Oberon, Gadgets and Some Archetypal
Aspects of Persistent Objects

Jurg Gutknecht, ETH Zentrum, CH-8092 Zirich

February 18, 1996

Abstract

Oberon is both a programming language in the Pascal-Modula tradition
and a modern operating system for single-user personal workstations. Its
highlights are (a) an integrated and modular programming environment
and (b) a versatile textual user interface. Oberon System 3 is an evolution
of the original Oberon system that features (c) a built-in management
of persistent objects and (d) a sophisticated component framework called
Gadgets for the interactive and programmed construction of visual objects,
model objects and entire graphical user interfaces. Henceforth in this text,
we shall use the terms Oberon and Oberon system synonymously with
Oberon System 3, expressed in the language Oberon.

The main objective of this article is a systematic presentation of the
complete Oberon system architecture whose cornerstones are several well-
defined, separate and extensible hierarchies that interact harmoniously.
In detail, the topics dealt with in this article are: (a) Modular struc-
tures and their relation to class libraries, (b) a suitable kernel support for
the management of persistent objects and (c) concepts and structure of
the Gadgets package. In particular, we make an attempt to classify the
different activities in the relatively new and complex field of component
construction. In a brief interlude, we comment on a current study of some
kind of concurrent objects, called active objects.

Keywords: Oberon, System design, Modular systems, Object-oriented lan-
guages, Object-oriented systems, Persistent objects, Component frame-
works.

1 Oberon as a Hierarchy of Modules

Perhaps the best short characterization defines Oberon as a well-organized hi-
erarchy of modules, as depicted in Figure 1. In this context, modules are col-
lections of logically connected types, data and functionality, and intermodular
dependencies represent client-server relations or, more concretely, use of data
or functionality. However, the use of ingredients of a module is restricted to a
subset that is presented as an abstract public interface or, to put it differently,
private contents of a module are inaccessible to clients. The benefits of such
an explicit concept of module interface are obvious: (a) Private data structures



Functional User Interface Inspectors

PanelDocs ‘
Backup Net Edit System Script TextDocs ‘

[] Panels
TextFrames ScriptFrames Desktops Lists ‘
‘ ‘ ‘ | | TextGadgets
[ Icons ‘
) Documents BasicGadgets
MenuViewers ]
[
Gadgets
=
|
[
Styles Attributes Links
I I
Gadgets Framework
Outer Core Oberon Effects
I
Texts Viewers Display3
—
Reals Math
Fonts Display
Objects
!
Modules
C
1
. Cuses B
| Files
T Inner Core B Cuses A
Printer
FileDir B uses A
‘ A
Diskette Ethernet Input Disk Legend
[ I I |
1
Device Drivers Kernel

Figure 1: The Oberon System as a Hierarchy of Modules



are protected from corruption by clients and (b) clients are insensitive about
changes of private details in server modules.

While most of the modules in the hierarchy are used by other (client) modules,
the topmost modules are used by interactive users instead. Their interfaces are
collections of commands that can be called by name (M. P) directly at run time.
In their entirety, the topmost modules in the hierarchy therefore represent the
Sfunctional user interface of the system.

In a system with such a rigorous modular structure, individual modules are
sensibly declared as both compilation units and loading units. This has two im-
portant technical implications. First, remembering the strong typing tradition
of the Pascal-Modula-Oberon line, a compiler is needed that does rigorous con-
sistency checking across module boundaries. Second, because programs appear
as packages of dynamically linked libraries (DLL) much more naturally than as
statically linked monoliths, it seems reasonable to use a dynamic linking loader
that loads modules on demand, i.e. if and when they are used for the first time.

Taking a global and abstract view, Oberon thus appears as a completely
uniform hierarchy of abstract specifications of all participating resources. This
is remarkable, because the possible variety of such resources is considerable, as
is easily illustrated by some typical examples like hardware devices (for example
keyboard, mouse and display screen handled by device driver modules Input and
Display in Figure 1 respectively), abstract data types (for example fonts and
texts handled by modules Fonts and Texts), functional libraries (for example
math libraries) and application packages.

The abstract data type Texzt has not been mentioned accidentally. Its pres-
ence in the system base can be considered as a keypoint of the Oberon architec-
ture, witnessing the major and integrating role played by texts. Undoubtedly
the most profitable application is Oberon’s unique and very effective textual user
interface (TUI) that, in essence, relies on the ability to interactively call com-
mands by their name (M.P) from any location in any text. The crucial technical
tool making this possible is an integrated scanner facility (concept borrowed
from compiler construction) that is able to recognize tokens of a defined set of
universal types, including the types Name and Number that typically occur in
textual command specifications and parameter lists.

