

An Examination of Aspect-Oriented

Programming in Industry

A thesis submitted to the

Colorado State University Honors Program

By

Jeremy T. Bradley

Advisor: Dr. Roger T. Alexander

May 2003

Technical Report CS-03-108

Colorado State University

Department of Computer Science

Fort Collins, Colorado, USA

 1

Contents

Abstract ... 2
1 Introduction... 3
2 Motivation and Uses for Aspect-Oriented Programming ... 5
3 Aspect-Oriented Programming ... 9

3.1 What is Aspect-Oriented Programming? .. 10
3.2 What is an Aspect?.. 10

3.2.1 Dynamic and Static Crosscutting Aspects .. 11
3.2.2 Development and Production Aspects .. 14
3.2.3 Dynamic and Static Aspect Weaving ... 15

4 Software Qualities and Aspect-Oriented Programming ... 15
4.1 Software Complexity .. 16

4.1.1 How Aspect-Oriented Programming Affects Structural Complexity....... 18
4.1.2 How Aspect-Oriented Programming Affects Cognitive Complexity....... 21

4.2 Software Correctness .. 23
4.2.1 Aspect Weaving and Emergent Properties ... 23
4.2.2 Are Emergent Properties A Big Problem?.. 25

4.3 Software Testability .. 27
4.3.1 Unit Testing Aspects... 28
4.3.2 Testing with Development Aspects .. 29

5 Developers and Aspect-Oriented Programming ... 30
5.1 Factors Limiting Usage... 31
5.2 Do Developers Still See Potential? ... 33

6. Discussion... 35
6.1 Research Methods... 35
6.2 What was Learned... 37
6.3 Areas for Further Investigation... 38

7 Conclusion .. 39
References... 40

 2

Abstract

This paper is an investigation into the impact that using aspect-oriented software

techniques has on the qualities of software, such as complexity, correctness and

testability. The methods used to conduct this investigation were based on

interviews with developers who have used aspect-oriented technology in real

world projects. This paper examines the problems that these developers

encountered in their work, and provides possible explanations as to the cause of

these problems. It concludes with an analysis of the use of aspect-oriented

programming from the perspective of the developers interviewed, including

factors limiting their use of this technology, and their perceived potential of this

programming methodology.

 3

1 Introduction

 Software engineering is a relatively new field, and it has continued to

evolve rapidly since its inception. Since that time, researchers and theorists have

consistently sought to improve upon the techniques and procedures of software

engineering, in order to improve our ability to create quality software. The basic

desire is to produce engineering methods that allow for the efficient creation and

maintenance of software. To that end, there are several key qualities that are we

desire to improve:

• The modularity of the software

• The reusability of the software

• The readability and understandability of the implementation, and

• The correctness and testability of the software

 While object-oriented programming has made some progress in

improving these qualities, there is still much room for improvement. Even in a

well-implemented object-oriented program, there is often functionality spread

throughout most of the modules in a system. This functionality can include such

things as security handling, logging and other more advanced functionality like

state management. These and other properties are called crosscutting concerns.

A crosscutting concern is some attribute of a software implementation that is

 4

spread throughout the implementation, instead of being modularized. Devising

methods to modularize these properties is the chief concern of Aspect-Oriented

Programming [1]. The question, however, is whether Aspect-Oriented

programming techniques allow for the modularization of crosscutting concerns

without creating new problems for software developers. For instance, it is

unclear whether the use of aspect-oriented techniques increases or decreases

the complexity, reusability, correctness and other qualities of an implementation.

 The purpose of this paper is to assess the utility of aspect-oriented

programming by examining the primary literature on the subject and observing

the usage of these new software engineering techniques in real world software

projects. Specifically, this paper attempts to answer the following questions:

• How does the usage of aspect-oriented programming affect the

complexity, both structural and cognitive, of a given implementation?

• How can using aspect-oriented software design affect the correctness and

testability of a program?

• How is aspect-oriented technology currently utilized in industry, and do

the current users feel that aspect-oriented techniques still have the

potential, given their current experience with this technology?

 5

 In order to answer these questions, the aid of developers involved in

industry projects using aspect-oriented technology was enlisted. These

contributors are Avery Moon of Infotone Communications, Inc. and Renaud

Pawlak of the Java Aspect Components (JAC) project. They have both provided

insightful comments and pertinent evidence that has helped to compile this

paper.

2 Motivation and Uses for Aspect-Oriented
Programming

 Before examining the details of aspect-oriented programming, it may be

useful to discuss the potential uses of this technology, and specifically the

problems that it tries to address. A very basic problem is the need to use

development code, such as logging or contract reporting code, to help create

and test software. Inserting this type of code into a software implementation can

be a tedious and time-consuming process. To compound the problem, much of

this code is only useful during the development phases of a project, and leaving

this code in a production build is often undesirable because it can create

performance problems, as well as inadvertently introduce software defects [2].

 With the use of aspect-oriented programming techniques, it is possible

to implement this development code in a modularized fashion, so that it can be

inserted easily and efficiently into the production code. Additionally, because this

 6

code is well modularized, it can be easily maintained or removed as well. [1]

Overall, this usage of aspect-oriented programming can help to decrease

development time, improve production system performance and minimize the

chance of development code introducing defects into the implementation [3].

