
INTERNATIONAL STANDARD ISO/IEC 8652:1995(E)

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

INTERNATIONAL ELECTROTECHNICAL COMMISSION

Information technology — Programming languages — Ada

[Revision of first edition (ISO 8652:1987)]

Annotated
Ada Reference Manual

Language and Standard Libraries

Version 6.0
21 December 1994

Copyright © 1992,1993,1994,1995 Intermetrics, Inc.

Copyright © 1992,1993,1994,1995 Intermetrics, Inc.

This copyright is assigned to the U.S. Government. All rights reserved.

This document may be copied, in whole or in part, in any form or by any means, as is or with alterations,
provided that (1) alterations are clearly marked as alterations and (2) this copyright notice is included
unmodified in any copy. Compiled copies of standard library units and examples need not contain this
copyright notice so long as the notice is included in all copies of source code and documentation.

ISO/IEC 8652:1995(E) —AARM;6.0

i 21 December 1994

Contents
Foreword ... viii
Introduction... ix
1. General .. 1

1.1 Scope . 2
1.1.1 Extent . 3
1.1.2 Structure . 3
1.1.3 Conformity of an Implementation with the Standard . 7
1.1.4 Method of Description and Syntax Notation . 11
1.1.5 Classification of Errors . 13

1.2 Normative References . 14
1.3 Definitions . 15

2. Lexical Elements .. 17
2.1 Character Set . 17
2.2 Lexical Elements, Separators, and Delimiters . 19
2.3 Identifiers . 20
2.4 Numeric Literals . 21

2.4.1 Decimal Literals . 21
2.4.2 Based Literals . 22

2.5 Character Literals . 23
2.6 String Literals . 23
2.7 Comments . 24
2.8 Pragmas . 24
2.9 Reserved Words . 29

3. Declarations and Types ... 31
3.1 Declarations . 31
3.2 Types and Subtypes . 34

3.2.1 Type Declarations . 37
3.2.2 Subtype Declarations . 39
3.2.3 Classification of Operations . 41

3.3 Objects and Named Numbers . 42
3.3.1 Object Declarations . 44
3.3.2 Number Declarations . 47

3.4 Derived Types and Classes . 48
3.4.1 Derivation Classes . 53

3.5 Scalar Types . 55
3.5.1 Enumeration Types . 61
3.5.2 Character Types . 63
3.5.3 Boolean Types . 64
3.5.4 Integer Types . 64
3.5.5 Operations of Discrete Types . 69
3.5.6 Real Types . 70
3.5.7 Floating Point Types . 71
3.5.8 Operations of Floating Point Types . 74
3.5.9 Fixed Point Types . 74
3.5.10 Operations of Fixed Point Types . 77

3.6 Array Types . 78
3.6.1 Index Constraints and Discrete Ranges . 81
3.6.2 Operations of Array Types . 83
3.6.3 String Types . 84

ISO/IEC 8652:1995(E) —AARM;6.0

21 December 1994 ii

3.7 Discriminants . 85
3.7.1 Discriminant Constraints . 90
3.7.2 Operations of Discriminated Types . 91

3.8 Record Types . 92
3.8.1 Variant Parts and Discrete Choices . 95

3.9 Tagged Types and Type Extensions . 97
3.9.1 Type Extensions . 101
3.9.2 Dispatching Operations of Tagged Types . 104
3.9.3 Abstract Types and Subprograms . 108

3.10 Access Types . 111
3.10.1 Incomplete Type Declarations . 116
3.10.2 Operations of Access Types . 118

3.11 Declarative Parts . 126
3.11.1 Completions of Declarations . 127

4. Names and Expressions .. 129
4.1 Names . 129

4.1.1 Indexed Components . 131
4.1.2 Slices . 132
4.1.3 Selected Components . 133
4.1.4 Attributes . 135

4.2 Literals . 137
4.3 Aggregates . 138

4.3.1 Record Aggregates . 139
4.3.2 Extension Aggregates . 142
4.3.3 Array Aggregates . 144

4.4 Expressions . 147
4.5 Operators and Expression Evaluation . 149

4.5.1 Logical Operators and Short-circuit Control Forms . 151
4.5.2 Relational Operators and Membership Tests . 152
4.5.3 Binary Adding Operators . 156
4.5.4 Unary Adding Operators . 157
4.5.5 Multiplying Operators . 158
4.5.6 Highest Precedence Operators . 160

4.6 Type Conversions . 162
4.7 Qualified Expressions . 168
4.8 Allocators . 169
4.9 Static Expressions and Static Subtypes . 171

4.9.1 Statically Matching Constraints and Subtypes . 176

5. Statements .. 179
5.1 Simple and Compound Statements - Sequences of Statements 179
5.2 Assignment Statements . 181
5.3 If Statements . 184
5.4 Case Statements . 185
5.5 Loop Statements . 187
5.6 Block Statements . 189
5.7 Exit Statements . 190
5.8 Goto Statements . 190

6. Subprograms .. 193
6.1 Subprogram Declarations . 193
6.2 Formal Parameter Modes . 196
6.3 Subprogram Bodies . 198

ISO/IEC 8652:1995(E) —AARM;6.0

iii 21 December 1994

6.3.1 Conformance Rules . 199
6.3.2 Inline Expansion of Subprograms . 202

6.4 Subprogram Calls . 203
6.4.1 Parameter Associations . 205

6.5 Return Statements . 207
6.6 Overloading of Operators . 209

7. Packages ... 211
7.1 Package Specifications and Declarations . 211
7.2 Package Bodies . 212
7.3 Private Types and Private Extensions . 214

7.3.1 Private Operations . 219
7.4 Deferred Constants . 223
7.5 Limited Types . 225
7.6 User-Defined Assignment and Finalization . 227

7.6.1 Completion and Finalization . 230

8. Visibility Rules .. 237
8.1 Declarative Region . 237
8.2 Scope of Declarations . 239
8.3 Visibility . 242
8.4 Use Clauses . 246
8.5 Renaming Declarations . 249

8.5.1 Object Renaming Declarations . 249
8.5.2 Exception Renaming Declarations . 250
8.5.3 Package Renaming Declarations . 251
8.5.4 Subprogram Renaming Declarations . 251
8.5.5 Generic Renaming Declarations . 253

8.6 The Context of Overload Resolution . 254

9. Tasks and Synchronization ... 261
9.1 Task Units and Task Objects . 262
9.2 Task Execution - Task Activation . 264
9.3 Task Dependence - Termination of Tasks . 265
9.4 Protected Units and Protected Objects . 267
9.5 Intertask Communication . 270

9.5.1 Protected Subprograms and Protected Actions . 272
9.5.2 Entries and Accept Statements . 274
9.5.3 Entry Calls . 278
9.5.4 Requeue Statements . 282

9.6 Delay Statements, Duration, and Time . 284
9.7 Select Statements . 288

9.7.1 Selective Accept . 288
9.7.2 Timed Entry Calls . 290
9.7.3 Conditional Entry Calls . 291
9.7.4 Asynchronous Transfer of Control . 292

9.8 Abort of a Task - Abort of a Sequence of Statements . 293
9.9 Task and Entry Attributes . 295
9.10 Shared Variables . 296
9.11 Example of Tasking and Synchronization . 298

10. Program Structure and Compilation Issues .. 301
10.1 Separate Compilation . 301

10.1.1 Compilation Units - Library Units . 302

ISO/IEC 8652:1995(E) —AARM;6.0

21 December 1994 iv

10.1.2 Context Clauses - With Clauses . 308
10.1.3 Subunits of Compilation Units . 310
10.1.4 The Compilation Process . 312
10.1.5 Pragmas and Program Units . 314
10.1.6 Environment-Level Visibility Rules . 315

10.2 Program Execution . 317
10.2.1 Elaboration Control . 322

11. Exceptions .. 327
11.1 Exception Declarations . 327
11.2 Exception Handlers . 328
11.3 Raise Statements . 330
11.4 Exception Handling . 330

11.4.1 The Package Exceptions . 332
11.4.2 Example of Exception Handling . 335

11.5 Suppressing Checks . 336
11.6 Exceptions and Optimization . 339

12. Generic Units .. 343
12.1 Generic Declarations . 343
12.2 Generic Bodies . 345
12.3 Generic Instantiation . 346
12.4 Formal Objects . 354
12.5 Formal Types . 356

12.5.1 Formal Private and Derived Types . 358
12.5.2 Formal Scalar Types . 360
12.5.3 Formal Array Types . 361
12.5.4 Formal Access Types . 362

12.6 Formal Subprograms . 363
12.7 Formal Packages . 364
12.8 Example of a Generic Package . 365

13. Representation Issues ... 369
13.1 Representation Items . 369
13.2 Pragma Pack . 375
13.3 Representation Attributes . 376
13.4 Enumeration Representation Clauses . 387
13.5 Record Layout . 389

13.5.1 Record Representation Clauses . 389
13.5.2 Storage Place Attributes . 392
13.5.3 Bit Ordering . 393

13.6 Change of Representation . 394
13.7 The Package System . 395

13.7.1 The Package System.Storage_Elements . 398
13.7.2 The Package System.Address_To_Access_Conversions 399

13.8 Machine Code Insertions . 400
13.9 Unchecked Type Conversions . 401

13.9.1 Data Validity . 403
13.9.2 The Valid Attribute . 405

13.10 Unchecked Access Value Creation . 406
13.11 Storage Management . 406

13.11.1 The Max_Size_In_Storage_Elements Attribute . 411
13.11.2 Unchecked Storage Deallocation . 411
13.11.3 Pragma Controlled . 412

ISO/IEC 8652:1995(E) —AARM;6.0

v 21 December 1994

13.12 Pragma Restrictions . 414
13.13 Streams . 415

13.13.1 The Package Streams . 415
13.13.2 Stream-Oriented Attributes . 416

13.14 Freezing Rules . 419

ANNEXES

A. Predefined Language Environment ... 429
A.1 The Package Standard . 430
A.2 The Package Ada . 434
A.3 Character Handling . 435

A.3.1 The Package Characters . 435
A.3.2 The Package Characters.Handling . 435
A.3.3 The Package Characters.Latin_1 . 438

A.4 String Handling . 442
A.4.1 The Package Strings . 443
A.4.2 The Package Strings.Maps . 443
A.4.3 Fixed-Length String Handling . 446
A.4.4 Bounded-Length String Handling . 454
A.4.5 Unbounded-Length String Handling . 460
A.4.6 String-Handling Sets and Mappings . 464
A.4.7 Wide_String Handling . 465

A.5 The Numerics Packages . 467
A.5.1 Elementary Functions . 467
A.5.2 Random Number Generation . 472
A.5.3 Attributes of Floating Point Types . 477
A.5.4 Attributes of Fixed Point Types . 483

A.6 Input-Output . 483
A.7 External Files and File Objects . 484
A.8 Sequential and Direct Files . 485

A.8.1 The Generic Package Sequential_IO . 486
A.8.2 File Management . 487
A.8.3 Sequential Input-Output Operations . 489
A.8.4 The Generic Package Direct_IO . 490
A.8.5 Direct Input-Output Operations . 491

A.9 The Generic Package Storage_IO . 492
A.10 Text Input-Output . 492

A.10.1 The Package Text_IO . 494
A.10.2 Text File Management . 499
A.10.3 Default Input, Output, and Error Files . 500
A.10.4 Specification of Line and Page Lengths . 501
A.10.5 Operations on Columns, Lines, and Pages . 502
A.10.6 Get and Put Procedures . 505
A.10.7 Input-Output of Characters and Strings . 507
A.10.8 Input-Output for Integer Types . 508
A.10.9 Input-Output for Real Types . 510
A.10.10 Input-Output for Enumeration Types . 513

A.11 Wide Text Input-Output . 514
A.12 Stream Input-Output . 515

A.12.1 The Package Streams.Stream_IO . 515

ISO/IEC 8652:1995(E) —AARM;6.0

21 December 1994 vi

A.12.2 The Package Text_IO.Text_Streams . 517
A.12.3 The Package Wide_Text_IO.Text_Streams . 517

A.13 Exceptions in Input-Output . 517
A.14 File Sharing . 519
A.15 The Package Command_Line . 519

B. Interface to Other Languages ... 523
B.1 Interfacing Pragmas . 523
B.2 The Package Interfaces . 528
B.3 Interfacing with C . 529

B.3.1 The Package Interfaces.C.Strings . 534
B.3.2 The Generic Package Interfaces.C.Pointers . 537

B.4 Interfacing with COBOL . 540
B.5 Interfacing with Fortran . 547

C. Systems Programming.. 551
C.1 Access to Machine Operations . 551
C.2 Required Representation Support . 552
C.3 Interrupt Support . 552

C.3.1 Protected Procedure Handlers . 555
C.3.2 The Package Interrupts . 557

C.4 Preelaboration Requirements . 559
C.5 Pragma Discard_Names . 560
C.6 Shared Variable Control . 561
C.7 Task Identification and Attributes . 563

C.7.1 The Package Task_Identification . 563
C.7.2 The Package Task_Attributes . 565

D. Real-Time Systems .. 569
D.1 Task Priorities . 570
D.2 Priority Scheduling . 572

D.2.1 The Task Dispatching Model . 572
D.2.2 The Standard Task Dispatching Policy . 574

D.3 Priority Ceiling Locking . 575
D.4 Entry Queuing Policies . 577
D.5 Dynamic Priorities . 579
D.6 Preemptive Abort . 581
D.7 Tasking Restrictions . 582
D.8 Monotonic Time . 584
D.9 Delay Accuracy . 588
D.10 Synchronous Task Control . 589
D.11 Asynchronous Task Control . 590
D.12 Other Optimizations and Determinism Rules . 591

E. Distributed Systems .. 593
E.1 Partitions . 593
E.2 Categorization of Library Units . 595

E.2.1 Shared Passive Library Units . 596
E.2.2 Remote Types Library Units . 597
E.2.3 Remote Call Interface Library Units . 598

E.3 Consistency of a Distributed System . 600
E.4 Remote Subprogram Calls . 601

E.4.1 Pragma Asynchronous . 605
E.4.2 Example of Use of a Remote Access-to-Class-Wide Type 605

ISO/IEC 8652:1995(E) —AARM;6.0

vii 21 December 1994

E.5 Partition Communication Subsystem . 607

F. Information Systems.. 611
F.1 Machine_Radix Attribute Definition Clause . 611
F.2 The Package Decimal . 612
F.3 Edited Output for Decimal Types . 613

F.3.1 Picture String Formation . 614
F.3.2 Edited Output Generation . 618
F.3.3 The Package Text_IO.Editing . 622
F.3.4 The Package Wide_Text_IO.Editing . 625

G. Numerics .. 627
G.1 Complex Arithmetic . 627

G.1.1 Complex Types . 628
G.1.2 Complex Elementary Functions . 633
G.1.3 Complex Input-Output . 637
G.1.4 The Package Wide_Text_IO.Complex_IO . 640

G.2 Numeric Performance Requirements . 641
G.2.1 Model of Floating Point Arithmetic . 641
G.2.2 Model-Oriented Attributes of Floating Point Types . 643
G.2.3 Model of Fixed Point Arithmetic . 645
G.2.4 Accuracy Requirements for the Elementary Functions . 648
G.2.5 Performance Requirements for Random Number Generation 650
G.2.6 Accuracy Requirements for Complex Arithmetic . 652

H. Safety and Security.. 655
H.1 Pragma Normalize_Scalars . 655
H.2 Documentation of Implementation Decisions . 656
H.3 Reviewable Object Code . 657

H.3.1 Pragma Reviewable . 657
H.3.2 Pragma Inspection_Point . 659

H.4 Safety and Security Restrictions . 660

J. Obsolescent Features .. 665
J.1 Renamings of Ada 83 Library Units . 665
J.2 Allowed Replacements of Characters . 666
J.3 Reduced Accuracy Subtypes . 666
J.4 The Constrained Attribute . 667
J.5 ASCII . 668
J.6 Numeric_Error . 668
J.7 At Clauses . 669

J.7.1 Interrupt Entries . 669
J.8 Mod Clauses . 671
J.9 The Storage_Size Attribute . 671

K. Language-Defined Attributes.. 673
L. Language-Defined Pragmas.. 687
M. Implementation-Defined Characteristics... 689
N. Glossary.. 695
P. Syntax Summary .. 699
Index .. 725

ISO/IEC 8652:1995(E) —AARM;6.0

Foreword 21 December 1994 viii

Foreword
1 ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Com-

mission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees es-
tablished by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations,
governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

2 In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circulated to
national bodies for voting. Publication as an International Standard requires approval by at least 75 % of
the national bodies casting a vote.

3 International Standard ISO/IEC 8652 was prepared by Joint Technical Committee ISO/IEC JTC 1,
Information Technology.

4 This second edition cancels and replaces the first edition (ISO 8652:1987), of which it constitutes a
technical revision.

5 Annexes A to J form an integral part of this International Standard. Annexes K to P are for information
only.

5.a Discussion: This document is the Annotated Ada Reference Manual (AARM). It contains the entire text of the Ada
9X standard (ISO/IEC 8652:1995(E)), plus various annotations. It is intended primarily for compiler writers,
validation test writers, and other language lawyers. The annotations include detailed rationale for individual rules and
explanations of some of the more arcane interactions among the rules.

ISO/IEC 8652:1995(E) —AARM;6.0

ix 21 December 1994 Introduction

Introduction
1This is the Annotated Ada Reference Manual.

2Other available Ada documents include:

3• Rationale for the Ada Programming Language — 1995 edition, which gives an introduction
to the new features of Ada, and explains the rationale behind them. Programmers should
read this first.

4• The Ada Reference Manual (RM). This is the International Standard — ISO/IEC
8652:1995(E).

5• Changes to Ada — 1987 to 1995. This document lists in detail the changes made to the 1987
edition of the standard.

Design Goals
6Ada was originally designed with three overriding concerns: program reliability and maintenance, pro-

gramming as a human activity, and efficiency. This revision to the language was designed to provide
greater flexibility and extensibility, additional control over storage management and synchronization, and
standardized packages oriented toward supporting important application areas, while at the same time
retaining the original emphasis on reliability, maintainability, and efficiency.

7The need for languages that promote reliability and simplify maintenance is well established. Hence
emphasis was placed on program readability over ease of writing. For example, the rules of the language
require that program variables be explicitly declared and that their type be specified. Since the type of a
variable is invariant, compilers can ensure that operations on variables are compatible with the properties
intended for objects of the type. Furthermore, error-prone notations have been avoided, and the syntax of
the language avoids the use of encoded forms in favor of more English-like constructs. Finally, the
language offers support for separate compilation of program units in a way that facilitates program
development and maintenance, and which provides the same degree of checking between units as within a
unit.

8Concern for the human programmer was also stressed during the design. Above all, an attempt was made
to keep to a relatively small number of underlying concepts integrated in a consistent and systematic way
while continuing to avoid the pitfalls of excessive involution. The design especially aims to provide
language constructs that correspond intuitively to the normal expectations of users.

9Like many other human activities, the development of programs is becoming ever more decentralized and
distributed. Consequently, the ability to assemble a program from independently produced software
components continues to be a central idea in the design. The concepts of packages, of private types, and
of generic units are directly related to this idea, which has ramifications in many other aspects of the
language. An allied concern is the maintenance of programs to match changing requirements; type exten-
sion and the hierarchical library enable a program to be modified while minimizing disturbance to exist-
ing tested and trusted components.

10No language can avoid the problem of efficiency. Languages that require over-elaborate compilers, or
that lead to the inefficient use of storage or execution time, force these inefficiencies on all machines and
on all programs. Every construct of the language was examined in the light of present implementation
techniques. Any proposed construct whose implementation was unclear or that required excessive
machine resources was rejected.

ISO/IEC 8652:1995(E) —AARM;6.0

Introduction 21 December 1994 x

Language Summary
11 An Ada program is composed of one or more program units. Program units may be subprograms (which

define executable algorithms), packages (which define collections of entities), task units (which define
concurrent computations), protected units (which define operations for the coordinated sharing of data
between tasks), or generic units (which define parameterized forms of packages and subprograms). Each
program unit normally consists of two parts: a specification, containing the information that must be
visible to other units, and a body, containing the implementation details, which need not be visible to
other units. Most program units can be compiled separately.

12 This distinction of the specification and body, and the ability to compile units separately, allows a
program to be designed, written, and tested as a set of largely independent software components.

13 An Ada program will normally make use of a library of program units of general utility. The language
provides means whereby individual organizations can construct their own libraries. All libraries are
structured in a hierarchical manner; this enables the logical decomposition of a subsystem into individual
components. The text of a separately compiled program unit must name the library units it requires.

14 Program Units

15 A subprogram is the basic unit for expressing an algorithm. There are two kinds of subprograms:
procedures and functions. A procedure is the means of invoking a series of actions. For example, it may
read data, update variables, or produce some output. It may have parameters, to provide a controlled
means of passing information between the procedure and the point of call. A function is the means of
invoking the computation of a value. It is similar to a procedure, but in addition will return a result.

16 A package is the basic unit for defining a collection of logically related entities. For example, a package
can be used to define a set of type declarations and associated operations. Portions of a package can be
hidden from the user, thus allowing access only to the logical properties expressed by the package
specification.

17 Subprogram and package units may be compiled separately and arranged in hierarchies of parent and
child units giving fine control over visibility of the logical properties and their detailed implementation.

18 A task unit is the basic unit for defining a task whose sequence of actions may be executed concurrently
with those of other tasks. Such tasks may be implemented on multicomputers, multiprocessors, or with
interleaved execution on a single processor. A task unit may define either a single executing task or a
task type permitting the creation of any number of similar tasks.

19 A protected unit is the basic unit for defining protected operations for the coordinated use of data shared
between tasks. Simple mutual exclusion is provided automatically, and more elaborate sharing protocols
can be defined. A protected operation can either be a subprogram or an entry. A protected entry specifies
a Boolean expression (an entry barrier) that must be true before the body of the entry is executed. A
protected unit may define a single protected object or a protected type permitting the creation of several
similar objects.

20 Declarations and Statements

21 The body of a program unit generally contains two parts: a declarative part, which defines the logical
entities to be used in the program unit, and a sequence of statements, which defines the execution of the
program unit.

ISO/IEC 8652:1995(E) —AARM;6.0

xi 21 December 1994 Introduction

22The declarative part associates names with declared entities. For example, a name may denote a type, a
constant, a variable, or an exception. A declarative part also introduces the names and parameters of
other nested subprograms, packages, task units, protected units, and generic units to be used in the
program unit.

23The sequence of statements describes a sequence of actions that are to be performed. The statements are
executed in succession (unless a transfer of control causes execution to continue from another place).

24An assignment statement changes the value of a variable. A procedure call invokes execution of a
procedure after associating any actual parameters provided at the call with the corresponding formal
parameters.

25Case statements and if statements allow the selection of an enclosed sequence of statements based on the
value of an expression or on the value of a condition.

26The loop statement provides the basic iterative mechanism in the language. A loop statement specifies
that a sequence of statements is to be executed repeatedly as directed by an iteration scheme, or until an
exit statement is encountered.

27A block statement comprises a sequence of statements preceded by the declaration of local entities used
by the statements.

28Certain statements are associated with concurrent execution. A delay statement delays the execution of a
task for a specified duration or until a specified time. An entry call statement is written as a procedure
call statement; it requests an operation on a task or on a protected object, blocking the caller until the
operation can be performed. A called task may accept an entry call by executing a corresponding accept
statement, which specifies the actions then to be performed as part of the rendezvous with the calling task.
An entry call on a protected object is processed when the corresponding entry barrier evaluates to true,
whereupon the body of the entry is executed. The requeue statement permits the provision of a service as
a number of related activities with preference control. One form of the select statement allows a selective
wait for one of several alternative rendezvous. Other forms of the select statement allow conditional or
timed entry calls and the asynchronous transfer of control in response to some triggering event.

29Execution of a program unit may encounter error situations in which normal program execution cannot
continue. For example, an arithmetic computation may exceed the maximum allowed value of a number,
or an attempt may be made to access an array component by using an incorrect index value. To deal with
such error situations, the statements of a program unit can be textually followed by exception handlers
that specify the actions to be taken when the error situation arises. Exceptions can be raised explicitly by
a raise statement.

30Data Types

31Every object in the language has a type, which characterizes a set of values and a set of applicable
operations. The main classes of types are elementary types (comprising enumeration, numeric, and ac-
cess types) and composite types (including array and record types).

32An enumeration type defines an ordered set of distinct enumeration literals, for example a list of states or
an alphabet of characters. The enumeration types Boolean, Character, and Wide_Character are
predefined.

ISO/IEC 8652:1995(E) —AARM;6.0

Introduction 21 December 1994 xii

33 Numeric types provide a means of performing exact or approximate numerical computations. Exact
computations use integer types, which denote sets of consecutive integers. Approximate computations
use either fixed point types, with absolute bounds on the error, or floating point types, with relative
bounds on the error. The numeric types Integer, Float, and Duration are predefined.

34 Composite types allow definitions of structured objects with related components. The composite types in
the language include arrays and records. An array is an object with indexed components of the same type.
A record is an object with named components of possibly different types. Task and protected types are
also forms of composite types. The array types String and Wide_String are predefined.

35 Record, task, and protected types may have special components called discriminants which parameterize
the type. Variant record structures that depend on the values of discriminants can be defined within a
record type.

36 Access types allow the construction of linked data structures. A value of an access type represents a
reference to an object declared as aliased or to an object created by the evaluation of an allocator. Several
variables of an access type may designate the same object, and components of one object may designate
the same or other objects. Both the elements in such linked data structures and their relation to other
elements can be altered during program execution. Access types also permit references to subprograms to
be stored, passed as parameters, and ultimately dereferenced as part of an indirect call.

37 Private types permit restricted views of a type. A private type can be defined in a package so that only
the logically necessary properties are made visible to the users of the type. The full structural details that
are externally irrelevant are then only available within the package and any child units.

38 From any type a new type may be defined by derivation. A type, together with its derivatives (both direct
and indirect) form a derivation class. Class-wide operations may be defined that accept as a parameter an
operand of any type in a derivation class. For record and private types, the derivatives may be extensions
of the parent type. Types that support these object-oriented capabilities of class-wide operations and type
extension must be tagged, so that the specific type of an operand within a derivation class can be iden-
tified at run time. When an operation of a tagged type is applied to an operand whose specific type is not
known until run time, implicit dispatching is performed based on the tag of the operand.

39 The concept of a type is further refined by the concept of a subtype, whereby a user can constrain the set
of allowed values of a type. Subtypes can be used to define subranges of scalar types, arrays with a
limited set of index values, and records and private types with particular discriminant values.

40 Other Facilities

41 Representation clauses can be used to specify the mapping between types and features of an underlying
machine. For example, the user can specify that objects of a given type must be represented with a given
number of bits, or that the components of a record are to be represented using a given storage layout.
Other features allow the controlled use of low level, nonportable, or implementation-dependent aspects,
including the direct insertion of machine code.

42 The predefined environment of the language provides for input-output and other capabilities (such as
string manipulation and random number generation) by means of standard library packages. Input-output
is supported for values of user-defined as well as of predefined types. Standard means of representing
values in display form are also provided. Other standard library packages are defined in annexes of the
standard to support systems with specialized requirements.

ISO/IEC 8652:1995(E) —AARM;6.0

xiii 21 December 1994 Introduction

43Finally, the language provides a powerful means of parameterization of program units, called generic
program units. The generic parameters can be types and subprograms (as well as objects and packages)
and so allow general algorithms and data structures to be defined that are applicable to all types of a given
class.

Language Changes
44This International Standard replaces the first edition of 1987. In this edition, the following major lan-

guage changes have been incorporated:

45• Support for standard 8-bit and 16-bit character sets. See Section 2, 3.5.2, 3.6.3, A.1, A.3, and
A.4.

46• Object-oriented programming with run-time polymorphism. See the discussions of classes,
derived types, tagged types, record extensions, and private extensions in clauses 3.4, 3.9, and
7.3. See also the new forms of generic formal parameters that are allowed by 12.5.1, ‘‘For-
mal Private and Derived Types’’ and 12.7, ‘‘Formal Packages’’.

47• Access types have been extended to allow an access value to designate a subprogram or an
object declared by an object declaration (as opposed to just a heap-allocated object). See
3.10.

48• Efficient data-oriented synchronization is provided via protected types. See Section 9.

49• The library units of a library may be organized into a hierarchy of parent and child units. See
Section 10.

50• Additional support has been added for interfacing to other languages. See Annex B.

51• The Specialized Needs Annexes have been added to provide specific support for certain
application areas:

52• Annex C, ‘‘Systems Programming’’

53• Annex D, ‘‘Real-Time Systems’’

54• Annex E, ‘‘Distributed Systems’’

55• Annex F, ‘‘Information Systems’’

56• Annex G, ‘‘Numerics’’

57• Annex H, ‘‘Safety and Security’’

ISO/IEC 8652:1995(E) —AARM;6.0

Introduction 21 December 1994 xiv

Instructions for Comment Submission
58 {instructions for comment submission} {comments, instructions for submission} Informal comments on this Inter-

national Standard may be sent via e-mail to ada-comment@sw-eng.falls-church.va.us. If appropriate,
the Project Editor will initiate the defect correction procedure.

59 Comments should use the following format:

60

!topic Title summarizing comment
!reference RM95-ss.ss(pp)
!from Author Name yy-mm-dd
!keywords keywords related to topic
!discussion

text of discussion

61 where ss.ss is the section, clause or subclause number, pp is the paragraph number where applicable, and
yy-mm-dd is the date the comment was sent. The date is optional, as is the !keywords line.

62 Multiple comments per e-mail message are acceptable. Please use a descriptive ‘‘Subject’’ in your e-mail
message.

63 When correcting typographical errors or making minor wording suggestions, please put the correction
directly as the topic of the comment; use square brackets [] to indicate text to be omitted and curly braces
{ } to indicate text to be added, and provide enough context to make the nature of the suggestion self-
evident or put additional information in the body of the comment, for example:

64

!topic [c]{C}haracter
!topic it[’]s meaning is not defined

65 Formal requests for interpretations and for reporting defects in this International Standard may be made in
accordance with the ISO/IEC JTC1 Directives and the ISO/IEC JTC1/SC22 policy for interpretations.
National Bodies may submit a Defect Report to ISO/IEC JTC1/SC22 for resolution under the JTC1
procedures. A response will be provided and, if appropriate, a Technical Corrigendum will be issued in
accordance with the procedures.

ISO/IEC 8652:1995(E) —AARM;6.0

xv 21 December 1994 Introduction

Acknowledgements
66This International Standard was prepared by the Ada 9X Mapping/Revision Team based at Intermetrics,

Inc., which has included: W. Carlson, Program Manager; T. Taft, Technical Director; J. Barnes (consult-
ant); B. Brosgol (consultant); R. Duff (Oak Tree Software); M. Edwards; C. Garrity; R. Hilliard; O. Pazy
(consultant); D. Rosenfeld; L. Shafer; W. White; M. Woodger.

67The following consultants to the Ada 9X Project contributed to the Specialized Needs Annexes: T. Baker
(Real-Time/Systems Programming — SEI, FSU); K. Dritz (Numerics — Argonne National Laboratory);
A. Gargaro (Distributed Systems — Computer Sciences); J. Goodenough (Real-Time/Systems Program-
ming — SEI); J. McHugh (Secure Systems — consultant); B. Wichmann (Safety-Critical Systems —
NPL: UK).

68This work was regularly reviewed by the Ada 9X Distinguished Reviewers and the members of the Ada
9X Rapporteur Group (XRG): E. Ploedereder, Chairman of DRs and XRG (University of Stuttgart:
Germany); B. Bardin (Hughes); J. Barnes (consultant: UK); B. Brett (DEC); B. Brosgol (consultant);
R. Brukardt (RR Software); N. Cohen (IBM); R. Dewar (NYU); G. Dismukes (TeleSoft); A. Evans
(consultant); A. Gargaro (Computer Sciences); M. Gerhardt (ESL); J. Goodenough (SEI); S. Heilbrunner
(University of Salzburg: Austria); P. Hilfinger (UC/Berkeley); B. Källberg (CelsiusTech: Sweden);
M. Kamrad II (Unisys); J. van Katwijk (Delft University of Technology: The Netherlands); V. Kaufman
(Russia); P. Kruchten (Rational); R. Landwehr (CCI: Germany); C. Lester (Portsmouth Polytechnic: UK);
L. Månsson (TELIA Research: Sweden); S. Michell (Multiprocessor Toolsmiths: Canada); M. Mills (US
Air Force); D. Pogge (US Navy); K. Power (Boeing); O. Roubine (Verdix: France); A. Strohmeier (Swiss
Fed Inst of Technology: Switzerland); W. Taylor (consultant: UK); J. Tokar (Tartan); E. Vasilescu
(Grumman); J. Vladik (Prospeks s.r.o.: Czech Republic); S. Van Vlierberghe (OFFIS: Belgium).

69Other valuable feedback influencing the revision process was provided by the Ada 9X Language Preci-
sion Team (Odyssey Research Associates), the Ada 9X User/Implementer Teams (AETECH, Tartan,
TeleSoft), the Ada 9X Implementation Analysis Team (New York University) and the Ada community-
at-large.

70Special thanks go to R. Mathis, Convenor of ISO/IEC JTC1/SC22 Working Group 9.

71The Ada 9X Project was sponsored by the Ada Joint Program Office. Christine M. Anderson at the Air
Force Phillips Laboratory (Kirtland AFB, NM) was the project manager.

ISO/IEC 8652:1995(E) —AARM;6.0

Introduction 21 December 1994 xvi

Changes
72 The International Standard is the same as this version of the Reference Manual, except:

73 • This list of Changes is not included in the International Standard.

74 • The ‘‘Acknowledgements’’ page is not included in the International Standard.

75 • The text in the running headers and footers on each page is slightly different in the Inter-
national Standard.

76 • The title page(s) are different in the International Standard.

77 • This document is formatted for 8.5-by-11-inch paper, whereas the International Standard is
formatted for A4 paper (210-by-297mm); thus, the page breaks are in different places.

ISO/IEC 8652:1995(E) —AARM;6.0

General 1

INTERNATIONAL STANDARD

Information technology — Programming
Languages — Ada

Section 1: General
1Ada is a programming language designed to support the construction of long-lived, highly reliable

software systems. The language includes facilities to define packages of related types, objects, and opera-
tions. The packages may be parameterized and the types may be extended to support the construction of
libraries of reusable, adaptable software components. The operations may be implemented as sub-
programs using conventional sequential control structures, or as entries that include synchronization of
concurrent threads of control as part of their invocation. The language treats modularity in the physical
sense as well, with a facility to support separate compilation.

2The language includes a complete facility for the support of real-time, concurrent programming. Errors
can be signaled as exceptions and handled explicitly. The language also covers systems programming;
this requires precise control over the representation of data and access to system-dependent properties.
Finally, a predefined environment of standard packages is provided, including facilities for, among others,
input-output, string manipulation, numeric elementary functions, and random number generation.

2.aDiscussion: This Annotated Ada Reference Manual (AARM) contains the entire text of the Ada Reference Manual
(RM9X), plus certain annotations. The annotations give a more in-depth analysis of the language. They describe the
reason for each non-obvious rule, and point out interesting ramifications of the rules and interactions among the rules
(interesting to language lawyers, that is). Differences between Ada 83 and Ada 9X are listed. (The text you are
reading now is an annotation.)

2.bThe AARM stresses detailed correctness and uniformity over readability and understandability. We’re not trying to
make the language ‘‘appear’’ simple here; on the contrary, we’re trying to expose hidden complexities, so we can more
easily detect language bugs. The RM9X, on the other hand, is intended to be a more readable document for
programmers.

2.cThe annotations in the AARM are as follows:

2.d• Text that is logically redundant is shown [in square brackets, like this]. Technically, such text could be
written as a Note in the RM9X, since it is really a theorem that can be proven from the non-redundant rules
of the language. We use the square brackets instead when it seems to make the RM9X more readable.

ISO/IEC 8652:1995(E) —AARM;6.0

1 General 21 December 1994 2

2.e • The rules of the language (and some AARM-only text) are categorized, and placed under certain
sub-headings that indicate the category. For example, the distinction between Name Resolution Rules and
Legality Rules is particularly important, as explained in 8.6.

2.f • Text under the following sub-headings appears in both documents:
2.g • The unlabeled text at the beginning of each clause or subclause,
2.h • Syntax,
2.i • Name Resolution Rules,
2.j • Legality Rules,
2.k • Static Semantics,
2.l • Post-Compilation Rules,

2.m • Dynamic Semantics,
2.n • Bounded (Run-Time) Errors,
2.o • Erroneous Execution,
2.p • Implementation Requirements,
2.q • Documentation Requirements,
2.r • Metrics,
2.s • Implementation Permissions,
2.t • Implementation Advice,
2.u • NOTES,
2.v • Examples.

2.w • Text under the following sub-headings does not appear in the RM9X:
2.x • Language Design Principles,
2.y • Inconsistencies With Ada 83,
2.z • Incompatibilities With Ada 83,

2.aa • Extensions to Ada 83,
2.bb • Wording Changes From Ada 83.

2.cc • The AARM also includes the following kinds of annotations. These do not necessarily annotate the
immediately preceding rule, although they often do.

2.dd Reason: An explanation of why a certain rule is necessary, or why it is worded in a certain way.

2.ee Ramification: An obscure ramification of the rules that is of interest only to language lawyers. (If a ramification of
the rules is of interest to programmers, then it appears under NOTES.)

2.ff Proof: An informal proof explaining how a given Note or [marked-as-redundant] piece of text follows from the other
rules of the language.

2.gg Implementation Note: A hint about how to implement a feature, or a particular potential pitfall that an implementer
needs to be aware of.

2.hh Discussion: Other annotations not covered by the above.

2.ii To be honest: A rule that is considered logically necessary to the definition of the language, but which is so obscure or
pedantic that only a language lawyer would care. These are the only annotations that could be considered part of the
language definition.

2.jj Glossary entry: The text of a Glossary entry — this text will also appear in Annex N, ‘‘Glossary’’.

2.kk Discussion: In general, RM9X text appears in the normal font, whereas AARM-only text appears in a smaller font.
Notes also appear in the smaller font, as recommended by ISO/IEC style guidelines. Ada examples are also usually
printed in a smaller font.

2.ll If you have trouble finding things, be sure to use the index. {italics, like this} Each defined term appears there, and
also in italics, like this. Syntactic categories defined in BNF are also indexed.

2.mm A definition marked ‘‘[distributed]’’ is the main definition for a term whose complete definition is given in pieces
distributed throughout the document. The pieces are marked ‘‘[partial]’’ or with a phrase explaining what cases the
partial definition applies to.

1.1 Scope
1 This International Standard specifies the form and meaning of programs written in Ada. Its purpose is to

promote the portability of Ada programs to a variety of data processing systems.

ISO/IEC 8652:1995(E) —AARM;6.0

3 21 December 1994 Extent 1.1.1

1.1.1 Extent
1This International Standard specifies:

2• The form of a program written in Ada;

3• The effect of translating and executing such a program;

4• The manner in which program units may be combined to form Ada programs;

5• The language-defined library units that a conforming implementation is required to supply;

6• The permissible variations within the standard, and the manner in which they are to be
documented;

7• Those violations of the standard that a conforming implementation is required to detect, and
the effect of attempting to translate or execute a program containing such violations;

8• Those violations of the standard that a conforming implementation is not required to detect.

9This International Standard does not specify:

10• The means whereby a program written in Ada is transformed into object code executable by a
processor;

11• The means whereby translation or execution of programs is invoked and the executing units
are controlled;

12• The size or speed of the object code, or the relative execution speed of different language
constructs;

13• The form or contents of any listings produced by implementations; in particular, the form or
contents of error or warning messages;

14• The effect of unspecified execution.

15• The size of a program or program unit that will exceed the capacity of a particular conform-
ing implementation.

1.1.2 Structure
1This International Standard contains thirteen sections, fourteen annexes, and an index.

2{core language} The core of the Ada language consists of:

3• Sections 1 through 13

4• Annex A, ‘‘Predefined Language Environment’’

5• Annex B, ‘‘Interface to Other Languages’’

6• Annex J, ‘‘Obsolescent Features’’

7{Specialized Needs Annexes} {Annex (Specialized Needs)} {application areas} The following Specialized Needs An-
nexes define features that are needed by certain application areas:

8• Annex C, ‘‘Systems Programming’’

9• Annex D, ‘‘Real-Time Systems’’

10• Annex E, ‘‘Distributed Systems’’

11• Annex F, ‘‘Information Systems’’

ISO/IEC 8652:1995(E) —AARM;6.0

1.1.2 Structure 21 December 1994 4

12 • Annex G, ‘‘Numerics’’

13 • Annex H, ‘‘Safety and Security’’

14 {normative} {Annex (normative)} The core language and the Specialized Needs Annexes are normative, except
that the material in each of the items listed below is informative:

15 • Text under a NOTES or Examples heading.

16 • Each clause or subclause whose title starts with the word ‘‘Example’’ or ‘‘Examples’’.

17 All implementations shall conform to the core language. In addition, an implementation may conform
separately to one or more Specialized Needs Annexes.

18 {informative} {non-normative: see informative} {Annex (informative)} The following Annexes are informative:

19 • Annex K, ‘‘Language-Defined Attributes’’

20 • Annex L, ‘‘Language-Defined Pragmas’’

21 • Annex M, ‘‘Implementation-Defined Characteristics’’

22 • Annex N, ‘‘Glossary’’

23 • Annex P, ‘‘Syntax Summary’’
23.a Discussion: The idea of the Specialized Needs Annexes is that implementations can choose to target certain

application areas. For example, an implementation specifically targeted to embedded machines might support the
application-specific features for Real-time Systems, but not the application-specific features for Information Systems.

23.b The Specialized Needs Annexes extend the core language only in ways that users, implementations, and standards
bodies are allowed to extend the language; for example, via additional library units, attributes, representation items (see
13.1), pragmas, and constraints on semantic details that are left unspecified by the core language. Many implemen-
tations already provide much of the functionality defined by Specialized Needs Annexes; our goal is to increase
uniformity among implementations by defining standard ways of providing the functionality.

23.c We recommend that the validation procedures allow implementations to validate the core language, plus any set of the
Specialized Needs Annexes. We recommend that implementations not be allowed to validate a portion of one of the
Specialized Needs Annexes, although implementations can, of course, provide unvalidated support for such portions.
We have designed the Specialized Needs Annexes assuming that this recommendation is followed. Thus, our decisions
about what to include and what not to include in those annexes are based on the assumption that each annex is validated
in an ‘‘all-or-nothing’’ manner.

23.d An implementation may, of course, support extensions that are different from (but possibly related to) those defined by
one of the Specialized Needs Annexes. We recommend that, where appropriate, implementations do this by adding
library units that are children of existing language-defined library packages.

23.e An implementation should not provide extensions that conflict with those defined in the Specialized Needs Annexes, in
the following sense: Suppose an implementation supports a certain error-free program that uses only functionality
defined in the core and in the Specialized Needs Annexes. The implementation should ensure that that program will
still be error free in some possible full implementation of all of the Specialized Needs Annexes, and that the semantics
of the program will not change. For example, an implementation should not provide a package with the same name as
one defined in one of the Specialized Needs Annexes, but that behaves differently, even if that implementation does not
claim conformance to that Annex.

23.f Note that the Specialized Needs Annexes do not conflict with each other; it is the intent that a single implementation
can conform to all of them.

24 Each section is divided into clauses and subclauses that have a common structure. Each section, clause,
and subclause first introduces its subject. After the introductory text, text is labeled with the following
headings:

ISO/IEC 8652:1995(E) —AARM;6.0

5 21 December 1994 Structure 1.1.2

Language Design Principles

24.aThese are not rules of the language, but guiding principles or goals used in defining the rules of the language. In some
cases, the goal is only partially met; such cases are explained.

24.bThis is not part of the definition of the language, and does not appear in the RM9X.
Syntax

25{syntax (under Syntax heading)} {grammar (under Syntax heading)} {context free grammar (under Syntax heading)}
{BNF (Backus-Naur Form) (under Syntax heading)} {Backus-Naur Form (BNF) (under Syntax heading)} Syntax rules
(indented).

Name Resolution Rules

26{name resolution rules} {overloading rules} {resolution rules} Compile-time rules that are used in name resolution,
including overload resolution.

26.aDiscussion: These rules are observed at compile time. (We say ‘‘observed’’ rather than ‘‘checked,’’ because these
rules are not individually checked. They are really just part of the Legality Rules in Section 8 that require exactly one
interpretation of each constituent of a complete context.) The only rules used in overload resolution are the Syntax
Rules and the Name Resolution Rules.

26.bWhen dealing with non-overloadable declarations it sometimes makes no semantic difference whether a given rule is a
Name Resolution Rule or a Legality Rule, and it is sometimes difficult to decide which it should be. We generally
make a given rule a Name Resolution Rule only if it has to be. For example, ‘‘The name, if any, in a raise_statement
shall be the name of an exception.’’ is under ‘‘Legality Rules.’’

Legality Rules

27{legality rules} {compile-time error} {error (compile-time)} Rules that are enforced at compile time. {legal

(construct)} {illegal (construct)} A construct is legal if it obeys all of the Legality Rules.
27.aDiscussion: These rules are not used in overload resolution.

27.bNote that run-time errors are always attached to exceptions; for example, it is not ‘‘illegal’’ to divide by zero, it just
raises an exception.

Static Semantics

28{static semantics} {compile-time semantics} A definition of the compile-time effect of each construct.
28.aDiscussion: The most important compile-time effects represent the effects on the symbol table associated with

declarations (implicit or explicit). In addition, we use this heading as a bit of a grab bag for equivalences, package
specifications, etc. For example, this is where we put statements like so-and-so is equivalent to such-and-such. (We
ought to try to really mean it when we say such things!) Similarly, statements about magically-generated implicit
declarations go here. These rules are generally written as statements of fact about the semantics, rather than as a
you-shall-do-such-and-such sort of thing.

Post-Compilation Rules

29{post-compilation rules} {post-compilation error} {post-compilation rules} {link-time error: see post-compilation error} {error

(link-time)} Rules that are enforced before running a partition. {legal (partition)} {illegal (partition)} A partition
is legal if its compilation units are legal and it obeys all of the Post-Compilation Rules.

29.aDiscussion: It is not specified exactly when these rules are checked, so long as they are checked for any given
partition before that partition starts running. An implementation may choose to check some such rules at compile time,
and reject compilation_units accordingly. Alternatively, an implementation may check such rules when the partition is
created (usually known as ‘‘link time’’), or when the partition is mapped to a particular piece of hardware (but before
the partition starts running).

Dynamic Semantics

30{dynamic semantics} {run-time semantics} {run-time error} {error (run-time)} A definition of the run-time effect of
each construct.

30.aDiscussion: This heading describes what happens at run time. Run-time checks, which raise exceptions upon failure,
are described here. Each item that involves a run-time check is marked with the name of the check — these are the
same check names that are used in a pragma Suppress. Principle: Every check should have a name, usable in a pragma
Suppress.

ISO/IEC 8652:1995(E) —AARM;6.0

1.1.2 Structure 21 December 1994 6

Bounded (Run-Time) Errors

31 {bounded error} {bounded error} Situations that result in bounded (run-time) errors (see 1.1.5).

31.a Discussion: The ‘‘bounds’’ of each such error are described here — that is, we characterize the set of all possible
behaviors that can result from a bounded error occurring at run time.

Erroneous Execution

32 {erroneous execution} {erroneous execution} Situations that result in erroneous execution (see 1.1.5).

Implementation Requirements

33 {implementation requirements} Additional requirements for conforming implementations.
33.a Discussion: ...as opposed to rules imposed on the programmer. An example might be, ‘‘The smallest representable

duration, Duration’Small, shall not be greater than twenty milliseconds.’’

33.b It’s really just an issue of how the rule is worded. We could write the same rule as ‘‘The smallest representable
duration is an implementation-defined value less than or equal to 20 milliseconds’’ and then it would be under ‘‘Static
Semantics.’’

Documentation Requirements

34 {documentation requirements} {documentation requirements} Documentation requirements for conforming im-
plementations.

34.a Discussion: These requirements are beyond those that are implicitly specified by the phrase ‘‘implementation
defined’’. The latter require documentation as well, but we don’t repeat these cases under this heading. Usually this
heading is used for when the description of the documentation requirement is longer and does not correspond directly
to one, narrow normative sentence.

Metrics

35 {metrics} {metrics} Metrics that are specified for the time/space properties of the execution of certain lan-
guage constructs.

Implementation Permissions

36 {implementation permissions} Additional permissions given to the implementer.
36.a Discussion: For example, ‘‘The implementation is allowed to impose further restrictions on the record aggregates

allowed in code statements.’’ When there are restrictions on the permission, those restrictions are given here also. For
example, ‘‘An implementation is allowed to restrict the kinds of subprograms that are allowed to be main subprograms.
However, it shall support at least parameterless procedures.’’ — we don’t split this up between here and ‘‘Implemen-
tation Requirements.’’

Implementation Advice

37 {implementation advice} {advice} Optional advice given to the implementer. The word ‘‘should’’ is used to
indicate that the advice is a recommendation, not a requirement. It is implementation defined whether or
not a given recommendation is obeyed.

37.a Implementation defined: Whether or not each recommendation given in Implementation Advice is followed.

37.b Discussion: The advice generally shows the intended implementation, but the implementer is free to ignore it. The
implementer is the sole arbiter of whether or not the advice has been obeyed, if not, whether the reason is a good one,
and whether the required documentation is sufficient. {ACVC [Ada Compiler Validation Capability]} {Ada Compiler

Validation Capability [ACVC]} It would be wrong for the ACVC to enforce any of this advice.

37.c For example, ‘‘Whenever possible, the implementation should choose a value no greater than fifty microseconds for
the smallest representable duration, Duration’Small.’’

37.d We use this heading, for example, when the rule is so low level or implementation-oriented as to be untestable. We
also use this heading when we wish to encourage implementations to behave in a certain way in most cases, but we do
not wish to burden implementations by requiring the behavior.

ISO/IEC 8652:1995(E) —AARM;6.0

7 21 December 1994 Structure 1.1.2

NOTES
381 {notes} Notes emphasize consequences of the rules described in the (sub)clause or elsewhere. This material is

informative.

Examples

39Examples illustrate the possible forms of the constructs described. This material is informative.
39.aDiscussion:

The next three headings list all language changes between Ada 83 and Ada 9X. Language changes are any change that
changes the set of text strings that are legal Ada programs, or changes the meaning of any legal program. Wording
changes, such as changes in terminology, are not language changes. Each language change falls into one of the
following three categories:

Inconsistencies With Ada 83

39.b{inconsistencies with Ada 83} {inconsistencies with Ada 83} This heading lists all of the upward inconsistencies
between Ada 83 and Ada 9X. Upward inconsistencies are situations in which a legal Ada 83 program is a legal Ada
9X program with different semantics. This type of upward incompatibility is the worst type for users, so we only
tolerate it in rare situations.

39.c(Note that the semantics of a program is not the same thing as the behavior of the program. Because of Ada’s
indeterminacy, the ‘‘semantics’’ of a given feature describes a set of behaviors that can be exhibited by that feature.
The set can contain more than one allowed behavior. Thus, when we ask whether the semantics changes, we are asking
whether the set of behaviors changes.)

39.dThis is not part of the definition of the language, and does not appear in the RM9X.
Incompatibilities With Ada 83

39.e{incompatibilities with Ada 83} {incompatibilities with Ada 83} This heading lists all of the upward incompatibilities
between Ada 83 and Ada 9X, except for the ones listed under ‘‘Inconsistencies With Ada 83’’ above. These are the
situations in which a legal Ada 83 program is illegal in Ada 9X. We do not generally consider a change that turns
erroneous execution into an exception, or into an illegality, to be upwardly incompatible.

39.fThis is not part of the definition of the language, and does not appear in the RM9X.
Extensions to Ada 83

39.g{extensions to Ada 83} {extensions to Ada 83} This heading is used to list all upward compatible language changes;
that is, language extensions. These are the situations in which a legal Ada 9X program is not a legal Ada 83 program.
The vast majority of language changes fall into this category.

39.hThis is not part of the definition of the language, and does not appear in the RM9X.

39.iAs explained above, the next heading does not represent any language change:
Wording Changes From Ada 83

39.j{wording changes from Ada 83} This heading lists some of the non-semantic changes between RM83 and the RM9X.
It is incomplete; we have not attempted to list all wording changes, but only the ‘‘interesting’’ ones.

39.kThis is not part of the definition of the language, and does not appear in the RM9X.

1.1.3 Conformity of an Implementation with the Standard
Implementation Requirements

1{conformance (of an implementation with the Standard)} A conforming implementation shall:
1.aDiscussion: {implementation} The implementation is the software and hardware that implements the language. This

includes compiler, linker, operating system, hardware, etc.

1.bWe first define what it means to ‘‘conform’’ in general — basically, the implementation has to properly implement the
normative rules given throughout the standard. Then we define what it means to conform to a Specialized Needs
Annex — the implementation must support the core features plus the features of that Annex. Finally, we define what it
means to ‘‘conform to the Standard’’ — this requires support for the core language, and allows partial (but not
conflicting) support for the Specialized Needs Annexes.

ISO/IEC 8652:1995(E) —AARM;6.0

1.1.3 Conformity of an Implementation with the Standard 21 December 1994 8

2 • Translate and correctly execute legal programs written in Ada, provided that they are not so
large as to exceed the capacity of the implementation;

3 • Identify all programs or program units that are so large as to exceed the capacity of the
implementation (or raise an appropriate exception at run time);

3.a Implementation defined: Capacity limitations of the implementation.

4 • Identify all programs or program units that contain errors whose detection is required by this
International Standard;

4.a Discussion: Note that we no longer use the term ‘‘rejection’’ of programs or program units. We require that
programs or program units with errors or that exceed some capacity limit be ‘‘identified.’’ The way in which
errors or capacity problems are reported is not specified.

4.b An implementation is allowed to use standard error-recovery techniques. We do not disallow such techniques
from being used across compilation_unit or compilation boundaries.

4.c See also the Implementation Requirements of 10.2, which disallow the execution of illegal partitions.

5 • Supply all language-defined library units required by this International Standard;
5.a Implementation Note: An implementation cannot add to or modify the visible part of a language-defined

library unit, except where such permission is explicitly granted, unless such modifications are semantically
neutral with respect to the client compilation units of the library unit. An implementation defines the contents
of the private part and body of language-defined library units.

5.b An implementation can add with_clauses and use_clauses, since these modifications are semantically neutral to
clients. (The implementation might need with_clauses in order to implement the private part, for example.)
Similarly, an implementation can add a private part even in cases where a private part is not shown in the
standard. Explicit declarations can be provided implicitly or by renaming, provided the changes are seman-
tically neutral.

5.c {italics (implementation-defined)} Wherever in the standard the text of a language-defined library unit contains
an italicized phrase starting with ‘‘implementation-defined’’, the implementation’s version will replace that
phrase with some implementation-defined text that is syntactically legal at that place, and follows any other
applicable rules.

5.d Note that modifications are permitted, even if there are other tools in the environment that can detect the
changes (such as a program library browser), so long as the modifications make no difference with respect to
the static or dynamic semantics of the resulting programs, as defined by the standard.

6 • Contain no variations except those explicitly permitted by this International Standard, or
those that are impossible or impractical to avoid given the implementation’s execution en-
vironment;

6.a Implementation defined: Variations from the standard that are impractical to avoid given the
implementation’s execution environment.

6.b Reason: The ‘‘impossible or impractical’’ wording comes from AI-325. It takes some judgement and common
sense to interpret this. Restricting compilation units to less than 4 lines is probably unreasonable, whereas
restricting them to less than 4 billion lines is probably reasonable (at least given today’s technology). We do
not know exactly where to draw the line, so we have to make the rule vague.

7 • Specify all such variations in the manner prescribed by this International Standard.

8 {external effect (of the execution of an Ada program)} {effect (external)} The external effect of the execution of an
Ada program is defined in terms of its interactions with its external environment. {external interaction} The
following are defined as external interactions:

9 • Any interaction with an external file (see A.7);

10 • The execution of certain code_statements (see 13.8); which code_statements cause external
interactions is implementation defined.

10.a Implementation defined: Which code_statements cause external interactions.

ISO/IEC 8652:1995(E) —AARM;6.0

9 21 December 1994 Conformity of an Implementation with the Standard 1.1.3

11• Any call on an imported subprogram (see Annex B), including any parameters passed to it;

12• Any result returned or exception propagated from a main subprogram (see 10.2) or an ex-
ported subprogram (see Annex B) to an external caller;

12.aDiscussion: By ‘‘result returned’’ we mean to include function results and values returned in [in] out
parameters.

13• [Any read or update of an atomic or volatile object (see C.6);]

14• The values of imported and exported objects (see Annex B) at the time of any other inter-
action with the external environment.

14.aTo be honest: Also other uses of imported and exported entities, as defined by the implementation, if the
implementation supports such pragmas.

15A conforming implementation of this International Standard shall produce for the execution of a given
Ada program a set of interactions with the external environment whose order and timing are consistent
with the definitions and requirements of this International Standard for the semantics of the given
program.

15.aRamification: There is no need to produce any of the ‘‘internal effects’’ defined for the semantics of the program —
all of these can be optimized away — so long as an appropriate sequence of external interactions is produced.

15.bDiscussion: See also 11.6 which specifies various liberties associated with optimizations in the presence of language-
defined checks, that could change the external effects that might be produced. These alternative external effects are
still consistent with the standard, since 11.6 is part of the standard.

15.cNote also that we only require ‘‘an appropriate sequence of external interactions’’ rather than ‘‘the same sequence...’’
An optimizer may cause a different sequence of external interactions to be produced than would be produced without
the optimizer, so long as the new sequence still satisfies the requirements of the standard. For example, optimization
might affect the relative rate of progress of two concurrent tasks, thereby altering the order in which two external
interactions occur.

15.dNote that RM83 explicitly mentions the case of an ‘‘exact effect’’ of a program, but since so few programs have their
effects defined that exactly, we don’t even mention this ‘‘special’’ case. In particular, almost any program that uses
floating point or tasking has to have some level of inexactness in the specification of its effects. And if one includes
aspects of the timing of the external interactions in the external effect of the program (as is appropriate for a real-time
language), no ‘‘exact effect’’ can be specified. For example, if two external interactions initiated by a single task are
separated by a ‘‘delay 1.0;’’ then the language rules imply that the two external interactions have to be separated in
time by at least one second, as defined by the clock associated with the delay_relative_statement. This in turn implies
that the time at which an external interaction occurs is part of the characterization of the external interaction, at least in
some cases, again making the specification of the required ‘‘exact effect’’ impractical.

16An implementation that conforms to this Standard shall support each capability required by the core
language as specified. In addition, an implementation that conforms to this Standard may conform to one
or more Specialized Needs Annexes (or to none). Conformance to a Specialized Needs Annex means that
each capability required by the Annex is provided as specified.

16.aDiscussion: The last sentence defines what it means to say that an implementation conforms to a Specialized Needs
Annex, namely, only by supporting all capabilities required by the Annex.

17An implementation conforming to this International Standard may provide additional attributes, library
units, and pragmas. However, it shall not provide any attribute, library unit, or pragma having the same
name as an attribute, library unit, or pragma (respectively) specified in a Specialized Needs Annex unless
the provided construct is either as specified in the Specialized Needs Annex or is more limited in
capability than that required by the Annex. A program that attempts to use an unsupported capability of
an Annex shall either be identified by the implementation before run time or shall raise an exception at
run time.

17.aDiscussion: The last sentence of the preceding paragraph defines what an implementation is allowed to do when it
does not "conform" to a Specialized Needs Annex. In particular, the sentence forbids implementations from providing

ISO/IEC 8652:1995(E) —AARM;6.0

1.1.3 Conformity of an Implementation with the Standard 21 December 1994 10

a construct with the same name as a corresponding construct in a Specialized Needs Annex but with a different syntax
(e.g., an extended syntax) or quite different semantics. The phrase concerning "more limited in capability" is intended
to give permission to provide a partial implementation, such as not implementing a subprogram in a package or having
a restriction not permitted by an implementation that conforms to the Annex. For example, a partial implementation of
the package Ada.Decimal might have Decimal.Max_Decimal_Digits as 15 (rather than the required 18). This allows a
partial implementation to grow to a fully conforming implementation.

17.b A restricted implementation might be restricted by not providing some subprograms specified in one of the packages
defined by an Annex. In this case, a program that tries to use the missing subprogram will usually fail to compile.
Alternatively, the implementation might declare the subprogram as abstract, so it cannot be called. {Program_Error

(raised by failure of run-time check)} Alternatively, a subprogram body might be implemented just to raise Program_
Error. The advantage of this approach is that a program to be run under a fully conforming Annex implementation can
be checked syntactically and semantically under an implementation that only partially supports the Annex. Finally, an
implementation might provide a package declaration without the corresponding body, so that programs can be
compiled, but partitions cannot be built and executed.

17.c To ensure against wrong answers being delivered by a partial implementation, implementers are required to raise an
exception when a program attempts to use an unsupported capability and this can be detected only at run time. For
example, a partial implementation of Ada.Decimal might require the length of the Currency string to be 1, and hence,
an exception would be raised if a subprogram were called in the package Edited_Output with a length greater than 1.

Documentation Requirements

18 {documentation requirements} {implementation defined} {unspecified} {specified (not!)} {implementation-dependent: see

unspecified} {documentation (required of an implementation)} Certain aspects of the semantics are defined to be
either implementation defined or unspecified. In such cases, the set of possible effects is specified, and
the implementation may choose any effect in the set. Implementations shall document their behavior in
implementation-defined situations, but documentation is not required for unspecified situations. The
implementation-defined characteristics are summarized in Annex M.

18.a Discussion: We used to use the term ‘‘implementation dependent’’ instead of ‘‘unspecified’’. However, that sounded
too much like ‘‘implementation defined’’. Furthermore, the term ‘‘unspecified’’ is used in the ANSI C and POSIX
standards for this purpose, so that is another advantage. We also use ‘‘not specified’’ and ‘‘not specified by the
language’’ as synonyms for ‘‘unspecified.’’ The documentation requirement is the only difference between implemen-
tation defined and unspecified.

18.b Note that the ‘‘set of possible effects’’ can be ‘‘all imaginable effects’’, as is the case with erroneous execution.

19 The implementation may choose to document implementation-defined behavior either by documenting
what happens in general, or by providing some mechanism for the user to determine what happens in a
particular case.

19.a Discussion: For example, if the standard says that library unit elaboration order is implementation defined, the
implementation might describe (in its user’s manual) the algorithm it uses to determine the elaboration order. On the
other hand, the implementation might provide a command that produces a description of the elaboration order for a
partition upon request from the user. It is also acceptable to provide cross references to existing documentation (for
example, a hardware manual), where appropriate.

19.b Note that dependence of a program on implementation-defined or unspecified functionality is not defined to be an
error; it might cause the program to be less portable, however.

Implementation Advice

20 {Program_Error (raised by failure of run-time check)} If an implementation detects the use of an unsupported
Specialized Needs Annex feature at run time, it should raise Program_Error if feasible.

20.a Reason: The reason we don’t require Program_Error is that there are situations where other exceptions might make
sense. For example, if the Real Time Systems Annex requires that the range of System.Priority include at least 30
values, an implementation could conform to the Standard (but not to the Annex) if it supported only 12 values. Since
the rules of the language require Constraint_Error to be raised for out-of-range values, we cannot require Program_
Error to be raised instead.

21 If an implementation wishes to provide implementation-defined extensions to the functionality of a
language-defined library unit, it should normally do so by adding children to the library unit.

ISO/IEC 8652:1995(E) —AARM;6.0

11 21 December 1994 Conformity of an Implementation with the Standard 1.1.3

21.aImplementation Note: If an implementation has support code (‘‘run-time system code’’) that is needed for the
execution of user-defined code, it can put that support code in child packages of System. Otherwise, it has to use some
trick to avoid polluting the user’s namespace. It is important that such tricks not be available to user-defined code (not
in the standard mode, at least) — that would defeat the purpose.

NOTES
222 The above requirements imply that an implementation conforming to this Standard may support some of the capabilities

required by a Specialized Needs Annex without supporting all required capabilities.

22.aDiscussion: A conforming implementation can partially support a Specialized Needs Annex. Such an implementation
does not conform to the Annex, but it does conform to the Standard.

1.1.4 Method of Description and Syntax Notation
1The form of an Ada program is described by means of a context-free syntax together with context-

dependent requirements expressed by narrative rules.

2The meaning of Ada programs is described by means of narrative rules defining both the effects of each
construct and the composition rules for constructs.

3{syntax (notation)} {grammar (notation)} {context free grammar (notation)} {BNF (Backus-Naur Form) (notation)}
{Backus-Naur Form (BNF) (notation)} The context-free syntax of the language is described using a simple
variant of Backus-Naur Form. In particular:

4• Lower case words in a sans-serif font, some containing embedded underlines, are used to
denote syntactic categories, for example:

5case_statement

6• Boldface words are used to denote reserved words, for example:

7array

8• Square brackets enclose optional items. Thus the two following rules are equivalent.

9return_statement ::= return [expression];
return_statement ::= return; | return expression;

10• Curly brackets enclose a repeated item. The item may appear zero or more times; the repeti-
tions occur from left to right as with an equivalent left-recursive rule. Thus the two follow-
ing rules are equivalent.

11term ::= factor {multiplying_operator factor}
term ::= factor | term multiplying_operator factor

12• A vertical line separates alternative items unless it occurs immediately after an opening curly
bracket, in which case it stands for itself:

13constraint ::= scalar_constraint | composite_constraint
discrete_choice_list ::= discrete_choice {| discrete_choice}

14• {italics (syntax rules)} If the name of any syntactic category starts with an italicized part, it is
equivalent to the category name without the italicized part. The italicized part is intended to
convey some semantic information. For example subtype_name and task_name are both
equivalent to name alone.

14.aDiscussion: {LR(1)} {ambiguous grammar} {grammar (resolution of ambiguity)} {grammar (ambiguous)} The
grammar given in the RM9X is not LR(1). In fact, it is ambiguous; the ambiguities are resolved by the overload
resolution rules (see 8.6).

14.bWe often use ‘‘if’’ to mean ‘‘if and only if’’ in definitions. For example, if we define ‘‘photogenic’’ by saying, ‘‘A
type is photogenic if it has the following properties...,’’ we mean that a type is photogenic if and only if it has those
properties. It is usually clear from the context, and adding the ‘‘and only if’’ seems too cumbersome.

ISO/IEC 8652:1995(E) —AARM;6.0

1.1.4 Method of Description and Syntax Notation 21 December 1994 12

14.c When we say, for example, ‘‘a declarative_item of a declarative_part’’, we are talking about a declarative_item
immediately within that declarative_part. When we say ‘‘a declarative_item in, or within, a declarative_part’’, we are
talking about a declarative_item anywhere in the declarative_part, possibly deeply nested within other declarative_parts.
(This notation doesn’t work very well for names, since the name ‘‘of’’ something also has another meaning.)

14.d When we refer to the name of a language-defined entity (for example, Duration), we mean the language-defined entity
even in programs where the declaration of the language-defined entity is hidden by another declaration. For example,
when we say that the expected type for the expression of a delay_relative_statement is Duration, we mean the
language-defined type Duration that is declared in Standard, not some type Duration the user might have declared.

15 {syntactic category} A syntactic category is a nonterminal in the grammar defined in BNF under ‘‘Syntax.’’
Names of syntactic categories are set in a different font, like_this.

16 {Construct} [glossary entry]A construct is a piece of text (explicit or implicit) that is an instance of a
syntactic category defined under ‘‘Syntax.’’

16.a Ramification: For example, an expression is a construct. A declaration is a construct, whereas the thing declared by a
declaration is an ‘‘entity.’’

16.b Discussion: ‘‘Explicit’’ and ‘‘implicit’’ don’t mean exactly what you might think they mean: The text of an instance
of a generic is considered explicit, even though it does not appear explicitly (in the non-technical sense) in the program
text, and even though its meaning is not defined entirely in terms of that text.

17 {constituent (of a construct)} A constituent of a construct is the construct itself, or any construct appearing
within it.

18 {arbitrary order} Whenever the run-time semantics defines certain actions to happen in an arbitrary order,
this means that the implementation shall arrange for these actions to occur in a way that is equivalent to
some sequential order, following the rules that result from that sequential order. When evaluations are
defined to happen in an arbitrary order, with conversion of the results to some subtypes, or with some
run-time checks, the evaluations, conversions, and checks may be arbitrarily interspersed, so long as each
expression is evaluated before converting or checking its value. {type conversion [arbitrary order]} {conversion

[arbitrary order]} [Note that the effect of a program can depend on the order chosen by the implementation.
This can happen, for example, if two actual parameters of a given call have side effects.]

18.a Discussion: Programs will be more portable if their external effect does not depend on the particular order chosen by
an implementation.

18.b Ramification: Additional reordering permissions are given in 11.6, ‘‘Exceptions and Optimization’’.

18.c There is no requirement that the implementation always choose the same order in a given kind of situation. In fact, the
implementation is allowed to choose a different order for two different executions of the same construct. However, we
expect most implementations will behave in a relatively predictable manner in most situations.

18.d Reason: The ‘‘sequential order’’ wording is intended to allow the programmer to rely on ‘‘benign’’ side effects. For
example, if F is a function that returns a unique integer by incrementing some global and returning the result, a call
such as P(F, F) is OK if the programmer cares only that the two results of F are unique; the two calls of F cannot be
executed in parallel, unless the compiler can prove that parallel execution is equivalent to some sequential order.

NOTES
19 3 The syntax rules describing structured constructs are presented in a form that corresponds to the recommended

paragraphing. For example, an if_statement is defined as:

20 if_statement ::=
if condition then

sequence_of_statements
{elsif condition then

sequence_of_statements}
[else

sequence_of_statements]
end if;

ISO/IEC 8652:1995(E) —AARM;6.0

13 21 December 1994 Method of Description and Syntax Notation 1.1.4

214 The line breaks and indentation in the syntax rules indicate the recommended line breaks and indentation in the
corresponding constructs. The preferred places for other line breaks are after semicolons.

1.1.5 Classification of Errors
Implementation Requirements

1The language definition classifies errors into several different categories:

2• Errors that are required to be detected prior to run time by every Ada implementation;

3These errors correspond to any violation of a rule given in this International Standard, other
than those listed below. In particular, violation of any rule that uses the terms shall, allowed,
permitted, legal, or illegal belongs to this category. Any program that contains such an error
is not a legal Ada program; on the other hand, the fact that a program is legal does not mean,
per se, that the program is free from other forms of error.

4{compile-time error} {error (compile-time)} {link-time error: see post-compilation error} {error (link-time)}
The rules are further classified as either compile time rules, or post compilation rules,
depending on whether a violation has to be detected at the time a compilation unit is sub-
mitted to the compiler, or may be postponed until the time a compilation unit is incorporated
into a partition of a program.

4.aRamification: See, for example, 10.1.3, ‘‘Subunits of Compilation Units’’, for some errors that are detected
only after compilation. Implementations are allowed, but not required, to detect post compilation rules at
compile time when possible.

5• Errors that are required to be detected at run time by the execution of an Ada program;

6{run-time error} {error (run-time)} The corresponding error situations are associated with the
names of the predefined exceptions. Every Ada compiler is required to generate code that
raises the corresponding exception if such an error situation arises during program execution.
[If such an error situation is certain to arise in every execution of a construct, then an im-
plementation is allowed (although not required) to report this fact at compilation time.]

7• Bounded errors;

8The language rules define certain kinds of errors that need not be detected either prior to or
during run time, but if not detected, the range of possible effects shall be bounded. {bounded

error} The errors of this category are called bounded errors. {Program_Error (raised by failure of

run-time check)} The possible effects of a given bounded error are specified for each such error,
but in any case one possible effect of a bounded error is the raising of the exception
Program_Error.

9• Erroneous execution.

10{erroneous execution} In addition to bounded errors, the language rules define certain kinds of
errors as leading to erroneous execution. Like bounded errors, the implementation need not
detect such errors either prior to or during run time. Unlike bounded errors, there is no
language-specified bound on the possible effect of erroneous execution; the effect is in
general not predictable.

10.aRamification: Executions are erroneous, not programs or parts of programs. Once something erroneous
happens, the execution of the entire program is erroneous from that point on, and potentially before given
possible reorderings permitted by 11.6 and elsewhere. We cannot limit it to just one partition, since partitions
are not required to live in separate address spaces. (But implementations are encouraged to limit it as much as
possible.)

10.bSuppose a program contains a pair of things that will be executed ‘‘in an arbitrary order.’’ It is possible that
one order will result in something sensible, whereas the other order will result in erroneous execution. If the
implementation happens to choose the first order, then the execution is not erroneous. This may seem odd, but
it is not harmful.

ISO/IEC 8652:1995(E) —AARM;6.0

1.1.5 Classification of Errors 21 December 1994 14

10.c Saying that something is erroneous is semantically equivalent to saying that the behavior is unspecified.
However, ‘‘erroneous’’ has a slightly more disapproving flavor.

Implementation Permissions

11 [{mode of operation (nonstandard)} {nonstandard mode} An implementation may provide nonstandard modes of
operation. Typically these modes would be selected by a pragma or by a command line switch when the
compiler is invoked. When operating in a nonstandard mode, the implementation may reject compilation_
units that do not conform to additional requirements associated with the mode, such as an excessive
number of warnings or violation of coding style guidelines. Similarly, in a nonstandard mode, the im-
plementation may apply special optimizations or alternative algorithms that are only meaningful for
programs that satisfy certain criteria specified by the implementation. {mode of operation (standard)} {standard

mode} In any case, an implementation shall support a standard mode that conforms to the requirements of
this International Standard; in particular, in the standard mode, all legal compilation_units shall be
accepted.]

11.a Discussion: These permissions are designed to authorize explicitly the support for alternative modes. Of course,
nothing we say can prevent them anyway, but this (redundant) paragraph is designed to indicate that such alternative
modes are in some sense ‘‘approved’’ and even encouraged where they serve the specialized needs of a given user
community, so long as the standard mode, designed to foster maximum portability, is always available.

Implementation Advice

12 {Program_Error (raised by failure of run-time check)} If an implementation detects a bounded error or erroneous
execution, it should raise Program_Error.

Wording Changes From Ada 83

12.a Some situations that are erroneous in Ada 83 are no longer errors at all. For example, depending on the parameter
passing mechanism when unspecified is possibly non-portable, but not erroneous.

12.b Other situations that are erroneous in Ada 83 are changed to be bounded errors. In particular, evaluating an
uninitialized scalar variable is a bounded error. {Program_Error (raised by failure of run-time check)} The possible
results are to raise Program_Error (as always), or to produce a machine-representable value (which might not be in the
subtype of the variable). {Constraint_Error (raised by failure of run-time check)} Violating a Range_Check or
Overflow_Check raises Constraint_Error, even if the value came from an uninitialized variable. This means that
optimizers can no longer ‘‘assume’’ that all variables are initialized within their subtype’s range. Violating a check
that is suppressed remains erroneous.

12.c The ‘‘incorrect order dependences’’ category of errors is removed. All such situations are simply considered potential
non-portabilities. This category was removed due to the difficulty of defining what it means for two executions to have
a ‘‘different effect.’’ For example, if a function with a side-effect is called twice in a single expression, it is not in
principle possible for the compiler to decide whether the correctness of the resulting program depends on the order of
execution of the two function calls. A compile time warning might be appropriate, but raising of Program_Error at run
time would not be.

1.2 Normative References
1 {references} {bibliography} The following standards contain provisions which, through reference in this text,

constitute provisions of this International Standard. At the time of publication, the editions indicated
were valid. All standards are subject to revision, and parties to agreements based on this International
Standard are encouraged to investigate the possibility of applying the most recent editions of the stan-
dards indicated below. Members of IEC and ISO maintain registers of currently valid International
Standards.

2 {ISO/IEC 646:1991} {646:1991, ISO/IEC standard} {character set standard (7-bit)} ISO/IEC 646:1991, Information
technology — ISO 7-bit coded character set for information interchange.

ISO/IEC 8652:1995(E) —AARM;6.0

15 21 December 1994 Normative References 1.2

3{ISO/IEC 1539:1991} {1539:1991, ISO/IEC standard} {FORTRAN standard} ISO/IEC 1539:1991, Information tech-
nology — Programming languages — FORTRAN.

4{ISO 1989:1985} {1989:1985, ISO standard} {COBOL standard} ISO 1989:1985, Programming languages —
COBOL.

5{ISO/IEC 6429:1992} {6429:1992, ISO/IEC standard} {character set standard (control functions)} ISO/IEC 6429:1992,
Information technology — Control functions for coded graphic character sets.

6{ISO/IEC 8859-1:1987} {8859-1:1987, ISO/IEC standard} {character set standard (8-bit)} ISO/IEC 8859-1:1987,
Information processing — 8-bit single-byte coded character sets — Part 1: Latin alphabet No. 1.

7{ISO/IEC 9899:1990} {9899:1990, ISO/IEC standard} {C standard} ISO/IEC 9899:1990, Programming languages
— C.

8{ISO/IEC 10646-1:1993} {10646-1:1993, ISO/IEC standard} {character set standard (16-bit)} ISO/IEC 10646-1:1993,
Information technology — Universal Multiple-Octet Coded Character Set (UCS) — Part 1: Architecture
and Basic Multilingual Plane.

8.aDiscussion: {POSIX} POSIX, Portable Operating System Interface (POSIX) — Part 1: System Application Program
Interface (API) [C Language], The Institute of Electrical and Electronics Engineers, 1990.

1.3 Definitions
1{italics (terms introduced or defined)} Terms are defined throughout this International Standard, indicated by

italic type. Terms explicitly defined in this International Standard are not to be presumed to refer im-
plicitly to similar terms defined elsewhere. Terms not defined in this International Standard are to be
interpreted according to the Webster’s Third New International Dictionary of the English Language.
Informal descriptions of some terms are also given in Annex N, ‘‘Glossary’’.

1.aDiscussion: The index contains an entry for every defined term.

1.bGlossary entry: Each term defined in Annex N is marked like this.

1.cDiscussion: Here are some AARM-only definitions: {Ada Rapporteur Group (ARG)} {ARG} The Ada Rapporteur
Group (ARG) interprets the RM83. {Ada Issue (AI)} {AI} An Ada Issue (AI) is a numbered ruling from the ARG.
{Ada Commentary Integration Document (ACID)} {ACID} The Ada Commentary Integration Document (ACID) is an
edition of RM83 in which clearly marked insertions and deletions indicate the effect of integrating the approved AIs.
{Uniformity Rapporteur Group (URG)} {URG} The Uniformity Rapporteur Group (URG) issues recommendations
intended to increase uniformity across Ada implementations. {Uniformity Issue (UI)} {UI} A Uniformity Issue (UI) is
a numbered recommendation from the URG.

ISO/IEC 8652:1995(E) —AARM;6.0

2 Lexical Elements 21 December 1994 16

ISO/IEC 8652:1995(E) —AARM;6.0

17 21 December 1994 Lexical Elements 2

Section 2: Lexical Elements
1[The text of a program consists of the texts of one or more compilations. The text of a compilation is a

sequence of lexical elements, each composed of characters; the rules of composition are given in this
section. Pragmas, which provide certain information for the compiler, are also described in this section.]

2.1 Character Set
1{character set} The only characters allowed outside of comments are the graphic_characters and format_

effectors.
1.aRamification: Any character, including an other_control_function, is allowed in a comment.

1.bNote that this rule doesn’t really have much force, since the implementation can represent characters in the source in
any way it sees fit. For example, an implementation could simply define that what seems to be a non-graphic,
non-format-effector character is actually a representation of the space character.

1.cDiscussion: It is our intent to follow the terminology of ISO 10646 BMP where appropriate, and to remain compatible
with the character classifications defined in A.3, ‘‘Character Handling’’. Note that our definition for graphic_character
is more inclusive than that of ISO 10646-1.

Syntax

2character ::= graphic_character | format_effector | other_control_function

3graphic_character ::= identifier_letter | digit | space_character | special_character

Static Semantics

4The character repertoire for the text of an Ada program consists of the collection of characters called the
Basic Multilingual Plane (BMP) of the ISO 10646 Universal Multiple-Octet Coded Character Set, plus a
set of format_effectors and, in comments only, a set of other_control_functions; the coded representation
for these characters is implementation defined [(it need not be a representation defined within
ISO-10646-1)].

4.aImplementation defined: The coded representation for the text of an Ada program.

5The description of the language definition in this International Standard uses the graphic symbols defined
for Row 00: Basic Latin and Row 00: Latin-1 Supplement of the ISO 10646 BMP; these correspond to
the graphic symbols of ISO 8859-1 (Latin-1); no graphic symbols are used in this International Standard
for characters outside of Row 00 of the BMP. The actual set of graphic symbols used by an implemen-
tation for the visual representation of the text of an Ada program is not specified. {unspecified [partial]}

6The categories of characters are defined as follows:

{identifier_letter} identifier_letter 7

upper_case_identifier_letter | lower_case_identifier_letter

7.aDiscussion: We use identifier_letter instead of simply letter because ISO 10646 BMP includes many other characters
that would generally be considered "letters."

{upper_case_identifier_letter} upper_case_identifier_letter 8

Any character of Row 00 of ISO 10646 BMP whose name begins ‘‘Latin Capital
Letter’’.

{lower_case_identifier_letter} lower_case_identifier_letter 9

Any character of Row 00 of ISO 10646 BMP whose name begins ‘‘Latin Small Let-
ter’’.

ISO/IEC 8652:1995(E) —AARM;6.0

2.1 Character Set 21 December 1994 18

9.a To be honest: The above rules do not include the ligatures Æ and æ. However, the intent is to include these characters
as identifier letters. This problem was pointed out by a comment from the Netherlands.

{digit} digit One of the characters 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.10

{space_character} space_character11

The character of ISO 10646 BMP named ‘‘Space’’.

{special_character} special_character12

Any character of the ISO 10646 BMP that is not reserved for a control function, and
is not the space_character, an identifier_letter, or a digit.

12.a Ramification: Note that the no break space and soft hyphen are special_characters, and therefore graphic_characters.
They are not the same characters as space and hyphen-minus.

{format_effector} format_effector13

The control functions of ISO 6429 called character tabulation (HT), line tabulation
(VT), carriage return (CR), line feed (LF), and form feed (FF). {control character: see

also format_effector}

{other_control_function} other_control_function14

Any control function, other than a format_effector, that is allowed in a comment; the
set of other_control_functions allowed in comments is implementation defined.

14.a Implementation defined: The control functions allowed in comments.

{control character: see also other_control_function}

15 {names of special_characters} {special_character (names)} The following names are used when referring to certain
special_characters: {quotation mark} {number sign} {ampersand} {apostrophe} {tick} {left parenthesis} {right

parenthesis} {asterisk} {multiply} {plus sign} {comma} {hyphen-minus} {minus} {full stop} {dot} {point} {solidus} {divide}
{colon} {semicolon} {less-than sign} {equals sign} {greater-than sign} {low line} {underline} {vertical line} {left square

bracket} {right square bracket} {left curly bracket} {right curly bracket}

15.a Discussion: These are the ones that play a special role in the syntax of Ada 9X, or in the syntax rules; we don’t bother
to define names for all characters. The first name given is the name from ISO 10646-1; the subsequent names, if any,
are those used within the standard, depending on context.

symbol name

" quotation mark
number sign
& ampersand
’ apostrophe, tick
(left parenthesis
) right parenthesis
* asterisk, multiply
+ plus sign
, comma
– hyphen-minus, minus
. full stop, dot, point
/ solidus, divide

symbol name

: colon
; semicolon
< less-than sign
= equals sign
> greater-than sign
_ low line, underline
| vertical line
[left square bracket
] right square bracket
{ left curly bracket
} right curly bracket

Implementation Permissions

16 In a nonstandard mode, the implementation may support a different character repertoire[; in particular, the
set of characters that are considered identifier_letters can be extended or changed to conform to local
conventions].

16.a Ramification: If an implementation supports other character sets, it defines which characters fall into each category,
such as ‘‘identifier_letter,’’ and what the corresponding rules of this section are, such as which characters are allowed in
the text of a program.

ISO/IEC 8652:1995(E) —AARM;6.0

19 21 December 1994 Character Set 2.1

NOTES
171 Every code position of ISO 10646 BMP that is not reserved for a control function is defined to be a graphic_character

by this International Standard. This includes all code positions other than 0000 - 001F, 007F - 009F, and FFFE - FFFF.

182 The language does not specify the source representation of programs.

18.aDiscussion: Any source representation is valid so long as the implementer can produce an (information-preserving)
algorithm for translating both directions between the representation and the standard character set. (For example, every
character in the standard character set has to be representable, even if the output devices attached to a given computer
cannot print all of those characters properly.) From a practical point of view, every implementer will have to provide
some way to process the ACVC. It is the intent to allow source representations, such as parse trees, that are not even
linear sequences of characters. It is also the intent to allow different fonts: reserved words might be in bold face, and
that should be irrelevant to the semantics.

Extensions to Ada 83

18.b{extensions to Ada 83} Ada 9X allows 8-bit and 16-bit characters, as well as implementation-specified character sets.
Wording Changes From Ada 83

18.cThe syntax rules in this clause are modified to remove the emphasis on basic characters vs. others. (In this day and age,
there is no need to point out that you can write programs without using (for example) lower case letters.) In particular,
character (representing all characters usable outside comments) is added, and basic_graphic_character, other_special_
character, and basic_character are removed. Special_character is expanded to include Ada 83’s other_special_
character, as well as new 8-bit characters not present in Ada 83. Note that the term ‘‘basic letter’’ is used in A.3,
‘‘Character Handling’’ to refer to letters without diacritical marks.

18.dCharacter names now come from ISO 10646.

18.eWe use identifier_letter rather than letter since ISO 10646 BMP includes many "letters’ that are not permitted in
identifiers (in the standard mode).

2.2 Lexical Elements, Separators, and Delimiters
Static Semantics

1{text of a program} The text of a program consists of the texts of one or more compilations. {lexical element}
{token: see lexical element} The text of each compilation is a sequence of separate lexical elements. Each
lexical element is formed from a sequence of characters, and is either a delimiter, an identifier, a reserved
word, a numeric_literal, a character_literal, a string_literal, or a comment. The meaning of a program
depends only on the particular sequences of lexical elements that form its compilations, excluding
comments.

2The text of a compilation is divided into {line} lines. {end of a line} In general, the representation for an end
of line is implementation defined.

2.aImplementation defined: The representation for an end of line.

However, a sequence of one or more format_effectors other than character tabulation (HT) signifies at
least one end of line.

3{separator} [In some cases an explicit separator is required to separate adjacent lexical elements.] A
separator is any of a space character, a format effector, or the end of a line, as follows:

3.aDiscussion: It might be useful to define ‘‘white space’’ and use it here.

4• A space character is a separator except within a comment, a string_literal, or a character_
literal.

5• Character tabulation (HT) is a separator except within a comment.

6• The end of a line is always a separator.

ISO/IEC 8652:1995(E) —AARM;6.0

2.2 Lexical Elements, Separators, and Delimiters 21 December 1994 20

7 One or more separators are allowed between any two adjacent lexical elements, before the first of each
compilation, or after the last. At least one separator is required between an identifier, a reserved word, or a
numeric_literal and an adjacent identifier, reserved word, or numeric_literal.

8 {delimiter} A delimiter is either one of the following special characters

9 & ’ () * + , - . / : ; < = > |

10 {compound delimiter} or one of the following compound delimiters each composed of two adjacent special
characters

11 => .. ** := /= >= <= << >> <>

12 Each of the special characters listed for single character delimiters is a single delimiter except if this
character is used as a character of a compound delimiter, or as a character of a comment, string_literal,
character_literal, or numeric_literal.

13 The following names are used when referring to compound delimiters:

14 delimiter name

=> arrow
.. double dot
** double star, exponentiate
:= assignment (pronounced: ‘‘becomes’’)
/= inequality (pronounced: ‘‘not equal’’)
>= greater than or equal
<= less than or equal
<< left label bracket
>> right label bracket
<> box

Implementation Requirements

15 An implementation shall support lines of at least 200 characters in length, not counting any characters
used to signify the end of a line. An implementation shall support lexical elements of at least 200
characters in length. The maximum supported line length and lexical element length are implementation
defined.

15.a Implementation defined: Maximum supported line length and lexical element length.

15.b Discussion: From URG recommendation.

2.3 Identifiers
1 Identifiers are used as names.

Syntax

2 identifier ::=
identifier_letter {[underline] letter_or_digit}

3 letter_or_digit ::= identifier_letter | digit

4 An identifier shall not be a reserved word.

ISO/IEC 8652:1995(E) —AARM;6.0

21 21 December 1994 Identifiers 2.3

Static Semantics

5All characters of an identifier are significant, including any underline character. {case insensitive} Identifiers
differing only in the use of corresponding upper and lower case letters are considered the same.

5.aDiscussion: Two of the letters of ISO 8859-1 appear only as lower case, "sharp s" and "y with diaeresis." These two
letters have no corresponding upper case letter (in particular, they are not considered equivalent to one another).

Implementation Permissions

6In a nonstandard mode, an implementation may support other upper/lower case equivalence rules for
identifiers[, to accommodate local conventions].

Examples

7Examples of identifiers:

8Count X Get_Symbol Ethelyn Marion

Snobol_4 X1 Page_Count Store_Next_Item

Wording Changes From Ada 83

8.aWe no longer include reserved words as identifiers. This is not a language change. In Ada 83, identifier included
reserved words. However, this complicated several other rules (for example, regarding implementation-defined
attributes and pragmas, etc.). We now explicitly allow certain reserved words for attribute designators, to make up for
the loss.

8.bRamification: Because syntax rules are relevant to overload resolution, it means that if it looks like a reserved word, it
is not an identifier. As a side effect, implementations cannot use reserved words as implementation-defined attributes or
pragma names.

2.4 Numeric Literals
1{literal (numeric)} There are two kinds of numeric_literals, real literals and integer literals. {real literal} A

real literal is a numeric_literal that includes a point; {integer literal} an integer literal is a numeric_literal
without a point.

Syntax

2numeric_literal ::= decimal_literal | based_literal

NOTES
33 The type of an integer literal is universal_integer. The type of a real literal is universal_real.

2.4.1 Decimal Literals
1{literal (decimal)} A decimal_literal is a numeric_literal in the conventional decimal notation (that is, the base

is ten).

Syntax

2decimal_literal ::= numeral [.numeral] [exponent]

3numeral ::= digit {[underline] digit}

4exponent ::= E [+] numeral | E – numeral

5An exponent for an integer literal shall not have a minus sign.
5.aRamification: Although this rule is in this subclause, it applies also to the next subclause.

ISO/IEC 8652:1995(E) —AARM;6.0

2.4.1 Decimal Literals 21 December 1994 22

Static Semantics

6 An underline character in a numeric_literal does not affect its meaning. The letter E of an exponent can
be written either in lower case or in upper case, with the same meaning.

6.a Ramification: Although these rules are in this subclause, they apply also to the next subclause.

7 An exponent indicates the power of ten by which the value of the decimal_literal without the exponent is
to be multiplied to obtain the value of the decimal_literal with the exponent.

Examples

8 Examples of decimal literals:

9

12 0 1E6 123_456 -- integer literals

12.0 0.0 0.456 3.14159_26 -- real literals

Wording Changes From Ada 83

9.a We have changed the syntactic category name integer to be numeral. We got this idea from ACID. It avoids the
confusion between this and integers. (Other places don’t offer similar confusions. For example, a string_literal is
different from a string.)

2.4.2 Based Literals
1 [{literal (based)} {binary literal} {base 2 literal} {binary (literal)} {octal literal} {base 8 literal} {octal (literal)}

{hexadecimal literal} {base 16 literal} {hexadecimal (literal)} A based_literal is a numeric_literal expressed in a
form that specifies the base explicitly.]

Syntax

2 based_literal ::=
base # based_numeral [.based_numeral] # [exponent]

3 base ::= numeral

4 based_numeral ::=
extended_digit {[underline] extended_digit}

5 extended_digit ::= digit | A | B | C | D | E | F

Legality Rules

6 {base} The base (the numeric value of the decimal numeral preceding the first #) shall be at least two and
at most sixteen. The extended_digits A through F represent the digits ten through fifteen, respectively.
The value of each extended_digit of a based_literal shall be less than the base.

Static Semantics

7 The conventional meaning of based notation is assumed. An exponent indicates the power of the base by
which the value of the based_literal without the exponent is to be multiplied to obtain the value of the
based_literal with the exponent. The base and the exponent, if any, are in decimal notation.

8 The extended_digits A through F can be written either in lower case or in upper case, with the same
meaning.

Examples

9 Examples of based literals:

ISO/IEC 8652:1995(E) —AARM;6.0

23 21 December 1994 Based Literals 2.4.2

10

2#1111_1111# 16#FF# 016#0ff# -- integer literals of value 255
16#E#E1 2#1110_0000# -- integer literals of value 224
16#F.FF#E+2 2#1.1111_1111_1110#E11 -- real literals of value 4095.0

Wording Changes From Ada 83

10.aThe rule about which letters are allowed is now encoded in BNF, as suggested by Mike Woodger. This is clearly more
readable.

2.5 Character Literals
1[A character_literal is formed by enclosing a graphic character between two apostrophe characters.]

Syntax

2character_literal ::= ’graphic_character’

NOTES
34 A character_literal is an enumeration literal of a character type. See 3.5.2.

Examples

4Examples of character literals:

5’A’ ’*’ ’’’ ’ ’

Wording Changes From Ada 83

5.aThe definitions of the values of literals are in Sections 3 and 4, rather than here, since it requires knowledge of types.

2.6 String Literals
1[A string_literal is formed by a sequence of graphic characters (possibly none) enclosed between two

quotation marks used as string brackets. They are used to represent operator_symbols (see 6.1), values of
a string type (see 4.2), and array subaggregates (see 4.3.3). {quoted string: see string_literal}]

Syntax

2string_literal ::= "{string_element}"

3string_element ::= "" | non_quotation_mark_graphic_character

4A string_element is either a pair of quotation marks (""), or a single graphic_character other than a
quotation mark.

Static Semantics

5{sequence of characters (of a string_literal)} The sequence of characters of a string_literal is formed from the
sequence of string_elements between the bracketing quotation marks, in the given order, with a string_
element that is "" becoming a single quotation mark in the sequence of characters, and any other string_
element being reproduced in the sequence.

6{null string literal} A null string literal is a string_literal with no string_elements between the quotation
marks.

NOTES
75 An end of line cannot appear in a string_literal.

ISO/IEC 8652:1995(E) —AARM;6.0

2.6 String Literals 21 December 1994 24

Examples

8 Examples of string literals:

9

"Message of the day:"

"" -- a null string literal
" " "A" """" -- three string literals of length 1

"Characters such as $, %, and } are allowed in string literals"

Wording Changes From Ada 83

9.a The wording has been changed to be strictly lexical. No mention is made of string or character values, since string_
literals are also used to represent operator_symbols, which don’t have a defined value.

9.b The syntax is described differently.

2.7 Comments
1 A comment starts with two adjacent hyphens and extends up to the end of the line.

Syntax

2 comment ::= --{non_end_of_line_character}

3 A comment may appear on any line of a program.

Static Semantics

4 The presence or absence of comments has no influence on whether a program is legal or illegal. Further-
more, comments do not influence the meaning of a program; their sole purpose is the enlightenment of
the human reader.

Examples

5 Examples of comments:

6 -- the last sentence above echoes the Algol 68 report

end; -- processing of Line is complete

-- a long comment may be split onto
-- two or more consecutive lines

---------------- the first two hyphens start the comment

2.8 Pragmas
1 {Pragma} [glossary entry]A pragma is a compiler directive. There are language-defined pragmas that give

instructions for optimization, listing control, etc. An implementation may support additional
(implementation-defined) pragmas.

Syntax

2 pragma ::=
pragma identifier [(pragma_argument_association {, pragma_argument_association})];

ISO/IEC 8652:1995(E) —AARM;6.0

25 21 December 1994 Pragmas 2.8

3pragma_argument_association ::=
[pragma_argument_identifier =>] name

| [pragma_argument_identifier =>] expression

4In a pragma, any pragma_argument_associations without a pragma_argument_identifier shall
precede any associations with a pragma_argument_identifier.

5Pragmas are only allowed at the following places in a program:

6• After a semicolon delimiter, but not within a formal_part or discriminant_part.

7• At any place where the syntax rules allow a construct defined by a syntactic category
whose name ends with "declaration", "statement", "clause", or "alternative", or one of
the syntactic categories variant or exception_handler; but not in place of such a con-
struct. Also at any place where a compilation_unit would be allowed.

8Additional syntax rules and placement restrictions exist for specific pragmas.

8.aDiscussion: The above rule is written in text, rather than in BNF; the syntactic category pragma is not used in any
BNF syntax rule.

8.bRamification: A pragma is allowed where a generic_formal_parameter_declaration is allowed.

9{name (of a pragma)} {pragma name} The name of a pragma is the identifier following the reserved word
pragma. {pragma argument} {argument of a pragma} The name or expression of a pragma_argument_
association is a pragma argument.

10{identifier specific to a pragma} {pragma, identifier specific to} An identifier specific to a pragma is an identifier
that is used in a pragma argument with special meaning for that pragma.

10.aTo be honest: Whenever the syntax rules for a given pragma allow "identifier" as an argument of the pragma, that
identifier is an identifier specific to that pragma.

Static Semantics

11If an implementation does not recognize the name of a pragma, then it has no effect on the semantics of
the program. Inside such a pragma, the only rules that apply are the Syntax Rules.

11.aTo be honest: This rule takes precedence over any other rules that imply otherwise.

11.bRamification: Note well: this rule applies only to pragmas whose name is not recognized. If anything else is wrong
with a pragma (at compile time), the pragma is illegal. This is true whether the pragma is language defined or
implementation defined.

11.cFor example, an expression in an unrecognized pragma does not cause freezing, even though the rules in 13.14,
‘‘Freezing Rules’’ say it does; the above rule overrules those other rules. On the other hand, an expression in a
recognized pragma causes freezing, even if this makes something illegal.

11.dFor another example, an expression that would be ambiguous is not illegal if it is inside an unrecognized pragma.

11.eNote, however, that implementations have to recognize pragma Inline(Foo) and freeze things accordingly, even if they
choose to never do inlining.

11.fObviously, the contradiction needs to be resolved one way or the other. The reasons for resolving it this way are: The
implementation is simple — the compiler can just ignore the pragma altogether. The interpretation of constructs
appearing inside implementation-defined pragmas is implementation defined. For example: ‘‘pragma Mumble(X);’’.
If the current implementation has never heard of Mumble, then it doesn’t know whether X is a name, an expression, or
an identifier specific to the pragma Mumble.

11.gTo be honest: The syntax of individual pragmas overrides the general syntax for pragma.

11.hRamification: Thus, an identifier specific to a pragma is not a name, syntactically; if it were, the visibility rules would
be invoked, which is not what we want.

ISO/IEC 8652:1995(E) —AARM;6.0

2.8 Pragmas 21 December 1994 26

11.i This also implies that named associations do not allow one to give the arguments in an arbitrary order — the order
given in the syntax rule for each individual pragma must be obeyed. However, it is generally possible to leave out
earlier arguments when later ones are given; for example, this is allowed by the syntax rule for pragma Import (see B.1,
‘‘Interfacing Pragmas’’). As for subprogram calls, positional notation precedes named notation.

11.j Note that Ada 83 had no pragmas for which the order of named associations mattered, since there was never more than
one argument that allowed named associations.

11.k To be honest: The interpretation of the arguments of implementation-defined pragmas is implementation defined.
However, the syntax rules have to be obeyed.

Dynamic Semantics

12 {execution [pragma]} {elaboration [pragma]} Any pragma that appears at the place of an executable construct is
executed. Unless otherwise specified for a particular pragma, this execution consists of the evaluation of
each evaluable pragma argument in an arbitrary order.

12.a Ramification: For a pragma that appears at the place of an elaborable construct, execution is elaboration.

12.b An identifier specific to a pragma is neither a name nor an expression — such identifiers are not evaluated (unless an
implementation defines them to be evaluated in the case of an implementation-defined pragma).

12.c The ‘‘unless otherwise specified’’ part allows us (and implementations) to make exceptions, so a pragma can contain
an expression that is not evaluated. Note that pragmas in type_definitions may contain expressions that depend on
discriminants.

12.d When we wish to define a pragma with some run-time effect, we usually make sure that it appears in an executable
context; otherwise, special rules are needed to define the run-time effect and when it happens.

Implementation Requirements

13 The implementation shall give a warning message for an unrecognized pragma name.
13.a Ramification: An implementation is also allowed to have modes in which a warning message is suppressed, or in

which the presence of an unrecognized pragma is a compile-time error.

Implementation Permissions

14 An implementation may provide implementation-defined pragmas; the name of an implementation-
defined pragma shall differ from those of the language-defined pragmas.

14.a Implementation defined: Implementation-defined pragmas.

14.b Ramification: The semantics of implementation-defined pragmas, and any associated rules (such as restrictions on
their placement or arguments), are, of course, implementation defined. Implementation-defined pragmas may have
run-time effects.

15 An implementation may ignore an unrecognized pragma even if it violates some of the Syntax Rules, if
detecting the syntax error is too complex.

15.a Reason: Many compilers use extra post-parsing checks to enforce the syntax rules, since the Ada syntax rules are not
LR(k) (for any k). (The grammar is ambiguous, in fact.) This paragraph allows them to ignore an unrecognized
pragma, without having to perform such post-parsing checks.

Implementation Advice

16 Normally, implementation-defined pragmas should have no semantic effect for error-free programs; that
is, if the implementation-defined pragmas are removed from a working program, the program should still
be legal, and should still have the same semantics.

16.a Ramification: Note that ‘‘semantics’’ is not the same as ‘‘effect;’’ as explained in 1.1.3, the semantics defines a set of
possible effects.

16.b Note that adding a pragma to a program might cause an error (either at compile time or at run time). On the other hand,
if the language-specified semantics for a feature are in part implementation defined, it makes sense to support pragmas
that control the feature, and that have real semantics; thus, this paragraph is merely a recommendation.

ISO/IEC 8652:1995(E) —AARM;6.0

27 21 December 1994 Pragmas 2.8

17Normally, an implementation should not define pragmas that can make an illegal program legal, except as
follows:

18• A pragma used to complete a declaration, such as a pragma Import;

19• A pragma used to configure the environment by adding, removing, or replacing library_items.
19.aRamification: For example, it is OK to support Interface, System_Name, Storage_Unit, and Memory_Size pragmas

for upward compatibility reasons, even though all of these pragmas can make an illegal program legal. (The latter
three can affect legality in a rather subtle way: They affect the value of named numbers in System, and can therefore
affect the legality in cases where static expressions are required.)

19.bOn the other hand, adding implementation-defined pragmas to a legal program can make it illegal. For example, a
common kind of implementation-defined pragma is one that promises some property that allows more efficient code to
be generated. If the promise is a lie, it is best if the user gets an error message.

Incompatibilities With Ada 83

19.c{incompatibilities with Ada 83} In Ada 83, ‘‘bad’’ pragmas are ignored. In Ada 9X, they are illegal, except in the case
where the name of the pragma itself is not recognized by the implementation.

Extensions to Ada 83

19.d{extensions to Ada 83} Implementation-defined pragmas may affect the legality of a program.
Wording Changes From Ada 83

19.eImplementation-defined pragmas may affect the run-time semantics of the program. This was always true in Ada 83
(since it was not explicitly forbidden by RM83), but it was not clear, because there was no definition of ‘‘executing’’ or
‘‘elaborating’’ a pragma.

Syntax

20The forms of List, Page, and Optimize pragmas are as follows:

21pragma List(identifier);

22pragma Page;

23pragma Optimize(identifier);

24[Other pragmas are defined throughout this International Standard, and are summarized in Annex L.]
24.aRamification: The language-defined pragmas are supported by every implementation, although ‘‘supporting’’ some

of them (for example, Inline) requires nothing more than checking the arguments, since they act only as advice to the
implementation.

Static Semantics

25A pragma List takes one of the identifiers On or Off as the single argument. This pragma is allowed
anywhere a pragma is allowed. It specifies that listing of the compilation is to be continued or suspended
until a List pragma with the opposite argument is given within the same compilation. The pragma itself
is always listed if the compiler is producing a listing.

26A pragma Page is allowed anywhere a pragma is allowed. It specifies that the program text which
follows the pragma should start on a new page (if the compiler is currently producing a listing).

27A pragma Optimize takes one of the identifiers Time, Space, or Off as the single argument. This pragma
is allowed anywhere a pragma is allowed, and it applies until the end of the immediately enclosing
declarative region, or for a pragma at the place of a compilation_unit, to the end of the compilation. It
gives advice to the implementation as to whether time or space is the primary optimization criterion, or
that optional optimizations should be turned off. [It is implementation defined how this advice is
followed.]

27.aImplementation defined: Effect of pragma Optimize.

27.bDiscussion: For example, a compiler might use Time vs. Space to control whether generic instantiations are
implemented with a macro-expansion model, versus a shared-generic-body model.

ISO/IEC 8652:1995(E) —AARM;6.0

2.8 Pragmas 21 December 1994 28

27.c We don’t define what constitutes an ‘‘optimization’’ — in fact, it cannot be formally defined in the context of Ada.
One compiler might call something an optional optimization, whereas another compiler might consider that same thing
to be a normal part of code generation. Thus, the programmer cannot rely on this pragma having any particular
portable effect on the generated code. Some compilers might even ignore the pragma altogether.

Examples

28 Examples of pragmas:
29 pragma List(Off); -- turn off listing generation

pragma Optimize(Off); -- turn off optional optimizations
pragma Inline(Set_Mask); -- generate code for Set_Mask inline
pragma Suppress(Range_Check, On => Index); -- turn off range checking on Index

Extensions to Ada 83

29.a {extensions to Ada 83} The Optimize pragma now allows the identifier Off to request that normal optimization be
turned off.

29.b An Optimize pragma may appear anywhere pragmas are allowed.
Wording Changes From Ada 83

29.c We now describe the pragmas Page, List, and Optimize here, to act as examples, and to remove the normative material
from Annex L, ‘‘Language-Defined Pragmas’’, so it can be entirely an informative annex.

ISO/IEC 8652:1995(E) —AARM;6.0

29 21 December 1994 Pragmas 2.8

2.9 Reserved Words
Syntax

1

2{reserved word} The following are the reserved words (ignoring upper/lower case distinctions):

2.aDiscussion: Reserved words have special meaning in the syntax. In addition, certain reserved words are used as
attribute names.

2.bThe syntactic category identifier no longer allows reserved words. We have added the few reserved words that are legal
explicitly to the syntax for attribute_reference. Allowing identifier to include reserved words has been a source of
confusion for some users, and differs from the way they are treated in the C and Pascal language definitions.

abort
abs
abstract
accept
access
aliased
all
and
array
at

begin
body

case
constant

declare
delay
delta
digits
do

else
elsif
end
entry
exception
exit

for
function

generic
goto

if
in
is

limited
loop

mod

new
not
null

of
or
others
out

package
pragma
private
procedure
protected

raise
range
record
rem
renames
requeue

return
reverse

select
separate
subtype

tagged
task
terminate
then
type

until
use

when
while
with

xor

NOTES
36 The reserved words appear in lower case boldface in this International Standard, except when used in the designator of

an attribute (see 4.1.4). Lower case boldface is also used for a reserved word in a string_literal used as an operator_symbol.
This is merely a convention — programs may be written in whatever typeface is desired and available.

Incompatibilities With Ada 83

3.a{incompatibilities with Ada 83} The following words are not reserved in Ada 83, but are reserved in Ada 9X: abstract,
aliased, protected, requeue, tagged, until.

Wording Changes From Ada 83

3.bThe clause entitled ‘‘Allowed Replacements of Characters’’ has been moved to Annex J, ‘‘Obsolescent Features’’.

ISO/IEC 8652:1995(E) —AARM;6.0

3 Declarations and Types 21 December 1994 30

ISO/IEC 8652:1995(E) —AARM;6.0

31 21 December 1994 Declarations and Types 3

Section 3: Declarations and Types
1This section describes the types in the language and the rules for declaring constants, variables, and

named numbers.

3.1 Declarations
1{entity [partial]} The language defines several kinds of named entities that are declared by declarations.

{name [partial]} The entity’s name is defined by the declaration, usually by a defining_identifier, but some-
times by a defining_character_literal or defining_operator_symbol.

2There are several forms of declaration. A basic_declaration is a form of declaration defined as follows.

Syntax

3basic_declaration ::=
type_declaration | subtype_declaration

| object_declaration | number_declaration
| subprogram_declaration | abstract_subprogram_declaration
| package_declaration | renaming_declaration
| exception_declaration | generic_declaration
| generic_instantiation

4defining_identifier ::= identifier

Static Semantics

5{Declaration} [glossary entry]A declaration is a language construct that associates a name with (a view of)
an entity. {explicit declaration} {implicit declaration} A declaration may appear explicitly in the program text
(an explicit declaration), or may be supposed to occur at a given place in the text as a consequence of the
semantics of another construct (an implicit declaration).

5.aDiscussion: An implicit declaration generally declares a predefined or inherited operation associated with the
definition of a type. This term is used primarily when allowing explicit declarations to override implicit declarations,
as part of a type declaration.

6{declaration} Each of the following is defined to be a declaration: any basic_declaration; an enumeration_
literal_specification; a discriminant_specification; a component_declaration; a loop_parameter_
specification; a parameter_specification; a subprogram_body; an entry_declaration; an entry_index_
specification; a choice_parameter_specification; a generic_formal_parameter_declaration.

6.aDiscussion: This list (when basic_declaration is expanded out) contains all syntactic categories that end in
"_declaration" or "_specification", except for program unit _specifications. Moreover, it contains subprogram_body. A
subprogram_body is a declaration, whether or not it completes a previous declaration. This is a bit strange,
subprogram_body is not part of the syntax of basic_declaration or library_unit_declaration. A renaming-as-body is
considered a declaration. An accept_statement is not considered a declaration. Completions are sometimes declara-
tions, and sometimes not.

7{Definition} [glossary entry]{view} All declarations contain a definition for a view of an entity. A view
consists of an identification of the entity (the entity of the view), plus view-specific characteristics that
affect the use of the entity through that view (such as mode of access to an object, formal parameter
names and defaults for a subprogram, or visibility to components of a type). In most cases, a declaration
also contains the definition for the entity itself (a renaming_declaration is an example of a declaration that
does not define a new entity, but instead defines a view of an existing entity (see 8.5)).

7.aGlossary entry: {View} (See Definition.)

ISO/IEC 8652:1995(E) —AARM;6.0

3.1 Declarations 21 December 1994 32

7.b Discussion: Most declarations define a view (of some entity) whose view-specific characteristics are unchanging for
the life of the view. However, subtypes are somewhat unusual in that they inherit characteristics from whatever view
of their type is currently visible. Hence, a subtype is not a view of a type; it is more of an indirect reference. By
contrast, a private type provides a single, unchanging (partial) view of its full type.

8 {scope [informal definition]} For each declaration, the language rules define a certain region of text called the
scope of the declaration (see 8.2). Most declarations associate an identifier with a declared entity. Within
its scope, and only there, there are places where it is possible to use the identifier to refer to the decla-
ration, the view it defines, and the associated entity; these places are defined by the visibility rules (see
8.3). {name (of (a view of) an entity)} At such places the identifier is said to be a name of the entity (the direct_
name or selector_name); {denote [informal definition]} the name is said to denote the declaration, the view,
and the associated entity (see 8.6). {declare} The declaration is said to declare the name, the view, and in
most cases, the entity itself.

9 As an alternative to an identifier, an enumeration literal can be declared with a character_literal as its
name (see 3.5.1), and a function can be declared with an operator_symbol as its name (see 6.1).

10 {defining name} The syntax rules use the terms defining_identifier, defining_character_literal, and defining_
operator_symbol for the defining occurrence of a name; these are collectively called defining names.
{usage name} The terms direct_name and selector_name are used for usage occurrences of identifiers,
character_literals, and operator_symbols. These are collectively called usage names.

10.a To be honest: The terms identifier, character_literal, and operator_symbol are used directly in contexts where the
normal visibility rules do not apply (such as the identifier that appears after the end of a task_body). Analogous
conventions apply to the use of designator, which is the collective term for identifier and operator_symbol.

Dynamic Semantics

11 {execution [distributed]} The process by which a construct achieves its run-time effect is called execution.
{elaboration [distributed]} {evaluation [distributed]} This process is also called elaboration for declarations and
evaluation for expressions. One of the terms execution, elaboration, or evaluation is defined by this
International Standard for each construct that has a run-time effect.

11.a Glossary entry: {Execution} The process by which a construct achieves its run-time effect is called execution.
{elaboration} {evaluation} Execution of a declaration is also called elaboration. Execution of an expression is also
called evaluation.

11.b To be honest: The term elaboration is also used for the execution of certain constructs that are not declarations, and
the term evaluation is used for the execution of certain constructs that are not expressions. For example, subtype_
indications are elaborated, and ranges are evaluated.

11.c For bodies, execution and elaboration are both explicitly defined. When we refer specifically to the execution of a
body, we mean the explicit definition of execution for that kind of body, not its elaboration.

11.d Discussion: Technically, "the execution of a declaration" and "the elaboration of a declaration" are synonymous. We
use the term "elaboration" of a construct when we know the construct is elaborable. When we are talking about more
arbitrary constructs, we use the term "execution". For example, we use the term "erroneous execution", to refer to any
erroneous execution, including erroneous elaboration or evaluation.

11.e When we explicitly define evaluation or elaboration for a construct, we are implicitly defining execution of that
construct.

11.f We also use the term "execution" for things like statements, which are executable, but neither elaborable nor evaluable.
We considered using the term "execution" only for non-elaborable, non-evaluable constructs, and defining the term
"action" to mean what we have defined "execution" to mean. We rejected this idea because we thought three terms that
mean the same thing was enough — four would be overkill. Thus, the term "action" is used only informally in the
standard (except where it is defined as part of a larger term, such as "protected action").

11.g To be honest: {elaborable} A construct is elaborable if elaboration is defined for it. {evaluable} A construct is
evaluable if evaluation is defined for it. {executable} A construct is executable if execution is defined for it.

ISO/IEC 8652:1995(E) —AARM;6.0

33 21 December 1994 Declarations 3.1

11.hDiscussion: Don’t confuse ‘‘elaborable’’ with ‘‘preelaborable’’ (defined in 10.2.1).

11.iEvaluation of an evaluable construct produces a result that is either a value, a denotation, or a range. The following are
evaluable: expression; name prefix; range; entry_list_iterator; and possibly discrete_range. The last one is curious —
RM83 uses the term ‘‘evaluation of a discrete_range,’’ but never defines it. One might presume that the evaluation of
a discrete_range consists of the evaluation of the range or the subtype_indication, depending on what it is. But
subtype_indications are not evaluated; they are elaborated.

11.jIntuitively, an executable construct is one that has a defined run-time effect (which may be null). Since execution
includes elaboration and evaluation as special cases, all elaborable and all evaluable constructs are also executable.
Hence, most constructs in Ada are executable. An important exception is that the constructs inside a generic unit are
not executable directly, but rather are used as a template for (generally) executable constructs in instances of the
generic.

NOTES
121 {declare} At compile time, the declaration of an entity declares the entity. {create} At run time, the elaboration of the

declaration creates the entity.

12.aRamification: Syntactic categories for declarations are named either entity_declaration (if they include a trailing
semicolon) or entity_specification (if not).

12.b{entity} The various kinds of named entities that can be declared are as follows: an object (including components and
parameters), a named number, a type (the name always refers to its first subtype), a subtype, a subprogram (including
enumeration literals and operators), a single entry, an entry family, a package, a protected or task unit (which
corresponds to either a type or a single object), an exception, a generic unit, a label, and the name of a statement.

12.cIdentifiers are also associated with names of pragmas, arguments to pragmas, and with attributes, but these are not
user-definable.

Wording Changes From Ada 83

12.dThe syntax rule for defining_identifier is new. It is used for the defining occurrence of an identifier. Usage occurrences
use the direct_name or selector_name syntactic categories. Each occurrence of an identifier (or simple_name),
character_literal, or operator_symbol in the Ada 83 syntax rules is handled as follows in Ada 9X:

12.e• It becomes a defining_identifier, defining_character_literal, or defining_operator_symbol (or some syntactic
category composed of these), to indicate a defining occurrence;

12.f• It becomes a direct_name, in usage occurrences where the usage is required (in Section 8) to be directly
visible;

12.g• It becomes a selector_name, in usage occurrences where the usage is required (in Section 8) to be visible
but not necessarily directly visible;

12.h• It remains an identifier, character_literal, or operator_symbol, in cases where the visibility rules do not apply
(such as the designator that appears after the end of a subprogram_body).

12.iFor declarations that come in ‘‘two parts’’ (program unit declaration plus body, private or incomplete type plus full
type, deferred constant plus full constant), we consider both to be defining occurrences. Thus, for example, the syntax
for package_body uses defining_identifier after the reserved word body, as opposed to direct_name.

12.jThe defining occurrence of a statement name is in its implicit declaration, not where it appears in the program text.
Considering the statement name itself to be the defining occurrence would complicate the visibility rules.

12.kThe phrase ‘‘visible by selection’’ is not used in Ada 9X. It is subsumed by simply ‘‘visible’’ and the Name
Resolution Rules for selector_names.

12.l(Note that in Ada 9X, a declaration is visible at all places where one could have used a selector_name, not just at places
where a selector_name was actually used. Thus, the places where a declaration is directly visible are a subset of the
places where it is visible. See Section 8 for details.)

12.mWe use the term ‘‘declaration’’ to cover _specifications that declare (views of) objects, such as parameter_
specifications. In Ada 83, these are referred to as a ‘‘form of declaration,’’ but it is not entirely clear that they are
considered simply ‘‘declarations.’’

12.nRM83 contains an incomplete definition of "elaborated" in this clause: it defines "elaborated" for declarations,
declarative_parts, declarative_items and compilation_units, but "elaboration" is defined elsewhere for various other
constructs. To make matters worse, Ada 9X has a different set of elaborable constructs. Instead of correcting the list, it
is more maintainable to refer to the term "elaborable," which is defined in a distributed manner.

ISO/IEC 8652:1995(E) —AARM;6.0

3.1 Declarations 21 December 1994 34

12.o RM83 uses the term ‘‘has no other effect’’ to describe an elaboration that doesn’t do anything except change the state
from not-yet-elaborated to elaborated. This was a confusing wording, because the answer to ‘‘other than what?’’ was
to be found many pages away. In Ada 9X, we change this wording to ‘‘has no effect’’ (for things that truly do nothing
at run time), and ‘‘has no effect other than to establish that so-and-so can happen without failing the Elaboration_
Check’’ (for things where it matters).

12.p We make it clearer that the term "execution" covers elaboration and evaluation as special cases. This was implied in
RM83. For example, "erroneous execution" can include any execution, and RM83-9.4(3) has, "The task designated by
any other task object depends on the master whose execution creates the task object;" the elaboration of the master’s
declarative_part is doing the task creation.

3.2 Types and Subtypes
Static Semantics

1 {type} {primitive operation [partial]} A type is characterized by a set of values, and a set of primitive operations
which implement the fundamental aspects of its semantics. {object [partial]} An object of a given type is a
run-time entity that contains (has) a value of the type.