Text is an excellent example of an abstract data type, because its abstract
presentation is simple and closed (complete set of operations, including delete,
insert and read/write access), while any efficient implementation is sophisti-
cated and depends on rather complex auxiliary dynamic data structures [1].
However, a similar statement is not true for all object types that are used in an
environment like Oberon. For example, the definition in the system base of any
type that describes viewers (windows) on the screen must remain incomplete
and open until the exact kind of contents and functionality of the viewer is
known, which, of course, can well be years after system implementation time.



2 Oberon as a Hierarchy of Object Types

It is immediately clear that the above mentioned case of viewers is archetypal
for truly extensible systems in the sense that existing system layers are often
entrusted with the management of objects of a future type (for example specific
viewer) on some basic level of abstraction (for example black box). ;jFrom this,
we conclude that a suitable language for the programming of exztensible systems
must necessarily offer some construct for subtyping, i.e. for deriving specialized
types (for example specific viewer) from a base type (for example black box).

Subtyping is expressed in Oberon in terms of a simple and very natural
construct called type extension. It allows Oberon programmers to derive new
record types from an existing record type by simply adding components. Ob-
viously, such derived types can be considered as specializations or variants of
their base type and, consequently, objects of a derived type are accepted at run
time whereever objects of the corresponding base type are. This kind of type
compatibility is known as polymorphism. Its safe implementation requires some
runtime type support that is not offered by Modula-2, for example.

Subtyping can be considered as a bridge from extensible systems to object-
oriented environments. Perhaps to our own surprise, we soon recognize that
the new construct of type extension in combination with the old concept of
procedure variable provides an absolutely sufficient language framework for the
creation of amazingly rich and flexible object-oriented sceneries as the one that
we are now going to explore.

Let us start with some sample declarations and an attempt to draw up a small
dictionary for the translation from ordinary object-oriented (OO) terminology
into Oberon terminology.



Sample declarations

TYPE
Object = POINTER TO ObjDesc;
ObjDesc = RECORD (* base type *)
a: A; (x state variable %)
P: PROCEDURE (me: Object; s: S) (* procedure variable )
END;

VAR obj: Object; (* instance *)

and (possibly declared in a different module)

TYPE
MyObject = POINTER TO MyObjDesc;
MyObjDesc = RECORD (ObjDesc) (* derived type *)
b: B; (x added state variable *)
Q: PROCEDURE (me: MyObject; t: T) (* added procedure variable )
END;

VAR myobj: MyObject; (* instance )

Dictionary

OO0 Terminology | Oberon Terminology Oberon Sample

class record type Object

subclass derived record type MyObject

superclass base record type Object

object instance of record type obj, myob]

instance variable state variable in record a, b

method procedure variable in record | P, Q

message send call of procedure variable obj.P(obj, s)
myobj.P(myobj, s)
myobj.Q(myobj, t)

message actual parameters S, t




Dictionary (continued)

OO0 Terminology | Oberon Terminology Oberon Sample
object creation allocation & initialization NEW (obj);
obj.P := myPO0;

obj.a := mya

NEW (myobj);
myobj.P := myP1;
myobj.a := mya;
myobj.Q := myQ);
myobj.b := myb

inheritance reuse of base type part myobj.a
supercall reuse of module functionality | myP0(myobj, s)

Some clarifying and consolidating comments are in order. We first point out
that Oberon uses an instance-centered approach, i.e. method implementations
are instance-specific and bound to objects at creation time. In contrast to class-
centered systems that require method implementations to be class-wide and
specified at programming time, instance-centered approaches are more flexible
(method implementations might even be changed during an object’s life time),
but less economic memorywise (one memory word is used per method and
object).

In passing we note that class-wide methods are offered under the name of
type-bound procedures by a variant of the Oberon language called Oberon-2 [2].
The problem with the Oberon-2 solution is a stylistic inconsistency originating
from the fact that (in contrast to record components) type-bound procedures are
overwritable in derived types and thus reintroduce all the problems of method
inheritance through the backdoor. In the section on active objects later in this
text, we shall revisit type-bound procedures in a different context.

Let us now focus on object interfaces. We first recall that the interface of
an object is typically defined by some class-wide and static collection of state
variables and methods and is therefore (a) class-centered and (b) closed. While
(a) is generally desired, (b) is sometimes too restrictive as, for example, in the
case of context-oriented message propagation in composite objects, a situation
that we shall encounter later in this text. Remarkably, the Oberon object model
is able to type-safely express open object interfaces. The key idea is simple:
Apply type-extension to messages.

