
A Detailed Description of the
GNU Ada Run Time

(Version 1.0)

Integrated with the
GNAT 3.15p sources

and the
Annotated Ada Reference Manual (Technical Corrigendum 1)

Copyright (c) Javier Miranda

jmiranda@iuma.ulpgc.es

Applied Microelectronics Reseach Institute
University of Las Palmas de Gran Canaria

Canary Islands
Spain

Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation

License, Version 1.1 or any latter published by the Free
Software Foundation.

14th December 2002

ii

Copyright (c) Javier Miranda. Canary Islands (Spain) 2002.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later ver-
sion published by the Free Software Foundation; with the Invariant Sections being
just “Preface”, no Front-Cover Texts, and no Back-Cover Texts. A copy of the li-
cense is included in the section entitled “GNU Free Documentation License”.

To my wife Pino,
my children Fayna and Tahiche,
and my parents Candelaria and Antonio.

iii

iv

Preface

It is well known that free software needs free manuals: reference and user man-
uals1. This allows the general community to use the technology. However, free
software has a tremendous potential for research and teaching: the sources per-
mit us to understand the technology. Nowadays, due to the lack of free books
which describe the behaviour of free technology, most researchers and educators
interested in it must repeat the same unpleasant task: to read the sources to try to
understand the architecture and details of the free software. Obviously this is time
consuming and error prone. This is also the case of the free GNU Ada Compiler:
GNAT.

GNAT is currently a mature technology used for many industrial projects, re-
search, and education. However, the lack of free books which describe real imple-
mentation hinders the modification of the sources to many researchers. The main
benefits of a free book on GNAT are:

� The book can be used and enhanced by many researchers. If the book
is free it can be used as a shared document which provides an easy way to
learn about the Run-Time (thus reducing the time required to experiment
with Ada), but the book can also be upgraded by any researcher of the Ada
community.

� The book facilitates the use of Ada to teach students about compilers
and real-time systems. The sources of the GNAT run-time are very well
commented and written in Ada, thus providing a high level of abstraction
which is quite useful for teaching.

1R. Stallman. Free Software and Free Manuals. Essay. Avaiable at http://www.gnu.org/philo-
sophy/free-doc.html

v

vi

The main goals of this project are:

� To provide documentation on the GNAT Run-Time. The contents of the
book is my knowledge on the GNAT run-time.

� To keep the book fully integrated with the GNAT sources. Although
the book is distributed in several formats for printing, the goal is to write
a digital book with many links to the GNAT sources which facilitate the
understanding and verification of the main concepts of the Ada run-time.

� To keep the document free. The book is distributed under the GNU Free
Documentation License (cf. Appendix A). This allows members of the Ada
community to enhance the quality of the book for research and teaching.

Technical Contents

In order to facilitate the reading of the book for teaching, each chapter is structured
in two parts. The first part has a brief summary of the Ada concepts described in
the chapter (I used the excellent book Concurrency in Ada [BW98] as a reference
to write these summaries). The second part of the chapter describes GNAT imple-
mentation of the concepts presented in the first part. Currently the book has the
following chapters:

1. The GNAT project. Brief introduction to the GNAT project, and the overall
architecture of the compiler and run-time.

2. Task types and objects. This chapter describes the main aspects of the life-
cycle of Ada tasks: task creation, task activation, task termination, and task
identification.

3. The Rendezvous. This chapter deals with the handling of the entry call pa-
rameters, the rendez-vous queues and the basic rendezvous modes (simple,
conditional and selective).

4. Protected Objects. The Ada95 eggshell model for protected objects and its
implementation is presented here. Several alternative implemen-tations are
also described and discussed.

5. Time and clocks. This chapter covers the Ada timed sentences: timed entry
call and timed selective accept.

vii

6. Interrupts. The Ada model of interrupts and its implementation is pre-
sented here.

7. Exceptions. Data types used to identify the exceptions, and hash table used
by GNAT to handle the exceptions are presented here.

8. Abort and Asynchronous Transfer of Control. Ada tasks abortion and the
implementation of the Ada95 asynchronous transfer of control are discussed
in this chapter.

9. Bibliography. This chapter provides the bibliography used to write the
book.

Distribution

The book is available at:

� http://gnat.webhop.info

� http://www.iuma.ulpgc.es/users/jmiranda/

The first address provides an “easy to remember” access to the second address,
which is the real address of my web page. Nowadays the distribution of the book
includes:

� The html version of the book. The book is always available by internet as
an on-line book (accessible to your preferred web navigator).

� A compressed html.tgz file with the html sources. This distribution includes
one script which patches the html files and installs them locally (in any local
directory) or in your personal web page.

� The PostScript, PDF, and DVI files of the whole book. This distribution
facilitates the printing of the book. In order to not lose information, most of
the html distribution hyperlinks are included in this distribution by means
of footnotes.

� The LaTeX sources of the book. This distribution allows the members of
the Ada community to cooperate to improve the quality of the document.

viii

Although it is well known that the GNU format for free books is Texinfo, the
book is written in LaTeX. The main reasons are:

� I do not know Texinfo and I feel quite familiar with LaTeX.
� LaTeX is well known to the scientific community. This facilitates any mem-

ber of the Ada community the modification of the sources of the book to
improve its contents.

� LaTeX is also free software. It is obvious that a free-book must be written
with free software to avoid any future problem with the distribution of the
sources (due to the copyright of the file formats).

� LaTeX2html is a good tool to make the automatic translation of the book to
HTML. Therefore it is not necessary to maintain two versions of the book
(one for the printed version, and another for the HTML files).

Background

A previous version of this book was written in 1999 under the title “How to modify
the GNAT Run-Time to experiment with Ada extension” [MGGM99]. That book
was the result of a project to integrate Drago[5] into the GNAT sources. (Drago
was the result of my PhD research. It is an Ada extension which facilitates the
programming of fault-tolerant and cooperative distributed applications by means
of the addition of the groups paradigm into the Ada language).

Although the book was available on the web, no publicity was sent out. In-
genuously we thought that the internet search engines would provide the book to
any interested people. Obviously very few people found it, but we thought that
the book was not good enough and we stopped our efforts.

During the AdaEurope2001 conference (Belgium) I presented the book to
some colleagues and felt that the book could still be of interest for the Ada com-
munity. Therefore, in July 2001 I decide to personally restart the project with the
following goals:

� Write the manuscript in English. The manuscript of the previous version
was written in Spanish and translated to English. Because I was now alone
to do the whole work, I decided to concentrate any effort in the most widely
distributable version of the book. Once completed many people can help to
translate it to other languages.

ix

� Recover the (still) useful documentation of the previous book. Although
most of the chapters of the previous book were now obsolete, some parts
were still reusable (the previous book described the GNAT-3.10p sources).

� Structure each chapter of the book in two parts. The first part summa-
rizes the Ada concepts whose implementation is described in the second
part. This will facilitate the use of the book for teaching.

� Reduce the maintenance cost as much as possible. A single document
should be used for all the distributions of the document. I decided to write
the sources of the book with LaTeX because it is free and has many free
tools to translate the document to HTML, PostScript, PDF, and DVI files.

� Keep the book integrated with the GNAT sources. The HTML version
of the book would be the “star” of the project with hyperlinks which facil-
itate to the reader the direct access to the Annotated Ada Reference Man-
ual [AAR95] and GNAT sources.

I have been working on this book for one year and half. In July 2002 the first
Beta version of the book was available in the WEB. In September 2002 I added
the GNU Free Documentation License to the book, and I put the full sources on
my web site. Now (December 2002) I give you the upgraded version of the book
which is now integrated with the GNAT 3.15p sources and has 288 hyper-links to
these sources.

Acknowledgements

I would like to thank professor Edmond Schonberg (New York University) for
replying to me many messages with questions on the GNAT compiler. I also thank
professor Ted Baker (Florida State University) for offering his help to enhance
future versions of this book.

I acknowledge Alexis González and José Jerónimo Martı́n for the tremendous
effort done during the previous project (which was the base of this book). I also
thank my colleagues of the Distributed Systems Research Group (University of
Las Palmas de Gran Canaria) Francisco Guerra, Ernestina Martel, José Miguel
Santos, and Luis Hernández for the discussions which have helped me to under-
stand many details of the GNAT sources. I also thank David Shea (Faculty of
Translation and Interpreting, University of Las Palmas de Gran Canaria) for all
the corrections done to improve the quality of this English text.

x

Finally, I wish to thank Angel Alvarez (Technical University of Madrid) and
Sergio Arvalo (Rey Juan Carlos University at Madrid) not only for their guidance
during my PhD studies, but also for their generosity and unfailing support.

Short Biography

Javier Miranda was born in 1965 in Canary Islands (Spain). He studied Com-
puter Science Engineering at the University of Las Palmas de Gran Canaria. He
finished his studies by implementing a Modula-2 compiler under the direction of
José Fortes Gálvez.

In 1990 he went to the Technical University of Madrid (Department of Telem-
atic Systems Enginnering —DIT) to do his PhD research under the direction of
Angel Álvarez and Sergio Arévalo (in the Distributed Systems Research Group).
In 1994 he finished his PhD thesis entitled “Drago: A Language for Programming
Fault-Tolerant and Cooperative Distributed Applications.

In 1997, he started a project to integrate Drago into the GNAT sources. This
project was done in collaboration with his colleague Francisco Guerra (who im-
plemented the required protocols by means of the Group IO Ada Library), and the
students Alexis Rodrı́guez and José Jerónimo Martı́n.

After the project he personally continued upgrading Drago to the next GNAT
distributions. This book summarizes the experience achieved during these years.

Las Palmas de Gran Canaria, December 2002

Contents

1 The GNAT Project 1

1.1 GCC . 2

1.2 GNAT Organization . 2

1.3 The Compiler . 3

1.4 The Run Time System . 5

1.4.1 GNARL . 6

1.4.2 GNULL . 8

1.4.3 POSIX . 9

1.4.4 Low-Level Locks . 10

1.5 Summary . 11

2 Task Types and Objects 13

2.1 Ada Tasks . 13

2.1.1 Task Creation . 14

2.1.2 Task Activation . 16

2.1.3 Task Termination . 17

2.1.4 Task Abortion . 18

2.1.5 Task Identification . 18

2.2 GNAT Implementation . 20

xi

xii CONTENTS

2.2.1 GNAT Task States . 21

2.2.2 GNAT Masters Implementation 22

2.2.3 Compiler Task Translation 24

2.2.4 Run-Time Subprograms for Task Creation and Termination 26

2.3 Summary . 33

3 The Rendezvous 35

3.1 The Ada Rendezvous . 35

3.1.1 Entry Declaration . 35

3.1.2 Simple Mode Entry Call 36

3.1.3 Conditional Entry Calls 36

3.1.4 Accept Statement . 37

3.1.5 Selective Accept . 38

3.1.6 The Count Attribute . 40

3.2 GNAT Implementation . 41

3.2.1 Entry Call and Parameters 41

3.2.2 Simple Mode Entry Call 41

3.2.3 Conditional Entry Call 44

3.2.4 Entries and Queues . 44

3.2.5 Trivial Accept . 45

3.2.6 Accept Statement . 46

3.2.7 Selective Accept . 48

3.2.8 The Count Attribute . 53

3.3 Summary . 53

4 Protected Objects 55

4.1 The Ada 95 Protected Object . 55

CONTENTS xiii

4.1.1 Entry Calls and Barriers 57

4.1.2 The Eggshell Model . 58

4.1.3 Private Entries and Entry Families 59

4.1.4 Restrictions on Protected Objects 60

4.1.5 Elaboration and Finalization 60

4.1.6 The Count Attribute . 61

4.2 GNAT Implementation . 62

4.2.1 Self-Service Versus Proxy 62

4.2.2 Proxy Model: In-line Versus Call-Back Implementation . 63

4.2.3 Protected Type Specification 64

4.2.4 Protected Subprograms 65

4.2.5 Entry Barrier . 67

4.2.6 Entry Body . 68

4.2.7 Entry Family . 69

4.2.8 Service Entries . 69

4.2.9 Simple Mode Entry Call 70

4.2.10 Conditional Mode Entry Call 71

4.3 Summary . 71

5 Time and Clocks 73

5.1 Ada Time and Clocks . 73

5.1.1 Ada.Calendar . 73

5.1.2 Ada.Real Time . 75

5.1.3 Delay Statement . 76

5.1.4 Timed Entry Call . 76

5.1.5 Timed Selective Wait . 77

xiv CONTENTS

5.2 GNAT Implementation . 78

5.2.1 Delay and Delay Until Statements 78

5.2.2 Timed Entry Call . 80

5.2.3 Timed Selective Accept 81

5.3 Summary . 81

6 Interrupts 83

6.1 Ada Model of Interrupts . 83

6.1.1 Interrupt-Handling Protected Procedures 84

6.1.2 Package Ada.Interrupts 85

6.1.3 Priorities . 86

6.2 GNAT Implementation . 88

6.2.1 POSIX Signals . 88

6.2.2 Reserved Signals . 89

6.2.3 Architecture . 91

6.2.4 Basic Data Structures . 92

6.2.5 Attachment of Interrupt-Handling Protected Procedures . 93

6.2.6 Interrupts Manager: Basic Approach 95

6.2.7 Server Tasks: Basic Approach 96

6.2.8 Interrupt-Manager and Server-Tasks Integration 97

6.3 Summary . 100

7 Exceptions 103

7.1 Ada Model of Exceptions . 103

7.1.1 Exception Declaration 104

7.1.2 Raise Statement . 104

7.1.3 Exception Handling . 104

CONTENTS xv

7.1.4 Package Ada.Exceptions 105

7.2 GNAT Implementation . 107

7.2.1 Exception Identifier and Exception Occurrence 107

7.2.2 Exceptions Table . 108

7.2.3 Exception Declaration 109

7.2.4 Exception Handler . 110

7.2.5 Raise Statement . 111

7.3 Summary . 111

8 Abortion 113

8.1 Ada Abortion . 113

8.1.1 Abort Statement . 113

8.1.2 Asynchronous Transfer of Control 115

8.2 GNAT Implementation . 116

8.2.1 Abort Deferral . 116

8.2.2 Abort Statement . 117

8.2.3 Asynchronous Transfer of Control 119

8.2.4 GNAT Implementation of the One-Thread Model 122

8.3 Summary . 124

A GNU Free Documentation License 125

A.1 Applicability and Definitions . 126

A.2 Verbatim Copying . 127

A.3 Copying in Quantity . 127

A.4 Modifications . 128

A.5 Combining Documents . 130

A.6 Collections of Documents . 131

xvi CONTENTS

A.7 Aggregation With Independent Works 131

A.8 Translation . 132

A.9 Termination . 132

A.10 Future Revisions of This License 132

List of Figures

1.1 GNAT Overall Structure. 3

1.2 GNAT Compiler. 4

1.3 GNAT Front-end Stages. 4

1.4 The GNAT Run Time Library. 6

2.1 Task States. 15

2.2 Run-Time Information Associated with Each Task. 20

2.3 Definition of Parent, Activator, Master of Task and Master Within. 23

2.4 Compiler-Generated Information Associated with Each Task. . . . 25

2.5 GNARL Subprograms Called During the Task Life-Cycle 27

3.1 Entry Call. 42

3.2 Entry Queues. 45

3.3 Simple Accept. 47

3.4 Open Accepts Vector. 51

4.1 Graphical Representation of the Protected Object. 58

4.2 Proxy Model: In-Line Implementation. 63

4.3 Proxy Model: Call-Back Implementation. 64

5.1 GNARL Subprograms for the Delay Statement. 78

xvii

xviii LIST OF FIGURES

5.2 GNARL Subprograms for the Delay Statement in an Ada Program
without Tasks. 79

5.3 GNARL Subprograms for the Delay Statement in an Ada Program
with Tasks. 80

5.4 GNARL Subprograms for Timed Entry Call. 81

5.5 GNARL Subprograms for Timed Selective Accept. 82

6.1 Architecture of the Implementation. 91

6.2 Reserved Interrupts Table. 92

6.3 Table of User-Defined Interrupt-Handlers. 93

6.4 List of Interrupt Handlers in Non-Nested Style. 96

6.5 Basic Automaton Implemented by the Interrupts Manager. 97

6.6 Server Tasks Signal Handling. 98

6.7 Basic Automaton Implemented by the Server Tasks. 99

6.8 Simplified Server Tasks Automaton. 100

6.9 Server Tasks Automaton. 101

7.1 Exception Identifier. 107

7.2 Occurrence Identifier. 108

7.3 Hash Table. 109

8.1 GNARL Subprograms for the Abort Statement. 118

8.2 Entry Calls Stack. 122

Chapter 1

The GNAT Project

GNAT (an acronym for GNU NYU Ada Translator) is a front-end and runtime
system for Ada 95 that uses the successful GCC back-end as a retargettable code
generator. GNAT is thus part of the GNU1 software, and is distributed according
to the guidelines of the Free Software Foundation2 [SGC94, Section 1]. GNAT
has been developed by two cooperating teams:

� GNAT Development Team (New York University). Guided by professors
Edmond Schonberg and Robert B.K. Dewar. This group developed the
front-end of the Ada compiler.

� Project PART Team3 (Florida State University). Guided by professor Theodore
P. Baker This group developed the Ada Run-Time Library.

The project was initially sponsored by the U.S. government (from 1991 to
1994). In August, 1994 the main authors created the Ada Core Technologies,
Inc.4 company which gives technical support under contract to the entities which
use GNAT with industrial or commercial products. Nowadays Ada Core continues
extending the platforms for which the compiler is available and also provides tools
for the development and debugging of the Ada programs. The company provides
free upgrades of the compiler to the Ada community.

In this chapter, the external and internal structure of GNAT is described.

1http://www.gnu.org/
2http://www.gnu.org/fsf/fsf.html
3PART - POSIX Ada Real-Time.
4E-mail: info@gnat.com; http://www.gnat.com/

1

(C) Javier Miranda, 2002 (v 1.0) Chapter 1: The GNAT Project

1.1 GCC

GCC is the compiler system of the GNU environment. GNU (a self-referential
acronym for ’GNU is Not Unix’) is a Unix-compatible operating system, being
developed by the Free Software Foundation, and distributed under the GNU Public
License (GPL)5.

GNU software is always distributed with its sources, and the GPL enjoins
anyone who modifies GNU software and then redistributes the modified product
to supply the sources for the modifications as well. Thus, enhancements to the
original software benefit the software community at large [Sta92].

GCC is today the centerpiece of the GNU software. GCC is a retargetable and
rehostable compiler system, with multiple front-ends and a large number of hard-
ware targets. Originally designed as a compiler for C, it now includes front-ends
for C++, Modula-3, Fortran, Objective-C, and most recently Ada. Technically, the
crucial asset of the GCC is its mostly language-independent, target-independent
code generator, which produces excellent quality-code both for CISC machines
such as the Intel and Motorola families, as well as RISC machines including the
IBM RS/6000, the DEC Alpha and the MIPS R4000. Remarkably, the machine
dependences of the code generator represent less than 10 new target to GCC, an
algebraic description of each machine instruction must be given using a register-
transfer language. Most of the code generation and optimization then uses the
RTL, which GCC maps when necessary into the target machine language. The
leverage for constructing a front-end for GCC is thus enormous: GNAT poten-
tially has over 30 targets.

Furthermore, GCC produces high-quality code, comparable to that of the best
commercial compilers [SGC94, Section 2].

1.2 GNAT Organization

The first decision involved choosing the language in which GNAT should be writ-
ten. GCC is fully written in C, but for technical reasons as well as non-technical
ones, it was inconceivable to use anything but Ada for GNAT itself. The GNAT
team started using a relatively small subset of Ada83, and in typical fashion, ex-
tended the subset whenever new features became implemented. Six months after
the coding started in earnest, we were able to bootstrap the compiler, and abandon

5http://www.gnu.org/copyleft/gpl.html

2

Chapter 1: The GNAT Project (C) Javier Miranda, 2002 (v 1.0)

the commercial compiler we had been using up to that point. As Ada95 features
are implemented, we are now able to write GNAT in Ada95. In fact, the definition
of the language depends heavily on hierarchical libraries, and cannot be given ex-
cept in Ada95, so that it is natural for the compiler and the environment to use
child units throughout [SGC94, Section 3.1].

Source
(Ada)

Compiler
(GNAT)

Run Time
System
(GNARL)

Object
code

Object
code

Object
code

Binder
(GNAT)

Linker Executable

Figure 1.1: GNAT Overall Structure.

Figure 1.1 presents the overall structure of the GNAT system. It has three main
parts: the Compiler, the Run Time System and the Binder (the GNU linker for the
target operating system is always reused). From the figure, we can also deduce
the steps followed to compile an Ada program.

The GNAT binder verifies the consistency of the objects and determines a valid
order of elaboration (initialization) for the objects (from the same or different
languages) that are to be assembled into an executable file. Following this sketch,
the next sections of this chapter describe each part of the compiler.

1.3 The Compiler

The compiler is composed of two main parts: the front-end and the back-end (cf.
Figure 1.2). The front-end of the GNAT compiler is thus written in Ada95. The
back-end of the compiler is the back-end of GCC proper, extended to meet the
needs of Ada semantics [SGC94, Section 3.1].

The front-end comprises five phases (cf. Figure 1.3): lexical analysis, syntac-
tic analysis (parsing), semantic analysis, AST expansion, and finally AST trans-
formation into an equivalent C tree (this stage is labeled GiGi (GNAT to GNU

3

(C) Javier Miranda, 2002 (v 1.0) Chapter 1: The GNAT Project

Source
(Ada)

Front-End
(GNAT)

Back-End
(GCC)

Object
(.o)

Compiler

Figure 1.2: GNAT Compiler.

transformation). These phases communicate by means of a rather compact Ab-
stract Syntax Tree (AST). The implementation details of the AST are hidden by
several procedural interfaces that provide access to syntactic and semantic at-
tributes. The layering of the system, and the various levels of abstraction, are
the obvious benefits of writing in Ada, in what one might call “proper” Ada style.
It is worth mentioning that strictly speaking GNAT does not use a symbol table.
Rather, all semantic information concerning program entities is stored in defining
occurrences of these entities directly in the AST [SGC94, Section 3.1].

code
(Ada) (Ada)

(Ada)
(Ada)

GCC tree fragments

(C)
GiGi

Scanner Parser Semantic
Analysis

Decorated tree

Expander

Expanded and decorated tree

back-end

GCC

Source

Syntax tree

Figure 1.3: GNAT Front-end Stages.

As the figure 1.3 shows, the Scanner starts analyzes the input file and gen-
erates the associated Tokens. The Parser analyzes the syntax of the tokens and
creates the Abstract Syntax Tree (syntactic analysis). The Semantic Analyzer per-
forms name and type resolution (that is, it resolves all the possible ambiguities
of the source code), decorates the AST with various semantic attributes, and as
by-product performs all static legality checks on the program. After that, the Ex-
pander transforms high level AST nodes (nodes representing tasks, protected ob-

4

Chapter 1: The GNAT Project (C) Javier Miranda, 2002 (v 1.0)

jects, etc.) into nodes which call to Ada Run-Time library routines. (Multi-tasking
constructs are generally implemented by a combination of high-level source code
transformations and calls to Ada Run-Time Library [DIB94, Section 4.2.1]).

Most of the expander activity results in the construction of additional AST
fragments. Given that code generation requires that such fragments carry all se-
mantic attributes, every expansion activity must be followed by additional seman-
tic processing on the generated tree. This recursive structure is carried further:
some predefined operations (i.e. exponentiation) are defined by means of a generic
procedure. The expansion of the operation results in the generic instantiation (and
corresponding analysis) of this generic procedure [SGC94, Section 3.3]. At the
end of this process the GIGI phase transforms the AST into a tree understable by
the GCC backend. This phase is an interface between the GNAT front-end and the
GCC back-end. In order to bridge the semantic gap between Ada and C, several
code generation routines in GCC have been extended, and others added, so that
the burden of translation is also assumed by Gigi and GCC whenever it would be
awkward or inefficient to perform the expansion in the front-end. For example,
there are code generation actions for exceptions, variant parts and accesses to un-
constrained types. As a matter of GCC policy, the code generator is extended only
when the extension is likely to be of benefit to more than one language [SGC94,
Section 3.4].

There is a further unusual recursive aspect to the structure of GNAT. The pro-
gram library (described in greater detail below) does not hold any intermediate
representation of compiled units. As a result, package declarations are analyzed
whenever they appear in a context clause. Furthermore, if a generic unit, or an
inlined unit G, is defined in a package P, then the instantiation or inlining of G in
the current compilation requires that the body of P be analyzed as well. Thus the
library manager, the parser and the semantic analyzer can be activated from within
semantic analysis (note the backward arrows in figure 1.3) [SGC94, Section 3.3].

1.4 The Run Time System

In order to make GNAT portable, the Ada Run-Time System (RTS) is written in
Ada. The compiler communicates with the RTS through procedure and function
calls, without direct reference to RTS data structures aside from the parameters of
the RTS subprograms. The RTS data structures may be kept in a separate address
space, protected from access by the application. The direction of call is always
from application code to the RTS [GB94a, Section 2]. The exceptions to this rule
are:

5

(C) Javier Miranda, 2002 (v 1.0) Chapter 1: The GNAT Project

� Task creation, in which the compiler passes to the RTS the address of a
procedure corresponding to the task body.

� Protected entries, in which the compiler passes to the RTS the address of an
array with the reference to the subprograms generated by the compiler.

Thus, the opportunities for optimization involve alternate source-code transfor-
mations, and alternate algorithms and data structures in the runtime library rou-
tines [DIB94, Section 4.2.1].