However, note that this is a trivial usage of aspect-oriented programming as

software developers can accomplish this functionality with macros or other

similar tools.

 There are other more complicated problems with software development

that aspect-oriented programming is trying to solve, such as state management,

synchronization, and session management [3]. With existing software

development tools, it is difficult to modularize this type of functionality. To

explain, the difficulty with object-oriented design methods is that they rely on

the modularizing the system into components based on decomposition into

functional units, represented by classes. A clean object-oriented design may then

have to be modified to add a feature, such as state management, which will

involve several functional units. Therefore, the code that implements that feature

will need to be placed in all of those components [3].

 The intent of aspect-oriented programming is to create language

mechanisms that allow all the functionality present in the system to be

modularized, including the functionality that is scattered throughout multiple

components of the system [2]. If this is done, it can greatly enhance the

 7

maintainability, reusability and other qualities of the software. Although this is

similar to the goals stated earlier dealing with development code, the specific

goal here is to allow all of the main functionality of an implementation, whether

or not it is a crosscutting concern, to be quickly and efficiently modularized.

 It is easy to see how modularizing aspects can increase the

maintainability of a program since it allows changes to particular functionality to

happen in only one location, and this can lead to more reusable code. The idea is

that, for example, an aspect that controls the screen updates for one drawing

can be used again, without modification, to provide the same functionality to

another similar program. This is where the most exciting potential of aspect-

oriented technologies rests.

 Another, ancillary, of aspect-oriented programming is to produce

software that is efficient to run, without sacrificing other qualities, such as the

readability and maintainability of the code. As an illustration of this, consider the

example explored in the paper Aspect-Oriented Programming, by Kiczales, et. al

[2]. This paper describes an experiment in which the authors create three

separate implementations of an algorithm that is part of a graphics-filtering

program.

 The first implementation is a hand-coded algorithm that is well

modularized, using procedural techniques, and easy to read. Unfortunately, this

 8

implementation is highly inefficient in both execution time and storage

requirements.

 The second implementation is a hand-optimized version of the latter.

This version, while much more efficient in both execution time and space

requirements, is very difficult to read and understand by anyone, including the

original author. The reason is that since many different concerns are tangled

within a very complicated procedure.

 The third implementation makes use of aspect-oriented techniques to

construct a working unit of code that is both easy to read and maintain, and also

roughly as efficient as the hand optimized solution.

 So far, only functional uses of aspect-oriented programming have been

discussed, but there are many other uses of aspect-oriented programming that

are not specifically related to functionality. An example of a non-functional use

includes enhancing the readability of the implementation. The readability of the

code is important because it can affect many other qualities, such as the

understandability, maintainability, correctness and reusability of the code. The

techniques of aspect-oriented programming have the potential to create a more

readable code base, because they can physically separate the different functional

concerns in the code In effect, aspect-oriented techniques create layers of

functionality in a software implementation. Each new aspect introduces a new

functional characteristic of the program, and each layer can be read separately

 9

from the others. If properly done, this can make understanding an

implementation much easier.

3 Aspect-Oriented Programming

 Before the influence of aspect-oriented techniques on software

engineering can be discussed, it is important to understand the basis of these

techniques. It is also important to understand the terminology and language

used in this paper. In order to facilitate this, this paper will primarily use the

AspectJ(TM) programming language and its terminology [4], but it also makes

use of the Java Aspect Components (JAC) project, a Java(TM) based aspect-

oriented framework [5]. However, there are many different languages that take

advantage of aspect-oriented technology, all at various stages of development.

AspectJ is used because it is one of the more mature projects.

 AspectJ is “a simple and practical extension to the Java programming

language that builds upon the object model of Java with enhancements that

allow aspect-oriented programming techniques to be used” [1]. It is compiled

into standard Java bytecode, and it is able to run on any Java platform.

 Although this paper will discuss the basis of aspect-oriented

programming and related tools such as AspectJ and JAC, a thorough explanation

of these tools is beyond the scope of this paper. An in-depth explanation and

reference to AspectJ can be found at the AspectJ Documentation Page [6], and

 10

similar information for JAC can be found at the JAC Documentation Page [7].

General information on aspect-oriented programming can be found at the

Aspect-Oriented Software Development web page [8].

3.1 What is Aspect-Oriented Programming?

 Aspect-Oriented programming is a method of software engineering that

is intended to build upon the earlier successes of procedural, functional and

object-oriented programming by introducing aspect-oriented techniques to these

programming paradigms. It does not intend to replace these programming

techniques, but rather to augment and improve their abilities [4]. The aim of

aspect-oriented programming is to allow the clean modularization of crosscutting

concerns using aspects.

3.2 What is an Aspect?

 Aspect-Oriented techniques provide mechanisms that allow crosscutting

concerns to be expressed as separate units from the main implementation.

These units are referred to as aspects, and they are the basic unit of

modularization for crosscutting concerns in aspect-oriented programming.

However, as aspect-oriented programming is only intended as an extension to

existing programming methods, aspects work in conjunction with a base

implementation represented with other constructs, such as classes or procedures

 11

[4]. The base implementation that these aspects work with is referred to, for the

purposes of this paper, as the primary abstraction.