For example, let us take the following Oberon declarations:



TYPE
Object = POINTER TO ObjDesc;
Message = RECORD END; (* message base type *)

ObjDesc = RECORD

a: A;

H: PROCEDURE (obj: Object; VAR msg: Message) (* message handler *)
END:;

and (perhaps in a different module)

TYPE
MyMessage = RECORD (Message) ( later defined message type *)
u: U (* message contents and return values )
END:

and (perhaps in a different module)

TYPE
YourMessage = RECORD (Message) (* later defined message type *)

v: V (* message contents and return values )
END;

Remembering the rules of polymorphic type-compatibility, objects of type Ob-
ject are now prepared in principle to accept and handle messages of type
MyMessage, YourMessage and of any other type that is (at any later time)
derived from base type Message. In other words, the interface of type Object is
generic and open.

Almost needless to add that the actual handling of all potentially arriving
messages must still be provided by the concrete message handler that is bound
to the object at creation time and that, in case of new message types to be
handled, the message handler must be extended accordingly. The important
point, however, is that such extensions are a pure matter of implementation
and do not at all affect or even invalidate clients.

We can now give a sketch of a typical generic message handler. Note that it
makes use of type guards and type tests, i.e. of the runtime type support that
we mentioned earlier:

PROCEDURE MyHandler (obj: Object; VAR msg: Message);
BEGIN
IF msg IS MyMessage (* type test *) THEN
WITH msg: MyMessage (* type guard *) DO (* handle it *) END
ELSIF msg IS YourMessage THEN
WITH msg: YourMessage DO (x handle it x) END
ELSE (% do some default handling *)
END
END MyHandler;



With our next and last comment on Oberon’s object-oriented scenery we flash
back to modular hierarchies and to the very beginning of our discussion in the
previous section. Bearing in mind the new concept of type extension, we are now
in a position to refine the relation of intermodular dependency by putting the
new relation of specialization/subtyping (“is”relation) beside the conventional
client-server relation (“use”-relation). With this, Oberon appears as a hybrid
of a traditional modular system (for example based on Modula-2 or Ada) and
a purely object-oriented environment (for example Smalltalk).

Thinking as specially colored all “is”-dependencies within the total module
hierarchy, we can easily recognize a set of disjoint, tree-structured and relatively
flat subhierarchies. In contrast to the often deep and complex monolithic class
libraries of pure object-oriented systems, our hybrid system thus presents itself
as a disentangled two-level structure with a clear distinction between the levels
of subtyping and “ordinary” reuse. Also, questionable constructs like “multiple
inheritance” are avoided a priori by our concept.

A real and concrete example of a type hierarchy would certainly do no harm
at this point. We already mentioned type Viewer as a type with an inherent
demand for extensibility. Remember that viewers are essentially black boxes on
the screen of some arbitrary contents. A first specialization of general viewers
in Oberon is called menu viewers. By definition, a menu viewer is partitioned
into two frames, a title/menu frame and an arbitrary frame of contents (see
Figure 4). In Oberon, a frame is again a black box on the display screen, in
fact the most elementary black box at all. Our collection of types would not be
complete without frames of some concrete contents, for example text frames.
And this is the hierarchical representation of the set of types just introduced:

MenuViewer TextFrame

Viewer

Frame

Notice that (in this case) an individual module is associated with each type
in the diagram. Module Display defines type Frame as a base type. Module
Viewers is the viewer manager. It is responsible for the placement of viewers
on the tiling screen and keeps track of their exact state, location and extent.
Module MenuViewers handles menu viewers on an abstract basis and module
TextFrames implements both a view for texts and a mouse command interpreter
for text editing.

Before concluding this section, let us for a moment consider Oberon as a case
study in system design and programming in the large. Two widely accepted
design principles are (a) unification of similar concepts and (b) separation of



different concerns. However, these principles are somewhat controversial, be-
cause their application depends crucially on the interpretation of “similar” and
“different”. Consequently, it is no surprise that different systems differ consid-
erably in the matter of concept unification and separation respectively, as is
documented convincingly by the following pairs of concepts: type ¢+ class, spe-
cialization ¢ subclassing and reuse of functionality 4+ inheritance. In Oberon,
the first pair is unified in one concept, while the other two are separated. In
C++, the situation is just the other way round.

