is in scope in the subclass, but can
only be overridden in a disciplined way to provide a
specialisation of the original. Other uses of the name
are reported as duplicate name errors. This form of
overriding in a subclass ensures the entity referred to
in the subclass is closely related to the entity in the
ancestor class. This helps ensure design consistency.
The relationship of name scope is not symmetric.
Names in a subclass are not in scope in a superclass
(although this is not the case in dynamically typed
languages such as Smalltalk). In order to provide the
consistent customisation of reusable software
components, the same name should only be used
when explicitly redefining the original entity. The
programmer of the descendant class should indicate
that this is not a syntax error due to a duplicate
name, but that redefinition is intended, (the
suggested keyword override  has already been
covered in the virtual section.) This choice ensures
that the resultant class is logically constructed. This
might seem restrictive, but is analogous to strong

typing, and makes inheritance a much more
powerful concept.

3.13 Type Casts
“Syntactically and semantically, casts are one of the
ugliest features of C and C++.” not my words or any
other detractor of C++, but from [Stroustrup 94].

Mathematical functions map values from one
type to values of another type. For example
arithmetic multiplication maps the type ‘pair of
integers’ to an integer:

Mult : INTEGER x INTEGER -> INTEGER

A language type system enables a programmer to
specify which mappings make sense. Like functions,
type casts map values of one type onto values of
another type, but this forces one type to another,
against the defined mappings, undermining the
value of the type system. A strongly typed language
with a well defined type system does not need casts:
all type to type mapping is achieved with functions
that are defined within the type system; no casts
outside the type system are needed.

Type casts have been useful in computer sys-
tems. Sometimes it is required to map one type onto
another, where the bit representation of the value
remains the same. Type casts are a trick to optimise
certain operations, but provide no useful concept
that general functions don’t provide. In many
languages, the type system is not consistently
defined, so programmers feel that type casts are
necessary, or the language would be restrictive.

An example often used in programming is to
cast between characters and integers. Type casts
between integers and characters are easily expressed
as functions using abstract data types (ADTs).

TYPE
 CHARACTER

FUNCTIONS
 ord: CHARACTER -> INTEGER

// convert input character to integer
char: INTEGER /-> CHARACTER
// convert input integer to character

PRECONDITION
// check i is in range

 pre char (i: INTEGER) =
       0 <= i and i <= ord (last character)

The notation ‘->’ means every character will map to
an integer. The partial function notation ‘/->’ means
that not every integer will map to a character, and a
precondition, given in the pre char statement,
specifies the subset of integers that maps to
characters. Object-oriented syntax provides this
consistently with member functions on a class:

i: INTEGER
ch: CHARACTER
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i := ch.ord
// i becomes the integer value of the character.
ch := i.char
// ch becomes the character corresponding to i.

but a routine char would probably not be defined on
the integer type so this would more likely be:

ch.char (i)
// set ch to the character corresponding to i.

The hardware of many machines cater for such basic
data types as character and integer, and it is probable
that a compiler will generate code that is optimal for
any target hardware architecture. Thus many lan-
guages have characters and integers as built in types.
An object-oriented language can treat such basic
data types consistently and elegantly, by the implicit
definition of their own classes.

Another example of type conversion is from real
to integer; but there are several options. Do you
truncate or round?

TYPE
REAL

FUNCTIONS
truncate: REAL -> INTEGER
round: REAL -> INTEGER

r: REAL
i: INTEGER

i := r.truncate
// i becomes the closest integer
// <= r
i := r.round
// i becomes the closest integer to r

Again many hardware platforms provide specific
instructions to achieve this, and an efficient object-
oriented language compiler will generate code best
optimised for the target machine. Such inbuilt class
definitions might be a part of the standard language
definition.

3.14 RTTI and Type casts
Since the second edition of this critique in 1992,
C++ added Run-Time Type Information (RTTI) in
March 1993. This is a good and necessary feature,
and a discussion of it helps clarify the notion of
casts.

[P&S 94] makes a case against rejecting all
programs that are not statically type correct. If a
program is shown to be statically type correct, its
type correctness is guaranteed, but static type
checks can reject a class of programs that are
otherwise type valid.

List classes are an example of where static type
checking can reject a valid program. A list class can
contain objects of many different types. Genericity
and templates allow constructions such as list of

objects, list of animals, etc. These are types built
from the generic list class.

In the list of animals, you might know that
squirrels occur in even numbered slots in the list.
You could then assign an even numbered list
element to a variable of type squirrel. Dynamically,
this is correct, but statically the compiler must reject
it as it does not know that only squirrels occur in
even locations in the list.

Things aren’t always this simple. The
programmer probably won’t know the pattern of
how particular animals are stored in the list.
Consider a vet’s waiting room. The vet might view
his waiting room as being the type: list of animals.
Calling in the first animal from the waiting room, it
is important to know whether the animal is a cat or a
hamster if the vet is to perform an operation on the
animal. For many such cases object-oriented
dynamic binding and polymorphism will suffice, so
that the programmer does not have to know the
exact type of the object, as long as the objects are
sufficiently the same that the same operations can be
applied, even though the implementations might be
different.

However, this is not always sufficient, and
sometimes it is important to know that you have
retrieved a hamster from a list of animals.

For example, once our vet has performed the
operation on the hamster or cat, he must know
enough about their type to decide whether to now
put the animal in the hamster cage, or the cat basket.

Casting can solve this problem, but it is a
sledgehammer approach where much more elegant
and precise solutions exist. [Stroustrup 94] notes:
“The C and C++ cast is a sledgehammer.”

Eiffel has such an elegant and precise solution
called the assignment attempt, notated as ‘?=‘
instead of ‘:=‘. A simple example is:

waiting_room: LIST [ANIMAL]
fluffy: HAMSTER
h_cage: HAMSTER_CAGE

fluffy := waiting_room.first   -- error.

-- The above assignment will be rejected by the
-- compiler as type (fluffy) = HAMSTER and
-- ANIMAL is not a subtype of HAMSTER. Even
-- though we know that the animal will be a
-- HAMSTER, and the program is valid, static
-- type checking considers it invalid.

fluffy ?= waiting_room.first

-- If the first animal in the waiting room is
-- indeed a HAMSTER, then fluffy will refer
-- to that animal, else fluffy will be Void.

if  fluffy /= Void then
    h_cage.put (fluffy)
end
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The Eiffel assignment attempt provides a precise and
elegant solution to the dynamic type problem. Since
the assignment attempt has the desired effect of by-
passing static type checking and leaving it to run
time, type casting is not needed.

If you want to be as flexible as Smalltalk, you
could use assignment attempt instead of straight
assignment everywhere, but as this invokes run time
type checks, and you must check for Void
references, there is a large overhead to assignment
attempt over straight assignment. This shows that
not only is static typing important for proving
compile-time correctness, but also for run-time
efficiency. The only real effect of ?= as far as the
programmer is concerned is that it suppresses the
compiler’s static type checking and puts in a run-
time check.

As I said, C++ introduced Run-Time Type
Information (RTTI) in March 1993. RTTI has the
operator dynamic_cast , which achieves the
same effect as the Eiffel assignment attempt.
dynamic_cast  returns a pointer to a derived
class from a pointer to a base class if the object is an
object of the derived class; otherwise it returns 0 (or
should that be null? But 0 isn’t really zero, but any
bit pattern representing null).

In C++, the above assignment attempt would be
coded:

fluffy =
dynamic_cast<hamster*>

(waiting_room.first());

A few observations. Wow! Eiffel uses an operator,
and C++ uses a keyword. It should be noted though
that in correctly designed programs, neither
assignment attempt, nor dynamic_cast  will be
used very often. So this is a small point.

The second observation is that in C++ you must
specify the type. In this example it is superfluous as
the compiler can determine type (fluffy) =
HAMSTER, as it does in Eiffel.

In C++ you can dynamically cast to any derived
class from hamster*  but that does not seem to
gain anything. A second point is that you don’t need
to use dynamic_cast  directly in an assignment,
but can use it in a general expression. However,
again it is stressed that run time casting should be so
little used that this is of little advantage. Perhaps the
only small advantage is the ability to be able to pass
a dynamically cast pointer:

h_cage.put
(dynamic_cast<hamster*>

(waiting_room.first());

Looks good right? But remember, if the first animal
out of the waiting room is not a hamster, but a rat,
you get 0 (well null...etc) returned which will cause
h_cage.put()  to fail.

This shows that the use of dynamic_cast  in
an expression is not such a good idea, as it might
cause the whole expression to fail.

Thus Eiffel’s assignment attempt is safer and
syntactically cleaner. And there is another reason for
this remark: if you don’t put the if  fluffy /= Void
then test in, either deliberately or because you
forgot, then the precondition that is most likely in
the Eiffel version of h_cage.put tests that the
argument is not Void. If you deliberately left out the
Void test, you will have included a rescue clause to
handle this exception.

Although the Eiffel syntax ‘?=‘ for assignment
attempt is cleaner, [Stroustrup 94] points out that
such clean syntax would be inappropriate for C++.
This is because the ‘?=‘ would be “difficult to spot”
in C++’s otherwise clumsy syntax. This is why it is
possible to use this neat notation in Eiffel, as
Eiffel’s syntax is much clearer, and since
programmers will code small routines, the ‘?=‘ is
not difficult to spot in an Eiffel program. The
reasoning against ‘?=’ in C++ is strange, since C
already provides assignment operators like ‘+=’ and
‘ -= ’, which are just a small syntactic convenience.

Another RTTI feature is the typeid  operator.
[Stroustrup 94] warns against using this to
determine program flow control based on type
information. You should not use switch statements,
but use dynamic binding on polymorphic (virtual)
functions. This will need to be built into your style
rules that programmers will hate, or you will end up
having to fix the dirty deed after the fact, which
adds to the expense of your software developments.

Eiffel has no built in operator to achieve this, so
the object-oriented principle of using dynamic
binding instead of switch statements is better
enforced. Eiffel removes type identification from the
language, but places it in the libraries in some
routines built into the GENERAL class. So in Eiffel,
it is harder to commit the bad programming
practices that [Stroustrup 94] warns about.

3.15 New Type Casts
Not only did C++ introduce RTTI and
dynamic_cast  in March 1993, but also three
more cast operators in November 1993. These
operators are:

static_cast<T>(e) ,
reinterpret_cast<T>(e) , and
const_cast<T>(e) .

Again for all these the specification of the <type>
seems superfluous, as the compiler can derive that
from the context. These casts just about cover all the
cases where you would need to use C style casts.

[Stroustrup 94] indicates a desire to discard the
C casts: “I intended the new-style casts as a
complete replacement for the (T)e  notation. I
proposed to deprecate (T)e ; that is, for the
committee to give users warning that the (T)e
notation would most likely not be part of a future
revision of the C++ standard. ... However, that idea
didn’t gain a majority, so that cleanup of C++ will
probably never happen.”
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The bottom line to these sections on type casts
comes again from [Stroustrup 94]: “In all cases, it
would be better if the cast - new or old - could be
eliminated.” It can! Use Eiffel or another one of the
languages in which the type system is more cleanly
defined.

3.16 Java and Casts
Unfortunately, Java needs casts in the above
examples, but has improved the situation: “Not all
casts are permitted by the Java language. Some casts
result in an error at compile time. For example, a
primitive value may not be cast to a reference type.
Some casts can be proven, at compile time, always
to be correct at run time. For example, it is always
correct to convert a value of a class type to the type
of its superclass; such a cast should require no
special action at run time. Finally, some casts cannot
be proven to be either always correct or always
incorrect at compile time. Such casts require a test at
run time. A ClassCastException is thrown if a cast
is found at run time to be impermissible.” - from the
Java Language Specification.

3.17  ‘.’  and ‘->’
The ‘.’ and ‘->’ member access syntax came from C
structures, and illustrates where the C base adversely
affects flexibility. Semantically both access a
member of an object. They are, however,
operationally defined in terms of how they work.
The dot (‘.’) syntax accesses a member in an object
directly: ‘x.y’ means access the member y in the
object x.

OBJ x; // declare object x of
       // class obj
       // with a member y.
x.y;   // access y in object x
       // directly
x->y;  // syntax error “. expected”

The specific error is:

error: type 'OBJ' does not have an
overloaded member 'operator ->'

error: left of '->y' must point
to class/struct/union

The ‘->’ syntax means access a member in an object
referenced by a pointer: ‘x->y ’ (or the equivalent
*(x).y ) means access the member y  in the object
pointed to by x .

OBJ *x; // declare a pointer x to an
        // object of class obj.
x->y;   // access y via pointer x
x.y;    // syntax error “-> expected”

The specific error is:

error:'.OBJ::y' : left operand points
to 'class', use '->'

In these examples, ‘what’ is to be computed is
“access the element y of object x.”  In C++,
however, the programmer must specify for every
access the detail of ‘how’ this is done. That is the
access mechanism to the member is made visible to
the programmer, which is an implementation detail.
Thus the distinction between ‘.’ and ‘-> ‘
compromises implementation hiding, and very
seriously the benefit of encapsulation. We will see
in the section on inlines how the visible difference
of access mechanisms between constants, variables
and functions also breaks the implementation hiding
principle, and how the burden is on the programmer
to restore hiding, rather than fix the language.

The compiler could easily restore
implementation hiding by providing uniform access
and remove this burden from the programmer, as in
fact most languages do. The major benefit of
implementation hiding is that if the implementation
changes, the effect is contained within the class
itself; not manifest beyond the interface. Where
implementation hiding is broken, the effects of
implementation change become visible, and this
reduces flexibility.

For example, if the ‘OBJ  x ’ declaration is
changed to ‘OBJ *x ’, the effect is widespread as
all occurrences of ‘x.y ’ must be changed to ‘x-
>y ’. Since the compiler gives a syntax error if the
wrong access mechanism is used, this shows that the
compiler already knows what access code is
required and can generate it automatically. Good
programming centralises decisions: the decision to
access the object directly or via a pointer should be
centralised in the declaration. So again, C++ uses
low level operators, rather than the high level
declarative approach of letting the compiler hide the
implementation and take care of the detail for us.

Java only supports the dot form of access. The
‘ -> ‘ form is superfluous. Java objects are only
accessed by reference; there are no embedded
objects.

Eiffel provides a more interesting case. In Eiffel
an optimisation is provided as an object can be
expanded in line in another object, in order to save a
reference. Eiffel calls such objects expanded
objects. There is still no need for explicit
dereferencing. The compiler knows exactly whether
the object is expanded or referenced, and thus the
dot accessor is used for both, so uniform access is
provided, and the access mechanism is hidden. This
makes the program more malleable, as the
programmer can later change an object to expanded,
and not have to worry about changing every ‘-> ‘ to
a dot. Conversely, if expansion turns out to be
inappropriate, as in the case of a circular reference,
then the expanded status of the object can be
removed from the declaration, without having to
change another single line of code. Thus Eiffel
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preserves the implementation hiding principle,
which results in convenience for the programmer.

There is even more to Eiffel’s scheme, which is
particularly relevant to concurrent and distributed
processing. Meyer points out in [Meyer 96c] that the
form x.f means passing the message f to the object x.
x may be anywhere on the network. In other words,
x might not be a reference that is implemented by an
underlying C pointer, but it may be a network
address, for example a URL.

3.18 Anonymous parameters in Class
Definitions
C++ does not require parameters in function
declarations to be named. The type alone can be
specified. For example a function f  in a class header
can be declared as f (int, int, char) . This
gives the client no clue to the purpose of the
parameters, without referring to the implementation
of the function. Meaningful  identifiers are essential
in this situation, because this is the abstract
definition of a routine; a client of the class and
routine must know that the first int  represents a
‘count of apples’, etc. It is true that well known
routines might not require a name, for example
sqrt (int) . But this is not appropriate for large
scale software development.

The use of anonymous parameters handicaps the
purpose of abstract descriptions of classes and
members: to facilitate the reusability of software.
This is covered in more detail in the section on
‘Reusability and Communication’. Program text
captures the meaning of the system for some future
activity, such as extension or maintenance. To
achieve reusability, communication of intent of a
software element is essential.

Names are not strictly necessary in
programming. Naming exists to help the human
reader identify different entities within the program,
and to reason about their function. For this reason
naming is essential; without it, development of
sophisticated systems would be nearly impossible.
Some languages access parameters by their address
(position) in the parameter list ($1, $2, etc). This is
unsatisfactory, even for shell scripts. Anonymous
parameters can save typing in a function template,
but then programming is not a matter of conve-
nience as it is inconvenient for later readers. The
redundancy is beneficial and saves later
programmers having to look up the information in
another place. A real convenience in function
templates would be that abstract function templates
be automatically generated from the implementation
text (see header files for more details).

Anonymous parameters illustrate the link
between courtesy and safety issues in programming.
Due to pressure of work, a client programmer might
wrongly guess the purpose of a parameter from the
type. The failure of the original programmer to
provide a courtesy has caused a client programmer
to breach safety. However, the client programmer
will probably be blamed for not taking due care. An

interface client must know the intention of the
interface for it to be used effectively.

Both Java and Eiffel do away with the
distinction between a function definition and
declaration. The first reason for this is that you don’t
need forward declarations, as entities can be
referenced before they are declared. The second
reason is that in Eiffel, there are tools to
automatically extract abstract interface definitions
from the main code.

3.19  Nameless Constructors
Multiple constructors must have different signatures,
similar to overloaded functions. This precludes two
or more constructors having the same signature.
Constructors are also not named (apart from the
same name as the class), which makes it difficult to
tell from the class header the purpose of the different
constructors. Constructors suffer from all of the
problems described with regards to overloaded
functions. Firstly, it would be easy to mark routines
as constructors, for example:

constructor make (...)...
constructor clone (...)...
constructor initialise (...)...

where each constructor leaves the object in valid, but
potentially different states. Named constructors
would aid comprehension as to what the constructor
is used for in the same way as function names
document the purpose of a function. Secondly,
named constructors would allow multiple
constructors with the same signature. Thirdly, it is
easier to match up an object creation with the
constructor actually called.   Fourthly, the compiler
could check the arguments given in the invocation
to the constructor signature.

Java’s constructor scheme is the same as C++.
Eiffel allows a series of creation routines. These are
indeed independently named as suggested above.