Ada program

GNARL

GNULL

POSIX

Operating system

Hardware

Run
Time
Library

Figure 1.4: The GNAT Run Time Library.

Figure 1.4 presents Run-Time hierarchy. The Run-Time library is made up of
three levels: GNARL, GNULL and Pthreads6. An Ada program requests the
services of the Run Time through the GNARL subprograms calls. This level uses
the services provided by the GNULL level. This intermediate level is an interface
between the upper level and the POSIX standard library. POSIX Pthreads provides
support to languages for concurrent programming.

1.4.1 GNARL

GNARL is the GNU Ada Run-time Library. High level language constructs are
translated by the expander into calls to this library. Packages that constitute the
run-time are treated as any other unit of the context of the compilation, and ana-
lyzed when necessary. This obviates the need to place run-time information in the
compiler itself, and allows a knowledgeable user to modify the run-time if he/she

6Pthreads - POSIX Threads.

6

Chapter 1: The GNAT Project (C) Javier Miranda, 2002 (v 1.0)

so chooses. The design of GNARL is based on the CARTS (Common Ada Run-
Time System) specification [SGC94, Section 3.6]. The original design objectives
of GNARL, in order of priority, were [GB94a, Section 1]:

1. Semantic correctness. GNARL must support the full core tasking seman-
tics, and as much of the Real-Time Systems and Systems Programming
annexes as permitted by other constraints.

2. Timeliness. Development should be incremental, so that working partial im-
plementations can be delivered early. The RTS and compiler development
should proceed in parallel. This means the RTS responsibilities should be
clearly separated from those of the compiler. Ada features that early ver-
sions of the compiler are not likely to be able to translate should be avoided.
Ideally, it should be possible to compile and test it using an existing Ada 83
compiler. It should use the existing PART RTS code for leverage, to speed
development.

3. Modularity. GNARL should be partitioned to hide information that the
compiler does not need to know, including information about tasking fea-
tures that are not used by a particular compilation. The GNAT strategy for
implementing tasking is based on tree-to-tree translation, converting tasking
constructs in the intermediate syntax tree representation into equivalent Ada
language constructs, with interspersed RTS service calls. Thus, the GNAT
interface should be expressible in terms of ordinary Ada packages whenever
possible.

4. Portability. GNARL should be written in Ada, with target-specific code
clearly isolated in the GNULL level and kept as small as possible. It should
be possible to produce configurations that run both over commercial off-the-
shelf operating systems and on bare machines with minimal modifications.
Initially, it should be supported on several commonly used operating sys-
tems.

5. Research and technology transfer. GNARL should serve as a test-bed for
implementation ideas, providing experience that will be useful in designing
other implementations. Lessons learned should be reported promptly, and
code made publicly available. Among other experimental goals, GNARL
should provide a basis for measuring the overhead imposed by implement-
ing Ada over Pthreads.

6. Efficiency. GNARL should be as efficient as possible, consistent with the
other objectives. The design should allow for future optimizations, includ-

7

(C) Javier Miranda, 2002 (v 1.0) Chapter 1: The GNAT Project

ing inline expansion and optimization of RTS calls. This means using ordi-
nary procedure calls in the interface, as opposed to traps or calls via proce-
dure pointers”.

GNARL is designed to facilitate the in-line optimization of Ada tasking con-
structs. The use of task constructs results in the implicit with of one or more of the
packages that make up the GNARL by the GNAT compiler. Other than this im-
plicit import, GNARL packages are indistinguishable from other application pack-
ages. There are no special restrictions on GNARL code. In particular, GNARL
subprograms can be named in Inline pragmas, resulting in the replacement of im-
plicit calls to these subprograms with the subprogram body. This should result
in somewhat faster code due to the elimination of the subprogram call. However,
once the code has been inserted inline, it can be further optimized by the compiler
using information about the local environment including current register contents.
This process is further augmented by the inline nature of the GNARL interface.
Tasking is implemented with calls to the GNARL interleaved with user code. The
only exception to this is task startup, where GNARL executes the task body code
from a new thread of control via call-back. This inline nature of the GNARL in-
terface is intended to allow local optimizations across the boundaries between the
application and the GNARL, in particular when the GNARL calls are expanded
inline. This kind of optimization is much less applicable with an interface involv-
ing call-backs to user code within the RTS. Each call-back point can call one of
an arbitrary number of user code sequences, so they cannot be inlined, and it is
less likely that local optimizations (i.e. register allocation) will be applicable to
all of them [GMB94, Section 3].

Implementing GNARL semantics is relatively complex, and will probably be
of interest only to users requiring unusual tasking semantics, or to take advan-
tage of unusual hardware architecture (i.e. multiprocessing or distributed environ-
ments).

1.4.2 GNULL

GNULL exists only for portability; it provides a standard interface to services
that are typically provided by an operating system or real-time kernel, isolating
dependences on a particular host from the rest of GNARL [DIB94, Section 4.2.1].

The GNULL interface is an abstraction of a subset of the POSIX interfaces,
including Pthreads. Therefore, it is trivially implementable over an operating sys-
tem that supports the POSIX standards. In order to permit a simpler and more

8

Chapter 1: The GNAT Project (C) Javier Miranda, 2002 (v 1.0)

efficient implementation over other operating systems, or a bare machine, many
features of Pthreads have been left out or restricted. The deleted features are
ones that the Ada RTS does not need, or cannot use. For example, the POSIX
semantics of thread cancellation do not fit the Ada semantics of abortion, so the
Pthread cancellation services are not included in GNULL. The features retained
include thread creation and operations on mutexes, condition variables, and sig-
nals. In cases where the Ada RTS does not need the full strength or generality of
the Pthread interface, the semantics are relaxed. For example, GNULL mutexes
have only one form of priority inheritance (the priority ceiling emulation locking
protocol) and are required to be unlocked in FIFO order. Condition variables are
only allowed to be used by one task at a time. Further simplifications are con-
templated, including the hiding of condition variables behind a suspend/resume
interface [GB94a, Section 4.2.1].

1.4.3 POSIX

The POSIX Portable Operating System Interface provides an application program
interface to services supporting the creation and executio¡n of multiple threads of
control sharing the address space and file descriptors of a single POSIX process.
POSIX has its roots in an effort to promote application program portability by
establishing a non-proprietary standard interface to the many variants of the UNIX
operating system [GB92, Section 2].

The IEEE identifies POSIX standards by designations of the form 1003.x.
For instance, 1003.1 designates the C language application program interface for
core operating systems services (i.e. file and process creation, input/output and
inter-process communication). It is the base POSIX standard, and has been ap-
proved by the ISO as ISO/IEC 9945-1: 1990. Two other POSIX standards on
which this project depends are 1003.4 and 1003.4a. The 1003.4 interface (Real-
time Extension) is an extension to 1003.1 that provides services commonly needed
in real-time applications. Examples of these services include binary semaphores,
process memory locking and timers. The 1003.4a interface (Threads Extension, or
Pthreads for short) is an extension to 1003.4 that supports multiple threads of con-
trol within a single POSIX process. Examples of services provided by 1003.4a
include thread creation, mutual exclusion, and thread suspension. Both 1003.4
and 1003.4a are expressed as C language interfaces [GB92, Section 2]. There is
also a standard Ada binding for 1003.1, namely 1003.5. This interface is defined
as a set of packages, which provide access to the facilities of POSIX.1 via Ada
data types, subprograms and generics [GB92, Section 3].

9

(C) Javier Miranda, 2002 (v 1.0) Chapter 1: The GNAT Project

GNARL uses the POSIX services to build services with correct Ada seman-
tics. The scheduling of the threads is directly under the control of the Pthreads
scheduler, as is the state of each thread. Runtime stack allocation is also under
the control of the Pthread implementation. Pthread priorities are fully dynamic,
allowing the Ada RTS to make this priority adjustment in the code implementing
the accept statement. Other Ada features, including the distinction between task
creation and activation and the rules for task termination, are very different from
their Pthread counterparts, and must be implemented almost entirely by the Ada
RTS [GB92, Section 4.1]. Pthreads can be supported by the OS kernel or by a sep-
arate library. If Pthreads is supported by the OS kernel. System calls need only
block the calling task, rather than the whole process. If global thread scheduling is
provided, there may be better response to asynchronous events [GB92, Section 2].

1.4.4 Low-Level Locks

The GNAT run-time uses Lock/Unlock operations in order to maintain data con-
sistency under concurrent read/update operations by multiple threads of control.
It does quite a few more Lock/Unlock operations than is typical of older Ada
run-time systems. The difference is that this run-time was designed to be multi-
threaded, whereas most earlier Ada runtime systems were designed as a mono-
lithic monitor. That is, the older style of Ada runtime system only allowed one
task to be executing in the RTS at a time (we call this single-lock mode), but
with the GNAT run-time several tasks may be executing in the RTS concurrently.
Rather than just one lock that protects the entire RTS, there are individual locks
for several RTS global data structures, and a lock for each task control block (we
call this multiple-lock mode). Multiple-lock mode allows more concurrency be-
tween tasks. According to conventional wisdom, more concurrency is generally
better. It permits more parallel execution if there are multiple processors, and
even if there is only one processor it may permit quicker response to high-priority
real-time events [DIB94, Section 4.2.1].

Mutual exclusion is provided through POSIX mutexes. When a thread wants
exclusive access to some shared resource, it locks the associated mutex, via pthre-
ad mutex lock(); if some other thread has already locked that mutex, the request-
ing thread is suspended until the thread holding the mutex unlocks it, via pthre-
ad mutex unlock(). Any number of tasks can be suspended on the same mutex;
one of them is granted the mutex and permitted to continue execution when the
holder unlocks the mutex. Mutexes are similar to binary semaphores; the principal
difference is that the thread which holds the mutex must be the one to unlock it.
This makes mutexes difficult to use for general communication between threads;

10

Chapter 1: The GNAT Project (C) Javier Miranda, 2002 (v 1.0)

an arbitrary thread cannot signal to other threads that something has occurred by
unlocking a locked mutex. For this kind of synchronization, condition variables
are used [GB92, Section 5.1].

A thread waits for a condition to become true by calling pthread cond wait()
on a condition variable. Another thread can signal that the condition has become
true by signaling the condition variable, via pthread cond signal() (this is not to
be confused with operations on POSIX signals). A mutex is associated with the
condition variable by the pthread cond wait() call. This mutex must be locked
before the call; it is unlocked (atomically) by the call and locked again before the
call returns. This is to protect the condition for which the thread is waiting. A
pthread cond signal() call is guaranteed to wake up at least one waiting thread,
but it turns out to be more efficient (particularly on multiprocessors) to allow more
than one waiting thread to return. Since the first thread to reacquire the associated
mutex might make the condition false again, each thread needs to check that the
condition is true when pthread cond wait() returns. This is usually done in a
while loop [GB92, Section 5.1].

1.5 Summary

In this introductory chapter, we have seen the overall structure of the GNAT
project and focussed our attention on the two main components: the Compiler
and the Run-Time Library. The main concepts presented in this chapter are:

� The compiler is composed of two parts: the front-end and the back-end.
The front-end comprises five phases which communicate by means of an
Abstract Syntax Tree. The back-end is the GCC target independent code
generator. This ensures two main advantages: portability and excellent-
quality code generation.

� The Run-Time is implemented as an Ada Library and is structured in two
levels: GNARL, and GNULL.

� GNARL is the GNU Ada Run-Time Library; it is written in Ada. Rather
than just one lock to protect GNARL, there are individual locks for several
global data structures, and a lock for each task control block (multiple-lock
mode).

� GNULL exists only for portability; it provides the minimum interface to the
POSIX services.

11

(C) Javier Miranda, 2002 (v 1.0) Chapter 1: The GNAT Project

12

Chapter 2

Task Types and Objects

The execution of an Ada program consists of the execution of one or more tasks.
Each task represents a separate thread of control that proceeds independently and
concurrently between the points where it interacts with other tasks [AAR95, sec-
tion 9(1)].

This chapter is organized in two parts. In this first part the main concepts of
the Ada tasks are presented. The second part describes the GNAT implementation.

2.1 Ada Tasks

In Ada, tasks are objects. Each task has a unique type, which is specified in an ob-
ject declaration or allocator (an expression of the form ”new . . . ”) that causes the
creation of the task. Each task type is declared in two separate parts: a task spec-
ification and a task body. The specification has a sequence of entry declarations,
which define the communications interface of tasks of that type. The body has
the rest of the description of the task type [BR85, Section 2]. The Ada Reference
Manual defines the full syntax for a task type and body as follows:

task_type_declaration ::=
task type Defining_Identifier

[known_discriminant_part] [is task_definition];

single_task_declaration ::=
task defining_identifier [is task_definition];

task_definition ::=
task_item

13

(C) Javier Miranda, 2002 (v 1.0) Chapter 2: Task Types and Objects

[private
task_item]

end [task_identifier]

task_body ::=
task body defining_identifier is
declarative_part

begin
handled_sequence_of_statements

end [task_identifier];

Over time, tasks proceed through various states. A task is initially inactive;
upon activation, and prior to its termination it is either blocked (as part of some
task interaction) or ready to run. While ready, a task competes for the available
execution resources that it requires to run [AAR95, section 9].

2.1.1 Task Creation

A task type can be regarded as a template from which actual tasks are created.
Task objects and types can be declared in any declarative part, including task
bodies themselves. For any task type, the specification and body must be declared
together in the same unit, with the body usually being placed at the end of the
declarative part [BW98, chapter 4.1].

A task object can be created either as part of the elaboration of an object
declaration occurring immediately within some declarative region, or as part of the
evaluation of an allocator (an expression in the form “new. . . ”). All tasks created
by the elaboration of object declarations of a single declarative region (including
subcomponents of the declared objects) are activated together. Similarly, all tasks
created by the evaluation of a single allocator are activated together [AAR95,
section 9].

The execution of a task object has three main active phases [BW98, chap-
ter 4.2]:

1. Activation — the elaboration of the declarative part, if any, of the task body
(local variables in the body of the task are created and initialized during
activation). The Activator identifies the task which created and activated
the task.

2. Normal execution — the execution of the statements visible within the body
of the task.

14

Chapter 2: Task Types and Objects (C) Javier Miranda, 2002 (v 1.0)

3. Finalization — the execution of any finalization code associated with any
objects in its declarative part.

Runnable

Terminated

Sleep

Unactivated

Figure 2.1: Task States.

Figure 2.1 shows the transitions among these states during task life. The cre-
ated task is said to be in the Unactivated state. Then the run-time associates a
thread of control to this task. If the elaboration of the task fails then the task goes
directly to the Terminated state; otherwise the task reaches the Runnable state, and
executes the task user code. If this code executes some operation that blocks the
task (according to the Ada semantics— rendezvous, protected operation, or de-
lay statement—, it reaches the Sleep state and later returns to the Runnable state.
When the task executes an Ada terminate alternative or finalizes the execution of
the Ada user code, it goes to the Terminated state.

A task indicates its willingness to begin finalization by executing its end state-
ment. A task may also begin its finalization as a result of an unhanded excep-
tion, or by executing a select statement with a terminate alternative or by being
aborted. A finished task is Completed or Terminated depending on whether it has
any active dependents [BW98, chapter 4.2].

The Parent is the task on which a task depends. The following rules apply:

� If the task has been declared by means of an object declaration, its Parent is
the task which declared the task object.

15

(C) Javier Miranda, 2002 (v 1.0) Chapter 2: Task Types and Objects

� If the task has been declared by means of an allocator (an Ada expression
in the form ’new . . . ’), its Parent is the task which has the corresponding
access declaration.

When a parent creates a new task, the parent’s execution is suspended while it
waits for the child to finish activating (either immediately, if the child is created
by an allocator, or after the elaboration of the associated declarative part). Once
the child has finished its activation, parent and child proceed concurrently. If a
task creates another task during its activation, then it must also wait for its child
to activate before it can begin execution [BW98, chapter 4.3.1].

There is a conceptual task (called the Environment Task) which is responsible
for the program elaboration. (The environment task is generally the operating sys-
tem thread which initializes the run-time and executes the main Ada subprogram.)
Before calling the main procedure of the Ada program, the environment task elab-
orates all library units referenced to in the main Ada procedure. This elaboration
will cause library-level tasks to be created and activated before the main procedure
is called.

2.1.2 Task Activation

The following rules apply to task activation [BW98, chapter 4.2.1]:

1. For static tasks, activation starts immediately after the complete elaboration
of the declarative part in which they are defined.

2. The first statement following the declarative region is not executed until all
tasks have finished their activation.

3. A task need not wait for the activation of other concurrently created tasks
before executing its body.

4. A task may attempt to communicate with another task which, though cre-
ated, has not yet been activated. The calling task will be delayed until the
communication can take place.

5. If a task object is declared in a package specification, then it commences its
execution after the elaboration of the declarative part of the package body.

6. Dynamic tasks are activated immediately after the evaluation of the alloca-
tor (the new operator) which created them.

16

Chapter 2: Task Types and Objects (C) Javier Miranda, 2002 (v 1.0)

7. The task which executed the Ada statement responsible for new tasks cre-
ation is blocked until these tasks have finished their activation.

8. If an exception is raised in the elaboration of a declarative part, then any task
created during that elaboration becomes terminated and is never activated.
As the task itself cannot handle the exception, the language model requires
the parent (creator) task or scope to deal with the situation: the predefined
exception Tasking Error is raised.

� In the case of dynamic task creation, the exception is raised after the
statement which issued the allocator call. However, if the calls is in a
declarative part (as part of the initialization of an object), the declara-
tive part fails and the exception is raised in the surrounding block (or
calling subprogram).

� In the case of static task creation, the exception is raised prior to the
execution of the first executable statement of the declarative block.
This exception is only raised after all created tasks have been activated
(whether successfully or not).

9. The task attribute Callable returns True if the designated task is neither
Completed, Terminated nor Callable. (An abnormal task is one that has
been aborted). The task attribute Terminated returns True if the named task
has terminated.

2.1.3 Task Termination

The Master is the execution of a construct that includes finalization of local ob-
jects after it is complete (and after waiting for any local task), but before leav-
ing [AAR95, section 7.6.1(1)]. Each task depends on one or more masters, as
follows [AAR95, section 9.3]:

� If the task is created by the evaluation of an allocator for a given access type,
it depends on each master that includes the elaboration of the declaration of
the ultimate ancestor of the given access type.

� If the task is created by the elaboration of an object declaration, it depends
on each master that includes its elaboration.

Furthermore, if a task depends on a given master, it is defined as depend-
ing on the task that executes the master, and (recursively) on any master of that
task [AAR95, section 9.3].

17

(C) Javier Miranda, 2002 (v 1.0) Chapter 2: Task Types and Objects

For the Finalization of a master, dependent tasks are first awaited. Then each
object whose accessibility level is the same as that of the master is finalized if
the object was successfully initialized and still exists. Note that any object whose
accessibility level is deeper than that of the master would no longer exist; those
objects would have finalized by some inner master. Thus, after leaving a master,
the only objects yet to be finalized are those whose accessibility level is not as
deep as that of the master [AAR95, section 7.6.1(4)].

2.1.4 Task Abortion

Ada allows tasks abortion by means of the following syntax:

Abort_Statement ::= abort Task_Name Task_Name;

Tasks which are aborted are said to become abnormal, and are thus prevented
from interacting with any other task. After a task has been marked as abnormal,
execution of its body is aborted. This means that the execution of every construct
in the task body is aborted, unless it is involved in the execution of an abort-
deferred operation. The execution of an abort-deferred operation is allowed to
complete before it is aborted [BW98, chapter 10.2]. Task abortion will be ana-
lyzed in detail in chapter 8.

2.1.5 Task Identification

Ada tasks have a unique identifier. The Systems Programming Annex [AAR95,
Annex C]. provides a mechanism by which a task can obtain its own unique iden-
tification which can be passed to other tasks [a-taside.ads]:

package Ada.Task_Identification is

type Task_Id is private;
Null_Task_Id : constant Task_Id;

function "=" (Left, Right : Task_Id) return Boolean;

function Image (T : Task_Id) return String;

function Current_Task return Task_Id;

procedure Abort_Task (T : Task_Id);

18

Chapter 2: Task Types and Objects (C) Javier Miranda, 2002 (v 1.0)

function Is_Terminated (T : Task_Id) return Boolean;

function Is_Callable (T : Task_Id) return Boolean;

private
-- Implementation defined
. . .

end Ada.Task_Identification;

As well as this package, the Annex supports two attributes:

� For any prefix T of a task type, T’Identity returns a copy of the task
identifier.

� For any prefix E that denotes an entry declaration, E’Caller returns the
task identifier of the task whose entry call is being serviced. The attribute is
only allowed inside an entry body or an accept statement.

Care must be taken when using task identifiers since there is no guarantee
that, at some later time, the task will still be active or even in scope [BW98,
chapter 4.4].

19

(C) Javier Miranda, 2002 (v 1.0) Chapter 2: Task Types and Objects

2.2 GNAT Implementation

Although the GNAT run-time reuses most of the support provided by the low
level Pthreads library, it needs to handle some additional information to provide
the full Ada semantics: state of the Ada task (according to the Ada semantics),
parent, activator, etc. This information is stored by the run-time in a per-task
register called Ada Task Control Block (ATCB)1. In addition, some task specific
information is also required to store the task discriminants (the task parameters).
The compiler generates code which creates another register for such information.
The ATCB is linked with this register and with the corresponding Threads Control
Block (TCB) in the POSIX level (cf. Figure 2.2).

Compiler
Generated-Code
Level

GNARL
Level

System.Tasking
All_Tasks_List //

POSIX
Level

Discriminants
_Task_Id
Entry_Family

_Priority
_Size
_Task_Info
_Task_Name

T_TaskV

ATCB

Task_Arg
State
Parent
Activator
Master
All_Tasks_List
LL

TCB

Arg

Thread
Cond_Var
Lock

Discriminants
_Task_Id
Entry_Family

_Priority
_Size
_Task_Info
_Task_Name

T_TaskV

ATCB

TCB

Arg

Thread
Cond_Var
Lock

Task_Arg
State
Parent
Activator
Master
All_Tasks_List
LL

Figure 2.2: Run-Time Information Associated with Each Task.

When a task is created, the run-time dynamically generates a new ATCB and
1System.Tasking.Ada Task Control Block

20

Chapter 2: Task Types and Objects (C) Javier Miranda, 2002 (v 1.0)

inserts it in a list (All Tasks List2). ATCBs are always inserted in LIFO order (as
a stack). Therefore, the first ATCB in this list corresponds to the most recently
created task.

2.2.1 GNAT Task States

GNAT considers four basic states during task life (indicated by the State ATCB
field):

� Unactivated. The ATCB has been created and inserted in the All Tasks List,
but no thread of control has been assigned to execute its body.

� Runnable. The task is executing (although it may be waiting for a mutex).

� Sleep. The task is blocked.

� Terminated: The task is terminated, in the sense of ARM 9.3 (5). Any de-
pendents that were waiting on Ada terminate alternatives have been awak-
ened and have terminated themselves.

The sleep state is composed of the following sub-states:

� Activator Sleep: Waiting for created tasks to complete activation.

� Acceptor Sleep: Waiting on an accept or selective wait statement.

� Entry Caller Sleep: Waiting on an entry call.

� Async Select Sleep: Waiting to start the abortable part of an asynchronous
select statement.

� Delay Sleep: Waiting on a select statement with only a delay alternative
open.

� Master Completion Sleep: Master completion has two phases. In Phase 1
the task is sleeping in Complete Master having completed a master within
itself, and is waiting for the tasks dependent on that master to become ter-
minated or waiting on a terminate phase.

� Master Phase 2 Sleep: In phase 2 the task is sleeping in Complete Master
waiting for tasks on terminate alternatives to finish terminating.

2System.Tasking.All Tasks List

21

(C) Javier Miranda, 2002 (v 1.0) Chapter 2: Task Types and Objects

2.2.2 GNAT Masters Implementation

The master is a construct used to finalize local objects, including tasks (see sec-
tion 2.1.3). Each master handles the termination of an Ada scope to ensure the
Ada tasks termination semantics (all dependent tasks must terminate before its
master performs finalization on other objects that it created). It is associated with
the scope being executed by the Parent when the task was created. The run-time
is only concerned with masters for purposes of task termination.

GNAT associates one identifier to each master, and two values are associated
with each task: the master of its Parent (Master Of Task) and its internal master
nesting level (Master Within).

� Master Of Task is set to 1 for the environment task. The level 2 is re-
served for server tasks of the run-time (the so called Independent Tasks),
and the level 3 is for the library level tasks. When a task is created it inherits
the internal master nesting level of its Parent (the initial value of its Mas-
ter Of Task is initialized with the current value of its Parent Master Within).
This value remains unmodified during the new task life and is used to ensure
the Ada semantics for tasks finalization.

New_Task.Master_Of_Task = Activator.Master_Within

� Master Within is set to the initial Master Of Task value plus one. When
the tasks enters a scope with dependent tasks, its internal nesting level is
incremented to one.

Tasks created by an allocator do not necessarily depend on its activator; in
such case the activator’s termination may precede the termination of the newly
created task [AAR95, section 9.2(5a)] Therefore, the master of a task created by
the evaluation of an allocator is the declarative region which contains the access
type definition. Tasks declared in library-level packages have the main program
as their master. That is, the main program can not terminate until all library-level
tasks have terminated [BW98, chapter 4.3.2]. Given a task T, table 2.3 presents a
summary of the basic concepts used by the run-time for handling Ada task termi-
nation.

Example

In order to understand these concepts better, let’s apply them to the following
example.