1.a Glossary entry: {Type} Each object has a type. A type has an associated set of values, and a set of primitive
operations which implement the fundamental aspects of its semantics. Types are grouped into classes. The types of a
given class share a set of primitive operations. {closed under derivation} Classes are closed under derivation; that is,
if a type is in a class, then all of its derivatives are in that class.

1.b Glossary entry: {Subtype} A subtype is a type together with a constraint, which constrains the values of the subtype
to satisfy a certain condition. The values of a subtype are a subset of the values of its type.

2 {class (of types)} Types are grouped into classes of types, reflecting the similarity of their values and
primitive operations. {language-defined class (of types)} There exist several language-defined classes of types
(see NOTES below). {elementary type} Elementary types are those whose values are logically indivisible;
{composite type} {component} composite types are those whose values are composed of component values.
{aggregate: see also composite type}

2.a Glossary entry: {Class} {closed under derivation} A class is a set of types that is closed under derivation, which
means that if a given type is in the class, then all types derived from that type are also in the class. The set of types of a
class share common properties, such as their primitive operations.

2.b Glossary entry: {Elementary type} An elementary type does not have components.

2.c Glossary entry: {Composite type} A composite type has components.

2.d Glossary entry: {Scalar type} A scalar type is either a discrete type or a real type.

2.e Glossary entry: {Access type} An access type has values that designate aliased objects. Access types correspond to
‘‘pointer types’’ or ‘‘reference types’’ in some other languages.

2.f Glossary entry: {Discrete type} A discrete type is either an integer type or an enumeration type. Discrete types may
be used, for example, in case_statements and as array indices.

2.g Glossary entry: {Real type} A real type has values that are approximations of the real numbers. Floating point and
fixed point types are real types.

2.h Glossary entry: {Integer type} Integer types comprise the signed integer types and the modular types. A signed
integer type has a base range that includes both positive and negative numbers, and has operations that may raise an
exception when the result is outside the base range. A modular type has a base range whose lower bound is zero, and
has operations with ‘‘wraparound’’ semantics. Modular types subsume what are called ‘‘unsigned types’’ in some
other languages.

2.i Glossary entry: {Enumeration type} An enumeration type is defined by an enumeration of its values, which may be
named by identifiers or character literals.

2.j Glossary entry: {Character type} A character type is an enumeration type whose values include characters.

2.k Glossary entry: {Record type} A record type is a composite type consisting of zero or more named components,
possibly of different types.

ISO/IEC 8652:1995(E) —AARM;6.0

35 21 December 1994 Types and Subtypes 3.2

2.lGlossary entry: {Record extension} A record extension is a type that extends another type by adding additional
components.

2.mGlossary entry: {Array type} An array type is a composite type whose components are all of the same type.
Components are selected by indexing.

2.nGlossary entry: {Task type} A task type is a composite type whose values are tasks, which are active entities that may
execute concurrently with other tasks. The top-level task of a partition is called the environment task.

2.oGlossary entry: {Protected type} A protected type is a composite type whose components are protected from
concurrent access by multiple tasks.

2.pGlossary entry: {Private type} A private type is a partial view of a type whose full view is hidden from its clients.

2.qGlossary entry: {Private extension} A private extension is like a record extension, except that the components of the
extension part are hidden from its clients.

3{scalar type} The elementary types are the scalar types (discrete and real) and the access types (whose
values provide access to objects or subprograms). {discrete type} {enumeration type} Discrete types are either
integer types or are defined by enumeration of their values (enumeration types). {real type} Real types are
either floating point types or fixed point types.

4The composite types are the record types, record extensions, array types, task types, and protected types.
{private type} {private extension} A private type or private extension represents a partial view (see 7.3) of a
type, providing support for data abstraction. A partial view is a composite type.

4.aTo be honest: The set of all record types do not form a class (because tagged record types can have private
extensions), though the set of untagged record types do. In any case, what record types had in common in Ada 83
(component selection) is now a property of the composite class, since all composite types (other than array types) can
have discriminants. Similarly, the set of all private types do not form a class (because tagged private types can have
record extensions), though the set of untagged private types do. Nevertheless, the set of untagged private types is not
particularly ‘‘interesting’’ — more interesting is the set of all nonlimited types, since that is what a generic formal
(nonlimited) private type matches.

5{discriminant} Certain composite types (and partial views thereof) have special components called
discriminants whose values affect the presence, constraints, or initialization of other components. Dis-
criminants can be thought of as parameters of the type.

6{subcomponent} The term subcomponent is used in this International Standard in place of the term com-
ponent to indicate either a component, or a component of another subcomponent. Where other subcom-
ponents are excluded, the term component is used instead. {part (of an object or value)} Similarly, a part of an
object or value is used to mean the whole object or value, or any set of its subcomponents.

6.aDiscussion: The definition of ‘‘part’’ here is designed to simplify rules elsewhere. By design, the intuitive meaning of
‘‘part’’ will convey the correct result to the casual reader, while this formalistic definition will answer the concern of
the compiler-writer.

6.bWe use the term ‘‘part’’ when talking about the parent part, ancestor part, or extension part of a type extension. In
contexts such as these, the part might represent an empty set of subcomponents (e.g. in a null record extension, or a
nonnull extension of a null record). We also use ‘‘part’’ when specifying rules such as those that apply to an object
with a ‘‘controlled part’’ meaning that it applies if the object as a whole is controlled, or any subcomponent is.

7{constraint [partial]} The set of possible values for an object of a given type can be subjected to a condition
that is called a constraint {null constraint} (the case of a null constraint that specifies no restriction is also
included)[; the rules for which values satisfy a given kind of constraint are given in 3.5 for range_
constraints, 3.6.1 for index_constraints, and 3.7.1 for discriminant_constraints].

8{subtype} A subtype of a given type is a combination of the type, a constraint on values of the type, and
certain attributes specific to the subtype. The given type is called the type of the subtype. Similarly, the

ISO/IEC 8652:1995(E) —AARM;6.0

3.2 Types and Subtypes 21 December 1994 36

associated constraint is called the constraint of the subtype. The set of values of a subtype consists of the
values of its type that satisfy its constraint. {belong (to a subtype)} Such values belong to the subtype.

8.a Discussion: We make a strong distinction between a type and its subtypes. In particular, a type is not a subtype of
itself. There is no constraint associated with a type (not even a null one), and type-related attributes are distinct from
subtype-specific attributes.

8.b Discussion: We no longer use the term "base type." All types were "base types" anyway in Ada 83, so the term was
redundant, and occasionally confusing. In the RM9X we say simply "the type of the subtype" instead of "the base type
of the subtype."

8.c Ramification: The value subset for a subtype might be empty, and need not be a proper subset.

8.d To be honest: Any name of a class of types (such as ‘‘discrete’’ or ‘‘real’’), or other category of types (such as
‘‘limited’’ or ‘‘incomplete’’) is also used to qualify its subtypes, as well as its objects, values, declarations, and
definitions, such as an ‘‘integer type declaration’’ or an ‘‘integer value.’’ In addition, if a term such as ‘‘parent
subtype’’ or ‘‘index subtype’’ is defined, then the corresponding term for the type of the subtype is ‘‘parent type’’ or
‘‘index type.’’

8.e Discussion: We use these corresponding terms without explicitly defining them, when the meaning is obvious.

9 {constrained} {unconstrained} {constrained (subtype)} {unconstrained (subtype)} A subtype is called an unconstrained
subtype if its type has unknown discriminants, or if its type allows range, index, or discriminant con-
straints, but the subtype does not impose such a constraint; otherwise, the subtype is called a constrained
subtype (since it has no unconstrained characteristics).

9.a Discussion: In an earlier version of Ada 9X, "constrained" meant "has a non-null constraint." However, we changed
to this definition since we kept having to special case composite non-array/non-discriminated types. It also cor-
responds better to the (now obsolescent) attribute ’Constrained.

9.b For scalar types, ‘‘constrained’’ means ‘‘has a non-null constraint’’. For composite types, in implementation terms,
‘‘constrained’’ means that the size of all objects of the subtype is the same, assuming a typical implementation model.

9.c Class-wide subtypes are always unconstrained.

NOTES
10 2 Any set of types that is closed under derivation (see 3.4) can be called a ‘‘class’’ of types. However, only certain

classes are used in the description of the rules of the language — generally those that have their own particular set of
primitive operations (see 3.2.3), or that correspond to a set of types that are matched by a given kind of generic formal type
(see 12.5). {language-defined class [partial]} The following are examples of ‘‘interesting’’ language-defined classes:
elementary, scalar, discrete, enumeration, character, boolean, integer, signed integer, modular, real, floating point, fixed
point, ordinary fixed point, decimal fixed point, numeric, access, access-to-object, access-to-subprogram, composite, array,
string, (untagged) record, tagged, task, protected, nonlimited. Special syntax is provided to define types in each of these
classes.

10.a Discussion: {value} A value is a run-time entity with a given type which can be assigned to an object of an
appropriate subtype of the type. {operation} An operation is a program entity that operates on zero or more operands
to produce an effect, or yield a result, or both.

10.b Ramification: Note that a type’s class depends on the place of the reference — a private type is composite outside and
possibly elementary inside. It’s really the view that is elementary or composite. Note that although private types are
composite, there are some properties that depend on the corresponding full view — for example, parameter passing
modes, and the constraint checks that apply in various places.

10.c Not every property of types represents a class. For example, the set of all abstract types does not form a class, because
this set is not closed under derivation.

10.d The set of limited types forms a class in the sense that it is closed under derivation, but the more interesting class, from
the point of generic formal type matching, is the set of all types, limited and nonlimited, since that is what matches a
generic formal ‘‘limited’’ private type. Note also that a limited type can ‘‘become nonlimited’’ under certain
circumstances, which makes ‘‘limited’’ somewhat problematic as a class of types.

11 These language-defined classes are organized like this:

ISO/IEC 8652:1995(E) —AARM;6.0

37 21 December 1994 Types and Subtypes 3.2

12

all types
elementary

scalar
discrete

enumeration
character
boolean
other enumeration

integer
signed integer
modular integer

real
floating point
fixed point

ordinary fixed point
decimal fixed point

access
access-to-object
access-to-subprogram

composite
array

string
other array

untagged record
tagged
task
protected

13The classes ‘‘numeric’’ and ‘‘nonlimited’’ represent other classification dimensions and do not fit into the above strictly
hierarchical picture.

Wording Changes From Ada 83

13.aThis clause and its subclauses now precede the clause and subclauses on objects and named numbers, to cut down on
the number of forward references.

13.bWe have dropped the term "base type" in favor of simply "type" (all types in Ada 83 were "base types" so it wasn’t
clear when it was appropriate/necessary to say "base type"). Given a subtype S of a type T, we call T the "type of the
subtype S."

3.2.1 Type Declarations
1A type_declaration declares a type and its first subtype.

Syntax

2type_declaration ::= full_type_declaration
| incomplete_type_declaration
| private_type_declaration
| private_extension_declaration

3full_type_declaration ::=
type defining_identifier [known_discriminant_part] is type_definition;

| task_type_declaration
| protected_type_declaration

4type_definition ::=
enumeration_type_definition | integer_type_definition

| real_type_definition | array_type_definition
| record_type_definition | access_type_definition
| derived_type_definition

ISO/IEC 8652:1995(E) —AARM;6.0

3.2.1 Type Declarations 21 December 1994 38

Legality Rules

5 A given type shall not have a subcomponent whose type is the given type itself.

Static Semantics

6 {first subtype} The defining_identifier of a type_declaration denotes the first subtype of the type. The
known_discriminant_part, if any, defines the discriminants of the type (see 3.7, ‘‘Discriminants’’). The
remainder of the type_declaration defines the remaining characteristics of (the view of) the type.

7 {named type} A type defined by a type_declaration is a named type; such a type has one or more nameable
subtypes. {anonymous type} Certain other forms of declaration also include type definitions as part of the
declaration for an object (including a parameter or a discriminant). The type defined by such a decla-
ration is anonymous — it has no nameable subtypes. {italics (pseudo-names of anonymous types)} For ex-
planatory purposes, this International Standard sometimes refers to an anonymous type by a pseudo-
name, written in italics, and uses such pseudo-names at places where the syntax normally requires an
identifier. For a named type whose first subtype is T, this International Standard sometimes refers to the
type of T as simply ‘‘the type T.’’

7.a Ramification: The only user-defined types that can be anonymous in the above sense are array, access, task, and
protected types. An anonymous array, task, or protected type can be defined as part of an object_declaration. An
anonymous access type can be defined as part of a parameter or discriminant specification.

8 {full type} A named type that is declared by a full_type_declaration, or an anonymous type that is defined as
part of declaring an object of the type, is called a full type. {full type definition} The type_definition, task_
definition, protected_definition, or access_definition that defines a full type is called a full type definition.
[Types declared by other forms of type_declaration are not separate types; they are partial or incomplete
views of some full type.]

8.a To be honest: Class-wide, universal, and root numeric types are full types.

9 {predefined operator [partial]} The definition of a type implicitly declares certain predefined operators that
operate on the type, according to what classes the type belongs, as specified in 4.5, ‘‘Operators and
Expression Evaluation’’.

9.a Discussion: We no longer talk about the implicit declaration of basic operations. These are treated like an if_statement
— they don’t need to be declared, but are still applicable to only certain classes of types.

10 {predefined type} The predefined types [(for example the types Boolean, Wide_Character, Integer, root_
integer, and universal_integer)] are the types that are defined in [a predefined library package called]
Standard[; this package also includes the [(implicit)] declarations of their predefined operators]. [The
package Standard is described in A.1.]

10.a Ramification: We use the term ‘‘predefined’’ to refer to entities declared in the visible part of Standard, to implicitly
declared operators of a type whose semantics are defined by the language, to Standard itself, and to the ‘‘predefined
environment’’. We do not use this term to refer to library packages other than Standard. For example Text_IO is a
language-defined package, not a predefined package, and Text_IO.Put_Line is not a predefined operation.

Dynamic Semantics

11 {elaboration [full_type_declaration]} The elaboration of a full_type_declaration consists of the elaboration of the
full type definition. {elaboration [full type definition]} Each elaboration of a full type definition creates a
distinct type and its first subtype.

11.a Reason: The creation is associated with the type definition, rather than the type declaration, because there are types
that are created by full type definitions that are not immediately contained within a type declaration (e.g. an array
object declaration, a singleton task declaration, etc.).

11.b Ramification: Any implicit declarations that occur immediately following the full type definition are elaborated where
they (implicitly) occur.

ISO/IEC 8652:1995(E) —AARM;6.0

39 21 December 1994 Type Declarations 3.2.1

Examples

12Examples of type definitions:
13(White, Red, Yellow, Green, Blue, Brown, Black)

range 1 .. 72
array(1 .. 10) of Integer

14Examples of type declarations:
15type Color is (White, Red, Yellow, Green, Blue, Brown, Black);

type Column is range 1 .. 72;
type Table is array(1 .. 10) of Integer;

NOTES
163 Each of the above examples declares a named type. The identifier given denotes the first subtype of the type. Other

named subtypes of the type can be declared with subtype_declarations (see 3.2.2). Although names do not directly denote
types, a phrase like ‘‘the type Column’’ is sometimes used in this International Standard to refer to the type of Column,
where Column denotes the first subtype of the type. For an example of the definition of an anonymous type, see the
declaration of the array Color_Table in 3.3.1; its type is anonymous — it has no nameable subtypes.

Wording Changes From Ada 83

16.aThe syntactic category full_type_declaration now includes task and protected type declarations.

16.bWe have generalized the concept of first-named subtype (now called simply ‘‘first subtype’’) to cover all kinds of
types, for uniformity of description elsewhere. RM83 defined first-named subtype in Section 13. We define first
subtype here, because it is now a more fundamental concept. We renamed the term, because in Ada 9X some first
subtypes have no name.

16.cWe no longer elaborate discriminant_parts, because there is nothing to do, and it was complex to say that you only
wanted to elaborate it once for a private or incomplete type. This is also consistent with the fact that subprogram
specifications are not elaborated (neither in Ada 83 nor in Ada 9X). Note, however, that an access_definition appearing
in a discriminant_part is elaborated when an object with such a discriminant is created.

3.2.2 Subtype Declarations
1A subtype_declaration declares a subtype of some previously declared type, as defined by a subtype_

indication.

Syntax

2subtype_declaration ::=
subtype defining_identifier is subtype_indication;

3subtype_indication ::= subtype_mark [constraint]

4subtype_mark ::= subtype_name

4.aRamification: Note that name includes attribute_reference; thus, S’Base can be used as a subtype_mark.

4.bReason: We considered changing subtype_mark to subtype_name. However, existing users are used to the word
"mark," so we’re keeping it.

5constraint ::= scalar_constraint | composite_constraint

6scalar_constraint ::=
range_constraint | digits_constraint | delta_constraint

7composite_constraint ::=
index_constraint | discriminant_constraint

Name Resolution Rules

8A subtype_mark shall resolve to denote a subtype. {determines (a type by a subtype_mark)} The type
determined by a subtype_mark is the type of the subtype denoted by the subtype_mark.

ISO/IEC 8652:1995(E) —AARM;6.0

3.2.2 Subtype Declarations 21 December 1994 40

8.a Ramification: Types are never directly named; all subtype_marks denote subtypes — possibly an unconstrained
(base) subtype, but never the type. When we use the term anonymous type we really mean a type with no namable
subtypes.

Dynamic Semantics

9 {elaboration [subtype_declaration]} The elaboration of a subtype_declaration consists of the elaboration of the
subtype_indication. {elaboration [subtype_indication]} The elaboration of a subtype_indication creates a new
subtype. If the subtype_indication does not include a constraint, the new subtype has the same (possibly
null) constraint as that denoted by the subtype_mark. The elaboration of a subtype_indication that in-
cludes a constraint proceeds as follows:

10 • The constraint is first elaborated.

11 • {Range_Check [partial]} {check, language-defined (Range_Check)} A check is then made that the
constraint is compatible with the subtype denoted by the subtype_mark.

11.a Ramification: The checks associated with constraint compatibility are all Range_Checks. Discriminant_
Checks and Index_Checks are associated only with checks that a value satisfies a constraint.

12 The condition imposed by a constraint is the condition obtained after elaboration of the constraint.
{compatibility (constraint with a subtype) [distributed]} The rules defining compatibility are given for each form of
constraint in the appropriate subclause. These rules are such that if a constraint is compatible with a
subtype, then the condition imposed by the constraint cannot contradict any condition already imposed by
the subtype on its values. {Constraint_Error (raised by failure of run-time check)} The exception Constraint_Error
is raised if any check of compatibility fails.

12.a To be honest: The condition imposed by a constraint is named after it — a range_constraint imposes a range
constraint, etc.

12.b Ramification: A range_constraint causes freezing of its type. Other constraints do not.

NOTES
13 4 A scalar_constraint may be applied to a subtype of an appropriate scalar type (see 3.5, 3.5.9, and J.3), even if the

subtype is already constrained. On the other hand, a composite_constraint may be applied to a composite subtype (or an
access-to-composite subtype) only if the composite subtype is unconstrained (see 3.6.1 and 3.7.1).

Examples

14 Examples of subtype declarations:
15 subtype Rainbow is Color range Red .. Blue; -- see 3.2.1

subtype Red_Blue is Rainbow;
subtype Int is Integer;
subtype Small_Int is Integer range -10 .. 10;
subtype Up_To_K is Column range 1 .. K; -- see 3.2.1
subtype Square is Matrix(1 .. 10, 1 .. 10); -- see 3.6
subtype Male is Person(Sex => M); -- see 3.10.1

Incompatibilities With Ada 83

15.a {incompatibilities with Ada 83} In Ada 9X, all range_constraints cause freezing of their type. Hence, a type-related
representation item for a scalar type has to precede any range_constraints whose type is the scalar type.

Wording Changes From Ada 83

15.b Subtype_marks allow only subtype names now, since types are never directly named. There is no need for
RM83-3.3.2(3), which says a subtype_mark can denote both the type and the subtype; in Ada 9X, you denote an
unconstrained (base) subtype if you want, but never the type.

15.c The syntactic category type_mark is now called subtype_mark, since it always denotes a subtype.

ISO/IEC 8652:1995(E) —AARM;6.0

41 21 December 1994 Classification of Operations 3.2.3

3.2.3 Classification of Operations
Static Semantics

1{operates on a type} An operation operates on a type T if it yields a value of type T, if it has an operand
whose expected type (see 8.6) is T, or if it has an access parameter (see 6.1) designating T. {predefined

operation (of a type)} A predefined operator, or other language-defined operation such as assignment or a
membership test, that operates on a type, is called a predefined operation of the type. {primitive operations

(of a type)} The primitive operations of a type are the predefined operations of the type, plus any user-
defined primitive subprograms.

1.aGlossary entry: {Primitive operations} The primitive operations of a type are the operations (such as subprograms)
declared together with the type declaration. They are inherited by other types in the same class of types. For a tagged
type, the primitive subprograms are dispatching subprograms, providing run-time polymorphism. A dispatching
subprogram may be called with statically tagged operands, in which case the subprogram body invoked is determined
at compile time. Alternatively, a dispatching subprogram may be called using a dispatching call, in which case the
subprogram body invoked is determined at run time.

1.bTo be honest: Protected subprograms are not considered to be ‘‘primitive subprograms,’’ even though they are
subprograms, and they are inherited by derived types.

1.cDiscussion: We use the term ‘‘primitive subprogram’’ in most of the rest of the manual. The term ‘‘primitive
operation’’ is used mostly in conceptual discussions.

2{primitive subprograms (of a type)} The primitive subprograms of a specific type are defined as follows:

3• The predefined operators of the type (see 4.5);

4• For a derived type, the inherited (see 3.4) user-defined subprograms;

5• For an enumeration type, the enumeration literals (which are considered parameterless func-
tions — see 3.5.1);

6• For a specific type declared immediately within a package_specification, any subprograms
(in addition to the enumeration literals) that are explicitly declared immediately within the
same package_specification and that operate on the type;

7• {override (a primitive subprogram)} Any subprograms not covered above [that are explicitly
declared immediately within the same declarative region as the type] and that override (see
8.3) other implicitly declared primitive subprograms of the type.

7.aDiscussion: In Ada 83, only subprograms declared in the visible part were ‘‘primitive’’ (i.e. derivable). In Ada 9X,
mostly because of child library units, we include all operations declared in the private part as well, and all operations
that override implicit declarations.

7.bRamification: It is possible for a subprogram to be primitive for more than one type, though it is illegal for a
subprogram to be primitive for more than one tagged type. See 3.9.

7.cDiscussion: The order of the implicit declarations when there are both predefined operators and inherited subprograms
is described in 3.4, ‘‘Derived Types and Classes’’.

8{primitive operator (of a type)} A primitive subprogram whose designator is an operator_symbol is called a
primitive operator.

Incompatibilities With Ada 83

8.a{incompatibilities with Ada 83} The attribute S’Base is no longer defined for non-scalar subtypes. Since this was only
permitted as the prefix of another attribute, and there are no interesting non-scalar attributes defined for an uncon-
strained composite or access subtype, this should not affect any existing programs.

Extensions to Ada 83

8.b{extensions to Ada 83} The primitive subprograms (derivable subprograms) include subprograms declared in the
private part of a package specification as well, and those that override implicitly declared subprograms, even if
declared in a body.

ISO/IEC 8652:1995(E) —AARM;6.0

3.2.3 Classification of Operations 21 December 1994 42

Wording Changes From Ada 83

8.c We have dropped the confusing term operation of a type in favor of the more useful primitive operation of a type and
the phrase operates on a type.

8.d The description of S’Base has been moved to 3.5, ‘‘Scalar Types’’ because it is now defined only for scalar types.

3.3 Objects and Named Numbers
1 [Objects are created at run time and contain a value of a given type. {creation (of an object)} An object can

be created and initialized as part of elaborating a declaration, evaluating an allocator, aggregate, or
function_call, or passing a parameter by copy. Prior to reclaiming the storage for an object, it is finalized
if necessary (see 7.6.1).]

Static Semantics

2 {object} All of the following are objects:
2.a Glossary entry: {Object} An object is either a constant or a variable. An object contains a value. An object is

created by an object_declaration or by an allocator. A formal parameter is (a view of) an object. A subcomponent of an
object is an object.

3 • the entity declared by an object_declaration;

4 • a formal parameter of a subprogram, entry, or generic subprogram;

5 • a generic formal object;

6 • a loop parameter;

7 • a choice parameter of an exception_handler;

8 • an entry index of an entry_body;

9 • the result of dereferencing an access-to-object value (see 4.1);

10 • the result of evaluating a function_call (or the equivalent operator invocation — see 6.6);

11 • the result of evaluating an aggregate;

12 • a component, slice, or view conversion of another object.

13 {constant} {variable} {constant object} {variable object} {constant view} {variable view} An object is either a constant
object or a variable object. The value of a constant object cannot be changed between its initialization
and its finalization, whereas the value of a variable object can be changed. Similarly, a view of an object
is either a constant or a variable. All views of a constant object are constant. A constant view of a
variable object cannot be used to modify the value of the variable. The terms constant and variable by
themselves refer to constant and variable views of objects.

14 {read (the value of an object)} The value of an object is read when the value of any part of the object is
evaluated, or when the value of an enclosing object is evaluated. {update (the value of an object)} The value of
a variable is updated when an assignment is performed to any part of the variable, or when an assignment
is performed to an enclosing object.

14.a Ramification: Reading and updating are intended to include read/write references of any kind, even if they are not
associated with the evaluation of a particular construct. Consider, for example, the expression ‘‘X.all(F)’’, where X is
an access-to-array object, and F is a function. The implementation is allowed to first evaluate ‘‘X.all’’ and then
F. Finally, a read is performed to get the value of the F’th component of the array. Note that the array is not necessarily
read as part of the evaluation of ‘‘X.all’’. This is important, because if F were to free X using Unchecked_
Deallocation, we want the execution of the final read to be erroneous.

ISO/IEC 8652:1995(E) —AARM;6.0

43 21 December 1994 Objects and Named Numbers 3.3

15Whether a view of an object is constant or variable is determined by the definition of the view. The
following (and no others) represent constants:

16• an object declared by an object_declaration with the reserved word constant;

17• a formal parameter or generic formal object of mode in;

18• a discriminant;

19• a loop parameter, choice parameter, or entry index;

20• the dereference of an access-to-constant value;

21• the result of evaluating a function_call or an aggregate;

22• a selected_component, indexed_component, slice, or view conversion of a constant.

22.aTo be honest: A noninvertible view conversion to a general access type is also defined to be a constant — see
4.6.

23{nominal subtype} At the place where a view of an object is defined, a nominal subtype is associated with the
view. {actual subtype} {subtype (of an object): see actual subtype of an object} The object’s actual subtype (that is,
its subtype) can be more restrictive than the nominal subtype of the view; it always is if the nominal
subtype is an indefinite subtype. {indefinite subtype} {definite subtype} A subtype is an indefinite subtype if it is
an unconstrained array subtype, or if it has unknown discriminants or unconstrained discriminants with-
out defaults (see 3.7); otherwise the subtype is a definite subtype [(all elementary subtypes are definite
subtypes)].[A class-wide subtype is defined to have unknown discriminants, and is therefore an indefinite
subtype. An indefinite subtype does not by itself provide enough information to create an object; an
additional constraint or explicit initialization expression is necessary (see 3.3.1). A component cannot
have an indefinite nominal subtype.]

24{named number} A named number provides a name for a numeric value known at compile time. It is
declared by a number_declaration.

NOTES
255 A constant cannot be the target of an assignment operation, nor be passed as an in out or out parameter, between its

initialization and finalization, if any.

266 The nominal and actual subtypes of an elementary object are always the same. For a discriminated or array object, if
the nominal subtype is constrained then so is the actual subtype.

Extensions to Ada 83

26.a{extensions to Ada 83} There are additional kinds of objects (choice parameters and entry indices of entry bodies).

26.bThe result of a function and of evaluating an aggregate are considered (constant) objects. This is necessary to explain
the action of finalization on such things. Because a function_call is also syntactically a name (see 4.1), the result of a
function_call can be renamed, thereby allowing repeated use of the result without calling the function again.

Wording Changes From Ada 83

26.cThis clause and its subclauses now follow the clause and subclauses on types and subtypes, to cut down on the number
of forward references.

26.dThe term nominal subtype is new. It is used to distinguish what is known at compile time about an object’s constraint,
versus what its "true" run-time constraint is.

26.eThe terms definite and indefinite (which apply to subtypes) are new. They are used to aid in the description of generic
formal type matching, and to specify when an explicit initial value is required in an object_declaration.

26.fWe have moved the syntax for object_declaration and number_declaration down into their respective subclauses, to
keep the syntax close to the description of the associated semantics.

ISO/IEC 8652:1995(E) —AARM;6.0

3.3 Objects and Named Numbers 21 December 1994 44

26.g We talk about variables and constants here, since the discussion is not specific to object_declarations, and it seems
better to have the list of the kinds of constants juxtaposed with the kinds of objects.

26.h We no longer talk about indirect updating due to parameter passing. Parameter passing is handled in 6.2 and 6.4.1 in a
way that there is no need to mention it here in the definition of read and update. Reading and updating now includes
the case of evaluating or assigning to an enclosing object.

3.3.1 Object Declarations
1 {stand-alone object} {explicit initial value} {initialization expression} An object_declaration declares a stand-alone

object with a given nominal subtype and, optionally, an explicit initial value given by an initialization
expression. {anonymous array type} {anonymous task type} {anonymous protected type} For an array, task, or
protected object, the object_declaration may include the definition of the (anonymous) type of the object.

Syntax

2 object_declaration ::=
defining_identifier_list : [aliased] [constant] subtype_indication [:= expression];

| defining_identifier_list : [aliased] [constant] array_type_definition [:= expression];
| single_task_declaration
| single_protected_declaration

3 defining_identifier_list ::=
defining_identifier {, defining_identifier}

Name Resolution Rules

4 {expected type [object_declaration initialization expression]} For an object_declaration with an expression following
the compound delimiter :=, the type expected for the expression is that of the object. {initialization

expression} This expression is called the initialization expression. {constructor: see initialization expression}

Legality Rules

5 An object_declaration without the reserved word constant declares a variable object. If it has a subtype_
indication or an array_type_definition that defines an indefinite subtype, then there shall be an initializa-
tion expression. An initialization expression shall not be given if the object is of a limited type.

Static Semantics

6 An object_declaration with the reserved word constant declares a constant object. {full constant declaration}

If it has an initialization expression, then it is called a full constant declaration. {deferred constant

declaration} Otherwise it is called a deferred constant declaration. The rules for deferred constant declara-
tions are given in clause 7.4. The rules for full constant declarations are given in this subclause.

7 Any declaration that includes a defining_identifier_list with more than one defining_identifier is equivalent
to a series of declarations each containing one defining_identifier from the list, with the rest of the text of
the declaration copied for each declaration in the series, in the same order as the list. The remainder of
this International Standard relies on this equivalence; explanations are given for declarations with a single
defining_identifier.

8 {nominal subtype} The subtype_indication or full type definition of an object_declaration defines the
nominal subtype of the object. The object_declaration declares an object of the type of the nominal
subtype.

8.a Discussion: The phrase ‘‘full type definition’’ here includes the case of an anonymous array, task, or protected type.

ISO/IEC 8652:1995(E) —AARM;6.0

45 21 December 1994 Object Declarations 3.3.1

Dynamic Semantics

9{constraint (of an object)} If a composite object declared by an object_declaration has an unconstrained
nominal subtype, then if this subtype is indefinite or the object is constant or aliased (see 3.10) the actual
subtype of this object is constrained. The constraint is determined by the bounds or discriminants (if any)
of its initial value; {constrained by its initial value} the object is said to be constrained by its initial value.
{actual subtype (of an object)} {subtype (of an object): see actual subtype of an object} [In the case of an aliased object,
this initial value may be either explicit or implicit; in the other cases, an explicit initial value is required.]
When not constrained by its initial value, the actual and nominal subtypes of the object are the same.
{constrained (object)} {unconstrained (object)} If its actual subtype is constrained, the object is called a
constrained object.

10{implicit initial values (for a subtype)} For an object_declaration without an initialization expression, any initial
values for the object or its subcomponents are determined by the implicit initial values defined for its
nominal subtype, as follows:

11• The implicit initial value for an access subtype is the null value of the access type.

12• The implicit initial (and only) value for each discriminant of a constrained discriminated
subtype is defined by the subtype.

13• For a (definite) composite subtype, the implicit initial value of each component with a
default_expression is obtained by evaluation of this expression and conversion to the
component’s nominal subtype (which might raise Constraint_Error — see 4.6, ‘‘Type Con-
versions’’), unless the component is a discriminant of a constrained subtype (the previous
case), or is in an excluded variant (see 3.8.1). {implicit subtype conversion [component defaults]} For
each component that does not have a default_expression, any implicit initial values are those
determined by the component’s nominal subtype.

14• For a protected or task subtype, there is an implicit component (an entry queue) correspond-
ing to each entry, with its implicit initial value being an empty queue.

14.aImplementation Note: The implementation may add implicit components for its own use, which might have
implicit initial values. For a task subtype, such components might represent the state of the associated thread of
control. For a type with dynamic-sized components, such implicit components might be used to hold the offset
to some explicit component.

15{elaboration [object_declaration]} The elaboration of an object_declaration proceeds in the following sequence
of steps:

161. The subtype_indication, array_type_definition, single_task_declaration, or single_protected_
declaration is first elaborated. This creates the nominal subtype (and the anonymous type in
the latter three cases).

172. If the object_declaration includes an initialization expression, the (explicit) initial value is
obtained by evaluating the expression and converting it to the nominal subtype (which
might raise Constraint_Error — see 4.6). {implicit subtype conversion [initialization expression]}

183. The object is created, and, if there is not an initialization expression, any per-object expres-
sions (see 3.8) are evaluated and any implicit initial values for the object or for its subcom-
ponents are obtained as determined by the nominal subtype.

18.aDiscussion: For a per-object constraint that contains some per-object expressions and some non-per-object
expressions, the values used for the constraint consist of the values of the non-per-object expressions evaluated
at the point of the type_declaration, and the values of the per-object expressions evaluated at the point of the
creation of the object.

18.bThe elaboration of per-object constraints was presumably performed as part of the dependent compatibility
check in Ada 83. If the object is of a limited type with an access discriminant, the access_definition is
elaborated at this time (see 3.7).

ISO/IEC 8652:1995(E) —AARM;6.0

3.3.1 Object Declarations 21 December 1994 46

18.c Reason: The reason we say that evaluating an explicit initialization expression happens before creating the
object is that in some cases it is impossible to know the size of the object being created until its initial value is
known, as in ‘‘X: String := Func_Call(...);’’. The implementation can create the object early in the common
case where the size can be known early, since this optimization is semantically neutral.

19 4. {initialization (of an object)} {assignment operation (during elaboration of an object_declaration)} Any
initial values (whether explicit or implicit) are assigned to the object or to the corresponding
subcomponents. As described in 5.2 and 7.6, Initialize and Adjust procedures can be called.
{constructor: see initialization}

19.a Ramification: Since the initial values have already been converted to the appropriate nominal subtype, the
only Constraint_Errors that might occur as part of these assignments are for values outside their base range that
are used to initialize unconstrained numeric subcomponents. See 3.5.

20 For the third step above, the object creation and any elaborations and evaluations are performed in an
arbitrary order, except that if the default_expression for a discriminant is evaluated to obtain its initial
value, then this evaluation is performed before that of the default_expression for any component that
depends on the discriminant, and also before that of any default_expression that includes the name of the
discriminant. The evaluations of the third step and the assignments of the fourth step are performed in an
arbitrary order, except that each evaluation is performed before the resulting value is assigned.

20.a Reason: For example:

20.b type R(D : Integer := F) is
record

S : String(1..D) := (others => G);
end record;

20.c X : R;

20.d For the elaboration of the declaration of X, it is important that F be evaluated before the aggregate.

21 [There is no implicit initial value defined for a scalar subtype.] {uninitialized variables [partial]} In the absence
of an explicit initialization, a newly created scalar object might have a value that does not belong to its
subtype (see 13.9.1 and H.1).

21.a To be honest: It could even be represented by a bit pattern that doesn’t actually represent any value of the type at all,
such as an invalid internal code for an enumeration type, or a NaN for a floating point type. It is a generally a bounded
error to reference scalar objects with such ‘‘invalid representations’’, as explained in 13.9.1, ‘‘Data Validity’’.

21.b Ramification: There is no requirement that two objects of the same scalar subtype have the same implicit initial
‘‘value’’ (or representation). It might even be the case that two elaborations of the same object_declaration produce
two different initial values. However, any particular uninitialized object is default-initialized to a single value (or
invalid representation). Thus, multiple reads of such an uninitialized object will produce the same value each time (if
the implementation chooses not to detect the error).

NOTES
22 7 Implicit initial values are not defined for an indefinite subtype, because if an object’s nominal subtype is indefinite, an

explicit initial value is required.

23 8 {stand-alone constant} {stand-alone variable} As indicated above, a stand-alone object is an object declared by an
object_declaration. Similar definitions apply to ‘‘stand-alone constant’’ and ‘‘stand-alone variable.’’ A subcomponent of
an object is not a stand-alone object, nor is an object that is created by an allocator. An object declared by a loop_
parameter_specification, parameter_specification, entry_index_specification, choice_parameter_specification, or a formal_
object_declaration is not called a stand-alone object.

24 9 The type of a stand-alone object cannot be abstract (see 3.9.3).

Examples

25 Example of a multiple object declaration:
26 -- the multiple object declaration

27 John, Paul : Person_Name := new Person(Sex => M); -- see 3.10.1

28 -- is equivalent to the two single object declarations in the order given

ISO/IEC 8652:1995(E) —AARM;6.0

47 21 December 1994 Object Declarations 3.3.1

29John : Person_Name := new Person(Sex => M);
Paul : Person_Name := new Person(Sex => M);

30Examples of variable declarations:
31Count, Sum : Integer;

Size : Integer range 0 .. 10_000 := 0;
Sorted : Boolean := False;
Color_Table : array(1 .. Max) of Color;
Option : Bit_Vector(1 .. 10) := (others => True);
Hello : constant String := "Hi, world.";

32Examples of constant declarations:
33Limit : constant Integer := 10_000;

Low_Limit : constant Integer := Limit/10;
Tolerance : constant Real := Dispersion(1.15);

Extensions to Ada 83

33.a{extensions to Ada 83} The syntax rule for object_declaration is modified to allow the aliased reserved word.

33.bA variable declared by an object_declaration can be constrained by its initial value; that is, a variable of a nominally
unconstrained array subtype, or discriminated type without defaults, can be declared so long as it has an explicit initial
value. In Ada 83, this was permitted for constants, and for variables created by allocators, but not for variables
declared by object_declarations. This is particularly important for tagged class-wide types, since there is no way to
constrain them explicitly, and so an initial value is the only way to provide a constraint. It is also important for generic
formal private types with unknown discriminants.

33.cWe now allow an unconstrained_array_definition in an object_declaration. This allows an object of an anonymous array
type to have its bounds determined by its initial value. This is for uniformity: If one can write ‘‘X: constant
array(Integer range 1..10) of Integer := ...;’’ then it makes sense to also allow ‘‘X: constant array(Integer range <>)
of Integer := ...;’’. (Note that if anonymous array types are ever sensible, a common situation is for a table
implemented as an array. Tables are often constant, and for constants, there’s usually no point in forcing the user to
count the number of elements in the value.)

Wording Changes From Ada 83

33.dWe have moved the syntax for object_declarations into this subclause.

33.eDeferred constants no longer have a separate syntax rule, but rather are incorporated in object_declaration as constants
declared without an initialization expression.

3.3.2 Number Declarations
1A number_declaration declares a named number.

1.aDiscussion: {static} If a value or other property of a construct is required to be static that means it is required to be
determined prior to execution. A static expression is an expression whose value is computed at compile time and is
usable in contexts where the actual value might affect the legality of the construct. This is fully defined in clause 4.9.

Syntax

2number_declaration ::=
defining_identifier_list : constant := static_expression;

Name Resolution Rules

3{expected type [number_declaration expression]} The static_expression given for a number_declaration is ex-
pected to be of any numeric type.

Legality Rules

4The static_expression given for a number declaration shall be a static expression, as defined by clause
4.9.

ISO/IEC 8652:1995(E) —AARM;6.0

3.3.2 Number Declarations 21 December 1994 48

Static Semantics

5 The named number denotes a value of type universal_integer if the type of the static_expression is an
integer type. The named number denotes a value of type universal_real if the type of the
static_expression is a real type.

6 The value denoted by the named number is the value of the static_expression, converted to the cor-
responding universal type. {implicit subtype conversion [named number value]}

Dynamic Semantics

7 {elaboration [number_declaration]} The elaboration of a number_declaration has no effect.
7.a Proof: Since the static_expression was evaluated at compile time.

Examples

8 Examples of number declarations:
9 Two_Pi : constant := 2.0*Ada.Numerics.Pi; -- a real number (see A.5)

10 Max : constant := 500; -- an integer number
Max_Line_Size : constant := Max/6 -- the integer 83
Power_16 : constant := 2**16; -- the integer 65_536
One, Un, Eins : constant := 1; -- three different names for 1

Extensions to Ada 83

10.a {extensions to Ada 83} We now allow a static expression of any numeric type to initialize a named number. For
integer types, it was possible in Ada 83 to use ’Pos to define a named number, but there was no way to use a static
expression of some non-universal real type to define a named number. This change is upward compatible because of
the preference rule for the operators of the root numeric types.

Wording Changes From Ada 83

10.b We have moved the syntax rule into this subclause.

10.c AI-00263 describes the elaboration of a number declaration in words similar to that of an object_declaration. However,
since there is no expression to be evaluated and no object to be created, it seems simpler to say that the elaboration has
no effect.

3.4 Derived Types and Classes
1 {derived type} A derived_type_definition defines a new type (and its first subtype) whose characteristics are

derived from those of a parent type.
1.a Glossary entry: {Derived type} A derived type is a type defined in terms of another type, which is the parent type of

the derived type. Each class containing the parent type also contains the derived type. The derived type inherits
properties such as components and primitive operations from the parent. A type together with the types derived from it
(directly or indirectly) form a derivation class.

{inheritance: see derived types and classes}

Syntax

2 derived_type_definition ::= [abstract] new parent_subtype_indication [record_extension_part]

Legality Rules

3 {parent subtype} {parent type} The parent_subtype_indication defines the parent subtype; its type is the parent
type.

4 A type shall be completely defined (see 3.11.1) prior to being specified as the parent type in a derived_
type_definition — [the full_type_declarations for the parent type and any of its subcomponents have to
precede the derived_type_definition.]

4.a Discussion: This restriction does not apply to the ancestor type of a private extension — see 7.3; such a type need not
be completely defined prior to the private_extension_declaration. However, the restriction does apply to record

ISO/IEC 8652:1995(E) —AARM;6.0

49 21 December 1994 Derived Types and Classes 3.4

extensions, so the ancestor type will have to be completely defined prior to the full_type_declaration corresponding to
the private_extension_declaration.

4.bReason: We originally hoped we could relax this restriction. However, we found it too complex to specify the rules
for a type derived from an incompletely defined limited type that subsequently became nonlimited.

5{record extension} If there is a record_extension_part, the derived type is called a record extension of the
parent type. A record_extension_part shall be provided if and only if the parent type is a tagged type.

5.aImplementation Note: We allow a record extension to inherit discriminants; a previous version of Ada 9X did not. If
the parent subtype is unconstrained, it can be implemented as though its discriminants were repeated in a new known_
discriminant_part and then used to constrain the old ones one-for-one. However, in an extension aggregate, the
discriminants in this case do not appear in the component association list.

5.bRamification: This rule needs to be rechecked in the visible part of an instance of a generic unit.

Static Semantics

6{constrained (subtype)} {unconstrained (subtype)} The first subtype of the derived type is unconstrained if a
known_discriminant_part is provided in the declaration of the derived type, or if the parent subtype is
unconstrained. {corresponding constraint} Otherwise, the constraint of the first subtype corresponds to that of
the parent subtype in the following sense: it is the same as that of the parent subtype except that for a
range constraint (implicit or explicit), the value of each bound of its range is replaced by the correspond-
ing value of the derived type.

6.aDiscussion: A digits_constraint in a subtype_indication for a decimal fixed point subtype always imposes a range
constraint, implicitly if there is no explicit one given. See 3.5.9, ‘‘Fixed Point Types’’.

7The characteristics of the derived type are defined as follows:

8• Each class of types that includes the parent type also includes the derived type.
8.aDiscussion: This is inherent in our notion of a ‘‘class’’ of types. It is not mentioned in the initial definition of

‘‘class’’ since at that point type derivation has not been defined. In any case, this rule ensures that every class
of types is closed under derivation.

9• If the parent type is an elementary type or an array type, then the set of possible values of the
derived type is a copy of the set of possible values of the parent type. For a scalar type, the
base range of the derived type is the same as that of the parent type.

9.aDiscussion: The base range of a type defined by an integer_type_definition or a real_type_definition is
determined by the _definition, and is not necessarily the same as that of the corresponding root numeric type
from which the newly defined type is implicitly derived. Treating numerics types as implicitly derived from
one of the two root numeric types is simply to link them into a type hierarchy; such an implicit derivation does
not follow all the rules given here for an explicit derived_type_definition.

10• If the parent type is a composite type other than an array type, then the components, protected
subprograms, and entries that are declared for the derived type are as follows:

11• The discriminants specified by a new known_discriminant_part, if there is one; other-
wise, each discriminant of the parent type (implicitly declared in the same order with
the same specifications) — {inherited discriminant} {inherited component} in the latter case,
the discriminants are said to be inherited, or if unknown in the parent, are also un-
known in the derived type;

12• Each nondiscriminant component, entry, and protected subprogram of the parent type,
implicitly declared in the same order with the same declarations; {inherited component}
{inherited protected subprogram} {inherited entry} these components, entries, and protected
subprograms are said to be inherited;

12.aRamification: The profiles of entries and protected subprograms do not change upon type derivation, although
the type of the ‘‘implicit’’ parameter identified by the prefix of the name in a call does.

12.bTo be honest: Any name in the parent type_declaration that denotes the current instance of the type is replaced
with a name denoting the current instance of the derived type, converted to the parent type.

ISO/IEC 8652:1995(E) —AARM;6.0

3.4 Derived Types and Classes 21 December 1994 50

13 • Each component declared in a record_extension_part, if any.

14 Declarations of components, protected subprograms, and entries, whether implicit or explicit,
occur immediately within the declarative region of the type, in the order indicated above,
following the parent subtype_indication.

14.a Discussion: The order of declarations within the region matters for record_aggregates and extension_
aggregates.

14.b Ramification: In most cases, these things are implicitly declared immediately following the parent subtype_
indication. However, 7.3.1, ‘‘Private Operations’’ defines some cases in which they are implicitly declared
later, and some cases in which the are not declared at all.

14.c Discussion: The place of the implicit declarations of inherited components matters for visibility — they are not
visible in the known_discriminant_part nor in the parent subtype_indication, but are usually visible within the
record_extension_part, if any (although there are restrictions on their use). Note that a discriminant specified in
a new known_discriminant_part is not considered ‘‘inherited’’ even if it has the same name and subtype as a
discriminant of the parent type.

15 • The derived type is limited if and only if the parent type is limited.
15.a To be honest: The derived type can become nonlimited if the derivation takes place in the visible part of a

child package, and the parent type is nonlimited as viewed from the private part of the child package — see 7.5.

16 • [For each predefined operator of the parent type, there is a corresponding predefined operator
of the derived type.]

16.a Proof: This is a ramification of the fact that each class that includes the parent type also includes the derived
type, and the fact that the set of predefined operators that is defined for a type, as described in 4.5, is determined
by the classes to which it belongs.

16.b Reason: Predefined operators are handled separately because they follow a slightly different rule than
user-defined primitive subprograms. In particular the systematic replacement described below does not apply
fully to the relational operators for Boolean and the exponentiation operator for Integer. The relational
operators for a type derived from Boolean still return Standard.Boolean. The exponentiation operator for a type
derived from Integer still expects Standard.Integer for the right operand. In addition, predefined operators
"reemerge" when a type is the actual type corresponding to a generic formal type, so they need to be well
defined even if hidden by user-defined primitive subprograms.

17 • {inherited subprogram} For each user-defined primitive subprogram (other than a user-defined
equality operator — see below) of the parent type that already exists at the place of the
derived_type_definition, there exists a corresponding inherited primitive subprogram of the
derived type with the same defining name. {equality operator (special inheritance rule for tagged

types)} Primitive user-defined equality operators of the parent type are also inherited by the
derived type, except when the derived type is a nonlimited record extension, and the inherited
operator would have a profile that is type conformant with the profile of the corresponding
predefined equality operator; in this case, the user-defined equality operator is not inherited,
but is rather incorporated into the implementation of the predefined equality operator of the
record extension (see 4.5.2). {type conformance [partial]}

17.a Ramification: We say ‘‘...already exists...’’ rather than ‘‘is visible’’ or ‘‘has been declared’’ because there are
certain operations that are declared later, but still exist at the place of the derived_type_definition, and there are
operations that are never declared, but still exist. These cases are explained in 7.3.1.

17.b Note that nonprivate extensions can appear only after the last primitive subprogram of the parent — the
freezing rules ensure this.

17.c Reason: A special case is made for the equality operators on nonlimited record extensions because their
predefined equality operators are already defined in terms of the primitive equality operator of their parent type
(and of the tagged components of the extension part). Inheriting the parent’s equality operator as is would be
undesirable, because it would ignore any components of the extension part. On the other hand, if the parent
type is limited, then any user-defined equality operator is inherited as is, since there is no predefined equality
operator to take its place.

17.d Ramification: Because user-defined equality operators are not inherited by record extensions, the formal
parameter names of = and /= revert to Left and Right, even if different formal parameter names were used in the
user-defined equality operators of the parent type.

ISO/IEC 8652:1995(E) —AARM;6.0

51 21 December 1994 Derived Types and Classes 3.4

18The profile of an inherited subprogram (including an inherited enumeration literal) is ob-
tained from the profile of the corresponding (user-defined) primitive subprogram of the
parent type, after systematic replacement of each subtype of its profile (see 6.1) that is of the
parent type with a corresponding subtype of the derived type. {corresponding subtype} For a
given subtype of the parent type, the corresponding subtype of the derived type is defined as
follows:

19• If the declaration of the derived type has neither a known_discriminant_part nor a
record_extension_part, then the corresponding subtype has a constraint that cor-
responds (as defined above for the first subtype of the derived type) to that of the given
subtype.

20• If the derived type is a record extension, then the corresponding subtype is the first
subtype of the derived type.

21• If the derived type has a new known_discriminant_part but is not a record extension,
then the corresponding subtype is constrained to those values that when converted to
the parent type belong to the given subtype (see 4.6). {implicit subtype conversion [derived
type discriminants]}

21.aReason: An inherited subprogram of an untagged type has an Intrinsic calling convention, which precludes the
use of the Access attribute. We preclude ’Access because correctly performing all required constraint checks
on an indirect call to such an inherited subprogram was felt to impose an undesirable implementation burden.

22The same formal parameters have default_expressions in the profile of the inherited sub-
program. [Any type mismatch due to the systematic replacement of the parent type by the
derived type is handled as part of the normal type conversion associated with parameter
passing — see 6.4.1.]

22.aReason: We don’t introduce the type conversion explicitly here since conversions to record extensions or on
access parameters are not generally legal. Furthermore, any type conversion would just be "undone" since the
parent’s subprogram is ultimately being called anyway.

23If a primitive subprogram of the parent type is visible at the place of the derived_type_definition, then the
corresponding inherited subprogram is implicitly declared immediately after the derived_type_definition.
Otherwise, the inherited subprogram is implicitly declared later or not at all, as explained in 7.3.1.

24{derived type [partial]} A derived type can also be defined by a private_extension_declaration (see 7.3) or a
formal_derived_type_definition (see 12.5.1). Such a derived type is a partial view of the corresponding
full or actual type.

25All numeric types are derived types, in that they are implicitly derived from a corresponding root numeric
type (see 3.5.4 and 3.5.6).

Dynamic Semantics

26{elaboration [derived_type_definition]} The elaboration of a derived_type_definition creates the derived type and
its first subtype, and consists of the elaboration of the subtype_indication and the record_extension_part,
if any. If the subtype_indication depends on a discriminant, then only those expressions that do not
depend on a discriminant are evaluated.

27{execution [call on an inherited subprogram]} For the execution of a call on an inherited subprogram, a call on the
corresponding primitive subprogram of the parent type is performed; the normal conversion of each
actual parameter to the subtype of the corresponding formal parameter (see 6.4.1) performs any necessary
type conversion as well. If the result type of the inherited subprogram is the derived type, the result of
calling the parent’s subprogram is converted to the derived type. {implicit subtype conversion [result of inherited
function]}

ISO/IEC 8652:1995(E) —AARM;6.0

3.4 Derived Types and Classes 21 December 1994 52

27.a Discussion: If an inherited function returns the derived type, and the type is a record extension, then the inherited
function is abstract, and (unless overridden) cannot be called except via a dispatching call. See 3.9.3.

NOTES
28 10 {closed under derivation} Classes are closed under derivation — any class that contains a type also contains its

derivatives. Operations available for a given class of types are available for the derived types in that class.

29 11 Evaluating an inherited enumeration literal is equivalent to evaluating the corresponding enumeration literal of the
parent type, and then converting the result to the derived type. This follows from their equivalence to parameterless
functions. {implicit subtype conversion [inherited enumeration literal]}

30 12 A generic subprogram is not a subprogram, and hence cannot be a primitive subprogram and cannot be inherited by a
derived type. On the other hand, an instance of a generic subprogram can be a primitive subprogram, and hence can be
inherited.

31 13 If the parent type is an access type, then the parent and the derived type share the same storage pool; there is a null
access value for the derived type and it is the implicit initial value for the type. See 3.10.

32 14 If the parent type is a boolean type, the predefined relational operators of the derived type deliver a result of the
predefined type Boolean (see 4.5.2). If the parent type is an integer type, the right operand of the predefined exponen-
tiation operator is of the predefined type Integer (see 4.5.6).

33 15 Any discriminants of the parent type are either all inherited, or completely replaced with a new set of discriminants.

34 16 For an inherited subprogram, the subtype of a formal parameter of the derived type need not have any value in
common with the first subtype of the derived type.

34.a Proof: This happens when the parent subtype is constrained to a range that does not overlap with the range of a
subtype of the parent type that appears in the profile of some primitive subprogram of the parent type. For example:

34.b type T1 is range 1..100;
subtype S1 is T1 range 1..10;
procedure P(X : in S1); -- P is a primitive subprogram
type T2 is new T1 range 11..20;
-- implicitly declared:
-- procedure P(X : in T2’Base range 1..10);
-- X cannot be in T2’First .. T2’Last

35 17 If the reserved word abstract is given in the declaration of a type, the type is abstract (see 3.9.3).

Examples

36 Examples of derived type declarations:
37 type Local_Coordinate is new Coordinate; -- two different types

type Midweek is new Day range Tue .. Thu; -- see 3.5.1
type Counter is new Positive; -- same range as Positive

38 type Special_Key is new Key_Manager.Key; -- see 7.3.1
-- the inherited subprograms have the following specifications:
-- procedure Get_Key(K : out Special_Key);
-- function "<"(X,Y : Special_Key) return Boolean;

Inconsistencies With Ada 83

38.a {inconsistencies with Ada 83} When deriving from a (nonprivate, nonderived) type in the same visible part in which it
is defined, if a predefined operator had been overridden prior to the derivation, the derived type will inherit the
user-defined operator rather than the predefined operator. The work-around (if the new behavior is not the desired
behavior) is to move the definition of the derived type prior to the overriding of any predefined operators.

Incompatibilities With Ada 83

38.b {incompatibilities with Ada 83} When deriving from a (nonprivate, nonderived) type in the same visible part in which
it is defined, a primitive subprogram of the parent type declared before the derived type will be inherited by the derived
type. This can cause upward incompatibilities in cases like this:

ISO/IEC 8652:1995(E) —AARM;6.0

53 21 December 1994 Derived Types and Classes 3.4

38.cpackage P is
type T is (A, B, C, D);
function F(X : T := A) return Integer;
type NT is new T;
-- inherits F as
-- function F(X : NT := A) return Integer;
-- in Ada 9X only
...

end P;
...
use P; -- Only one declaration of F from P is use-visible in

-- Ada 83; two declarations of F are use-visible in
-- Ada 9X.

begin
...
if F > 1 then ... -- legal in Ada 83, ambiguous in Ada 9X

Extensions to Ada 83

38.d{extensions to Ada 83} The syntax for a derived_type_definition is amended to include an optional record_extension_
part (see 3.9.1).

38.eA derived type may override the discriminants of the parent by giving a new discriminant_part.

38.fThe parent type in a derived_type_definition may be a derived type defined in the same visible part.

38.gWhen deriving from a type in the same visible part in which it is defined, the primitive subprograms declared prior to
the derivation are inherited as primitive subprograms of the derived type. See 3.2.3.

Wording Changes From Ada 83

38.hWe now talk about the classes to which a type belongs, rather than a single class.

38.iAs explained in Section 13, the concept of "storage pool" replaces the Ada 83 concept of "collection." These concepts
are similar, but not the same.

3.4.1 Derivation Classes
1In addition to the various language-defined classes of types, types can be grouped into derivation classes.

Static Semantics

2{derived from (directly or indirectly)} A derived type is derived from its parent type directly; it is derived
indirectly from any type from which its parent type is derived. {derivation class (for a type)} {root type (of a

class)} {rooted at a type} The derivation class of types for a type T (also called the class rooted at T) is the set
consisting of T (the root type of the class) and all types derived from T (directly or indirectly) plus any
associated universal or class-wide types (defined below).

2.aDiscussion: Note that the definition of ‘‘derived from’’ is a recursive definition. We don’t define a root type for all
interesting language-defined classes, though presumably we could.

2.bTo be honest: By the class-wide type ‘‘associated’’ with a type T, we mean the type T’Class. Similarly, the universal
type associated with root_integer, root_real, and root_fixed are universal_integer, universal_real, and universal_fixed,
respectively.

3Every type is either a specific type, a class-wide type, or a universal type. {specific type} A specific type is
one defined by a type_declaration, a formal_type_declaration, or a full type definition embedded in a
declaration for an object. Class-wide and universal types are implicitly defined, to act as representatives
for an entire class of types, as follows:

3.aTo be honest: The root types root_integer, root_real, and root_fixed are also specific types. They are declared in the
specification of package Standard.

{class-wide type} Class-wide types 4

Class-wide types are defined for [(and belong to)] each derivation class rooted at a
tagged type (see 3.9). Given a subtype S of a tagged type T, S’Class is the subtype_

ISO/IEC 8652:1995(E) —AARM;6.0

3.4.1 Derivation Classes 21 December 1994 54

mark for a corresponding subtype of the tagged class-wide type T’Class. Such types
are called ‘‘class-wide’’ because when a formal parameter is defined to be of a class-
wide type T’Class, an actual parameter of any type in the derivation class rooted at T
is acceptable (see 8.6).

{first subtype} The set of values for a class-wide type T’Class is the discriminated union5

of the set of values of each specific type in the derivation class rooted at T (the tag
acts as the implicit discriminant — see 3.9). Class-wide types have no primitive
subprograms of their own. However, as explained in 3.9.2, operands of a class-wide
type T’Class can be used as part of a dispatching call on a primitive subprogram of
the type T. The only components [(including discriminants)] of T’Class that are
visible are those of T. If S is a first subtype, then S’Class is a first subtype.

5.a Reason: We want S’Class to be a first subtype when S is, so that an attribute_definition_clause like ‘‘for
S’Class’Output use ...;’’ will be legal.

{universal type} Universal types6

Universal types are defined for [(and belong to)] the integer, real, and fixed point
classes, and are referred to in this standard as respectively, universal_integer,
universal_real, and universal_fixed. These are analogous to class-wide types for
these language-defined numeric classes. As with class-wide types, if a formal
parameter is of a universal type, then an actual parameter of any type in the cor-
responding class is acceptable. In addition, a value of a universal type (including an
integer or real numeric_literal) is ‘‘universal’’ in that it is acceptable where some
particular type in the class is expected (see 8.6).

The set of values of a universal type is the undiscriminated union of the set of values7

possible for any definable type in the associated class. Like class-wide types, univer-
sal types have no primitive subprograms of their own. However, their ‘‘universality’’
allows them to be used as operands with the primitive subprograms of any type in the
corresponding class.

7.a Discussion: A class-wide type is only class-wide in one direction, from specific to class-wide, whereas a universal
type is class-wide (universal) in both directions, from specific to universal and back.

7.b We considered defining class-wide or perhaps universal types for all derivation classes, not just tagged classes and
these three numeric classes. However, this was felt to overly weaken the strong-typing model in some situations.
Tagged types preserve strong type distinctions thanks to the run-time tag. Class-wide or universal types for untagged
types would weaken the compile-time type distinctions without providing a compensating run-time-checkable distinc-
tion.

7.c We considered defining standard names for the universal numeric types so they could be used in formal parameter
specifications. However, this was felt to impose an undue implementation burden for some implementations.

7.d To be honest: Formally, the set of values of a universal type is actually a copy of the undiscriminated union of the
values of the types in its class. This is because we want each value to have exactly one type, with explicit or implicit
conversion needed to go between types. An alternative, consistent model would be to associate a class, rather than a
particular type, with a value, even though any given expression would have a particular type. In that case, implicit type
conversions would not generally need to change the value, although an associated subtype conversion might need to.

8 {root_integer [partial]} {root_real [partial]} The integer and real numeric classes each have a specific root type
in addition to their universal type, named respectively root_integer and root_real.

9 {cover (a type)} A class-wide or universal type is said to cover all of the types in its class. A specific type
covers only itself.

10 {descendant (of a type)} A specific type T2 is defined to be a descendant of a type T1 if T2 is the same as T1,
or if T2 is derived (directly or indirectly) from T1. A class-wide type T2’Class is defined to be a descen-
dant of type T1 if T2 is a descendant of T1. Similarly, the universal types are defined to be descendants of
the root types of their classes. {ancestor (of a type)} If a type T2 is a descendant of a type T1, then T1 is
called an ancestor of T2. {ultimate ancestor (of a type)} {ancestor (ultimate)} The ultimate ancestor of a type is
the ancestor of the type that is not a descendant of any other type.

ISO/IEC 8652:1995(E) —AARM;6.0

55 21 December 1994 Derivation Classes 3.4.1

10.aRamification: A specific type is a descendant of itself. Class-wide types are considered descendants of the
corresponding specific type, and do not have any descendants of their own.

10.bA specific type is an ancestor of itself. The root of a derivation class is an ancestor of all types in the class, including
any class-wide types in the class.

10.cDiscussion: The terms root, parent, ancestor, and ultimate ancestor are all related. For example:

10.d• Each type has at most one parent, and one or more ancestor types; each type has exactly one ultimate
ancestor. In Ada 83, the term ‘‘parent type’’ was sometimes used more generally to include any ancestor
type (e.g. RM83-9.4(14)). In Ada 9X, we restrict parent to mean the immediate ancestor.

10.e• A class of types has at most one root type; a derivation class has exactly one root type.

10.f• The root of a class is an ancestor of all of the types in the class (including itself).

10.g• The type root_integer is the root of the integer class, and is the ultimate ancestor of all integer types. A
similar statement applies to root_real.

11{inherited (from an ancestor type)} An inherited component [(including an inherited discriminant)] of a derived
type is inherited from a given ancestor of the type if the corresponding component was inherited by each
derived type in the chain of derivations going back to the given ancestor.

NOTES
1218 Because operands of a universal type are acceptable to the predefined operators of any type in their class, ambiguity

can result. For universal_integer and universal_real, this potential ambiguity is resolved by giving a preference (see 8.6)
to the predefined operators of the corresponding root types (root_integer and root_real, respectively). Hence, in an
apparently ambiguous expression like

131 + 4 < 7

14where each of the literals is of type universal_integer, the predefined operators of root_integer will be preferred over those
of other specific integer types, thereby resolving the ambiguity.

14.aRamification: Except for this preference, a root numeric type is essentially like any other specific type in the
associated numeric class. In particular, the result of a predefined operator of a root numeric type is not ‘‘universal’’
(implicitly convertible) even if both operands were.

3.5 Scalar Types
1{scalar type} Scalar types comprise enumeration types, integer types, and real types. {discrete type}

Enumeration types and integer types are called discrete types; {position number} each value of a discrete
type has a position number which is an integer value. {numeric type} Integer types and real types are called
numeric types. [All scalar types are ordered, that is, all relational operators are predefined for their
values.]

Syntax

2range_constraint ::= range range

3range ::= range_attribute_reference
| simple_expression .. simple_expression

3.aDiscussion: These need to be simple_expressions rather than more general expressions because ranges appear in
membership tests and other contexts where expression .. expression would be ambiguous.

4{range} {lower bound (of a range)} {upper bound (of a range)} {type of a range} A range has a lower bound and an
upper bound and specifies a subset of the values of some scalar type (the type of the range). A range with
lower bound L and upper bound R is described by ‘‘L .. R’’. {null range} If R is less than L, then the range
is a null range, and specifies an empty set of values. Otherwise, the range specifies the values of the type
from the lower bound to the upper bound, inclusive. {belong (to a range)} A value belongs to a range if it is
of the type of the range, and is in the subset of values specified by the range. {satisfies [a range constraint]} A

ISO/IEC 8652:1995(E) —AARM;6.0

3.5 Scalar Types 21 December 1994 56

value satisfies a range constraint if it belongs to the associated range. {included (one range in another)} One
range is included in another if all values that belong to the first range also belong to the second.

Name Resolution Rules

5 {expected type [range_constraint range]} For a subtype_indication containing a range_constraint, either directly
or as part of some other scalar_constraint, the type of the range shall resolve to that of the type deter-
mined by the subtype_mark of the subtype_indication. {expected type [range simple_expressions]} For a range
of a given type, the simple_expressions of the range (likewise, the simple_expressions of the equivalent
range for a range_attribute_reference) are expected to be of the type of the range.

5.a Discussion: In Ada 9X, constraints only appear within subtype_indications; things that look like constraints that appear
in type declarations are called something else like range_specifications.

5.b We say "the expected type is ..." or "the type is expected to be ..." depending on which reads better. They are
fundamentally equivalent, and both feed into the type resolution rules of clause 8.6.

5.c In some cases, it doesn’t work to use expected types. For example, in the above rule, we say that the ‘‘type of the
range shall resolve to ...’’ rather than ‘‘the expected type for the range is ...’’. We then use ‘‘expected type’’ for the
bounds. If we used ‘‘expected’’ at both points, there would be an ambiguity, since one could apply the rules of 8.6
either on determining the type of the range, or on determining the types of the individual bounds. It is clearly important
to allow one bound to be of a universal type, and the other of a specific type, so we need to use ‘‘expected type’’ for the
bounds. Hence, we used ‘‘shall resolve to’’ for the type of the range as a whole. There are other situations where
‘‘expected type’’ is not quite right, and we use ‘‘shall resolve to’’ instead.

Static Semantics

6 {base range (of a scalar type) [distributed]} The base range of a scalar type is the range of finite values of the
type that can be represented in every unconstrained object of the type; it is also the range supported at a
minimum for intermediate values during the evaluation of expressions involving predefined operators of
the type.

6.a Implementation Note: Note that in some machine architectures intermediates in an expression (particularly if static),
and register-resident variables might accommodate a wider range. The base range does not include the values of this
wider range that are not assignable without overflow to memory-resident objects.

6.b Ramification: {base range [of an enumeration type]} The base range of an enumeration type is the range of values of
the enumeration type.

6.c Reason: If the representation supports infinities, the base range is nevertheless restricted to include only the
representable finite values, so that ’Base’First and ’Base’Last are always guaranteed to be finite.

6.d To be honest: By a "value that can be assigned without overflow" we don’t mean to restrict ourselves to values that
can be represented exactly. Values between machine representable values can be assigned, but on subsequent reading,
a slightly different value might be retrieved, as (partially) determined by the number of digits of precision of the type.

7 {constrained (subtype)} {unconstrained (subtype)} [A constrained scalar subtype is one to which a range con-
straint applies.] {range (of a scalar subtype)} The range of a constrained scalar subtype is the range associated
with the range constraint of the subtype. The range of an unconstrained scalar subtype is the base range
of its type.

Dynamic Semantics

8 {compatibility [range with a scalar subtype]} A range is compatible with a scalar subtype if and only if it is either
a null range or each bound of the range belongs to the range of the subtype. {compatibility [range_constraint
with a scalar subtype]} A range_constraint is compatible with a scalar subtype if and only if its range is
compatible with the subtype.

8.a Ramification: Only range_constraints (explicit or implicit) impose conditions on the values of a scalar subtype. The
other scalar_constraints, digit_constraints and delta_constraints impose conditions on the subtype denoted by the
subtype_mark in a subtype_indication, but don’t impose a condition on the values of the subtype being defined.
Therefore, a scalar subtype is not called constrained if all that applies to it is a digits_constraint. Decimal subtypes are
subtle, because a digits_constraint without a range_constraint nevertheless includes an implicit range_constraint.

ISO/IEC 8652:1995(E) —AARM;6.0

57 21 December 1994 Scalar Types 3.5

9{elaboration [range_constraint]} The elaboration of a range_constraint consists of the evaluation of the range.
{evaluation [range]} The evaluation of a range determines a lower bound and an upper bound. If simple_
expressions are given to specify bounds, the evaluation of the range evaluates these simple_expressions
in an arbitrary order, and converts them to the type of the range. {implicit subtype conversion [bounds of a
range]} If a range_attribute_reference is given, the evaluation of the range consists of the evaluation of the
range_attribute_reference.

10Attributes

11For every scalar subtype S, the following attributes are defined:

S’First S’First denotes the lower bound of the range of S. The value of this attribute is of the 12

type of S.
12.aRamification: Evaluating S’First never raises Constraint_Error.

S’Last S’Last denotes the upper bound of the range of S. The value of this attribute is of the 13

type of S.
13.aRamification: Evaluating S’Last never raises Constraint_Error.

S’Range S’Range is equivalent to the range S’First .. S’Last. 14

{base subtype (of a type)} S’Base 15

S’Base denotes an unconstrained subtype of the type of S. This unconstrained subtype
is called the base subtype of the type.

S’Min S’Min denotes a function with the following specification: 16

17function S’Min(Left, Right : S’Base)
return S’Base

The function returns the lesser of the values of the two parameters. 18

18.aDiscussion: {italics (formal parameters of attribute functions)} The formal parameter names are italicized because
they cannot be used in calls — see 6.4. Such a specification cannot be written by the user because an attribute_
reference is not permitted as the designator of a user-defined function, nor can its formal parameters be anonymous.

S’Max S’Max denotes a function with the following specification: 19

20function S’Max(Left, Right : S’Base)
return S’Base

The function returns the greater of the values of the two parameters. 21

S’Succ S’Succ denotes a function with the following specification: 22

23function S’Succ(Arg : S’Base)
return S’Base

{Constraint_Error (raised by failure of run-time check)} For an enumeration type, the function 24

returns the value whose position number is one more than that of the value of Arg;
{Range_Check [partial]} {check, language-defined (Range_Check)} Constraint_Error is raised if
there is no such value of the type. For an integer type, the function returns the result
of adding one to the value of Arg. For a fixed point type, the function returns the
result of adding small to the value of Arg. For a floating point type, the function
returns the machine number (as defined in 3.5.7) immediately above the value of Arg;
{Range_Check [partial]} {check, language-defined (Range_Check)} Constraint_Error is raised if
there is no such machine number.

24.aRamification: S’Succ for a modular integer subtype wraps around if the value of Arg is S’Base’Last. S’Succ for a
signed integer subtype might raise Constraint_Error if the value of Arg is S’Base’Last, or it might return the
out-of-base-range value S’Base’Last+1, as is permitted for all predefined numeric operations.

S’Pred S’Pred denotes a function with the following specification: 25

ISO/IEC 8652:1995(E) —AARM;6.0

3.5 Scalar Types 21 December 1994 58

26 function S’Pred(Arg : S’Base)
return S’Base

{Constraint_Error (raised by failure of run-time check)} For an enumeration type, the function27

returns the value whose position number is one less than that of the value of Arg;
{Range_Check [partial]} {check, language-defined (Range_Check)} Constraint_Error is raised if
there is no such value of the type. For an integer type, the function returns the result
of subtracting one from the value of Arg. For a fixed point type, the function returns
the result of subtracting small from the value of Arg. For a floating point type, the
function returns the machine number (as defined in 3.5.7) immediately below the
value of Arg; {Range_Check [partial]} {check, language-defined (Range_Check)} Constraint_
Error is raised if there is no such machine number.

27.a Ramification: S’Pred for a modular integer subtype wraps around if the value of Arg is S’Base’First. S’Pred for a
signed integer subtype might raise Constraint_Error if the value of Arg is S’Base’First, or it might return the
out-of-base-range value S’Base’First–1, as is permitted for all predefined numeric operations.

S’Wide_Image S’Wide_Image denotes a function with the following specification:28

29 function S’Wide_Image(Arg : S’Base)
return Wide_String

{image (of a value)} The function returns an image of the value of Arg, that is, a30

sequence of characters representing the value in display form. The lower bound of
the result is one.

The image of an integer value is the corresponding decimal literal, without under-31

lines, leading zeros, exponent, or trailing spaces, but with a single leading character
that is either a minus sign or a space.

31.a Implementation Note: If the machine supports negative zeros for signed integer types, it is not specified whether "–0"
or " 0" should be returned for negative zero. We don’t have enough experience with such machines to know what is
appropriate, and what other languages do. In any case, the implementation should be consistent.

{nongraphic character} The image of an enumeration value is either the corresponding32

identifier in upper case or the corresponding character literal (including the two
apostrophes); neither leading nor trailing spaces are included. For a nongraphic
character (a value of a character type that has no enumeration literal associated with
it), the result is a corresponding language-defined or implementation-defined name in
upper case (for example, the image of the nongraphic character identified as nul is
‘‘NUL’’ — the quotes are not part of the image).

32.a Implementation Note: For an enumeration type T that has ‘‘holes’’ (caused by an enumeration_representation_
clause), {Program_Error (raised by failure of run-time check)} T’Wide_Image should raise Program_Error if the
value is one of the holes (which is a bounded error anyway, since holes can be generated only via uninitialized
variables and similar things.

The image of a floating point value is a decimal real literal best approximating the33

value (rounded away from zero if halfway between) with a single leading character
that is either a minus sign or a space, a single digit (that is nonzero unless the value is
zero), a decimal point, S’Digits–1 (see 3.5.8) digits after the decimal point (but one if
S’Digits is one), an upper case E, the sign of the exponent (either + or –), and two or
more digits (with leading zeros if necessary) representing the exponent. If S’Signed_
Zeros is True, then the leading character is a minus sign for a negatively signed zero.

33.a To be honest: Leading zeros are present in the exponent only if necessary to make the exponent at least two digits.

33.b Reason: This image is intended to conform to that produced by Text_IO.Float_IO.Put in its default format.

33.c Implementation Note: The rounding direction is specified here to ensure portability of output results.

The image of a fixed point value is a decimal real literal best approximating the value34

(rounded away from zero if halfway between) with a single leading character that is
either a minus sign or a space, one or more digits before the decimal point (with no

ISO/IEC 8652:1995(E) —AARM;6.0

59 21 December 1994 Scalar Types 3.5

redundant leading zeros), a decimal point, and S’Aft (see 3.5.10) digits after the
decimal point.

34.aReason: This image is intended to conform to that produced by Text_IO.Fixed_IO.Put.

34.bImplementation Note: The rounding direction is specified here to ensure portability of output results.

34.cImplementation Note: For a machine that supports negative zeros, it is not specified whether "–0.000" or " 0.000" is
returned. See corresponding comment above about integer types with signed zeros.

S’Image S’Image denotes a function with the following specification: 35

36function S’Image(Arg : S’Base)
return String

The function returns an image of the value of Arg as a String. The lower bound of the 37

result is one. The image has the same sequence of graphic characters as that defined
for S’Wide_Image if all the graphic characters are defined in Character; otherwise the
sequence of characters is implementation defined (but no shorter than that of S’Wide_
Image for the same value of Arg).

37.aImplementation defined: The sequence of characters of the value returned by S’Image when some of the graphic
characters of S’Wide_Image are not defined in Character.

S’Wide_Width S’Wide_Width denotes the maximum length of a Wide_String returned by S’Wide_ 38

Image over all values of the subtype S. It denotes zero for a subtype that has a null
range. Its type is universal_integer.

S’Width S’Width denotes the maximum length of a String returned by S’Image over all values 39

of the subtype S. It denotes zero for a subtype that has a null range. Its type is
universal_integer.

S’Wide_Value S’Wide_Value denotes a function with the following specification: 40

41function S’Wide_Value(Arg : Wide_String)
return S’Base

This function returns a value given an image of the value as a Wide_String, ignoring 42

any leading or trailing spaces.

{evaluation [Wide_Value]} {Constraint_Error (raised by failure of run-time check)} For the 43

evaluation of a call on S’Wide_Value for an enumeration subtype S, if the sequence
of characters of the parameter (ignoring leading and trailing spaces) has the syntax of
an enumeration literal and if it corresponds to a literal of the type of S (or corresponds
to the result of S’Wide_Image for a nongraphic character of the type), the result is the
corresponding enumeration value; {Range_Check [partial]} {check, language-defined (Range_

Check)} otherwise Constraint_Error is raised.
43.aDiscussion: It’s not crystal clear that Range_Check is appropriate here, but it doesn’t seem worthwhile to invent a

whole new check name just for this weird case, so we decided to lump it in with Range_Check.

{Constraint_Error (raised by failure of run-time check)} For the evaluation of a call on 44

S’Wide_Value (or S’Value) for an integer subtype S, if the sequence of characters of
the parameter (ignoring leading and trailing spaces) has the syntax of an integer
literal, with an optional leading sign character (plus or minus for a signed type; only
plus for a modular type), and the corresponding numeric value belongs to the base
range of the type of S, then that value is the result; {Range_Check [partial]} {check,

language-defined (Range_Check)} otherwise Constraint_Error is raised.
44.aDiscussion: We considered allowing ’Value to return a representable but out-of-range value without a Constraint_

Error. However, we currently require (see 4.9) in an assignment_statement like "X := <numeric_literal>;" that the
value of the numeric-literal be in X’s base range (at compile time), so it seems unfriendly and confusing to have a
different range allowed for ’Value. Furthermore, for modular types, without the requirement for being in the base
range, ’Value would have to handle arbitrarily long literals (since overflow never occurs for modular types).

ISO/IEC 8652:1995(E) —AARM;6.0

3.5 Scalar Types 21 December 1994 60

For the evaluation of a call on S’Wide_Value (or S’Value) for a real subtype S, if the45

sequence of characters of the parameter (ignoring leading and trailing spaces) has the
syntax of one of the following:

46 • numeric_literal

47 • numeral.[exponent]

48 • .numeral[exponent]

49 • base#based_numeral.#[exponent]

50 • base#.based_numeral#[exponent]

{Constraint_Error (raised by failure of run-time check)} with an optional leading sign charac-51

ter (plus or minus), and if the corresponding numeric value belongs to the base range
of the type of S, then that value is the result; {Range_Check [partial]} {check,

language-defined (Range_Check)} otherwise Constraint_Error is raised. The sign of a zero
value is preserved (positive if none has been specified) if S’Signed_Zeros is True.

S’Value S’Value denotes a function with the following specification:52

53 function S’Value(Arg : String)
return S’Base

This function returns a value given an image of the value as a String, ignoring any54

leading or trailing spaces.

{evaluation [Value]} {Constraint_Error (raised by failure of run-time check)} For the evaluation55

of a call on S’Value for an enumeration subtype S, if the sequence of characters of the
parameter (ignoring leading and trailing spaces) has the syntax of an enumeration
literal and if it corresponds to a literal of the type of S (or corresponds to the result of
S’Image for a value of the type), the result is the corresponding enumeration value;
{Range_Check [partial]} {check, language-defined (Range_Check)} otherwise Constraint_Error
is raised. For a numeric subtype S, the evaluation of a call on S’Value with Arg of
type String is equivalent to a call on S’Wide_Value for a corresponding Arg of type
Wide_String.

55.a Reason: S’Value is subtly different from S’Wide_Value for enumeration subtypes since S’Image might produce a
different sequence of characters than S’Wide_Image if the enumeration literal uses characters outside of the predefined
type Character. That is why we don’t just define S’Value in terms of S’Wide_Value for enumeration subtypes.
S’Value and S’Wide_Value for numeric subtypes yield the same result given the same sequence of characters.

Implementation Permissions

56 An implementation may extend the Wide_Value, [Value, Wide_Image, and Image] attributes of a floating
point type to support special values such as infinities and NaNs.

56.a Proof: The permission is really only necessary for Wide_Value, because Value is defined in terms of Wide_Value,
and because the behavior of Wide_Image and Image is already unspecified for things like infinities and NaNs.

56.b Reason: This is to allow implementations to define full support for IEEE arithmetic. See also the similar permission
for Get in A.10.9.

NOTES
57 19 The evaluation of S’First or S’Last never raises an exception. If a scalar subtype S has a nonnull range, S’First and

S’Last belong to this range. These values can, for example, always be assigned to a variable of subtype S.

57.a Discussion: This paragraph addresses an issue that came up with Ada 83, where for fixed point types, the end points of
the range specified in the type definition were not necessarily within the base range of the type. However, it was later
clarified (and we reconfirm it in 3.5.9, ‘‘Fixed Point Types’’) that the First and Last attributes reflect the true bounds
chosen for the type, not the bounds specified in the type definition (which might be outside the ultimately chosen base
range).

58 20 For a subtype of a scalar type, the result delivered by the attributes Succ, Pred, and Value might not belong to the
subtype; similarly, the actual parameters of the attributes Succ, Pred, and Image need not belong to the subtype.

ISO/IEC 8652:1995(E) —AARM;6.0

61 21 December 1994 Scalar Types 3.5

5921 For any value V (including any nongraphic character) of an enumeration subtype S, S’Value(S’Image(V)) equals V, as
does S’Wide_Value(S’Wide_Image(V)). Neither expression ever raises Constraint_Error.

Examples

60Examples of ranges:
61-10 .. 10

X .. X + 1
0.0 .. 2.0*Pi
Red .. Green -- see 3.5.1
1 .. 0 -- a null range
Table’Range -- a range attribute reference (see 3.6)

62Examples of range constraints:
63range -999.0 .. +999.0

range S’First+1 .. S’Last-1

Incompatibilities With Ada 83

63.a{incompatibilities with Ada 83} S’Base is no longer defined for nonscalar types. One conceivable existing use of
S’Base for nonscalar types is S’Base’Size where S is a generic formal private type. However, that is not generally
useful because the actual subtype corresponding to S might be a constrained array or discriminated type, which would
mean that S’Base’Size might very well overflow (for example, S’Base’Size where S is a constrained subtype of String
will generally be 8 * (Integer’Last + 1)). For derived discriminated types that are packed, S’Base’Size might not even
be well defined if the first subtype is constrained, thereby allowing some amount of normally required ‘‘dope’’ to have
been squeezed out in the packing. Hence our conclusion is that S’Base’Size is not generally useful in a generic, and
does not justify keeping the attribute Base for nonscalar types just so it can be used as a prefix.

Extensions to Ada 83

63.b{extensions to Ada 83} The attribute S’Base for a scalar subtype is now permitted anywhere a subtype_mark is
permitted. S’Base’First .. S’Base’Last is the base range of the type. Using an attribute_definition_clause, one cannot
specify any subtype-specific attributes for the subtype denoted by S’Base (the base subtype).

63.cThe attribute S’Range is now allowed for scalar subtypes.

63.dThe attributes S’Min and S’Max are now defined, and made available for all scalar types.

63.eThe attributes S’Succ, S’Pred, S’Image, S’Value, and S’Width are now defined for real types as well as discrete types.

63.fWide_String versions of S’Image and S’Value are defined. These are called S’Wide_Image and S’Wide_Value to
avoid introducing ambiguities involving uses of these attributes with string literals.

Wording Changes From Ada 83

63.gWe now use the syntactic category range_attribute_reference since it is now syntactically distinguished from other
attribute references.

63.hThe definition of S’Base has been moved here from 3.3.3 since it now applies only to scalar types.

63.iMore explicit rules are provided for nongraphic characters.

3.5.1 Enumeration Types
1[{enumeration type} An enumeration_type_definition defines an enumeration type.]

Syntax

2enumeration_type_definition ::=
(enumeration_literal_specification {, enumeration_literal_specification})

3enumeration_literal_specification ::= defining_identifier | defining_character_literal

4defining_character_literal ::= character_literal

ISO/IEC 8652:1995(E) —AARM;6.0

3.5.1 Enumeration Types 21 December 1994 62

Legality Rules

5 [The defining_identifiers and defining_character_literals listed in an enumeration_type_definition shall be
distinct.]

5.a Proof: This is a ramification of the normal disallowance of homographs explicitly declared immediately in the same
declarative region.

Static Semantics

6 {enumeration literal} Each enumeration_literal_specification is the explicit declaration of the corresponding
enumeration literal: it declares a parameterless function, whose defining name is the defining_identifier or
defining_character_literal, and whose result type is the enumeration type.

6.a Reason: This rule defines the profile of the enumeration literal, which is used in the various types of conformance.

6.b Ramification: The parameterless function associated with an enumeration literal is fully defined by the enumeration_
type_definition; a body is not permitted for it, and it never fails the Elaboration_Check when called.

7 Each enumeration literal corresponds to a distinct value of the enumeration type, and to a distinct position
number. {position number [of an enumeration value]} The position number of the value of the first listed
enumeration literal is zero; the position number of the value of each subsequent enumeration literal is one
more than that of its predecessor in the list.

8 [The predefined order relations between values of the enumeration type follow the order of corresponding
position numbers.]

9 [{overloaded [enumeration literal]} If the same defining_identifier or defining_character_literal is specified in
more than one enumeration_type_definition, the corresponding enumeration literals are said to be
overloaded. At any place where an overloaded enumeration literal occurs in the text of a program, the
type of the enumeration literal has to be determinable from the context (see 8.6).]

Dynamic Semantics

10 {elaboration [enumeration_type_definition]} {constrained (subtype)} {unconstrained (subtype)} The elaboration of an
enumeration_type_definition creates the enumeration type and its first subtype, which is constrained to the
base range of the type.

10.a Ramification: The first subtype of a discrete type is always constrained, except in the case of a derived type whose
parent subtype is Whatever’Base.

11 When called, the parameterless function associated with an enumeration literal returns the corresponding
value of the enumeration type.

NOTES
12 22 If an enumeration literal occurs in a context that does not otherwise suffice to determine the type of the literal, then

qualification by the name of the enumeration type is one way to resolve the ambiguity (see 4.7).

Examples

13 Examples of enumeration types and subtypes:
14 type Day is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

type Suit is (Clubs, Diamonds, Hearts, Spades);
type Gender is (M, F);
type Level is (Low, Medium, Urgent);
type Color is (White, Red, Yellow, Green, Blue, Brown, Black);
type Light is (Red, Amber, Green); -- Red and Green are overloaded

15 type Hexa is (’A’, ’B’, ’C’, ’D’, ’E’, ’F’);
type Mixed is (’A’, ’B’, ’*’, B, None, ’?’, ’%’);

ISO/IEC 8652:1995(E) —AARM;6.0

63 21 December 1994 Enumeration Types 3.5.1

16subtype Weekday is Day range Mon .. Fri;
subtype Major is Suit range Hearts .. Spades;
subtype Rainbow is Color range Red .. Blue; -- the Color Red, not the Light

Wording Changes From Ada 83

16.aThe syntax rule for defining_character_literal is new. It is used for the defining occurrence of a character_literal,
analogously to defining_identifier. Usage occurrences use the name or selector_name syntactic categories.

16.bWe emphasize the fact that an enumeration literal denotes a function, which is called to produce a value.

3.5.2 Character Types
Static Semantics

1{character type} An enumeration type is said to be a character type if at least one of its enumeration literals
is a character_literal.

2{Latin-1} {BMP} {ISO 10646} {Character} The predefined type Character is a character type whose values
correspond to the 256 code positions of Row 00 (also known as Latin-1) of the ISO 10646 Basic Multilin-
gual Plane (BMP). Each of the graphic characters of Row 00 of the BMP has a corresponding character_
literal in Character. Each of the nongraphic positions of Row 00 (0000-001F and 007F-009F) has a
corresponding language-defined name, which is not usable as an enumeration literal, but which is usable
with the attributes (Wide_)Image and (Wide_)Value; these names are given in the definition of type
Character in A.1, ‘‘The Package Standard’’, but are set in italics. {italics (nongraphic characters)}

3{Wide_Character} {BMP} {ISO 10646} The predefined type Wide_Character is a character type whose values
correspond to the 65536 code positions of the ISO 10646 Basic Multilingual Plane (BMP). Each of the
graphic characters of the BMP has a corresponding character_literal in Wide_Character. The first 256
values of Wide_Character have the same character_literal or language-defined name as defined for
Character. The last 2 values of Wide_Character correspond to the nongraphic positions FFFE and FFFF
of the BMP, and are assigned the language-defined names FFFE and FFFF. As with the other language-
defined names for nongraphic characters, the names FFFE and FFFF are usable only with the attributes
(Wide_)Image and (Wide_)Value; they are not usable as enumeration literals. All other values of Wide_
Character are considered graphic characters, and have a corresponding character_literal.

3.aReason: The language-defined names are not usable as enumeration literals to avoid "polluting" the name space.
Since Wide_Character is defined in Standard, if the names FFFE and FFFF were usable as enumeration literals, they
would hide other nonoverloadable declarations with the same names in use-d packages.

3.bISO 10646 has not defined the meaning of all of the code positions from 0100 through FFFD, but they are all
considered graphic characters by Ada to simplify the implementation, and to allow for revisions to ISO 10646. In ISO
10646, FFFE and FFFF are special, and will never be associated with graphic characters in any revision.

Implementation Permissions

4{localization} In a nonstandard mode, an implementation may provide other interpretations for the
predefined types Character and Wide_Character[, to conform to local conventions].

Implementation Advice

5{localization} If an implementation supports a mode with alternative interpretations for Character and
Wide_Character, the set of graphic characters of Character should nevertheless remain a proper subset of
the set of graphic characters of Wide_Character. Any character set ‘‘localizations’’ should be reflected in
the results of the subprograms defined in the language-defined package Characters.Handling (see A.3)
available in such a mode. In a mode with an alternative interpretation of Character, the implementation
should also support a corresponding change in what is a legal identifier_letter.

ISO/IEC 8652:1995(E) —AARM;6.0

3.5.2 Character Types 21 December 1994 64

NOTES
6 23 The language-defined library package Characters.Latin_1 (see A.3.3) includes the declaration of constants denoting

control characters, lower case characters, and special characters of the predefined type Character.

6.a To be honest: The package ASCII does the same, but only for the first 128 characters of Character. Hence, it is an
obsolescent package, and we no longer mention it here.

7 24 A conventional character set such as EBCDIC can be declared as a character type; the internal codes of the characters
can be specified by an enumeration_representation_clause as explained in clause 13.4.

Examples

8 Example of a character type:
9 type Roman_Digit is (’I’, ’V’, ’X’, ’L’, ’C’, ’D’, ’M’);

Inconsistencies With Ada 83

9.a {inconsistencies with Ada 83} The declaration of Wide_Character in package Standard hides use-visible declarations
with the same defining identifier. In the unlikely event that an Ada 83 program had depended on such a use-visible
declaration, and the program remains legal after the substitution of Standard.Wide_Character, the meaning of the
program will be different.

Incompatibilities With Ada 83

9.b {incompatibilities with Ada 83} The presence of Wide_Character in package Standard means that an expression such
as

9.c ’a’ = ’b’

9.d is ambiguous in Ada 9X, whereas in Ada 83 both literals could be resolved to be of type Character.

9.e The change in visibility rules (see 4.2) for character literals means that additional qualification might be necessary to
resolve expressions involving overloaded subprograms and character literals.

Extensions to Ada 83

9.f {extensions to Ada 83} The type Character has been extended to have 256 positions, and the type Wide_Character has
been added. Note that this change was already approved by the ARG for Ada 83 conforming compilers.

9.g The rules for referencing character literals are changed (see 4.2), so that the declaration of the character type need not
be directly visible to use its literals, similar to null and string literals. Context is used to resolve their type.

3.5.3 Boolean Types
Static Semantics

1 {Boolean} There is a predefined enumeration type named Boolean, [declared in the visible part of package
Standard]. {False} {True} It has the two enumeration literals False and True ordered with the relation False
< True. {boolean type} Any descendant of the predefined type Boolean is called a boolean type.

1.a Implementation Note: An implementation is not required to support enumeration representation clauses on boolean
types that impose an unacceptable implementation burden. See 13.4, ‘‘Enumeration Representation Clauses’’.
However, it is generally straightforward to support representations where False is zero and True is 2**n – 1 for some n.

3.5.4 Integer Types
1 {integer type} {signed integer type} {modular type} An integer_type_definition defines an integer type; it defines

either a signed integer type, or a modular integer type. The base range of a signed integer type includes at
least the values of the specified range. A modular type is an integer type with all arithmetic modulo a
specified positive modulus; such a type corresponds to an unsigned type with wrap-around semantics.
{unsigned type: see modular type}

Syntax

2 integer_type_definition ::= signed_integer_type_definition | modular_type_definition

3 signed_integer_type_definition ::= range static_simple_expression .. static_simple_expression

ISO/IEC 8652:1995(E) —AARM;6.0

65 21 December 1994 Integer Types 3.5.4

3.aDiscussion: We don’t call this a range_constraint, because it is rather different — not only is it required to be static,
but the associated overload resolution rules are different than for normal range constraints. A similar comment applies
to real_range_specification. This used to be integer_range_specification but when we added support for modular types,
it seemed overkill to have three levels of syntax rules, and just calling these signed_integer_range_specification and
modular_range_specification loses the fact that they are defining different classes of types, which is important for the
generic type matching rules.

4modular_type_definition ::= mod static_expression

Name Resolution Rules

5{expected type [signed_integer_type_definition simple_expression]} Each simple_expression in a signed_integer_
type_definition is expected to be of any integer type; they need not be of the same type. {expected type

[modular_type_definition expression]} The expression in a modular_type_definition is likewise expected to be of
any integer type.

Legality Rules

6The simple_expressions of a signed_integer_type_definition shall be static, and their values shall be in the
range System.Min_Int .. System.Max_Int.

7{modulus (of a modular type)} {Max_Binary_Modulus} {Max_Nonbinary_Modulus} The expression of a modular_type_
definition shall be static, and its value (the modulus) shall be positive, and shall be no greater than
System.Max_Binary_Modulus if a power of 2, or no greater than System.Max_Nonbinary_Modulus if
not.

7.aReason: For a 2’s-complement machine, supporting nonbinary moduli greater than System.Max_Int can be quite
difficult, whereas essentially any binary moduli are straightforward to support, up to 2*System.Max_Int+2, so this
justifies having two separate limits.

Static Semantics

8The set of values for a signed integer type is the (infinite) set of mathematical integers[, though only
values of the base range of the type are fully supported for run-time operations]. The set of values for a
modular integer type are the values from 0 to one less than the modulus, inclusive.

9{base range [of a signed integer type]} A signed_integer_type_definition defines an integer type whose base
range includes at least the values of the simple_expressions and is symmetric about zero, excepting
possibly an extra negative value. {constrained (subtype)} {unconstrained (subtype)} A signed_integer_type_
definition also defines a constrained first subtype of the type, with a range whose bounds are given by the
values of the simple_expressions, converted to the type being defined. {implicit subtype conversion [bounds of
signed integer type]}

9.aImplementation Note: The base range of a signed integer type might be much larger than is necessary to satisfy the
aboved requirements.

10{base range [of a modular type]} A modular_type_definition defines a modular type whose base range is from
zero to one less than the given modulus. {constrained (subtype)} {unconstrained (subtype)} A modular_type_
definition also defines a constrained first subtype of the type with a range that is the same as the base
range of the type.

11{Integer} There is a predefined signed integer subtype named Integer[, declared in the visible part of
package Standard]. It is constrained to the base range of its type.

11.aReason: Integer is a constrained subtype, rather than an unconstrained subtype. This means that on assignment to an
object of subtype Integer, a range check is required. On the other hand, an object of subtype Integer’Base is
unconstrained, and no range check (only overflow check) is required on assignment. For example, if the object is held
in an extended-length register, its value might be outside of Integer’First .. Integer’Last. All parameter and result
subtypes of the predefined integer operators are of such unconstrained subtypes, allowing extended-length registers to
be used as operands or for the result. In an earlier version of Ada 9X, Integer was unconstrained. However, the fact

ISO/IEC 8652:1995(E) —AARM;6.0

3.5.4 Integer Types 21 December 1994 66

that certain Constraint_Errors might be omitted or appear elsewhere was felt to be an undesirable upward inconsistency
in this case. Note that for Float, the opposite conclusion was reached, partly because of the high cost of performing
range checks when not actually necessary. Objects of subtype Float are unconstrained, and no range checks, only
overflow checks, are performed for them.

12 {Natural} {Positive} Integer has two predefined subtypes, [declared in the visible part of package Standard:]
13 subtype Natural is Integer range 0 .. Integer’Last;

subtype Positive is Integer range 1 .. Integer’Last;

14 {root_integer} {Min_Int} {Max_Int} A type defined by an integer_type_definition is implicitly derived from
root_integer, an anonymous predefined (specific) integer type, whose base range is System.Min_Int ..
System.Max_Int. However, the base range of the new type is not inherited from root_integer, but is
instead determined by the range or modulus specified by the integer_type_definition. {universal_integer

[partial]} {integer literals} [Integer literals are all of the type universal_integer, the universal type (see 3.4.1)
for the class rooted at root_integer, allowing their use with the operations of any integer type.]

14.a Discussion: This implicit derivation is not considered exactly equivalent to explicit derivation via a derived_type_
definition. In particular, integer types defined via a derived_type_definition inherit their base range from their parent
type. A type defined by an integer_type_definition does not necessarily inherit its base range from root_integer. It is
not specified whether the implicit derivation from root_integer is direct or indirect, not that it really matters. All we
want is for all integer types to be descendants of root_integer.

14.b Implementation Note: It is the intent that even nonstandard integer types (see below) will be descendants of root_
integer, even though they might have a base range that exceeds that of root_integer. This causes no problem for static
calculations, which are performed without range restrictions (see 4.9). However for run-time calculations, it is possible
that Constraint_Error might be raised when using an operator of root_integer on the result of ’Val applied to a value of
a nonstandard integer type.

15 {position number [of an integer value]} The position number of an integer value is equal to the value.

16 For every modular subtype S, the following attribute is defined:

S’Modulus S’Modulus yields the modulus of the type of S, as a value of the type universal_17

integer.

Dynamic Semantics

18 {elaboration [integer_type_definition]} The elaboration of an integer_type_definition creates the integer type and
its first subtype.

19 For a modular type, if the result of the execution of a predefined operator (see 4.5) is outside the base
range of the type, the result is reduced modulo the modulus of the type to a value that is within the base
range of the type.

20 {Overflow_Check [partial]} {check, language-defined (Overflow_Check)} {Constraint_Error (raised by failure of run-time

check)} For a signed integer type, the exception Constraint_Error is raised by the execution of an operation
that cannot deliver the correct result because it is outside the base range of the type.[{Division_Check

[partial]} {check, language-defined (Division_Check)} {Constraint_Error (raised by failure of run-time check)} For any
integer type, Constraint_Error is raised by the operators "/", "rem", and "mod" if the right operand is
zero.]

Implementation Requirements

21 {Integer} In an implementation, the range of Integer shall include the range –2**15+1 .. +2**15–1.

22 {Long_Integer} If Long_Integer is predefined for an implementation, then its range shall include the range
–2**31+1 .. +2**31–1.

ISO/IEC 8652:1995(E) —AARM;6.0

67 21 December 1994 Integer Types 3.5.4

23System.Max_Binary_Modulus shall be at least 2**16.

Implementation Permissions

24For the execution of a predefined operation of a signed integer type, the implementation need not raise
Constraint_Error if the result is outside the base range of the type, so long as the correct result is
produced.

24.aDiscussion: Constraint_Error is never raised for operations on modular types, except for divide-by-zero (and
rem/mod-by-zero).

25{Long_Integer} {Short_Integer} An implementation may provide additional predefined signed integer types[,
declared in the visible part of Standard], whose first subtypes have names of the form Short_Integer,
Long_Integer, Short_Short_Integer, Long_Long_Integer, etc. Different predefined integer types are al-
lowed to have the same base range. However, the range of Integer should be no wider than that of Long_
Integer. Similarly, the range of Short_Integer (if provided) should be no wider than Integer. Correspond-
ing recommendations apply to any other predefined integer types. There need not be a named integer
type corresponding to each distinct base range supported by an implementation. The range of each first
subtype should be the base range of its type.

25.aImplementation defined: The predefined integer types declared in Standard.

26{nonstandard integer type} An implementation may provide nonstandard integer types, descendants of root_
integer that are declared outside of the specification of package Standard, which need not have all the
standard characteristics of a type defined by an integer_type_definition. For example, a nonstandard
integer type might have an asymmetric base range or it might not be allowed as an array or loop index (a
very long integer). Any type descended from a nonstandard integer type is also nonstandard. An im-
plementation may place arbitrary restrictions on the use of such types; it is implementation defined
whether operators that are predefined for ‘‘any integer type’’ are defined for a particular nonstandard
integer type. [In any case, such types are not permitted as explicit_generic_actual_parameters for formal
scalar types — see 12.5.2.]

26.aImplementation defined: Any nonstandard integer types and the operators defined for them.

27{one’s complement [modular types]} For a one’s complement machine, the high bound of the base range of a
modular type whose modulus is one less than a power of 2 may be equal to the modulus, rather than one
less than the modulus. It is implementation defined for which powers of 2, if any, this permission is
exercised.

Implementation Advice

28{Long_Integer} An implementation should support Long_Integer in addition to Integer if the target machine
supports 32-bit (or longer) arithmetic. No other named integer subtypes are recommended for package
Standard. Instead, appropriate named integer subtypes should be provided in the library package Inter-
faces (see B.2).

28.aImplementation Note: To promote portability, implementations should explicitly declare the integer (sub)types
Integer and Long_Integer in Standard, and leave other predefined integer types anonymous. For implementations that
already support Byte_Integer, etc., upward compatibility argues for keeping such declarations in Standard during the
transition period, but perhaps generating a warning on use. A separate package Interfaces in the predefined environ-
ment is available for pre-declaring types such as Integer_8, Integer_16, etc. See B.2. In any case, if the user declares a
subtype (first or not) whose range fits in, for example, a byte, the implementation can store variables of the subtype in a
single byte, even if the base range of the type is wider.

29{two’s complement [modular types]} An implementation for a two’s complement machine should support
modular types with a binary modulus up to System.Max_Int*2+2. An implementation should support a
nonbinary modulus up to Integer’Last.

ISO/IEC 8652:1995(E) —AARM;6.0

3.5.4 Integer Types 21 December 1994 68

29.a Reason: Modular types provide bit-wise "and", "or", "xor", and "not" operations. It is important for systems
programming that these be available for all integer types of the target hardware.

29.b Ramification: Note that on a one’s complement machine, the largest supported modular type would normally have a
nonbinary modulus. On a two’s complement machine, the largest supported modular type would normally have a
binary modulus.

29.c Implementation Note: Supporting a nonbinary modulus greater than Integer’Last can impose an undesirable
implementation burden on some machines.

NOTES
30 25 {universal_integer} {integer literals} Integer literals are of the anonymous predefined integer type universal_integer.

Other integer types have no literals. However, the overload resolution rules (see 8.6, ‘‘The Context of Overload
Resolution’’) allow expressions of the type universal_integer whenever an integer type is expected.

31 26 The same arithmetic operators are predefined for all signed integer types defined by a signed_integer_type_definition
(see 4.5, ‘‘Operators and Expression Evaluation’’). For modular types, these same operators are predefined, plus bit-wise
logical operators (and, or, xor, and not). In addition, for the unsigned types declared in the language-defined package
Interfaces (see B.2), functions are defined that provide bit-wise shifting and rotating.

32 27 Modular types match a generic_formal_parameter_declaration of the form "type T is mod <>;"; signed integer types
match "type T is range <>;" (see 12.5.2).

Examples

33 Examples of integer types and subtypes:
34 type Page_Num is range 1 .. 2_000;

type Line_Size is range 1 .. Max_Line_Size;

35 subtype Small_Int is Integer range -10 .. 10;
subtype Column_Ptr is Line_Size range 1 .. 10;
subtype Buffer_Size is Integer range 0 .. Max;

36 type Byte is mod 256; -- an unsigned byte
type Hash_Index is mod 97; -- modulus is prime

Extensions to Ada 83

36.a {extensions to Ada 83} An implementation is allowed to support any number of distinct base ranges for integer types,
even if fewer integer types are explicitly declared in Standard.

36.b Modular (unsigned, wrap-around) types are new.
Wording Changes From Ada 83

36.c Ada 83’s integer types are now called "signed" integer types, to contrast them with "modular" integer types.

36.d Standard.Integer, Standard.Long_Integer, etc., denote constrained subtypes of predefined integer types, consistent with
the Ada 9X model that only subtypes have names.

36.e We now impose minimum requirements on the base range of Integer and Long_Integer.

36.f We no longer explain integer type definition in terms of an equivalence to a normal type derivation, except to say that
all integer types are by definition implicitly derived from root_integer. This is for various reasons.

36.g First of all, the equivalence with a type derivation and a subtype declaration was not perfect, and was the source of
various AIs (for example, is the conversion of the bounds static? Is a numeric type a derived type with respect to other
rules of the language?)

36.h Secondly, we don’t want to require that every integer size supported shall have a corresponding named type in
Standard. Adding named types to Standard creates nonportabilities.

36.i Thirdly, we don’t want the set of types that match a formal derived type "type T is new Integer;" to depend on the
particular underlying integer representation chosen to implement a given user-defined integer type. Hence, we would
have needed anonymous integer types as parent types for the implicit derivation anyway. We have simply chosen to
identify only one anonymous integer type — root_integer, and stated that every integer type is derived from it.

36.j Finally, the ‘‘fiction’’ that there were distinct preexisting predefined types for every supported representation breaks
down for fixed point with arbitrary smalls, and was never exploited for enumeration types, array types, etc. Hence,
there seems little benefit to pushing an explicit equivalence between integer type definition and normal type derivation.

ISO/IEC 8652:1995(E) —AARM;6.0

69 21 December 1994 Operations of Discrete Types 3.5.5

3.5.5 Operations of Discrete Types
Static Semantics

1For every discrete subtype S, the following attributes are defined:

S’Pos S’Pos denotes a function with the following specification: 2

3function S’Pos(Arg : S’Base)
return universal_integer

This function returns the position number of the value of Arg, as a value of type 4

universal_integer.

S’Val S’Val denotes a function with the following specification: 5

6function S’Val(Arg : universal_integer)
return S’Base

{evaluation [Val]} {Constraint_Error (raised by failure of run-time check)} This function returns 7

a value of the type of S whose position number equals the value of Arg. {Range_Check

[partial]} {check, language-defined (Range_Check)} For the evaluation of a call on S’Val, if
there is no value in the base range of its type with the given position number,
Constraint_Error is raised.

7.aRamification: By the overload resolution rules, a formal parameter of type universal_integer allows an actual
parameter of any integer type.

7.bReason: We considered allowing S’Val for a signed integer subtype S to return an out-of-range value, but since
checks were required for enumeration and modular types anyway, the allowance didn’t seem worth the complexity of
the rule.

Implementation Advice

8For the evaluation of a call on S’Pos for an enumeration subtype, if the value of the operand does not
correspond to the internal code for any enumeration literal of its type [(perhaps due to an uninitialized
variable)], then the implementation should raise Program_Error. {Program_Error (raised by failure of run-time

check)} This is particularly important for enumeration types with noncontiguous internal codes specified
by an enumeration_representation_clause.

8.aReason: We say Program_Error here, rather than Constraint_Error, because the main reason for such values is
uninitialized variables, and the normal way to indicate such a use (if detected) is to raise Program_Error. (Other
reasons would involve the misuse of low-level features such as Unchecked_Conversion.)

NOTES
928 Indexing and loop iteration use values of discrete types.

1029 {predefined operations [of a discrete type]} The predefined operations of a discrete type include the assignment
operation, qualification, the membership tests, and the relational operators; for a boolean type they include the short-circuit
control forms and the logical operators; for an integer type they include type conversion to and from other numeric types,
as well as the binary and unary adding operators – and +, the multiplying operators, the unary operator abs, and the
exponentiation operator. The assignment operation is described in 5.2. The other predefined operations are described in
Section 4.

1130 As for all types, objects of a discrete type have Size and Address attributes (see 13.3).

1231 For a subtype of a discrete type, the result delivered by the attribute Val might not belong to the subtype; similarly, the
actual parameter of the attribute Pos need not belong to the subtype. The following relations are satisfied (in the absence
of an exception) by these attributes:

13S’Val(S’Pos(X)) = X
S’Pos(S’Val(N)) = N

Examples

14Examples of attributes of discrete subtypes:
15-- For the types and subtypes declared in subclause 3.5.1 the following hold:

16-- Color’First = White, Color’Last = Black
-- Rainbow’First = Red, Rainbow’Last = Blue

ISO/IEC 8652:1995(E) —AARM;6.0

3.5.5 Operations of Discrete Types 21 December 1994 70

17 -- Color’Succ(Blue) = Rainbow’Succ(Blue) = Brown
-- Color’Pos(Blue) = Rainbow’Pos(Blue) = 4
-- Color’Val(0) = Rainbow’Val(0) = White

Extensions to Ada 83

17.a {extensions to Ada 83} The attributes S’Succ, S’Pred, S’Width, S’Image, and S’Value have been generalized to apply
to real types as well (see 3.5, ‘‘Scalar Types’’).

3.5.6 Real Types
1 {real type} Real types provide approximations to the real numbers, with relative bounds on errors for

floating point types, and with absolute bounds for fixed point types.

Syntax

2 real_type_definition ::=
floating_point_definition | fixed_point_definition

Static Semantics

3 {root_real} A type defined by a real_type_definition is implicitly derived from root_real, an anonymous
predefined (specific) real type. [Hence, all real types, whether floating point or fixed point, are in the
derivation class rooted at root_real.]

3.a Ramification: It is not specified whether the derivation from root_real is direct or indirect, not that it really matters.
All we want is for all real types to be descendants of root_real.

4 [{universal_real [partial]} {real literals} Real literals are all of the type universal_real, the universal type (see
3.4.1) for the class rooted at root_real, allowing their use with the operations of any real type. {universal_

fixed [partial]} Certain multiplying operators have a result type of universal_fixed (see 4.5.5), the universal
type for the class of fixed point types, allowing the result of the multiplication or division to be used
where any specific fixed point type is expected.]

Dynamic Semantics

5 {elaboration [real_type_definition]} The elaboration of a real_type_definition consists of the elaboration of the
floating_point_definition or the fixed_point_definition.

Implementation Requirements

6 An implementation shall perform the run-time evaluation of a use of a predefined operator of root_real
with an accuracy at least as great as that of any floating point type definable by a floating_point_definition.

6.a Ramification: Static calculations using the operators of root_real are exact, as for all static calculations. See 4.9.

6.b Implementation Note: The Digits attribute of the type used to represent root_real at run time is at least as great as
that of any other floating point type defined by a floating_point_definition, and its safe range includes that of any such
floating point type with the same Digits attribute. On some machines, there might be real types with less accuracy but
a wider range, and hence run-time calculations with root_real might not be able to accommodate all values that can be
represented at run time in such floating point or fixed point types.

Implementation Permissions

7 [For the execution of a predefined operation of a real type, the implementation need not raise Constraint_
Error if the result is outside the base range of the type, so long as the correct result is produced, or the
Machine_Overflows attribute of the type is false (see G.2).]

8 {nonstandard real type}

8.a Implementation defined: Any nonstandard real types and the operators defined for them.

An implementation may provide nonstandard real types, descendants of root_real that are declared out-

ISO/IEC 8652:1995(E) —AARM;6.0

71 21 December 1994 Real Types 3.5.6

side of the specification of package Standard, which need not have all the standard characteristics of a
type defined by a real_type_definition. For example, a nonstandard real type might have an asymmetric or
unsigned base range, or its predefined operations might wrap around or ‘‘saturate’’ rather than overflow
(modular or saturating arithmetic), or it might not conform to the accuracy model (see G.2). Any type
descended from a nonstandard real type is also nonstandard. An implementation may place arbitrary
restrictions on the use of such types; it is implementation defined whether operators that are predefined
for ‘‘any real type’’ are defined for a particular nonstandard real type. [In any case, such types are not
permitted as explicit_generic_actual_parameters for formal scalar types — see 12.5.2.]

NOTES
932 As stated, real literals are of the anonymous predefined real type universal_real. Other real types have no literals.

However, the overload resolution rules (see 8.6) allow expressions of the type universal_real whenever a real type is
expected.

Wording Changes From Ada 83

9.aThe syntax rule for real_type_definition is modified to use the new syntactic categories floating_point_definition and
fixed_point_definition, instead of floating_point_constraint and fixed_point_constraint, because the semantics of a type
definition are significantly different than the semantics of a constraint.

9.bAll discussion of model numbers, safe ranges, and machine numbers is moved to 3.5.7, 3.5.8, and G.2. Values of a
fixed point type are now described as being multiples of the small of the fixed point type, and we have no need for
model numbers, safe ranges, etc. for fixed point types.

3.5.7 Floating Point Types
1{floating point type} For floating point types, the error bound is specified as a relative precision by giving the

required minimum number of significant decimal digits.

Syntax

2floating_point_definition ::=
digits static_expression [real_range_specification]

3real_range_specification ::=
range static_simple_expression .. static_simple_expression

Name Resolution Rules

4{requested decimal precision (of a floating point type)} The requested decimal precision, which is the minimum
number of significant decimal digits required for the floating point type, is specified by the value of the
expression given after the reserved word digits. {expected type [requested decimal precision]} This expression is
expected to be of any integer type.

5{expected type [real_range_specification bounds]} Each simple_expression of a real_range_specification is ex-
pected to be of any real type[; the types need not be the same].

Legality Rules

6{Max_Base_Digits} The requested decimal precision shall be specified by a static expression whose value is
positive and no greater than System.Max_Base_Digits. Each simple_expression of a real_range_
specification shall also be static. {Max_Digits} If the real_range_specification is omitted, the requested
decimal precision shall be no greater than System.Max_Digits.

6.aReason: We have added Max_Base_Digits to package System. It corresponds to the requested decimal precision of
root_real. System.Max_Digits corresponds to the maximum value for Digits that may be specified in the absence of a
real_range_specification, for upward compatibility. These might not be the same if root_real has a base range that does
not include ± 10.0**(4*Max_Base_Digits).

ISO/IEC 8652:1995(E) —AARM;6.0

3.5.7 Floating Point Types 21 December 1994 72

7 A floating_point_definition is illegal if the implementation does not support a floating point type that
satisfies the requested decimal precision and range.

7.a Implementation defined: What combinations of requested decimal precision and range are supported for floating
point types.

Static Semantics

8 The set of values for a floating point type is the (infinite) set of rational numbers. {machine numbers (of a

floating point type)} The machine numbers of a floating point type are the values of the type that can be
represented exactly in every unconstrained variable of the type. {base range [of a floating point type]} The base
range (see 3.5) of a floating point type is symmetric around zero, except that it can include some extra
negative values in some implementations.

8.a Implementation Note: For example, if a 2’s complement representation is used for the mantissa rather than a
sign-mantissa or 1’s complement representation, then there is usually one extra negative machine number.

8.b To be honest: If the Signed_Zeros attribute is True, then minus zero could in a sense be considered a value of the
type. However, for most purposes, minus zero behaves the same as plus zero.

9 {base decimal precision (of a floating point type)} The base decimal precision of a floating point type is the
number of decimal digits of precision representable in objects of the type. {safe range (of a floating point type)}

The safe range of a floating point type is that part of its base range for which the accuracy corresponding
to the base decimal precision is preserved by all predefined operations.

9.a Implementation Note: In most cases, the safe range and base range are the same. However, for some hardware,
values near the boundaries of the base range might result in excessive inaccuracies or spurious overflows when used
with certain predefined operations. For such hardware, the safe range would omit such values.

10 {base decimal precision [of a floating point type]} A floating_point_definition defines a floating point type whose
base decimal precision is no less than the requested decimal precision. {safe range [of a floating point type]}
{base range [of a floating point type]} If a real_range_specification is given, the safe range of the floating point
type (and hence, also its base range) includes at least the values of the simple expressions given in the
real_range_specification. If a real_range_specification is not given, the safe (and base) range of the type
includes at least the values of the range –10.0**(4*D) .. +10.0**(4*D) where D is the requested decimal
precision. [The safe range might include other values as well. The attributes Safe_First and Safe_Last
give the actual bounds of the safe range.]

11 A floating_point_definition also defines a first subtype of the type. {constrained (subtype)} {unconstrained

(subtype)} If a real_range_specification is given, then the subtype is constrained to a range whose bounds
are given by a conversion of the values of the simple_expressions of the real_range_specification to the
type being defined. {implicit subtype conversion [bounds of a floating point type]} Otherwise, the subtype is
unconstrained.

12 {Float} There is a predefined, unconstrained, floating point subtype named Float[, declared in the visible
part of package Standard].

Dynamic Semantics

13 {elaboration [floating_point_definition]} [The elaboration of a floating_point_definition creates the floating point
type and its first subtype.]

Implementation Requirements

14 {Float} In an implementation that supports floating point types with 6 or more digits of precision, the
requested decimal precision for Float shall be at least 6.

ISO/IEC 8652:1995(E) —AARM;6.0

73 21 December 1994 Floating Point Types 3.5.7

15{Long_Float} If Long_Float is predefined for an implementation, then its requested decimal precision shall
be at least 11.

Implementation Permissions

16{Short_Float} {Long_Float} An implementation is allowed to provide additional predefined floating point
types[, declared in the visible part of Standard], whose (unconstrained) first subtypes have names of the
form Short_Float, Long_Float, Short_Short_Float, Long_Long_Float, etc. Different predefined floating
point types are allowed to have the same base decimal precision. However, the precision of Float should
be no greater than that of Long_Float. Similarly, the precision of Short_Float (if provided) should be no
greater than Float. Corresponding recommendations apply to any other predefined floating point types.
There need not be a named floating point type corresponding to each distinct base decimal precision
supported by an implementation.

16.aImplementation defined: The predefined floating point types declared in Standard.

Implementation Advice

17{Long_Float} An implementation should support Long_Float in addition to Float if the target machine
supports 11 or more digits of precision. No other named floating point subtypes are recommended for
package Standard. Instead, appropriate named floating point subtypes should be provided in the library
package Interfaces (see B.2).

17.aImplementation Note: To promote portability, implementations should explicitly declare the floating point (sub)types
Float and Long_Float in Standard, and leave other predefined float types anonymous. For implementations that already
support Short_Float, etc., upward compatibility argues for keeping such declarations in Standard during the transition
period, but perhaps generating a warning on use. A separate package Interfaces in the predefined environment is
available for pre-declaring types such as Float_32, IEEE_Float_64, etc. See B.2.