Eiffel has another advantage in that creation
routines can also be exported as normal routines
which can be called to reinitialize an object. In C++
you cannot call a constructor, after the object is
created.

3.20  Constructors and Temporaries
A ‘return <expression>’ can result in a different
value than the result of <expression>. In section
6.6.3, the C++ ARM says: “If required the
expression is converted, as in an initialisation, to the
return type of the function in which it appears. This
may involve the construction and copy of a
temporary object (S12.2).”

Section 12.2 explains: “In some circumstances it
may be necessary or convenient for the compiler to
generate a temporary object. Such introduction of
temporaries is implementation dependent. When a
compiler introduces a temporary object of a class
that has a constructor it must ensure that a
constructor is called for the temporary object.”
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A note says: “The implementation’s use of
temporaries can be observed, therefore, through the
side effects produced by constructors and
destructors.”

Putting this together, creation of a temporary is
implementation dependent, so might or might not be
done. If a temporary is created, a constructor is
called as a side effect, which can change the state of
the object. Different C++ implementations could
therefore return different results for the same code.

3.21  Optional Parameters
Optional parameters that assume a default value
according to the routines declaration are supposed to
provide a shorthand notation. Shorthand notations
are intended to speed up software development.
Such shorthand notations can be convenient in shell
scripts, and interactive systems. In large scale
software production, however, precision is
mandatory, and defaults can lead to ambiguities and
mistakes. With optional parameters the programmer
could assume the wrong default for a parameter.
More  importantly, optional parameters undermine
type safety. The type of a function is defined by the
composition of its input types, and its output type:

f: T1 x T2 x T3...  -> T4

The entire signature determines the type of the
function, not just the return type. Optional
parameters mean that C++ is not type safe, and that
the compiler cannot check that the parameters in the
call exactly match the function signature.

Furthermore, they do not provide a great deal of
convenience. If a routine has five parameters, the
last three of which are optional, and the caller wants
to assume the defaults for parameters 3 and 4, but
must specify parameter 5, then all five parameters
must be specified. A better scheme would be to have
a ‘default’ keyword in function calls:

f (a, b, default, default, e);

Other means, already in the language, can easily
provide this mechanism. For example, a call to
another (possibly inline) function could provide the
defaults for the optional parameters:

g(a, b, e);      // the call
g(int a, b, e)   // the function
   {f(a, b, 0, 0, e);}

This not only provides the convenience of optional
parameters, but is more powerful. Any parameter or
combination can be filled in with any combination
of defaults, not just the last parameters. Multiple
intermediate routines can provide multiple sets of
defaults.

Neither Java nor Eiffel have optional
parameters. Strong typing is enforced, so that the
parameters of a call must match the routine
signature.

3.22 Bad Deletions
The following example is given on p.63 in the C++
ARM as a warning about bad deletions that cannot
be caught at compile-time, and probably not
immediately at run-time:

p = new int[10];
p++;
delete p; // error
p = 0;
delete p; // ok

One of the restrictions of the design of C++ is that it
must remain compatible with C. This results in
examples like the above, that are ill-defined
language constructs, that can only be covered by
warnings of potential disaster. Removal of such
language deficiencies would result in loss of
compatibility with C. This might be a good thing if
problems such as the above disappear. But then the
resultant language might be so far removed from C
that C might be best abandoned altogether.

Bad deletions are the kind of problem the Java
designers set out to avoid. You do not get bad
deletions in either Java or Eiffel for two reasons:
firstly, they do not have pointers; secondly, they
provide garbage collection so don’t delete objects.

3.23 Local entity declarations
Declaring an entity close to where it is used, has
advantages and disadvantages as it is convenient,
but can make a routine appear more complex and
cluttered. A problem is that an identifier can be
mistakenly overloaded within a nested block in a
function, with the resultant problems covered in the
section on name overloading. C does not have
nested routines or blocks so does not have this
problem. ALGOL uses this simple form of name
overloading. (A block in the ALGOL sense contains
both declarations and instructions.)

The ARM explains problems of local
declarations with branching, which shows the
complications in intermingling declarations and
instructions. Caveats cannot make up for or fix a
faulty language definition.

In well written object-oriented software, routines
will be small, typically performing one atomic
operation per routine, so localised declarations will
not be of much value. Small routines that implement
atomic operations are fundamental to loose
coupling. For example, a base class that provides a
single routine that logically performs operations A
and B, is not useful to a subclass that needs to
provide its own implementation of B, but does not
want to change A: the descendant must reimplement
the logic of both A and B, missing an opportunity to
reuse the logic of A. Splitting A and B into different
routines accomplishes loose coupling, and therefore
flexibility. Tight coupling reduces flexibility.

Efficiency is also attained without the mess of
local entity declarations. Good design and clean
modularisation achieve efficiency, as the entities
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which would be locals to a block in C++ are only
created when the routine is entered. Furthermore
small routines can be inlined, and in this case, the
locals will only be created when the expanded inline
block is entered, which is the same effect as if the
programmer had included the block manually.

Java implements locals in the same way as C++.
In Eiffel the philosophy is to use good design to
make routines sufficiently small and atomic. That is
one operation, one routine. With this approach,
having local declarations only in one place in the
routine and not throughout is sufficient. If you find a
place where you want to introduce local variables
within the code, this is an indication that you should
write it as a separate routine. An objection could be
that small routines with lots of overhead calling
them is not efficient. Eiffel compilers solve this by
automatically inlining routines. Thus the integrity of
a design is preserved in the program text, but
efficiency is retained. In C++ you could manually
inline such functions.

3.24  Members
Care should be taken with the C++ use of the term
member. In general use, an object is a member of a
class. For example, squirrels are a member of the
class animal. This corresponds to members in set
theory. But in C++, the term member means a data
item, or function of the class. Some people might
say that set theory is one thing, but programming is
another, so there is no problem with using the
terminology. However, set theory underpins the
theory of computation and programming, and sets,
classes and types are related. Sets are a means of
describing groups of entities which have some
similarity. Supersets group entities according to
broad concepts; subsets group entities according to
narrower concepts, that is, more restrictive criteria.
So sets also underpin our understanding of classes
and subclasses.

In set theory we say: 3 ∈ N, or 3 is a member of
the set of natural numbers. In objects we would say
that Fred is a member of the class person. In C++
the field name which for some object contains the
string “Fred” is a member of the class person. This
is not mathematically correct, and the confusion
could have been avoided.

Java does not seem to use the term member. It
might stick from C++. Eiffel uses the term features.

3.25 Inlines
The problems described in this section are a
consequence of placing the burden of encapsulation
on the programmer. You might wish to review the
section on encapsulation at this point.

The main reason inlines were introduced in C++
was to alleviate the cost of crossing the ‘protection
barrier’, [Stroustrup 94]. The protection barrier in
C++ is data hiding. When accessing a data item in
C++, it is recommended not to do it directly, but via
a class member function. For example, given an

object reference c you should not access the data
member di directly:

i = c.di; // Not recommended C++ style.

instead di  should be private and accessed as
follows:

i = c.get_di();

where get_di  is:

int C::get_di() {return di;}

However, Stroustrup found that some programmers
were not using an access function because of the
overhead of a function call. So inlines were
introduced:

inline int C::get_di() {return di;}

Note that this style of data hiding clutters the name
space and text of a class.

The inline mechanism has two conceptual
mistakes and a practical one. Firstly, data hiding and
implementation hiding are not the same.
Implementation hiding is more to do with hiding the
mechanics of the access mechanism, so that you
can’t tell whether it is a constant, variable of
function you are accessing. Inlines are the wrong
solution to this problem: the correct solution is
uniform access. The OO concept is to hide
implementation; data need not be private, but may
be functionally exported from the classes interface.

This leads to the second conceptual mistake that
functional access and C functions are different
things. Functional access hides the access
mechanism. C functions, however, make the access
mechanism visible: you know you are invoking a
piece of code that will be jumped to. Functional
access by contrast is any entity name that can occur
in the context of an expression. This entity could be
a constant, variable or value returning routine, but
you can’t tell which if the implementation of the
access mechanism is hidden. The statement i =
c.di  is functional access. C++ has solved this
problem in exactly the wrong way in order to stay
compatible with the flawed concept of function in C.

The programmer is required to bear this burden,
which in turn makes software development more
costly for every company using C++, and again
flexibility is reduced. In order to restore information
hiding, that is access transparency between
constants, variables and C functions, programmers
must as a matter of style hide constants and
variables behind a C function, as is the case with
get_di() . A fix to the language would have  been
better, but not possible to keep compatibility with C.

The practical mistake is that a compiler can
automatically generate inlines. Requiring a
programmer to specify inline  is a manual
bookkeeping task. It is not hard for a compiler or
optimiser to work out that C::get_di()
{return di;}  or even more complex routines
could be inlined. This is exactly the kind of



C++?? 30

3rd Edition © Ian Joyner 1996

optimisation that Eiffel and other sophisticated
languages perform.

[Flan 96] says: “A good Java compiler should
automatically be able to “inline” short Java methods
where appropriate.” An article in Byte of September
1996 suggests that to optimise Java method calls,
“you should make liberal use of the final
keyword.” Byte also suggests that instead of small
functions, programmers should inline by hand small
methods. Byte further says: “The trade-off, then, is
either better performance or code flexibility. You
must decide which is most important to the
program’s operation in that situation.”

In this respect, Eiffel again proves itself
superior. Eiffel automatically determines that a
routine is final , or in C++’s terminology, that a
routine is not virtual . Also Eiffel automatically
inlines. Therefore the Eiffel programmer does not
need to bend the code to gain performance, or
consider trade-offs: you do not have to trade-off
flexibility to gain performance.

Eiffel has a further advantage that it understands
the difference between implementation hiding and
data hiding and provides implementation hiding. It
also accesses data and constants functionally, so in
the instruction:

i := c.di

you can’t tell and don’t need to know whether di is
implemented as a constant, variable or routine
function. The implementation is hidden: access is
uniform as access to a constant or variable looks the
same as a value returning routine, and the different
access mechanisms behind these is hidden and
automatically generated by the compiler. And since
this implementation distinction is hidden, the need
is greatly reduced for either the programmer to
manually inline, or for the compiler to automatically
inline. In this case Eiffel provides the maximum
flexibility.

Since C functions are poor cousins to
mathematical functions, and C++ also confuses data
hiding and implementation hiding, the language
includes otherwise unnecessary mechanisms like
inline.

3.26  Friends
Friends are a mechanism to override data hiding.
Friends of a class have access to its private data.
Friend is a ‘limited export’ mechanism. Friends
have three problems:

1) They can change the internal state of objects
from outside the definition of the class.

2) They introduce extra coupling between
components, and therefore should be used
sparingly.

3) They have access to everything, rather than
being restricted to the members of interest to
them.

Friends are useful, and a case can be made for
shades of grey between public, protected and private

members. An alternative to friends is multiple
interfaces which provide the functionality of friends
and avoid the above problems. Each interface to a
class can be exported to everything, or to selected
classes only. A selective export mechanism is more
general than public, private, protected and friend,
and explicitly documents the couplings between
entities in the system. Selective export specifies not
only that a member is exported but to which classes
it is exported.

One reason given for friends is they allow more
efficient access to data members than a member
function call. The way C++ is often used is that data
members are not put in the public section, because
this breaks the data hiding principle.

As mentioned in the section on inlines,
implementation hiding is different to data hiding. As
long as you access your data functionally, you do
not have to hide your data, just the access
mechanism.

Another question is, since there are inlines, is
there a need for the similar mechanism of friends? If
you mark a function inline, it is going to expand
inline, and avoid the function call overhead. So in
this case, friend is a superfluous mechanism.

In Java, classes in the same package can access
instance variables from other classes in a friendly
fashion. This is contrary to good programming
practice and OO design, as it means you can access
things without going through the published interface
of a class. However, in Java, explicit friends are
gone.

Eiffel offers the pure OO approach, where
everything must go through publicised interfaces.
Note in Eiffel that data attributes in a class may be
exported in the published interface, as access is
uniform. In that case, external entities can read the
data, as if it were invoking a function, but you
cannot write to a data item in an external class. To
update a data item, you must call an update
procedure. Part of the purpose of friend is to update
an item directly, without the overhead of a
procedure call. In Eiffel the compiler will
automatically inline procedures where possible, so
the efficiency concern is addressed.

To summarise: Eiffel does not need the friend
mechanism for two reasons: firstly, external classes
can access data attributes for reading; secondly, for
update, a procedure is expanded inline where
practical. Accessing a data item does not contravene
encapsulation or implementation hiding. Data hiding
is not encapsulation, although with encapsulation
implementation data is hidden, the operative word
being ‘implementation’, not ‘data’.

3.27 Controlled exports vs friends
As noted in the section on friends, there is a case for
finer grained control of exports than public ,
private  and protected . Except for friends,
Java uses the same mechanism as C++, but adds two
more categories, default  and private
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protected . This complicates the mechanism, and
it is difficult to remember exactly what each
category does. Eiffel does not have friends, it allows
classes to be related by a finer grained export
mechanism; for any set of features, you can specify
exactly what classes they are exported to. Classes
that are closely related export to each other
interfaces that are not available to other classes
outside of that group.

Also in Eiffel, you can export a routine to a
different set of classes based on whether it is called
as a creation routine (constructor), or normal routine
call.

In Eiffel all features are implicitly public .
Public can also be explicitly stated by exporting to
class ANY, ie., the universal set. If a set of features
is to be protected , ie., internal and not visible to
clients, it is exported to class NONE. Such a set of
features is secret. NONE is the equivalent of the
empty set in set theory, which is notionally a subset
of all sets and NONE is a subclass of all other
classes, and has only one possible value: Void.

There is no equivalent of private  in Eiffel,
where features can be hidden from sub-classes. But
this is not necessary, and in most cases private  is
undesirable. The Eiffel philosophy is that with
inheritance you get unrestricted access to the
implementation as this is key to the flexibility of
reuse and extension. As a subclass, you can redefine
any routine inherited from a parent. When you
redefine a routine, you are changing the
implementation. Since you are changing the
implementation, the private restriction could be a
nuisance to some subclass that hasn’t been written
yet. If you need to access a variable, and the parent
class designer has made it private , you are out of
luck. At the best you could go to the programmer
who owns that class, and try to convince them to
make the variable protected . Good luck: that
kind of request often generates a lot of heat. At the
worst you can do nothing about it because the class
might be from outside and closed to you. Again in
C++ the parent class designer is forced to make
decisions that should be left open. I would
recommend against using private , use
protected  instead. At least protected  leaves
the class open under inheritance.

In C++, private  only restricts access, it does
not restrict visibility in a subclass. With private ,
it is still possible to redefine a private
virtual  function from a base class in a subclass.
This is not a problem, but you cannot prevent
redefinition in a subclass, as you can with the Eiffel
frozen mechanism.

In Java you cannot override a private method,
but you can overload it: “Note that a private method
is never accessible to subclasses and so cannot be
hidden or overridden in the technical sense of those
terms. This means that a subclass can declare a
method with the same signature as a private method
in one of its superclasses, and there is no
requirement that the return type or throws clause of

such a method bear any relationship to those of the
private method in the superclass.” [Sun 96].

A further complication in C++ is that public ,
private , protected  can be specified when
inheriting a base class. This gives one policy for
how every inherited member from the base class is
to be treated in the new class. A problem with this is
that once a member is private or protected, it cannot
be reexported, ie., protected  cannot be made
public , and private  cannot be made
protected  or public . Thus the temptation for a
C++ programmer is to keep things public, as a
derived class might want something to be public,
even though it does not make sense to be public in
the base class. Again decisions must be made early
on issues you don’t know about.

Java has no equivalent. Each member is
inherited with the same public , private ,
protected  attribute as the base class.

Eiffel again has a more fine grained approach.
The export policy for each feature inherited from a
parent class can be reviewed on a case by case basis.
The export status of each feature can be changed and
made more or less restrictive. If there is no new
export policy, the default is the same as the parent
class. The designer of a parent class does not have to
consider what descendant classes need, or worry
about the case where their needs will be in conflict
with each other, as the designer of the descendant
class has complete flexibility, which enhances reuse
and extensibility. Eiffel’s export mechanism is
therefore vastly superior to the C++ approach.

3.28  Static
The word ‘static’  is confusing in C++. Page 98 of
the C++ Annotated Reference Manual (ARM)
mentions this confusion and gives two meanings: a
class can have static members, and a function can
have static entities; and the second meaning comes
from C, where a static entity is local in scope to the
current file. The choice of different keywords would
easily solve this confusing use of the same keyword
for several meanings. There is also a third more
general meaning that objects are statically or
automatically allocated and deallocated on the stack
when a block is entered and exited, as opposed to
dynamically allocated in free space. Another general
use of the word ‘static’ is in ‘static type checking’,
which obviously has no relation to the C uses, but
overloads the language even further.

Static class members are useful. Page 181 of the
ARM states that statics reduce the need for global
variables, which is good thing, but the C syntax
obscures the purpose.

Locals declared in functions can also be static.
These are not needed in an object-oriented language.
The reason and history is this: ALGOL has the
notion of ‘OWN’ locals in blocks. The semantics of
an OWN entity is that when a block is exited, the
value of the OWN is preserved for the next entry to
the block, ie., the value is persistent. The
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implementation is that at compile time, the OWN
entity is limited in scope to the block, but at run
time, it is located in the global stack frame. The
same instance of the variable is used in all
invocations of the procedure, rather than each
invocation using separate local storage on the stack.
This causes complication in recursion.

Simula’s designers generalised the ALGOL
notion of block into class, and so object-orientation
was born. Instead of discarding a class block on exit,
it is made ‘persistent’. Declarations within the class
block are persistent, and therefore provide the
functionality of static and OWN, which was
removed from Simula. Classes are more flexible
than statics. Statics are persistent in the same way as
globals, ie., for the duration of the program. Class
member lifetime is governed by the lifetime of the
object so object-oriented languages do not need
globals, OWNs or statics.

Java implements class variables with static.
Eiffel uses once routines in order to do away with
globals.