22

Chapter 2: Task Types and Objects (C) Javier Miranda, 2002 (v 1.0)

Parent The task executing the master on which T depends.
Activator The task that created T’s ATCB and activated it.
Master of Task Parent’s scope on which T depends.
Master Within Nesting level of T dependent tasks.

Figure 2.3: Definition of Parent, Activator, Master of Task and Master Within.

procedure P is -- P: Parent = Environment Task;
-- Activator = Environment
-- Master_Of_Task = 1; Master_Within = 2;

task T1; -- T1: Parent = P; Activator = P
-- Master_Of_Task = 2; Master_Within = 3;

task body T1 is

task type TT;
task body TT is
begin

null;
end TT;

type TTA is access TT;
T2 : TT; -- T2: Parent = T1; Activator = T1

-- Master_Of_Task = 3; Master_Within = 4;

task T3; -- T3: Parent = T1; Activator = T1
-- Master_Of_Task = 3; Master_Within = 4;

task body T3 is
task T4; -- T4: Parent = T3; Activator = T3

-- Master_Of_Task = 4; Master_Within = 5;
task body T4 is
begin

null;
end T4;
T5 : TT; -- T5: Parent = T3; Activator = T3

-- Master_Of_Task = 4; Master_Within = 5;
T6 : TTA := new TT; -- T6: Parent = T1; Activator = T3

-- Master_Of_Task = 2; Master_Within = 3;
begin

null;
end T3;

begin
null;

end T1;

begin
null;

end P;

Parent and activator do not coincide in T6 because the task is created by means

23

(C) Javier Miranda, 2002 (v 1.0) Chapter 2: Task Types and Objects

of an Ada allocator (an Ada expression in the form ’new . . . ’). In this case the
parent of the new task is the task where the type is declared and the activator is the
task which executes the allocator. In the other cases, parent and activator coincide.

2.2.3 Compiler Task Translation

In order to understand the run-time behavior we first present the task translation
done by the compiler.

Task Specification

The Ada task type is translated by the compiler into a limited record with the
same discriminants. For example, the following task specification:

task type T_Task (Discriminant : DType) is
...

end T_Task;

. . . is translated by the compiler into the following code:

T_TaskE : aliased Boolean := False;
T_TaskZ : Size_Type := [Unspecified_Size |

Size_Type (Size_Expression)];
type T_TaskV [(Discriminant : DType)] is

limited record
_Task_Id : System.Tasking.Task_Id;
[Entry_Family : array (Bounds) of Void;]
[_Priority : Integer := Priority_Expression;]

[_Size : Size_Type := Size_Expression;]
[_Task_Info : Task_Info_Type := Task_Info_Expression;]
[_Task_Name : Task_Image_Type : new String’(Task_Name);]

end record;

The optional code (the code that it is not always generated by the compiler)
has been put between square brackets ([...]). First, a boolean flag E is declared
and initialized to false. It is set to True when the body of the task is elaborated.
The Z variable holds the task stack size (either the default value, unspecified size,
or the value set by a pragma Storage Size). Next the task type is translated by
the compiler into a limited record V with Discriminants present only if the corre-
sponding task type has discriminants. The first field contains the Task ID3 value

3System.Tasking.Task ID

24

Chapter 2: Task Types and Objects (C) Javier Miranda, 2002 (v 1.0)

(an access to the corresponding ATCB). One Entry Family component is present
for each entry family in the task definition. The bounds correspond to the bounds
of the entry family (which may depend on discriminants). Since the run-time only
needs such information for determining the entry index the element type is void.
The next three fields are present only if the corresponding pragma is present in the
task definition: the Size field corresponds to Storage Size pragma; Task Info cor-
responds to Task Info pragma, and Task Name corresponds to Task Name pragma.
A reference to this record is stored in the Task Arg4 ATCB field (cf. Figure 2.4).
This reference is used by the thread associated with the task to find the task dis-
criminants.

Compiler
Generated-Code
Level

GNARL
Level

System.Tasking
All_Tasks_List //

POSIX
Level

Discriminants
_Task_Id
Entry_Family

_Priority
_Size
_Task_Info
_Task_Name

T_TaskV

ATCB

Task_Arg
State
Parent
Activator
Master
All_Tasks_List
LL

TCB

Arg

Thread
Cond_Var
Lock

Discriminants
_Task_Id
Entry_Family

_Priority
_Size
_Task_Info
_Task_Name

T_TaskV

ATCB

TCB

Arg

Thread
Cond_Var
Lock

Task_Arg
State
Parent
Activator
Master
All_Tasks_List
LL

Figure 2.4: Compiler-Generated Information Associated with Each Task.

4System.Tasking.Task Arg

25

(C) Javier Miranda, 2002 (v 1.0) Chapter 2: Task Types and Objects

Task body

The run-time needs an access to subprogram to call the task user code. There-
fore the compiler translates the task body into a procedure. For example, the
following task body:

task body T_Task is
<Declarations>

begin
<Statements>

end T_Task;

. . . is translated by the compiler into the following code:

1: procedure T_TaskB (_task : access T_TaskV) is
2: Discriminant : Dtype renames _task.Discriminant;
3:
4: procedure _Clean is
5: begin
6: Abort_Defer;
7: GNARL.Complete_Task;
8: Abort_Undefer;
9: end _Clean;
10:
11: begin
12: Abort_Undefer;
13: <Declarations>
14: [Activate_Tasks]
15: GNARL.Complete_Activation;
16: <Statements>
17: at end
18: _Clean;
19: end T_TaskB;

The call to Activate Tasks5 (line 14) is only generated if the task body is an
activator. The at end handler is a single point of task finalization that is called
even in the presence of exceptions or task abortion [BG94, section 6.9.5].

2.2.4 Run-Time Subprograms for Task Creation and Termina-
tion

Figure 2.5 presents the sequence of calls to the run-time issued by the compiler
generated code during the creation and finalization of a task. Each rectangle rep-
resents a subprogram.

5System.Tasking.Stages.Activate Tasks

26

Chapter 2: Task Types and Objects (C) Javier Miranda, 2002 (v 1.0)

1) GNARL.Enter_Master
2) GNARL.Create_Task
3) GNARL.Activate_Task
 :
 User Code
 :
6) GNARL.Complete_Master

Activator

 Task Declarations
 :
4) GNARL.Complete_Activation
 :
 Task User Code
 :

 Task Wrapper

New Task

Call the task body procedure

 5) GNARL.Complete_Task

Task Body Procedure

Figure 2.5: GNARL Subprograms Called During the Task Life-Cycle

The whole sequence is as follows:

1. Enter Master is called in the Ada scope where the task or access type des-
ignating objects containing tasks is declared.

2. Create Task is called to create the ATCBs of the new tasks and to insert it
in the all tasks list and in the activation chain (see section 2.2.4).

3. Activate Tasks is called to create new threads and to associate them to the
new ATCB (the ATCBs in the activation chain). When all the threads have
been created the activator becomes blocked until they complete the elabo-
ration of their declarative part.

The thread associated with the new task executes a Task Wrapper procedure.
This procedure has some locally declared objects that serve as per-task run-time
local data. The Task Wrapper calls the Task Body Procedure (the procedure gen-
erated by the compiler which has the task user code) which elaborates the decla-
rations within the task declarative part, setting up the local environment in which
it will later execute its sequence of statements. (In general the compiler must gen-
erate code for the elaboration of Ada declarations.) Note that if these declarations
also have task objects, then there is a chained activation: this task becomes the
activator of dependent task objects and can not start the execution of its user code
until all dependent tasks complete their activation.

4. Complete Activation is called when the new thread completes the elabo-
ration of all the task declarations, but before executing the first task body
sentence. This call is used to signal to the activator that it need no longer
wait for this task to finish activation. If this is the last task which completes
its activation, the activator becomes unblocked.

27

(C) Javier Miranda, 2002 (v 1.0) Chapter 2: Task Types and Objects

From here the activator and the new tasks proceed concurrently and their ex-
ecution is controlled by the POSIX scheduler. Afterward, any of them can termi-
nate their execution and therefore the following two steps can be interchanged.

5. Complete Task is called when the task terminates its execution. Even though
a completed task cannot execute any more, it is not yet safe to deallocate
its working storage at this point because some reference may still be made
to the task. In particular, it is possible for other tasks to still attempt entry
calls to a terminated task, to abort it, and to interrogate its status via the
’Terminated and ’Callable attributes. Nevertheless, completion of a task re-
quires action by the run-time. The task must be removed from any queues
on which it may happen to be, and must be marked as completed. A check
must be made for pending calls on entries of the completed task, and the
exception Tasking Error must be raised in any such calling tasks [BR85,
Section 4].

6. Complete Master is called by the activator when it finishes the execution
of this scope. At this point the activator waits until all its dependent tasks
either complete their execution (and call Complete Task) or are blocked in a
Terminate alternative. Alive dependent tasks in a terminate alternative are
forced to terminate.

In general this is the earliest point at which it is completely safe to discard
all storage associated with its dependent tasks (because it is at this point that
execution leaves the scope of the task’s type declaration). This is so because
reference to a task may be passed far from its point of creation, as via task
access variables and functions returning task values [BR85, Section 4].

In the following sections we make a detailed description of the work done by
the following run-time subprograms: Enter Master, Create Task, Activate Tasks,
Complete Activation, Complete Task, and Complete Master.

1. Enter Master

Enter Master6 just increments the current value of Master Within in the activator.

6System.Tasking.Stages.Enter Master

28

Chapter 2: Task Types and Objects (C) Javier Miranda, 2002 (v 1.0)

2. Create Task

Create Task7 carries out the following actions:

1. If no priority was specified for the new task then assign to it the base priority
of the activator.

The priority of a task where no priority is specified is the priority at which
it was created, that is, the activator priority at the time that it calls Cre-
ate Task [BG94, section 6.7.5]

2. Traverse the parents list of the activator to look for the parent of the new
task via the master level (the Parent Master is lower than the master of the
new task).

3. Defer the abortion.

4. Request dynamic memory for the new ATCB8.

5. Lock All Tasks List because this lock is used by Abort Dependents
and Abort Tasks and, up to this point, it is possible that the new task
is part of a family of tasks that is being aborted.

6. Lock the Activator’s ATCB.

7. If the Activator has been aborted then unlock the previous
locks (All Tasks Lists and its ATCB), undefer the abortion
and raise the Abort Signal internal exception.

8. Initialize all the fields of the new ATCB9 (Callable set to
True; Wait Count, Alive Count and Awake Count set to 0).

9. Unlock the Activator’s ATCB.

10. Unlock All Tasks List.

11. Add some data to the new ATCB to manage exceptions10.

12. Insert the new ATCB in the activation chain.

13. Initialize the structures associated with the task attributes.

14. Undefer the abortion.
7System.Tasking.Stages.Create Task
8System.Task Primitives.Operations.New ATCB
9System.Tasking.Initialize ATCB

10System.Soft Links.Create TSD

29

(C) Javier Miranda, 2002 (v 1.0) Chapter 2: Task Types and Objects

From this point the new task becomes callable. When the call to this run-
time subprogram returns the code generated by the compiler executes a sentence
which sets to True the variable which reminds that the task has been elaborated
(described in section 2.2.3).

3. Activate Tasks

With respect to the tasks activation the Ada Reference Manual says that “all tasks
created by the elaboration of object declarations of a single declarative region
(including subcomponents of the declared objects) are activated together. Sim-
ilarly, all tasks created by the evaluation of a single allocator are activated to-
gether.” [AAR95, section 9.2(2)]

GNAT uses an auxiliary list (the Activation List) to achieve this semantics. In
a first stage all the ATCBs are created and inserted in the two lists (All Tasks and
Activation lists); in a second stage the Activation List is traversed and new threads
of control are created and associated with the new ATCBs. Although ATCBs are
inserted in both lists in LIFO order (as a stack) all activated tasks synchronize on
the activators lock before they start their activation in priority order. The activation
chain is not outstanding when all its tasks have been activated.

Activate Tasks11 performs the following actions:

1. Defer abortion.

2. Lock All Tasks List to prevent activated tasks from racing ahead before we
finish activating all tasks in the Activation Chain.

3. Check that all task bodies have been elaborated. Raise Program Error oth-
erwise.

For the activation of a task, the activator checks that the task body is already
elaborated. If two or more tasks are being activated together (see ARM 9.2),
as the result of the elaboration of a declarative part or the initialization for
the object created by an allocator, this check is done for all of them before
activating any.

Reason: As specified by AI-00149, the check is done by the activator, rather
than by the task itself. If it were done by the task itself, it would be turned
into a Tasking Error in the activator, and the other tasks would still be acti-
vated [AAR95, section 3.11(12)].

11System.Tasking.Stages.Activate Tasks

30

Chapter 2: Task Types and Objects (C) Javier Miranda, 2002 (v 1.0)

4. Reverse the activation chain so that tasks are activated in the order they were
declared. This is not needed if priority-based scheduling is supported, since
activated tasks synchronize on the activators lock before they start activating
and so they should start activating in priority order.

5. For all tasks in the activation chain do the following actions:

(a) Lock the task’s parent.

(b) Lock the task ATCB.

(c) If the base priority of the new task is lower than the activator priority,
raise the priority to the activator priority, because a task being activated
inherits the active priority of its activator [AAR95, section D.1(21)].

(d) Create a new thread by means of GNULL call12 and associates it to the
task wrapper. If the creation of the new thread fails, release the locks
and set the caller ATCB field Activation Failed to True.

(e) Set the state of the new task to Runnable.

(f) Initialize the counters of the new task (Await Count and Alive Count
set to 1)

(g) Increment the parent counters (Await Count and Alive Count).

(h) If the parent is completing the master associated with this new task, in-
crement the number of tasks that the master must wait for (Wait Count).

(i) Unlock the task ATCB.

(j) Unlock the task’s parent.

6. Lock the caller ATCB.

7. Set the activator state to Activator Sleep

8. Close the entries of the tasks that failed thread creation, and count those that
have not finished activation.

9. Poll priority change and wait for the activated tasks to complete activation.
While the caller is blocked POSIX releases the caller lock.

Once all of these activations are complete, if the activation of any of the
tasks has failed (due to the propagation of an exception), Tasking Error is
raised in the activator, at the place at which it initiated the activations. Oth-
erwise, the activator proceeds with its execution normally. Any task aborted
prior to completing their activation are ignored when determining whether
to raise Tasking Error [AAR95, section 9.2(5)].

12System.Task Primitives.Operations.Create Task

31

(C) Javier Miranda, 2002 (v 1.0) Chapter 2: Task Types and Objects

10. Set the activator state to Runnable.

11. Unlock the caller ATCB.

12. Remove the Activation Chain.

13. Undefer the abortion.

14. If some tasks activation failed then raise Program Error. Tasking Error is
raised only once, even if two or more of the tasks being activated fail their
activation [AAR95, section 9.2(5b)].

4. Complete Activation

Complete Activation13 is called by each task when it completes the elaboration of
its declarative part. It carries out the following actions:

1. Defer the abortion.

2. Lock the activator ATCB.

3. Lock self ATCB.

4. Remove dangling reference to the activator (since a task may outline its
activator).

5. If the activator is in the Activator Sleep State then decrement Wait Count
in the activator. If this is the last task to complete the activation in the
Activation Chain, wake up the activator so it can check if all tasks have
been activated.

6. Set the priority to the base priority value.

7. Undefer the abortion.

5. Complete Task

The Complete Task14 subprogram performs the following single action:

1. Cancel queued entry calls.

13System.Tasking.Stages.Complete Activation
14System.Tasking.Stages.Complete Task.

32

Chapter 2: Task Types and Objects (C) Javier Miranda, 2002 (v 1.0)

From this point the task becomes not callable.

6. Complete Master

The run-time subprogram Complete Master15 carries out the following actions:

1. Traverse all ATCBs counting how many active dependent tasks does this
master currently have (and terminate all the still unactivated tasks). Store
this value in Wait Count.

2. Set the current state of the activator to Master Completion Sleep.

3. Wait until dependent tasks are all terminated or ready to terminate.

4. Set the current state of the activator to Runnable.

5. Force those tasks on terminate alternatives to terminate (by aborting them).

6. Count how many active dependent tasks does this master currently have.
Store this value in Wait Count.

7. Set the current state of the activator to Master Phase 2 Sleep State.

8. Wait for all counted tasks to terminate themselves.

9. Set the current state of the activator to Runnable.

10. Remove terminated tasks from the list of dependents and free their ATCB.

11. Decrement Master Within

2.3 Summary

In this chapter we have seen the basic data structures used by the GNAT run-time
to support Ada tasks, the task states considered by GNARL, the task translation
done by the compiler, and the subprograms called by this generated code. In
summary, the main aspects covered in this chapter are:

1. Each task has an associated Ada Task Control Block (ATCB).
15System.Tasking.Stages.Complete Master

33

(C) Javier Miranda, 2002 (v 1.0) Chapter 2: Task Types and Objects

2. There is a list which contains all the ATCBs (All Tasks List).

3. One auxiliary list is used to activate task objects in the same Ada scope at
the same time.

4. Masters define a task scope which allow the run-time to manage task final-
ization.

5. The Ada task specification is translated by the compiler into a limited record;
the Ada task body is translated into a procedure with intermixed calls to the
RTS to manage the task body creation, activation and finalization.

6. The environment task is responsible for the RTS initialization. After this
work, it also executes the main Ada subprogram.

34

Chapter 3

The Rendezvous

The Rendezvous is the basic mechanism for synchronization and communication
of Ada tasks. The model of Ada is based on a client/server model of interaction.
One task, the server, declares a set of services that it is prepared to offer to other
tasks (the clients). It does this by declaring one or more public entries in its task
specification. A rendezvous is requested by one task making an entry call on an
entry of another task. For the rendezvous to take place the called task must accept
this entry call. During the rendezvous the calling task waits while the accepting
task executes. When the accepting task ends the rendezvous both tasks are freed
to continue their execution [BR85, Section 6].

This chapter is organized in two parts. In this first part the Ada rendezvous
model and syntax are presented. The second part describes the GNAT implemen-
tation.

3.1 The Ada Rendezvous

3.1.1 Entry Declaration

Each entry identifies the name of the service, the parameters that are required
with the request and the results that will be returned [BW98, section 5.1]. The
Ada Reference Manual defines the syntax as follows [AAR95, section 9.5.2]:

entry_declaration ::=
entry defining_identifier

[(discrete_subtype_definition)] parameter_profile;

35

(C) Javier Miranda, 2002 (v 1.0) Chapter 3: The Rendezvous

The entry declaration must be placed inside the task specification. The param-
eter profile is the same for Ada procedures (in, out and in out — with in being the
default). Access parameters are not permitted, though parameters of any access
type are, of course, allowed. Default parameters are also allowed. The optional
Discrete Subtype Definition in the entry declaration is used to declare a family of
entries (an array of entries), all of which will have the same formal part. Similar to
procedures, entries can be overloaded. This means that a task can have more than
one entry with the same name if the parameters to the entries are different [BW98,
section 5.2].

3.1.2 Simple Mode Entry Call

A client task (also referred to as calling task) issues an “entry call” on the server
task by identifying both the server and the required entry [BW98, section 5.1].

entry_call_statement ::= entry_name [actual_parameter_part];

As the reader can see, a simple mode entry call is much like a procedure
call. It may have parameters, which permit values to be passed in both directions
between the calling and accepting tasks. Semantically the calling task is blocked
until completion of the requested rendezvous. If the call is completed normally,
it resumes execution with the statement following the call, just as it would after
return from a procedure call. Recovery from any exception raised by the call is
also treated as it would be for a procedure call. One minor difference detectable
by the calling task is that an entry call may result in Tasking Error being raised in
the calling task, whereas an ordinary procedure call would not [BR85, Section 6].

3.1.3 Conditional Entry Calls

The conditional entry call allows the task client to withdraw the offer to commu-
nicate if the server task is not prepared to accept the call immediately [BW98,
section 6.9.2]. The syntax is [AAR95, section 9.7.3]:

conditional_entry_call ::=
select

entry_call_alternative
else

sequence_of_statements

36

Chapter 3: The Rendezvous (C) Javier Miranda, 2002 (v 1.0)

end select;

entry_call_alternative ::=
entry_call_statement [sequence_of_statements]

3.1.4 Accept Statement

The server task indicates a willingness to provide the service at any particular time
by executing an “accept” statement [BW98, section 5.1]. The syntax is [AAR95,
section 9.5.2]:

accept_statement ::=
accept entry_direct_name [(entry_index)] parameter_profile [do

handled_sequence_of_statements
end [entry_identifier]];

The accept statement specifies the actions to be performed when the entry is
called. It must be placed in the task body; it can not be placed in a procedure
which is called by the task body [BW98, section 5.3]. For the communication to
occur between the client and the server, both tasks must have issued their respec-
tive requests. When they have, the communication takes place; this is called the
rendezvous because both tasks have to meet at the entry at the same time. When
the rendezvous occurs, any in (and in out) parameters are passed to the server
task from the client. The server task then executes the code inside the accept
statement. When this statement finishes, out (and in out) parameters are passed
back to the client and both tasks proceed independently and concurrently [BW98,
section 5.1].

It is quite possible that the client and server will not both be in a position to
communicate at exactly the same time. For example, the operator may be will-
ing to accept a service request but there may be no subscribers issuing an entry
call. For the simple rendezvous case, the server must wait for a call; whilst it
is waiting it frees up any processing resource it is using; a task which is gener-
ally waiting for some event to occur is usually termed suspended or blocked. If
a client issues a request and the server is not ready to accept the request (either
because it is already servicing another request or it is doing something else), then
the client must wait. Clients waiting for service at a particular entry are queued.
The order of the queue depends on whether the Ada implementation supports the
Real-Time Systems Annex [AAR95, Annex D]. If the annex is not supported, then
the queue is first-in-first-out; otherwise other possibilities are allowed including
priority queuing [BW98, section 5.1].

37

(C) Javier Miranda, 2002 (v 1.0) Chapter 3: The Rendezvous

If an exception is raised during the rendezvous, then the rendezvous is termi-
nated and the exception is raised again in both the server (called) and the client
(calling) task. In addition, when a task attempts to call another task that has al-
ready terminated (completed or has become abnormal), the caller task gets the
exception Tasking Error raised at the point of the call [BW98, section 5.7].

3.1.5 Selective Accept

The “selective accept” allows a server task to [BW98, section 6.1]:

� wait for more than a single rendezvous at any time;

� time-out if no rendezvous is forthcoming within a specified period (see sec-
tion 5.1.5);

� withdraw its offer to communicate if no rendezvous is immediately avail-
able;

� terminate if no clients can possibly call its entries.

The syntax of the selective accept is [AAR95, section 9.7.1]:

selective_accept ::=
select

[guard]
select_alternative

or
[guard]
select_alternative

[else
sequence_of_statements]

end select;

guard ::= when condition =>

select_alternative ::=
accept_alternative
| delay_alternative
| terminate_alternative

accept_alternative ::=
accept_statement [sequence_of_statements]

delay_alternative ::=
delay_statement [sequence_of_statements]

terminate_alternative ::= terminate;

38

Chapter 3: The Rendezvous (C) Javier Miranda, 2002 (v 1.0)

A selective accept must contain at least one accept alternative. It is possible
that several clients may be waiting on one or more of the entries when the server
task executes the select statement. In this case, the one chosen is implementa-
tion dependent. This means that the language itself does not define the order in
which the requests are serviced. If the implementation is supporting the Real-
Time Systems Annex [AAR95, section D], then certain orderings can be defined
by the programmer. For general-purpose concurrent-programming, the program-
mer should assume that the order is arbitrary; that way the program cannot make
any assumptions about the implementation of the language and thus it will be
portable across different implementation approaches. By default, single queues
are serviced on a first-come first-served basis [BW98, section 6.1].

Each selective accept alternative can have a guard associated with it. This
guard is a boolean expression which is evaluated when the select statement is ex-
ecuted. If the expression evaluates to True, the alternative is eligible for selection.
If it is False, then the alternative is not eligible for selection during this execution
of the select statement, even if clients are waiting on the associated entry. It is an
error if a selective accept statement has a guard on each of its alternatives and all
the guards evaluate to False. When this happens, the exception Program Error
is raised. Alternatives without guards are deemed to have “true” guards [BW98,
section 6.2].

The else part allows the server to withdraw its offer to communicate if no call
is immediately available. The else part can not be guarded and consequently only
one else part may appear in a single select statement [BW98, section 6.4].

The delay alternative of the selective accept allows a server task to time-out if
an entry call is not received within a certain period of time. The time-out can be
a relative or an absolute delay. If the relative time expressed is zero or negative,
or the absolute time has passed, then the delay alternative is equivalent to having
an “else part”. More than one delay alternative is allowed, though only the delay
with the smallest time interval will act as the time-out. Relative and absolute delay
alternatives can not be mixed in a single select statement [BW98, section 6.3].
Timed sentences will be analyzed in chapter 5.

The terminate alternative allows a server task to become completed when the
following conditions are satisfied [BW98, section 6.6]:

� The task depends on some master whose execution is completed (the con-
cept of the “master” is explained in section 2.1.3)

� Each task which depends on the master considered is either already ter-
minated or similarly blocked at a select statement with an open terminate

39

(C) Javier Miranda, 2002 (v 1.0) Chapter 3: The Rendezvous

alternative.

When both the above conditions are satisfied, not only is the server task com-
pleted but so also are all tasks that depend on the master being considered. Once
these tasks are completed any associated finalization code is executed [BW98,
section 6.6].

