
Active C#

Raphael Güntensperger

Jürg Gutknecht

ETH Zürich
Clausiusstrasse 59

CH-8092 Zürich

guentensperger@inf.ethz.ch

gutknecht@inf.ethz.ch

ABSTRACT

Active C# is a variant of Microsoft’s C# that enhances the basic language with a direct support for concurrency
and a new model for object communication. The C# compiler of the Shared Sources Common Language
Infrastructure (SSCLI) served as a basis to extend the compiler. Modifications mainly concern the enhancement
of C# with an active object concept and a novel communication paradigm based on formal dialogs.

Keywords
Active C#, Programming Languages, Concurrency, Formal Dialogs, Active Objects, AOS, SSCLI

1. BACKGROUND
The roots of Active C# can be found in a ROTOR
project partially funded by Microsoft Research [Gu].
The concept of active objects and their
synchronization comes from Active Oberon [Gk], a
successor of the Oberon Language and from the
Active Object System [Mu], an internally developed
operating system microkernel. This paper presents a
consolidation and enhancement of an experimental
language concept introduced in the aforementioned
ROTOR project.

2. OVERVIEW
From a historical perspective, we can easily
recognize an evolution of the object concept from
purely passive data records to re-active, functional
entities. In our language experiment, we evolve the
object concept another step further by adding
encapsulated behavior and communication
capabilities.

Active C# is an extension of C# which mainly
includes two new technologies: active objects and
formal dialogs.

Both technologies support the seamless integration of
threading into the programming model, with the aim
of increased acceptance and use of concurrency in
programs. The idea is that programmers do not need
to call the underlying threading framework directly
anymore but can still add concurrency to their
programs simply by making appropriate use of the
programming model.

Active Objects
An active object is an instance of a class with
encapsulated behavior, running one or more separate
threads.

In Active C#, this idea is supported by activities. a
new kind of class members. An activity is a method
with an empty parameter list and void result, run as a
separate thread. Any number of activities are allowed
in a class.

Two kinds of activities exist: unnamed and named.
An unnamed activity automatically starts after object
instantiation and is executed only once per instance,
where a named activity must be started explicitly and
can be executed any number of times. The static
modifier is also allowed for both kinds of activities
and, if chosen, the activity is bound to the type of the
object rather than to its instance. This implies that a

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2004 workshop proceedings,
ISBN 80-903100-4-4
Copyright UNION Agency – Science Press, Plzen, Czech Republic

static unnamed activity is started when the class is
loaded and that these activities run in the static
context of the class.

Formal Dialogs
Formal dialogs are a vehicle that allows advanced,
syntax-controlled communication between objects,
notably between remote objects. Thus, a formal
dialog serves as a communication interface from the
outer world to an object.

Assuming that some object b provides a syntactic
specification of dialog D and that object a wants to
communicate with b, this is how it works:

• a instantiates dialog D with b

• b creates a separate thread of control, acting
as a symbolic channel of communication
between a and b

• a and b communicate over a symbolic
channel according to the syntactical
specification of D

In Active C#, dialog interfaces and implementations
are represented by keyword enumerations and parser
activities respectively. For example:

dialog D { u, v, w }
// keywords

class B {
 …
 activity d: D { … }
 // parser
}

3. ACTIVITIES
An activity is defined inside a class and follows this
syntax:

[“static”] ”activity” [name] ”{” statements ”}”.

We recall that unnamed activities are launched
automatically at instance creation time. In contrast,
named activities must be started explicitly by calling
an overloading of the new operator:

”new” QualIdent.

By concept, activities always run to their end, and
there is no explicit option of aborting an activity. Of
course, each activity can still decide to finish its
work early depending on some state condition.

Activities are inherited from base classes and run in
parallel with activities defined in the derived class.
Inherited anonymous activities are therefore started
automatically at each instance creation of a derived
class.

The automatic starting of threads belonging to
anonymous activities is handled by our modified

compiler at the end of either the instance constructor
or the type constructor.

Synchronization
Normally, object activities run in full concurrency.
However, sometimes a certain precondition is needed
for continuation. In line with our goal of simplifying
concurrent programming and avoiding explicit calls
to the threading framework, we use a direct

await (condition)

statement instead of signals for the reactivation of
waiting activities. condition is an arbitrary
Boolean expression representing the condition to be
waited for.
To ensure proper synchronization, the await
statement must occur in a context that is locked with
respect to the enclosing object and it must refer to a
purely object-local condition. In Active C#, we use
an overloading of the lock statement for this
purpose:

lock { }

whose semantics is given in Figure 1, where context
refers either to the current object (this) or its type
descriptor (typeof(Class)) and Monitor refers
to the corresponding type of the .NET Framework’s
threading library.