 Aspects are designed to allow crosscutting concerns to be easier to

maintain, and more reusable. For instance, in the example of logging, the

programming statements that generate log entries for the entire implementation

can be maintained in one aspect, and changes to those statements need only be

made in just one place, versus having the modify the entire code base. In

languages such as AspectJ, aspects are represented in structures that are very

similar to classes.

 The following subsections define more terms related to aspects, and

briefly describe the different types of aspects, and how languages such as

AspectJ manage those aspects.

3.2.1 Dynamic and Static Crosscutting Aspects

 There are two types of crosscutting that an aspect can facilitate. The

first type is called dynamic crosscutting. Dynamic crosscutting makes it possible

to “define additional implementation to run at certain well-defined points in the

execution of the program” [4]. Dynamic crosscutting, contrary to the appearance

of the name, does not mean that the code is modified at runtime. The concept of

dynamically modifying code with aspects as runtime is discussed in section 3.2.3.

 12

Instead, dynamic crosscutting refers to the selective modification of the primary

abstraction at certain points of the program without affecting the static type

signature of the program [1].

 There are different methods used to define dynamic crosscutting in

aspect-oriented programming. AspectJ, and languages similar to it, use the

concept of a join-point to facilitate the introduction of aspect code into the

primary abstraction. Join-points are the “well-defined points in the execution of a

program” mentioned earlier. Put simply, join-points are places in the program

code that are easily distinguishable from each other and the rest of the code.

Examples of join-points include the beginning and end of a method or function,

an object instantiation, and an exception handler execution.

 When dynamic crosscutting is used in an aspect, it has two crucial parts.

These parts are the new implementation code to add to the primary abstraction,

and a specification of where to add it. In the AspectJ language, these parts are

called the advice and the pointcut, respectively. To be more specific, a piece of

advice is a method or procedure-like construct used to define additional behavior

at a join-point, and pointcuts are a means of referring to collections of join-

points. [4] As this definition suggests, a pointcut can refer to more than one join-

point in the primary abstraction. The process of inserting an aspect’s advice into

the places designated by the point cut is commonly referred to as aspect

weaving.

 13

 When a developer writes a piece of advice, they specify which pointcut

or pointcuts that the advice should be inserted at, as well as the temporal

ordering of the insertion of the advice. To that effect, there are three types of

advice, called before, after, and around advice. The different types of advice

correspond to the temporal placement of the advice at the join-points defined by

the pointcuts. For example, if a before advice is inserted at a join-point which

refers to the start of a method, then the advice is inserted before the rest of the

method body. The temporal placement of before and after advice is clear, but

around advice requires some explanation. Around advice is advice that can

selectively preempt the normal computation at the join-point. [4] This means

that the advice can be run instead of, or in addition to, the code at the join-

point. [1]

 In addition to dynamic crosscutting, aspects can modify the static

structure of other elements in a program, a process called static crosscutting.

This type of crosscutting, referred to as introduction in the AspectJ language, is

similar to dynamic crosscutting in that it introduces additional implementation

into the primary abstraction. However, instead of modifying the behavior of the

primary abstraction at a join-point, it defines or modifies new members in the

primary abstraction. For instance, in AspectJ introductions can add methods or

fields to an existing class, modify an existing class to inherit from another,

implement an interface in an existing class, and convert checked exceptions into

 14

unchecked exceptions. [1] This is a powerful use of aspect-oriented

programming, because it not only changes the behavior of components in an

application, but also changes their relationship. [1]

3.2.2 Development and Production Aspects

 Aspects can be used at many points in the system development life

cycle, but generally there are two types of aspects. One type is called a

development aspect. A development aspect is intended only for use during the

development of software, and are expected to be removed from the final

application [3]. This means that the functionality that the aspect provides will not

be included in a production release. A good example of a development aspect is

one that deals with execution logging or contract checking. Generally speaking, a

developer will only need a contract checking aspect while he or she is trying to

develop and test the software, and would not necessarily want that aspect to be

included in the final product.

 The other type of aspect is called a production aspect. Unlike a

development aspect, these aspects deal with code that is intended to be used in

the normal operation of the software. [3] The classic example of this type of

aspect is an aspect that controls screen updates for a system, similar to the role

of the observer in the observer pattern. In fact, many of the classic design

patterns can be implemented with aspect-oriented techniques [9]. These are the

 15

types of aspects that are of the most interest to researchers. Aspect-oriented

programming has the potential to make it easy to modularize these types of

operations to make them easier to create and maintain for future developers.

Additional examples of development and production aspects were described in

section 2.

3.2.3 Dynamic and Static Aspect Weaving

Finally, there are two ways in which aspects are currently woven into the

primary abstraction. The first method is when the weaving process takes place at

compile time, rather that at runtime [3]. This is sometimes called static aspect

weaving. Static aspect weaving is the method that AspectJ uses to weave

aspects into the primary abstraction [1]. The other method is a weaving process

that occurs at the program run-time, sometimes referred to as dynamic aspect

weaving. This type of aspect weaving has the advantage of allowing aspects to

be removed from the primary abstraction, or “unwoven”, at runtime [3]. The JAC

project uses this method [5].