NOTES
1833 If a floating point subtype is unconstrained, then assignments to variables of the subtype involve only Overflow_

Checks, never Range_Checks.

Examples

19Examples of floating point types and subtypes:
20type Coefficient is digits 10 range -1.0 .. 1.0;

21type Real is digits 8;
type Mass is digits 7 range 0.0 .. 1.0E35;

22subtype Probability is Real range 0.0 .. 1.0; -- a subtype with a smaller range

Inconsistencies With Ada 83

22.a{inconsistencies with Ada 83} No Range_Checks, only Overflow_Checks, are performed on variables (or parameters)
of an unconstrained floating point subtype. This is upward compatible for programs that do not raise Constraint_Error.
For those that do raise Constraint_Error, it is possible that the exception will be raised at a later point, or not at all, if
extended range floating point registers are used to hold the value of the variable (or parameter).

22.bReason: This change was felt to be justified by the possibility of improved performance on machines with
extended-range floating point registers. An implementation need not take advantage of this relaxation in the range
checking; it can hide completely the use of extended range registers if desired, presumably at some run-time expense.

Wording Changes From Ada 83

22.cThe syntax rules for floating_point_constraint and floating_accuracy_definition are removed. The syntax rules for
floating_point_definition and real_range_specification are new.

22.dA syntax rule for digits_constraint is given in 3.5.9, ‘‘Fixed Point Types’’. In J.3 we indicate that a digits_constraint
may be applied to a floating point subtype_mark as well (to be compatible with Ada 83’s floating_point_constraint).

22.eDiscussion of model numbers is postponed to 3.5.8 and G.2. The concept of safe numbers has been replaced by the
concept of the safe range of values. The bounds of the safe range are given by T’Safe_First .. T’Safe_Last, rather than
-T’Safe_Large .. T’Safe_Large, since on some machines the safe range is not perfectly symmetric. The concept of
machine numbers is new, and is relevant to the definition of Succ and Pred for floating point numbers.

ISO/IEC 8652:1995(E) —AARM;6.0

3.5.8 Operations of Floating Point Types 21 December 1994 74

3.5.8 Operations of Floating Point Types
Static Semantics

1 The following attribute is defined for every floating point subtype S:

S’Digits S’Digits denotes the requested decimal precision for the subtype S. The value of this2

attribute is of the type universal_integer. The requested decimal precision of the base
subtype of a floating point type T is defined to be the largest value of d for which
ceiling(d * log(10) / log(T’Machine_Radix)) + 1 <= T’Model_Mantissa.

NOTES
3 34 {predefined operations [of a floating point type]} The predefined operations of a floating point type include the

assignment operation, qualification, the membership tests, and explicit conversion to and from other numeric types. They
also include the relational operators and the following predefined arithmetic operators: the binary and unary adding
operators – and +, certain multiplying operators, the unary operator abs, and the exponentiation operator.

4 35 As for all types, objects of a floating point type have Size and Address attributes (see 13.3). Other attributes of
floating point types are defined in A.5.3.

3.5.9 Fixed Point Types
1 {fixed point type} {ordinary fixed point type} {decimal fixed point type} A fixed point type is either an ordinary fixed

point type, or a decimal fixed point type. {delta (of a fixed point type)} The error bound of a fixed point type is
specified as an absolute value, called the delta of the fixed point type.

Syntax

2 fixed_point_definition ::= ordinary_fixed_point_definition | decimal_fixed_point_definition

3 ordinary_fixed_point_definition ::=
delta static_expression real_range_specification

4 decimal_fixed_point_definition ::=
delta static_expression digits static_expression [real_range_specification]

5 digits_constraint ::=
digits static_expression [range_constraint]

Name Resolution Rules

6 {expected type [fixed point type delta]} For a type defined by a fixed_point_definition, the delta of the type is
specified by the value of the expression given after the reserved word delta; this expression is expected
to be of any real type. {expected type [decimal fixed point type digits]} {digits (of a decimal fixed point subtype)} {decimal

fixed point type} For a type defined by a decimal_fixed_point_definition (a decimal fixed point type), the
number of significant decimal digits for its first subtype (the digits of the first subtype) is specified by the
expression given after the reserved word digits; this expression is expected to be of any integer type.

Legality Rules

7 In a fixed_point_definition or digits_constraint, the expressions given after the reserved words delta and
digits shall be static; their values shall be positive.

8 {small (of a fixed point type)} The set of values of a fixed point type comprise the integral multiples of a
number called the small of the type. {ordinary fixed point type} For a type defined by an ordinary_fixed_
point_definition (an ordinary fixed point type), the small may be specified by an attribute_definition_
clause (see 13.3); if so specified, it shall be no greater than the delta of the type. If not specified, the
small of an ordinary fixed point type is an implementation-defined power of two less than or equal to the
delta.

ISO/IEC 8652:1995(E) —AARM;6.0

75 21 December 1994 Fixed Point Types 3.5.9

8.aImplementation defined: The small of an ordinary fixed point type.

9For a decimal fixed point type, the small equals the delta; the delta shall be a power of 10. If a real_
range_specification is given, both bounds of the range shall be in the range –(10**digits–1)*delta ..
+(10**digits–1)*delta.

10A fixed_point_definition is illegal if the implementation does not support a fixed point type with the given
small and specified range or digits.

10.aImplementation defined: What combinations of small, range, and digits are supported for fixed point types.

11For a subtype_indication with a digits_constraint, the subtype_mark shall denote a decimal fixed point
subtype.

11.aTo be honest: Or, as an obsolescent feature, a floating point subtype is permitted — see J.3.

Static Semantics

12{base range [of a fixed point type]} The base range (see 3.5) of a fixed point type is symmetric around zero,
except possibly for an extra negative value in some implementations.

13{base range [of an ordinary fixed point type]} An ordinary_fixed_point_definition defines an ordinary fixed point
type whose base range includes at least all multiples of small that are between the bounds specified in the
real_range_specification. The base range of the type does not necessarily include the specified bounds
themselves. {constrained (subtype)} {unconstrained (subtype)} An ordinary_fixed_point_definition also defines a
constrained first subtype of the type, with each bound of its range given by the closer to zero of:

14• the value of the conversion to the fixed point type of the corresponding expression of the
real_range_specification; {implicit subtype conversion [bounds of a fixed point type]}

15• the corresponding bound of the base range.

16{base range [of a decimal fixed point type]} A decimal_fixed_point_definition defines a decimal fixed point type
whose base range includes at least the range –(10**digits–1)*delta .. +(10**digits–1)*delta. {constrained

(subtype)} {unconstrained (subtype)} A decimal_fixed_point_definition also defines a constrained first subtype
of the type. If a real_range_specification is given, the bounds of the first subtype are given by a conver-
sion of the values of the expressions of the real_range_specification. {implicit subtype conversion [bounds of a
decimal fixed point type]} Otherwise, the range of the first subtype is –(10**digits–1)*delta ..
+(10**digits–1)*delta.

Dynamic Semantics

17{elaboration [fixed_point_definition]} The elaboration of a fixed_point_definition creates the fixed point type
and its first subtype.

18For a digits_constraint on a decimal fixed point subtype with a given delta, if it does not have a range_
constraint, then it specifies an implicit range –(10**D–1)*delta .. +(10**D–1)*delta, where D is the
value of the expression. {compatibility (digits_constraint with a decimal fixed point subtype)} A digits_constraint is
compatible with a decimal fixed point subtype if the value of the expression is no greater than the digits
of the subtype, and if it specifies (explicitly or implicitly) a range that is compatible with the subtype.

18.aDiscussion: Except for the requirement that the digits specified be no greater than the digits of the subtype being
constrained, a digits_constraint is essentially equivalent to a range_constraint.

18.bConsider the following example:

18.ctype D is delta 0.01 digits 7 range -0.00 .. 9999.99;

ISO/IEC 8652:1995(E) —AARM;6.0

3.5.9 Fixed Point Types 21 December 1994 76

18.d The compatibility rule implies that the digits_constraint "digits 6" specifies an implicit range of "– 99.9999 .. 99.9999".
Thus, "digits 6" is not compatible with the constraint of D, but "digits 6 range 0.00 .. 9999.99" is compatible.

18.e A value of a scalar type belongs to a constrained subtype of the type if it belongs to the range of the subtype. Attributes
like Digits and Delta have no affect on this fundamental rule. So the obsolescent forms of digits_constraints and delta_
constraints that are called ‘‘accuracy constraints’’ in RM83 don’t really represent constraints on the values of the
subtype, but rather primarily affect compatibility of the ‘‘constraint’’ with the subtype being ‘‘constrained.’’ In this
sense, they might better be called ‘‘subtype assertions’’ rather than ‘‘constraints.’’

18.f Note that the digits_constraint on a decimal fixed point subtype is a combination of an assertion about the digits of the
subtype being further constrained, and a constraint on the range of the subtype being defined, either explicit or implicit.

19 {elaboration [digits_constraint]} The elaboration of a digits_constraint consists of the elaboration of the range_
constraint, if any. {Range_Check [partial]} {check, language-defined (Range_Check)} If a range_constraint is given,
a check is made that the bounds of the range are both in the range –(10**D–1)*delta ..
+(10**D–1)*delta, where D is the value of the (static) expression given after the reserved word digits.
{Constraint_Error (raised by failure of run-time check)} If this check fails, Constraint_Error is raised.

Implementation Requirements

20 The implementation shall support at least 24 bits of precision (including the sign bit) for fixed point types.
20.a Reason: This is sufficient to represent Standard.Duration with a small no more than 50 milliseconds.

Implementation Permissions

21 Implementations are permitted to support only smalls that are a power of two. In particular, all decimal
fixed point type declarations can be disallowed. Note however that conformance with the Information
Systems Annex requires support for decimal smalls, and decimal fixed point type declarations with digits
up to at least 18.

21.a Implementation Note: The accuracy requirements for multiplication, division, and conversion (see G.2.1, ‘‘Model of
Floating Point Arithmetic’’) are such that support for arbitrary smalls should be practical without undue implemen-
tation effort. Therefore, implementations should support fixed point types with arbitrary values for small (within
reason). One reasonable limitation would be to limit support to fixed point types that can be converted to the most
precise floating point type without loss of precision (so that Fixed_IO is implementable in terms of Float_IO).

NOTES
22 36 The base range of an ordinary fixed point type need not include the specified bounds themselves so that the range

specification can be given in a natural way, such as:

23 type Fraction is delta 2.0**(-15) range -1.0 .. 1.0;

24 With 2’s complement hardware, such a type could have a signed 16-bit representation, using 1 bit for the sign and 15 bits
for fraction, resulting in a base range of –1.0 .. 1.0–2.0**(–15).

Examples

25 Examples of fixed point types and subtypes:
26 type Volt is delta 0.125 range 0.0 .. 255.0;

27 -- A pure fraction which requires all the available
-- space in a word can be declared as the type Fraction:

type Fraction is delta System.Fine_Delta range -1.0 .. 1.0;
-- Fraction’Last = 1.0 - System.Fine_Delta

28 type Money is delta 0.01 digits 15; -- decimal fixed point
subtype Salary is Money digits 10;

-- Money’Last = 10.0**13 - 0.01, Salary’Last = 10.0**8 - 0.01

Inconsistencies With Ada 83

28.a {inconsistencies with Ada 83} In Ada 9X, S’Small always equals S’Base’Small, so if an implementation chooses a
small for a fixed point type smaller than required by the delta, the value of S’Small in Ada 9X might not be the same as
it was in Ada 83.

ISO/IEC 8652:1995(E) —AARM;6.0

77 21 December 1994 Fixed Point Types 3.5.9

Extensions to Ada 83

28.b{extensions to Ada 83} Decimal fixed point types are new, though their capabilities are essentially similar to that
available in Ada 83 with a fixed point type whose small equals its delta equals a power of 10. However, in the
Information Systems Annex, additional requirements are placed on the support of decimal fixed point types (e.g. a
minimum of 18 digits of precision).

Wording Changes From Ada 83

28.cThe syntax rules for fixed_point_constraint and fixed_accuracy_definition are removed. The syntax rule for fixed_point_
definition is new. A syntax rule for delta_constraint is included in the Obsolescent features (to be compatible with Ada
83’s fixed_point_constraint).

3.5.10 Operations of Fixed Point Types
Static Semantics

1The following attributes are defined for every fixed point subtype S:

S’Small S’Small denotes the small of the type of S. The value of this attribute is of the type 2

universal_real. {specifiable [of Small for fixed point types]} {Small clause} Small may be
specified for nonderived fixed point types via an attribute_definition_clause (see
13.3); the expression of such a clause shall be static.

S’Delta S’Delta denotes the delta of the fixed point subtype S. The value of this attribute is of 3

the type universal_real.
3.aReason: The delta is associated with the subtype as opposed to the type, because of the possibility of an (obsolescent)

delta_constraint.

S’Fore S’Fore yields the minimum number of characters needed before the decimal point for 4

the decimal representation of any value of the subtype S, assuming that the represen-
tation does not include an exponent, but includes a one-character prefix that is either a
minus sign or a space. (This minimum number does not include superfluous zeros or
underlines, and is at least 2.) The value of this attribute is of the type universal_
integer.

S’Aft S’Aft yields the number of decimal digits needed after the decimal point to accom- 5

modate the delta of the subtype S, unless the delta of the subtype S is greater than 0.1,
in which case the attribute yields the value one. [(S’Aft is the smallest positive
integer N for which (10**N)*S’Delta is greater than or equal to one.)] The value of
this attribute is of the type universal_integer.

6The following additional attributes are defined for every decimal fixed point subtype S:

S’Digits S’Digits denotes the digits of the decimal fixed point subtype S, which corresponds to 7

the number of decimal digits that are representable in objects of the subtype. The
value of this attribute is of the type universal_integer. Its value is determined as
follows: {digits (of a decimal fixed point subtype)}

8• For a first subtype or a subtype defined by a subtype_indication with a
digits_constraint, the digits is the value of the expression given after the
reserved word digits;

9• For a subtype defined by a subtype_indication without a digits_constraint,
the digits of the subtype is the same as that of the subtype denoted by the
subtype_mark in the subtype_indication.

9.aImplementation Note: Although a decimal subtype can be both range-constrained and digits-constrained, the
digits constraint is intended to control the Size attribute of the subtype. For decimal types, Size can be
important because input/output of decimal types is so common.

10• The digits of a base subtype is the largest integer D such that the range
–(10**D–1)*delta .. +(10**D–1)*delta is included in the base range of
the type.

ISO/IEC 8652:1995(E) —AARM;6.0

3.5.10 Operations of Fixed Point Types 21 December 1994 78

S’Scale S’Scale denotes the scale of the subtype S, defined as the value N such that S’Delta =11

10.0**(–N). {scale (of a decimal fixed point subtype)} [The scale indicates the position of
the point relative to the rightmost significant digits of values of subtype S.] The value
of this attribute is of the type universal_integer.

11.a Ramification: S’Scale is negative if S’Delta is greater than one. By contrast, S’Aft is always positive.

S’Round S’Round denotes a function with the following specification:12

13 function S’Round(X : universal_real)
return S’Base

The function returns the value obtained by rounding X (away from 0, if X is midway14

between two values of the type of S).

NOTES
15 37 All subtypes of a fixed point type will have the same value for the Delta attribute, in the absence of delta_constraints

(see J.3).

16 38 S’Scale is not always the same as S’Aft for a decimal subtype; for example, if S’Delta = 1.0 then S’Aft is 1 while
S’Scale is 0.

17 39 {predefined operations [of a fixed point type]} The predefined operations of a fixed point type include the assignment
operation, qualification, the membership tests, and explicit conversion to and from other numeric types. They also include
the relational operators and the following predefined arithmetic operators: the binary and unary adding operators – and +,
multiplying operators, and the unary operator abs.

18 40 As for all types, objects of a fixed point type have Size and Address attributes (see 13.3). Other attributes of fixed
point types are defined in A.5.4.

3.6 Array Types
1 {array} {array type} An array object is a composite object consisting of components which all have the

same subtype. The name for a component of an array uses one or more index values belonging to
specified discrete types. The value of an array object is a composite value consisting of the values of the
components.

Syntax

2 array_type_definition ::=
unconstrained_array_definition | constrained_array_definition

3 unconstrained_array_definition ::=
array(index_subtype_definition {, index_subtype_definition}) of component_definition

4 index_subtype_definition ::= subtype_mark range <>

5 constrained_array_definition ::=
array (discrete_subtype_definition {, discrete_subtype_definition}) of component_definition

6 discrete_subtype_definition ::= discrete_subtype_indication | range

7 component_definition ::= [aliased] subtype_indication

Name Resolution Rules

8 {expected type [discrete_subtype_definition range]} For a discrete_subtype_definition that is a range, the range
shall resolve to be of some specific discrete type[; which discrete type shall be determined without using
any context other than the bounds of the range itself (plus the preference for root_integer — see 8.6).]

Legality Rules

9 {index subtype} Each index_subtype_definition or discrete_subtype_definition in an array_type_definition
defines an index subtype; {index type} its type (the index type) shall be discrete.

ISO/IEC 8652:1995(E) —AARM;6.0

79 21 December 1994 Array Types 3.6

9.aDiscussion: {index (of an array)} An index is a discrete quantity used to select along a given dimension of an array.
A component is selected by specifying corresponding values for each of the indices.

10{component subtype} The subtype defined by the subtype_indication of a component_definition (the
component subtype) shall be a definite subtype.

10.aRamification: This applies to all uses of component_definition, including in record_type_definitions and protected_
definitions.

11Within the definition of a nonlimited composite type (or a limited composite type that later in its im-
mediate scope becomes nonlimited — see 7.3.1 and 7.5), if a component_definition contains the reserved
word aliased and the type of the component is discriminated, then the nominal subtype of the component
shall be constrained.

11.aReason: If we allowed the subtype to be unconstrained, then the discriminants might change because of an assignment
to the containing (nonlimited) object, thus causing a potential violation of an access subtype constraint of an access
value designating the aliased component.

11.bNote that the rule elsewhere defining all aliased discriminated objects to be constrained does not help — that rule
prevents assignments to the component itself from doing any harm, but not assignments to the containing object.

11.cWe allow this for components within limited types since assignment to the enclosing object is not a problem.
Furthermore, it is important to be able to use a default expression for a discriminant in arrays of limited components,
since that is the only way to give the components different values for their discriminants. For example:

11.dprotected type Counter_Type(Initial_Value : Integer := 1) is
procedure Get_Next(Next_Value : out Integer);

-- Returns the next value on each call, bumping Count
-- before returning.

private
Count : Integer := Initial_Value;

end Counter_Type;
protected body Counter_Type is ...

11.efunction Next_Id(Counter : access Counter_Type) return Integer is
Result : Integer;

begin
Counter.Get_Next(Result);
return Result;

end Next_Id;

11.fC : aliased Counter_Type;
task type T(Who_Am_I : Integer := Next_Id(C’Access));
task body T is ...

11.gTask_Array : array(1..100) of aliased T;
-- Array of task elements, each with its own unique ID.
-- We specify "aliased" so we can use Task_Array(I)’Access.
-- This is safe because Task_Array is of a limited type,
-- so there is no way an assignment to it could change
-- the discriminants of one of its components.

11.hRamification: Note that this rule applies to array components and record components, but not to protected type
components (since they are always limited).

Static Semantics

12{dimensionality (of an array)} {one-dimensional array} {multi-dimensional array} An array is characterized by the
number of indices (the dimensionality of the array), the type and position of each index, the lower and
upper bounds for each index, and the subtype of the components. The order of the indices is significant.

13A one-dimensional array has a distinct component for each possible index value. A multidimensional
array has a distinct component for each possible sequence of index values that can be formed by selecting
one value for each index position (in the given order). The possible values for a given index are all the
values between the lower and upper bounds, inclusive; {index range} this range of values is called the index

ISO/IEC 8652:1995(E) —AARM;6.0

3.6 Array Types 21 December 1994 80

range. {bounds (of an array)} The bounds of an array are the bounds of its index ranges. {length (of a dimension

of an array)} The length of a dimension of an array is the number of values of the index range of the
dimension (zero for a null range). {length (of a one-dimensional array)} The length of a one-dimensional array
is the length of its only dimension.

14 An array_type_definition defines an array type and its first subtype. For each object of this array type, the
number of indices, the type and position of each index, and the subtype of the components are as in the
type definition[; the values of the lower and upper bounds for each index belong to the corresponding
index subtype of its type, except for null arrays (see 3.6.1)].

15 {constrained (subtype)} {unconstrained (subtype)} An unconstrained_array_definition defines an array type with
an unconstrained first subtype. Each index_subtype_definition defines the corresponding index subtype to
be the subtype denoted by the subtype_mark.[{box [compound delimiter]} The compound delimiter <> (called
a box) of an index_subtype_definition stands for an undefined range (different objects of the type need not
have the same bounds).]

16 {constrained (subtype)} {unconstrained (subtype)} A constrained_array_definition defines an array type with a
constrained first subtype. Each discrete_subtype_definition defines the corresponding index subtype, as
well as the corresponding index range for the constrained first subtype. {constraint [of a first array subtype]}

The constraint of the first subtype consists of the bounds of the index ranges.
16.a Discussion: Although there is no namable unconstrained array subtype in this case, the predefined slicing and

concatenation operations can operate on and yield values that do not necessarily belong to the first array subtype. This
is also true for Ada 83.

17 The discrete subtype defined by a discrete_subtype_definition is either that defined by the subtype_
indication, or a subtype determined by the range as follows:

18 • If the type of the range resolves to root_integer, then the discrete_subtype_definition defines
a subtype of the predefined type Integer with bounds given by a conversion to Integer of the
bounds of the range; {implicit subtype conversion [bounds of a range]}

18.a Reason: This ensures that indexing over the discrete subtype can be performed with regular Integers, rather
than only universal_integers.

18.b Discussion: We considered doing this by simply creating a ‘‘preference’’ for Integer when resolving the range.
{Beaujolais effect [partial]} However, this can introduce Beaujolais effects when the simple_expressions
involve calls on functions visible due to use clauses.

19 • Otherwise, the discrete_subtype_definition defines a subtype of the type of the range, with
the bounds given by the range.

20 {nominal subtype [of a component]} The component_definition of an array_type_definition defines the nominal
subtype of the components. If the reserved word aliased appears in the component_definition, then each
component of the array is aliased (see 3.10).

20.a Ramification: In this case, the nominal subtype cannot be an unconstrained discriminated subtype. See 3.8.

Dynamic Semantics

21 {elaboration [array_type_definition]} The elaboration of an array_type_definition creates the array type and its
first subtype, and consists of the elaboration of any discrete_subtype_definitions and the component_
definition.

22 {elaboration [discrete_subtype_definition]} The elaboration of a discrete_subtype_definition creates the discrete
subtype, and consists of the elaboration of the subtype_indication or the evaluation of the range.

ISO/IEC 8652:1995(E) —AARM;6.0

81 21 December 1994 Array Types 3.6

{elaboration [component_definition]} The elaboration of a component_definition in an array_type_definition
consists of the elaboration of the subtype_indication. The elaboration of any discrete_subtype_definitions
and the elaboration of the component_definition are performed in an arbitrary order.

NOTES
2341 All components of an array have the same subtype. In particular, for an array of components that are one-dimensional

arrays, this means that all components have the same bounds and hence the same length.

2442 Each elaboration of an array_type_definition creates a distinct array type. A consequence of this is that each object
whose object_declaration contains an array_type_definition is of its own unique type.

Examples

25Examples of type declarations with unconstrained array definitions:
26type Vector is array(Integer range <>) of Real;

type Matrix is array(Integer range <>, Integer range <>) of Real;
type Bit_Vector is array(Integer range <>) of Boolean;
type Roman is array(Positive range <>) of Roman_Digit; -- see 3.5.2

27Examples of type declarations with constrained array definitions:
28type Table is array(1 .. 10) of Integer;

type Schedule is array(Day) of Boolean;
type Line is array(1 .. Max_Line_Size) of Character;

29Examples of object declarations with array type definitions:
30Grid : array(1 .. 80, 1 .. 100) of Boolean;

Mix : array(Color range Red .. Green) of Boolean;
Page : array(Positive range <>) of Line := -- an array of arrays

(1 | 50 => Line’(1 | Line’Last => ’+’, others => ’-’), -- see 4.3.3
2 .. 49 => Line’(1 | Line’Last => ’|’, others => ’ ’));

-- Page is constrained by its initial value to (1..50)

Extensions to Ada 83

30.a{extensions to Ada 83} The syntax rule for component_definition is modified to allow the reserved word aliased.

30.bThe syntax rules for unconstrained_array_definition and constrained_array_definition are modified to use component_
definition (instead of component_subtype_indication). The effect of this change is to allow the reserved word aliased
before the component subtype_indication.

30.cA range in a discrete_subtype_definition may use arbitrary universal expressions for each bound (e.g. –1 .. 3+5), rather
than strictly "implicitly convertible" operands. The subtype defined will still be a subtype of Integer.

Wording Changes From Ada 83

30.dWe introduce a new syntactic category, discrete_subtype_definition, as distinct from discrete_range. These two
constructs have the same syntax, but their semantics are quite different (one defines a subtype, with a preference for
Integer subtypes, while the other just selects a subrange of an existing subtype). We use this new syntactic category in
for loops and entry families.

30.eThe syntax for index_constraint and discrete_range have been moved to their own subclause, since they are no longer
used here.

30.fThe syntax rule for component_definition (formerly component_subtype_definition) is moved here from RM83-3.7.

3.6.1 Index Constraints and Discrete Ranges
1An index_constraint determines the range of possible values for every index of an array subtype, and

thereby the corresponding array bounds.

ISO/IEC 8652:1995(E) —AARM;6.0

3.6.1 Index Constraints and Discrete Ranges 21 December 1994 82

Syntax

2 index_constraint ::= (discrete_range {, discrete_range})

3 discrete_range ::= discrete_subtype_indication | range

Name Resolution Rules

4 {type of a discrete_range} The type of a discrete_range is the type of the subtype defined by the subtype_
indication, or the type of the range. {expected type [index_constraint discrete_range]} For an index_constraint,
each discrete_range shall resolve to be of the type of the corresponding index.

4.a Discussion: In Ada 9X, index_constraints only appear in a subtype_indication; they no longer appear in constrained_
array_definitions.

Legality Rules

5 An index_constraint shall appear only in a subtype_indication whose subtype_mark denotes either an
unconstrained array subtype, or an unconstrained access subtype whose designated subtype is an uncon-
strained array subtype; in either case, the index_constraint shall provide a discrete_range for each index
of the array type.

Static Semantics

6 {bounds (of a discrete_range)} A discrete_range defines a range whose bounds are given by the range, or by
the range of the subtype defined by the subtype_indication.

Dynamic Semantics

7 {compatibility [index constraint with a subtype]} An index_constraint is compatible with an unconstrained array
subtype if and only if the index range defined by each discrete_range is compatible (see 3.5) with the
corresponding index subtype. {null array} If any of the discrete_ranges defines a null range, any array thus
constrained is a null array, having no components. {satisfies [an index constraint]} An array value satisfies an
index_constraint if at each index position the array value and the index_constraint have the same index
bounds.

7.a Ramification: There is no need to define compatibility with a constrained array subtype, because one is not allowed to
constrain it again.

8 {elaboration [index_constraint]} The elaboration of an index_constraint consists of the evaluation of the
discrete_range(s), in an arbitrary order. {evaluation [discrete_range]} The evaluation of a discrete_range
consists of the elaboration of the subtype_indication or the evaluation of the range.

NOTES
9 43 The elaboration of a subtype_indication consisting of a subtype_mark followed by an index_constraint checks the

compatibility of the index_constraint with the subtype_mark (see 3.2.2).

10 44 Even if an array value does not satisfy the index constraint of an array subtype, Constraint_Error is not raised on
conversion to the array subtype, so long as the length of each dimension of the array value and the array subtype match.
See 4.6.

Examples

11 Examples of array declarations including an index constraint:
12 Board : Matrix(1 .. 8, 1 .. 8); -- see 3.6

Rectangle : Matrix(1 .. 20, 1 .. 30);
Inverse : Matrix(1 .. N, 1 .. N); -- N need not be static

13 Filter : Bit_Vector(0 .. 31);

14 Example of array declaration with a constrained array subtype:
15 My_Schedule : Schedule; -- all arrays of type Schedule have the same bounds

ISO/IEC 8652:1995(E) —AARM;6.0

83 21 December 1994 Index Constraints and Discrete Ranges 3.6.1

16Example of record type with a component that is an array:
17type Var_Line(Length : Natural) is

record
Image : String(1 .. Length);

end record;

18Null_Line : Var_Line(0); -- Null_Line.Image is a null array

Extensions to Ada 83

18.a{extensions to Ada 83} We allow the declaration of a variable with a nominally unconstrained array subtype, so long as
it has an initialization expression to determine its bounds.

Wording Changes From Ada 83

18.bWe have moved the syntax for index_constraint and discrete_range here since they are no longer used in constrained_
array_definitions. We therefore also no longer have to describe the (special) semantics of index_constraints and
discrete_ranges that appear in constrained_array_definitions.

18.cThe rules given in RM83-3.6.1(5,7-10), which define the bounds of an array object, are redundant with rules given
elsewhere, and so are not repeated here. RM83-3.6.1(6), which requires that the (nominal) subtype of an array variable
be constrained, no longer applies, so long as the variable is explicitly initialized.

3.6.2 Operations of Array Types
Legality Rules

1[The argument N used in the attribute_designators for the N-th dimension of an array shall be a static
expression of some integer type.] The value of N shall be positive (nonzero) and no greater than the
dimensionality of the array.

Static Semantics

2The following attributes are defined for a prefix A that is of an array type [(after any implicit
dereference)], or denotes a constrained array subtype:

2.aRamification: These attributes are not defined if A is a subtype-mark for an access-to-array subtype. They are
defined (by implicit dereference) for access-to-array values.

A’First A’First denotes the lower bound of the first index range; its type is the corresponding 3

index type.

A’First(N) A’First(N) denotes the lower bound of the N-th index range; its type is the cor- 4

responding index type.

A’Last A’Last denotes the upper bound of the first index range; its type is the corresponding 5

index type.

A’Last(N) A’Last(N) denotes the upper bound of the N-th index range; its type is the cor- 6

responding index type.

A’Range A’Range is equivalent to the range A’First .. A’Last, except that the prefix A is only 7

evaluated once.

A’Range(N) A’Range(N) is equivalent to the range A’First(N) .. A’Last(N), except that the prefix 8

A is only evaluated once.

A’Length A’Length denotes the number of values of the first index range (zero for a null range); 9

its type is universal_integer.

A’Length(N) A’Length(N) denotes the number of values of the N-th index range (zero for a null 10

range); its type is universal_integer.

Implementation Advice

11An implementation should normally represent multidimensional arrays in row-major order, consistent
with the notation used for multidimensional array aggregates (see 4.3.3). However, if a pragma

ISO/IEC 8652:1995(E) —AARM;6.0

3.6.2 Operations of Array Types 21 December 1994 84

Convention(Fortran, ...) applies to a multidimensional array type, then column-major order should be
used instead (see B.5, ‘‘Interfacing with Fortran’’).

NOTES
12 45 The attribute_references A’First and A’First(1) denote the same value. A similar relation exists for the attribute_

references A’Last, A’Range, and A’Length. The following relation is satisfied (except for a null array) by the above
attributes if the index type is an integer type:

13 A’Length(N) = A’Last(N) - A’First(N) + 1

14 46 An array type is limited if its component type is limited (see 7.5).

15 47 {predefined operations [of an array type]} The predefined operations of an array type include the membership tests,
qualification, and explicit conversion. If the array type is not limited, they also include assignment and the predefined
equality operators. For a one-dimensional array type, they include the predefined concatenation operators (if nonlimited)
and, if the component type is discrete, the predefined relational operators; if the component type is boolean, the predefined
logical operators are also included.

16 48 A component of an array can be named with an indexed_component. A value of an array type can be specified with an
array_aggregate, unless the array type is limited. For a one-dimensional array type, a slice of the array can be named; also,
string literals are defined if the component type is a character type.

Examples

17 Examples (using arrays declared in the examples of subclause 3.6.1):
18 -- Filter’First = 0 Filter’Last = 31 Filter’Length = 32

-- Rectangle’Last(1) = 20 Rectangle’Last(2) = 30

3.6.3 String Types
Static Semantics

1 {string type} A one-dimensional array type whose component type is a character type is called a string type.

2 [There are two predefined string types, String and Wide_String, each indexed by values of the predefined
subtype Positive; these are declared in the visible part of package Standard:

3 subtype Positive is Integer range 1 .. Integer’Last;

4 type String is array(Positive range <>) of Character;
type Wide_String is array(Positive range <>) of Wide_Character;

]

NOTES
5 49 String literals (see 2.6 and 4.2) are defined for all string types. The concatenation operator & is predefined for string

types, as for all nonlimited one-dimensional array types. The ordering operators <, <=, >, and >= are predefined for string
types, as for all one-dimensional discrete array types; these ordering operators correspond to lexicographic order (see
4.5.2).

Examples

6 Examples of string objects:
7 Stars : String(1 .. 120) := (1 .. 120 => ’*’);

Question : constant String := "How many characters?";
-- Question’First = 1, Question’Last = 20
-- Question’Length = 20 (the number of characters)

8 Ask_Twice : String := Question & Question; -- constrained to (1..40)
Ninety_Six : constant Roman := "XCVI"; -- see 3.5.2 and 3.6

Inconsistencies With Ada 83

8.a {inconsistencies with Ada 83} The declaration of Wide_String in Standard hides a use-visible declaration with the
same defining_identifier. In rare cases, this might result in an inconsistency between Ada 83 and Ada 9X.

ISO/IEC 8652:1995(E) —AARM;6.0

85 21 December 1994 String Types 3.6.3

Incompatibilities With Ada 83

8.b{incompatibilities with Ada 83} Because both String and Wide_String are always directly visible, an expression like

8.c"a" < "bc"

8.dis now ambiguous, whereas in Ada 83 both string literals could be resolved to type String.
Extensions to Ada 83

8.e{extensions to Ada 83} The type Wide_String is new (though it was approved by ARG for Ada 83 compilers as well).
Wording Changes From Ada 83

8.fWe define the term string type as a natural analogy to the term character type.

3.7 Discriminants
1[{discriminant} {type parameter: see discriminant} {parameter: see also discriminant} A composite type (other than an

array type) can have discriminants, which parameterize the type. A known_discriminant_part specifies
the discriminants of a composite type. A discriminant of an object is a component of the object, and is
either of a discrete type or an access type. An unknown_discriminant_part in the declaration of a partial
view of a type specifies that the discriminants of the type are unknown for the given view; all subtypes of
such a partial view are indefinite subtypes.]

1.aGlossary entry: {Discriminant} A discriminant is a parameter of a composite type. It can control, for example, the
bounds of a component of the type if that type is an array type. A discriminant of a task type can be used to pass data
to a task of the type upon creation.

1.bDiscussion: {unknown discriminants [partial]} {discriminants [unknown]} A type, and all of its subtypes, have
unknown discriminants when the number or names of the discriminants, if any, are unknown at the point of the type
declaration. A discriminant_part of (<>) is used to indicate unknown discriminants.

Syntax

2discriminant_part ::= unknown_discriminant_part | known_discriminant_part

3unknown_discriminant_part ::= (<>)

4known_discriminant_part ::=
(discriminant_specification {; discriminant_specification})

5discriminant_specification ::=
defining_identifier_list : subtype_mark [:= default_expression]

| defining_identifier_list : access_definition [:= default_expression]

6default_expression ::= expression

Name Resolution Rules

7{expected type [discriminant default_expression]} The expected type for the default_expression of a discriminant_
specification is that of the corresponding discriminant.

Legality Rules

8A known_discriminant_part is only permitted in a declaration for a composite type that is not an array
type [(this includes generic formal types)]; {discriminated type} a type declared with a known_discriminant_
part is called a discriminated type, as is a type that inherits (known) discriminants.

8.aImplementation Note: Discriminants on array types were considered, but were omitted to ease (existing) implemen-
tations.

8.bDiscussion: Note that the above definition for ‘‘discriminated type’’ does not include types declared with an
unknown_discriminant_part. This seems consistent with Ada 83, where such types (in a generic formal part) would not
be considered discriminated types. Furthermore, the full type for a type with unknown discriminants need not even be
composite, much less have any discriminants.

ISO/IEC 8652:1995(E) —AARM;6.0

3.7 Discriminants 21 December 1994 86

9 The subtype of a discriminant may be defined by a subtype_mark, in which case the subtype_mark shall
denote a discrete or access subtype, or it may be defined by an access_definition [(in which case the
subtype_mark of the access_definition may denote any kind of subtype)]. {access discriminant} A dis-
criminant that is defined by an access_definition is called an access discriminant and is of an anonymous
general access-to-variable type whose designated subtype is denoted by the subtype_mark of the access_
definition.

9.a Reason: In an earlier version of Ada 9X, we allowed access discriminants on nonlimited types, but this created
unpleasant complexities. It turned out to be simpler and more uniform to allow discriminants of a named access type
on any discriminated type, and keep access discriminants just for limited types.

9.b Note that discriminants of a named access type are not considered ‘‘access discriminants.’’ Similarly, ‘‘access
parameter’’ only refers to a formal parameter defined by an access_definition.

10 A discriminant_specification for an access discriminant shall appear only in the declaration for a task or
protected type, or for a type with the reserved word limited in its [(full)] definition or in that of one of its
ancestors. In addition to the places where Legality Rules normally apply (see 12.3), this rule applies also
in the private part of an instance of a generic unit.

10.a Discussion: This rule implies that a type can have an access discriminant if the type is limited, but not if the only
reason it’s limited is because of a limited component. Compare with the definition of limited type in 7.5.

10.b Ramification: It is a consequence of this rule that only a return-by-reference type can have an access discriminant (see
6.5). This is important to avoid dangling references to local variables.

10.c Reason: We also considered the following rules:

10.d • If a type has an access discriminant, this automatically makes it limited, just like having a limited
component automatically makes a type limited. This was rejected because it decreases program
readability, and because it seemed error prone (two bugs in a previous version of the RM9X were
attributable to this rule).

10.e • A type with an access discriminant shall be limited. This is equivalent to the rule we actually chose,
except that it allows a type to have an access discriminant if it is limited just because of a limited
component. For example, any record containing a task would be allowed to have an access discriminant,
whereas the actual rule requires ‘‘limited record’’. This rule was also rejected due to readability
concerns, and because would interact badly with the rules for limited types that ‘‘become nonlimited’’.

11 Default_expressions shall be provided either for all or for none of the discriminants of a known_
discriminant_part. No default_expressions are permitted in a known_discriminant_part in a declaration of
a tagged type [or a generic formal type].

11.a Reason: The all-or-none rule is related to the rule that a discriminant constraint shall specify values for all
discriminants. One could imagine a different rule that allowed a constraint to specify only some of the discriminants,
with the others provided by default. Having defaults for discriminants has a special significance — it allows objects of
the type to be unconstrained, with the discriminants alterable as part of assigning to the object.

11.b Defaults for discriminants of tagged types are disallowed so that every object of a tagged type is constrained, either by
an explicit constraint, or by its initial discriminant values. This substantially simplifies the semantic rules and the
implementation of inherited dispatching operations. For generic formal types, the restriction simplifies the type
matching rules. If one simply wants a "default" value for the discriminants, a constrained subtype can be declared for
future use.

12 For a type defined by a derived_type_definition, if a known_discriminant_part is provided in its decla-
ration, then:

13 • The parent subtype shall be constrained;

14 • If the parent type is not a tagged type, then each discriminant of the derived type shall be
used in the constraint defining the parent subtype;

14.a Implementation Note: This ensures that the new discriminant can share storage with an existing discriminant.

ISO/IEC 8652:1995(E) —AARM;6.0

87 21 December 1994 Discriminants 3.7

15• If a discriminant is used in the constraint defining the parent subtype, the subtype of the
discriminant shall be statically compatible (see 4.9.1) with the subtype of the corresponding
parent discriminant.

15.aReason: This ensures that on conversion (or extension via an extension aggregate) to a distantly related type, if
the discriminants satisfy the target type’s requirements they satisfy all the intermediate types’ requirements as
well.

15.bRamification: There is no requirement that the new discriminant have the same (or any) default_expression as
the parent’s discriminant.

16The type of the default_expression, if any, for an access discriminant shall be convertible to the
anonymous access type of the discriminant (see 4.6). {convertible [required]}

16.aRamification: This requires convertibility of the designated subtypes.

Static Semantics

17A discriminant_specification declares a discriminant; the subtype_mark denotes its subtype unless it is an
access discriminant, in which case the discriminant’s subtype is the anonymous access-to-variable sub-
type defined by the access_definition.

18[For a type defined by a derived_type_definition, each discriminant of the parent type is either inherited,
constrained to equal some new discriminant of the derived type, or constrained to the value of an
expression.] {corresponding discriminants} When inherited or constrained to equal some new discriminant,
the parent discriminant and the discriminant of the derived type are said to correspond. Two dis-
criminants also correspond if there is some common discriminant to which they both correspond. A
discriminant corresponds to itself as well. {specified discriminant} If a discriminant of a parent type is
constrained to a specific value by a derived_type_definition, then that discriminant is said to be specified
by that derived_type_definition.

18.aRamification: The correspondence relationship is transitive, symmetric, and reflexive. That is, if A corresponds to B,
and B corresponds to C, then A, B, and C each corresponds to A, B, and C in all combinations.

19{depend on a discriminant (for a constraint or component_definition)} A constraint that appears within the definition of
a discriminated type depends on a discriminant of the type if it names the discriminant as a bound or
discriminant value. A component_definition depends on a discriminant if its constraint depends on the
discriminant, or on a discriminant that corresponds to it.

19.aRamification: A constraint in a task_body is not considered to depend on a discriminant of the task type, even if it
names it. It is only the constraints in the type definition itself that are considered dependents. Similarly for protected
types.

20{depend on a discriminant (for a component)} A component depends on a discriminant if:

21• Its component_definition depends on the discriminant; or
21.aRamification: A component does not depend on a discriminant just because its default_expression refers to the

discriminant.

22• It is declared in a variant_part that is governed by the discriminant; or

23• It is a component inherited as part of a derived_type_definition, and the constraint of the
parent_subtype_indication depends on the discriminant; or

23.aReason: When the parent subtype depends on a discriminant, the parent part of the derived type is treated like
a discriminant-dependent component.

23.bRamification: Because of this rule, we don’t really need to worry about ‘‘corresponding’’ discriminants, since
all the inherited components will be discriminant-dependent if there is a new known_discriminant_part whose
discriminants are used to constrain the old discriminants.

ISO/IEC 8652:1995(E) —AARM;6.0

3.7 Discriminants 21 December 1994 88

24 • It is a subcomponent of a component that depends on the discriminant.
24.a Reason: The concept of discriminant-dependent (sub)components is primarily used in various rules that disallow

renaming or ’Access, or specify that certain discriminant-changing assignments are erroneous. The goal is to allow
implementations to move around or change the size of discriminant-dependent subcomponents upon a discriminant-
changing assignment to an enclosing object. The above definition specifies that all subcomponents of a discriminant-
dependent component or parent part are themselves discriminant-dependent, even though their presence or size does
not in fact depend on a discriminant. This is because it is likely that they will move in a discriminant-changing
assignment if they are a component of one of several discriminant-dependent parts of the same record.

25 Each value of a discriminated type includes a value for each component of the type that does not depend
on a discriminant[; this includes the discriminants themselves]. The values of discriminants determine
which other component values are present in the value of the discriminated type.

25.a To be honest: Which values are present might depend on discriminants of some ancestor type that are constrained in
an intervening derived_type_definition. That’s why we say "values of discriminants" instead of "values of the
discriminants" — a subtle point.

26 {known discriminants} {discriminants (known)} {constrained (subtype)} {unconstrained (subtype)} A type declared with a
known_discriminant_part is said to have known discriminants; its first subtype is unconstrained. {unknown

discriminants} {discriminants (unknown)} A type declared with an unknown_discriminant_part is said to have
unknown discriminants. A type declared without a discriminant_part has no discriminants, unless it is a
derived type; if derived, such a type has the same sort of discriminants (known, unknown, or none) as its
parent (or ancestor) type. A tagged class-wide type also has unknown discriminants. {class-wide type}
{indefinite subtype} [Any subtype of a type with unknown discriminants is an unconstrained and indefinite
subtype (see 3.2 and 3.3).]

26.a Discussion: An unknown_discriminant_part ‘‘(<>)’’ is only permitted in the declaration of a (generic or nongeneric)
private type, private extension, or formal derived type. Hence, only such types, descendants thereof, and class-wide
types can have unknown discriminants. An unknown_discriminant_part is used to indicate that the corresponding actual
or full type might have discriminants without defaults, or be an unconstrained array subtype. Tagged class-wide types
are also considered to have unknown discriminants because discriminants can be added by type extensions, so the total
number of discriminants of any given value of a tagged class-wide type is not known at compile time.

26.b A subtype with unknown discriminants is indefinite, and hence an object of such a subtype needs explicit initialization.
If the subtype is limited, no (stand-alone) objects can be declared since initialization is not permitted (though formal
parameters are permitted, and objects of the actual/full type will generally be declarable). A limited private type with
unknown discriminants is ‘‘extremely’’ limited; such a type is useful for keeping complete control over object creation
within the package declaring the type.

26.c A partial view of a type might have unknown discriminants, while the full view of the same type might have known,
unknown, or no discriminants,

Dynamic Semantics

27 An access_definition is elaborated when the value of a corresponding access discriminant is defined,
either by evaluation of its default_expression or by elaboration of a discriminant_constraint. [The
elaboration of an access_definition creates the anonymous access type. When the expression defining the
access discriminant is evaluated, it is converted to this anonymous access type (see 4.6).] {implicit subtype

conversion [access discriminant]}

27.a Ramification: This conversion raises Constraint_Error if the initial value is null, or, for an object created by an
allocator of an access type T, if the initial value is an access parameter that designates a view whose accessibility level
is deeper than that of T.

NOTES
28 50 If a discriminated type has default_expressions for its discriminants, then unconstrained variables of the type are

permitted, and the values of the discriminants can be changed by an assignment to such a variable. If defaults are not
provided for the discriminants, then all variables of the type are constrained, either by explicit constraint or by their initial
value; the values of the discriminants of such a variable cannot be changed after initialization.

28.a Discussion: This connection between discriminant defaults and unconstrained variables can be a source of confusion.
For Ada 9X, we considered various ways to break the connection between defaults and unconstrainedness, but
ultimately gave up for lack of a sufficiently simple and intuitive alternative.

ISO/IEC 8652:1995(E) —AARM;6.0

89 21 December 1994 Discriminants 3.7

28.b{mutable} An unconstrained discriminated subtype with defaults is called a mutable subtype, and a variable of such a
subtype is called a mutable variable, because the discriminants of such a variable can change. There are no mutable
arrays (that is, the bounds of an array object can never change), because there is no way in the language to define
default values for the bounds. Similarly, there are no mutable class-wide subtypes, because there is no way to define
the default tag, and defaults for discriminants are not allowed in the tagged case. Mutable tags would also require a
way for the maximum possible size of such a class-wide subtype to be known. (In some implementations, all mutable
variables are allocated with the maximum possible size. This approach is appropriate for real-time applications where
implicit use of the heap is inappropriate.)

2951 The default_expression for a discriminant of a type is evaluated when an object of an unconstrained subtype of the type
is created.

3052 Assignment to a discriminant of an object (after its initialization) is not allowed, since the name of a discriminant is a
constant; neither assignment_statements nor assignments inherent in passing as an in out or out parameter are allowed.
Note however that the value of a discriminant can be changed by assigning to the enclosing object, presuming it is an
unconstrained variable.

30.aDiscussion: An unknown_discriminant_part is permitted only in the declaration of a private type (including generic
formal private), private extension, or generic formal derived type. These are the things that will have a corresponding
completion or generic actual, which will either define the discriminants, or say there are none. The (<>) indicates that
the actual/full subtype might be an indefinite subtype. An unknown_discriminant_part is not permitted in a normal
untagged derived type declaration, because there is no separate full type declaration for such a type. Note that (<>)
allows unconstrained array bounds; those are somewhat like undefaulted discriminants.

30.bFor a derived type, either the discriminants are inherited as is, or completely respecified in a new discriminant_part. In
this latter case, each discriminant of the parent type shall be constrained, either to a specific value, or to equal one of
the new discriminants. Constraining a parent type’s discriminant to equal one of the new discriminants is like a
renaming of the discriminant, except that the subtype of the new discriminant can be more restrictive than that of the
parent’s one. In any case, the new discriminant can share storage with the parent’s discriminant.

3153 A discriminant that is of a named access type is not called an access discriminant; that term is used only for
discriminants defined by an access_definition.

Examples

32Examples of discriminated types:
33type Buffer(Size : Buffer_Size := 100) is -- see 3.5.4

record
Pos : Buffer_Size := 0;
Value : String(1 .. Size);

end record;

34type Matrix_Rec(Rows, Columns : Integer) is
record

Mat : Matrix(1 .. Rows, 1 .. Columns); -- see 3.6
end record;

35type Square(Side : Integer) is new Matrix_Rec(Rows => Side, Columns => Side);

36type Double_Square(Number : Integer) is
record

Left : Square(Number);
Right : Square(Number);

end record;

37type Item(Number : Positive) is
record

Content : Integer;
-- no component depends on the discriminant

end record;

Extensions to Ada 83

37.a{extensions to Ada 83} The syntax for a discriminant_specification is modified to allow an access discriminant, with a
type specified by an access_definition (see 3.10).

37.bDiscriminants are allowed on all composite types other than array types.

37.cDiscriminants may be of an access type.

ISO/IEC 8652:1995(E) —AARM;6.0

3.7 Discriminants 21 December 1994 90

Wording Changes From Ada 83

37.d Discriminant_parts are not elaborated, though an access_definition is elaborated when the discriminant is initialized.

3.7.1 Discriminant Constraints
1 A discriminant_constraint specifies the values of the discriminants for a given discriminated type.

Language Design Principles

1.a The rules in this clause are intentionally parallel to those given in Record Aggregates.
Syntax

2 discriminant_constraint ::=
(discriminant_association {, discriminant_association})

3 discriminant_association ::=
[discriminant_selector_name {| discriminant_selector_name} =>] expression

4 {named discriminant association} A discriminant_association is said to be named if it has one or more
discriminant_selector_names; {positional discriminant association} it is otherwise said to be positional. In
a discriminant_constraint, any positional associations shall precede any named associations.

Name Resolution Rules

5 Each selector_name of a named discriminant_association shall resolve to denote a discriminant of the
subtype being constrained; {associated discriminants (of a named discriminant_association)} the discriminants so
named are the associated discriminants of the named association. {associated discriminants (of a positional

discriminant_association)} For a positional association, the associated discriminant is the one whose
discriminant_specification occurred in the corresponding position in the known_discriminant_part that
defined the discriminants of the subtype being constrained.

6 {expected type [discriminant_association expression]} The expected type for the expression in a discriminant_
association is that of the associated discriminant(s).

Legality Rules

7 A discriminant_constraint is only allowed in a subtype_indication whose subtype_mark denotes either an
unconstrained discriminated subtype, or an unconstrained access subtype whose designated subtype is an
unconstrained discriminated subtype.

8 A named discriminant_association with more than one selector_name is allowed only if the named dis-
criminants are all of the same type. A discriminant_constraint shall provide exactly one value for each
discriminant of the subtype being constrained.

9 The expression associated with an access discriminant shall be of a type convertible to the anonymous
access type. {convertible [required]}

9.a Ramification: This implies both convertibility of designated types, and static accessibility. This implies that if an
object of type T with an access discriminant is created by an allocator for an access type A, then it requires that the type
of the expression associated with the access discriminant have an accessibility level that is not statically deeper than
that of A. This is to avoid dangling references.

Dynamic Semantics

10 {compatibility [discriminant constraint with a subtype]} A discriminant_constraint is compatible with an uncon-
strained discriminated subtype if each discriminant value belongs to the subtype of the corresponding
discriminant.

10.a Ramification: The "dependent compatibility check" has been eliminated in Ada 9X. Any checking on subcomponents
is performed when (and if) an object is created.

ISO/IEC 8652:1995(E) —AARM;6.0

91 21 December 1994 Discriminant Constraints 3.7.1

10.bDiscussion: There is no need to define compatibility with a constrained discriminated subtype, because one is not
allowed to constrain it again.

11{satisfies [a discriminant constraint]} A composite value satisfies a discriminant constraint if and only if each
discriminant of the composite value has the value imposed by the discriminant constraint.

12{elaboration [discriminant_constraint]} For the elaboration of a discriminant_constraint, the expressions in the
discriminant_associations are evaluated in an arbitrary order and converted to the type of the associated
discriminant (which might raise Constraint_Error — see 4.6); the expression of a named association is
evaluated (and converted) once for each associated discriminant. {implicit subtype conversion [discriminant
values]} The result of each evaluation and conversion is the value imposed by the constraint for the as-
sociated discriminant.

12.aReason: We convert to the type, not the subtype, so that the definition of compatibility of discriminant constraints is
not vacuous.

NOTES
1354 The rules of the language ensure that a discriminant of an object always has a value, either from explicit or implicit

initialization.

13.aDiscussion: Although it is illegal to constrain a class-wide tagged subtype, it is possible to have a partially constrained
class-wide subtype: If the subtype S is defined by T(A => B), then S’Class is partially constrained in the sense that
objects of subtype S’Class have to have discriminants corresponding to A equal to B, but there can be other
discriminants defined in extensions that are not constrained to any particular value.

Examples

14Examples (using types declared above in clause 3.7):
15Large : Buffer(200); -- constrained, always 200 characters

-- (explicit discriminant value)
Message : Buffer; -- unconstrained, initially 100 characters

-- (default discriminant value)
Basis : Square(5); -- constrained, always 5 by 5
Illegal : Square; -- illegal, a Square has to be constrained

Inconsistencies With Ada 83

15.a{inconsistencies with Ada 83} Dependent compatibility checks are no longer performed on subtype declaration.
Instead they are deferred until object creation (see 3.3.1). This is upward compatible for a program that does not raise
Constraint_Error.

Wording Changes From Ada 83

15.bEverything in RM83-3.7.2(7-12), which specifies the initial values for discriminants, is now redundant with 3.3.1,
6.4.1, 8.5.1, and 12.4. Therefore, we don’t repeat it here. Since the material is largely intuitive, but nevertheless
complicated to state formally, it doesn’t seem worth putting it in a "NOTE."

3.7.2 Operations of Discriminated Types
1[If a discriminated type has default_expressions for its discriminants, then unconstrained variables of the

type are permitted, and the discriminants of such a variable can be changed by assignment to the variable.
For a formal parameter of such a type, an attribute is provided to determine whether the corresponding
actual parameter is constrained or unconstrained.]

Static Semantics

2For a prefix A that is of a discriminated type [(after any implicit dereference)], the following attribute is
defined:

A’Constrained Yields the value True if A denotes a constant, a value, or a constrained variable, and 3

False otherwise.
3.aImplementation Note: This attribute is primarily used on parameters, to determine whether the discriminants can be

changed as part of an assignment. The Constrained attribute is statically True for in parameters. For in out and out

ISO/IEC 8652:1995(E) —AARM;6.0

3.7.2 Operations of Discriminated Types 21 December 1994 92

parameters of a discriminated type, the value of this attribute needs to be passed as an implicit parameter, in general.
However, if the type does not have defaults for its discriminants, the attribute is statically True, so no implicit
parameter is needed. Parameters of a limited type with defaulted discriminants need this implicit parameter, unless
there are no nonlimited views, because they might be passed to a subprogram whose body has visibility on a nonlimited
view of the type, and hence might be able to assign to the object and change its discriminants.

Erroneous Execution

4 {erroneous execution} The execution of a construct is erroneous if the construct has a constituent that is a
name denoting a subcomponent that depends on discriminants, and the value of any of these dis-
criminants is changed by this execution between evaluating the name and the last use (within this execu-
tion) of the subcomponent denoted by the name.

4.a Ramification: This rule applies to assignment_statements, calls (except when the discriminant-dependent subcom-
ponent is an in parameter passed by copy), indexed_components, and slices. Ada 83 only covered the first two cases.
AI-00585 pointed out the situation with the last two cases. The cases of object_renaming_declarations and generic
formal in out objects are handled differently, by disallowing the situation at compile time.

Extensions to Ada 83

4.b {extensions to Ada 83} For consistency with other attributes, we are allowing the prefix of Constrained to be a value as
well as an object of a discriminated type, and also an implicit dereference. These extensions are not important
capabilities, but there seems no reason to make this attribute different from other similar attributes. We are curious
what most Ada 83 compilers do with F(1).X’Constrained.

4.c We now handle in a general way the cases of erroneousness identified by AI-585, where the prefix of an indexed_
component or slice is discriminant-dependent, and the evaluation of the index or discrete range changes the value of a
discriminant.

Wording Changes From Ada 83

4.d We have moved all discussion of erroneous use of names that denote discriminant-dependent subcomponents to this
subclause. In Ada 83, it used to appear separately under assignment_statements and subprogram calls.

3.8 Record Types
1 {record} {record type} A record object is a composite object consisting of named components. The value of

a record object is a composite value consisting of the values of the components. {structure: see record type}

Syntax

2 record_type_definition ::= [[abstract] tagged] [limited] record_definition

3 record_definition ::=
record

component_list
end record

| null record

4 component_list ::=
component_item {component_item}

| {component_item} variant_part
| null;

5 component_item ::= component_declaration | representation_clause

6 component_declaration ::=
defining_identifier_list : component_definition [:= default_expression];

Name Resolution Rules

7 {expected type [component_declaration default_expression]} The expected type for the default_expression, if any, in
a component_declaration is the type of the component.

ISO/IEC 8652:1995(E) —AARM;6.0

93 21 December 1994 Record Types 3.8

Legality Rules

8A default_expression is not permitted if the component is of a limited type.

9{components [of a record type]} Each component_declaration declares a component of the record type. Be-
sides components declared by component_declarations, the components of a record type include any
components declared by discriminant_specifications of the record type declaration. [The identifiers of all
components of a record type shall be distinct.]

9.aProof: The identifiers of all components of a record type have to be distinct because they are all declared immediately
within the same declarative region. See Section 8.

10Within a type_declaration, a name that denotes a component, protected subprogram, or entry of the type
is allowed only in the following cases:

11• A name that denotes any component, protected subprogram, or entry is allowed within a
representation item that occurs within the declaration of the composite type.

12• A name that denotes a noninherited discriminant is allowed within the declaration of the
type, but not within the discriminant_part. If the discriminant is used to define the constraint
of a component, the bounds of an entry family, or the constraint of the parent subtype in a
derived_type_definition then its name shall appear alone as a direct_name (not as part of a
larger expression or expanded name).

12.aReason: This restriction simplifies implementation, and allows the outer discriminant and the inner dis-
criminant or bound to possibly share storage.

12.bRamification: Other rules prevent such a discriminant from being an inherited one.

A discriminant shall not be used to define the constraint of a scalar component.
12.cReason: This restriction is inherited from Ada 83. The restriction is not really necessary from a language

design point of view, but we did not remove it, in order to avoid unnecessary changes to existing compilers.

12.dDiscussion: Note that a discriminant can be used to define the constraint for a component that is of an
access-to-composite type.

12.eReason: The above rules, and a similar one in 6.1 for formal parameters, are intended to allow initializations of
components or parameters to occur in an arbitrary order — whatever order is most efficient, since one default_
expression cannot depend on the value of another one. It also prevent circularities.

12.fRamification: Inherited discriminants are not allowed to be denoted, except within representation items.
However, the discriminant_selector_name of the parent subtype_indication is allowed to denote a discriminant
of the parent.

13If the name of the current instance of a type (see 8.6) is used to define the constraint of a component, then
it shall appear as a direct_name that is the prefix of an attribute_reference whose result is of an access
type, and the attribute_reference shall appear alone.

13.aReason: This rule allows T’Access or T’Unchecked_Access, but disallows, for example, a range constraint
(1..T’Size). Allowing things like (1..T’Size) would mean that a per-object constraint could affect the size of the object,
which would be bad.

Static Semantics

14{nominal subtype [of a record component]} The component_definition of a component_declaration defines the
(nominal) subtype of the component. If the reserved word aliased appears in the component_definition,
then the component is aliased (see 3.10).

14.aRamification: In this case, the nominal subtype cannot be an unconstrained discriminated subtype. See 3.6.

15{null record} If the component_list of a record type is defined by the reserved word null and there are no
discriminants, then the record type has no components and all records of the type are null records. A
record_definition of null record is equivalent to record null; end record.

ISO/IEC 8652:1995(E) —AARM;6.0

3.8 Record Types 21 December 1994 94

15.a Ramification: This short-hand is available both for declaring a record type and a record extension — see 3.9.1.

Dynamic Semantics

16 {elaboration [record_type_definition]} The elaboration of a record_type_definition creates the record type and its
first subtype, and consists of the elaboration of the record_definition. {elaboration [record_definition]} The
elaboration of a record_definition consists of the elaboration of its component_list, if any.

17 {elaboration [component_list]} The elaboration of a component_list consists of the elaboration of the
component_items and variant_part, if any, in the order in which they appear. {elaboration [component_
declaration]} The elaboration of a component_declaration consists of the elaboration of the component_
definition.

17.a Discussion: If the defining_identifier_list has more than one defining_identifier, we presume here that the transformation
explained in 3.3.1 has already taken place. Alternatively, we could say that the component_definition is elaborated once
for each defining_identifier in the list.

18 {per-object expression} {per-object constraint} {entry index subtype} Within the definition of a composite type, if a
component_definition or discrete_subtype_definition (see 9.5.2) includes a name that denotes a dis-
criminant of the type, or that is an attribute_reference whose prefix denotes the current instance of the
type, the expression containing the name is called a per-object expression, and the constraint being
defined is called a per-object constraint.

18.a Discussion: The evaluation of other expressions that appear in component_definitions and discrete_subtype_definitions
is performed when the type definition is elaborated. The evaluation of expressions that appear as default_expressions is
postponed until an object is created. Expressions in representation items that appear within a composite type definition
are evaluated according to the rules of the particular representation item.

{elaboration [component_definition]} For the elaboration of a component_definition of a component_
declaration, if the constraint of the subtype_indication is not a per-object constraint, then the subtype_
indication is elaborated. On the other hand, if the constraint is a per-object constraint, then the elaboration
consists of the evaluation of any included expression that is not part of a per-object expression.

NOTES
19 55 A component_declaration with several identifiers is equivalent to a sequence of single component_declarations, as

explained in 3.3.1.

20 56 The default_expression of a record component is only evaluated upon the creation of a default-initialized object of the
record type (presuming the object has the component, if it is in a variant_part — see 3.3.1).

21 57 The subtype defined by a component_definition (see 3.6) has to be a definite subtype.

22 58 If a record type does not have a variant_part, then the same components are present in all values of the type.

23 59 A record type is limited if it has the reserved word limited in its definition, or if any of its components are limited (see
7.5).

24 60 {predefined operations [of a record type]} The predefined operations of a record type include membership tests,
qualification, and explicit conversion. If the record type is nonlimited, they also include assignment and the predefined
equality operators.

25 61 A component of a record can be named with a selected_component. A value of a record can be specified with a
record_aggregate, unless the record type is limited.

Examples

26 Examples of record type declarations:

ISO/IEC 8652:1995(E) —AARM;6.0

95 21 December 1994 Record Types 3.8

27type Date is
record

Day : Integer range 1 .. 31;
Month : Month_Name;
Year : Integer range 0 .. 4000;

end record;

28type Complex is
record

Re : Real := 0.0;
Im : Real := 0.0;

end record;

29Examples of record variables:
30Tomorrow, Yesterday : Date;

A, B, C : Complex;

31-- both components of A, B, and C are implicitly initialized to zero

Extensions to Ada 83

31.a{extensions to Ada 83} The syntax rule for component_declaration is modified to use component_definition (instead of
component_subtype_definition). The effect of this change is to allow the reserved word aliased before the component_
subtype_definition.

31.bA short-hand is provided for defining a null record type (and a null record extension), as these will be more common
for abstract root types (and derived types without additional components).

31.cThe syntax rule for record_type_definition is modified to allow the reserved words tagged and limited. Tagging is new.
Limitedness is now orthogonal to privateness. In Ada 83 the syntax implied that limited private was sort of more
private than private. However, limitedness really has nothing to do with privateness; limitedness simply indicates the
lack of assignment capabilities, and makes perfect sense for nonprivate types such as record types.

Wording Changes From Ada 83

31.dThe syntax rules now allow representation_clauses to appear in a record_definition. This is not a language extension,
because Legality Rules prevent all language-defined representation clauses from appearing there. However, an
implementation-defined attribute_definition_clause could appear there. The reason for this change is to allow the rules
for representation_clauses and representation pragmas to be as similar as possible.

3.8.1 Variant Parts and Discrete Choices
1A record type with a variant_part specifies alternative lists of components. Each variant defines the

components for the value or values of the discriminant covered by its discrete_choice_list.
1.aDiscussion: {cover a value [distributed]} Discrete_choice_lists and discrete_choices are said to cover values as defined

below; which discrete_choice_list covers a value determines which of various alternatives is chosen. These are used in
variant_parts, array_aggregates, and case_statements.

Language Design Principles

1.bThe definition of ‘‘cover’’ in this subclause and the rules about discrete choices are designed so that they are also
appropriate for array aggregates and case statements.

1.cThe rules of this subclause intentionally parallel those for case statements.
Syntax

2variant_part ::=
case discriminant_direct_name is

variant
{variant}

end case;

3variant ::=
when discrete_choice_list =>

component_list

4discrete_choice_list ::= discrete_choice {| discrete_choice}

ISO/IEC 8652:1995(E) —AARM;6.0

3.8.1 Variant Parts and Discrete Choices 21 December 1994 96

5 discrete_choice ::= expression | discrete_range | others

Name Resolution Rules

6 {discriminant (of a variant_part)} The discriminant_direct_name shall resolve to denote a discriminant (called
the discriminant of the variant_part) specified in the known_discriminant_part of the full_type_declaration
that contains the variant_part. {expected type [variant_part discrete_choice]} The expected type for each
discrete_choice in a variant is the type of the discriminant of the variant_part.

6.a Ramification: A full_type_declaration with a variant_part has to have a (new) known_discriminant_part; the dis-
criminant of the variant_part cannot be an inherited discriminant.

Legality Rules

7 The discriminant of the variant_part shall be of a discrete type.
7.a Ramification: It shall not be of an access type, named or anonymous.

8 The expressions and discrete_ranges given as discrete_choices in a variant_part shall be static. The
discrete_choice others shall appear alone in a discrete_choice_list, and such a discrete_choice_list, if it
appears, shall be the last one in the enclosing construct.

9 {cover a value [by a discrete_choice]} A discrete_choice is defined to cover a value in the following cases:

10 • A discrete_choice that is an expression covers a value if the value equals the value of the
expression converted to the expected type.

11 • A discrete_choice that is a discrete_range covers all values (possibly none) that belong to the
range.

12 • The discrete_choice others covers all values of its expected type that are not covered by
previous discrete_choice_lists of the same construct.

12.a Ramification: For case_statements, this includes values outside the range of the static subtype (if any) to be
covered by the choices. It even includes values outside the base range of the case expression’s type, since
values of numeric types (and undefined values of any scalar type?) can be outside their base range.

13 {cover a value [by a discrete_choice_list]} A discrete_choice_list covers a value if one of its discrete_choices
covers the value.

14 The possible values of the discriminant of a variant_part shall be covered as follows:

15 • If the discriminant is of a static constrained scalar subtype, then each non-others discrete_
choice shall cover only values in that subtype, and each value of that subtype shall be
covered by some discrete_choice [(either explicitly or by others)];

16 • If the type of the discriminant is a descendant of a generic formal scalar type then the
variant_part shall have an others discrete_choice;

16.a Reason: The base range is not known statically in this case.

17 • Otherwise, each value of the base range of the type of the discriminant shall be covered
[(either explicitly or by others)].

18 Two distinct discrete_choices of a variant_part shall not cover the same value.

Static Semantics

19 If the component_list of a variant is specified by null, the variant has no components.

20 {govern a variant_part} {govern a variant} The discriminant of a variant_part is said to govern the variant_part
and its variants. In addition, the discriminant of a derived type governs a variant_part and its variants if it
corresponds (see 3.7) to the discriminant of the variant_part.

ISO/IEC 8652:1995(E) —AARM;6.0

97 21 December 1994 Variant Parts and Discrete Choices 3.8.1

Dynamic Semantics

21A record value contains the values of the components of a particular variant only if the value of the
discriminant governing the variant is covered by the discrete_choice_list of the variant. This rule applies
in turn to any further variant that is, itself, included in the component_list of the given variant.

22{elaboration [variant_part]} The elaboration of a variant_part consists of the elaboration of the component_list
of each variant in the order in which they appear.

Examples

23Example of record type with a variant part:
24type Device is (Printer, Disk, Drum);

type State is (Open, Closed);

25type Peripheral(Unit : Device := Disk) is
record

Status : State;
case Unit is

when Printer =>
Line_Count : Integer range 1 .. Page_Size;

when others =>
Cylinder : Cylinder_Index;
Track : Track_Number;

end case;
end record;

26Examples of record subtypes:
27subtype Drum_Unit is Peripheral(Drum);

subtype Disk_Unit is Peripheral(Disk);

28Examples of constrained record variables:
29Writer : Peripheral(Unit => Printer);

Archive : Disk_Unit;

Extensions to Ada 83

29.a{extensions to Ada 83} In Ada 83, the discriminant of a variant_part is not allowed to be of a generic formal type. This
restriction is removed in Ada 9X; an others discrete_choice is required in this case.

Wording Changes From Ada 83

29.bThe syntactic category choice is removed. The syntax rules for variant, array_aggregate, and case_statement now use
discrete_choice_list or discrete_choice instead. The syntax rule for record_aggregate now defines its own syntax for
named associations.

29.cWe have added the term Discrete Choice to the title since this is where they are talked about. This is analogous to the
name of the subclause "Index Constraints and Discrete Ranges" in the clause on Array Types.

29.dThe rule requiring that the discriminant denote a discriminant of the type being defined seems to have been left implicit
in RM83.

3.9 Tagged Types and Type Extensions
1[{dispatching operation [partial]} {polymorphism} {dynamic binding: see dispatching operation} {generic unit: see also

dispatching operation} {variant: see also tagged type} Tagged types and type extensions support object-oriented
programming, based on inheritance with extension and run-time polymorphism via dispatching
operations. {object-oriented programming (OOP): see tagged types and type extensions} {OOP (object-oriented program-

ming): see tagged types and type extensions} {inheritance: see also tagged types and type extension}]

ISO/IEC 8652:1995(E) —AARM;6.0

3.9 Tagged Types and Type Extensions 21 December 1994 98

Language Design Principles

1.a The intended implementation model is for a tag to be represented as a pointer to a statically allocated and link-time
initialized type descriptor. The type descriptor contains the address of the code for each primitive operation of the type.
It probably also contains other information, such as might make membership tests convenient and efficient.

1.b The primitive operations of a tagged type are known at its first freezing point; the type descriptor is laid out at that
point. It contains linker symbols for each primitive operation; the linker fills in the actual addresses.

1.c Other implementation models are possible.

1.d The rules ensure that ‘‘dangling dispatching’’ is impossible; that is, when a dispatching call is made, there is always a
body to execute. This is different from some other object-oriented languages, such as Smalltalk, where it is possible to
get a run-time error from a missing method.

1.e Dispatching calls should be efficient, and should have a bounded worst-case execution time. This is important in a
language intended for real-time applications. In the intended implementation model, a dispatching call involves calling
indirect through the appropriate slot in the dispatch table. No complicated "method lookup" is involved.

1.f The programmer should have the choice at each call site of a dispatching operation whether to do a dispatching call or a
statically determined call (i.e. whether the body executed should be determined at run time or at compile time).

1.g The same body should be executed for a call where the tag is statically determined to be T’Tag as for a dispatching call
where the tag is found at run time to be T’Tag. This allows one to test a given tagged type with statically determined
calls, with some confidence that run-time dispatching will produce the same behavior.

1.h All views of a type should share the same type descriptor and the same tag.

1.i The visibility rules determine what is legal at compile time; they have nothing to do with what bodies can be executed
at run time. Thus, it is possible to dispatch to a subprogram whose declaration is not visible at the call site. In fact, this
is one of the primary facts that gives object-oriented programming its power. The subprogram that ends up being
dispatched to by a given call might even be designed long after the call site has been coded and compiled.

1.j Given that Ada has overloading, determining whether a given subprogram overrides another is based both on the names
and the type profiles of the operations.

1.k When a type extension is declared, if there is any place within its immediate scope where a certain subprogram of the
parent is visible, then a matching subprogram should override. If there is no such place, then a matching subprogram
should be totally unrelated, and occupy a different slot in the type descriptor. This is important to preserve the privacy
of private parts; when an operation declared in a private part is inherited, the inherited version can be overridden only
in that private part, in the package body, and in any children of the package.

1.l If an implementation shares code for instances of generic bodies, it should be allowed to share type descriptors of
tagged types declared in the generic body, so long as they are not extensions of types declared in the specification of
the generic unit.

Static Semantics

2 {tagged type} A record type or private type that has the reserved word tagged in its declaration is called a
tagged type. [When deriving from a tagged type, additional components may be defined. As for any
derived type, additional primitive subprograms may be defined, and inherited primitive subprograms may
be overridden.] {type extension} {extension (of a type)} The derived type is called an extension of the ancestor
type, or simply a type extension. {extension (of a record type)} {private extension} {extension (of a private type)}

Every type extension is also a tagged type, and is either a record extension or a private extension of some
other tagged type. A record extension is defined by a derived_type_definition with a record_extension_
part. A private extension, which is a partial view of a record extension, can be declared in the visible part
of a package (see 7.3) or in a generic formal part (see 12.5.1).

2.a Glossary entry: {Tagged type} The objects of a tagged type have a run-time type tag, which indicates the specific
type with which the object was originally created. An operand of a class-wide tagged type can be used in a dispatching
call; the tag indicates which subprogram body to invoke. Nondispatching calls, in which the subprogram body to
invoke is determined at compile time, are also allowed. Tagged types may be extended with additional components.

2.b Ramification: If a tagged type is declared other than in a package_specification, it is impossible to add new primitive
subprograms for that type, although it can inherit primitive subprograms, and those can be overridden. If the user
incorrectly thinks a certain subprogram is primitive when it is not, and tries to call it with a dispatching call, an error
message will be given at the call site.

ISO/IEC 8652:1995(E) —AARM;6.0

99 21 December 1994 Tagged Types and Type Extensions 3.9

2.cNote that the accessibility rules imply that a tagged type declared in a library package_specification cannot be extended
in a nested subprogram or task body.

3{tag of an object} An object of a tagged type has an associated (run-time) tag that identifies the specific
tagged type used to create the object originally. [The tag of an operand of a class-wide tagged type
T’Class controls which subprogram body is to be executed when a primitive subprogram of type T is
applied to the operand (see 3.9.2); {dispatching} using a tag to control which body to execute is called
dispatching.] {type tag: see tag} {run-time type: see tag} {type: see also tag} {class: see also tag}

4The tag of a specific tagged type identifies the full_type_declaration of the type. If a declaration for a
tagged type occurs within a generic_package_declaration, then the corresponding type declarations in
distinct instances of the generic package are associated with distinct tags. For a tagged type that is local
to a generic package body, the language does not specify whether repeated instantiations of the generic
body result in distinct tags.

4.aReason: This eases generic code sharing.

4.bImplementation Note: The language does not specify whether repeated elaborations of the same full_type_declaration
correspond to distinct tags. In most cases, we expect that all elaborations will correspond to the same tag, since the tag
will frequently be the address (or index) of a statically allocated type descriptor. However, with shared generics, the
type descriptor might have to be allocated on a per-instance basis, which in some implementation models implies
per-elaboration of the instantiation.

5The following language-defined library package exists:
6package Ada.Tags is

type Tag is private;

7function Expanded_Name(T : Tag) return String;
function External_Tag(T : Tag) return String;
function Internal_Tag(External : String) return Tag;

8Tag_Error : exception;

9private
... -- not specified by the language

end Ada.Tags;

9.aReason: Tag is a nonlimited, definite subtype, because it needs the equality operators, so that tag checking makes
sense. Also, equality, assignment, and object declaration are all useful capabilities for this subtype.

9.bFor an object X and a type T, ‘‘X’Tag = T’Tag’’ is not needed, because a membership test can be used. However,
comparing the tags of two objects cannot be done via membership. This is one reason to allow equality for type Tag.

10The function Expanded_Name returns the full expanded name of the first subtype of the specific type
identified by the tag, in upper case, starting with a root library unit. The result is implementation defined
if the type is declared within an unnamed block_statement.

10.aTo be honest: This name, as well as each prefix of it, does not denote a renaming_declaration.

10.bImplementation defined: The result of Tags.Expanded_Name for types declared within an unnamed block_statement.

11The function External_Tag returns a string to be used in an external representation for the given tag. The
call External_Tag(S’Tag) is equivalent to the attribute_reference S’External_Tag (see 13.3).

11.aReason: It might seem redundant to provide both the function External_Tag and the attribute External_Tag. The
function is needed because the attribute can’t be applied to values of type Tag. The attribute is needed so that it can be
specifiable via an attribute_definition_clause.

12The function Internal_Tag returns the tag that corresponds to the given external tag, or raises Tag_Error if
the given string is not the external tag for any specific type of the partition.

ISO/IEC 8652:1995(E) —AARM;6.0

3.9 Tagged Types and Type Extensions 21 December 1994 100

13 For every subtype S of a tagged type T (specific or class-wide), the following attributes are defined:

S’Class S’Class denotes a subtype of the class-wide type (called T’Class in this International14

Standard) for the class rooted at T (or if S already denotes a class-wide subtype, then
S’Class is the same as S).

{unconstrained (subtype)} {constrained (subtype)} S’Class is unconstrained. However, if S15

is constrained, then the values of S’Class are only those that when converted to the
type T belong to S.

15.a Ramification: This attribute is defined for both specific and class-wide subtypes. The definition is such that
S’Class’Class is the same as S’Class.

15.b Note that if S is constrained, S’Class is only partially constrained, since there might be additional discriminants added
in descendants of T which are not constrained.

15.c Reason: The Class attribute is not defined for untagged subtypes (except for incomplete types and private types whose
full view is tagged — see 3.10.1 and 7.3.1) so as to preclude implicit conversion in the absence of run-time type
information. If it were defined for untagged subtypes, it would correspond to the concept of universal types provided
for the predefined numeric classes.

S’Tag S’Tag denotes the tag of the type T (or if T is class-wide, the tag of the root type of16

the corresponding class). The value of this attribute is of type Tag.
16.a Reason: S’Class’Tag equals S’Tag, to avoid generic contract model problems when S’Class is the actual type

associated with a generic formal derived type.

17 Given a prefix X that is of a class-wide tagged type [(after any implicit dereference)], the following
attribute is defined:

X’Tag X’Tag denotes the tag of X. The value of this attribute is of type Tag.18

18.a Reason: X’Tag is not defined if X is of a specific type. This is primarily to avoid confusion that might result about
whether the Tag attribute should reflect the tag of the type of X, or the tag of X. No such confusion is possible if X is of
a class-wide type.

Dynamic Semantics

19 The tag associated with an object of a tagged type is determined as follows:

20 • {tag of an object [stand-alone object, component, or aggregate]} The tag of a stand-alone object, a
component, or an aggregate of a specific tagged type T identifies T.

20.a Discussion: The tag of a formal parameter of type T is not necessarily the tag of T, if, for example, the actual
was a type conversion.

21 • {tag of an object [object created by an allocator]} The tag of an object created by an allocator for an
access type with a specific designated tagged type T, identifies T.

21.a Discussion: The tag of an object designated by a value of such an access type might not be T, if, for example,
the access value is the result of a type conversion.

22 • {tag of an object [class-wide object]} The tag of an object of a class-wide tagged type is that of its
initialization expression.

22.a Ramification: The tag of an object (even a class-wide one) cannot be changed after it is initialized, since a
‘‘class-wide’’ assignment_statement raises Constraint_Error if the tags don’t match, and a ‘‘specific’’
assignment_statement does not affect the tag.

23 • {tag of an object [returned by a function]} The tag of the result returned by a function whose result
type is a specific tagged type T identifies T.

23.a Implementation Note: This requires a run-time check for limited tagged types, since they are returned
"by-reference." For a nonlimited type, a new anonymous object with the appropriate tag is created as part of
the function return, and then assigned the value of the return expression. See 6.5, ‘‘Return Statements’’.

24 • {tag of an object [returned by a function]} The tag of the result returned by a function with a
class-wide result type is that of the return expression.

ISO/IEC 8652:1995(E) —AARM;6.0

101 21 December 1994 Tagged Types and Type Extensions 3.9

25{tag of an object [preserved by type conversion and parameter passing]} The tag is preserved by type conversion and
by parameter passing. The tag of a value is the tag of the associated object (see 6.2).

Implementation Permissions

26The implementation of the functions in Ada.Tags may raise Tag_Error if no specific type corresponding
to the tag passed as a parameter exists in the partition at the time the function is called.

26.aReason: In most implementations, repeated elaborations of the same type_declaration will all produce the same tag. In
such an implementation, Tag_Error will be raised in cases where the internal or external tag was passed from a
different partition. However, some implementations might create a new tag value at run time for each elaboration of a
type_declaration. In that case, Tag_Error could also be raised if the created type no longer exists because the
subprogram containing it has returned, for example. We don’t require the latter behavior; hence the word ‘‘may’’ in
this rule.

NOTES
2762 A type declared with the reserved word tagged should normally be declared in a package_specification, so that new

primitive subprograms can be declared for it.

2863 Once an object has been created, its tag never changes.

2964 Class-wide types are defined to have unknown discriminants (see 3.7). This means that objects of a class-wide type
have to be explicitly initialized (whether created by an object_declaration or an allocator), and that aggregates have to be
explicitly qualified with a specific type when their expected type is class-wide.

3065 If S denotes an untagged private type whose full type is tagged, then S’Class is also allowed before the full type
definition, but only in the private part of the package in which the type is declared (see 7.3.1). Similarly, the Class attribute
is defined for incomplete types whose full type is tagged, but only within the library unit in which the incomplete type is
declared (see 3.10.1).

Examples

31Examples of tagged record types:
32type Point is tagged

record
X, Y : Real := 0.0;

end record;

33type Expression is tagged null record;
-- Components will be added by each extension

Extensions to Ada 83

33.a{extensions to Ada 83} Tagged types are a new concept.

3.9.1 Type Extensions
1[{type extension} {extension (of a type)} {record extension} {extension (of a record type)} {private extension} {extension (of a

private type)} Every type extension is a tagged type, and is either a record extension or a private extension
of some other tagged type.]

Language Design Principles

1.aWe want to make sure that we can extend a generic formal tagged type, without knowing its discriminants.

1.bWe don’t want to allow components in an extension aggregate to depend on discriminants inherited from the parent
value, since such dependence requires staticness in aggregates, at least for variants.

Syntax

2record_extension_part ::= with record_definition

Legality Rules

3The parent type of a record extension shall not be a class-wide type. If the parent type is nonlimited, then
each of the components of the record_extension_part shall be nonlimited. {accessibility rule [record extension]}

ISO/IEC 8652:1995(E) —AARM;6.0

3.9.1 Type Extensions 21 December 1994 102

The accessibility level (see 3.10.2) of a record extension shall not be statically deeper than that of its
parent type. {generic contract issue [partial]} In addition to the places where Legality Rules normally apply
(see 12.3), these rules apply also in the private part of an instance of a generic unit.

3.a Reason: If the parent is a limited formal type, then the actual might be nonlimited.

3.b A similar accessibility rule is not needed for private extensions, because in a package, the rule will apply to the full_
type_declaration, and for a generic formal private extension, the actual is all that matters.

4 A type extension shall not be declared in a generic body if the parent type is declared outside that body.
4.a Reason: This paragraph ensures that a dispatching call will never attempt to execute an inaccessible subprogram body.

4.b The part about generic bodies is necessary in order to preserve the contract model.

4.c Since a generic unit can be instantiated at a deeper accessibility level than the generic unit, it is necessary to prevent
type extensions whose parent is declared outside the generic unit. The same is true if the parent is a formal of the
generic unit. If the parent is declared in the generic_declaration (but is not a formal), we don’t run afoul of the
accessibility rules, because we know that the instance declaration and body will be at the same accessibility level.
However, we still have a problem in that case, because it might have an unknown number of abstract subprograms, as
in the following example:

4.d package P is
type T is tagged null record;
function F return T; -- Inherited versions will be abstract.

end P;

4.e generic
type TT is tagged private;

package Gp is
type NT is abstract new TT with null record;
procedure Q(X : in NT) is abstract;

end Gp;

4.f package body Gp is
type NT2 is new NT with null record; -- Illegal!
procedure Q(X : in NT2) is begin null; end Q;
-- Is this legal or not? Can’t decide because
-- we don’t know whether TT had any functions that go abstract
-- on extension.

end Gp;

4.g package I is new Gp(TT => P.T);

4.h I.NT is an abstract type with two abstract subprograms: F (inherited as abstract) and Q (explicitly declared as abstract).
But the generic body doesn’t know about F, so we don’t know that it needs to be overridden to make a nonabstract
extension of NT. Furthermore, a formal tagged limited private type can be extended with limited components, but the
actual might not be limited, which would allow assignment of limited types, which is bad. Hence, we have to disallow
this case as well.

4.i If TT were declared as abstract, then we could have the same problem with abstract procedures.

4.j We considered disallowing all tagged types in a generic body, for simplicity. We decided not to go that far, in order to
avoid unnecessary restrictions.

4.k {accessibility rule [not part of generic contract]} We also considered trying make the accessibility level part of the
contract; i.e. invent some way of saying (in the generic_declaration) ‘‘all instances of this generic unit will have the
same accessibility level as the generic_declaration.’’ Unfortunately, that doesn’t solve the part of the problem having
to do with abstract types.

4.l Children of generic units obviate the need for extension in the body somewhat.

Dynamic Semantics

5 {elaboration [record_extension_part]} The elaboration of a record_extension_part consists of the elaboration of
the record_definition.

ISO/IEC 8652:1995(E) —AARM;6.0

103 21 December 1994 Type Extensions 3.9.1

NOTES
666 The term ‘‘type extension’’ refers to a type as a whole. The term ‘‘extension part’’ refers to the piece of text that

defines the additional components (if any) the type extension has relative to its specified ancestor type.

6.aDiscussion: We considered other terminology, such as ‘‘extended type.’’ However, the terms ‘‘private extended
type’’ and ‘‘record extended type’’ did not convey the proper meaning. Hence, we have chosen to uniformly use the
term ‘‘extension’’ as the type resulting from extending a type, with ‘‘private extension’’ being one produced by
privately extending the type, and ‘‘record extension’’ being one produced by extending the type with an additional
record-like set of components. Note also that the term ‘‘type extension’’ refers to the result of extending a type in the
language Oberon as well (though there the term ‘‘extended type’’ is also used, interchangeably, perhaps because
Oberon doesn’t have the concept of a ‘‘private extension’’).

767 The accessibility rules imply that a tagged type declared in a library package_specification can be extended only at
library level or as a generic formal. When the extension is declared immediately within a package_body, primitive
subprograms are inherited and are overridable, but new primitive subprograms cannot be added.

868 A name that denotes a component (including a discriminant) of the parent type is not allowed within the record_
extension_part. Similarly, a name that denotes a component defined within the record_extension_part is not allowed within
the record_extension_part. It is permissible to use a name that denotes a discriminant of the record extension, providing
there is a new known_discriminant_part in the enclosing type declaration. (The full rule is given in 3.8.)

8.aReason: The restriction against depending on discriminants of the parent is to simplify the definition of extension
aggregates. The restriction against using parent components in other ways is methodological; it presumably simplifies
implementation as well.

969 Each visible component of a record extension has to have a unique name, whether the component is (visibly) inherited
from the parent type or declared in the record_extension_part (see 8.3).

Examples

10Examples of record extensions (of types defined above in 3.9):
11type Painted_Point is new Point with

record
Paint : Color := White;

end record;
-- Components X and Y are inherited

12Origin : constant Painted_Point := (X | Y => 0.0, Paint => Black);

13type Literal is new Expression with
record -- a leaf in an Expression tree
Value : Real;

end record;

14type Expr_Ptr is access all Expression’Class;
-- see 3.10

15type Binary_Operation is new Expression with
record -- an internal node in an Expression tree
Left, Right : Expr_Ptr;

end record;

16type Addition is new Binary_Operation with null record;
type Subtraction is new Binary_Operation with null record;

-- No additional components needed for these extensions

17Tree : Expr_Ptr := -- A tree representation of ‘‘5.0 + (13.0-7.0)’’
new Addition’(

Left => new Literal’(Value => 5.0),
Right => new Subtraction’(

Left => new Literal’(Value => 13.0),
Right => new Literal’(Value => 7.0)));

Extensions to Ada 83

17.a{extensions to Ada 83} Type extension is a new concept.

ISO/IEC 8652:1995(E) —AARM;6.0

3.9.2 Dispatching Operations of Tagged Types 21 December 1994 104

3.9.2 Dispatching Operations of Tagged Types
1 {dispatching operation [distributed]} {dispatching call (on a dispatching operation)} {nondispatching call (on a dispatching

operation)} {statically determined tag} {dynamically determined tag} {polymorphism} {run-time polymorphism} {controlling

tag (for a call on a dispatching operation)} The primitive subprograms of a tagged type are called dispatching
operations. [A dispatching operation can be called using a statically determined controlling tag, in which
case the body to be executed is determined at compile time. Alternatively, the controlling tag can be
dynamically determined, in which case the call dispatches to a body that is determined at run time;] such
a call is termed a dispatching call. [As explained below, the properties of the operands and the context of
a particular call on a dispatching operation determine how the controlling tag is determined, and hence
whether or not the call is a dispatching call. Run-time polymorphism is achieved when a dispatching
operation is called by a dispatching call.] {object-oriented programming (OOP): see dispatching operations of tagged

types} {OOP (object-oriented programming): see dispatching operations of tagged types} {message: see dispatching call}
{method: see dispatching subprogram} {virtual function: see dispatching subprogram}

Language Design Principles

1.a The controlling tag determination rules are analogous to the overload resolution rules, except they deal with run-time
type identification (tags) rather than compile-time type resolution. As with overload resolution, controlling tag
determination may depend on operands or result context.

Static Semantics

2 {call on a dispatching operation} {dispatching operation} A call on a dispatching operation is a call whose name
or prefix denotes the declaration of a primitive subprogram of a tagged type, that is, a dispatching opera-
tion.

2.a Ramification: This definition implies that a call through the dereference of an access-to-subprogram value is never
considered a call on a dispatching operation. Note also that if the prefix denotes a renaming_declaration, the place
where the renaming occurs determines whether it is primitive; the thing being renamed is irrelevant.

{controlling operand} A controlling operand in a call on a dispatching operation of a tagged type T is one
whose corresponding formal parameter is of type T or is of an anonymous access type with designated
type T; {controlling formal parameter} the corresponding formal parameter is called a controlling formal
parameter. If the controlling formal parameter is an access parameter, the controlling operand is the
object designated by the actual parameter, rather than the actual parameter itself. {controlling result} If the
call is to a (primitive) function with result type T, then the call has a controlling result — the context of
the call can control the dispatching.

3 A name or expression of a tagged type is either statically tagged, dynamically tagged, or tag
indeterminate, according to whether, when used as a controlling operand, the tag that controls dispatching
is determined statically by the operand’s (specific) type, dynamically by its tag at run time, or from
context. A qualified_expression or parenthesized expression is statically, dynamically, or indeterminately
tagged according to its operand. For other kinds of names and expressions, this is determined as follows:

4 • {statically tagged} The name or expression is statically tagged if it is of a specific tagged type
and, if it is a call with a controlling result, it has at least one statically tagged controlling
operand;

4.a Discussion: It is illegal to have both statically tagged and dynamically tagged controlling operands in the same
call -- see below.

5 • {dynamically tagged} The name or expression is dynamically tagged if it is of a class-wide type,
or it is a call with a controlling result and at least one dynamically tagged controlling
operand;

6 • {tag indeterminate} The name or expression is tag indeterminate if it is a call with a controlling
result, all of whose controlling operands (if any) are tag indeterminate.

ISO/IEC 8652:1995(E) —AARM;6.0

105 21 December 1994 Dispatching Operations of Tagged Types 3.9.2

7[A type_conversion is statically or dynamically tagged according to whether the type determined by the
subtype_mark is specific or class-wide, respectively.] For a controlling operand that is designated by an
actual parameter, the controlling operand is statically or dynamically tagged according to whether the
designated type of the actual parameter is specific or class-wide, respectively.

7.aRamification: A type_conversion is never tag indeterminate, even if its operand is. A designated object is never tag
indeterminate.

Legality Rules

8A call on a dispatching operation shall not have both dynamically tagged and statically tagged controlling
operands.

8.aReason: This restriction is intended to minimize confusion between whether the dynamically tagged operands are
implicitly converted to, or tag checked against the specific type of the statically tagged operand(s).

9If the expected type for an expression or name is some specific tagged type, then the expression or name
shall not be dynamically tagged unless it is a controlling operand in a call on a dispatching operation.
Similarly, if the expected type for an expression is an anonymous access-to-specific tagged type, then the
expression shall not be of an access-to-class-wide type unless it designates a controlling operand in a call
on a dispatching operation.

9.aReason: This prevents implicit "truncation" of a dynamically-tagged value to the specific type of the target
object/formal. An explicit conversion is required to request this truncation.

9.bRamification: This rule applies to all expressions or names with a specific expected type, not just those that are actual
parameters to a dispatching call. This rule does not apply to a membership test whose expression is class-wide, since
any type that covers the tested type is explicitly allowed. See 4.5.2.

10In the declaration of a dispatching operation of a tagged type, everywhere a subtype of the tagged type
appears as a subtype of the profile (see 6.1), it shall statically match the first subtype of the tagged type.
{statically matching [required]} If the dispatching operation overrides an inherited subprogram, it shall be
subtype conformant with the inherited subprogram. {subtype conformance (required)} A dispatching operation
shall not be of convention Intrinsic. If a dispatching operation overrides the predefined equals operator,
then it shall be of convention Ada [(either explicitly or by default — see 6.3.1)].

10.aReason: These rules ensure that constraint checks can be performed by the caller in a dispatching call, and parameter
passing conventions match up properly. A special rule on aggregates prevents values of a tagged type from being
created that are outside of its first subtype.

11The default_expression for a controlling formal parameter of a dispatching operation shall be tag indeter-
minate. A controlling formal parameter that is an access parameter shall not have a default_expression.

11.aReason: The first part ensures that the default_expression always produces the "correct" tag when called with or
without dispatching, or when inherited by a descendant. If it were statically tagged, the default would be useless for a
dispatching call; if it were dynamically tagged, the default would be useless for a nondispatching call.

11.bThe second part is consistent with the first part, since designated objects are never tag-indeterminate.

12A given subprogram shall not be a dispatching operation of two or more distinct tagged types.
12.aReason: This restriction minimizes confusion since multiple dispatching is not provided. The normal solution is to

replace all but one of the tagged types with their class-wide types.

13The explicit declaration of a primitive subprogram of a tagged type shall occur before the type is frozen
(see 13.14). [For example, new dispatching operations cannot be added after objects or values of the type
exist, nor after deriving a record extension from it, nor after a body.]

13.aReason: This rule is needed because (1) we don’t want people dispatching to things that haven’t been declared yet,
and (2) we want to allow tagged type descriptors to be static (allocated statically, and initialized to link-time-known
symbols). Suppose T2 inherits primitive P from T1, and then overrides P. Suppose P is called before the declaration of

ISO/IEC 8652:1995(E) —AARM;6.0

3.9.2 Dispatching Operations of Tagged Types 21 December 1994 106

the overriding P. What should it dispatch to? If the answer is the new P, we’ve violated the first principle above. If the
answer is the old P, we’ve violated the second principle. (A call to the new one necessarily raises Program_Error, but
that’s beside the point.)

13.b Note that a call upon a dispatching operation of type T will freeze T.

13.c We considered applying this rule to all derived types, for uniformity. However, that would be upward incompatible, so
we rejected the idea. As in Ada 83, for an untagged type, the above call upon P will call the old P (which is arguably
confusing).

13.d Implementation Note: Because of this rule, the type descriptor can be created (presumably containing linker symbols
pointing at the not-yet-compiled bodies) at the first freezing point of the type. It also prevents, for a tagged type
declared in a package_specification, overriding in the body or by a child subprogram.

13.e Ramification: A consequence is that for a derived_type_declaration in a declarative_part, only the first primitive
subprogram can be declared by a subprogram_body.

Dynamic Semantics

14 {execution [call on a dispatching operation]} {controlling tag value} For the execution of a call on a dispatching
operation of a type T, the controlling tag value determines which subprogram body is executed. The
controlling tag value is defined as follows:

15 • {statically determined tag [partial]} If one or more controlling operands are statically tagged, then
the controlling tag value is statically determined to be the tag of T.

16 • If one or more controlling operands are dynamically tagged, then the controlling tag value is
not statically determined, but is rather determined by the tags of the controlling operands.
{Tag_Check [partial]} {check, language-defined (Tag_Check)} If there is more than one dynamically
tagged controlling operand, a check is made that they all have the same tag. {Constraint_Error

(raised by failure of run-time check)} If this check fails, Constraint_Error is raised unless the call is
a function_call whose name denotes the declaration of an equality operator (predefined or
user defined) that returns Boolean, in which case the result of the call is defined to indicate
inequality, and no subprogram_body is executed. This check is performed prior to evaluat-
ing any tag-indeterminate controlling operands.

16.a Reason: Tag mismatch is considered an error (except for "=" and "/=") since the corresponding primitive
subprograms in each specific type expect all controlling operands to be of the same type. For tag mismatch
with an equality operator, rather than raising an exception, "=" returns False and "/=" returns True. No equality
operator is actually invoked, since there is no common tag value to control the dispatch. Equality is a special
case to be consistent with the existing Ada 83 principle that equality comparisons, even between objects with
different constraints, never raise Constraint_Error.

17 • If all of the controlling operands are tag-indeterminate, then:
18 • If the call has a controlling result and is itself a (possibly parenthesized or qualified)

controlling operand of an enclosing call on a dispatching operation of type T, then its
controlling tag value is determined by the controlling tag value of this enclosing call;

19 • {statically determined tag [partial]} Otherwise, the controlling tag value is statically deter-
mined to be the tag of type T.

19.a Ramification: This includes the cases of a tag-indeterminate procedure call, and a tag-indeterminate function_
call that is used to initialize a class-wide formal parameter or class-wide object.

20 For the execution of a call on a dispatching operation, the body executed is the one for the corresponding
primitive subprogram of the specific type identified by the controlling tag value. The body for an ex-
plicitly declared dispatching operation is the corresponding explicit body for the subprogram. The body
for an implicitly declared dispatching operation that is overridden is the body for the overriding sub-
program, [even if the overriding occurs in a private part.] The body for an inherited dispatching operation
that is not overridden is the body of the corresponding subprogram of the parent or ancestor type.

ISO/IEC 8652:1995(E) —AARM;6.0

107 21 December 1994 Dispatching Operations of Tagged Types 3.9.2

20.aTo be honest: In the unusual case in which a dispatching subprogram is explicitly declared (overridden) by a body
(with no preceding subprogram_declaration), the body for that dispatching subprogram is that body; that is, the
‘‘corresponding explicit body’’ in the above rule is the body itself.

20.bReason: The wording of the above rule is intended to ensure that the same body is executed for a given tag, whether
that tag is determined statically or dynamically. For a type declared in a package, it doesn’t matter whether a given
subprogram is overridden in the visible part or the private part, and it doesn’t matter whether the call is inside or
outside the package. For example:

20.cpackage P1 is
type T1 is tagged null record;
procedure Op_A(Arg : in T1);
procedure Op_B(Arg : in T1);

end P1;

20.dwith P1; use P1;
package P2 is

type T2 is new T1 with null record;
procedure Op_A(Param : in T2);

private
procedure Op_B(Param : in T2);

end P2;

20.ewith P1; with P2;
procedure Main is

X : T2;
Y : T1’Class := X;

begin
P2.Op_A(Param => X); -- Nondispatching call.
P1.Op_A(Arg => Y); -- Dispatching call.
P2.Op_B(Arg => X); -- Nondispatching call.
P1.Op_B(Arg => Y); -- Dispatching call.

end Main;

20.fThe two calls to Op_A both execute the body of Op_A that has to occur in the body of package P2. Similarly, the two
calls to Op_B both execute the body of Op_B that has to occur in the body of package P2, even though Op_B is
overridden in the private part of P2. Note, however, that the formal parameter names are different for P2.Op_A versus
P2.Op_B. The overriding declaration for P2.Op_B is not visible in Main, so the name in the call actually denotes the
implicit declaration of Op_B inherited from T1.

20.gIf a call occurs in the program text before an overriding, which can happen only if the call is part of a default
expression, the overriding will still take effect for that call.

20.hImplementation Note: Even when a tag is not statically determined, a compiler might still be able to figure it out and
thereby avoid the overhead of run-time dispatching.

NOTES
2170 The body to be executed for a call on a dispatching operation is determined by the tag; it does not matter whether that

tag is determined statically or dynamically, and it does not matter whether the subprogram’s declaration is visible at the
place of the call.

2271 This subclause covers calls on primitive subprograms of a tagged type. Rules for tagged type membership tests are
described in 4.5.2. Controlling tag determination for an assignment_statement is described in 5.2.

2372 A dispatching call can dispatch to a body whose declaration is not visible at the place of the call.

2473 A call through an access-to-subprogram value is never a dispatching call, even if the access value designates a
dispatching operation. Similarly a call whose prefix denotes a subprogram_renaming_declaration cannot be a dispatching
call unless the renaming itself is the declaration of a primitive subprogram.

Extensions to Ada 83

24.a{extensions to Ada 83} The concept of dispatching operations is new.

ISO/IEC 8652:1995(E) —AARM;6.0

3.9.3 Abstract Types and Subprograms 21 December 1994 108

3.9.3 Abstract Types and Subprograms
1 [{abstract type} {abstract data type (ADT): see also abstract type} {ADT (abstract data type): see also abstract type} {concrete

type: see nonabstract type} An abstract type is a tagged type intended for use as a parent type for type
extensions, but which is not allowed to have objects of its own. {abstract subprogram} {concrete subprogram:

see nonabstract subprogram} An abstract subprogram is a subprogram that has no body, but is intended to be
overridden at some point when inherited. Because objects of an abstract type cannot be created, a dis-
patching call to an abstract subprogram always dispatches to some overriding body.]

Language Design Principles

1.a An abstract subprogram has no body, so the rules in this clause are designed to ensure (at compile time) that the body
will never be invoked. We do so primarily by disallowing the creation of values of the abstract type. Therefore, since
type conversion and parameter passing don’t change the tag, we know we will never get a class-wide value with a tag
identifying an abstract type. This means that we only have to disallow nondispatching calls on abstract subprograms
(dispatching calls will never reach them).

Legality Rules

2 {abstract type} {type (abstract)} An abstract type is a specific type that has the reserved word abstract in its
declaration. Only a tagged type is allowed to be declared abstract.

2.a Ramification: Untagged types are never abstract, even though they can have primitive abstract subprograms. Such
subprograms cannot be called, unless they also happen to be dispatching operations of some tagged type, and then only
via a dispatching call.

2.b Class-wide types are never abstract. If T is abstract, then it is illegal to declare a stand-alone object of type T, but it is
OK to declare a stand-alone object of type T’Class; the latter will get a tag from its initial value, and this tag will
necessarily be different from T’Tag.

3 {abstract subprogram} {subprogram (abstract)} A subprogram declared by an abstract_subprogram_declaration
(see 6.1) is an abstract subprogram. If it is a primitive subprogram of a tagged type, then the tagged type
shall be abstract.

3.a Ramification: Note that for a private type, this applies to both views. The following is illegal:

3.b package P is
type T is abstract tagged private;
function Foo (X : T) return Boolean is abstract; -- Illegal!

private
type T is tagged null record; -- Illegal!
X : T;
Y : Boolean := Foo (T’Class (X));

end P;

3.c The full view of T is not abstract, but has an abstract operation Foo, which is illegal. The two lines marked "-- Illegal!"
are illegal when taken together.

3.d Reason: We considered disallowing untagged types from having abstract primitive subprograms. However, we
rejected that plan, because it introduced some silly anomalies, and because such subprograms are harmless (if not
terribly useful). For example:

3.e package P is
type Field_Size is range 0..100;
type T is abstract tagged null record;
procedure Print(X : in T; F : in Field_Size := 0) is abstract;
. . .

package Q is
type My_Field_Size is new Field_Size;
-- implicit declaration of Print(X : T; F : My_Field_Size := 0) is abstract;

end Q;

3.f It seemed silly to make the derivative of My_Field_Size illegal, just because there was an implicitly declared abstract
subprogram that was not primitive on some tagged type. Other rules could be formulated to solve this problem, but the
current ones seem like the simplest.

ISO/IEC 8652:1995(E) —AARM;6.0

109 21 December 1994 Abstract Types and Subprograms 3.9.3

4For a derived type, if the parent or ancestor type has an abstract primitive subprogram, or a primitive
function with a controlling result, then:

5• If the derived type is abstract or untagged, the inherited subprogram is abstract.
5.aRamification: Note that it is possible to override a concrete subprogram with an abstract one.

6• Otherwise, the subprogram shall be overridden with a nonabstract subprogram; [for a type
declared in the visible part of a package, the overriding may be either in the visible or the
private part.] However, if the type is a generic formal type, the subprogram need not be
overridden for the formal type itself; [a nonabstract version will necessarily be provided by
the actual type.]

6.aReason: A function that returns the parent type becomes abstract for an abstract type extension (if not
overridden) because conversion from a parent type to a type extension is not defined, and function return
semantics is defined in terms of conversion. (Note that parameters of mode in out or out do not have this
problem, because the tag of the actual is not changed.)

6.bNote that the overriding required above can be in the private part, which allows the following:

6.cpackage Pack1 is
type Ancestor is abstract ...;
procedure Do_Something(X : in Ancestor) is abstract;

end Pack1;

6.dwith Pack1; use Pack1;
package Pack2 is

type T1 is new Ancestor with record ...;
-- A concrete type.

procedure Do_Something(X : in T1); -- Have to override.
end Pack2;

6.ewith Pack1; use Pack1;
with Pack2; use Pack2;
package Pack3 is

type T2 is new Ancestor with private;
-- A concrete type.

private
type T2 is new T1 with -- Parent different from ancestor.
record ... end record;

-- Here, we inherit Pack2.Do_Something.
end Pack3;

6.fT2 inherits an abstract Do_Something, but T is not abstract, so Do_Something has to be overridden. However,
it is OK to override it in the private part. In this case, we override it by inheriting a concrete version from a
different type. Nondispatching calls to Pack3.Do_Something are allowed both inside and outside package
Pack3.

7A call on an abstract subprogram shall be a dispatching call; [nondispatching calls to an abstract sub-
program are not allowed.]

7.aRamification: If an abstract subprogram is not a dispatching operation of some tagged type, then it cannot be called at
all.

8The type of an aggregate, or of an object created by an object_declaration or an allocator, or a generic
formal object of mode in, shall not be abstract. The type of the target of an assignment operation (see
5.2) shall not be abstract. The type of a component shall not be abstract. If the result type of a function is
abstract, then the function shall be abstract.

8.aReason: This ensures that values of an abstract type cannot be created, which ensures that a dispatching call to an
abstract subprogram will not try to execute the nonexistent body.

8.bGeneric formal objects of mode in are like constants; therefore they should be forbidden for abstract types. Generic
formal objects of mode in out are like renamings; therefore, abstract types are OK for them, though probably not
terribly useful.

ISO/IEC 8652:1995(E) —AARM;6.0

3.9.3 Abstract Types and Subprograms 21 December 1994 110

9 If a partial view is not abstract, the corresponding full view shall not be abstract. If a generic formal type
is abstract, then for each primitive subprogram of the formal that is not abstract, the corresponding primi-
tive subprogram of the actual shall not be abstract.

9.a Discussion: By contrast, we allow the actual type to be nonabstract even if the formal type is declared abstract.
Hence, the most general formal tagged type possible is "type T(<>) is abstract tagged limited private;".

9.b For an abstract private extension declared in the visible part of a package, it is only possible for the full type to be
nonabstract if the private extension has no abstract dispatching operations.

10 For an abstract type declared in a visible part, an abstract primitive subprogram shall not be declared in
the private part, unless it is overriding an abstract subprogram implicitly declared in the visible part. For
a tagged type declared in a visible part, a primitive function with a controlling result shall not be declared
in the private part, unless it is overriding a function implicitly declared in the visible part.

10.a Reason: The ‘‘visible part’’ could be that of a package or a generic package. This rule is needed because a
non-abstract type extension declared outside the package would not know about any abstract primitive subprograms or
primitive functions with controlling results declared in the private part, and wouldn’t know that they need to be
overridden with non-abstract subprograms. The rule applies to a tagged record type or record extension declared in a
visible part, just as to a tagged private type or private extension. The rule applies to explicitly and implicitly declared
abstract subprograms:

10.b package Pack is
type T is abstract new T1 with private;

private
type T is abstract new T2 with record ... end record;
...

end Pack;

10.c The above example would be illegal if T1 has a non-abstract primitive procedure P, but T2 overrides P with an abstract
one; the private part should override P with a non-abstract version. On the other hand, if the P were abstract for both
T1 and T2, the example would be legal as is.

11 A generic actual subprogram shall not be an abstract subprogram. The prefix of an attribute_reference for
the Access, Unchecked_Access, or Address attributes shall not denote an abstract subprogram.

11.a Ramification: An abstract_subprogram_declaration is not syntactically a subprogram_declaration. Nonetheless, an
abstract subprogram is a subprogram, and an abstract_subprogram_declaration is a declaration of a subprogram.

11.b The part about generic actual subprograms includes those given by default.

NOTES
12 74 Abstractness is not inherited; to declare an abstract type, the reserved word abstract has to be used in the declaration

of the type extension.

12.a Ramification: A derived type can be abstract even if its parent is not. Similarly, an inherited concrete subprogram can
be overridden with an abstract subprogram.

13 75 A class-wide type is never abstract. Even if a class is rooted at an abstract type, the class-wide type for the class is not
abstract, and an object of the class-wide type can be created; the tag of such an object will identify some nonabstract type
in the class.

Examples

14 Example of an abstract type representing a set of natural numbers:
15 package Sets is

subtype Element_Type is Natural;
type Set is abstract tagged null record;
function Empty return Set is abstract;
function Union(Left, Right : Set) return Set is abstract;
function Intersection(Left, Right : Set) return Set is abstract;
function Unit_Set(Element : Element_Type) return Set is abstract;
procedure Take(Element : out Element_Type; From : in out Set) is abstract;

end Sets;

ISO/IEC 8652:1995(E) —AARM;6.0

111 21 December 1994 Abstract Types and Subprograms 3.9.3

NOTES
1676 Notes on the example: Given the above abstract type, one could then derive various (nonabstract) extensions of the

type, representing alternative implementations of a set. One might use a bit vector, but impose an upper bound on the
largest element representable, while another might use a hash table, trading off space for flexibility.

16.aDiscussion: One way to export a type from a package with some components visible and some components private is
as follows:

16.bpackage P is
type Public_Part is abstract tagged

record
...

end record;
type T is new Public_Part with private;
...

private
type T is new Public_Part with

record
...

end record;
end P;

16.cThe fact that Public_Part is abstract tells clients they have to create objects of type T instead of Public_Part. Note that
the public part has to come first; it would be illegal to declare a private type Private_Part, and then a record extension T
of it, unless T were in the private part after the full declaration of Private_Part, but then clients of the package would
not have visibility to T.

3.10 Access Types
1{access type} {access value} {designate} A value of an access type (an access value) provides indirect access to

the object or subprogram it designates. Depending on its type, an access value can designate either
subprograms, objects created by allocators (see 4.8), or more generally aliased objects of an appropriate
type. {pointer: see access value} {pointer type: see access type}

1.aDiscussion: A name denotes an entity; an access value designates an entity. The ‘‘dereference’’ of an access value X,
written ‘‘X.all’’, is a name that denotes the entity designated by X.

Language Design Principles

1.bAccess values should always be well defined (barring uses of certain unchecked features of Section 13). In particular,
uninitialized access variables should be prevented by compile-time rules.

Syntax

2access_type_definition ::=
access_to_object_definition

| access_to_subprogram_definition

3access_to_object_definition ::=
access [general_access_modifier] subtype_indication

4general_access_modifier ::= all | constant

5access_to_subprogram_definition ::=
access [protected] procedure parameter_profile

| access [protected] function parameter_and_result_profile

6access_definition ::= access subtype_mark

Static Semantics

7{access-to-object type} {access-to-subprogram type} {pool-specific access type} {general access type} There are two kinds
of access types, access-to-object types, whose values designate objects, and access-to-subprogram types,
whose values designate subprograms. {storage pool} Associated with an access-to-object type is a storage
pool; several access types may share the same storage pool. {pool element} A storage pool is an area of
storage used to hold dynamically allocated objects (called pool elements) created by allocators[; storage
pools are described further in 13.11, ‘‘Storage Management’’].

ISO/IEC 8652:1995(E) —AARM;6.0

3.10 Access Types 21 December 1994 112

8 {pool-specific access type} {general access type} Access-to-object types are further subdivided into pool-specific
access types, whose values can designate only the elements of their associated storage pool, and general
access types, whose values can designate the elements of any storage pool, as well as aliased objects
created by declarations rather than allocators, and aliased subcomponents of other objects.

8.a Implementation Note: The value of an access type will typically be a machine address. However, a value of a
pool-specific access type can be represented as an offset (or index) relative to its storage pool, since it can point only to
the elements of that pool.

9 {aliased} A view of an object is defined to be aliased if it is defined by an object_declaration or
component_definition with the reserved word aliased, or by a renaming of an aliased view. In addition,
the dereference of an access-to-object value denotes an aliased view, as does a view conversion (see 4.6)
of an aliased view. Finally, the current instance of a limited type, and a formal parameter or generic
formal object of a tagged type are defined to be aliased. [Aliased views are the ones that can be desig-
nated by an access value.] {constrained (object)} {unconstrained (object)} {constrained by its initial value} If the view
defined by an object_declaration is aliased, and the type of the object has discriminants, then the object is
constrained; if its nominal subtype is unconstrained, then the object is constrained by its initial value.
[Similarly, if the object created by an allocator has discriminants, the object is constrained, either by the
designated subtype, or by its initial value.]

9.a Glossary entry: {Aliased} An aliased view of an object is one that can be designated by an access value. Objects
allocated by allocators are aliased. Objects can also be explicitly declared as aliased with the reserved word aliased.
The Access attribute can be used to create an access value designating an aliased object.

9.b Ramification: The current instance of a nonlimited type is not aliased.

9.c The object created by an allocator is aliased, but not its subcomponents, except of course for those that themselves have
aliased in their component_definition.

9.d The renaming of an aliased object is aliased.

9.e Slices are never aliased. See 4.1.2 for more discussion.

9.f Reason: The current instance of a limited type is defined to be aliased so that an access discriminant of a component
can be initialized with T’Access inside the definition of T.

9.g A formal parameter of a tagged type is defined to be aliased so that a (tagged) parameter X may be passed to an access
parameter P by using P => X’Access. Access parameters are most important for tagged types because of dispatching-
on-access-parameters (see 3.9.2). By restricting this to formal parameters, we minimize problems associated with
allowing components that are not declared aliased to be pointed-to from within the same record.

9.h A view conversion of an aliased view is aliased so that the type of an access parameter can be changed without first
converting to a named access type. For example:

9.i type T1 is tagged ...;
procedure P(X : access T1);

9.j type T2 is new T1 with ...;
procedure P(X : access T2) is
begin

P(T1(X.all)’Access); -- hand off to T1’s P
. . . -- now do extra T2-specific processing

end P;

9.k The rule about objects with discriminants is necessary because values of a constrained access subtype can designate an
object whose nominal subtype is unconstrained; without this rule, a check on every use of such values would be
required to ensure that the discriminants of the object had not changed. With this rule (among others), we ensure that if
there might exist aliased views of a discriminated object, then the object is necessarily constrained. Note that this rule
is necessary only for untagged types, since a discriminant of a tagged type can’t have a default, so all tagged
discriminated objects are always constrained anyway.

9.l We considered making more kinds of objects aliased by default. In particular, any object of a by-reference type will
pretty much have to be allocated at an addressable location, so it can be passed by reference without using bit-field
pointers. Therefore, one might wish to allow the Access and and Unchecked_Access attributes for such objects.

ISO/IEC 8652:1995(E) —AARM;6.0

113 21 December 1994 Access Types 3.10

However, private parts are transparent to the definition of ‘‘by-reference type’’, so if we made all objects of a
by-reference type aliased, we would be violating the privacy of private parts. Instead, we would have to define a
concept of ‘‘visibly by-reference’’ and base the rule on that. This seemed to complicate the rules more than it was
worth, especially since there is no way to declare an untagged limited private type to be by-reference, since the full
type might by nonlimited.

9.mDiscussion: Note that we do not use the term ‘‘aliased’’ to refer to formal parameters that are referenced through
multiple access paths (see 6.2).

10An access_to_object_definition defines an access-to-object type and its first subtype; {designated subtype (of

a named access type)} {designated type (of a named access type)} the subtype_indication defines the designated
subtype of the access type. If a general_access_modifier appears, then the access type is a general access
type. {access-to-constant type} If the modifier is the reserved word constant, then the type is an
access-to-constant type[; a designated object cannot be updated through a value of such a type].
{access-to-variable type} If the modifier is the reserved word all, then the type is an access-to-variable type[;
a designated object can be both read and updated through a value of such a type]. If no general_access_
modifier appears in the access_to_object_definition, the access type is a pool-specific access-to-variable
type.

10.aTo be honest: The type of the designated subtype is called the designated type.

10.bReason: The modifier all was picked to suggest that values of a general access type could point into ‘‘all’’ storage
pools, as well as to objects declared aliased, and that ‘‘all’’ access (both read and update) to the designated object was
provided. We couldn’t think of any use for pool-specific access-to-constant types, so any access type defined with the
modifier constant is considered a general access type, and can point into any storage pool or at other (appropriate)
aliased objects.

10.cImplementation Note: The predefined generic Unchecked_Deallocation can be instantiated for any named access-to-
variable type. There is no (language-defined) support for deallocating objects designated by a value of an access-to-
constant type. Because of this, an allocator for an access-to-constant type can allocate out of a storage pool with no
support for deallocation. Frequently, the allocation can be done at link-time, if the size and initial value are known
then.

10.dDiscussion: For the purpose of generic formal type matching, the relevant subclasses of access types are access-to-
subprogram types, access-to-constant types, and (named) access-to-variable types, with its subclass (named) general
access-to-variable types. Pool-specific access-to-variable types are not a separately matchable subclass of types, since
they don’t have any ‘‘extra’’ operations relative to all (named) access-to-variable types.