Pair of concepts in C++4 | in Oberon | Benefits in Oberon
type < class separated | unified familiar concepts

lean language
specialization < unified separated open object interfaces
subclassing
reuse of functionality < | mixed separated disentangled hierarchy
inheritance

Let us recapitulate the benefits resulting from the Oberon solution: (a) Thanks
to reuse and reinterpretation of familiar concepts (record type, procedure vari-
able) language extensions can be kept on a minimum, (b) the context-free def-
inition of type-extension (decoupled from classes) as a general tool for special-
ization comes in handy with the definition of open object interfaces and (c) the
clean separation of subtyping and reusing functionality leads to a disentangled
two-level hierarchy.

3 Persistent Objects in Oberon

Text is undoubtedly an important data type, and advanced textual user inter-
faces are remarkably versatile and effective. However, in the age of multimedia
and high-speed networks, operating environments are expected to handle per-
sistent documents and objects of an extensive variety. In this context, the
term persistent is used to indicate that the documents and objects ought to
be portable, more precisely, transportable from one internal memory to another
one or to some external memory (typically a disk).

We first note that, under the condition of full integration or, synonymously,
under the condition of unrestricted object linking and embedding (OLE), any
acceptable basic management of persistent objects must be part of either the
programming language or the system kernel. Encouraged by earlier experiments
with topics like input/output and concurrency that were successfully removed
from the language and put into modules, we decided to delegate the entire
management of persistent objects to the system kernel, i.e. not to provide any
language or compiler support.

In Oberon, the basic framework of persistent objects is defined by a single
module called Objects. This module introduces the two abstract concepts object
and library (of objects) that are represented by two base types Object and



Library. A library is an indexed collection of objects and is either public or
private (to some host). Public libraries are named and accessible from any
authority in the system. The member object O of public library L can be
referenced invariantly by a qualified name L.O. As Figure 2 shows symbolically,
libraries can refer to each other. In their entirety, they build a hierarchy that,
in a sense, is dual to the module hierarchy. Private libraries are anonymous
and encapsulated in some higher authority, typically a document. This is also
depicted in Figure 2.

Object libraries take a major and very versatile role in the management of
persistent objects. Not only do they serve as logical organizers, but they also
provide a powerful tool for the crucial tasks of sequentializing (externalizing)
and desequentializing (internalizing) of objects and collections of objects. Cor-
respondingly, the functional interface of a library comprises a variety of opera-
tions for retrieving, adding and removing objects (at runtime) and for storing
and loading the contents of the library to and from a sequential file.

Remember that objects are typically composed (recursively) of components
and represented internally as a network of linked nodes. From this, it im-
mediately follows that the algorithms for storing and loading objects must be
generic enough to sequentialize and desequentialize any arbitrary dynamically
linked heterogeneous data structure. It is therefore interesting to study these
algorithms in some detail.

For the sake of simplicity, we assume a simple, full-or-nothing library storing
and loading scheme. However, the definition of type Library allows different im-
plementations of its functional interface such as, for example, a smarter partial
storing and loading strategy in combination with buffering.

The Store library algorithm

This is a two-pass process that relies on a (recursive) preprocessing binding
phase:

Bind(object) = {
* for all components of object do Bind(component) end;
if object unbound then assign index to object end }

Store(library) = {
for all objects in library do Bind(current object) end;
for all indexes in library do
with object to this index do store generator;
* store main node with internal links replaced with indexes
end

end }
The marked statements (“x”) cannot be executed directly by a library method,

because the internal structure of an object is unknown to the library. Instead,
these statements must be object method calls.

10



Object Libraries Documents Modules

open L.O open D call M.P
graphical functional
user interface st ' user interface
public |L 0 I réference
p |library 1 module
. olfject
qQ | interface interface
privd
o use functionality
public
L1 1= bj
2 reference object reference object
3
e public | 13 | 1
reference object
cross link
} use functionality
public | 15 1 cross link

Figure 2: The Dual Hierarchies of Modules and Object Libraries

11



The Load library algorithm

This is again a two-pass process:

Load(library) = {
for index := 0 to max do load generator; generate main node end;
for index := 0 to max do

* load main node with indexes replaced with internal links

end }

Again, the marked statement must be an object method call. Also note that
indexes in loaded object nodes might refer to different libraries, so that the
loading process can get recursive.

Let us now turn our attention to objects. On the level of their definition,
objects are abstract (or “virtual”) and have no concrete functionality. Never-
theless, any participating object is expected to be prepared to implement a basic
and predefined system message protocol that, in a sense, defines exhaustively
the abstract concept of persistent objects in Oberon. This architecture can be
looked at as a software analogy to the familiar hardware bus: If they comply
with the given bus protocol, participating components of any kind simply plug
in.