3.1.6 The Count Attribute

Each entry queue has an attribute associate with it that allows the current length of
the queue to be accessible to the owning task. E’Count returns a natural number
representing the number of entry calls currently on the entry E, where E is either
a single entry or a single entry of a family [BW98, section 5.3.1]. The Count
attribute can only be used within the body of the task but not within a dependent
subprogram.

40

Chapter 3: The Rendezvous (C) Javier Miranda, 2002 (v 1.0)

3.2 GNAT Implementation

Achieving rendezvous ordinarily requires that one of the two tasks wait until the
other is ready. In the case that more than one task is waiting on the same entry
of a task, Ada requires the calls be accepted in first-in-first-out order. An imple-
mentation must therefore maintain data structures to keep track of which tasks are
waiting on entry calls, which entries they are calling, and in what order the calls
on each entry of a task arrived [BR85, Section 6].

3.2.1 Entry Call and Parameters

GNAT associates a record to each entry call: the Entry Call Record1. It is used
to group all the run-time information associated with the entry call. It includes
the identifier of the called entry, the current state of the entry call, the links to the
previous and next queued entry calls, etc.

The compiler generates one record with one field associated with each en-
try parameter: the Entry Parameters Record. The compiler also generates code
which fills these fields with the address of the corresponding parameter. (In case
of simple Ada types—Integer, Float, enumeration, etc.— the compiler generates
code which declares local variables, copies the real parameter in these variables
and stores the address of these variables in the corresponding field of the Entry
Parameters Record). The address of the Entry Parameters Record is then passed
to the GNAT run-time. The run-time stores the address of the Entry Parameters
Record in the Uninterpreted Data2 field of the Entry Call Record.

As a summary, Figure 3.1 presents the GNAT run-time data structures used to
handle an entry call to the entry E of the following task specification:

task T is
entry E (Number : in Integer; Text : in String);

end T;

3.2.2 Simple Mode Entry Call

Due to the similarity of the simple mode entry call and the procedure call, the
compiler translates a simple mode entry call into a procedure call.

1System.Tasking.Entry Call Record
2System.Tasking.Uninterpreted Data

41

(C) Javier Miranda, 2002 (v 1.0) Chapter 3: The Rendezvous

Compiler
Generated-Code
Level

ATCB

Task_Arg
State
 . . .
Entry_Call

All_Tasks_Link
LL

Thread
Cond_Var
Lock

Run-Time
Level

. . .
Uninterpreted_Data
. . .

Entry Call Record

Number
Text

Parameters Block
Integer Variable

String Variable

Figure 3.1: Entry Call.

declare
P : Parms_Block := (Parm1, Parm2, ..., ParmN);

begin
GNARL.Call_Simple (Task_ID, Entry_ID, P’Address);
[Parm1 := P.Parm1;]
[Parm2 := P.Parm2;]
[...]

end;

P is an aggregate which saves the parameters (the Entry Parameters Record
described in section 3.2.1). The address of this aggregate is passed to the GNAT
run-time, along with the identifiers of the called task and entry. The assignments
after the call are present only in the case of in out or out parameters for elementary
types, and are used to assign back the resulting values of such parameters. Let’s
see the actions performed by the run-time.

42

Chapter 3: The Rendezvous (C) Javier Miranda, 2002 (v 1.0)

� Call Simple3:

1. Call the GNARL subprogram Call Synchronous

� Call Synchronous4:

1. Defer the abortion.

2. Create and elaborate a new Entry Call Record and associate to it the
entry call parameters (the Entry Parameters Record).

3. Call the GNARL subprogram Task Do Or Queue.

4. Wait for the completion of the rendezvous (Wait For Completion5).

5. Undefer the abortion.

6. Raise any pending exception from the entry call (Check Exception6).

� Task Do Or Queue7:

1. Try to serve the call immediately. If the acceptor is accepting some
entry call and the current call can be accepted the following actions
are done:

(a) Commit the acceptor to rendezvous with the caller.
(b) If the acceptor is in a terminate alternative then cancel the termi-

nate alternative. If the acceptor has no dependent tasks notify its
parent that the acceptor is again awake.

(c) If the accept statement has a null body (an accept used for tasks
synchronization) then wake up the acceptor, wake up the caller
and RETURN.

(d) If the accept statement has some body then call a run-time proce-
dure (Setup For Rendezvous With Body8) to insert the Entry Call
Record in the Accepted Entry Calls Stack of the acceptor task (de-
scribed in section 3.2.6), and to raise the priority of the acceptor
(if the caller priority is higher than the priority of the acceptor).
Then wake up the acceptor and RETURN.

3System.Tasking.Rendezvous.Call Simple
4System.Tasking.Rendezvous.Call Synchronous
5System.Tasking.Entry Calls.Wait For Completion
6System.Tasking.Entry Calls.Check Exception
7System.Tasking.Rendezvous.Task Do Or Queue
8System.Tasking.Rendezvous.Setup For Rendezvous With Body

43

(C) Javier Miranda, 2002 (v 1.0) Chapter 3: The Rendezvous

3.2.3 Conditional Entry Call

The efficient implementation of the conditional entry call requires to check if the
called task is ready to accept the call. If the test fails, the GNAT run-time returns
control immediately to the calling task. Otherwise, the actions are similar to those
for the simple mode call [BR85]. The compiler translates the conditional entry
call into the following code:

declare
P : Parms_Block := (Parm1, Parm2, ..., ParmN);
Successful : Boolean;

begin
GNARL.Task_Entry_Call (Task_ID,

Entry_ID,
P’Address,
Successful);

if Successful then
[Parm1 := P.Parm1;]
[Parm2 := P.Parm2;]
[...]
Statements; -- Statements after the entry call

else
Statements; -- Statements in the "else" part

end if;
end;

In this case the code generated by the compiler calls the GNARL subprogram
Task Entry Call9 with the same parameters of the simple mode entry call and
one additional out mode parameter (Successful). If the entry call is immediately
accepted this parameter is set to True by the run-time, and the statements after the
entry call are executed. Otherwise, the statements in the else part are executed.

3.2.4 Entries and Queues

The GNAT compiler associates a positive number to each task entry: the Entry
Identifier. This number corresponds with the position of the entry in the task
type specification (starting with 1). Families of entries are handled like individual
entries. For example, the following task has five entries: a single entry (Hello), a
family of entries (Do Work) and another single entry (Bye). Identifier 1 is assigned
to Hello; identifiers 2 to 4 are assigned to the entry family Do Work, and identifier
5 is assigned to Bye.

9System.Tasking.Rendezvous.Task Entry Call

44

Chapter 3: The Rendezvous (C) Javier Miranda, 2002 (v 1.0)

task T is
entry Hello (A : in Integer);
-- Hello Entry_Id = 1

entry Do_Work(1..3) (B : in Integer);
-- Do_Work (1) Entry_Id = 2
-- Do_Work (2) Entry_Id = 3
-- Do_Work (3) Entry_Id = 4
entry Bye;
-- Bye Entry_Id = 5

end T;

Each entry has one queue which stores all the pending entry calls. If the queue
is nonempty, the next caller to be served is at the head of the queue. The GNARL
implementation uses circular doubly linked lists so that checking, insertion and
deletion are all constant-time operations.

The ATCB field Entry Queues is an array indexed by the entry identifier. Each
element of this array has two fields: the Head and the Tail of the queue.

Head
Tail

Entry_Queues

ATCB
:
:

1

N

Entry_Call_Record

Prev
Next

Entry_Call_Record

Prev
Next

Acceptor Task

Head
Tail

Figure 3.2: Entry Queues.

3.2.5 Trivial Accept

The GNAT run-time classifies the Ada accept sentences into the following modes:
Trivial (accept without parameters and without code which is used to synchronize
Ada tasks), Simple (accept with parameters or code) and Selective (the Ada se-

45

(C) Javier Miranda, 2002 (v 1.0) Chapter 3: The Rendezvous

lective accept sentence). The trivial accept corresponds with the following Ada
code:

accept My_Entry;

The compiler translates this sentence into the following GNARL call:

GNARL.Accept_Trivial (Entry_ID);

This GNARL procedure performs the following actions:

� Accept Trivial10:

1. Defer the abortion.

2. If no entry call is still queued then block the acceptor task to wait for
the next entry call (Wait For Call11).

3. Extract the Entry Call Record from the head of the queue (Dequeue
Head12) and wake-up the entry caller (Wakeup Entry Caller13).

4. Undefer the abortion.

3.2.6 Accept Statement

When the accept has some code the GNAT run-time extracts the Entry Call Record
from the entry queue and pushes it in an Accepted Entry Calls Stack. The top
of this stack is referenced by the Call field of the acceptor’s ATCB (cf. Fig-
ure 3.3).The Entry Call Records in this stack are linked by means of the Accep-
tor Prev Call field. All the entry calls in this stack correspond to nested accept
statements executed by the acceptor task.

The simple mode accept corresponds with the following Ada code:

accept My_Entry (. . .) do
<< Entry_Body >>

end My_Entry;

10System.Tasking.Rendezvous.Accept Trivial
11System.Tasking.Rendezvous.Wait For Call
12System.Tasking.Queuing.Dequeue Head
13System.Tasking.Initialization.Wakeup Entry Caller

46

Chapter 3: The Rendezvous (C) Javier Miranda, 2002 (v 1.0)

ATCB

Acceptor Task

Entry_Call_Record

Prev_Call

Entry_Call_Record

Prev_Call

Entry_Call_Record

Prev_Call

Call

Accepted Entry Calls Stack

Head
Tail

Entry_Queues

1

N
Head
Tail

Entry_Call_Record

Prev
Next

Entry_Call_Record

Prev
Next

Queued Entry Calls

Figure 3.3: Simple Accept.

It is translated by the compiler to the following code:

declare
Params_Block_Address : Address;

begin
GNARL.Accept_Call (Entry_ID, Params_Block_Address);
<< Entry_Body >>
GNARL.Complete_Rendezvous;

exception
when others =>

GNARL.Exceptional Complete Rendezvous;
end;

The local variable Params Block Address is used to store the address of the Entry
Parameters Record. The user code is put by the compiler in middle of two calls to
GNARL. The GNARL procedure Accept Call carries out the following actions.

� Accept Call14:

1. Defer the abortion.

14System.Tasking.Rendezvous.Accept Call

47

(C) Javier Miranda, 2002 (v 1.0) Chapter 3: The Rendezvous

2. If the entry has no queued entry calls then block the acceptor tasks to
wait for the next entry call (Wait For Call15).

3. Extract the Entry Call Record from the head of the queue (Dequeue
Head) and push it in the Accepted Entry Calls Stack.

4. Update the out-mode parameter Param Access with the reference to
the Entry Parameters Record so that the compiler generated code can
access the entry parameters.

5. Undefer the abortion.

If no exception is raised during the execution of the user code the GNARL
subprogram Complete Rendezvous16 is called. This subprogram just calls Excep-
tional Complete Rendezvous notifying that no exception has been raised. If some
exception is raised Exceptional Complete Rendezvous is called from the excep-
tion handler. This procedure performs the following actions.

� Exceptional Complete Rendezvous17:

1. Defer the abortion.

2. Pop the reference to the Entry Call Record from the Accepted Entry
Calls Stack.

3. If an exception was raised, get its identifier from the entry call field
Exception To Raise and save its occurrence in the ATCB field Com-
piler Data. This exception will be propagated back to the caller when
the rendezvous is completed [AAR95, section 9.5.3].

4. Wake up the caller (Wakeup Entry Caller).

5. Undefer the abortion.

3.2.7 Selective Accept

The special implementation problem introduced by the selective wait is that a task
may at one instant be ready to accept a call on a set of several entries. From the
viewpoint of the Ada run-time, this is really two problems, since it comes up in
the processing of entry calls, as well as selective waits:

15System.Tasking.Rendezvous.Wait For Call
16System.Tasking.Rendezvous.Complete Rendezvous
17System.Tasking.Rendezvous.Exceptional Complete Rendezvous

48

Chapter 3: The Rendezvous (C) Javier Miranda, 2002 (v 1.0)

1. Since a task may be waiting on more than one open accept alternative, pro-
cessing an entry call requires checking whether the called entry corresponds
to one of the open alternatives.

2. Since there may be several open accept alternatives, processing the selective
wait requires checking the set of pending entry calls against the set of open
accept alternatives.

The need to be able to perform both of these operations efficiently strongly
influences an implementation’s choice of data structures. There are two obvious
ways to perform the first operation, checking whether a called entry has a currently
open accept alternative:

1.1. If the set of open accept alternatives is represented as a list, checking re-
quires comparing the called entry against each of the entries in this list. We
call this approach the use of an open entry list. It may be time consuming if
there are many open entries.

1.2. An alternative is to use a vector representation for the set of open entries:
the open accepts vector. This vector would have one component for each
entry of the task. Each component would minimally indicate whether the
corresponding entry is open.

Note that the accept vector or open entry list must be created at the time the
selective wait statement is executed, once it is known which alternatives are open.
The time needed to do this only depends on the number of alternatives in the
selective wait statement.

With separate queues for each entry, it is necessary to check the queue corre-
sponding to each open entry. This requires sequencing through the open entries.
Alternatively, if the open entries are represented by an open entry list, this check
can be performed more quickly, without looking at the non-open entries. This
may be a good reason to keep both an open entry list and an accept vector, though
this redundancy may cost more in overhead than it saves through faster execution
of the check for pending calls.

GNAT uses the Open Accepts Vector. Each element of this vector has two
fields: the entry identifier and a boolean which indicates if the accept statement
has a null body. Each element of the accept vector corresponds to the accept alter-
natives of the select statement (in the same order; first element of the accept vector

49

(C) Javier Miranda, 2002 (v 1.0) Chapter 3: The Rendezvous

corresponds to the first alternative, second element corresponds to the second al-
ternative, etc.). The entry identifier is set to 0 when the entry guard is closed. The
reference to the accept vector is stored in the Open Accepts ATCB field. For ex-
ample, the following task has three entries (

�
, � and �). In the select statement

the first two entries are open, but the third entry is closed. Additionally, the first
and third entry have a null body.

task T is
entry P; -- Entry Id = 1
entry Q; -- Entry Id = 2
entry R; -- Entry Id = 3

end T;

task body T is
begin

select
accept Q;

or
accept P do

...
end P;

or
when False =>
accept R;

end select;
end T;

Figure 3.4 has the corresponding Open Accepts Vector. The first accept alter-
native corresponds to the second entry (therefore, the Entry Id field is set to “2”)
which is open and has a null body. The second alternative corresponds to the first
entry, which is also open and has some user-defined code. Finally, the last alter-
native has the guarding condition closed and, therefore the Entry Id in the Open
Accepts Vector is set to “0”.

The GNAT compiler translates the selective accept to one scope where it de-
clares three variables: the Open Accepts Vector, the Index of the selected alterna-
tive and the address of the Entry Parameters Record. Index value 0 is used by the
run-time to indicate that the else alternative has been selected.

declare
Open_Accepts_Table : GNARL.Open_Accepts_Table;
Index : Natural;
Params_Block_Address : System.Address;

begin
GNARL.Selective_Wait
(Open_Accepts_Table, GNARL.Select_Mode,
Params_Block_Address, Index);

50

Chapter 3: The Rendezvous (C) Javier Miranda, 2002 (v 1.0)

Head
Tail

Entry_Queues

ATCB
:
:

1

N

Entry_Call_Record

Prev
Next

Entry_Call_Record

Prev
Next

Acceptor Task

Open_AcceptsEntry ID = 2
Null Body = True
Entry ID = 1
Null Body = False
Entry ID = 0
Null Body = True

Head
Tail

Call

Entry_Call_Record

Prev_Call

Entry_Call_Record

Prev_Call

Open_Accepts_Vector

Figure 3.4: Open Accepts Vector.

case Index is
when 0 =>

-- else part
...

when 1 =>
-- user code of the first accept
...

when 2 =>
-- user code of the second accept
...

end case;
end;

The user code associated with each alternative is translated to local procedures.
Below we have the general structure of these procedures.

procedure Entry_Name is

51

(C) Javier Miranda, 2002 (v 1.0) Chapter 3: The Rendezvous

begin
GNARL.Undefer_Abortion;
<< User Code >>
GNARL.Complete_Rendezvous;

exception
when others =>

GNARL.Exceptional_Complete_Rendezvous;
end Entry_Name;

The GNARL procedure Selective Wait carries out the following actions:

� Selective Wait18:

1. Defer the abortion.

2. Try to serve the entry call immediately. GNARL subprogram Se-
lect Task Entry Call19 selects one entry call following the queuing
policy being used.

(a) If there is some candidate and the accept has a null body then
complete the rendezvous, wake up the caller, undefer the abortion
and RETURN.

(b) If there is some candidate and the accept has some associated
code then insert the Entry Call Record in the Accepted Entry Calls
Stack (Setup For Rendezvous With Body20), update the reference
to the Parameters Record, undefer the abortion and RETURN.

(c) If there is no candidate but there are alternatives opened, wait for a
caller. In the future some caller will put an entry call record in the
Accepted Entry Calls Stack and it will wake up this acceptor. Then
this acceptor will update the reference to the entry parameters, it
will undefer the abortion, and it will RETURN.

(d) If there is a terminate alternative, notify its ancestors that this task
is on a terminate alternative (Make Passive21, and wait for normal
entry call or termination.

(e) If no alternative is open and no delay (or terminate) has been spec-
ified then raise the predefined exception Program Error.

18System.Tasking.Rendezvous.Selective Wait
19System.Tasking.Queuing.Select Task Entry Call
20System.Tasking.Rendezvous.Setup For Rendezvous With Body
21System.Tasking.Utilities.Make Passive

52

Chapter 3: The Rendezvous (C) Javier Miranda, 2002 (v 1.0)

3.2.8 The Count Attribute

The GNARL function Task Count22 implements this attribute and returns the num-
ber of queued entry calls in the specified entry queue.

3.3 Summary

The Rendezvous is the basic mechanism for synchronization and communication
of Ada tasks. In this chapter, the main aspects of the GNAT implementation have
been described. In summary:

� The run-time information associated with the entry call is grouped into an
Entry Call Record.

� The compiler generates one Entry Parameters Record with the address of
the real-parameters. GNARL registers the address of this record in a field
of the Entry Call Record.

� The entry queues are implemented by means of double linked lists of Entry
Call Records.

� Nested accepts are handled by means of one Accepted Entry Calls Stack (a
linked list of accepted Entry Call Records).

� An Accept Vector is used to evaluate the open guards of the selective accept.

22System.Tasking.Rendezvous.Task Count

53

(C) Javier Miranda, 2002 (v 1.0) Chapter 3: The Rendezvous

54

Chapter 4

Protected Objects

Ada 95 protected objects provide synchronization based on a data object rather
than a thread of control. Protected operations can be procedures, functions and
entries. Calls to protected procedures and entries are executed in mutual exclu-
sion; no other operation of the same protected object can proceed in parallel when
a protected procedure or entry is being executed. The functions can execute in
parallel, but not when a protected procedure or entry of that object is executing.
Functions are not permitted to affect the state of a protected object.

4.1 The Ada 95 Protected Object

A protected object in Ada encapsulates data items and provides access to them
only via protected subprograms on protected entries. The language guarantees
that these subprograms and entries will be executed in a manner that ensures that
the data is updated under mutual exclusion [BW98, chapter 7.1].

A protected unit may be declared as a type or as a single instance. In this latter
case it is said that the corresponding type is anonymous. A protected unit has
a specification and a body. The specification has the following syntax [AAR95,
section 9.4].

protected_type_declaration ::=
protected type defining_identifier [known_discriminant_part] is
protected_definition;

single_protected_declaration ::=
protected defining_identifier is protected_definition;

55

(C) Javier Miranda, 2002 (v 1.0) Chapter 4: Protected Objects

protected_definition ::=
protected_operation_declaration

[private
protected_element_declaration]

end [protected_identifier]

protected_operation_declaration ::=
subprogram_declaration

| entry_declaration
| aspect_clause

protected_element_declaration ::=
protected_operation_declaration

| component_declaration

Thus a protected type has an interface that can contain functions, procedures
and entries. As with tasks and records, the discriminants can only be a discrete
or access type [BW98, chapter 7.1]. The body is declared using the following
syntax:

protected_body ::=
protected body defining_identifier is

protected_operation_item
end [protected_identifier];

protected_operation_item ::=
subprogram_declaration

| subprogram_body
| entry_body
| aspect_clause

A protected type is a “limited type”, and therefore there are no predefined
assignment or comparison operators (the same is true for task types).

A protected procedure provides mutually exclusive read/write access to the
data encapsulated. Protected functions provide concurrent read-only access the
encapsulated data. This means that many function calls can be executed simul-
taneously. However, calls to a protected function are still executed mutually ex-
clusive with calls to a protected procedure. The core language does not define
the order in which tasks waiting to execute protected functions and protected pro-
cedures are executed. If, however, the Real-Time Systems Annex [AAR95, An-
nex D] is being supported, certain assumptions can be made about the order of
execution [BW98, chapter 7.2].

A protected entry is similar to a protected procedure in that it is guaranteed to
execute in mutual exclusion and has the read/write access the encapsulated data.
However, a protected entry is guarded by a boolean expression (called a Barrier)

56

Chapter 4: Protected Objects (C) Javier Miranda, 2002 (v 1.0)

inside the body of the protected object; if this barrier evaluates to false when
the entry call is made, the calling task is suspended until the barrier evaluates
to true and no other task are currently active inside the protected object. Hence
protected entry calls can be used to implement condition synchronization [BW98,
chapter 7.3].

protected type Signal_Object is
entry Wait;
procedure Signal;
function Is_Open return Boolean;

private
Open : Boolean := False;

end Signal_Object;

protected body Signal_Object is

entry Wait when Open is
begin

Open := False;
end Wait;

procedure Signal is
begin

Open := True;
end Signal;

function Is_Open return Boolean is
begin

return Open;
end Is_Open;

end Signal_Object;

The state of the object must be put in the private part of the specification.
The reason is that the protected object interface must provide all the information
required by the compiler to allocate the required memory in an efficient manner.

Clearly, it is possible for more than one task to be queued on a particular
protected entry. As with task queues, a protected entry is, by default, ordered
in a first-in-first-out fashion; however, if the Real-Time Systems Annex is being
supported, other queuing disciplines are allowed [BW98, chapter 7.3].

4.1.1 Entry Calls and Barriers

To issue a call to a protected object, a task simply names the object and the re-
quired subprogram or entry. As with task entry calls, the caller can use the select

57

(C) Javier Miranda, 2002 (v 1.0) Chapter 4: Protected Objects

statement to issue a timed or conditional entry call [BW98, chapter 7.4] (timed
conditional entry call will be analyzed in a separate chapter).

Object_Name.Entry_Name (Parameters)

select
Object_Name.Entry_Name (Parameters);
<<Statements>>;

else
<<Statements>>;

end select;

When a call on a protected procedure or protected entry is executed, the barrier
is evaluated; if the barrier is closed (evaluates to False), the call is queued. When
the execution of a protected procedure or entry is completed, all the barriers are
re-evaluated and, potentially, entry bodies are executed. The evaluation of the
entry barrier and the queuing of the entry call are also protected operations on
the associated object. Barrier evaluation, protected entry queuing operations and
protected subprogram execution are collectively referred to as protected actions.

Any exception raised during the evaluation of a barrier results in Program Error
being raised in all tasks currently waiting on the entry queues associated with the
protected object containing the barrier [BW98, chapter 7.8]).

4.1.2 The Eggshell Model

A queued entry call has precedence over other operations on the protected object.
This is often explained in terms of the eggshell model. The lock on a protected
object is the eggshell.

State

lock

Figure 4.1: Graphical Representation of the Protected Object.

58

Chapter 4: Protected Objects (C) Javier Miranda, 2002 (v 1.0)

Figure 4.1 presents a graphical representation of the protected objects. Tasks
flow of control is represented by means of shadowed circles; the protected object
levels are represented by means of a big circle (associated with the object lock)
and a big rectangle (associated with the object state and operations—represented
by small rectangles). Closed entries are represented by means of black rectangles;
opened entries are represented by means of while rectangles. In this example
the reader can see one single task executing one protected operation (in mutual
exclusion), several tasks queued in the entry queues and several additional tasks
queued in the lock.

To perform any protected operation, a task (represented by small shadowed
circles) must enter the eggshell. One protected procedure or entry call or several
protected function calls can be active in the eggshell at a time. Tasks attempting
to enter an eggshell that is occupied by a procedure or entry call will be blocked.

An entry call must enter the eggshell to evaluate the associated barrier (rep-
resented by small rectangles). If the barrier is Open (white small rectangle), the
entry body is executed inside the eggshell; otherwise (black small rectangle), the
call is queued within the eggshell. Since queued entry calls are not active, other
calls can enter the eggshell in which they are queued.

Queued entry calls become eligible to execute when their barriers become
Open. This need only be checked when they become true as the result of a pro-
tected procedure or entry call on the same object [AAR95], essentially treating the
barrier expression as though they depended only on the state of the protected ob-
ject. Therefore before an operation that may have changed the state of a protected
object exits the eggshell, any queued entry calls waiting on barriers that now eval-
uate to True must be executed. Only when the barriers of all entries with queued
calls are False can the eggshell be exited. This assures that all entry calls made
eligible by a state change are executed before any further operations are initiated.

4.1.3 Private Entries and Entry Families

As with tasks, protected objects may have private entries. These are not directly
visible to users of the protected object. They may be used during requeue opera-
tions [BW98, chapter 7.5].