11{access-to-subprogram type} An access_to_subprogram_definition defines an access-to-subprogram type and
its first subtype; {designated profile (of an access-to-subprogram type)} the parameter_profile or parameter_and_
result_profile defines the designated profile of the access type. {calling convention (associated with a designated

profile)} There is a calling convention associated with the designated profile[; only subprograms with this
calling convention can be designated by values of the access type.] By default, the calling convention is
‘‘protected’’ if the reserved word protected appears, and ‘‘Ada’’ otherwise. [See Annex B for how to
override this default.]

11.aRamification: The calling convention protected is in italics to emphasize that it cannot be specified explicitly by the
user. This is a consequence of it being a reserved word.

11.bImplementation Note: For an access-to-subprogram type, the representation of an access value might include
implementation-defined information needed to support up-level references — for example, a static link. The acces-
sibility rules (see 3.10.2) ensure that in a "global-display-based" implementation model (as opposed to a static-link-
based model), an access-to-(unprotected)-subprogram value need consist only of the address of the subprogram. The
global display is guaranteed to be properly set up any time the designated subprogram is called. Even in a
static-link-based model, the only time a static link is definitely required is for an access-to-subprogram type declared in
a scope nested at least two levels deep within subprogram or task bodies, since values of such a type might designate
subprograms nested a smaller number of levels. For the normal case of an access-to-subprogram type declared at the
outermost (library) level, a code address by itself should be sufficient to represent the access value in many
implementations.

11.cFor access-to-protected-subprogram, the access values will necessarily include both an address (or other identification)
of the code of the subprogram, as well as the address of the associated protected object. This could be thought of as a
static link, but it will be needed even for global-display-based implementation models. It corresponds to the value of

ISO/IEC 8652:1995(E) —AARM;6.0

3.10 Access Types 21 December 1994 114

the ‘‘implicit parameter’’ that is passed into every call of a protected operation, to identify the current instance of the
protected type on which they are to operate.

11.d Any Elaboration_Check is performed when a call is made through an access value, rather than when the access value is
first "created" via a ’Access. For implementation models that normally put that check at the call-site, an access value
will have to point to a separate entry point that does the check. Alternatively, the access value could point to a
"subprogram descriptor" that consisted of two words (or perhaps more), the first being the address of the code, the
second being the elaboration bit. Or perhaps more efficiently, just the address of the code, but using the trick that the
descriptor is initialized to point to a Raise-Program-Error routine initially, and then set to point to the "real" code when
the body is elaborated.

11.e For implementations that share code between generic instantiations, the extra level of indirection suggested above to
support Elaboration_Checks could also be used to provide a pointer to the per-instance data area normally required
when calling shared code. The trick would be to put a pointer to the per-instance data area into the subprogram
descriptor, and then make sure that the address of the subprogram descriptor is loaded into a "known" register
whenever an indirect call is performed. Once inside the shared code, the address of the per-instance data area can be
retrieved out of the subprogram descriptor, by indexing off the "known" register.

11.f Essentially the same implementation issues arise for calls on dispatching operations of tagged types, except that the
static link is always known "statically."

11.g Note that access parameters of an anonymous access-to-subprogram type are not permitted. If there were such
parameters, full ‘‘downward’’ closures would be required, meaning that in an implementation that uses a per-task
(global) display, the display would have to be passed as a hidden parameter, and reconstructed at the point of call. This
was felt to be an undue implementation burden, given that an equivalent (actually, more general) capability is available
via formal subprogram parameters to a generic.

12 {anonymous access type} {designated subtype (of an anonymous access type)} {designated type (of an anonymous access type)}

An access_definition defines an anonymous general access-to-variable type; the subtype_mark denotes its
designated subtype. [An access_definition is used in the specification of an access discriminant (see 3.7)
or an access parameter (see 6.1).]

13 {null value (of an access type)} For each (named) access type, there is a literal null which has a null access
value designating no entity at all. [The null value of a named access type is the default initial value of the
type.] Other values of an access type are obtained by evaluating an attribute_reference for the Access or
Unchecked_Access attribute of an aliased view of an object or non-intrinsic subprogram, or, in the case of
a named access-to-object type, an allocator[, which returns an access value designating a newly created
object (see 3.10.2)].

13.a Ramification: A value of an anonymous access type (that is, the value of an access parameter or access discriminant)
cannot be null.

13.b Reason: Access parameters allow dispatching on the tag of the object designated by the actual parameter (which gets
converted to the anonymous access type as part of the call). In order for dispatching to work properly, there had better
be such an object. Hence, the type conversion will raise Constraint_Error if the value of the actual parameter is null.

14 {constrained [subtype]} {unconstrained [subtype]} [All subtypes of an access-to-subprogram type are
constrained.] The first subtype of a type defined by an access_type_definition or an access_to_object_
definition is unconstrained if the designated subtype is an unconstrained array or discriminated type;
otherwise it is constrained.

14.a Proof: The Legality Rules on range_constraints (see 3.5) do not permit the subtype_mark of the subtype_indication to
denote an access-to-scalar type, only a scalar type. The Legality Rules on index_constraints (see 3.6.1) and
discriminant_constraints (see 3.7.1) both permit access-to-composite types in a subtype_indication with such
_constraints. Note that an access-to-access-to-composite is never permitted in a subtype_indication with a constraint.

14.b Reason: Only composite_constraints are permitted for an access type, and only on access-to-composite types. A
constraint on an access-to-scalar or access-to-access type might be violated due to assignments via other access paths
that were not so constrained. By contrast, if the designated subtype is an array or discriminated type, the constraint
could not be violated by unconstrained assignments, since array objects are always constrained, and aliased dis-
criminated objects are also constrained (by fiat, see Static Semantics).

ISO/IEC 8652:1995(E) —AARM;6.0

115 21 December 1994 Access Types 3.10

Dynamic Semantics

15{compatibility [composite_constraint with an access subtype]} A composite_constraint is compatible with an uncon-
strained access subtype if it is compatible with the designated subtype. {satisfies [for an access value]} An
access value satisfies a composite_constraint of an access subtype if it equals the null value of its type or
if it designates an object whose value satisfies the constraint.

16{elaboration [access_type_definition]} The elaboration of an access_type_definition creates the access type and
its first subtype. For an access-to-object type, this elaboration includes the elaboration of the subtype_
indication, which creates the designated subtype.

17{elaboration [access_definition]} The elaboration of an access_definition creates an anonymous general access-
to-variable type [(this happens as part of the initialization of an access parameter or access discriminant)].

NOTES
1877 Access values are called ‘‘pointers’’ or ‘‘references’’ in some other languages.

1978 Each access-to-object type has an associated storage pool; several access types can share the same pool. An object can
be created in the storage pool of an access type by an allocator (see 4.8) for the access type. A storage pool (roughly)
corresponds to what some other languages call a ‘‘heap.’’ See 13.11 for a discussion of pools.

2079 Only index_constraints and discriminant_constraints can be applied to access types (see 3.6.1 and 3.7.1).

Examples

21Examples of access-to-object types:
22type Peripheral_Ref is access Peripheral; -- see 3.8.1

type Binop_Ptr is access all Binary_Operation’Class;
-- general access-to-class-wide, see 3.9.1

23Example of an access subtype:
24subtype Drum_Ref is Peripheral_Ref(Drum); -- see 3.8.1

25Example of an access-to-subprogram type:
26type Message_Procedure is access procedure (M : in String := "Error!");

procedure Default_Message_Procedure(M : in String);
Give_Message : Message_Procedure := Default_Message_Procedure’Access;
...
procedure Other_Procedure(M : in String);
...
Give_Message := Other_Procedure’Access;
...
Give_Message("File not found."); -- call with parameter (.all is optional)
Give_Message.all; -- call with no parameters

Extensions to Ada 83

26.a{extensions to Ada 83} The syntax for access_type_definition is changed to support general access types (including
access-to-constants) and access-to-subprograms. The syntax rules for general_access_modifier and access_definition
are new.

Wording Changes From Ada 83

26.bWe use the term "storage pool" to talk about the data area from which allocation takes place. The term "collection" is
no longer used. ("Collection" and "storage pool" are not the same thing because multiple unrelated access types can
share the same storage pool; see 13.11 for more discussion.)

ISO/IEC 8652:1995(E) —AARM;6.0

3.10.1 Incomplete Type Declarations 21 December 1994 116

3.10.1 Incomplete Type Declarations
1 There are no particular limitations on the designated type of an access type. In particular, the type of a

component of the designated type can be another access type, or even the same access type. This permits
mutually dependent and recursive access types. An incomplete_type_declaration can be used to introduce
a type to be used as a designated type, while deferring its full definition to a subsequent full_type_
declaration.

Syntax

2 incomplete_type_declaration ::= type defining_identifier [discriminant_part];

Legality Rules

3 {requires a completion [incomplete_type_declaration]} An incomplete_type_declaration requires a completion,
which shall be a full_type_declaration. [If the incomplete_type_declaration occurs immediately within
either the visible part of a package_specification or a declarative_part, then the full_type_declaration shall
occur later and immediately within this visible part or declarative_part. If the incomplete_type_
declaration occurs immediately within the private part of a given package_specification, then the full_
type_declaration shall occur later and immediately within either the private part itself, or the declarative_
part of the corresponding package_body.]

3.a Proof: This is implied by the next AARM-only rule, plus the rules in 3.11.1, ‘‘Completions of Declarations’’ which
require a completion to appear later and immediately within the same declarative region.

3.b To be honest: If the incomplete_type_declaration occurs immediately within the visible part of a package_
specification, then the full_type_declaration shall occur immediately within this visible part.

3.c To be honest: If the implementation supports it, an incomplete_type_declaration can be completed by a pragma
Import.

4 If an incomplete_type_declaration has a known_discriminant_part, then a full_type_declaration that com-
pletes it shall have a fully conforming (explicit) known_discriminant_part (see 6.3.1). {full conformance

(required)} [If an incomplete_type_declaration has no discriminant_part (or an unknown_discriminant_part),
then a corresponding full_type_declaration is nevertheless allowed to have discriminants, either explicitly,
or inherited via derivation.]

5 The only allowed uses of a name that denotes an incomplete_type_declaration are as follows:
5.a Discussion: No need to say "prior to the end of the full_type_declaration" since the name would not denote the

incomplete_type_declaration after the end of the full_type_declaration. Also, with child library units, it would not be
well defined whether they come before or after the full_type_declaration for deferred incomplete types.

6 • as the subtype_mark in the subtype_indication of an access_to_object_definition; [the only
form of constraint allowed in this subtype_indication is a discriminant_constraint;]

6.a Implementation Note: We now allow discriminant_constraints even if the full type is deferred to the package
body. However, there is no particular implementation burden because we have dropped the concept of the
dependent compatibility check. In other words, we have effectively repealed AI-00007.

7 • as the subtype_mark defining the subtype of a parameter or result of an access_to_
subprogram_definition;

7.a Reason: This allows, for example, a record to have a component designating a subprogram that takes that same
record type as a parameter.

8 • as the subtype_mark in an access_definition;

9 • as the prefix of an attribute_reference whose attribute_designator is Class; such an attribute_
reference is similarly restricted to the uses allowed here; when used in this way, the cor-
responding full_type_declaration shall declare a tagged type, and the attribute_reference shall
occur in the same library unit as the incomplete_type_declaration.

ISO/IEC 8652:1995(E) —AARM;6.0

117 21 December 1994 Incomplete Type Declarations 3.10.1

9.aReason: This is to prevent children from imposing requirements on their ancestor library units for deferred
incomplete types.

10A dereference (whether implicit or explicit — see 4.1) shall not be of an incomplete type.

Static Semantics

11{incomplete type} An incomplete_type_declaration declares an incomplete type and its first subtype; the first
subtype is unconstrained if a known_discriminant_part appears.

11.aReason: If an unknown_discriminant_part or no discriminant_part appears, then the constrainedness of the first subtype
doesn’t matter for any other rules or semantics, so we don’t bother defining it. The case with a known_discriminant_
part is the only case in which a constraint could later be given in a subtype_indication naming the incomplete type.

Dynamic Semantics

12{elaboration [incomplete_type_declaration]} The elaboration of an incomplete_type_declaration has no effect.
12.aReason: An incomplete type has no real existence, so it doesn’t need to be "created" in the usual sense we do for other

types. It is roughly equivalent to a "forward;" declaration in Pascal. Private types are different, because they have a
different set of characteristics from their full type.

NOTES
1380 {completion legality [partial]} Within a declarative_part, an incomplete_type_declaration and a corresponding full_

type_declaration cannot be separated by an intervening body. This is because a type has to be completely defined before it
is frozen, and a body freezes all types declared prior to it in the same declarative_part (see 13.14).

Examples

14Example of a recursive type:
15type Cell; -- incomplete type declaration

type Link is access Cell;

16type Cell is
record

Value : Integer;
Succ : Link;
Pred : Link;

end record;

17Head : Link := new Cell’(0, null, null);
Next : Link := Head.Succ;

18Examples of mutually dependent access types:
19type Person(<>); -- incomplete type declaration

type Car; -- incomplete type declaration

20type Person_Name is access Person;
type Car_Name is access all Car;

21type Car is
record

Number : Integer;
Owner : Person_Name;

end record;

22type Person(Sex : Gender) is
record

Name : String(1 .. 20);
Birth : Date;
Age : Integer range 0 .. 130;
Vehicle : Car_Name;
case Sex is

when M => Wife : Person_Name(Sex => F);
when F => Husband : Person_Name(Sex => M);

end case;
end record;

ISO/IEC 8652:1995(E) —AARM;6.0

3.10.1 Incomplete Type Declarations 21 December 1994 118

23 My_Car, Your_Car, Next_Car : Car_Name := new Car; -- see 4.8
George : Person_Name := new Person(M);

...
George.Vehicle := Your_Car;

Extensions to Ada 83

23.a {extensions to Ada 83} The full_type_declaration that completes an incomplete_type_declaration may have a known_
discriminant_part even if the incomplete_type_declaration does not.

23.b A discriminant_constraint may be applied to an incomplete type, even if it its completion is deferred to the package
body, because there is no ‘‘dependent compatibility check’’ required any more. Of course, the constraint can be
specified only if a known_discriminant_part was given in the incomplete_type_declaration. As mentioned in the
previous paragraph, that is no longer required even when the full type has discriminants.

Wording Changes From Ada 83

23.c Dereferences producing incomplete types were not explicitly disallowed in RM83, though AI-00039 indicated that it
was not strictly necessary since troublesome cases would result in Constraint_Error at run time, since the access value
would necessarily be null. However, this introduces an undesirable implementation burden, as illustrated by Example 4
of AI-00039:

23.d package Pack is
type Pri is private;

private
type Sep;
type Pri is access Sep;
X : Pri;

end Pack;

23.e package body Pack is -- Could be separately compiled!
type Sep is ...;
X := new Sep;

end Pack;

23.f pragma Elaborate(Pack);
private package Pack.Child is

I : Integer := X.all’Size; -- Legal, by AI-00039.
end Pack.Child;

23.g Generating code for the above example could be a serious implementation burden, since it would require all aliased
objects to store size dope, and for that dope to be in the same format for all kinds of types (or some other equivalently
inefficient implementation). On the contrary, most implementations allocate dope differently (or not at all) for
different designated subtypes.

3.10.2 Operations of Access Types
1 [The attribute Access is used to create access values designating aliased objects and non-intrinsic sub-

programs. The ‘‘accessibility’’ rules prevent dangling references (in the absence of uses of certain un-
checked features — see Section 13).]

Language Design Principles

1.a It should be possible for an access value to designate an object declared by an object declaration, or a subcomponent
thereof. In implementation terms, this means pointing at stack-allocated and statically allocated data structures.
However, dangling references should be prevented, primarily via compile-time rules, so long as features like
Unchecked_Access and Unchecked_Deallocation are not used.

1.b In order to create such access values, we require that the access type be a general access type, that the designated object
be aliased, and that the accessibility rules be obeyed.

Name Resolution Rules

2 {expected type [access attribute_reference]} For an attribute_reference with attribute_designator Access (or
Unchecked_Access — see 13.10), the expected type shall be a single access type[; the prefix of such an
attribute_reference is never interpreted as an implicit_dereference]. {expected profile [Access attribute_reference

prefix]} If the expected type is an access-to-subprogram type, then the expected profile of the prefix is the
designated profile of the access type.

ISO/IEC 8652:1995(E) —AARM;6.0

119 21 December 1994 Operations of Access Types 3.10.2

2.aDiscussion: Saying that the expected type shall be a "single access type" is our "new" way of saying that the type has
to be determinable from context using only the fact that it is an access type. See 4.2 and 8.6. Specifying the expected
profile only implies type conformance. The more stringent subtype conformance is required by a Legality Rule. This
is the only Resolution Rule that applies to the name in a prefix of an attribute_reference. In all other cases, the name
has to be resolved without using context. See 4.1.4.

Static Semantics

3{accessibility level} {level (accessibility)} {deeper (accessibility level)} {depth (accessibility level)} {dangling references

(prevention via accessibility rules)} {lifetime} [The accessibility rules, which prevent dangling references, are
written in terms of accessibility levels, which reflect the run-time nesting of masters. As explained in
7.6.1, a master is the execution of a task_body, a block_statement, a subprogram_body, an entry_body, or
an accept_statement. An accessibility level is deeper than another if it is more deeply nested at run time.
For example, an object declared local to a called subprogram has a deeper accessibility level than an
object declared local to the calling subprogram. The accessibility rules for access types require that the
accessibility level of an object designated by an access value be no deeper than that of the access type.
This ensures that the object will live at least as long as the access type, which in turn ensures that the
access value cannot later designate an object that no longer exists. The Unchecked_Access attribute may
be used to circumvent the accessibility rules.]

4{statically deeper} {deeper (statically)} [A given accessibility level is said to be statically deeper than another if
the given level is known at compile time (as defined below) to be deeper than the other for all possible
executions. In most cases, accessibility is enforced at compile time by Legality Rules. Run-time acces-
sibility checks are also used, since the Legality Rules do not cover certain cases involving access
parameters and generic packages.]

5Each master, and each entity and view created by it, has an accessibility level:

6• The accessibility level of a given master is deeper than that of each dynamically enclosing
master, and deeper than that of each master upon which the task executing the given master
directly depends (see 9.3).

7• An entity or view created by a declaration has the same accessibility level as the innermost
enclosing master, except in the cases of renaming and derived access types described below.
A parameter of a master has the same accessibility level as the master.

8• The accessibility level of a view of an object or subprogram defined by a renaming_
declaration is the same as that of the renamed view.

9• The accessibility level of a view conversion is the same as that of the operand.

10• For a function whose result type is a return-by-reference type, the accessibility level of the
result object is the same as that of the master that elaborated the function body. For any other
function, the accessibility level of the result object is that of the execution of the called
function.

11• The accessibility level of a derived access type is the same as that of its ultimate ancestor.

12• The accessibility level of the anonymous access type of an access discriminant is the same as
that of the containing object or associated constrained subtype.

13• The accessibility level of the anonymous access type of an access parameter is the same as
that of the view designated by the actual. If the actual is an allocator, this is the accessibility
level of the execution of the called subprogram.

14• The accessibility level of an object created by an allocator is the same as that of the access
type.

ISO/IEC 8652:1995(E) —AARM;6.0

3.10.2 Operations of Access Types 21 December 1994 120

15 • The accessibility level of a view of an object or subprogram denoted by a dereference of an
access value is the same as that of the access type.

16 • The accessibility level of a component, protected subprogram, or entry of (a view of) a
composite object is the same as that of (the view of) the composite object.

17 {statically deeper} {deeper (statically)} One accessibility level is defined to be statically deeper than another in
the following cases:

18 • For a master that is statically nested within another master, the accessibility level of the inner
master is statically deeper than that of the outer master.

18.a To be honest: Strictly speaking, this should talk about the constructs (such as subprogram_bodies) being
statically nested within one another; the masters are really the executions of those constructs.

18.b To be honest: If a given accessibility level is statically deeper than another, then each level defined to be the
same as the given level is statically deeper than each level defined to be the same as the other level.

19 • The statically deeper relationship does not apply to the accessibility level of the anonymous
type of an access parameter; that is, such an accessibility level is not considered to be stati-
cally deeper, nor statically shallower, than any other.

20 • For determining whether one level is statically deeper than another when within a generic
package body, the generic package is presumed to be instantiated at the same level as where
it was declared; run-time checks are needed in the case of more deeply nested instantiations.

21 • For determining whether one level is statically deeper than another when within the declara-
tive region of a type_declaration, the current instance of the type is presumed to be an object
created at a deeper level than that of the type.

21.a Ramification: In other words, the rules are checked at compile time of the type_declaration, in an assume-the-
worst manner.

22 {library level} {level (library)} The accessibility level of all library units is called the library level; a library-
level declaration or entity is one whose accessibility level is the library level.

22.a Ramification: Library_unit_declarations are library level. Nested declarations are library level if they are nested only
within packages (possibly more than one), and not within subprograms, tasks, etc.

22.b To be honest: The definition of the accessibility level of the anonymous type of an access parameter cheats a bit, since
it refers to the view designated by the actual, but access values designate objects, not views of objects. What we really
mean is the view that ‘‘would be’’ denoted by an expression ‘‘X.all’’, where X is the actual, even though such an
expression is a figment of our imagination. The definition is intended to be equivalent to the following more verbose
version: The accessibility level of the anonymous type of an access parameter is as follows:

22.c • if the actual is an expression of a named access type — the accessibility level of that type;

22.d • if the actual is an allocator — the accessibility level of the execution of the called subprogram;

22.e • if the actual is a reference to the Access attribute — the accessibility level of the view denoted by the
prefix;

22.f • if the actual is a reference to the Unchecked_Access attribute — library accessibility level;

22.g • if the actual is an access parameter — the accessibility level of its type.

22.h Note that the allocator case is explicitly mentioned in the RM9X, because otherwise the definition would be circular:
the level of the anonymous type is that of the view designated by the actual, which is that of the access type.

22.i Discussion: A deeper accessibility level implies a shorter maximum lifetime. Hence, when a rule requires X to have a
level that is ‘‘not deeper than’’ Y’s level, this requires that X has a lifetime at least as long as Y. (We say ‘‘maximum
lifetime’’ here, because the accessibility level really represents an upper bound on the lifetime; an object created by an
allocator can have its lifetime prematurely ended by an instance of Unchecked_Deallocation.)

22.j Package elaborations are not masters, and are therefore invisible to the accessibility rules: an object declared
immediately within a package has the same accessibility level as an object declared immediately within the declarative
region containing the package. This is true even in the body of a package; it jibes with the fact that objects declared in

ISO/IEC 8652:1995(E) —AARM;6.0

121 21 December 1994 Operations of Access Types 3.10.2

a package_body live as long as objects declared outside the package, even though the body objects are not visible
outside the package.

22.kNote that the level of the view denoted by X.all can be different from the level of the object denoted by X.all. The
former is determined by the type of X; the latter is determined either by the type of the allocator, or by the master in
which the object was declared. The former is used in several Legality Rules and run-time checks; the latter is used to
define when X.all gets finalized. The level of a view reflects what we can conservatively ‘‘know’’ about the object of
that view; for example, due to type_conversions, an access value might designate an object that was allocated by an
allocator for a different access type.

22.lSimilarly, the level of the view denoted by X.all.Comp can be different from the level of the object denoted by
X.all.Comp.

22.mIf Y is statically deeper than X, this implies that Y will be (dynamically) deeper than X in all possible executions.

22.nMost accessibility checking is done at compile time; the rules are stated in terms of ‘‘statically deeper than’’. The
exceptions are:

22.o• Checks involving access parameters. The fact that ‘‘statically deeper than’’ is not defined for the
anonymous access type of an access parameter implies that any rule saying ‘‘shall not be statically deeper
than’’ does not apply to such a type, nor to anything defined to have ‘‘the same’’ level as such a type.

22.p• Checks involving entities and views within generic packages. This is because an instantiation can be at a
level that is more deeply nested than the generic package itself. In implementations that use a macro-
expansion model of generics, these violations can be detected at macro-expansion time. For implemen-
tations that share generics, run-time code is needed to detect the error.

22.q• Checks during function return.

22.rNote that run-time checks are not required for access discriminants, because their accessibility is determined statically
by the accessibility level of the enclosing object.

22.sThe accessibility level of the result object of a function reflects the time when that object will be finalized; we don’t
allow pointers to the object to survive beyond that time.

22.tWe sometimes use the terms ‘‘accessible’’ and ‘‘inaccessible’’ to mean that something has an accessibility level that is
not deeper, or deeper, respectively, than something else.

22.uImplementation Note: If an accessibility Legality Rule is satisfied, then the corresponding run-time check (if any)
cannot fail (and a reasonable implementation will not generate any checking code) unless access parameters or shared
generic bodies are involved.

22.vAccessibility levels are defined in terms of the relations ‘‘the same as’’ and ‘‘deeper than’’. To make the discussion
more concrete, we can assign actual numbers to each level. Here, we assume that library-level accessibility is level 0,
and each level defined as ‘‘deeper than’’ is one level deeper. Thus, a subprogram directly called from the environment
task (such as the main subprogram) would be at level 1, and so on.

22.wAccessibility is not enforced at compile time for access parameters. The ‘‘obvious’’ implementation of the run-time
checks would be inefficient, and would involve distributed overhead; therefore, an efficient method is given below.
The ‘‘obvious’’ implementation would be to pass the level of the caller at each subprogram call, task creation, etc.
This level would be incremented by 1 for each dynamically nested master. An Accessibility_Check would be
implemented as a simple comparison — checking that X is not deeper than Y would involve checking that X <= Y.

22.xA more efficient method is based on passing static nesting levels (within constructs that correspond at run time to
masters — packages don’t count). Whenever an access parameter is passed, an implicit extra parameter is passed with
it. The extra parameter represents (in an indirect way) the accessibility level of the anonymous access type, and,
therefore, the level of the view denoted by a dereference of the access parameter. This is analogous to the implicit
‘‘Constrained’’ bit associated with certain formal parameters of an unconstrained but definite composite subtype. In
this method, we avoid distributed overhead: it is not necessary to pass any extra information to subprograms that have
no access parameters. For anything other than an access parameter and its anonymous type, the static nesting level is
known at compile time, and is defined analogously to the RM9X definition of accessibility level (e.g. derived access
types get their nesting level from their parent). Checking ‘‘not deeper than’’ is a "<=" test on the levels.

22.yFor each access parameter, the static depth passed depends on the actual, as follows:

22.z• If the actual is an expression of a named access type, pass the static nesting level of that type.

22.aa• If the actual is an allocator, pass the static nesting level of the caller, plus one.

ISO/IEC 8652:1995(E) —AARM;6.0

3.10.2 Operations of Access Types 21 December 1994 122

22.bb • If the actual is a reference to the Access attribute, pass the level of the view denoted by the prefix.

22.cc • If the actual is a reference to the Unchecked_Access attribute, pass 0 (the library accessibility level).

22.dd • If the actual is an access parameter, usually just pass along the level passed in. However, if the static
nesting level of the formal (access) parameter is greater than the static nesting level of the actual (access)
parameter, the level to be passed is the minimum of the static nesting level of the access parameter and the
actual level passed in.

22.ee For the Accessibility_Check associated with a type_conversion of an access parameter of a given subprogram to a
named access type, if the target type is statically nested within the subprogram, do nothing; the check can’t fail in this
case. Otherwise, check that the value passed in is <= the static nesting depth of the target type. The other
Accessibility_Checks are handled in a similar manner.

22.ff This method, using statically known values most of the time, is efficient, and, more importantly, avoids distributed
overhead.

22.gg Discussion: Examples of accessibility:

22.hh package body Lib_Unit is
type T is tagged ...;
type A0 is access all T;
Global: A0 := ...;
procedure P(X: T) is

Y: aliased T;
type A1 is access all T;
Ptr0: A0 := Global; -- OK.
Ptr1: A1 := X’Access; -- OK.

begin
Ptr1 := Y’Access; -- OK;
Ptr0 := A0(Ptr1); -- Illegal type conversion!
Ptr0 := X’Access; -- Illegal reference to Access attribute!
Ptr0 := Y’Access; -- Illegal reference to Access attribute!
Global := Ptr0; -- OK.

end P;
end Lib_Unit;

22.ii The above illegal statements are illegal because the accessibility level of X and Y are statically deeper than the
accessibility level of A0. In every possible execution of any program including this library unit, if P is called, the
accessibility level of X will be (dynamically) deeper than that of A0. Note that the accessibility levels of X and Y are
the same.

22.jj Here’s an example involving access parameters:

22.kk procedure Main is
type Level_1_Type is access all Integer;

22.ll procedure P(X: access Integer) is
type Nested_Type is access all Integer;

begin
... Nested_Type(X) ... -- (1)
... Level_1_Type(X) ... -- (2)

end P;

22.mm procedure Q(X: access Integer) is
procedure Nested(X: access Integer) is
begin

P(X);
end Nested;

begin
Nested(X);

end Q;

22.nn procedure R is
Level_2: aliased Integer;

begin
Q(Level_2’Access); -- (3)

end R;

ISO/IEC 8652:1995(E) —AARM;6.0

123 21 December 1994 Operations of Access Types 3.10.2

22.ooLevel_1: aliased Integer;
begin

Q(Level_1’Access); -- (4)
R;

end Main;

22.ppThe run-time Accessibility_Check at (1) can never fail, and no code should be generated to check it. The check at (2)
will fail when called from (3), but not when called from (4).

22.qqWithin a type_declaration, the rules are checked in an assume-the-worst manner. For example:

22.rrpackage P is
type Int_Ptr is access all Integer;
type Rec(D: access Integer) is limited private;

private
type Rec_Ptr is access all Rec;
function F(X: Rec_Ptr) return Boolean;
function G(X: access Rec) return Boolean;
type Rec(D: access Integer) is

record
C1: Int_Ptr := Int_Ptr(D); -- Illegal!
C2: Rec_Ptr := Rec’Access; -- Illegal!
C3: Boolean := F(Rec’Access); -- Illegal!
C4: Boolean := G(Rec’Access);

end record;
end P;

22.ssC1, C2, and C3 are all illegal, because one might declare an object of type Rec at a more deeply nested place than the
declaration of the type. C4 is legal, but the accessibility level of the object will be passed to function G, and constraint
checks within G will prevent it from doing any evil deeds.

22.ttNote that we cannot defer the checks on C1, C2, and C3 until compile-time of the object creation, because that would
cause violation of the privacy of private parts. Furthermore, the problems might occur within a task or protected body,
which the compiler can’t see while compiling an object creation.

23The following attribute is defined for a prefix X that denotes an aliased view of an object:

X’Access X’Access yields an access value that designates the object denoted by X. The type of 24

X’Access is an access-to-object type, as determined by the expected type. The ex-
pected type shall be a general access type. {Unchecked_Access attribute: see also Access

attribute} X shall denote an aliased view of an object[, including possibly the current
instance (see 8.6) of a limited type within its definition, or a formal parameter or
generic formal object of a tagged type]. The view denoted by the prefix X shall
satisfy the following additional requirements, presuming the expected type for
X’Access is the general access type A:

25• If A is an access-to-variable type, then the view shall be a variable; [on
the other hand, if A is an access-to-constant type, the view may be either
a constant or a variable.]

25.aDiscussion: The current instance of a limited type is considered a variable.

26• The view shall not be a subcomponent that depends on discriminants of a
variable whose nominal subtype is unconstrained, unless this subtype is
indefinite, or the variable is aliased.

26.aDiscussion: This restriction is intended to be similar to the restriction on renaming discriminant-dependent
subcomponents.

26.bReason: This prevents references to subcomponents that might disappear or move or change constraints after
creating the reference.

26.cImplementation Note: There was some thought to making this restriction more stringent, roughly: "X shall
not denote a subcomponent of a variable with discriminant-dependent subcomponents, if the nominal subtype
of the variable is an unconstrained definite subtype." This was because in some implementations, it is not just
the discriminant-dependent subcomponents that might move as the result of an assignment that changed the

ISO/IEC 8652:1995(E) —AARM;6.0

3.10.2 Operations of Access Types 21 December 1994 124

discriminants of the enclosing object. However, it was decided not to make this change because a reasonable
implementation strategy was identified to avoid such problems, as follows:

26.d • Place non-discriminant-dependent components with any aliased parts at offsets preceding any
discriminant-dependent components in a discriminated record type with defaulted discriminants.

26.e • Preallocate the maximum space for unconstrained discriminated variables with aliased subcomponents,
rather than allocating the initial size and moving them to a larger (heap-resident) place if they grow as the
result of an assignment.

26.f Note that for objects of a by-reference type, it is not an error for a programmer to take advantage of the fact that
such objects are passed by reference. Therefore, the above approach is also necessary for discriminated record
types with components of a by-reference type.

26.g To make the above strategy work, it is important that a component of a derived type is defined to be
discriminant-dependent if it is inherited and the parent subtype constraint is defined in terms of a discriminant
of the derived type (see 3.7).

27 • If the designated type of A is tagged, then the type of the view shall be
covered by the designated type; if A’s designated type is not tagged, then
the type of the view shall be the same, and either A’s designated subtype
shall statically match the nominal subtype of the view, or the designated
subtype shall be discriminated and unconstrained; {statically matching

[required]}

27.a Implementation Note: This ensures that the dope for an aliased array object can always be stored contiguous
with it, but need not be if its nominal subtype is constrained.

28 • The accessibility level of the view shall not be statically deeper than that
of the access type A. In addition to the places where Legality Rules
normally apply (see 12.3), this rule applies also in the private part of an
instance of a generic unit. {accessibility rule [Access attribute]} {generic contract

issue [partial]}

28.a Ramification: In an instance body, a run-time check applies.

28.b If A is an anonymous access type, then the view can never have a deeper accessibility level than A, except when
X’Access is used to initialize an access discriminant of an object created by an allocator. The latter case is
illegal if the accessibility level of X is statically deeper than that of the access type of the allocator; a run-time
check is needed in the case where the initial value comes from an access parameter.

{Accessibility_Check [partial]} {check, language-defined (Accessibility_Check)} {Program_Error30

(raised by failure of run-time check)} A check is made that the accessibility level of X is not
deeper than that of the access type A. If this check fails, Program_Error is raised.

29.a Ramification: The check is needed for access parameters and in instance bodies.

29.b Implementation Note: This check requires that some indication of lifetime is passed as an implicit parameter along
with access parameters. No such requirement applies to access discriminants, since the checks associated with them
are all compile-time checks.

{implicit subtype conversion [Access attribute]} If the nominal subtype of X does not stati-30

cally match the designated subtype of A, a view conversion of X to the designated
subtype is evaluated (which might raise Constraint_Error — see 4.6) and the value of
X’Access designates that view.

31 The following attribute is defined for a prefix P that denotes a subprogram:

P’Access P’Access yields an access value that designates the subprogram denoted by P. The32

type of P’Access is an access-to-subprogram type (S), as determined by the expected
type. {accessibility rule [Access attribute]} The accessibility level of P shall not be stati-
cally deeper than that of S. {generic contract issue [partial]} In addition to the places
where Legality Rules normally apply (see 12.3), this rule applies also in the private
part of an instance of a generic unit. The profile of P shall be subtype-conformant
with the designated profile of S, and shall not be Intrinsic. {subtype conformance

ISO/IEC 8652:1995(E) —AARM;6.0

125 21 December 1994 Operations of Access Types 3.10.2

(required)} If the subprogram denoted by P is declared within a generic body, S shall
be declared within the generic body.

32.aDiscussion: The part about generic bodies is worded in terms of the denoted subprogram, not the denoted view; this
implies that renaming is invisible to this part of the rule. This rule is partly to prevent contract model problems with
respect to the accessibility rules, and partly to ease shared-generic-body implementations, in which a subprogram
declared in an instance needs to have a different calling convention from other subprograms with the same profile.

32.bOverload resolution ensures only that the profile is type-conformant. This rule specifies that subtype conformance is
required (which also requires matching calling conventions). P cannot denote an entry because access-to-subprogram
types never have the entry calling convention. P cannot denote an enumeration literal or an attribute function because
these have intrinsic calling conventions.

NOTES
3381 The Unchecked_Access attribute yields the same result as the Access attribute for objects, but has fewer restrictions

(see 13.10). There are other predefined operations that yield access values: an allocator can be used to create an object,
and return an access value that designates it (see 4.8); evaluating the literal null yields a null access value that designates
no entity at all (see 4.2).

3482 {predefined operations [of an access type]} The predefined operations of an access type also include the assignment
operation, qualification, and membership tests. Explicit conversion is allowed between general access types with matching
designated subtypes; explicit conversion is allowed between access-to-subprogram types with subtype conformant profiles
(see 4.6). {subtype conformance [partial]} Named access types have predefined equality operators; anonymous access
types do not (see 4.5.2).

34.aReason: By not having equality operators for anonymous access types, we eliminate the need to specify exactly where
the predefined operators for anonymous access types would be defined, as well as the need for an implementer to insert
an implicit declaration for "=", etc. at the appropriate place in their symbol table. Note that ’Access and ".all" are
defined, and ":=" is defined though useless since all instances are constant. The literal null is also defined for the
purposes of overload resolution, but is disallowed by a Legality Rule of this subclause.

3583 The object or subprogram designated by an access value can be named with a dereference, either an explicit_
dereference or an implicit_dereference. See 4.1.

3684 A call through the dereference of an access-to-subprogram value is never a dispatching call.

36.aProof: See 3.9.2.

3785 {downward closure} {closure (downward)} The accessibility rules imply that it is not possible to use the Access
attribute to implement ‘‘downward closures’’ — that is, to pass a more-nested subprogram as a parameter to a less-nested
subprogram, as might be desired for example for an iterator abstraction. Instead, downward closures can be implemented
using generic formal subprograms (see 12.6). Note that Unchecked_Access is not allowed for subprograms.

3886 Note that using an access-to-class-wide tagged type with a dispatching operation is a potentially more structured
alternative to using an access-to-subprogram type.

3987 An implementation may consider two access-to-subprogram values to be unequal, even though they designate the
same subprogram. This might be because one points directly to the subprogram, while the other points to a special
prologue that performs an Elaboration_Check and then jumps to the subprogram. See 4.5.2.

39.aRamification: If equality of access-to-subprogram values is important to the logic of a program, a reference to the
Access attribute of a subprogram should be evaluated only once and stored in a global constant for subsequent use and
equality comparison.

Examples

40Example of use of the Access attribute:
41Martha : Person_Name := new Person(F); -- see 3.10.1

Cars : array (1..2) of aliased Car;
...

Martha.Vehicle := Cars(1)’Access;
George.Vehicle := Cars(2)’Access;

Extensions to Ada 83

41.a{extensions to Ada 83} We no longer make things like ’Last and ".component" (basic) operations of an access type that
need to be "declared" somewhere. Instead, implicit dereference in a prefix takes care of them all. This means that there
should never be a case when X.all’Last is legal while X’Last is not. See AI-00154.

ISO/IEC 8652:1995(E) —AARM;6.0

3.11 Declarative Parts 21 December 1994 126

3.11 Declarative Parts
1 [A declarative_part contains declarative_items (possibly none).]

Syntax

2 declarative_part ::= {declarative_item}

3 declarative_item ::=
basic_declarative_item | body

4 basic_declarative_item ::=
basic_declaration | representation_clause | use_clause

5 body ::= proper_body | body_stub

6 proper_body ::=
subprogram_body | package_body | task_body | protected_body

Dynamic Semantics

7 {elaboration [declarative_part]} The elaboration of a declarative_part consists of the elaboration of the
declarative_items, if any, in the order in which they are given in the declarative_part.

8 {elaborated} An elaborable construct is in the elaborated state after the normal completion of its elabora-
tion. Prior to that, it is not yet elaborated.

8.a Ramification: The elaborated state is only important for bodies; certain uses of a body raise an exception if the body
is not yet elaborated.

8.b Note that "prior" implies before the start of elaboration, as well as during elaboration.

8.c The use of the term "normal completion" implies that if the elaboration propagates an exception or is aborted, the
declaration is not elaborated. RM83 missed the aborted case.

9 {Elaboration_Check [partial]} {check, language-defined (Elaboration_Check)} For a construct that attempts to use a
body, a check (Elaboration_Check) is performed, as follows:

10 • For a call to a (non-protected) subprogram that has an explicit body, a check is made that the
subprogram_body is already elaborated. This check and the evaluations of any actual
parameters of the call are done in an arbitrary order.

10.a Discussion: AI-00180 specifies that there is no elaboration check for a subprogram defined by a pragma
Interface (or equivalently, pragma Import). AI-00430 specifies that there is no elaboration check for an
enumeration literal. AI-00406 specifies that the evaluation of parameters and the elaboration check occur in an
arbitrary order. AI-00406 applies to generic instantiation as well (see below).

11 • For a call to a protected operation of a protected type (that has a body — no check is per-
formed if a pragma Import applies to the protected type), a check is made that the protected_
body is already elaborated. This check and the evaluations of any actual parameters of the
call are done in an arbitrary order.

11.a Discussion: A protected type has only one elaboration ‘‘bit,’’ rather than one for each operation, because one
call may result in evaluating the barriers of other entries, and because there are no elaborable declarations
between the bodies of the operations. In fact, the elaboration of a protected_body does not elaborate the
enclosed bodies, since they are not considered independently elaborable.

11.b Note that there is no elaboration check when calling a task entry. Task entry calls are permitted even before the
associated task_body has been seen. Such calls are simply queued until the task is activated and reaches a
corresponding accept_statement. We considered a similar rule for protected entries — simply queuing all calls
until the protected_body was seen, but felt it was not worth the possible implementation overhead, particularly
given that there might be multiple instances of the protected type.

12 • For the activation of a task, a check is made by the activator that the task_body is already
elaborated. If two or more tasks are being activated together (see 9.2), as the result of the
elaboration of a declarative_part or the initialization for the object created by an allocator,
this check is done for all of them before activating any of them.

ISO/IEC 8652:1995(E) —AARM;6.0

127 21 December 1994 Declarative Parts 3.11

12.aReason: As specified by AI-00149, the check is done by the activator, rather than by the task itself. If it were
done by the task itself, it would be turned into a Tasking_Error in the activator, and the other tasks would still
be activated.

13• For the instantiation of a generic unit that has a body, a check is made that this body is
already elaborated. This check and the evaluation of any explicit_generic_actual_parameters
of the instantiation are done in an arbitrary order.

14{Program_Error (raised by failure of run-time check)} The exception Program_Error is raised if any of these
checks fails.

Extensions to Ada 83

14.a{extensions to Ada 83} The syntax for declarative_part is modified to remove the ordering restrictions of Ada 83; that
is, the distinction between basic_declarative_items and later_declarative_items within declarative_parts is removed.
This means that things like use_clauses and variable_declarations can be freely intermixed with things like bodies.

14.bThe syntax rule for proper_body now allows a protected_body, and the rules for elaboration checks now cover calls on
protected operations.

Wording Changes From Ada 83

14.cThe syntax rule for later_declarative_item is removed; the syntax rule for declarative_item is new.

14.dRM83 defines ‘‘elaborated’’ and ‘‘not yet elaborated’’ for declarative_items here, and for other things in 3.1,
‘‘Declarations’’. That’s no longer necessary, since these terms are fully defined in 3.1.

14.eIn RM83, all uses of declarative_part are optional (except for the one in block_statement with a declare) which is sort
of strange, since a declarative_part can be empty, according to the syntax. That is, declarative_parts are sort of ‘‘doubly
optional’’. In Ada 9X, these declarative_parts are always required (but can still be empty). To simplify description, we
go further and say (see 5.6, ‘‘Block Statements’’) that a block_statement without an explicit declarative_part is
equivalent to one with an empty one.

3.11.1 Completions of Declarations
1Declarations sometimes come in two parts. {requires a completion} A declaration that requires a second part

is said to require completion. {completion (compile-time concept)} The second part is called the completion of
the declaration (and of the entity declared), and is either another declaration, a body, or a pragma.

1.aDiscussion: Throughout the RM9X, there are rules about completions that define the following:

1.b• Which declarations require a corresponding completion.

1.c• Which constructs can only serve as the completion of a declaration.

1.d• Where the completion of a declaration is allowed to be.

1.e• What kinds of completions are allowed to correspond to each kind of declaration that allows one.

1.fDon’t confuse this compile-time concept with the run-time concept of completion defined in 7.6.1.

1.gNote that the declaration of a private type (if limited) can be completed with the declaration of a task type, which is
then completed with a body. Thus, a declaration can actually come in three parts.

Name Resolution Rules

2A construct that can be a completion is interpreted as the completion of a prior declaration only if:

3• The declaration and the completion occur immediately within the same declarative region;

4• The defining name or defining_program_unit_name in the completion is the same as in the
declaration, or in the case of a pragma, the pragma applies to the declaration;

5• If the declaration is overloadable, then the completion either has a type-conformant profile,
or is a pragma. {type conformance (required)}

ISO/IEC 8652:1995(E) —AARM;6.0

3.11.1 Completions of Declarations 21 December 1994 128

Legality Rules

6 An implicit declaration shall not have a completion. {requires a completion [distributed]} For any explicit
declaration that is specified to require completion, there shall be a corresponding explicit completion.

6.a Discussion: The implicit declarations of predefined operators are not allowed to have a completion. Enumeration
literals, although they are subprograms, are not allowed to have a corresponding subprogram_body. That’s because the
completion rules are described in terms of constructs (subprogram_declarations) and not entities (subprograms). When
a completion is required, it has to be explicit; the implicit null package_body that Section 7 talks about cannot serve as
the completion of a package_declaration if a completion is required.

7 At most one completion is allowed for a given declaration. Additional requirements on completions
appear where each kind of completion is defined.

7.a Ramification: A subunit is not a completion; the stub is.

7.b If the completion of a declaration is also a declaration, then that declaration might have a completion, too. For
example, a limited private type can be completed with a task type, which can then be completed with a task body. This
is not a violation of the ‘‘at most one completion’’ rule.

8 {completely defined} A type is completely defined at a place that is after its full type definition (if it has one)
and after all of its subcomponent types are completely defined. A type shall be completely defined before
it is frozen (see 13.14 and 7.3).

8.a Reason: Index types are always completely defined — no need to mention them. There is no way for a completely
defined type to depend on the value of a (still) deferred constant.

NOTES
9 88 Completions are in principle allowed for any kind of explicit declaration. However, for some kinds of declaration, the

only allowed completion is a pragma Import, and implementations are not required to support pragma Import for every
kind of entity.

9.a Discussion: In fact, we expect that implementations will not support pragma Import of things like types — it’s hard to
even define the semantics of what it would mean. Therefore, in practice, not every explicit declaration can have a
completion. In any case, if an implementation chooses to support pragma Import for, say, types, it can place whatever
restrictions on the feature it wants to. For example, it might want the pragma to be a freezing point for the type.

10 89 There are rules that prevent premature uses of declarations that have a corresponding completion. The Elaboration_
Checks of 3.11 prevent such uses at run time for subprograms, protected operations, tasks, and generic units. The rules of
13.14, ‘‘Freezing Rules’’ prevent, at compile time, premature uses of other entities such as private types and deferred
constants.

Wording Changes From Ada 83

10.a This subclause is new. It is intended to cover all kinds of completions of declarations, be they a body for a spec, a full
type for an incomplete or private type, a full constant declaration for a deferred constant declaration, or a pragma
Import for any kind of entity.

ISO/IEC 8652:1995(E) —AARM;6.0

129 21 December 1994 Names and Expressions 4

Section 4: Names and Expressions
1[The rules applicable to the different forms of name and expression, and to their evaluation, are given in

this section.]

4.1 Names
1[Names can denote declared entities, whether declared explicitly or implicitly (see 3.1). Names can also

denote objects or subprograms designated by access values; the results of type_conversions or function_
calls; subcomponents and slices of objects and values; protected subprograms, single entries, entry
families, and entries in families of entries. Finally, names can denote attributes of any of the foregoing.]

Syntax

2name ::=
direct_name | explicit_dereference

| indexed_component | slice
| selected_component | attribute_reference
| type_conversion | function_call
| character_literal

3direct_name ::= identifier | operator_symbol

3.aDiscussion: character_literal is no longer a direct_name. character_literals are usable even when the corresponding
enumeration_type_declaration is not visible. See 4.2.

4prefix ::= name | implicit_dereference

5explicit_dereference ::= name.all

6implicit_dereference ::= name

7[Certain forms of name (indexed_components, selected_components, slices, and attributes) include a
prefix that is either itself a name that denotes some related entity, or an implicit_dereference of an access
value that designates some related entity.]

Name Resolution Rules

8{dereference} {expected type [dereference name]} The name in a dereference (either an implicit_dereference or an
explicit_dereference) is expected to be of any access type.

Static Semantics

9{nominal subtype [associated with a dereference]} If the type of the name in a dereference is some access-to-object
type T, then the dereference denotes a view of an object, the nominal subtype of the view being the
designated subtype of T.

9.aRamification: If the value of the name is the result of an access type conversion, the dereference denotes a view
created as part of the conversion. The nominal subtype of the view is not necessarily the same as that used to create the
designated object. See 4.6.

9.bTo be honest: {nominal subtype [of a name]} We sometimes refer to the nominal subtype of a particular kind of
name rather than the nominal subtype of the view denoted by the name (presuming the name denotes a view of an
object). These two uses of nominal subtype are intended to mean the same thing.

10{profile [associated with a dereference]} If the type of the name in a dereference is some access-to-subprogram
type S, then the dereference denotes a view of a subprogram, the profile of the view being the designated
profile of S.

ISO/IEC 8652:1995(E) —AARM;6.0

4.1 Names 21 December 1994 130

10.a Ramification: This means that the formal parameter names and default expressions to be used in a call whose name or
prefix is a dereference are those of the designated profile, which need not be the same as those of the subprogram
designated by the access value, since ’Access requires only subtype conformance, not full conformance.

Dynamic Semantics

11 {evaluation [name]} The evaluation of a name determines the entity denoted by the name. This evaluation
has no other effect for a name that is a direct_name or a character_literal.

12 {evaluation [name that has a prefix]} [The evaluation of a name that has a prefix includes the evaluation of the
prefix.] {evaluation [prefix]} The evaluation of a prefix consists of the evaluation of the name or the implicit_
dereference. The prefix denotes the entity denoted by the name or the implicit_dereference.

13 {evaluation [dereference]} The evaluation of a dereference consists of the evaluation of the name and the
determination of the object or subprogram that is designated by the value of the name. {Access_Check

[partial]} {check, language-defined (Access_Check)} A check is made that the value of the name is not the null
access value. {Constraint_Error (raised by failure of run-time check)} Constraint_Error is raised if this check fails.
The dereference denotes the object or subprogram designated by the value of the name.

Examples

14 Examples of direct names:

15

Pi -- the direct name of a number (see 3.3.2)
Limit -- the direct name of a constant (see 3.3.1)
Count -- the direct name of a scalar variable (see 3.3.1)
Board -- the direct name of an array variable (see 3.6.1)
Matrix -- the direct name of a type (see 3.6)
Random -- the direct name of a function (see 6.1)
Error -- the direct name of an exception (see 11.1)

16 Examples of dereferences:

17

Next_Car.all -- explicit dereference denoting the object designated by
-- the access variable Next_Car (see 3.10.1)

Next_Car.Owner -- selected component with implicit dereference;
-- same as Next_Car.all.Owner

Extensions to Ada 83

17.a {extensions to Ada 83} Type conversions and function calls are now considered names that denote the result of the
operation. In the case of a type conversion used as an actual parameter or that is of a tagged type, the type conversion
is considered a variable if the operand is a variable. This simplifies the description of "parameters of the form of a type
conversion" as well as better supporting an important OOP paradigm that requires the combination of a conversion
from a class-wide type to some specific type followed immediately by component selection. Function calls are
considered names so that a type conversion of a function call and the function call itself are treated equivalently in the
grammar. A function call is considered the name of a constant, and can be used anywhere such a name is permitted.
See 6.5.

17.b Type conversions of a tagged type are permitted anywhere their operand is permitted. That is, if the operand is a
variable, then the type conversion can appear on the left-hand side of an assignment_statement. If the operand is an
object, then the type conversion can appear in an object renaming or as a prefix. See 4.6.

Wording Changes From Ada 83

17.c Everything of the general syntactic form name(...) is now syntactically a name. In any realistic parser, this would be a
necessity since distinguishing among the various name(...) constructs inevitably requires name resolution. In cases
where the construct yields a value rather than an object, the name denotes the value rather than an object. Names
already denote values in Ada 83 with named numbers, components of the result of a function call, etc. This is partly
just a wording change, and partly an extension of functionality (see Extensions heading above).

ISO/IEC 8652:1995(E) —AARM;6.0

131 21 December 1994 Names 4.1

17.dThe syntax rule for direct_name is new. It is used in places where direct visibility is required. It’s kind of like Ada
83’s simple_name, but simple_name applied to both direct visibility and visibility by selection, and furthermore, it
didn’t work right for operator_symbols. The syntax rule for simple_name is removed, since its use is covered by a
combination of direct_name and selector_name. The syntactic categories direct_name and selector_name are similar;
it’s mainly the visibility rules that distinguish the two. The introduction of direct_name requires the insertion of one
new explicit textual rule: to forbid statement_identifiers from being operator_symbols. This is the only case where the
explicit rule is needed, because this is the only case where the declaration of the entity is implicit. For example, there is
no need to syntactically forbid (say) ‘‘X: "Rem";’’, because it is impossible to declare a type whose name is an
operator_symbol in the first place.

17.eThe syntax rules for explicit_dereference and implicit_dereference are new; this makes other rules simpler, since
dereferencing an access value has substantially different semantics from selected_components. We also use name
instead of prefix in the explicit_dereference rule since that seems clearer. Note that these rules rely on the fact that
function calls are now names, so we don’t need to use prefix to allow functions calls in front of .all.

17.fDiscussion: Actually, it would be reasonable to allow any primary in front of .all, since only the value is needed, but
that would be a bit radical.

17.gWe no longer use the term appropriate for a type since we now describe the semantics of a prefix in terms of implicit
dereference.

4.1.1 Indexed Components
1[An indexed_component denotes either a component of an array or an entry in a family of entries. {array

indexing: see indexed_component}]

Syntax

2indexed_component ::= prefix(expression {, expression})

Name Resolution Rules

3The prefix of an indexed_component with a given number of expressions shall resolve to denote an array
(after any implicit dereference) with the corresponding number of index positions, or shall resolve to
denote an entry family of a task or protected object (in which case there shall be only one expression).

4{expected type [indexed_component expression]} The expected type for each expression is the corresponding
index type.

Static Semantics

5When the prefix denotes an array, the indexed_component denotes the component of the array with the
specified index value(s). {nominal subtype [associated with an indexed_component]} The nominal subtype of the
indexed_component is the component subtype of the array type.

5.aRamification: In the case of an array whose components are aliased, and of an unconstrained discriminated subtype,
the components are constrained even though their nominal subtype is unconstrained. (This is because all aliased
discriminated objects are constrained. See 3.10.2.) In all other cases, an array component is constrained if and only if
its nominal subtype is constrained.

6When the prefix denotes an entry family, the indexed_component denotes the individual entry of the entry
family with the specified index value.

Dynamic Semantics

7{evaluation [indexed_component]} For the evaluation of an indexed_component, the prefix and the expressions
are evaluated in an arbitrary order. The value of each expression is converted to the corresponding index
type. {implicit subtype conversion [array index]} {Index_Check [partial]} {check, language-defined (Index_Check)} A check
is made that each index value belongs to the corresponding index range of the array or entry family
denoted by the prefix. {Constraint_Error (raised by failure of run-time check)} Constraint_Error is raised if this
check fails.

ISO/IEC 8652:1995(E) —AARM;6.0

4.1.1 Indexed Components 21 December 1994 132

Examples

8 Examples of indexed components:
9

My_Schedule(Sat) -- a component of a one-dimensional array (see 3.6.1)
Page(10) -- a component of a one-dimensional array (see 3.6)
Board(M, J + 1) -- a component of a two-dimensional array (see 3.6.1)
Page(10)(20) -- a component of a component (see 3.6)
Request(Medium) -- an entry in a family of entries (see 9.1)
Next_Frame(L)(M, N) -- a component of a function call (see 6.1)

NOTES
10 1 Notes on the examples: Distinct notations are used for components of multidimensional arrays (such as Board) and

arrays of arrays (such as Page). The components of an array of arrays are arrays and can therefore be indexed. Thus
Page(10)(20) denotes the 20th component of Page(10). In the last example Next_Frame(L) is a function call returning an
access value that designates a two-dimensional array.

4.1.2 Slices
1 [{array slice} A slice denotes a one-dimensional array formed by a sequence of consecutive components of

a one-dimensional array. A slice of a variable is a variable; a slice of a constant is a constant;] a slice of a
value is a value.

Syntax

2 slice ::= prefix(discrete_range)

Name Resolution Rules

3 The prefix of a slice shall resolve to denote a one-dimensional array (after any implicit dereference).

4 {expected type [slice discrete_range]} The expected type for the discrete_range of a slice is the index type of the
array type.

Static Semantics

5 A slice denotes a one-dimensional array formed by the sequence of consecutive components of the array
denoted by the prefix, corresponding to the range of values of the index given by the discrete_range.

6 The type of the slice is that of the prefix. Its bounds are those defined by the discrete_range.

Dynamic Semantics

7 {evaluation [slice]} For the evaluation of a slice, the prefix and the discrete_range are evaluated in an
arbitrary order. {Index_Check [partial]} {check, language-defined (Index_Check)} {null slice} If the slice is not a null
slice (a slice where the discrete_range is a null range), then a check is made that the bounds of the
discrete_range belong to the index range of the array denoted by the prefix. {Constraint_Error (raised by

failure of run-time check)} Constraint_Error is raised if this check fails.

NOTES
8 2 A slice is not permitted as the prefix of an Access attribute_reference, even if the components or the array as a whole are

aliased. See 3.10.2.

8.a Proof: Slices are not aliased, by 3.10, ‘‘Access Types’’.

8.b Reason: This is to ease implementation of general-access-to-array. If slices were aliased, implementations would
need to store array dope with the access values, which is not always desirable given access-to-incomplete types
completed in a package body.

9 3 For a one-dimensional array A, the slice A(N .. N) denotes an array that has only one component; its type is the type of
A. On the other hand, A(N) denotes a component of the array A and has the corresponding component type.

ISO/IEC 8652:1995(E) —AARM;6.0

133 21 December 1994 Slices 4.1.2

Examples

10Examples of slices:
11

Stars(1 .. 15) -- a slice of 15 characters (see 3.6.3)
Page(10 .. 10 + Size) -- a slice of 1 + Size components (see 3.6)
Page(L)(A .. B) -- a slice of the array Page(L) (see 3.6)
Stars(1 .. 0) -- a null slice (see 3.6.3)
My_Schedule(Weekday) -- bounds given by subtype (see 3.6.1 and 3.5.1)
Stars(5 .. 15)(K) -- same as Stars(K) (see 3.6.3)

-- provided that K is in 5 .. 15

4.1.3 Selected Components
1[Selected_components are used to denote components (including discriminants), entries, entry families,

and protected subprograms; they are also used as expanded names as described below. {dot selection: see

selected_component}]

Syntax

2selected_component ::= prefix . selector_name

3selector_name ::= identifier | character_literal | operator_symbol

Name Resolution Rules

4{expanded name} A selected_component is called an expanded name if, according to the visibility rules, at
least one possible interpretation of its prefix denotes a package or an enclosing named construct (directly,
not through a subprogram_renaming_declaration or generic_renaming_declaration).

4.aDiscussion: See AI-00187.

5A selected_component that is not an expanded name shall resolve to denote one of the following:
5.aRamification: If the prefix of a selected_component denotes an enclosing named construct, then the selected_

component is interpreted only as an expanded name, even if the named construct is a function that could be called
without parameters.

6• A component [(including a discriminant)]:

7The prefix shall resolve to denote an object or value of some non-array composite type (after
any implicit dereference). The selector_name shall resolve to denote a discriminant_
specification of the type, or, unless the type is a protected type, a component_declaration of
the type. The selected_component denotes the corresponding component of the object or
value.

7.aReason: The components of a protected object cannot be named except by an expanded name, even from
within the corresponding protected body. The protected body may not reference the the private components of
some arbitrary object of the protected type; the protected body may reference components of the current
instance only (by an expanded name or a direct_name).

7.bRamification: Only the discriminants and components visible at the place of the selected_component can be
selected, since a selector_name can only denote declarations that are visible (see 8.3).

8• A single entry, an entry family, or a protected subprogram:

9The prefix shall resolve to denote an object or value of some task or protected type (after any
implicit dereference). The selector_name shall resolve to denote an entry_declaration or
subprogram_declaration occurring (implicitly or explicitly) within the visible part of that
type. The selected_component denotes the corresponding entry, entry family, or protected
subprogram.

9.aReason: This explicitly says ‘‘visible part’’ because even though the body has visibility on the private part, it
cannot call the private operations of some arbitrary object of the task or protected type, only those of the current
instance (and expanded name notation has to be used for that).

ISO/IEC 8652:1995(E) —AARM;6.0

4.1.3 Selected Components 21 December 1994 134

10 An expanded name shall resolve to denote a declaration that occurs immediately within a named declara-
tive region, as follows:

11 • The prefix shall resolve to denote either a package [(including the current instance of a
generic package, or a rename of a package)], or an enclosing named construct.

12 • The selector_name shall resolve to denote a declaration that occurs immediately within the
declarative region of the package or enclosing construct [(the declaration shall be visible at
the place of the expanded name — see 8.3)]. The expanded name denotes that declaration.

12.a Ramification: Hence, a library unit or subunit can use an expanded name to refer to the declarations within the
private part of its parent unit, as well as to other children that have been mentioned in with_clauses.

13 • If the prefix does not denote a package, then it shall be a direct_name or an expanded name,
and it shall resolve to denote a program unit (other than a package), the current instance of a
type, a block_statement, a loop_statement, or an accept_statement (in the case of an accept_
statement or entry_body, no family index is allowed); the expanded name shall occur within
the declarative region of this construct. Further, if this construct is a callable construct and
the prefix denotes more than one such enclosing callable construct, then the expanded name is
ambiguous, independently of the selector_name.

Dynamic Semantics

14 {evaluation [selected_component]} The evaluation of a selected_component includes the evaluation of the
prefix.

15 {Discriminant_Check [partial]} {check, language-defined (Discriminant_Check)} For a selected_component that
denotes a component of a variant, a check is made that the values of the discriminants are such that the
value or object denoted by the prefix has this component. {Constraint_Error (raised by failure of run-time check)}
{Constraint_Error (raised by failure of run-time check)} The exception Constraint_Error is raised if this check fails.

Examples

16 Examples of selected components:
17

Tomorrow.Month -- a record component (see 3.8)
Next_Car.Owner -- a record component (see 3.10.1)
Next_Car.Owner.Age -- a record component (see 3.10.1)

-- the previous two lines involve implicit dereferences
Writer.Unit -- a record component (a discriminant) (see 3.8.1)
Min_Cell(H).Value -- a record component of the result (see 6.1)

-- of the function call Min_Cell(H)
Control.Seize -- an entry of a protected object (see 9.4)
Pool(K).Write -- an entry of the task Pool(K) (see 9.4)

18 Examples of expanded names:
19

Key_Manager."<" -- an operator of the visible part of a package (see 7.3.1)
Dot_Product.Sum -- a variable declared in a function body (see 6.1)
Buffer.Pool -- a variable declared in a protected unit (see 9.11)
Buffer.Read -- an entry of a protected unit (see 9.11)
Swap.Temp -- a variable declared in a block statement (see 5.6)
Standard.Boolean -- the name of a predefined type (see A.1)

Extensions to Ada 83

19.a {extensions to Ada 83} We now allow an expanded name to use a prefix that denotes a rename of a package, even if the
selector is for an entity local to the body or private part of the package, so long as the entity is visible at the place of the
reference. This eliminates a preexisting anomaly where references in a package body may refer to declarations of its
visible part but not those of its private part or body when the prefix is a rename of the package.

ISO/IEC 8652:1995(E) —AARM;6.0

135 21 December 1994 Selected Components 4.1.3

Wording Changes From Ada 83

19.bThe syntax rule for selector_name is new. It is used in places where visibility, but not necessarily direct visibility, is
required. See 4.1, ‘‘Names’’ for more information.

19.cThe description of dereferencing an access type has been moved to 4.1, ‘‘Names’’; name.all is no longer considered a
selected_component.

19.dThe rules have been restated to be consistent with our new terminology, to accommodate class-wide types, etc.

4.1.4 Attributes
1{attribute} [An attribute is a characteristic of an entity that can be queried via an attribute_reference or a

range_attribute_reference.]

Syntax

2attribute_reference ::= prefix’attribute_designator

3attribute_designator ::=
identifier[(static_expression)]

| Access | Delta | Digits

4range_attribute_reference ::= prefix’range_attribute_designator

5range_attribute_designator ::= Range[(static_expression)]

Name Resolution Rules

6In an attribute_reference, if the attribute_designator is for an attribute defined for (at least some) objects
of an access type, then the prefix is never interpreted as an implicit_dereference; otherwise (and for all
range_attribute_references), if the type of the name within the prefix is of an access type, the prefix is
interpreted as an implicit_dereference. Similarly, if the attribute_designator is for an attribute defined for
(at least some) functions, then the prefix is never interpreted as a parameterless function_call; otherwise
(and for all range_attribute_references), if the prefix consists of a name that denotes a function, it is
interpreted as a parameterless function_call.

6.aDiscussion: The first part of this rule is essentially a "preference" against implicit dereference, so that it is possible to
ask for, say, ’Size of an access object, without automatically getting the size of the object designated by the access
object. This rule applies to ’Access, ’Unchecked_Access, ’Size, and ’Address, and any other attributes that are defined
for at least some access objects.

6.bThe second part of this rule implies that, for a parameterless function F, F’Address is the address of F, whereas F’Size
is the size of the anonymous constant returned by F.

6.cWe normally talk in terms of expected type or profile for name resolution rules, but we don’t do this for attributes
because certain attributes are legal independent of the type or the profile of the prefix.

7{expected type [attribute_designator expression]} {expected type [range_attribute_designator expression]} The expression, if
any, in an attribute_designator or range_attribute_designator is expected to be of any integer type.

Legality Rules

8The expression, if any, in an attribute_designator or range_attribute_designator shall be static.

Static Semantics

9An attribute_reference denotes a value, an object, a subprogram, or some other kind of program entity.
9.aRamification: The attributes defined by the language are summarized in Annex K. Implementations can define

additional attributes.

ISO/IEC 8652:1995(E) —AARM;6.0

4.1.4 Attributes 21 December 1994 136

10 [A range_attribute_reference X’Range(N) is equivalent to the range X’First(N) .. X’Last(N), except that
the prefix is only evaluated once. Similarly, X’Range is equivalent to X’First .. X’Last, except that the
prefix is only evaluated once.]

Dynamic Semantics

11 {evaluation [attribute_reference]} {evaluation [range_attribute_reference]} The evaluation of an attribute_reference (or
range_attribute_reference) consists of the evaluation of the prefix.

Implementation Permissions

12 An implementation may provide implementation-defined attributes; the identifier for an implementation-
defined attribute shall differ from those of the language-defined attributes.

12.a Implementation defined: Implementation-defined attributes.

12.b Ramification: They cannot be reserved words because reserved words are not legal identifiers.

12.c The semantics of implementation-defined attributes, and any associated rules, are, of course, implementation defined.
For example, the implementation defines whether a given implementation-defined attribute can be used in a static
expression.

NOTES
13 4 Attributes are defined throughout this International Standard, and are summarized in Annex K.

14 5 In general, the name in a prefix of an attribute_reference (or a range_attribute_reference) has to be resolved without
using any context. However, in the case of the Access attribute, the expected type for the prefix has to be a single access
type, and if it is an access-to-subprogram type (see 3.10.2) then the resolution of the name can use the fact that the profile
of the callable entity denoted by the prefix has to be type conformant with the designated profile of the access type. {type

conformance (required)}

14.a Proof: In the general case, there is no ‘‘expected type’’ for the prefix of an attribute_reference. In the special case of
’Access, there is an ‘‘expected profile’’ for the prefix.

14.b Reason: ’Access is a special case, because without it, it would be very difficult to take ’Access of an overloaded
subprogram.

Examples

15 Examples of attributes:
16

Color’First -- minimum value of the enumeration type Color (see 3.5.1)
Rainbow’Base’First -- same as Color’First (see 3.5.1)
Real’Digits -- precision of the type Real (see 3.5.7)
Board’Last(2) -- upper bound of the second dimension of Board (see 3.6.1)
Board’Range(1) -- index range of the first dimension of Board (see 3.6.1)
Pool(K)’Terminated -- True if task Pool(K) is terminated (see 9.1)
Date’Size -- number of bits for records of type Date (see 3.8)
Message’Address -- address of the record variable Message (see 3.7.1)

Extensions to Ada 83

16.a {extensions to Ada 83} We now uniformly treat X’Range as X’First..X’Last, allowing its use with scalar subtypes.

16.b We allow any integer type in the static_expression of an attribute designator, not just a value of universal_integer. The
preference rules ensure upward compatibility.

Wording Changes From Ada 83

16.c We use the syntactic category attribute_reference rather than simply "attribute" to avoid confusing the name of
something with the thing itself.

16.d The syntax rule for attribute_reference now uses identifier instead of simple_name, because attribute identifiers are not
required to follow the normal visibility rules.

16.e We now separate attribute_reference from range_attribute_reference, and enumerate the reserved words that are legal
attribute or range attribute designators. We do this because identifier no longer includes reserved words.

ISO/IEC 8652:1995(E) —AARM;6.0

137 21 December 1994 Attributes 4.1.4

16.fThe Ada 9X name resolution rules are a bit more explicit than in Ada 83. The Ada 83 rule said that the "meaning of
the prefix of an attribute must be determinable independently of the attribute designator and independently of the fact
that it is the prefix of an attribute." That isn’t quite right since the meaning even in Ada 83 embodies whether or not
the prefix is interpreted as a parameterless function call, and in Ada 9X, it also embodies whether or not the prefix is
interpreted as an implicit_dereference. So the attribute designator does make a difference — just not much.

16.gNote however that if the attribute designator is Access, it makes a big difference in the interpretation of the prefix (see
3.10.2).

4.2 Literals
1[{literal} A literal represents a value literally, that is, by means of notation suited to its kind.] A literal is

either a numeric_literal, a character_literal, the literal null, or a string_literal. {constant: see also literal}

1.aDiscussion: An enumeration literal that is an identifier rather than a character_literal is not considered a literal in the
above sense, because it involves no special notation ‘‘suited to its kind.’’ It might more properly be called an
enumeration_identifier, except for historical reasons.

Name Resolution Rules

2{expected type [null literal]} The expected type for a literal null shall be a single access type.
2.aDiscussion: This new wording ("expected type ... shall be a single ... type") replaces the old "shall be determinable"

stuff. It reflects an attempt to simplify and unify the description of the rules for resolving aggregates, literals, type
conversions, etc. See 8.6, ‘‘The Context of Overload Resolution’’ for the details.

3{expected type [character_literal]} {expected profile [character_literal]} For a name that consists of a character_literal,
either its expected type shall be a single character type, in which case it is interpreted as a parameterless
function_call that yields the corresponding value of the character type, or its expected profile shall cor-
respond to a parameterless function with a character result type, in which case it is interpreted as the name
of the corresponding parameterless function declared as part of the character type’s definition (see 3.5.1).
In either case, the character_literal denotes the enumeration_literal_specification.

3.aDiscussion: See 4.1.3 for the resolution rules for a selector_name that is a character_literal.

4{expected type [string_literal]} The expected type for a primary that is a string_literal shall be a single string
type.

Legality Rules

5A character_literal that is a name shall correspond to a defining_character_literal of the expected type, or
of the result type of the expected profile.

6For each character of a string_literal with a given expected string type, there shall be a corresponding
defining_character_literal of the component type of the expected string type.

7A literal null shall not be of an anonymous access type[, since such types do not have a null value (see
3.10)].

7.aReason: This is a legality rule rather than an overloading rule, to simplify implementations.

Static Semantics

8An integer literal is of type universal_integer. A real literal is of type universal_real.

Dynamic Semantics

9{evaluation [numeric literal]} {evaluation [null literal]} {null access value} {null pointer: see null access value} The
evaluation of a numeric literal, or the literal null, yields the represented value.

ISO/IEC 8652:1995(E) —AARM;6.0

4.2 Literals 21 December 1994 138

10 {evaluation [string_literal]} The evaluation of a string_literal that is a primary yields an array value containing
the value of each character of the sequence of characters of the string_literal, as defined in 2.6. The
bounds of this array value are determined according to the rules for positional_array_aggregates (see
4.3.3), except that for a null string literal, the upper bound is the predecessor of the lower bound.

11 {Range_Check [partial]} {check, language-defined (Range_Check)} For the evaluation of a string_literal of type T, a
check is made that the value of each character of the string_literal belongs to the component subtype of T.
For the evaluation of a null string literal, a check is made that its lower bound is greater than the lower
bound of the base range of the index type. {Constraint_Error (raised by failure of run-time check)} The exception
Constraint_Error is raised if either of these checks fails.

11.a Ramification: The checks on the characters need not involve more than two checks altogether, since one need only
check the characters of the string with the lowest and highest position numbers against the range of the component
subtype.

NOTES
12 6 Enumeration literals that are identifiers rather than character_literals follow the normal rules for identifiers when used in a

name (see 4.1 and 4.1.3). Character_literals used as selector_names follow the normal rules for expanded names (see
4.1.3).

Examples

13 Examples of literals:

14

3.14159_26536 -- a real literal
1_345 -- an integer literal
’A’ -- a character literal
"Some Text" -- a string literal

Incompatibilities With Ada 83

14.a {incompatibilities with Ada 83} Because character_literals are now treated like other literals, in that they are resolved
using context rather than depending on direct visibility, additional qualification might be necessary when passing a
character_literal to an overloaded subprogram.

Extensions to Ada 83

14.b {extensions to Ada 83} Character_literals are now treated analogously to null and string_literals, in that they are
resolved using context, rather than their content; the declaration of the corresponding defining_character_literal need not
be directly visible.

Wording Changes From Ada 83

14.c Name Resolution rules for enumeration literals that are not character_literals are not included anymore, since they are
neither syntactically nor semantically "literals" but are rather names of parameterless functions.

4.3 Aggregates
1 [{aggregate} An aggregate combines component values into a composite value of an array type, record

type, or record extension.] {literal: see also aggregate}

Syntax

2 aggregate ::= record_aggregate | extension_aggregate | array_aggregate

Name Resolution Rules

3 {expected type [aggregate]} The expected type for an aggregate shall be a single nonlimited array type, record
type, or record extension.

3.a Discussion: See 8.6, ‘‘The Context of Overload Resolution’’ for the meaning of ‘‘shall be a single ... type.’’

ISO/IEC 8652:1995(E) —AARM;6.0

139 21 December 1994 Aggregates 4.3

Legality Rules

4An aggregate shall not be of a class-wide type.
4.aRamification: When the expected type in some context is class-wide, an aggregate has to be explicitly qualified by the

specific type of value to be created, so that the expected type for the aggregate itself is specific.

4.bDiscussion: We used to disallow aggregates of a type with unknown discriminants. However, that was unnecessarily
restrictive in the case of an extension aggregate, and irrelevant to a record aggregate (since a type that is legal for a
record aggregate could not possibly have unknown discriminants) and to an array aggregate (the only specific types
that can have unknown discriminants are private types, private extensions, and types derived from them).

Dynamic Semantics

5{evaluation [aggregate]} For the evaluation of an aggregate, an anonymous object is created and values for
the components or ancestor part are obtained (as described in the subsequent subclause for each kind of
the aggregate) and assigned into the corresponding components or ancestor part of the anonymous object.
{assignment operation (during evaluation of an aggregate)} Obtaining the values and the assignments occur in an
arbitrary order. The value of the aggregate is the value of this object.

5.aDiscussion: The ancestor part is the set of components inherited from the ancestor type. The syntactic category
ancestor_part is the expression or subtype_mark that specifies how the ancestor part of the anonymous object should be
initialized.

5.bRamification: The assignment operations do the necessary value adjustment, as described in 7.6. Note that the value
as a whole is not adjusted — just the subcomponents (and ancestor part, if any). 7.6 also describes when this
anonymous object is finalized.

5.cIf the ancestor_part is a subtype_mark the Initialize procedure for the ancestor type is applied to the ancestor part after
default-initializing it, unless the procedure is abstract, as described in 7.6. The Adjust procedure for the ancestor type
is not called in this case, since there is no assignment to the ancestor part as a whole.

6{Discriminant_Check [partial]} {check, language-defined (Discriminant_Check)} If an aggregate is of a tagged type, a
check is made that its value belongs to the first subtype of the type. {Constraint_Error (raised by failure of

run-time check)} Constraint_Error is raised if this check fails.
6.aRamification: This check ensures that no values of a tagged type are ever outside the first subtype, as required for

inherited dispatching operations to work properly (see 3.4). This check will always succeed if the first subtype is
unconstrained. This check is not extended to untagged types to preserve upward compatibility.

Extensions to Ada 83

6.b{extensions to Ada 83} We now allow extension_aggregates.
Wording Changes From Ada 83

6.cWe have adopted new wording for expressing the rule that the type of an aggregate shall be determinable from the
outside, though using the fact that it is nonlimited record (extension) or array.

6.dAn aggregate now creates an anonymous object. This is necessary so that controlled types will work (see 7.6).

4.3.1 Record Aggregates
1[In a record_aggregate, a value is specified for each component of the record or record extension value,

using either a named or a positional association.]

Syntax

2record_aggregate ::= (record_component_association_list)

3record_component_association_list ::=
record_component_association {, record_component_association}

| null record

4record_component_association ::=
[component_choice_list =>] expression

ISO/IEC 8652:1995(E) —AARM;6.0

4.3.1 Record Aggregates 21 December 1994 140

5 component_choice_list ::=
component_selector_name {| component_selector_name}

| others

6 {named component association} A record_component_association is a named component association if it
has a component_choice_list; {positional component association} otherwise, it is a positional component
association. Any positional component associations shall precede any named component associa-
tions. If there is a named association with a component_choice_list of others, it shall come last.

6.a Discussion: These rules were implied by the BNF in an early version of the RM9X, but it made the grammar harder to
read, and was inconsistent with how we handle discriminant constraints. Note that for array aggregates we still express
some of the rules in the grammar, but array aggregates are significantly different because an array aggregate is either
all positional (with a possible others at the end), or all named.

7 In the record_component_association_list for a record_aggregate, if there is only one association, it
shall be a named association.

7.a Reason: Otherwise the construct would be interpreted as a parenthesized expression. This is considered a syntax rule,
since it is relevant to overload resolution. We choose not to express it with BNF so we can share the definition of
record_component_association_list in both record_aggregate and extension_aggregate.

7.b Ramification: The record_component_association_list of an extension_aggregate does not have such a restriction.

Name Resolution Rules

8 {expected type [record_aggregate]} The expected type for a record_aggregate shall be a single nonlimited
record type or record extension.

8.a Ramification: This rule is used to resolve whether an aggregate is an array_aggregate or a record_aggregate. The
presence of a with is used to resolve between a record_aggregate and an extension_aggregate.

9 {needed component (record_aggregate record_component_association_list)} For the record_component_association_
list of a record_aggregate, all components of the composite value defined by the aggregate are needed[;
for the association list of an extension_aggregate, only those components not determined by the ancestor
expression or subtype are needed (see 4.3.2).] Each selector_name in a record_component_association
shall denote a needed component [(including possibly a discriminant)].

9.a Ramification: For the association list of a record_aggregate, ‘‘needed components’’ includes every component of the
composite value, but does not include those in unchosen variants (see AI-309). If there are variants, then the value
specified for the discriminant that governs them determines which variant is chosen, and hence which components are
needed.

9.b If an extension defines a new known_discriminant_part, then all of its discriminants are needed in the component
association list of an extension aggregate for that type, even if the discriminants have the same names and types as
discriminants of the type of the ancestor expression. This is necessary to ensure that the positions in the record_
component_association_list are well defined, and that discriminants that govern variant_parts can be given by static
expressions.

10 {expected type [record_component_association expression]} The expected type for the expression of a record_
component_association is the type of the associated component(s); {associated components (of a record_

component_association)} the associated component(s) are as follows:

11 • For a positional association, the component [(including possibly a discriminant)] in the cor-
responding relative position (in the declarative region of the type), counting only the needed
components;

11.a Ramification: This means that for an association list of an extension_aggregate, only noninherited com-
ponents are counted to determine the position.

12 • For a named association with one or more component_selector_names, the named
component(s);

ISO/IEC 8652:1995(E) —AARM;6.0

141 21 December 1994 Record Aggregates 4.3.1

13• For a named association with the reserved word others, all needed components that are not
associated with some previous association.

Legality Rules

14If the type of a record_aggregate is a record extension, then it shall be a descendant of a record type,
through one or more record extensions (and no private extensions).

15If there are no components needed in a given record_component_association_list, then the reserved words
null record shall appear rather than a list of record_component_associations.

15.aRamification: For example, "(null record)" is a record_aggregate for a null record type. Similarly, "(T’(A) with null
record)" is an extension_aggregate for a type defined as a null record extension of T.

16Each record_component_association shall have at least one associated component, and each needed com-
ponent shall be associated with exactly one record_component_association. If a record_component_
association has two or more associated components, all of them shall be of the same type.

16.aRamification: These rules apply to an association with an others choice.

16.bReason: Without these rules, there would be no way to know what was the expected type for the expression of the
association.

16.cDiscussion: AI-00244 also requires that the expression shall be legal for each associated component. This is because
even though two components have the same type, they might have different subtypes. Therefore, the legality of the
expression, particularly if it is an array aggregate, might differ depending on the associated component’s subtype.
However, we have relaxed the rules on array aggregates slightly for Ada 9X, so the staticness of an applicable index
constraint has no effect on the legality of the array aggregate to which it applies. See 4.3.3. This was the only case
(that we know of) where a subtype provided by context affected the legality of an expression.

16.dRamification: The rule that requires at least one associated component for each record_component_association
implies that there can be no extra associations for components that don’t exist in the composite value, or that are
already determined by the ancestor expression or subtype of an extension_aggregate.

16.eThe second part of the first sentence ensures that no needed components are left out, nor specified twice.

17If the components of a variant_part are needed, then the value of a discriminant that governs the variant_
part shall be given by a static expression.

17.aRamification: This expression might either be given within the aggregate itself, or in a constraint on the parent
subtype in a derived_type_definition for some ancestor of the type of the aggregate.

Dynamic Semantics

18{evaluation [record_aggregate]} The evaluation of a record_aggregate consists of the evaluation of the record_
component_association_list.

19{evaluation [record_component_association_list]} For the evaluation of a record_component_association_list, any
per-object constraints (see 3.8) for components specified in the association list are elaborated and any
expressions are evaluated and converted to the subtype of the associated component. {implicit subtype

conversion [expressions in aggregate]}

19.aRamification: The conversion might raise Constraint_Error.

19.bDiscussion: This check presumably happened as part of the dependent compatibility check in Ada 83.

Any constraint elaborations and expression evaluations (and conversions) occur in an arbitrary order,
except that the expression for a discriminant is evaluated (and converted) prior to the elaboration of any
per-object constraint that depends on it, which in turn occurs prior to the evaluation and conversion of the
expression for the component with the per-object constraint.

ISO/IEC 8652:1995(E) —AARM;6.0

4.3.1 Record Aggregates 21 December 1994 142

20 The expression of a record_component_association is evaluated (and converted) once for each associated
component.

NOTES
21 7 For a record_aggregate with positional associations, expressions specifying discriminant values appear first since the

known_discriminant_part is given first in the declaration of the type; they have to be in the same order as in the known_
discriminant_part.

Examples

22 Example of a record aggregate with positional associations:
23 (4, July, 1776) -- see 3.8

24 Examples of record aggregates with named associations:
25 (Day => 4, Month => July, Year => 1776)

(Month => July, Day => 4, Year => 1776)

26 (Disk, Closed, Track => 5, Cylinder => 12) -- see 3.8.1
(Unit => Disk, Status => Closed, Cylinder => 9, Track => 1)

27 Example of component association with several choices:
28 (Value => 0, Succ|Pred => new Cell’(0, null, null)) -- see 3.10.1

29 -- The allocator is evaluated twice: Succ and Pred designate different cells

30 Examples of record aggregates for tagged types (see 3.9 and 3.9.1):
31 Expression’(null record)

Literal’(Value => 0.0)
Painted_Point’(0.0, Pi/2.0, Paint => Red)

Extensions to Ada 83

31.a {extensions to Ada 83} Null record aggregates may now be specified, via "(null record)". However, this syntax is
more useful for null record extensions in extension aggregates.

Wording Changes From Ada 83

31.b Various AIs have been incorporated (AI-189, AI-244, and AI-309). In particular, Ada 83 did not explicitly disallow
extra values in a record aggregate. Now we do.

4.3.2 Extension Aggregates
1 [An extension_aggregate specifies a value for a type that is a record extension by specifying a value or

subtype for an ancestor of the type, followed by associations for any components not determined by the
ancestor_part.]

Language Design Principles

1.a The model underlying this syntax is that a record extension can also be viewed as a regular record type with an ancestor
"prefix." The record_component_association_list corresponds to exactly what would be needed if there were no
ancestor/prefix type. The ancestor_part determines the value of the ancestor/prefix.

Syntax

2 extension_aggregate ::=
(ancestor_part with record_component_association_list)

3 ancestor_part ::= expression | subtype_mark

Name Resolution Rules

4 {expected type [extension_aggregate]} The expected type for an extension_aggregate shall be a single non-
limited type that is a record extension. {expected type [extension_aggregate ancestor expression]} If the ancestor_
part is an expression, it is expected to be of any nonlimited tagged type.

ISO/IEC 8652:1995(E) —AARM;6.0

143 21 December 1994 Extension Aggregates 4.3.2

4.aReason: We could have made the expected type T’Class where T is the ultimate ancestor of the type of the aggregate,
or we could have made it even more specific than that. However, if the overload resolution rules get too complicated,
the implementation gets more difficult and it becomes harder to produce good error messages.

Legality Rules

5If the ancestor_part is a subtype_mark, it shall denote a specific tagged subtype. The type of the
extension_aggregate shall be derived from the type of the ancestor_part, through one or more record
extensions (and no private extensions).

Static Semantics

6{needed component (extension_aggregate record_component_association_list)} For the record_component_association_
list of an extension_aggregate, the only components needed are those of the composite value defined by
the aggregate that are not inherited from the type of the ancestor_part, plus any inherited discriminants if
the ancestor_part is a subtype_mark that denotes an unconstrained subtype.

Dynamic Semantics

7{evaluation [extension_aggregate]} For the evaluation of an extension_aggregate, the record_component_
association_list is evaluated. If the ancestor_part is an expression, it is also evaluated; if the ancestor_
part is a subtype_mark, the components of the value of the aggregate not given by the record_
component_association_list are initialized by default as for an object of the ancestor type. Any implicit
initializations or evaluations are performed in an arbitrary order, except that the expression for a dis-
criminant is evaluated prior to any other evaluation or initialization that depends on it.

8{Discriminant_Check [partial]} {check, language-defined (Discriminant_Check)} If the type of the ancestor_part has
discriminants that are not inherited by the type of the extension_aggregate, then, unless the ancestor_part
is a subtype_mark that denotes an unconstrained subtype, a check is made that each discriminant of the
ancestor has the value specified for a corresponding discriminant, either in the record_component_
association_list, or in the derived_type_definition for some ancestor of the type of the extension_
aggregate. {Constraint_Error (raised by failure of run-time check)} Constraint_Error is raised if this check fails.

8.aRamification: Corresponding and specified discriminants are defined in 3.7. The rules requiring static compatibility
between new discriminants of a derived type and the parent discriminant(s) they constrain ensure that at most one
check is required per discriminant of the ancestor expression.

NOTES
98 If all components of the value of the extension_aggregate are determined by the ancestor_part, then the record_

component_association_list is required to be simply null record.

109 If the ancestor_part is a subtype_mark, then its type can be abstract. If its type is controlled, then as the last step of
evaluating the aggregate, the Initialize procedure of the ancestor type is called, unless the Initialize procedure is abstract
(see 7.6).

Examples

11Examples of extension aggregates (for types defined in 3.9.1):
12Painted_Point’(Point with Red)

(Point’(P) with Paint => Black)

13(Expression with Left => 1.2, Right => 3.4)
Addition’(Binop with null record)

-- presuming Binop is of type Binary_Operation

Extensions to Ada 83

13.a{extensions to Ada 83} The extension aggregate syntax is new.

ISO/IEC 8652:1995(E) —AARM;6.0

4.3.3 Array Aggregates 21 December 1994 144

4.3.3 Array Aggregates
1 [In an array_aggregate, a value is specified for each component of an array, either positionally or by its

index.] For a positional_array_aggregate, the components are given in increasing-index order, with a
final others, if any, representing any remaining components. For a named_array_aggregate, the com-
ponents are identified by the values covered by the discrete_choices.

Language Design Principles

1.a The rules in this subclause are based on terms and rules for discrete_choice_lists defined in 3.8.1, ‘‘Variant Parts and
Discrete Choices’’.

Syntax

2 array_aggregate ::=
positional_array_aggregate | named_array_aggregate

3 positional_array_aggregate ::=
(expression, expression {, expression})

| (expression {, expression}, others => expression)

4 named_array_aggregate ::=
(array_component_association {, array_component_association})

5 array_component_association ::=
discrete_choice_list => expression

6 {n-dimensional array_aggregate} An n-dimensional array_aggregate is one that is written as n levels of nested
array_aggregates (or at the bottom level, equivalent string_literals). {subaggregate (of an array_aggregate)} For
the multidimensional case (n >= 2) the array_aggregates (or equivalent string_literals) at the n–1 lower
levels are called subaggregates of the enclosing n-dimensional array_aggregate. {array component

expression} The expressions of the bottom level subaggregates (or of the array_aggregate itself if one-
dimensional) are called the array component expressions of the enclosing n-dimensional array_
aggregate.

6.a Ramification: Subaggregates do not have a type. They correspond to part of an array. For example, with a matrix, a
subaggregate would correspond to a single row of the matrix. The definition of "n-dimensional" array_aggregate
applies to subaggregates as well as aggregates that have a type.

6.b To be honest: {others choice} An others choice is the reserved word others as it appears in a positional_array_
aggregate or as the discrete_choice of the discrete_choice_list in an array_component_association.

Name Resolution Rules

7 {expected type [array_aggregate]} The expected type for an array_aggregate (that is not a subaggregate) shall
be a single nonlimited array type. {expected type [array_aggregate component expression]} The component type of
this array type is the expected type for each array component expression of the array_aggregate.

7.a Ramification: We already require a single array or record type or record extension for an aggregate. The above rule
requiring a single nonlimited array type (and similar ones for record and extension aggregates) resolves which kind of
aggregate you have.

8 {expected type [array_aggregate discrete_choice]} The expected type for each discrete_choice in any discrete_
choice_list of a named_array_aggregate is the type of the corresponding index; {corresponding index (for an

array_aggregate)} the corresponding index for an array_aggregate that is not a subaggregate is the first index
of its type; for an (n–m)-dimensional subaggregate within an array_aggregate of an n-dimensional type,
the corresponding index is the index in position m+1.

Legality Rules

9 An array_aggregate of an n-dimensional array type shall be written as an n-dimensional array_aggregate.
9.a Ramification: In an m-dimensional array_aggregate [(including a subaggregate)], where m >= 2, each of the

expressions has to be an (m–1)-dimensional subaggregate.

ISO/IEC 8652:1995(E) —AARM;6.0

145 21 December 1994 Array Aggregates 4.3.3

10An others choice is allowed for an array_aggregate only if an applicable index constraint applies to the
array_aggregate. {applicable index constraint} [An applicable index constraint is a constraint provided by
certain contexts where an array_aggregate is permitted that can be used to determine the bounds of the
array value specified by the aggregate.] Each of the following contexts (and none other) defines an
applicable index constraint:

11• For an explicit_actual_parameter, an explicit_generic_actual_parameter, the expression of a
return_statement, the initialization expression in an object_declaration, or a default_
expression [(for a parameter or a component)], when the nominal subtype of the correspond-
ing formal parameter, generic formal parameter, function result, object, or component is a
constrained array subtype, the applicable index constraint is the constraint of the subtype;

12• For the expression of an assignment_statement where the name denotes an array variable,
the applicable index constraint is the constraint of the array variable;

12.aReason: This case is broken out because the constraint comes from the actual subtype of the variable (which is
always constrained) rather than its nominal subtype (which might be unconstrained).

13• For the operand of a qualified_expression whose subtype_mark denotes a constrained array
subtype, the applicable index constraint is the constraint of the subtype;

14• For a component expression in an aggregate, if the component’s nominal subtype is a con-
strained array subtype, the applicable index constraint is the constraint of the subtype;

14.aDiscussion: Here, the array_aggregate with others is being used within a larger aggregate.

15• For a parenthesized expression, the applicable index constraint is that, if any, defined for the
expression.

15.aDiscussion: RM83 omitted this case, presumably as an oversight. We want to minimize situations where an
expression becomes illegal if parenthesized.

16The applicable index constraint applies to an array_aggregate that appears in such a context, as well as to
any subaggregates thereof. In the case of an explicit_actual_parameter (or default_expression) for a call
on a generic formal subprogram, no applicable index constraint is defined.

16.aReason: This avoids generic contract model problems, because only mode conformance is required when matching
actual subprograms with generic formal subprograms.

17The discrete_choice_list of an array_component_association is allowed to have a discrete_choice that is a
nonstatic expression or that is a discrete_range that defines a nonstatic or null range, only if it is the
single discrete_choice of its discrete_choice_list, and there is only one array_component_association in
the array_aggregate.

17.aDiscussion: We now allow a nonstatic others choice even if there are other array component expressions as well.

18In a named_array_aggregate with more than one discrete_choice, no two discrete_choices are allowed to
cover the same value (see 3.8.1); if there is no others choice, the discrete_choices taken together shall
exactly cover a contiguous sequence of values of the corresponding index type.

18.aRamification: This implies that each component must be specified exactly once. See AI-309.

19A bottom level subaggregate of a multidimensional array_aggregate of a given array type is allowed to
be a string_literal only if the component type of the array type is a character type; each character of such a
string_literal shall correspond to a defining_character_literal of the component type.

Static Semantics

20A subaggregate that is a string_literal is equivalent to one that is a positional_array_aggregate of the same
length, with each expression being the character_literal for the corresponding character of the string_
literal.

ISO/IEC 8652:1995(E) —AARM;6.0

4.3.3 Array Aggregates 21 December 1994 146

Dynamic Semantics

21 {evaluation [array_aggregate]} The evaluation of an array_aggregate of a given array type proceeds in two
steps:

22 1. Any discrete_choices of this aggregate and of its subaggregates are evaluated in an arbitrary
order, and converted to the corresponding index type; {implicit subtype conversion [choices of
aggregate]}

23 2. The array component expressions of the aggregate are evaluated in an arbitrary order and
their values are converted to the component subtype of the array type; an array component
expression is evaluated once for each associated component. {implicit subtype conversion

[expressions of aggregate]}

23.a Ramification: Subaggregates are not separately evaluated. The conversion of the value of the component expressions
to the component subtype might raise Constraint_Error.

24 {bounds (of the index range of an array_aggregate)} The bounds of the index range of an array_aggregate
[(including a subaggregate)] are determined as follows:

25 • For an array_aggregate with an others choice, the bounds are those of the corresponding
index range from the applicable index constraint;

26 • For a positional_array_aggregate [(or equivalent string_literal)] without an others choice, the
lower bound is that of the corresponding index range in the applicable index constraint, if
defined, or that of the corresponding index subtype, if not; in either case, the upper bound is
determined from the lower bound and the number of expressions [(or the length of the string_
literal)];

27 • For a named_array_aggregate without an others choice, the bounds are determined by the
smallest and largest index values covered by any discrete_choice_list.

27.a Reason: We don’t need to say that each index value has to be covered exactly once, since that is a ramification
of the general rule on aggregates that each component’s value has to be specified exactly once.

28 {Range_Check [partial]} {check, language-defined (Range_Check)} For an array_aggregate, a check is made that the
index range defined by its bounds is compatible with the corresponding index subtype.

28.a Discussion: In RM83, this was phrased more explicitly, but once we define "compatibility" between a range and a
subtype, it seems to make sense to take advantage of that definition.

28.b Ramification: The definition of compatibility handles the special case of a null range, which is always compatible
with a subtype. See AI-00313.

29 {Index_Check [partial]} {check, language-defined (Index_Check)} For an array_aggregate with an others choice, a
check is made that no expression is specified for an index value outside the bounds determined by the
applicable index constraint.

29.a Discussion: RM83 omitted this case, apparently through an oversight. AI-309 defines this as a dynamic check, even
though other Ada 83 rules ensured that this check could be performed statically. We now allow an others choice to be
dynamic, even if it is not the only choice, so this check now needs to be dynamic, in some cases. Also, within a generic
unit, this would be a nonstatic check in some cases.

30 {Index_Check [partial]} {check, language-defined (Index_Check)} For a multidimensional array_aggregate, a check
is made that all subaggregates that correspond to the same index have the same bounds.

30.a Ramification: No array bounds ‘‘sliding’’ is performed on subaggregates.

30.b Reason: If sliding were performed, it would not be obvious which subaggregate would determine the bounds of the
corresponding index.

31 {Constraint_Error (raised by failure of run-time check)} The exception Constraint_Error is raised if any of the
above checks fail.

ISO/IEC 8652:1995(E) —AARM;6.0

147 21 December 1994 Array Aggregates 4.3.3

NOTES
3210 In an array_aggregate, positional notation may only be used with two or more expressions; a single expression in

parentheses is interpreted as a parenthesized_expression. A named_array_aggregate, such as (1 => X), may be used to
specify an array with a single component.

Examples

33Examples of array aggregates with positional associations:
34(7, 9, 5, 1, 3, 2, 4, 8, 6, 0)

Table’(5, 8, 4, 1, others => 0) -- see 3.6

35Examples of array aggregates with named associations:
36(1 .. 5 => (1 .. 8 => 0.0)) -- two-dimensional

(1 .. N => new Cell) -- N new cells, in particular for N = 0

37Table’(2 | 4 | 10 => 1, others => 0)
Schedule’(Mon .. Fri => True, others => False) -- see 3.6
Schedule’(Wed | Sun => False, others => True)
Vector’(1 => 2.5) -- single-component vector

38Examples of two-dimensional array aggregates:
39-- Three aggregates for the same value of subtype Matrix(1..2,1..3) (see 3.6):

40((1.1, 1.2, 1.3), (2.1, 2.2, 2.3))
(1 => (1.1, 1.2, 1.3), 2 => (2.1, 2.2, 2.3))
(1 => (1 => 1.1, 2 => 1.2, 3 => 1.3), 2 => (1 => 2.1, 2 => 2.2, 3 => 2.3))

41Examples of aggregates as initial values:
42A : Table := (7, 9, 5, 1, 3, 2, 4, 8, 6, 0); -- A(1)=7, A(10)=0

B : Table := (2 | 4 | 10 => 1, others => 0); -- B(1)=0, B(10)=1
C : constant Matrix := (1 .. 5 => (1 .. 8 => 0.0)); -- C’Last(1)=5, C’Last(2)=8

43D : Bit_Vector(M .. N) := (M .. N => True); -- see 3.6
E : Bit_Vector(M .. N) := (others => True);
F : String(1 .. 1) := (1 => ’F’); -- a one component aggregate: same as "F"

Extensions to Ada 83

43.a{extensions to Ada 83} We now allow "named with others" aggregates in all contexts where there is an applicable
index constraint, effectively eliminating what was RM83-4.3.2(6). Sliding never occurs on an aggregate with others,
because its bounds come from the applicable index constraint, and therefore already match the bounds of the target.

43.bThe legality of an others choice is no longer affected by the staticness of the applicable index constraint. This
substantially simplifies several rules, while being slightly more flexible for the user. It obviates the rulings of AI-244
and AI-310, while taking advantage of the dynamic nature of the "extra values" check required by AI-309.

43.cNamed array aggregates are permitted even if the index type is descended from a formal scalar type. See 4.9 and
AI-00190.

Wording Changes From Ada 83

43.dWe now separate named and positional array aggregate syntax, since, unlike other aggregates, named and positional
associations cannot be mixed in array aggregates (except that an others choice is allowed in a positional array
aggregate).

43.eWe have also reorganized the presentation to handle multidimensional and one-dimensional aggregates more
uniformly, and to incorporate the rulings of AI-19, AI-309, etc.

4.4 Expressions
1{expression} An expression is a formula that defines the computation or retrieval of a value. In this Inter-

national Standard, the term ‘‘expression’’ refers to a construct of the syntactic category expression or of
any of the other five syntactic categories defined below. {and operator} {operator (and)} {or operator} {operator

(or)} {xor operator} {operator (xor)} {and then (short-circuit control form)} {or else (short-circuit control form)} {= operator}
{operator (=)} {equal operator} {operator (equal)} {/= operator} {operator (/=)} {not equal operator} {operator (not equal)}

ISO/IEC 8652:1995(E) —AARM;6.0

4.4 Expressions 21 December 1994 148

{< operator} {operator (<)} {less than operator} {operator (less than)} {<= operator} {operator (<=)} {less than or equal

operator} {operator (less than or equal)} {> operator} {operator (>)} {greater than operator} {operator (greater than)} {>=

operator} {operator (>=)} {greater than or equal operator} {operator (greater than or equal)} {in (membership test)} {not in

(membership test)} {+ operator} {operator (+)} {plus operator} {operator (plus)} {- operator} {operator (-)} {minus

operator} {operator (minus)} {& operator} {operator (&)} {ampersand operator} {operator (ampersand)} {concatenation

operator} {operator (concatenation)} {catenation operator: see concatenation operator} {* operator} {operator (*)} {multiply

operator} {operator (multiply)} {times operator} {operator (times)} {/ operator} {operator (/)} {divide operator} {operator

(divide)} {mod operator} {operator (mod)} {rem operator} {operator (rem)} {** operator} {operator (**)} {exponentiation

operator} {operator (exponentiation)} {abs operator} {operator (abs)} {absolute value} {not operator} {operator (not)}

Syntax

2 expression ::=
relation {and relation} | relation {and then relation}

| relation {or relation} | relation {or else relation}
| relation {xor relation}

3 relation ::=
simple_expression [relational_operator simple_expression]

| simple_expression [not] in range
| simple_expression [not] in subtype_mark

4 simple_expression ::= [unary_adding_operator] term {binary_adding_operator term}

5 term ::= factor {multiplying_operator factor}

6 factor ::= primary [** primary] | abs primary | not primary

7 primary ::=
numeric_literal | null | string_literal | aggregate

| name | qualified_expression | allocator | (expression)

Name Resolution Rules

8 A name used as a primary shall resolve to denote an object or a value.
8.a Discussion: This replaces RM83-4.4(3). We don’t need to mention named numbers explicitly, because the name of a

named number denotes a value. We don’t need to mention attributes explicitly, because attributes now denote (rather
than yield) values in general. Also, the new wording allows attributes that denote objects, which should always have
been allowed (in case the implementation chose to have such a thing).

8.b Reason: It might seem odd that this is an overload resolution rule, but it is relevant during overload resolution. For
example, it helps ensure that a primary that consists of only the identifier of a parameterless function is interpreted as a
function_call rather than directly as a direct_name.

Static Semantics

9 Each expression has a type; it specifies the computation or retrieval of a value of that type.

Dynamic Semantics

10 {evaluation [primary that is a name]} The value of a primary that is a name denoting an object is the value of the
object.

Implementation Permissions

11 {Overflow_Check [partial]} {check, language-defined (Overflow_Check)} {Constraint_Error (raised by failure of run-time

check)} For the evaluation of a primary that is a name denoting an object of an unconstrained numeric
subtype, if the value of the object is outside the base range of its type, the implementation may either raise
Constraint_Error or return the value of the object.

11.a Ramification: This means that if extra-range intermediates are used to hold the value of an object of an unconstrained
numeric subtype, a Constraint_Error can be raised on a read of the object, rather than only on an assignment to it.
Similarly, it means that computing the value of an object of such a subtype can be deferred until the first read of the
object (presuming no side-effects other than failing an Overflow_Check are possible). This permission is over and
above that provided by clause 11.6, since this allows the Constraint_Error to move to a different handler.

ISO/IEC 8652:1995(E) —AARM;6.0

149 21 December 1994 Expressions 4.4

11.bReason: This permission is intended to allow extra-range registers to be used efficiently to hold parameters and local
variables, even if they might need to be transferred into smaller registers for performing certain predefined operations.

11.cDiscussion: There is no need to mention other kinds of primarys, since any Constraint_Error to be raised can be
‘‘charged’’ to the evaluation of the particular kind of primary.

Examples

12Examples of primaries:
134.0 -- real literal

Pi -- named number
(1 .. 10 => 0) -- array aggregate
Sum -- variable
Integer’Last -- attribute
Sine(X) -- function call
Color’(Blue) -- qualified expression
Real(M*N) -- conversion
(Line_Count + 10) -- parenthesized expression

14Examples of expressions:
15Volume -- primary

not Destroyed -- factor
2*Line_Count -- term
-4.0 -- simple expression
-4.0 + A -- simple expression
B**2 - 4.0*A*C -- simple expression
Password(1 .. 3) = "Bwv" -- relation
Count in Small_Int -- relation
Count not in Small_Int -- relation
Index = 0 or Item_Hit -- expression
(Cold and Sunny) or Warm -- expression (parentheses are required)
A**(B**C) -- expression (parentheses are required)

Extensions to Ada 83

15.a{extensions to Ada 83} In Ada 83, out parameters and their nondiscriminant subcomponents are not allowed as
primaries. These restrictions are eliminated in Ada 9X.

15.bIn various contexts throughout the language where Ada 83 syntax rules had simple_expression, the corresponding Ada
9X syntax rule has expression instead. This reflects the inclusion of modular integer types, which makes the logical
operators "and", "or", and "xor" more useful in expressions of an integer type. Requiring parentheses to use these
operators in such contexts seemed unnecessary and potentially confusing. Note that the bounds of a range still have to
be specified by simple_expressions, since otherwise expressions involving membership tests might be ambiguous.
Essentially, the operation ".." is of higher precedence than the logical operators, and hence uses of logical operators still
have to be parenthesized when used in a bound of a range.

4.5 Operators and Expression Evaluation
1[{precedence of operators} {operator precedence} The language defines the following six categories of operators

(given in order of increasing precedence). The corresponding operator_symbols, and only those, can be
used as designators in declarations of functions for user-defined operators. See 6.6, ‘‘Overloading of
Operators’’.]

Syntax

2logical_operator ::= and | or | xor

3relational_operator ::= = | /= | < | <= | > | >=

4binary_adding_operator ::= + | – | &

5unary_adding_operator ::= + | –

6multiplying_operator ::= * | / | mod | rem

ISO/IEC 8652:1995(E) —AARM;6.0

4.5 Operators and Expression Evaluation 21 December 1994 150

7 highest_precedence_operator ::= ** | abs | not
7.a Discussion: Some of the above syntactic categories are not used in other syntax rules. They are just used for

classification. The others are used for both classification and parsing.

Static Semantics

8 For a sequence of operators of the same precedence level, the operators are associated with their operands
in textual order from left to right. Parentheses can be used to impose specific associations.

8.a Discussion: The left-associativity is not directly inherent in the grammar of 4.4, though in 1.1.4 the definition of the
metasymbols {} implies left associativity. So this could be seen as redundant, depending on how literally one interprets
the definition of the {} metasymbols.

8.b See the Implementation Permissions below regarding flexibility in reassociating operators of the same precedence.

9 {predefined operator} {operator (predefined)} For each form of type definition, certain of the above operators are
predefined; that is, they are implicitly declared immediately after the type definition. {binary operator}
{operator (binary)} {unary operator} {operator (unary)} For each such implicit operator declaration, the
parameters are called Left and Right for binary operators; the single parameter is called Right for unary
operators.[An expression of the form X op Y, where op is a binary operator, is equivalent to a function_
call of the form "op"(X, Y). An expression of the form op Y, where op is a unary operator, is equivalent
to a function_call of the form "op"(Y). The predefined operators and their effects are described in sub-
clauses 4.5.1 through 4.5.6.]

Dynamic Semantics

10 [{Constraint_Error (raised by failure of run-time check)} The predefined operations on integer types either yield
the mathematically correct result or raise the exception Constraint_Error. For implementations that sup-
port the Numerics Annex, the predefined operations on real types yield results whose accuracy is defined
in Annex G, or raise the exception Constraint_Error.]

10.a To be honest: Predefined operations on real types can ‘‘silently’’ give wrong results when the Machine_Overflows
attribute is false, and the computation overflows.

Implementation Requirements

11 {Constraint_Error (raised by failure of run-time check)} The implementation of a predefined operator that delivers
a result of an integer or fixed point type may raise Constraint_Error only if the result is outside the base
range of the result type.

12 {Constraint_Error (raised by failure of run-time check)} The implementation of a predefined operator that delivers
a result of a floating point type may raise Constraint_Error only if the result is outside the safe range of
the result type.

12.a To be honest: An exception is made for exponentiation by a negative exponent in 4.5.6.

Implementation Permissions

13 For a sequence of predefined operators of the same precedence level (and in the absence of parentheses
imposing a specific association), an implementation may impose any association of the operators with
operands so long as the result produced is an allowed result for the left-to-right association, but ignoring
the potential for failure of language-defined checks in either the left-to-right or chosen order of associa-
tion.

13.a Discussion: Note that the permission to reassociate the operands in any way subject to producing a result allowed for
the left-to-right association is not much help for most floating point operators, since reassociation may introduce
significantly different round-off errors, delivering a result that is outside the model interval for the left-to-right
association. Similar problems arise for division with integer or fixed point operands.

ISO/IEC 8652:1995(E) —AARM;6.0

151 21 December 1994 Operators and Expression Evaluation 4.5

13.bNote that this permission does not apply to user-defined operators.

NOTES
1411 The two operands of an expression of the form X op Y, where op is a binary operator, are evaluated in an arbitrary

order, as for any function_call (see 6.4).

Examples

15Examples of precedence:
16not Sunny or Warm -- same as (not Sunny) or Warm

X > 4.0 and Y > 0.0 -- same as (X > 4.0) and (Y > 0.0)

17-4.0*A**2 -- same as –(4.0 * (A**2))
abs(1 + A) + B -- same as (abs (1 + A)) + B
Y**(-3) -- parentheses are necessary
A / B * C -- same as (A/B)*C
A + (B + C) -- evaluate B + C before adding it to A

Wording Changes From Ada 83

17.aWe don’t give a detailed definition of precedence, since it is all implicit in the syntax rules anyway.

17.bThe permission to reassociate is moved here from RM83-11.6(5), so it is closer to the rules defining operator
association.

4.5.1 Logical Operators and Short-circuit Control Forms
Name Resolution Rules

1{short-circuit control form} {and then (short-circuit control form)} {or else (short-circuit control form)} An expression
consisting of two relations connected by and then or or else (a short-circuit control form) shall resolve to
be of some boolean type; {expected type [short-circuit control form relation]} the expected type for both relations is
that same boolean type.

1.aReason: This rule is written this way so that overload resolution treats the two operands symmetrically; the resolution
of overloading present in either one can benefit from the resolution of the other. Furthermore, the type expected by
context can help.

Static Semantics

2{logical operator} {operator (logical)} {and operator} {operator (and)} {or operator} {operator (or)} {xor operator}
{operator (xor)} The following logical operators are predefined for every boolean type T, for every modular
type T, and for every one-dimensional array type T whose component type is a boolean type: {bit string: see

logical operators on boolean arrays}

3

function "and"(Left, Right : T) return T
function "or" (Left, Right : T) return T
function "xor"(Left, Right : T) return T

3.aTo be honest: For predefined operators, the parameter and result subtypes shown as T are actually the unconstrained
subtype of the type.

4For boolean types, the predefined logical operators and, or, and xor perform the conventional operations
of conjunction, inclusive disjunction, and exclusive disjunction, respectively.

5For modular types, the predefined logical operators are defined on a bit-by-bit basis, using the binary
representation of the value of the operands to yield a binary representation for the result, where zero
represents False and one represents True. If this result is outside the base range of the type, a final
subtraction by the modulus is performed to bring the result into the base range of the type.

6The logical operators on arrays are performed on a component-by-component basis on matching com-
ponents (as for equality — see 4.5.2), using the predefined logical operator for the component type. The
bounds of the resulting array are those of the left operand.

ISO/IEC 8652:1995(E) —AARM;6.0

4.5.1 Logical Operators and Short-circuit Control Forms 21 December 1994 152

Dynamic Semantics

7 {evaluation [short-circuit control form]} The short-circuit control forms and then and or else deliver the same
result as the corresponding predefined and and or operators for boolean types, except that the left
operand is always evaluated first, and the right operand is not evaluated if the value of the left operand
determines the result.

8 {Length_Check [partial]} {check, language-defined (Length_Check)} For the logical operators on arrays, a check is
made that for each component of the left operand there is a matching component of the right operand, and
vice versa. {Range_Check [partial]} {check, language-defined (Range_Check)} Also, a check is made that each
component of the result belongs to the component subtype. {Constraint_Error (raised by failure of run-time

check)} The exception Constraint_Error is raised if either of the above checks fails.
8.a Discussion: The check against the component subtype is per AI-00535.

NOTES
9 12 The conventional meaning of the logical operators is given by the following truth table:

10

A B (A and B) (A or B) (A xor B)

True True True True False
True False False True True
False True False True True
False False False False False

Examples

11 Examples of logical operators:
12 Sunny or Warm

Filter(1 .. 10) and Filter(15 .. 24) -- see 3.6.1

13 Examples of short-circuit control forms:
14 Next_Car.Owner /= null and then Next_Car.Owner.Age > 25 -- see 3.10.1

N = 0 or else A(N) = Hit_Value

4.5.2 Relational Operators and Membership Tests
1 [{relational operator} {operator (relational)} {comparison operator: see relational operator} {equality operator} {operator

(equality)} The equality operators = (equals) and /= (not equals) are predefined for nonlimited types.
{ordering operator} {operator (ordering)} The other relational_operators are the ordering operators < (less
than), <= (less than or equal), > (greater than), and >= (greater than or equal). {= operator} {operator (=)}
{equal operator} {operator (equal)} {/= operator} {operator (/=)} {not equal operator} {operator (not equal)} {< operator}
{operator (<)} {less than operator} {operator (less than)} {<= operator} {operator (<=)} {less than or equal operator}
{operator (less than or equal)} {> operator} {operator (>)} {greater than operator} {operator (greater than)} {>= operator}
{operator (>=)} {greater than or equal operator} {operator (greater than or equal)} {discrete array type} The ordering
operators are predefined for scalar types, and for discrete array types, that is, one-dimensional array types
whose components are of a discrete type.

1.a Ramification: The equality operators are not defined for every nonlimited type — see below for the exact rule.

2 {membership test} {in (membership test)} {not in (membership test)} A membership test, using in or not in, deter-
mines whether or not a value belongs to a given subtype or range, or has a tag that identifies a type that is
covered by a given type. Membership tests are allowed for all types.]

ISO/IEC 8652:1995(E) —AARM;6.0

153 21 December 1994 Relational Operators and Membership Tests 4.5.2

Name Resolution Rules

3{expected type [membership test simple_expression]} {tested type (of a membership test)} The tested type of a member-
ship test is the type of the range or the type determined by the subtype_mark. If the tested type is tagged,
then the simple_expression shall resolve to be of a type that covers or is covered by the tested type; if
untagged, the expected type for the simple_expression is the tested type.

3.aReason: The part of the rule for untagged types is stated in a way that ensures that operands like null are still legal as
operands of a membership test.

3.bThe significance of ‘‘covers or is covered by’’ is that we allow the simple_expression to be of any class-wide type that
covers the tested type, not just the one rooted at the tested type.

Legality Rules

4For a membership test, if the simple_expression is of a tagged class-wide type, then the tested type shall
be (visibly) tagged.

4.aRamification: Untagged types covered by the tagged class-wide type are not permitted. Such types can exist if they
are descendants of a private type whose full type is tagged. This rule is intended to avoid confusion since such
derivatives don’t have their ‘‘own’’ tag, and hence are indistinguishable from one another at run time once converted to
a covering class-wide type.

Static Semantics

5The result type of a membership test is the predefined type Boolean.

6The equality operators are predefined for every specific type T that is not limited, and not an anonymous
access type, with the following specifications:

7function "=" (Left, Right : T) return Boolean
function "/="(Left, Right : T) return Boolean

8The ordering operators are predefined for every specific scalar type T, and for every discrete array type T,
with the following specifications:

9function "<" (Left, Right : T) return Boolean
function "<="(Left, Right : T) return Boolean
function ">" (Left, Right : T) return Boolean
function ">="(Left, Right : T) return Boolean

Dynamic Semantics

10For discrete types, the predefined relational operators are defined in terms of corresponding mathematical
operations on the position numbers of the values of the operands.

11For real types, the predefined relational operators are defined in terms of the corresponding mathematical
operations on the values of the operands, subject to the accuracy of the type.

11.aRamification: For floating point types, the results of comparing nearly equal values depends on the accuracy of the
implementation (see G.2.1, ‘‘Model of Floating Point Arithmetic’’ for implementations that support the Numerics
Annex).

11.bImplementation Note: On a machine with signed zeros, if the generated code generates both plus zero and minus
zero, plus and minus zero must be equal by the predefined equality operators.

12Two access-to-object values are equal if they designate the same object, or if both are equal to the null
value of the access type.

13Two access-to-subprogram values are equal if they are the result of the same evaluation of an Access
attribute_reference, or if both are equal to the null value of the access type. Two access-to-subprogram
values are unequal if they designate different subprograms. {unspecified [partial]} [It is unspecified whether
two access values that designate the same subprogram but are the result of distinct evaluations of Access
attribute_references are equal or unequal.]

ISO/IEC 8652:1995(E) —AARM;6.0

4.5.2 Relational Operators and Membership Tests 21 December 1994 154

13.a Reason: This allows each Access attribute_reference for a subprogram to designate a distinct ‘‘wrapper’’ subprogram
if necessary to support an indirect call.

14 {equality operator (special inheritance rule for tagged types)} For a type extension, predefined equality is defined in
terms of the primitive [(possibly user-defined)] equals operator of the parent type and of any tagged
components of the extension part, and predefined equality for any other components not inherited from
the parent type.

14.a Ramification: Two values of a type extension are not equal if there is a variant_part in the extension part and the two
values have different variants present. This is a ramification of the requirement that a discriminant governing such a
variant_part has to be a ‘‘new’’ discriminant, and so has to be equal in the two values for the values to be equal. Note
that variant_parts in the parent part need not match if the primitive equals operator for the parent type considers them
equal.

15 For a private type, if its full type is tagged, predefined equality is defined in terms of the primitive equals
operator of the full type; if the full type is untagged, predefined equality for the private type is that of its
full type.