3.29 Union
Union is another construct that is superfluous in
OOP. Similar constructs in other languages are
recognised as problematic: for example,
FORTRAN’s equivalences, COBOL’s
REDEFINES, and Pascal’s variant records. When
used to overload memory space these force the
programmer to think about memory allocation.
Recursive languages use a stack mechanism that
makes overloading memory space unnecessary, as it
is allocated  and deallocated automatically for locals
when procedures are entered and exited. The
compiler and run time system automatically allocate
and deallocate storage as required, ensuring that two
pieces of data never clash for the same memory
space at one time. This is essential so that the
programmer can concentrate on the problem
domain, rather than machine oriented details. When
union is used similarly to FORTRAN’s
equivalences it is not needed.

Union is also not needed to provide the
equivalent to COBOL REDEFINES or Pascal’s
variants. Inheritance and polymorphism provide this
in OOP. A reference to a superclass can also be used
to refer to any subclass, and thus provides the same
semantics as union, only in a type safe manner, as
the alternatives can never be confused. An object
reference is implicitly a union of all subclasses.

Union can also be used to suppress type
checking. [Stroustrup 94] says “programmers should
know that unions and unchecked function arguments
are inherently dangerous, should be avoided
whenever possible, and should be handled with
special care when actually needed.”

Sun recognises that the union construct is
unnecessary, and has removed it from Java. No
equivalent exists in Eiffel.

3.30 Structs
Struct is only in C++ as a compatibility mechanism
to C. When you have classes you don’t need structs.
Again, C++ is unnecessarily complicated with
unneeded features.

[Sun 95] says: “The Java language has no
structures or unions as complex data types. You
don’t need structures and unions when you have
classes - you can achieve the same effect simply by
using instance variables of a class.”

Eiffel and Smalltalk similarly have no
equivalents to struct.

3.31 Typedefs
Typedef is yet another mechanism not needed. Java,
Eiffel and Smalltalk all build their type mechanisms
around classes.

3.32 Namespaces
Namespaces are a new concept introduced in July
1993. Namespaces address the problem that global
names imported from different .h header files can
clash. The C++ solution is namespaces, where
globals are put in a namespace. Access to these
entities must be qualified with the namespace name.
For example, A::x  means access entity x  in
namespace A. Another namespace B might also have
an entity named x , but these names will not clash.
Entities not in a namespace are considered to be in
the global namespace.

In pure OO languages, namespaces are not
needed; classes themselves are namespaces. There
are no global environments, so C++ introduces
complexities not needed in Java, Eiffel and
Smalltalk.

Java and Smalltalk have class variables, which
can be used in place of globals. Eiffel provides once
routines, so that you can access object instances
where your ‘globals’ are stored.

Namespaces address the problem of name
clashing entities. However, the names of the
namespaces themselves can clash. For example, if
two header files have namespaces called MY_NS,
you have a clash.

As you might be aware by now, name clashes
are a nuisance whenever you mix and match
software entities together. An example we have seen
is multiple inheritance. Eiffel provides a good
solution to this with the rename clause in the
inheritance clause.

Eiffel could also have a problem with class
name clashes, as class names are global. The
solution to this is to use a deployment language
separate from Eiffel itself. This language is called
LACE, Language for the Assembly of Classes in
Eiffel. The concern of LACE is to mix and match
class libraries together, and it provides mechanisms
to rename classes, and resolve other conflicts. That
way, deployment concerns are kept separate from
the programming concerns.
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While namespaces in C++ address a problem,
they rely on programmers to be courteous, and place
globals in namespaces. Perhaps a better way, would
be to have a separate mechanism equivalent to
Eiffel’s LACE where such conflicts are resolved,
rather than making the language even more
complex.

3.33  Header Files
In C++ a class interface must be maintained
separately from its body. An abstract class interface
is just the class with the implementation detail
removed so the interface and implementation can
both be maintained in one source. In C++ though,
programmers must maintain the two sets of
information. This is because of the C/Unix style of
programming with separate modules but little or no
global analysis. Replicated information has the well
known drawback that in the event of change, both
copies must be updated. Sun calls this “The Fragile
Superclass Problem.” [Sun 95]  This can lead to
inconsistencies that must be detected and corrected.
Classes that depend on another class must be
recompiled if the layout of that class changes. Tools
can automatically extract abstract class descriptions
from class implementations, and guarantee
consistency.

Splitting C and C++ programs into a myriad of
small, separately compiled files turns out not to be a
good way to organise projects, and not a good way
to program, as you must maintain many header files.
Some people are now finding it more convenient to
keep an entire large system in one file as it solves
many maintenance problems, and also makes it
easier to find things during editing. Unfortunately,
while this scheme on many systems allows for
global analysis, this will still not solve the problems
arising from lack of global analysis in C++.

The programmer must also use #include  to
manually import class headers. #include  is an
old and unsophisticated mechanism to provide
modularity. #include  is a weak form of
inheritance and import. C++ still uses this 30 year
old technique for modularisation, while other
languages have adopted more sophisticated
approaches, for example, Pascal with Units, Modula
with modules, Ada with packages. In Eiffel the unit
of modularisation is the class itself, and includes are
handled automatically. The OOP class is a more
sophisticated way to modularise programs.
Inheritance implements reusability and
modularisation, so #include  is superfluous.

Another problem is that if header A includes
header B, and header B includes header A, a circular
dependency occurs. The same problem occurs if
header A includes headers B and C, and header B
also includes header C. A simple but messy fix in all
headers solves this problem:

#ifndef thismod
#define thismod

... rest of header
#endif

Headers show how C++ addresses the problem of
independent modules with a non-object-oriented
approach that is sub-optimal; the programmer must
supply this bookkeeping information manually.
#include  relates to the organisation and
administration of a project. Rational language de-
sign eliminates such manual bookkeeping
mechanisms.

A class interface is equivalent to a module
header. A module header contains data and routines
exported to other modules. This is exactly the
purpose of the class interface. Furthermore, in C++
a tool like make must be used to specify the
dependencies.

A class definition contains all knowledge of
accessed classes and their dependencies (inheritance
and client) in the class text. Dependency analysis is
derivable from the class text, and much of the
functionality of tools like make can be integrated
into the compiler, so the errors and tedium
encountered in the use of make are avoided.
Dependency analysis also implements a level of
dead code elimination.

A traditional system is assembled by combining
modules; an object-oriented system is assembled by
combining classes. Modules are a primitive form of
classes; classes are more sophisticated. They express
more precisely relationships with other classes. C++
#include  and modules have problems. This
primitive method is not required in an object-
oriented language.

According to Stroustrup C++ would be a better
language without the C preprocessor. Most uses of
#define  are now covered by other mechanisms.
To remove #include  would require some other
import mechanism. [Stroustrup 94] says: “I’d like to
see Cpp abolished.”

Neither Java, nor Eiffel need header files or the
#include  mechanism. This means that
programmers do not have to maintain headers
separately. When Eiffel sees any declaration:

c: C
it knows the current class has a dependency on the
class C. C is implicitly imported, so there is no
#include  mechanism: Eiffel has done the
dependency analysis for you. If you add a new
declaration to a class that hasn’t be used before, the
dependency is automatically generated the next time
the class is compiled.

Java maps qualified class names such as
java.lang.Math to the environments file directory
structure, for example java/lang/Math in Unix.

Eiffel provides a utility short that extracts class
interface definitions from the class implementation.
However, the function of this is for human
readability, not to provide the compiler with class
definitions as in a C header file.

Eiffel also separates the bookkeeping concerns
from the language. These functions are provided by
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the LACE language, Language for the Assembly of
Classes in Eiffel. LACE is used separately to the
Eiffel language, but is processed by the compiler to
map class names to their location (directory and file
name in Unix style systems.)

Java and Eiffel also remove the need for make.
Gone is the manual dependency analysis, or
remembering to rerun makemake, when your
dependencies change.

3.34 Class Interfaces
Section 9.1c of the C++ ARM points out that C++
has no direct support for “interface definition” and
“implementation module”. In a C++ class definition,
all private and protected members must be included
in the public text of the class. The ARM points out
that whenever the private or protected parts are
changed, the whole program must be recompiled.
Further to what the ARM says, all modules that are
dependent on the header file must be recompiled,
even though the private and protected members do
not affect other modules. Private members should
not be in the abstract class interface, as this exposes
implementation details to programmers of client
modules.

3.35 Class Header Declarations
C’s syntax for function declarations is [<type>]
<identifier> (<parameters>).  For (a very simple)
example:

class C
{

a ();
b ();
int c ();
d ();
char e ();
virtual void f ();

}

To find an identifier in this layout, the eye must
trace a course around the type specifications and
modifiers, which is a tiring activity. There is a
greater chance of  missing the sought identifier, and
the programmer must resort to using the search
function of a text editor to help out.

Other languages place the entity names first. For
example:

class C
{

a ();
b ();
c () int;
d ();
e () char;
f () virtual void;

}

To those used to the ALGOL and FORTRAN style
of type first, this seems backwards. But name first is

logical as a real world example illustrates: imagine
if a dictionary was published where the keywords
were not placed first, but rather the entry order is -

noun /obvrzen/ obversion, the act or
     result of obverting

Such a dictionary would not sell many copies, unless
the marketeers managed to fool many people that
the explanation of the meaning was better because
the order of layout was mysteriously magical. This
example illustrates how important subtle syntax
decisions are, and why Pascal style languages have
ordered things contrary to FORTRAN, ALGOL and
others. The language designer must consider these
trivial but important alternatives. The layout of
programming entities is essential for effective
communication. The dual roles of language syntax,
and programming style affect comprehension. A
dictionary or index style layout suggests placing
entity names first, followed by their definition.

Java obviously has to retain this problem since it
is C based. In fact the hello world program in Java
shows how putting an entity name after modifiers
can obscure the program:

public static void main(...)

Eiffel mostly puts the feature name first, except for
the frozen case, so that features are easier to find.
The frozen modifier is not used very often though.

3.36  Garbage Collection
One of the hallmarks of high level languages is that
programmers declare data without regard to how the
data is allocated in memory. In block structured
languages, local variables are automatically
allocated on the stack, and automatically deallocated
when the block exits. This relieves the programmer
of the burden of allocating and deallocating
memory. Garbage collection provides equivalent
relief in languages with dynamic entity allocation.

In C++ the programmer must manually manage
storage due to the lack of garbage collection. This is
the most difficult bookkeeping task C++
programmers face that leads to two opposite
problems: firstly, an object can be deallocated
prematurely, while valid references still exist
(dangling pointers); secondly, dead objects might
not be deallocated leading to memory filling up with
dead objects (memory leaks). Attempts to correct
either problem can lead to overcompensation and the
opposite problem occurring. A correct system is a
fine balance. This is illustrated in the figure below.

Dangling Correct Memory
Pointers System Leaks

These problems contribute to the fragility of C++
programs, and usually result in system failure.
Garbage-collection solves both problems, but has an
undeserved bad reputation due to some early
garbage-collectors having performance problems,
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instead of working transparently in the background,
as they can and should. These problems are often
over-emphasised as a justification for C++ ignoring
garbage collection. A possible solution is to build
garbage collection into the run-time architecture, but
allow the programmer to activate and deactivate it
manually. Garbage collection can be disabled in
systems where it is inappropriate.

In C++ it might be argued that the lack of
garbage-collection is not an engineering
compromise. Its inclusion is nearly an engineering
impossibility, as a programmer can undermine the
structures required for implementing correctly
working garbage-collection. While garbage-
collection might not actually be an impossibility in
C++ (EC++), it is difficult, and programmers would
have to settle for a more restricted way of
programming. This could be a good thing. But then
the compromise to remain compatible with C
becomes difficult, if  the compiler is to detect
practices inconsistent with the operation of garbage-
collection.

[Sun 95] states that “explicit memory
management has proved to be a fruitful source of
bugs, crashes, memory leaks and poor
performance.” Sun have built garbage collection into
Java.

Bertrand Meyer lists garbage collection in his
steps to object-oriented happiness. This is not
surprising in a language that has exception handling,
keeping track of live and dead objects is even more
difficult, so Eiffel is also based on built-in garbage
collection.

Stroustrup is also an advocate of optional
garbage collection. In [Stroustrup 94] he states
“When (not if) garbage collection becomes
available, we will have two ways of writing C++
programs.” My question is not if or when, but how?
Unless you restrict pointers and pointer operations,
garbage collection will be very difficult, and
probably inefficient. By inefficient, I mean either
slow, or it won’t clean up very well, or even both.

In Eiffel garbage collection is also optional. The
garbage collector can be disabled during critical real
time phases of program execution. It cannot be
completely disabled, as if a program runs out of
memory in this state, the garbage collector will be
invoked, which is always preferable to the
application crashing irrecoverably.

3.37 Low level coding
One of the stated advantages of C++ is that you can
get free and easy access to machine level details.
This comes with a down side: if you make a great
deal of use of low level coding your programs will
not be economically portable.

Java has removed all of this from C, and one of
Java’s great strengths is its portability between
systems, even without recompilation.

The Eiffel solution is somewhat different again.
In Eiffel you have no access to machine and

environment level details, in the language itself.
You can use libraries that provide access to routines
written in external languages like C. You can still
write your low level C routines, and easily access
this level from Eiffel. The major advantage of this
approach is that all system level code is centralised
in a few places, and this provides good separation of
concerns. If you have to port your system, you
know exactly which parts of code will need
attention. System interfaces are thus provided in a
set of well designed classes and routines. In C++
you can only enforce this as a matter of discipline
over your programmers.

3.38 Signature Variance
When redefining a routine, there is an opportunity to
redefine the signature as well. There are three ways
a language can do this known as: no variance,
contra-variance, and co-variance. This is an issue of
type safety.

No variance means that the language does not
permit the signature to change. The signature must
exactly match the signature inherited from the
parent.

Contra-variance means that the signature in a
subclass can modify each argument so that it is a
superclass of the matching parent argument. For
example, if you have classes A and B, and B inherits
from A, then given a parameter of type B in your
parent, you can keep it as B or modify it to A. This
does seem counter intuitive, but there are some good
examples of where it works.

Co-variance is the opposite of contra-variance.
In the above example, if your parent has a parameter
of type A, you can keep it as A, or redefine it to any
descendant of A. This is more intuitive than contra-
variance. In either scheme, a compiler can check for
type-safety.

C++ and Java offer no variance for polymorphic
methods. The reason for this is that if you have a
routine with a different signature, even if the
parameters of the parent and child are type
conformant, the method overloads rather than
overrides the original method. Overloading can be a
major cause of confusion and errors. Many other
languages require that a redefined routine must be
explicitly marked as redefined or overridden.

As stated before a simple solution to the
overloading problem would be to require that
programmers mark the methods: override  or
overload . The compiler could then check for
consistency, that the parameters for an overriding
method are an exact, or co/contra-variant match, and
that for an overloaded method, the parameters are
different. Making overriding and overloading
explicit is also good documentation, as it is a double
check of what the original programmer really
intended. Remember that overriding chooses
between the alternative methods at run-time, based
on the type of the owning object; overloading
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chooses between the alternative methods at compile
time based on the argument types.

Eiffel is an interesting case. Contrary to many
strong opinions and theoretical arguments in support
of contra-variance, Eiffel chooses the intuitive co-
variant approach, claiming this is useful in many
more situations. Eiffel has also implemented co-
variance in such a way that it is type safe.

3.39 Pure Virtual Functions
Pure virtual functions provide a means of leaving a
function undefined and abstract. While the concept
is correct, this section shows both the syntax, and
the terminology ‘pure virtual’ leave something to be
desired. A class that has such an abstract function
cannot be directly instantiated. A non-abstract
descendant class must define the function. The C++
pure virtual syntax is:

virtual void fn () = 0;

This leaves the reader new to C++ to guess its
meaning, even those well versed in object-oriented
concepts. ‘=0’ might make sense for the compiler
writer, as the implementation is to put a zero entry
in the virtual table. This shows how implementation
details which should not concern the programmer
are visible in C++.

A better choice would have been a keyword such
as ‘abstract’. Abstract should have syntactic
significance as abstract functions are an important
concept in object-oriented design. The C++ decision
in keeping with the C philosophy of avoiding
keywords is at the expense of clarity. A keyword
would implement this concept more clearly. For
example:

pure virtual void fn ();

or

abstract void fn ();

The mathematical notation used in C++ suggests
that values other than zero could be used. What if
the function is equated (or is that assigned) to 13?

virtual void fn () = 13;

A function is either implemented or undefined. This
to any analyst suggests a boolean state, which a
single keyword conveys. A simple suggestion to fix
this is to define ‘= 0’ as abstract:

#define abstract = 0

then

virtual void fn () abstract;

Let’s look at =0 a slightly different way, as a key
phrase, or a keyword which is spelt with the
characters ‘=0’ . If you do that, then the objection to
keywords becomes a non-issue.

As for the terminology, ‘pure virtual’ is a
contortion of natural language. It combines words

that are somewhat opposite in meaning. Pure means
something that really is what it appears to be, as in
pure gold. Virtual means something that appears to
be what it actually is not, as in virtual memory.
Perhaps pure virtual  gold is fools gold. As
has been said before, virtual is a difficult concept to
grasp. When it is combined with a word such as
‘pure’, the meaning becomes more obscure.

 [Stroustrup 94] gives the curious tale about the
‘curious =0’ syntax: “The curious =0 syntax was
chosen over the obvious alternative of introducing a
keyword pure or abstract  because at the time I
saw no chance of getting a new keyword accepted.
Had I suggested pure , Release 2.0 would have
shipped without abstract classes. Rather than risking
delay and incurring the certain fights over pure , I
used the traditional C and C++ convention of using
0 to represent “not there.””

Mathematically, 0 does not normally represent
“not there”. Usually, 0 is just another number. Using
0 to represent “not there” leads to semantic
problems which lead to many interesting discussions
on topics such as 3 value and 4 value logic, etc. In
the C world, there are constant arguments over
whether NULL is 0 or something else. In the
database world, a value is needed for “not known.”
If 0 is used for “not known,” then there is a problem
if the value is known, but happens to be 0. The =0
syntax is an aggregation of errors. Not only are
keywords such as virtual  and static
overloaded, but worse a number such as zero to
mean things that it does not mathematically
represent.