A protected type can also declare a family of entries by placing a discrete
subtype definition in the specification of the entry declaration. Unlike task entry
families, however, the programmer need not provide a separate entry body for each
member of the family. The barrier associated with the entry can use the index of

59

(C) Javier Miranda, 2002 (v 1.0) Chapter 4: Protected Objects

the family (usually to index into an array of booleans) [BW98, chapter 7.5] (see
examples in [BW98, chapter 7.5])

4.1.4 Restrictions on Protected Objects

In general, code executed inside a protected object should be as brief as possible.
This is because whilst the code is being executed other tasks are delayed when they
try to gain access to the protected object. The Ada language clearly cannot enforce
a maximum length of execution time for a protected action. However, it does try
to ensure that a task cannot be blocked indefinitely waiting to gain access to a
protected procedure or a protected function. The ARM defines it to be a bounded
error to call a potentially blocking operation from within a protected action. The
following operations are defined as potentially blocking [BW98, chapter 7.6]:

1. A select statement.

2. An accept statement.

3. An entry call statement.

4. A delay statement.

5. Task creation or activation.

6. A call on a subprogram whose body contains a potentially blocking opera-
tion.

If a bounded error is detected, the predefined exception Program Error is
raised.

4.1.5 Elaboration and Finalization

A protected object is elaborated when it comes into scope in the usual way. How-
ever, a protected object cannot simply go out of scope if there are still tasks queued
on its entries. Finalization of a protected object requires that any tasks left on entry
queues have the exception Program Error raised [BW98, chapter 7.8]:

60

Chapter 4: Protected Objects (C) Javier Miranda, 2002 (v 1.0)

4.1.6 The Count Attribute

Protected object entries, like task entries, have a Count attribute defined that pro-
vides the current number of tasks queued on the specified entry. It is important
to note that even if a task is destined to end up on an entry queue (due to the
barrier being closed) it requires the write-lock to be placed on the queue. More-
over, having been queued, the Count attribute will have changed (for that queue)
and hence any barriers that have made reference to that attribute will need to be
re-evaluated [BW98, chapter 7.4].

61

(C) Javier Miranda, 2002 (v 1.0) Chapter 4: Protected Objects

4.2 GNAT Implementation

Ada does not specify which task executes the entry barrier and the entry body.
Protected entry bodies can be executed by any task, regardless of which task made
the corresponding entry call [GB94a, Section 5(3)]). Therefore two obvious can-
didates are (1) the task that called the entry and (2) the task which opens the barrier
of the entry [GMB93, Section 3.4]. They are referred to as the Self-Service Model
and the Proxy Model of protected entry execution, respectively.

4.2.1 Self-Service Versus Proxy

In the self-service mode1 a task exiting a protected object selects a task waiting on
an open entry barrier (if any) based on the entry queuing discipline in effect and
wakes it up, making it the active task within the eggshell.

In the proxy model, the task exiting the eggshell executes the entry body itself,
wakes the calling task and then repeats the check and entry body execution for
waiting callers, finally exiting the eggshell when there are no more entry calls
waiting on True barriers.

The principal advantages of the self-service model are that it permits more par-
allelism and simplifies schedulability analysis. Parallelism is increased because
on a multiprocessor the exiting task can proceed with its own execution in parallel
with the execution of the next queued call. Schedulability analysis is simplified
because a thread is allowed to continue with its own execution immediately after
the (presumably bounded) time it takes to complete the body of its own protected
operation and pass lock ownership to the next queued caller.

The principal advantage of the proxy model is simplicity. If an entry body
cannot be executed immediately, the calling task has only to suspend and wait
(some other task will be responsible for executing the entry body). More complex
features of protected objects, including timed and asynchronous entry calls, are
simplified even more by this model. However, schedulability analysis is compro-
mised by this model since a task attempting to exit an eggshell must first execute
all of the waiting entry calls whose barriers are open, and there is no language-
imposed restriction on the number of such calls that can be pending.

Using Pthreads to implement the self-service model introduces one problem.
The task attempting to exit an eggshell must be able to transfer ownership to a

1The contents of this section are a summary of [GMB93].

62

Chapter 4: Protected Objects (C) Javier Miranda, 2002 (v 1.0)

task waiting on an Open entry. However, there is no good way to solve it with
Pthreads because, though it is possible to force a thread to be given a mutex by
raising its priority over that of the other contenders, this may lead to unnecessary
context switches and degrades the implementation of Ada priority over Pthreads.
Therefore GNAT implements the proxy model.

4.2.2 Proxy Model: In-line Versus Call-Back Implementation

There are two possible implementations of the proxy model: In-line and Call-
back. In the In-line implementation the code generated for all the barriers and
entry bodies is put by the compiler in a single entry service procedure (cf. Fig-
ure 4.2). This procedure has a main loop which evaluates all the barriers and calls
a GNARL procedure to select the next entry code to be executed (the value 0 is
returned when there is no candidate). This service entries procedure is called at
the end of any protected action that might result in a change of state in the object.

GNAT

Comp iler

State

2

Service_Entries ()
loop

B(1) ←
B(2) ←
GNARL.Next (B, Index, Parms);
case Index is

when 1 =>

when 2 =>

when 0 => exit;
end case;

end loop;

1
2

1

protected body PO is

entry E1 when is

entry E2 when is

end PO;

1

2

1

2

lock

Figure 4.2: Proxy Model: In-Line Implementation.

In the Call-back implementation all the logic required to implement the seman-
tics of the protected objects is moved down to the GNARL level. The compiler
translates entry barrier to a function that returns a Boolean datum and translates
the entry body to a procedure (cf. Figure 4.3). In addition the compiler generates
a table with the access to these subprograms. The reference to this table must be

63

(C) Javier Miranda, 2002 (v 1.0) Chapter 4: Protected Objects

given to the Ada run-time.

GNARL

State

GNAT
Compiler

1

1

2

2

protected body PO is

entry E1 when is

entry E2 when is

end PO;

1

2

1

2

lock

func

func

proc

proc

Figure 4.3: Proxy Model: Call-Back Implementation.

Until version 2.04, the in-line implementation was used in GNAT. Then they
decided to implement both models and to compare both implementations. Al-
though the in-line implementation allows the compiler to make better optimiza-
tions, their results indicated that the call-back interface allows for much simpler
translations and eliminates some of the overhead inherent in the in-line interface’s
frequent alternation between the GNU Ada Run-Time and the application code.
The call-back interface also has a big advantage in the simplicity and understand-
ability of both the generated code and the internal logic of the compiler [GB95].
Therefore, the current versions of the GNAT compiler have the call-back imple-
mentation.

4.2.3 Protected Type Specification

The GNAT compiler translates the following protected type specification

protected type PO (<Discriminants>)is
procedure P (<Params>);
function F (<Params>) return ...;

private

64

Chapter 4: Protected Objects (C) Javier Miranda, 2002 (v 1.0)

<Private_Data>;
end PO;

. . . to the following code:

1: type poV (Discriminants) is new Limited_Controlled with
2: record
3: <Private_Data>
4: _object : aliased GNARL.Protection_Entries (<Num_Entries>);
5: end record;
6:
7: procedure Finalize (_object : poV) is
8: begin
9: -- Raise Program_Error to the queued tasks.

10: ...
11: end Finalize;

The protected type specification is translated to a record type declaration (lines
1 to 5). If the protected type has discriminants, the record type has the same
discriminants (in order to provide the same semantics). Private data is translated
to components of this record (line 3). The additional field object (line 4) contains
all the run-time data required to implement the protected object semantics (the
object lock, the entry queues, the object priority, etc. —see the GNARL data
type Protection Entries2). It is an aliased component because its access must
be passed to the GNU Ada Run-Time. As the reader can see, the record type is
Limited Controlled3. These are the reasons:

1. Limited. Protected objects can not be copied. In this way Ada ensures
that the object state can only be modified by its protected operations. This
semantics is provided by the Ada limited types.

2. Controlled. When the object finalizes, the predefined exception exception
Program Error must be raised to all the queued tasks. Therefore, the GNAT
compiler automatically generates a procedure which does this work (lines
10 to 14).

4.2.4 Protected Subprograms

For each protected subprogram, the GNAT compiler generates two subprograms:�
and

�
.

�
has the user code. It is only called when the object lock has been

2System.Tasking.Protected Objects.Entries
3Ada.Finalization

65

(C) Javier Miranda, 2002 (v 1.0) Chapter 4: Protected Objects

acquired.
�

is responsible to take the lock and to call
�

. This scheme allows a
protected subprogram to call another protected subprogram in the same object (in
this case the compiler generates a direct call to the corresponding

�
subprogram).

One additional parameter is added by the compiler to the parameters profile of the
protected subprograms: the object. Because protected procedures can modify
the object’s state, they receive the object as in out mode parameter. Protected
functions receive the object as an in mode parameter.

procedure procN (_object : in out poV; ...);
procedure procP (_object : in out poV; ...);

The compiler adds some renaming sentences to the declarations of the pro-
tected subprograms. These renamings simplify the access to the object discrimi-
nant and to the private state.

procedure procN (_object : in out poV; ...) is
<Discriminant_Renamings>
<Private_Object_Renamings>

begin
<Sequence_Of_Statements>

end procN;

All the sentences of the protected subprograms are properly modified by the
compiler to make use of these renamings when the discriminant or the object
private data fields are used. Let’s see the

�
subprogram in detail.

1: procedure procP (_object : in out poV; ...) is
2:
3: procedure Clean is
4: begin
5: GNARL.Service_Entries (_object._object’access);
6: GNARL.Unlock (_object._object’access);
7: GNARL.Abort_Undefer;
8: end Clean;
9:
10: begin
11: GNARL.Abort_Defer;
12: GNARL.Lock_Write (_object._object’access);
13: procN (_object; ...);
14: Clean;
15: exception
16: when others =>
17: declare
18: E : Exception_Occurrence;
19: begin
20: GNARL.Save_Occurrence (E, GNARL.Get_Current_Exception);
21: Clean;

66

Chapter 4: Protected Objects (C) Javier Miranda, 2002 (v 1.0)

22: GNARL.Reraise (E);
23: end;
24: end procP;

The first actions performed by the
�

subprogram are to defer the abortion4

(line 11) and to lock the object5 (line 12). After calling the
�

subprogram (line
13) we have two possible scenarios:

1. No exception was raised. In this case the local subprogram Clean is called
(line 14) to make the following actions: serve the opened entries with queued
tasks (line 5), unlock the protected object (line 6) and undefer the abortion
(line 7).

2. Some exception was raised. In this case, before propagating the excep-
tion to the calling task, the protected object must first service the entries
with queued tasks (according to the Proxy model). However, the execution
of these entries may also raise new exceptions (and the current exception
would be lost). Therefore, it is necessary to save the exception occurrence
originally raised (line 20) and re-raise it after local subprogram Clean re-
turns.

The GNARL subprogram Service Entries6 will be described in section 4.2.8.

4.2.5 Entry Barrier

Each entry barrier expression is translated by the compiler to a function that re-
turns a Boolean type; each entry body is put inside a procedure. A table7 is also
created by the compiler to store the access these subprograms. This table is used
by GNARL to evaluate the entry barriers and to call the selected entry body.

function EntryBarrier
(Object : Address;
Entry_Index : Protected_Entry_Index)

return Boolean
is

<Discriminant_Renamings>

4System.Tasking.Initialization.Defer Abort
5System.Tasking.Protected Objects.Entries.Lock Entries
6System.Tasking.Protected Objects.Entries
7The data type of this table is System.Tasking.Protected Objects.Protected Entry Body Array

67

(C) Javier Miranda, 2002 (v 1.0) Chapter 4: Protected Objects

<Private_Object_Renamings>
begin

return <Barrier_Expression>;
end EntryBarrier;

Because all the entry barriers must have the same profile (to create the access
table used to implement the call-back) the object parameter is passed by means of
an Address parameter.

4.2.6 Entry Body

The entry body is translated by the compiler to a procedure.

1: procedure EntryName
2: (Object : Address;
3: Parameters : Address;
4: Entry_Index : Protected_Entry_Index)
5: is
6: <Discriminant_Renamings>
7: <Private_Object_Renamings>
8:
9: type poVP is access poV;
10: function To_PoVP is new Unchecked_Conversion (Address, PoVP);
11: _object : PoVP := To_PoVP (Object);
12: begin
13: <Statement_Sequence>
14: GNARL.Complete_Entry_Body (_object._object);
15: exception
16: when others =>
17: GNARL.Exceptional_Complete_Entry_Body
18: (_object._object, GNARL.Get_GNAT_Exception);
19: end EntryName;

The object is again passed by means of an Address parameter (to create the
access table used to implement the call-back). Similar to the

�
subprograms

(section 4.2.4), the compiler adds some renamings to facilitate the access to the
object discriminant and to the private fields (lines 6 and 7). The compiler also
generates the unchecked conversion of the object parameter to the typed object
(lines 9 to 11). If no exception is raised by this code, the GNARL subpro-
gram Complete Entry Body8 is called to notify to the Ada run-time that this entry
body has been successfully serviced. Otherwise (some exception was raised) the
GNARL subprogram Exceptional Complete Entry Body9 is called. This subpro-

8System.Tasking.Protected Objects.Operations.Complete Entry Body
9System.Tasking.Protected Objects.Operations.Exceptional Complete Entry Body

68

Chapter 4: Protected Objects (C) Javier Miranda, 2002 (v 1.0)

gram stores the exception occurrence in the entry call. The exception will be
raised by the calling tasks after being woken up.

4.2.7 Entry Family

For each entry family the compiler adds one field to the type declaration which is
used to store the bounds of the entry family declaration (the contents of the array
are not used).

type poV (Discriminants) is new Limited_Controlled with
record

<Private_Data>
_object : aliased GNARL.Protection_Entries (<Num_Entries>);
Entry_Family_Name : array (<Bounds>) of Void;

end record;

4.2.8 Service Entries

The basic algorithm of the GNARL Service Entries10 procedure is as follows:

1 while <There_Is_Some_Open_Barrier_With_Queued_Entry_Calls> loop
2 Update object reference to the Entry_Call_Record
3 begin
4 Call the Entry_Body
5 exception
6 when others => Broadcast Program_Error
7 end
8 Remove the Reference to the Entry_Call_Record
9 GNARL.Wake_Up_Entry_Caller

10 end loop;

Line 1 is evaluated by the GNARL procedure Select Protected Entry Call11

which traverses all the entry queues and reevaluates the barrier of those entries
with queued entry calls. As soon as some barrier is open (it evaluates to true),
GNARL selects it to be serviced. In line 2, the Call In Progress field of the object
(see the Protection Entries type definition) is set to the selected entry call record
to remember that this is the entry call being attended. Lines 3 to 7 open a new
scope to issue the call to the entry body and to handle the exceptions in the user

10System.Tasking.Protected Objects.Entries.Service Entries
11System.Tasking.Queueing.Select Protected Entry Call

69

(C) Javier Miranda, 2002 (v 1.0) Chapter 4: Protected Objects

code. In this case the predefined exception Program Error is broadcasted to all
tasks currently queued in any entry of the protected object. In line 8 the reference
to the entry call is removed (this entry call has been attended) and the task entry
caller is woken up (line 9). After this work the loop is executed again and the
entry barriers are reevaluated. This process stops when no open barrier is found
in an entry with queued tasks.

4.2.9 Simple Mode Entry Call

A simple call to a protected entry is translated by the compiler to a call to the
GNARL subprogram Protected Entry Call. The entry calls to protected proce-
dures are handled in a similar way to task entry calls (this facilitates the imple-
mentation of the Ada requeue statement). Therefore, one Entry Call Record of
the Entry Calls Stack is used to issue the entry call.

� Protected Entry Call12:

1. Defer the abortion.

2. Write lock the object.

3. Elaborate a new Entry Call Record13.

4. Call the GNARL procedure PO Or Queue to issue the call or to en-
queue it in the corresponding entry queue.

5. Call the GNARL procedure PO Service Entries14 to service the opened
entries.

6. Unlock the object.

7. Undefer the abortion.

8. Check if some exception must be re-raised.

� PO Do Or Queue15:

1. Call the barrier function.
12System.Tasking.Protected Objects.Operations.Protected Entry Call
13System.Tasking.Entry Call Record
14System.Tasking.Protected Objects.PO Service Entries
15System.Tasking.Protected Objects.PO Do Or Queue

70

Chapter 4: Protected Objects (C) Javier Miranda, 2002 (v 1.0)

2. If the barrier is closed then enqueue the Entry Call Record, and RE-
TURN.

3. If the barrier is open then execute the steps 2 to 9 of the GNARL
procedure Service Entries.

4.2.10 Conditional Mode Entry Call

In this case the actions carried out by the GNAT run-time are basically the same
as in the previous case; however, if the barrier is closed the Entry Call Record is
not enqueued and the else part of the conditional entry call is executed.

4.3 Summary

In this chapter we have briefly presented the GNAT implementation of the pro-
tected objects. The main concepts are:

� There are two models to implement the protected objects: the self-service
and the proxy model. GNAT uses the Proxy Model.

� There are also two possibilities to implement the proxy model: the in-line
and the call-back implementation. Although the in-line implementation was
used in the initial versions, nowadays GNAT has adopted the Call-back im-
plementation.

� Protected subprograms are translated to two subprograms (
�

and
�

). P is
responsible to take the object lock and N has the user code.

� Barriers are translated to functions that return a Boolean data type.

� Entry bodies are translated to procedures.

71

(C) Javier Miranda, 2002 (v 1.0) Chapter 4: Protected Objects

72

Chapter 5

Time and Clocks

Many embedded systems need to coordinate their executions with the natural time
of their environment. To do this, they use a hardware clock that approximates
the passage of real-time. For long running programs (that is, years of non-stop
execution), this clock may need to be resynchronized to some external authority
(including the International Atomic Time) but from the program’s point of view
the clock is the source of real time [BW98, section 2.5].

5.1 Ada Time and Clocks

Ada provides access to the clock by providing two packages. The main sec-
tion of the Ada Reference Manual defines a compulsory library package called
Ada.Calendar that provides an abstraction for “wall clock” time that recognizes
leap years, leap seconds and other adjustments. In Real-Time Systems Annex, a
second representation is given that defines a monotonic (that is, non-decreasing)
regular clock (package Ada.Real Time). Both these representations should map
down to the same hardware clock but cater for different application needs [BW98,
section 2.5].

5.1.1 Ada.Calendar

The interface of this package is as follows [AAR95, section 9.6]:

73

(C) Javier Miranda, 2002 (v 1.0) Chapter 5: Time and Clocks

package Ada.Calendar is

type Time is private;

subtype Year_Number is Integer range 1901 .. 2099;
subtype Month_Number is Integer range 1 .. 12;
subtype Day_Number is Integer range 1 .. 31;

subtype Day_Duration is Duration range 0.0 .. 86_400.0;

function Clock return Time;

function Year (Date : Time) return Year_Number;
function Month (Date : Time) return Month_Number;
function Day (Date : Time) return Day_Number;
function Seconds (Date : Time) return Day_Duration;

procedure Split
(Date : Time;
Year : out Year_Number;
Month : out Month_Number;
Day : out Day_Number;
Seconds : out Day_Duration);

function Time_Of
(Year : Year_Number;
Month : Month_Number;
Day : Day_Number;
Seconds : Day_Duration := 0.0)
return Time;

function "+" (Left : Time; Right : Duration) return Time;
function "+" (Left : Duration; Right : Time) return Time;
function "-" (Left : Time; Right : Duration) return Time;
function "-" (Left : Time; Right : Time) return Duration;

function "<" (Left, Right : Time) return Boolean;
function "<=" (Left, Right : Time) return Boolean;
function ">" (Left, Right : Time) return Boolean;
function ">=" (Left, Right : Time) return Boolean;

Time_Error : exception;

private
. . .

end Ada.Calendar;

The current time is returned by the function Clock. Conversion between Time
and program accessible types is provided by subprograms Split and Time Of.
in addition some arithmetic and boolean operations are specified [BW98, sec-
tion 2.5].

74

Chapter 5: Time and Clocks (C) Javier Miranda, 2002 (v 1.0)

5.1.2 Ada.Real Time

The interface of this package is as follows [AAR95, section D.8]:

package Ada.Real_Time is

type Time is private;
Time_First : constant Time;
Time_Last : constant Time;
Time_Unit : constant := implementation-defined-real-number;

type Time_Span is private;
Time_Span_First : constant Time_Span;
Time_Span_Last : constant Time_Span;
Time_Span_Zero : constant Time_Span;
Time_Span_Unit : constant Time_Span;

Tick : constant Time_Span;
function Clock return Time;

function "+" (Left : Time; Right : Time_Span) return Time;
function "+" (Left : Time_Span; Right : Time) return Time;
function "-" (Left : Time; Right : Time_Span) return Time;
function "-" (Left : Time; Right : Time) return Time_Span;

function "<" (Left, Right : Time) return Boolean;
function "<=" (Left, Right : Time) return Boolean;
function ">" (Left, Right : Time) return Boolean;
function ">=" (Left, Right : Time) return Boolean;

function "+" (Left, Right : Time_Span) return Time_Span;
function "-" (Left, Right : Time_Span) return Time_Span;
function "-" (Right : Time_Span) return Time_Span;
function "*" (Left : Time_Span; Right : Integer) return Time_Span;
function "*" (Left : Integer; Right : Time_Span) return Time_Span;
function "/" (Left, Right : Time_Span) return Integer;
function "/" (Left : Time_Span; Right : Integer) return Time_Span;

function "abs" (Right : Time_Span) return Time_Span;

function "<" (Left, Right : Time_Span) return Boolean;
function "<=" (Left, Right : Time_Span) return Boolean;
function ">" (Left, Right : Time_Span) return Boolean;
function ">=" (Left, Right : Time_Span) return Boolean;

function To_Duration (TS : Time_Span) return Duration;
function To_Time_Span (D : Duration) return Time_Span;

function Nanoseconds (NS : Integer) return Time_Span;
function Microseconds (US : Integer) return Time_Span;
function Milliseconds (MS : Integer) return Time_Span;

type Seconds_Count is new Integer range -Integer’Last .. Integer’Last;

procedure Split (T : Time; SC : out Seconds_Count; TS : out Time_Span);

75

(C) Javier Miranda, 2002 (v 1.0) Chapter 5: Time and Clocks

function Time_Of (SC : Seconds_Count; TS : Time_Span) return Time;

private
...

end Ada.Real_Time;

5.1.3 Delay Statement

Ada tasks are able to delay their execution for a period of time. This enables
the task to be queued on some future event rather than busy-wait o calls to the
clock function. The expression following the delay must yield the value of the
predefined Ada type Duration. It is important to appreciate that this sentence is
an approximate time construct which indicates that the task will be delayed by at
least the amount specified [BW98, section 2.5.1].

delay_relative_statement ::= delay delay_expression

If a delay to an absolute time is required, then the delay until statement should
be used.

delay_until_statement ::= delay until delay_expression

As with delays, delay until is accurate only in its lower bound. The task
involved will not be released before the current time has reached that specified in
the statement but may be released later [BW98, section 2.5.1].

5.1.4 Timed Entry Call

A timed entry call issues an entry call which is canceled if the call is not accepted
within the specified period (relative or absolute) [BW98, section 6.9.1]. The syn-
tax is [AAR95, section 9.7.2]:

timed_entry_call ::=
select
entry_call_alternative

or
delay_alternative

end select;

entry_call_alternative ::=
entry_call_statement [sequence_of_statements]

76

Chapter 5: Time and Clocks (C) Javier Miranda, 2002 (v 1.0)

5.1.5 Timed Selective Wait

Often it is the case that a server task cannot unreservedly commit itself to waiting
for communication using one or more of its entries. The timed selective wait al-
lows a server task to time-out if an entry call is not received within a certain period
of time. The time-out is expressed using the delay statement and can therefore be
a relative or an absolute delay. If the relative time expressed is zero or negative, or
the absolute time has passed, then the delay alternative is equivalent to having an
“else part” [BW98, section 2.5.1] (see section 3.1.5). The syntax of the selective
accept is [AAR95, section 9.7.1]:

selective_accept ::=
select

[guard]
select_alternative

or
[guard]
select_alternative

[else
sequence_of_statements]

end select;

guard ::= when condition =>

select_alternative ::=
accept_alternative
| delay_alternative
| terminate_alternative

accept_alternative ::=
accept_statement [sequence_of_statements]

delay_alternative ::=
delay_statement [sequence_of_statements]

terminate_alternative ::= terminate;

77

(C) Javier Miranda, 2002 (v 1.0) Chapter 5: Time and Clocks

5.2 GNAT Implementation

5.2.1 Delay and Delay Until Statements

The GNARL subprograms which implement these Ada statements are placed in
child packages of the corresponding standard Ada packages: Ada.Calendar.Delays
and Ada.Real Time.Delays. The GNAT compiler translates the delay statement
into a call to the corresponding GNARL subprogram.

 Ada
Source

 GNAT
Front-end

Object
 Code

GNARL

Ada.Calendar.Delays

delay_for

delay_until

Ada.Real_Time.Delays

delay_until

Figure 5.1: GNARL Subprograms for the Delay Statement.

GNARL provides two implementations of the delay statements: one for the
case of an Ada program without tasks and the other for an Ada program with
tasks. A link is used to access the proper subprogram (Timed Delay1).

� In case of no tasking this link points to the GNARL procedure Time Delay NT2,
which calls the GNULL procedure Timed Delay3 (cf. Figure 5.2).

� In case of a program with tasks this link points to the GNARL proce-
dure Timed Delay T4, which calls another version of the GNULL procedure
Timed Delay5 (cf Figure 5.3).

When the program has tasks, the GNARL procedure Timed Delay performs
the following actions.