4 Software Qualities and Aspect-Oriented
Programming

 Section 2 describes the ways in which aspect-oriented programming has

the potential to increase the quality of a software implementation in regards to

 16

its modularity, maintainability, and readability. However, it is unclear whether or

not this potential is currently being realized, and, if not, whether it can be

realized in the future. The creators of the AspectJ language have specifically

stated that AspectJ is “the basis for an empirical assessment of aspect-oriented

programming”, and that the method of that analysis will be based on its usage in

real-world situations [4]. Similarly, this section assesses the usefulness of aspect-

oriented programming based on its current usage in real world projects. The

software qualities examined in this section include the structural and cognitive

complexity of the implementation, the correctness of the code, and the testability

of the system.

4.1 Software Complexity

 We use software engineering principals to make creating software less

complex. Most of the qualities we attribute to good software design revolve

around how they affect the complexity of that software. For instance,

modularized code is considered good because it can reduce the complexity of a

large implementation [16].

 Although reducing the complexity of a program is important, measuring

this attribute is a difficult process that researchers have struggled to work with

since the inception of software metrics [10]. In the case of aspect-oriented

programming, this task is made even more complicated because there are very

 17

few implementations to study. Further, those that do exist are, for the most part,

using tools and processes that have not yet reached the maturity of other

software development approaches. Hence, to access the complexity of aspect-

oriented programs, this paper relies on the first-hand experience of developers

who are actually using aspect-oriented programming.

 There are several different ways that a software engineering project can

be considered complex, but this paper examines only some of them. The first

type of complexity that this paper deals with is the structural complexity of the

source code. The structural complexity of an implementation can be observed

through many attributes but this paper focuses on the effects of aspect-oriented

software development on the implementation’s modularity. Software developers

seek to minimize structural complexity because it can affect the performance of

software in many ways, including increased execution time, increases in storage

needs and a higher probability of failure [10].

 Another form of complexity that an implementation can have is cognitive

complexity. Cognitive complexity can be defined and measured in terms of the

readability and understandability of the implementation by a human. A high

cognitive complexity can be very problematic for an organization because it often

leads to increased development time, problems in maintaining a program and a

heightened probability of defects [10].

 18

 It is important to note that, while these two types of complexity are

often interrelated, it is not always the case. It is possible to have a program that

is very simple, in terms of structural complexity, but is very difficult for a human

to read and maintain. As a trivial example, a program written in binary or

assembly code can be made very structurally simple, but still remain very

complex for a human to read and understand. One of the purposes of high-level

languages, such as Java, C and C++, is to reduce the inherent cognitive

complexity of programs, while still making it possible to limit the structural

complexity at the same time. Aspect-Oriented programming is an attempt to

further this ability of other high-level language techniques [3].

4.1.1 How Aspect-Oriented Programming Affects Structural
Complexity

 The impact of aspect-oriented techniques on implementation complexity

is not fully understood, but some real-world examples have shown that aspect-

oriented programming can increase the structural complexity of a software

implementation. The intended uses of aspect-oriented programming, described

in section 2, indicate that aspect-oriented programming has the potential to

decrease software complexity, yet real world usage has given us examples of

complexity problems related to the size and modularity of aspect-oriented

software. This section discusses those examples.

 19

 One way to decrease structural complexity is to improve the modularity

of an implementation. Real world experience has shown that this is true, but it

also demonstrates that it can create new modularity problems for software

developers. Avery Moon of Infotone Communications explains this when he says

that aspect-oriented programming has “proven to not work well for our large

code bases (1 million or more lines)” [11]. Moon later clarifies this statement by

pointing out that the root cause of the problem lies in the compilation method for

AspectJ. In order to compile a part of a full implementation, compilers such as

the one used in AspectJ need access to the entire source tree in order to

function [11]. They cannot work if they only have access to a portion of the

code, since the implementation details of the aspects are woven throughout all

the code in the primary abstraction that is affected by the aspects.

 This compilation problem may be an artifact of a more central problem

with aspect-oriented programming, which hints at being a problem with

modularity. The problem is that using aspect-oriented programming techniques

can increase the interdependency between implementation components. This

can be considered a violation of software modularity, as it creates a situation

where elements of the implementation depend on other parts of the

implementation for crucial functionality. While this is true in almost any

programming language, what makes aspect-oriented programming unique is that

this dependency takes the form of one module relying on another to specify

 20

some of its internal and external behavior. Specifically, elements of the primary

abstraction require some of their internal implementation details to be provided

by their related aspects [3]. From the perspective of the aspects, this problem is

indicated by the fact that an aspect may need to know the details of the object

in the primary abstraction that it modifies to implement its algorithms [14].

 The most prominent problem, seen by Moon, with this modularity issue

is that it creates an efficiency problem when a developer is working on a large

code base. Compilation times for large software project can sometimes be hours,

or even days, and when aspect-oriented programming is used as the basis of

such a project, a developer must recompile the entire implementation each time

he or she wants to make a change. In contrast, with object-oriented and other

contemporary languages, separate parts of the implementation can be compiled

independently from each other. This demonstrates, on the surface level, good

modularity. Of course, improvements in aspect-oriented technology, such

dynamic aspects, have the potential to correct this problem, as the aspect

weaving takes place at run time, not compile time. Unfortunately, the base

languages of many aspect-oriented programming languages, such a Java and

C++, do not readily support such behavior [12].