Java and Eiffel use much clearer syntax. Java
simply uses:

abstract void fn ();

In Eiffel you specify the routine as deferred,
meaning the details of implementation are deferred
to a descendant class:

r is deferred end

The ‘end’ might look like syntactic baggage, but
you can specify other abstract properties of a
deferred routine in the form of pre and post
conditions.

Eiffel uses the best terminology, as deferred
means the implementation is deferred. A routine that
has an implementation still has an abstract form.
The abstract definition of the routine is obtained by
the short tool, which extracts the routine signature,
that is name, parameters, type, and pre and post
conditions from the other details. The term abstract
does not necessarily mean ‘not implemented’.

3.40 Programming by Contract
A common problem programmers face is that
implementation hiding is very nice in theory, but
often, you actually have to look at the internals of a
class and its routines to determine what the class
does and how to use it. Often you must examine the



C++?? 37

3rd Edition © Ian Joyner 1996

internals of a routine before you call the routine so
that it works correctly, and to determine its exact
effect after the routine has executed. The signature
specification of a routine is not enough; routines
often have side effects.

Eiffel extends the concept of routine signature:
what you must set up prior to calling a routine is
documented as preconditions in the requires clause,
and the exact effect of a routine is documented as
postconditions in the ensures clause. The short tool,
extracts the preconditions and postconditions with
the abstract part of a routine signature, as
documentation for clients of a class. Preconditions
document the obligations of the caller and benefits
to the called routine, and postconditions document
the obligations of the called routine and benefits to
the caller: hence the term programming by contract.

Programming by contract is a major technique in
saving programmers from having to look at
implementation code, and is most important to
library vendors who don’t want to give away the
internals of their implementation, but do want
people to buy and use their library.

Programming by contract is not just a fancy
documentation scheme, but the preconditions and
postconditions provide run time checks to ensure
that all units of the program are behaving correctly,
and thus fulfilling their contracts. This is the
mechanism that detects the run-time inconsistencies
discussed in the section on correctness. In Eiffel,
this mechanism is integrated with the exception
handling mechanism. In C++ and Java you can use
assertions for run time checks, but these are not
integrated into the programmers mindset as in
Eiffel.

Programming by contract is the equivalent to
integrated circuit specifications in the electronic
component world, and also tolerances in more
physical engineering disciplines. In Eiffel, the
combination of static type checking with
preconditions and postconditions, integrated with
exception handling form a significant way to test
that the software jig-saw puzzle fits together, and
that the resulting picture makes sense. These
techniques significantly reduce dependence on ‘after
the fact’ manual testing.

Neither Java nor C++ have this mechanism.
Another interesting case is CORBA IDL, which
being an interface language for distributed objects,
contract information is important. It is a glaring
omission from CORBA IDL which has glaring
inclusions of struct, typedef, union, etc., all of which
aren’t helpful in a distributed object environment,
where the concept of programming by contract is
even more important in considering how to connect
all the system components together, and you want
more confidence that the distributed jig-saw fits
together. In fact this biases CORBA to C
implementations. The industry should stop and
think, design things carefully and correctly, and stop
designing things to look like C. So often C

constructs are inappropriate, and make adopting
more advanced and necessary concepts difficult.

3.41  C++ and the software lifecycle
The software lifecycle has attracted a great deal of
attention. It is at least generally accepted that the
activities in the lifecycle are analysis of
requirements, design, implementation, testing and
error correction, extension. Unfortunately, the result
of identifying these activities has resulted in a
school of thought that the boundaries between these
activities are fixed, and that they should be
systematically separate, each being completed
before the next is commenced. It is often argued that
if they are not cleanly separated, then you are not
practicing disciplined system development.

This view is incorrect; someone who writes a
program straight away is actually doing all the steps
in parallel. It might not be the best way to do things
in many circumstances, might or might not suit the
style and thinking of different people, but this works
in some scenarios, and can be the methodology of
choice of disciplined thinkers. While that is an
extreme example, the ideal way to work probably
lies between that and a strictly regimented
environment that assigns different people or teams
to the lifecycle phases.

Some people can hold a whole problem and
solution in their head and work in a disciplined
fashion until the solution is complete. Mozart is said
to have composed this way, producing his last three
symphonies in as many months in 1788. Beethoven
toiled far more over the production of his works,
taking years to complete one symphony. Both
composers produced masterpieces. Mozart wrote
music directly, whereas Beethoven wrote themes
and ideas in his famous sketchbooks. While
Beethoven and Mozart had their own methods, the
production of masterpieces depends on skill, not on
methodologies.

A view that is gaining acceptance is that the
software lifecycle should be an integrated process.
Analysis, design and implementation should be a
seamless continuum. The activities of the lifecycle
should progress in parallel to expedite software
development. Facts found out only as late as the
implementation stage can be fed back into the
analysis and design stages. The object-oriented
approach supports this process.  Artificial separation
of the steps leads to a large semantic gap between
the steps. The transformations required to bridge
such semantic gaps are prone to misinterpretation,
time consuming and costly.

We should cease dependence on testing. This is
not to say that systematic or even random testing by
an independent test group is not important, but we
should rely more on better techniques in the
preceding phases. Software testing can never prove
the absence of error, it can only be used to detect
errors if they are there.

 The same people should be responsible for all
stages, so that they take responsibility for the system



C++?? 38

3rd Edition © Ian Joyner 1996

as a whole, rather than passing the buck and blame
which occurs when analysts, designers and
implementors are different groups. This is not a
popular view in traditional hierarchical management
structures where organisational structure is prized
over quality and programmers get promoted to
designers who get promoted to analysts, and
managers stay aloof from the technical process, just
making sure the old structure is maintained. Or even
worse, those who become analysts, designers and
managers have little knowledge or experience of
programming and large scale software engineering.
Since the second edition of the critique, Scott
Adams’ Dilbert comics have become widely known
as accurate comments on such organisational
problems. Hierarchical management discourages
people from feeling responsible for a product. This
culture must radically change if we are to produce
quality systems.

We should have learnt from the extremes of
SA/SD. Some quarters believed that methodology
was all important, while programming and
programming languages were unimportant. Arcane
and machine-oriented programming languages
strengthened this attitude, concentrating on the
‘how’ of computation, whereas the modellers
correctly demand notations that express the ‘what’,
in order to be implementation independent. A
modern software language supports the integration
of the activities of design and implementation by
being readable, and problem-oriented. A language
should be as close to design as possible. The needs
and requirements of an enterprise can change much
more rapidly than programmers can keep up,
especially in a highly competitive and commercial
world.

So how does C++ fit into this picture? Well it is
based on C that was designed mainly as an
implementation and machine-oriented language. It is
an old language, that did not need to consider the
integrated lifecycle approach. C++ might have some
of the trappings of object-oriented concepts, but it is
an uncomfortable marriage of a problem-oriented
technique with a machine-oriented language. It
addresses implementation, but does not address
other aspects of the software lifecycle so well. Since
C++ is not so well integrated with analysis and
design, the transformation required to go from
analysis and design to implementation is costly.
There is a large semantic gap between design
languages and the implementation language.

We should have learnt from the structured world
that this is the incorrect approach to the software
lifecycle. But in the OO world we are again falling
into the trap of dividing the lifecycle into artificially
distinct activities of OOA, OOD and OOP, instead
of adopting an integrated approach. Modern
languages provide a much more integrated approach
to the complete software development process than
C++. C++ supports classes and inheritance and other
concepts of object-orientation, but fails to address
the entire software lifecycle.

Eiffel is specifically designed around the
clusterfall model of the project lifecycle. In this
model, several subparts of a project may be in
different phases at any instant. It also recognises that
feedback occurs from later phases to earlier phases.
Eiffel itself is quite a good specification language.
Its assertions and invariants are something like you
would see in a formal specification language like Z.
While not as comprehensive as Z, Eiffel’s
specification mechanisms suffice in most cases.
(Bertrand Meyer was involved in the early work on
Z). Thus you can use Eiffel as a documentation
language in phases as early as analysis. The problem
of different notations in different phases, and error-
prone translation between them is removed.

The mechanism that Eiffel includes to cease
dependence on testing is the assertion mechanism,
integrated with exception handling. Organisations
will find it difficult to make significant progress
towards the higher levels of the Software
Engineering Institute Capability Maturity Model
(SEI CMM) until techniques such as this in Eiffel
are in widespread use.

Eiffel is also integrated with a graphical CASE
tool called BON (Business Object Notation) for
those who feel more comfortable with classification
and component relationship diagrams. Most
importantly, Eiffel and BON are based on the same
underlying abstract concepts. Eiffel can be generated
from BON and vice-versa. This means you can
easily “reverse engineer” your text, but the major
advantage is that your diagrams and your text are
always synchronised. There is no costly
maintenance when your program changes, and
diagrams have to be updated to reflect this fact.
Thus Eiffel is a step towards seamless software
engineering.

3.42 CASE Tools
The previous section raises the question of CASE
tools. [Madsen 93] has a good discussion on
graphical notation (18.8). BETA is a language that
can be used for analysis, modelling and design. To a
certain extent, this comes with any language that
supports classes, as these are the elements of OO
analysis and design, but it is important to develop
the language with analysis and design specifically in
mind.

If you are using both graphics and textual
notations, it is important that both are based on the
same underlying abstract language: text and
graphics should represent the same concepts. A
major problem with SA/SD was the graphical
notations and programming notations were so far
apart that costly and error-prone manual translation
was required between the two. Unfortunately, this
has set up the precedence in peoples minds that
graphical and textual notations are necessarily far
apart, and are surprised to see how close these are in
good object-oriented systems.

It should not be thought that graphics are high
level, and text is low level; that is the nature of
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abstractions, not the tools or notations. In fact it
should be pointed out that text is a highly evolved
form of graphics; both forms of information enter
our brains through our eyes Because of the nature of
graphical notations less detail can be shown. With
an integrated editor detail in text can be suppressed.
In identifying classes during analysis, it really
makes no difference whether you document them as
a series of graphical boxes with class names in the
middle, or a textual list of class names. In fact many
people will find the list easier to work with and later
read. At any stage the notations should be
interchangeable. In some cases the graphical
notation will abstract away details, which is an
advantage, when you don’t want to see the details.
As you add details though, graphical forms become
unwieldy, and text is easier to manage.
Unfortunately, many sectors of the industry have
become convinced that graphical forms are more
formal and result in magically better designs that
text equivalents.

Graphics and text are best in an integrated
environment. A programmer may have a class
diagram as a starting point, like GUI file icons.
Selecting a class will expand the class so that the
interface of the class can be seen. At a different
level, internal features of the class might be seen.
Eventually, a level where text is seen is reached.
The major failing of most CASE tools is they do not
support this level of seamless integration. For the
most benefit they should flow into the programming
language. So called ‘visual’ environments do little
better than putting program text in a GUI window.

Why bother with graphics then? For the simple
reason that looking at the same problem in different
ways aids understanding. It is also a matter of taste.
Some people will find they understand graphics
better, and some text. It is a good idea to cater for
personal tastes, as long as there aren’t too many
options, in which case everyone will end up
speaking their own language, and there will be no
effective communication, a tower of Babel. But this
has already been the case in the industry, as design
methodology notations are far apart, with the
analysts/designers not wanting to read programs,
and programmers not wanting to read structure
charts and data flow diagrams.

A common design method with C++ is to use
OMT (UML) or some equivalent methodology.
However, the object models are different as the
graphical and textual languages are not based on the
same underlying abstract language. Thus there is a
semantic gap between the text and graphics. This
results in more costly and error-prone development.
But then as the OMT people have said “Eiffel is
arguably the best commercial OO language in terms
of its technical capabilities.” [RBPEL91], p327. The
object model of Eiffel is certainly closer to OMT
than C++.

In conclusion, if CASE tools and graphical
notations are to be of use, they and the programming

language must be based on the same abstract
concepts.

3.43 Reusability and Communication
Reusability is a matter of communication.

Clear communication is a courtesy concern. In
order to use a software component, you must be able
to understand it. The writer must communicate the
purpose, intent, and correct usage of the component
to the client. In the object-oriented world, clear and
concise definition of software modules is not a mere
nicety, but essential for reusability. Arising out of
the issue of reusability is extendibility. In order to
maximise the reuse of software, it must often be
tailored for new applications. The client programmer
must decide whether a software component is
suitable for a new task, and if so, what is the best
way to extend it?

Communication is aided by having integrated
text and graphics environments, where the concrete
languages of both are based on the same underlying
abstract languages, or object models.
Communication is also dependent on clear and clean
syntax.

As C/C++ suffer from arcane and cryptic syntax,
it does not support the goal of clear communication.

Java cleans up a fair bit of C/C++. The mess that
is caused by the preprocessor is removed. However,
Java still suffers from some of the deficiencies of C
in this regard.

Eiffel has been designed with communication in
mind, and is not bound by the shackles of C syntax.
It borrowed from the clean syntax of Ada. Along
with the Eiffel syntax were designed style
guidelines, so the Eiffel syntax lends itself to a clear
style.

Eiffel also has utilities like short, where the
abstract interface of classes can be extracted from
the full details.

Eiffel provides an extra significant mechanism,
that of integrated assertions. The short tool will
extract the assertions with the interface descriptions.
This has been described in the section on
programming by contract. Programming by contract
helps decide whether a class is useable in a new
situation, and then how to use it, so this is an
important tool for communicating the purpose,
intent and correct usage of a software module. Thus
assertions are very much a courtesy concern.

Reusability is well supported with clear
communication in Eiffel.

3.44  Reusability and Trust
Reusability is a matter of trust.

Building trustworthy components is a safety
concern. Trust results from confidence that safety
concerns have been met. If you do not have
confidence in a software component, then you won’t
want to reuse it. You could doubt that the software
component provides enough functionality, or correct
functionality. You could doubt that the component
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is efficient enough, or worse it might fail. As so
many traps in C++ result in ‘bugs’, it is difficult to
trust a software module, so it is less reusable.

In the real world of reusability, the ideal of
trusting programmers is inappropriate, and results in
less trustworthy software; in reality, customers
doubt the claims of suppliers. It is the onus of the
supplier to prove their claims, and thus
trustworthiness of the software. The client is not
required to trust the supplier’s programmers.
Potential clients of a software component, require
assurance that the component is trustworthy.

Trusting programmers is against the commercial
interest of both parties. This is not to cast dispersion
on programmers, but merely recognises that
computers are good at performing mundane tasks
and checks, but people are not. If people were good
at such things, we would not need computers in the
first place.

Even though you might not trust your
programmers, this is not an excuse to employ
anything but the best skilled programmers, and
programmers should also be given the best training.
Consider a Stradivarius violin: it will sound bad in
the hands of a bad violinist. But a good violinist will
insist on a Stradivarius, rather than a cheap brand
where he won’t sound his best. In computing, we
frequently argue whether it is the tools or the
programmers. It is a combination of the two; if
either is lacking, trustworthy software will not
result.

Java “eliminates entire classes of programming
errors that bedevil C and C++ programmers” [Sun
95]. This means that you can better rely on
externally developed Java packages.

Eiffel also is not bedevilled by the same classes
of errors. Thus you are more likely to produce
software that can be used in other contexts, and be
able to find software that can be reused in your
context.

Eiffel assertions are also important here. As
assertions are checked at run time, they ensure that
the software is working correctly, so the level of
trust in external components is higher, and you reuse
them with more confidence.

3.45  Reusability and Compatibility
Different compiler implementations need to be
compatible in order to realise reusability between
libraries and components. Different C++ compilers
generate different class layouts, virtual function
calling techniques, etc. The name encoding schemes
used for type safe linkage can also be different. If
two different compilers generate different run-time
organisations, then different name encodings are
desirable as it will prevent two incompatible
libraries from being linked. The C++ ARM (p122)
states: “If two C++ implementations for the same
system use different calling sequences or in other
ways are not link compatible it would be unwise to
use identical encodings of type signatures.”

This can be solved in two ways: firstly, a library
vendor could provide the entire source of a library
so it can be compiled with the customers compiler;
if the sources are proprietary the vendor will need a
separate release for every environment, and every
compiler in that environment.

Because of this problem a strong case exists for
a universal intermediate machine readable
representation of programs. Interestingly, some
systems are already using C as a ‘universal
assembler’, notably AT&T C++ and Eiffel. But this
cannot solve the above problems of compatibility
between components without a standardisation effort
on run time layouts and name encoding schemes.

An important feature of Java is that it is
architecture neutral as Java compilers produce byte
code instructions for a virtual machine. Java
provides a “universal intermediate machine readable
representation of programs” as I called for in this
paper’s second edition.

Eiffel implementations provide a high level of
source code compatibility. However, the generated
C from different implementations can have different
object layouts. Thus a class library will have to be
recompiled if it is to be used in a system compiled
with a different vendors implementation.

Another form of incompatibility between
libraries is incompatibility of type definitions. A
glaring example in C++ is the number of ways the
simple type boolean can be defined. For more on
this see the section on booleans.

3.46 Reusability and Portability
Since true OOP ensures that objects are loosely
coupled to the external environment, portability to
diverse environments is possible. C is highly
coupled to Unix style environments, and as such is
not particularly portable to diverse environments.

Java is also the winner in this category, due to
its virtual machine, and removal of pointers. Eiffel
code is also highly portable, but you are currently
confined to systems where Eiffel compilers exist of
which there are many. As most Eiffel compilers
generate C, you can port the generated C to
platforms where there is no Eiffel compiler. With
Java, only a virtual machine interpreter needs to be
available on the system in order to run Java
programs.

As the Java virtual machine seems to be
sufficiently semantically rich, it could be that other
languages target the Java virtual machine, and that it
becomes a universal machine code. Such a marriage
might not be as easy as it appears, if the object
models of different languages are sufficiently
different from the Java model. Sun does seem to
have kept the virtual machine independent of
physical object layout, and any assumptions that
would make this too hard.
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3.47  Idiomatic Programming
The ability to program in different idioms is argued
as a strength of C++. Idiomatic programming,
however, is a weak form of paradigmatic
programming; it is programming in a paradigm
without necessarily having compiler support for that
paradigm. The compiler cannot check for
inconsistencies with the idiom, or paradigm. Defines
can often be used to invent idioms. Anyone who has
attempted to do object-oriented programming in a
conventional language using defines will realise that
it is impossible to realise the benefits easily, if at all,
without compiler support.