16 {matching components} For other composite types, the predefined equality operators [(and certain other
predefined operations on composite types — see 4.5.1 and 4.6)] are defined in terms of the corresponding
operation on matching components, defined as follows:

17 • For two composite objects or values of the same non-array type, matching components are
those that correspond to the same component_declaration or discriminant_specification;

18 • For two one-dimensional arrays of the same type, matching components are those (if any)
whose index values match in the following sense: the lower bounds of the index ranges are
defined to match, and the successors of matching indices are defined to match;

19 • For two multidimensional arrays of the same type, matching components are those whose
index values match in successive index positions.

20 The analogous definitions apply if the types of the two objects or values are convertible, rather than being
the same.

20.a Discussion: Ada 83 seems to omit this part of the definition, though it is used in array type conversions. See 4.6.

21 Given the above definition of matching components, the result of the predefined equals operator for
composite types (other than for those composite types covered earlier) is defined as follows:

22 • If there are no components, the result is defined to be True;

23 • If there are unmatched components, the result is defined to be False;

24 • Otherwise, the result is defined in terms of the primitive equals operator for any matching
tagged components, and the predefined equals for any matching untagged components.

24.a Reason: This asymmetry between tagged and untagged components is necessary to preserve upward com-
patibility and corresponds with the corresponding situation with generics, where the predefined operations
‘‘reemerge’’ in a generic for untagged types, but do not for tagged types. Also, only tagged types support
user-defined assignment (see 7.6), so only tagged types can fully handle levels of indirection in the implemen-
tation of the type. For untagged types, one reason for a user-defined equals operator might be to allow values
with different bounds or discriminants to compare equal in certain cases. When such values are matching
components, the bounds or discriminants will necessarily match anyway if the discriminants of the enclosing
values match.

24.b Ramification: Two null arrays of the same type are always equal; two null records of the same type are always equal.

24.c Note that if a composite object has a component of a floating point type, and the floating point type has both a plus and
minus zero, which are considered equal by the predefined equality, then a block compare cannot be used for the
predefined composite equality. Of course, with user-defined equals operators for tagged components, a block compare
breaks down anyway, so this is not the only special case that requires component-by-component comparisons. On a

ISO/IEC 8652:1995(E) —AARM;6.0

155 21 December 1994 Relational Operators and Membership Tests 4.5.2

one’s complement machine, a similar situation might occur for integer types, since one’s complement machines
typically have both a plus and minus (integer) zero.

25The predefined "/=" operator gives the complementary result to the predefined "=" operator.
25.aRamification: Furthermore, if the user defines an "=" operator that returns Boolean, then a "/=" operator is implicitly

declared in terms of the user-defined "=" operator so as to give the complementary result. See 6.6.

26{lexicographic order} For a discrete array type, the predefined ordering operators correspond to
lexicographic order using the predefined order relation of the component type: A null array is lex-
icographically less than any array having at least one component. In the case of nonnull arrays, the left
operand is lexicographically less than the right operand if the first component of the left operand is less
than that of the right; otherwise the left operand is lexicographically less than the right operand only if
their first components are equal and the tail of the left operand is lexicographically less than that of the
right (the tail consists of the remaining components beyond the first and can be null).

27{evaluation [membership test]} For the evaluation of a membership test, the simple_expression and the range
(if any) are evaluated in an arbitrary order.

28A membership test using in yields the result True if:

29• The tested type is scalar, and the value of the simple_expression belongs to the given range,
or the range of the named subtype; or

29.aRamification: The scalar membership test only does a range check. It does not perform any other check, such
as whether a value falls in a ‘‘hole’’ of a ‘‘holey’’ enumeration type. The Pos attribute function can be used for
that purpose.

29.bEven though Standard.Float is an unconstrained subtype, the test ‘‘X in Float’’ will still return False (presuming
the evaluation of X does not raise Constraint_Error) when X is outside Float’Range.

30• The tested type is not scalar, and the value of the simple_expression satisfies any constraints
of the named subtype, and, if the type of the simple_expression is class-wide, the value has a
tag that identifies a type covered by the tested type.

30.aRamification: Note that the tag is not checked if the simple_expression is of a specific type.

31Otherwise the test yields the result False.

32A membership test using not in gives the complementary result to the corresponding membership test
using in.

NOTES
3313 No exception is ever raised by a membership test, by a predefined ordering operator, or by a predefined equality

operator for an elementary type, but an exception can be raised by the evaluation of the operands. A predefined equality
operator for a composite type can only raise an exception if the type has a tagged part whose primitive equals operator
propagates an exception.

3414 If a composite type has components that depend on discriminants, two values of this type have matching components
if and only if their discriminants are equal. Two nonnull arrays have matching components if and only if the length of each
dimension is the same for both.

Examples

35Examples of expressions involving relational operators and membership tests:
36X /= Y

37"" < "A" and "A" < "Aa" -- True
"Aa" < "B" and "A" < "A " -- True

38My_Car = null -- true if My_Car has been set to null (see 3.10.1)
My_Car = Your_Car -- true if we both share the same car
My_Car.all = Your_Car.all -- true if the two cars are identical

ISO/IEC 8652:1995(E) —AARM;6.0

4.5.2 Relational Operators and Membership Tests 21 December 1994 156

39 N not in 1 .. 10 -- range membership test
Today in Mon .. Fri -- range membership test
Today in Weekday -- subtype membership test (see 3.5.1)
Archive in Disk_Unit -- subtype membership test (see 3.8.1)
Tree.all in Addition’Class -- class membership test (see 3.9.1)

Extensions to Ada 83

39.a {extensions to Ada 83} Membership tests can be used to test the tag of a class-wide value.

39.b Predefined equality for a composite type is defined in terms of the primitive equals operator for tagged components or
the parent part.

Wording Changes From Ada 83

39.c The term ‘‘membership test’’ refers to the relation "X in S" rather to simply the reserved word in or not in.

39.d We use the term ‘‘equality operator’’ to refer to both the = (equals) and /= (not equals) operators. Ada 83 referred to =
as the equality operator, and /= as the inequality operator. The new wording is more consistent with the ISO 10646
name for "=" (equals sign) and provides a category similar to ‘‘ordering operator’’ to refer to both = and /=.

39.e We have changed the term ‘‘catenate’’ to ‘‘concatenate’’.

4.5.3 Binary Adding Operators
Static Semantics

1 {binary adding operator} {operator (binary adding)} {+ operator} {operator (+)} {plus operator} {operator (plus)} {-

operator} {operator (-)} {minus operator} {operator (minus)} The binary adding operators + (addition) and –
(subtraction) are predefined for every specific numeric type T with their conventional meaning. They
have the following specifications:

2 function "+"(Left, Right : T) return T
function "-"(Left, Right : T) return T

3 {& operator} {operator (&)} {ampersand operator} {operator (ampersand)} {concatenation operator} {operator

(concatenation)} {catenation operator: see concatenation operator} The concatenation operators & are predefined for
every nonlimited, one-dimensional array type T with component type C. They have the following
specifications:

4 function "&"(Left : T; Right : T) return T
function "&"(Left : T; Right : C) return T
function "&"(Left : C; Right : T) return T
function "&"(Left : C; Right : C) return T

Dynamic Semantics

5 {evaluation [concatenation]} For the evaluation of a concatenation with result type T, if both operands are of
type T, the result of the concatenation is a one-dimensional array whose length is the sum of the lengths
of its operands, and whose components comprise the components of the left operand followed by the
components of the right operand. If the left operand is a null array, the result of the concatenation is the
right operand. Otherwise, the lower bound of the result is determined as follows:

6 • If the ultimate ancestor of the array type was defined by a constrained_array_definition, then
the lower bound of the result is that of the index subtype;

6.a Reason: This rule avoids Constraint_Error when using concatenation on an array type whose first subtype is
constrained.

7 • If the ultimate ancestor of the array type was defined by an unconstrained_array_definition,
then the lower bound of the result is that of the left operand.

8 [The upper bound is determined by the lower bound and the length.] {Index_Check [partial]} {check,

language-defined (Index_Check)} A check is made that the upper bound of the result of the concatenation

ISO/IEC 8652:1995(E) —AARM;6.0

157 21 December 1994 Binary Adding Operators 4.5.3

belongs to the range of the index subtype, unless the result is a null array. {Constraint_Error (raised by failure

of run-time check)} Constraint_Error is raised if this check fails.

9If either operand is of the component type C, the result of the concatenation is given by the above rules,
using in place of such an operand an array having this operand as its only component (converted to the
component subtype) and having the lower bound of the index subtype of the array type as its lower
bound. {implicit subtype conversion [operand of concatenation]}

9.aRamification: The conversion might raise Constraint_Error. The conversion provides ‘‘sliding’’ for the component in
the case of an array-of-arrays, consistent with the normal Ada 9X rules that allow sliding during parameter passing.

10{assignment operation (during evaluation of concatenation)} The result of a concatenation is defined in terms of an
assignment to an anonymous object, as for any function call (see 6.5).

10.aRamification: This implies that value adjustment is performed as appropriate — see 7.6. We don’t bother saying this
for other predefined operators, even though they are all function calls, because this is the only one where it matters. It
is the only one that can return a value having controlled parts.

NOTES
1115 As for all predefined operators on modular types, the binary adding operators + and – on modular types include a final

reduction modulo the modulus if the result is outside the base range of the type.

11.aImplementation Note: A full "modulus" operation need not be performed after addition or subtraction of modular
types. For binary moduli, a simple mask is sufficient. For nonbinary moduli, a check after addition to see if the value
is greater than the high bound of the base range can be followed by a conditional subtraction of the modulus.
Conversely, a check after subtraction to see if a "borrow" was performed can be followed by a conditional addition of
the modulus.

Examples

12Examples of expressions involving binary adding operators:
13Z + 0.1 -- Z has to be of a real type

14"A" & "BCD" -- concatenation of two string literals
’A’ & "BCD" -- concatenation of a character literal and a string literal
’A’ & ’A’ -- concatenation of two character literals

Inconsistencies With Ada 83

14.a{inconsistencies with Ada 83} The lower bound of the result of concatenation, for a type whose first subtype is
constrained, is now that of the index subtype. This is inconsistent with Ada 83, but generally only for Ada 83 programs
that raise Constraint_Error. For example, the concatenation operator in

14.bX : array(1..10) of Integer;
begin
X := X(6..10) & X(1..5);

14.cwould raise Constraint_Error in Ada 83 (because the bounds of the result of the concatenation would be 6..15, which is
outside of 1..10), but would succeed and swap the halves of X (as expected) in Ada 9X.

Extensions to Ada 83

14.d{extensions to Ada 83} Concatenation is now useful for array types whose first subtype is constrained. When the result
type of a concatenation is such an array type, Constraint_Error is avoided by effectively first sliding the left operand (if
nonnull) so that its lower bound is that of the index subtype.

4.5.4 Unary Adding Operators
Static Semantics

1{unary adding operator} {operator (unary adding)} {+ operator} {operator (+)} {plus operator} {operator (plus)} {-

operator} {operator (-)} {minus operator} {operator (minus)} The unary adding operators + (identity) and – (nega-
tion) are predefined for every specific numeric type T with their conventional meaning. They have the
following specifications:

2function "+"(Right : T) return T
function "-"(Right : T) return T

ISO/IEC 8652:1995(E) —AARM;6.0

4.5.4 Unary Adding Operators 21 December 1994 158

NOTES
3 16 For modular integer types, the unary adding operator –, when given a nonzero operand, returns the result of subtracting

the value of the operand from the modulus; for a zero operand, the result is zero.

4.5.5 Multiplying Operators
Static Semantics

1 {multiplying operator} {operator (multiplying)} {* operator} {operator (*)} {multiply operator} {operator (multiply)} {times

operator} {operator (times)} {/ operator} {operator (/)} {divide operator} {operator (divide)} {mod operator} {operator

(mod)} {rem operator} {operator (rem)} The multiplying operators * (multiplication), / (division), mod
(modulus), and rem (remainder) are predefined for every specific integer type T:

2 function "*" (Left, Right : T) return T
function "/" (Left, Right : T) return T
function "mod"(Left, Right : T) return T
function "rem"(Left, Right : T) return T

3 Signed integer multiplication has its conventional meaning.

4 Signed integer division and remainder are defined by the relation:
5 A = (A/B)*B + (A rem B)

6 where (A rem B) has the sign of A and an absolute value less than the absolute value of B. Signed integer
division satisfies the identity:

7 (-A)/B = -(A/B) = A/(-B)

8 The signed integer modulus operator is defined such that the result of A mod B has the sign of B and an
absolute value less than the absolute value of B; in addition, for some signed integer value N, this result
satisfies the relation:

9 A = B*N + (A mod B)

10 [The multiplying operators on modular types are defined in terms of the corresponding signed integer
operators, followed by a reduction modulo the modulus if the result is outside the base range of the type
[(which is only possible for the "*" operator)].]

10.a Ramification: The above identity satisfied by signed integer division is not satisfied by modular division because of
the difference in effect of negation.

11 Multiplication and division operators are predefined for every specific floating point type T:
12 function "*"(Left, Right : T) return T

function "/"(Left, Right : T) return T

13 The following multiplication and division operators, with an operand of the predefined type Integer, are
predefined for every specific fixed point type T:

14 function "*"(Left : T; Right : Integer) return T
function "*"(Left : Integer; Right : T) return T
function "/"(Left : T; Right : Integer) return T

15 [All of the above multiplying operators are usable with an operand of an appropriate universal numeric
type.] The following additional multiplying operators for root_real are predefined[, and are usable when
both operands are of an appropriate universal or root numeric type, and the result is allowed to be of type
root_real, as in a number_declaration]:

15.a Ramification: These operators are analogous to the multiplying operators involving fixed or floating point types
where root_real substitutes for the fixed or floating point type, and root_integer substitutes for Integer. Only values of
the corresponding universal numeric types are implicitly convertible to these root numeric types, so these operators are
really restricted to use with operands of a universal type, or the specified root numeric types.

ISO/IEC 8652:1995(E) —AARM;6.0

159 21 December 1994 Multiplying Operators 4.5.5

16function "*"(Left, Right : root_real) return root_real
function "/"(Left, Right : root_real) return root_real

17function "*"(Left : root_real; Right : root_integer) return root_real
function "*"(Left : root_integer; Right : root_real) return root_real
function "/"(Left : root_real; Right : root_integer) return root_real

18Multiplication and division between any two fixed point types are provided by the following two
predefined operators:

18.aRamification: Universal_fixed is the universal type for the class of fixed point types, meaning that these operators
take operands of any fixed point types (not necessarily the same) and return a result that is implicitly (or explicitly)
convertible to any fixed point type.

19function "*"(Left, Right : universal_fixed) return universal_fixed
function "/"(Left, Right : universal_fixed) return universal_fixed

Legality Rules

20The above two fixed-fixed multiplying operators shall not be used in a context where the expected type
for the result is itself universal_fixed — [the context has to identify some other numeric type to which the
result is to be converted, either explicitly or implicitly].

20.aDiscussion: The small of universal_fixed is infinitesimal; no loss of precision is permitted. However, fixed-fixed
division is impractical to implement when an exact result is required, and multiplication will sometimes result in
unanticipated overflows in such circumstances, so we require an explicit conversion to be inserted in expressions like A
* B * C if A, B, and C are each of some fixed point type.

20.bOn the other hand, X := A * B; is permitted by this rule, even if X, A, and B are all of different fixed point types, since
the expected type for the result of the multiplication is the type of X, which is necessarily not universal_fixed.

Dynamic Semantics

21The multiplication and division operators for real types have their conventional meaning.[For floating
point types, the accuracy of the result is determined by the precision of the result type. For decimal fixed
point types, the result is truncated toward zero if the mathematical result is between two multiples of the
small of the specific result type (possibly determined by context); for ordinary fixed point types, if the
mathematical result is between two multiples of the small, it is unspecified which of the two is the result.
{unspecified [partial]}]

22{Division_Check [partial]} {check, language-defined (Division_Check)} {Constraint_Error (raised by failure of run-time

check)} The exception Constraint_Error is raised by integer division, rem, and mod if the right operand is
zero. [Similarly, for a real type T with T’Machine_Overflows True, division by zero raises Constraint_
Error.]

NOTES
2317 For positive A and B, A/B is the quotient and A rem B is the remainder when A is divided by B. The following

relations are satisfied by the rem operator:

24A rem (-B) = A rem B
(-A) rem B = -(A rem B)

2518 For any signed integer K, the following identity holds:

26A mod B = (A + K*B) mod B

ISO/IEC 8652:1995(E) —AARM;6.0

4.5.5 Multiplying Operators 21 December 1994 160

27 The relations between signed integer division, remainder, and modulus are illustrated by the following table:

28 A B A/B A rem B A mod B A B A/B A rem B A mod B

29 10 5 2 0 0 -10 5 -2 0 0
11 5 2 1 1 -11 5 -2 -1 4
12 5 2 2 2 -12 5 -2 -2 3
13 5 2 3 3 -13 5 -2 -3 2
14 5 2 4 4 -14 5 -2 -4 1

30 A B A/B A rem B A mod B A B A/B A rem B A mod B
10 -5 -2 0 0 -10 -5 2 0 0
11 -5 -2 1 -4 -11 -5 2 -1 -1
12 -5 -2 2 -3 -12 -5 2 -2 -2
13 -5 -2 3 -2 -13 -5 2 -3 -3
14 -5 -2 4 -1 -14 -5 2 -4 -4

Examples

31 Examples of expressions involving multiplying operators:
32 I : Integer := 1;

J : Integer := 2;
K : Integer := 3;

33 X : Real := 1.0; -- see 3.5.7
Y : Real := 2.0;

34 F : Fraction := 0.25; -- see 3.5.9
G : Fraction := 0.5;

35

Expression Value Result Type

I*J 2 same as I and J, that is, Integer
K/J 1 same as K and J, that is, Integer
K mod J 1 same as K and J, that is, Integer

X/Y 0.5 same as X and Y, that is, Real
F/2 0.125 same as F, that is, Fraction

3*F 0.75 same as F, that is, Fraction
0.75*G 0.375 universal_fixed, implicitly convertible

to any fixed point type
Fraction(F*G) 0.125 Fraction, as stated by the conversion
Real(J)*Y 4.0 Real, the type of both operands after

conversion of J

Extensions to Ada 83

35.a {extensions to Ada 83} Explicit conversion of the result of multiplying or dividing two fixed point numbers is no
longer required, provided the context uniquely determines some specific fixed point result type. This is to improve
support for decimal fixed point, where requiring explicit conversion on every fixed-fixed multiply or divide was felt to
be inappropriate.

35.b The type universal_fixed is covered by universal_real, so real literals and fixed point operands may be multiplied or
divided directly, without any explicit conversions required.

Wording Changes From Ada 83

35.c We have used the normal syntax for function definition rather than a tabular format.

4.5.6 Highest Precedence Operators
Static Semantics

1 {highest precedence operator} {operator (highest precedence)} {abs operator} {operator (abs)} {absolute value} The
highest precedence unary operator abs (absolute value) is predefined for every specific numeric type T,
with the following specification:

ISO/IEC 8652:1995(E) —AARM;6.0

161 21 December 1994 Highest Precedence Operators 4.5.6

2function "abs"(Right : T) return T

3{not operator} {operator (not)} {logical operator: see also not operator} The highest precedence unary operator not
(logical negation) is predefined for every boolean type T, every modular type T, and for every one-
dimensional array type T whose components are of a boolean type, with the following specification:

4function "not"(Right : T) return T

5The result of the operator not for a modular type is defined as the difference between the high bound of
the base range of the type and the value of the operand. [For a binary modulus, this corresponds to a
bit-wise complement of the binary representation of the value of the operand.]

6The operator not that applies to a one-dimensional array of boolean components yields a one-dimensional
boolean array with the same bounds; each component of the result is obtained by logical negation of the
corresponding component of the operand (that is, the component that has the same index value). {Range_

Check [partial]} {check, language-defined (Range_Check)} {Constraint_Error (raised by failure of run-time check)} A check
is made that each component of the result belongs to the component subtype; the exception Constraint_
Error is raised if this check fails.

6.aDiscussion: The check against the component subtype is per AI-00535.

7{exponentiation operator} {operator (exponentiation)} {** operator} {operator (**)} The highest precedence
exponentiation operator ** is predefined for every specific integer type T with the following specifica-
tion:

8function "**"(Left : T; Right : Natural) return T

9Exponentiation is also predefined for every specific floating point type as well as root_real, with the
following specification (where T is root_real or the floating point type):

10function "**"(Left : T; Right : Integer’Base) return T

11{exponent} The right operand of an exponentiation is the exponent. The expression X**N with the value of
the exponent N positive is equivalent to the expression X*X*...X (with N–1 multiplications) except that
the multiplications are associated in an arbitrary order. With N equal to zero, the result is one. With the
value of N negative [(only defined for a floating point operand)], the result is the reciprocal of the result
using the absolute value of N as the exponent.

11.aRamification: The language does not specify the order of association of the multiplications inherent in an exponen-
tiation. For a floating point type, the accuracy of the result might depend on the particular association order chosen.

Implementation Permissions

12{Constraint_Error (raised by failure of run-time check)} The implementation of exponentiation for the case of a
negative exponent is allowed to raise Constraint_Error if the intermediate result of the repeated mul-
tiplications is outside the safe range of the type, even though the final result (after taking the reciprocal)
would not be. (The best machine approximation to the final result in this case would generally be 0.0.)

NOTES
1319 {Range_Check [partial]} {check, language-defined (Range_Check)} As implied by the specification given above for

exponentiation of an integer type, a check is made that the exponent is not negative. {Constraint_Error (raised by failure

of run-time check)} Constraint_Error is raised if this check fails.

Wording Changes From Ada 83

13.aWe now show the specification for "**" for integer types with a parameter subtype of Natural rather than Integer for
the exponent. This reflects the fact that Constraint_Error is raised if a negative value is provided for the exponent.

ISO/IEC 8652:1995(E) —AARM;6.0

4.6 Type Conversions 21 December 1994 162

4.6 Type Conversions
1 [Explicit type conversions, both value conversions and view conversions, are allowed between closely

related types as defined below. This clause also defines rules for value and view conversions to a par-
ticular subtype of a type, both explicit ones and those implicit in other constructs. {subtype conversion: see

type conversion} {type conversion} {conversion} {cast: see type conversion}]{subtype conversion: see also implicit subtype

conversion} {type conversion, implicit: see implicit subtype conversion}

Syntax

2 type_conversion ::=
subtype_mark(expression)

| subtype_mark(name)

3 {target subtype (of a type_conversion)} The target subtype of a type_conversion is the subtype denoted by the
subtype_mark. {operand (of a type_conversion)} The operand of a type_conversion is the expression or name
within the parentheses; {operand type (of a type_conversion)} its type is the operand type.

4 {convertible} One type is convertible to a second type if a type_conversion with the first type as operand
type and the second type as target type is legal according to the rules of this clause. Two types are
convertible if each is convertible to the other.

4.a Ramification: Note that ‘‘convertible’’ is defined in terms of legality of the conversion. Whether the conversion
would raise an exception at run time is irrelevant to this definition.

5 {view conversion} {conversion (view)} A type_conversion whose operand is the name of an object is called a
view conversion if its target type is tagged, or if it appears as an actual parameter of mode out or in out;
{value conversion} {conversion (value)} other type_conversions are called value conversions. {super: see view

conversion}

5.a Ramification: A view conversion to a tagged type can appear in any context that requires an object name, including in
an object renaming, the prefix of a selected_component, and if the operand is a variable, on the left side of an
assignment_statement. View conversions to other types only occur as actual parameters. Allowing view conversions
of untagged types in all contexts seemed to incur an undue implementation burden.

Name Resolution Rules

6 {expected type [type_conversion operand]} The operand of a type_conversion is expected to be of any type.
6.a Discussion: This replaces the "must be determinable" wording of Ada 83. This is equivalent to (but hopefully more

intuitive than) saying that the operand of a type_conversion is a ‘‘complete context.’’

7 The operand of a view conversion is interpreted only as a name; the operand of a value conversion is
interpreted as an expression.

7.a Reason: This formally resolves the syntactic ambiguity between the two forms of type_conversion, not that it really
matters.

Legality Rules

8 {type conversion (numeric)} {conversion (numeric)} If the target type is a numeric type, then the operand type
shall be a numeric type.

9 {type conversion (array)} {conversion (array)} If the target type is an array type, then the operand type shall be
an array type. Further:

10 • The types shall have the same dimensionality;

11 • Corresponding index types shall be convertible; and {convertible [required]}

ISO/IEC 8652:1995(E) —AARM;6.0

163 21 December 1994 Type Conversions 4.6

12• The component subtypes shall statically match. {statically matching [required]}

13{type conversion (access)} {conversion (access)} If the target type is a general access type, then the operand type
shall be an access-to-object type. Further:

13.aDiscussion: The Legality Rules and Dynamic Semantics are worded so that a type_conversion T(X) (where T is an
access type) is (almost) equivalent to the attribute_reference X.all’Access, where the result is of type T. The type_
conversion accepts a null value, whereas the attribute_reference would raise Constraint_Error.

14• If the target type is an access-to-variable type, then the operand type shall be an access-to-
variable type;

14.aRamification: If the target type is an access-to-constant type, then the operand type can be access-to-constant
or access-to-variable.

15• If the target designated type is tagged, then the operand designated type shall be convertible
to the target designated type; {convertible [required]}

16• If the target designated type is not tagged, then the designated types shall be the same, and
either the designated subtypes shall statically match or the target designated subtype shall be
discriminated and unconstrained; and {statically matching [required]}

16.aReason: These rules are designed to ensure that aliased array objects only need "dope" if their nominal subtype
is unconstrained, but they can always have dope if required by the run-time model (since no sliding is permitted
as part of access type conversion). By contrast, aliased discriminated objects will always need their dis-
criminants stored with them, even if nominally constrained. (Here, we are assuming an implementation that
represents an access value as a single pointer.)

17• {accessibility rule [type conversion]} The accessibility level of the operand type shall not be
statically deeper than that of the target type. {generic contract issue [partial]} In addition to the
places where Legality Rules normally apply (see 12.3), this rule applies also in the private
part of an instance of a generic unit.

17.aRamification: The access parameter case is handled by a run-time check. Run-time checks are also done in
instance bodies.

18{type conversion (access)} {conversion (access)} If the target type is an access-to-subprogram type, then the
operand type shall be an access-to-subprogram type. Further:

19• The designated profiles shall be subtype-conformant. {subtype conformance (required)}

20• {accessibility rule [type conversion]} The accessibility level of the operand type shall not be
statically deeper than that of the target type. {generic contract issue [partial]} In addition to the
places where Legality Rules normally apply (see 12.3), this rule applies also in the private
part of an instance of a generic unit. If the operand type is declared within a generic body,
the target type shall be declared within the generic body.

20.aReason: The reason it is illegal to convert from an access-to-subprogram type declared in a generic body to
one declared outside that body is that in an implementation that shares generic bodies, procedures declared
inside the generic need to have a different calling convention — they need an extra parameter pointing to the
data declared in the current instance. For procedures declared in the spec, that’s OK, because the compiler can
know about them at compile time of the instantiation.

21{type conversion (enumeration)} {conversion (enumeration)} {type conversion (composite (non-array))} {conversion (com-

posite (non-array))} If the target type is not included in any of the above four cases, there shall be a type that
is an ancestor of both the target type and the operand type. Further, if the target type is tagged, then
either:

22• The operand type shall be covered by or descended from the target type; or
22.aRamification: This is a conversion toward the root, which is always safe.

23• The operand type shall be a class-wide type that covers the target type.

ISO/IEC 8652:1995(E) —AARM;6.0

4.6 Type Conversions 21 December 1994 164

23.a Ramification: This is a conversion of a class-wide type toward the leaves, which requires a tag check. See
Dynamic Semantics.

23.b These two rules imply that a conversion from a parent type to a type extension is not permitted, as this would
require specifying the values for additional components, in general, and changing the tag. An extension_
aggregate has to be used instead, constructing a new value, rather than converting an existing value. However,
a conversion from the class-wide type rooted at the parent type is permitted; such a conversion just verifies that
the operand’s tag is a descendant of the target.

24 In a view conversion for an untagged type, the target type shall be convertible (back) to the operand type.
24.a Reason: Untagged view conversions appear only as [in] out parameters. Hence, the reverse conversion must be legal

as well. The forward conversion must be legal even if an out parameter, because actual parameters of an access type
are always copied in anyway.

Static Semantics

25 A type_conversion that is a value conversion denotes the value that is the result of converting the value of
the operand to the target subtype.

26 A type_conversion that is a view conversion denotes a view of the object denoted by the operand. This
view is a variable of the target type if the operand denotes a variable; otherwise it is a constant of the
target type.

27 {nominal subtype [associated with a type_conversion]} The nominal subtype of a type_conversion is its target
subtype.

Dynamic Semantics

28 {evaluation [value conversion]} {corresponding value (of the target type of a conversion)} {conversion} For the evaluation
of a type_conversion that is a value conversion, the operand is evaluated, and then the value of the
operand is converted to a corresponding value of the target type, if any. {Range_Check [partial]} {check,

language-defined (Range_Check)} {Constraint_Error (raised by failure of run-time check)} If there is no value of the
target type that corresponds to the operand value, Constraint_Error is raised[; this can only happen on
conversion to a modular type, and only when the operand value is outside the base range of the modular
type.] Additional rules follow:

29 • {type conversion (numeric)} {conversion (numeric)} Numeric Type Conversion
30 • If the target and the operand types are both integer types, then the result is the value of

the target type that corresponds to the same mathematical integer as the operand.

31 • If the target type is a decimal fixed point type, then the result is truncated (toward 0) if
the value of the operand is not a multiple of the small of the target type.

32 • {accuracy} If the target type is some other real type, then the result is within the ac-
curacy of the target type (see G.2, ‘‘Numeric Performance Requirements’’, for im-
plementations that support the Numerics Annex).

32.a Discussion: An integer type might have more bits of precision than a real type, so on conversion (of a large
integer), some precision might be lost.

33 • If the target type is an integer type and the operand type is real, the result is rounded to
the nearest integer (away from zero if exactly halfway between two integers).

33.a Discussion: This was implementation defined in Ada 83. There seems no reason to preserve the nonportability
in Ada 9X. Round-away-from-zero is the conventional definition of rounding, and standard Fortran and
COBOL both specify rounding away from zero, so for interoperability, it seems important to pick this. This is
also the most easily ‘‘undone’’ by hand. Round-to-nearest-even is an alternative, but that is quite complicated
if not supported by the hardware. In any case, this operation is not expected to be part of an inner loop, so
predictability and portability are judged most important. We anticipate that a floating point attribute function
Unbiased_Rounding will be provided for those applications that require round-to-nearest-even. ‘‘Deter-
ministic’’ rounding is required for static conversions to integer as well. See 4.9.

ISO/IEC 8652:1995(E) —AARM;6.0

165 21 December 1994 Type Conversions 4.6

34• {type conversion (enumeration)} {conversion (enumeration)} Enumeration Type Conversion
35• The result is the value of the target type with the same position number as that of the

operand value.

36• {type conversion (array)} {conversion (array)} Array Type Conversion
37• {Length_Check [partial]} {check, language-defined (Length_Check)} If the target subtype is a

constrained array subtype, then a check is made that the length of each dimension of
the value of the operand equals the length of the corresponding dimension of the target
subtype. The bounds of the result are those of the target subtype.

38• {Range_Check [partial]} {check, language-defined (Range_Check)} If the target subtype is an
unconstrained array subtype, then the bounds of the result are obtained by converting
each bound of the value of the operand to the corresponding index type of the target
type. {implicit subtype conversion [array bounds]} For each nonnull index range, a check is
made that the bounds of the range belong to the corresponding index subtype.

38.aDiscussion: Only nonnull index ranges are checked, per AI-00313.

39• In either array case, the value of each component of the result is that of the matching
component of the operand value (see 4.5.2).

39.aRamification: This applies whether or not the component is initialized.

40• {type conversion (composite (non-array))} {conversion (composite (non-array))} Composite (Non-Array)
Type Conversion

41• The value of each nondiscriminant component of the result is that of the matching
component of the operand value.

41.aRamification: This applies whether or not the component is initialized.

42• [The tag of the result is that of the operand.] {Tag_Check [partial]} {check, language-defined

(Tag_Check)} If the operand type is class-wide, a check is made that the tag of the
operand identifies a (specific) type that is covered by or descended from the target
type.

42.aRamification: This check is certain to succeed if the operand type is itself covered by or descended from the
target type.

42.bProof: The fact that a type_conversion preserves the tag is stated officially in 3.9, ‘‘Tagged Types and Type
Extensions’’

43• For each discriminant of the target type that corresponds to a discriminant of the
operand type, its value is that of the corresponding discriminant of the operand value;
{Discriminant_Check [partial]} {check, language-defined (Discriminant_Check)} if it corresponds to
more than one discriminant of the operand type, a check is made that all these dis-
criminants are equal in the operand value.

44• For each discriminant of the target type that corresponds to a discriminant that is
specified by the derived_type_definition for some ancestor of the operand type (or if
class-wide, some ancestor of the specific type identified by the tag of the operand), its
value in the result is that specified by the derived_type_definition.

44.aRamification: It is a ramification of the rules for the discriminants of derived types that each discriminant of
the result is covered either by this paragraph or the previous one. See 3.7.

45• {Discriminant_Check [partial]} {check, language-defined (Discriminant_Check)} For each dis-
criminant of the operand type that corresponds to a discriminant that is specified by the
derived_type_definition for some ancestor of the target type, a check is made that in the
operand value it equals the value specified for it.

46• {Range_Check [partial]} {check, language-defined (Range_Check)} For each discriminant of the
result, a check is made that its value belongs to its subtype.

ISO/IEC 8652:1995(E) —AARM;6.0

4.6 Type Conversions 21 December 1994 166

47 • {type conversion (access)} {conversion (access)} Access Type Conversion
48 • {Accessibility_Check [partial]} {check, language-defined (Accessibility_Check)} For an access-to-

object type, a check is made that the accessibility level of the operand type is not
deeper than that of the target type.

48.a Ramification: This check is needed for operands that are access parameters and in instance bodies.

48.b Note that this check can never fail for the implicit conversion to the anonymous type of an access parameter
that is done when calling a subprogram with an access parameter.

49 • {Access_Check [partial]} {check, language-defined (Access_Check)} If the target type is an
anonymous access type, a check is made that the value of the operand is not null; if the
target is not an anonymous access type, then the result is null if the operand value is
null.

49.a Ramification: A conversion to an anonymous access type happens implicitly as part of initializing an access
discriminant or access parameter.

49.b Reason: As explained in 3.10, ‘‘Access Types’’, it is important that a value of an anonymous access type can
never be null.

50 • If the operand value is not null, then the result designates the same object (or sub-
program) as is designated by the operand value, but viewed as being of the target
designated subtype (or profile); any checks associated with evaluating a conversion to
the target designated subtype are performed.

50.a Ramification: The checks are certain to succeed if the target and operand designated subtypes statically match.

51 {Range_Check [partial]} {check, language-defined (Range_Check)} {Discriminant_Check [partial]} {check, language-defined

(Discriminant_Check)} {Index_Check [partial]} {check, language-defined (Index_Check)} After conversion of the value
to the target type, if the target subtype is constrained, a check is performed that the value satisfies this
constraint.

51.a Ramification: The above check is a Range_Check for scalar subtypes, a Discriminant_Check or Index_Check for
access subtypes, and a Discriminant_Check for discriminated subtypes. The Length_Check for an array conversion is
performed as part of the conversion to the target type.

52 {evaluation [view conversion]} For the evaluation of a view conversion, the operand name is evaluated, and a
new view of the object denoted by the operand is created, whose type is the target type; {Length_Check

[partial]} {check, language-defined (Length_Check)} {Tag_Check [partial]} {check, language-defined (Tag_Check)}
{Discriminant_Check [partial]} {check, language-defined (Discriminant_Check)} if the target type is composite, checks
are performed as above for a value conversion.

53 The properties of this new view are as follows:

54 • If the target type is composite, the bounds or discriminants (if any) of the view are as defined
above for a value conversion; each nondiscriminant component of the view denotes the
matching component of the operand object; the subtype of the view is constrained if either
the target subtype or the operand object is constrained, or if the operand type is a descendant
of the target type, and has discriminants that were not inherited from the target type;

55 • If the target type is tagged, then an assignment to the view assigns to the corresponding part
of the object denoted by the operand; otherwise, an assignment to the view assigns to the
object, after converting the assigned value to the subtype of the object (which might raise
Constraint_Error); {implicit subtype conversion [assignment to view conversion]}

56 • Reading the value of the view yields the result of converting the value of the operand object
to the target subtype (which might raise Constraint_Error), except if the object is of an access
type and the view conversion is passed as an out parameter; in this latter case, the value of
the operand object is used to initialize the formal parameter without checking against any
constraint of the target subtype (see 6.4.1). {implicit subtype conversion [reading a view conversion]}

ISO/IEC 8652:1995(E) —AARM;6.0

167 21 December 1994 Type Conversions 4.6

56.aReason: This ensures that even an out parameter of an access type is initialized reasonably.

57{Program_Error (raised by failure of run-time check)} {Constraint_Error (raised by failure of run-time check)} If an
Accessibility_Check fails, Program_Error is raised. Any other check associated with a conversion raises
Constraint_Error if it fails.

58Conversion to a type is the same as conversion to an unconstrained subtype of the type.
58.aReason: This definition is needed because the semantics of various constructs involves converting to a type, whereas

an explicit type_conversion actually converts to a subtype. For example, the evaluation of a range is defined to convert
the values of the expressions to the type of the range.

58.bRamification: A conversion to a scalar type, or, equivalently, to an unconstrained scalar subtype, can raise
Constraint_Error if the value is outside the base range of the type.

NOTES
5920 {implicit subtype conversion [distributed]} In addition to explicit type_conversions, type conversions are performed

implicitly in situations where the expected type and the actual type of a construct differ, as is permitted by the type
resolution rules (see 8.6). For example, an integer literal is of the type universal_integer, and is implicitly converted when
assigned to a target of some specific integer type. Similarly, an actual parameter of a specific tagged type is implicitly
converted when the corresponding formal parameter is of a class-wide type.

60{implicit subtype conversion [distributed]} {Constraint_Error (raised by failure of run-time check)} Even when the
expected and actual types are the same, implicit subtype conversions are performed to adjust the array bounds (if any) of an
operand to match the desired target subtype, or to raise Constraint_Error if the (possibly adjusted) value does not satisfy
the constraints of the target subtype.

6121 A ramification of the overload resolution rules is that the operand of an (explicit) type_conversion cannot be the literal
null, an allocator, an aggregate, a string_literal, a character_literal, or an attribute_reference for an Access or Unchecked_
Access attribute. Similarly, such an expression enclosed by parentheses is not allowed. A qualified_expression (see 4.7)
can be used instead of such a type_conversion.

6222 The constraint of the target subtype has no effect for a type_conversion of an elementary type passed as an out
parameter. Hence, it is recommended that the first subtype be specified as the target to minimize confusion (a similar
recommendation applies to renaming and generic formal in out objects).

Examples

63Examples of numeric type conversion:
64Real(2*J) -- value is converted to floating point

Integer(1.6) -- value is 2
Integer(-0.4) -- value is 0

65Example of conversion between derived types:
66type A_Form is new B_Form;

67X : A_Form;
Y : B_Form;

68X := A_Form(Y);
Y := B_Form(X); -- the reverse conversion

69Examples of conversions between array types:
70type Sequence is array (Integer range <>) of Integer;

subtype Dozen is Sequence(1 .. 12);
Ledger : array(1 .. 100) of Integer;

71Sequence(Ledger) -- bounds are those of Ledger
Sequence(Ledger(31 .. 42)) -- bounds are 31 and 42
Dozen(Ledger(31 .. 42)) -- bounds are those of Dozen

Incompatibilities With Ada 83

71.a{incompatibilities with Ada 83} A character_literal is not allowed as the operand of a type_conversion, since there are
now two character types in package Standard.

ISO/IEC 8652:1995(E) —AARM;6.0

4.6 Type Conversions 21 December 1994 168

71.b The component subtypes have to statically match in an array conversion, rather than being checked for matching
constraints at run time.

71.c Because sliding of array bounds is now provided for operations where it was not in Ada 83, programs that used to raise
Constraint_Error might now continue executing and produce a reasonable result. This is likely to fix more bugs than it
creates.

Extensions to Ada 83

71.d {extensions to Ada 83} A type_conversion is considered the name of an object in certain circumstances (such a type_
conversion is called a view conversion). In particular, as in Ada 83, a type_conversion can appear as an in out or out
actual parameter. In addition, if the target type is tagged and the operand is the name of an object, then so is the type_
conversion, and it can be used as the prefix to a selected_component, in an object_renaming_declaration, etc.

71.e We no longer require type-mark conformance between a parameter of the form of a type conversion, and the
corresponding formal parameter. This had caused some problems for inherited subprograms (since there isn’t really a
type-mark for converted formals), as well as for renamings, formal subprograms, etc. See AI-245, AI-318, AI-547.

71.f We now specify ‘‘deterministic’’ rounding from real to integer types when the value of the operand is exactly between
two integers (rounding is away from zero in this case).

71.g ‘‘Sliding’’ of array bounds (which is part of conversion to an array subtype) is performed in more cases in Ada 9X than
in Ada 83. Sliding is not performed on the operand of a membership test, nor on the operand of a qualified_expression.
It wouldn’t make sense on a membership test, and we wish to retain a connection between subtype membership and
subtype qualification. In general, a subtype membership test returns True if and only if a corresponding subtype
qualification succeeds without raising an exception. Other operations that take arrays perform sliding.

Wording Changes From Ada 83

71.h We no longer explicitly list the kinds of things that are not allowed as the operand of a type_conversion, except in a
NOTE.

71.i The rules in this clause subsume the rules for "parameters of the form of a type conversion," and have been generalized
to cover the use of a type conversion as a name.

4.7 Qualified Expressions
1 [A qualified_expression is used to state explicitly the type, and to verify the subtype, of an operand that is

either an expression or an aggregate. {type conversion: see also qualified_expression}]

Syntax

2 qualified_expression ::=
subtype_mark’(expression) | subtype_mark’aggregate

Name Resolution Rules

3 {operand [of a qualified_expression]} The operand (the expression or aggregate) shall resolve to be of the type
determined by the subtype_mark, or a universal type that covers it.

Dynamic Semantics

4 {evaluation [qualified_expression]} {Range_Check [partial]} {check, language-defined (Range_Check)} {Discriminant_Check

[partial]} {check, language-defined (Discriminant_Check)} {Index_Check [partial]} {check, language-defined (Index_Check)}

The evaluation of a qualified_expression evaluates the operand (and if of a universal type, converts it to
the type determined by the subtype_mark) and checks that its value belongs to the subtype denoted by the
subtype_mark. {implicit subtype conversion [qualified_expression]} {Constraint_Error (raised by failure of run-time

check)} The exception Constraint_Error is raised if this check fails.
4.a Ramification: This is one of the few contexts in Ada 9X where implicit subtype conversion is not performed prior to a

constraint check, and hence no ‘‘sliding’’ of array bounds is provided.

4.b Reason: Implicit subtype conversion is not provided because a qualified_expression with a constrained target subtype
is essentially an assertion about the subtype of the operand, rather than a request for conversion. An explicit type_
conversion can be used rather than a qualified_expression if subtype conversion is desired.

ISO/IEC 8652:1995(E) —AARM;6.0

169 21 December 1994 Qualified Expressions 4.7

NOTES
523 When a given context does not uniquely identify an expected type, a qualified_expression can be used to do so. In

particular, if an overloaded name or aggregate is passed to an overloaded subprogram, it might be necessary to qualify the
operand to resolve its type.

Examples

6Examples of disambiguating expressions using qualification:
7type Mask is (Fix, Dec, Exp, Signif);

type Code is (Fix, Cla, Dec, Tnz, Sub);

8Print (Mask’(Dec)); -- Dec is of type Mask
Print (Code’(Dec)); -- Dec is of type Code

9for J in Code’(Fix) .. Code’(Dec) loop ... -- qualification needed for either Fix or Dec
for J in Code range Fix .. Dec loop ... -- qualification unnecessary
for J in Code’(Fix) .. Dec loop ... -- qualification unnecessary for Dec

10Dozen’(1 | 3 | 5 | 7 => 2, others => 0) -- see 4.6

4.8 Allocators
1[The evaluation of an allocator creates an object and yields an access value that designates the object.

{new: see allocator} {malloc: see allocator} {heap management: see also alligator}]

Syntax

2allocator ::=
new subtype_indication | new qualified_expression

Name Resolution Rules

3{expected type [allocator]} The expected type for an allocator shall be a single access-to-object type whose
designated type covers the type determined by the subtype_mark of the subtype_indication or qualified_
expression.

3.aDiscussion: See 8.6, ‘‘The Context of Overload Resolution’’ for the meaning of ‘‘shall be a single ... type whose ...’’

Legality Rules

4{initialized allocator} An initialized allocator is an allocator with a qualified_expression. {uninitialized

allocator} An uninitialized allocator is one with a subtype_indication. In the subtype_indication of an
uninitialized allocator, a constraint is permitted only if the subtype_mark denotes an [unconstrained]
composite subtype; if there is no constraint, then the subtype_mark shall denote a definite subtype.
{constructor: see initialized alligator}

4.aRamification: For example, ... new S’Class ... (with no initialization expression) is illegal, but ... new S’Class’(X) ...
is legal, and takes its tag and constraints from the initial value X. (Note that the former case cannot have a constraint.)

5If the type of the allocator is an access-to-constant type, the allocator shall be an initialized allocator. If
the designated type is limited, the allocator shall be an uninitialized allocator.

5.aRamification: For an access-to-constant type whose designated type is limited, allocators are illegal. The Access
attribute is legal for such a type, however.

Static Semantics

6If the designated type of the type of the allocator is elementary, then the subtype of the created object is
the designated subtype. If the designated type is composite, then the created object is always constrained;
if the designated subtype is constrained, then it provides the constraint of the created object; otherwise,
the object is constrained by its initial value [(even if the designated subtype is unconstrained with
defaults)]. {constrained by its initial value [partial]}

6.aDiscussion: See AI-00331.

ISO/IEC 8652:1995(E) —AARM;6.0

4.8 Allocators 21 December 1994 170

6.b Reason: All objects created by an allocator are aliased, and all aliased composite objects need to be constrained so that
access subtypes work reasonably.

Dynamic Semantics

7 {evaluation [allocator]} For the evaluation of an allocator, the elaboration of the subtype_indication or the
evaluation of the qualified_expression is performed first. {evaluation [initialized allocator]} {assignment operation

(during evaluation of an initialized allocator)} For the evaluation of an initialized allocator, an object of the
designated type is created and the value of the qualified_expression is converted to the designated subtype
and assigned to the object. {implicit subtype conversion [initialization expression of allocator]}

7.a Ramification: The conversion might raise Constraint_Error.

8 {evaluation [uninitialized allocator]} For the evaluation of an uninitialized allocator:

9 • {assignment operation (during evaluation of an uninitialized allocator)} If the designated type is elemen-
tary, an object of the designated subtype is created and any implicit initial value is assigned;

10 • {assignment operation (during evaluation of an uninitialized allocator)} If the designated type is com-
posite, an object of the designated type is created with tag, if any, determined by the
subtype_mark of the subtype_indication; any per-object constraints on subcomponents are
elaborated and any implicit initial values for the subcomponents of the object are obtained as
determined by the subtype_indication and assigned to the corresponding subcomponents.
{Index_Check [partial]} {check, language-defined (Index_Check)} {Discriminant_Check [partial]} {check,

language-defined (Discriminant_Check)} A check is made that the value of the object belongs to the
designated subtype. {Constraint_Error (raised by failure of run-time check)} Constraint_Error is
raised if this check fails. This check and the initialization of the object are performed in an
arbitrary order.

10.a Discussion: AI-00150.

11 [If the created object contains any tasks, they are activated (see 9.2).] Finally, an access value that
designates the created object is returned.

NOTES
12 24 Allocators cannot create objects of an abstract type. See 3.9.3.

13 25 If any part of the created object is controlled, the initialization includes calls on corresponding Initialize or Adjust
procedures. See 7.6.

14 26 As explained in 13.11, ‘‘Storage Management’’, the storage for an object allocated by an allocator comes from a
storage pool (possibly user defined). {Storage_Error (raised by failure of run-time check)} The exception Storage_Error is
raised by an allocator if there is not enough storage. Instances of Unchecked_Deallocation may be used to explicitly
reclaim storage.

15 27 Implementations are permitted, but not required, to provide garbage collection (see 13.11.3).

15.a Ramification: Note that in an allocator, the exception Constraint_Error can be raised by the evaluation of the
qualified_expression, by the elaboration of the subtype_indication, or by the initialization.

15.b Discussion: By default, the implementation provides the storage pool. The user may exercise more control over
storage management by associating a user-defined pool with an access type.

Examples

16 Examples of allocators:
17 new Cell’(0, null, null) -- initialized explicitly, see 3.10.1

new Cell’(Value => 0, Succ => null, Pred => null) -- initialized explicitly
new Cell -- not initialized

18 new Matrix(1 .. 10, 1 .. 20) -- the bounds only are given
new Matrix’(1 .. 10 => (1 .. 20 => 0.0)) -- initialized explicitly

19 new Buffer(100) -- the discriminant only is given
new Buffer’(Size => 80, Pos => 0, Value => (1 .. 80 => ’A’)) -- initialized explicitly

ISO/IEC 8652:1995(E) —AARM;6.0

171 21 December 1994 Allocators 4.8

20Expr_Ptr’(new Literal) -- allocator for access-to-class-wide type, see 3.9.1
Expr_Ptr’(new Literal’(Expression with 3.5)) -- initialized explicitly

Incompatibilities With Ada 83

20.a{incompatibilities with Ada 83} The subtype_indication of an uninitialized allocator may not have an explicit constraint
if the designated type is an access type. In Ada 83, this was permitted even though the constraint had no affect on the
subtype of the created object.

Extensions to Ada 83

20.b{extensions to Ada 83} Allocators creating objects of type T are now overloaded on access types designating T’Class
and all class-wide types that cover T.

20.cImplicit array subtype conversion (sliding) is now performed as part of an initialized allocator.
Wording Changes From Ada 83

20.dWe have used a new organization, inspired by the ACID document, that makes it clearer what is the subtype of the
created object, and what subtype conversions take place.

20.eDiscussion of storage management issues, such as garbage collection and the raising of Storage_Error, has been moved
to 13.11, ‘‘Storage Management’’.

4.9 Static Expressions and Static Subtypes
1Certain expressions of a scalar or string type are defined to be static. Similarly, certain discrete ranges are

defined to be static, and certain scalar and string subtypes are defined to be static subtypes. [{static} Static
means determinable at compile time, using the declared properties or values of the program entities.]
{constant: see also static}

1.aDiscussion: As opposed to more elaborate data flow analysis, etc.

Language Design Principles

1.bFor an expression to be static, it has to be calculable at compile time.

1.cOnly scalar and string expressions are static.

1.dTo be static, an expression cannot have any nonscalar, nonstring subexpressions (though it can have nonscalar
constituent names). A static scalar expression cannot have any nonscalar subexpressions. There is one exception — a
membership test for a string subtype can be static, and the result is scalar, even though a subexpression is nonscalar.

1.eThe rules for evaluating static expressions are designed to maximize portability of static calculations.

2{static (expression)} A static expression is [a scalar or string expression that is] one of the following:

3• a numeric_literal;
3.aRamification: A numeric_literal is always a static expression, even if its expected type is not that of a static

subtype. However, if its value is explicitly converted to, or qualified by, a nonstatic subtype, the resulting
expression is nonstatic.

4• a string_literal of a static string subtype;
4.aRamification: That is, the constrained subtype defined by the index range of the string is static. Note that

elementary values don’t generally have subtypes, while composite values do (since the bounds or discriminants
are inherent in the value).

5• a name that denotes the declaration of a named number or a static constant;
5.aRamification: Note that enumeration literals are covered by the function_call case.

6• a function_call whose function_name or function_prefix statically denotes a static function,
and whose actual parameters, if any (whether given explicitly or by default), are all static
expressions;

6.aRamification: This includes uses of operators that are equivalent to function_calls.

ISO/IEC 8652:1995(E) —AARM;6.0

4.9 Static Expressions and Static Subtypes 21 December 1994 172

7 • an attribute_reference that denotes a scalar value, and whose prefix denotes a static scalar
subtype;

7.a Ramification: Note that this does not include the case of an attribute that is a function; a reference to such an
attribute is not even an expression. See above for function calls.

7.b An implementation may define the staticness and other properties of implementation-defined attributes.

8 • an attribute_reference whose prefix statically denotes a statically constrained array object or
array subtype, and whose attribute_designator is First, Last, or Length, with an optional
dimension;

9 • a type_conversion whose subtype_mark denotes a static scalar subtype, and whose operand is
a static expression;

10 • a qualified_expression whose subtype_mark denotes a static [(scalar or string)] subtype, and
whose operand is a static expression;

10.a Ramification: This rules out the subtype_mark’aggregate case.

10.b Reason: Adding qualification to an expression shouldn’t make it nonstatic, even for strings.

11 • a membership test whose simple_expression is a static expression, and whose range is a
static range or whose subtype_mark denotes a static [(scalar or string)] subtype;

11.a Reason: Clearly, we should allow membership tests in exactly the same cases where we allow qualified_
expressions.

12 • a short-circuit control form both of whose relations are static expressions;

13 • a static expression enclosed in parentheses.
13.a Discussion: {static (value)} Informally, we talk about a static value. When we do, we mean a value specified by a

static expression.

13.b Ramification: The language requires a static expression in a number_declaration, a numeric type definition, a
discrete_choice (sometimes), certain representation items, an attribute_designator, and when specifying the value of a
discriminant governing a variant_part in a record_aggregate or extension_aggregate.

14 {statically (denote)} A name statically denotes an entity if it denotes the entity and:

15 • It is a direct_name, expanded name, or character_literal, and it denotes a declaration other
than a renaming_declaration; or

16 • It is an attribute_reference whose prefix statically denotes some entity; or

17 • It denotes a renaming_declaration with a name that statically denotes the renamed entity.
17.a Ramification: Selected_components that are not expanded names and indexed_components do not statically denote

things.

18 {static (function)} A static function is one of the following:
18.a Ramification: These are the functions whose calls can be static expressions.

19 • a predefined operator whose parameter and result types are all scalar types none of which are
descendants of formal scalar types;

20 • a predefined concatenation operator whose result type is a string type;

21 • an enumeration literal;

22 • a language-defined attribute that is a function, if the prefix denotes a static scalar subtype, and
if the parameter and result types are scalar.

ISO/IEC 8652:1995(E) —AARM;6.0

173 21 December 1994 Static Expressions and Static Subtypes 4.9

23In any case, a generic formal subprogram is not a static function.

24{static (constant)} A static constant is a constant view declared by a full constant declaration or an object_
renaming_declaration with a static nominal subtype, having a value defined by a static scalar expression
or by a static string expression whose value has a length not exceeding the maximum length of a string_
literal in the implementation.

24.aRamification: A deferred constant is not static; the view introduced by the corresponding full constant declaration can
be static.

24.bReason: The reason for restricting the length of static string constants is so that compilers don’t have to store giant
strings in their symbol tables. Since most string constants will be initialized from string_literals, the length limit seems
pretty natural. The reason for avoiding nonstring types is also to save symbol table space. We’re trying to keep it
cheap and simple (from the implementer’s viewpoint), while still allowing, for example, the link name of a pragma
Import to contain a concatenation.

24.cThe length we’re talking about is the maximum number of characters in the value represented by a string_literal, not the
number of characters in the source representation; the quotes don’t count.

25{static (range)} A static range is a range whose bounds are static expressions, [or a range_attribute_
reference that is equivalent to such a range.] {static (discrete_range)} A static discrete_range is one that is a
static range or is a subtype_indication that defines a static scalar subtype. The base range of a scalar type
is a static range, unless the type is a descendant of a formal scalar type.

26{static (subtype)} A static subtype is either a static scalar subtype or a static string subtype. {static (scalar

subtype)} A static scalar subtype is an unconstrained scalar subtype whose type is not a descendant of a
formal scalar type, or a constrained scalar subtype formed by imposing a compatible static constraint on a
static scalar subtype. {static (string subtype)} A static string subtype is an unconstrained string subtype
whose index subtype and component subtype are static (and whose type is not a descendant of a formal
array type), or a constrained string subtype formed by imposing a compatible static constraint on a static
string subtype. In any case, the subtype of a generic formal object of mode in out, and the result subtype
of a generic formal function, are not static.

26.aRamification: String subtypes are the only composite subtypes that can be static.

26.bReason: The part about generic formal objects of mode in out is necessary because the subtype of the formal is not
required to have anything to do with the subtype of the actual. For example:

26.csubtype Int10 is Integer range 1..10;

26.dgeneric
F : in out Int10;

procedure G;

26.eprocedure G is
begin

case F is
when 1..10 => null;
-- Illegal!

end case;
end G;

26.fX : Integer range 1..20;
procedure I is new G(F => X); -- OK.

26.gThe case_statement is illegal, because the subtype of F is not static, so the choices have to cover all values of Integer,
not just those in the range 1..10. A similar issue arises for generic formal functions, now that function calls are object
names.

27{static (constraint)} The different kinds of static constraint are defined as follows:

28• A null constraint is always static;

ISO/IEC 8652:1995(E) —AARM;6.0

4.9 Static Expressions and Static Subtypes 21 December 1994 174

29 • {static (range constraint)} {static (digits constraint)} {static (delta constraint)} A scalar constraint is
static if it has no range_constraint, or one with a static range;

30 • {static (index constraint)} An index constraint is static if each discrete_range is static, and each
index subtype of the corresponding array type is static;

31 • {static (discriminant constraint)} A discriminant constraint is static if each expression of the
constraint is static, and the subtype of each discriminant is static.

32 {statically (constrained)} A subtype is statically constrained if it is constrained, and its constraint is static. An
object is statically constrained if its nominal subtype is statically constrained, or if it is a static string
constant.

Legality Rules

33 A static expression is evaluated at compile time except when it is part of the right operand of a static
short-circuit control form whose value is determined by its left operand. This evaluation is performed
exactly, without performing Overflow_Checks. For a static expression that is evaluated:

34 • The expression is illegal if its evaluation fails a language-defined check other than Overflow_
Check.

35 • If the expression is not part of a larger static expression, then its value shall be within the
base range of its expected type. Otherwise, the value may be arbitrarily large or small.

36 • If the expression is of type universal_real and its expected type is a decimal fixed point type,
then its value shall be a multiple of the small of the decimal type.

36.a Ramification: This means that a numeric_literal for a decimal type cannot have ‘‘extra’’ significant digits.

37 The last two restrictions above do not apply if the expected type is a descendant of a formal scalar type
(or a corresponding actual type in an instance).

37.a Discussion: Values outside the base range are not permitted when crossing from the ‘‘static’’ domain to the
‘‘dynamic’’ domain. This rule is designed to enhance portability of programs containing static expressions. Note that
this rule applies to the exact value, not the value after any rounding or truncation. (See below for the rounding and
truncation requirements.)

37.b Short-circuit control forms are a special case:

37.c N: constant := 0.0;
X: constant Boolean := (N = 0.0) or else (1.0/N > 0.5); -- Static.

37.d The declaration of X is legal, since the divide-by-zero part of the expression is not evaluated. X is a static constant
equal to True.

37.e Reason: There is no requirement to recheck these rules in an instance; the base range check will generally be
performed at run time anyway.

Implementation Requirements

38 For a real static expression that is not part of a larger static expression, and whose expected type is not a
descendant of a formal scalar type, the implementation shall round or truncate the value (according to the
Machine_Rounds attribute of the expected type) to the nearest machine number of the expected type; if
the value is exactly half-way between two machine numbers, any rounding shall be performed away from
zero. If the expected type is a descendant of a formal scalar type, no special rounding or truncating is
required — normal accuracy rules apply (see Annex G).

38.a Reason: Discarding extended precision enhances portability by ensuring that the value of a static constant of a real
type is always a machine number of the type. Deterministic rounding of exact halves also enhances portability.

38.b When the expected type is a descendant of a formal floating point type, extended precision (beyond that of the machine
numbers) can be retained when evaluating a static expression, to ease code sharing for generic instantiations. For

ISO/IEC 8652:1995(E) —AARM;6.0

175 21 December 1994 Static Expressions and Static Subtypes 4.9

similar reasons, normal (nondeterministic) rounding or truncating rules apply for descendants of a formal fixed point
type.

38.cImplementation Note: Note that the implementation of static expressions has to keep track of plus and minus zero for
a type whose Signed_Zeros attribute is True.

38.dNote that the only values of a fixed point type are the multiples of the small, so a static conversion to a fixed-point type,
or division by an integer, must do truncation to a multiple of small. It is not correct for the implementation to do all
static calculations in infinite precision.

NOTES
3928 An expression can be static even if it occurs in a context where staticness is not required.

39.aRamification: For example:

39.bX : Float := Float’(1.0E+400) + 1.0 - Float’(1.0E+400);

39.cThe expression is static, which means that the value of X must be exactly 1.0, independent of the accuracy or range of
the run-time floating point implementation.

39.dThe following kinds of expressions are never static: explicit_dereference, indexed_component, slice, null, aggregate,
allocator.

4029 A static (or run-time) type_conversion from a real type to an integer type performs rounding. If the operand value is
exactly half-way between two integers, the rounding is performed away from zero.

40.aReason: We specify this for portability. The reason for not choosing round-to-nearest-even, for example, is that this
method is easier to undo.

40.bRamification: The attribute Truncation (see A.5.3) can be used to perform a (static) truncation prior to conversion, to
prevent rounding.

40.cImplementation Note: The value of the literal 0E999 is zero.
The implementation must take care to evaluate such literals properly.

Examples

41Examples of static expressions:
421 + 1 -- 2

abs(-10)*3 -- 30

43Kilo : constant := 1000;
Mega : constant := Kilo*Kilo; -- 1_000_000
Long : constant := Float’Digits*2;

44Half_Pi : constant := Pi/2; -- see 3.3.2
Deg_To_Rad : constant := Half_Pi/90;
Rad_To_Deg : constant := 1.0/Deg_To_Rad; -- equivalent to 1.0/((3.14159_26536/2)/90)

Extensions to Ada 83

44.a{extensions to Ada 83} The rules for static expressions and static subtypes are generalized to allow more kinds of
compile-time-known expressions to be used where compile-time-known values are required, as follows:

44.b• Membership tests and short-circuit control forms may appear in a static expression.

44.c• The bounds and length of statically constrained array objects or subtypes are static.

44.d• The Range attribute of a statically constrained array subtype or object gives a static range.

44.e• A type_conversion is static if the subtype_mark denotes a static scalar subtype and the operand is a static
expression.

44.f• All numeric literals are now static, even if the expected type is a formal scalar type. This is useful in case_
statements and variant_parts, which both now allow a value of a formal scalar type to control the selection,
to ease conversion of a package into a generic package. Similarly, named array aggregates are also
permitted for array types with an index type that is a formal scalar type.

44.gThe rules for the evaluation of static expressions are revised to require exact evaluation at compile time, and force a
machine number result when crossing from the static realm to the dynamic realm, to enhance portability and
predictability. Exact evaluation is not required for descendants of a formal scalar type, to simplify generic code sharing
and to avoid generic contract model problems.

ISO/IEC 8652:1995(E) —AARM;6.0

4.9 Static Expressions and Static Subtypes 21 December 1994 176

44.h Static expressions are legal even if an intermediate in the expression goes outside the base range of the type.
Therefore, the following will succeed in Ada 9X, whereas it might raise an exception in Ada 83:

44.i type Short_Int is range -32_768 .. 32_767;
I : Short_Int := -32_768;

44.j This might raise an exception in Ada 83 because "32_768" is out of range, even though "–32_768" is not. In Ada 9X,
this will always succeed.

44.k Certain expressions involving string operations (in particular concatenation and membership tests) are considered static
in Ada 9X.

44.l The reason for this change is to simplify the rule requiring compile-time-known string expressions as the link name in
an interfacing pragma, and to simplify the preelaborability rules.

Incompatibilities With Ada 83

44.m {incompatibilities with Ada 83} An Ada 83 program that uses an out-of-range static value is illegal in Ada 9X, unless
the expression is part of a larger static expression, or the expression is not evaluated due to being on the right-hand side
of a short-circuit control form.

Wording Changes From Ada 83

44.n This clause (and 4.5.5, ‘‘Multiplying Operators’’) subsumes the RM83 section on Universal Expressions.

44.o The existence of static string expressions necessitated changing the definition of static subtype to include string
subtypes. Most occurrences of "static subtype" have been changed to "static scalar subtype", in order to preserve the
effect of the Ada 83 rules. This has the added benefit of clarifying the difference between "static subtype" and
"statically constrained subtype", which has been a source of confusion. In cases where we allow static string subtypes,
we explicitly use phrases like "static string subtype" or "static (scalar or string) subtype", in order to clarify the
meaning for those who have gotten used to the Ada 83 terminology.

44.p In Ada 83, an expression was considered nonstatic if it raised an exception. Thus, for example:

44.q Bad: constant := 1/0; -- Illegal!

44.r was illegal because 1/0 was not static. In Ada 9X, the above example is still illegal, but for a different reason: 1/0 is
static, but there’s a separate rule forbidding the exception raising.

4.9.1 Statically Matching Constraints and Subtypes
Static Semantics

1 {statically matching (for constraints)} A constraint statically matches another constraint if both are null con-
straints, both are static and have equal corresponding bounds or discriminant values, or both are nonstatic
and result from the same elaboration of a constraint of a subtype_indication or the same evaluation of a
range of a discrete_subtype_definition.

2 {statically matching (for subtypes)} A subtype statically matches another subtype of the same type if they have
statically matching constraints. Two anonymous access subtypes statically match if their designated
subtypes statically match.

2.a Ramification: Statically matching constraints and subtypes are the basis for subtype conformance of profiles (see
6.3.1).

3 {statically matching (for ranges)} Two ranges of the same type statically match if both result from the same
evaluation of a range, or if both are static and have equal corresponding bounds.

3.a Ramification: The notion of static matching of ranges is used in 12.5.3, ‘‘Formal Array Types’’; the index ranges of
formal and actual constrained array subtypes have to statically match.

4 {statically compatible (for a constraint and a scalar subtype)} A constraint is statically compatible with a scalar
subtype if it statically matches the constraint of the subtype, or if both are static and the constraint is
compatible with the subtype. {statically compatible (for a constraint and an access or composite subtype)} A con-
straint is statically compatible with an access or composite subtype if it statically matches the constraint

ISO/IEC 8652:1995(E) —AARM;6.0

177 21 December 1994 Statically Matching Constraints and Subtypes 4.9.1

of the subtype, or if the subtype is unconstrained. {statically compatible (for two subtypes)} One subtype is
statically compatible with a second subtype if the constraint of the first is statically compatible with the
second subtype.

4.aDiscussion: Static compatibility is required when constraining a parent subtype with a discriminant from a new
discriminant_part. See 3.7. Static compatibility is also used in matching generic formal derived types.

4.bNote that statically compatible with a subtype does not imply compatible with a type. It is OK since the terms are used
in different contexts.

Wording Changes From Ada 83

4.cThis subclause is new to Ada 9X.

ISO/IEC 8652:1995(E) —AARM;6.0

5 Statements 21 December 1994 178

ISO/IEC 8652:1995(E) —AARM;6.0

179 21 December 1994 Statements 5

Section 5: Statements
1[A statement defines an action to be performed upon its execution.]

2[This section describes the general rules applicable to all statements. Some statements are discussed in
later sections: Procedure_call_statements and return_statements are described in Section 6, ‘‘Sub-
programs’’. Entry_call_statements, requeue_statements, delay_statements, accept_statements, select_
statements, and abort_statements are described in Section 9, ‘‘Tasks and Synchronization’’. Raise_
statements are described in Section 11, ‘‘Exceptions’’, and code_statements in Section 13. The remain-
ing forms of statements are presented in this section.]

Wording Changes From Ada 83

2.aThe description of return_statements has been moved to 6.5, ‘‘Return Statements’’, so that it is closer to the description
of subprograms.

5.1 Simple and Compound Statements - Sequences of Statements
1[A statement is either simple or compound. A simple_statement encloses no other statement. A

compound_statement can enclose simple_statements and other compound_statements.]

Syntax

2sequence_of_statements ::= statement {statement}

3statement ::=
{label} simple_statement | {label} compound_statement

4simple_statement ::= null_statement
| assignment_statement | exit_statement
| goto_statement | procedure_call_statement
| return_statement | entry_call_statement
| requeue_statement | delay_statement
| abort_statement | raise_statement
| code_statement

5compound_statement ::=
if_statement | case_statement

| loop_statement | block_statement
| accept_statement | select_statement

6null_statement ::= null;

7label ::= <<label_statement_identifier>>

8statement_identifier ::= direct_name

9The direct_name of a statement_identifier shall be an identifier (not an operator_symbol).

Name Resolution Rules

10The direct_name of a statement_identifier shall resolve to denote its corresponding implicit declaration
(see below).

Legality Rules

11Distinct identifiers shall be used for all statement_identifiers that appear in the same body, including inner
block_statements but excluding inner program units.

ISO/IEC 8652:1995(E) —AARM;6.0

5.1 Simple and Compound Statements - Sequences of Statements 21 December 1994 180

Static Semantics

12 For each statement_identifier, there is an implicit declaration (with the specified identifier) at the end of
the declarative_part of the innermost block_statement or body that encloses the statement_identifier. The
implicit declarations occur in the same order as the statement_identifiers occur in the source text. If a
usage name denotes such an implicit declaration, the entity it denotes is the label, loop_statement, or
block_statement with the given statement_identifier.

12.a Reason: We talk in terms of individual statement_identifiers here rather than in terms of the corresponding statements,
since a given statement may have multiple statement_identifiers.

12.b A block_statement that has no explicit declarative_part has an implicit empty declarative_part, so this rule can safely
refer to the declarative_part of a block_statement.

12.c The scope of a declaration starts at the place of the declaration itself (see 8.2). In the case of a label, loop, or block
name, it follows from this rule that the scope of the implicit declaration starts before the first explicit occurrence of the
corresponding name, since this occurrence is either in a statement label, a loop_statement, a block_statement, or a goto_
statement. An implicit declaration in a block_statement may hide a declaration given in an outer program unit or
block_statement (according to the usual rules of hiding explained in 8.3).

12.d The syntax rule for label uses statement_identifier which is a direct_name (not a defining_identifier), because labels are
implicitly declared. The same applies to loop and block names. In other words, the label itself is not the defining
occurrence; the implicit declaration is.

12.e We cannot consider the label to be a defining occurrence. An example that can tell the difference is this:

12.f declare
-- Label Foo is implicitly declared here.

begin
for Foo in ... loop

...
<<Foo>> -- Illegal.
...

end loop;
end;

12.g The label in this example is hidden from itself by the loop parameter with the same name; the example is illegal. We
considered creating a new syntactic category name, separate from direct_name and selector_name, for use in the case
of statement labels. However, that would confuse the rules in Section 8, so we didn’t do it.

Dynamic Semantics

13 {execution [null_statement]} The execution of a null_statement has no effect.

14 {transfer of control} A transfer of control is the run-time action of an exit_statement, return_statement,
goto_statement, or requeue_statement, selection of a terminate_alternative, raising of an exception, or an
abort, which causes the next action performed to be one other than what would normally be expected
from the other rules of the language. [As explained in 7.6.1, a transfer of control can cause the execution
of constructs to be completed and then left, which may trigger finalization.]

15 {execution [sequence_of_statements]} The execution of a sequence_of_statements consists of the execution of
the individual statements in succession until the sequence_ is completed.

15.a Ramification: It could be completed by reaching the end of it, or by a transfer of control.

NOTES
16 1 A statement_identifier that appears immediately within the declarative region of a named loop_statement or an accept_

statement is nevertheless implicitly declared immediately within the declarative region of the innermost enclosing body or
block_statement; in other words, the expanded name for a named statement is not affected by whether the statement occurs
inside or outside a named loop or an accept_statement — only nesting within block_statements is relevant to the form of its
expanded name.

16.a Discussion: Each comment in the following example gives the expanded name associated with an entity declared in
the task body:

ISO/IEC 8652:1995(E) —AARM;6.0

181 21 December 1994 Simple and Compound Statements - Sequences of Statements 5.1

16.btask body Compute is
Sum : Integer := 0; -- Compute.Sum

begin
Outer: -- Compute.Outer
for I in 1..10 loop -- Compute.Outer.I
Blk: -- Compute.Blk

declare
Sum : Integer := 0; -- Compute.Blk.Sum

begin
accept Ent(I : out Integer; J : in Integer) do

-- Compute.Ent.I, Compute.Ent.J
Compute.Ent.I := Compute.Outer.I;

Inner: -- Compute.Blk.Inner
for J in 1..10 loop

-- Compute.Blk.Inner.J
Sum := Sum + Compute.Blk.Inner.J * Compute.Ent.J;

end loop Inner;
end Ent;
Compute.Sum := Compute.Sum + Compute.Blk.Sum;

end Blk;
end loop Outer;
Record_Result(Sum);

end Compute;

Examples

17Examples of labeled statements:
18<<Here>> <<Ici>> <<Aqui>> <<Hier>> null;

19<<After>> X := 1;

Extensions to Ada 83

19.a{extensions to Ada 83} The requeue_statement is new.
Wording Changes From Ada 83

19.bWe define the syntactic category statement_identifier to simplify the description. It is used for labels, loop names, and
block names. We define the entity associated with the implicit declarations of statement names.

19.cCompletion includes completion caused by a transfer of control, although RM83-5.1(6) did not take this view.

5.2 Assignment Statements
1[An assignment_statement replaces the current value of a variable with the result of evaluating an

expression.]

Syntax

2assignment_statement ::=
variable_name := expression;

3The execution of an assignment_statement includes the evaluation of the expression and the assignment
of the value of the expression into the target. {assignment operation [distributed]} {assign: see assignment

operation} [An assignment operation (as opposed to an assignment_statement) is performed in other con-
texts as well, including object initialization and by-copy parameter passing.] {target (of an assignment

operation)} {target (of an assignment_statement)} The target of an assignment operation is the view of the object
to which a value is being assigned; the target of an assignment_statement is the variable denoted by the
variable_name.

3.aDiscussion: Don’t confuse this notion of the ‘‘target’’ of an assignment with the notion of the ‘‘target object’’ of an
entry call or requeue.

3.bDon’t confuse the term ‘‘assignment operation’’ with the assignment_statement. The assignment operation is just one
part of the execution of an assignment_statement. The assignment operation is also a part of the execution of various
other constructs; see 7.6.1, ‘‘Completion and Finalization’’ for a complete list. Note that when we say, ‘‘such-and-

ISO/IEC 8652:1995(E) —AARM;6.0

5.2 Assignment Statements 21 December 1994 182

such is assigned to so-and-so’’, we mean that the assignment operation is being applied, and that so-and-so is the target
of the assignment operation.

Name Resolution Rules

4 {expected type [assignment_statement variable_name]} The variable_name of an assignment_statement is ex-
pected to be of any nonlimited type. {expected type [assignment_statement expression]} The expected type for the
expression is the type of the target.

4.a Implementation Note: An assignment_statement as a whole is a "complete context," so if the variable_name of an
assignment_statement is overloaded, the expression can be used to help disambiguate it. For example:

4.b type P1 is access R1;
type P2 is access R2;

4.c function F return P1;
function F return P2;

4.d X : R1;
begin

F.all := X; -- Right hand side helps resolve left hand side

Legality Rules

5 The target [denoted by the variable_name] shall be a variable.

6 If the target is of a tagged class-wide type T’Class, then the expression shall either be dynamically
tagged, or of type T and tag-indeterminate (see 3.9.2).

6.a Reason: This is consistent with the general rule that a single dispatching operation shall not have both dynamically
tagged and statically tagged operands. Note that for an object initialization (as opposed to the assignment_statement),
a statically tagged initialization expression is permitted, since there is no chance for confusion (or Tag_Check failure).
Also, in an object initialization, tag-indeterminate expressions of any type covered by T’Class would be allowed, but
with an assignment_statement, that might not work if the tag of the target was for a type that didn’t have one of the
dispatching operations in the tag-indeterminate expression.

Dynamic Semantics

7 {execution [assignment_statement]} For the execution of an assignment_statement, the variable_name and the
expression are first evaluated in an arbitrary order.

7.a Ramification: Other rules of the language may require that the bounds of the variable be determined prior to
evaluating the expression, but that does not necessarily require evaluation of the variable_name, as pointed out by the
ACID.

8 When the type of the target is class-wide:

9 • {controlling tag value [for the expression in an assignment_statement]} If the expression is tag-
indeterminate (see 3.9.2), then the controlling tag value for the expression is the tag of the
target;

9.a Ramification: See 3.9.2, ‘‘Dispatching Operations of Tagged Types’’.

10 • {Tag_Check [partial]} {check, language-defined (Tag_Check)} {Constraint_Error (raised by failure of run-time

check)} Otherwise [(the expression is dynamically tagged)], a check is made that the tag of
the value of the expression is the same as that of the target; if this check fails, Constraint_
Error is raised.

11 The value of the expression is converted to the subtype of the target. [The conversion might raise an
exception (see 4.6).] {implicit subtype conversion [assignment_statement]}

11.a Ramification: 4.6, ‘‘Type Conversions’’ defines what actions and checks are associated with subtype conversion. For
non-array subtypes, it is just a constraint check presuming the types match. For array subtypes, it checks the lengths
and slides if the target is constrained. ‘‘Sliding’’ means the array doesn’t have to have the same bounds, so long as it is
the same length.

ISO/IEC 8652:1995(E) —AARM;6.0

183 21 December 1994 Assignment Statements 5.2

12In cases involving controlled types, the target is finalized, and an anonymous object might be used as an
intermediate in the assignment, as described in 7.6.1, ‘‘Completion and Finalization’’. {assignment

operation} {assignment operation (during execution of an assignment_statement)} In any case, the converted value of
the expression is then assigned to the target, which consists of the following two steps:

12.aTo be honest: 7.6.1 actually says that finalization happens always, but unless controlled types are involved, this
finalization during an assignment_statement does nothing.

13• The value of the target becomes the converted value.

14• If any part of the target is controlled, its value is adjusted as explained in clause 7.6.
{adjustment [as part of assignment]}

14.aRamification: If any parts of the object are controlled, abort is deferred during the assignment operation itself,
but not during the rest of the execution of an assignment_statement.

NOTES
152 The tag of an object never changes; in particular, an assignment_statement does not change the tag of the target.

163 The values of the discriminants of an object designated by an access value cannot be changed (not even by assigning a
complete value to the object itself) since such objects are always constrained; however, subcomponents of such objects
may be unconstrained.

16.aRamification: The implicit subtype conversion described above for assignment_statements is performed only for the
value of the right-hand side expression as a whole; it is not performed for subcomponents of the value.

16.bThe determination of the type of the variable of an assignment_statement may require consideration of the expression
if the variable name can be interpreted as the name of a variable designated by the access value returned by a function
call, and similarly, as a component or slice of such a variable (see 8.6, ‘‘The Context of Overload Resolution’’).

Examples

17Examples of assignment statements:
18Value := Max_Value - 1;

Shade := Blue;

19Next_Frame(F)(M, N) := 2.5; -- see 4.1.1
U := Dot_Product(V, W); -- see 6.3

20Writer := (Status => Open, Unit => Printer, Line_Count => 60); -- see 3.8.1
Next_Car.all := (72074, null); -- see 3.10.1

21Examples involving scalar subtype conversions:
22I, J : Integer range 1 .. 10 := 5;

K : Integer range 1 .. 20 := 15;
...

23I := J; -- identical ranges
K := J; -- compatible ranges
J := K; -- will raise Constraint_Error if K > 10

24Examples involving array subtype conversions:
25A : String(1 .. 31);

B : String(3 .. 33);
...

26A := B; -- same number of components

27A(1 .. 9) := "tar sauce";
A(4 .. 12) := A(1 .. 9); -- A(1 .. 12) = "tartar sauce"

NOTES
284 Notes on the examples: Assignment_statements are allowed even in the case of overlapping slices of the same array,

because the variable_name and expression are both evaluated before copying the value into the variable. In the above
example, an implementation yielding A(1 .. 12) = "tartartartar" would be incorrect.

ISO/IEC 8652:1995(E) —AARM;6.0

5.2 Assignment Statements 21 December 1994 184

Extensions to Ada 83

28.a {extensions to Ada 83} We now allow user-defined finalization and value adjustment actions as part of assignment_
statements (see 7.6, ‘‘User-Defined Assignment and Finalization’’).

Wording Changes From Ada 83

28.b The special case of array assignment is subsumed by the concept of a subtype conversion, which is applied for all kinds
of types, not just arrays. For arrays it provides ‘‘sliding.’’ For numeric types it provides conversion of a value of a
universal type to the specific type of the target. For other types, it generally has no run-time effect, other than a
constraint check.

28.c We now cover in a general way in 3.7.2 the erroneous execution possible due to changing the value of a discriminant
when the variable in an assignment_statement is a subcomponent that depends on discriminants.

5.3 If Statements
1 [An if_statement selects for execution at most one of the enclosed sequences_of_statements, depending

on the (truth) value of one or more corresponding conditions.]

Syntax

2 if_statement ::=
if condition then
sequence_of_statements

{elsif condition then
sequence_of_statements}

[else
sequence_of_statements]

end if;

3 condition ::= boolean_expression

Name Resolution Rules

4 {expected type [condition]} A condition is expected to be of any boolean type.

Dynamic Semantics

5 {execution [if_statement]} For the execution of an if_statement, the condition specified after if, and any
conditions specified after elsif, are evaluated in succession (treating a final else as elsif True then), until
one evaluates to True or all conditions are evaluated and yield False. If a condition evaluates to True, then
the corresponding sequence_of_statements is executed; otherwise none of them is executed.

5.a Ramification: The part about all evaluating to False can’t happen if there is an else, since that is herein considered
equivalent to elsif True then.

Examples

6 Examples of if statements:
7 if Month = December and Day = 31 then

Month := January;
Day := 1;
Year := Year + 1;

end if;

8 if Line_Too_Short then
raise Layout_Error;

elsif Line_Full then
New_Line;
Put(Item);

else
Put(Item);

end if;

ISO/IEC 8652:1995(E) —AARM;6.0

185 21 December 1994 If Statements 5.3

9if My_Car.Owner.Vehicle /= My_Car then -- see 3.10.1
Report ("Incorrect data");

end if;

5.4 Case Statements
1[A case_statement selects for execution one of a number of alternative sequences_of_statements; the

chosen alternative is defined by the value of an expression.]

Syntax

2case_statement ::=
case expression is

case_statement_alternative
{case_statement_alternative}

end case;

3case_statement_alternative ::=
when discrete_choice_list =>

sequence_of_statements

Name Resolution Rules

4{expected type [case expression]} The expression is expected to be of any discrete type. {expected type [case_
statement_alternative discrete_choice]} The expected type for each discrete_choice is the type of the expression.

Legality Rules

5The expressions and discrete_ranges given as discrete_choices of a case_statement shall be static. [A
discrete_choice others, if present, shall appear alone and in the last discrete_choice_list.]

6The possible values of the expression shall be covered as follows:

7• If the expression is a name [(including a type_conversion or a function_call)] having a static
and constrained nominal subtype, or is a qualified_expression whose subtype_mark denotes a
static and constrained scalar subtype, then each non-others discrete_choice shall cover only
values in that subtype, and each value of that subtype shall be covered by some discrete_
choice [(either explicitly or by others)].

7.aRamification: Although not official names of objects, a value conversion still has a defined nominal subtype,
namely its target subtype. See 4.6.

8• If the type of the expression is root_integer, universal_integer, or a descendant of a formal
scalar type, then the case_statement shall have an others discrete_choice.

8.aReason: This is because the base range is implementation defined for root_integer and universal_integer, and
not known statically in the case of a formal scalar type.

9• Otherwise, each value of the base range of the type of the expression shall be covered
[(either explicitly or by others)].

10Two distinct discrete_choices of a case_statement shall not cover the same value.
10.aRamification: The goal of these coverage rules is that any possible value of the expression of a case_statement

should be covered by exactly one discrete_choice of the case_statement, and that this should be checked at compile
time. The goal is achieved in most cases, but there are two minor loopholes:

10.b• If the expression reads an object with an invalid representation (e.g. an uninitialized object), then the value
can be outside the covered range. This can happen for static constrained subtypes, as well as nonstatic or
unconstrained subtypes. It cannot, however, happen if the case_statement has the discrete_choice others,
because others covers all values, even those outside the subtype.

10.c• If the compiler chooses to represent the value of an expression of an unconstrained subtype in a way that
includes values outside the bounds of the subtype, then those values can be outside the covered range. For

ISO/IEC 8652:1995(E) —AARM;6.0

5.4 Case Statements 21 December 1994 186

example, if X: Integer := Integer’Last;, and the case expression is X+1, then the implementation might
choose to produce the correct value, which is outside the bounds of Integer. (It might raise Constraint_
Error instead.) This case can only happen for non-generic subtypes that are either unconstrained or
non-static (or both). It can only happen if there is no others discrete_choice.

10.d In the uninitialized variable case, the value might be anything; hence, any alternative can be chosen, or Constraint_
Error can be raised. (We intend to prevent, however, jumping to random memory locations and the like.) In the
out-of-range case, the behavior is more sensible: if there is an others, then the implementation may choose to raise
Constraint_Error on the evaluation of the expression (as usual), or it may choose to correctly evaluate the expression
and therefore choose the others alternative. Otherwise (no others), Constraint_Error is raised either way — on the
expression evaluation, or for the case_statement itself.

10.e For an enumeration type with a discontiguous set of internal codes (see 13.4), the only way to get values in between the
proper values is via an object with an invalid representation; there is no ‘‘out-of-range’’ situation that can produce
them.

Dynamic Semantics

11 {execution [case_statement]} For the execution of a case_statement the expression is first evaluated.

12 If the value of the expression is covered by the discrete_choice_list of some case_statement_alternative,
then the sequence_of_statements of the _alternative is executed.

13 {Overflow_Check [partial]} {check, language-defined (Overflow_Check)} {Constraint_Error (raised by failure of run-time

check)} Otherwise (the value is not covered by any discrete_choice_list, perhaps due to being outside the
base range), Constraint_Error is raised.

13.a Ramification: In this case, the value is outside the base range of its type, or is an invalid representation.

NOTES
14 5 The execution of a case_statement chooses one and only one alternative. Qualification of the expression of a case_

statement by a static subtype can often be used to limit the number of choices that need be given explicitly.

Examples

15 Examples of case statements:
16 case Sensor is

when Elevation => Record_Elevation(Sensor_Value);
when Azimuth => Record_Azimuth (Sensor_Value);
when Distance => Record_Distance (Sensor_Value);
when others => null;

end case;

17

case Today is
when Mon => Compute_Initial_Balance;
when Fri => Compute_Closing_Balance;
when Tue .. Thu => Generate_Report(Today);
when Sat .. Sun => null;

end case;

18

case Bin_Number(Count) is
when 1 => Update_Bin(1);
when 2 => Update_Bin(2);
when 3 | 4 =>

Empty_Bin(1);
Empty_Bin(2);

when others => raise Error;
end case;

Extensions to Ada 83

18.a {extensions to Ada 83} In Ada 83, the expression in a case_statement is not allowed to be of a generic formal type.
This restriction is removed in Ada 9X; an others discrete_choice is required instead.

ISO/IEC 8652:1995(E) —AARM;6.0

187 21 December 1994 Case Statements 5.4

18.bIn Ada 9X, a function call is the name of an object; this was not true in Ada 83 (see 4.1, ‘‘Names’’). This change
makes the following case_statement legal:

18.csubtype S is Integer range 1..2;
function F return S;
case F is

when 1 => ...;
when 2 => ...;
-- No others needed.

end case;

18.dNote that the result subtype given in a function renaming_declaration is ignored; for a case_statement whose
expression calls a such a function, the full coverage rules are checked using the result subtype of the original function.
Note that predefined operators such as "+" have an unconstrained result subtype (see 4.5.1). Note that generic formal
functions do not have static result subtypes. Note that the result subtype of an inherited subprogram need not
correspond to any namable subtype; there is still a perfectly good result subtype, though.

Wording Changes From Ada 83

18.eAda 83 forgot to say what happens for ‘‘legally’’ out-of-bounds values.

18.fWe take advantage of rules and terms (e.g. cover a value) defined for discrete_choices and discrete_choice_lists in
3.8.1, ‘‘Variant Parts and Discrete Choices’’.

18.gIn the Name Resolution Rule for the case expression, we no longer need RM83-5.4(3)’s ‘‘which must be determinable
independently of the context in which the expression occurs, but using the fact that the expression must be of a discrete
type,’’ because the expression is now a complete context. See 8.6, ‘‘The Context of Overload Resolution’’.

18.hSince type_conversions are now defined as names, their coverage rule is now covered under the general rule for names,
rather than being separated out along with qualified_expressions.

5.5 Loop Statements
1[A loop_statement includes a sequence_of_statements that is to be executed repeatedly, zero or more

times.]

Syntax

2loop_statement ::=
[loop_statement_identifier:]

[iteration_scheme] loop
sequence_of_statements

end loop [loop_identifier];

3iteration_scheme ::= while condition
| for loop_parameter_specification

4loop_parameter_specification ::=
defining_identifier in [reverse] discrete_subtype_definition

5If a loop_statement has a loop_statement_identifier, then the identifier shall be repeated after the end
loop; otherwise, there shall not be an identifier after the end loop.

Static Semantics

6{loop parameter} A loop_parameter_specification declares a loop parameter, which is an object whose
subtype is that defined by the discrete_subtype_definition. {parameter: see also loop parameter}

Dynamic Semantics

7{execution [loop_statement]} For the execution of a loop_statement, the sequence_of_statements is executed
repeatedly, zero or more times, until the loop_statement is complete. The loop_statement is complete
when a transfer of control occurs that transfers control out of the loop, or, in the case of an iteration_
scheme, as specified below.

ISO/IEC 8652:1995(E) —AARM;6.0

5.5 Loop Statements 21 December 1994 188

8 {execution [loop_statement with a while iteration_scheme]} For the execution of a loop_statement with a while
iteration_scheme, the condition is evaluated before each execution of the sequence_of_statements; if the
value of the condition is True, the sequence_of_statements is executed; if False, the execution of the
loop_statement is complete.

9 {execution [loop_statement with a for iteration_scheme]} {elaboration [loop_parameter_specification]} For the execution of
a loop_statement with a for iteration_scheme, the loop_parameter_specification is first elaborated. This
elaboration creates the loop parameter and elaborates the discrete_subtype_definition. If the discrete_
subtype_definition defines a subtype with a null range, the execution of the loop_statement is complete.
Otherwise, the sequence_of_statements is executed once for each value of the discrete subtype defined
by the discrete_subtype_definition (or until the loop is left as a consequence of a transfer of control).
{assignment operation (during execution of a for loop)} Prior to each such iteration, the corresponding value of the
discrete subtype is assigned to the loop parameter. These values are assigned in increasing order unless
the reserved word reverse is present, in which case the values are assigned in decreasing order.

9.a Ramification: The order of creating the loop parameter and evaluating the discrete_subtype_definition doesn’t matter,
since the creation of the loop parameter has no side effects (other than possibly raising Storage_Error, but anything can
do that).

NOTES
10 6 A loop parameter is a constant; it cannot be updated within the sequence_of_statements of the loop (see 3.3).

11 7 An object_declaration should not be given for a loop parameter, since the loop parameter is automatically declared by
the loop_parameter_specification. The scope of a loop parameter extends from the loop_parameter_specification to the end
of the loop_statement, and the visibility rules are such that a loop parameter is only visible within the sequence_of_
statements of the loop.

11.a Implementation Note: An implementation could give a warning if a variable is hidden by a loop_parameter_
specification.

12 8 The discrete_subtype_definition of a for loop is elaborated just once. Use of the reserved word reverse does not alter
the discrete subtype defined, so that the following iteration_schemes are not equivalent; the first has a null range.

13 for J in reverse 1 .. 0
for J in 0 .. 1

13.a Ramification: If a loop_parameter_specification has a static discrete range, the subtype of the loop parameter is static.

Examples

14 Example of a loop statement without an iteration scheme:
15 loop

Get(Current_Character);
exit when Current_Character = ’*’;

end loop;

16 Example of a loop statement with a while iteration scheme:
17 while Bid(N).Price < Cut_Off.Price loop

Record_Bid(Bid(N).Price);
N := N + 1;

end loop;

18 Example of a loop statement with a for iteration scheme:
19 for J in Buffer’Range loop -- works even with a null range

if Buffer(J) /= Space then
Put(Buffer(J));

end if;
end loop;

20 Example of a loop statement with a name:

ISO/IEC 8652:1995(E) —AARM;6.0

189 21 December 1994 Loop Statements 5.5

21Summation:
while Next /= Head loop -- see 3.10.1

Sum := Sum + Next.Value;
Next := Next.Succ;

end loop Summation;

Wording Changes From Ada 83

21.aThe constant-ness of loop parameters is specified in 3.3, ‘‘Objects and Named Numbers’’.

5.6 Block Statements
1[A block_statement encloses a handled_sequence_of_statements optionally preceded by a declarative_

part.]

Syntax

2block_statement ::=
[block_statement_identifier:]

[declare
declarative_part]

begin
handled_sequence_of_statements

end [block_identifier];

3If a block_statement has a block_statement_identifier, then the identifier shall be repeated after the
end; otherwise, there shall not be an identifier after the end.

Static Semantics

4A block_statement that has no explicit declarative_part has an implicit empty declarative_part.
4.aRamification: Thus, other rules can always refer to the declarative_part of a block_statement.

Dynamic Semantics

5{execution [block_statement]} The execution of a block_statement consists of the elaboration of its
declarative_part followed by the execution of its handled_sequence_of_statements.

Examples

6Example of a block statement with a local variable:
7Swap:

declare
Temp : Integer;

begin
Temp := V; V := U; U := Temp;

end Swap;

7.aRamification: If task objects are declared within a block_statement whose execution is completed, the block_
statement is not left until all its dependent tasks are terminated (see 7.6). This rule applies to completion caused by a
transfer of control.

7.bWithin a block_statement, the block name can be used in expanded names denoting local entities such as Swap.Temp in
the above example (see 4.1.3).

Wording Changes From Ada 83

7.cThe syntax rule for block_statement now uses the syntactic category handled_sequence_of_statements.

ISO/IEC 8652:1995(E) —AARM;6.0

5.7 Exit Statements 21 December 1994 190

5.7 Exit Statements
1 [An exit_statement is used to complete the execution of an enclosing loop_statement; the completion is

conditional if the exit_statement includes a condition.]

Syntax

2 exit_statement ::=
exit [loop_name] [when condition];

Name Resolution Rules

3 The loop_name, if any, in an exit_statement shall resolve to denote a loop_statement.

Legality Rules

4 {apply (to a loop_statement by an exit_statement)} Each exit_statement applies to a loop_statement; this is the
loop_statement being exited. An exit_statement with a name is only allowed within the loop_statement
denoted by the name, and applies to that loop_statement. An exit_statement without a name is only
allowed within a loop_statement, and applies to the innermost enclosing one. An exit_statement that
applies to a given loop_statement shall not appear within a body or accept_statement, if this construct is
itself enclosed by the given loop_statement.

Dynamic Semantics

5 {execution [exit_statement]} For the execution of an exit_statement, the condition, if present, is first evaluated.
If the value of the condition is True, or if there is no condition, a transfer of control is done to complete the
loop_statement. If the value of the condition is False, no transfer of control takes place.

NOTES
6 9 Several nested loops can be exited by an exit_statement that names the outer loop.

Examples

7 Examples of loops with exit statements:
8 for N in 1 .. Max_Num_Items loop

Get_New_Item(New_Item);
Merge_Item(New_Item, Storage_File);
exit when New_Item = Terminal_Item;

end loop;

9 Main_Cycle:
loop

-- initial statements
exit Main_Cycle when Found;
-- final statements

end loop Main_Cycle;

5.8 Goto Statements
1 [A goto_statement specifies an explicit transfer of control from this statement to a target statement with a

given label.]

Syntax

2 goto_statement ::= goto label_name;

Name Resolution Rules

3 {target statement (of a goto_statement)} The label_name shall resolve to denote a label; the statement with that
label is the target statement.

ISO/IEC 8652:1995(E) —AARM;6.0

191 21 December 1994 Goto Statements 5.8

Legality Rules

4The innermost sequence_of_statements that encloses the target statement shall also enclose the goto_
statement.

4.aRamification: The goto_statement can be a statement of an inner sequence_.

Furthermore, if a goto_statement is enclosed by an accept_statement or a body, then the target statement
shall not be outside this enclosing construct.

4.bRamification: It follows from the previous rule that if the target statement is enclosed by such a construct, then the
goto_statement cannot be outside.

Dynamic Semantics

5{execution [goto_statement]} The execution of a goto_statement transfers control to the target statement, com-
pleting the execution of any compound_statement that encloses the goto_statement but does not enclose
the target.

NOTES
610 The above rules allow transfer of control to a statement of an enclosing sequence_of_statements but not the reverse.

Similarly, they prohibit transfers of control such as between alternatives of a case_statement, if_statement, or select_
statement; between exception_handlers; or from an exception_handler of a handled_sequence_of_statements back to its
sequence_of_statements.

Examples

7Example of a loop containing a goto statement:
8<<Sort>>

for I in 1 .. N-1 loop
if A(I) > A(I+1) then

Exchange(A(I), A(I+1));
goto Sort;

end if;
end loop;

ISO/IEC 8652:1995(E) —AARM;6.0

6 Subprograms 21 December 1994 192

ISO/IEC 8652:1995(E) —AARM;6.0

193 21 December 1994 Subprograms 6

Section 6: Subprograms
1{subprogram} {procedure} {function} A subprogram is a program unit or intrinsic operation whose execution is

invoked by a subprogram call. There are two forms of subprogram: procedures and functions. A proce-
dure call is a statement; a function call is an expression and returns a value. The definition of a sub-
program can be given in two parts: a subprogram declaration defining its interface, and a subprogram_
body defining its execution. [Operators and enumeration literals are functions.]

1.aTo be honest: A function call is an expression, but more specifically it is a name.

2{callable entity} A callable entity is a subprogram or entry (see Section 9). {call} A callable entity is invoked
by a call; that is, a subprogram call or entry call. {callable construct} A callable construct is a construct that
defines the action of a call upon a callable entity: a subprogram_body, entry_body, or accept_statement.

2.aRamification: Note that ‘‘callable entity’’ includes predefined operators, enumeration literals, and abstract sub-
programs. ‘‘Call’’ includes calls of these things. They do not have callable constructs, since they don’t have
completions.

6.1 Subprogram Declarations
1[A subprogram_declaration declares a procedure or function.]

Syntax

2subprogram_declaration ::= subprogram_specification;

3abstract_subprogram_declaration ::= subprogram_specification is abstract;

4subprogram_specification ::=
procedure defining_program_unit_name parameter_profile

| function defining_designator parameter_and_result_profile

5designator ::= [parent_unit_name .]identifier | operator_symbol

6defining_designator ::= defining_program_unit_name | defining_operator_symbol

7defining_program_unit_name ::= [parent_unit_name .]defining_identifier

8[The optional parent_unit_name is only allowed for library units (see 10.1.1).]

9operator_symbol ::= string_literal

10The sequence of characters in an operator_symbol shall correspond to an operator belonging to one
of the six classes of operators defined in clause 4.5 (spaces are not allowed and the case of letters is
not significant).

11defining_operator_symbol ::= operator_symbol

12parameter_profile ::= [formal_part]

13parameter_and_result_profile ::= [formal_part] return subtype_mark

14formal_part ::=
(parameter_specification {; parameter_specification})

15parameter_specification ::=
defining_identifier_list : mode subtype_mark [:= default_expression]

| defining_identifier_list : access_definition [:= default_expression]

16mode ::= [in] | in out | out

ISO/IEC 8652:1995(E) —AARM;6.0

6.1 Subprogram Declarations 21 December 1994 194

Name Resolution Rules

17 {formal parameter (of a subprogram)} A formal parameter is an object [directly visible within a subprogram_
body] that represents the actual parameter passed to the subprogram in a call; it is declared by a
parameter_specification. {expected type [parameter default_expression]} For a formal parameter, the expected
type for its default_expression, if any, is that of the formal parameter. {parameter: see formal parameter}

Legality Rules

18 {parameter mode} The parameter mode of a formal parameter conveys the direction of information transfer
with the actual parameter: in, in out, or out. Mode in is the default, and is the mode of a parameter
defined by an access_definition. The formal parameters of a function, if any, shall have the mode in.

18.a Ramification: Access parameters are permitted. This restriction to in parameters is primarily a methodological
restriction, though it also simplifies implementation for some compiler technologies.

19 A default_expression is only allowed in a parameter_specification for a formal parameter of mode in.

20 {requires a completion [subprogram_declaration]} {requires a completion [generic_subprogram_declaration]} A
subprogram_declaration or a generic_subprogram_declaration requires a completion: [a body, a
renaming_declaration (see 8.5), or a pragma Import (see B.1)]. [A completion is not allowed for an
abstract_subprogram_declaration.]

20.a Ramification: Abstract subprograms are not declared by subprogram_declarations, and so do not require completion.
Protected subprograms are declared by subprogram_declarations, and so require completion. Note that an abstract
subprogram is a subprogram, and a protected subprogram is a subprogram, but a generic subprogram is not a
subprogram.

21 A name that denotes a formal parameter is not allowed within the formal_part in which it is declared, nor
within the formal_part of a corresponding body or accept_statement.

21.a Ramification: By contrast, generic_formal_parameter_declarations are visible to subsequent declarations in the same
generic_formal_part.

Static Semantics

22 {profile} The profile of (a view of) a callable entity is either a parameter_profile or parameter_and_result_
profile[; it embodies information about the interface to that entity — for example, the profile includes
information about parameters passed to the callable entity. All callable entities have a profile —
enumeration literals, other subprograms, and entries. An access-to-subprogram type has a designated
profile.] Associated with a profile is a calling convention. A subprogram_declaration declares a proce-
dure or a function, as indicated by the initial reserved word, with name and profile as given by its
specification.

23 {nominal subtype [of a formal parameter]} The nominal subtype of a formal parameter is the subtype denoted by
the subtype_mark, or defined by the access_definition, in the parameter_specification.

24 {access parameter} An access parameter is a formal in parameter specified by an access_definition. An
access parameter is of an anonymous general access-to-variable type (see 3.10). [Access parameters
allow dispatching calls to be controlled by access values.]

25 {subtypes (of a profile)} The subtypes of a profile are:

26 • For any non-access parameters, the nominal subtype of the parameter.

27 • For any access parameters, the designated subtype of the parameter type.

28 • For any result, the result subtype.

ISO/IEC 8652:1995(E) —AARM;6.0

195 21 December 1994 Subprogram Declarations 6.1

29[{types (of a profile)} The types of a profile are the types of those subtypes.]

30[A subprogram declared by an abstract_subprogram_declaration is abstract; a subprogram declared by a
subprogram_declaration is not. See 3.9.3, ‘‘Abstract Types and Subprograms’’.]

Dynamic Semantics

31{elaboration [subprogram_declaration]} {elaboration [abstract_subprogram_declaration]} The elaboration of a
subprogram_declaration or an abstract_subprogram_declaration has no effect.

NOTES
321 A parameter_specification with several identifiers is equivalent to a sequence of single parameter_specifications, as

explained in 3.3.

332 Abstract subprograms do not have bodies, and cannot be used in a nondispatching call (see 3.9.3, ‘‘Abstract Types and
Subprograms’’).

343 The evaluation of default_expressions is caused by certain calls, as described in 6.4.1. They are not evaluated during
the elaboration of the subprogram declaration.

354 Subprograms can be called recursively and can be called concurrently from multiple tasks.

Examples

36Examples of subprogram declarations:
37procedure Traverse_Tree;

procedure Increment(X : in out Integer);
procedure Right_Indent(Margin : out Line_Size); -- see 3.5.4
procedure Switch(From, To : in out Link); -- see 3.10.1

38function Random return Probability; -- see 3.5.7

39function Min_Cell(X : Link) return Cell; -- see 3.10.1
function Next_Frame(K : Positive) return Frame; -- see 3.10
function Dot_Product(Left, Right : Vector) return Real; -- see 3.6

40function "*"(Left, Right : Matrix) return Matrix; -- see 3.6

41Examples of in parameters with default expressions:
42procedure Print_Header(Pages : in Natural;

Header : in Line := (1 .. Line’Last => ’ ’); -- see 3.6
Center : in Boolean := True);

Extensions to Ada 83

42.a{extensions to Ada 83} The syntax for abstract_subprogram_declaration is added. The syntax for parameter_
specification is revised to allow for access parameters (see 3.10)

42.bProgram units that are library units may have a parent_unit_name to indicate the parent of a child (see Section 10).
Wording Changes From Ada 83

42.cWe have incorporated the rules from RM83-6.5, ‘‘Function Subprograms’’ here and in 6.3, ‘‘Subprogram Bodies’’

42.dWe have incorporated the definitions of RM83-6.6, ‘‘Parameter and Result Type Profile - Overloading of Sub-
programs’’ here.

42.eThe syntax rule for defining_operator_symbol is new. It is used for the defining occurrence of an operator_symbol,
analogously to defining_identifier. Usage occurrences use the direct_name or selector_name syntactic categories. The
syntax rules for defining_designator and defining_program_unit_name are new.

ISO/IEC 8652:1995(E) —AARM;6.0

6.2 Formal Parameter Modes 21 December 1994 196

6.2 Formal Parameter Modes
1 [A parameter_specification declares a formal parameter of mode in, in out, or out.]

Static Semantics

2 {pass by copy} {by copy parameter passing} {copy parameter passing} {pass by reference} {by reference parameter passing}
{reference parameter passing} A parameter is passed either by copy or by reference. [When a parameter is
passed by copy, the formal parameter denotes a separate object from the actual parameter, and any infor-
mation transfer between the two occurs only before and after executing the subprogram. When a
parameter is passed by reference, the formal parameter denotes (a view of) the object denoted by the
actual parameter; reads and updates of the formal parameter directly reference the actual parameter
object.]

3 {by-copy type} A type is a by-copy type if it is an elementary type, or if it is a descendant of a private type
whose full type is a by-copy type. A parameter of a by-copy type is passed by copy.

4 {by-reference type} A type is a by-reference type if it is a descendant of one of the following:

5 • a tagged type;

6 • a task or protected type;

7 • a nonprivate type with the reserved word limited in its declaration;
7.a Ramification: A limited private type is by-reference only if it falls under one of the other categories.

8 • a composite type with a subcomponent of a by-reference type;

9 • a private type whose full type is a by-reference type.

10 A parameter of a by-reference type is passed by reference. {associated object (of a value of a by-reference type)}

Each value of a by-reference type has an associated object. For a parenthesized expression, qualified_
expression, or type_conversion, this object is the one associated with the operand.

10.a Ramification: By-reference parameter passing makes sense only if there is an object to reference; hence, we define
such an object for each case.

10.b Since tagged types are by-reference types, this implies that every value of a tagged type has an associated object. This
simplifies things, because we can define the tag to be a property of the object, and not of the value of the object, which
makes it clearer that object tags never change.

10.c We considered simplifying things even more by making every value (and therefore every expression) have an
associated object. After all, there is little semantic difference between a constant object and a value. However, this
would cause problems for untagged types. In particular, we would have to do a constraint check on every read of a
type conversion (or a renaming thereof) in certain cases.

10.d We do not want this definition to depend on the view of the type; privateness is essentially ignored for this definition.
Otherwise, things would be confusing (does the rule apply at the call site, at the site of the declaration of the
subprogram, at the site of the return_statement?), and requiring different calls to use different mechanisms would be an
implementation burden.

10.e C.6, ‘‘Shared Variable Control’’ says that a composite type with an atomic or volatile subcomponent is a by-reference
type, among other things.

10.f {associated object (of a value of a limited type)} Every value of a limited by-reference type is the value of one and only
one limited object. The associated object of a value of a limited by-reference type is the object whose value it
represents. {same value (for a limited type)} Two values of a limited by-reference type are the same if and only if they
represent the value of the same object.

10.g We say ‘‘by-reference’’ above because these statements are not always true for limited private types whose underlying
type is nonlimited (unfortunately).

ISO/IEC 8652:1995(E) —AARM;6.0

197 21 December 1994 Formal Parameter Modes 6.2

11{unspecified [partial]} For parameters of other types, it is unspecified whether the parameter is passed by
copy or by reference.

11.aDiscussion: There is no need to incorporate the discussion of AI-00178, which requires pass-by-copy for certain kinds
of actual parameters, while allowing pass-by-reference for others. This is because we explicitly indicate that a function
creates an anonymous constant object for its result, unless the type is a return-by-reference type (see 6.5). We also
provide a special dispensation for instances of Unchecked_Conversion to return by reference, even if the result type is
not a return-by-reference type (see 13.9).

Bounded (Run-Time) Errors

12{bounded error} {distinct access paths} {access paths (distinct)} {aliasing: see distinct access paths} If one name denotes
a part of a formal parameter, and a second name denotes a part of a distinct formal parameter or an object
that is not part of a formal parameter, then the two names are considered distinct access paths. If an
object is of a type for which the parameter passing mechanism is not specified, then it is a bounded error
to assign to the object via one access path, and then read the value of the object via a distinct access path,
unless the first access path denotes a part of a formal parameter that no longer exists at the point of the
second access [(due to leaving the corresponding callable construct).] {Program_Error (raised by failure of

run-time check)} The possible consequences are that Program_Error is raised, or the newly assigned value is
read, or some old value of the object is read.

12.aDiscussion: For example, if we call ‘‘P(X => Global_Variable, Y => Global_Variable)’’, then within P, the names
‘‘X’’, ‘‘Y’’, and ‘‘Global_Variable’’ are all distinct access paths. If Global_Variable’s type is neither pass-by-copy
nor pass-by-reference, then it is a bounded error to assign to Global_Variable and then read X or Y, since the language
does not specify whether the old or the new value would be read. On the other hand, if Global_Variable’s type is
pass-by-copy, then the old value would always be read, and there is no error. Similarly, if Global_Variable’s type is
defined by the language to be pass-by-reference, then the new value would always be read, and again there is no error.

12.bReason: We are saying assign here, not update, because updating any subcomponent is considered to update the
enclosing object.

12.cThe ‘‘still exists’’ part is so that a read after the subprogram returns is OK.

12.dIf the parameter is of a by-copy type, then there is no issue here — the formal is not a view of the actual. If the
parameter is of a by-reference type, then the programmer may depend on updates through one access path being visible
through some other access path, just as if the parameter were of an access type.

12.eImplementation Note: The implementation can keep a copy in a register of a parameter whose parameter-passing
mechanism is not specified. If a different access path is used to update the object (creating a bounded error situation),
then the implementation can still use the value of the register, even though the in-memory version of the object has
been changed. However, to keep the error properly bounded, if the implementation chooses to read the in-memory
version, it has to be consistent -- it cannot then assume that something it has proven about the register is true of the
memory location. For example, suppose the formal parameter is L, the value of L(6) is now in a register, and L(6) is
used in an indexed_component as in ‘‘A(L(6)) := 99;’’, where A has bounds 1..3. If the implementation can prove that
the value for L(6) in the register is in the range 1..3, then it need not perform the constraint check if it uses the register
value. However, if the memory value of L(6) has been changed to 4, and the implementation uses that memory value,
then it had better not alter memory outside of A.

12.fNote that the rule allows the implementation to pass a parameter by reference and then keep just part of it in a register,
or, equivalently, to pass part of the parameter by reference and another part by copy.

12.gReason: We do not want to go so far as to say that the mere presence of aliasing is wrong. We wish to be able to write
the following sorts of things in standard Ada:

12.hprocedure Move (Source : in String;
Target : out String;
Drop : in Truncation := Error;
Justify : in Alignment := Left;
Pad : in Character := Space);

-- Copies elements from Source to Target (safely if they overlap)

12.iThis is from the standard string handling package. It would be embarrassing if this couldn’t be written in Ada!

12.jThe ‘‘then’’ before ‘‘read’’ in the rule implies that the implementation can move a read to an earlier place in the code,
but not to a later place after a potentially aliased assignment. Thus, if the subprogram reads one of its parameters into a
local variable, and then updates another potentially aliased one, the local copy is safe — it is known to have the old

ISO/IEC 8652:1995(E) —AARM;6.0

6.2 Formal Parameter Modes 21 December 1994 198

value. For example, the above-mentioned Move subprogram can be implemented by copying Source into a local
variable before assigning into Target.

12.k For an assignment_statement assigning one array parameter to another, the implementation has to check which
direction to copy at run time, in general, in case the actual parameters are overlapping slices. For example:

12.l procedure Copy(X : in out String; Y: String) is
begin

X := Y;
end Copy;

12.m It would be wrong for the compiler to assume that X and Y do not overlap (unless, of course, it can prove otherwise).

NOTES
13 5 A formal parameter of mode in is a constant view (see 3.3); it cannot be updated within the subprogram_body.

Extensions to Ada 83

13.a {extensions to Ada 83} The value of an out parameter may be read. An out parameter is treated like a declared
variable without an explicit initial expression.

Wording Changes From Ada 83

13.b Discussion of copy-in for parts of out parameters is now covered in 6.4.1, ‘‘Parameter Associations’’.

13.c The concept of a by-reference type is new to Ada 9X.

13.d We now cover in a general way in 3.7.2 the rule regarding erroneous execution when a discriminant is changed and one
of the parameters depends on the discriminant.

6.3 Subprogram Bodies
1 [A subprogram_body specifies the execution of a subprogram.]

Syntax

2 subprogram_body ::=
subprogram_specification is

declarative_part
begin

handled_sequence_of_statements
end [designator];

3 If a designator appears at the end of a subprogram_body, it shall repeat the defining_designator of
the subprogram_specification.

Legality Rules

4 [In contrast to other bodies,] a subprogram_body need not be the completion of a previous declaration[, in
which case the body declares the subprogram]. If the body is a completion, it shall be the completion of a
subprogram_declaration or generic_subprogram_declaration. The profile of a subprogram_body that
completes a declaration shall conform fully to that of the declaration. {full conformance (required)}

Static Semantics

5 A subprogram_body is considered a declaration. It can either complete a previous declaration, or itself be
the initial declaration of the subprogram.

Dynamic Semantics

6 {elaboration [non-generic subprogram_body]} The elaboration of a non-generic subprogram_body has no other
effect than to establish that the subprogram can from then on be called without failing the Elaboration_
Check.

ISO/IEC 8652:1995(E) —AARM;6.0

199 21 December 1994 Subprogram Bodies 6.3

6.aRamification: See 12.2 for elaboration of a generic body. Note that protected subprogram_bodies never get
elaborated; the elaboration of the containing protected_body allows them to be called without failing the Elaboration_
Check.

7{execution [subprogram_body]} [The execution of a subprogram_body is invoked by a subprogram call.] For
this execution the declarative_part is elaborated, and the handled_sequence_of_statements is then ex-
ecuted.

Examples

8Example of procedure body:
9procedure Push(E : in Element_Type; S : in out Stack) is

begin
if S.Index = S.Size then

raise Stack_Overflow;
else

S.Index := S.Index + 1;
S.Space(S.Index) := E;

end if;
end Push;

10Example of a function body:
11function Dot_Product(Left, Right : Vector) return Real is

Sum : Real := 0.0;
begin

Check(Left’First = Right’First and Left’Last = Right’Last);
for J in Left’Range loop

Sum := Sum + Left(J)*Right(J);
end loop;
return Sum;

end Dot_Product;

Extensions to Ada 83

11.a{extensions to Ada 83} A renaming_declaration may be used instead of a subprogram_body.
Wording Changes From Ada 83

11.bThe syntax rule for subprogram_body now uses the syntactic category handled_sequence_of_statements.

11.cThe declarative_part of a subprogram_body is now required; that doesn’t make any real difference, because a
declarative_part can be empty.

11.dWe have incorporated some rules from RM83-6.5 here.

11.eRM83 forgot to restrict the definition of elaboration of a subprogram_body to non-generics.

6.3.1 Conformance Rules
1{conformance} [When subprogram profiles are given in more than one place, they are required to conform

in one of four ways: type conformance, mode conformance, subtype conformance, or full conformance.]

Static Semantics

2{convention} {calling convention} [As explained in B.1, ‘‘Interfacing Pragmas’’, a convention can be specified
for an entity. For a callable entity or access-to-subprogram type, the convention is called the calling
convention.] The following conventions are defined by the language:

3• {Ada calling convention} {calling convention (Ada)} The default calling convention for any sub-
program not listed below is Ada. [A pragma Convention, Import, or Export may be used to
override the default calling convention (see B.1)].

3.aRamification: See also the rule about renamings-as-body in 8.5.4.

ISO/IEC 8652:1995(E) —AARM;6.0

6.3.1 Conformance Rules 21 December 1994 200

4 • {Intrinsic calling convention} {calling convention (Intrinsic)} The Intrinsic calling convention
represents subprograms that are ‘‘built in’’ to the compiler. The default calling convention is
Intrinsic for the following:

5 • an enumeration literal;

6 • a "/=" operator declared implicitly due to the declaration of "=" (see 6.6);

7 • any other implicitly declared subprogram unless it is a dispatching operation of a
tagged type;

8 • an inherited subprogram of a generic formal tagged type with unknown discriminants;

9 • an attribute that is a subprogram;

10 • a subprogram declared immediately within a protected_body.

11 [The Access attribute is not allowed for Intrinsic subprograms.]
11.a Ramification: The Intrinsic calling convention really represents any number of calling conventions at the

machine code level; the compiler might have a different instruction sequence for each intrinsic. That’s why the
Access attribute is disallowed. We do not wish to require the implementation to generate an out of line body
for an intrinsic.

11.b Whenever we wish to disallow the Access attribute in order to ease implementation, we make the subprogram
Intrinsic. Several language-defined subprograms have ‘‘pragma Convention(Intrinsic, ...);’’. An implemen-
tation might actually implement this as ‘‘pragma Import(Intrinsic, ...);’’, if there is really no body, and the
implementation of the subprogram is built into the code generator.

11.c Subprograms declared in protected_bodies will generally have a special calling convention so as to pass along
the identification of the current instance of the protected type. The convention is not protected since such local
subprograms need not contain any ‘‘locking’’ logic since they are not callable via ‘‘external’’ calls; this rule
prevents an access value designating such a subprogram from being passed outside the protected unit.

11.d The ‘‘implicitly declared subprogram’’ above refers to predefined operators (other than the "=" of a tagged
type) and the inherited subprograms of untagged types.

12 • {protected calling convention} {calling convention (protected)} The default calling convention is
protected for a protected subprogram, and for an access-to-subprogram type with the
reserved word protected in its definition.

13 • {entry calling convention} {calling convention (entry)} The default calling convention is entry for an
entry.

14 Of these four conventions, only Ada and Intrinsic are allowed as a convention_identifier in a pragma
Convention, Import, or Export.

14.a Discussion: The names of the protected and entry calling conventions cannot be used in the interfacing pragmas. Note
that protected and entry are reserved words.

15 {type conformance} {profile (type conformant)} Two profiles are type conformant if they have the same number
of parameters, and both have a result if either does, and corresponding parameter and result types are the
same, or, for access parameters, corresponding designated types are the same. {type profile: see profile, type

conformant}

15.a Discussion: For access parameters, the designated types have to be the same for type conformance, not the access
types, since in general each access parameter has its own anonymous access type, created when the subprogram is
called. Of course, corresponding parameters have to be either both access parameters or both not access parameters.