 21

4.1.2 How Aspect-Oriented Programming Affects Cognitive
Complexity

 Another goal of software engineering is to increase the readability and

understandability of an implementation. Aspect-Oriented techniques have the

potential to improve these traits, but an analysis of aspect-oriented techniques

and use in real projects has uncovered some problems that aspect-oriented

techniques have created with the understandability of software. These problems

are discussed in this section. Although many of these problems can be attributed

to other factors, such as lack of developer knowledge and training, some of

these problems appear to be caused by the language mechanisms themselves.

 For instance, an analysis of aspect-oriented techniques shows that using

aspect-oriented techniques can reduce developers’ ability to work independently

because it can increase the cognitive burden of the developers. To explain, the

development methods devised with object-oriented and procedural languages

divide the work of the implementation into nearly separate domains, or modules.

With aspect-oriented techniques, the development team can take this

modularization one step further by factoring out crosscutting concerns. While this

can have a positive effect, it also has the potential to increase the cognitive

burden on the developer.

 To explain, this increase in complexity is created because the developer

must understand a new type of interaction between their work and others’.

Specifically, developers of modularized systems must understand how their

 22

module interacts with other developers’ modules, but with aspect-oriented

programming, they also have to understand how the behavior of their module is

affected by, or affects the behavior of others’ modules. To explain, the developer

of the primary abstraction must understand how their module’s behavior is

augmented by aspects that are woven into it, and the aspect developer must

understand how their aspects interact with the code in the primary abstraction,

and with other modules.

 This is not just a problem that presents itself in an analysis of aspect-

oriented techniques, as usage of aspect-oriented techniques at Infotone has

shown that developers have found aspect-oriented techniques difficult to deal

with. These developers are discovering that not being able to work with the “’end

result’ (i.e. post-weave) of [their] code is somewhere between annoying and

unworkable” [11]. In other words, these developers feel that not being able to

deal with one complete functional unit of code has hampered their ability to work

effectively. The problem lies in the fact that, in using aspect-oriented

programming, developers sometimes must work on a unit of code without fully

understanding its functionality. Naturally, this means that they cannot fully

understand how that code interacts with the rest of the system.

 23

4.2 Software Correctness

 Creating software that behaves correctly is one of the primary concerns

of any developer. As such, software engineering paradigms have created

techniques to help minimize the possibility for defects. Unfortunately, some of

the techniques of aspect-oriented programming create new challenges in writing

software that is functionally correct. Perhaps the most important challenge to

writing functionally correct software introduced by aspect-oriented programming

is how to handle the aspect weaving process.

4.2.1 Aspect Weaving and Emergent Properties

 A large concern with aspect-oriented techniques develops when multiple

aspects are woven into a single primary abstraction. This concern is compounded

by the immaturity of current aspect-oriented compilers and frameworks, because

with these compilers the weave order is not always well defined. To explain, the

AspectJ compiler and other compilers like it perform the aspect weaving process

in an arbitrary order. As discussed in section 3.1, the AspectJ language does

provide some ways to specify this order, but the current implementation is

severely limited in its capabilities. Specifically, it is not always possible to define

the ordering of the aspect weave process when large numbers of aspects are in

use [1].

 24

 This situation is very precarious. If several different related aspects are

woven into a primary abstraction, it is possible that these aspects will interact

with each other in undesirable ways. This happens because aspects need to

cooperate note only with a primary abstraction, but also with other aspects [14].

These undesirable behaviors are called emergent properties. An emergent

property is “an irreducible feature of a complex whole that cannot be inferred

directly from the features of its simpler parts” [15]. In the language of aspect-

oriented programming, an emergent property is a behavior of the end product,

the woven code, which cannot be attributed to some property of the aspect(s) or

the primary abstraction. Put another way, a software defect is an emergent

property when it is only present in a fully assembled implementation, rather that

the result of a defect in a module or other aggregate part of the whole.

 Emergent properties can occur with any type of programming technique,

but the aspect weaving process, especially when it is done in an arbitrary order,

appears to increase the likelihood of emergent properties. Avery Moon, of

Infotone Communications, states that defects created by weave order have

always been a problem in their development process, and he goes on to say that

these kinds of defects are currently an “ugly, mostly unsolvable problem” [11].

The fact that this problem has been unsolvable in some organizations is clearly a

major hurdle that aspect-oriented programming must overcome before it can be

used.

 25

 Of course, these problems cannot be attributed solely to the concepts of

aspect-oriented programming. AspectJ and other aspect-oriented languages are

still in their infancy, a fact that Moon readily attributes to being part of the

problem. He is aware that most of their weave order problems are “just a legacy

of a buggy compiler” [11]. He also points out that:

 “...first the compiler needs to be fixed; then us developers can ‘fix’ our

mentality. The compilers have not been stable enough long enough for

the mentalities to ‘solidify’” [11].

 Clearly, Moon feels that part of the problem lies in the processes that

developers use when programming with aspect-oriented languages.

4.2.2 Are Emergent Properties A Big Problem?

 Problems with emergent properties can potentially affect both

development and production aspects. Developers want their production builds to

be defect free, and they also want their tools to aid, not hinder, them in this

goal. Emergent properties can be even more insidious in development aspects

because they can potentially prevent other defects from being discovered.

Because of this, emergent properties created by aspect weaving are potentially a

huge concern with aspect-oriented programming. The question is are these

 26

problems prevalent, and are they hard to deal with? Experience at Infotone and

the JAC project, as described in this section, has shown that this is the case.