This is the complete set of basic message types:

{ Bind Message, File Message, Attribute Message, Link Message, Find Message,
Copy Message }.

The table on page 13 briefly explains the semantics of each message type and
assigns some archetypal topic to it. Note that the first two types are familiar
to us already from the above discussion of the Load and Store algorithms.

So far, the discussion has been rather abstract. However, from the previous
section we already know a very important and very concrete class of persistent
objects: Frames on the display screen. Frames are visual objects because they
are assumed to provide some functionality for a visual representation within a
rectangular area on the screen (or printer). Typically, frames are views of some
model object and come with a built-in interpreter for interactions, in which cases
we can identify frames with the View-Controller part of the famous Model-View-
Controller scheme [3].

ijFrom a technical view, frames are instances of type Frame that is a subtype
of the base type Object. As specialized persistent objects, frames are expected
to obey the basic message protocol plus some extension that is defined by a
set of special frame messages. This set comprises requests to display itself, to
change state (visible <> invisible), size or location, to consume an other object
or some text caption, to return selected contents, to mark itself as selected and
to update consistency with the underlying model.

In a sense, it is natural to regard the display area itself as one global visual
object that is hierarchically composed of ever smaller visual components or, to

12



Message type

Topic

Explanation

Bind Message

Grouping

Used to bind objects to a given
library. More precisely, if we call
loose an object that is either un-
bound or bound to an anony-
mous library, the bind message
requires the primary object and
all its loose components to bind
themselves.

File Message

Transporting

Used to load and store objects
from and to a sequential file.

Attribute Message

Communicating

Object attributes are specified by
their name (a string) and their
value (typically string or num-
ber). Using the Attribute Mes-
sage, attributes can be added,
and their value can be retrieved
or changed. Gen and Name
are predefined attributes. They
specify the object’s generator (a
procedure) and its intrinsic name
respectively.

Link Message

Linking

Used to create and retrieve

named links to other objects.

Find Message

Locating

Used to retrieve a component ob-
ject by its name within the scope
of the recipient.

Copy Message

Cloning

Used to create an exact copy
(“clone”) of the recipient. We
distinguish shal-
low copies and deep copies. For
shallow copies, as many of the
components of the original ob-
ject as possible are reused (by ref-
erence), whereas for deep copies
the components are also copied
(recursively).

between

13




put it differently, it is natural to regard all individual visual objects as mere
components of one global display space. This way of looking at the situation
has some interesting consequences. First, as depicted in Figure 3, it leads to a
coherent hierarchical data structure whose first two levels correspond exactly to
the typical tiling Oberon display screen with (vertical) tracks and (horizontal)
viewers.

The second consequence is a convention, according to that all messages for
visual objects must be addressed primarily to the display space as a whole, with
an implicit forwarding obligation. The exact forwarding strategy depends on the
kind of message. A target-oriented strategy is used if the message is directed
to some specific object in the display space (the target), while a broadcast
strategy is used in cases of an unknown final recipient or an unknown number
of final recipients. A typical application of the broadcast strategy is view-
update requests by model objects, with the substantial benefit of dispensing
models from the burden of knowing about or even registering their views (for
example in the form of call-back lists).

The two forwarding strategies are similar in the sense that they are context-
oriented. However, they are different in detail. While the broadcast strategy
simply spreads the message in the display space, the target-oriented forwarding
strategy aims at passing down the message along the paths that lead to the
desired target object. We should clarify at this point that message forwarding
in either case is not a centrally controlled process but is distributed amongst
the objects in the display space. However, the extended message protocol (that
is compulsory for all members of the display space) defines a set of rules that,
in the end, governs the process of message passing.

Let us now take the view of a message travelling through the display space and
finally arriving at its destination. We know that, in the moment of its arrival,
the message has passed the entire context, step by step. Interestingly enough,
we can reap the benefits of this fact in two respects: (a) Any context-oriented
processing can be done incrementally and (b) context-dependent message han-
dling is possible. Typical uses of (a) are accumulation of relative coordinates
and computation of overlapping masks in the context of a visual object. A
typical use of (b) are visual objects with a different behaviour in a developer
context and in a user context.