16 {mode conformance} {profile (mode conformant)} Two profiles are mode conformant if they are type-conformant,
and corresponding parameters have identical modes, and, for access parameters, the designated subtypes
statically match. {statically matching [required]}

ISO/IEC 8652:1995(E) —AARM;6.0

201 21 December 1994 Conformance Rules 6.3.1

17{subtype conformance} {profile (subtype conformant)} Two profiles are subtype conformant if they are mode-
conformant, corresponding subtypes of the profile statically match, and the associated calling conventions
are the same. The profile of a generic formal subprogram is not subtype-conformant with any other
profile. {statically matching [required]}

17.aRamification: {generic contract issue [partial]}

18{full conformance (for profiles)} {profile (fully conformant)} Two profiles are fully conformant if they are subtype-
conformant, and corresponding parameters have the same names and have default_expressions that are
fully conformant with one another.

18.aRamification: Full conformance requires subtype conformance, which requires the same calling conventions.
However, the calling convention of the declaration and body of a subprogram or entry are always the same by
definition.

19{full conformance (for expressions)} Two expressions are fully conformant if, [after replacing each use of an
operator with the equivalent function_call:]

20• each constituent construct of one corresponds to an instance of the same syntactic category in
the other, except that an expanded name may correspond to a direct_name (or character_
literal) or to a different expanded name in the other; and

21• each direct_name, character_literal, and selector_name that is not part of the prefix of an
expanded name in one denotes the same declaration as the corresponding direct_name,
character_literal, or selector_name in the other; and

21.aRamification: Note that it doesn’t say ‘‘respectively’’ because a direct_name can correspond to a selector_
name, and vice-versa, by the previous bullet. This rule allows the prefix of an expanded name to be removed, or
replaced with a different prefix that denotes a renaming of the same entity. However, it does not allow a direct_
name or selector_name to be replaced with one denoting a distinct renaming (except for direct_names and
selector_names in prefixes of expanded names). Note that calls using operator notation are equivalent to calls
using prefix notation.

21.bGiven the following declarations:

21.cpackage A is
function F(X : Integer := 1) return Boolean;

end A;

21.dwith A;
package B is

package A_View renames A;
function F_View(X : Integer := 9999) return Boolean renames F;

end B;

21.ewith A, B; use A, B;
procedure Main is ...

21.fWithin Main, the expressions ‘‘F’’, ‘‘A.F’’, ‘‘B.A_View.F’’, and ‘‘A_View.F’’ are all fully conformant with
one another. However, ‘‘F’’ and ‘‘F_View’’ are not fully conformant. If they were, it would be bad news,
since the two denoted views have different default_expressions.

22• each primary that is a literal in one has the same value as the corresponding literal in the
other.

22.aRamification: The literals may be written differently.

22.bRamification: Note that the above definition makes full conformance a transitive relation.

23{full conformance (for known_discriminant_parts)} Two known_discriminant_parts are fully conformant if they
have the same number of discriminants, and discriminants in the same positions have the same names,
statically matching subtypes, and default_expressions that are fully conformant with one another.
{statically matching [required]}

ISO/IEC 8652:1995(E) —AARM;6.0

6.3.1 Conformance Rules 21 December 1994 202

24 {full conformance (for discrete_subtype_definitions)} Two discrete_subtype_definitions are fully conformant if they
are both subtype_indications or are both ranges, the subtype_marks (if any) denote the same subtype, and
the corresponding simple_expressions of the ranges (if any) fully conform.

24.a Ramification: In the subtype_indication case, any ranges have to be corresponding; that is, two subtype_indications
cannot conform unless both or neither has a range.

24.b Discussion: This definition is used in 9.5.2, ‘‘Entries and Accept Statements’’ for the conformance required between
the discrete_subtype_definitions of an entry_declaration for a family of entries and the corresponding entry_index_
specification of the entry_body.

Implementation Permissions

25 An implementation may declare an operator declared in a language-defined library unit to be intrinsic.

Extensions to Ada 83

25.a {extensions to Ada 83} The rules for full conformance are relaxed — they are now based on the structure of constructs,
rather than the sequence of lexical elements. This implies, for example, that "(X, Y: T)" conforms fully with "(X: T; Y:
T)", and "(X: T)" conforms fully with "(X: in T)".

6.3.2 Inline Expansion of Subprograms
1 [Subprograms may be expanded in line at the call site.]

Syntax

2 {program unit pragma [Inline]} {pragma, program unit [Inline]} The form of a pragma Inline, which is a
program unit pragma (see 10.1.5), is as follows:

3 pragma Inline(name {, name});

Legality Rules

4 The pragma shall apply to one or more callable entities or generic subprograms.

Static Semantics

5 If a pragma Inline applies to a callable entity, this indicates that inline expansion is desired for all calls to
that entity. If a pragma Inline applies to a generic subprogram, this indicates that inline expansion is
desired for all calls to all instances of that generic subprogram.

5.a Ramification: Note that inline expansion is desired no matter what name is used in the call. This allows one to
request inlining for only one of several overloaded subprograms as follows:

5.b package IO is
procedure Put(X : in Integer);
procedure Put(X : in String);
procedure Put(X : in Character);

private
procedure Character_Put(X : in Character) renames Put;
pragma Inline(Character_Put);

end IO;

5.c with IO; use IO;
procedure Main is

I : Integer;
C : Character;

begin
...
Put(C); -- Inline expansion is desired.
Put(I); -- Inline expansion is NOT desired.

end Main;

5.d Ramification: The meaning of a subprogram can be changed by a pragma Inline only in the presence of failing checks
(see 11.6).

ISO/IEC 8652:1995(E) —AARM;6.0

203 21 December 1994 Inline Expansion of Subprograms 6.3.2

Implementation Permissions

6For each call, an implementation is free to follow or to ignore the recommendation expressed by the
pragma.

6.aRamification: Note, in particular, that the recommendation cannot always be followed for a recursive call, and is often
infeasible for entries. Note also that the implementation can inline calls even when no such desire was expressed by a
pragma, so long as the semantics of the program remains unchanged.

NOTES
76 The name in a pragma Inline can denote more than one entity in the case of overloading. Such a pragma applies to all

of the denoted entities.

Extensions to Ada 83

7.a{extensions to Ada 83} A pragma Inline is allowed inside a subprogram_body if there is no corresponding
subprogram_declaration. This is for uniformity with other program unit pragmas.

6.4 Subprogram Calls
1{subprogram call} A subprogram call is either a procedure_call_statement or a function_call; [it invokes the

execution of the subprogram_body. The call specifies the association of the actual parameters, if any,
with formal parameters of the subprogram.]

Syntax

2procedure_call_statement ::=
procedure_name;

| procedure_prefix actual_parameter_part;

3function_call ::=
function_name

| function_prefix actual_parameter_part

4actual_parameter_part ::=
(parameter_association {, parameter_association})

5parameter_association ::=
[formal_parameter_selector_name =>] explicit_actual_parameter

6explicit_actual_parameter ::= expression | variable_name

7{named association} {positional association} A parameter_association is named or positional according to
whether or not the formal_parameter_selector_name is specified. Any positional associations shall
precede any named associations. Named associations are not allowed if the prefix in a subprogram
call is an attribute_reference.

7.aRamification: This means that the formal parameter names used in describing predefined attributes are to aid
presentation of their semantics, but are not intended for use in actual calls.

Name Resolution Rules

8The name or prefix given in a procedure_call_statement shall resolve to denote a callable entity that is a
procedure, or an entry renamed as (viewed as) a procedure. The name or prefix given in a function_call
shall resolve to denote a callable entity that is a function. [When there is an actual_parameter_part, the
prefix can be an implicit_dereference of an access-to-subprogram value.]

8.aRamification: The function can be an operator, enumeration literal, attribute that is a function, etc.

9A subprogram call shall contain at most one association for each formal parameter. Each formal
parameter without an association shall have a default_expression (in the profile of the view denoted by
the name or prefix). This rule is an overloading rule (see 8.6).

ISO/IEC 8652:1995(E) —AARM;6.0

6.4 Subprogram Calls 21 December 1994 204

Dynamic Semantics

10 {execution [subprogram call]} For the execution of a subprogram call, the name or prefix of the call is
evaluated, and each parameter_association is evaluated (see 6.4.1). If a default_expression is used, an
implicit parameter_association is assumed for this rule. These evaluations are done in an arbitrary order.
The subprogram_body is then executed. Finally, if the subprogram completes normally, then after it is
left, any necessary assigning back of formal to actual parameters occurs (see 6.4.1).

10.a Discussion: The implicit association for a default is only for this run-time rule. At compile time, the visibility rules
are applied to the default at the place where it occurs, not at the place of a call.

10.b To be honest: If the subprogram is inherited, see 3.4, ‘‘Derived Types and Classes’’.

10.c If the subprogram is protected, see 9.5.1, ‘‘Protected Subprograms and Protected Actions’’.

10.d If the subprogram is really a renaming of an entry, see 9.5.3, ‘‘Entry Calls’’.

10.e Normally, the subprogram_body that is executed by the above rule is the one for the subprogram being called. For an
enumeration literal, implicitly declared (but noninherited) subprogram, or an attribute that is a subprogram, an implicit
body is assumed. For a dispatching call, 3.9.2, ‘‘Dispatching Operations of Tagged Types’’ defines which
subprogram_body is executed.

11 {Program_Error (raised by failure of run-time check)} The exception Program_Error is raised at the point of a
function_call if the function completes normally without executing a return_statement.

11.a Discussion: We are committing to raising the exception at the point of call, for uniformity — see AI-00152. This
happens after the function is left, of course.

11.b Note that there is no name for suppressing this check, since the check imposes no time overhead and minimal space
overhead (since it can usually be statically eliminated as dead code).

12 A function_call denotes a constant, as defined in 6.5; the nominal subtype of the constant is given by the
result subtype of the function. {nominal subtype [of the result of a function_call]} {constant [result of a function_call]}

Examples

13 Examples of procedure calls:
14 Traverse_Tree; -- see 6.1

Print_Header(128, Title, True); -- see 6.1

15 Switch(From => X, To => Next); -- see 6.1
Print_Header(128, Header => Title, Center => True); -- see 6.1
Print_Header(Header => Title, Center => True, Pages => 128); -- see 6.1

16 Examples of function calls:
17 Dot_Product(U, V) -- see 6.1 and 6.3

Clock -- see 9.6
F.all -- presuming F is of an access-to-subprogram type — see 3.10

18 Examples of procedures with default expressions:
19 procedure Activate(Process : in Process_Name;

After : in Process_Name := No_Process;
Wait : in Duration := 0.0;
Prior : in Boolean := False);

20 procedure Pair(Left, Right : in Person_Name := new Person); -- see 3.10.1

21 Examples of their calls:
22 Activate(X);

Activate(X, After => Y);
Activate(X, Wait => 60.0, Prior => True);
Activate(X, Y, 10.0, False);

ISO/IEC 8652:1995(E) —AARM;6.0

205 21 December 1994 Subprogram Calls 6.4

23Pair;
Pair(Left => new Person, Right => new Person);

NOTES
247 If a default_expression is used for two or more parameters in a multiple parameter_specification, the default_expression

is evaluated once for each omitted parameter. Hence in the above examples, the two calls of Pair are equivalent.

Examples

25Examples of overloaded subprograms:
26procedure Put(X : in Integer);

procedure Put(X : in String);

27procedure Set(Tint : in Color);
procedure Set(Signal : in Light);

28Examples of their calls:
29Put(28);

Put("no possible ambiguity here");

30Set(Tint => Red);
Set(Signal => Red);
Set(Color’(Red));

31-- Set(Red) would be ambiguous since Red may
-- denote a value either of type Color or of type Light

Wording Changes From Ada 83

31.aWe have gotten rid of parameters ‘‘of the form of a type conversion’’ (see RM83-6.4.1(3)). The new view semantics
of type_conversions allows us to use normal type_conversions instead.

31.bWe have moved wording about run-time semantics of parameter associations to 6.4.1.

31.cWe have moved wording about raising Program_Error for a function that falls off the end to here from RM83-6.5.

6.4.1 Parameter Associations
1[{parameter passing} A parameter association defines the association between an actual parameter and a

formal parameter.]

Language Design Principles

1.aThe parameter passing rules for out parameters are designed to ensure that the parts of a type that have implicit initial
values (see 3.3.1) don’t become ‘‘de-initialized’’ by being passed as an out parameter.

Name Resolution Rules

2The formal_parameter_selector_name of a parameter_association shall resolve to denote a parameter_
specification of the view being called.

3{actual parameter (for a formal parameter)} The actual parameter is either the explicit_actual_parameter given
in a parameter_association for a given formal parameter, or the corresponding default_expression if no
parameter_association is given for the formal parameter. {expected type (actual parameter)} The expected
type for an actual parameter is the type of the corresponding formal parameter.

3.aTo be honest: The corresponding default_expression is the one of the corresponding formal parameter in the profile of
the view denoted by the name or prefix of the call.

4If the mode is in, the actual is interpreted as an expression; otherwise, the actual is interpreted only as a
name, if possible.

4.aRamification: This formally resolves the ambiguity present in the syntax rule for explicit_actual_parameter. Note that
we don’t actually require that the actual be a name if the mode is not in; we do that below.

ISO/IEC 8652:1995(E) —AARM;6.0

6.4.1 Parameter Associations 21 December 1994 206

Legality Rules

5 If the mode is in out or out, the actual shall be a name that denotes a variable.
5.a Discussion: We no longer need ‘‘or a type_conversion whose argument is the name of a variable,’’ because a type_

conversion is now a name, and a type_conversion of a variable is a variable.

5.b Reason: The requirement that the actual be a (variable) name is not an overload resolution rule, since we don’t want
the difference between expression and name to be used to resolve overloading. For example:

5.c procedure Print(X : in Integer; Y : in Boolean := True);
procedure Print(Z : in out Integer);
. . .
Print(3); -- Ambiguous!

5.d The above call to Print is ambiguous even though the call is not compatible with the second Print which requires an
actual that is a (variable) name (‘‘3’’ is an expression, not a name). This requirement is a legality rule, so overload
resolution fails before it is considered, meaning that the call is ambiguous.

6 The type of the actual parameter associated with an access parameter shall be convertible (see 4.6) to its
anonymous access type. {convertible [required]}

Dynamic Semantics

7 {evaluation [parameter_association]} For the evaluation of a parameter_association:

8 • The actual parameter is first evaluated.

9 • For an access parameter, the access_definition is elaborated, which creates the anonymous
access type.

10 • For a parameter [(of any mode)] that is passed by reference (see 6.2), a view conversion of
the actual parameter to the nominal subtype of the formal parameter is evaluated, and the
formal parameter denotes that conversion. {implicit subtype conversion [parameter passing]}

10.a Discussion: We are always allowing sliding, even for [in] out by-reference parameters.

11 • {assignment operation (during evaluation of a parameter_association)} For an in or in out parameter that
is passed by copy (see 6.2), the formal parameter object is created, and the value of the actual
parameter is converted to the nominal subtype of the formal parameter and assigned to the
formal. {implicit subtype conversion [parameter passing]}

11.a Ramification: The conversion mentioned here is a value conversion.

12 • For an out parameter that is passed by copy, the formal parameter object is created, and:
13 • For an access type, the formal parameter is initialized from the value of the actual,

without a constraint check;
13.a Reason: This preserves the Language Design Principle that an object of an access type is always initialized

with a ‘‘reasonable’’ value.

14 • For a composite type with discriminants or that has implicit initial values for any sub-
components (see 3.3.1), the behavior is as for an in out parameter passed by copy.

14.a Reason: This ensures that no part of an object of such a type can become ‘‘de-initialized’’ by being part of an
out parameter.

14.b Ramification: This includes an array type whose component type is an access type, and a record type with a
component that has a default_expression, among other things.

15 • For any other type, the formal parameter is uninitialized. If composite, a view conver-
sion of the actual parameter to the nominal subtype of the formal is evaluated [(which
might raise Constraint_Error)], and the actual subtype of the formal is that of the view
conversion. If elementary, the actual subtype of the formal is given by its nominal
subtype.

15.a Ramification: This case covers scalar types, and composite types whose subcomponent’s subtypes do not have
any implicit initial values. The view conversion for composite types ensures that if the lengths don’t match
between an actual and a formal array parameter, the Constraint_Error is raised before the call, rather than after.

ISO/IEC 8652:1995(E) —AARM;6.0

207 21 December 1994 Parameter Associations 6.4.1

16{constrained [object]} {unconstrained [object]} A formal parameter of mode in out or out with discriminants is
constrained if either its nominal subtype or the actual parameter is constrained.

17{parameter copy back} {copy back of parameters} {parameter assigning back} {assigning back of parameters} {assignment

operation (during parameter copy back)} After normal completion and leaving of a subprogram, for each in out
or out parameter that is passed by copy, the value of the formal parameter is converted to the subtype of
the variable given as the actual parameter and assigned to it. {implicit subtype conversion [parameter passing]}

These conversions and assignments occur in an arbitrary order.

17.aRamification: The conversions mentioned above during parameter passing might raise Constraint_Error — (see 4.6).

17.bRamification: If any conversion or assignment as part of parameter passing propagates an exception, the exception is
raised at the place of the subprogram call; that is, it cannot be handled inside the subprogram_body.

17.cProof: Since these checks happen before or after executing the subprogram_body, the execution of the subprogram_
body does not dynamically enclose them, so it can’t handle the exceptions.

17.dDiscussion: The variable we’re talking about is the one denoted by the variable_name given as the explicit_actual_
parameter. If this variable_name is a type_conversion, then the rules in 4.6 for assigning to a view conversion apply.
That is, if X is of subtype S1, and the actual is S2(X), the above-mentioned conversion will convert to S2, and the one
mentioned in 4.6 will convert to S1.

Extensions to Ada 83

17.e{extensions to Ada 83} In Ada 9X, a program can rely on the fact that passing an object as an out parameter does not
‘‘de-initialize’’ any parts of the object whose subtypes have implicit initial values. (This generalizes the RM83 rule
that required copy-in for parts that were discriminants or of an access type.)

Wording Changes From Ada 83

17.fWe have eliminated the subclause on Default Parameters, as it is subsumed by earlier clauses and subclauses.

6.5 Return Statements
1A return_statement is used to complete the execution of the innermost enclosing subprogram_body,

entry_body, or accept_statement.

Syntax

2return_statement ::= return [expression];

Name Resolution Rules

3{return expression} The expression, if any, of a return_statement is called the return expression. {result

subtype (of a function)} The result subtype of a function is the subtype denoted by the subtype_mark after the
reserved word return in the profile of the function. {expected type [return expression]} The expected type for a
return expression is the result type of the corresponding function.

3.aTo be honest: The same applies to generic functions.

Legality Rules

4{apply (to a callable construct by a return_statement)} A return_statement shall be within a callable construct, and
it applies to the innermost one. A return_statement shall not be within a body that is within the construct
to which the return_statement applies.

5A function body shall contain at least one return_statement that applies to the function body, unless the
function contains code_statements. A return_statement shall include a return expression if and only if it
applies to a function body.

5.aReason: The requirement that a function body has to have at least one return_statement is a ‘‘helpful’’ restriction.
There was been some interest in lifting this restriction, or allowing a raise statement to substitute for the return_
statement. However, there was enough interest in leaving it as is that we decided not to change it.

ISO/IEC 8652:1995(E) —AARM;6.0

6.5 Return Statements 21 December 1994 208

Dynamic Semantics

6 {execution [return_statement]} For the execution of a return_statement, the expression (if any) is first
evaluated and converted to the result subtype. {implicit subtype conversion [function return]}

6.a Ramification: The conversion might raise Constraint_Error — (see 4.6).

7 If the result type is class-wide, then the tag of the result is the tag of the value of the expression.

8 If the result type is a specific tagged type:

9 • {Tag_Check [partial]} {check, language-defined (Tag_Check)} If it is limited, then a check is made that
the tag of the value of the return expression identifies the result type. {Constraint_Error (raised

by failure of run-time check)} Constraint_Error is raised if this check fails.

10 • If it is nonlimited, then the tag of the result is that of the result type.
10.a Ramification: This is true even if the tag of the return expression is different.

10.b Reason: These rules ensure that a function whose result type is a specific tagged type always returns an object
whose tag is that of the result type. This is important for dispatching on controlling result, and, if nonlimited,
allows the caller to allocate the appropriate amount of space to hold the value being returned (assuming there
are no discriminants).

11 {return-by-reference type} A type is a return-by-reference type if it is a descendant of one of the following:

12 • a tagged limited type;

13 • a task or protected type;

14 • a nonprivate type with the reserved word limited in its declaration;

15 • a composite type with a subcomponent of a return-by-reference type;

16 • a private type whose full type is a return-by-reference type.
16.a Ramification: The above rules are such that there are no "Ada 83" types other than those containing tasks that are

return-by-reference. This helps to minimize upward incompatibilities relating to return-by-reference.

17 {Accessibility_Check [partial]} {check, language-defined (Accessibility_Check)} If the result type is a return-by-
reference type, then a check is made that the return expression is one of the following:

18 • a name that denotes an object view whose accessibility level is not deeper than that of the
master that elaborated the function body; or

19 • a parenthesized expression or qualified_expression whose operand is one of these kinds of
expressions.

20 {Program_Error (raised by failure of run-time check)} The exception Program_Error is raised if this check fails.
20.a Discussion: Compare the definition of return-by-reference with that of by-reference.

20.b The return-by-reference types are all limited types except those that are limited only because of a limited private type
with a nonlimited untagged full type.

20.c Reason: {generic contract issue [partial]}

20.d This check can often be performed at compile time. It is defined to be a run-time check to avoid generic contract
model problems. In a future version of the standard, we anticipate that function return of a local variable will be illegal
for all limited types, eliminating the need for the run-time check except for dereferences of an access parameter.

21 For a function with a return-by-reference result type the result is returned by reference; that is, the func-
tion call denotes a constant view of the object associated with the value of the return expression.
{assignment operation (during execution of a return_statement)} For any other function, the result is returned by
copy; that is, the converted value is assigned into an anonymous constant created at the point of the
return_statement, and the function call denotes that object.

ISO/IEC 8652:1995(E) —AARM;6.0

209 21 December 1994 Return Statements 6.5

21.aRamification: The assignment operation does the necessary value adjustment, as described in 7.6, ‘‘User-Defined
Assignment and Finalization’’. 7.6.1 describes when the anonymous constant is finalized.

22Finally, a transfer of control is performed which completes the execution of the callable construct to
which the return_statement applies, and returns to the caller.

Examples

23Examples of return statements:
24return; -- in a procedure body, entry_body, or accept_statement

return Key_Value(Last_Index); -- in a function body

Incompatibilities With Ada 83

24.a{incompatibilities with Ada 83} In Ada 9X, if the result type of a function has a part that is a task, then an attempt to
return a local variable will raise Program_Error. In Ada 83, if a function returns a local variable containing a task,
execution is erroneous according to AI-00867. However, there are other situations where functions that return tasks (or
that return a variant record only one of whose variants includes a task) are correct in Ada 83 but will raise Program_
Error according to the new rules.

24.bThe rule change was made because there will be more types (protected types, limited controlled types) in Ada 9X for
which it will be meaningless to return a local variable, and making all of these erroneous is unacceptable. The current
rule was felt to be the simplest that kept upward incompatibilities to situations involving returning tasks, which are
quite rare.

Wording Changes From Ada 83

24.cThis clause has been moved here from chapter 5, since it has mainly to do with subprograms.

24.dA function now creates an anonymous object. This is necessary so that controlled types will work.

24.eWe have clarified that a return_statement applies to a callable construct, not to a callable entity.

24.fThere is no need to mention generics in the rules about where a return_statement can appear and what it applies to; the
phrase ‘‘body of a subprogram or generic subprogram’’ is syntactic, and refers exactly to ‘‘subprogram_body’’.

6.6 Overloading of Operators
1{operator} {user-defined operator} {operator (user-defined)} An operator is a function whose designator is an

operator_symbol. [Operators, like other functions, may be overloaded.]

Name Resolution Rules

2Each use of a unary or binary operator is equivalent to a function_call with function_prefix being the
corresponding operator_symbol, and with (respectively) one or two positional actual parameters being the
operand(s) of the operator (in order).

2.aTo be honest: We also use the term operator (in Section 4 and in 6.1) to refer to one of the syntactic categories defined
in 4.5, ‘‘Operators and Expression Evaluation’’ whose names end with ‘‘_operator:’’ logical_operator, relational_
operator, binary_adding_operator, unary_adding_operator, multiplying_operator, and highest_precedence_operator.

Legality Rules

3The subprogram_specification of a unary or binary operator shall have one or two parameters, respec-
tively. A generic function instantiation whose designator is an operator_symbol is only allowed if the
specification of the generic function has the corresponding number of parameters.

4Default_expressions are not allowed for the parameters of an operator (whether the operator is declared
with an explicit subprogram_specification or by a generic_instantiation).

5An explicit declaration of "/=" shall not have a result type of the predefined type Boolean.

ISO/IEC 8652:1995(E) —AARM;6.0

6.6 Overloading of Operators 21 December 1994 210

Static Semantics

6 A declaration of "=" whose result type is Boolean implicitly declares a declaration of "/=" that gives the
complementary result.

NOTES
7 8 The operators "+" and "–" are both unary and binary operators, and hence may be overloaded with both one- and

two-parameter functions.

Examples

8 Examples of user-defined operators:
9 function "+" (Left, Right : Matrix) return Matrix;

function "+" (Left, Right : Vector) return Vector;

-- assuming that A, B, and C are of the type Vector
-- the following two statements are equivalent:

A := B + C;
A := "+"(B, C);

Extensions to Ada 83

9.a {extensions to Ada 83} Explicit declarations of "=" are now permitted for any combination of parameter and result
types.

9.b Explicit declarations of "/=" are now permitted, so long as the result type is not Boolean.

ISO/IEC 8652:1995(E) —AARM;6.0

211 21 December 1994 Packages 7

Section 7: Packages
1[{Package} [glossary entry]Packages are program units that allow the specification of groups of logically

related entities. Typically, a package contains the declaration of a type (often a private type or private
extension) along with the declarations of primitive subprograms of the type, which can be called from
outside the package, while their inner workings remain hidden from outside users.{information hiding: see

package} {encapsulation: see package} {module: see package} {class: see also package}]

7.1 Package Specifications and Declarations
1[A package is generally provided in two parts: a package_specification and a package_body. Every

package has a package_specification, but not all packages have a package_body.]

Syntax

2package_declaration ::= package_specification;

3package_specification ::=
package defining_program_unit_name is
{basic_declarative_item}

[private
{basic_declarative_item}]

end [[parent_unit_name.]identifier]

4If an identifier or parent_unit_name.identifier appears at the end of a package_specification, then this
sequence of lexical elements shall repeat the defining_program_unit_name.

Legality Rules

5{requires a completion [package_declaration]} {requires a completion [generic_package_declaration]} A package_
declaration or generic_package_declaration requires a completion [(a body)] if it contains any
declarative_item that requires a completion, but whose completion is not in its package_specification.

5.aTo be honest: If an implementation supports it, a pragma Import may substitute for the body of a package or generic
package.

Static Semantics

6{visible part [of a package (other than a generic formal package)]} The first list of declarative_items of a package_
specification of a package other than a generic formal package is called the visible part of the package.
[{private part [of a package]} The optional list of declarative_items after the reserved word private (of any
package_specification) is called the private part of the package. If the reserved word private does not
appear, the package has an implicit empty private part.]

6.aRamification: This definition of visible part does not apply to generic formal packages — 12.7 defines the visible part
of a generic formal package.

6.bThe implicit empty private part is important because certain implicit declarations occur there if the package is a child
package, and it defines types in its visible part that are derived from, or contain as components, private types declared
within the parent package. These implicit declarations are visible in children of the child package. See 10.1.1.

7[An entity declared in the private part of a package is visible only within the declarative region of the
package itself (including any child units — see 10.1.1). In contrast, expanded names denoting entities
declared in the visible part can be used even outside the package; furthermore, direct visibility of such
entities can be achieved by means of use_clauses (see 4.1.3 and 8.4).]

ISO/IEC 8652:1995(E) —AARM;6.0

7.1 Package Specifications and Declarations 21 December 1994 212

Dynamic Semantics

8 {elaboration [package_declaration]} The elaboration of a package_declaration consists of the elaboration of its
basic_declarative_items in the given order.

NOTES
9 1 The visible part of a package contains all the information that another program unit is able to know about the package.

10 2 If a declaration occurs immediately within the specification of a package, and the declaration has a corresponding
completion that is a body, then that body has to occur immediately within the body of the package.

10.a Proof: This follows from the fact that the declaration and completion are required to occur immediately within the
same declarative region, and the fact that bodies are disallowed (by the Syntax Rules) in package_specifications. This
does not apply to instances of generic units, whose bodies can occur in package_specifications.

Examples

11 Example of a package declaration:
12 package Rational_Numbers is

13 type Rational is
record

Numerator : Integer;
Denominator : Positive;

end record;

14 function "="(X,Y : Rational) return Boolean;

15 function "/" (X,Y : Integer) return Rational; -- to construct a rational number

16 function "+" (X,Y : Rational) return Rational;
function "-" (X,Y : Rational) return Rational;
function "*" (X,Y : Rational) return Rational;
function "/" (X,Y : Rational) return Rational;

end Rational_Numbers;

17 There are also many examples of package declarations in the predefined language environment (see
Annex A).

Incompatibilities With Ada 83

17.a {incompatibilities with Ada 83} In Ada 83, a library package is allowed to have a body even if it doesn’t need one. In
Ada 9X, a library package body is either required or forbidden — never optional. The workaround is to add pragma
Elaborate_Body, or something else requiring a body, to each library package that has a body that isn’t otherwise
required.

Wording Changes From Ada 83

17.b We have moved the syntax into this clause and the next clause from RM83-7.1, ‘‘Package Structure’’, which we have
removed.

17.c RM83 was unclear on the rules about when a package requires a body. For example, RM83-7.1(4) and RM83-7.1(8)
clearly forgot about the case of an incomplete type declared in a package_declaration but completed in the body. In
addition, RM83 forgot to make this rule apply to a generic package. We have corrected these rules. Finally, since we
now allow a pragma Import for any explicit declaration, the completion rules need to take this into account as well.

7.2 Package Bodies
1 [In contrast to the entities declared in the visible part of a package, the entities declared in the package_

body are visible only within the package_body itself. As a consequence, a package with a package_body
can be used for the construction of a group of related subprograms in which the logical operations avail-
able to clients are clearly isolated from the internal entities.]

Syntax

ISO/IEC 8652:1995(E) —AARM;6.0

213 21 December 1994 Package Bodies 7.2

2package_body ::=
package body defining_program_unit_name is

declarative_part
[begin

handled_sequence_of_statements]
end [[parent_unit_name.]identifier];

3If an identifier or parent_unit_name.identifier appears at the end of a package_body, then this se-
quence of lexical elements shall repeat the defining_program_unit_name.

Legality Rules

4A package_body shall be the completion of a previous package_declaration or generic_package_
declaration. A library package_declaration or library generic_package_declaration shall not have a body
unless it requires a body[; pragma Elaborate_Body can be used to require a library_unit_declaration to
have a body (see 10.2.1) if it would not otherwise require one].

4.aRamification: The first part of the rule forbids a package_body from standing alone — it has to belong to some
previous package_declaration or generic_package_declaration.

4.bA nonlibrary package_declaration or nonlibrary generic_package_declaration that does not require a completion may
have a corresponding body anyway.

Static Semantics

5In any package_body without statements there is an implicit null_statement. For any package_
declaration without an explicit completion, there is an implicit package_body containing a single null_
statement. For a noninstance, nonlibrary package, this body occurs at the end of the declarative_part of
the innermost enclosing program unit or block_statement; if there are several such packages, the order of
the implicit package_bodies is unspecified. {unspecified [partial]} [(For an instance, the implicit package_
body occurs at the place of the instantiation (see 12.3). For a library package, the place is partially
determined by the elaboration dependences (see Section 10).)]

5.aDiscussion: Thus, for example, we can refer to something happening just after the begin of a package_body, and we
can refer to the handled_sequence_of_statements of a package_body, without worrying about all the optional pieces.
The place of the implicit body makes a difference for tasks activated by the package. See also RM83-9.3(5).

5.bThe implicit body would be illegal if explicit in the case of a library package that does not require (and therefore does
not allow) a body. This is a bit strange, but not harmful.

Dynamic Semantics

6{elaboration [nongeneric package_body]} For the elaboration of a nongeneric package_body, its declarative_part
is first elaborated, and its handled_sequence_of_statements is then executed.

NOTES
73 A variable declared in the body of a package is only visible within this body and, consequently, its value can only be

changed within the package_body. In the absence of local tasks, the value of such a variable remains unchanged between
calls issued from outside the package to subprograms declared in the visible part. The properties of such a variable are
similar to those of a ‘‘static’’ variable of C.

84 The elaboration of the body of a subprogram explicitly declared in the visible part of a package is caused by the
elaboration of the body of the package. Hence a call of such a subprogram by an outside program unit raises the exception
Program_Error if the call takes place before the elaboration of the package_body (see 3.11).

Examples

9Example of a package body (see 7.1):
10package body Rational_Numbers is

ISO/IEC 8652:1995(E) —AARM;6.0

7.2 Package Bodies 21 December 1994 214

11 procedure Same_Denominator (X,Y : in out Rational) is
begin

-- reduces X and Y to the same denominator:
...

end Same_Denominator;

12 function "="(X,Y : Rational) return Boolean is
U : Rational := X;
V : Rational := Y;

begin
Same_Denominator (U,V);
return U.Numerator = V.Numerator;

end "=";

13 function "/" (X,Y : Integer) return Rational is
begin

if Y > 0 then
return (Numerator => X, Denominator => Y);

else
return (Numerator => -X, Denominator => -Y);

end if;
end "/";

14 function "+" (X,Y : Rational) return Rational is ... end "+";
function "-" (X,Y : Rational) return Rational is ... end "-";
function "*" (X,Y : Rational) return Rational is ... end "*";
function "/" (X,Y : Rational) return Rational is ... end "/";

15 end Rational_Numbers;

Wording Changes From Ada 83

15.a The syntax rule for package_body now uses the syntactic category handled_sequence_of_statements.

15.b The declarative_part of a package_body is now required; that doesn’t make any real difference, since a declarative_part
can be empty.

15.c RM83 seems to have forgotten to say that a package_body can’t stand alone, without a previous declaration. We state
that rule here.

15.d RM83 forgot to restrict the definition of elaboration of package_bodies to nongeneric ones. We have corrected that
omission.

15.e The rule about implicit bodies (from RM83-9.3(5)) is moved here, since it is more generally applicable.

7.3 Private Types and Private Extensions
1 [The declaration (in the visible part of a package) of a type as a private type or private extension serves to

separate the characteristics that can be used directly by outside program units (that is, the logical
properties) from other characteristics whose direct use is confined to the package (the details of the
definition of the type itself). See 3.9.1 for an overview of type extensions. {private types and private

extensions} {information hiding: see private types and private extensions} {opaque type: see private types and private

extensions} {abstract data type (ADT): see private types and private extensions} {ADT (abstract data type): see private types

and private extensions}]

Language Design Principles

1.a A private (untagged) type can be thought of as a record type with the type of its single (hidden) component being the
full view.

1.b A private tagged type can be thought of as a private extension of an anonymous parent with no components. The only
dispatching operation of the parent is equality (although the Size attribute, and, if nonlimited, assignment are allowed,
and those will presumably be implemented in terms of dispatching).

ISO/IEC 8652:1995(E) —AARM;6.0

215 21 December 1994 Private Types and Private Extensions 7.3

Syntax

2private_type_declaration ::=
type defining_identifier [discriminant_part] is [[abstract] tagged] [limited] private;

3private_extension_declaration ::=
type defining_identifier [discriminant_part] is

[abstract] new ancestor_subtype_indication with private;

Legality Rules

4{partial view (of a type)} {requires a completion [declaration of a partial view]} A private_type_declaration or private_
extension_declaration declares a partial view of the type; such a declaration is allowed only as a
declarative_item of the visible part of a package, and it requires a completion, which shall be a full_type_
declaration that occurs as a declarative_item of the private part of the package. {full view (of a type)} The
view of the type declared by the full_type_declaration is called the full view. A generic formal private
type or a generic formal private extension is also a partial view.

4.aTo be honest: A private type can also be completed by a pragma Import, if supported by an implementation.

4.bReason: We originally used the term ‘‘private view,’’ but this was easily confused with the view provided from the
private part, namely the full view.

5[A type shall be completely defined before it is frozen (see 3.11.1 and 13.14). Thus, neither the decla-
ration of a variable of a partial view of a type, nor the creation by an allocator of an object of the partial
view are allowed before the full declaration of the type. Similarly, before the full declaration, the name of
the partial view cannot be used in a generic_instantiation or in a representation item.]

5.aProof: This rule is stated officially in 3.11.1, ‘‘Completions of Declarations’’.

6[A private type is limited if its declaration includes the reserved word limited; a private extension is
limited if its ancestor type is limited.] If the partial view is nonlimited, then the full view shall be
nonlimited. If a tagged partial view is limited, then the full view shall be limited. [On the other hand, if
an untagged partial view is limited, the full view may be limited or nonlimited.]

7If the partial view is tagged, then the full view shall be tagged. [On the other hand, if the partial view is
untagged, then the full view may be tagged or untagged.] In the case where the partial view is untagged
and the full view is tagged, no derivatives of the partial view are allowed within the immediate scope of
the partial view; [derivatives of the full view are allowed.]

7.aRamification: Note that deriving from a partial view within its immediate scope can only occur in a package that is a
child of the one where the partial view is declared. The rule implies that in the visible part of a public child package, it
is impossible to derive from an untagged private type declared in the visible part of the parent package in the case
where the full view of the parent type turns out to be tagged. We considered a model in which the derived type was
implicitly redeclared at the earliest place within its immediate scope where characteristics needed to be added.
However, we rejected that model, because (1) it would imply that (for an untagged type) subprograms explicitly
declared after the derived type could be inherited, and (2) to make this model work for composite types as well, several
implicit redeclarations would be needed, since new characteristics can become visible one by one; that seemed like too
much mechanism.

7.bDiscussion: The rule for tagged partial views is redundant for partial views that are private extensions, since all
extensions of a given ancestor tagged type are tagged, and limited if the ancestor is limited. We phrase this rule
partially redundantly to keep its structure parallel with the other rules.

7.cTo be honest: This rule is checked in a generic unit, rather than using the ‘‘assume the best’’ or ‘‘assume the worst’’
method.

7.dReason: Tagged limited private types have certain capabilities that are incompatible with having assignment for the
full view of the type. In particular, tagged limited private types can be extended with access discriminants and
components of a limited type, which works only because assignment is not allowed. Consider the following example:

ISO/IEC 8652:1995(E) —AARM;6.0

7.3 Private Types and Private Extensions 21 December 1994 216

7.e package P1 is
type T1 is tagged limited private;
procedure Foo(X : in T1’Class);

private
type T1 is tagged null record; -- Illegal!

-- This should say ‘‘tagged limited null record’’.
end P1;

7.f package body P1 is
type A is access T1’Class;
Global : A;
procedure Foo(X : in T1’Class) is
begin

Global := new T1’Class’(X);
-- This would be illegal if the full view of
-- T1 were limited, like it’s supposed to be.

end A;
end P1;

7.g with P1;
package P2 is

type T2(D : access Integer) -- Trouble!
is new P1.T1 with

record
My_Task : Some_Task_Type; -- More trouble!

end record;
end P2;

7.h with P1;
with P2;
procedure Main is

Local : aliased Integer;
Y : P2.T2(A => Local’Access);

begin
P1.Foo(Y);

end Main;

7.i If the above example were legal, we would have succeeded in making an access value that points to Main.Local after
Main has been left, and we would also have succeeded in doing an assignment of a task object, both of which are
supposed to be no-no’s.

7.j This rule is not needed for private extensions, because they inherit their limitedness from their ancestor, and there is a
separate rule forbidding limited components of the corresponding record extension if the parent is nonlimited.

7.k Ramification: A type derived from an untagged private type is untagged, even if the full view of the parent is tagged,
and even at places that can see the parent:

7.l package P is
type Parent is private;

private
type Parent is tagged

record
X: Integer;

end record;
end P;

7.m package Q is
type T is new Parent;

end Q;

7.n with Q; use Q;
package body P is

... T’Class ... -- Illegal!
Object: T;
... Object.X ... -- Illegal!
... Parent(Object).X ... -- OK.

end P;

7.o The declaration of T declares an untagged view. This view is always untagged, so T’Class is illegal, it would be illegal
to extend T, and so forth. The component name X is never visible for this view, although the component is still there
— one can get one’s hands on it via a type_conversion.

ISO/IEC 8652:1995(E) —AARM;6.0

217 21 December 1994 Private Types and Private Extensions 7.3

8{ancestor subtype (of a private_extension_declaration)} The ancestor subtype of a private_extension_declaration is
the subtype defined by the ancestor_subtype_indication; the ancestor type shall be a specific tagged type.
The full view of a private extension shall be derived (directly or indirectly) from the ancestor type. In
addition to the places where Legality Rules normally apply (see 12.3), the requirement that the ancestor
be specific applies also in the private part of an instance of a generic unit.

8.aReason: This rule allows the full view to be defined through several intermediate derivations, possibly from a series of
types produced by generic_instantiations.

9If the declaration of a partial view includes a known_discriminant_part, then the full_type_declaration
shall have a fully conforming [(explicit)] known_discriminant_part [(see 6.3.1, ‘‘Conformance Rules’’)].
{full conformance (required)} [The ancestor subtype may be unconstrained; the parent subtype of the full view
is required to be constrained (see 3.7).]

9.aDiscussion: If the ancestor subtype has discriminants, then it is usually best to make it unconstrained.

9.bRamification: If the partial view has a known_discriminant_part, then the full view has to be a composite, non-array
type, since only such types may have known discriminants. Also, the full view cannot inherit the discriminants in this
case; the known_discriminant_part has to be explicit.

9.cThat is, the following is illegal:

9.dpackage P is
type T(D : Integer) is private;

private
type T is new Some_Other_Type; -- Illegal!

end P;

9.eeven if Some_Other_Type has an integer discriminant called D.

9.fIt is a ramification of this and other rules that in order for a tagged type to privately inherit unconstrained discriminants,
the private type declaration has to have an unknown_discriminant_part.

10If a private extension inherits known discriminants from the ancestor subtype, then the full view shall also
inherit its discriminants from the ancestor subtype, and the parent subtype of the full view shall be
constrained if and only if the ancestor subtype is constrained.

10.aReason: The first part ensures that the full view has the same discriminants as the partial view. The second part
ensures that if the partial view is unconstrained, then the full view is also unconstrained; otherwise, a client might
constrain the partial view in a way that conflicts with the constraint on the full view.

11[If a partial view has unknown discriminants, then the full_type_declaration may define a definite or an
indefinite subtype, with or without discriminants.]

12If a partial view has neither known nor unknown discriminants, then the full_type_declaration shall define
a definite subtype.

13If the ancestor subtype of a private extension has constrained discriminants, then the parent subtype of the
full view shall impose a statically matching constraint on those discriminants. {statically matching [required]}

13.aRamification: If the parent type of the full view is not the ancestor type, but is rather some descendant thereof, the
constraint on the discriminants of the parent type might come from the declaration of some intermediate type in the
derivation chain between the ancestor type and the parent type.

13.bReason: This prevents the following:

13.cpackage P is
type T2 is new T1(Discrim => 3) with private;

private
type T2 is new T1(Discrim => 999) -- Illegal!

with record ...;
end P;

ISO/IEC 8652:1995(E) —AARM;6.0

7.3 Private Types and Private Extensions 21 December 1994 218

13.d The constraints in this example do not statically match.

13.e If the constraint on the parent subtype of the full view depends on discriminants of the full view, then the ancestor
subtype has to be unconstrained:

13.f type One_Discrim(A: Integer) is tagged ...;
...
package P is

type Two_Discrims(B: Boolean; C: Integer) is new One_Discrim with private;
private

type Two_Discrims(B: Boolean; C: Integer) is new One_Discrim(A => C) with
record

...
end record;

end P;

13.g The above example would be illegal if the private extension said ‘‘is new One_Discrim(A => C);’’, because then the
constraints would not statically match. (Constraints that depend on discriminants are not static.)

Static Semantics

14 {private type [partial]} A private_type_declaration declares a private type and its first subtype. {private

extension [partial]} Similarly, a private_extension_declaration declares a private extension and its first sub-
type.

14.a Discussion: {package-private type} A package-private type is one declared by a private_type_declaration; that is, a
private type other than a generic formal private type. {package-private extension} Similarly, a package-private
extension is one declared by a private_extension_declaration. These terms are not used in the RM9X version of this
document.

15 A declaration of a partial view and the corresponding full_type_declaration define two views of a single
type. The declaration of a partial view together with the visible part define the operations that are
available to outside program units; the declaration of the full view together with the private part define
other operations whose direct use is possible only within the declarative region of the package itself.
{characteristics} Moreover, within the scope of the declaration of the full view, the characteristics of the
type are determined by the full view; in particular, within its scope, the full view determines the classes
that include the type, which components, entries, and protected subprograms are visible, what attributes
and other predefined operations are allowed, and whether the first subtype is static. See 7.3.1.

16 A private extension inherits components (including discriminants unless there is a new discriminant_part
specified) and user-defined primitive subprograms from its ancestor type, in the same way that a record
extension inherits components and user-defined primitive subprograms from its parent type (see 3.4).

16.a To be honest: If an operation of the parent type is abstract, then the abstractness of the inherited operation is different
for nonabstract record extensions than for nonabstract private extensions (see 3.9.3).

Dynamic Semantics

17 {elaboration [private_type_declaration]} The elaboration of a private_type_declaration creates a partial view of a
type. {elaboration [private_extension_declaration]} The elaboration of a private_extension_declaration
elaborates the ancestor_subtype_indication, and creates a partial view of a type.

NOTES
18 5 The partial view of a type as declared by a private_type_declaration is defined to be a composite view (in 3.2). The full

view of the type might or might not be composite. A private extension is also composite, as is its full view.

19 6 Declaring a private type with an unknown_discriminant_part is a way of preventing clients from creating uninitialized
objects of the type; they are then forced to initialize each object by calling some operation declared in the visible part of the
package. If such a type is also limited, then no objects of the type can be declared outside the scope of the full_type_
declaration, restricting all object creation to the package defining the type. This allows complete control over all storage
allocation for the type. Objects of such a type can still be passed as parameters, however.

ISO/IEC 8652:1995(E) —AARM;6.0

219 21 December 1994 Private Types and Private Extensions 7.3

19.aDiscussion: {generic contract/private type contract analogy} Packages with private types are analogous to generic
packages with formal private types, as follows: The declaration of a package-private type is like the declaration of a
formal private type. The visible part of the package is like the generic formal part; these both specify a contract (that
is, a set of operations and other things available for the private type). The private part of the package is like an
instantiation of the generic; they both give a full_type_declaration that specifies implementation details of the private
type. The clients of the package are like the body of the generic; usage of the private type in these places is restricted
to the operations defined by the contract.

19.bIn other words, being inside the package is like being outside the generic, and being outside the package is like being
inside the generic; a generic is like an ‘‘inside-out’’ package.

19.cThis analogy also works for private extensions in the same inside-out way.

19.dMany of the legality rules are defined with this analogy in mind. See, for example, the rules relating to operations of
[formal] derived types.

19.eThe completion rules for a private type are intentionally quite similar to the matching rules for a generic formal private
type.

19.fThis analogy breaks down in one respect: a generic actual subtype is a subtype, whereas the full view for a private type
is always a new type. (We considered allowing the completion of a private_type_declaration to be a subtype_
declaration, but the semantics just won’t work.) This difference is behind the fact that a generic actual type can be
class-wide, whereas the completion of a private type always declares a specific type.

207 The ancestor type specified in a private_extension_declaration and the parent type specified in the corresponding
declaration of a record extension given in the private part need not be the same — the parent type of the full view can be
any descendant of the ancestor type. In this case, for a primitive subprogram that is inherited from the ancestor type and
not overridden, the formal parameter names and default expressions (if any) come from the corresponding primitive
subprogram of the specified ancestor type, while the body comes from the corresponding primitive subprogram of the
parent type of the full view. See 3.9.2.

Examples

21Examples of private type declarations:
22type Key is private;

type File_Name is limited private;

23Example of a private extension declaration:
24type List is new Ada.Finalization.Controlled with private;

Extensions to Ada 83

24.a{extensions to Ada 83} The syntax for a private_type_declaration is augmented to allow the reserved word tagged.

24.bIn Ada 83, a private type without discriminants cannot be completed with a type with discriminants. Ada 9X allows
the full view to have discriminants, so long as they have defaults (that is, so long as the first subtype is definite). This
change is made for uniformity with generics, and because the rule as stated is simpler and easier to remember than the
Ada 83 rule. In the original version of Ada 83, the same restriction applied to generic formal private types. However,
the restriction was removed by the ARG for generics. In order to maintain the ‘‘generic contract/private type contract
analogy’’ discussed above, we have to apply the same rule to package-private types. Note that a private untagged type
without discriminants can be completed with a tagged type with discriminants only if the full view is constrained,
because discriminants of tagged types cannot have defaults.

Wording Changes From Ada 83

24.cRM83-7.4.1(4), ‘‘Within the specification of the package that declares a private type and before the end of the
corresponding full type declaration, a restriction applies....’’, is subsumed (and corrected) by the rule that a type shall
be completely defined before it is frozen, and the rule that the parent type of a derived type declaration shall be
completely defined, unless the derived type is a private extension.

7.3.1 Private Operations
1[For a type declared in the visible part of a package or generic package, certain operations on the type do

not become visible until later in the package — either in the private part or the body. {private operations}

Such private operations are available only inside the declarative region of the package or generic
package.]

ISO/IEC 8652:1995(E) —AARM;6.0

7.3.1 Private Operations 21 December 1994 220

Static Semantics

2 The predefined operators that exist for a given type are determined by the classes to which the type
belongs. For example, an integer type has a predefined "+" operator. In most cases, the predefined
operators of a type are declared immediately after the definition of the type; the exceptions are explained
below. Inherited subprograms are also implicitly declared immediately after the definition of the type,
except as stated below.

3 For a composite type, the characteristics (see 7.3) of the type are determined in part by the characteristics
of its component types. At the place where the composite type is declared, the only characteristics of
component types used are those characteristics visible at that place. If later within the immediate scope of
the composite type additional characteristics become visible for a component type, then any correspond-
ing characteristics become visible for the composite type. Any additional predefined operators are im-
plicitly declared at that place.

4 The corresponding rule applies to a type defined by a derived_type_definition, if there is a place within its
immediate scope where additional characteristics of its parent type become visible.

5 {become nonlimited} {nonlimited type (becoming nonlimited)} {limited type (becoming nonlimited)} [For example, an array
type whose component type is limited private becomes nonlimited if the full view of the component type
is nonlimited and visible at some later place within the immediate scope of the array type. In such a case,
the predefined "=" operator is implicitly declared at that place, and assignment is allowed after that place.]

6 Inherited primitive subprograms follow a different rule. For a derived_type_definition, each inherited
primitive subprogram is implicitly declared at the earliest place, if any, within the immediate scope of the
type_declaration, but after the type_declaration, where the corresponding declaration from the parent is
visible. If there is no such place, then the inherited subprogram is not declared at all. [An inherited
subprogram that is not declared at all cannot be named in a call and cannot be overridden, but for a tagged
type, it is possible to dispatch to it.]

7 For a private_extension_declaration, each inherited subprogram is declared immediately after the private_
extension_declaration if the corresponding declaration from the ancestor is visible at that place. Other-
wise, the inherited subprogram is not declared for the private extension, [though it might be for the full
type].

7.a Reason: There is no need for the ‘‘earliest place within the immediate scope’’ business here, because a private_
extension_declaration will be completed with a full_type_declaration, so we can hang the necessary private implicit
declarations on the full_type_declaration.

7.b Discussion: The above rules matter only when the component type (or parent type) is declared in the visible part of a
package, and the composite type (or derived type) is declared within the declarative region of that package (possibly in
a nested package or a child package).

7.c Consider:

7.d package Parent is
type Root is tagged null record;
procedure Op1(X : Root);

7.e type My_Int is range 1..10;
private

procedure Op2(X : Root);

7.f type Another_Int is new My_Int;
procedure Int_Op(X : My_Int);

end Parent;

ISO/IEC 8652:1995(E) —AARM;6.0

221 21 December 1994 Private Operations 7.3.1

7.gwith Parent; use Parent;
package Unrelated is

type T2 is new Root with null record;
procedure Op2(X : T2);

end Unrelated;

7.hpackage Parent.Child is
type T3 is new Root with null record;
-- Op1(T3) implicitly declared here.

7.ipackage Nested is
type T4 is new Root with null record;

private
...

end Nested;
private

-- Op2(T3) implicitly declared here.
...

end Parent.Child;

7.jwith Unrelated; use Unrelated;
package body Parent.Child is

package body Nested is
-- Op2(T4) implicitly declared here.

end Nested;

7.ktype T5 is new T2 with null record;
end Parent.Child;

7.lAnother_Int does not inherit Int_Op, because Int_Op does not ‘‘exist’’ at the place where Another_Int is declared.

7.mType T2 inherits Op1 and Op2 from Root. However, the inherited Op2 is never declared, because Parent.Op2 is never
visible within the immediate scope of T2. T2 explicitly declares its own Op2, but this is unrelated to the inherited one
— it does not override the inherited one, and occupies a different slot in the type descriptor.

7.nT3 inherits both Op1 and Op2. Op1 is implicitly declared immediately after the type declaration, whereas Op2 is
declared at the beginning of the private part. Note that if Child were a private child of Parent, then Op1 and Op2 would
both be implicitly declared immediately after the type declaration.

7.oT4 is similar to T3, except that the earliest place within T4’s immediate scope where Root’s Op2 is visible is in the
body of Nested.

7.pIf T3 or T4 were to declare a type-conformant Op2, this would override the one inherited from Root. This is different
from the situation with T2.

7.qT5 inherits Op1 and two Op2’s from T2. Op1 is implicitly declared immediately after the declaration of T5, as is the
Op2 that came from Unrelated.Op2. However, the Op2 that originally came from Parent.Op2 is never implicitly
declared for T5, since T2’s version of that Op2 is never visible (anywhere — it never got declared either).

7.rFor all of these rules, implicit private parts and bodies are assumed as needed.

7.sIt is possible for characteristics of a type to be revealed in more than one place:

7.tpackage P is
type Comp1 is private;

private
type Comp1 is new Boolean;

end P;

ISO/IEC 8652:1995(E) —AARM;6.0

7.3.1 Private Operations 21 December 1994 222

7.u package P.Q is
package R is

type Comp2 is limited private;
type A is array(Integer range <>) of Comp2;

private
type Comp2 is new Comp1;
-- A becomes nonlimited here.
-- "="(A, A) return Boolean is implicitly declared here.
...

end R;
private

-- Now we find out what Comp1 really is, which reveals
-- more information about Comp2, but we’re not within
-- the immediate scope of Comp2, so we don’t do anything
-- about it yet.

end P.Q;

7.v package body P.Q is
package body R is

-- Things like "xor"(A,A) return A are implicitly
-- declared here.

end R;
end P.Q;

8 [The Class attribute is defined for tagged subtypes in 3.9. In addition,] for every subtype S of an un-
tagged private type whose full view is tagged, the following attribute is defined:

S’Class Denotes the class-wide subtype corresponding to the full view of S. This attribute is9

allowed only from the beginning of the private part in which the full view is declared,
until the declaration of the full view. [After the full view, the Class attribute of the
full view can be used.]

NOTES
10 8 Because a partial view and a full view are two different views of one and the same type, outside of the defining package

the characteristics of the type are those defined by the visible part. Within these outside program units the type is just a
private type or private extension, and any language rule that applies only to another class of types does not apply. The fact
that the full declaration might implement a private type with a type of a particular class (for example, as an array type) is
relevant only within the declarative region of the package itself including any child units.

11 The consequences of this actual implementation are, however, valid everywhere. For example: any default initialization of
components takes place; the attribute Size provides the size of the full view; finalization is still done for controlled
components of the full view; task dependence rules still apply to components that are task objects.

12 9 Partial views provide assignment (unless the view is limited), membership tests, selected components for the selection
of discriminants and inherited components, qualification, and explicit conversion.

13 10 For a subtype S of a partial view, S’Size is defined (see 13.3). For an object A of a partial view, the attributes A’Size
and A’Address are defined (see 13.3). The Position, First_Bit, and Last_Bit attributes are also defined for discriminants
and inherited components.

Examples

14 Example of a type with private operations:
15 package Key_Manager is

type Key is private;
Null_Key : constant Key; -- a deferred constant declaration (see 7.4)
procedure Get_Key(K : out Key);
function "<" (X, Y : Key) return Boolean;

private
type Key is new Natural;
Null_Key : constant Key := Key’First;

end Key_Manager;

ISO/IEC 8652:1995(E) —AARM;6.0

223 21 December 1994 Private Operations 7.3.1

16package body Key_Manager is
Last_Key : Key := Null_Key;
procedure Get_Key(K : out Key) is
begin

Last_Key := Last_Key + 1;
K := Last_Key;

end Get_Key;

17function "<" (X, Y : Key) return Boolean is
begin

return Natural(X) < Natural(Y);
end "<";

end Key_Manager;

NOTES
1811 Notes on the example: Outside of the package Key_Manager, the operations available for objects of type Key include

assignment, the comparison for equality or inequality, the procedure Get_Key and the operator "<"; they do not include
other relational operators such as ">=", or arithmetic operators.

19The explicitly declared operator "<" hides the predefined operator "<" implicitly declared by the full_type_declaration.
Within the body of the function, an explicit conversion of X and Y to the subtype Natural is necessary to invoke the "<"
operator of the parent type. Alternatively, the result of the function could be written as not (X >= Y), since the operator
">=" is not redefined.

20The value of the variable Last_Key, declared in the package body, remains unchanged between calls of the procedure Get_
Key. (See also the NOTES of 7.2.)

Wording Changes From Ada 83

20.aThe phrase in RM83-7.4.2(7), ‘‘...after the full type declaration’’, doesn’t work in the presence of child units, so we
define that rule in terms of visibility.

20.bThe definition of the Constrained attribute for private types has been moved to ‘‘Obsolescent Features.’’ (The
Constrained attribute of an object has not been moved there.)

7.4 Deferred Constants
1[Deferred constant declarations may be used to declare constants in the visible part of a package, but with

the value of the constant given in the private part. They may also be used to declare constants imported
from other languages (see Annex B).]

Legality Rules

2[{deferred constant declaration} A deferred constant declaration is an object_declaration with the reserved
word constant but no initialization expression.]

2.aProof: This is stated officially in Section 3.

{deferred constant} The constant declared by a deferred constant declaration is called a deferred constant.
{requires a completion [deferred constant declaration]} A deferred constant declaration requires a completion,
which shall be a full constant declaration (called the full declaration of the deferred constant), or a
pragma Import (see Annex B). {full declaration}

3A deferred constant declaration that is completed by a full constant declaration shall occur immediately
within the visible part of a package_specification. For this case, the following additional rules apply to
the corresponding full declaration:

4• The full declaration shall occur immediately within the private part of the same package;

5• The deferred and full constants shall have the same type;
5.aRamification: This implies that both the deferred declaration and the full declaration have to have a subtype_

indication rather than an array_type_definition, because each array_type_definition would define a new type.

ISO/IEC 8652:1995(E) —AARM;6.0

7.4 Deferred Constants 21 December 1994 224

6 • If the subtype defined by the subtype_indication in the deferred declaration is constrained,
then the subtype defined by the subtype_indication in the full declaration shall match it stati-
cally. [On the other hand, if the subtype of the deferred constant is unconstrained, then the
full declaration is still allowed to impose a constraint. The constant itself will be constrained,
like all constants;]

7 • If the deferred constant declaration includes the reserved word aliased, then the full decla-
ration shall also.

7.a Ramification: On the other hand, the full constant can be aliased even if the deferred constant is not.

8 [A deferred constant declaration that is completed by a pragma Import need not appear in the visible part
of a package_specification, and has no full constant declaration.]

9 The completion of a deferred constant declaration shall occur before the constant is frozen (see 7.4).

Dynamic Semantics

10 {elaboration [deferred constant declaration]} The elaboration of a deferred constant declaration elaborates the
subtype_indication or (only allowed in the case of an imported constant) the array_type_definition.

NOTES
11 12 The full constant declaration for a deferred constant that is of a given private type or private extension is not allowed

before the corresponding full_type_declaration. This is a consequence of the freezing rules for types (see 13.14).

11.a Ramification: Multiple or single declarations are allowed for the deferred and the full declarations, provided that the
equivalent single declarations would be allowed.

11.b Deferred constant declarations are useful for declaring constants of private views, and types with components of private
views. They are also useful for declaring access-to-constant objects that designate variables declared in the private part
of a package.

Examples

12 Examples of deferred constant declarations:
13 Null_Key : constant Key; -- see 7.3.1

14 CPU_Identifier : constant String(1..8);
pragma Import(Assembler, CPU_Identifier, Link_Name => "CPU_ID");

-- see B.1

Extensions to Ada 83

14.a {extensions to Ada 83} In Ada 83, a deferred constant is required to be of a private type declared in the same visible
part. This restriction is removed for Ada 9X; deferred constants can be of any type.

14.b In Ada 83, a deferred constant declaration was not permitted to include a constraint, nor the reserved word aliased.

14.c In Ada 83, the rules required conformance of type marks; here we require static matching of subtypes if the deferred
constant is constrained.

14.d A deferred constant declaration can be completed with a pragma Import. Such a deferred constant declaration need not
be within a package_specification.

14.e The rules for too-early uses of deferred constants are modified in Ada 9X to allow more cases, and catch all errors at
compile time. This change is necessary in order to allow deferred constants of a tagged type without violating the
principle that for a dispatching call, there is always an implementation to dispatch to. It has the beneficial side-effect of
catching some Ada-83-erroneous programs at compile time. The new rule fits in well with the new freezing-point
rules. Furthermore, we are trying to convert undefined-value problems into bounded errors, and we were having
trouble for the case of deferred constants. Furthermore, uninitialized deferred constants cause trouble for the shared
variable / tasking rules, since they are really variable, even though they purport to be constant. In Ada 9X, they cannot
be touched until they become constant.

14.f Note that we do not consider this change to be an upward incompatibility, because it merely changes an erroneous
execution in Ada 83 into a compile-time error.

ISO/IEC 8652:1995(E) —AARM;6.0

225 21 December 1994 Deferred Constants 7.4

14.gThe Ada 83 semantics are unclear in the case where the full view turns out to be an access type. It is a goal of the
language design to prevent uninitialized access objects. One wonders if the implementation is required to initialize the
deferred constant to null, and then initialize it (again!) to its real value. In Ada 9X, the problem goes away.

Wording Changes From Ada 83

14.hSince deferred constants can now be of a nonprivate type, we have made this a stand-alone clause, rather than a
subclause of 7.3, ‘‘Private Types and Private Extensions’’.

14.iDeferred constant declarations used to have their own syntax, but now they are simply a special case of object_
declarations.

7.5 Limited Types
1[{Limited type} [glossary entry]A limited type is (a view of) a type for which the assignment operation is

not allowed. A nonlimited type is a (view of a) type for which the assignment operation is allowed.]
1.aDiscussion: The concept of the value of a limited type is difficult to define, since the abstract value of a limited type

often extends beyond its physical representation. In some sense, values of a limited type cannot be divorced from their
object. The value is the object.

1.bIn Ada 83, in the two places where limited types were defined by the language, namely tasks and files, an implicit level
of indirection was implied by the semantics to avoid the separation of the value from an associated object. In Ada 9X,
most limited types are passed by reference, and even return-ed by reference.

1.cTo be honest: For a limited partial view whose full view is nonlimited, assignment is possible on parameter passing
and function return. To prevent any copying whatsoever, one should make both the partial and full views limited.

Legality Rules

2If a tagged record type has any limited components, then the reserved word limited shall appear in its
record_type_definition.

2.aReason: This prevents tagged limited types from becoming nonlimited. Otherwise, the following could happen:

2.bpackage P is
type T is limited private;
type R is tagged

record -- Illegal!
-- This should say ‘‘limited record’’.

X : T;
end record;

private
type T is new Integer; -- R becomes nonlimited here.

end P;

2.cpackage Q is
type R2(Access_Discrim : access ...) is new R with

record
Y : Some_Task_Type;

end record;
end Q;

2.dIf the above were legal, then assignment would be defined for R’Class in the body of P, which is bad news, given the
access discriminant and the task.

Static Semantics

3{limited type} A type is limited if it is a descendant of one of the following:

4• a type with the reserved word limited in its definition;
4.aRamification: Note that there is always a ‘‘definition,’’ conceptually, even if there is no syntactic category

called ‘‘..._definition’’.

5• a task or protected type;

6• a composite type with a limited component.

ISO/IEC 8652:1995(E) —AARM;6.0

7.5 Limited Types 21 December 1994 226

7 {nonlimited type} Otherwise, the type is nonlimited.

8 [There are no predefined equality operators for a limited type.]

NOTES
9 13 The following are consequences of the rules for limited types:

10 • An initialization expression is not allowed in an object_declaration if the type of the object is limited.

11 • A default expression is not allowed in a component_declaration if the type of the record component is limited.

12 • An initialized allocator is not allowed if the designated type is limited.

13 • A generic formal parameter of mode in must not be of a limited type.

14 14 Aggregates are not available for a limited composite type. Concatenation is not available for a limited array type.

15 15 The rules do not exclude a default_expression for a formal parameter of a limited type; they do not exclude a deferred
constant of a limited type if the full declaration of the constant is of a nonlimited type.

16 16 {become nonlimited} {nonlimited type (becoming nonlimited)} {limited type (becoming nonlimited)} As illustrated in
7.3.1, an untagged limited type can become nonlimited under certain circumstances.

16.a Ramification: Limited private types do not become nonlimited; instead, their full view can be nonlimited, which has a
similar effect.

16.b It is important to remember that a single nonprivate type can be both limited and nonlimited in different parts of its
scope. In other words, ‘‘limited’’ is a property that depends on where you are in the scope of the type. We don’t call
this a ‘‘view property’’ because there is no particular declaration to declare the nonlimited view.

16.c Tagged types never become nonlimited.

Examples

17 Example of a package with a limited type:
18 package IO_Package is

type File_Name is limited private;

19 procedure Open (F : in out File_Name);
procedure Close(F : in out File_Name);
procedure Read (F : in File_Name; Item : out Integer);
procedure Write(F : in File_Name; Item : in Integer);

private
type File_Name is

limited record
Internal_Name : Integer := 0;

end record;
end IO_Package;

20 package body IO_Package is
Limit : constant := 200;
type File_Descriptor is record ... end record;
Directory : array (1 .. Limit) of File_Descriptor;
...
procedure Open (F : in out File_Name) is ... end;
procedure Close(F : in out File_Name) is ... end;
procedure Read (F : in File_Name; Item : out Integer) is ... end;
procedure Write(F : in File_Name; Item : in Integer) is ... end;

begin
...

end IO_Package;

NOTES
21 17 Notes on the example: In the example above, an outside subprogram making use of IO_Package may obtain a file

name by calling Open and later use it in calls to Read and Write. Thus, outside the package, a file name obtained from
Open acts as a kind of password; its internal properties (such as containing a numeric value) are not known and no other
operations (such as addition or comparison of internal names) can be performed on a file name. Most importantly, clients
of the package cannot make copies of objects of type File_Name.

ISO/IEC 8652:1995(E) —AARM;6.0

227 21 December 1994 Limited Types 7.5

22This example is characteristic of any case where complete control over the operations of a type is desired. Such packages
serve a dual purpose. They prevent a user from making use of the internal structure of the type. They also implement the
notion of an encapsulated data type where the only operations on the type are those given in the package specification.

23The fact that the full view of File_Name is explicitly declared limited means that parameter passing and function return
will always be by reference (see 6.2 and 6.5).

Extensions to Ada 83

23.a{extensions to Ada 83} The restrictions in RM83-7.4.4(4), which disallowed out parameters of limited types in certain
cases, are removed.

Wording Changes From Ada 83

23.bSince limitedness and privateness are orthogonal in Ada 9X (and to some extent in Ada 83), this is now its own clause
rather than being a subclause of 7.3, ‘‘Private Types and Private Extensions’’.

7.6 User-Defined Assignment and Finalization
1[{user-defined assignment} {assignment (user-defined)} Three kinds of actions are fundamental to the manipulation

of objects: initialization, finalization, and assignment. Every object is initialized, either explicitly or by
default, after being created (for example, by an object_declaration or allocator). Every object is finalized
before being destroyed (for example, by leaving a subprogram_body containing an object_declaration, or
by a call to an instance of Unchecked_Deallocation). An assignment operation is used as part of
assignment_statements, explicit initialization, parameter passing, and other operations. {constructor: see

initialization} {constructor: see Initialize} {destructor: see finalization}

2Default definitions for these three fundamental operations are provided by the language, but {controlled

type} a controlled type gives the user additional control over parts of these operations.
2.aGlossary entry: {Controlled type} A controlled type supports user-defined assignment and finalization. Objects are

always finalized before being destroyed.

{Initialize} {Finalize} {Adjust} In particular, the user can define, for a controlled type, an Initialize procedure
which is invoked immediately after the normal default initialization of a controlled object, a Finalize
procedure which is invoked immediately before finalization of any of the components of a controlled
object, and an Adjust procedure which is invoked as the last step of an assignment to a (nonlimited)
controlled object.]

2.bRamification: Here’s the basic idea of initialization, value adjustment, and finalization, whether or not user defined:
When an object is created, if it is explicitly assigned an initial value, the assignment copies and adjusts the initial value.
Otherwise, Initialize is applied to it (except in the case of an aggregate as a whole). An assignment_statement finalizes
the target before copying in and adjusting the new value. Whenever an object goes away, it is finalized. Calls on
Initialize and Adjust happen bottom-up; that is, components first, followed by the containing object. Calls on Finalize
happens top-down; that is, first the containing object, and then its components. These ordering rules ensure that any
components will be in a well-defined state when Initialize, Adjust, or Finalize is applied to the containing object.

Static Semantics

3The following language-defined library package exists:
4

package Ada.Finalization is
pragma Preelaborate(Finalization);

5type Controlled is abstract tagged private;

6procedure Initialize(Object : in out Controlled);
procedure Adjust (Object : in out Controlled);
procedure Finalize (Object : in out Controlled);

7type Limited_Controlled is abstract tagged limited private;

ISO/IEC 8652:1995(E) —AARM;6.0

7.6 User-Defined Assignment and Finalization 21 December 1994 228

8

procedure Initialize(Object : in out Limited_Controlled);
procedure Finalize (Object : in out Limited_Controlled);

private
... -- not specified by the language

end Ada.Finalization;

9 {controlled type} A controlled type is a descendant of Controlled or Limited_Controlled.
9.a Discussion: We say ‘‘nonlimited controlled types’’ when we want to talk about descendants of Controlled only.

The (default) implementations of Initialize, Adjust, and Finalize have no effect. The predefined "="
operator of type Controlled always returns True, [since this operator is incorporated into the implemen-
tation of the predefined equality operator of types derived from Controlled, as explained in 4.5.2.] The
type Limited_Controlled is like Controlled, except that it is limited and it lacks the primitive subprogram
Adjust.

9.b Reason: We considered making Adjust and Finalize abstract. However, a reasonable coding convention is e.g. for
Finalize to always call the parent’s Finalize after doing whatever work is needed for the extension part. (Unlike CLOS,
we have no way to do that automatically in Ada 9X.) For this to work, Finalize cannot be abstract. In a generic unit,
for a generic formal abstract derived type whose ancestor is Controlled or Limited_Controlled, calling the ancestor’s
Finalize would be illegal if it were abstract, even though the actual type might have a concrete version.

9.c Types Controlled and Limited_Controlled are abstract, even though they have no abstract primitive subprograms. It is
not clear that they need to be abstract, but there seems to be no harm in it, and it might make an implementation’s life
easier to know that there are no objects of these types — in case the implementation wishes to make them ‘‘magic’’ in
some way.

Dynamic Semantics

10 {elaboration [object_declaration]} During the elaboration of an object_declaration, for every controlled sub-
component of the object that is not assigned an initial value (as defined in 3.3.1), Initialize is called on
that subcomponent. Similarly, if the object as a whole is controlled and is not assigned an initial value,
Initialize is called on the object. The same applies to the evaluation of an allocator, as explained in 4.8.

11 For an extension_aggregate whose ancestor_part is a subtype_mark, Initialize is called on all controlled
subcomponents of the ancestor part; if the type of the ancestor part is itself controlled, the Initialize
procedure of the ancestor type is called, unless that Initialize procedure is abstract.

11.a Discussion: Example:

11.b type T1 is new Controlled with
record

... -- some components might have defaults
end record;

11.c type T2 is new Controlled with
record

X : T1; -- no default
Y : T1 := ...; -- default

end record;

11.d A : T2;
B : T2 := ...;

11.e As part of the elaboration of A’s declaration, A.Y is assigned a value; therefore Initialize is not applied to A.Y.
Instead, Adjust is applied to A.Y as part of the assignment operation. Initialize is applied to A.X and to A, since those
objects are not assigned an initial value. The assignment to A.Y is not considered an assignment to A.

11.f For the elaboration of B’s declaration, Initialize is not called at all. Instead the assignment adjusts B’s value; that is, it
applies Adjust to B.X, B.Y, and B.

12 Initialize and other initialization operations are done in an arbitrary order, except as follows. Initialize is
applied to an object after initialization of its subcomponents, if any [(including both implicit initialization

ISO/IEC 8652:1995(E) —AARM;6.0

229 21 December 1994 User-Defined Assignment and Finalization 7.6

and Initialize calls)]. If an object has a component with an access discriminant constrained by a per-
object expression, Initialize is applied to this component after any components that do not have such
discriminants. For an object with several components with such a discriminant, Initialize is applied to
them in order of their component_declarations. For an allocator, any task activations follow all calls on
Initialize.

12.aReason: The fact that Initialize is done for subcomponents first allows Initialize for a composite object to refer to its
subcomponents knowing they have been properly initialized.

12.bThe fact that Initialize is done for components with access discriminants after other components allows the Initialize
operation for a component with a self-referential access discriminant to assume that other components of the enclosing
object have already been properly initialized. For multiple such components, it allows some predictability.

13{assignment operation} When a target object with any controlled parts is assigned a value, [either when
created or in a subsequent assignment_statement,] the assignment operation proceeds as follows:

14• The value of the target becomes the assigned value.

15• {adjusting the value of an object} {adjustment} The value of the target is adjusted.
15.aRamification: If any parts of the object are controlled, abort is deferred during the assignment operation.

16{adjusting the value of an object} {adjustment} To adjust the value of a [(nonlimited)] composite object, the
values of the components of the object are first adjusted in an arbitrary order, and then, if the object is
controlled, Adjust is called. Adjusting the value of an elementary object has no effect[, nor does adjust-
ing the value of a composite object with no controlled parts.]

16.aRamification: Adjustment is never performed for values of a by-reference limited type, since these types do not
support copying.

16.bReason: The verbiage in the Initialize rule about access discriminants constrained by per-object expressions is not
necessary here, since such types are limited, and therefore are never adjusted.

17{execution [assignment_statement]} For an assignment_statement, [after the name and expression have been
evaluated, and any conversion (including constraint checking) has been done,] an anonymous object is
created, and the value is assigned into it; [that is, the assignment operation is applied]. [(Assignment
includes value adjustment.)] The target of the assignment_statement is then finalized. The value of the
anonymous object is then assigned into the target of the assignment_statement. Finally, the anonymous
object is finalized. [As explained below, the implementation may eliminate the intermediate anonymous
object, so this description subsumes the one given in 5.2, ‘‘Assignment Statements’’.]

17.aReason: An alternative design for user-defined assignment might involve an Assign operation instead of Adjust:

17.bprocedure Assign(Target : in out Controlled; Source : in out Controlled);

17.cOr perhaps even a syntax like this:

17.dprocedure ":="(Target : in out Controlled; Source : in out Controlled);

17.eAssign (or ":=") would have the responsibility of doing the copy, as well as whatever else is necessary. This would
have the advantage that the Assign operation knows about both the target and the source at the same time — it would
be possible to do things like reuse storage belonging to the target, for example, which Adjust cannot do. However, this
sort of design would not work in the case of unconstrained discriminated variables, because there is no way to change
the discriminants individually. For example:

17.ftype Mutable(D : Integer := 0) is
record

X : Array_Of_Controlled_Things(1..D);
case D is

when 17 => Y : Controlled_Thing;
when others => null;

end D;
end record;

ISO/IEC 8652:1995(E) —AARM;6.0

7.6 User-Defined Assignment and Finalization 21 December 1994 230

17.g An assignment to an unconstrained variable of type Mutable can cause some of the components of X, and the
component Y, to appear and/or disappear. There is no way to write the Assign operation to handle this sort of case.

17.h Forbidding such cases is not an option — it would cause generic contract model violations.

Implementation Permissions

18 An implementation is allowed to relax the above rules [(for nonlimited controlled types)] in the following
ways:

18.a Proof: The phrase ‘‘for nonlimited controlled types’’ follows from the fact that all of the following permissions apply
to cases involving assignment. It is important because the programmer can count on a stricter semantics for limited
controlled types.

19 • For an assignment_statement that assigns to an object the value of that same object, the
implementation need not do anything.

19.a Ramification: In other words, even if an object is controlled and a combination of Finalize and Adjust on the
object might have a net side effect, they need not be performed.

20 • For an assignment_statement for a noncontrolled type, the implementation may finalize and
assign each component of the variable separately (rather than finalizing the entire variable
and assigning the entire new value) unless a discriminant of the variable is changed by the
assignment.

20.a Reason: For example, in a slice assignment, an anonymous object is not necessary if the slice is copied
component-by-component in the right direction, since array types are not controlled (although their components
may be). Note that the direction, and even the fact that it’s a slice assignment, can in general be determined
only at run time.

21 • For an aggregate or function call whose value is assigned into a target object, the implemen-
tation need not create a separate anonymous object if it can safely create the value of the
aggregate or function call directly in the target object. Similarly, for an assignment_
statement, the implementation need not create an anonymous object if the value being as-
signed is the result of evaluating a name denoting an object (the source object) whose storage
cannot overlap with the target. If the source object might overlap with the target object, then
the implementation can avoid the need for an intermediary anonymous object by exercising
one of the above permissions and perform the assignment one component at a time (for an
overlapping array assignment), or not at all (for an assignment where the target and the
source of the assignment are the same object). Even if an anonymous object is created, the
implementation may move its value to the target object as part of the assignment without
re-adjusting so long as the anonymous object has no aliased subcomponents.

21.a Ramification: In the aggregate case, only one value adjustment is necessary, and there is no anonymous object
to be finalized.

21.b In the assignment_statement case as well, no finalization of the anonymous object is needed. On the other
hand, if the target has aliased subcomponents, then an adjustment takes place directly on the target object as the
last step of the assignment, since some of the subcomponents may be self-referential or otherwise position-
dependent.

Extensions to Ada 83

21.c {extensions to Ada 83} Controlled types and user-defined finalization are new to Ada 9X. (Ada 83 had finalization
semantics only for masters of tasks.)

7.6.1 Completion and Finalization
1 [This subclause defines completion and leaving of the execution of constructs and entities. A master is

the execution of a construct that includes finalization of local objects after it is complete (and after
waiting for any local tasks — see 9.3), but before leaving. Other constructs and entities are left im-
mediately upon completion. {cleanup: see finalization} {destructor: see finalization}]

ISO/IEC 8652:1995(E) —AARM;6.0

231 21 December 1994 Completion and Finalization 7.6.1

Dynamic Semantics

2{completion and leaving (completed and left)} {completion (run-time concept)} The execution of a construct or entity is
complete when the end of that execution has been reached, or when a transfer of control (see 5.1) causes it
to be abandoned. {normal completion} {completion (normal)} {abnormal completion} {completion (abnormal)}

Completion due to reaching the end of execution, or due to the transfer of control of an exit_, return_,
goto_, or requeue_statement or of the selection of a terminate_alternative is normal completion.
Completion is abnormal otherwise [— when control is transferred out of a construct due to abort or the
raising of an exception].

2.aDiscussion: Don’t confuse the run-time concept of completion with the compile-time concept of completion defined in
3.11.1.

3{leaving} {left} After execution of a construct or entity is complete, it is left, meaning that execution con-
tinues with the next action, as defined for the execution that is taking place. {master} Leaving an execution
happens immediately after its completion, except in the case of a master: the execution of a task_body, a
block_statement, a subprogram_body, an entry_body, or an accept_statement. A master is finalized after
it is complete, and before it is left.

3.aReason: Note that although an accept_statement has no declarative_part, it can call functions and evaluate aggregates,
possibly causing anonymous controlled objects to be created, and we don’t want those objects to escape outside the
rendezvous.

4{finalization (of a master)} For the finalization of a master, dependent tasks are first awaited, as explained in
9.3. Then each object whose accessibility level is the same as that of the master is finalized if the object
was successfully initialized and still exists. [These actions are performed whether the master is left by
reaching the last statement or via a transfer of control.]

4.aRamification: As explained in 3.10.2, the set of objects with the same accessibility level as that of the master includes
objects declared immediately within the master, objects declared in nested packages, objects created by allocators (if
the ultimate ancestor access type is declared in one of those places) and subcomponents of all of these things. If an
object was already finalized by Unchecked_Deallocation, then it is not finalized again when the master is left.

4.bNote that any object whose accessibility level is deeper than that of the master would no longer exist; those objects
would have been finalized by some inner master. Thus, after leaving a master, the only objects yet to be finalized are
those whose accessibility level is less deep than that of the master.

4.cTo be honest: Subcomponents of objects due to be finalized are not finalized by the finalization of the master; they are
finalized by the finalization of the containing object.

4.dReason: We need to finalize subcomponents of objects even if the containing object is not going to get finalized
because it was not fully initialized. But if the containing object is finalized, we don’t want to require repeated
finalization of the subcomponents, as might normally be implied by the recursion in finalization of a master and the
recursion in finalization of an object.

When a transfer of control causes completion of an execution, each included master is finalized in order,
from innermost outward.

4.eTo be honest: Formally, completion and leaving refer to executions of constructs or entities. However, the standard
sometimes (informally) refers to the constructs or entities whose executions are being completed. Thus, for example,
‘‘the subprogram_call or task is complete’’ really means ‘‘the execution of the subprogram_call or task is complete.’’

5{finalization (of an object) [distributed]} For the finalization of an object:

6• If the object is of an elementary type, finalization has no effect;

7• If the object is of a controlled type, the Finalize procedure is called;

8• If the object is of a protected type, the actions defined in 9.4 are performed;

9• If the object is of a composite type, then after performing the above actions, if any, every
component of the object is finalized in an arbitrary order, except as follows: if the object has
a component with an access discriminant constrained by a per-object expression, this com-

ISO/IEC 8652:1995(E) —AARM;6.0

7.6.1 Completion and Finalization 21 December 1994 232

ponent is finalized before any components that do not have such discriminants; for an object
with several components with such a discriminant, they are finalized in the reverse of the
order of their component_declarations.

9.a Reason: This allows the finalization of a component with an access discriminant to refer to other components
of the enclosing object prior to their being finalized.

10 {execution [instance of Unchecked_Deallocation]} Immediately before an instance of Unchecked_Deallocation
reclaims the storage of an object, the object is finalized. [If an instance of Unchecked_Deallocation is
never applied to an object created by an allocator, the object will still exist when the corresponding master
completes, and it will be finalized then.]

11 The order in which the finalization of a master performs finalization of objects is as follows: Objects
created by declarations in the master are finalized in the reverse order of their creation. For objects that
were created by allocators for an access type whose ultimate ancestor is declared in the master, this rule is
applied as though each such object that still exists had been created in an arbitrary order at the first
freezing point (see 13.14) of the ultimate ancestor type.

11.a Reason: Note that we talk about the type of the allocator here. There may be access values of a (general) access type
pointing at objects created by allocators for some other type; these are not finalized at this point.

11.b The freezing point of the ultimate ancestor access type is chosen because before that point, pool elements cannot be
created, and after that point, access values designating (parts of) the pool elements can be created. This is also the
point after which the pool object cannot have been declared. We don’t want to finalize the pool elements until after
anything finalizing objects that contain access values designating them. Nor do we want to finalize pool elements after
finalizing the pool object itself.

11.c Ramification: Finalization of allocated objects is done according to the (ultimate ancestor) allocator type, not
according to the storage pool in which they are allocated. Pool finalization might reclaim storage (see 13.11, ‘‘Storage
Management’’), but has nothing (directly) to do with finalization of the pool elements.

11.d Note that finalization is done only for objects that still exist; if an instance of Unchecked_Deallocation has already
gotten rid of a given pool element, that pool element will not be finalized when the master is left.

11.e Note that a deferred constant declaration does not create the constant; the full constant declaration creates it.
Therefore, the order of finalization depends on where the full constant declaration occurs, not the deferred constant
declaration.

11.f An imported object is not created by its declaration. It is neither initialized nor finalized.

11.g Implementation Note: An implementation has to ensure that the storage for an object is not reclaimed when
references to the object are still possible (unless, of course, the user explicitly requests reclamation via an instance of
Unchecked_Deallocation). This implies, in general, that objects cannot be deallocated one by one as they are finalized;
a subsequent finalization might reference an object that has been finalized, and that object had better be in its
(well-defined) finalized state.

12 {execution [assignment_statement]} The target of an assignment statement is finalized before copying in the
new value, as explained in 7.6.

13 The anonymous objects created by function calls and by aggregates are finalized no later than the end of
the innermost enclosing declarative_item or statement; if that is a compound_statement, they are final-
ized before starting the execution of any statement within the compound_statement.

13.a To be honest: This is not to be construed as permission to call Finalize asynchronously with respect to normal user
code. For example,

ISO/IEC 8652:1995(E) —AARM;6.0

233 21 December 1994 Completion and Finalization 7.6.1

13.bdeclare
X : Some_Controlled_Type := F(G(...));
-- The anonymous objects created for F and G are finalized
-- no later than this point.
Y : ...

begin
...

end;

13.cThe anonymous object for G should not be finalized at some random point in the middle of the body of F, because F
might manipulate the same data structures as the Finalize operation, resulting in erroneous access to shared variables.

13.dReason: It might be quite inconvenient for the implementation to defer finalization of the anonymous object for G
until after copying the value of F into X, especially if the size of the result is not known at the call site.

Bounded (Run-Time) Errors

14{bounded error} It is a bounded error for a call on Finalize or Adjust to propagate an exception. The
possible consequences depend on what action invoked the Finalize or Adjust operation:

14.aRamification: It is not a bounded error for Initialize to propagate an exception. If Initialize propagates an exception,
then no further calls on Initialize are performed, and those components that have already been initialized (either
explicitly or by default) are finalized in the usual way.

15• {Program_Error (raised by failure of run-time check)} For a Finalize invoked as part of an
assignment_statement, Program_Error is raised at that point.

16• {Program_Error (raised by failure of run-time check)} For an Adjust invoked as part of an assignment
operation, any other adjustments due to be performed are performed, and then Program_Error
is raised.

17• {Program_Error (raised by failure of run-time check)} For a Finalize invoked as part of a call on an
instance of Unchecked_Deallocation, any other finalizations due to be performed are per-
formed, and then Program_Error is raised.

18• {Program_Error (raised by failure of run-time check)} For a Finalize invoked by the transfer of control
of an exit_, return_, goto_, or requeue_statement, Program_Error is raised no earlier than
after the finalization of the master being finalized when the exception occurred, and no later
than the point where normal execution would have continued. Any other finalizations due to
be performed up to that point are performed before raising Program_Error.

18.aRamification: For example, upon leaving a block_statement due to a goto_statement, the Program_Error
would be raised at the point of the target statement denoted by the label, or else in some more dynamically
nested place, but not so nested as to allow an exception_handler that has visibility upon the finalized object to
handle it. For example,

18.bprocedure Main is
begin

<<The_Label>>
Outer_Block_Statement : declare

X : Some_Controlled_Type;
begin

Inner_Block_Statement : declare
Y : Some_Controlled_Type;
Z : Some_Controlled_Type;

begin
goto The_Label;

exception
when Program_Error => ... -- Handler number 1.

end;
exception

when Program_Error => ... -- Handler number 2.
end;

exception
when Program_Error => ... -- Handler number 3.

end Main;

ISO/IEC 8652:1995(E) —AARM;6.0

7.6.1 Completion and Finalization 21 December 1994 234

18.c The goto_statement will first cause Finalize(Y) to be called. Suppose that Finalize(Y) propagates an exception.
Program_Error will be raised after leaving Inner_Block_Statement, but before leaving Main. Thus, handler
number 1 cannot handle this Program_Error; it will be handled either by handler number 2 or handler number 3.
If it is handled by handler number 2, then Finalize(Z) will be done before executing the handler. If it is handled
by handler number 3, then Finalize(Z) and Finalize(X) will both be done before executing the handler.

19 • For a Finalize invoked by a transfer of control that is due to raising an exception, any other
finalizations due to be performed for the same master are performed; Program_Error is raised
immediately after leaving the master.

19.a Ramification: If, in the above example, the goto_statement were replaced by a raise_statement, then the
Program_Error would be handled by handler number 2, and Finalize(Z) would be done before executing the
handler.

19.b Reason: We considered treating this case in the same way as the others, but that would render certain
exception_handlers useless. For example, suppose the only exception_handler is one for others in the main
subprogram. If some deeply nested call raises an exception, causing some Finalize operation to be called,
which then raises an exception, then normal execution ‘‘would have continued’’ at the beginning of the
exception_handler. Raising Program_Error at that point would cause that handler’s code to be skipped. One
would need two nested exception_handlers to be sure of catching such cases!

19.c On the other hand, the exception_handler for a given master should not be allowed to handle exceptions raised
during finalization of that master.

20 • For a Finalize invoked by a transfer of control due to an abort or selection of a terminate
alternative, the exception is ignored; any other finalizations due to be performed are per-
formed.

20.a Ramification: This case includes an asynchronous transfer of control.

20.b To be honest: {Program_Error (raised by failure of run-time check)} This violates the general principle that it
is always possible for a bounded error to raise Program_Error (see 1.1.5, ‘‘Classification of Errors’’).

NOTES
21 18 The rules of Section 10 imply that immediately prior to partition termination, Finalize operations are applied to

library-level controlled objects (including those created by allocators of library-level access types, except those already
finalized). This occurs after waiting for library-level tasks to terminate.

21.a Discussion: We considered defining a pragma that would apply to a controlled type that would suppress Finalize
operations for library-level objects of the type upon partition termination. This would be useful for types whose
finalization actions consist of simply reclaiming global heap storage, when this is already provided automatically by the
environment upon program termination.

22 19 A constant is only constant between its initialization and finalization. Both initialization and finalization are allowed
to change the value of a constant.

23 20 Abort is deferred during certain operations related to controlled types, as explained in 9.8. Those rules prevent an
abort from causing a controlled object to be left in an ill-defined state.

24 21 The Finalize procedure is called upon finalization of a controlled object, even if Finalize was called earlier, either
explicitly or as part of an assignment; hence, if a controlled type is visibly controlled (implying that its Finalize primitive is
directly callable), or is nonlimited (implying that assignment is allowed), its Finalize procedure should be designed to have
no ill effect if it is applied a second time to the same object.

24.a Discussion: Or equivalently, a Finalize procedure should be ‘‘idempotent’’; applying it twice to the same object
should be equivalent to applying it once.

24.b Reason: A user-written Finalize procedure should be idempotent since it can be called explicitly by a client (at least if
the type is "visibly" controlled). Also, Finalize is used implicitly as part of the assignment_statement if the type is
nonlimited, and an abort is permitted to disrupt an assignment_statement between finalizing the left-hand side and
assigning the new value to it (an abort is not permitted to disrupt an assignment operation between copying in the new
value and adjusting it).

24.c Discussion: Either Initialize or Adjust, but not both, is applied to (almost) every controlled object when it is created:
Initialize is done when no initial value is assigned to the object, whereas Adjust is done as part of assigning the initial
value. The one exception is the anonymous object created by an aggregate; Initialize is not applied to the aggregate as
a whole, nor is the value of the aggregate adjusted.

ISO/IEC 8652:1995(E) —AARM;6.0

235 21 December 1994 Completion and Finalization 7.6.1

24.d{assignment operation (list of uses)} All of the following use the assignment operation, and thus perform value
adjustment:

24.e• the assignment_statement (see 5.2);

24.f• explicit initialization of a stand-alone object (see 3.3.1) or of a pool element (see 4.8);

24.g• default initialization of a component of a stand-alone object or pool element (in this case, the value of each
component is assigned, and therefore adjusted, but the value of the object as a whole is not adjusted);

24.h• function return, when the result type is not a return-by-reference type (see 6.5); (adjustment of the result
happens before finalization of the function; values of return-by-reference types are not adjusted);

24.i• predefined operators (although the only one that matters is concatenation; see 4.5.3);

24.j• generic formal objects of mode in (see 12.4); these are defined in terms of constant_declarations; and

24.k• aggregates (see 4.3) (in this case, the value of each component, and the parent part, for an extension_
aggregate, is assigned, and therefore adjusted, but the value of the aggregate as a whole is not adjusted;
neither is Initialize called);

24.lThe following also use the assignment operation, but adjustment never does anything interesting in these cases:

24.m• By-copy parameter passing uses the assignment operation (see 6.4.1), but controlled objects are always
passed by reference, so the assignment operation never does anything interesting in this case. If we were
to allow by-copy parameter passing for controlled objects, we would need to make sure that the actual is
finalized before doing the copy back for [in] out parameters. The finalization of the parameter itself needs
to happen after the copy back (if any), similar to the finalization of an anonymous function return object or
aggregate object.

24.n• For loops use the assignment operation (see 5.5), but since the type of the loop parameter is never
controlled, nothing interesting happens there, either.

24.oBecause Controlled and Limited_Controlled are library-level tagged types, all controlled types will be library-level
types, because of the accessibility rules (see 3.10.2 and 3.9.1). This ensures that the Finalize operations may be applied
without providing any ‘‘display’’ or ‘‘static-link.’’ This simplifies finalization as a result of garbage collection, abort,
and asynchronous transfer of control.

24.pFinalization of the parts of a protected object are not done as protected actions. It is possible (in pathological cases) to
create tasks during finalization that access these parts in parallel with the finalization itself. This is an erroneous use of
shared variables.

24.qImplementation Note: One implementation technique for finalization is to chain the controlled objects together on a
per-task list. When leaving a master, the list can be walked up to a marked place. The links needed to implement the
list can be declared (privately) in types Controlled and Limited_Controlled, so they will be inherited by all controlled
types.

24.rAnother implementation technique, which we refer to as the ‘‘PC-map’’ approach essentially implies inserting
exception handlers at various places, and finalizing objects based on where the exception was raised.

24.s{PC-map approach to finalization} {program-counter-map approach to finalization} The PC-map approach is for the
compiler/linker to create a map of code addresses; when an exception is raised, or abort occurs, the map can be
consulted to see where the task was executing, and what finalization needs to be performed. This approach was given
in the Ada 83 Rationale as a possible implementation strategy for exception handling — the map is consulted to
determine which exception handler applies.

24.tIf the PC-map approach is used, the implementation must take care in the case of arrays. The generated code will
generally contain a loop to initialize an array. If an exception is raised part way through the array, the components that
have been initialized must be finalized, and the others must not be finalized.

24.uIt is our intention that both of these implementation methods should be possible.

Wording Changes From Ada 83

24.vFinalization depends on the concepts of completion and leaving, and on the concept of a master. Therefore, we have
moved the definitions of these concepts here, from where they used to be in Section 9. These concepts also needed to
be generalized somewhat. Task waiting is closely related to user-defined finalization; the rules here refer to the
task-waiting rules of Section 9.

ISO/IEC 8652:1995(E) —AARM;6.0

8 Visibility Rules 21 December 1994 236

ISO/IEC 8652:1995(E) —AARM;6.0

237 21 December 1994 Visibility Rules 8

Section 8: Visibility Rules
1[The rules defining the scope of declarations and the rules defining which identifiers, character_literals,

and operator_symbols are visible at (or from) various places in the text of the program are described in
this section. The formulation of these rules uses the notion of a declarative region.

2As explained in Section 3, a declaration declares a view of an entity and associates a defining name with
that view. The view comprises an identification of the viewed entity, and possibly additional properties.
A usage name denotes a declaration. It also denotes the view declared by that declaration, and denotes
the entity of that view. Thus, two different usage names might denote two different views of the same
entity; in this case they denote the same entity.]

2.aTo be honest: In some cases, a usage name that denotes a declaration does not denote the view declared by that
declaration, nor the entity of that view, but instead denotes a view of the current instance of the entity, and denotes the
current instance of the entity. This sometimes happens when the usage name occurs inside the declarative region of the
declaration.

Wording Changes From Ada 83

2.bWe no longer define the term ‘‘basic operation;’’ thus we no longer have to worry about the visibility of them. Since
they were essentially always visible in Ada 83, this change has no effect. The reason for this change is that the
definition in Ada 83 was confusing, and not quite correct, and we found it difficult to fix. For example, one wonders
why an if_statement was not a basic operation of type Boolean. For another example, one wonders what it meant for a
basic operation to be ‘‘inherent in’’ something. Finally, this fixes the problem addressed by AI-00027/07.

8.1 Declarative Region
Static Semantics

1{declarative region (of a construct)} For each of the following constructs, there is a portion of the program text
called its declarative region, [within which nested declarations can occur]:

2• any declaration, other than that of an enumeration type, that is not a completion [of a pre-
vious declaration];

3• a block_statement;

4• a loop_statement;

5• an accept_statement;

6• an exception_handler.

7The declarative region includes the text of the construct together with additional text determined
[(recursively)], as follows:

8• If a declaration is included, so is its completion, if any.

9• If the declaration of a library unit [(including Standard — see 10.1.1)] is included, so are the
declarations of any child units [(and their completions, by the previous rule)]. The child
declarations occur after the declaration.

10• If a body_stub is included, so is the corresponding subunit.

11• If a type_declaration is included, then so is a corresponding record_representation_clause, if
any.

11.aReason: This is so that the component_declarations can be directly visible in the record_representation_clause.

12The declarative region of a declaration is also called the declarative region of any view or entity declared
by the declaration.

ISO/IEC 8652:1995(E) —AARM;6.0

8.1 Declarative Region 21 December 1994 238

12.a Reason: The constructs that have declarative regions are the constructs that can have declarations nested inside them.
Nested declarations are declared in that declarative region. The one exception is for enumeration literals; although they
are nested inside an enumeration type declaration, they behave as if they were declared at the same level as the type.

12.b To be honest: A declarative region does not include parent_unit_names.

12.c Ramification: A declarative region does not include context_clauses.

13 {occur immediately within} {immediately within} {within (immediately)} {immediately enclosing} {enclosing (immediately)} A
declaration occurs immediately within a declarative region if this region is the innermost declarative
region that encloses the declaration (the immediately enclosing declarative region), not counting the
declarative region (if any) associated with the declaration itself.

13.a Discussion: Don’t confuse the declarative region of a declaration with the declarative region in which it immediately
occurs.

14 [{local to} A declaration is local to a declarative region if the declaration occurs immediately within the
declarative region.]

14.a Ramification: That is, "occurs immediately within" and "local to" are synonyms (when referring to declarations).

[An entity is local to a declarative region if the entity is declared by a declaration that is local to the
declarative region.]

14.b Ramification: Thus, ‘‘local to’’ applies to both declarations and entities, whereas ‘‘occurs immediately within’’ only
applies to declarations. We use this term only informally; for cases where precision is required, we use the term
"occurs immediately within", since it is less likely to cause confusion.

15 {global to} A declaration is global to a declarative region if the declaration occurs immediately within
another declarative region that encloses the declarative region. An entity is global to a declarative region
if the entity is declared by a declaration that is global to the declarative region.

NOTES
16 1 The children of a parent library unit are inside the parent’s declarative region, even though they do not occur inside the

parent’s declaration or body. This implies that one can use (for example) "P.Q" to refer to a child of P whose defining
name is Q, and that after "use P;" Q can refer (directly) to that child.

17 2 As explained above and in 10.1.1, ‘‘Compilation Units - Library Units’’, all library units are descendants of Standard,
and so are contained in the declarative region of Standard. They are not inside the declaration or body of Standard, but
they are inside its declarative region.

18 3 For a declarative region that comes in multiple parts, the text of the declarative region does not contain any text that
might appear between the parts. Thus, when a portion of a declarative region is said to extend from one place to another in
the declarative region, the portion does not contain any text that might appear between the parts of the declarative region.

18.a Discussion: It is necessary for the things that have a declarative region to include anything that contains declarations
(except for enumeration type declarations). This includes any declaration that has a profile (that is, subprogram_
declaration, subprogram_body, entry_declaration, subprogram_renaming_declaration, formal_subprogram_declaration,
access-to-subprogram type_declaration), anything that has a discriminant_part (that is, various kinds of type_
declaration), anything that has a component_list (that is, record type_declaration and record extension type_declaration),
and finally the declarations of task and protected units and packages.

Wording Changes From Ada 83

18.b It was necessary to extend Ada 83’s definition of declarative region to take the following Ada 9X features into account:

18.c • Child library units.

18.d • Derived types/type extensions — we need a declarative region for inherited components and also for new
components.

18.e • All the kinds of types that allow discriminants.

18.f • Protected units.

18.g • Entries that have bodies instead of accept statements.

ISO/IEC 8652:1995(E) —AARM;6.0

239 21 December 1994 Declarative Region 8.1

18.h• The choice_parameter_specification of an exception_handler.

18.i• The formal parameters of access-to-subprogram types.

18.j• Renamings-as-body.

18.kDiscriminated and access-to-subprogram type declarations need a declarative region. Enumeration type declarations
cannot have one, because you don’t have to say "Color.Red" to refer to the literal Red of Color. For other type
declarations, it doesn’t really matter whether or not there is an associated declarative region, so for simplicity, we give
one to all types except enumeration types.

18.lWe now say that an accept_statement has its own declarative region, rather than being part of the declarative region of
the entry_declaration, so that declarative regions are properly nested regions of text, so that it makes sense to talk about
"inner declarative regions," and "...extends to the end of a declarative region." Inside an accept_statement, the name of
one of the parameters denotes the parameter_specification of the accept_statement, not that of the entry_declaration. If
the accept_statement is nested within a block_statement, these parameter_specifications can hide declarations of the
block_statement. The semantics of such cases was unclear in RM83.

18.mTo be honest: Unfortunately, we have the same problem for the entry name itself — it should denote the accept_
statement, but accept_statements are not declarations. They should be, and they should hide the entry from all
visibility within themselves.

18.nNote that we can’t generalize this to entry_bodies, or other bodies, because the declarative_part of a body is not
supposed to contain (explicit) homographs of things in the declaration. It works for accept_statements only because an
accept_statement does not have a declarative_part.

18.oTo avoid confusion, we use the term ‘‘local to’’ only informally in Ada 9X. Even RM83 used the term incorrectly
(see, for example, RM83-12.3(13)).

18.pIn Ada 83, (root) library units were inside Standard; it was not clear whether the declaration or body of Standard was
meant. In Ada 9X, they are children of Standard, and so occur immediately within Standard’s declarative region, but
not within either the declaration or the body. (See RM83-8.6(2) and RM83-10.1.1(5).)

8.2 Scope of Declarations
1[For each declaration, the language rules define a certain portion of the program text called the scope of

the declaration. The scope of a declaration is also called the scope of any view or entity declared by the
declaration. Within the scope of an entity, and only there, there are places where it is legal to refer to the
declared entity. These places are defined by the rules of visibility and overloading.]

Static Semantics

2{immediate scope (of a declaration)} The immediate scope of a declaration is a portion of the declarative region
immediately enclosing the declaration. The immediate scope starts at the beginning of the declaration,
except in the case of an overloadable declaration, in which case the immediate scope starts just after the
place where the profile of the callable entity is determined (which is at the end of the _specification for
the callable entity, or at the end of the generic_instantiation if an instance).

2.aReason: The reason for making overloadable declarations with profiles special is to simplify compilation: until the
compiler has determined the profile, it doesn’t know which other declarations are homographs of this one, so it doesn’t
know which ones this one should hide. Without this rule, two passes over the _specification or generic_instantiation
would be required to resolve names that denote things with the same name as this one.

The immediate scope extends to the end of the declarative region, with the following exceptions:

3• The immediate scope of a library_item includes only its semantic dependents.
3.aReason: Section 10 defines only a partial ordering of library_items. Therefore, it is a good idea to restrict the

immediate scope (and the scope, defined below) to semantic dependents.

3.bConsider also examples like this:

3.cpackage P is end P;

3.dpackage P.Q is
I : Integer := 0;

end P.Q;

ISO/IEC 8652:1995(E) —AARM;6.0

8.2 Scope of Declarations 21 December 1994 240

3.e with P;
package R is

package X renames P;
X.Q.I := 17; -- Illegal!

end R;

3.f The scope of P.Q does not contain R. Hence, neither P.Q nor X.Q are visible within R. However, the name
R.X.Q would be visible in some other library unit where both R and P.Q are visible (assuming R were made
legal by removing the offending declaration).

4 • The immediate scope of a declaration in the private part of a library unit does not include the
visible part of any public descendant of that library unit. {descendant [relationship with scope]}

4.a Ramification: In other words, a declaration in the private part can be visible within the visible part, private
part and body of a private child unit. On the other hand, such a declaration can be visible within only the
private part and body of a public child unit.

4.b Reason: The purpose of this rule is to prevent children from giving private information to clients.

4.c Ramification: For a public child subprogram, this means that the parent’s private part is not visible in the
formal_parts of the declaration and of the body. This is true even for subprogram_bodies that are not
completions. For a public child generic unit, it means that the parent’s private part is not visible in the generic_
formal_part, as well as in the first list of basic_declarative_items (for a generic package), or the formal_part(s)
(for a generic subprogram).

5 {visible part} [The visible part of (a view of) an entity is a portion of the text of its declaration containing
declarations that are visible from outside.] {private part [distributed]} The private part of (a view of) an entity
that has a visible part contains all declarations within the declaration of (the view of) the entity, except
those in the visible part; [these are not visible from outside. Visible and private parts are defined only for
these kinds of entities: callable entities, other program units, and composite types.]

6 • {visible part [of a view of a callable entity]} The visible part of a view of a callable entity is its
profile.

7 • {visible part [of a view of a composite type]} The visible part of a composite type other than a task or
protected type consists of the declarations of all components declared [(explicitly or
implicitly)] within the type_declaration.

8 • {visible part [of a generic unit]} The visible part of a generic unit includes the generic_formal_part.
For a generic package, it also includes the first list of basic_declarative_items of the
package_specification. For a generic subprogram, it also includes the profile.

8.a Reason: Although there is no way to reference anything but the formals from outside a generic unit, they are
still in the visible part in the sense that the corresponding declarations in an instance can be referenced (at least
in some cases). In other words, these declarations have an effect on the outside world. The visible part of a
generic unit needs to be defined this way in order to properly support the rule that makes a parent’s private part
invisible within a public child’s visible part.

8.b Ramification: The visible part of an instance of a generic unit is as defined for packages and subprograms; it
is not defined in terms of the visible part of a generic unit.

9 • [The visible part of a package, task unit, or protected unit consists of declarations in the
program unit’s declaration other than those following the reserved word private, if any; see
7.1 and 12.7 for packages, 9.1 for task units, and 9.4 for protected units.]

10 {scope (of a declaration)} The scope of a declaration always contains the immediate scope of the declaration.
In addition, for a given declaration that occurs immediately within the visible part of an outer declaration,
or is a public child of an outer declaration, the scope of the given declaration extends to the end of the
scope of the outer declaration, except that the scope of a library_item includes only its semantic depen-
dents.

10.a Ramification: Note the recursion. If a declaration appears in the visible part of a library unit, its scope extends to the
end of the scope of the library unit, but since that only includes dependents of the declaration of the library unit, the

ISO/IEC 8652:1995(E) —AARM;6.0

241 21 December 1994 Scope of Declarations 8.2

scope of the inner declaration also only includes those dependents. If X renames library package P, which has a child
Q, a with_clause mentioning P.Q is necessary to be able to refer to X.Q, even if P.Q is visible at the place where X is
declared.

11{immediate scope (of (a view of) an entity)} The immediate scope of a declaration is also the immediate scope of
the entity or view declared by the declaration. {scope (of (a view of) an entity)} Similarly, the scope of a
declaration is also the scope of the entity or view declared by the declaration.

11.aRamification: The rule for immediate scope implies the following:

11.b• If the declaration is that of a library unit, then the immediate scope includes the declarative region of the
declaration itself, but not other places, unless they are within the scope of a with_clause that mentions the
library unit.

11.cIt is necessary to attach the semantics of with_clauses to [immediate] scopes (as opposed to visibility), in
order for various rules to work properly. A library unit should hide a homographic implicit declaration that
appears in its parent, but only within the scope of a with_clause that mentions the library unit. Otherwise,
we would violate the "legality determinable via semantic dependences" rule of Section 10, ‘‘Program
Structure and Compilation Issues’’. The declaration of a library unit should be allowed to be a homograph
of an explicit declaration in its parent’s body, so long as that body does not mention the library unit in a
with_clause.

11.dThis means that one cannot denote the declaration of the library unit, but one might still be able to denote
the library unit via another view.

11.eA with_clause does not make the declaration of a library unit visible; the lack of a with_clause prevents it
from being visible. Even if a library unit is mentioned in a with_clause, its declaration can still be hidden.

11.f• The completion of the declaration of a library unit (assuming that’s also a declaration) is not visible,
neither directly nor by selection, outside that completion.

11.g• The immediate scope of a declaration immediately within the body of a library unit does not include any
child of that library unit.

11.hThis is needed to prevent children from looking inside their parent’s body. The children are in the
declarative region of the parent, and they might be after the parent’s body. Therefore, the scope of a
declaration that occurs immediately within the body might include some children.

NOTES
124 There are notations for denoting visible declarations that are not directly visible. For example, parameter_specifications

are in the visible part of a subprogram_declaration so that they can be used in named-notation calls appearing outside the
called subprogram. For another example, declarations of the visible part of a package can be denoted by expanded names
appearing outside the package, and can be made directly visible by a use_clause.

12.aRamification: There are some obscure involving generics cases in which there is no such notation. See Section 12.

Extensions to Ada 83

12.b{extensions to Ada 83} The fact that the immediate scope of an overloadable declaration does not include its profile is
new to Ada 9X. It replaces RM83-8.3(16), which said that within a subprogram specification and within the formal
part of an entry declaration or accept statement, all declarations with the same designator as the subprogram or entry
were hidden from all visibility. The RM83-8.3(16) rule seemed to be overkill, and created both implementation
difficulties and unnecessary semantic complexity.

Wording Changes From Ada 83

12.cWe no longer need to talk about the scope of notations, identifiers, character_literals, and operator_symbols.

12.dThe notion of "visible part" has been extended in Ada 9X. The syntax of task and protected units now allows private
parts, thus requiring us to be able to talk about the visible part as well. It was necessary to extend the concept to
subprograms and to generic units, in order for the visibility rules related to child library units to work properly. It was
necessary to define the concept separately for generic formal packages, since their visible part is slightly different from
that of a normal package. Extending the concept to composite types made the definition of scope slightly simpler. We
define visible part for some things elsewhere, since it makes a big difference to the user for those things. For
composite types and subprograms, however, the concept is used only in arcane visibility rules, so we localize it to this
clause.

12.eIn Ada 83, the semantics of with_clauses was described in terms of visibility. It is now described in terms of
[immediate] scope.

ISO/IEC 8652:1995(E) —AARM;6.0

8.2 Scope of Declarations 21 December 1994 242

12.f We have clarified that the following is illegal (where Q and R are library units):

12.g package Q is
I : Integer := 0;

end Q;

12.h package R is
package X renames Standard;
X.Q.I := 17; -- Illegal!

end R;

12.i even though Q is declared in the declarative region of Standard, because R does not mention Q in a with_clause.

8.3 Visibility
1 [{visibility rules} The visibility rules, given below, determine which declarations are visible and directly

visible at each place within a program. The visibility rules apply to both explicit and implicit declara-
tions.]

Static Semantics

2 {visibility (direct)} {directly visible} {directly visible} A declaration is defined to be directly visible at places where
a name consisting of only an identifier or operator_symbol is sufficient to denote the declaration; that is,
no selected_component notation or special context (such as preceding => in a named association) is
necessary to denote the declaration. {visible} A declaration is defined to be visible wherever it is directly
visible, as well as at other places where some name (such as a selected_component) can denote the
declaration.

3 The syntactic category direct_name is used to indicate contexts where direct visibility is required. The
syntactic category selector_name is used to indicate contexts where visibility, but not direct visibility, is
required.

4 {visibility (immediate)} {visibility (use clause)} There are two kinds of direct visibility: immediate visibility and
use-visibility. {immediately visible} A declaration is immediately visible at a place if it is directly visible
because the place is within its immediate scope. {use-visible} A declaration is use-visible if it is directly
visible because of a use_clause (see 8.4). Both conditions can apply.

5 {hiding} A declaration can be hidden, either from direct visibility, or from all visibility, within certain parts
of its scope. {hidden from all visibility} Where hidden from all visibility, it is not visible at all (neither using a
direct_name nor a selector_name). {hidden from direct visibility} Where hidden from direct visibility, only
direct visibility is lost; visibility using a selector_name is still possible.

6 [{overloaded} Two or more declarations are overloaded if they all have the same defining name and there is
a place where they are all directly visible.]

6.a Ramification: Note that a name can have more than one possible interpretation even if it denotes a non-overloadable
entity. For example, if there are two functions F that return records, both containing a component called C, then the
name F.C has two possible interpretations, even though component declarations are not overloadable.

7 {overloadable} The declarations of callable entities [(including enumeration literals)] are overloadable[,
meaning that overloading is allowed for them].

7.a Ramification: A generic_declaration is not overloadable within its own generic_formal_part. This follows from the
rules about when a name denotes a current instance. See AI-00286. This implies that within a generic_formal_part,
outer declarations with the same defining name are hidden from direct visibility. It also implies that if a generic formal
parameter has the same defining name as the generic itself, the formal parameter hides the generic from direct
visibility.

ISO/IEC 8652:1995(E) —AARM;6.0

243 21 December 1994 Visibility 8.3

8{homograph} Two declarations are homographs if they have the same defining name, and, if both are
overloadable, their profiles are type conformant. {type conformance [partial]} [An inner declaration hides any
outer homograph from direct visibility.]

9[Two homographs are not generally allowed immediately within the same declarative region unless one
overrides the other (see Legality Rules below).] {override} A declaration overrides another homograph
that occurs immediately within the same declarative region in the following cases:

10• An explicit declaration overrides an implicit declaration of a primitive subprogram,
[regardless of which declaration occurs first];

10.aRamification: And regardless of whether the explicit declaration is overloadable or not.

10.bThe ‘‘regardless of which declaration occurs first’’ is there because the explicit declaration could be a primitive
subprogram of a partial view, and then the full view might inherit a homograph. We are saying that the explicit
one wins (within its scope), even though the implicit one comes later.

10.cIf the overriding declaration is also a subprogram, then it is a primitive subprogram.

10.dAs explained in 7.3.1, ‘‘Private Operations’’, some inherited primitive subprograms are never declared. Such
subprograms cannot be overridden, although they can be reached by dispatching calls in the case of a tagged
type.

11• The implicit declaration of an inherited operator overrides that of a predefined operator;
11.aRamification: In a previous version of Ada 9X, we tried to avoid the notion of predefined operators, and say

that they were inherited from some magical root type. However, this seemed like too much mechanism.
Therefore, a type can have a predefined "+" as well as an inherited "+". The above rule says the inherited one
wins.

11.bThe ‘‘regardless of which declaration occurs first’’ applies here as well, in the case where derived_type_
declaration in the visible part of a public library unit derives from a private type declared in the parent unit, and
the full view of the parent type has additional predefined operators, as explained in 7.3.1, ‘‘Private Opera-
tions’’. Those predefined operators can be overridden by inherited subprograms implicitly declared earlier.

12• An implicit declaration of an inherited subprogram overrides a previous implicit declaration
of an inherited subprogram.

13• [For an implicit declaration of a primitive subprogram in a generic unit, there is a copy of this
declaration in an instance.] However, a whole new set of primitive subprograms is implicitly
declared for each type declared within the visible part of the instance. These new declara-
tions occur immediately after the type declaration, and override the copied ones. [The copied
ones can be called only from within the instance; the new ones can be called only from
outside the instance, although for tagged types, the body of a new one can be executed by a
call to an old one.]

13.aDiscussion: In addition, this is also stated redundantly (again), and is repeated, in 12.3, ‘‘Generic Instan-
tiation’’. The rationale for the rule is explained there.

14{visible} {hidden from all visibility [distributed]} A declaration is visible within its scope, except where hidden
from all visibility, as follows:

15• {hidden from all visibility [for overridden declaration]} An overridden declaration is hidden from all
visibility within the scope of the overriding declaration.

15.aRamification: We have to talk about the scope of the overriding declaration, not its visibility, because it hides
even when it is itself hidden.

15.bNote that the scope of an explicit subprogram_declaration does not start until after its profile.

16• {hidden from all visibility [within the declaration itself]} A declaration is hidden from all visibility until
the end of the declaration, except:

17• For a record type or record extension, the declaration is hidden from all visibility only
until the reserved word record;

ISO/IEC 8652:1995(E) —AARM;6.0

8.3 Visibility 21 December 1994 244

18 • For a package_declaration, task declaration, protected declaration, generic_package_
declaration, or subprogram_body, the declaration is hidden from all visibility only until
the reserved word is of the declaration.

18.a Ramification: We’re talking about the is of the construct itself, here, not some random is that might appear in
a generic_formal_part.

19 • {hidden from all visibility [for a declaration completed by a subsequent declaration]} If the completion of a
declaration is a declaration, then within the scope of the completion, the first declaration is
hidden from all visibility. Similarly, a discriminant_specification or parameter_specification
is hidden within the scope of a corresponding discriminant_specification or parameter_
specification of a corresponding completion, or of a corresponding accept_statement.

19.a Ramification: This rule means, for example, that within the scope of a full_type_declaration that completes a
private_type_declaration, the name of the type will denote the full_type_declaration, and therefore the full view
of the type. On the other hand, if the completion is not a declaration, then it doesn’t hide anything, and you
can’t denote it.

20 • {hidden from all visibility [by lack of a with_clause]} The declaration of a library unit (including a
library_unit_renaming_declaration) is hidden from all visibility except at places that are
within its declarative region or within the scope of a with_clause that mentions it. [For each
declaration or renaming of a generic unit as a child of some parent generic package, there is a
corresponding declaration nested immediately within each instance of the parent.] Such a
nested declaration is hidden from all visibility except at places that are within the scope of a
with_clause that mentions the child.

20.a Discussion: This is the rule that prevents with_clauses from being transitive; the [immediate] scope includes
indirect semantic dependents.