The lock statement simplifies both the specification
of context-locking actions and the implementation of
the Active C# compiler. Assuming that object state-
changes occur within context-locked sections only, it
is reasonable to

• map await (condition) to
while (!condition)
 Monitor.Wait()

• generate a
Monitor.PulseAll (context)
at the end of each lock block

However, interestingly, this is not sufficient. Another
PulseAll (context) is necessary right before

Monitor.Enter(context);
try {

// statements
}
finally {
 Monitor.PulseAll(context);
 Monitor.Exit(context);
}

Figure 1. The lock construct decomposed

an unsatisfied await statement suspends its thread for
the first time1
In summary, all this leads to the decomposition of the
await statement shown in Figure 2.

In principle, time-oriented conditions could be
handled by await statements of the form

await (t >= T)

within some Timer object. However, for
convenience, a special passivate statement is
provided for this purpose. This is its form and
semantics:
 passivate (duration);

where the duration parameter specifies the
number of milliseconds the current thread is to be
suspended. The passivate statement can occur at any
places in the code and takes any integer expression as
argument.

4. DIALOGS
Our dialog model is based on formal grammars that
constitute some kind of contract between caller and
callee. An element of such a grammar is called a
token. Each token basically specifies a data type and
a direction. Our implementation of formal dialogs
associates two buffers with each communication.
Tokens sent by the caller are stored in the input
buffer to be processed by the callee. Conversely,
tokens sent by the callee are stored in the output
buffer to be processed by the caller. Technically,
both buffers are instances of
System.Dialog.DialogBuffer and
implemented as self-expanding ring-buffers.

Encoding and decoding
Because dialogs are designed to be used in remote
environments as well, an encoding must be specified
and agreed upon for each token type, and a codec
must be plugged into the sender and receiver
program respectively. This system works because the
token buffers act as FIFO-queues and therefore allow
their contents to be treated as a byte stream.

The current codec supports the C# built-in types
int, long, float, double, bool, char,
string, byte, byte[], the new Active C# type
keyword and an escape type used in some
formal grammars.

1 Before suspending a thread after checking the condition

of its await statement at all later times, no signal is
necessary, because this thread had no possibility to
change any condition in the meantime.

Dialog specification and implementation
A dialog specification is an element of a namespace
(on the same level as classes and interfaces) and has
the following syntax:

[accmod] ”dialog” DialogTypeName keywords.
accmod = private | internal | protected | public.
keywords = ”{” [{ keyword ”,” } keyword] ”}”.

This declaration defines the dialog type, including
the list of keywords of the underlying grammar. User
defined dialog types are always implicitly derived
from System.Dialog.Dialog, a predefined
type that specifies the dialog accessors (see next
section) and some references to internal ingredients
of a running dialog, such as its buffers.
All keywords are of the new built-in type keyword,
mapped to the enumeration type
System.Dialog.Keyword. Their values are
used by the sender and receiver, which guarantees an
efficient transfer of keyword tokens.
Note that dialog types have a comprehensive
character and provide the following infrastructure:

• An enumeration type for keywords
• An interface for a dialog implementation
• The data structure to control a running

dialog

A dialog implementation is a named activity that
implements the corresponding dialog specification.
The syntax is familiar from interface implementation:

[“static”] “activity” ActivityName
“:” DialogType “{“ statements “}”.

Note that, in the case of activities, a formal syntax
consistently replaces the argument list occurring in
method declarations. We will use the C# attribute
concept to bind a formal syntax to a dialog
declaration. An automatic parser generator, which we
are implementing in a related project, may read this
syntax to produce an appropriate parser.

bool waitingAlready = false;

while(!condition)

{

if(!waitingAlready)

 {

 Monitor.PulseAll(ref);

 waitingAlready = true;

 }

 Monitor.Wait(ref);