On just a cursory examination we could think that the display space is tree-
structured. However, this is not quite correct, if we allow visual objects as
models as well, i.e. if we allow views of views. In this case, paths may join, and
we can only assert the display hierarchy to be a directed acyclic graph (dag).
In combination with a context-oriented forwarding strategy, this may lead to
complications due to possibly undetected multiple arrivals of a message at the
same object. For example, a copy message arriving twice at a shared component
of a composite object could lead to the creation of two different copies of this
component and could therefore fail. In order to avoid problems of this kind,
messages are time-stamped in Oberon, and recipients in the display space are
requested to detect multiple arrivals of one and the same message by comparing
time-stamps.

14



Message to target @ at time t

Viewer

Track

I

Frame

-

Camera
View

Frame
|
Model | Text Panel
|
Gadget Gadget
|
Model Real Gadget
Model

Boolean

2 X
@

View and Model

link to context

@ target

Figure 3: The Global Display Space as a Composite Visual Object

15



We can best summarize the rules of message handling and message passing
in the display space by presenting a rough sketch of a message handler:

Handle message M received by frame F = {
save pointer to context in F; update context pointer in M;
if timestamp of M > backup timestamp in F then
save timestamp in F;
accumulate coordinates in M;
if target frame of M = I THEN (x* target frame is me *) handle M
else
if target frame of M = NIL THEN (* broadcast *) handle M end;
while more descendants do
pass M to next descendant
end
end
else special handling in new context

end }

In reality, message handling is slightly more intricate because (for the sake
of optimization) recipients may decide to (early) terminate the handling of a
message and to stop any further propagation.

We now briefly come back to a remark that we made in the previous section
on the value of open object interfaces. As we can easily see, any context-
oriented forwarding strategy requires open object interfaces. The reason is that
intermediate stations on the message paths must be able to pass through (and
even to preprocess) messages of a possibly unknown type such as, for example,
view-update requests for exotic components.

Our last topic in this section is object embedding. We can distinguish two
cases: (a) Embedding of objects in objects and (b) embedding of objects in
text. Obviously, case (a) is subsumed under Oberon’s highly integrated concept
of composite objects that culminates in the construct of the display space. For
case (b), a different but no less elegant solution exists. To the purpose of its
explanation, we first recall Oberon’s text model. An Oberon text is a sequence
of attributed characters or, slightly simplified, a sequence of pairs (character
code, font).

The key idea of our solution is a shift of emphasis in the interpretation of
the font attribute. By simply reinterpreting font as a collection of characters,
we reach a new view of text as a sequence of pairs (character code, collection
of characters). It is now a small step from collection of characters to collection
of objects and to object libraries. With this, our generalized texts are now se-
quences of pairs (index, object library), i.e. sequences of general objects or, more
precisely, references to objects. Depending on the kind of library, each object is
either public (and possibly “contained” in other documents as well) or private
to the text. Typical examples of non-character objects (i.e. embedded objects)
are pictures, formulae and arbitrary visual objects. However, completely other

16



kinds of embedded objects are conceivable, for example formatting controls and
smart links that are interpretative rather than visual [4].

4 Active Objects

Objects that have occurred so far in this text (and most of the objects in
any object-oriented environment) are passive in the sense that they are remote
controlled by some system process. A better term than passive is re-active,
suggesting that objects are passive unless they react on an arriving message.
However, we actually want active objects like videos, moving sprites, animations
and simulations, i.e. objects with complete local control of their process of life.

Supposing the support of a sufficiently powerful data protection mechanism,
most of the concepts that we have presented so far in connection with persistent
objects are adaptable in principle to active objects. It is therefore a tempting
idea to extend (smoothly) our system of persistent objects so to include active
objects. However, the development in this area has not progressed far yet. For
this reason, many details in this section will be omitted intentionally or kept
rather vague.

At the moment, we are experimenting with an upgrade of record types to-
wards instantiatable modules that optionally allow type-local procedures and a
type-body. Type-local procedures represent entries. Entries can be guarded by
some condition (typically a Boolean expression in braces). Calls of guarded
entries automatically wait for the guarding condition to be true and then lock
the object during execution time for all other clients, i.e. they protect its data
from mutual access. Note that type-local procedures are intended to be used
for protected access rather than as methods. Therefore, unlike the type-bound
procedures in Oberon-2, they are not overwritable in derived types.

If a type-body is present, the object is assumed to be active and controlled
by the statement sequence in the body. In this case, an extra light-weight
process is created and started for the newly created object as a side-effect of
the NEW procedure call. Depending on the options (in braces), the object
process is given a special priority and is time-sliced or not. Object processes
are scheduled centrally by a smart object scheduler in the system kernel.