1System.Soft Links.Timed Delay.
2Ada.Calendar.Delays.Time Delay NT
3System.OS Primitives.Timed Delay
4System.Task Initialization.Timed Delay T
5System.Task Primitives.Operations.Timed Delay

78

Chapter 5: Time and Clocks (C) Javier Miranda, 2002 (v 1.0)

 Ada
Source

 GNAT
Front-end

Object
 Code

Ada.Calendar.Delays

delay_for Time_Delay_NT

System.Soft_Links
Timed_Delay

Timed_Delay

(1)

(2) (3)

GNARL

System.OS_Primitives

nanosleep()
POSIX

Figure 5.2: GNARL Subprograms for the Delay Statement in an Ada Program
without Tasks.

� Timed Delay6:

1. Defer the abortion.

2. Lock the ATCB of the calling task.

3. If the specified delay is a relative time span (that is, a delay statement),
this delay it is converted to absolute time span by adding the current
value of the clock7.

4. If the specified time is a future time then

(a) Set the state of the calling task to Delay Sleep.

(b) Call the POSIX function pthread cond timedwait to suspend the
calling tasks until the specified time.

(c) Set the state of the calling task to Runnable.

5. Unlock the ATCB of the calling task.

6. Yield the processor (this ensures that “a delay statement always corre-
sponds to at least one task dispatching point” [AAR95, section D.2.2
(18)]

7. Undefer the abortion.

6System.Task Primitives.Operations.Timed Delay
7Ada.Calendar.Clock or Ada.Real Time.Clock.

79

(C) Javier Miranda, 2002 (v 1.0) Chapter 5: Time and Clocks

 Ada
Source

 GNAT
Front-end

Object
 Code

Ada.Calendar.Delays

delay_for Time_Delay_T

System.Soft_Links
Timed_Delay

Timed_Delay

(1)

(2) (3)

System.Tasking.Initialization
GNARL

System.Task_Primitives
 .Operations

pthread_cond_timedwait()

GNULL
pthread_cond_timedwait System.OS_Interface

POSIX

Figure 5.3: GNARL Subprograms for the Delay Statement in an Ada Program
with Tasks.

5.2.2 Timed Entry Call

The timed task entry call is handled by the GNAT compiler in a similar way to
the simple mode entry call (described in section 3.2.2). The compiler generates a
call to the GNARL subprogram Timed Task Entry Call8. Basically this procedure
carries out the same actions described in the simple mode entry call (section 3.2.2).
However, if the entry can not be immediately accepted, it does not simply block
the caller; it calls another GNARL subprogram to arm a timer and block the caller
until the timeout expires. Figure 5.4 shows the GNARL and GNULL subprograms
involved in this action. If the entry call is accepted before this timer expires, the
timer is un-armed; otherwise the entry call is removed from the queue.

The GNAT implementation of the timed protected entry call follows the same
scheme described above. However, the only difference is that the compiler gener-
ates a call to the GNARL procedure Timed Protected Entry Call9.

8System.Tasking.Rendezvous.Timed Task Entry Call
9System.Tasking.Protected Objects.Operations.Timed Protected Entry Call

80

Chapter 5: Time and Clocks (C) Javier Miranda, 2002 (v 1.0)

 Ada
Source

 GNAT
Front-end

Object
 Code

Timed_Entry_Call

Wait_For_Completion_With_Timeout

GNARL
System.Tasking
 .Rendezvous

System.Tasking
 .Entry_Calls

Timed_Sleep
System.Task_Primitives
 .Operations

pthread_cond_timedwait()

GNULL
pthread_cond_timedwaitSystem.OS_Interface

POSIX

Figure 5.4: GNARL Subprograms for Timed Entry Call.

5.2.3 Timed Selective Accept

The timed task entry call is handled by the GNAT compiler in a similar way to the
selective accept (described in section 3.2.7). The compiler generates a call to the
GNARL subprogram Timed Selective Wait10. Basically this procedure carries out
the same actions described in case of the selective wait (section 3.2.7). However,
if there is no entry call that can be immediately accepted, it does not simply block
the caller; it calls another GNARL subprogram to program a timer and block
the caller until this timeout expires. Figure 5.5 shows the GNARL and GNULL
subprograms involved in this action. If some entry call is received before this timer
expires, the timer is un-armed; otherwise the statements after the delay sentence
are executed.

5.3 Summary

GNAT provides two implementations for the simple delay and delay until Ada
sentences: one for the Ada programs without tasks, and another for the Ada pro-

10System.Tasking.Rendezvous.Timed Selective Wait

81

(C) Javier Miranda, 2002 (v 1.0) Chapter 5: Time and Clocks

 Ada
Source

 GNAT
Front-end

Object
 Code

Timed_Selective_Wait

Timed_Sleep

GNARL
System.Tasking
 .Rendezvous

System.Task_Primitives
 .Operations

pthread_cond_timedwait()

GNULL
pthread_cond_timedwaitSystem.OS_Interface

POSIX

Figure 5.5: GNARL Subprograms for Timed Selective Accept.

grams with tasks. An access to a procedure is used to avoid multiple checks in the
run-time to call the appropriate subprogram.

A timed entry call allows the task that executes it to make an entry call with
the provision that it be awakened and the call canceled, if the call is not accepted
before the expiration of a specified delay. As with the conditional entry call, pro-
vision is made for execution to resume in different places, depending on whether
a rendezvous takes place. In addition to the processing required for a normal entry
call, the timed entry call requires scheduling of a wake-up event if the call cannot
be accepted immediately. If the call is accepted before this delay expires, the call-
ing task must be removed from the delay queue. If the delay expires first, the task
must be removed from the entry queue.

The GNAT implementation of the timed entry call sentences (to a protected
entry or to a task entry) and the timed selective accept follow the same steps of
the non-timed cases, though a timer is activated when the caller becomes blocked.

82

Chapter 6

Interrupts

Ada allows the programmer to associate a user defined interrupt handler to some
interrupts [AAR95, section C.3(1)]. Although the interrupt handler can be a pro-
tected procedure or a task entry, currently the association of a task entry is con-
sidered an obsolescent feature [AAR95, section J.7] of the language. Therefore,
in this chapter we will focus our attention on user defined protected procedure
interrupt handlers.

This chapter is structured in two parts. In the first part the main aspects of the
Ada attachment of user defined protected procedures to interrupt are presented. In
the second part the main aspects of the GNAT implementation are described.

6.1 Ada Model of Interrupts

The AARM defines the following model of an interrupt [BW98, section 11.2]
[AAR95, section C.3(1)]:

� An Interrupt represents a class of events that are detected by the hardware
or system software.

� The Occurrence of an interrupt consists of its Generation and its Delivery.

� The Generation of an interrupt is the event in the underlying hardware or
system which makes the interrupt available to the program.

� Delivery is the action which invokes a part of the program (called the inter-
rupt handler) in response to the interrupt occurrence. In between the gen-

83

(C) Javier Miranda, 2002 (v 1.0) Chapter 6: Interrupts

eration of the interrupt and its delivery, the interrupt is said to be pending.
The handler is invoked once for each delivery of the interrupt.

� While an interrupt is being handled, further interrupts from the same source
are blocked; all future occurrences of the interrupt are prevented from being
generated. It is usually device dependent as to whether a blocked interrupt
remains pending or is lost.

� Certain interrupts are Reserved. The programmer is not allowed to provide
a handler for a reserved interrupt. Usually, a reserved interrupt is handled
directly by the Ada run-time (for example, a clock interrupt used to imple-
ment the delay statement).

� Each non-reserved interrupt has a default handler that is assigned by the
run-time system.

6.1.1 Interrupt-Handling Protected Procedures

Ada provides two styles of interrupt-handler installation and removal: nested and
non-nested. In the nested style, an interrupt handler in a given protected object is
implicitly installed when the protected object comes into existence, and the treat-
ment that had been in effect beforehand is implicitly restored when the protected
object ceases to exist. In the non-nested style, interrupt handlers are installed ex-
plicitly by procedure calls, and handlers that are replaced are not restored except
by explicit request [Coh96, section 19.6.1].

A handler to be installed in the nested style is identified by the following
pragma appearing in a protected declaration:

pragma Attach_Handler (Handler, Interrupt);

Handler is the name of a parameterless protected procedure in that protected
declaration; Interrupt is an expression of type Interrupt ID. The protected dec-
laration must be library-level (it must not be nested in a subprogram body, task
body, or block statement). However, if the protected declaration declares a pro-
tected type rather than a single protected object, individual objects of the type may
be declared in these places. Dynamic allocation (by means of a new expression)
gives greater flexibility: Allocating a protected object with an interrupt handler
installs the handler associated with that object, and deallocating the protected ob-
ject restores the handler previously in effect. The Interrupt ID expression need

84

Chapter 6: Interrupts (C) Javier Miranda, 2002 (v 1.0)

not be static; in particular, its value may depend on a discriminant of the protected
type [Coh96, section 19.6.1]. For example:

package Nested_Handler_Example is

protected type Device_Interface
(Int_ID : Ada.Interrupts.Interrupt_ID) is

procedure Handler;
pragma Attach_Handler(Handler, Int_ID);

end Device_Interface;

end Nested_Handler_Example;

A handler to be installed in the non-nested style is identified by the following
pragma appearing in a protected declaration:

pragma Interrupt_Handler (Handler, Interrupt);

Again, Handler must be the name of a parameterless protected procedure. As
with the Attach Handler pragma, the protected declaration may not be nested in
a subprogram body, task body, or block statement. However, this pragma has an
additional restriction: if the protected declaration is for a protected type, objects
of that type may not be nested in these places either [Coh96, section 19.6.1].
Therefore they must be dynamically created by means of a new expression.

6.1.2 Package Ada.Interrupts

Non-nested installation and removal of interrupt handlers relies on additional fa-
cilities of package Ada.Interrupts [AAR95, section C.3(2)]:

package Ada.Interrupts is
type Interrupt_ID is implementation-defined;
type Parameterless_Handler is access protected procedure;

function Is_Reserved (Interrupt : Interrupt_ID)
return Boolean;

function Is_Attached (Interrupt : Interrupt_ID)
return Boolean;

function Current_Handler (Interrupt : Interrupt_ID)
return Parameterless_Handler;

85

(C) Javier Miranda, 2002 (v 1.0) Chapter 6: Interrupts

procedure Attach_Handler
(New_Handler : in Parameterless_Handler;
Interrupt : in Interrupt_ID);

procedure Exchange_Handler
(Old_Handler : out Parameterless_Handler;
New_Handler : in Parameterless_Handler;
Interrupt : in Interrupt_ID);

procedure Detach_Handler
(Interrupt : in Interrupt_ID);

function Reference(Interrupt : Interrupt_ID)
return System.Address;

private
... -- not specified by the language

end Ada.Interrupts;

The Attach Handler procedure attaches the specified handler to the interrupt,
overriding any existing treatment (including a user handler) in effect for that in-
terrupt. If New Handler is null, the default treatment is restored. If New Handler
designates a protected procedure to which the pragma Interrupt Handler does not
apply, Program Error is raised [AAR95, section C.3.2].

with Ada.Task_Identification;
package Ada.Dynamic_Priorities is

procedure Set_Priority
(Priority : System.Any_Priority;
T : Ada.Task_Identification.Task_Id :=

Ada.Task_Identification.Current_Task);

function Get_Priority
(T : Ada.Task_Identification.Task_Id :=

Ada.Task_Identification.Current_Task)
return System.Any_Priority;

end Ada.Dynamic_Priorities;

6.1.3 Priorities

The pragma Interrupt Priority can be used to specify the ceiling priority of a
protected object (Real-Time Systems [AAR95, Annex D]).

pragma Interrupt_Priority (expression);

86

Chapter 6: Interrupts (C) Javier Miranda, 2002 (v 1.0)

Omitting the expression is equivalent to specifying the ceiling priority of the
system (Interrupt Priority’Last). Interrupts of equal or lower priority are blocked
while any operation of that protected object is in progress. To avoid priority inver-
sion, any task calling an operation on that protected object has its priority raised
to the ceiling priority while the operation is executed, reflecting the urgency of
completing the operation so that interrupts will become unblocked. An interrupt
handler executes at the priority of its protected object, which may be higher than
the priority of the interrupt if the same protected object handles more than one
kind of interrupt. In addition, the procedure Set Priority provided by package
Ada.Dynamic Priorities can be used to dynamically modify this priority.

with Ada.Task_Identification;
package Ada.Dynamic_Priorities is

procedure Set_Priority
(Priority : System.Any_Priority;
T : Ada.Task_Identification.Task_Id :=

Ada.Task_Identification.Current_Task);

function Get_Priority
(T : Ada.Task_Identification.Task_Id :=

Ada.Task_Identification.Current_Task)
return System.Any_Priority;

end Ada.Dynamic_Priorities;

87

(C) Javier Miranda, 2002 (v 1.0) Chapter 6: Interrupts

6.2 GNAT Implementation

To foster a simple, efficient and multi-platform implementation, GNAT reuses the
POSIX support for signals and adds the minimum set of run-time subprograms
required to achieve the Ada semantics. This work is simplified because POSIX
signals are delivered to individual threads in a multi-threaded process using much
of the same semantics as for delivery to a single-threaded process [GB92, Sec-
tion 5.1].

6.2.1 POSIX Signals

A POSIX signal1 is a form of software interrupt which can be generated in several
ways. A signal may be generated:

� By a hardware trap including division by zero, a floating-point overflow, a
memory protection violation, a reference to a non-existent memory location
or an attempt to execute an illegal instruction.

� Because a clock reaches a specified time, or a specified span of time has
elapsed.

� By an asynchronous operation. Asynchronous input and output operations
generate a signal when an operation completes, or if an operation fails.

� Because the user hits certain keys on the terminal that is controlling the
process. Certain keys sequences allow the user to suspend, resume and
terminate the execution of a process via signals.

� By a POSIX thread. POSIX threads may send a signal to another POSIX
thread in the same process to notify it of an event, by calling pthread kill.

Each POSIX thread has a signal mask: when a signal is generated for a
thread and the thread has the signal masked, the signal remains pending until
the thread unmasks it; the interface for manipulating the thread signal mask is
pthread sigmask. Only one pending instance of a masked signal is required to be
retained; that is, if a signal is generated N times while it is masked the number of
signal instances that are delivered to the thread when it finally unmasks the signal
may be any number between 1 and N.

1The contents of this section are a summary of [DIBM96, section 2].

88

Chapter 6: Interrupts (C) Javier Miranda, 2002 (v 1.0)

Each POSIX signal is associated with some action. The action may be to
ignore the signal, terminate the process, continue the process, or execute a call
to user-defined handler function (asynchronously and preemptively with respect
to normal execution of the process). POSIX.1 specifies a default action for each
signal. For most signals the application may override the default action by calling
the function sigaction. The use of asynchronous handler procedures for signals is
not recommended for POSIX threads, because the POSIX thread synchronization
operations are not safe to be called within an asynchronous signal handler; instead,
POSIX.1c recommends use of the pthread sigwait function, which “accepts” one
of a specified set of masked signals.

6.2.2 Reserved Signals

The definitions of “reserved” differs slightly between the ARM and POSIX. ARM
specifies [AAR95, section C.3(1)]:

The set of reserved interrupts is implementation defined. A reserved interrupt
is either an interrupt for which user-defined handlers are not supported, or
one which already has an attached handler by some other implementation-
defined means. Program unit can be connected to non-reserved interrupts.

POSIX.5b/.5c specifies further [s-intman.adb]:

Signals which the application cannot accept, and for which the application
cannot modify the signal action or masking, because the signals are re-
served for use by the Ada language implementation. The reserved signals
defined by this standard are:

� Signal Abort
� Signal Alarm
� Signal Floating Point Error
� Signal Illegal Instruction
� Signal Segmentation Violation
� Signal Bus Error

If the implementation supports any signals besides those defined by this
standard, the implementation may also reserve some of those.

89

(C) Javier Miranda, 2002 (v 1.0) Chapter 6: Interrupts

The signals defined by POSIX.5b/5c that are not specified as being reserved
are SIGHUP, SIGINT, SIGPIPE, SIGQUIT, SIGTERM, SIGUSR1, SIGUSR2,
SIGCHLD, SIGCONT, SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU, SIGIO, SIG-
URG and all the real-time signals.

The GNAT FSU Linux implementation handles 32 signals. In this case the
reserved signals are:

Number Name REASON Description
------ ---------- ------ --
2 * SIGINT GNAT Abort (used for CTRL-C)
4 * SIGILL POSIX (HW) Illegal Instruction
5 * SIGTRAP GNAT Trace trap
6 * SIGABRT GNAT Tasks abortion
7 * SIGBUS POSIX (HW) Bus error
8 * SIGFPE POSIX (HW) Floating Point Exception
9 SIGKILL POSIX Abort (kill)

11 * SIGSEGV POSIX (HW) Segmentation Violation
14 SIGALRM POSIX Alarm Clock
19 SIGSTOP Stop
20 * SIGTSTP GNAT User stop requested from tty
21 * SIGTTIN GNAT Background tty read attempted
22 * SIGTTOU GNAT Background tty write attempted
26 SIGVTALRM Virtual timer expired
27 * SIGPROF GNAT Profiling timer expired
31 SIGUNUSED Unused signal

Signals marked with * are not allowed to be masked by the GNAT Run-Time.
SIGINT can not be masked because it is used to terminate the Ada program when
the CTRL-C sequence is pressed in the terminal that is controlling the process2.
SIGILL, SIGFPE and SIGSEV can not be masked because they are used by the
CPU to notify errors to the run-time. SIGTRAP is used by GNAT to enable de-
bugging on multi-threaded applications. SIGABRT can not be masked because it
is used by GNAT to implement the tasks abortion (described in chapter 8). SIGT-
TIN, SIGTTOU and SIGTSTP are not allowed to be masked so that background
processes and IO behaves as normal C applications. Finally, SIGPROF can not be
masked to avoid confusing the profiler.

2By keeping SIGINT reserved, the programmer allows the user to do Ctrl-C but, in the
same way, disable the ability of handling this signal in the Ada program. GNAT Pragma Un-
reserve All Interrupts [BG01] gives the programmer the ability to change this behavior.

90

Chapter 6: Interrupts (C) Javier Miranda, 2002 (v 1.0)

6.2.3 Architecture

Figure 6.1 presents the overall architecture of the GNAT implementation. In the
GNARL level two package hierarchies are used to handle interrupts: the hierar-
chy of the standard Ada package (left side of the figure) and the hierarchy of the
GNARL System package (right side of the figure).

GNARL
Level

System.OS_Interface
GNULL
Level

POSIX
Level

Ada

Interrupts

Names

System

Interrupts Interrupt_Management

Operations

Figure 6.1: Architecture of the Implementation.

Package Ada.Interrupts is the standard Ada package described in section 6.1.2
(package used to attach and detach interrupt handlers in the non-nested style).
Child package Ada.Interrupts.Names maps the high level Ada interrupts to the low
level POSIX signals defined in package System.OS Interface (35 Ada interrupts
are mapped here to 32 POSIX signals).

Package System.Interrupts encapsulates the GNARL implementation of the
signal handlers. It is a logical extension of the body of the standard package
Ada.Interrupts. It is made a child of System to access various runtime system
internal data and operations. Package System.Interrupt Management associates a
signal handler to the POSIX signals linked to Ada exceptions (SIGPFE and SIG-
ILL signals raise Ada Constrained Error exception and SIGSEGV signal raises
Ada Storage Error exception). Child package Operations is a low level package
which issues calls to the GNULL level.

Let’s see the type definitions associated with the high level Ada.Interrupt ID
data type. This simple example allows the reader to see the basic relations between
these packages. Ada.Interrupt ID type definition is based on the corresponding
definition at System.Interrupts, which is based on the Interrupt ID data type at
System.Interrupt Management; this data type is finally based on the corresponding
SIGNAL type definition at the low-level package System.OS Interface.

91

(C) Javier Miranda, 2002 (v 1.0) Chapter 6: Interrupts

type Ada.Interrupt_ID
is new System.Interrupts.Ada_Interrupt_ID;

type System.Interrupts.Ada_Interrupt_ID
is new System.Interrupt_Management.Interrupt_ID;

type System.Interrupt_Management.Interrupt_ID
is new System.OS_Interface.Signal;

6.2.4 Basic Data Structures

No matter the association style used, GNARL always uses the following tables
indexed by the Interrupt ID to handle interrupts.

� Table of Reserved Signals3: Booleans constant table4 used to register re-
served interrupts.

SIGUSR1

System.Interrupt_Management.Reserve
GNARL
Level False

SIGHUP

True True

SIGINT

.

Figure 6.2: Reserved Interrupts Table.

� User-defined Interrupt Handlers Table5: Table used to register and unreg-
ister the reference to User-Defined Interrupt-Procedures (UDIP) during the
life of the program. Each element of this table is a record with two fields:
the access to the UDIP and a flag which remembers the association style
(nested or non-nested).

Figure 6.3 represents one protected procedure attached to signal SIGUSR1 in
nested style (static style). The GNAT compiler associates two subprograms

�
and�

to each protected subprogram (described in section 4.2.4). As the reader can
see, the run-time links the signal with the

�
subprogram: the reference to the

�
subprogram is stored in the corresponding field of the table, and the Static field is
set to True to remember that it is a nested style association.

3System.Interrupt Management.Reserve
4In the GNARL sources it is declared as variable just to be able to initialize it in the package

body to aid portability.
5System.Interrupts.User Handler

92

Chapter 6: Interrupts (C) Javier Miranda, 2002 (v 1.0)

Static = True
H SIGUSR1

System.Interrupts.User_Handler

Stateproc_P

func_P

proc_N

func_N

Compiler
Generated-Code
Level

GNARL
Level

Figure 6.3: Table of User-Defined Interrupt-Handlers.

6.2.5 Attachment of Interrupt-Handling Protected Procedures

In the nested style the run-time must attach the UDIP to the signal when the
protected object is elaborated. Thus the compiler adds one call to GNARL sub-
program Install Handlers6 to the elaboration code of the protected object. This
subprogram saves the previous handlers in one additional field of the object (Pre-
vious Handlers7) and installs the new handlers.

To avoid penalizing all protected objects with this additional field, GNARL
uses one data type for handling protected objects with no interrupt handlers (Pro-
tection Entries8, described in section 4.2.3), one type extension for protected ob-
jects with nested style interrupt handlers (Static Interrupt Protection9), and an-
other type extension for protected objects with non-nested style interrupt handlers
(Dynamic Interrupt Protection10). (In this latter case the type extension is only
defined for homogeneity because the run-time does not add any additional field to
the basic data type). Let’s see the compiler transformation of protected objects for

6System.Interrupts.Install Handlers
7System.Interrupts.Previous Handlers
8System.Tasking.Protected Objects.Entries.Protection Entries
9System.Interrupts.Static Interrupt Protection

10System.Interrupts.Dynamic Interrupt Protection

93

(C) Javier Miranda, 2002 (v 1.0) Chapter 6: Interrupts

these two latter cases:

Original Ada Code:

protected type PO (Discriminants) is
procedure Handler;
function ...
entry ...
pragma Attach_Handler (Handler, <INT-Number>);

private
<Private_Data_Fields>

end PO;

Code transformation done by the GNAT compiler:

1: type poV (Discriminants) is new Limited_Controlled with record
2: <Private_Data_Fields>
3: _object : aliased GNARL.Static_Interrupt_Protection (<Num>);
4: end record;
5:
6: procedure Finalize (O : poV) is
7: begin
8: -- Raise Program_Error to the queued tasks.
9: ...

10: end Finalize;

Let us now consider the compiler transformation of protected objects with
non-nested style interrupt handlers.

Original Ada Code:

protected type PO (Discriminants) is
procedure Handler;
function ...
entry ...
pragma Interrupt_Handler (Handler);

private
<Private_Data_Fields>

end PO;

Code transformation done by the GNAT compiler:

1: type poV (Discriminants) is new Limited_Controlled with record

94

Chapter 6: Interrupts (C) Javier Miranda, 2002 (v 1.0)

2: <Private_Data_Fields>
3: _object : aliased GNARL.Dynamic_Interrupt_Protection (<Num>);
4: end record;
5:
6: procedure Finalize (O : poV) is
7: begin
8: -- Raise Program_Error to the queued tasks.
9: ...
10: end Finalize;

If we compare both translations, in line 3 we find the only difference: the data
type used to define the object field.

In case of nested style association, during the finalization of the protected
object the run-time needs to restore the previous handlers (Install Handlers does
this work). In the non-nested style, nothing special needs to be done since the
default handlers will be restored as part of task completion which is done just
before global finalization.

In order to verify that all the non-nested style interrupt procedures have been
annotated with pragma Interrupt Handler ([AAR95, section C.3.2] requirement)
the compiler adds calls to the GNARL subprogram Register Interrupt Handler11

to register these interrupt procedures in a GNARL single-linked list. The Head
and Tail of this list are stored in two GNARL variables12 (cf. Figure 6.4). Every
node keeps the address of one protected procedure associated with an interrupt
in non-nested style. For simplicity, a single access to a protected procedure has
been represented; however, each node has the access to its corresponding

�
sub-

program. Before the attachment of one non-nested style interrupt handler to one
signal, GNARL traverses this list to verify that the protected procedure is regis-
tered in the list; otherwise it raises the exception Program Error.

6.2.6 Interrupts Manager: Basic Approach

The GNAT run-time uses one Interrupts Manager13 task to serialize the execu-
tion of subprograms involved in the management of signals: attachment, detach-
ment, replacement, etc. Figure 6.5 presents a simplified version of the automaton
implemented by the Interrupt Manager. For simplicity we have considered only
two basic operations: Binding and Unbinding User-Defined Interrrupt Procedures
(UDIP) to interrupts.