}

Figure 2. Decomposition of the await statement

Dialog operators
In Active C#, four dialog-related operators exist:
new, ~, !, ? and ??. In turn, their meaning is
create a new dialog instance, close a dialog instance,
send a token and receive a token in blocking and
unblocking mode respectively.
Not surprisingly, the Active C# compiler and runtime
depend on powerful library support for the
implementation of dialogs, especially for remote
dialogs (see the corresponding section below). We
already mentioned the types
System.Dialog.Dialog and
System.Dialog.DialogBuffer.
These are the library methods that correspond to the
Active C# operators:

• constructor instantiates a dialog and
returns a reference to the instance

• close explicitly discards a dialog and
stops its associated thread

• send takes an object, encodes it and passes
the encoded data to the input buffer

• receive tries to decode the output buffer
and returns an object

The receive accessor can be called in two modes.
In blocking mode, control is given back to the caller
only after a complete object has been received, where
in the non-blocking mode the accessor immediately
returns control, however with a possible null
return value if not enough bytes were available to
decode a complete object at the time of invocation.
Two variants put and get of send and receive
are used within the callee class. They take the dialog
reference directly from the thread context and are in-
lined by the compiler directly into the parser code.
While the accessor methods work with the general
object type, the compiler automatically casts the
received object to the type of the target variable.

Dialog lifecycle control
Activities are launched in Active C# simply by
calling their name, qualified by a reference to the
object instance or class name (in the case of static
activities). In the special case of dialog activities, a
reference to the launched activity is needed in
sending and receiving operations. For this reason, an
overloading of the new operator is provided:

ref = ”new” TypeOrRef ”.” ActivityName.

where TypeOrRef is the name of the type for a
static dialog or a reference to the callee respectively.
Note that the reference returned by new refers to one
specific instance of a dialog and is necessary to
specify the context of the communication. Internally
(that is, on the callee side) it is registered relative to

the activity thread descriptor and loaded in a local
variable at the beginning of each method which
might potentially make use of it2, thus the
programmer does not have to refer to it explicitly. In
this way, the reference to the current dialog instance
is available even across method calls. The caller can
discard the current instance of a dialog explicitly by
calling its destructor:

”˜” ref.

Any further access to this dialog would raise an
exception.
When the dialog activity terminates regularly, the
corresponding thread is discarded and no further
communication is possible, although the reference to
the dialog instance remains valid.

Communication
The send and receive operators are designed to take
generic arguments of type object. Received
objects are type-checked and cast back to their actual
type. Table 1 shows the communication syntax. d
denotes a reference to the current dialog and obj is
the token to be exchanged. On the callee side, the
reference to the dialog is implicit.
The use of separate buffers for input and output
allows a full-duplex data-flow. The buffer size is
increased automatically on demand but can be
limited on desire. If the input buffer is full, the next
send operation blocks.

Action By client In parser
context

Send d!obj; !obj;
Receive

(blocking) d?obj; ?obj;

Receive
(non-

blocking)
d??obj; ??obj;

Table 1: Active C# communication syntax

An example
The communication mechanism supported by Active
C# really shines when it comes to “stateful” dialogs
such as, for example, negotiations. An upgraded
version of John Trono’s Santa Claus concurrency
exercise [Tr] may illustrate this.

The original version goes like this: Santa Claus
sleeps at the North Pole until awakened by either all
of the nine reindeer, or by a group of three out of ten

2 Each method which contains at least one send or receive

statement is marked appropriately

elves. He performs one of two indivisible actions: If
awakened by the group of reindeer, Santa harnesses
them to a sleigh, delivers toys, and finally
unharnesses the reindeer who then go on vacation. If
awakened by a group of elves, Santa shows them into
his office, consults with them on toy R&D, and
finally shows them out so they can return to work
constructing toys. A waiting group of reindeer must
be served by Santa before a waiting group of elves.
Since Santa's time is extremely valuable, marshalling
the reindeer or elves into a group must not be done
by Santa.
The following complication now adds an element of
negotiation: If complete groups are waiting for Santa
when an elf desires to join, she should be given the
option of withdrawing and walking away. Also, if
one and the same elf desires to join excessively
often, the coordinator should reject her.
While the translation of the original Santa scenario
into an elegant C# program is easy, the negotiation
added provides a bigger challenge, mainly because
no appropriate language construct is readily
available. However, using the dialog construct of
Active C#, the following solution of uncompromised
elegance is straightforward.

Figure 3 shows the behaviour of an elf while Figure
4 depicts the coordinator activity which is the dialog
partner of the elf. Note the negotiation which takes
place between the two participants.