21 {directly visible} {immediately visible} {visibility (direct)} {visibility (immediate)} A declaration with a defining_
identifier or defining_operator_symbol is immediately visible [(and hence directly visible)] within its im-
mediate scope {hidden from direct visibility [distributed]} except where hidden from direct visibility, as follows:

22 • {hidden from direct visibility [by an inner homograph]} A declaration is hidden from direct visibility
within the immediate scope of a homograph of the declaration, if the homograph occurs
within an inner declarative region;

23 • {hidden from direct visibility [where hidden from all visibility]} A declaration is also hidden from direct
visibility where hidden from all visibility.

Name Resolution Rules

24 {possible interpretation [for direct_names]} A direct_name shall resolve to denote a directly visible declaration
whose defining name is the same as the direct_name. {possible interpretation [for selector_names]} A selector_
name shall resolve to denote a visible declaration whose defining name is the same as the selector_name.

24.a Discussion: "The same as" has the obvious meaning here, so for +, the possible interpretations are declarations whose
defining name is "+" (an operator_symbol).

25 These rules on visibility and direct visibility do not apply in a context_clause, a parent_unit_name, or a
pragma that appears at the place of a compilation_unit. For those contexts, see the rules in 10.1.6,
‘‘Environment-Level Visibility Rules’’.

25.a Ramification: Direct visibility is irrelevant for character_literals. In terms of overload resolution character_literals are
similar to other literals, like null — see 4.2. For character_literals, there is no need to worry about hiding, since there is
no way to declare homographs.

Legality Rules

26 An explicit declaration is illegal if there is a homograph occurring immediately within the same declara-
tive region that is visible at the place of the declaration, and is not hidden from all visibility by the explicit
declaration. Similarly, the context_clause for a subunit is illegal if it mentions (in a with_clause) some

ISO/IEC 8652:1995(E) —AARM;6.0

245 21 December 1994 Visibility 8.3

library unit, and there is a homograph of the library unit that is visible at the place of the corresponding
stub, and the homograph and the mentioned library unit are both declared immediately within the same
declarative region. {generic contract issue [partial]} These rules also apply to dispatching operations declared
in the visible part of an instance of a generic unit. However, they do not apply to other overloadable
declarations in an instance[; such declarations may have type conformant profiles in the instance, so long
as the corresponding declarations in the generic were not type conformant]. {type conformance [partial]}

26.aDiscussion: Normally, these rules just mean you can’t explicitly declare two homographs immediately within the same
declarative region. The wording is designed to handle the following special cases:

26.b• If the second declaration completes the first one, the second declaration is legal.

26.c• If the body of a library unit contains an explicit homograph of a child of that same library unit, this is
illegal only if the body mentions the child in its context_clause, or if some subunit mentions the child.
Here’s an example:

26.dpackage P is
end P;

26.epackage P.Q is
end P.Q;

26.fpackage body P is
Q : Integer; -- OK; we cannot see package P.Q here.
procedure Sub is separate;

end P;

26.gwith P.Q;
separate(P)
procedure Sub is -- Illegal.
begin

null;
end Sub;

26.hIf package body P said "with P.Q;", then it would be illegal to declare the homograph Q: Integer. But it
does not, so the body of P is OK. However, the subunit would be able to see both P.Q’s, and is therefore
illegal.

26.iA previous version of Ada 9X allowed the subunit, and said that references to P.Q would tend to be
ambiguous. However, that was a bad idea, because it requires overload resolution to resolve references to
directly visible non-overloadable homographs, which is something compilers have never before been
required to do.

26.jNote that we need to be careful which things we make "hidden from all visibility" versus which things we make simply
illegal for names to denote. The distinction is subtle. The rules that disallow names denoting components within a
type declaration (see 3.7) do not make the components invisible at those places, so that the above rule makes
components with the same name illegal. The same is true for the rule that disallows names denoting formal parameters
within a formal_part (see 6.1).

26.kDiscussion: The part about instances is from AI-00012. The reason it says ‘‘overloadable declarations’’ is because we
don’t want it to apply to type extensions that appear in an instance; components are not overloadable.

NOTES
275 Visibility for compilation units follows from the definition of the environment in 10.1.4, except that it is necessary to

apply a with_clause to obtain visibility to a library_unit_declaration or library_unit_renaming_declaration.

286 In addition to the visibility rules given above, the meaning of the occurrence of a direct_name or selector_name at a
given place in the text can depend on the overloading rules (see 8.6).

297 Not all contexts where an identifier, character_literal, or operator_symbol are allowed require visibility of a correspond-
ing declaration. Contexts where visibility is not required are identified by using one of these three syntactic categories
directly in a syntax rule, rather than using direct_name or selector_name.

29.aRamification: An identifier, character_literal or operator_symbol that occurs in one of the following contexts is not
required to denote a visible or directly visible declaration:

29.b1. A defining name.

29.c2. The identifiers or operator_symbol that appear after the reserved word end in a proper_body. Similarly for
‘‘end loop’’, etc.

ISO/IEC 8652:1995(E) —AARM;6.0

8.3 Visibility 21 December 1994 246

29.d 3. An attribute_designator.

29.e 4. A pragma identifier.

29.f 5. A pragma_argument_identifier.

29.g 6. An identifier specific to a pragma used in a pragma argument.

29.h The visibility rules have nothing to do with the above cases; the meanings of such things are defined elsewhere.
Reserved words are not identifiers; the visibility rules don’t apply to them either.

29.i Because of the way we have defined "declaration", it is possible for a usage name to denote a subprogram_body, either
within that body, or (for a non-library unit) after it (since the body hides the corresponding declaration, if any). Other
bodies do not work that way. Completions of type_ and deferred_constant_declarations do work that way. Accept_
statements are never denoted, although the parameter_specifications in their profiles can be.

29.j The scope of a subprogram does not start until after its profile. Thus, the following is legal:

29.k X : constant Integer := 17;
...
package P is

procedure X(Y : in Integer := X);
end P;

29.l The body of the subprogram will probably be illegal, however, since the constant X will be hidden by then.

29.m The rule is different for generic subprograms, since they are not overloadable; the following is illegal:

29.n X : constant Integer := 17;
package P is

generic
Z : Integer := X; -- Illegal!

procedure X(Y : in Integer := X); -- Illegal!
end P;

29.o The constant X is hidden from direct visibility by the generic declaration.

Extensions to Ada 83

29.p {extensions to Ada 83} Declarations with the same defining name as that of a subprogram or entry being defined are
nevertheless visible within the subprogram specification or entry declaration.

Wording Changes From Ada 83

29.q The term ‘‘visible by selection’’ is no longer defined. We use the terms ‘‘directly visible’’ and ‘‘visible’’ (among other
things). There are only two regions of text that are of interest, here: the region in which a declaration is visible, and the
region in which it is directly visible.

29.r Visibility is defined only for declarations.

8.4 Use Clauses
1 [A use_package_clause achieves direct visibility of declarations that appear in the visible part of a

package; a use_type_clause achieves direct visibility of the primitive operators of a type.]

Language Design Principles

1.a {equivalence of use_clauses and selected_components} If and only if the visibility rules allow P.A, "use P;" should
make A directly visible (barring name conflicts). This means, for example, that child library units, and generic formals
of a formal package whose formal_package_actual_part is (<>), should be made visible by a use_clause for the
appropriate package.

1.b {Beaujolais effect} The rules for use_clauses were carefully constructed to avoid so-called Beaujolais effects, where
the addition or removal of a single use_clause, or a single declaration in a "use"d package, would change the meaning
of a program from one legal interpretation to another.

ISO/IEC 8652:1995(E) —AARM;6.0

247 21 December 1994 Use Clauses 8.4

Syntax

2use_clause ::= use_package_clause | use_type_clause

3use_package_clause ::= use package_name {, package_name};

4use_type_clause ::= use type subtype_mark {, subtype_mark};

Legality Rules

5A package_name of a use_package_clause shall denote a package.
5.aRamification: This includes formal packages.

Static Semantics

6{scope (of a use_clause)} For each use_clause, there is a certain region of text called the scope of the use_
clause. For a use_clause within a context_clause of a library_unit_declaration or library_unit_renaming_
declaration, the scope is the entire declarative region of the declaration. For a use_clause within a
context_clause of a body, the scope is the entire body [and any subunits (including multiply nested
subunits). The scope does not include context_clauses themselves.]

7For a use_clause immediately within a declarative region, the scope is the portion of the declarative
region starting just after the use_clause and extending to the end of the declarative region. However, the
scope of a use_clause in the private part of a library unit does not include the visible part of any public
descendant of that library unit.

7.aReason: The exception echoes the similar exception for ‘‘immediate scope (of a declaration)’’ (see 8.2). It makes
use_clauses work like this:

7.bpackage P is
type T is range 1..10;

end P;

7.cwith P;
package Parent is
private

use P;
X : T;

end Parent;

7.dpackage Parent.Child is
Y : T; -- Illegal!
Z : P.T;

private
W : T;

end Parent.Child;

7.eThe declaration of Y is illegal because the scope of the ‘‘use P’’ does not include that place, so T is not directly visible
there. The declarations of X, Z, and W are legal.

8{potentially use-visible} For each package denoted by a package_name of a use_package_clause whose
scope encloses a place, each declaration that occurs immediately within the declarative region of the
package is potentially use-visible at this place if the declaration is visible at this place. For each type T or
T’Class determined by a subtype_mark of a use_type_clause whose scope encloses a place, the decla-
ration of each primitive operator of type T is potentially use-visible at this place if its declaration is visible
at this place.

8.aRamification: Primitive subprograms whose defining name is an identifier are not made potentially visible by a use_
type_clause. A use_type_clause is only for operators.

8.bThe semantics described here should be similar to the semantics for expanded names given in 4.1.3, ‘‘Selected
Components’’ so as to achieve the effect requested by the ‘‘principle of equivalence of use_clauses and selected_
components.’’ Thus, child library units and generic formal parameters of a formal package are potentially use-visible
when their enclosing package is use’d.

ISO/IEC 8652:1995(E) —AARM;6.0

8.4 Use Clauses 21 December 1994 248

8.c The "visible at that place" part implies that applying a use_clause to a parent unit does not make all of its children
use-visible — only those that have been made visible by a with_clause. It also implies that we don’t have to worry
about hiding in the definition of "directly visible" — a declaration cannot be use-visible unless it is visible.

8.d Note that "use type T’Class;" is equivalent to "use type T;", which helps avoid breaking the generic contract model.

9 {use-visible} {visibility (use clause)} A declaration is use-visible if it is potentially use-visible, except in these
naming-conflict cases:

10 • A potentially use-visible declaration is not use-visible if the place considered is within the
immediate scope of a homograph of the declaration.

11 • Potentially use-visible declarations that have the same identifier are not use-visible unless
each of them is an overloadable declaration.

11.a Ramification: Overloadable declarations don’t cancel each other out, even if they are homographs, though if
they are not distinguishable by formal parameter names or the presence or absence of default_expressions, any
use will be ambiguous. We only mention identifiers here, because declarations named by operator_symbols are
always overloadable, and hence never cancel each other. Direct visibility is irrelevant for character_literals.

Dynamic Semantics

12 {elaboration [use_clause]} The elaboration of a use_clause has no effect.

Examples

13 Example of a use clause in a context clause:
14 with Ada.Calendar; use Ada;

15 Example of a use type clause:
16 use type Rational_Numbers.Rational; -- see 7.1

Two_Thirds: Rational_Numbers.Rational := 2/3;

16.a Ramification: In ‘‘use X, Y;’’, Y cannot refer to something made visible by the ‘‘use’’ of X. Thus, it’s not (quite)
equivalent to ‘‘use X; use Y;’’.

16.b If a given declaration is already immediately visible, then a use_clause that makes it potentially use-visible has no
effect. Therefore, a use_type_clause for a type whose declaration appears in a place other than the visible part of a
package has no effect; it cannot make a declaration use-visible unless that declaration is already immediately visible.

16.c "Use type S1;" and "use type S2;" are equivalent if S1 and S2 are both subtypes of the same type. In particular, "use
type S;" and "use type S’Base;" are equivalent.

16.d Reason: We considered adding a rule that prevented several declarations of views of the same entity that all have the
same semantics from cancelling each other out. For example, if a (possibly implicit) subprogram_declaration for "+" is
potentially use-visible, and a fully conformant renaming of it is also potentially use-visible, then they (annoyingly)
cancel each other out; neither one is use-visible. The considered rule would have made just one of them use-visible.
We gave up on this idea due to the complexity of the rule. It would have had to account for both overloadable and
non-overloadable renaming_declarations, the case where the rule should apply only to some subset of the declarations
with the same defining name, and the case of subtype_declarations (since they are claimed to be sufficient for renaming
of subtypes).

Extensions to Ada 83

16.e {extensions to Ada 83} The use_type_clause is new to Ada 9X.
Wording Changes From Ada 83

16.f The phrase ‘‘omitting from this set any packages that enclose this place’’ is no longer necessary to avoid making
something visible outside its scope, because we explicitly state that the declaration has to be visible in order to be
potentially use-visible.

ISO/IEC 8652:1995(E) —AARM;6.0

249 21 December 1994 Renaming Declarations 8.5

8.5 Renaming Declarations
1[A renaming_declaration declares another name for an entity, such as an object, exception, package,

subprogram, entry, or generic unit. Alternatively, a subprogram_renaming_declaration can be the
completion of a previous subprogram_declaration.]

Syntax

2renaming_declaration ::=
object_renaming_declaration

| exception_renaming_declaration
| package_renaming_declaration
| subprogram_renaming_declaration
| generic_renaming_declaration

Dynamic Semantics

3{elaboration [renaming_declaration]} The elaboration of a renaming_declaration evaluates the name that fol-
lows the reserved word renames and thereby determines the view and entity denoted by this name
{renamed view} {renamed entity} (the renamed view and renamed entity). [A name that denotes the renaming_
declaration denotes (a new view of) the renamed entity.]

NOTES
48 Renaming may be used to resolve name conflicts and to act as a shorthand. Renaming with a different identifier or

operator_symbol does not hide the old name; the new name and the old name need not be visible at the same places.

59 A task or protected object that is declared by an explicit object_declaration can be renamed as an object. However, a
single task or protected object cannot be renamed since the corresponding type is anonymous (meaning it has no nameable
subtypes). For similar reasons, an object of an anonymous array or access type cannot be renamed.

610 A subtype defined without any additional constraint can be used to achieve the effect of renaming another subtype
(including a task or protected subtype) as in

7subtype Mode is Ada.Text_IO.File_Mode;

Wording Changes From Ada 83

7.aThe second sentence of RM83-8.5(3), ‘‘At any point where a renaming declaration is visible, the identifier, or operator
symbol of this declaration denotes the renamed entity.’’ is incorrect. It doesn’t say directly visible. Also, such an
identifier might resolve to something else.

7.bThe verbiage about renamings being legal ‘‘only if exactly one...’’, which appears in RM83-8.5(4) (for objects) and
RM83-8.5(7) (for subprograms) is removed, because it follows from the normal rules about overload resolution. For
language lawyers, these facts are obvious; for programmers, they are irrelevant, since failing these tests is highly
unlikely.

8.5.1 Object Renaming Declarations
1[An object_renaming_declaration is used to rename an object.]

Syntax

2object_renaming_declaration ::= defining_identifier : subtype_mark renames object_name;

Name Resolution Rules

3The type of the object_name shall resolve to the type determined by the subtype_mark.
3.aReason: A previous version of Ada 9X used the usual ‘‘expected type’’ wording: ‘‘The expected type for the

object_name is that determined by the subtype_mark.’’ We changed it so that this would be illegal:

3.bX: T;
Y: T’Class renames X; -- Illegal!

ISO/IEC 8652:1995(E) —AARM;6.0

8.5.1 Object Renaming Declarations 21 December 1994 250

3.c When the above was legal, it was unclear whether Y was of type T or T’Class. Note that we still allow this:

3.d Z: T’Class := ...;
W: T renames F(Z);

3.e where F is a function with a controlling parameter and result. This is admittedly a bit odd.

3.f Note that the matching rule for generic formal parameters of mode in out was changed to keep it consistent with the
rule for renaming. That makes the rule different for in vs. in out.

Legality Rules

4 The renamed entity shall be an object.

5 The renamed entity shall not be a subcomponent that depends on discriminants of a variable whose
nominal subtype is unconstrained, unless this subtype is indefinite, or the variable is aliased. A slice of an
array shall not be renamed if this restriction disallows renaming of the array.

5.a Reason: This prevents renaming of subcomponents that might disappear, which might leave dangling references.
Similar restrictions exist for the Access attribute.

5.b Implementation Note: Note that if an implementation chooses to deallocate-then-reallocate on assignment_
statements assigning to unconstrained definite objects, then it cannot represent renamings and access values as simple
addresses, because the above rule does not apply to all components of such an object.

5.c Ramification: If it is a generic formal object, then the assume-the-best or assume-the-worst rules are applied as
appropriate.

Static Semantics

6 An object_renaming_declaration declares a new view [of the renamed object] whose properties are iden-
tical to those of the renamed view. [Thus, the properties of the renamed object are not affected by the
renaming_declaration. In particular, its value and whether or not it is a constant are unaffected; similarly,
the constraints that apply to an object are not affected by renaming (any constraint implied by the
subtype_mark of the object_renaming_declaration is ignored).]

6.a Discussion: Because the constraints are ignored, it is a good idea to use the nominal subtype of the renamed object
when writing an object_renaming_declaration.

Examples

7 Example of renaming an object:
8 declare

L : Person renames Leftmost_Person; -- see 3.10.1
begin

L.Age := L.Age + 1;
end;

Wording Changes From Ada 83

8.a The phrase ‘‘subtype ... as defined in a corresponding object declaration, component declaration, or component subtype
indication,’’ from RM83-8.5(5), is incorrect in Ada 9X; therefore we removed it. It is incorrect in the case of an object
with an indefinite unconstrained nominal subtype.

8.5.2 Exception Renaming Declarations
1 [An exception_renaming_declaration is used to rename an exception.]

Syntax

2 exception_renaming_declaration ::= defining_identifier : exception renames exception_name;

ISO/IEC 8652:1995(E) —AARM;6.0

251 21 December 1994 Exception Renaming Declarations 8.5.2

Legality Rules

3The renamed entity shall be an exception.

Static Semantics

4An exception_renaming_declaration declares a new view [of the renamed exception].

Examples

5Example of renaming an exception:
6EOF : exception renames Ada.IO_Exceptions.End_Error;-- see A.13

8.5.3 Package Renaming Declarations
1[A package_renaming_declaration is used to rename a package.]

Syntax

2package_renaming_declaration ::= package defining_program_unit_name renames package_name;

Legality Rules

3The renamed entity shall be a package.

Static Semantics

4A package_renaming_declaration declares a new view [of the renamed package].

Examples

5Example of renaming a package:
6package TM renames Table_Manager;

8.5.4 Subprogram Renaming Declarations
1A subprogram_renaming_declaration can serve as the completion of a subprogram_declaration;

{renaming-as-body} such a renaming_declaration is called a renaming-as-body. {renaming-as-declaration} A
subprogram_renaming_declaration that is not a completion is called a renaming-as-declaration[, and is
used to rename a subprogram (possibly an enumeration literal) or an entry].

1.aRamification: A renaming-as-body is a declaration, as defined in Section 3.

Syntax

2subprogram_renaming_declaration ::= subprogram_specification renames callable_entity_name;

Name Resolution Rules

3{expected profile [subprogram_renaming_declaration]} The expected profile for the callable_entity_name is the
profile given in the subprogram_specification.

Legality Rules

4The profile of a renaming-as-declaration shall be mode-conformant with that of the renamed callable
entity. {mode conformance (required)}

5The profile of a renaming-as-body shall be subtype-conformant with that of the renamed callable entity,
and shall conform fully to that of the declaration it completes. {subtype conformance (required)} {full

conformance (required)} If the renaming-as-body completes that declaration before the subprogram it declares
is frozen, the subprogram it declares takes its convention from the renamed subprogram; otherwise the
convention of the renamed subprogram shall not be Intrinsic.

ISO/IEC 8652:1995(E) —AARM;6.0

8.5.4 Subprogram Renaming Declarations 21 December 1994 252

5.a Reason: The first part of the first sentence is to allow an implementation of a renaming-as-body as a single jump
instruction to the target subprogram. Among other things, this prevents a subprogram from being completed with a
renaming of an entry. (In most cases, the target of the jump can be filled in at link time. In some cases, such as a
renaming of a name like "A(I).all", an indirect jump is needed. Note that the name is evaluated at renaming time, not at
call time.)

5.b The second part of the first sentence is the normal rule for completions of subprogram_declarations.

5.c Ramification: An entry_declaration, unlike a subprogram_declaration, cannot be completed with a renaming_
declaration. Nor can a generic_subprogram_declaration.

5.d The syntax rules prevent a protected subprogram declaration from being completed by a renaming. This is fortunate,
because it allows us to avoid worrying about whether the implicit protected object parameter of a protected operation is
involved in the conformance rules.

6 A name that denotes a formal parameter of the subprogram_specification is not allowed within the
callable_entity_name.

6.a Reason: This is to prevent things like this:

6.b function F(X : Integer) return Integer renames Table(X).all;

6.c A similar rule in 6.1 forbids things like this:

6.d function F(X : Integer; Y : Integer := X) return Integer;

Static Semantics

7 A renaming-as-declaration declares a new view of the renamed entity. The profile of this new view takes
its subtypes, parameter modes, and calling convention from the original profile of the callable entity,
while taking the formal parameter names and default_expressions from the profile given in the
subprogram_renaming_declaration. The new view is a function or procedure, never an entry.

7.a To be honest: When renaming an entry as a procedure, the compile-time rules apply as if the new view is a procedure,
but the run-time semantics of a call are that of an entry call.

7.b Ramification: For example, it is illegal for the entry_call_statement of a timed_entry_call to call the new view. But
what looks like a procedure call will do things like barrier waiting.

Dynamic Semantics

8 For a call on a renaming of a dispatching subprogram that is overridden, if the overriding occurred before
the renaming, then the body executed is that of the overriding declaration, even if the overriding decla-
ration is not visible at the place of the renaming; otherwise, the inherited or predefined subprogram is
called.

8.a Discussion: Note that whether or not the renaming is itself primitive has nothing to do with the renamed subprogram.

8.b Note that the above rule is only for tagged types.

8.c Consider the following example:

8.d package P is
type T is tagged null record;
function Predefined_Equal(X, Y : T) return Boolean renames "=";

private
function "="(X, Y : T) return Boolean; -- Override predefined "=".

end P;

8.e with P; use P;
package Q is

function User_Defined_Equal(X, Y : T) return Boolean renames P."=";
end Q;

8.f A call on Predefined_Equal will execute the predefined equality operator of T, whereas a call on User_Defined_Equal
will execute the body of the overriding declaration in the private part of P.

ISO/IEC 8652:1995(E) —AARM;6.0

253 21 December 1994 Subprogram Renaming Declarations 8.5.4

8.gThus a renaming allows one to squirrel away a copy of an inherited or predefined subprogram before later overriding it.
{squirrel away (included in fairness to alligators)}

NOTES
911 A procedure can only be renamed as a procedure. A function whose defining_designator is either an identifier or an

operator_symbol can be renamed with either an identifier or an operator_symbol; for renaming as an operator, the
subprogram specification given in the renaming_declaration is subject to the rules given in 6.6 for operator declarations.
Enumeration literals can be renamed as functions; similarly, attribute_references that denote functions (such as references
to Succ and Pred) can be renamed as functions. An entry can only be renamed as a procedure; the new name is only
allowed to appear in contexts that allow a procedure name. An entry of a family can be renamed, but an entry family
cannot be renamed as a whole.

1012 The operators of the root numeric types cannot be renamed because the types in the profile are anonymous, so the
corresponding specifications cannot be written; the same holds for certain attributes, such as Pos.

1113 Calls with the new name of a renamed entry are procedure_call_statements and are not allowed at places where the
syntax requires an entry_call_statement in conditional_ and timed_entry_calls, nor in an asynchronous_select; similarly, the
Count attribute is not available for the new name.

1214 The primitiveness of a renaming-as-declaration is determined by its profile, and by where it occurs, as for any
declaration of (a view of) a subprogram; primitiveness is not determined by the renamed view. In order to perform a
dispatching call, the subprogram name has to denote a primitive subprogram, not a non-primitive renaming of a primitive
subprogram.

12.aReason: A subprogram_renaming_declaration could more properly be called renaming_as_subprogram_declaration,
since you’re renaming something as a subprogram, but you’re not necessarily renaming a subprogram. But that’s too
much of a mouthful. Or, alternatively, we could call it a callable_entity_renaming_declaration, but that’s even worse.
Not only is it a mouthful, it emphasizes the entity being renamed, rather than the new view, which we think is a bad
idea. We’ll live with the oddity.

Examples

13Examples of subprogram renaming declarations:
14procedure My_Write(C : in Character) renames Pool(K).Write; -- see 4.1.3

15function Real_Plus(Left, Right : Real) return Real renames "+";
function Int_Plus (Left, Right : Integer) return Integer renames "+";

16function Rouge return Color renames Red; -- see 3.5.1
function Rot return Color renames Red;
function Rosso return Color renames Rouge;

17function Next(X : Color) return Color renames Color’Succ; -- see 3.5.1

18Example of a subprogram renaming declaration with new parameter names:
19function "*" (X,Y : Vector) return Real renames Dot_Product; -- see 6.1

20Example of a subprogram renaming declaration with a new default expression:
21function Minimum(L : Link := Head) return Cell renames Min_Cell; -- see 6.1

8.5.5 Generic Renaming Declarations
1[A generic_renaming_declaration is used to rename a generic unit.]

Syntax

2generic_renaming_declaration ::=
generic package defining_program_unit_name renames generic_package_name;

| generic procedure defining_program_unit_name renames generic_procedure_name;
| generic function defining_program_unit_name renames generic_function_name;

Legality Rules

3The renamed entity shall be a generic unit of the corresponding kind.

ISO/IEC 8652:1995(E) —AARM;6.0

8.5.5 Generic Renaming Declarations 21 December 1994 254

Static Semantics

4 A generic_renaming_declaration declares a new view [of the renamed generic unit].

NOTES
5 15 Although the properties of the new view are the same as those of the renamed view, the place where the generic_

renaming_declaration occurs may affect the legality of subsequent renamings and instantiations that denote the generic_
renaming_declaration, in particular if the renamed generic unit is a library unit (see 10.1.1).

Examples

6 Example of renaming a generic unit:
7 generic package Enum_IO renames Ada.Text_IO.Enumeration_IO; -- see A.10.10

Extensions to Ada 83

7.a {extensions to Ada 83} Renaming of generic units is new to Ada 9X. It is particularly important for renaming child
library units that are generic units. For example, it might be used to rename Numerics.Generic_Elementary_Functions
as simply Generic_Elementary_Functions, to match the name for the corresponding Ada-83-based package.

Wording Changes From Ada 83

7.b The information in RM83-8.6, ‘‘The Package Standard,’’ has been updated for the child unit feature, and moved to
Annex A, except for the definition of ‘‘predefined type,’’ which has been moved to 3.2.1.

8.6 The Context of Overload Resolution
1 [{overload resolution} Because declarations can be overloaded, it is possible for an occurrence of a usage

name to have more than one possible interpretation; in most cases, ambiguity is disallowed. This clause
describes how the possible interpretations resolve to the actual interpretation.

2 {overloading rules} Certain rules of the language (the Name Resolution Rules) are considered ‘‘overloading
rules’’. If a possible interpretation violates an overloading rule, it is assumed not to be the intended
interpretation; some other possible interpretation is assumed to be the actual interpretation. On the other
hand, violations of non-overloading rules do not affect which interpretation is chosen; instead, they cause
the construct to be illegal. To be legal, there usually has to be exactly one acceptable interpretation of a
construct that is a ‘‘complete context’’, not counting any nested complete contexts.

3 {grammar (resolution of ambiguity)} The syntax rules of the language and the visibility rules given in 8.3
determine the possible interpretations. Most type checking rules (rules that require a particular type, or a
particular class of types, for example) are overloading rules. Various rules for the matching of formal and
actual parameters are overloading rules.]

Language Design Principles

3.a The type resolution rules are intended to minimize the need for implicit declarations and preference rules associated
with implicit conversion and dispatching operations.

Name Resolution Rules

4 {complete context} [Overload resolution is applied separately to each complete context, not counting inner
complete contexts.] Each of the following constructs is a complete context:

5 • A context_item.

6 • A declarative_item or declaration.
6.a Ramification: A loop_parameter_specification is a declaration, and hence a complete context.

7 • A statement.

8 • A pragma_argument_association.
8.a Reason: We would make it the whole pragma, except that certain pragma arguments are allowed to be

ambiguous, and ambiguity applies to a complete context.

ISO/IEC 8652:1995(E) —AARM;6.0

255 21 December 1994 The Context of Overload Resolution 8.6

9• The expression of a case_statement.
9.aRamification: This means that the expression is resolved without looking at the choices.

10{interpretation (of a complete context)} {overall interpretation (of a complete context)} An (overall) interpretation of a
complete context embodies its meaning, and includes the following information about the constituents of
the complete context, not including constituents of inner complete contexts:

11• for each constituent of the complete context, to which syntactic categories it belongs, and by
which syntax rules; and

11.aRamification: Syntactic categories is plural here, because there are lots of trivial productions — an expression
might also be all of the following, in this order: identifier, name, primary, factor, term, simple_expression, and
relation. Basically, we’re trying to capture all the information in the parse tree here, without using compiler-
writer’s jargon like ‘‘parse tree’’.

12• for each usage name, which declaration it denotes (and, therefore, which view and which
entity it denotes); and

12.aRamification: In most cases, a usage name denotes the view declared by the denoted declaration. However, in
certain cases, a usage name that denotes a declaration and appears inside the declarative region of that same
declaration, denotes the current instance of the declaration. For example, within a task_body, a usage name that
denotes the task_type_declaration denotes the object containing the currently executing task, and not the task
type declared by the declaration.

13• for a complete context that is a declarative_item, whether or not it is a completion of a
declaration, and (if so) which declaration it completes.

13.aRamification: Unfortunately, we are not confident that the above list is complete. We’ll have to live with that.

13.bTo be honest: For ‘‘possible’’ interpretations, the above information is tentative.

13.cDiscussion: A possible interpretation (an input to overload resolution) contains information about what a usage name
might denote, but what it actually does denote requires overload resolution to determine. Hence the term ‘‘tentative’’ is
needed for possible interpretations; otherwise, the definition would be circular.

14{possible interpretation} A possible interpretation is one that obeys the syntax rules and the visibility rules.
{acceptable interpretation} {resolve (overload resolution)} {interpretation (overload resolution)} An acceptable inter-
pretation is a possible interpretation that obeys the overloading rules[, that is, those rules that specify an
expected type or expected profile, or specify how a construct shall resolve or be interpreted.]

14.aTo be honest: One rule that falls into this category, but does not use the above-mentioned magic words, is the rule
about numbers of parameter associations in a call (see 6.4).

14.bRamification: The Name Resolution Rules are the ones that appear under the Name Resolution Rules heading. Some
Syntax Rules are written in English, instead of BNF. No rule is a Syntax Rule or Name Resolution Rule unless it
appears under the appropriate heading.

15{interpretation (of a constituent of a complete context)} The interpretation of a constituent of a complete context is
determined from the overall interpretation of the complete context as a whole. [Thus, for example,
‘‘interpreted as a function_call,’’ means that the construct’s interpretation says that it belongs to the syn-
tactic category function_call.]

16{denote} [Each occurrence of] a usage name denotes the declaration determined by its interpretation. It
also denotes the view declared by its denoted declaration, except in the following cases:

16.aRamification: As explained below, a pragma argument is allowed to be ambiguous, so it can denote several
declarations, and all of the views declared by those declarations.

17• {current instance (of a type)} If a usage name appears within the declarative region of a type_
declaration and denotes that same type_declaration, then it denotes the current instance of
the type (rather than the type itself). The current instance of a type is the object or value of
the type that is associated with the execution that evaluates the usage name.

ISO/IEC 8652:1995(E) —AARM;6.0

8.6 The Context of Overload Resolution 21 December 1994 256

17.a Reason: This is needed, for example, for references to the Access attribute from within the type_declaration.
Also, within a task_body or protected_body, we need to be able to denote the current task or protected object.
(For a single_task_declaration or single_protected_declaration, the rule about current instances is not needed.)

18 • {current instance (of a generic unit)} If a usage name appears within the declarative region of a
generic_declaration (but not within its generic_formal_part) and it denotes that same
generic_declaration, then it denotes the current instance of the generic unit (rather than the
generic unit itself). See also 12.3.

18.a To be honest: The current instance of a generic unit is the instance created by whichever generic_instantiation
is of interest at any given time.

18.b Ramification: Within a generic_formal_part, a name that denotes the generic_declaration denotes the generic
unit, which implies that it is not overloadable.

19 A usage name that denotes a view also denotes the entity of that view.
19.a Ramification: Usually, a usage name denotes only one declaration, and therefore one view and one entity.

20 {expected type [distributed]} The expected type for a given expression, name, or other construct determines,
according to the type resolution rules given below, the types considered for the construct during overload
resolution. {type resolution rules} [The type resolution rules provide support for class-wide programming,
universal numeric literals, dispatching operations, and anonymous access types:]

20.a Ramification: Expected types are defined throughout the RM9X. The most important definition is that, for a
subprogram, the expected type for the actual parameter is the type of the formal parameter.

20.b The type resolution rules are trivial unless either the actual or expected type is universal, class-wide, or of an
anonymous access type.

21 • {type resolution rules [if any type in a specified class of types is expected]} {type resolution rules [if expected
type is universal or class-wide]} If a construct is expected to be of any type in a class of types, or of
the universal or class-wide type for a class, then the type of the construct shall resolve to a
type in that class or to a universal type that covers the class.

21.a Ramification: This matching rule handles (among other things) cases like the Val attribute, which denotes a
function that takes a parameter of type universal_integer.

21.b The last part of the rule, ‘‘or to a universal type that includes the class’’ implies that if the expected type for an
expression is universal_fixed, then an expression whose type is universal_real (such as a real literal) is OK.

22 • {type resolution rules [if expected type is specific]} If the expected type for a construct is a specific
type T, then the type of the construct shall resolve either to T, or:

22.a Ramification: {Beaujolais effect [partial]} This rule is not intended to create a preference for the specific type
— such a preference would cause Beaujolais effects.

23 • to T’Class; or
23.a Ramification: This will only be legal as part of a call on a dispatching operation; see 3.9.2, ‘‘Dispatching

Operations of Tagged Types’’. Note that that rule is not a Name Resolution Rule.

24 • to a universal type that covers T; or

25 • when T is an anonymous access type (see 3.10) with designated type D, to an access-
to-variable type whose designated type is D’Class or is covered by D.

25.a Ramification: Because it says ‘‘access-to-variable’’ instead of ‘‘access-to-object,’’ two subprograms that
differ only in that one has a parameter of an access-to-constant type, and the other has an access parameter, are
distinguishable during overload resolution.

25.b The case where the actual is access-to-D’Class will only be legal as part of a call on a dispatching operation;
see 3.9.2, ‘‘Dispatching Operations of Tagged Types’’. Note that that rule is not a Name Resolution Rule.

26 {expected profile [distributed]} In certain contexts, [such as in a subprogram_renaming_declaration,] the Name
Resolution Rules define an expected profile for a given name; {profile resolution rule (name with a given expected

ISO/IEC 8652:1995(E) —AARM;6.0

257 21 December 1994 The Context of Overload Resolution 8.6

profile)} in such cases, the name shall resolve to the name of a callable entity whose profile is type
conformant with the expected profile. {type conformance (required)}

26.aRamification: The parameter and result subtypes are not used in overload resolution. Only type conformance of
profiles is considered during overload resolution. Legality rules generally require at least mode-conformance in
addition, but those rules are not used in overload resolution.

Legality Rules

27{single (class expected type)} When the expected type for a construct is required to be a single type in a given
class, the type expected for the construct shall be determinable solely from the context in which the
construct appears, excluding the construct itself, but using the requirement that it be in the given class; the
type of the construct is then this single expected type. Furthermore, the context shall not be one that
expects any type in some class that contains types of the given class; in particular, the construct shall not
be the operand of a type_conversion.

27.aRamification: For example, the expected type for the literal null is required to be a single access type. But the
expected type for the operand of a type_conversion is any type. Therefore, the literal null is not allowed as the operand
of a type_conversion. This is true even if there is only one access type in scope. The reason for these rules is so that
the compiler will not have to search ‘‘everywhere’’ to see if there is exactly one type in a class in scope.

28A complete context shall have at least one acceptable interpretation; if there is exactly one, then that one
is chosen.

28.aRamification: This, and the rule below about ambiguity, are the ones that suck in all the Syntax Rules and Name
Resolution Rules as compile-time rules. Note that this and the ambiguity rule have to be Legality Rules.

29{preference (for root numeric operators and ranges)} There is a preference for the primitive operators (and ranges)
of the root numeric types root_integer and root_real. In particular, if two acceptable interpretations of a
constituent of a complete context differ only in that one is for a primitive operator (or range) of the type
root_integer or root_real, and the other is not, the interpretation using the primitive operator (or range) of
the root numeric type is preferred.

29.aReason: The reason for this preference is so that expressions involving literals and named numbers can be
unambiguous. For example, without the preference rule, the following would be ambiguous:

29.bN : constant := 123;
if N > 100 then -- Preference for root_integer "<" operator.

...
end if;

30For a complete context, if there is exactly one overall acceptable interpretation where each constituent’s
interpretation is the same as or preferred (in the above sense) over those in all other overall acceptable
interpretations, then that one overall acceptable interpretation is chosen. {ambiguous} Otherwise, the com-
plete context is ambiguous.

31A complete context other than a pragma_argument_association shall not be ambiguous.

32A complete context that is a pragma_argument_association is allowed to be ambiguous (unless otherwise
specified for the particular pragma), but only if every acceptable interpretation of the pragma argument is
as a name that statically denotes a callable entity. {denote [name used as a pragma argument]} Such a name
denotes all of the declarations determined by its interpretations, and all of the views declared by these
declarations.

32.aRamification: This applies to Inline, Suppress, Import, Export, and Convention pragmas. For example, it is OK to
say ‘‘pragma Suppress(Elaboration_Check, On => P.Q);’’, even if there are two directly visible P’s, and there are two
Q’s declared in the visible part of each P. In this case, P.Q denotes four different declarations. This rule also applies to
certain pragmas defined in the Specialized Needs Annexes. It almost applies to Pure, Elaborate_Body, and Elaborate_
All pragmas, but those can’t have overloading for other reasons.

ISO/IEC 8652:1995(E) —AARM;6.0

8.6 The Context of Overload Resolution 21 December 1994 258

32.b Note that if a pragma argument denotes a call to a callable entity, rather than the entity itself, this exception does not
apply, and ambiguity is disallowed.

32.c Note that we need to carefully define which pragma-related rules are Name Resolution Rules, so that, for example, a
pragma Inline does not pick up subprograms declared in enclosing declarative regions, and therefore make itself illegal.

32.d We say ‘‘statically denotes’’ in the above rule in order to avoid having to worry about how many times the name is
evaluated, in case it denotes more than one callable entity.

NOTES
33 16 If a usage name has only one acceptable interpretation, then it denotes the corresponding entity. However, this does

not mean that the usage name is necessarily legal since other requirements exist which are not considered for overload
resolution; for example, the fact that an expression is static, whether an object is constant, mode and subtype conformance
rules, freezing rules, order of elaboration, and so on.

34 Similarly, subtypes are not considered for overload resolution (the violation of a constraint does not make a program illegal
but raises an exception during program execution).

Incompatibilities With Ada 83

34.a {incompatibilities with Ada 83} {Beaujolais effect [partial]} The new preference rule for operators of root numeric
types is upward incompatible, but only in cases that involved Beaujolais effects in Ada 83. Such cases are ambiguous
in Ada 9X.

Extensions to Ada 83

34.b {extensions to Ada 83} The rule that allows an expected type to match an actual expression of a universal type, in
combination with the new preference rule for operators of root numeric types, subsumes the Ada 83 "implicit
conversion" rules for universal types.

Wording Changes From Ada 83

34.c In Ada 83, it is not clear what the ‘‘syntax rules’’ are. AI-00157 states that a certain textual rule is a syntax rule, but
it’s still not clear how one tells in general which textual rules are syntax rules. We have solved the problem by stating
exactly which rules are syntax rules — the ones that appear under the ‘‘Syntax’’ heading.

34.d RM83 has a long list of the ‘‘forms’’ of rules that are to be used in overload resolution (in addition to the syntax rules).
It is not clear exactly which rules fall under each form. We have solved the problem by explicitly marking all rules that
are used in overload resolution. Thus, the list of kinds of rules is unnecessary. It is replaced with some introductory
(intentionally vague) text explaining the basic idea of what sorts of rules are overloading rules.

34.e It is not clear from RM83 what information is embodied in a ‘‘meaning’’ or an ‘‘interpretation.’’ ‘‘Meaning’’ and
‘‘interpretation’’ were intended to be synonymous; we now use the latter only in defining the rules about overload
resolution. ‘‘Meaning’’ is used only informally. This clause attempts to clarify what is meant by ‘‘interpretation.’’

34.f For example, RM83 does not make it clear that overload resolution is required in order to match subprogram_bodies
with their corresponding declarations (and even to tell whether a given subprogram_body is the completion of a
previous declaration). Clearly, the information needed to do this is part of the ‘‘interpretation’’ of a subprogram_body.
The resolution of such things is defined in terms of the ‘‘expected profile’’ concept. Ada 9X has some new cases
where expected profiles are needed — the resolution of P’Access, where P might denote a subprogram, is an example.

34.g RM83-8.7(2) might seem to imply that an interpretation embodies information about what is denoted by each usage
name, but not information about which syntactic category each construct belongs to. However, it seems necessary to
include such information, since the Ada grammar is highly ambiguous. For example, X(Y) might be a function_call or
an indexed_component, and no context-free/syntactic information can tell the difference. It seems like we should view
X(Y) as being, for example, ‘‘interpreted as a function_call’’ (if that’s what overload resolution decides it is). Note that
there are examples where the denotation of each usage name does not imply the syntactic category. However, even if
that were not true, it seems that intuitively, the interpretation includes that information. Here’s an example:

34.h type T;
type A is access T;
type T is array(Integer range 1..10) of A;
I : Integer := 3;
function F(X : Integer := 7) return A;
Y : A := F(I); -- Ambiguous? (We hope so.)

34.i Consider the declaration of Y (a complete context). In the above example, overload resolution can easily determine the
declaration, and therefore the entity, denoted by Y, A, F, and I. However, given all of that information, we still don’t
know whether F(I) is a function_call or an indexed_component whose prefix is a function_call. (In the latter case, it is
equivalent to F(7).all(I).)

ISO/IEC 8652:1995(E) —AARM;6.0

259 21 December 1994 The Context of Overload Resolution 8.6

34.jIt seems clear that the declaration of Y ought to be considered ambiguous. We describe that by saying that there are
two interpretations, one as a function_call, and one as an indexed_component. These interpretations are both acceptable
to the overloading rules. Therefore, the complete context is ambiguous, and therefore illegal.

34.k{Beaujolais effect [partial]} It is the intent that the Ada 9X preference rule for root numeric operators is more locally
enforceable than that of RM83-4.6(15). It should also eliminate interpretation shifts due to the addition or removal of a
use_clause (the so called Beaujolais effect).

34.lRM83-8.7 seems to be missing some complete contexts, such as pragma_argument_associations, declarative_items that
are not declarations or representation_clauses, and context_items. We have added these, and also replaced the ‘‘must
be determinable’’ wording of RM83-5.4(3) with the notion that the expression of a case_statement is a complete
context.

34.mCases like the Val attribute are now handled using the normal type resolution rules, instead of having special cases that
explicitly allow things like ‘‘any integer type.’’

ISO/IEC 8652:1995(E) —AARM;6.0

9 Tasks and Synchronization 21 December 1994 260

ISO/IEC 8652:1995(E) —AARM;6.0

261 21 December 1994 Tasks and Synchronization 9

Section 9: Tasks and Synchronization
1{execution [Ada program]} The execution of an Ada program consists of the execution of one or more tasks.

{task} {interaction (between tasks)} Each task represents a separate thread of control that proceeds indepen-
dently and concurrently between the points where it interacts with other tasks. The various forms of task
interaction are described in this section, and include: {parallel processing: see task} {synchronization} {concurrent

processing: see task} {intertask communication: see also task}

1.aTo be honest: The execution of an Ada program consists of the execution of one or more partitions (see 10.2), each of
which in turn consists of the execution of an environment task and zero or more subtasks.

2• the activation and termination of a task;

3• {protected object} a call on a protected subprogram of a protected object, providing exclusive
read-write access, or concurrent read-only access to shared data;

4• a call on an entry, either of another task, allowing for synchronous communication with that
task, or of a protected object, allowing for asynchronous communication with one or more
other tasks using that same protected object;

5• a timed operation, including a simple delay statement, a timed entry call or accept, or a timed
asynchronous select statement (see next item);

6• an asynchronous transfer of control as part of an asynchronous select statement, where a task
stops what it is doing and begins execution at a different point in response to the completion
of an entry call or the expiration of a delay;

7• an abort statement, allowing one task to cause the termination of another task.

8In addition, tasks can communicate indirectly by reading and updating (unprotected) shared variables,
presuming the access is properly synchronized through some other kind of task interaction.

Static Semantics

9{task unit} The properties of a task are defined by a corresponding task declaration and task_body, which
together define a program unit called a task unit.

Dynamic Semantics

10Over time, tasks proceed through various states. {task state [inactive]} {inactive (a task state)} {task state [blocked]}
{blocked (a task state)} {task state [ready]} {ready (a task state)} {task state [terminated]} {terminated (a task state)} A task
is initially inactive; upon activation, and prior to its termination it is either blocked (as part of some task
interaction) or ready to run. {execution resource (required for a task to run)} While ready, a task competes for the
available execution resources that it requires to run.

10.aDiscussion: {task dispatching policy} {dispatching policy for tasks} The means for selecting which of the ready
tasks to run, given the currently available execution resources, is determined by the task dispatching policy in effect,
which is generally implementation defined, but may be controlled by pragmas and operations defined in the Real-Time
Annex (see D.2 and D.5).

NOTES
111 Concurrent task execution may be implemented on multicomputers, multiprocessors, or with interleaved execution on a

single physical processor. On the other hand, whenever an implementation can determine that the required semantic
effects can be achieved when parts of the execution of a given task are performed by different physical processors acting in
parallel, it may choose to perform them in this way.

Wording Changes From Ada 83

11.aThe introduction has been rewritten.

11.bWe use the term "concurrent" rather than "parallel" when talking about logically independent execution of threads of
control. The term "parallel" is reserved for referring to the situation where multiple physical processors run
simultaneously.

ISO/IEC 8652:1995(E) —AARM;6.0

9 Tasks and Synchronization 21 December 1994 262

9.1 Task Units and Task Objects
1 {task declaration} A task unit is declared by a task declaration, which has a corresponding task_body. A

task declaration may be a task_type_declaration, in which case it declares a named task type; alter-
natively, it may be a single_task_declaration, in which case it defines an anonymous task type, as well as
declaring a named task object of that type.

Syntax

2 task_type_declaration ::=
task type defining_identifier [known_discriminant_part] [is task_definition];

3 single_task_declaration ::=
task defining_identifier [is task_definition];

4 task_definition ::=
{task_item}

[private
{task_item}]

end [task_identifier]

5 task_item ::= entry_declaration | representation_clause

6 task_body ::=
task body defining_identifier is
declarative_part

begin
handled_sequence_of_statements

end [task_identifier];

7 If a task_identifier appears at the end of a task_definition or task_body, it shall repeat the defining_
identifier.

Legality Rules

8 {requires a completion [task_declaration]} A task declaration requires a completion[, which shall be a task_body,
] and every task_body shall be the completion of some task declaration.

8.a To be honest: The completion can be a pragma Import, if the implementation supports it.

Static Semantics

9 A task_definition defines a task type and its first subtype. {visible part [of a task unit]} The first list of task_
items of a task_definition, together with the known_discriminant_part, if any, is called the visible part of
the task unit. [{private part [of a task unit]} The optional list of task_items after the reserved word private is
called the private part of the task unit.]

9.a Proof: Private part is defined in Section 8.

Dynamic Semantics

10 [{elaboration [task declaration]} The elaboration of a task declaration elaborates the task_definition. {elaboration

[single_task_declaration]} The elaboration of a single_task_declaration also creates an object of an
(anonymous) task type.]

10.a Proof: This is redundant with the general rules for the elaboration of a full_type_declaration and an object_declaration.

11 {elaboration [task_definition]} [The elaboration of a task_definition creates the task type and its first subtype;]
it also includes the elaboration of the entry_declarations in the given order.

12 {initialization [of a task object]} As part of the initialization of a task object, any representation_clauses and
any per-object constraints associated with entry_declarations of the corresponding task_definition are
elaborated in the given order.

ISO/IEC 8652:1995(E) —AARM;6.0

263 21 December 1994 Task Units and Task Objects 9.1

12.aReason: The only representation_clauses defined for task entries are ones that specify the Address of an entry, as part
of defining an interrupt entry. These clearly need to be elaborated per-object, not per-type. Normally the address will
be a function of a discriminant, if such an Address clause is in a task type rather than a single task declaration, though it
could rely on a parameterless function that allocates sequential interrupt vectors.

12.bWe do not mention representation pragmas, since each pragma may have its own elaboration rules.

13{elaboration [task_body]} The elaboration of a task_body has no effect other than to establish that tasks of the
type can from then on be activated without failing the Elaboration_Check.

14[The execution of a task_body is invoked by the activation of a task of the corresponding type (see 9.2).]

15The content of a task object of a given task type includes:

16• The values of the discriminants of the task object, if any;

17• An entry queue for each entry of the task object;
17.aRamification: "For each entry" implies one queue for each single entry, plus one for each entry of each entry

family.

18• A representation of the state of the associated task.

NOTES
192 Within the declaration or body of a task unit, the name of the task unit denotes the current instance of the unit (see 8.6),

rather than the first subtype of the corresponding task type (and thus the name cannot be used as a subtype_mark).

19.aDiscussion: However, it is possible to refer to some other subtype of the task type within its body, presuming such a
subtype has been declared between the task_type_declaration and the task_body.

203 The notation of a selected_component can be used to denote a discriminant of a task (see 4.1.3). Within a task unit, the
name of a discriminant of the task type denotes the corresponding discriminant of the current instance of the unit.

214 A task type is a limited type (see 7.5), and hence has neither an assignment operation nor predefined equality operators.
If an application needs to store and exchange task identities, it can do so by defining an access type designating the
corresponding task objects and by using access values for identification purposes. Assignment is available for such an
access type as for any access type. Alternatively, if the implementation supports the Systems Programming Annex, the
Identity attribute can be used for task identification (see C.7).

Examples

22Examples of declarations of task types:
23task type Server is

entry Next_Work_Item(WI : in Work_Item);
entry Shut_Down;

end Server;

24task type Keyboard_Driver(ID : Keyboard_ID := New_ID) is
entry Read (C : out Character);
entry Write(C : in Character);

end Keyboard_Driver;

25Examples of declarations of single tasks:
26task Controller is

entry Request(Level)(D : Item); -- a family of entries
end Controller;

27task Parser is
entry Next_Lexeme(L : in Lexical_Element);
entry Next_Action(A : out Parser_Action);

end;

28task User; -- has no entries

29Examples of task objects:

ISO/IEC 8652:1995(E) —AARM;6.0

9.1 Task Units and Task Objects 21 December 1994 264

30 Agent : Server;
Teletype : Keyboard_Driver(TTY_ID);
Pool : array(1 .. 10) of Keyboard_Driver;

31 Example of access type designating task objects:
32 type Keyboard is access Keyboard_Driver;

Terminal : Keyboard := new Keyboard_Driver(Term_ID);

Extensions to Ada 83

32.a {extensions to Ada 83} The syntax rules for task declarations are modified to allow a known_discriminant_part, and to
allow a private part. They are also modified to allow entry_declarations and representation_clauses to be mixed.

Wording Changes From Ada 83

32.b The syntax rules for tasks have been split up according to task types and single tasks. In particular: The syntax rules
for task_declaration and task_specification are removed. The syntax rules for task_type_declaration, single_task_
declaration, task_definition and task_item are new.

32.c The syntax rule for task_body now uses the nonterminal handled_sequence_of_statements.

32.d The declarative_part of a task_body is now required; that doesn’t make any real difference, because a declarative_part
can be empty.

9.2 Task Execution - Task Activation
Dynamic Semantics

1 {execution [task]} The execution of a task of a given task type consists of the execution of the corresponding
task_body. {execution [task_body]} {task (execution)} {activation (of a task)} {task (activation)} The initial part of this
execution is called the activation of the task; it consists of the elaboration of the declarative_part of the
task_body. {activation failure} Should an exception be propagated by the elaboration of its declarative_part,
the activation of the task is defined to have failed, and it becomes a completed task.

2 A task object (which represents one task) can be created either as part of the elaboration of an object_
declaration occurring immediately within some declarative region, or as part of the evaluation of an
allocator. All tasks created by the elaboration of object_declarations of a single declarative region (in-
cluding subcomponents of the declared objects) are activated together. Similarly, all tasks created by the
evaluation of a single allocator are activated together. The activation of a task is associated with the
innermost allocator or object_declaration that is responsible for its creation.

2.a Discussion: The initialization of an object_declaration or allocator can indirectly include the creation of other objects
that contain tasks. For example, the default expression for a subcomponent of an object created by an allocator might
call a function that evaluates a completely different allocator. Tasks created by the two allocators are not activated
together.

3 For tasks created by the elaboration of object_declarations of a given declarative region, the activations
are initiated within the context of the handled_sequence_of_statements (and its associated exception_
handlers if any — see 11.2), just prior to executing the statements of the _sequence. [For a package
without an explicit body or an explicit handled_sequence_of_statements, an implicit body or an implicit
null_statement is assumed, as defined in 7.2.]

3.a Ramification: If Tasking_Error is raised, it can be handled by handlers of the handled_sequence_of_statements.

4 For tasks created by the evaluation of an allocator, the activations are initiated as the last step of evaluat-
ing the allocator, after completing any initialization for the object created by the allocator, and prior to
returning the new access value.

ISO/IEC 8652:1995(E) —AARM;6.0

265 21 December 1994 Task Execution - Task Activation 9.2

5{activator (of a task)} {blocked [waiting for activations to complete]} The task that created the new tasks and initiated
their activations (the activator) is blocked until all of these activations complete (successfully or not).
{Tasking_Error (raised by failure of run-time check)} Once all of these activations are complete, if the activation of
any of the tasks has failed [(due to the propagation of an exception)], Tasking_Error is raised in the
activator, at the place at which it initiated the activations. Otherwise, the activator proceeds with its
execution normally. Any tasks that are aborted prior to completing their activation are ignored when
determining whether to raise Tasking_Error.

5.aRamification: Note that a task created by an allocator does not necessarily depend on its activator; in such a case the
activator’s termination can precede the termination of the newly created task.

5.bDiscussion: Tasking_Error is raised only once, even if two or more of the tasks being activated fail their activation.

6Should the task that created the new tasks never reach the point where it would initiate the activations
(due to an abort or the raising of an exception), the newly created tasks become terminated and are never
activated.

NOTES
75 An entry of a task can be called before the task has been activated.

86 If several tasks are activated together, the execution of any of these tasks need not await the end of the activation of the
other tasks.

97 A task can become completed during its activation either because of an exception or because it is aborted (see 9.8).

Examples

10Example of task activation:
11procedure P is

A, B : Server; -- elaborate the task objects A, B
C : Server; -- elaborate the task object C

begin
-- the tasks A, B, C are activated together before the first statement
...

end;

Wording Changes From Ada 83

11.aWe have replaced the term suspended with blocked, since we didn’t want to consider a task blocked when it was simply
competing for execution resources. "Suspended" is sometimes used more generally to refer to tasks that are not
actually running on some processor, due to the lack of resources.

11.bThis clause has been rewritten in an attempt to improve presentation.

9.3 Task Dependence - Termination of Tasks
Dynamic Semantics

1{dependence (of a task on a master)} {task (dependence)} {task (completion)} {task (termination)} Each task (other than
an environment task — see 10.2) depends on one or more masters (see 7.6.1), as follows:

2• If the task is created by the evaluation of an allocator for a given access type, it depends on
each master that includes the elaboration of the declaration of the ultimate ancestor of the
given access type.

3• If the task is created by the elaboration of an object_declaration, it depends on each master
that includes this elaboration.

4{dependence (of a task on another task)} Furthermore, if a task depends on a given master, it is defined to
depend on the task that executes the master, and (recursively) on any master of that task.

ISO/IEC 8652:1995(E) —AARM;6.0

9.3 Task Dependence - Termination of Tasks 21 December 1994 266

4.a Discussion: Don’t confuse these kinds of dependences with the dependences among compilation units defined in
10.1.1, ‘‘Compilation Units - Library Units’’.

5 A task is said to be completed when the execution of its corresponding task_body is completed. A task is
said to be terminated when any finalization of the task_body has been performed (see 7.6.1). [The first
step of finalizing a master (including a task_body) is to wait for the termination of any tasks dependent on
the master.] {blocked [waiting for dependents to terminate]} The task executing the master is blocked until all the
dependents have terminated. [Any remaining finalization is then performed and the master is left.]

6 Completion of a task (and the corresponding task_body) can occur when the task is blocked at a select_
statement with an an open terminate_alternative (see 9.7.1); the open terminate_alternative is selected if
and only if the following conditions are satisfied:

7 • The task depends on some completed master;

8 • Each task that depends on the master considered is either already terminated or similarly
blocked at a select_statement with an open terminate_alternative.

9 When both conditions are satisfied, the task considered becomes completed, together with all tasks that
depend on the master considered that are not yet completed.

9.a Ramification: Any required finalization is performed after the selection of terminate_alternatives. The tasks are not
callable during the finalization. In some ways it is as though they were aborted.

NOTES
10 8 The full view of a limited private type can be a task type, or can have subcomponents of a task type. Creation of an

object of such a type creates dependences according to the full type.

11 9 An object_renaming_declaration defines a new view of an existing entity and hence creates no further dependence.

12 10 The rules given for the collective completion of a group of tasks all blocked on select_statements with open terminate_
alternatives ensure that the collective completion can occur only when there are no remaining active tasks that could call
one of the tasks being collectively completed.

13 11 If two or more tasks are blocked on select_statements with open terminate_alternatives, and become completed
collectively, their finalization actions proceed concurrently.

14 12 The completion of a task can occur due to any of the following:

15 • the raising of an exception during the elaboration of the declarative_part of the corresponding task_body;

16 • the completion of the handled_sequence_of_statements of the corresponding task_body;

17 • the selection of an open terminate_alternative of a select_statement in the corresponding task_body;

18 • the abort of the task.

Examples

19 Example of task dependence:
20 declare

type Global is access Server; -- see 9.1
A, B : Server;
G : Global;

begin
-- activation of A and B
declare

type Local is access Server;
X : Global := new Server; -- activation of X.all
L : Local := new Server; -- activation of L.all
C : Server;

ISO/IEC 8652:1995(E) —AARM;6.0

267 21 December 1994 Task Dependence - Termination of Tasks 9.3

begin
-- activation of C
G := X; -- both G and X designate the same task object
...

end; -- await termination of C and L.all (but not X.all)
...

end; -- await termination of A, B, and G.all

Wording Changes From Ada 83

20.aWe have revised the wording to be consistent with the definition of master now given in 7.6.1, ‘‘Completion and
Finalization’’.

20.bTasks that used to depend on library packages in Ada 83, now depend on the (implicit) task_body of the environment
task (see 10.2). Therefore, the environment task has to wait for them before performing library level finalization and
terminating the partition. In Ada 83 the requirement to wait for tasks that depended on library packages was not as
clear.

20.cWhat was "collective termination" is now "collective completion" resulting from selecting terminate_alternatives. This
is because finalization still occurs for such tasks, and this happens after selecting the terminate_alternative, but before
termination.

9.4 Protected Units and Protected Objects
1{protected object} {protected operation} {protected subprogram} {protected entry} A protected object provides coor-

dinated access to shared data, through calls on its visible protected operations, which can be protected
subprograms or protected entries. {protected declaration} {protected unit} {protected declaration} A protected unit
is declared by a protected declaration, which has a corresponding protected_body. A protected decla-
ration may be a protected_type_declaration, in which case it declares a named protected type; alter-
natively, it may be a single_protected_declaration, in which case it defines an anonymous protected type,
as well as declaring a named protected object of that type. {broadcast signal: see protected object}

Syntax

2protected_type_declaration ::=
protected type defining_identifier [known_discriminant_part] is protected_definition;

3single_protected_declaration ::=
protected defining_identifier is protected_definition;

4protected_definition ::=
{ protected_operation_declaration }

[private
{ protected_element_declaration }]

end [protected_identifier]

5protected_operation_declaration ::= subprogram_declaration
| entry_declaration
| representation_clause

6protected_element_declaration ::= protected_operation_declaration
| component_declaration

6.aReason: We allow the operations and components to be mixed because that’s how other things work (for example,
package declarations). We have relaxed the ordering rules for the items inside declarative_parts and task_definitions as
well.

7protected_body ::=
protected body defining_identifier is
{ protected_operation_item }

end [protected_identifier];

ISO/IEC 8652:1995(E) —AARM;6.0

9.4 Protected Units and Protected Objects 21 December 1994 268

8 protected_operation_item ::= subprogram_declaration
| subprogram_body
| entry_body
| representation_clause

9 If a protected_identifier appears at the end of a protected_definition or protected_body, it shall repeat
the defining_identifier.

Legality Rules

10 {requires a completion [protected_declaration]} A protected declaration requires a completion[, which shall be a
protected_body,] and every protected_body shall be the completion of some protected declaration.

10.a To be honest: The completion can be a pragma Import, if the implementation supports it.

Static Semantics

11 A protected_definition defines a protected type and its first subtype. {visible part [of a protected unit]} The list
of protected_operation_declarations of a protected_definition, together with the known_discriminant_part,
if any, is called the visible part of the protected unit. [{private part [of a protected unit]} The optional list of
protected_element_declarations after the reserved word private is called the private part of the protected
unit.]

11.a Proof: Private part is defined in Section 8.

Dynamic Semantics

12 [{elaboration [protected declaration]} The elaboration of a protected declaration elaborates the protected_
definition. {elaboration [single_protected_declaration]} The elaboration of a single_protected_declaration also
creates an object of an (anonymous) protected type.]

12.a Proof: This is redundant with the general rules for the elaboration of a full_type_declaration and an object_declaration.

13 {elaboration [protected_definition]} [The elaboration of a protected_definition creates the protected type and its
first subtype;] it also includes the elaboration of the component_declarations and protected_operation_
declarations in the given order.

14 [{initialization [of a protected object]} As part of the initialization of a protected object, any per-object con-
straints (see 3.8) are elaborated.]

14.a Discussion: We do not mention pragmas since each pragma has its own elaboration rules.

15 {elaboration [protected_body]} The elaboration of a protected_body has no other effect than to establish that
protected operations of the type can from then on be called without failing the Elaboration_Check.

16 The content of an object of a given protected type includes:

17 • The values of the components of the protected object, including (implicitly) an entry queue
for each entry declared for the protected object;

17.a Ramification: "For each entry" implies one queue for each single entry, plus one for each entry of each entry
family.

18 • {execution resource [associated with a protected object]} A representation of the state of the execution
resource associated with the protected object (one such resource is associated with each
protected object).

19 [The execution resource associated with a protected object has to be acquired to read or update any
components of the protected object; it can be acquired (as part of a protected action — see 9.5.1) either
for concurrent read-only access, or for exclusive read-write access.]

ISO/IEC 8652:1995(E) —AARM;6.0

269 21 December 1994 Protected Units and Protected Objects 9.4

20{finalization [of a protected object]} {Program_Error (raised by failure of run-time check)} As the first step of the
finalization of a protected object, each call remaining on any entry queue of the object is removed from its
queue and Program_Error is raised at the place of the corresponding entry_call_statement.

20.aReason: This is analogous to the raising of Tasking_Error in callers of a task that completes before accepting the calls.
This situation can only occur due to a requeue (ignoring premature unchecked_deallocation), since any task that has
accessibility to a protected object is awaited before finalizing the protected object. For example:

20.bprocedure Main is
task T is

entry E;
end T;

20.ctask body T is
protected PO is

entry Ee;
end PO;

20.dprotected body PO is
entry Ee when False is
begin

null;
end Ee;

end PO;
begin

accept E do
requeue PO.Ee;

end E;
end T;

begin
T.E;

end Main;

20.eThe environment task is queued on PO.EE when PO is finalized.

20.fIn a real example, a server task might park callers on a local protected object for some useful purpose, so we didn’t
want to disallow this case.

NOTES
2113 Within the declaration or body of a protected unit, the name of the protected unit denotes the current instance of the

unit (see 8.6), rather than the first subtype of the corresponding protected type (and thus the name cannot be used as a
subtype_mark).

21.aDiscussion: However, it is possible to refer to some other subtype of the protected type within its body, presuming
such a subtype has been declared between the protected_type_declaration and the protected_body.

2214 A selected_component can be used to denote a discriminant of a protected object (see 4.1.3). Within a protected unit,
the name of a discriminant of the protected type denotes the corresponding discriminant of the current instance of the unit.

2315 A protected type is a limited type (see 7.5), and hence has neither an assignment operation nor predefined equality
operators.

2416 The bodies of the protected operations given in the protected_body define the actions that take place upon calls to the
protected operations.

2517 The declarations in the private part are only visible within the private part and the body of the protected unit.

25.aReason: Component_declarations are disallowed in a protected_body because, for efficiency, we wish to allow the
compiler to determine the size of protected objects (when not dynamic); the compiler cannot necessarily see the body.
Furthermore, the semantics of initialization of such objects would be problematic — we do not wish to give protected
objects complex initialization semantics similar to task activation.

25.bThe same applies to entry_declarations, since an entry involves an implicit component — the entry queue.

Examples

26Example of declaration of protected type and corresponding body:

ISO/IEC 8652:1995(E) —AARM;6.0

9.4 Protected Units and Protected Objects 21 December 1994 270

27 protected type Resource is
entry Seize;
procedure Release;

private
Busy : Boolean := False;

end Resource;

28 protected body Resource is
entry Seize when not Busy is
begin

Busy := True;
end Seize;

29 procedure Release is
begin

Busy := False;
end Release;

end Resource;

30 Example of a single protected declaration and corresponding body:
31 protected Shared_Array is

-- Index, Item, and Item_Array are global types
function Component (N : in Index) return Item;
procedure Set_Component(N : in Index; E : in Item);

private
Table : Item_Array(Index) := (others => Null_Item);

end Shared_Array;

32 protected body Shared_Array is
function Component(N : in Index) return Item is
begin

return Table(N);
end Component;

33 procedure Set_Component(N : in Index; E : in Item) is
begin

Table(N) := E;
end Set_Component;

end Shared_Array;

34 Examples of protected objects:
35 Control : Resource;

Flags : array(1 .. 100) of Resource;

Extensions to Ada 83

35.a {extensions to Ada 83} This entire clause is new; protected units do not exist in Ada 83.

9.5 Intertask Communication
1 {intertask communication} {critical section: see intertask communication} The primary means for intertask com-

munication is provided by calls on entries and protected subprograms. Calls on protected subprograms
allow coordinated access to shared data objects. Entry calls allow for blocking the caller until a given
condition is satisfied (namely, that the corresponding entry is open — see 9.5.3), and then communicating
data or control information directly with another task or indirectly via a shared protected object.

Static Semantics

2 {target object (of a call on an entry or a protected subprogram)} Any call on an entry or on a protected subprogram
identifies a target object for the operation, which is either a task (for an entry call) or a protected object
(for an entry call or a protected subprogram call). The target object is considered an implicit parameter to
the operation, and is determined by the operation name (or prefix) used in the call on the operation, as
follows:

ISO/IEC 8652:1995(E) —AARM;6.0

271 21 December 1994 Intertask Communication 9.5

3• If it is a direct_name or expanded name that denotes the declaration (or body) of the opera-
tion, then the target object is implicitly specified to be the current instance of the task or
protected unit immediately enclosing the operation; {internal call} such a call is defined to be
an internal call;

4• If it is a selected_component that is not an expanded name, then the target object is explicitly
specified to be the task or protected object denoted by the prefix of the name; {external call}
such a call is defined to be an external call;

4.aDiscussion: For example:

4.bprotected type Pt is
procedure Op1;
procedure Op2;

end Pt;

4.cPO : Pt;
Other_Object : Some_Other_Protected_Type;

4.dprotected body Pt is
procedure Op1 is begin ... end Op1;

4.eprocedure Op2 is
begin

Op1; -- An internal call.
Pt.Op1; -- Another internal call.
PO.Op1; -- An external call. It the current instance is PO, then

-- this is a bounded error (see 9.5.1).
Other_Object.Some_Op; -- An external call.

end Op2;
end Pt;

5• If the name or prefix is a dereference (implicit or explicit) of an access-to-protected-
subprogram value, then the target object is determined by the prefix of the Access attribute_
reference that produced the access value originally, and the call is defined to be an external
call;

6• If the name or prefix denotes a subprogram_renaming_declaration, then the target object is as
determined by the name of the renamed entity.

7{target object (of a requeue_statement)} {internal requeue} {external requeue} A corresponding definition of target
object applies to a requeue_statement (see 9.5.4), with a corresponding distinction between an internal
requeue and an external requeue.

Dynamic Semantics

8Within the body of a protected operation, the current instance (see 8.6) of the immediately enclosing
protected unit is determined by the target object specified (implicitly or explicitly) in the call (or requeue)
on the protected operation.

8.aTo be honest: The current instance is defined in the same way within the body of a subprogram declared immediately
within a protected_body.

9Any call on a protected procedure or entry of a target protected object is defined to be an update to the
object, as is a requeue on such an entry.

9.aReason: Read/write access to the components of a protected object is granted while inside the body of a protected
procedure or entry. Also, any protected entry call can change the value of the Count attribute, which represents an
update. Any protected procedure call can result in servicing the entries, which again might change the value of a Count
attribute.

ISO/IEC 8652:1995(E) —AARM;6.0

9.5.1 Protected Subprograms and Protected Actions 21 December 1994 272

9.5.1 Protected Subprograms and Protected Actions
1 {protected subprogram} {protected procedure} {protected function} A protected subprogram is a subprogram

declared immediately within a protected_definition. Protected procedures provide exclusive read-write
access to the data of a protected object; protected functions provide concurrent read-only access to the
data.

1.a Ramification: A subprogram declared immediately within a protected_body is not a protected subprogram; it is an
intrinsic subprogram. See 6.3.1, ‘‘Conformance Rules’’.

Static Semantics

2 Within the body of a protected function (or a function declared immediately within a protected_body), the
current instance of the enclosing protected unit is defined to be a constant [(that is, its subcomponents
may be read but not updated)]. Within the body of a protected procedure (or a procedure declared
immediately within a protected_body), and within an entry_body, the current instance is defined to be a
variable [(updating is permitted)].

2.a Ramification: The current instance is like an implicit parameter, of mode in for a protected function, and of mode in
out for a protected procedure (or protected entry).

Dynamic Semantics

3 {execution [protected subprogram call]} For the execution of a call on a protected subprogram, the evaluation of
the name or prefix and of the parameter associations, and any assigning back of in out or out parameters,
proceeds as for a normal subprogram call (see 6.4). If the call is an internal call (see 9.5), the body of the
subprogram is executed as for a normal subprogram call. If the call is an external call, then the body of
the subprogram is executed as part of a new protected action on the target protected object; the protected
action completes after the body of the subprogram is executed. [A protected action can also be started by
an entry call (see 9.5.3).]

4 {protected action} A new protected action is not started on a protected object while another protected action
on the same protected object is underway, unless both actions are the result of a call on a protected
function. This rule is expressible in terms of the execution resource associated with the protected object:

5 • {protected action (start)} {acquire (execution resource associated with protected object)} Starting a
protected action on a protected object corresponds to acquiring the execution resource as-
sociated with the protected object, either for concurrent read-only access if the protected
action is for a call on a protected function, or for exclusive read-write access otherwise;

6 • {protected action (complete)} {release (execution resource associated with protected object)} Completing the
protected action corresponds to releasing the associated execution resource.

7 [After performing an operation on a protected object other than a call on a protected function, but prior to
completing the associated protected action, the entry queues (if any) of the protected object are serviced
(see 9.5.3).]

Bounded (Run-Time) Errors

8 {bounded error} During a protected action, it is a bounded error to invoke an operation that is potentially
blocking. {potentially blocking operation} {blocking, potentially} The following are defined to be potentially
blocking operations:

8.a Reason: Some of these operations are not directly blocking. However, they are still treated as bounded errors during a
protected action, because allowing them might impose an undesirable implementation burden.

9 • a select_statement;

ISO/IEC 8652:1995(E) —AARM;6.0

273 21 December 1994 Protected Subprograms and Protected Actions 9.5.1

10• an accept_statement;

11• an entry_call_statement;

12• a delay_statement;

13• an abort_statement;

14• task creation or activation;

15• an external call on a protected subprogram (or an external requeue) with the same target
object as that of the protected action;

15.aReason: This is really a deadlocking call, rather than a blocking call, but we include it in this list for
simplicity.

16• a call on a subprogram whose body contains a potentially blocking operation.
16.aReason: This allows an implementation to check and raise Program_Error as soon as a subprogram is called,

rather than waiting to find out whether it actually reaches the potentially blocking operation. This in turn
allows the potentially blocking operation check to be performed prior to run time in some environments.

17{Program_Error (raised by failure of run-time check)} If the bounded error is detected, Program_Error is raised. If
not detected, the bounded error might result in deadlock or a (nested) protected action on the same target
object.

18Certain language-defined subprograms are potentially blocking. In particular, the subprograms of the
language-defined input-output packages that manipulate files (implicitly or explicitly) are potentially
blocking. Other potentially blocking subprograms are identified where they are defined. When not
specified as potentially blocking, a language-defined subprogram is nonblocking.

NOTES
1918 If two tasks both try to start a protected action on a protected object, and at most one is calling a protected function,

then only one of the tasks can proceed. Although the other task cannot proceed, it is not considered blocked, and it might
be consuming processing resources while it awaits its turn. There is no language-defined ordering or queuing presumed for
tasks competing to start a protected action — on a multiprocessor such tasks might use busy-waiting; for monoprocessor
considerations, see D.3, ‘‘Priority Ceiling Locking’’.

19.aDiscussion: The intended implementation on a multi-processor is in terms of ‘‘spin locks’’ — the waiting task will
spin.

2019 The body of a protected unit may contain declarations and bodies for local subprograms. These are not visible outside
the protected unit.

2120 The body of a protected function can contain internal calls on other protected functions, but not protected procedures,
because the current instance is a constant. On the other hand, the body of a protected procedure can contain internal calls
on both protected functions and procedures.

2221 From within a protected action, an internal call on a protected subprogram, or an external call on a protected
subprogram with a different target object is not considered a potentially blocking operation.

22.aReason: This is because a task is not considered blocked while attempting to acquire the execution resource associated
with a protected object. The acquisition of such a resource is rather considered part of the normal competition for
execution resources between the various tasks that are ready. External calls that turn out to be on the same target object
are considered potentially blocking, since they can deadlock the task indefinitely.

Examples

23Examples of protected subprogram calls (see 9.4):
24Shared_Array.Set_Component(N, E);

E := Shared_Array.Component(M);
Control.Release;

ISO/IEC 8652:1995(E) —AARM;6.0

9.5.2 Entries and Accept Statements 21 December 1994 274

9.5.2 Entries and Accept Statements
1 Entry_declarations, with the corresponding entry_bodies or accept_statements, are used to define poten-

tially queued operations on tasks and protected objects.

Syntax

2 entry_declaration ::=
entry defining_identifier [(discrete_subtype_definition)] parameter_profile;

3 accept_statement ::=
accept entry_direct_name [(entry_index)] parameter_profile [do
handled_sequence_of_statements

end [entry_identifier]];
3.a Reason: We cannot use defining_identifier for accept_statements. Although an accept_statement is sort of like a body,

it can appear nested within a block_statement, and therefore be hidden from its own entry by an outer homograph.

4 entry_index ::= expression

5 entry_body ::=
entry defining_identifier entry_body_formal_part entry_barrier is
declarative_part

begin
handled_sequence_of_statements

end [entry_identifier];

6 entry_body_formal_part ::= [(entry_index_specification)] parameter_profile

7 entry_barrier ::= when condition

8 entry_index_specification ::= for defining_identifier in discrete_subtype_definition

9 If an entry_identifier appears at the end of an accept_statement, it shall repeat the entry_direct_
name. If an entry_identifier appears at the end of an entry_body, it shall repeat the defining_
identifier.

10 [An entry_declaration is allowed only in a protected or task declaration.]
10.a Proof: This follows from the BNF.

Name Resolution Rules

11 {expected profile [accept_statement entry_direct_name]} In an accept_statement, the expected profile for the
entry_direct_name is that of the entry_declaration; {expected type [entry_index]} the expected type for an
entry_index is that of the subtype defined by the discrete_subtype_definition of the corresponding entry_
declaration.

12 Within the handled_sequence_of_statements of an accept_statement, if a selected_component has a
prefix that denotes the corresponding entry_declaration, then the entity denoted by the prefix is the
accept_statement, and the selected_component is interpreted as an expanded name (see 4.1.3)[; the
selector_name of the selected_component has to be the identifier for some formal parameter of the
accept_statement].

12.a Proof: The only declarations that occur immediately within the declarative region of an accept_statement are those for
its formal parameters.

Legality Rules

13 An entry_declaration in a task declaration shall not contain a specification for an access parameter (see
3.10).

13.a Reason: Access parameters for task entries would require a complex implementation. For example:

ISO/IEC 8652:1995(E) —AARM;6.0

275 21 December 1994 Entries and Accept Statements 9.5.2

13.btask T is
entry E(Z : access Integer); -- Illegal!

end T;

13.ctask body T is
begin

declare
type A is access all Integer;
X : A;
Int : aliased Integer;
task Inner;
task body Inner is
begin

T.E(Int’Access);
end Inner;

begin
accept E(Z : access Integer) do

X := A(Z); -- Accessibility_Check
end E;

end;
end T;

13.dImplementing the Accessibility_Check inside the accept_statement for E is difficult, since one does not know whether
the entry caller is calling from inside the immediately enclosing declare block or from outside it. This means that the
lexical nesting level associated with the designated object is not sufficient to determine whether the Accessibility_
Check should pass or fail.

13.eNote that such problems do not arise with protected entries, because entry_bodies are always nested immediately within
the protected_body; they cannot be further nested as can accept_statements, nor can they be called from within the
protected_body (since no entry calls are permitted inside a protected_body).

14For an accept_statement, the innermost enclosing body shall be a task_body, and the entry_direct_name
shall denote an entry_declaration in the corresponding task declaration; the profile of the accept_
statement shall conform fully to that of the corresponding entry_declaration. {full conformance (required)} An
accept_statement shall have a parenthesized entry_index if and only if the corresponding entry_
declaration has a discrete_subtype_definition.

15An accept_statement shall not be within another accept_statement that corresponds to the same entry_
declaration, nor within an asynchronous_select inner to the enclosing task_body.

15.aReason: Accept_statements are required to be immediately within the enclosing task_body (as opposed to being in a
nested subprogram) to ensure that a nested task does not attempt to accept the entry of its enclosing task. We
considered relaxing this restriction, either by making the check a run-time check, or by allowing a nested task to accept
an entry of its enclosing task. However, neither change seemed to provide sufficient benefit to justify the additional
implementation burden.

15.bNested accept_statements for the same entry (or entry family) are prohibited to ensure that there is no ambiguity in the
resolution of an expanded name for a formal parameter of the entry. This could be relaxed by allowing the inner one to
hide the outer one from all visibility, but again the small added benefit didn’t seem to justify making the change for
Ada 9X.

15.cAccept_statements are not permitted within asynchronous_select statements to simplify the semantics and implemen-
tation: an accept_statement in an abortable_part could result in Tasking_Error being propagated from an entry call
even though the target task was still callable; implementations that use multiple tasks implicitly to implement an
asynchronous_select might have trouble supporting "up-level" accepts. Furthermore, if accept_statements were
permitted in the abortable_part, a task could call its own entry and then accept it in the abortable_part, leading to rather
unusual and possibly difficult-to-specify semantics.

16{requires a completion [protected entry_declaration]} An entry_declaration of a protected unit requires a
completion[, which shall be an entry_body,] {only as a completion [entry_body]} and every entry_body shall be
the completion of an entry_declaration of a protected unit. {completion legality [entry_body]} The profile of the
entry_body shall conform fully to that of the corresponding declaration. {full conformance (required)}

ISO/IEC 8652:1995(E) —AARM;6.0

9.5.2 Entries and Accept Statements 21 December 1994 276

16.a Ramification: An entry_declaration, unlike a subprogram_declaration, cannot be completed with a renaming_
declaration.

16.b To be honest: The completion can be a pragma Import, if the implementation supports it.

16.c Discussion: The above applies only to protected entries, which are the only ones completed with entry_bodies. Task
entries have corresponding accept_statements instead of having entry_bodies, and we do not consider an accept_
statement to be a ‘‘completion,’’ because a task entry_declaration is allowed to have zero, one, or more than one
corresponding accept_statements.

17 An entry_body_formal_part shall have an entry_index_specification if and only if the corresponding
entry_declaration has a discrete_subtype_definition. In this case, the discrete_subtype_definitions of the
entry_declaration and the entry_index_specification shall fully conform to one another (see 6.3.1). {full

conformance (required)}

18 A name that denotes a formal parameter of an entry_body is not allowed within the entry_barrier of the
entry_body.

Static Semantics

19 The parameter modes defined for parameters in the parameter_profile of an entry_declaration are the
same as for a subprogram_declaration and have the same meaning (see 6.2).

19.a Discussion: Note that access parameters are not allowed for task entries (see above).

20 {family (entry)} {entry family} {entry index subtype} An entry_declaration with a discrete_subtype_definition (see
3.6) declares a family of distinct entries having the same profile, with one such entry for each value of the
entry index subtype defined by the discrete_subtype_definition. [A name for an entry of a family takes
the form of an indexed_component, where the prefix denotes the entry_declaration for the family, and the
index value identifies the entry within the family.] {single entry} {entry (single)} The term single entry is used
to refer to any entry other than an entry of an entry family.

21 In the entry_body for an entry family, the entry_index_specification declares a named constant whose
subtype is the entry index subtype defined by the corresponding entry_declaration; {named entry index} the
value of the named entry index identifies which entry of the family was called.

21.a Ramification: The discrete_subtype_definition of the entry_index_specification is not elaborated; the subtype of the
named constant declared is defined by the discrete_subtype_definition of the corresponding entry_declaration, which is
elaborated, either when the type is declared, or when the object is created, if its constraint is per-object.

Dynamic Semantics

22 {elaboration [entry_declaration]} For the elaboration of an entry_declaration for an entry family, if the
discrete_subtype_definition contains no per-object expressions (see 3.8), then the discrete_subtype_
definition is elaborated. Otherwise, the elaboration of the entry_declaration consists of the evaluation of
any expression of the discrete_subtype_definition that is not a per-object expression (or part of one). The
elaboration of an entry_declaration for a single entry has no effect.

22.a Discussion: The elaboration of the declaration of a protected subprogram has no effect, as specified in clause 6.1. The
default initialization of an object of a task or protected type is covered in 3.3.1.

23 [The actions to be performed when an entry is called are specified by the corresponding accept_
statements (if any) for an entry of a task unit, and by the corresponding entry_body for an entry of a
protected unit.]

24 {execution [accept_statement]} For the execution of an accept_statement, the entry_index, if any, is first
evaluated and converted to the entry index subtype; this index value identifies which entry of the family is
to be accepted. {implicit subtype conversion [entry index]} {blocked [on an accept_statement]} {selection (of an entry

ISO/IEC 8652:1995(E) —AARM;6.0

277 21 December 1994 Entries and Accept Statements 9.5.2

caller)} Further execution of the accept_statement is then blocked until a caller of the corresponding entry
is selected (see 9.5.3), whereupon the handled_sequence_of_statements, if any, of the accept_statement
is executed, with the formal parameters associated with the corresponding actual parameters of the
selected entry call. Upon completion of the handled_sequence_of_statements, the accept_statement
completes and is left. When an exception is propagated from the handled_sequence_of_statements of an
accept_statement, the same exception is also raised by the execution of the corresponding entry_call_
statement.

24.aRamification: This is in addition to propagating it to the construct containing the accept_statement. In other words,
for a rendezvous, the raising splits in two, and continues concurrently in both tasks.

24.bThe caller gets a new occurrence; this isn’t considered propagation.

24.cNote that we say ‘‘propagated from the handled_sequence_of_statements of an accept_statement’’, not ‘‘propagated
from an accept_statement.’’ The latter would be wrong — we don’t want exceptions propagated by the entry_index to
be sent to the caller (there is none yet!).

25{rendezvous} The above interaction between a calling task and an accepting task is called a rendezvous.
[After a rendezvous, the two tasks continue their execution independently.]

26[An entry_body is executed when the condition of the entry_barrier evaluates to True and a caller of the
corresponding single entry, or entry of the corresponding entry family, has been selected (see 9.5.3).]
{execution [entry_body]} For the execution of the entry_body, the declarative_part of the entry_body is
elaborated, and the handled_sequence_of_statements of the body is executed, as for the execution of a
subprogram_body. The value of the named entry index, if any, is determined by the value of the entry
index specified in the entry_name of the selected entry call (or intermediate requeue_statement — see
9.5.4).

26.aTo be honest: If the entry had been renamed as a subprogram, and the call was a procedure_call_statement using the
name declared by the renaming, the entry index (if any) comes from the entry name specified in the subprogram_
renaming_declaration.

NOTES
2722 A task entry has corresponding accept_statements (zero or more), whereas a protected entry has a corresponding

entry_body (exactly one).

2823 A consequence of the rule regarding the allowed placements of accept_statements is that a task can execute accept_
statements only for its own entries.

2924 A return_statement (see 6.5) or a requeue_statement (see 9.5.4) may be used to complete the execution of an accept_
statement or an entry_body.

29.aRamification: An accept_statement need not have a handled_sequence_of_statements even if the corresponding entry
has parameters. Equally, it can have a handled_sequence_of_statements even if the corresponding entry has no
parameters.

29.bRamification: A single entry overloads a subprogram, an enumeration literal, or another single entry if they have the
same defining_identifier. Overloading is not allowed for entry family names. A single entry or an entry of an entry
family can be renamed as a procedure as explained in 8.5.4.

3025 The condition in the entry_barrier may reference anything visible except the formal parameters of the entry. This
includes the entry index (if any), the components (including discriminants) of the protected object, the Count attribute of an
entry of that protected object, and data global to the protected unit.

31The restriction against referencing the formal parameters within an entry_barrier ensures that all calls of the same entry see
the same barrier value. If it is necessary to look at the parameters of an entry call before deciding whether to handle it, the
entry_barrier can be ‘‘when True’’ and the caller can be requeued (on some private entry) when its parameters indicate that
it cannot be handled immediately.

ISO/IEC 8652:1995(E) —AARM;6.0

9.5.2 Entries and Accept Statements 21 December 1994 278

Examples

32 Examples of entry declarations:
33 entry Read(V : out Item);

entry Seize;
entry Request(Level)(D : Item); -- a family of entries

34 Examples of accept statements:
35 accept Shut_Down;

36 accept Read(V : out Item) do
V := Local_Item;

end Read;

37 accept Request(Low)(D : Item) do
...

end Request;

Extensions to Ada 83

37.a {extensions to Ada 83} The syntax rule for entry_body is new.

37.b Accept_statements can now have exception_handlers.

9.5.3 Entry Calls
1 {entry call} [An entry_call_statement (an entry call) can appear in various contexts.] {simple entry call} {entry

call (simple)} A simple entry call is a stand-alone statement that represents an unconditional call on an entry
of a target task or a protected object. [Entry calls can also appear as part of select_statements (see 9.7).]

Syntax

2 entry_call_statement ::= entry_name [actual_parameter_part];

Name Resolution Rules

3 The entry_name given in an entry_call_statement shall resolve to denote an entry. The rules for
parameter associations are the same as for subprogram calls (see 6.4 and 6.4.1).

Static Semantics

4 [The entry_name of an entry_call_statement specifies (explicitly or implicitly) the target object of the
call, the entry or entry family, and the entry index, if any (see 9.5).]

Dynamic Semantics

5 {open entry} {entry (open)} {closed entry} {entry (closed)} Under certain circumstances (detailed below), an entry
of a task or protected object is checked to see whether it is open or closed:

6 • {open entry (of a task)} {closed entry (of a task)} An entry of a task is open if the task is blocked on
an accept_statement that corresponds to the entry (see 9.5.2), or on a selective_accept (see
9.7.1) with an open accept_alternative that corresponds to the entry; otherwise it is closed.

7 • {open entry (of a protected object)} {closed entry (of a protected object)} An entry of a protected object is
open if the condition of the entry_barrier of the corresponding entry_body evaluates to True;
otherwise it is closed. {Program_Error (raised by failure of run-time check)} If the evaluation of the
condition propagates an exception, the exception Program_Error is propagated to all current
callers of all entries of the protected object.

7.a Reason: An exception during barrier evaluation is considered essentially a fatal error. All current entry callers
are notified with a Program_Error. In a fault-tolerant system, a protected object might provide a Reset
protected procedure, or equivalent, to support attempts to restore such a "broken" protected object to a
reasonable state.

ISO/IEC 8652:1995(E) —AARM;6.0

279 21 December 1994 Entry Calls 9.5.3

7.bDiscussion: Note that the definition of when a task entry is open is based on the state of the (accepting) task, whereas
the "openness" of a protected entry is defined only when it is explicitly checked, since the barrier expression needs to
be evaluated. Implementation permissions are given (below) to allow implementations to evaluate the barrier
expression more or less often than it is checked, but the basic semantic model presumes it is evaluated at the times
when it is checked.

8{execution [entry_call_statement]} For the execution of an entry_call_statement, evaluation of the name and of
the parameter associations is as for a subprogram call (see 6.4). {issue (an entry call)} The entry call is then
issued: For a call on an entry of a protected object, a new protected action is started on the object (see
9.5.1). The named entry is checked to see if it is open; {select an entry call (immediately)} if open, the entry
call is said to be selected immediately, and the execution of the call proceeds as follows:

9• For a call on an open entry of a task, the accepting task becomes ready and continues the
execution of the corresponding accept_statement (see 9.5.2).

10• For a call on an open entry of a protected object, the corresponding entry_body is executed
(see 9.5.2) as part of the protected action.

11If the accept_statement or entry_body completes other than by a requeue (see 9.5.4), return is made to the
caller (after servicing the entry queues — see below); any necessary assigning back of formal to actual
parameters occurs, as for a subprogram call (see 6.4.1); such assignments take place outside of any
protected action.

11.aRamification: The return to the caller will generally not occur until the protected action completes, unless some other
thread of control is given the job of completing the protected action and releasing the associated execution resource.

12If the named entry is closed, the entry call is added to an entry queue (as part of the protected action, for a
call on a protected entry), and the call remains queued until it is selected or cancelled; {entry queue} there is
a separate (logical) entry queue for each entry of a given task or protected object [(including each entry of
an entry family)].

13{service (an entry queue)} {select an entry call (from an entry queue)} When a queued call is selected, it is removed
from its entry queue. Selecting a queued call from a particular entry queue is called servicing the entry
queue. An entry with queued calls can be serviced under the following circumstances:

14• When the associated task reaches a corresponding accept_statement, or a selective_accept
with a corresponding open accept_alternative;

15• If after performing, as part of a protected action on the associated protected object, an opera-
tion on the object other than a call on a protected function, the entry is checked and found to
be open.

16{select an entry call (from an entry queue)} If there is at least one call on a queue corresponding to an open entry,
then one such call is selected according to the entry queuing policy in effect (see below), and the cor-
responding accept_statement or entry_body is executed as above for an entry call that is selected im-
mediately.

17{entry queuing policy} The entry queuing policy controls selection among queued calls both for task and
protected entry queues. {default entry queuing policy} {entry queuing policy (default policy)} The default entry
queuing policy is to select calls on a given entry queue in order of arrival. If calls from two or more
queues are simultaneously eligible for selection, the default entry queuing policy does not specify which
queue is serviced first. Other entry queuing policies can be specified by pragmas (see D.4).

18For a protected object, the above servicing of entry queues continues until there are no open entries with
queued calls, at which point the protected action completes.

ISO/IEC 8652:1995(E) —AARM;6.0

9.5.3 Entry Calls 21 December 1994 280

18.a Discussion: While servicing the entry queues of a protected object, no new calls can be added to any entry queue of
the object, except due to an internal requeue (see 9.5.4). This is because the first step of a call on a protected entry is to
start a new protected action, which implies acquiring (for exclusive read-write access) the execution resource as-
sociated with the protected object, which cannot be done while another protected action is already in progress.

19 {blocked [during an entry call]} For an entry call that is added to a queue, and that is not the triggering_
statement of an asynchronous_select (see 9.7.4), the calling task is blocked until the call is cancelled, or
the call is selected and a corresponding accept_statement or entry_body completes without requeuing. In
addition, the calling task is blocked during a rendezvous.

19.a Ramification: For a call on a protected entry, the caller is not blocked if the call is selected immediately, unless a
requeue causes the call to be queued.

20 {cancellation (of an entry call)} An attempt can be made to cancel an entry call upon an abort (see 9.8) and as
part of certain forms of select_statement (see 9.7.2, 9.7.3, and 9.7.4). The cancellation does not take
place until a point (if any) when the call is on some entry queue, and not protected from cancellation as
part of a requeue (see 9.5.4); at such a point, the call is removed from the entry queue and the call
completes due to the cancellation. The cancellation of a call on an entry of a protected object is a
protected action[, and as such cannot take place while any other protected action is occurring on the
protected object. Like any protected action, it includes servicing of the entry queues (in case some entry
barrier depends on a Count attribute).]

20.a Implementation Note: In the case of an attempted cancellation due to abort, this removal might have to be performed
by the calling task itself if the ceiling priority of the protected object is lower than the task initiating the abort.

21 {Tasking_Error (raised by failure of run-time check)} A call on an entry of a task that has already completed its
execution raises the exception Tasking_Error at the point of the call; similarly, this exception is raised at
the point of the call if the called task completes its execution or becomes abnormal before accepting the
call or completing the rendezvous (see 9.8). This applies equally to a simple entry call and to an entry
call as part of a select_statement.

Implementation Permissions

22 An implementation may perform the sequence of steps of a protected action using any thread of control; it
need not be that of the task that started the protected action. If an entry_body completes without requeu-
ing, then the corresponding calling task may be made ready without waiting for the entire protected action
to complete.

22.a Reason: These permissions are intended to allow flexibility for implementations on multiprocessors. On a
monoprocessor, which thread of control executes the protected action is essentially invisible, since the thread is not
abortable in any case, and the "current_task" function is not guaranteed to work during a protected action (see C.7).

23 When the entry of a protected object is checked to see whether it is open, the implementation need not
reevaluate the condition of the corresponding entry_barrier if no variable or attribute referenced by the
condition (directly or indirectly) has been altered by the execution (or cancellation) of a protected proce-
dure or entry call on the object since the condition was last evaluated.

23.a Ramification: Changes to variables referenced by an entry barrier that result from actions outside of a protected
procedure or entry call on the protected object need not be "noticed." For example, if a global variable is referenced by
an entry barrier, it should not be altered (except as part of a protected action on the object) any time after the barrier is
first evaluated. In other words, globals can be used to "parameterize" a protected object, but they cannot reliably be
used to control it after the first use of the protected object.

23.b Implementation Note: Note that even if a global variable is volatile, the implementation need only reevaluate a
barrier if the global is updated during a protected action on the protected object. This ensures that an entry-open
bit-vector implementation approach is possible, where the bit-vector is computed at the end of a protected action, rather
than upon each entry call.

ISO/IEC 8652:1995(E) —AARM;6.0

281 21 December 1994 Entry Calls 9.5.3

24An implementation may evaluate the conditions of all entry_barriers of a given protected object any time
any entry of the object is checked to see if it is open.

24.aRamification: In other words, any side-effects of evaluating an entry barrier should be innocuous, since an entry
barrier might be evaluated more or less often than is implied by the "official" dynamic semantics.

24.bImplementation Note: It is anticipated that when the number of entries is known to be small, all barriers will be
evaluated any time one of them needs to be, to produce an "entry-open bit-vector." The appropriate bit will be tested
when the entry is called, and only if the bit is false will a check be made to see whether the bit-vector might need to be
recomputed. This should allow an implementation to maximize the performance of a call on an open entry, which
seems like the most important case.

24.cIn addition to the entry-open bit-vector, an "is-valid" bit is needed per object, which indicates whether the current
bit-vector setting is valid. A "depends-on-Count-attribute" bit is needed per type. The "is-valid" bit is set to false (as
are all the bits of the bit-vector) when the protected object is first created, as well as any time an exception is
propagated from computing the bit-vector. Is-valid would also be set false any time the Count is changed and
"depends-on-Count-attribute" is true for the type, or a protected procedure or entry returns indicating it might have
updated a variable referenced in some barrier.

24.dA single procedure can be compiled to evaluate all of the barriers, set the entry-open bit-vector accordingly, and set the
is-valid bit to true. It could have a "when others" handler to set them all false, and call a routine to propagate Program_
Error to all queued callers.

24.eFor protected types where the number of entries is not known to be small, it makes more sense to evaluate a barrier
only when the corresponding entry is checked to see if it is open. It isn’t worth saving the state of the entry between
checks, because of the space that would be required. Furthermore, the entry queues probably want to take up space
only when there is actually a caller on them, so rather than an array of all entry queues, a linked list of nonempty entry
queues make the most sense in this case, with the first caller on each entry queue acting as the queue header.

25When an attempt is made to cancel an entry call, the implementation need not make the attempt using the
thread of control of the task (or interrupt) that initiated the cancellation; in particular, it may use the
thread of control of the caller itself to attempt the cancellation, even if this might allow the entry call to be
selected in the interim.

25.aReason: Because cancellation of a protected entry call is a protected action (which helps make the Count attribute of a
protected entry meaningful), it might not be practical to attempt the cancellation from the thread of control that initiated
the cancellation. For example, if the cancellation is due to the expiration of a delay, it is unlikely that the handler of the
timer interrupt could perform the necessary protected action itself (due to being on the interrupt level). Similarly, if the
cancellation is due to an abort, it is possible that the task initiating the abort has a priority higher than the ceiling
priority of the protected object (for implementations that support ceiling priorities). Similar considerations could apply
in a multiprocessor situation.

NOTES
2626 If an exception is raised during the execution of an entry_body, it is propagated to the corresponding caller (see 11.4).

2727 For a call on a protected entry, the entry is checked to see if it is open prior to queuing the call, and again thereafter if
its Count attribute (see 9.9) is referenced in some entry barrier.

27.aRamification: Given this, extra care is required if a reference to the Count attribute of an entry appears in the entry’s
own barrier.

27.bReason: An entry is checked to see if it is open prior to queuing to maximize the performance of a call on an open
entry.

2828 In addition to simple entry calls, the language permits timed, conditional, and asynchronous entry calls (see 9.7.2,
9.7.3, and see 9.7.4).

28.aRamification: A task can call its own entries, but the task will deadlock if the call is a simple entry call.

2929 The condition of an entry_barrier is allowed to be evaluated by an implementation more often than strictly necessary,
even if the evaluation might have side effects. On the other hand, an implementation need not reevaluate the condition if
nothing it references was updated by an intervening protected action on the protected object, even if the condition
references some global variable that might have been updated by an action performed from outside of a protected action.

ISO/IEC 8652:1995(E) —AARM;6.0

9.5.3 Entry Calls 21 December 1994 282

Examples

30 Examples of entry calls:
31 Agent.Shut_Down; -- see 9.1

Parser.Next_Lexeme(E); -- see 9.1
Pool(5).Read(Next_Char); -- see 9.1
Controller.Request(Low)(Some_Item); -- see 9.1
Flags(3).Seize; -- see 9.4

9.5.4 Requeue Statements
1 [A requeue_statement can be used to complete an accept_statement or entry_body, while redirecting the

corresponding entry call to a new (or the same) entry queue. {requeue} Such a requeue can be performed
with or without allowing an intermediate cancellation of the call, due to an abort or the expiration of a
delay. {preference control: see requeue} {broadcast signal: see requeue}]

Syntax

2 requeue_statement ::= requeue entry_name [with abort];

Name Resolution Rules

3 {target entry (of a requeue_statement)} The entry_name of a requeue_statement shall resolve to denote an entry
(the target entry) that either has no parameters, or that has a profile that is type conformant (see 6.3.1)
with the profile of the innermost enclosing entry_body or accept_statement. {type conformance (required)}

Legality Rules

4 A requeue_statement shall be within a callable construct that is either an entry_body or an accept_
statement, and this construct shall be the innermost enclosing body or callable construct.

5 If the target entry has parameters, then its profile shall be subtype conformant with the profile of the
innermost enclosing callable construct. {subtype conformance (required)}

6 {accessibility rule [requeue statement]} In a requeue_statement of an accept_statement of some task unit,
either the target object shall be a part of a formal parameter of the accept_statement, or the accessibility
level of the target object shall not be equal to or statically deeper than any enclosing accept_statement of
the task unit. In a requeue_statement of an entry_body of some protected unit, either the target object
shall be a part of a formal parameter of the entry_body, or the accessibility level of the target object shall
not be statically deeper than that of the entry_declaration.

6.a Ramification: In the entry_body case, the intent is that the target object can be global, or can be a component of the
protected unit, but cannot be a local variable of the entry_body.

6.b Reason: These restrictions ensure that the target object of the requeue outlives the completion and finalization of the
enclosing callable construct. They also prevent requeuing from a nested accept_statement on a parameter of an outer
accept_statement, which could create some strange "long-distance" connections between an entry caller and its server.

6.c Note that in the strange case where a task_body is nested inside an accept_statement, it is permissible to requeue from
an accept_statement of the inner task_body on parameters of the outer accept_statement. This is not a problem
because all calls on the inner task have to complete before returning from the outer accept_statement, meaning no
"dangling calls" will be created.

6.d Implementation Note: By disallowing certain requeues, we ensure that the normal terminate_alternative rules remain
sensible, and that explicit clearing of the entry queues of a protected object during finalization is rarely necessary. In
particular, such clearing of the entry queues is necessary only (ignoring premature Unchecked_Deallocation) for
protected objects declared in a task_body (or created by an allocator for an access type declared in such a body)
containing one or more requeue_statements. Protected objects declared in subprograms, or at the library level, will
never need to have their entry queues explicitly cleared during finalization.

ISO/IEC 8652:1995(E) —AARM;6.0

283 21 December 1994 Requeue Statements 9.5.4

Dynamic Semantics

7{execution [requeue_statement]} The execution of a requeue_statement proceeds by first evaluating the
entry_name[, including the prefix identifying the target task or protected object and the expression iden-
tifying the entry within an entry family, if any]. The entry_body or accept_statement enclosing the
requeue_statement is then completed[, finalized, and left (see 7.6.1)].

8{execution [requeue task entry]} For the execution of a requeue on an entry of a target task, after leaving the
enclosing callable construct, the named entry is checked to see if it is open and the requeued call is either
selected immediately or queued, as for a normal entry call (see 9.5.3).

9{execution [requeue protected entry]} For the execution of a requeue on an entry of a target protected object,
after leaving the enclosing callable construct:

10• if the requeue is an internal requeue (that is, the requeue is back on an entry of the same
protected object — see 9.5), the call is added to the queue of the named entry and the on-
going protected action continues (see 9.5.1);

10.aRamification: Note that for an internal requeue, the call is queued without checking whether the target entry is
open. This is because the entry queues will be serviced before the current protected action completes anyway,
and considering the requeued call immediately might allow it to "jump" ahead of existing callers on the same
queue.

11• if the requeue is an external requeue (that is, the target protected object is not implicitly the
same as the current object — see 9.5), a protected action is started on the target object and
proceeds as for a normal entry call (see 9.5.3).

12If the new entry named in the requeue_statement has formal parameters, then during the execution of the
accept_statement or entry_body corresponding to the new entry, the formal parameters denote the same
objects as did the corresponding formal parameters of the callable construct completed by the requeue.
[In any case, no parameters are specified in a requeue_statement; any parameter passing is implicit.]

13{requeue-with-abort} If the requeue_statement includes the reserved words with abort (it is a
requeue-with-abort), then:

14• if the original entry call has been aborted (see 9.8), then the requeue acts as an abort comple-
tion point for the call, and the call is cancelled and no requeue is performed;

15• if the original entry call was timed (or conditional), then the original expiration time is the
expiration time for the requeued call.

16If the reserved words with abort do not appear, then the call remains protected against cancellation while
queued as the result of the requeue_statement.

16.aRamification: This protection against cancellation lasts only until the call completes or a subsequent requeue-with-
abort is performed on the call.

16.bReason: We chose to protect a requeue, by default, against abort or cancellation. This seemed safer, since it is likely
that extra steps need to be taken to allow for possible cancellation once the servicing of an entry call has begun. This
also means that in the absence of with abort the usual Ada 83 behavior is preserved, namely that once an entry call is
accepted, it cannot be cancelled until it completes.

NOTES
1730 A requeue is permitted from a single entry to an entry of an entry family, or vice-versa. The entry index, if any, plays

no part in the subtype conformance check between the profiles of the two entries; an entry index is part of the entry_name
for an entry of a family. {subtype conformance [partial]}

ISO/IEC 8652:1995(E) —AARM;6.0

9.5.4 Requeue Statements 21 December 1994 284

Examples

18 Examples of requeue statements:
19 requeue Request(Medium) with abort;

-- requeue on a member of an entry family of the current task, see 9.1

20 requeue Flags(I).Seize;
-- requeue on an entry of an array component, see 9.4

Extensions to Ada 83

20.a {extensions to Ada 83} The requeue_statement is new.

9.6 Delay Statements, Duration, and Time
1 [{expiration time [partial]} A delay_statement is used to block further execution until a specified expiration

time is reached. The expiration time can be specified either as a particular point in time (in a delay_until_
statement), or in seconds from the current time (in a delay_relative_statement). The language-defined
package Calendar provides definitions for a type Time and associated operations, including a function
Clock that returns the current time. {timing: see delay_statement}]

Syntax

2 delay_statement ::= delay_until_statement | delay_relative_statement

3 delay_until_statement ::= delay until delay_expression;

4 delay_relative_statement ::= delay delay_expression;

Name Resolution Rules

5 {expected type [delay_relative_statement expression]} The expected type for the delay_expression in a delay_
relative_statement is the predefined type Duration. {expected type [delay_until_statement expression]} The
delay_expression in a delay_until_statement is expected to be of any nonlimited type.

Legality Rules

6 {time type} {time base} {clock} There can be multiple time bases, each with a corresponding clock, and a
corresponding time type. The type of the delay_expression in a delay_until_statement shall be a time
type — either the type Time defined in the language-defined package Calendar (see below), or some other
implementation-defined time type (see D.8).

6.a Implementation defined: Any implementation-defined time types.

Static Semantics

7 [There is a predefined fixed point type named Duration, declared in the visible part of package Standard;]
a value of type Duration is used to represent the length of an interval of time, expressed in seconds. [The
type Duration is not specific to a particular time base, but can be used with any time base.]

8 A value of the type Time in package Calendar, or of some other implementation-defined time type,
represents a time as reported by a corresponding clock.

9 The following language-defined library package exists:
10 package Ada.Calendar is

type Time is private;

11 subtype Year_Number is Integer range 1901 .. 2099;
subtype Month_Number is Integer range 1 .. 12;
subtype Day_Number is Integer range 1 .. 31;
subtype Day_Duration is Duration range 0.0 .. 86_400.0;

12 function Clock return Time;

ISO/IEC 8652:1995(E) —AARM;6.0

285 21 December 1994 Delay Statements, Duration, and Time 9.6

13function Year (Date : Time) return Year_Number;
function Month (Date : Time) return Month_Number;
function Day (Date : Time) return Day_Number;
function Seconds(Date : Time) return Day_Duration;

14procedure Split (Date : in Time;
Year : out Year_Number;
Month : out Month_Number;
Day : out Day_Number;
Seconds : out Day_Duration);

15function Time_Of(Year : Year_Number;
Month : Month_Number;
Day : Day_Number;
Seconds : Day_Duration := 0.0)

return Time;

16function "+" (Left : Time; Right : Duration) return Time;
function "+" (Left : Duration; Right : Time) return Time;
function "-" (Left : Time; Right : Duration) return Time;
function "-" (Left : Time; Right : Time) return Duration;

17function "<" (Left, Right : Time) return Boolean;
function "<="(Left, Right : Time) return Boolean;
function ">" (Left, Right : Time) return Boolean;
function ">="(Left, Right : Time) return Boolean;

18Time_Error : exception;

19private
... -- not specified by the language

end Ada.Calendar;

Dynamic Semantics

20{execution [delay_statement]} For the execution of a delay_statement, the delay_expression is first evaluated.
{expiration time (for a delay_until_statement)} For a delay_until_statement, the expiration time for the delay is the
value of the delay_expression, in the time base associated with the type of the expression. {expiration time

(for a delay_relative_statement)} For a delay_relative_statement, the expiration time is defined as the current
time, in the time base associated with relative delays, plus the value of the delay_expression converted to
the type Duration, and then rounded up to the next clock tick. {implicit subtype conversion [delay expression]}

The time base associated with relative delays is as defined in D.9, ‘‘Delay Accuracy’’ or is implemen-
tation defined.

20.aImplementation defined: The time base associated with relative delays.

20.bRamification: Rounding up to the next clock tick means that the reading of the delay-relative clock when the delay
expires should be no less than the current reading of the delay-relative clock plus the specified duration.

21{blocked [on a delay_statement]} The task executing a delay_statement is blocked until the expiration time is
reached, at which point it becomes ready again. If the expiration time has already passed, the task is not
blocked.

21.aDiscussion: For a delay_relative_statement, this case corresponds to when the value of the delay_expression is zero or
negative.

21.bEven though the task is not blocked, it might be put back on the end of its ready queue. See D.2, ‘‘Priority
Scheduling’’.

22{cancellation (of a delay_statement)} If an attempt is made to cancel the delay_statement [(as part of an
asynchronous_select or abort — see 9.7.4 and 9.8)], the _statement is cancelled if the expiration time has
not yet passed, thereby completing the delay_statement.

22.aReason: This is worded this way so that in an asynchronous_select where the triggering_statement is a delay_
statement, an attempt to cancel the delay when the abortable_part completes is ignored if the expiration time has
already passed, in which case the optional statements of the triggering_alternative are executed.

ISO/IEC 8652:1995(E) —AARM;6.0

9.6 Delay Statements, Duration, and Time 21 December 1994 286

23 The time base associated with the type Time of package Calendar is implementation defined.
23.a Implementation defined: The time base of the type Calendar.Time.

The function Clock of package Calendar returns a value representing the current time for this time base.
[The implementation-defined value of the named number System.Tick (see 13.7) is an approximation of
the length of the real-time interval during which the value of Calendar.Clock remains constant.]

24 The functions Year, Month, Day, and Seconds return the corresponding values for a given value of the
type Time, as appropriate to an implementation-defined timezone; the procedure Split returns all four
corresponding values. Conversely, the function Time_Of combines a year number, a month number, a
day number, and a duration, into a value of type Time. The operators "+" and "–" for addition and
subtraction of times and durations, and the relational operators for times, have the conventional meaning.

24.a Implementation defined: The timezone used for package Calendar operations.

25 If Time_Of is called with a seconds value of 86_400.0, the value returned is equal to the value of
Time_Of for the next day with a seconds value of 0.0. The value returned by the function Seconds or
through the Seconds parameter of the procedure Split is always less than 86_400.0.

26 The exception Time_Error is raised by the function Time_Of if the actual parameters do not form a
proper date. This exception is also raised by the operators "+" and "–" if the result is not representable in
the type Time or Duration, as appropriate. This exception is also raised by the function Year or the
procedure Split if the year number of the given date is outside of the range of the subtype Year_Number.

26.a To be honest: By "proper date" above we mean that the given year has a month with the given day. For example,
February 29th is a proper date only for a leap year.

26.b Reason: We allow Year and Split to raise Time_Error because the arithmetic operators are allowed (but not required)
to produce times that are outside the range of years from 1901 to 2099. This is similar to the way integer operators
may return values outside the base range of their type so long as the value is mathematically correct.

Implementation Requirements

27 The implementation of the type Duration shall allow representation of time intervals (both positive and
negative) up to at least 86400 seconds (one day); Duration’Small shall not be greater than twenty mil-
liseconds. The implementation of the type Time shall allow representation of all dates with year numbers
in the range of Year_Number[; it may allow representation of other dates as well (both earlier and later).]

Implementation Permissions

28 An implementation may define additional time types (see D.8).

29 An implementation may raise Time_Error if the value of a delay_expression in a delay_until_statement
of a select_statement represents a time more than 90 days past the current time. The actual limit, if any,
is implementation-defined.

29.a Implementation defined: Any limit on delay_until_statements of select_statements.

29.b Implementation Note: This allows an implementation to implement select_statement timeouts using a representation
that does not support the full range of a time type. In particular 90 days of seconds can be represented in 23 bits,
allowing a signed 24-bit representation for the seconds part of a timeout. There is no similar restriction allowed for
stand-alone delay_until_statements, as these can be implemented internally using a loop if necessary to accommodate a
long delay.

Implementation Advice

30 Whenever possible in an implementation, the value of Duration’Small should be no greater than 100
microseconds.

ISO/IEC 8652:1995(E) —AARM;6.0

287 21 December 1994 Delay Statements, Duration, and Time 9.6

30.aImplementation Note: This can be satisfied using a 32-bit 2’s complement representation with a small of 2.0**(–14)
— that is, 61 microseconds — and a range of ± 2.0**17 — that is, 131_072.0.

31The time base for delay_relative_statements should be monotonic; it need not be the same time base as
used for Calendar.Clock.

NOTES
3231 A delay_relative_statement with a negative value of the delay_expression is equivalent to one with a zero value.

3332 A delay_statement may be executed by the environment task; consequently delay_statements may be executed as part
of the elaboration of a library_item or the execution of the main subprogram. Such statements delay the environment task
(see 10.2).

3433 {potentially blocking operation [delay_statement]} {blocking, potentially [delay_statement]} A delay_statement is an
abort completion point and a potentially blocking operation, even if the task is not actually blocked.

3534 There is no necessary relationship between System.Tick (the resolution of the clock of package Calendar) and
Duration’Small (the small of type Duration).

35.aRamification: The inaccuracy of the delay_statement has no relation to System.Tick. In particular, it is possible that
the clock used for the delay_statement is less accurate than Calendar.Clock.

35.bWe considered making Tick a run-time-determined quantity, to allow for easier configurability. However, this would
not be upward compatible, and the desired configurability can be achieved using functionality defined in Annex D,
‘‘Real-Time Systems’’.

3635 Additional requirements associated with delay_statements are given in D.9, ‘‘Delay Accuracy’’.

Examples

37Example of a relative delay statement:
38delay 3.0; -- delay 3.0 seconds

39{periodic task (example)} {periodic task: see delay_until_statement} Example of a periodic task:
40declare

use Ada.Calendar;
Next_Time : Time := Clock + Period;

-- Period is a global constant of type Duration
begin

loop -- repeated every Period seconds
delay until Next_Time;
... -- perform some actions
Next_Time := Next_Time + Period;

end loop;
end;

Inconsistencies With Ada 83

40.a{inconsistencies with Ada 83} For programs that raise Time_Error on "+" or "–" in Ada 83,the exception might be
deferred until a call on Split or Year_Number, or might not be raised at all (if the offending time is never Split after
being calculated). This should not affect typical programs, since they deal only with times corresponding to the
relatively recent past or near future.

Extensions to Ada 83

40.b{extensions to Ada 83} The syntax rule for delay_statement is modified to allow delay_until_statements.

40.cThe type Time may represent dates with year numbers outside of Year_Number. Therefore, the operations "+" and "–"
need only raise Time_Error if the result is not representable in Time (or Duration); also, Split or Year will now raise
Time_Error if the year number is outside of Year_Number. This change is intended to simplify the implementation of
"+" and "–" (allowing them to depend on overflow for detecting when to raise Time_Error) and to allow local timezone
information to be considered at the time of Split rather than Clock (depending on the implementation approach). For
example, in a POSIX environment, it is natural for the type Time to be based on GMT, and the results of procedure
Split (and the functions Year, Month, Day, and Seconds) to depend on local time zone information. In other
environments, it is more natural for the type Time to be based on the local time zone, with the results of Year, Month,
Day, and Seconds being pure functions of their input.

ISO/IEC 8652:1995(E) —AARM;6.0

9.6 Delay Statements, Duration, and Time 21 December 1994 288

40.d We anticipate that implementations will provide child packages of Calendar to provide more explicit control over time
zones and other environment-dependent time-related issues. These would be appropriate for standardization in a given
environment (such as POSIX).

9.7 Select Statements
1 [There are four forms of the select_statement. One form provides a selective wait for one or more

select_alternatives. Two provide timed and conditional entry calls. The fourth provides asynchronous
transfer of control.]

Syntax

2 select_statement ::=
selective_accept
| timed_entry_call
| conditional_entry_call
| asynchronous_select

Examples

3 Example of a select statement:
4 select

accept Driver_Awake_Signal;
or

delay 30.0*Seconds;
Stop_The_Train;

end select;

Extensions to Ada 83

4.a {extensions to Ada 83} Asynchronous_select is new.

9.7.1 Selective Accept
1 [This form of the select_statement allows a combination of waiting for, and selecting from, one or more

alternatives. The selection may depend on conditions associated with each alternative of the selective_
accept. {time-out: see selective_accept}]

Syntax

2 selective_accept ::=
select
[guard]
select_alternative

{ or
[guard]
select_alternative }

[else
sequence_of_statements]

end select;

3 guard ::= when condition =>

4 select_alternative ::=
accept_alternative
| delay_alternative
| terminate_alternative

5 accept_alternative ::=
accept_statement [sequence_of_statements]

ISO/IEC 8652:1995(E) —AARM;6.0

289 21 December 1994 Selective Accept 9.7.1

6delay_alternative ::=
delay_statement [sequence_of_statements]

7terminate_alternative ::= terminate;

8A selective_accept shall contain at least one accept_alternative. In addition, it can contain:

9• a terminate_alternative (only one); or

10• one or more delay_alternatives; or

11• {else part (of a selective_accept)} an else part (the reserved word else followed by a
sequence_of_statements).

12These three possibilities are mutually exclusive.

Legality Rules

13If a selective_accept contains more than one delay_alternative, then all shall be delay_relative_
statements, or all shall be delay_until_statements for the same time type.

13.aReason: This simplifies the implementation and the description of the semantics.

Dynamic Semantics

14{open alternative} A select_alternative is said to be open if it is not immediately preceded by a guard, or if
the condition of its guard evaluates to True. It is said to be closed otherwise.