11System.Interrupts.Register Interrupt Handler
12System.Interrupts.Registered Handler Head and System.Interrupts.Registered Handler Tail
13System.Interrupts.Interrupt Manager

95

(C) Javier Miranda, 2002 (v 1.0) Chapter 6: Interrupts

Stateproc_P

func_P

proc_N

func_N

Compiler
Generated-Code
Level

GNARL
Level //

Next

H

Next

H

Next

H

System.Interrupts.
Registered_Handler_Head

System.Interrupts.
Registered_Handler_Tail

Figure 6.4: List of Interrupt Handlers in Non-Nested Style.

First the automaton calls GNARL subprogram Make Independent14 to do the
Interrupt Manager Task independent of its masters. GNARL Independent tasks
are associated with master 0, and their ATCBs are not registered in All Tasks List
(described in section 2.2); thus they last until the end of the program. After the
signal mask is set, the automaton goes to one state in which it waits for the next
signal management operation.

� In case of signal Binding, GNARL saves the reference to the UDIP in its
table, and blocks the POSIX signal (this allows GNARL to catch the signal
with the sigwait POSIX service).

� In case of signal Unbinding, the reference to the UDIP is removed from the
table, the POSIX default action is set, and the signal is unblocked.

6.2.7 Server Tasks: Basic Approach

The Ada run-time must provide a thread to execute the UDIP. There is a choice
between dedicating one server task for all signals and providing a server task for
each signal. The former approach looks attractive, since it saves run-time space,
but it blocks other signals during the protected procedure call. This may result in

14System.Task Utilities.Make Independent

96

Chapter 6: Interrupts (C) Javier Miranda, 2002 (v 1.0)

Initialization

 Make
Independent

Set the
Mask

Wait for
request

Bind

Unbind

Block
 the
signal

 Restore
 default
 action

 Update
Int. Handlers
 Table

 Update
Int. Handlers
 Table

Unblock
 the
 signal

Interrupts_Manager Task

Figure 6.5: Basic Automaton Implemented by the Interrupts Manager.

delayed or lost signals. For this reason, GNARL provides a separate Server Task15

for each signal [DIBM96].

Instead of create/abort Server Tasks when the user-defined interrupt handlers
are attached/detached, GNARL keeps them alive until the program terminates.
Thus they are reused by all UDIPs associated with the same interrupt during the
life of the program. The run-time has a Server ID Table16 which saves Server
Tasks references (cf. Figure 6.6).

Figure 6.7 presents a simplified version of the Server Tasks Automaton.

6.2.8 Interrupt-Manager and Server-Tasks Integration

Previous sections have been concerned with the basic functionality of the Interrupt
Manager Task and the Server Tasks. However, the GNARL implementation is a
little more complex because:

1. Ada nested style of interrupts implies that UDIPs are dynamically attached
and detached to signals in the elaboration and finalization of protected ob-
jects. Therefore:

(a) If no UDIP is registered GNARL must take the default POSIX action,
and the simplified implementation of the Interrupt Manager did not
consider POSIX default actions (cf. Figure 6.5).

15System.Interrupts.Server Task
16System.Interrupts.Server ID

97

(C) Javier Miranda, 2002 (v 1.0) Chapter 6: Interrupts

GNARL
Level

Stateproc_P

func_P

proc_N

func_N

Compiler
Generated-Code
Level

SIGUSR1

System.Interrupts.Server_ID

SIGUSR2

Server_Task

POSIX
Level

SIGNAL
EVENT

(1)

(2)

SIGUSR1

System.Interrupt_Management.Reserve

False

SIGHUP

True True

SIGINT

.

Figure 6.6: Server Tasks Signal Handling.

(b) When one UDIP is registered the signal is programmed to be handled
by the UDIP. Following UDIPs registered to the same signal replace
previous UDIPs.

(c) If all UDIPs are detached, GNARL must again take the default POSIX
action. The previous implementation can not achieve this effect so
long as the Server Task is sitting on the sigwait. Even if the POSIX
sigaction command is used to set the asynchronous signal action to the
default, that action will not be taken unless the signal is unmasked, and
GNARL can not unmask the signal while the Server Task is blocked
on sigwait because in POSIX.1c the effect is undefined. Therefore,
GNARL must wake up the Server Task and cause it to wait on some
operation instead for which it is safe to leave the signal unmasked, so
that the default action can be taken [DIBM96].

98

Chapter 6: Interrupts (C) Javier Miranda, 2002 (v 1.0)

Initialization

 Make
Independent

Set the
Mask

sig_wait
 Call
User-Defined
 Int. handler

Server_Task

Figure 6.7: Basic Automaton Implemented by the Server Tasks.

2. GNARL must protect data structures shared by the Interrupts Manager Task
and the Server Tasks. Therefore, some locks must be added.

The second requirement (locks) is easy to solve by means of POSIX mutexes.
However, the first requirement is more complex. So let’s focus our attention on
the GNARL solution of the first requirement.

In order to better understand the GNARL implementation, we need to simplify
the Server Tasks Automaton to its main states:

� State 1: The Server Task provides the POSIX default behavior of the signal.

� State 2: The Server Task has been programmed to call one UDIP.

In order to notify the automaton that it must jump from State 1 to State 2
GNARL uses one POSIX Condition Variable; in order to force the automaton to
jump from State 2 (waiting in the POSIX sigwait operation) to State 1 the POSIX
signal SIGABORT is used (this signal is used to kill the POSIX thread, and thus
forces the Server Task to return from the POSIX sigwait operation). Figure 6.8
presents this automaton.

If we add these new transitions to our basic Task Server Automaton (cf. Fig-
ure 6.7) we have the real automaton implemented in GNARL (cf. Figure 6.9).
In order to help the reading of the automaton all the states have been numbered.
Inside dotted rectangles we find the states associated with the simplified states of
the previous example (State 1 and State 2).

99

(C) Javier Miranda, 2002 (v 1.0) Chapter 6: Interrupts

Default
POSIX
Action

STATE 1

 User
Defined
 Action

STATE 2

bind

unbind

cond_signal

SIGABRT

unbind bind

Server_Task

Figure 6.8: Simplified Server Tasks Automaton.

After the initializations (states numbered 1 to 3), the automaton verifies if any
UDIP has been registered by the Interrupt Manager (state 4). Initially, because no
UDIP has been registered, it takes the POSIX default action (state 9) and waits in
the Condition Variable (cond wait, state 10) until some UDIP is registered by the
Interrupt Manager.

When any UDIP is registered, the Interrupt Manager signals the Condition
Variable and the Server Task Automaton jumps to state 4, checks if some UDIP
has been registered (now this evaluates to True) and jumps to state 5 to wait for the
next signal occurrence. When the signal is received, it again checks if the UDIP
is still registered (state 6), because it may have been removed by the Interrupt
Manager while the automaton was waiting for the signal. Then it calls the UDIP
(state 7) and again jumps to state 4.

While the Server Task is in state 5 waiting for the signal occurrence, it may
happen that all UDIPs have been removed the Interrupt Manager. In this case
the Interrupt Manager sends the SIGABRT signal to the Server Task to force it to
jump to state 9. This signal wakes up the Server Task Automaton, which jumps to
state 8 to reply to the Interrupt Manager with the same signal to inform it is not
in state 5 (waiting for the signal). After this notification the automaton jumps to
state 4 and, because no UDIP is found, it jumps to state 9.

6.3 Summary

In this chapter we have dealt with the main aspects related to Interrupts Manage-
ment. Although Ada allows us to attach a task entry to an interrupt, nowadays
this is considered an obsolescent feature of the language. Thus, we have only

100

Chapter 6: Interrupts (C) Javier Miranda, 2002 (v 1.0)

Initialization

 Program
Signal Default
 Action

Set the
Mask

 Call
User-Defined
 Int. handler

POSIX
Default
Action

cond_wait

sig_wait

yes

no

 Check
User-Defined
 Int. handler

 Check
User-Defined
 Int. handler

SIGABRT reply to
Int. Manager
(SIGABORT)

 Make
Independent

Server_Task

1

2

3 4

5

6 7

8

9 10

State_1

State_2

yesno

Figure 6.9: Server Tasks Automaton.

discussed the attachment of User-Defined Protected-Procedures to interrupts. The
main features of the GNAT implementation are:

� GNARL associates Ada interrupts to POSIX signals.
� Each signal has a Task Wrapper responsible for the execution of the User-

Defined Protected-Procedures.
� The protected subprogram

�
associated with the protected subprogram is

attached by GNARL to the corresponding Task Wrapper.
� Ada provides two ways to attach a protected procedure to an Ada interrup-

tion: nested style (by means of the pragma Attach Handler) and non-nested
style (by means of the pragma Interrupt Handler).

– When the nested style is used, GNARL adds one field to the run-time
information of the protected object to save and restore the previous
handler.

– When the non-nested style is used, a dynamic link list is used to reg-
ister non-nested style UDIPs. This list allows GNARL to verify that
only non-nested UDIPs have been marked with the right pragma.

� An Interrupt Manager Task is used to serialize all the signal-management
operations.

101

(C) Javier Miranda, 2002 (v 1.0) Chapter 6: Interrupts

102

Chapter 7

Exceptions

During the execution of a program, events or conditions may occur which might
be considered “exceptional”. With commercial or numeric computing, such con-
ditions can be catered for by an appropriate run-time error message followed by
program termination. This is not acceptable with embedded systems, where the
software should be tolerant of both hardware and software faults. Two broad clas-
sifications of exceptions can be isolated [BW98, section 1.4]:

� Error conditions — arithmetic overflow, storage exhaustion, array-bound
violation, subrange violations, peripheral time-outs, etc.

� Abnormal program conditions — errors in user input data, need for special
algorithms to deal with singularities, etc.

In order to deal with error conditions, the run-time system must bring such
errors to the program attention [BW98, section 1.4].

7.1 Ada Model of Exceptions

An exception represents a kind of exceptional situation; an occurrence of such a
situation (at run-time) is called an Exception Occurrence. To raise an exception is
to abandon normal program execution thus drawing attention to the fact that the
corresponding situation has arisen. Performing some actions in response to the
arising of an exception is called Handling the exception [AAR95, section 11].

103

(C) Javier Miranda, 2002 (v 1.0) Chapter 7: Exceptions

7.1.1 Exception Declaration

The syntax to declare an exception is [AAR95, section 11-1]:

exception_declaration ::= defining_identifier_list : exception;

7.1.2 Raise Statement

The syntax to raise an exception is [AAR95, section 11-2]:

raise_statement ::= raise [exception_name];

When an exception occurrence is raised by the execution of a given construct,
the rest of the execution of that construct is abandoned; that is, any portions of
the execution that have not yet taken place are not performed. A raise statement
without an exception name is a re-raise statement and therefore must be within an
exception handler.

7.1.3 Exception Handling

When an exception occurrence is raised, normal program execution is abandoned
and control is transferred to an applicable exception handler, if any. To handle an
exception occurrence is to respond to the exceptional event [AAR95, section 11-
4]. The syntax to declare an exception handler is [AAR95, section 11-2]:

handled_sequence_of_statements ::=
sequence_of_statements

[exception
exception_handler
exception_handler]

exception_handler ::=
when [choice_parameter_specification:]

exception_choice
| exception_choice =>
sequence_of_statements

choice_parameter_specification ::= defining_identifier

exception_choice ::= exception_name | others

104

Chapter 7: Exceptions (C) Javier Miranda, 2002 (v 1.0)

If an exception occurrence is not handled (or is re-raised) it is propagated to
the innermost dynamically enclosing execution [AAR95, section 11-4]. If an ex-
ception occurrence is unhanded in a task body, the exception does not propagate
further (because there is no dynamically enclosing execution). If the exception
occurred during the activation of the task, then the activator would raise Task-
ing Error [AAR95, section 11-4].

7.1.4 Package Ada.Exceptions

The following language-defined library provides additional facilities for excep-
tions handling[a-except.ads]:

package Ada.Exceptions is

type Exception_Id is private;
Null_Id : constant Exception_Id;

type Exception_Occurrence is limited private;
type Exception_Occurrence_Access is access all Exception_Occurrence;

Null_Occurrence : constant Exception_Occurrence;

function Exception_Name (X : Exception_Occurrence) return String;
-- Same as Exception_Name (Exception_Identity (X))

function Exception_Name (Id : Exception_Id) return String;

procedure Raise_Exception (E : in Exception_Id; Message : in String := "");

function Exception_Message (X : Exception_Occurrence) return String;

procedure Reraise_Occurrence (X : Exception_Occurrence);

function Exception_Identity (X : Exception_Occurrence) return Exception_Id;

function Exception_Information (X : Exception_Occurrence) return String;

procedure Save_Occurrence
(Target : out Exception_Occurrence;
Source : in Exception_Occurrence);

function Save_Occurrence
(Source : in Exception_Occurrence)

return Exception_Occurrence_Access;

private
. . .

end Ada.Exceptions;

105

(C) Javier Miranda, 2002 (v 1.0) Chapter 7: Exceptions

Each distinct exception is represented by a distinct value of type Exception Id.
Null Id does not represent any exception, and is the default initial value of the type
Exception Id. Each occurrence of an exception is represented by a value of the
type Exception Occurrence. Similarly, Null Occurrence does not represent any
exception occurrence; it is the default initial value of type Exception Occurrence.

106

Chapter 7: Exceptions (C) Javier Miranda, 2002 (v 1.0)

7.2 GNAT Implementation

The following paragraphs describe Data Structures used by the Run-Time System
to manage all the exceptions.

7.2.1 Exception Identifier and Exception Occurrence

GNAT implements the exception identifier as an access to a record (Exception Data Ptr1).
Figure 7.1 presents the fields of this record.

Handled_By_Others : Boolean

Lang : String (1 .. 3)

Name_Length : Natural

Full_Name : String_Ptr

HTable_Ptr : Exception_Data_Ptr

Exception_Data

Figure 7.1: Exception Identifier.

The field Handled By Others is used to differentiate the user-defined excep-
tion from the run-time internal exceptions (i.e. task abortion) which can not be
handled by the user-defined exception handlers. The field Lang defines the lan-
guage where the exception is declared (by default “Ada”). The next two fields are
used to store the full name of the exception. This name is composed of a pre-
fix (the full path of the scope where the exception is declared) and the exception
name. The last field is used to create linked lists of exception identifiers (describe
in section 7.2.2).

When an exception is raised, the corresponding exception occurrence is stored
by the GNAT run-time in the Compiler Data field of the ATCB. The data type of
this field is a record; the Current Excep2 field of this record stores the exception
occurrence.

The Exception Raised field is set to True to indicate that this exception oc-
currence has actually been raised. When an exception occurrence is first cre-
ated, it is set to false; then, when it is later processed by the GNARL subprogram

1System.Standard Library.Exception Data Ptr
2System.Soft Links.TSD

107

(C) Javier Miranda, 2002 (v 1.0) Chapter 7: Exceptions

Handled_By_Others : Boolean

Lang : String (1 .. 3)

Name_Length : Natural

Full_Name : String_Ptr

HTable_Ptr : Exception_Data_Ptr

Exception_Data

Compiler_Data

Pri_Stack_Info
Jmpbuf_Address
Sec_Stack_Addr
Exc_Stack_Addr
Current_Excep

Id
Msg
Msg_Length
Exception_Raised

ATCB

Figure 7.2: Occurrence Identifier.

Raise Current Exception3, it is set to True. This allows the run-time to distinguish
if it is dealing with an exception re-raise.

7.2.2 Exceptions Table

Because the visibility rules of Ada exceptions (an exception may not be visible,
though handled by the others handler, re-raised and then again visible to some
other calling scope) a global table must be used (Exceptions Table4). In order to
handle the exceptions in an efficient way, the Ada run-time uses a hash table (cf.
Figure 7.3).

As the reader can see, an accesses table to the exception identifiers is used. A
simple linked list of exception identifiers is used to handle collisions. The field
HTable Ptr5 is used to link the exception identifiers.

When an exception is raised in a task, the corresponding exception identifier
must be found. Therefore the hash function is evaluated, and the resulting linked
list is traversed to look for the exception identifier. Then its reference is stored in
the ATCB of the task. This reference is kept in the ATCB until the exception is

3Ada.Exceptions.Raise Current Excep
4System.Exception Table
5System.Standard Library.TSD

108

Chapter 7: Exceptions (C) Javier Miranda, 2002 (v 1.0)

Tasking_Error

Compiler_Data

Pri_Stack_Info
Jmpbuf_Address
Sec_Stack_Addr
Exc_Stack_Addr
Current_Excep

Id
Msg
Msg_Length
Exception_Raised

ATCB

Storage_Error

.

Program_Error

Constraint_Error

Figure 7.3: Hash Table.

handled (though the exception may not be visible in some exception handlers).

The elements in the hash table are never removed; they are kept until the end
of the program.

7.2.3 Exception Declaration

The compiler translates an exception declaration to a variable declaration of type
Exception Data. In order to distinguish among the exceptions with the same
name, the name of an exception is made up of the complete path of its scope.
For instance, if we declare the exception My Error in the function Locate, the
name assigned by the compiler will be Locate.My Error. Since it is necessary
to include the associated data in the exceptions hash table, the compiler inserts a
call to the GNARL subprogram Register Exception6. This subprogram evaluates
the hash function from the exception name and then inserts its data record at the
beginning of the corresponding linked list. This record remains in the list until the
end of the program.

6System.Exception Table.Register Exception

109

(C) Javier Miranda, 2002 (v 1.0) Chapter 7: Exceptions

7.2.4 Exception Handler

This section presents a general overview of the exception handlers implementation
done in GNAT via the POSIX setjump/longjmp mechanism. The long jump is a
POSIX operation which transfers control from the current point of execution to
the point of a previous call to setjmp() at a lower nesting level of stack frames.
Specifically, setjmp() can be called as the condition of an if statement. In essence,
setjmp() saves the state of the thread at the point of call into a jump buffer variable
and returns the value zero. The longjmp() operation reloads the state from the
jump buffer which transfers control to the setjmp() call causing setjmp() to return
again, but this time with a non-zero value. Thus the longjmp() can be used to roll
back a computation to an earlier conditional branching point and take the other
branch (in our case, the exception handler) [GMB93, section 4.2].

The GNAT compiler translates the following Ada code

begin
User_Code;

exception
when Exception1 =>

Exception1_Code;
when Exception2 =>

Exception2_Code;
. . .
when others =>

Others_Code;
end;

. . . to the following code:

declare
Env : Jmp_Buf;

begin
if setjmp(Env) then

User_Code;
else

declare
Exception_ID: GNARL.Exception_ID;

begin
Identify the raised exception;
GNARL.Undefer_Abortion;
case Exception_ID is

when Exception1 =>
Exception1_Code;

when Exception2 =>
Exception2_Code;

. . .
when others =>

110

Chapter 7: Exceptions (C) Javier Miranda, 2002 (v 1.0)

Others_Code;
end case;

end; -- declare
end if;

end;

7.2.5 Raise Statement

Ada allows an exception to be raised in two different ways: (1) by means of the
raise statement and (2) by means of the procedure Ada.Exceptions.Raise Exception
which allows the programmer to associate a message to the exception. In both
cases, the compiler generates a call to a GNARL function which carries out the
following actions:

1. To fill the ATCB exception occurrence.

2. To defer the abortion.

3. If there is one exception handler installed, then jump to it.

4. Otherwise (no exception handler can be called) terminate the execution of
the program.

7.3 Summary

In this chapter the basic concepts of the GNAT exception handling implementation
has been presented.

� The exception ID is an access to a record where the full name of the excep-
tion is stored.

� The exception occurrence is stored in the ATCB.

� All the exceptions are stored in a hash table.

� The exception handler can be implemented by means of the setjmp/longjmp
POSIX mechanism.

111

(C) Javier Miranda, 2002 (v 1.0) Chapter 7: Exceptions

112

Chapter 8

Abortion

When an error condition is detected in a program two basic mechanisms allow
us to handle the error: exceptions, which can be used when the task itself detects
the error condition and can explicitly raise (and handle) the exception, and the
abortion which is used when another task detects the error condition. Ada pro-
vides two basic mechanisms to abort some execution: the abort statement, and
the Asynchronous Transfer of Control (ATC).

8.1 Ada Abortion

8.1.1 Abort Statement

The abort statement is intended for use in response to those error conditions where
recovery by the errant task is deemed to be impossible. Tasks which are aborted
are said to become abnormal, and are thus prevented from interacting with any
other task. Ideally, an abnormal task will stop executing immediately. However,
some implementations may not be able to facilitate immediate shut-down, and
hence the ARM [AAR95, section 9.8] requires is that the task terminate before
it next interacts with other tasks [BW98, section 10.2]. The syntax of the abort
statement is:

abort_statement ::= abort task_name , task_name;

Each aborted task becomes abnormal and any non-completed tasks that de-
pend upon an aborted task also become abnormal. Once all named tasks are

113

(C) Javier Miranda, 2002 (v 1.0) Chapter 8: Abortion

marked as abnormal, then the abort statement is complete, and the task executing
the abort can continue. It does not wait until named tasks have actually termi-
nated [BW98, section 10.2].

After a task has been marked as abnormal, execution of its body is aborted.
This means that the execution of every construct in the task body is aborted, unless
it is involved in the execution of an abort deferred operation. The execution of
an abort-deferred operation is allowed to complete before it is aborted [BW98,
section 10.2].

If a construct which has been aborted is blocked outside an abort-deferred
operation (other than at an entry call), the construct becomes abnormal and is
immediately completed. Other constructs must complete no later than the next
abort completion point (if any) that occurs outside an abort-deferred operation.
These are [BW98, section 10.2]:

� The end of activation of a task.

� The point where the execution initiates the activation of another task.

� The start or end of an entry call, accept statement, delay statement or abort
statement.

� The start of the execution of a select statement, or of the sequence or state-
ments of an exception handler.

Certain actions must be protected in order that the integrity of the remaining
tasks and their data be assured. The following operations are defined to be abort-
deferred [BW98, section 10.2.1]:

� A protected action.

� Waiting for an entry call to complete.

� Waiting for termination of dependent tasks.

� The execution of an “initialize” procedure, a “finalize” procedure, or an
assignment operation of an object with a controlled part.

114

Chapter 8: Abortion (C) Javier Miranda, 2002 (v 1.0)

8.1.2 Asynchronous Transfer of Control

The asynchronous transfer of control allows the caller to continue executing some
code while the entry call is waiting to be attended. The syntax is [AAR95, sec-
tion 9.7.4]:

asynchronous_select ::=
select

triggering_alternative
then abort

abortable_part
end select;

triggering_alternative ::=
triggering_statement
[sequence_of_statements]

triggering_statement ::=
entry_call_statement

| delay_statement

abortable_part ::= sequence_of_statements

If the triggering statement is queued (due to an entry call statement or to a de-
lay statement) the abortable part starts its concurrent execution. When one of the
parts finishes its execution it aborts the execution of the other part. This provides
local abortion which is potentially cheaper than the abortion of the entire task.

There is a restriction on the sequence of statements that can appear in the
abortable part. It must not contain an accept statement. The reason for this is to
keep the implementation as simple as possible [BW98, section 10.3.2].

The asynchronous select statement can be nested. The abortable part may
itself contain another asynchronous select statement. In this case, the ATC may
have to propagate to an outer asynchronous select scope if its triggering statement
completes. In the process, all inner asynchronous select statements have to be
aborted [GMB93, section 4.1].

115

(C) Javier Miranda, 2002 (v 1.0) Chapter 8: Abortion

8.2 GNAT Implementation

8.2.1 Abort Deferral

At some predefined points the abortion can not be immediately attended. For
example, abort deferral is required by the language for protected actions and fi-
nalization routines. It is generally also required during the execution of the Ada
run-time, to ensure the integrity of run-time data structures. Implementing abort
deferral can be divided into two parts [GB94b, Section 3.3]:

� Determining whether abort is deferred for a given task, at the point it is
targeted for abortion.

� Ensuring deferred aborts are processed immediately when abort-deferral is
lifted.

In general, the determination of whether a given task is abort-deferred must be
carried out by the task itself. In a single-processor system, it may be possible for
the task initiating an abort to determine whether the target task is abort-deferred.
However, in a multi-processor system, or a single processor system where the Ada
run-time is not in direct control of task scheduling, this is not possible. The abort-
deferral state of the target task may change between the point it is tested and the
point the target task is interrupted [GB94b, Section 3.3].

There are two obvious techniques for recording whether a task is abort-deferred.
One technique is sometimes termed PCmapping. The compiler and link-editor
generate a map of abort-deferred regions. Whether the task is abort-deferred can
then be determined by comparing the current instruction-pointer value, and all the
saved return addresses of active subprogram calls, against the map. To ensure the
abort is processed on exit from the abort-deferred region, one overwrites the saved
return address of the outermost abort-deferred call frame with the address of the
abort-processing routine (saving the old return address elsewhere). The test for
abort deferral may take time proportional to the depth of subprogram call nesting,
but that occurs only if an ATC is attempted. Until that occurs, no runtime overhead
is incurred for abort deferral. A restriction of this method is that abort-deferred
regions must correspond to callable units of code. Another restriction is that the
subprogram calling convention is constrained to (1) ensure the return addresses
are always in a predictable and accessible location and (2) ensure this data is al-
ways valid, even if the calling sequence is interrupted. Unfortunately, that is not
true for some architectures [GB94b, Section 3.3].