 Weave order defects have proven common enough at Infotone that the

developers there have changed the way they use aspects, and aspect-oriented

programming in general. To be specific, Moon states that their solution to the

weave order dilemma is “just to ensure there is no more than one weave really

going on in one place” [11]. Although they are still using the concept of aspects,

problems with the language concepts and tools have kept from fully utilizing the

ideals of aspect-oriented programming. It is clear from this action that weave

order defects are a major problem at Infotone.

 This problem of emergent properties created by weave order is evident

not only with the work that Infotone does, but also with the developers working

on Java Aspect Components (JAC). Although the developers of JAC appear to

experience problems with less frequency that the developers at Infotone, the

problem is still a major concern. Additionally, experience at JAC has shown that

defects caused by emergent properties are sometimes very difficult to deal with

as well. Renaud Pawlak states that, in reference to finding weave-order defects

his team has:

 “...encountered serious and tricky problems (I think about 2 or 3 times).

For instance, it may happen that [a] persistency aspect conflicts with

 27

integrity or constraint-checking aspects... Sometime [sic] it takes days to

figure out what is going wrong and we need very skilled programmer [sic]

to do this debugging. However, it is quite rare (2 or 3 times within a year

of aspect-oriented programming)“ [12].

 Clearly, the weave order process of aspect-oriented programming

introduces new problems in assuring the correctness of an implementation that

are both common and sometimes difficult to deal with.

4.3 Software Testability

 Aspect-Oriented programming creates concerns not only with the

correctness of software, but also with the ability to test that software. As

discussed earlier, it introduces a new set of problems to test for in the form of

weave order defects. However, the current state of aspect-oriented programming

also makes some established testing methods, such as unit testing, difficult or

impossible to conduct. This has been demonstrated by the testing problems and

procedures that both Infotone and the JAC project group encounter and use

when testing their aspect-oriented implementations.

 28

4.3.1 Unit Testing Aspects

 The concept of a modularized crosscutting concern, or aspect, is not an

easily tested unit of code, unlike classes or procedures. There appear to be no

formal methods for testing aspects, and the concept of testing an aspect has

proven to be a difficult task. As described by Pawlak, the developers of JAC have

only found one way to test aspects, and that is to “try them on sample programs

that are representative of the context in which they are going to be used” [12].

While this can test the functionality of the aspect in the context of the woven

implementation, it does not test the aspect independently from the primary

abstraction. Unfortunately, this can lead to problems in identifying and

differentiating between defects in the aspect itself, and emergent properties

created through the interaction of the aspect and the primary abstraction. This

problem can be compounded if multiple aspects are woven into the primary

abstraction, as this situation introduces a new possible source of emergent

properties, namely the interaction of the two aspects [13].

 Testing problems related to aspects have also been seen at Infotone. In

this organization, there is little or no effort made to test aspects separately from

the primary abstraction. Instead, the testers and developers first generate a

weaved version of the implementation, and test only that [11]. This approach to

testing aspects is different from the approached used by the JAC group, but it

can still lead to problems with differentiating emergent properties from defects in

the aspects and primary abstraction.

 29

 Although a partial answer to this problem may lie in new testing

technologies specifically designed to handle aspects, the concepts of aspect-

oriented design may preclude the ability of thoroughly unit testing an aspect. To

explain, the root of this testing problem lies in the fact that an aspect is not a

complete functional unit. It depends on being woven into the primary abstraction

in order to become a fully developed unit. In many cases, an aspect has no

meaning outside the context of the primary abstraction. Hence, a unit test may

not be possible on this aspect because it does not represent a testable unit of

functionality.

4.3.2 Testing with Development Aspects

 Despite these testing problems created by aspect-oriented

programming, there are still some benefits that real world usage has uncovered.

One benefit is that the use of development aspects can aid in software testing.

For example, the JAC team regularly uses “...well tested aspects...to enforce

their testing (e.g. a logging or a constraint checking aspect can be used to check

the business objects)” [12]. This benefit is one of the stated goals of

development aspects; however, as mentioned earlier, this type of functionality is

possible to obtain with other readily available tools.

 Still, even using development aspects comes with risks. Specifically,

development aspects can create emergent properties just a readily as production

 30

aspects. At Infotone, this has been enough of a problem that they “tend to

merge down and ‘remove’ from production builds. Where ‘remove’ means

condense into the existing code set, rather than leave as aspects” [11]. In other

words, the process of “merging down” means using the aspect compiler to create

a woven source that is then used as a non aspect-oriented code base. In

essence, this is using AspectJ as a preprocessor.

 By permanently combining the development aspects and the primary

abstraction, the developers at Infotone have lessened the possibility of future

problems related to weaving in development aspects. However, they are also

sacrificing a large benefit of using aspect-oriented techniques for development

code, which is being able to remove development code from a production build.

5 Developers and Aspect-Oriented Programming

 The previous section of this paper analyzes the utility of aspect-oriented

programming by examining the impact of using aspect-oriented technology on

specific software qualities. This section builds upon that analysis by revealing

how these problems, and other, non software-quality related problems affect the

way developers use aspect-oriented programming technology. This exposition is

then followed by an explanation of the potential that these developers still see in

aspect-oriented programming. The hope is that this will give the reader a better

 31

understanding of the utility of aspect-oriented programming from the perspective

of these developers.