It is perhaps interesting to compare our full C#
program in the Appendix with Ben-Ari’s carefully
crafted solution [Be] in Ada95 [Ad], albeit without
the complication of negotiation.

Remote dialogs
Up to this point, we have concentrated our discussion
on dialogs in local contexts, which allows us to refer
to callee objects and dialog instances directly via
memory references. However, the communication
concept is by no means limited to local
environments. The two basic upgrades needed to
enable remote dialogs are:

• Use GUIDs instead of memory references
for the identification of both the callee
object and the current dialog

• Adjust the supporting dialog libraries to
make them work on top of some suitable
transport layer

See [Gu] for more details.

Summary
We have presented an enhanced variant of C# called
Active C#, featuring a new kind of class members
called activity. Activities provide a uniform tool for
two different purposes: specification of active
behavior of objects and implementation of dialogs.
The rationale behind is a new object model centered
around interoperating active objects, in contrast to
passive objects that are remote-controlled by threads.
Important advantages of the new model are
integrated threading and compatibility with remote
object scenarios.
While our first experiments with active objects were
based on our proprietary language Active Oberon
(one activity per object, no dialogs), the ROTOR
Shared Source initiative and the availability of the
C# compiler in source form (written in C++) allowed
us to go a significant step further. The resulting
Active C# compiler is fully functional and available
[Ac].

Acknowledgement
We gratefully acknowledge the opportunity of
developing and implementing our ideas, given to us
by Microsoft Research in the context of the ROTOR
project.

while (true) {
?msg;
if (eBuild <= groupNo + 2)
 !CoordElvesDialog.reject;
else {
 if (eGo < eBuild) {
 !CoordElvesDialog.wait;
 ?msg; }
 if (msg ==
 CoordElvesDialog.join) {
 lock { groupNo = eBuild;
 eSize++;
 if (eSize ==
 Christmas.reqElves)
 { eSize = 0; eBuild++;}
 await (eGo > groupNo);
 }
 !CoordElvesDialog.release;
 }
}

}

c = new Coordinator.CoordElves;
while (true) {
 passivate(Christmas.Rnd());
 c!CoordElvesDialog.join;
 c?msg;
 if (msg == CoordElvesDialog.wait)
 if ((Christmas.Rnd() % 3) == 0)
 c!CoordElvesDialog.release;
 else c!CoordElvesDialog.join;
 }
 }

Figure 3. Behavior of an elf

Figure 4. Behavior of the elf coordinator

REFERENCES
[Ac] Active C# Compiler,

http://www.cs.inf.ethz.ch/~raphaelg/ACSharp/
[Ad] Intermetrics, Inc., Ada 95 Reference Manual,

ISO/IEC 8652:1995.
[Be] M. Ben-Ari, How to solve the santa claus

problem. Wiley & Sons, 1997.
[Gk] J. Gutknecht, Do the Fish Really Need Remote

Control? A Proposal for Self-Active Objects in
Oberon, JMLC 97, p. 207-220.

[Gu] Güntensperger Raphael, Jürg Gutknecht:
Activities & Channels, IEE Proceedings,
Volume 150, October 2003.

[Ho] C. A. R. Hoare, Communicating Sequential
Processes, Prentice Hall, 1985.

[Mu] Muller Pieter Johannes: The Active Object
System – Design and Multiprocessor
Implementation, Diss. ETH No. 14755, 2002.

[Re] P. Reali, Structuring a Compiler with Active
Objects, JMLC 2000, p. 250-262.

[Tr] John A. Trono: A New Exercise in Concurrency,
ACM SIGCSE Bulletin, Volume 26, #3,
September 1994.

Appendix

Sample Active C# Program: Santa Claus++ (Original by John Trono [Tr])
Santa Claus sleeps at the North Pole until awakened by either all of the nine reindeer, or by a group of three out
of ten elves. He performs one of two indivisible actions: If awakened by the group of reindeer, Santa harnesses
them to a sleigh, delivers toys, and finally unharnesses the reindeer who then go on vacation. If awakened by a
group of elves, Santa shows them into his office, consults with them on toy R&D, and finally shows them out so
they can return to work constructing toys. A waiting group of reindeer must be served by Santa before a waiting
group of elves. Since Santa's time is extremely valuable, marshalling the reindeer or elves into a group must not
be done by Santa.
Complications: If complete groups are waiting for Santa when an elf desires to join, she should be given the
option of withdrawing and walking away. Also, if one and the same elf desires to join excessively often, the
coordinator should reject her.