Both Java and Eiffel are strongly object-
oriented: the idiom is OO. You don’t have to bring
together various sub-projects each of which might
have used their own favourite idiom.

3.48 Concurrent Programming
The object of concurrent programming is that
computing resources can be harnessed to efficiently
compute problems that would otherwise be
inefficient to compute using a single processor. In
the next ten years multiple processor arrays that
execute programs concurrently will likely become
common. Concurrency requires much cleaner
languages, than the single processor languages of
today.

Object-oriented concepts support concurrent
programming. Objects can execute state changing
code independently of each other. Concurrent
programming will be enabled by the division of the
state space of a system into modules to achieve a
high degree of independent processing. Objects
provide a scheme to cleanly divide state spaces. The
demand that everything be divided into loosely
coupled modules, that only interact through well
defined interfaces might be perceived as inefficient;
but it is precisely this scheme that will mean that
concurrent solutions can be developed efficiently
and transparently to the programmer.

Concurrency should be transparent to the
programmer, as concurrency is a low level
implementation consideration; concurrency is how a
computation is done, not what is to be computed.
However, there are examples where concurrency is
manifest in the problem domain, such as many
simulation problems like multiple queues, for
example check-outs in a supermarket. The
implementation issue of concurrency is how
processes are allocated to processors. The
programmer should not be concerned with this,
rather what is to be computed, not how. How
something is computed is the concern of the target
environment, ie., the compilers, operating system,
and hardware.

The aim of concurrent processing is to keep all
the processors in a processor array as fully utilised
as possible, so that processor resources are not
wasted. There is nothing more mysterious to
concurrent programming than the efficient use of

resources. Keeping all processors busy is an
inherently dynamic problem, which the programmer
cannot determine statically at compile time. All the
processors can be kept busy, as long as there are
enough threads in the system.

In concurrent programming, a thread is a unit of
sequential execution. Concurrency is achieved by
the splitting of threads. A thread can be split when a
state changing routine is invoked, but not a value
returning function, because it must wait for the
value. State changing routines can easily be invoked
on another processor. Object level granularity seems
to be a natural candidate for concurrent processing.
An object can have only one update thread at a time
to avoid simultaneous update problems. Other levels
of concurrency are instruction level, and task or
process level. Task or process level is the level  used
in conventional multi-processing systems currently
commercially produced, and instruction level is
quite difficult, best left to instruction pipelines.

Object level is natural for the programmer, and
has the advantage that a programmer can implement
a system without taking into account parallel
processing at all. The same program will run and
produce identical results irrespective of whether the
customer is running a single processor, or a
processor array. This way the programmer
concentrates on the model and design of the
problem, not on deployment concerns.

Side effects must be avoided in concurrent
systems. Suppose a computation depends on
combining the results of two functions f and g, such
as f + g. f and g are parameters to the + function.
Routine parameters can be computed concurrently,
as long as the computation of each causes no side
effects. If f and g are independent, then they can be
computed concurrently. If however, f produces side
effects that g depends on, they must be computed
sequentially.

C++ does not preclude the use of a global
environment. Access to shared global data
potentially causes a thread to lock, and if many such
accesses occur, the advantage of concurrency is lost.
This is because updates to a global environment are
side effects. Programming in such an environment
requires complex locking mechanisms to ensure that
things happen in the correct order. Locks are rather
like waiting for a plane to take off when it has to
wait for another connecting flight. This cannot be
entirely avoided, but should be reduced as much as
possible.

It might not be impossible to implement
concurrent processing in C++, but it is difficult as in
many ways C++ is not suited to concurrent
processing.

Java provides threads. It also removes C features
like globals that are problematic to concurrency.

Eiffel has a recommendation [Meyer 96c] that
extends Eiffel with a single keyword separate to
provide concurrency. Both Java and Eiffel have
simple concurrency mechanisms due to their cleaner
base than C++.



C++?? 42

3rd Edition © Ian Joyner 1996

3.49 Standardisation, Stability and 
Maturity

Object-orientation is now nearly 30 years old, since
Simula 67. Smalltalk is about 20 years old, Ada 95
is only one year old, but based on Ada 83, which is
about 13 years old. C++ is 13 years old. Eiffel is 10
years old, and Java is just one year old.

The age of a language does not relate to its
stability and maturity. Java is the youngest
language, but Java appears to have a well thought
out and stable language base, also having a
comprehensive set of OO libraries. Thus Java is off
to a good start, but only time will tell. It already has
quite a number of books.

Ada 95 is one year old. But that is one year
since the standard was ratified, so it is a good deal
older than a year. Ada 95 is the product of an
ISO/ANSI/DoD standard. Thus Ada 95 vendors
have a very stable base from which to implement.
This gives Ada 95 a good start over other languages,
where there might be implementations, but they are
shooting at a moving target.

Eiffel is not subject to the ‘formal’ ISO/ANSI
standards; it has its own non-aligned standards body
NICE (Non-profit International Consortium for
Eiffel). Eiffel is now in its third incarnation, Eiffel 3
that is fully described in Eiffel: The Language
[Meyer 92], the Eiffel equivalent of the C++ ARM.
However, the definition of Eiffel 3 has been very
stable since 1992, requiring only a few extra validity
rules, and small clarifications: Eiffel is probably the
best designed language ever intended for
commercial use. The largest change to the language
is now under consideration, which is to add the
separate keyword to allow support for concurrent
and distributed processing. This will not affect
existing programs, and early releases of
implementations with this mechanism are now
available. Eiffel also has a standard library. The
standard library is more changeable than the base
language, but is also under the control of NICE.
Thus Eiffel has attained a great deal of maturity over
10 years, and the standards are very stable. This
gives Eiffel a considerable advantage in that
libraries are much easier to update to address new
and changed requirements than compilers.
Therefore, Eiffel should evolve more quickly into
new problem domains, without the traditional
resistance from compiler vendors.

The most serious problem that Eiffel has faced
in the past was stability of implementations. As
Eiffel is an ambitious language and environment,
many new and difficult concepts have been
pioneered and made into industrial strength
packages. Eiffel is very demanding on compilers,
which need to do things like global analysis, which
is an issue that C++ conveniently avoids. Eiffel does
not concede to compromises which place burdens on
the programmer in the same way that C++ does.

However, stable forms of Eiffel environments
are now becoming widely available. In 1996 Tower
Technology has released version 2 of its compiler

and environment, and ISE has announced version 4
of its environment, which addresses many issues
that users did not like previously, and now includes
menus and other facilities, which gives it a more
Macintosh/Windows look and feel. SIG Computer
has also announced its Visual Eiffel for release
October 1996. There is also an independent
experimental version known as SmallEiffel, which
can be downloaded for free.

Another problem that Eiffel has had is the lack
of titles. [Meyer 88] is the classic book on OO,
however, it is based on Eiffel 2.0, not version 3.
Meyer’s next book “Eiffel: The Language” [Meyer
92] is the language lawyer’s reference, but it is
possible to navigate for an overview. However, there
are now over ten titles on programming in Eiffel,
quite a few of which are used to teach university
courses on OO.

Smalltalk is now a widely used language, and
has proven to be very effective in some
environments. Different implementations of
Smalltalk do not share libraries, and do not
interoperate.

Out of all the languages here, C++ although 12
years old, provides the fastest moving target for
vendors. It is claimed to be standardised, as it is
subject to ANSI/ISO standardisation, but this work
is still very much in progress. You can check status
of the standard on the X3J16 WEB page in the
WEBliography). The number of issues to be
addressed by the committee keeps increasing, rather
than decreasing. C++ was submitted to the
standardisation process too early, and the committee
has had to do too much design work that should
have been done before C++ was submitted to the
standardisation process.

The committee hopes to progress the standard to
CD (Committee Draft) this year (1996). The FAQ
shows a timetable which will produce an IS by
December 1998 (see WEBliography:
http://reality.sgi.com/employees/austern_mti/std-
c++/faq.html#B8). After IS is achieved, it will
probably be several more years before a significant
number of vendors are fully compliant. By that
stage, users will probably be clamouring for more
features and fixes to old problems. I have already
heard stories of C++ tool vendors complaining that
the standard is too horrendous to understand, and
then to implement anything compliant.
Standardisation should stabilise the specification,
but C++ has continued to become less stable. The
fact that the C++ standard is so unstable indicates
that the C++ committee realises there are many
shortcomings in C++ that they must rectify. There
are many flaws that the committee knows about that
I do not cover in this critique, but also many of the
flaws that are covered in this critique, the committee
have no intention of addressing, as that would break
too many existing programs and C compatibility.

In the preface to [Stroustrup 94], Bjarne
Stroustrup writes “C++ is still a young language.
Some of the issues discussed here are yet unknown
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to many users. Many implications of decisions
described here will not become obvious for years to
come.”

Coming to consensus in the C++ world is a
difficult task. [Stroustrup 94] states this frustration
as “Dealing with stubborn old-time C users, would-
be C experts, and genuine C/C++ compatibility
issues has been one of the most difficult and
frustrating aspects of developing C++. It still is.”

Many comments in [Stroustrup 94] show that
C++ is still a moving target. Garbage collection is
mentioned as “when (not if)”. Thus when GC is
fitted to C++, developers will be faced with quite a
transition in paradigm. All of this uncertainty in
C++ might keep the programmers busy, after all
many of them want to code exclusively in C++,
while ignoring all else; but it will be very costly for
the companies that are locked into C++.

There are still unresolved things the X3J16
committee must sort out, especially in the area of C
compatibility. [Stroustrup 94] says “The
“compatibility wars” now seem petty and boring,
but some of the underlying issues are still
unresolved, and we are still struggling with them in
the ANSI/ISO standards committee. I strongly
suspect that the reason the compatibility wars were
drawn out and curiously inconclusive was that we
never quite faced the deeper issues related to the
differing goals of C and C++ and saw compatibility
as a set of separate issues to be resolved
individually.” Since C compatibility results in so
many problems, serious consideration should be
given to this basic tenet of C++.

The C++ community seems to think using a
fundamentally flawed tool is acceptable and that the
rest of the world must wait for them to straighten
these issues out, which in many cases isn’t even
possible. It is also a hidden cost to companies that
their programmers must continually keep up to date,
and abreast of the arguments for and against certain
constructs. Many other languages have solved these
problems.

As a postscript to this section, I will remark that
a lot of argument for or against particular languages
seems to come from people who believe that there
will be an eventual winner in the evolution of
languages, and they want it to be their favourite, so
will fight for dominance. I can see no evidence that
this will happen. I think new languages will
continue to be invented: some will be based on
continuing mistakes from old languages while
adding new features for compatibility; others will
avoid previous errors while adopting new
paradigms. I can’t see that the programming
language world will ever become stable. If people in
the industry can accept that, then we will have
programmers that are more amenable to change
language, being able to use the language that is best
suited for the purpose, and the maturity of language
criticism will improve, as we see each language as a
passing phase, to which we owe no long term
allegiance.

3.50 Complexity
There are several kinds of complexity. This critique
focuses mainly on the complexity of the C++
language itself. When considering complexity, one
needs to consider the complexity of the development
task as a whole. The complexity of the language
might only be a small part of that.

Apart from the language, we need to consider
the programming environment, that is editors, tools
for example make, etc., the methodologies and
tools, and the supporting libraries.

With C++ the conventional wisdom is often to
use a methodology such as OMT. Here the concepts
of the methodology do not exactly match the
concepts in the programming language. Thus you
have a semantic gap, where translation must occur.
This translation is costly, and frequently ends in
specifications that do not match what was eventually
implemented.

Both Eiffel and BETA see it as important to
develop their methodologies and graphical notations
based on the same underlying concepts. The
importance of this integrated approach should not be
under-appreciated.

As for environments, [Stroustrup 94] has the
following to say: “Every language in nontrivial use
grows to meet the needs of its user community. This
invariably implies an increase of complexity. C++ is
part of a trend towards greater language complexity
to deal with the even greater complexity of the
programming tasks attempted. If the complexity
doesn’t appear in the language itself, it appears in
libraries and tools. Examples of languages/systems
that have grown enormously compared to their
simpler origins are Ada, Eiffel, Lisp (CLOS), and
Smalltalk. Because of C++’s emphasis on static type
checking, much of the increase in complexity has
appeared in the form of language extensions.”

“C++ was designed for serious programmers and
grew to serve them in the increasing large and
complex tasks they face.”

P.J. Plauger in [Plauger 93] argues that the
complexity of C++ has put it on par with PL/I, Ada
(83) and Algol 68. He does not accept the
complexity in C++ as a good thing. Criticising the
complexity of Ada is somewhat unfair. An amount
of Ada’s complexity is due to its support of
multitasking and real-time programming. Simula
also has facilities for co-routines and processes, and
Ada and Simula are reasonably unique for their
inbuilt support of these facilities. In the 1980s, the
need for such facilities was not widely recognised.
However, the need for concurrency and distribution
is now becoming recognised.

Another feature of Ada that might contribute to
the perception of complexity is genericity. Again the
charge that this makes the language over complex is
based on not understanding genericity. I have
already covered this topic in the section on
templates. Thus Ada has been criticised for being
complex, but most of this criticism is due to not
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understanding essential features such as genericity
and concurrency.

Many C programmers have been guilty of
dismissing features they don’t understand as
complexity, and Ada has been a favourite target. I
am not saying that Plauger is in this category, as he
makes some valid points about Ada. But the
accusation of complexity against Ada should not be
overstated as it has too frequently emotionally been
in the past. In the computing industry, there is a low
level of understanding and experience that one must
have before becoming and expert or vocal critic,
particularly of languages like Pascal and Ada.

C++’s complexity is not solely due to static type
checking. Eiffel is more strongly type checked than
C++, but doesn’t suffer from the same complexity
problems.

As for the environment. The burden of
environment is far less for the cases of Eiffel, Java
and Ada 95. In Eiffel, a separate simple language
exists, LACE to specify to the compiler how to
compile the program. This contains such things as
environment variables, debug and other options, etc.
It also provides the basis for separation of concerns
so that environmental details are completely
removed from the Eiffel language. Eiffel is also
integrated with complete editing and development
environments.

Java has removed such environmental
considerations as #include  and make. Edmond
Schonberg writes that the environmental baggage
for Ada and Ada 95 is far smaller than C++ (see
WEBliography for his Ada contrast to C++).

The Eiffel libraries are very large and
comprehensive; but this only reflects the richness of
data structures that exist, and the number of
application domains. Eiffel libraries are available for
networking, compiling and parsing, Windows
programming as well as platform independent user
interfaces and many other things. The Eiffel libraries
simplify naming complexity by standardising the
vocabulary between classes. For example, put is
used to enter an item in any collection data structure
like ARRAY, LIST, QUEUE, and even STACK where
the routine would normally be named push. The
libraries enable the complexity of specific domains
to be removed from the language, which is simple
and yet general purpose.

Smalltalk also has a large library, which extends
an otherwise small and simple language. Classes
that a programmer adds also become part of the
Smalltalk environment.

Java also provides a comprehensive library to
deal with many aspects, including java.net, java.awt
(abstract windows toolkit), etc. Eiffel, Smalltalk and
Java do not ignore the issue of complexity; they put
it where it should be: in the libraries. In terms of
complexity, they implement Stroustrup’s principle
that “what you don’t use, you don’t pay for.” In
C++ you pay very much for complexity, as it is in
the language.

C++ can to some extent be extracted from the
complexity of its environment. But as long as the
mechanisms of #include  persist, the
environments that C++ is ported to will have to
adapt to the C/Unix way of doing things. Where the
environment is separate from the language, there is
no environmental adaptation that needs to be done,
and less retraining of programmers for each
environment they need to program in.

I can accept that C++ was designed for serious
programmers. However, Ada 95 and Eiffel are both
designed for the serious software engineer. (Java
remains to prove itself in this arena.) Eiffel in
particular shows that complexity can be dealt with
in a serious industrial strength software engineering
environment.

Complexity is not the necessary companion of
seriousness. This does not ignore the complexity of
any application domain; in fact it enables you to
focus on the complexity of the programming task in
hand, not on the complexity of the tool.

3.51 C++: the Overwhelming OOL of
Choice?
This headline comes from Cutter Information Corps
“Object-oriented Strategies” May 1996 edition.
Based on their findings, C++ accounts for 80% of
all OOLs, with Smalltalk running a distant second at
11%. They claim that in 1995 OO  software
development products hit $1.3 billion. However,
let’s examine how C++ is used: many C
programmers have not wanted to touch C++, but
they do use a C++ compiler to compile their C. This
greatly exaggerates the market penetration of C++
and the size of the OO market, so it is impossible to
determine the true market penetration of OO. You
are not doing OO just because you are compiling
with C++.

Microsoft and Borland have put most of their
development environment energies into C++, so this
makes it attractive to buy a C++ environment, even
if you are just programming C. Probably the true
number of C++ installations being used for OO
would be between 10-50%, which cuts down the
size of the OO market by a large amount, the size of
C++’s predominance in that market, and means the
other OOLs in the market have a much higher
significance than Cutter makes out. Smalltalk and
Eiffel are pure OOLs, so every one of their sales you
can count as an OO installation, whereas the same is
not true of C++. Measured C++ sales are riding on
C’s success. C++’s success is less than
overwhelming. It is a marketing success, rather than
a technical or programming success. Companies
using C++ are paying for it with longer cycle
development times, and less reliable end product.

One way a manager might perceive C++ to be a
winner is the sheer number of books one sees in a
bookshop on C++. This is matched by a huge
number of courses. An observation about the nature
of many of these books is that they are often titled
something like “How to build a widget in C++,” or
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“Compiler Construction in C++.” “Books appear
like mushrooms after rain” [Plauger 93].

The mushrooming book market is a great boon
for publishers, as it implies that for every possible
software artefact you can build, they can publish a
book about it in every possible programming
language. All you really need is the books
“Programming in C++,” and “How to build
widgets,” or “Compiler Principles and
Construction.” Then your programmer needs
experience, lots of it. Don’t be fooled by this trick to
get a high title count.