The following is a rough sketch of a possible szenario, consisting of a group
of (passive) resources and a group of concurrent actors. Note that both object
types are derived from base type Kernel.Object. This reflects the fact that
both types make use of the concurrency facilities provided by the system kernel
(mutual exclusion in the case of type Resource and scheduling in the case of
type Actor respectively).

17



TYPE
Resource = POINTER TO ResourceDesc;
ResourceDesc = RECORD (Kernel.ObjDesc) (* passive object *)
a: A; b: B; (% local variables )

PROCEDURE P (s: S); (* non-guarded entry )
VAR ...

BEGIN ...

END P;

PROCEDURE { a >0} Q (t: T); (* guarded entry *)
VAR ...

BEGIN ...

END Q:

PROCEDURE { b < 0 } R (u: U); (* guarded entry *)
VAR ...

BEGIN ...

END R;

(* passive object )
END;

Actor = POINTER TO ActorDesc;
ActorDesc = RECORD (Kernel.ObjDesc)

r: Resource;
t: T,

PROCEDURE { systemTime >=t } P; (* guarded entry *)
BEGIN { p, q } (* active object with priority p and options q *)
LOOP
r.Q(t); (* use resource r %)
P; (* suspend myself until time t *)
END
END;

5 The Gadgets Component Framework

However indispensible a well-established low-level support in an integrated
object-oriented environment may be, as useless it is without the support of
some high-level companion. In fact, two companions are needed, one for the
assistance of users and one for the assistance of programmers. In Oberon, the
Gadgetls package serves both purposes simultaneously. Looked at it function-
ally, Gadgets is a powerful object toolkit and application framework for the

18



Figure 4: Documents on the Tiling Screen

construction and programming of graphical user-interfaces (GUI). Looked at it
structurally, Gadgets consists of a Gadgets tool, an Inspector tool and a library
of service modules (see Figure 1).

Figures 4 and 5 show Oberon desktops that are laid out with specially styled
visual objects called gadgets. (Gadgets come in great variety, ranging from
simple elements like buttons, checkboxes, sliders, text fields, lists, icons etc.
to more complex entities like pictures, line graphics, control panels, texts and
entire desktops. In addition, there exist non-visual model gadgets like Boolean,
Integer, Real etc.. Note that some of the gadgets feature a title bar with an
integrated name plate and some buttons. They are called documents and are
considered as autonomous entities that can be stored under their name and
reloaded in an arbitrary context. The desktop itself is a document as well,
which demonstrates that documents may (recursively) contain other documents
as elements.

The Gadgets tool is used to create and compose gadgets interactively. As
shown in Figure 5, it is itself a gadget (again a document) that contains two lists
and some buttons. The lists expose an extensive collection of predefined visual
and model gadgets respectively. In addition, the Gadgets tool provides other
useful support for the interactive construction, such as automatic alignment in
regularly laid-out panels and view-model connections with built-in consistency.
For example, a text field and a slider could be connected to one and the same

19



Figure 5: Gadgets Layout on a Desktop

Real type model, or three sliders red, green, blue could be connected to a Color
model.

The Inspector tool is also shown in Figure 5. This is a very versatile instru-
ment that can be applied to any gadget (visual or model) for an inspection of
its identity, attributes and properties. When applied to a specific gadget, the
tool immediately adjusts its shape, so to represent an attribute form for this
gadget. Note that attribute forms are again documents, this time created by
program, however.

In some cases (such as in the case of adaptive attribute forms just discussed),
the interactive method for the construction of gadgets is inapplicable or at least
inappropriate, and a programmed approach would be preferable. In the current
state of the Gadgets package, construction by programming is possible but is
not particularly convenient. A much better solution consisting of a suitable
layout description language and a corresponding interpreter is planned for the
future.

One of the most powerful gadget attributes is the command attribute. 1t is
used to connect an Oberon command of the form M.P to a previously neutral
gadget, for example to a push-button or a list. Once connected to the gad-
get, the command is executed implicitly with every user command-action, for
example with pushing the button or clicking the mouse at a list element.

Of course, only the most primitive commands need no parameters at all.

20



Typically, the result of a command at least depends on an entry in a text
field or in a list, on the state of a checkbox or on the position of a slider.
For such simple cases, a built-in interpreter is provided that is able to retrieve
dynamically the value of a specified attribute from a specified gadget (by name).

However, there are more complicated cases. Take an electronic phonebook
that is represented by a form containing text fields for name, address, trade and
phone number and a button for starting a search action. Obviously, different
primary search keys lead to different types of query. The panel therefore needs
some built-in heuristics to find out the desired query from the constellation
of filled-out fields in the form. For example, if a phone-number is specified, a
phone-number query should result, independent of the other entries or else, if
a name is specified a name-address query should result etc..