5.1 Factors Limiting Usage

 A major factor limiting the usage of aspect-oriented programming in real

world projects is its relative immaturity when compared to other methods of

software engineering The idea of aspect-oriented programming is relatively new

and only recently has its concepts and tools begun to mature. This, of course,

means that right now it has had very little opportunity to become widely used for

real world purposes. As evidence of this, at the time of this writing, the Aspect-

Oriented projects Software Development website lists only six projects that are

known to use the techniques of aspect-oriented software development [8].

Further searching for other projects using aspect-oriented programming has not

revealed any other such projects. This is an interesting fact since it begs the

question of why aspect-oriented technology has not yet been embraced by the

development community

 Other possible factors limiting the usage of aspect-oriented

programming have surfaced as a result of discussions with Avery Moon. Most of

these problems appear to be related to either technical problems in the

languages that provide aspect-oriented functionality or problems with the

concepts of aspect-oriented software design. However, other factors seem to be

 32

limiting the usage of aspect-oriented software. One such possible factor is

revealed by Moon’s opinion that:

 “the world has found precious few true cross-cutting concerns that

admit an automated cut-and-paste solution...and they are the classical

examples: logging, security, etc”.

If this is true, then perhaps aspect-oriented programming is not being used in

real world projects because it is a solution looking for a problem.

 Of course, the technical and conceptual problems discussed in section 4

are also factors that are limiting the use of aspect-oriented programming, and in

general, Moon has found that aspect-oriented programming has “failed to live up

to [his] expectations primarily for operational reasons”. What is interesting,

however, is that these operational problems have not stopped the developers at

Infotone from using aspect-oriented programming techniques, but they have led

these programmers to modify their usage of aspect-oriented programming.

 One of these usage changes, which was allowing only one aspect to

avoid weave order defects, was mentioned in section 4.2.2. Another of these

usage changes discussed in section 4.3.2 is that, instead of keeping their code

separated into a primary abstraction and aspect code, they merge each new

aspect into the code permanently, which is effectively treating aspect-oriented

 33

programming like a preprocessor. Obviously, these technical and conceptual

problems have not stopped them from using aspect-oriented programming, but

they have limited the ways in which aspect-oriented concepts are applied.

 In addition, these problems have also affected how the developers of

the JAC project use aspect-oriented programming, though to a lesser degree. As

discussed in section 4, they have encountered similar technical problems related

to testing and development.

5.2 Do Developers Still See Potential?

 As described in the previous section, current usage of aspect-oriented

programming is limited by many different factors; however, this does not mean

that developers do not still see potential for its use. In fact, quite the opposite is

true. Renaud Pawlak of the JAC development team sees a lot of potential in the

aspect-oriented programming approach to software development. In fact, his

enthusiasm for aspect-oriented programming was one of the driving forces

behind the creation of JAC. [12].

 In addition, Avery Moon thinks that, regardless of the problems he has

encountered to date, aspect-oriented programming can be useful. Specifically, he

feels that aspects “best capture how I personally ‘visualize’ very complex (real-

world, not toy contexts, like logging, etc) cross-cutting concerns”. He goes on to

say that, “they hold the POTENTIAL [sic] to dramatically reduce maintenance

 34

complexity and time, particularly when facing messy code evolution/compatibility

issues” [11]. However, Avery feels that the best way to realize the potential of

aspect-oriented programming is to use a dynamic aspect weaving, as described

in section 3.2.3. Dynamic weaving is of interest to Infotone because it can

alleviate some of the problems they have encountered in their use of aspect-

oriented programming, such as the compiling problems mentioned in section

4.1.1.

 Interestingly, the JAC project was created as an attempt to implement

this dynamic weaving. Unfortunately, as the developers of JAC recognize, JAC’s

implementation of dynamic aspect weaving, which uses Java reflection, is inferior

to direct support in the Java Virtual Machine (JVM) for this behavior. The primary

problem with the dynamic aspect weaving model of JAC is that it:

 “...has a cost on performances which is due to the java.lang.reflect use.

A joinpoint in JAC has an overhead that is similar to the reflection cost in

Java (greatly optimized in java 1.4 but still slower than a regular call).

Most of the time, this overhead is very neglectable [sic] compared to the

aspects inherent overhead (e.g. a persistence aspect). However, it makes

JAC not very suited to all the kind of AOSD” [5].

 35

While efficient execution time is not a requirement for all software projects, it is

still considered an important quality of many implementations.

 It is clear that these developers see potential for aspect-oriented

programming, and if the problems discusses in this paper can be resolved or

otherwise mitigates, then perhaps aspect-oriented programming can live up to

this potential.

6. Discussion

 This section presents a discussion of the methods used to create this

paper, what was learned in the process, and areas of further research that

should be investigated further.

6.1 Research Methods

 The concept of aspect-oriented programming is very new, and as such it

has not attained a high degree of usage in industry, nor has there been time to

thoroughly research its methods. Because of this, several methods of

investigation were considered to create this paper including experimentation,

analysis of existing projects, and interviews with aspect-oriented developers.

 Experimentation with aspect-oriented programming was the first method

considered, but it was ruled out for several reasons, the most important being a

lack of experience with aspect-oriented software development.