Many C++ books are on how to avoid the traps
and pitfalls, and develop rigorous coding standards,
which might appeal to management as the solution,
but they don’t solve the root cause of the problem.
Making sure everyone is well trained and versed in
these style standards is an expensive and usually
ineffective band-aid measure, especially where
different companies have different standards and
expectations, so you need to retrain every new
recruit, who will probably decide they don’t like
your way of doing it anyway, and leave after a short
period. Of course you can satisfy yourself that his
dissatisfaction was due to his inappropriateness for
your organisation, which is better organised than
most. After all, you are ISO 9000 accredited and are
turning out a very successful line of ‘concrete life-
jackets’ (a Tom Peters quote).

 [Sakkinen 92] observes the “Endemic C++
Culture.” He notes that too many courses on
“design” have the appended clause “with C++.” This
is because C++ has its own curious terminology,
which is in many ways different to the rest of the
OO world. He makes a case that concepts and
principles should be taught, then how to map them
onto any particular language.

Of course books are aimed at different
audiences: professionals versus those who just
program for a hobby; those who have an academic
interest in languages; implementors of compilers
and other language processing tools, who need
formal non-ambiguous statements about how the
language works; beginners versus those for whom
this is their fourth or fifth language. C++ should not
be for beginners, as it is better to learn the principles
from a clearer language than be confused by what all
the syntactic knobs and dials, and superfluous
constructs do in C++.

As for courses, C++ has proven so difficult to
learn that you need lots of courses. Not only do you
need to learn the language, but the complexities of
the environment add an even more substantial
overhead. It will probably be best to start on C++
with a course. However, with simpler languages
such as Java and Eiffel, buying a good book, and
self experimentation will quickly cover every aspect
of the language. It is a bonus if you can get a course,
but it is not essential to get started.

4. Generic C Criticisms
These criticisms apply to the C base language, but in
general adversely affect C++. R.P. Mody [Mody 91]
gives an excellent general criticism of C. Mody says
that to properly understand C you must understand
the insides of the compiler, giving many examples
of how C obscures rather than clarifies software
engineering. He concludes that he is “appalled at the
monstrous messes that computer scientists can
produce under the name of ‘improvements’. It is to
efforts such as C++ that I here refer. These artefacts
are filled with frills and features but lack coherence,
simplicity, understandability and implementability.
If computer scientists could see that art is at the root
of the best science, such ugly creatures could never
take birth.”

4.1 Pointers
C pointers are a low level mechanism that should
not be the concern of programmers. Pointers mean
the programmer must manipulate low level address
mechanisms, and be concerned with lvalue and
rvalue semantics, which are machine oriented and
not problem oriented as you would expect of a high
level language. A compiler can easily handle such
issues without loss of generality or efficiency.
Memory models of different environments often
affect the definition of pointers. Memory model
details such as near and far pointers should be
transparent to the programmer.

The programmer must also be concerned with
correct dereferencing of pointers to access
referenced entities. Use of pointers to emulate by
reference function parameters are an example. The
programmer has to worry about the correct use of
&s and *s. (See the section on function parameters.)

Pointer arithmetic is error prone. Pointers can be
incremented past the end of the entities they
reference, with subsequent updates possibly
corrupting other entities, which is a major source of
the undetected inconsistencies, which result in
obscure failures, discussed in the section on
correctness. In the STL library, iterators are
provided as the generalisation of C pointers for
access to elements of structures such as arrays.

Programmers can by-pass encapsulation with
pointers; C undermines OOP by providing a
mechanism where state outside an object’s
boundaries can be changed. Since pointers are
intrinsic to writing software in C this exacerbates
the problem. Pointers as implemented in C make the
introduction of advanced concepts like garbage
collection and concurrency difficult.

Another consideration is that dynamic memory
implementations vary between platforms. Some
environments make memory block relocation easier
by having all pointers reference objects via a master
pointer which contains the actual address of the
block. The location of the master pointer never
changes, so relocation of the block is hidden from
all pointers that reference it. When the block is
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relocated, only the master pointer needs to be up-
dated.

On the Macintosh, for example, the double
indirection mechanism of ‘handles’ facilitates
relocation of objects. Object Pascal makes handles
transparent to the programmer. This is similar to the
Unisys A Series approach where object descriptors
access target objects via master descriptors that store
the actual addresses of objects. On the A Series this
is transparent to programmers in all languages, as
this transparency is realised at a level lower than
languages. The A series descriptor mechanism also
provides hardware safety checks that mean that
pointers cannot overrun, and arrays cannot be
indexed out of bounds. C cannot be implemented
particularly well on such machines, as C’s pointer
mechanisms are lower level than the target
environment.

Simpler environments might not provide object
relocation, so double indirection would be an
unnecessary overhead. In order for programs to be
portable and efficient in different target
environments, such system details should be the
concern of the target compilation system, not of the
programmer.

C’s pointer declaration syntax causes another
small problem:

int* i, j;
This does not mean, as might be easily read -

int *i, *j;

but

int *i, j;

and should be written thus to avoid confusion.
Java has abolished pointers as “Most studies

agree that pointers are one of the primary features
that enable programmers to put bugs into their code.
Given that structures are gone, and arrays and
strings are objects, the need for pointers to these
constructs goes away,” [Sun 95]

Eiffel also has no pointers only object
references. In Eiffel, the exact referencing
mechanism does not matter. For example in the
expression x.f the reference x might be a pointer to
an object in the same address space, or it might be
an Internet address of an object. References enable
the location and access method of an object to be
transparent.

4.2  Arrays
Page 137 of the C++ ARM notes that C arrays are
low level, yet not very general, and unsafe. Page
212 admits, “the C array concept is weak and
beyond repair.” Modern software production is less
dependent on arrays, especially in the object-
oriented environment. The trade off to be optimal,
rather than general and safe no longer applies for
most applications. C arrays provide no run-time
bounds checking, not even in test versions of

software. This compromises safety and undermines
the semantics of an array declaration, ie., an array is
a particular size, and can only be indexed by values
within the bounds of the array. The array size might
not be determined at compile-time, but dynamically
at run-time. An index to an array is a parameter in
the domain of the array function. An index out of
bounds is not a member of the domain, and should
be treated as severely as divide by zero. But in C
this is another significant source of undetected
inconsistency, which can result in obscure failures.

C has no notion of dynamically allocated arrays,
whose bounds are determined at run time, as in
ALGOL 60. This limits the flexibility of arrays.
You cannot resize C arrays. Multidimensional arrays
are only really one dimensional. You cannot
individually resize the rows of a multidimensional
array. The C definition of arrays compromises both
safety and flexibility.

There are many ways you can undermine arrays
in C and C++, as an array declaration is really just
equivalent to a pointer. The following example
comes from [GWS 94]:

char *str = “bugy”;

then the following are true:

0[str]      == ‘b’;
*(str+1)    == ‘u’;
*(2+str)    == ‘g’;
str[3]      == ‘y’;

This is amazingly flexible syntax for something as
inflexible as C arrays, which is against Meyer’s
“Principle of Uniqueness” (see introduction),
providing several ways to do the same thing, but
still not doing it particularly well.

The unsafeness of C arrays is shown in the next
example:

#include <stdio.h>
#include <string.h>
main ()
{
   char str[] = "TEST";
   char *p = "TEST2";
   const char str3[] = "TEST3";
   char *p3;

   printf ("str = %s p = %s str3 =
           %s\n", str, p, str3);
   p3 = &str;
   strcpy (p3, "some  junk");
   printf ("str3 = %s\n", str3);
   str[6] = 'X';

   printf ("str = %s p = %s str3 =
           %s\n", str, p, str3);
}

The results (at least from my C compiler) are:
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str = TEST p = TEST2 str3 = TEST3
str3 = junk
str = some  Xunk p = TEST2 str3 = Xunk

One view of arrays is just another object-oriented
entity which should be treated in an object-oriented
manner as a class of data structure. It should have
interface definitions, and consistency checks
inherent in object-oriented systems. Another view is
that an array is an implementation of a function,
where pairs of values explicitly map the domain
uniquely to the range, rather than being computed.
This suggests that Algol was incorrect in
syntactically distinguishing arrays by using square
brackets. An array just maps the input argument (the
index) to the value stored in that location in the
array.

[Ince 92] considers that arrays and pointers need
not be relied upon so heavily in modern software
production, as higher level  abstractions such as sets,
sequences, etc., are better suited to the problem
domain. Arrays, and pointers can be provided in an
object-oriented framework, and used as low level
implementation techniques for the higher level data
abstractions. Ince suggests that arrays and pointers
should be regarded in the same way as gotos in the
seventies. He suggests that languages such as Pascal
and Modula-2 should be regarded in the same way
as assembler languages in the seventies. This applies
even more to C and C++, because pointers and
arrays are far more intrinsic in the use of C and
C++, with lower level, less flexible arrays. Although
Pascal arrays are weak compared to those of
ALGOL, they are still much better than C arrays.

In both Eiffel and Java, arrays are first class
objects. Both languages have no need of the sizeof
function. In Java to get the size of an array you use
myArray.length. In Eiffel this is my_array.count.
Arrays can also be resized.

Both Eiffel and Java provide bounds checking
on arrays. Java’s checking is built-in. Eiffel’s
checking is integrated with the assertion mechanism.

Eiffel goes a step further in array element
access. You access an element with the item
function as follows:

v := my_array.item (i)

This can also be accessed by an infix operator, @:

v := my_array @ i

The item function is defined as:

item (i: INTEGER): G
require

lower <= i;
i <= upper

This shows how Eiffel’s assertion mechanism is
used to document semantics in the interface, as well
as for a checking mechanism.

4.3 Function Arguments
Arguments are a fundamental mechanism for reuse
in software construction. Without arguments you
would be forced to write a different routine for every
possible input parameter. Arguments allow one
algorithm to be reused on sets of input values.

Arguments pass routines simple values  (by-
value arguments), or references to entities (by-refer-
ence arguments). (Actually, there are more
possibilities than this. [Hext 90] is an excellent text
on the possibilities.) Arguments are inputs to
routines, and should not be changed. When memory
was expensive, reusing parameter space could
conserve space. Changing arguments, however, is
semantic nonsense, and most languages get this
wrong.

By reference arguments enable a routine to
change the value of an entity external to the routine.
Such updates beyond the environment of a routine
are side-effects. This introduces a mechanism of
updating the state space, other than straight
assignment (although the routine can use assignment
to achieve the ‘dirty deed’.) The problem is that the
state of an object can be changed without using the
well defined interface of the object, so encapsulation
is compromised. By-reference arguments should not
be used to change external entities. Values should
only be passed to external entities by the return
value of a function. Semantically, this is different to
assignment to a reference parameter; data flows
through the program in one direction, in via
arguments, and out via return values.
Mathematically this maps a value of an input type to
a value of an output type. Both input and output
types can be compositions of other types, ie., f: I1 x
I2 x ... Im -> O1 x O2 x ... On. Abstract data types
can be used to design such systems. This will also
help target environments to increase parallelism and
concurrency in a way transparent to programmers.

In object-oriented programming, by reference
arguments are used to pass the original object, not a
copy. The called routine, however, should not
change the state of the referenced object. Only
calling a routine in the passed objects interface can
change the state, although introducing side effects
into arguments like this is dubious and should be
avoided. Passing objects by-reference has the
desired effect of the object being given to you,
without being yours to change, although you can
effect change in the object. C++ does have a nice
concept called const correctness, which provides a
modifier on arguments const  which disallows any
changes to that argument.

C shares faulty arguments with many other
languages. The interaction of C’s pointer
mechanism with a faulty parameter mechanism,
however, makes C considerably worse than most
other languages. In C, pointers are used to simulate
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by-reference arguments with by-value arguments.
The programmer must perform tedious bookkeeping
by specifying *s and &s for referencing and
dereferencing. Distinguishing between by-value and
by-reference arguments is not just a syntactic nicety,
included in most high level languages, but a
valuable compiler technique, as the compiler can
automatically generate the referencing and
dereferencing, without burdening the programmer.
Again C adopts operators to provide the
functionality, rather than a declarative approach,
which would centralise decisions and let the
compiler do the rest.

In Java arguments can only be passed by-value
(as in C). However, there are no pointers, so passing
by-reference cannot be simulated.

Eiffel routine arguments are read-only. This
means that they are pass-by-constant which is
stronger than pass-by-value, where the arguments
are treated as local variables which may be updated,
pass-by-constant disallows this.

4.4  void and void *
“Passing paths that climb half way into the void” -
Close to the Edge, Yes.

Is void*  the C equivalent of an oxymoron? A
pointer to void suggests some sort of semantic
nonsense, a dangling pointer perhaps? Maybe we
should tell the astronomers we have found a black
hole! While we can have some fun conjecturing
what some of the obscure syntax of C suggests, a
serious problem is that void*  declarations are used
to compromise the purpose of the type system. A
consistent strongly-typed system does not require
such facilities. In object-oriented type systems, the
root class of the inheritance hierarchy provides the
equivalent of void.

When an entity is assigned to a reference of
void* , it looses its type information. When it is as-
signed back to a typed reference the programmer
must explicitly specify the type information with a
type cast. This is error prone and should at least
result in a run-time check. Without a runtime type
check, the routines of one class can be mistakenly
applied to objects of another class, which results in
undetected inconsistencies leading to obscure
failures.

As [Stroustrup 94] points out: “having void*
unsafe can be considered acceptable because
everybody knows - or at least ought to know - that
casts from void*  are inherently tricky.”

Interestingly, void*  is the exact opposite of
void , so yes this is a programming oxymoron.
Void  means no object of any type; that is the empty
set. Void*  on the other hand means any object of
any type; that is all objects of the all encompassing
set, or the universal set of all objects that can exist
in a system. So void  and void* represent
complementary sets.

Eiffel and Java both provide a class that is at the
root of the inheritance tree. In Java it is Object ,

and in Eiffel it is ANY. Any object can be assigned
to a reference of these types. In C++ this is provided
by void*,  but void*  is not at the root of the
inheritance tree, hence its type unsafeness.

Eiffel also defines the type NONE at the bottom
of the inheritance tree, which is a class to which no
objects belong. NONE is the complement of ANY
and vice versa. Type NONE has the single value
Void, which signifies no object. Void is the
equivalent of 0 (meaning NULL) in C++. This
means that Eiffel’s type system is more consistent,
as ANY and NONE reside within the type hierarchy
at the top and bottom respectively. However, void
and void*  do not fit into the type hierarchy in
C++.

4.5 void fn ()
The default return type of a function is int . A
typeless routine returning nothing should be the
default, but this must be specified by void .
Syntactically no <type> suggests nothing to return.
This is an example of where C’s syntax is not well
matched to the concepts and semantics. Also a typed
function can be invoked independently of an
expression, which is a shorthand way of discarding
the returned value, but compromises type safety.
Using a typed function as a void should result in a
type error.

In fact there should be no such thing as a void
function. A void function is a procedure. Procedures
and functions should be distinguished. This
distinction belongs to the problem ‘what’ domain. A
procedure is a routine that changes the state of its
object, but returns no value. A function should, in
general, not cause any change to the state of an
object, but just return some result dependent upon
the objects state. Mathematically, a function is an
entity that returns a value of a given type.
Procedures are untyped, and do not return a value,
so it is incorrect to regard procedures as functions.
Functions have more in common with variables than
procedures. Procedures may have side effects,
functions should not cause side effects. These
distinctions are useful when considering
concurrency.

[Stroustrup 94] also voices the opinion that
default int  is bad. He had tried to make the type
specifier explicit, but was forced to withdraw by
users: “I backed out the change. I don’t think I had a
choice. Allowing that implicit int is the source of
many of the annoying problems with C++ grammar
today. Note the pressure came from users, not
management or arm-chair language experts. Finally,
ten years later, the C++ ANSI/ISO standard
committee has decided to deprecate implicit int.”

One improvement in Java is that the result type
of the method is not optional. That is you don’t get
int  by default. Otherwise, Java does not clean up
most of the deficiencies of C. In order to specify a
procedure rather than function, Java still requires the
void  specifier. Java does discard the C term
function (which was wrongly used anyway), but
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makes the situation no better by calling both
procedures and functions methods. Thus there is no
clear distinction between procedure and function.
Java also allows you to ignore returned values.

Eiffel uses the term routine for called units of
code and distinguishes that there are two kinds of
routine, procedures and functions. It is
recommended practice that only procedures change
object state, and functions do not. Functions always
return a value. That is they follow the mathematical
definition of function that takes a value of one type
(the type may be compound, hence multiple
arguments), and maps it to a value of another type.

4.6 fn ()
We have already seen that C functions are a poor
cousin of mathematical functions in the section on
inlines. C functions expose implementation detail;
that is, whether an entity is implemented as a
constant, variable or value returning routine. C
functions are different to the mathematical concept
of a function. C functions are really parameterised
invokable code, which other languages call
procedures, subroutines, etc. Java calls them
methods. Data can be accessed functionally in the
mathematical sense, but this is different to insisting
that all data is accessed through a C function.
Functional access to data really means that data can
only be retrieved, not assigned to.

Empty parentheses represent the function call
operator in C. Even though ‘()’ is mathematical
looking, it is semantically equivalent to
FORTRAN’s CALL, COBOL’s PERFORM, and
JSR in assembler. The design of these operators was
influenced by the underlying machine architectures.
The function call operator is low level, machine and
execution oriented, and in the ‘how’ domain. True
high level languages require no such operator, the
compiler realises from the declaration that the entity
referenced is a function and automatically generates
the machine call operator.

This is opposite to most Unix shells, where
invocation operators such as ‘run’ and ‘exec’ are not
needed. One of the nice things about Unix shells is
that the set of in-built commands is extensible. The
ability to execute file names as commands extends
the command repertoire. The shell runs executables
and interprets shell scripts. Unix shells do not
distinguish between inbuilt commands, shell scripts
and executable programs. This is a widely accepted
as an elegant and effective convenience. C’s ()
operator introduces the equivalent of a run command
into the language.