116

Chapter 8: Abortion (C) Javier Miranda, 2002 (v 1.0)

In the other technique the task increments and decrements a deferral nesting
level (e.g. in a dedicated register or the ATCB), whenever it enters and exits an
abort-deferred region. On exit from such a region, if the counter goes to zero, the
task must check whether there is a pending abort and, if so, process the abort. This
deferral-counter method imposes some distributed overhead on entry and exit of
abort-deferred regions, but allows GNARL quick checking [GB94b, Section 3.3].
This is the technique used by the GNAT run-time. GNAT Undefer Abort1 sub-
program is the universal polling point for deferred processing. It is responsible
for:

1. Base priority changes. It verifies if some priority change was requested
(Pending Priority Change ATCB field). In this case, the task yields the
processor so that the POSIX scheduler chooses the next task to execute.

2. Exception handling. It verifies if there is some pending exception to raise
(Exception To Raise ATCB field).

3. Abort/Asynchronous Transfer of Control (ATC). It verifies if the internal
exception Abort Signal must be raised.

If some request is made to modify the priority of a task, or to abort an abort-
deferred task, the ATCB field Pending Action is set to True (and the abortion will
be done later by the GNARL Undefer Abortion procedure).

8.2.2 Abort Statement

In general, processing an abort requires unwinding the stack of the target task,
rather than immediately jumping out of the aborted part (or killing the task, in
the case of entire-task abortion). There may be local controlled objects, which
require the execution of a finalization routine. There also may be dependent tasks,
which require the aborted processing block until they have been aborted, final-
ized, and terminated. The finalization must be done in LIFO order and the stack
contexts of the objects requiring finalization must be preserved until the objects
are finalized [GB94b, Section 3.4]

The GNARL implementation of the Ada abort statement is made up of:

� One flag in the ATCB (Aborting). While set, this flag prevents a race be-
tween multiple aborters and the aborted task.

1System.Tasking.Initialization.Undefer Abort

117

(C) Javier Miranda, 2002 (v 1.0) Chapter 8: Abortion

� One internal exception (Abort Signal). This exception is not visible to
user code and can only be caught by run-time system code. When this
exception is raised, it propagates back with finalization being done along the
way [BG93, Section 5.2.3]. In order to avoid the handling of this exception
by the others exception handlers, one additional field has been added to the
GNARL data type used to identify the exceptions: Not Handled By Others.
It is only set to True in this special case.

� One POSIX signal (SIGABRT), which can not be masked.

 Ada
Source

 GNAT
Front-end

Object
 Code

Abort_Tasks

Abort_Tasks

GNARL
System.Tasking
 .States

System.Tasking
 .Utilities

GNULL
pthread_cond_signalSystem.OS_Interface

POSIX

Abort_One_Task

System.Tasking
 .Initialization Locked_Abort_To_Level (0)

Wakeup Abort_Task
System.Task_Primitives
 .Operations

pthread_cond_signal

pthread_kill (ABORT_SIGNAL)

pthread_kill (SIG_ABRT)

runningblocked

Figure 8.1: GNARL Subprograms for the Abort Statement.

Figure 8.1 presents the sequence of run-time subprograms involved in the
task abortion. The GNARL procedure Locked Abort To Level2 sets to true the
ATCB flag Pending Action. and, depending on the current state of the target task
(blocked or running) it calls Wakeup3 or Abort Task4.

2System.Task Initialization.Locked Abort To Level
3System.Task Primitives.Operations.Wakeup
4System.Task Primitives.Operations.Abort Task

118

Chapter 8: Abortion (C) Javier Miranda, 2002 (v 1.0)

� If the task to be aborted is in a blocked state (task states are described in
section 2.1.1), then it is in a deferred abortion section. After the aborted
task is waked up, it continues its execution and executes the GNARL Unde-
fer Abortion5 subprogram. At this moment the Pending Action ATCB flag
will be checked. Because it is true, the ATCB flag Aborting is set to true
and internal exception Abort Signal is raised in the aborted task.

� If the task is in the running state then the aborter sends to it the signal
SIG ABRT and then the Abort Handler6 asynchronously raises the internal
exception Abort Signal in the aborted task.

In both cases the internal exception Abort Signal can not be handled by the
user defined exception handlers and unwinds the stack of the aborted task.

8.2.3 Asynchronous Transfer of Control

An implementation of ATC must address the following issues [GB94b, section 3]:

� Interruption of the target task and abortion initiation.

� Deferral of abort over certain regions.

� Execution of finalization procedures for any local objects in the aborted
part, each in its correct context.

� Finding the proper location and context to continue execution, after the
ATC.

� Handling nested scopes, including nested asynchronous select statements.

� Ensuring safety of compiler-generated code sequences, including subpro-
gram call and return when interrupted by ATC.

Since ATC is not likely to be used in most (non real-time) Ada programs, a
key objective of any implementation should be to impose little or no distributed
overhead for the existence of this feature. Subject to this constraint, the imple-
mentation of ATC should be as efficient as possible [GB94b, section 3].

5System.Task Initialization.Undefer Abortion
6System.Task Primitives.Operations.Abort Handler

119

(C) Javier Miranda, 2002 (v 1.0) Chapter 8: Abortion

There are two implementation models for the ATC, which can be classified
according to the number of threads required for its implementation. One thread
model and two threads model.

� One-Thread model

In this model the caller starts with the triggering statement (basically it ex-
ecutes the steps described in 3.2.2). If it can be completed immediately,
the abortable part is never executed at all; the task continues with the trig-
gered statements and then jumps to the end of the select statement. Other-
wise, if the entry call remains abortably queued the task does not suspend
execution; instead it proceeds to execute the abortable part. If triggering
event occurs before the task completes the abortable part, the task is inter-
rupted and forced to first execute finalization code for the abortable part,
then transfer control to the triggered statements. Otherwise, if the abortable
part completes before the completion of the entry call, an attempt is made
to cancel the entry call and, if successful, jumps to the end of the select
statement [BW98, section 10.3.2] [GB94b, section 3.1].

Similarly, if the triggering statement is a delay statement, the delay time
is calculated and, if it has not passed, the abortable part is then executed.
If this finishes before the delay time expires, the delay is canceled and
the execution of the asynchronous select statement is finished [BW98, sec-
tion 10.3.2].

If the cancellation of the triggering event fails, because the protected action
or rendezvous has started, or has been requeued (without abort), then the
asynchronous select statement waits for the triggering statement to com-
plete before executing the optional sequence of statements following the
triggering statement [BW98, section 10.3.2].

� Two-Thread model

In this model, before blocking on the triggering statement, the task execut-
ing the asynchronous select creates an agent thread of control to execute
the abortable part. The ATC is carried out by aborting the agent thread,
if the original thread wakes up at the triggering statement before the agent
completes [GB94b, section 3.1].

Proponents of the two-thread model have argued that it simplifies the imple-
mentation of several aspects. One is that it preservers two useful invariants of
the original Ada tasking model namely: (1) a thread that is waiting for an event
is not executing; (2) a thread never waits for more than a timeout and one other

120

Chapter 8: Abortion (C) Javier Miranda, 2002 (v 1.0)

event. Another simplification is that the two thread model eliminates the need for
one thread to asynchronously modify another thread’s flow of control, which is
not possible in some execution environments. If there is a way to kill a thread, it
should be sufficient to simply kill the agent thread and wake up the client [GB94b,
section 3.1].

The two-thread model seems to complicate the implementation at least as
much as it simplifies it. It violates a key invariant of Ada tasking, that there is a
one-to-one correspondence between tasks and threads of control. This assumption
pervades the semantics, and is the foundation of existing Ada tasking implemen-
tations. Loss of this invariant has many ramifications. Among these, data that
previously could only be accessed by one thread of control becomes susceptible
to race conditions. Thus, there are new requirements for synchronization, and new
potential for deadlock within a single task. Also, just killing the agent thread is
not such a simple solution as it might seem. There remains the problem of how to
execute the agent’s finalization code. If the operation that kills a thread does not
support finalization, some other thread must perform the finalization. To do so, it
must wait for the killed thread to be terminated to be able to obtain access to the
run-time stack of the terminated thread. The latter may not be possible in systems
where killing a thread also releases its stack space [GB94b, section 3.1].

The one-thread model can be implemented using a signal and longjmp(). The
trigger (entry call or delay) is pending on the thread while the abortable part is
executed. If the abortable part completes first, the pending trigger is removed. If
the trigger completes, an abortion signal is sent to the thread. The signal handler
for the abortion signal then transfers control out of the abortable part into the
triggered statements [GMB93, section 4.3]. Due to the disadvantages of the two-
threaded model, GNAT implements the one-thread model. The non-local jump is
performed by raising the internal exception in a signal handler. The propagation
of this exception aborts one or more levels of abortable parts [GB94a, section 4.3].

ATCs can be nested. This allows a task to issue another entry call while it is
waiting to complete a previous entry call (in the abortable part of the ATC). There-
fore, the Ada run-time must store all these pending entry calls. The GNAT run-
time associates an Entry Call Stack to each Ada task (Entry Calls ATCB field—
figure 8.2). The top of this stack (ATC Nesting Level ATCB field) is initialized to
1, indicating that the task has not issued any entry call. Before an entry call, the
task increments ATC Nesting Level. Therefore, level 1 is not used. The Pend-
ing ATC Level field is used to signal an abort. In order to distinguish between
the Abort statement and the end of an asynchronous request the GNAT run-time
defines the following rule:

121

(C) Javier Miranda, 2002 (v 1.0) Chapter 8: Abortion

� In the case of an abort statement, Pending ATC Level is set to 0.

� In the case of an ATC finalization, Pending ATC Level is set to the level in
which the caller was just before the entry call was made (ATC Nesting Level
minus one).

Compiler
Generated-Code
Level

ATCB

Task_Arg
State
 . . .
Entry_Call

ATC_Nesting_Level
Pending_ATC_Level
All_Tasks_Link
LL

Thread
Cond_Var
Lock

Run-Time
Level

. . .
Uninterpreted_Data
. . .

Entry Call Record

Number
Text

Parameters Record
Integer Variable

String Variable

 1
 2
 :
 :
 :
20

Figure 8.2: Entry Calls Stack.

8.2.4 GNAT Implementation of the One-Thread Model

Below we present the translation done by the compiler to implement the ATC.

declare
P : Parms := (Parm1, Parm2, ..., ParmN);
Successful : Boolean;

begin

122

Chapter 8: Abortion (C) Javier Miranda, 2002 (v 1.0)

GNARL.Defer_Abortion;
GNARL.Task_Entry_Call (Task_ID, Entry_ID, P’Address, Successful);
begin -- Abortable Part Scope

begin
GNARL.Undefer_Abortion;
<< Abortable Part >>

at end
GNARL.Entry_Call_Cancellation

end;
exception

when Abort_Signal =>
GNARL.Undefer_Abortion;

end;
if not Successful then

[Parm1 := P.Parm1;]
[Parm2 := P.Parm2;]
[...]
<< Triggered Statements >>

end if;
end;

The first action made in the scope associated with the ATC is to defer the
abortion7. Without this, an abortion that occurs between the time that the call is
made and the time that the abortable part’s cleanup handler is set up might miss
the cleanup handler and leave the call pending). The ATC request is also handled
by the GNARL procedure Task Entry Call but in this case the whole sequence of
actions is:

� Task Entry Call:8

1. Increment the ATC nesting level.

2. Elaborate one Entry Call Record and associate to it the Entry Parame-
ters Record.

3. Call Task Do Or Queue.

� Task Do Or Queue:

(Exactly the same sequence of steps done for the simple mode entry call
(described in section 3.2.2).

7System.Taskin.Initialization.Defer Abort
8System.Tasking.Rendezvous.Task Entry Call

123

(C) Javier Miranda, 2002 (v 1.0) Chapter 8: Abortion

8.3 Summary

In this chapter the basic concepts of the GNAT implementation of the Ada local
and global abortion have been presented.

� The GNARL implementation of the Ada abort statement is made up of:

– One flag in the ATCB: Aborting. While set, this flag prevents a race
between multiple aborters and the aborted task.

– One internal exception: Abort Signal. This exception is not visible to
user code and can only be handled by run-time system code.

– One signal (SIGABRT), which can not be masked.

� There are two models to implement the ATC. GNAT implements the canon-
ical one-thread model.

� Each task has one Entry Call Stack in its ATCB which is used to implement
nested ATC entry calls.

124

Appendix A

GNU Free Documentation License

Version 1.1, March 2000

Copyright c
�

2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license docu-
ment, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other written doc-
ument “free” in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the author and pub-
lisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual work, regardless of

125

(C) Javier Miranda, 2002 (v 1.0) GNU Free Documentation License

subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

A.1 Applicability and Definitions

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License.
The “Document”, below, refers to any such manual or work. Any member of the
public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or authors
of the Document to the Document’s overall subject (or to related matters) and
contains nothing that could fall directly within that overall subject. (For exam-
ple, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of histor-
ical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are des-
ignated, as being those of Invariant Sections, in the notice that says that the Doc-
ument is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License.

A “Transparent” copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public, whose
contents can be viewed and edited directly and straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for draw-
ings) some widely available drawing editor, and that is suitable for input to text
formatters or for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file format whose
markup has been designed to thwart or discourage subsequent modification by
readers is not Transparent. A copy that is not “Transparent” is called “Opaque”.

126

GNU Free Documentation License (C) Javier Miranda, 2002 (v 1.0)

Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LATEX input format, SGML or XML using a
publicly available DTD, and standard-conforming simple HTML designed for
human modification. Opaque formats include PostScript, PDF, proprietary for-
mats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title page
as such, “Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A.2 Verbatim Copying

You may copy and distribute the Document in any medium, either commercially
or noncommercially, provided that this License, the copyright notices, and the li-
cense notice saying this License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever to those of this License.
You may not use technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept compen-
sation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

A.3 Copying in Quantity

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in
covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts
on the front cover, and Back-Cover Texts on the back cover. Both covers must
also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition. Copying with

127

(C) Javier Miranda, 2002 (v 1.0) GNU Free Documentation License

changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover, and
continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along with
each Opaque copy, or state in or with each Opaque copy a publicly-accessible
computer-network location containing a complete Transparent copy of the Docu-
ment, free of added material, which the general network-using public has access
to download anonymously at no charge using public-standard network protocols.
If you use the latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

A.4 Modifications

You may copy and distribute a Modified Version of the Document under the con-
ditions of sections 2 and 3 above, provided that you release the Modified Version
under precisely this License, with the Modified Version filling the role of the Doc-
ument, thus licensing distribution and modification of the Modified Version to
whoever possesses a copy of it. In addition, you must do these things in the Mod-
ified Version:

� Use in the Title Page (and on the covers, if any) a title distinct from that of
the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use
the same title as a previous version if the original publisher of that version
gives permission.

� List on the Title Page, as authors, one or more persons or entities responsible
for authorship of the modifications in the Modified Version, together with

128

GNU Free Documentation License (C) Javier Miranda, 2002 (v 1.0)

at least five of the principal authors of the Document (all of its principal
authors, if it has less than five).

� State on the Title page the name of the publisher of the Modified Version,
as the publisher.

� Preserve all the copyright notices of the Document.

� Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.

� Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

� Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

� Include an unaltered copy of this License.

� Preserve the section entitled “History”, and its title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section entitled “History”
in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the
Modified Version as stated in the previous sentence.

� Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network lo-
cations given in the Document for previous versions it was based on. These
may be placed in the “History” section. You may omit a network location
for a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission.

� In any section entitled “Acknowledgements” or “Dedications”, preserve the
section’s title, and preserve in the section all the substance and tone of each
of the contributor acknowledgements and/or dedications given therein.

� Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered part
of the section titles.

� Delete any section entitled “Endorsements”. Such a section may not be
included in the Modified Version.

129

(C) Javier Miranda, 2002 (v 1.0) GNU Free Documentation License

� Do not retitle any existing section as “Endorsements” or to conflict in title
with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document,
you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains noth-
ing but endorsements of your Modified Version by various parties – for example,
statements of peer review or that the text has been approved by an organization as
the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a pas-
sage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts
in the Modified Version. Only one passage of Front-Cover Text and one of Back-
Cover Text may be added by (or through arrangements made by) any one entity. If
the Document already includes a cover text for the same cover, previously added
by you or by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

A.5 Combining Documents

You may combine the Document with other documents released under this Li-
cense, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the orig-
inal documents, unmodified, and list them all as Invariant Sections of your com-
bined work in its license notice.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are mul-
tiple Invariant Sections with the same name but different contents, make the title
of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number.

130

GNU Free Documentation License (C) Javier Miranda, 2002 (v 1.0)

Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the
various original documents, forming one section entitled “History”; likewise com-
bine any sections entitled “Acknowledgements”, and any sections entitled “Dedi-
cations”. You must delete all sections entitled “Endorsements.”

A.6 Collections of Documents

You may make a collection consisting of the Document and other documents re-
leased under this License, and replace the individual copies of this License in the
various documents with a single copy that is included in the collection, provided
that you follow the rules of this License for verbatim copying of each of the doc-
uments in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

A.7 Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate and indepen-
dent documents or works, in or on a volume of a storage or distribution medium,
does not as a whole count as a Modified Version of the Document, provided no
compilation copyright is claimed for the compilation. Such a compilation is called
an “aggregate”, and this License does not apply to the other self-contained works
thus compiled with the Document, on account of their being thus compiled, if they
are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one quarter of the entire aggregate,
the Document’s Cover Texts may be placed on covers that surround only the Doc-
ument within the aggregate. Otherwise they must appear on covers around the
whole aggregate.

131

(C) Javier Miranda, 2002 (v 1.0) GNU Free Documentation License

A.8 Translation

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License
provided that you also include the original English version of this License. In case
of a disagreement between the translation and the original English version of this
License, the original English version will prevail.

A.9 Termination

You may not copy, modify, sublicense, or distribute the Document except as ex-
pressly provided for under this License. Any other attempt to copy, modify, sub-
license or distribute the Document is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

A.10 Future Revisions of This License

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License ”or any later
version” applies to it, you have the option of following the terms and conditions
either of that specified version or of any later version that has been published (not
as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

132

GNU Free Documentation License (C) Javier Miranda, 2002 (v 1.0)

ADDENDUM: How to use this License for your doc-
uments

To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after the
title page:

Copyright c
�

YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.1 or any later version pub-
lished by the Free Software Foundation; with the Invariant Sections
being LIST THEIR TITLES, with the Front-Cover Texts being LIST,
and with the Back-Cover Texts being LIST. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead
of saying which ones are invariant. If you have no Front-Cover Texts, write “no
Front-Cover Texts” instead of “Front-Cover Texts being LIST”; likewise for Back-
Cover Texts.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software li-
cense, such as the GNU General Public License, to permit their use in free soft-
ware.

133

(C) Javier Miranda, 2002 (v 1.0) GNU Free Documentation License

134

Bibliography

[AAR95] AARM. Annoted Ada Reference Manual (Technical Corrigendum
1). ISO/IEC 8652:1995(E), 1995.

[BG93] T.P. Baker and E.W. Giering. Gnu Low-Level Interface Definition.
Florida State University, 1993.

[BG94] T.P. Baker and E.W. Giering. PART/GNARL Interface Definition.
Florida State University, 1994.

[BG01] T.P. Baker and E.W. Giering. GNAT Reference Manual. Version
3.15p. Ada Core Technologies, Inc., 2001.

[BR85] T.P. Baker and G.A. Riccardi. Ada tasking: from semantics to effi-
cient implementation (PostScript / PDF). Florida-State University,
1985.

[BW98] A. Burns and A. Wellings. Concurrency in Ada (2nd edition). Cam-
bridge University Press, 1998.

[Coh96] N.H. Cohen. Ada as a Second Language (2nd edition). McGraw-
Hill, 1996.

[DIB94] O. Dong-Ik and T.P. Baker. Optimization of Ada’95 Tasking Con-
structs (PostScript / PDF). Florida State University, 1994.

[DIBM96] O. Dong-Ik, T.P. Baker, and S.J. Moon. The GNARL Implementa-
tion of POSIX/Ada Signal Services. Reliable Software Technologies.
AdaEurope’96, (LNCS 1088):275–286, June 1996.

[GB92] E.W. Giering and T.P. Baker. Using POSIX Threads to Implement
Ada Tasking: Description of Work in Progress. TRI-Ada’92 Pro-
ceedings, pages 518–529, ACM, November 1992.

135

BIBLIOGRAPHY BIBLIOGRAPHY

[GB94a] E.W. Giering and T.P. Baker. The Gnu Ada Runtime Library
(GNARL): Design and implementation. Wadas’94 Proceedings,
1994.

[GB94b] E.W. Giering and T.P. Baker. Ada 9X Asynchronous Transfer of
Control: Applications and Implementation. Proceedings of the SIG-
PLAN Workshop on Language, Compiler, and Tool support for Real-
Time Systems, 1994.

[GB95] E.W. Giering and T.P. Baker. Implementing Ada Protected Objects.
Interface Issues and Optimization. TRI-Ada’95 Proceedings, pages
134–143, ACM, Anaheim, California, 1995.

[GMB93] E.W. Giering, F. Mueller, and T.P. Baker. Implementing Ada 9X
features using POSIX Threads: Design Issues. TRI-Ada’93 Proceed-
ings, pages 214–228, ACM, Seatle, Washinton, September 1993.

[GMB94] E.W. Giering, F. Mueller, and T.P. Baker. Features of the Gnu Ada
Runtime Library. Florida State University 1994.

[MGGM99] J. Miranda, F. Guerra, A. Gonzalez, and J Martin. How to
modify the GNAT Run-Time to Experiment with Ada Ex-
tensions. University of Las Palmas de Gran Canaria, Ca-
nary Islands, Spain. ISBN: 84-87526-68-3. Available at
http://www.iuma.ulpgc.es/users/gsd/Drago, 1999.

[SGC94] E. Schonberg, F. Gasperoni, and C. Comar. The GNAT Project: A
GNU-Ada9X Compiler. New York University, 1994.

[Sta92] R.M. Stallman. Using and Porting GNU CC. Free Software Foun-
dation, 1992.

136

Index

Ada
Abortion, 113

Abort Statement, 113
Asynchronous Transfer of Con-

trol (ATC), 115
Exceptions, 103

Exception Declaration, 104
Exception Handling, 104
Model of Exceptions, 103
Package Ada.Exceptions, 105
Raise Statement, 104

Interrupts, 83
Ada Model, 83
Package Ada.Interrupts, 85
Priorities, 86
Protected Procedures, 84

Protected Object, 55
Barrier, 56
Count Attribute, 61
Eggshell Model, 58
Elaboration, 60
Entry Call, 57
Entry Family, 59
Private Entries, 59
Protected Entry, 56
Protected Function, 56
Protected Procedure, 56
Restrictions, 60

Rendezvous, 35
Accept Statement, 37
Conditional Entry Call, 36
Count Attribute, 40
Entry, 35

Entry Parameters Mode, 36
Selective Accept, 38
Simple Entry Call, 36
Terminate Alternative, 39

Task, 13
Abortion, 18
Activation, 16
Creation, 14
Environment Task, 16
Identification, 18
Parent, 15
States, 14
Termination, 17

Time, 73
Delay Statement, 76
Package Ada.Calendar, 73
Package Ada.Real Time, 75
Timed Entry Call, 76
Timed Selective Wait, 77

GNARL, 6
Abortion

Abort, 117
Abort Handler, 119
Abort Task, 118
Locked Abort To Level, 118

Ada Task Control Block (ATCB),
20

Aborting, 117, 119
Alive Count, 29
ATC Nesting Level, 121
Call, 46
Callable, 29
Compiler Data, 48, 107

137

INDEX INDEX

Entry Calls, 121
Entry Queues, 45
Exception To Raise, 117
Master Completion Sleep, 33
Master Of Task, 22
Master Within, 22, 28
Open Accepts, 50
Pending Action, 117–119
Pending Priority Change, 117
State, 21
Task Arg, 25
Wait Count, 29, 33

Entry Call Record, 41, 43, 70
Entry Parameters Record, 41
Exceptions

Current Exception, 107
Exception Data, 107, 109
Exception Raised, 107
Exceptions Table, 108
Raise Current Exception, 108
Raise Exception, 111
Register Exception, 109

Interrupts
Install Handlers, 93, 95
Interrupt Manager, 95, 97
Previous Handlers, 93
Register Interrupt Handler, 95
Reserved Signals Table, 92
Server ID Table, 97
Server Task, 97
User-Defined Interrupt-Handlers

Table, 92
Protected Objects

Complete Entry Body, 68
Entry Body Array, 67
Exceptional Complete Entry Body,

68
PO Do Or Queue, 70
Protected Entry Call, 70
Protection Entries, 65
Select Protected Entry Call, 69

Service Entries, 67, 69
Rendezvous

Accept Call, 47
Accept Trivial, 46
Call Simple, 42
Call Syncrhonous, 43
Exceptional Complete Rendezvous,

48
Selective Wait, 52
Task Count, 53
Task Do Or Queue, 43
Task Entry Call, 44

Task States
Activate Tasks, 21, 26, 30
Complete Activation, 32
Complete Master, 33
Complete Task, 32
Create Tasks, 29
Enter Master, 28

Time
Delay, 78
Timed Delay, 78
Timed Protected Entry Call, 80
Timed Selective Wait, 81
Timed Task Entry Call, 80

POSIX, 9
mutex lock(), 10
mutex unlock(), 10
pthread cond signal(), 11
pthread cond wait(), 11
pthread kill, 88
pthread sigmask, 88
pthread sigwait, 89
mutex, 10
Signals, 88
Threads Control Block (TCB), 20

138