 36

 Analyzing existing aspect-oriented projects was the second method

considered. This method also proved difficult because, although there are dozens

of aspect-oriented compilers and frameworks in development, only a few aspect-

oriented software projects could be found. To illustrate, the Aspect-Oriented

Software Development website lists only six projects that use aspect-oriented

technology [8]. Unfortunately, none of these projects are mature enough to be

used for research purposes.

 Ultimately, the approach chosen was to interview several developers in

industry that use aspect-oriented software development. However, as with

analyzing code, this method also suffered from a lack of viable candidates.

Eventually, five developers from many different types of projects, including

commercial applications and open-source projects were solicited for interviews.

Unfortunately, only two we able to respond. The specific developers interviewed

were Avery Moon of Infotone Communications, Inc. and Renaud Pawlak of the

Java Aspect Components project. Both of these developers have been working

with aspect-oriented technology for several years now, and actively use aspect-

oriented techniques. Information provided by moon and Pawlak has been used

to try an understand how aspect-oriented software development is being used in

industry. This paper would not have been possible without their help.

 37

6.2 What was Learned

 The literature on aspect-oriented programming examined for this paper

extols the many potential benefits that aspect-oriented programming can bring

to software design, such as improvements in modularity, decreases in structural

and cognitive complexity, and enhancements to the reusability of software.

However, evidence from real-world usage has shown that aspect-oriented

programming techniques can also cause unique problems with the complexity,

correctness and testability of a software implementation.

 It is apparent that many of these problems are created by technical

problems with the implementation of aspect-oriented languages. This is to be

expected, as these tools have had little time to mature. Unfortunately, some of

these problems, especially those related to the modularity and correctness of the

implementation, appear to originate with the language mechanisms themselves,

as discussed in section 4.

 Regardless of these problems, the evidence still suggests that

developers are optimistic that aspect-oriented programming can provide them

with better ways to do their work. The comments and opinions of Avery Moon

and Renaud Pawlak discussed in this paper have shown this to be true.

Unfortunately, since there are still many problems to fix before it will be

generally accepted, it remains to be seen whether aspect-oriented programming

can live up to its potential.

 38

6.3 Areas for Further Investigation

 This paper has uncovered several areas of concern when dealing with

aspect-oriented programming, but it has not attempted to provide an in depth

analysis of these problems or possible solutions. Before the utility of aspect-

oriented programming can be properly assessed, it is important the following

questions be further researched:

• How can the software complexity problems, both structural and

cognitive, created by the use of aspect-oriented techniques be

mitigated? Can the methods of aspect-oriented programming be

modified to help prevent these problems, or will human-level procedures

to deal with them need to be created?

• Can the problems in software testability created by aspect-

oriented programming be corrected? Can the risk of creating

emergent properties be reduced in some way? Can methods be

developed to reduce the burden of debugging weave order defects? Can

unit testing be adapted to aspects?

• Are there sufficient, non-trivial, crosscutting concerns to warrant

the use of Aspect-Oriented Programming, or can current

software engineering techniques deal sufficiently with these

crosscutting concerns?

 39

• Can dynamic aspect weaving help solve the technical problems

associated with using aspect-oriented software development?

Can contemporary languages, such as Java and C++ be enhanced to

allow the functionality necessary for dynamic aspect weaving?

7 Conclusion

 This paper has examined the uses and problems associated with aspect-

oriented software development. This examination has shown that aspect-

oriented programming has met with numerous problems that affect the

understandability, readability, testability and correctness of software in real-

world software projects. However, the developers on these projects are confident

that aspect-oriented programming has the potential to increase the quality of

software and improve on the method of software development.

 40

References
1. AspectJ Programming Guide. 2003, Xerox Corporation.

2. Kiczales, G., et al. Aspect-Oriented Programming. in European Conference

on Object-Oriented Programming (ECOOP). 1997. Finland: Springer-

Verlag.

3. Harbulot, B., Aspect-Oriented Programming, in Department of Computer

Science. 2002, University of Manchester.

4. Kiczales, G., et al. An Overview of AspectJ. in 15th European Conference

on Object-Oriented Programming. 2001. Budapest, Hungary: Springer-

Verlag.

5. JAC Programmer's Guide. 2003, AOPSYS.

6. AspectJ Documentation Page. 2003, Xerox Corporation.

7. JAC Documentation Page. 2003, AOPSYS.

8. Aspect-Oriented Software Development. 2003.

9. Hannemann, J. and G. Kiczales. Design Pattern Implementation in Java

and AspectJ. in 17th Annual ACM conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA). 2002.

10. Fenton, N.E. and S.L. Pfleeger, Software Metrics: A Rigorous & Practical

Approach. 2 ed. 1997, Boston, MA: PWS Publishing Company.

11. Moon, A., Personal Interview. 2003.

12. Pawlak, R., Personal Interview. 2003.

 41

13. Alexander, R.T. and J.M. Bieman, Will Aspect-oriented Programming

Improve Software Quality? 2002, Colorado State University.

14. Huang, Jie, Experience Using AspectJ to Implement Cord. In Oregon

Graduate Institute of Science and Technology. August 2000

15. Holland, J. H., Emergence: From Chaos to Order. 1999, Perseus Publishing

16. Meyer, B., Object-Oriented Software Construction. 1997, Prentince Hall

PRT