using System;
using System.Dialog;

namespace SantaClaus
{

 // dialog declarations
 dialog CoordReindeerDialog { join, release }
 dialog CoordElvesDialog { join, reject, wait, release }
 dialog ActivSantaDialog { deliver, consult, done }

 class Reindeer {
 // an unnamed instance activity -> starts when object is instantiated
 activity {
 object msg;
 // create a new dialog instance
 CoordReindeerDialog c = new Coordinator.CoordReindeer;
 while (true) {
 passivate(Christmas.Rnd()); // wait for a random time
 c!CoordReindeerDialog.join; // send the keyword ‘join’
 c?msg; // receive whatever is sent
 }
 }
 }

 class Elf {
 activity {
 keyword msg; // a variable of the special type ‘keyword’
 CoordElvesDialog c = new Coordinator.CoordElves;
 while (true) {

 passivate(Christmas.Rnd());
 c!CoordElvesDialog.join;
 c?msg;
 // Note: automatic casting to the target type is done
 // by the compiler
 if (msg == CoordElvesDialog.wait)
 // the elf has to decide by her own what she wants to do now…
 if ((Christmas.Rnd() % 3) == 0) c!CoordElvesDialog.release;
 else c!CoordElvesDialog.join;
 }
 }
 }

 class Santa {
 const int consultTime = 10, deliverTime = 20;

 static activity ActivSanta : ActivSantaDialog {
 keyword msg;
 while (true) {
 ?msg;
 if (msg == ActivSantaDialog.deliver) {
 Console.WriteLine("Santa delivering toys");
 passivate(deliverTime);
 }
 else {
 // if it is not ‘deliver’ it must be ‘consult’
 Console.WriteLine("Santa consulting");
 passivate(consultTime);
 }
 !ActivSantaDialog.done; // send the keyword ‘done’
 }
 }
 }

 class Coordinator {
 static int rGo = 0, rBuild = 0, rSize = 0;
 static int eGo = 0, eBuild = 0, eSize = 0;

 static activity CoordReindeer : CoordReindeerDialog {
 object msg;
 int groupNo;
 while (true)
 {
 ?msg;
 // sections with state changes and await statements must be locked
 lock {
 groupNo = rBuild; rSize++;
 if (rSize == Christmas.reqReindeer) {
 // this group is full, prepare to build a new one
 rSize = 0; rBuild++; }
 // wait until this group of reindeers comes back
 // from delivering
 await (rGo > groupNo);
 }
 !CoordReindeerDialog.release;
 }
 }

 static activity CoordElves : CoordElvesDialog {
 keyword msg;
 int groupNo = -9999;
 while (true)
 {
 ?msg;
 // an elf is not allowed to join too often

 if (eBuild <= groupNo + 2) !CoordElvesDialog.reject;
 else {
 if (eGo < eBuild) {
 // complete groups are already waiting for santa
 // let the elf decide to join or to leave
 !CoordElvesDialog.wait; ?msg;
 }
 if (msg == CoordElvesDialog.join) {
 lock {
 groupNo = eBuild; eSize++;
 if (eSize == Christmas.reqElves) {
 // this group is full, prepare to build a new one
 eSize = 0; eBuild++; }
 await (eGo > groupNo);
 }
 !CoordElvesDialog.release;
 }
 }
 }
 }

 static activity {
 object msg;
 ActivSantaDialog c = new Santa.ActivSanta;
 while (true)
 {
 lock {
 await ((rBuild > rGo) || (eBuild > eGo));
 }
 if (rBuild > rGo) {
 c!ActivSantaDialog.deliver;
 c?msg;
 // the state change of this variable has to appear in a locked
 // section in order to be recognized by an await statement
 lock { rGo++; }
 }
 else {
 c!ActivSantaDialog.consult;
 c?msg;
 lock {eGo++; }
 }
 }
 }
 }

 public class Christmas {
 public const int nofReindeer = 9, reqReindeer = 9;
 public const int nofElves = 10, reqElves = 3;
 static Random rnd = new Random();

 public static int Rnd () { return rnd.Next(1000); }

 static void Main() {
 for (int i = 0; i < nofReindeer; i++) new Reindeer ();
 for (int i = 0; i < nofElves; i++) new Elf ();
 new Santa ();
 }
 }
}