No invocation operator exists in the problem
oriented domain of high level languages. This is
because the semantics of a function is to return a
value of a given type. How this value is computed is
unimportant: it could be computed by a routine
invocation; by sending a message across a network;
by forking an asynchronous process; or by retrieving
a precomputed result from a memory location, ie., a
variable.

Languages that have an invocation command or
operator have an unnecessary distinction between
value returning routines and constants and variables.

It is trivial for a compiler to provide
transparency of view for constant and variable
access and function invocation. In ALGOL style
languages, the compiler automatically deduces
invocation when it sees a name that was declared as
a routine, rather than a variable. The compiler
knows that the identifier refers to a routine because
the compiler stores much information about an
entity. A compiler can check that the programmer
uses the entity consistently with the declaration. A
compiler can generate correct code, without
burdening the programmer with having to use an
explicit invocation operator. This enhances
flexibility and implementation independence.

Variables and functions should be
interchangeable for optimisation. ‘()’ is a good
example of where the operator approach of low level
languages adversely affects flexibility as opposed to
the declarative approach of high level languages. In
C, it is not possible to change a function to a
variable without removing all the ‘()’, or a variable
to a function without adding ‘()’ to all the
invocations. This might be spread over many files,
and the programmer might not bother with
optimisation to avoid the tedium of the task. So the
() operator reduces flexibility. The () operator is
another bookkeeping task imposed on the C
programmer. The C++ recommended style is to
code superfluous accessor functions to blur the
distinction. Pure functional languages such as SML
remove the variable/function distinction altogether,
by not having variables at all.

Java has made no improvement here. The visible
implementation difference between variables and
functions remains. Eiffel removes this distinction as
constants and variables are accessed functionally. A
programmer can flexibly change a variable to a
function in a class interface and vice versa for
optimisation or extension, without the need for all
clients to change their code. Thus even though
changes have been made, the class interface remains
unchanged.

C also has pointers to functions. Function
pointers are analogous to the call by name facility in
ALGOL, and this was recognised as having pitfalls.
Consistent application of the object-oriented
paradigm avoids the need for function pointers. A
common use of function pointers is to explicitly set
up jump tables. Jump tables are the mechanism
behind virtual functions. The design of a program
can take advantage of this fact, without resorting to
explicit jump tables. Another use is to jump to a
function in a table that is indexed by an input
character. A switch statement can cater for this
mechanism that makes what is meant explicit, while
keeping underlying mechanisms (and possibly
optimisations) transparent. C++ allows function
pointers to member functions to be stored in tables
(via the .* and ->* operators).
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4.7 fn (void)
In C f()  means the function f  can take any number
of arguments of any type without type check. ANSI
C has adopted f(void)  to mean a function that
really has no arguments. C++ sensibly differs from
this in that f()  now means a function that has no
arguments [Stroustrup 94].

4.8 Metadata in Strings
The implementation of strings in C mixes metadata
with data. Metadata is information about an object,
but is not part of the data itself. Examples of
metadata are addresses, size and type information.
Such metadata is often referred to as data
descriptors, and can be kept independently of the
data, with the advantage that the programmer cannot
mistakenly corrupt the metadata.

In C strings, metadata about where strings
terminate is stored in the string data as a terminating
null byte. This means that the distinction between
data and metadata is lost. The value chosen as the
terminator cannot occur in the data itself. Since
inserting a null is often the responsibility of the
programmer, not the run-time environment, there is
the potential for more undetected inconsistencies
resulting in obscure failures.

A common alternative is to store a length byte in
a fixed location preceding the string as Pascal does.
The advantage is that the length of a string is easily
obtained, without having to count the number of
elements up to the terminating null. Another
advantage is that 0 is a valid value in a string. This
implementation is hidden from the programmer and
other methods could be used without the
programmers having to change the program. C’s
null terminator makes the implementation visible to
the programmer.

Java’s strings are first class objects. You can’t
determine the length of a string by scanning for a
null. You use the string.length method (function).
Eiffel’s strings are also first class objects.

4.9 ++, --
The increment and decrement operators are often
used as an example that C was designed as a high
level assembler for DEC PDP machines. These
operators provide a shorthand convenience, but are
unnecessary.  There are no less than four ways to
perform the same thing -

a = a + 1
a += 1
a++
++a

For full generality, only the first form is required;
the last two forms a++ and ++a are the postfix and
prefix forms, which can be used in the context of
another expression. Thus several updates can be
performed in one expression. This is a very
powerful and convenient feature, but introduces side
effects into an expression that sometimes have

surprising effects, and can lead to program errors.
The following example is given on p.46 of the C++
ARM -

i = v[i++]; // the value of ‘i’ is
            // undefined

The ARM points out that compilers should detect
such cases, but the exact interpretation appears to be
left to the implementation, which contributes to non-
portability. If this can’t be defined for a sequential
processor, then it is even worse for a concurrent
environment.

The shorthand += and -=  are more powerful as
values other than 1 can increment the variable. It has
been suggested that there should also be &&= and
||=  operators.

If it is believed that a multiplicity of operators is
required to produce more optimal code, then it
should be pointed out that code generators,
especially for expressions, can produce the best code
for a target architecture.  A plethora of operators
complicates the task of an optimiser. A compiler can
optimise well beyond what a programmer can do.
An optimising compiler will analyse the
surrounding code, and if an entity is used several
times in a local scope, it will keep the value of that
entity handy locally at the top of a stack, or in a
register, rather than retrieve it from slow main
memory several times. The nature of such
optimisations depends on the machines architecture,
which a programmer should not need to be aware of.
Open systems demands that programs can be ported
amongst diverse architectures and environments,
very different to the original machine, and not only
run, but run efficiently. Optimisers work best with
simple, well defined languages.

In fact constructs such as:

while (*s1++ = *s2++);

might look optimal to C programmers, but are the
antithesis of efficiency. Such constructs preclude
compiler optimisation for processors with specific
string handling instructions. A simple assignment is
better for strings, as it will allow the compiler to
generate optimal code for different target platforms.
If the target processor does not have string
instructions, then the compiler should be responsible
for generating the above loop code, rather than
requiring the programmer to write such low level
constructs. The above loop construct for string
copying is contrary to safety, as there is no check
that the destination does not overflow, again an
undetected inconsistency which could lead to
obscure failures. The above code also makes explicit
the underlying C implementation of strings, that are
null terminated. Such examples show why C cannot
be regarded as a high level language, but rather as a
high level assembler.

Memory update is a problematic, but necessary
part of programming. A language should provide it
in a consistent and expected way. Many languages
recognise that memory update is problematic, and
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typically only provide the assignment operator as a
sufficient update mechanism. (Many languages have
block memory copies as well, but assignment can
provide block copy.) Furthermore, many languages
avoid side-effects by limiting updates to only one
per statement. C provides too many ways to update
memory. These add nothing to the generality of the
language, increase the opportunity for error, and
complicate automatic optimisation. Restrictive
practices are justifiable in order to accomplish
correctly functioning and efficient software.

Java retains the ++ and -- operators, although
with the removal of pointers and the addition of a
decent string class, they are less necessary for
idioms such as string and array manipulation. It is
not clear whether they could cause side effects and
subsequent problems as in C.

Eiffel has no such operators. They would merely
be an unnecessary shorthand in Eiffel.

4.10 Defines
The define declaration -

#define d(<parameters>)

has a different effect to -

#define d  (<parameters>)

The second form defines d as ‘(<parameters>)’.
Extra white space between tokens should not affect
semantics of constructs.

#defines  are poorly integrated with the
language. The ‘#define ’ must be in column 1,
and is not subject to scope rules. Defines can lead to
obscure errors, as the preprocessor does not detect
them, but leaves them for the compiler.
Programmers must be familiar with the particular
preprocessor implementation on their system, as
preprocessor implementations are different,
particularly between Classic C and ANSI C.

#define  also exhibits a multiple update
problem:

#include <stdio.h>
#include <string.h>

#define dfn(x,y) ((x)<(y)?(x):(y))

main ()
{
   int i, j, k;

   k = dfn (i++, j);

   printf ("i = %d j = %d k = %d\n",
           i, j, k);

   i = 0;  j = -1;
   k = dfn (i++, j);

   printf ("i = %d j = %d k = %d\n",
           i, j, k);

   i = 0;  j = 5;
   k = dfn (i++, j);

   printf ("i = %d j = %d k = %d\n",
           i, j, k);
}

The results are as follows:

i = 1     j = 0     k = 0
i = 1     j = -1    k = -1
i = 2     j = 5     k = 1

This is even worse, if the actual parameter you pass
is a function that updates other variables. All the
variables will be updated the number of times the
formal argument appears in the body of the define.

C++ at least reduces the need for defines by
having inline functions. The problems with inlines
have been discussed in their own section.

Java and Eiffel have no such preprocessing
facilities. Where #defines  are used as ‘cheap’
functions, ie., the code of the define is expanded
inline in the invoking code, Eiffel and Java inline
routines that meet certain criteria, without the side
effects of #define .

#defines  have often been used to provide a
form of unrestricted genericity. In languages where
genericity and templates are provided, this use for
#defines  disappears.

[Stroustrup 94] says he would like to see the
preprocessor abolished: “The character and file
orientation of the preprocessor is fundamentally at
odds with a programming language designed around
the notions of scopes, types, and interfaces.”

4.11 NULL vs 0
[Ellemtel 92] recommends that pointers should not
be compared to, or assigned to NULL, but to 0.
Stylistically, NULL would be preferable. It would
also allow for environments where null pointers
have a value other than 0. ANSI-C, however, has
subtle problems with the definition of NULL.

[Stroustrup 94] adds that “nothing seems to
create more heat than a discussion of the proper way
to express a pointer that doesn’t point to an object,
the null pointer.” And, “The ARM further warns
“Note that the null pointer need not be represented
by the same bit pattern as the integer 0.””
Continuing on: “The warning reflects the common
misapprehension that if p=0  assigns the null pointer
to the pointer p, then the representation of the null
pointer must be the same as the integer zero, that is,
a bit pattern of all zeros. This is not so. C++ is
sufficiently strongly typed that concept such as the
null pointer can be represented in whichever way the
implementation chooses, independently of how that



C++?? 52

3rd Edition © Ian Joyner 1996

concept is represented in the source text.” No
wonder people are confused, and there is much
heated debate.

In Java null  is a reserved word. Eiffel uses
Void, the single value of type NONE, to indicate no
object is referenced.

4.12 Case Sensitivity
It is good to adopt typographic conventions for
names, which make a program more readable, but
should not affect semantics. Distinguishing between
upper and lower case in names can cause confusion,
which leads to errors and systems that are difficult
to maintain and modify. Case distinction is based on
the implementation paradigm of how character
codes work. Why do we have names? To give
entities identity, and aid our memory of that
identity. Philosophically, case distinction is contrary
to the fundamental purpose of names, which
introduces another form of overloading, the
disambiguating mechanism being the underlying
character codes.

Case distinction makes names harder to
remember so is contrary to the purpose of a memory
aid. Remembering command mnemonics or file
names is difficult enough, let alone exactly the letter
case. Your brain remembers the sound fred, not the
characters used in spelling. In a case sensitive
system, you must remember the letter case, whether
it was fred, Fred or fREd, etc., greatly complicating
the memory process.

Names are easier to remember than addresses. If
we did not have names, we would have to retrieve
files by addresses, access all machines on the
Internet by their TCP address instead of host name,
or call people by their social security number.

Case distinction in interactive systems is a poor
user interface, being clumsy to continually use the
shift key, which slows typing. Case sensitivity is
one of the worst features of the Unix interface.

Consider the paradigm of letters and words.
Words are spelt by assembling letters in order.
There are 26 distinct letters. With the addition of
digits 0 to 9, and the underscore character, we have
a complete lexical definition for identifiers. Letters
can be written in a number of styles. They can be
bold, italic, upper or lower case. Such typographic
representations, however, do not change the
meaning of a word. Thus if we write ALGOL,
Algol, algol, Algol or Algol (or maybe a star), we
recognise the word to represent a computer
language. The case of the letters or type style does
not change the semantics.

Case distinction is based on the low level
paradigm of character codes such as ASCII used
internally in the computer. This weakens the
purpose of using names to replace addresses, as
names are reduced to a string of character codes.

Case distinction also contributes to errors,
introducing ambiguity, which as has already been
mentioned, weakens the purpose of names, as

identity is lost. As  every  programmer  will  have
experienced,  one  character errors  are  more
difficult to find  than one would  think.  For
example, if an identifier is declared Fred, another
one can be declared fred, which are easily mistyped
and confused.

We are generally poor proof-readers.  The
psychological reason for this is that the the brain
tends to straighten out errors for our perception
automatically. The human brain is an excellent
instrument for working out what was intended, even
in the presence of radical error. (This makes us good
at difficult tasks like speech recognition.)
Programmers must use their powers of concentration
to override the natural tendency of the brain.

Case distinction adds cognitive difficulty. Good
language design takes into account such
psychological considerations in these small but
important details, being designed towards the way
humans work, not computers. Such considerations
of cognitive science make a big difference to the
effectiveness of people, but do not have any impact
at all on the efficiency of code generated for the
computer. What is more important, people or
computers? With C the answer is often computers,
as case distinction saves compiler processor cycles.

Case distinction provides a form of name
overloading which is a double-edged sword as it
leads to ambiguity, confusion and error. Name
overloading, as has been suggested in the section on
name overloading, should only be provided in
controlled and expected ways, where overloading
provides a useful function such as module
independence or polymorphism. Where a name is
overloaded in the same scope the compiler should
report an error.

Another example of name overloading error is:

class obj
{

int Entry;

void set_entry (int entry)
{

entry = Entry;
}

}

If you have not spotted the error in the above
example, what was it supposed to mean?

A common practice in C is to represent
constants in upper case. This is actually bad
practice, as a calling programmer should invoke a
constant as a function that returns a value. The
calling programmer does not need to know whether
a class has implemented a feature as a constant,
variable or value returning routine. This means that
the class is free to change the implementation of the
feature later, without having to bother all
programmers to change the case of all occurrences
of the identifier in order to follow some style rule.
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It is amazing the passion that comes from those
who defend case sensitivity. In fact, since I have
argued for case insensitivity, some have said that
this invalidates the whole of my critique of C++
because I don’t agree with them on this point. The
only point that is close to being valid for case
sensitivity is that it forces all programmers to follow
the same typographic convention for identifiers.
This assumes that the burden of typographic
considerations must be on programmers. I don’t
think it should be. This burden should be on the
presentation medium, that is the editor or print
formatter. For example, a program editor will know
what an identifier is, and present it in lower case. Or
it could even do this optionally, as some
programmers might like to see identifiers in upper
case, while others in lower case. This gives the best
environment, where each programmer can tailor to
their individual taste, and silly fights over style rules
are forgotten.

Java has not improved this situation. In fact it is
even worse, as Java uses Unicode instead of ASCII.
The typographic form ‘a’ and ‘a’ could be different
identifiers if one represents LATIN small letter a,
and the other CYRILLIC small letter a. In Eiffel all
words are case insensitive.

4.13 Assignment Operator
Using the mathematical equality symbol for the
assignment operator is a poor choice of symbols;
assignment is not equality (:= != =). Designers of
ALGOL style languages realised they were
semantically different, so took the care to
distinguish, only using ‘=’ in the sense of
mathematical equality assertion. In C the confusion
of notation leads to error, being easy to use =
(assignment) where == (equality) is intended.

This leads to a more general criticism of C, in
that it has a pseudo mathematical appearance. But
then C is not very mathematical at all, as ‘=‘ does
not represent equality, and C functions are not really
functions. Few people are proficient at interpreting
mathematical theorems, most passing over such
sections in text, making the assumption that the
mathematics proves the surrounding text. The
pseudo-mathematical appearance of C is difficult to
read, while lacking the semantic consistency and
precision of mathematical notation. One of the keys
of reusability is readability.

Java also uses the = symbol to mean assignment,
so this has not improved. However, the = vs ==
confusion has been improved as in the syntax:

if ( Expression ) Statement

the Expression must have type boolean, or a
compile-time error occurs.

Eiffel makes the clear distinction between the
assignment operator choosing the ‘:=‘ symbol and
mathematical equality ‘=‘.

4.14 char; signed and unsigned
What is the meaning of +’a’ , -‘b’ , etc.; there is
simply no real world equivalent. In C char ,
unsigned char , and signed char  yield
three distinct types all occupying 8 bits. These types
are integers rather than characters. The definition is
highly platform dependent, and the semantics is
nonsense. Pascals technique of specifying integer
subranges: 0..255, -127..+127, -63..+154, and so
forth is far superior.

4.15 Semicolons
As with case sensitivity any discussion of this topic
arouses passions that you wouldn’t believe. Bjarne
Stroustrup makes a very good observation on such
debates: “Curiously enough, the volume of interest
and public debate is often inversely proportional to
the importance of a feature. The reason is that it is
much easier to have a firm opinion on a minor
feature than on a major one; minor features fit
directly into the current state of affairs, whereas
major ones - by definition - do not.”

I am not overly concerned whether the
semicolon is defined as a terminator or separator.
Arguments that languages which define the
semicolon as terminator are superior to those that
define it as separator are, however, baseless. The
semicolon as separator is really quite logical,
viewing the semicolon as a statement sequencing or
concatenation operator. It is therefore a binary
operator, requiring both a left and a right hand side.
Some people claim to find this concept difficult to
understand, but if we consider it in the context of a
mathematical expression, it would be silly to expect
that an addition be written as:

a + b +

Another way to look at a separator is to consider the
structure of a program. A program is a list of
elements. The executable part of a program is a list
of sequentially executed instructions. Elements in a
list must be separated, and the semicolon is syntax
to separate elements in a list. The semicolon is
therefore part of the syntax of the list, not part of the
syntax of the individual instructions. Languages
such as FORTRAN separated instructions by
requiring that they be placed on different lines or
cards. If an instruction overflowed a line, a
continuation character was required, like the
backslash in C. Well defined languages do not
require continuation characters, as line breaks are
unimportant, and have no effect on semantics.
Languages should have very regular grammars, so
that the semicolon could be an entirely optional
typographic separator.