In cases like the electronic phonebook, we cannot get by without any pro-
gramming at all. A new command is needed that must later be bound to the
search button. This command must implement the desired heuristics and in
particular, it must be able to identify the different fields in the form and to get
their contents. We emphasize that this kind of programming is conventional
(i.e. procedural) and well supported by the Gadgets module library. Typically,
Gadgets library modules provide service procedures that hide the entire message
handling.

Although the arsenal of predefined gadgets is remarkably extensive, it can by
no means satisfy all possible desires. For example, gadgets like the bar diagram
in the queue simulator or the color map in the color tool in Figure 5 don’t exist
a priori. Consequently, there must be a way to program customized gadgets.
Remembering that gadgets are finally persistent objects in the sense of the
previous section, we already know their program structure in principle. However
complicated a gadget program may be in detail, its core is always a message
handler that implements the basic or extended system message protocol. It is
for this reason that a skeleton implementation serves well as a generic template.
Additional programming assistance is provided by the Gadgets module library
in the form of standard message handlers for both visual and model gadgets.

The complexity of self-programmed visual gadgets is quite essentially deter-
mined by their structure. Non-atomic gadgets (also called container gadgets)
like control panels are an order of magnitude more complex than atomic gadgets
like buttons, lists and bar diagrams. This is not surprising, because container
gadgets must be able to manage component objects of any arbitrary type. Their
message handlers must properly implement message propagation to constituents
and, in addition, must be prepared for feedback requests by constituents (for
example, if a constituent is requested to expand).

We summarize this section with a classification of activities in connection
with gadget construction. Essentially, we can identify the following activities:
(a) Composing gadgets from existing components, (b) combining functionality
with existing constructions and (c) programming new components. Note that
activity (a) includes two very different methods: Interactive composition and
programmed composition. Further note that activity (b) has two different faces.
Depending on the point of view, it can either mean adding functionality to some

21



existing visual construction or creating a graphical user interface for an existing
application. Finally, remember that (c) comprises programming on two different
levels of complexity: Programming of container gadgets vs. programming of
atomic gadgets.

Overview
Activity Method Supporting Tools
Composing gadgets Interactive editing Gadgets tool
Inspector tool
Layout description Interpreter
(in planning stage)
Combining Interactive editing Inspector tool
functionality & Conventional programming | Gadget modules
gadgets
Programming gadgets | OO Programming Gadget modules
Implementation of basic Templates in
message protocol source code
(two levels of complexity)

6 Conclusion

The design of a comprehensive and complete object-oriented environment has
been explained, discussed and justified. The design of both the Oberon language
and system was guided by the two somewhat controversal principles “unification
of concepts” and “separation of concerns”. As language and system designers
we have obeyed our own recommendation and have made extensive use of reuse.
We consider the result as a worthy member of the Pascal-Modula family whose
lean and minimal characteristic is widely acknowledged. In a next step, we plan
to integrate concurrency into the system in the form of active objects, thereby
strictly preserving its original spirit.

Acknowledgement

I am greatly indebted to my collaborators, in particular to Hannes Marais
(co-designer and implementor of Gadgets), Ralph Sommerer (co-designer im-
plementor of object embedding in text) and Andreas Disteli (author of the
DOS Oberon implementation, including a preliminary version of active ob-
jects). Without their enthusiasm and professional expertise, this project could
not have been started, let alone successfully completed. My thanks also go to
the (anonymous) referee for valuable suggestions.

22



References

[1] N. Wirth and J. Gutknecht. Project Oberon. Addison-Wesley 1992.

[2] H. M&ssenbock and N. Wirth. The Programming Language Oberon-2. Struc-
tured Programming, 12(4): 179-195, 1991.

[3] A. Goldberg, D. Robson. Smalltalk-80: The Language and its Implementa-
tion. Addison-Wesley 1983.

[4] J. Gutknecht. The Smart Document or How to Integrate Global Services.
GISI Jahrestagung 1995, Proceedings.

List of Figures

1 The Oberon System as a Hierarchy of Modules . . . . ... ... 2
2 The Dual Hierarchies of Modules and Object Libraries . . . . . . 11
3 The Global Display Space as a Composite Visual Object . . . . . 15
4 Documents on the Tiling Screen . . . . . ... ... ... .... 19
5 Gadgets Layout on a Desktop . . . . . .. ... ... ... ... 20

23