In natural language both the comma and
semicolon are separators, only the full stop is a
terminator. If the comma were an expression
terminator rather than separator, function
invocations would look like:
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fn (a, b+c, d, e,);

It is often argued that the semicolon as separator
leads to irregularities. C’s handling of the grammar
of semicolons, however, leads to an irregularity in
if/else’s:

if (condition)
 statement1; /* Semicolon

                   required */
else

 statement2;

if (condition)
{
   statement1;
} /* Semicolon must be omitted */
else
   statement2;

This is an irregularity, as a parser will reduce both
of the above to the grammatical form:

“if” <condition> <statement>
“else” <statement>

In fact why do conditions in C if and while
statements have to have parentheses around them?
Why also must a semicolon follow the closing brace
of a class, but must not follow the closing brace of a
function?

Java being C based retains the semicolon as
terminator. Eiffel views the semicolon as a
separator, but has one advantage: semicolons are
optional. The semicolon can be used to visually
emphasise the separation between two commands,
for example, where two commands are placed on
one line.

4.16 Booleans
A serious omission from C was the boolean type.
Booleans are fundamental to programming as
conditions in if ..then and loop constructs. C++ also
has no built in boolean. It is interesting to see long
Internet discussions on how booleans should be
built, and how to represent the values, true and false.
Using 0 to mean false, but any other value to mean
true is unsatisfactory.

Java includes the basic type boolean, and so has
rectified this situation. To accomplish C-style
conversions you can use the expressions:

b = (i != 0);
i = (b)?1:0;

Eiffel takes a slightly different approach. As a
language, Eiffel provides the mechanisms for
building types. It has no assumptions about
particular types built into the language. Types like
BOOLEAN are defined as classes in the Eiffel
Kernel Library, as are other basic types such as
INTEGER, REAL, STRING, ARRAY, etc. This view
is very similar to Smalltalk. These types are not
built into the language, but they are usually built

into an Eiffel compiler so that there is no run-time
performance penalty. This illustrates Eiffel’s
philosophy of keeping the language as small as
possible, and as open as possible, so that
programmers can build their own powerful types.

Recently the ANSI/ISO C++ committee has
accepted bool  as a distinct integral type. Before the
definition of a boolean type in C/C++ could be any
number of definitions which had slightly different
semantics. If you were combining libraries that used
these slightly different definitions, life could be
difficult. This is probably a fundamental reason why
libraries have not been as successful in C++ as they
should be in an OO environment. Not all compiler
implementations have implemented bool  yet, so
you can expect it to be years before this mess is
cleaned up.

4.17 Comments
The following example comes from [GWS 94].

main ()
{
   int *i, *j;
   int k;

   k = *i/*j;
}

As they point out: what a good character
combination ‘/*’ was for delimiting comments.

4.18 Cpaghe++i
There are three kinds of spaghetti that occur in
programs: gotos, globals, and pointers.

4.18.1 Cpaghe++i Gotos
Most people know about spaghetti code that is
present in programs which use gotos in an
undisciplined fashion. As Donald Knuth has pointed
out it is entirely possible to produce well structured
programs with gotos. The well tempered goto
emulates high level structured statements such as
conditionals, loops, switch or case statements in
higher level languages.

Where a language provides the correct control
structures, and the programmer programs into that
paradigm, gotos are not needed. The reverse
argument could also be made: if gotos cover all uses
of high level control structures and even more, why
have the high level control structures at all; why not
just use gotos? The problem with gotos is that they
are too powerful. They are too powerful in the same
way assembler language is too powerful.

You can do everything with assembler or gotos,
but it takes more work, and the result is often less
than structured, difficult to understand and
unmaintainable. The more work you do, the less
efficient you are. It is not working harder that makes
you more efficient, it is working smarter. I’m a great
fan of laziness!
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Consider what you must do to construct a loop
with gotos: you must declare a label, then place the
label and the goto somewhere; you also have to
think about identifiers for labels that are non-
ambiguous. For label identifiers, some languages
use names, others numbers. With a high level loop
construct, labels are implicit, meaning the
programmer does not have this extra bookkeeping
overhead. Then making changes becomes a lot more
difficult, as you must create new labels, move them
around, and delete others.

One legitimate use for gotos is to avoid overly
complex nesting. Complex nesting usually occurs
where there are many checks that result in multiply
nesting if...thens, which often arise because of error
checking. Proponents of gotos legitimately defend
them for this situation. However, where the control
structures are right, even this use of gotos is not
needed.

Both Java and Eiffel abandon gotos. Java
provides an extension to control structures which
allows control structures to be named, and multi-
level break and continue statements can be used to
jump to an outer level conditional or loop.

In Eiffel the philosophy is to program in
sufficiently small atomic routines, so that multi-
level control structures are avoided. Thus Eiffel’s
solution to the nesting problem is integrated with its
routine mechanism and the way programmers are
expected to use routines. In object-oriented
programming, it is good practice to keep routines
small, with only one operation in a routine, as this
enhances the possibility of reuse. Some
programmers will object to small routines, as there
is an overhead to routine calls, particularly in
register based machines, where environments and
registers must be saved. However, an Eiffel
compiler will automatically inline small, non-
polymorphic routines.

The high level language concept to remove the
need for gotos altogether for error checking is
exception handling. In this mechanism, the error
condition triggers an exception. When an exception
is raised, a search for its handler occurs. This search
progresses down the run-time stack until an
embedded exception handler is found. In Eiffel,
exception handlers are specified in rescue clauses.
Note that in an environment where exceptions can
interrupt the flow of the code, garbage collection is
even more important, as in a system with manual
memory management, it is even more difficult to
determine where to clean up, and which objects to
dispose.

If exception raising and handling sounds
expensive, then it should be realised that it often
works out cheaper. Most of the time, the code runs
normally, an exception being raised is the exception.
Only then is the stack search for the handler
performed. The mechanism actually works out
cheaper in many cases. Consider divide by zero. In
most systems, this exception is detected by the
processor. If you don’t have exception handling, you

must test that the divisor is not zero before a divide
operation. With exception handling, you assume that
the division will work in most cases, and so do not
have to test. If the divisor is zero, you simply clean
up in the exception handler. Only if there is no
exception handler does the software fail.

The bottom line is that with the common high
level language constructs of if ..then, loops, cases,
you can avoid most uses of goto. Add a high level
construct for exception handling, and you can avoid
gotos altogether.

4.18.2 Cpaghe++i Globals
The second kind of spaghetti is globals. Where two
or more objects access the same set of globals,
interdependencies arise between those objects. This
makes it far more difficult to determine the
correctness of a program, even more so in
concurrent environments. These interdependencies
should be viewed as strands of spaghetti worming
their way through a system, which are going to
make maintenance, extension, and reuse difficult in
the future.

Globals can be abandoned. Objects are to
globals as control structures are to gotos.

Again Java and Eiffel abandon globals, and thus
ease the problems of maintenance, extension and
reuse. Note that I use the word ease, not solve. Even
though Java and Eiffel make significant
improvements, there are no silver bullets to solve
the problems involved in programming. Java and
Eiffel are significant improvements.

4.18.3 Cpaghe++i Pointers
The third kind of spaghetti is pointers. The problems
with pointer based programming are well known.
The kind of spaghetti you get worming through the
system is undisciplined pointers pointing to other
elements, by-passing the whole concept of interfaces
and object-orientation. Pointers introduce
dependencies that would not otherwise be there.
Furthermore, this can of worms results in dangling
references and memory leaks. In order to do away
with the problems of pointers, garbage collection is
necessary. In order to implement good garbage
collection pointers must be abandoned. C++ is
caught in this Catch-22.

Neither Eiffel nor Java have pointers. Both have
garbage collection built in from scratch.

While C++ overlays object-oriented concepts
onto C, it is one of its greatest weaknesses that
overlays OO on top of the spaghetti of a now old,
low-level and flawed language. C++ does not
enforce the advantages of the OO approach to
remove these problems by programming only using
published interfaces. The advantages of the OO
paradigm are so effectively undermined in C++ as to
be worse than useless. Many C programmers have
thus stuck to C, and people like P.J. Plauger have
been motivated to write papers such as
“Programming Language Guessing Games: If C++
is the answer, what’s the question?” [Plauger 93].
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5. Conclusions
C++ is complex including too many constructs to
overcome problems with itself and C, while lacking
sophisticated mechanisms such as garbage
collection, global analysis and automatic
optimisations. C is thought of as being a simple
language; but this is doubtful, as it has many
operators, and a difficult precedence system. C’s
pointer style of programming is low level and
difficult. Overall, C has many traps that lead to
difficult to detect errors in software. Now C++ as a
language is looking like the equivalent of computers
of the 1950s, with large knobs, dials and patch
panels; the C++ equivalents being pointers,
structures, unions, #defines , etc., all of which
have no place in a modern OO language, and are not
in Java and Eiffel.

Compared to other OO languages, C++ looks
more and more like an anachronism. C++ is now
impeding the progress of the programming
technology.

Object-oriented languages should provide
sophisticated concepts in the simplest possible
framework. In C++ the framework is not simple and
the concepts are obscured. OOP addresses many
issues in order to facilitate the production of
complex and sophisticated programs. Many of these
issues are addressed in implicit and subtle ways, but
are lost in C++. Subtle errors can be introduced into
C++ software in many ways; the combination of
these causes further problems. C++ has devices for
petty convenience, even the ‘++’ itself, while
sacrificing  major conveniences, long-term
correctness and safety, and the convenience of
declarative programming, rather than operators. C++
forces the programmer to perform many
administrative bookkeeping tasks that a compiler
should automate.

It can be considered: what application domain is
C++ relevant for? The answer to this is that C++
might be used as a better C. But for what
applications is C relevant? C is relevant for low
level Unix style programming, and is not an ideal
language in view of its low level nature, and flaws.
C is not applicable for large project organisation:
hence C++’s attempt to improve it. C++, however,
has not solved C’s flaws, as I once hoped it would,
but painfully magnified them.

Better languages exist for higher level functions
such as communications and networks, scientific
work, compilers, etc. I envisage that C has a place as
a high level assembler that can be used to implement
small pieces of code, where efficiency is of prime
importance, on suitable platforms. Thus the use of C
would be limited and well controlled, rather like
small assembler routines are currently used in some
systems. Indeed the move to C++ should only be
considered in the case of upgrading a body of C
programs for backwards compatibility. In the case of
new projects alternatives to C and C++ should
seriously be considered.

A programming language should embody the
collective wisdom of common sense practices that
have been learnt over many years, by common and
painful experience. C++ does not implement much
of this wisdom. [Sakkinen 92] observes that much
of the C++ literature has few references to external
work or research. It fails to draw on the insights and
progress made by many researchers. This leads me
to believe that C++ is parochial and removed from
the many advances that will make production of
systems easier and more cost effective.

C encourages gurus who spout false wisdom on
obscure subjects. Writing programs in C is often
called ‘coding’. Coding is writing obscure
encryptions that will later have to be decoded, by
none else than a guru! C also encourages
programming by guesswork. C programmers often
solve ‘bugs’ by adding extra ()s, *s and &s, without
understanding the problem, but then ‘test’ the
change to see if it miraculously ‘cures’ the problem.
People who attain proficiency at this guesswork, are
known as, well you guessed it, gurus!!

The view that correctness checks are training
wheels for students, which gurus don’t need must be
dispelled. Many disciplines have techniques to
ensure correctness. For example, the metronome in
music is not just for students, but will help an
advanced musician ensure that the tempo of a piece
is correct, and since playing with a metronome is
more difficult it will help sharpen the musicians
performance of the piece. The musician does not
just view the metronome as an aid for beginners, or
as something that restricts him to a set beat, but as a
tool that helps produce a polished and professional
performance. C should not be seen as a language to
which you graduate after you have learnt to program
in languages with safety checks. In fact changing to
C or C++ is a great step backwards. Languages with
consistency and semantic checks are essential aids to
the production of professional software.

A programming language cannot be seriously
viewed as some authoritarian that stops us doing
what we want or need to do. This view is still quite
prevalent about languages with type safety and
consistency checks.

This paper has shown many cases where C++
uses old C mechanisms to provide things that can
and should be expressed consistently within the
object-oriented paradigm. For example type casting.
The move to pure object-oriented languages will
facilitate more consistent programming and avoid
many typical errors that occur in software
production. C++ also makes distinctions that belong
in the ‘how’ implementation domain. For example,
‘.’ vs ‘->’, and variables vs functions. These
distinctions make bookkeeping work for
programmers, which a compiler should handle. But
then C++ fails to make distinctions that belong in
the ‘what’ problem domain. For example,
procedures vs functions. Making distinctions in the
‘how’ domain adds inconvenience to the language.
Failing to make distinctions in the ‘what’ domain
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limits the expressiveness of the language. The
amount of change required in C++ to address the
issues raised in this paper is seen as largely
insurmountable, and Sun agrees with this.

A programming language is just a tool, in the
same way that an axe is a tool. If the axe is blunt
when chopping down a tree, then procedures,
processes and methodologies could be invented to
make it as effective as possible; but that leaves the
real problem unsolved: that the axe that does the real
work is blunt. So it is with programming languages.
To develop a system, it must be implemented, and a
programming language is the tool to do the real
work. If the language is blunt, then procedures,
processes and methodologies might alleviate the sit-
uation, but they do not solve the problem. Once the
axe is sharpened, then real progress is made, and the
procedures, processes and methodologies might
become more effective, although the need for many
of them will disappear. A good axeman will have
good axe wielding technique, but given a choice of
axes will choose the sharpest implement. A poor
axeman could be ineffective with even a sharp axe,
but the axe maker will still strive to produce the
sharpest axe for the good axeman. The argument
that poor programmers will produce bad programs
in any language so we shouldn’t bother with better
languages is fallacious.

As mentioned in the introduction, both sides of
the analysis/design vs implementation debate need
to compromise in order to bridge the semantic gap.
The perpetuation of low level languages such as C
into OOP is proof that the implementation
community has not compromised, or sharpened its
axe to bridge this costly gap. On the other hand the
analysis/design community must realise that what
they do is part of the general practice of
programming.

It has been four years since the 2nd edition of
this critique. The criticisms are still valid, but now
many people have had first hand experience of being
burnt by the OO hype and trying to implement
systems in C++.

The work on languages such as Java and Eiffel
has vindicated the criticisms previously made in the
critique. [Stroustrup 94] lists as current C++
problems many of the criticisms I have also made in
the critique. Java has recognised many shortcomings
in C++ and rectified them. Many of the problems
that Java fixes are the same problems as addressed
in the original critique.

Eiffel serves as another example of better
language design than C++. It has none of the
problems of C++. In Java there still remain a few
deficiencies, but it is a major advance.

Since the last edition of the critique, many
people have asked what do I recommend. What
should people choose then? Certainly Eiffel is the
best out of these three languages. If you are doing
large scale system software and application
development, then the choice is Eiffel, although
Eiffel is also simple and elegant enough for small

applications development. Eiffel is a language for
the serious software engineer who wants to get on
with the job, not be bogged down in syntactic and
machine-oriented obscurities, weird ‘bugs’ and
endless maintenance cycles to get things right.

Java is still an unproven entity for large projects,
and the byte code is interpreted. Eiffel and C++ are
roughly equivalent in performance. Interpreted Java
will be around 10 times slower. But Java byte codes
could be compiled into native code.

For small applets and other Internet loaded
applications, Java is a good choice. Some people
have predicated that Java will sweep all away, and
that even Eiffel will die because of this. I cannot see
this, as Eiffel and Java are really significantly
different tools. Java has still to be tested in the large
scale Eiffel league.

I have not yet mentioned languages such as
BETA, Ada 95 or Smalltalk. BETA is still really in
academia. It might make a stronger presence in the
market place in the coming years. If not BETA
might have the same profound influence as Simula.
It is certainly something to be watched. Ada 95 is
certainly aimed at serious software engineering.

Smalltalk is already firmly in the market place,
and there are a significant number of systems that it
is used for. Smalltalk is still a language for serious
consideration. The biggest question here is do you
want the development speed and flexibility of a
dynamically typed system as opposed to the
robustness and run-time speed of a statically typed
system? Having answered these questions for
yourself the choice between Smalltalk and Eiffel
should be easier.

The most important aspect of C++ that the
industry must realise is that the definition of C++ is
unstable. As the X3J16 committee work on C++,
more problems are uncovered. It will be years before
a stable standard is reached, and probably years after
that before compiler vendors are compliant with the
standard.

Today’s C++ programs will be tomorrow’s
unmaintainable legacy code. As [GWS 94] says of
C++: “The seeds of software disasters for decades to
come have already been planted and well fertilised.”
They compare C++ to COBOL in terms of
unmaintainable legacy code which we have now in
COBOL’s case, and we will have in the future for
C++.

Perhaps the most important realisation I had
while developing this critique is that high level
languages are more important to programming than
object-orientation. That is, languages which have the
attribute that they remove the burden of
bookkeeping from the programmer to enhance
maintainability and flexibility are more significant
than languages which just add object-oriented
features. While C++ adds object-orientation to C, it
fails in the more important attribute of being high
level. This greatly diminishes any benefits of the
object-oriented paradigm.
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In a nutshell, an object-oriented language that
lacks the qualities of a high level language entirely
misses the point of why we have progressed from
machine coding to symbolic assembler and beyond.
Without the essential high level qualities, OO is
nothing but hype. Eiffel shows that it is important to
be high level as well as OO, and I hope that the
lesson to be learned by any programming paradigm,
not just OO, is that the fundamental is to make the
task of programming (that is system development as
a whole) easier by the removal of the burden of
bookkeeping.

C++ adds object-orientation to a low level
language, so you still have all the bookkeeping
burden of C. Java improves this situation by
removing many of the low level features that have a
known bad track record. Eiffel provides a true high
level base for object-oriented programming.

The concluding advice of this critique is clear.
Be wary of C++. Seriously consider the alternative
languages.

Bjarne Stroustrup writes “My hope is that it will
help C++ become accepted into areas that C failed
to penetrate, and thus support programmers who
have not been represented in the C and C++
culture.” [Stroustrup 94] 6.5.3.1. My hope is that the
industry establishes a professional software
engineering culture, not a programming language
culture based on seriously flawed and arcane
languages. The software engineering culture is not
well represented in C++.

Ian Joyner
October 1996
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