15{execution [selective_accept]} For the execution of a selective_accept, any guard conditions are evaluated;
open alternatives are thus determined. For an open delay_alternative, the delay_expression is also
evaluated. Similarly, for an open accept_alternative for an entry of a family, the entry_index is also
evaluated. These evaluations are performed in an arbitrary order, except that a delay_expression or
entry_index is not evaluated until after evaluating the corresponding condition, if any. Selection and
execution of one open alternative, or of the else part, then completes the execution of the selective_
accept; the rules for this selection are described below.

16Open accept_alternatives are first considered. Selection of one such alternative takes place immediately
if the corresponding entry already has queued calls. If several alternatives can thus be selected, one of
them is selected according to the entry queuing policy in effect (see 9.5.3 and D.4). When such an
alternative is selected, the selected call is removed from its entry queue and the handled_sequence_of_
statements (if any) of the corresponding accept_statement is executed; after the rendezvous completes
any subsequent sequence_of_statements of the alternative is executed. {blocked [execution of a selective_

accept]} If no selection is immediately possible (in the above sense) and there is no else part, the task
blocks until an open alternative can be selected.

17Selection of the other forms of alternative or of an else part is performed as follows:

18• An open delay_alternative is selected when its expiration time is reached if no accept_
alternative or other delay_alternative can be selected prior to the expiration time. If several
delay_alternatives have this same expiration time, one of them is selected according to the
queuing policy in effect (see D.4); the default queuing policy chooses arbitrarily among the
delay_alternatives whose expiration time has passed.

19• The else part is selected and its sequence_of_statements is executed if no accept_alternative
can immediately be selected; in particular, if all alternatives are closed.

20• An open terminate_alternative is selected if the conditions stated at the end of clause 9.3 are
satisfied.

ISO/IEC 8652:1995(E) —AARM;6.0

9.7.1 Selective Accept 21 December 1994 290

20.a Ramification: In the absence of a requeue_statement, the conditions stated are such that a terminate_
alternative cannot be selected while there is a queued entry call for any entry of the task. In the presence of
requeues from a task to one of its subtasks, it is possible that when a terminate_alternative of the subtask is
selected, requeued calls (for closed entries only) might still be queued on some entry of the subtask. Tasking_
Error will be propagated to such callers, as is usual when a task completes while queued callers remain.

21 {Program_Error (raised by failure of run-time check)} The exception Program_Error is raised if all alternatives are
closed and there is no else part.

NOTES
22 36 A selective_accept is allowed to have several open delay_alternatives. A selective_accept is allowed to have several

open accept_alternatives for the same entry.

Examples

23 Example of a task body with a selective accept:
24 task body Server is

Current_Work_Item : Work_Item;
begin

loop
select

accept Next_Work_Item(WI : in Work_Item) do
Current_Work_Item := WI;

end;
Process_Work_Item(Current_Work_Item);

or
accept Shut_Down;
exit; -- Premature shut down requested

or
terminate; -- Normal shutdown at end of scope

end select;
end loop;

end Server;

Wording Changes From Ada 83

24.a The name of selective_wait was changed to selective_accept to better describe what is being waited for. We kept
select_alternative as is, because selective_accept_alternative was too easily confused with accept_alternative.

9.7.2 Timed Entry Calls
1 [A timed_entry_call issues an entry call that is cancelled if the call (or a requeue-with-abort of the call) is

not selected before the expiration time is reached. {time-out: see timed_entry_call}]

Syntax

2 timed_entry_call ::=
select
entry_call_alternative
or
delay_alternative
end select;

3 entry_call_alternative ::=
entry_call_statement [sequence_of_statements]

Dynamic Semantics

4 {execution [timed_entry_call]} For the execution of a timed_entry_call, the entry_name and the actual
parameters are evaluated, as for a simple entry call (see 9.5.3). The expiration time (see 9.6) for the call
is determined by evaluating the delay_expression of the delay_alternative; the entry call is then issued.

ISO/IEC 8652:1995(E) —AARM;6.0

291 21 December 1994 Timed Entry Calls 9.7.2

5If the call is queued (including due to a requeue-with-abort), and not selected before the expiration time is
reached, an attempt to cancel the call is made. If the call completes due to the cancellation, the optional
sequence_of_statements of the delay_alternative is executed; if the entry call completes normally, the
optional sequence_of_statements of the entry_call_alternative is executed.

5.aRamification: The fact that the syntax calls for an entry_call_statement means that this fact is used in overload
resolution. For example, if there is a procedure X and an entry X (both with no parameters), then "select X; ..." is legal,
because overload resolution knows that the entry is the one that was meant.

Examples

6Example of a timed entry call:
7select

Controller.Request(Medium)(Some_Item);
or

delay 45.0;
-- controller too busy, try something else

end select;

Wording Changes From Ada 83

7.aThis clause comes before the one for Conditional Entry Calls, so we can define conditional entry calls in terms of timed
entry calls.

9.7.3 Conditional Entry Calls
1[A conditional_entry_call issues an entry call that is then cancelled if it is not selected immediately (or if a

requeue-with-abort of the call is not selected immediately).]
1.aTo be honest: In the case of an entry call on a protected object, it is OK if the entry is closed at the start of the

corresponding protected action, so long as it opens and the call is selected before the end of that protected action (due
to changes in the Count attribute).

Syntax

2conditional_entry_call ::=
select
entry_call_alternative
else
sequence_of_statements
end select;

Dynamic Semantics

3{execution [conditional_entry_call]} The execution of a conditional_entry_call is defined to be equivalent to the
execution of a timed_entry_call with a delay_alternative specifying an immediate expiration time and the
same sequence_of_statements as given after the reserved word else.

NOTES
437 A conditional_entry_call may briefly increase the Count attribute of the entry, even if the conditional call is not

selected.

Examples

5Example of a conditional entry call:

ISO/IEC 8652:1995(E) —AARM;6.0

9.7.3 Conditional Entry Calls 21 December 1994 292

6 procedure Spin(R : in Resource) is
begin

loop
select

R.Seize;
return;

else
null; -- busy waiting

end select;
end loop;

end;

Wording Changes From Ada 83

6.a This clause comes after the one for Timed Entry Calls, so we can define conditional entry calls in terms of timed entry
calls. We do that so that an "expiration time" is defined for both, thereby simplifying the definition of what happens on
a requeue-with-abort.

9.7.4 Asynchronous Transfer of Control
1 [An asynchronous select_statement provides asynchronous transfer of control upon completion of an

entry call or the expiration of a delay.]

Syntax

2 asynchronous_select ::=
select
triggering_alternative
then abort
abortable_part
end select;

3 triggering_alternative ::= triggering_statement [sequence_of_statements]

4 triggering_statement ::= entry_call_statement | delay_statement

5 abortable_part ::= sequence_of_statements

Dynamic Semantics

6 {execution [asynchronous_select with an entry call trigger]} For the execution of an asynchronous_select whose
triggering_statement is an entry_call_statement, the entry_name and actual parameters are evaluated as
for a simple entry call (see 9.5.3), and the entry call is issued. If the entry call is queued (or requeued-
with-abort), then the abortable_part is executed. [If the entry call is selected immediately, and never
requeued-with-abort, then the abortable_part is never started.]

7 {execution [asynchronous_select with a delay_statement trigger]} For the execution of an asynchronous_select
whose triggering_statement is a delay_statement, the delay_expression is evaluated and the expiration
time is determined, as for a normal delay_statement. If the expiration time has not already passed, the
abortable_part is executed.

8 If the abortable_part completes and is left prior to completion of the triggering_statement, an attempt to
cancel the triggering_statement is made. If the attempt to cancel succeeds (see 9.5.3 and 9.6), the
asynchronous_select is complete.

9 If the triggering_statement completes other than due to cancellation, the abortable_part is aborted (if
started but not yet completed — see 9.8). If the triggering_statement completes normally, the optional
sequence_of_statements of the triggering_alternative is executed after the abortable_part is left.

ISO/IEC 8652:1995(E) —AARM;6.0

293 21 December 1994 Asynchronous Transfer of Control 9.7.4

9.aDiscussion: We currently don’t specify when the by-copy [in] out parameters are assigned back into the actuals. We
considered requiring that to happen after the abortable_part is left. However, that doesn’t seem useful enough to justify
possibly overspecifying the implementation approach, since some of the parameters are passed by reference anyway.

9.bIn an earlier description, we required that the sequence_of_statements of the triggering_alternative execute after
aborting the abortable_part, but before waiting for it to complete and finalize, to provide more rapid response to the
triggering event in case the finalization was unbounded. However, various reviewers felt that this created unnecessary
complexity in the description, and a potential for undesirable concurrency (and nondeterminism) within a single task.
We have now reverted to simpler, more deterministic semantics, but anticipate that further discussion of this issue
might be appropriate during subsequent reviews. One possibility is to leave this area implementation defined, so as to
encourage experimentation. The user would then have to assume the worst about what kinds of actions are appropriate
for the sequence_of_statements of the triggering_alternative to achieve portability.

Examples

10{signal handling (example)} {interrupt (example using asynchronous_select)} {terminal interrupt (example)} Example of a
main command loop for a command interpreter:

11loop
select

Terminal.Wait_For_Interrupt;
Put_Line("Interrupted");

then abort
-- This will be abandoned upon terminal interrupt
Put_Line("-> ");
Get_Line(Command, Last);
Process_Command(Command(1..Last));

end select;
end loop;

12Example of a time-limited calculation: {time-out: see asynchronous_select} {time-out (example)} {time limit

(example)} {interrupt (example using asynchronous_select)} {timer interrupt (example)}

13select
delay 5.0;
Put_Line("Calculation does not converge");

then abort
-- This calculation should finish in 5.0 seconds;
-- if not, it is assumed to diverge.
Horribly_Complicated_Recursive_Function(X, Y);

end select;

Extensions to Ada 83

13.a{extensions to Ada 83} Asynchronous_select is new.

9.8 Abort of a Task - Abort of a Sequence of Statements
1[An abort_statement causes one or more tasks to become abnormal, thus preventing any further inter-

action with such tasks. The completion of the triggering_statement of an asynchronous_select causes a
sequence_of_statements to be aborted.]

Syntax

2abort_statement ::= abort task_name {, task_name};

Name Resolution Rules

3{expected type [abort_statement task_name]} Each task_name is expected to be of any task type[; they need not
all be of the same task type.]

Dynamic Semantics

4{execution [abort_statement]} For the execution of an abort_statement, the given task_names are evaluated in
an arbitrary order. {abort (of a task)} {abnormal task} {task state [abnormal]} Each named task is then aborted,

ISO/IEC 8652:1995(E) —AARM;6.0

9.8 Abort of a Task - Abort of a Sequence of Statements 21 December 1994 294

which consists of making the task abnormal and aborting the execution of the corresponding task_body,
unless it is already completed.

4.a Ramification: Note that aborting those tasks is not defined to be an abort-deferred operation. Therefore, if one of the
named tasks is the task executing the abort_statement, or if the task executing the abort_statement depends on one of
the named tasks, then it is possible for the execution of the abort_statement to be aborted, thus leaving some of the
tasks unaborted. This allows the implementation to use either a sequence of calls to an ‘‘abort task’’ RTS primitive, or
a single call to an ‘‘abort list of tasks’’ RTS primitive.

5 {execution [aborting the execution of a construct]} {abort (of the execution of a construct)} When the execution of a
construct is aborted (including that of a task_body or of a sequence_of_statements), the execution of
every construct included within the aborted execution is also aborted, except for executions included
within the execution of an abort-deferred operation; the execution of an abort-deferred operation con-
tinues to completion without being affected by the abort; {abort-deferred operation} the following are the
abort-deferred operations:

6 • a protected action;

7 • waiting for an entry call to complete (after having initiated the attempt to cancel it — see
below);

8 • waiting for the termination of dependent tasks;

9 • the execution of an Initialize procedure as the last step of the default initialization of a con-
trolled object;

10 • the execution of a Finalize procedure as part of the finalization of a controlled object;

11 • an assignment operation to an object with a controlled part.

12 [The last three of these are discussed further in 7.6.]
12.a Reason: Deferring abort during Initialize and finalization allows, for example, the result of an allocator performed in

an Initialize operation to be assigned into an access object without being interrupted in the middle, which would cause
storage leaks. For an object with several controlled parts, each individual Initialize is abort-deferred. Note that there is
generally no semantic difference between making each Finalize abort-deferred, versus making a group of them
abort-deferred, because if the task gets aborted, the first thing it will do is complete any remaining finalizations.
Individual objects are finalized prior to an assignment operation (if nonlimited controlled) and as part of Unchecked_
Deallocation.

12.b Ramification: Abort is deferred during the entire assignment operation to an object with a controlled part, even if only
some subcomponents are controlled. Note that this says "assignment operation," not "assignment_statement." Explicit
calls to Initialize, Finalize, or Adjust are not abort-deferred.

13 When a master is aborted, all tasks that depend on that master are aborted.

14 {unspecified [partial]} The order in which tasks become abnormal as the result of an abort_statement or the
abort of a sequence_of_statements is not specified by the language.

15 If the execution of an entry call is aborted, an immediate attempt is made to cancel the entry call (see
9.5.3). If the execution of a construct is aborted at a time when the execution is blocked, other than for an
entry call, at a point that is outside the execution of an abort-deferred operation, then the execution of the
construct completes immediately. For an abort due to an abort_statement, these immediate effects occur
before the execution of the abort_statement completes. Other than for these immediate cases, the execu-
tion of a construct that is aborted does not necessarily complete before the abort_statement completes.
However, the execution of the aborted construct completes no later than its next abort completion point
(if any) that occurs outside of an abort-deferred operation; {abort completion point} the following are abort
completion points for an execution:

ISO/IEC 8652:1995(E) —AARM;6.0

295 21 December 1994 Abort of a Task - Abort of a Sequence of Statements 9.8

16• the point where the execution initiates the activation of another task;

17• the end of the activation of a task;

18• the start or end of the execution of an entry call, accept_statement, delay_statement, or
abort_statement;

18.aRamification: Although the abort completion point doesn’t occur until the end of the entry call or delay_
statement, these operations might be cut short because an abort attempts to cancel them.

19• the start of the execution of a select_statement, or of the sequence_of_statements of an
exception_handler.

19.aReason: The start of an exception_handler is considered an abort completion point simply because it is easy for
an implementation to check at such points.

19.bImplementation Note: Implementations may of course check for abort more often than at each abort
completion point; ideally, a fully preemptive implementation of abort will be provided. If preemptive abort is
not supported in a given environment, then supporting the checking for abort as part of subprogram calls and
loop iterations might be a useful option.

Bounded (Run-Time) Errors

20{bounded error} An attempt to execute an asynchronous_select as part of the execution of an abort-deferred
operation is a bounded error. Similarly, an attempt to create a task that depends on a master that is
included entirely within the execution of an abort-deferred operation is a bounded error. {Program_Error

(raised by failure of run-time check)} In both cases, Program_Error is raised if the error is detected by the
implementation; otherwise the operations proceed as they would outside an abort-deferred operation,
except that an abort of the abortable_part or the created task might or might not have an effect.

20.aReason: An asynchronous_select relies on an abort of the abortable_part to effect the asynchronous transfer of control.
For an asynchronous_select within an abort-deferred operation, the abort might have no effect.

20.bCreating a task dependent on a master included within an abort-deferred operation is considered an error, because such
tasks could be aborted while the abort-deferred operation was still progressing, undermining the purpose of abort-
deferral. Alternatively, we could say that such tasks are abort-deferred for their entire execution, but that seems too
easy to abuse. Note that task creation is already a bounded error in protected actions, so this additional rule only
applies to local task creation as part of Initialize, Finalize, or Adjust.

Erroneous Execution

21{erroneous execution} {normal state of an object [partial]} {abnormal state of an object [partial]} {disruption of an assignment}

If an assignment operation completes prematurely due to an abort, the assignment is said to be disrupted;
the target of the assignment or its parts can become abnormal, and certain subsequent uses of the object
can be erroneous, as explained in 13.9.1.

NOTES
2238 An abort_statement should be used only in situations requiring unconditional termination.

2339 A task is allowed to abort any task it can name, including itself.

2440 Additional requirements associated with abort are given in D.6, ‘‘Preemptive Abort’’.

Wording Changes From Ada 83

24.aThis clause has been rewritten to accommodate the concept of aborting the execution of a construct, rather than just of
a task.

9.9 Task and Entry Attributes
Dynamic Semantics

1For a prefix T that is of a task type [(after any implicit dereference)], the following attributes are defined:

ISO/IEC 8652:1995(E) —AARM;6.0

9.9 Task and Entry Attributes 21 December 1994 296

T’Callable Yields the value True when the task denoted by T is callable, and False otherwise;2

{task state [callable]} {callable} a task is callable unless it is completed or abnormal. The
value of this attribute is of the predefined type Boolean.

T’Terminated Yields the value True if the task denoted by T is terminated, and False otherwise.3

The value of this attribute is of the predefined type Boolean.

4 For a prefix E that denotes an entry of a task or protected unit, the following attribute is defined. This
attribute is only allowed within the body of the task or protected unit, but excluding, in the case of an
entry of a task unit, within any program unit that is, itself, inner to the body of the task unit.

E’Count Yields the number of calls presently queued on the entry E of the current instance of5

the unit. The value of this attribute is of the type universal_integer.

NOTES
6 41 For the Count attribute, the entry can be either a single entry or an entry of a family. The name of the entry or entry

family can be either a direct_name or an expanded name.

7 42 Within task units, algorithms interrogating the attribute E’Count should take precautions to allow for the increase of
the value of this attribute for incoming entry calls, and its decrease, for example with timed_entry_calls. Also, a
conditional_entry_call may briefly increase this value, even if the conditional call is not accepted.

8 43 Within protected units, algorithms interrogating the attribute E’Count in the entry_barrier for the entry E should take
precautions to allow for the evaluation of the condition of the barrier both before and after queuing a given caller.

9.10 Shared Variables
Static Semantics

1 {shared variable (protection of)} {independently addressable} If two different objects, including nonoverlapping
parts of the same object, are independently addressable, they can be manipulated concurrently by two
different tasks without synchronization. Normally, any two nonoverlapping objects are independently
addressable. However, if packing, record layout, or Component_Size is specified for a given composite
object, then it is implementation defined whether or not two nonoverlapping parts of that composite
object are independently addressable.

1.a Implementation defined: Whether or not two nonoverlapping parts of a composite object are independently
addressable, in the case where packing, record layout, or Component_Size is specified for the object.

1.b Implementation Note: Independent addressability is the only high level semantic effect of a pragma Pack. If two
objects are independently addressable, the implementation should allocate them in such a way that each can be written
by the hardware without writing the other. For example, unless the user asks for it, it is generally not feasible to choose
a bit-packed representation on a machine without an atomic bit field insertion instruction, because there might be tasks
that update neighboring subcomponents concurrently, and locking operations on all subcomponents is generally not a
good idea.

1.c Even if packing or one of the other above-mentioned aspects is specified, subcomponents should still be updated
independently if the hardware efficiently supports it.

Dynamic Semantics

2 [Separate tasks normally proceed independently and concurrently with one another. However, task inter-
actions can be used to synchronize the actions of two or more tasks to allow, for example, meaningful
communication by the direct updating and reading of variables shared between the tasks.] The actions of
two different tasks are synchronized in this sense when an action of one task signals an action of the other
task; {signal (as defined between actions)} an action A1 is defined to signal an action A2 under the following
circumstances:

3 • If A1 and A2 are part of the execution of the same task, and the language rules require A1 to
be performed before A2;

ISO/IEC 8652:1995(E) —AARM;6.0

297 21 December 1994 Shared Variables 9.10

4• If A1 is the action of an activator that initiates the activation of a task, and A2 is part of the
execution of the task that is activated;

5• If A1 is part of the activation of a task, and A2 is the action of waiting for completion of the
activation;

6• If A1 is part of the execution of a task, and A2 is the action of waiting for the termination of
the task;

7• If A1 is the action of issuing an entry call, and A2 is part of the corresponding execution of
the appropriate entry_body or accept_statement.

7.aRamification: Evaluating the entry_index of an accept_statement is not synchronized with a corresponding
entry call, nor is evaluating the entry barrier of an entry_body.

8• If A1 is part of the execution of an accept_statement or entry_body, and A2 is the action of
returning from the corresponding entry call;

9• If A1 is part of the execution of a protected procedure body or entry_body for a given
protected object, and A2 is part of a later execution of an entry_body for the same protected
object;

9.aReason: The underlying principle here is that for one action to ‘‘signal’’ a second, the second action has to
follow a potentially blocking operation, whose blocking is dependent on the first action in some way. Protected
procedures are not potentially blocking, so they can only be "signalers," they cannot be signaled.

9.bRamification: Protected subprogram calls are not defined to signal one another, which means that such calls
alone cannot be used to synchronize access to shared data outside of a protected object.

9.cReason: The point of this distinction is so that on multiprocessors with inconsistent caches, the caches only
need to be refreshed at the beginning of an entry body, and forced out at the end of an entry body or protected
procedure that leaves an entry open. Protected function calls, and protected subprogram calls for entryless
protected objects do not require full cache consistency. Entryless protected objects are intended to be treated
roughly like atomic objects — each operation is indivisible with respect to other operations (unless both are
reads), but such operations cannot be used to synchronize access to other nonvolatile shared variables.

10• If A1 signals some action that in turn signals A2.

Erroneous Execution

11{erroneous execution} Given an action of assigning to an object, and an action of reading or updating a part
of the same object (or of a neighboring object if the two are not independently addressable), then the
execution of the actions is erroneous unless the actions are sequential. {sequential (actions)} Two actions are
sequential if one of the following is true:

12• One action signals the other;

13• Both actions occur as part of the execution of the same task;
13.aReason: Any two actions of the same task are sequential, even if one does not signal the other because they

can be executed in an ‘‘arbitrary’’ (but necessarily equivalent to some ‘‘sequential’’) order.

14• Both actions occur as part of protected actions on the same protected object, and at most one
of the actions is part of a call on a protected function of the protected object.

14.aReason: Because actions within protected actions do not always imply signaling, we have to mention them
here explicitly to make sure that actions occurring within different protected actions of the same protected
object are sequential with respect to one another (unless both are part of calls on protected functions).

14.bRamification: It doesn’t matter whether or not the variable being assigned is actually a subcomponent of the
protected object; globals can be safely updated from within the bodies of protected procedures or entries.

15A pragma Atomic or Atomic_Components may also be used to ensure that certain reads and updates are
sequential — see C.6.

ISO/IEC 8652:1995(E) —AARM;6.0

9.10 Shared Variables 21 December 1994 298

15.a Ramification: If two actions are ‘‘sequential’’ it is known that their executions don’t overlap in time, but it is not
necessarily specified which occurs first. For example, all actions of a single task are sequential, even though the exact
order of execution is not fully specified for all constructs.

15.b Discussion: Note that if two assignments to the same variable are sequential, but neither signals the other, then the
program is not erroneous, but it is not specified which assignment ultimately prevails. Such a situation usually
corresponds to a programming mistake, but in some (rare) cases, the order makes no difference, and for this reason this
situation is not considered erroneous nor even a bounded error. In Ada 83, this was considered an ‘‘incorrect order
dependence’’ if the ‘‘effect’’ of the program was affected, but ‘‘effect’’ was never fully defined. In Ada 9X, this
situation represents a potential nonportability, and a friendly compiler might want to warn the programmer about the
situation, but it is not considered an error. An example where this would come up would be in gathering statistics as
part of referencing some information, where the assignments associated with statistics gathering don’t need to be
ordered since they are just accumulating aggregate counts, sums, products, etc.

9.11 Example of Tasking and Synchronization
Examples

1 The following example defines a buffer protected object to smooth variations between the speed of output
of a producing task and the speed of input of some consuming task. For instance, the producing task
might have the following structure:

2 task Producer;

3 task body Producer is
Char : Character;

begin
loop

... -- produce the next character Char
Buffer.Write(Char);
exit when Char = ASCII.EOT;

end loop;
end Producer;

4 and the consuming task might have the following structure:
5 task Consumer;

6 task body Consumer is
Char : Character;

begin
loop

Buffer.Read(Char);
exit when Char = ASCII.EOT;
... -- consume the character Char

end loop;
end Consumer;

7 The buffer object contains an internal pool of characters managed in a round-robin fashion. The pool has
two indices, an In_Index denoting the space for the next input character and an Out_Index denoting the
space for the next output character.

8 protected Buffer is
entry Read (C : out Character);
entry Write(C : in Character);

private
Pool : String(1 .. 100);
Count : Natural := 0;
In_Index, Out_Index : Positive := 1;

end Buffer;

ISO/IEC 8652:1995(E) —AARM;6.0

299 21 December 1994 Example of Tasking and Synchronization 9.11

9protected body Buffer is
entry Write(C : in Character)

when Count < Pool’Length is
begin

Pool(In_Index) := C;
In_Index := (In_Index mod Pool’Length) + 1;
Count := Count + 1;

end Write;

10entry Read(C : out Character)
when Count > 0 is

begin
C := Pool(Out_Index);
Out_Index := (Out_Index mod Pool’Length) + 1;
Count := Count - 1;

end Read;
end Buffer;

ISO/IEC 8652:1995(E) —AARM;6.0

10 Program Structure and Compilation Issues 21 December 1994 300

ISO/IEC 8652:1995(E) —AARM;6.0

301 21 December 1994 Program Structure and Compilation Issues 10

Section 10: Program Structure and Compilation Issues
1[The overall structure of programs and the facilities for separate compilation are described in this section.

A program is a set of partitions, each of which may execute in a separate address space, possibly on a
separate computer.

1.aGlossary entry: {Program} A program is a set of partitions, each of which may execute in a separate address space,
possibly on a separate computer. A partition consists of a set of library units.

1.bGlossary entry: {Partition} A partition is a part of a program. Each partition consists of a set of library units. Each
partition may run in a separate address space, possibly on a separate computer. A program may contain just one
partition. A distributed program typically contains multiple partitions, which can execute concurrently.

2{library unit (informal introduction)} {library_item (informal introduction)} {library (informal introduction)} As explained
below, a partition is constructed from library units. Syntactically, the declaration of a library unit is a
library_item, as is the body of a library unit. An implementation may support a concept of a program
library (or simply, a ‘‘library’’), which contains library_items and their subunits. {program library: see

library} Library units may be organized into a hierarchy of children, grandchildren, and so on.]

3This section has two clauses: 10.1, ‘‘Separate Compilation’’ discusses compile-time issues related to
separate compilation. 10.2, ‘‘Program Execution’’ discusses issues related to what is traditionally known
as ‘‘link time’’ and ‘‘run time’’ — building and executing partitions.

Language Design Principles

3.a{avoid overspecifying environmental issues} We should avoid specifying details that are outside the domain of the
language itself. The standard is intended (at least in part) to promote portability of Ada programs at the source level. It
is not intended to standardize extra-language issues such as how one invokes the compiler (or other tools), how one’s
source is represented and organized, version management, the format of error messages, etc.

3.b{safe separate compilation} {separate compilation (safe)} The rules of the language should be enforced even in the
presence of separate compilation. Using separate compilation should not make a program less safe.

3.c{legality determinable via semantic dependences} It should be possible to determine the legality of a compilation unit
by looking only at the compilation unit itself and the compilation units upon which it depends semantically. As an
example, it should be possible to analyze the legality of two compilation units in parallel if they do not depend
semantically upon each other.

3.dOn the other hand, it may be necessary to look outside that set in order to generate code — this is generally true for
generic instantiation and inlining, for example. Also on the other hand, it is generally necessary to look outside that set
in order to check Post-Compilation Rules.

3.eSee also the ‘‘generic contract model’’ Language Design Principle of 12.3, ‘‘Generic Instantiation’’.
Wording Changes From Ada 83

3.fThe section organization mentioned above is different from that of RM83.

10.1 Separate Compilation
1[{separate compilation} {compilation (separate)} {Program unit} [glossary entry]A program unit is either a pack-

age, a task unit, a protected unit, a protected entry, a generic unit, or an explicitly declared subprogram
other than an enumeration literal. Certain kinds of program units can be separately compiled. Alter-
natively, they can appear physically nested within other program units.

2{Compilation unit} [glossary entry]The text of a program can be submitted to the compiler in one or more
compilations. Each compilation is a succession of compilation_units. A compilation_unit contains either
the declaration, the body, or a renaming of a program unit.] The representation for a compilation is
implementation-defined.

ISO/IEC 8652:1995(E) —AARM;6.0

10.1 Separate Compilation 21 December 1994 302

2.a Implementation defined: The representation for a compilation.

2.b Ramification: Some implementations might choose to make a compilation be a source (text) file. Others might allow
multiple source files to be automatically concatenated to form a single compilation. Others still may represent the
source in a nontextual form such as a parse tree. Note that the RM9X does not even define the concept of a source file.

2.c Note that a protected subprogram is a subprogram, and therefore a program unit. An instance of a generic unit is a
program unit.

2.d A protected entry is a program unit, but protected entries cannot be separately compiled.

3 {Library unit} [glossary entry]A library unit is a separately compiled program unit, and is always a package,
subprogram, or generic unit. Library units may have other (logically nested) library units as children, and
may have other program units physically nested within them. {subsystem} A root library unit, together
with its children and grandchildren and so on, form a subsystem.

Implementation Permissions

4 An implementation may impose implementation-defined restrictions on compilations that contain multiple
compilation_units.

4.a Implementation defined: Any restrictions on compilations that contain multiple compilation_units.

4.b Discussion: For example, an implementation might disallow a compilation that contains two versions of the same
compilation unit, or that contains the declarations for library packages P1 and P2, where P1 precedes P2 in the
compilation but P1 has a with_clause that mentions P2.

Wording Changes From Ada 83

4.c The interactions between language issues and environmental issues are left open in Ada 9X. The environment concept
is new. In Ada 83, the concept of the program library, for example, appeared to be quite concrete, although the rules
had no force, since implementations could get around them simply by defining various mappings from the concept of
an Ada program library to whatever data structures were actually stored in support of separate compilation. Indeed,
implementations were encouraged to do so.

4.d In RM83, it was unclear which was the official definition of ‘‘program unit.’’ Definitions appeared in RM83-5, 6, 7,
and 9, but not 12. Placing it here seems logical, since a program unit is sort of a potential compilation unit.

10.1.1 Compilation Units - Library Units
1 [A library_item is a compilation unit that is the declaration, body, or renaming of a library unit. Each

library unit (except Standard) has a parent unit, which is a library package or generic library package.
] {child (of a library unit)} A library unit is a child of its parent unit. The root library units are the children of
the predefined library package Standard.

1.a Ramification: Standard is a library unit.

Syntax

2 compilation ::= {compilation_unit}

3 compilation_unit ::=
context_clause library_item

| context_clause subunit

4 library_item ::= [private] library_unit_declaration
| library_unit_body
| [private] library_unit_renaming_declaration

5 library_unit_declaration ::=
subprogram_declaration | package_declaration

| generic_declaration | generic_instantiation

ISO/IEC 8652:1995(E) —AARM;6.0

303 21 December 1994 Compilation Units - Library Units 10.1.1

6library_unit_renaming_declaration ::=
package_renaming_declaration

| generic_renaming_declaration
| subprogram_renaming_declaration

7library_unit_body ::= subprogram_body | package_body

8parent_unit_name ::= name

9{library unit} A library unit is a program unit that is declared by a library_item. When a program unit is a
library unit, the prefix ‘‘library’’ is used to refer to it (or ‘‘generic library’’ if generic), as well as to its
declaration and body, as in ‘‘library procedure’’, ‘‘library package_body’’, or ‘‘generic library package’’.
{compilation unit} The term compilation unit is used to refer to a compilation_unit. When the meaning is
clear from context, the term is also used to refer to the library_item of a compilation_unit or to the proper_
body of a subunit [(that is, the compilation_unit without the context_clause and the separate (parent_
unit_name))].

9.aDiscussion: In this example:

9.bwith Ada.Text_IO;
package P is

...
end P;

9.cthe term ‘‘compilation unit’’ can refer to this text: ‘‘with Ada.Text_IO; package P is ... end P;’’ or to this text:
‘‘package P is ... end P;’’. We use this shorthand because it corresponds to common usage.

9.dWe like to use the word ‘‘unit’’ for declaration-plus-body things, and ‘‘item’’ for declaration or body separately (as in
declarative_item). The terms ‘‘compilation_unit,’’ ‘‘compilation unit,’’ and ‘‘subunit’’ are exceptions to this rule. We
considered changing ‘‘compilation_unit,’’ ‘‘compilation unit’’ to ‘‘compilation_item,’’ ‘‘compilation item,’’ respec-
tively, but we decided not to.

10{parent declaration (of a library_item)} {parent declaration (of a library unit)} The parent declaration of a library_item
(and of the library unit) is the declaration denoted by the parent_unit_name, if any, of the defining_
program_unit_name of the library_item. {root library unit} If there is no parent_unit_name, the parent
declaration is the declaration of Standard, the library_item is a root library_item, and the library unit
(renaming) is a root library unit (renaming). The declaration and body of Standard itself have no parent
declaration. {parent unit (of a library unit)} The parent unit of a library_item or library unit is the library unit
declared by its parent declaration.

10.aDiscussion: The declaration and body of Standard are presumed to exist from the beginning of time, as it were. There
is no way to actually write them, since there is no syntactic way to indicate lack of a parent. An attempt to compile a
package Standard would result in Standard.Standard.

10.bReason: Library units (other than Standard) have ‘‘parent declarations’’ and ‘‘parent units’’. Subunits have ‘‘parent
bodies’’. We didn’t bother to define the other possibilities: parent body of a library unit, parent declaration of a
subunit, parent unit of a subunit. These are not needed, and might get in the way of a correct definition of ‘‘child.’’

11[The children of a library unit occur immediately within the declarative region of the declaration of the
library unit.] {ancestor (of a library unit)} The ancestors of a library unit are itself, its parent, its parent’s
parent, and so on. [(Standard is an ancestor of every library unit.)] {descendant} The descendant relation is
the inverse of the ancestor relation.

11.aReason: These definitions are worded carefully to avoid defining subunits as children. Only library units can be
children.

11.bWe use the unadorned term ‘‘ancestors’’ here to concisely define both ‘‘ancestor unit’’ and ‘‘ancestor declaration.’’

12{public library unit} {public declaration of a library unit} {private library unit} {private declaration of a library unit} A
library_unit_declaration or a library_unit_renaming_declaration is private if the declaration is immediately

ISO/IEC 8652:1995(E) —AARM;6.0

10.1.1 Compilation Units - Library Units 21 December 1994 304

preceded by the reserved word private; it is otherwise public. A library unit is private or public accord-
ing to its declaration. {public descendant (of a library unit)} The public descendants of a library unit are the
library unit itself, and the public descendants of its public children. {private descendant (of a library unit)} Its
other descendants are private descendants.

12.a Discussion: The first concept defined here is that a library_item is either public or private (not in relation to anything
else — it’s just a property of the library unit). The second concept is that a library_item is a public descendant or
private descendant of a given ancestor. A given library_item can be a public descendant of one of its ancestors, but a
private descendant of some other ancestor.

12.b A subprogram declared by a subprogram_body (as opposed to a subprogram_declaration) is always public, since the
syntax rules disallow the reserved word private on a body.

12.c Note that a private library unit is a public descendant of itself, but a private descendant of its parent. This is because it
is visible outside itself — its privateness means that it is not visible outside its parent.

12.d Private children of Standard are legal, and follow the normal rules. It is intended that implementations might have
some method for taking an existing environment, and treating it as a package to be ‘‘imported’’ into another
environment, treating children of Standard in the imported environment as children of the imported package.

12.e Ramification: Suppose we have a public library unit A, a private library unit A.B, and a public library unit A.B.C.
A.B.C is a public descendant of itself and of A.B, but a private descendant of A; since A.B is private to A, we don’t
allow A.B.C to escape outside A either. This is similar to the situation that would occur with physical nesting, like this:

12.f package A is
private

package B is
package C is
end C;

private
end B;

end A;

12.g Here, A.B.C is visible outside itself and outside A.B, but not outside A. (Note that this example is intended to illustrate
the visibility of program units from the outside; the visibility within child units is not quite identical to that of
physically nested units, since child units are nested after their parent’s declaration.)

Legality Rules

13 The parent unit of a library_item shall be a [library] package or generic [library] package.

14 If a defining_program_unit_name of a given declaration or body has a parent_unit_name, then the given
declaration or body shall be a library_item. The body of a program unit shall be a library_item if and only
if the declaration of the program unit is a library_item. In a library_unit_renaming_declaration, the [(old)]
name shall denote a library_item.

14.a Discussion: We could have allowed nested program units to be children of other program units; their semantics would
make sense. We disallow them to keep things simpler and because they wouldn’t be particularly useful.

15 A parent_unit_name [(which can be used within a defining_program_unit_name of a library_item and in
the separate clause of a subunit)], and each of its prefixes, shall not denote a renaming_declaration. [On
the other hand, a name that denotes a library_unit_renaming_declaration is allowed in a with_clause and
other places where the name of a library unit is allowed.]

16 If a library package is an instance of a generic package, then every child of the library package shall either
be itself an instance or be a renaming of a library unit.

16.a Discussion: A child of an instance of a given generic unit will often be an instance of a (generic) child of the given
generic unit. This is not required, however.

16.b Reason: Instances are forbidden from having noninstance children for two reasons:
16.c 1. We want all source code that can depend on information from the private part of a library unit to be inside

the "subsystem" rooted at the library unit. If an instance of a generic unit were allowed to have a

ISO/IEC 8652:1995(E) —AARM;6.0

305 21 December 1994 Compilation Units - Library Units 10.1.1

noninstance as a child, the source code of that child might depend on information from the private part of
the generic unit, even though it is outside the subsystem rooted at the generic unit.

16.d2. Disallowing noninstance children simplifies the description of the semantics of children of generic
packages.

17A child of a generic library package shall either be itself a generic unit or be a renaming of some other
child of the same generic unit. The renaming of a child of a generic package shall occur only within the
declarative region of the generic package.

18A child of a parent generic package shall be instantiated or renamed only within the declarative region of
the parent generic.

19For each declaration or renaming of a generic unit as a child of some parent generic package, there is a
corresponding declaration nested immediately within each instance of the parent. [This declaration is
visible only within the scope of a with_clause that mentions the child generic unit.]

19.aImplementation Note: Within the child, like anything nested in a generic unit, one can make up-level references to
the current instance of its parent, and thereby gain access to the formal parameters of the parent, to the types declared in
the parent, etc. This ‘‘nesting’’ model applies even within the generic_formal_part of the child, as it does for a generic
child of a nongeneric unit.

19.bRamification: Suppose P is a generic library package, and P.C is a generic child of P. P.C can be instantiated inside
the declarative region of P. Outside P, P.C can be mentioned only in a with_clause. Conceptually, an instance I of P is
a package that has a nested generic unit called I.C. Mentioning P.C in a with_clause allows I.C to be instantiated. I
need not be a library unit, and the instantiation of I.C need not be a library unit. If I is a library unit, and an instance of
I.C is a child of I, then this instance has to be called something other than C.

20A library subprogram shall not override a primitive subprogram.
20.aReason: This prevents certain obscure anomalies. For example, if a library subprogram were to override a

subprogram declared in its parent package, then in a compilation unit that depends indirectly on the library subprogram,
the library subprogram could hide the overridden operation from all visibility, but the library subprogram itself would
not be visible.

20.bNote that even without this rule, such subprograms would be illegal for tagged types, because of the freezing rules.

21The defining name of a function that is a compilation unit shall not be an operator_symbol.
21.aReason: Since overloading is not permitted among compilation units, it seems unlikely that it would be useful to

define one as an operator. Note that a subunit could be renamed within its parent to be an operator.

Static Semantics

22A subprogram_renaming_declaration that is a library_unit_renaming_declaration is a renaming-as-
declaration, not a renaming-as-body.

23[There are two kinds of dependences among compilation units:

24• The semantic dependences (see below) are the ones needed to check the compile-time rules
across compilation unit boundaries; a compilation unit depends semantically on the other
compilation units needed to determine its legality. The visibility rules are based on the
semantic dependences.

25• The elaboration dependences (see 10.2) determine the order of elaboration of library_items.
]

25.aDiscussion: Don’t confuse these kinds of dependences with the run-time dependences among tasks and masters
defined in 9.3, ‘‘Task Dependence - Termination of Tasks’’.

26{semantic dependence (of one compilation unit upon another)} {dependence (semantic)} A library_item depends seman-
tically upon its parent declaration. A subunit depends semantically upon its parent body. A library_unit_
body depends semantically upon the corresponding library_unit_declaration, if any.

ISO/IEC 8652:1995(E) —AARM;6.0

10.1.1 Compilation Units - Library Units 21 December 1994 306

26.a Discussion: The ‘‘if any’’ is necessary because library subprograms are not required to have a subprogram_
declaration.

A compilation unit depends semantically upon each library_item mentioned in a with_clause of the com-
pilation unit. In addition, if a given compilation unit contains an attribute_reference of a type defined in
another compilation unit, then the given compilation unit depends semantically upon the other compila-
tion unit. The semantic dependence relationship is transitive.

26.b To be honest: If a given compilation unit contains a choice_parameter_specification, then the given compilation unit
depends semantically upon the declaration of Ada.Exceptions.

26.c If a given compilation unit contains a pragma with an argument of a type defined in another compilation unit, then the
given compilation unit depends semantically upon the other compilation unit.

26.d Discussion: For example, a compilation unit containing X’Address depends semantically upon the declaration of
package System.

26.e For the Address attribute, this fixes a hole in Ada 83. Note that in almost all cases, the dependence will need to exist
due to with_clauses, even without this rule. Hence, the rule has very little effect on programmers.

26.f Note that the semantic dependence does not have the same effect as a with_clause; in order to denote a declaration in
one of those packages, a with_clause will generally be needed.

26.g Note that no special rule is needed for an attribute_definition_clause, since an expression after use will require semantic
dependence upon the compilation unit containing the type_declaration of interest.

NOTES
27 1 A simple program may consist of a single compilation unit. A compilation need not have any compilation units; for

example, its text can consist of pragmas.

27.a Ramification: Such pragmas cannot have any arguments that are names, by a previous rule of this subclause. A
compilation can even be entirely empty, which is probably not useful.

27.b Some interesting properties of the three kinds of dependence: The elaboration dependences also include the semantic
dependences, except that subunits are taken together with their parents. The semantic dependences partly determine
the order in which the compilation units appear in the environment at compile time. At run time, the order is partly
determined by the elaboration dependences.

27.c The model whereby a child is inside its parent’s declarative region, after the parent’s declaration, as explained in 8.1,
has the following ramifications:

27.d • The restrictions on ‘‘early’’ use of a private type (RM83-7.4.1(4)) or a deferred constant (RM83-7.4.3(2))
do not apply to uses in child units, because they follow the full declaration.

27.e • A library subprogram is never primitive, even if its profile includes a type declared immediately within the
parent’s package_specification, because the child is not declared immediately within the same package_
specification as the type (so it doesn’t declare a new primitive subprogram), and because the child is
forbidden from overriding an old primitive subprogram. It is immediately within the same declarative
region, but not the same package_specification. Thus, for a tagged type, it is not possible to call a child
subprogram in a dispatching manner. (This is also forbidden by the freezing rules.) Similarly, it is not
possible for the user to declare primitive subprograms of the types declared in the declaration of Standard,
such as Integer (even if the rules were changed to allow a library unit whose name is an operator symbol).

27.f • When the parent unit is ‘‘used’’ the simple names of the with’d child units are directly visible (see 8.4,
‘‘Use Clauses’’).

27.g • When a parent body with’s its own child, the defining name of the child is directly visible, and the parent
body is not allowed to include a declaration of a homograph of the child unit immediately within the
declarative_part of the body (RM83-8.3(17)).

27.h Note that ‘‘declaration of a library unit’’ is different from ‘‘library_unit_declaration’’ — the former includes
subprogram_body. Also, we sometimes really mean ‘‘declaration of a view of a library unit’’, which includes library_
unit_renaming_declarations.

27.i The visibility rules generally imply that the renamed view of a library_unit_renaming_declaration has to be mentioned in
a with_clause of the library_unit_renaming_declaration.

ISO/IEC 8652:1995(E) —AARM;6.0

307 21 December 1994 Compilation Units - Library Units 10.1.1

27.jTo be honest: The real rule is that the renamed library unit has to be visible in the library_unit_renaming_declaration.

27.kReason: In most cases, ‘‘has to be visible’’ means there has to be a with_clause. However, it is possible in obscure
cases to avoid the need for a with_clause; in particular, a compilation unit such as ‘‘package P.Q renames P;’’ is legal
with no with_clauses (though not particularly interesting). ASCII is physically nested in Standard, and so is not a
library unit, and cannot be renamed as a library unit.

282 The designator of a library function cannot be an operator_symbol, but a nonlibrary renaming_declaration is allowed to
rename a library function as an operator. Within a partition, two library subprograms are required to have distinct names
and hence cannot overload each other. However, renaming_declarations are allowed to define overloaded names for such
subprograms, and a locally declared subprogram is allowed to overload a library subprogram. The expanded name
Standard.L can be used to denote a root library unit L (unless the declaration of Standard is hidden) since root library unit
declarations occur immediately within the declarative region of package Standard.

Examples

29Examples of library units:
30package Rational_Numbers.IO is -- public child of Rational_Numbers, see 7.1

procedure Put(R : in Rational);
procedure Get(R : out Rational);

end Rational_Numbers.IO;

31private procedure Rational_Numbers.Reduce(R : in out Rational);
-- private child of Rational_Numbers

32with Rational_Numbers.Reduce; -- refer to a private child
package body Rational_Numbers is

...
end Rational_Numbers;

33with Rational_Numbers.IO; use Rational_Numbers;
with Ada.Text_io; -- see A.10
procedure Main is -- a root library procedure

R : Rational;
begin

R := 5/3; -- construct a rational number, see 7.1
Ada.Text_IO.Put("The answer is: ");
IO.Put(R);
Ada.Text_IO.New_Line;

end Main;

34with Rational_Numbers.IO;
package Rational_IO renames Rational_Numbers.IO;

-- a library unit renaming declaration

35Each of the above library_items can be submitted to the compiler separately.
35.aDiscussion: Example of a generic package with children:

35.bgeneric
type Element is private;
with function Image(E : Element) return String;

package Generic_Bags is
type Bag is limited private; -- A bag of Elements.
procedure Add(B : in out Bag; E : Element);
function Bag_Image(B : Bag) return String;

private
type Bag is ...;

end Generic_Bags;

35.cgeneric
package Generic_Bags.Generic_Iterators is

... -- various additional operations on Bags.

35.dgeneric
with procedure Use_Element(E : in Element);

-- Called once per bag element.
procedure Iterate(B : in Bag);

end Generic_Bags.Generic_Iterators;

35.eA package that instantiates the above generic units:

ISO/IEC 8652:1995(E) —AARM;6.0

10.1.1 Compilation Units - Library Units 21 December 1994 308

35.f with Generic_Bags;
with Generic_Bags.Generic_Iterators;
package My_Abstraction is

type My_Type is ...;
function Image(X : My_Type) return String;
package Bags_Of_My_Type is new Generic_Bags(My_Type, Image);
package Iterators_Of_Bags_Of_My_Type is new Bags_Of_My_Type.Generic_Iterators;

end My_Abstraction;

35.g In the above example, Bags_Of_My_Type has a nested generic unit called Generic_Iterators. The second with_clause
makes that nested unit visible.

35.h Here we show how the generic body could depend on one of its own children:

35.i with Generic_Bags.Generic_Iterators;
package body Generic_Bags is

procedure Add(B : in out Bag; E : Element) is ... end Add;

35.j package Iters is new Generic_Iterators;

35.k function Bag_Image(B : Bag) return String is
Buffer : String(1..10_000);
Last : Integer := 0;

35.l procedure Append_Image(E : in Element) is
Im : constant String := Image(E);

begin
if Last /= 0 then -- Insert a comma.

Last := Last + 1;
Buffer(Last) := ’,’;

end if;
Buffer(Last+1 .. Last+Im’Length) := Im;
Last := Last + Im’Length;

end Append_Image;

35.m procedure Append_All is new Iters.Iterate(Append_Image);
begin

Append_All(B);
return Buffer(1..Last);

end Bag_Image;
end Generic_Bags;

Extensions to Ada 83

35.n {extensions to Ada 83} The syntax rule for library_item is modified to allow the reserved word private before a library_
unit_declaration.

35.o Children (other than children of Standard) are new in Ada 9X.

35.p Library unit renaming is new in Ada 9X.
Wording Changes From Ada 83

35.q Standard is considered a library unit in Ada 9X. This simplifies the descriptions, since it implies that the parent of each
library unit is a library unit. (Standard itself has no parent, of course.) As in Ada 83, the language does not define any
way to recompile Standard, since the name given in the declaration of a library unit is always interpreted in relation to
Standard. That is, an attempt to compile a package Standard would result in Standard.Standard.

10.1.2 Context Clauses - With Clauses
1 [A context_clause is used to specify the library_items whose names are needed within a compilation unit.]

Language Design Principles

1.a {one-pass context_clauses} The reader should be able to understand a context_clause without looking ahead.
Similarly, when compiling a context_clause, the compiler should not have to look ahead at subsequent context_items,
nor at the compilation unit to which the context_clause is attached. (We have not completely achieved this.)

ISO/IEC 8652:1995(E) —AARM;6.0

309 21 December 1994 Context Clauses - With Clauses 10.1.2

Syntax

2context_clause ::= {context_item}

3context_item ::= with_clause | use_clause

4with_clause ::= with library_unit_name {, library_unit_name};

Name Resolution Rules

5{scope (of a with_clause)} The scope of a with_clause that appears on a library_unit_declaration or library_
unit_renaming_declaration consists of the entire declarative region of the declaration[, which includes all
children and subunits]. The scope of a with_clause that appears on a body consists of the body[, which
includes all subunits].

5.aDiscussion: Suppose a with_clause of a public library unit mentions one of its private siblings. (This is only allowed
on the body of the public library unit.) We considered making the scope of that with_clause not include the visible part
of the public library unit. (This would only matter for a subprogram_body, since those are the only kinds of body that
have a visible part, and only if the subprogram_body completes a subprogram_declaration, since otherwise the with_
clause would be illegal.) We did not put in such a rule for two reasons: (1) It would complicate the wording of the
rules, because we would have to split each with_clause into pieces, in order to correctly handle ‘‘with P, Q;’’ where P
is public and Q is private. (2) The conformance rules prevent any problems. It doesn’t matter if a type name in the
spec of the body denotes the completion of a private_type_declaration.

5.bA with_clause also affects visibility within subsequent use_clauses and pragmas of the same context_clause, even
though those are not in the scope of the with_clause.

6{mentioned in a with_clause} {with_clause (mentioned in)} A library_item is mentioned in a with_clause if it is
denoted by a library_unit_name or a prefix in the with_clause.

6.aDiscussion: With_clauses control the visibility of declarations or renamings of library units. Mentioning a root library
unit in a with_clause makes its declaration directly visible. Mentioning a non-root library unit makes its declaration
visible. See Section 8 for details.

6.bNote that this rule implies that ‘‘with A.B.C;’’ is equivalent to ‘‘with A, A.B, A.B.C;’’ The reason for making a with_
clause apply to all the ancestor units is to avoid ‘‘visibility holes’’ — situations in which an inner program unit is
visible while an outer one is not. Visibility holes would cause semantic complexity and implementation difficulty.

7[Outside its own declarative region, the declaration or renaming of a library unit can be visible only
within the scope of a with_clause that mentions it. The visibility of the declaration or renaming of a
library unit otherwise follows from its placement in the environment.]

Legality Rules

8If a with_clause of a given compilation_unit mentions a private child of some library unit, then the given
compilation_unit shall be either the declaration of a private descendant of that library unit or the body or
subunit of a [(public or private)] descendant of that library unit.

8.aReason: The purpose of this rule is to prevent a private child from being visible (or even semantically depended-on)
from outside the subsystem rooted at its parent.

8.bDiscussion: This rule violates the one-pass context_clauses Language Design Principle. We rationalize this by saying
that at least that Language Design Principle works for legal compilation units.

8.cExample:

8.dpackage A is
end A;

8.epackage A.B is
end A.B;

8.fprivate package A.B.C is
end A.B.C;

8.gpackage A.B.C.D is
end A.B.C.D;

ISO/IEC 8652:1995(E) —AARM;6.0

10.1.2 Context Clauses - With Clauses 21 December 1994 310

8.h with A.B.C; -- (1)
private package A.B.X is
end A.B.X;

8.i package A.B.Y is
end A.B.Y;

8.j with A.B.C; -- (2)
package body A.B.Y is
end A.B.Y;

8.k (1) is OK because it’s a private child of A.B — it would be illegal if we made A.B.X a public child of A.B. (2) is OK
because it’s the body of a child of A.B. It would be illegal to say ‘‘with A.B.C;’’ on any library_item whose name does
not start with ‘‘A.B’’. Note that mentioning A.B.C.D in a with_clause automatically mentions A.B.C as well, so ‘‘with
A.B.C.D;’’ is illegal in the same places as ‘‘with A.B.C;’’.

8.l To be honest: For the purposes of this rule, if a subprogram_body has no preceding subprogram_declaration, the
subprogram_body should be considered a declaration and not a body. Thus, it is illegal for such a subprogram_body to
mention one of its siblings in a with_clause if the sibling is a private library unit.

NOTES
9 3 A library_item mentioned in a with_clause of a compilation unit is visible within the compilation unit and hence acts just

like an ordinary declaration. Thus, within a compilation unit that mentions its declaration, the name of a library package
can be given in use_clauses and can be used to form expanded names, a library subprogram can be called, and instances of
a generic library unit can be declared. If a child of a parent generic package is mentioned in a with_clause, then the
corresponding declaration nested within each visible instance is visible within the compilation unit.

9.a Ramification: The rules given for with_clauses are such that the same effect is obtained whether the name of a library
unit is mentioned once or more than once by the applicable with_clauses, or even within a given with_clause.

9.b If a with_clause mentions a library_unit_renaming_declaration, it only ‘‘mentions’’ the prefixes appearing explicitly in
the with_clause (and the renamed view itself); the with_clause is not defined to mention the ancestors of the renamed
entity. Thus, if X renames Y.Z, then ‘‘with X;’’ does not make the declarations of Y or Z visible. Note that this does
not cause the dreaded visibility holes mentioned above.

Extensions to Ada 83

9.c {extensions to Ada 83} The syntax rule for with_clause is modified to allow expanded name notation.

9.d A use_clause in a context_clause may be for a package (or type) nested in a library package.
Wording Changes From Ada 83

9.e The syntax rule for context_clause is modified to more closely reflect the semantics. The Ada 83 syntax rule implies
that the use_clauses that appear immediately after a particular with_clause are somehow attached to that with_clause,
which is not true. The new syntax allows a use_clause to appear first, but that is prevented by a textual rule that
already exists in Ada 83.

9.f The concept of ‘‘scope of a with_clause’’ (which is a region of text) replaces RM83’s notion of ‘‘apply to’’ (a with_
clause applies to a library_item) The visibility rules are interested in a region of text, not in a set of compilation units.

9.g No need to define ‘‘apply to’’ for use_clauses. Their semantics are fully covered by the ‘‘scope (of a use_clause)’’
definition in 8.4.

10.1.3 Subunits of Compilation Units
1 [Subunits are like child units, with these (important) differences: subunits support the separate compila-

tion of bodies only (not declarations); the parent contains a body_stub to indicate the existence and place
of each of its subunits; declarations appearing in the parent’s body can be visible within the subunits.]

Syntax

2 body_stub ::= subprogram_body_stub | package_body_stub | task_body_stub | protected_body_stub

3 subprogram_body_stub ::= subprogram_specification is separate;
3.a Discussion: Although this syntax allows a parent_unit_name, that is disallowed by 10.1.1, ‘‘Compilation Units -

Library Units’’.

ISO/IEC 8652:1995(E) —AARM;6.0

311 21 December 1994 Subunits of Compilation Units 10.1.3

4package_body_stub ::= package body defining_identifier is separate;

5task_body_stub ::= task body defining_identifier is separate;

6protected_body_stub ::= protected body defining_identifier is separate;

7subunit ::= separate (parent_unit_name) proper_body

Legality Rules

8{parent body (of a subunit)} The parent body of a subunit is the body of the program unit denoted by its
parent_unit_name. {subunit} The term subunit is used to refer to a subunit and also to the proper_body of
a subunit.

9The parent body of a subunit shall be present in the current environment, and shall contain a correspond-
ing body_stub with the same defining_identifier as the subunit.

9.aDiscussion: This can’t be a Name Resolution Rule, because a subunit is not a complete context.

10A package_body_stub shall be the completion of a package_declaration or generic_package_
declaration; a task_body_stub shall be the completion of a task_declaration; a protected_body_stub shall
be the completion of a protected_declaration.

11In contrast, a subprogram_body_stub need not be the completion of a previous declaration, [in which case
the _stub declares the subprogram]. If the _stub is a completion, it shall be the completion of a
subprogram_declaration or generic_subprogram_declaration. The profile of a subprogram_body_stub
that completes a declaration shall conform fully to that of the declaration. {full conformance (required)}

11.aDiscussion: The part about subprogram_body_stubs echoes the corresponding rule for subprogram_bodies in 6.3,
‘‘Subprogram Bodies’’.

12A subunit that corresponds to a body_stub shall be of the same kind (package_, subprogram_, task_, or
protected_) as the body_stub. The profile of a subprogram_body subunit shall be fully conformant to that
of the corresponding body_stub. {full conformance (required)}

13A body_stub shall appear immediately within the declarative_part of a compilation unit body. This rule
does not apply within an instance of a generic unit.

13.aDiscussion: {methodological restriction} This is a methodological restriction; that is, it is not necessary for the
semantics of the language to make sense.

14The defining_identifiers of all body_stubs that appear immediately within a particular declarative_part
shall be distinct.

Post-Compilation Rules

15{post-compilation rules} For each body_stub, there shall be a subunit containing the corresponding proper_
body.

NOTES
164 The rules in 10.1.4, ‘‘The Compilation Process’’ say that a body_stub is equivalent to the corresponding proper_body.

This implies:

17• Visibility within a subunit is the visibility that would be obtained at the place of the corresponding body_stub
(within the parent body) if the context_clause of the subunit were appended to that of the parent body.

17.aRamification: Recursively. Note that this transformation might make the parent illegal; hence it is not a true
equivalence, but applies only to visibility within the subunit.

18• The effect of the elaboration of a body_stub is to elaborate the subunit.

ISO/IEC 8652:1995(E) —AARM;6.0

10.1.3 Subunits of Compilation Units 21 December 1994 312

18.a Ramification: The elaboration of a subunit is part of its parent body’s elaboration, whereas the elaboration of a
child unit is not part of its parent declaration’s elaboration.

18.b Ramification: A library_item that is mentioned in a with_clause of a subunit can be hidden (from direct visiblity) by a
declaration (with the same identifier) given in the subunit. Moreover, such a library_item can even be hidden by a
declaration given within the parent body since a library unit is declared in its parent’s declarative region; this however
does not affect the interpretation of the with_clauses themselves, since only library_items are visible or directly visible
in with_clauses.

18.c The body of a protected operation cannot be a subunit. This follows from the syntax rules. The body of a protected
unit can be a subunit.

Examples

19 The package Parent is first written without subunits:
20 package Parent is

procedure Inner;
end Parent;

21 with Ada.Text_IO;
package body Parent is

Variable : String := "Hello, there.";
procedure Inner is
begin

Ada.Text_IO.Put_Line(Variable);
end Inner;

end Parent;

22 The body of procedure Inner may be turned into a subunit by rewriting the package body as follows (with
the declaration of Parent remaining the same):

23 package body Parent is
Variable : String := "Hello, there.";
procedure Inner is separate;

end Parent;

24 with Ada.Text_IO;
separate(Parent)
procedure Inner is
begin

Ada.Text_IO.Put_Line(Variable);
end Inner;

Extensions to Ada 83

24.a {extensions to Ada 83} Subunits of the same ancestor library unit are no longer restricted to have distinct identifiers.
Instead, we require only that the full expanded names be distinct.

10.1.4 The Compilation Process
1 {environment} {environment declarative_part} Each compilation unit submitted to the compiler is compiled in the

context of an environment declarative_part (or simply, an environment), which is a conceptual
declarative_part that forms the outermost declarative region of the context of any compilation. At run
time, an environment forms the declarative_part of the body of the environment task of a partition (see
10.2, ‘‘Program Execution’’).

1.a Ramification: At compile time, there is no particular construct that the declarative region is considered to be nested
within — the environment is the universe.

1.b To be honest: The environment is really just a portion of a declarative_part, since there might, for example, be bodies
that do not yet exist.

2 The declarative_items of the environment are library_items appearing in an order such that there are no
forward semantic dependences. Each included subunit occurs in place of the corresponding stub. The
visibility rules apply as if the environment were the outermost declarative region, except that with_
clauses are needed to make declarations of library units visible (see 10.1.2).

ISO/IEC 8652:1995(E) —AARM;6.0

313 21 December 1994 The Compilation Process 10.1.4

3The mechanisms for creating an environment and for adding and replacing compilation units within an
environment are implementation defined.

3.aImplementation defined: The mechanisms for creating an environment and for adding and replacing compilation
units.

3.bRamification: The traditional model, used by most Ada 83 implementations, is that one places a compilation unit in
the environment by compiling it. Other models are possible. For example, an implementation might define the
environment to be a directory; that is, the compilation units in the environment are all the compilation units in the
source files contained in the directory. In this model, the mechanism for replacing a compilation unit with a new one is
simply to edit the source file containing that compilation unit.

Name Resolution Rules

4If a library_unit_body that is a subprogram_body is submitted to the compiler, it is interpreted only as a
completion if a library_unit_declaration for a subprogram or a generic subprogram with the same
defining_program_unit_name already exists in the environment (even if the profile of the body is not type
conformant with that of the declaration); otherwise the subprogram_body is interpreted as both the decla-
ration and body of a library subprogram. {type conformance [partial]}

4.aRamification: The principle here is that a subprogram_body should be interpreted as only a completion if and only if
it ‘‘might’’ be legal as the completion of some preexisting declaration, where ‘‘might’’ is defined in a way that does
not require overload resolution to determine.

4.bHence, if the preexisting declaration is a subprogram_declaration or generic_subprogram_declaration, we treat the new
subprogram_body as its completion, because it ‘‘might’’ be legal. If it turns out that the profiles don’t fully conform,
it’s an error. In all other cases (the preexisting declaration is a package or a generic package, or an instance of a
generic subprogram, or a renaming, or a ‘‘spec-less’’ subprogram, or in the case where there is no preexisting thing),
the subprogram_body declares a new subprogram.

4.cSee also AI-00266/09.

Legality Rules

5When a compilation unit is compiled, all compilation units upon which it depends semantically shall
already exist in the environment; {consistency (among compilation units)} the set of these compilation units shall
be consistent in the sense that the new compilation unit shall not semantically depend (directly or in-
directly) on two different versions of the same compilation unit, nor on an earlier version of itself.

5.aDiscussion: For example, if package declarations A and B both say ‘‘with X;’’, and the user compiles a compilation
unit that says ‘‘with A, B;’’, then the A and B have to be talking about the same version of X.

5.bRamification: What it means to be a ‘‘different version’’ is not specified by the language. In some implementations,
it means that the compilation unit has been recompiled. In others, it means that the source of the compilation unit has
been edited in some significant way.

5.cNote that an implementation cannot require the existence of compilation units upon which the given one does not
semantically depend. For example, an implementation is required to be able to compile a compilation unit that says
"with A;" when A’s body does not exist. It has to be able to detect errors without looking at A’s body.

5.dSimilarly, the implementation has to be able to compile a call to a subprogram for which a pragma Inline has been
specified without seeing the body of that subprogram — inlining would not be achieved in this case, but the call is still
legal.

Implementation Permissions

6The implementation may require that a compilation unit be legal before inserting it into the environment.

7When a compilation unit that declares or renames a library unit is added to the environment, the im-
plementation may remove from the environment any preexisting library_item with the same defining_
program_unit_name. When a compilation unit that is a subunit or the body of a library unit is added to
the environment, the implementation may remove from the environment any preexisting version of the
same compilation unit. When a given compilation unit is removed from the environment, the implemen-

ISO/IEC 8652:1995(E) —AARM;6.0

10.1.4 The Compilation Process 21 December 1994 314

tation may also remove any compilation unit that depends semantically upon the given one. If the given
compilation unit contains the body of a subprogram to which a pragma Inline applies, the implementation
may also remove any compilation unit containing a call to that subprogram.

7.a Ramification: The permissions given in this paragraph correspond to the traditional model, where compilation units
enter the environment by being compiled into it, and the compiler checks their legality at that time. A implementation
model in which the environment consists of all source files in a given directory might not want to take advantage of
these permissions. Compilation units would not be checked for legality as soon as they enter the environment; legality
checking would happen later, when compilation units are compiled. In this model, compilation units might never be
automatically removed from the environment; they would be removed when the user explicitly deletes a source file.

7.b Note that the rule is recursive: if the above permission is used to remove a compilation unit containing an inlined
subprogram call, then compilation units that depend semantically upon the removed one may also be removed, and so
on.

7.c Note that here we are talking about dependences among existing compilation units in the environment; it doesn’t matter
what with_clauses are attached to the new compilation unit that triggered all this.

7.d An implementation may have other modes in which compilation units in addition to the ones mentioned above are
removed. For example, an implementation might inline subprogram calls without an explicit pragma Inline. If so, it
either has to have a mode in which that optimization is turned off, or it has to automatically regenerate code for the
inlined calls without requiring the user to resubmit them to the compiler.

NOTES
8 5 The rules of the language are enforced across compilation and compilation unit boundaries, just as they are enforced

within a single compilation unit.

8.a Ramification: Note that Section 1 requires an implementation to detect illegal compilation units at compile time.

9 6 {library} An implementation may support a concept of a library, which contains library_items. If multiple libraries are
supported, the implementation has to define how a single environment is constructed when a compilation unit is submitted
to the compiler. Naming conflicts between different libraries might be resolved by treating each library as the root of a
hierarchy of child library units. {program library: see library}

9.a Implementation Note: Alternatively, naming conflicts could be resolved via some sort of hiding rule.

9.b Discussion: For example, the implementation might support a command to import library Y into library X. If a root
library unit called LU (that is, Standard.LU) exists in Y, then from the point of view of library X, it could be called
Y.LU. X might contain library units that say, ‘‘with Y.LU;’’.

10 7 A compilation unit containing an instantiation of a separately compiled generic unit does not semantically depend on
the body of the generic unit. Therefore, replacing the generic body in the environment does not result in the removal of the
compilation unit containing the instantiation.

10.a Implementation Note: Therefore, implementations have to be prepared to automatically instantiate generic bodies at
link-time, as needed. This might imply a complete automatic recompilation, but it is the intent of the language that
generic bodies can be (re)instantiated without forcing all of the compilation units that semantically depend on the
compilation unit containing the instantiation to be recompiled.

10.1.5 Pragmas and Program Units
1 [This subclause discusses pragmas related to program units, library units, and compilations.]

Name Resolution Rules

2 {program unit pragma [distributed]} {pragma, program unit [distributed]} Certain pragmas are defined to be program
unit pragmas. {apply [to a program unit by a program unit pragma]} A name given as the argument of a program
unit pragma shall resolve to denote the declarations or renamings of one or more program units that occur
immediately within the declarative region or compilation in which the pragma immediately occurs, or it
shall resolve to denote the declaration of the immediately enclosing program unit (if any); the pragma
applies to the denoted program unit(s). If there are no names given as arguments, the pragma applies to
the immediately enclosing program unit.

2.a Ramification: The fact that this is a Name Resolution Rule means that the pragma will not apply to declarations from
outer declarative regions.

ISO/IEC 8652:1995(E) —AARM;6.0

315 21 December 1994 Pragmas and Program Units 10.1.5

Legality Rules

3A program unit pragma shall appear in one of these places:

4• At the place of a compilation_unit, in which case the pragma shall immediately follow in the
same compilation (except for other pragmas) a library_unit_declaration that is a subprogram_
declaration, generic_subprogram_declaration, or generic_instantiation, and the pragma shall
have an argument that is a name denoting that declaration.

4.aRamification: The name has to denote the immediately preceding library_unit_declaration.

5• Immediately within the declaration of a program unit and before any nested declaration, in
which case the argument, if any, shall be a direct_name that denotes the immediately enclos-
ing program unit declaration.

5.aRamification: The argument is optional in this case.

6• At the place of a declaration other than the first, of a declarative_part or program unit decla-
ration, in which case the pragma shall have an argument, which shall be a direct_name that
denotes one or more of the following (and nothing else): a subprogram_declaration, a
generic_subprogram_declaration, or a generic_instantiation, of the same declarative_part or
program unit declaration.

6.aRamification: If you want to denote a subprogram_body that is not a completion, or a package_declaration, for
example, you have to put the pragma inside.

7{library unit pragma [distributed]} {pragma, library unit [distributed]} {program unit pragma [library unit pragmas]} {pragma,

program unit [library unit pragmas]} Certain program unit pragmas are defined to be library unit pragmas. The
name, if any, in a library unit pragma shall denote the declaration of a library unit.

7.aRamification: This, together with the rules for program unit pragmas above, implies that if a library unit pragma
applies to a subprogram_declaration (and similar things), it has to appear immediately after the compilation_unit,
whereas if the pragma applies to a package_declaration, a subprogram_body that is not a completion (and similar
things), it has to appear inside, as the first declarative_item.

Post-Compilation Rules

8{post-compilation rules} {configuration pragma [distributed]} {pragma, configuration [distributed]} Certain pragmas are
defined to be configuration pragmas; they shall appear before the first compilation_unit of a compilation.
[They are generally used to select a partition-wide or system-wide option.] The pragma applies to all
compilation_units appearing in the compilation, unless there are none, in which case it applies to all future
compilation_units compiled into the same environment.

Implementation Permissions

9An implementation may place restrictions on configuration pragmas, so long as it allows them when the
environment contains no library_items other than those of the predefined environment.

10.1.6 Environment-Level Visibility Rules
1[The normal visibility rules do not apply within a parent_unit_name or a context_clause, nor within a

pragma that appears at the place of a compilation unit. The special visibility rules for those contexts are
given here.]

Static Semantics

2{directly visible [within the parent_unit_name of a library unit]} {visible [within the parent_unit_name of a library unit]}
{directly visible [within a with_clause]} {visible [within a with_clause]} Within the parent_unit_name at the beginning
of a library_item, and within a with_clause, the only declarations that are visible are those that are library_
items of the environment, and the only declarations that are directly visible are those that are root library_
items of the environment. {notwithstanding} Notwithstanding the rules of 4.1.3, an expanded name in a

ISO/IEC 8652:1995(E) —AARM;6.0

10.1.6 Environment-Level Visibility Rules 21 December 1994 316

with_clause may consist of a prefix that denotes a generic package and a selector_name that denotes a
child of that generic package. [(The child is necessarily a generic unit; see 10.1.1.)]

2.a Ramification: In ‘‘package P.Q.R is ... end P.Q.R;’’, this rule requires P to be a root library unit, and Q to be a library
unit (because those are the things that are directly visible and visible). Note that visibility does not apply between the
‘‘end’’ and the ‘‘;’’.

2.b Physically nested declarations are not visible at these places.

2.c Reason: Although Standard is visible at these places, it is impossible to name it, since it is not directly visible, and it
has no parent.

2.d Reason: The ‘‘notwithstanding’’ part allows ‘‘with A.B;’’ where A is a generic library package and B is one of its
(generic) children. This is necessary because it is not normally legal to use an expanded name to reach inside a generic
package.

3 {directly visible [within a use_clause in a context_clause]} {visible [within a use_clause in a context_clause]} {directly visible

[within a pragma in a context_clause]} {visible [within a pragma in a context_clause]} Within a use_clause or pragma
that is within a context_clause, each library_item mentioned in a previous with_clause of the same
context_clause is visible, and each root library_item so mentioned is directly visible. In addition, within
such a use_clause, if a given declaration is visible or directly visible, each declaration that occurs im-
mediately within the given declaration’s visible part is also visible. No other declarations are visible or
directly visible.

3.a Discussion: Note the word ‘‘same’’. For example, if a with_clause on a declaration mentions X, this does not make X
visible in use_clauses and pragmas that are on the body. The reason for this rule is the one-pass context_clauses
Language Design Principle.

3.b Note that the second part of the rule does not mention pragmas.

4 {directly visible [within the parent_unit_name of a subunit]} {visible [within the parent_unit_name of a subunit]} Within the
parent_unit_name of a subunit, library_items are visible as they are in the parent_unit_name of a library_
item; in addition, the declaration corresponding to each body_stub in the environment is also visible.

4.a Ramification: For a subprogram without a separate subprogram_declaration, the body_stub itself is the declaration.

5 {directly visible [within a pragma that appears at the place of a compilation unit]} {visible [within a pragma that appears at the
place of a compilation unit]} Within a pragma that appears at the place of a compilation unit, the immediately
preceding library_item and each of its ancestors is visible. The ancestor root library_item is directly
visible.

Wording Changes From Ada 83

5.a The special visibility rules that apply within a parent_unit_name or a context_clause, and within a pragma that appears
at the place of a compilation_unit are clarified.

5.b Note that a context_clause is not part of any declarative region.

5.c We considered making the visibility rules within parent_unit_names and context_clauses follow from the context of
compilation. However, this attempt failed for various reasons. For example, it would require use_clauses in context_
clauses to be within the declarative region of Standard, which sounds suspiciously like a kludge. And we would still
need a special rule to prevent seeing things (in our own context_clause) that were with-ed by our parent, etc.

ISO/IEC 8652:1995(E) —AARM;6.0

317 21 December 1994 Environment-Level Visibility Rules 10.1.6

10.2 Program Execution
1{program} {program execution} {running a program: see program execution} An Ada program consists of a set of

partitions[, which can execute in parallel with one another, possibly in a separate address space, and
possibly on a separate computer.]

Post-Compilation Rules

2{post-compilation rules} {partition [distributed]} {partition building} A partition is a program or part of a program
that can be invoked from outside the Ada implementation. [For example, on many systems, a partition
might be an executable file generated by the system linker.] {explicitly assign} The user can explicitly assign
library units to a partition. The assignment is done in an implementation-defined manner. The compila-
tion units included in a partition are those of the explicitly assigned library units, as well as other compila-
tion units needed by those library units. The compilation units needed by a given compilation unit are
determined as follows (unless specified otherwise via an implementation-defined pragma, or by some
other implementation-defined means): {linking: see partition building} {compilation units needed (by a compilation

unit) [distributed]} {needed (of a compilation unit by another) [distributed]}

2.aDiscussion: From a run-time point of view, an Ada 9X partition is identical to an Ada 83 program — implementations
were always allowed to provide inter-program communication mechanisms. The additional semantics of partitions is
that interfaces between them can be defined to obey normal language rules (as is done in Annex E, ‘‘Distributed
Systems’’), whereas interfaces between separate programs had no particular semantics.

2.bImplementation defined: The manner of explicitly assigning library units to a partition.

2.cImplementation defined: The implementation-defined means, if any, of specifying which compilation units are
needed by a given compilation unit.

2.dDiscussion: There are no pragmas that ‘‘specify otherwise’’ defined by the core language. However, an implemen-
tation is allowed to provide such pragmas, and in fact Annex E, ‘‘Distributed Systems’’ defines some pragmas whose
semantics includes reducing the set of compilation units described here.

3• A compilation unit needs itself;

4• If a compilation unit is needed, then so are any compilation units upon which it depends
semantically;

5• If a library_unit_declaration is needed, then so is any corresponding library_unit_body;

6• If a compilation unit with stubs is needed, then so are any corresponding subunits.
6.aDiscussion: Note that in the environment, the stubs are replaced with the corresponding proper_bodies.

6.bDiscussion: Note that a child unit is not included just because its parent is included — to include a child, mention it in
a with_clause.

7{main subprogram (for a partition)} The user can optionally designate (in an implementation-defined manner)
one subprogram as the main subprogram for the partition. A main subprogram, if specified, shall be a
subprogram.

7.aDiscussion: This may seem superfluous, since it follows from the definition. But we would like to have every error
message that might be generated (before run time) by an implementation correspond to some explicitly stated ‘‘shall’’
rule.

7.bOf course, this does not mean that the ‘‘shall’’ rules correspond one-to-one with an implementation’s error messages.
For example, the rule that says overload resolution ‘‘shall’’ succeed in producing a single interpretation would
correspond to many error messages in a good implementation — the implementation would want to explain to the user
exactly why overload resolution failed. This is especially true for the syntax rules — they are considered part of
overload resolution, but in most cases, one would expect an error message based on the particular syntax rule that was
violated.

7.cImplementation defined: The manner of designating the main subprogram of a partition.

ISO/IEC 8652:1995(E) —AARM;6.0

10.2 Program Execution 21 December 1994 318

7.d Ramification: An implementation cannot require the user to specify, say, all of the library units to be included. It has
to support, for example, perhaps the most typical case, where the user specifies just one library unit, the main program.
The implementation has to do the work of tracking down all the other ones.

8 {environment task} Each partition has an anonymous environment task[, which is an implicit outermost task
whose execution elaborates the library_items of the environment declarative_part, and then calls the main
subprogram, if there is one. A partition’s execution is that of its tasks.]

8.a Ramification: An environment task has no master; all nonenvironment tasks have masters.

8.b An implementation is allowed to support multiple concurrent executions of the same partition.

9 [The order of elaboration of library units is determined primarily by the elaboration dependences.]
{elaboration dependence (library_item on another)} {dependence (elaboration)} There is an elaboration dependence of
a given library_item upon another if the given library_item or any of its subunits depends semantically on
the other library_item. In addition, if a given library_item or any of its subunits has a pragma Elaborate or
Elaborate_All that mentions another library unit, then there is an elaboration dependence of the given
library_item upon the body of the other library unit, and, for Elaborate_All only, upon each library_item
needed by the declaration of the other library unit.

9.a Discussion: See above for a definition of which library_items are ‘‘needed by’’ a given declaration.

9.b Note that elaboration dependences are among library_items, whereas the other two forms of dependence are among
compilation units. Note that elaboration dependence includes semantic dependence. It’s a little bit sad that pragma
Elaborate_Body can’t be folded into this mechanism. It follows from the definition that the elaboration dependence
relationship is transitive. Note that the wording of the rule does not need to take into account a semantic dependence of
a library_item or one of its subunits upon a subunit of a different library unit, because that can never happen.

10 The environment task for a partition has the following structure:
11 task Environment_Task;

12 task body Environment_Task is
... (1) -- The environment declarative_part

-- (that is, the sequence of library_items) goes here.
begin

... (2) -- Call the main subprogram, if there is one.
end Environment_Task;

12.a Ramification: The name of the environment task is written in italics here to indicate that this task is anonymous.

12.b Discussion: The model is different for a ‘‘passive partition’’ (see E.1). Either there is no environment task, or its
sequence_of_statements is an infinite loop rather than a call on a main subprogram.

13 {environment declarative_part [for the environment task of a partition]} The environment declarative_part at (1) is a
sequence of declarative_items consisting of copies of the library_items included in the partition. [The
order of elaboration of library_items is the order in which they appear in the environment declarative_
part]:

14 • The order of all included library_items is such that there are no forward elaboration depen-
dences.

14.a Ramification: This rule is written so that if a library_item depends on itself, we don’t require it to be elaborated
before itself. See AI-00113/12. This can happen only in pathological circumstances. For example, if a library
subprogram_body has no corresponding subprogram_declaration, and one of the subunits of the subprogram_
body mentions the subprogram_body in a with_clause, the subprogram_body will depend on itself. For another
example, if a library_unit_body applies a pragma Elaborate_All to its own declaration, then the library_unit_body
will depend on itself.

15 • Any included library_unit_declaration to which a pragma Elaborate_Body applies is im-
mediately followed by its library_unit_body, if included.

15.a Discussion: This implies that the body of such a library unit shall not ‘‘with’’ any of its own children, or
anything else that depends semantically upon the declaration of the library unit.

ISO/IEC 8652:1995(E) —AARM;6.0

319 21 December 1994 Program Execution 10.2

16• All library_items declared pure occur before any that are not declared pure.

17• All preelaborated library_items occur before any that are not preelaborated.
17.aDiscussion: Normally, if two partitions contain the same compilation unit, they each contain a separate copy of that

compilation unit. See Annex E, ‘‘Distributed Systems’’ for cases where two partitions share the same copy of
something.

17.bThere is no requirement that the main subprogram be elaborated last. In fact, it is possible to write a partition in which
the main subprogram cannot be elaborated last.

17.cRamification: This declarative_part has the properties required of all environments (see 10.1.4). However, the
environment declarative_part of a partition will typically contain fewer compilation units than the environment
declarative_part used at compile time — only the ‘‘needed’’ ones are included in the partition.

18There shall be a total order of the library_items that obeys the above rules. The order is otherwise
implementation defined.

18.aDiscussion: The only way to violate this rule is to have Elaborate, Elaborate_All, or Elaborate_Body pragmas that
cause circular ordering requirements, thus preventing an order that has no forward elaboration dependences.

18.bImplementation defined: The order of elaboration of library_items.

18.cTo be honest: {requires a completion [library_unit_declaration]} {notwithstanding} Notwithstanding what the RM9X
says elsewhere, each rule that requires a declaration to have a corresponding completion is considered to be a
Post-Compilation Rule when the declaration is that of a library unit.

18.dDiscussion: Such rules may be checked at ‘‘link time,’’ for example. Rules requiring the completion to have certain
properties, on the other hand, are checked at compile time of the completion.

19The full expanded names of the library units and subunits included in a given partition shall be distinct.
19.aReason: This is a Post-Compilation Rule because making it a Legality Rule would violate the Language Design

Principle labeled ‘‘legality determinable via semantic dependences.’’

20The sequence_of_statements of the environment task (see (2) above) consists of either:

21• A call to the main subprogram, if the partition has one. If the main subprogram has
parameters, they are passed; where the actuals come from is implementation defined. What
happens to the result of a main function is also implementation defined.

21.aImplementation defined: Parameter passing and function return for the main subprogram.

22or:

23• A null_statement, if there is no main subprogram.
23.aDiscussion: For a passive partition, either there is no environment task, or its sequence_of_statements is an

infinite loop. See E.1.

24The mechanisms for building and running partitions are implementation defined. [These might be com-
bined into one operation, as, for example, in dynamic linking, or ‘‘load-and-go’’ systems.]

24.aImplementation defined: The mechanisms for building and running partitions.

Dynamic Semantics

25{execution [program]} The execution of a program consists of the execution of a set of partitions. Further
details are implementation defined. {execution [partition]} The execution of a partition starts with the execu-
tion of its environment task, ends when the environment task terminates, and includes the executions of
all tasks of the partition. [The execution of the (implicit) task_body of the environment task acts as a
master for all other tasks created as part of the execution of the partition. When the environment task
completes (normally or abnormally), it waits for the termination of all such tasks, and then finalizes any
remaining objects of the partition.]

ISO/IEC 8652:1995(E) —AARM;6.0

10.2 Program Execution 21 December 1994 320

25.a Ramification: The ‘‘further details’’ mentioned above include, for example, program termination — it is implemen-
tation defined. There is no need to define it here; it’s entirely up to the implementation whether it wants to consider the
program as a whole to exist beyond the existence of individual partitions.

25.b Implementation defined: The details of program execution, including program termination.

25.c To be honest: {termination [of a partition]} {normal termination [of a partition]} {termination [normal]} {abnormal

termination [of a partition]} {termination [abnormal]} The execution of the partition terminates (normally or abnor-
mally) when the environment task terminates (normally or abnormally, respectively).

Bounded (Run-Time) Errors

26 {bounded error} {Program_Error (raised by failure of run-time check)} Once the environment task has awaited the
termination of all other tasks of the partition, any further attempt to create a task (during finalization) is a
bounded error, and may result in the raising of Program_Error either upon creation or activation of the
task. {unspecified [partial]} If such a task is activated, it is not specified whether the task is awaited prior to
termination of the environment task.

Implementation Requirements

27 The implementation shall ensure that all compilation units included in a partition are consistent with one
another, and are legal according to the rules of the language.

27.a Discussion: The consistency requirement implies that a partition cannot contain two versions of the same compilation
unit. That is, a partition cannot contain two different library units with the same full expanded name, nor two different
bodies for the same program unit. For example, suppose we compile the following:

27.b package A is -- Version 1.
...

end A;

27.c with A;
package B is
end B;

27.d package A is -- Version 2.
...

end A;

27.e with A;
package C is
end C;

27.f It would be wrong for a partition containing B and C to contain both versions of A. Typically, the implementation
would require the use of Version 2 of A, which might require the recompilation of B. Alternatively, the implementation
might automatically recompile B when the partition is built. A third alternative would be an incremental compiler that,
when Version 2 of A is compiled, automatically patches the object code for B to reflect the changes to A (if there are
any relevant changes — there might not be any).

27.g An implementation that supported fancy version management might allow the use of Version 1 in some circumstances.
In no case can the implementation allow the use of both versions in the same partition (unless, of course, it can prove
that the two versions are semantically identical).

27.h The core language says nothing about inter-partition consistency; see also Annex E, ‘‘Distributed Systems’’.

Implementation Permissions

28 {active partition} The kind of partition described in this clause is known as an active partition. An im-
plementation is allowed to support other kinds of partitions, with implementation-defined semantics.

28.a Implementation defined: The semantics of any nonactive partitions supported by the implementation.

28.b Discussion: Annex E, ‘‘Distributed Systems’’ defines the concept of passive partitions; they may be thought of as a
partition without an environment task, or as one with a particularly simple form of environment task, having an infinite
loop rather than a call on a main subprogram as its sequence_of_statements.

29 An implementation may restrict the kinds of subprograms it supports as main subprograms. However, an
implementation is required to support all main subprograms that are public parameterless library
procedures.

ISO/IEC 8652:1995(E) —AARM;6.0

321 21 December 1994 Program Execution 10.2

29.aRamification: The implementation is required to support main subprograms that are procedures declared by generic_
instantiations, as well as those that are children of library units other than Standard. Generic units are, of course, not
allowed to be main subprograms, since they are not subprograms.

29.bNote that renamings are irrelevant to this rule. This rules says which subprograms (not views) have to be supported.
The implementation can choose any way it wants for the user to indicate which subprogram should be the main
subprogram. An implementation might allow any name of any view, including those declared by renamings. Another
implementation might require it to be the original name. Another implementation still might use the name of the
source file or some such thing.

30If the environment task completes abnormally, the implementation may abort any dependent tasks.

30.aReason: If the implementation does not take advantage of this permission, the normal action takes place — the
environment task awaits those tasks.

30.bThe possibility of aborting them is not shown in the Environment_Task code above, because there is nowhere to put an
exception_handler that can handle exceptions raised in both the environment declarative_part and the main subprogram,
such that the dependent tasks can be aborted. If we put an exception_handler in the body of the environment task, then
it won’t handle exceptions that occur during elaboration of the environment declarative_part. If we were to move those
things into a nested block_statement, with the exception_handler outside that, then the block_statement would await the
library tasks we are trying to abort.

30.cFurthermore, this is merely a permission, and is not fundamental to the model, so it is probably better to state it
separately anyway.

30.dNote that implementations (and tools like debuggers) can have modes that provide other behaviors in addition.

NOTES
318 An implementation may provide inter-partition communication mechanism(s) via special packages and pragmas.

Standard pragmas for distribution and methods for specifying inter-partition communication are defined in Annex E,
‘‘Distributed Systems’’. If no such mechanisms are provided, then each partition is isolated from all others, and behaves
as a program in and of itself.

31.aRamification: Not providing such mechanisms is equivalent to disallowing multi-partition programs.

31.bAn implementation may provide mechanisms to facilitate checking the consistency of library units elaborated in
different partitions; Annex E, ‘‘Distributed Systems’’ does so.

329 Partitions are not required to run in separate address spaces. For example, an implementation might support dynamic
linking via the partition concept.

3310 An order of elaboration of library_items that is consistent with the partial ordering defined above does not always
ensure that each library_unit_body is elaborated before any other compilation unit whose elaboration necessitates that the
library_unit_body be already elaborated. (In particular, there is no requirement that the body of a library unit be elaborated
as soon as possible after the library_unit_declaration is elaborated, unless the pragmas in subclause 10.2.1 are used.)

3411 A partition (active or otherwise) need not have a main subprogram. In such a case, all the work done by the partition
would be done by elaboration of various library_items, and by tasks created by that elaboration. Passive partitions, which
cannot have main subprograms, are defined in Annex E, ‘‘Distributed Systems’’.

34.aRamification: The environment task is the outermost semantic level defined by the language.

34.bStandard has no private part. This prevents strange implementation-dependences involving private children of
Standard having visibility upon Standard’s private part. It doesn’t matter where the body of Standard appears in the
environment, since it doesn’t do anything. See Annex A, ‘‘Predefined Language Environment’’.

34.cNote that elaboration dependence is carefully defined in such a way that if (say) the body of something doesn’t exist
yet, then there is no elaboration dependence upon the nonexistent body. (This follows from the fact that ‘‘needed by’’
is defined that way, and the elaboration dependences caused by a pragma Elaborate or Elaborate_All are defined in
terms of ‘‘needed by’’.) This property allows us to use the environment concept both at compile time and at
partition-construction time/run time.

Extensions to Ada 83

34.d{extensions to Ada 83} The concept of partitions is new to Ada 9X.

34.eA main subprogram is now optional. The language-defined restrictions on main subprograms are relaxed.

ISO/IEC 8652:1995(E) —AARM;6.0

10.2 Program Execution 21 December 1994 322

Wording Changes From Ada 83

34.f Ada 9X uses the term ‘‘main subprogram’’ instead of Ada 83’s ‘‘main program’’ (which was inherited from Pascal).
This is done to avoid confusion — a main subprogram is a subprogram, not a program. The program as a whole is an
entirely different thing.

10.2.1 Elaboration Control
1 [{elaboration control} This subclause defines pragmas that help control the elaboration order of library_

items.]

Language Design Principles

1.a The rules governing preelaboration are designed to allow it to be done largely by bulk initialization of statically
allocated storage from information in a ‘‘load module’’ created by a linker. Some implementations may require
run-time code to be executed in some cases, but we consider these cases rare enough that we need not further
complicate the rules.

1.b It is important that programs be able to declare data structures that are link-time initialized with aggregates, string_
literals, and concatenations thereof. It is important to be able to write link-time evaluated expressions involving the
First, Last, and Length attributes of such data structures (including variables), because they might be initialized with
positional aggregates or string_literals, and we don’t want the user to have to count the elements. There is no
corresponding need for accessing discriminants, since they can be initialized with a static constant, and then the
constant can be referred to elsewhere. It is important to allow link-time initialized data structures involving
discriminant-dependent components. It is important to be able to write link-time evaluated expressions involving
pointers (both access values and addresses) to the above-mentioned data structures.

1.c The rules also ensure that no Elaboration_Check need be performed for calls on library-level subprograms declared
within a preelaborated package. This is true also of the Elaboration_Check on task activation for library level task
types declared in a preelaborated package. However, it is not true of the Elaboration_Check on instantiations.

1.d A static expression should never prevent a library unit from being preelaborable.
Syntax

2 The form of a pragma Preelaborate is as follows:

3 pragma Preelaborate[(library_unit_name)];

4 {library unit pragma [Preelaborate]} {pragma, library unit [Preelaborate]} A pragma Preelaborate is a library unit
pragma.

Legality Rules

5 {preelaborable (of an elaborable construct) [distributed]} An elaborable construct is preelaborable unless its
elaboration performs any of the following actions:

5.a Ramification: A preelaborable construct can be elaborated without using any information that is available only at run
time. Note that we don’t try to prevent exceptions in preelaborable constructs; if the implementation wishes to generate
code to raise an exception, that’s OK.

5.b Because there is no flow of control and there are no calls (other than to predefined subprograms), these run-time
properties can actually be detected at compile time. This is necessary in order to require compile-time enforcement of
the rules.

6 • The execution of a statement other than a null_statement.
6.a Ramification: A preelaborable construct can contain labels and null_statements.

7 • A call to a subprogram other than a static function.

8 • The evaluation of a primary that is a name of an object, unless the name is a static expres-
sion, or statically denotes a discriminant of an enclosing type.

8.a Ramification: One can evaluate such a name, but not as a primary. For example, one can evaluate an attribute
of the object. One can evaluate an attribute_reference, so long as it does not denote an object, and its prefix does
not disobey any of these rules. For example, Obj’Access, Obj’Unchecked_Access, and Obj’Address are
generally legal in preelaborated library units.

ISO/IEC 8652:1995(E) —AARM;6.0

323 21 December 1994 Elaboration Control 10.2.1

9• The creation of a default-initialized object [(including a component)] of a descendant of a
private type, private extension, controlled type, task type, or protected type with entry_
declarations; similarly the evaluation of an extension_aggregate with an ancestor subtype_
mark denoting a subtype of such a type.

9.aRamification: One can declare these kinds of types, but one cannot create objects of those types.

9.bIt is also non-preelaborable to create an object if that will cause the evaluation of a default expression that will
call a user-defined function. This follows from the rule above forbidding non-null statements.

9.cReason: Controlled objects are disallowed because most implementations will have to take some run-time
action during initialization, even if the Initialize procedure is null.

10A generic body is preelaborable only if elaboration of a corresponding instance body would not perform
any such actions, presuming that the actual for each formal private type (or extension) is a private type (or
extension), and the actual for each formal subprogram is a user-defined subprogram. {generic contract issue}

10.aReason: Without this rule about generics, we would have to forbid instantiations in preelaborated library units, which
would significantly reduce their usefulness.

11{preelaborated [partial]} If a pragma Preelaborate (or pragma Pure — see below) applies to a library unit,
then it is preelaborated. [{preelaborated [distributed]} If a library unit is preelaborated, then its declaration, if
any, and body, if any, are elaborated prior to all non-preelaborated library_items of the partition.] All
compilation units of a preelaborated library unit shall be preelaborable. {generic contract issue [partial]} In
addition to the places where Legality Rules normally apply (see 12.3), this rule applies also in the private
part of an instance of a generic unit. In addition, all compilation units of a preelaborated library unit shall
depend semantically only on compilation units of other preelaborated library units.

11.aRamification: In a generic body, we assume the worst about formal private types and extensions.

Implementation Advice

12In an implementation, a type declared in a preelaborated package should have the same representation in
every elaboration of a given version of the package, whether the elaborations occur in distinct executions
of the same program, or in executions of distinct programs or partitions that include the given version.

Syntax

13The form of a pragma Pure is as follows:

14pragma Pure[(library_unit_name)];

15{library unit pragma [Pure]} {pragma, library unit [Pure]} A pragma Pure is a library unit pragma.

Legality Rules

16{pure} A pure library_item is a preelaborable library_item that does not contain the declaration of any
variable or named access type, except within a subprogram, generic subprogram, task unit, or protected
unit.

17{declared pure} A pragma Pure is used to declare that a library unit is pure. If a pragma Pure applies to a
library unit, then its compilation units shall be pure, and they shall depend semantically only on compila-
tion units of other library units that are declared pure.

17.aTo be honest: A declared-pure library unit is one to which a pragma Pure applies. Its declaration and body are also
said to be declared pure.

17.bDiscussion: A declared-pure package is useful for defining types to be shared between partitions with no common
address space.

17.cReason: Note that generic packages are not mentioned in the list of things that can contain variable declarations. Note
that the Ada 9X rules for deferred constants make them allowable in library units that are declared pure; that isn’t true
of Ada 83’s deferred constants.

ISO/IEC 8652:1995(E) —AARM;6.0

10.2.1 Elaboration Control 21 December 1994 324

17.d Ramification: Anonymous access types (that is, access discriminants and access parameters) are allowed.

17.e Reason: The primary reason for disallowing named access types is that an allocator has a side effect; the pool
constitutes variable data. We considered somehow allowing allocator-less access types. However, these (including
access-to-subprogram types) would cause trouble for Annex E, ‘‘Distributed Systems’’, because such types would
allow access values in a shared passive partition to designate objects in an active partition, thus allowing inter-address
space references. Furthermore, a named access-to-object type without a pool would be a new concept, adding
complexity from the user’s point of view. Finally, the prevention of allocators would have to be a run-time check, in
order to avoid violations of the generic contract model.

Implementation Permissions

18 If a library unit is declared pure, then the implementation is permitted to omit a call on a library-level
subprogram of the library unit if the results are not needed after the call. Similarly, it may omit such a
call and simply reuse the results produced by an earlier call on the same subprogram, provided that none
of the parameters are of a limited type, and the addresses and values of all by-reference actual parameters,
and the values of all by-copy-in actual parameters, are the same as they were at the earlier call. [This
permission applies even if the subprogram produces other side effects when called.]

18.a Discussion: A declared-pure library_item has no variable state. Hence, a call on one of its (nonnested) subprograms
cannot ‘‘normally’’ have side effects. The only possible side effects from such a call would be through machine code
insertions, unchecked conversion to an access type declared within the subprogram, and similar features. The compiler
may omit a call to such a subprogram even if such side effects exist, so the writer of such a subprogram has to keep this
in mind.

Syntax

19 The form of a pragma Elaborate, Elaborate_All, or Elaborate_Body is as follows:

20 pragma Elaborate(library_unit_name{, library_unit_name});

21 pragma Elaborate_All(library_unit_name{, library_unit_name});

22 pragma Elaborate_Body[(library_unit_name)];

23 A pragma Elaborate or Elaborate_All is only allowed within a context_clause.
23.a Ramification: ‘‘Within a context_clause’’ allows it to be the last item in the context_clause. It can’t be first, because

the name has to denote something mentioned earlier.

24 {library unit pragma [Elaborate_Body]} {pragma, library unit [Elaborate_Body]} A pragma Elaborate_Body is a
library unit pragma.

24.a Discussion: Hence, a pragma Elaborate or Elaborate_All is not elaborated, not that it makes any practical difference.

24.b Note that a pragma Elaborate or Elaborate_All is neither a program unit pragma, nor a library unit pragma.

Legality Rules

25 {requires a completion [declaration to which a pragma Elaborate_Body applies]} If a pragma Elaborate_Body applies to
a declaration, then the declaration requires a completion [(a body)].

Static Semantics

26 [A pragma Elaborate specifies that the body of the named library unit is elaborated before the current
library_item. A pragma Elaborate_All specifies that each library_item that is needed by the named library
unit declaration is elaborated before the current library_item. A pragma Elaborate_Body specifies that the
body of the library unit is elaborated immediately after its declaration.]

26.a Proof: The official statement of the semantics of these pragmas is given in 10.2.

26.b Implementation Note: The presence of a pragma Elaborate_Body simplifies the removal of unnecessary Elaboration_
Checks. For a subprogram declared immediately within a library unit to which a pragma Elaborate_Body applies, the
only calls that can fail the Elaboration_Check are those that occur in the library unit itself, between the declaration and
body of the called subprogram; if there are no such calls (which can easily be detected at compile time if there are no

ISO/IEC 8652:1995(E) —AARM;6.0

325 21 December 1994 Elaboration Control 10.2.1

stubs), then no Elaboration_Checks are needed for that subprogram. The same is true for Elaboration_Checks on task
activations and instantiations, and for library subprograms and generic units.

26.cRamification: The fact that the unit of elaboration is the library_item means that if a subprogram_body is not a
completion, it is impossible for any library_item to be elaborated between the declaration and the body of such a
subprogram. Therefore, it is impossible for a call to such a subprogram to fail its Elaboration_Check.

26.dDiscussion: The visibility rules imply that each library_unit_name of a pragma Elaborate or Elaborate_All has to
denote a library unit mentioned by a previous with_clause of the same context_clause.

NOTES
2712 A preelaborated library unit is allowed to have non-preelaborable children.

27.aRamification: But not non-preelaborated subunits.

2813 A library unit that is declared pure is allowed to have impure children.

28.aRamification: But not impure subunits.

28.bRamification: Pragma Elaborate is mainly for closely related library units, such as when two package bodies ’with’
each other’s declarations. In such cases, Elaborate_All sometimes won’t work.

Extensions to Ada 83

28.c{extensions to Ada 83} The concepts of preelaborability and purity are new to Ada 9X. The Elaborate_All, Elaborate_
Body, Preelaborate, and Pure pragmas are new to Ada 9X.

28.dPragmas Elaborate are allowed to be mixed in with the other things in the context_clause — in Ada 83, they were
required to appear last.

ISO/IEC 8652:1995(E) —AARM;6.0

11 Exceptions 21 December 1994 326

ISO/IEC 8652:1995(E) —AARM;6.0

327 21 December 1994 Exceptions 11

Section 11: Exceptions
1[This section defines the facilities for dealing with errors or other exceptional situations that arise during

program execution.] {exception occurrence} {condition: see also exception} {signal (an exception): see raise} {throw (an

exception): see raise} {catch (an exception): see handle} {Exception} [glossary entry]An exception represents a kind
of exceptional situation; an occurrence of such a situation (at run time) is called an exception occurrence.
[{raise [an exception]} To raise an exception is to abandon normal program execution so as to draw
attention to the fact that the corresponding situation has arisen. {handle [an exception]} Performing some
actions in response to the arising of an exception is called handling the exception.]

1.aTo be honest: {handle [an exception occurrence]} ...or handling the exception occurrence.

1.bRamification: For example, an exception End_Error might represent error situations in which an attempt is made to
read beyond end-of-file. During the execution of a partition, there might be numerous occurrences of this exception.

1.cTo be honest: {occurrence (of an exception)} When the meaning is clear from the context, we sometimes use
‘‘occurrence’’ as a short-hand for ‘‘exception occurrence.’’

2[An exception_declaration declares a name for an exception. An exception is raised initially either by a
raise_statement or by the failure of a language-defined check. When an exception arises, control can be
transferred to a user-provided exception_handler at the end of a handled_sequence_of_statements, or it
can be propagated to a dynamically enclosing execution.]

Wording Changes From Ada 83

2.aWe are more explicit about the difference between an exception and an occurrence of an exception. This is necessary
because we now have a type (Exception_Occurrence) that represents exception occurrences, so the program can
manipulate them. Furthermore, we say that when an exception is propagated, it is the same occurrence that is being
propagated (as opposed to a new occurrence of the same exception). The same issue applies to a re-raise statement. In
order to understand these semantics, we have to make this distinction.

11.1 Exception Declarations
1{exception} An exception_declaration declares a name for an exception.

Syntax

2exception_declaration ::= defining_identifier_list : exception;

Static Semantics

3Each single exception_declaration declares a name for a different exception. If a generic unit includes an
exception_declaration, the exception_declarations implicitly generated by different instantiations of the
generic unit refer to distinct exceptions (but all have the same defining_identifier).

3.aReason: We considered removing this requirement inside generic bodies, because it is an implementation burden for
implementations that wish to share code among several instances. In the end, it was decided that it would introduce too
much implementation dependence.

The particular exception denoted by an exception name is determined at compilation time and is the same
regardless of how many times the exception_declaration is elaborated.

3.bRamification: Hence, if an exception_declaration occurs in a recursive subprogram, the exception name denotes the
same exception for all invocations of the recursive subprogram. The reason for this rule is that we allow an exception
occurrence to propagate out of its declaration’s innermost containing master; if exceptions were created by their
declarations like other entities, they would presumably be destroyed upon leaving the master; we would have to do
something special to prevent them from propagating to places where they no longer exist.

3.cRamification: Exception identities are unique across all partitions of a program.

ISO/IEC 8652:1995(E) —AARM;6.0

11.1 Exception Declarations 21 December 1994 328

4 {predefined exception} {Constraint_Error (raised by failure of run-time check)} {Program_Error (raised by failure of run-time

check)} {Storage_Error (raised by failure of run-time check)} {Tasking_Error (raised by failure of run-time check)} The
predefined exceptions are the ones declared in the declaration of package Standard: Constraint_Error,
Program_Error, Storage_Error, and Tasking_Error[; one of them is raised when a language-defined check
fails.]

4.a Ramification: The exceptions declared in the language-defined package IO_Exceptions, for example, are not
predefined.

Dynamic Semantics

5 {elaboration [exception_declaration]} The elaboration of an exception_declaration has no effect.

6 {Storage_Check [partial]} {check, language-defined (Storage_Check)} {Storage_Error (raised by failure of run-time check)}

The execution of any construct raises Storage_Error if there is insufficient storage for that execution.
{unspecified [partial]} The amount of storage needed for the execution of constructs is unspecified.

6.a Ramification: Note that any execution whatsoever can raise Storage_Error. This allows much implementation
freedom in storage management.

Examples

7 Examples of user-defined exception declarations:
8 Singular : exception;

Error : exception;
Overflow, Underflow : exception;

Inconsistencies With Ada 83

8.a {inconsistencies with Ada 83} The exception Numeric_Error is now defined in the Obsolescent features Annex, as a
rename of Constraint_Error. All checks that raise Numeric_Error in Ada 83 instead raise Constraint_Error in Ada 9X.
To increase upward compatibility, we also changed the rules to allow the same exception to be named more than once
by a given handler. Thus, ‘‘when Constraint_Error | Numeric_Error =>’’ will remain legal in Ada 9X, even though
Constraint_Error and Numeric_Error now denote the same exception. However, it will not be legal to have separate
handlers for Constraint_Error and Numeric_Error. This change is inconsistent in the rare case that an existing program
explicitly raises Numeric_Error at a point where there is a handler for Constraint_Error; the exception will now be
caught by that handler.

Wording Changes From Ada 83

8.b We explicitly define elaboration for exception_declarations.

11.2 Exception Handlers
1 [The response to one or more exceptions is specified by an exception_handler.]

Syntax

2 handled_sequence_of_statements ::=
sequence_of_statements

[exception
exception_handler
{exception_handler}]

3 exception_handler ::=
when [choice_parameter_specification:] exception_choice {| exception_choice} =>

sequence_of_statements

4 choice_parameter_specification ::= defining_identifier

5 exception_choice ::= exception_name | others
5.a To be honest: {handler} ‘‘Handler’’ is an abbreviation for ‘‘exception_handler.’’

5.b {choice (of an exception_handler)} Within this section, we sometimes abbreviate ‘‘exception_choice’’ to ‘‘choice.’’

ISO/IEC 8652:1995(E) —AARM;6.0

329 21 December 1994 Exception Handlers 11.2

Legality Rules

6{cover (of a choice and an exception)} A choice with an exception_name covers the named exception. A choice
with others covers all exceptions not named by previous choices of the same handled_sequence_of_
statements. Two choices in different exception_handlers of the same handled_sequence_of_statements
shall not cover the same exception.

6.aRamification: Two choices of the same exception_handler may cover the same exception. For example, given two
renaming declarations in separate packages for the same exception, one may nevertheless write, for example, ‘‘when
Ada.Text_IO.Data_Error | My_Seq_IO.Data_Error =>’’.

6.bAn others choice even covers exceptions that are not visible at the place of the handler. Since exception raising is a
dynamic activity, it is entirely possible for an others handler to handle an exception that it could not have named.

7A choice with others is allowed only for the last handler of a handled_sequence_of_statements and as
the only choice of that handler.

8An exception_name of a choice shall not denote an exception declared in a generic formal package.
8.aReason: This is because the compiler doesn’t know the identity of such an exception, and thus can’t enforce the

coverage rules.

Static Semantics

9{choice parameter} A choice_parameter_specification declares a choice parameter, which is a constant ob-
ject of type Exception_Occurrence (see 11.4.1). During the handling of an exception occurrence, the
choice parameter, if any, of the handler represents the exception occurrence that is being handled.

Dynamic Semantics

10{execution [handled_sequence_of_statements]} The execution of a handled_sequence_of_statements consists of
the execution of the sequence_of_statements. [The optional handlers are used to handle any exceptions
that are propagated by the sequence_of_statements.]

Examples

11Example of an exception handler:
12begin

Open(File, In_File, "input.txt"); -- see A.8.2
exception

when E : Name_Error =>
Put("Cannot open input file : ");
Put_Line(Exception_Message(E)); -- see 11.4.1
raise;

end;

Extensions to Ada 83

12.a{extensions to Ada 83} The syntax rule for exception_handler is modified to allow a choice_parameter_specification.

12.bDifferent choices of the same exception_handler may cover the same exception. This allows for ‘‘when Numeric_Error
| Constraint_Error =>’’ even though Numeric_Error is a rename of Constraint_Error. This also allows one to ‘‘with’’
two different I/O packages, and then write, for example, ‘‘when Ada.Text_IO.Data_Error | My_Seq_IO.Data_Error
=>’’ even though these might both be renames of the same exception.

Wording Changes From Ada 83

12.cThe syntax rule for handled_sequence_of_statements is new. These are now used in all the places where handlers are
allowed. This obviates the need to explain (in Sections 5, 6, 7, and 9) what portions of the program are handled by the
handlers. Note that there are more such cases in Ada 9X.

12.dThe syntax rule for choice_parameter_specification is new.

ISO/IEC 8652:1995(E) —AARM;6.0

11.3 Raise Statements 21 December 1994 330

11.3 Raise Statements
1 [A raise_statement raises an exception.]

Syntax

2 raise_statement ::= raise [exception_name];

Legality Rules

3 The name, if any, in a raise_statement shall denote an exception. {re-raise statement} A raise_statement
with no exception_name (that is, a re-raise statement) shall be within a handler, but not within a body
enclosed by that handler.

Dynamic Semantics

4 {raise (an exception)} To raise an exception is to raise a new occurrence of that exception[, as explained in
11.4]. {execution [raise_statement with an exception_name]} For the execution of a raise_statement with an
exception_name, the named exception is raised. {execution [re-raise statement]} For the execution of a re-raise
statement, the exception occurrence that caused transfer of control to the innermost enclosing handler is
raised [again].

4.a Implementation Note: For a re-raise statement, the implementation does not create a new Exception_Occurrence, but
instead propagates the same Exception_Occurrence value. This allows the original cause of the exception to be
determined.

Examples

5 Examples of raise statements:
6 raise Ada.IO_Exceptions.Name_Error; -- see A.13

7 raise; -- re-raise the current exception

Wording Changes From Ada 83

7.a The fact that the name in a raise_statement has to denote an exception is not clear from RM83. Clearly that was the
intent, since the italicized part of the syntax rules so indicate, but there was no explicit rule. RM83-1.5(11) doesn’t
seem to give the italicized parts of the syntax any force.

11.4 Exception Handling
1 [When an exception occurrence is raised, normal program execution is abandoned and control is trans-

ferred to an applicable exception_handler, if any. {handle (an exception occurrence)} To handle an exception
occurrence is to respond to the exceptional event. {propagate} To propagate an exception occurrence is to
raise it again in another context; that is, to fail to respond to the exceptional event in the present context.]

1.a Ramification: In other words, if the execution of a given construct raises an exception, but does not handle it, the
exception is propagated to an enclosing execution (except in the case of a task_body).

1.b Propagation involves re-raising the same exception occurrence (assuming the implementation has not taken advantage
of the Implementation Permission of 11.3). For example, calling an entry of an uncallable task raises Tasking_Error;
this is not propagation.

Dynamic Semantics

2 {dynamically enclosing (of one execution by another)} {execution (dynamically enclosing)} Within a given task, if the
execution of construct a is defined by this International Standard to consist (in part) of the execution of
construct b, then while b is executing, the execution of a is said to dynamically enclose the execution of b.
{innermost dynamically enclosing} The innermost dynamically enclosing execution of a given execution is the
dynamically enclosing execution that started most recently.

2.a To be honest: {included (one execution by another)} {execution (included by another execution)} If the execution of
a dynamically encloses that of b, then we also say that the execution of b is included in the execution of a.

ISO/IEC 8652:1995(E) —AARM;6.0

331 21 December 1994 Exception Handling 11.4

2.bRamification: Examples: The execution of an if_statement dynamically encloses the evaluation of the condition after
the if (during that evaluation). (Recall that ‘‘execution’’ includes both ‘‘elaboration’’ and ‘‘evaluation’’, as well as
other executions.) The evaluation of a function call dynamically encloses the execution of the sequence_of_statements
of the function_body (during that execution). Note that, due to recursion, several simultaneous executions of the same
construct can be occurring at once during the execution of a particular task.

2.cDynamically enclosing is not defined across task boundaries; a task’s execution does not include the execution of any
other tasks.

2.dDynamically enclosing is only defined for executions that are occurring at a given moment in time; if an if_statement is
currently executing the sequence_of_statements after then, then the evaluation of the condition is no longer dynami-
cally enclosed by the execution of the if_statement (or anything else).

3{raise (an exception occurrence)} When an exception occurrence is raised by the execution of a given con-
struct, the rest of the execution of that construct is abandoned; that is, any portions of the execution that
have not yet taken place are not performed. The construct is first completed, and then left, as explained in
7.6.1. Then:

4• If the construct is a task_body, the exception does not propagate further;
4.aRamification: When an exception is raised by the execution of a task_body, there is no dynamically enclosing

execution, so the exception does not propagate any further. If the exception occurred during the activation of
the task, then the activator raises Tasking_Error, as explained in 9.2, ‘‘Task Execution - Task Activation’’, but
we don’t define that as propagation; it’s a special rule. Otherwise (the exception occurred during the execution
of the handled_sequence_of_statements of the task), the task silently disappears. Thus, abnormal termination
of tasks is not always considered to be an error.

5• If the construct is the sequence_of_statements of a handled_sequence_of_statements that
has a handler with a choice covering the exception, the occurrence is handled by that handler;

6• {propagate (an exception occurrence by an execution, to a dynamically enclosing execution)} Otherwise, the
occurrence is propagated to the innermost dynamically enclosing execution, which means
that the occurrence is raised again in that context.

6.aTo be honest: {propagate (an exception by an execution)} {propagate (an exception by a construct)} As
shorthands, we refer to the propagation of an exception, and the propagation by a construct, if the execution of
the construct propagates an exception occurrence.

7{handle (an exception occurrence)} {execution [handler]} {elaboration [choice_parameter_specification]} When an occur-
rence is handled by a given handler, the choice_parameter_specification, if any, is first elaborated, which
creates the choice parameter and initializes it to the occurrence. Then, the sequence_of_statements of
the handler is executed; this execution replaces the abandoned portion of the execution of the
sequence_of_statements.

7.aRamification: This ‘‘replacement’’ semantics implies that the handler can do pretty much anything the abandoned
sequence could do; for example, in a function, the handler can execute a return_statement that applies to the function.

7.bRamification: The rules for exceptions raised in library units, main subprograms and partitions follow from the
normal rules, plus the semantics of the environment task described in Section 10 (for example, the environment task of
a partition elaborates library units and calls the main subprogram). If an exception is propagated by the main
subprogram, it is propagated to the environment task, which then terminates abnormally, causing the partition to
terminate abnormally. Although abnormal termination of tasks is not necessarily an error, abnormal termination of a
partition due to an exception is an error.

NOTES
81 Note that exceptions raised in a declarative_part of a body are not handled by the handlers of the handled_sequence_of_

statements of that body.

ISO/IEC 8652:1995(E) —AARM;6.0

11.4.1 The Package Exceptions 21 December 1994 332

11.4.1 The Package Exceptions
Static Semantics

1 The following language-defined library package exists:
2 package Ada.Exceptions is

type Exception_Id is private;
Null_Id : constant Exception_Id;
function Exception_Name(Id : Exception_Id) return String;

3 type Exception_Occurrence is limited private;
type Exception_Occurrence_Access is access all Exception_Occurrence;
Null_Occurrence : constant Exception_Occurrence;

4 procedure Raise_Exception(E : in Exception_Id; Message : in String := "");
function Exception_Message(X : Exception_Occurrence) return String;
procedure Reraise_Occurrence(X : in Exception_Occurrence);

5 function Exception_Identity(X : Exception_Occurrence) return Exception_Id;
function Exception_Name(X : Exception_Occurrence) return String;

-- Same as Exception_Name(Exception_Identity(X)).
function Exception_Information(X : Exception_Occurrence) return String;

6 procedure Save_Occurrence(Target : out Exception_Occurrence;
Source : in Exception_Occurrence);

function Save_Occurrence(Source : Exception_Occurrence)
return Exception_Occurrence_Access;

private
... -- not specified by the language

end Ada.Exceptions;

7 Each distinct exception is represented by a distinct value of type Exception_Id. Null_Id does not
represent any exception, and is the default initial value of type Exception_Id. Each occurrence of an
exception is represented by a value of type Exception_Occurrence. Null_Occurrence does not represent
any exception occurrence, and is the default initial value of type Exception_Occurrence.

8 For a prefix E that denotes an exception, the following attribute is defined:

E’Identity E’Identity returns the unique identity of the exception. The type of this attribute is9

Exception_Id.
9.a Ramification: In a distributed program, the identity is unique across an entire program, not just across a single

partition. Exception propagation works properly across RPC’s. An exception can be propagated from one partition to
another, and then back to the first, where its identity is known.

10 Raise_Exception raises a new occurrence of the identified exception. In this case, Exception_Message
returns the Message parameter of Raise_Exception. For a raise_statement with an exception_name,
Exception_Message returns implementation-defined information about the exception occurrence.
Reraise_Occurrence reraises the specified exception occurrence.

10.a Implementation defined: The information returned by Exception_Message.

10.b Ramification: Given an exception E, the raise_statement:

10.c raise E;

10.d is equivalent to this call to Raise_Exception:

10.e Raise_Exception(E’Identity, Message => implementation-defined-string);

10.f The following handler:

10.g when others =>
Cleanup;
raise;

10.h is equivalent to this one:

ISO/IEC 8652:1995(E) —AARM;6.0

333 21 December 1994 The Package Exceptions 11.4.1

10.iwhen X : others =>
Cleanup;
Reraise_Occurrence(X);

11Exception_Identity returns the identity of the exception of the occurrence.

12The Exception_Name functions return the full expanded name of the exception, in upper case, starting
with a root library unit. For an exception declared immediately within package Standard, the defining_
identifier is returned. The result is implementation defined if the exception is declared within an unnamed
block_statement.

12.aRamification: See the Implementation Permission below.

12.bTo be honest: This name, as well as each prefix of it, does not denote a renaming_declaration.

12.cImplementation defined: The result of Exceptions.Exception_Name for types declared within an unnamed block_
statement.

12.dRamification: Note that we’re talking about the name of the exception, not the name of the occurrence.

13Exception_Information returns implementation-defined information about the exception occurrence.
13.aImplementation defined: The information returned by Exception_Information.

14Raise_Exception and Reraise_Occurrence have no effect in the case of Null_Id or Null_Occurrence.
{Constraint_Error (raised by failure of run-time check)} Exception_Message, Exception_Identity, Exception_
Name, and Exception_Information raise Constraint_Error for a Null_Id or Null_Occurrence.

15The Save_Occurrence procedure copies the Source to the Target. The Save_Occurrence function uses an
allocator of type Exception_Occurrence_Access to create a new object, copies the Source to this new
object, and returns an access value designating this new object; [the result may be deallocated using an
instance of Unchecked_Deallocation.]

15.aRamification: It’s OK to pass Null_Occurrence to the Save_Occurrence subprograms; they don’t raise an exception,
but simply save the Null_Occurrence.

Implementation Requirements

16The implementation of the Write attribute (see 13.13.2) of Exception_Occurrence shall support writing a
representation of an exception occurrence to a stream; the implementation of the Read attribute of
Exception_Occurrence shall support reconstructing an exception occurrence from a stream (including one
written in a different partition).

16.aRamification: The identity of the exception, as well as the Exception_Name and Exception_Message, have to be
preserved across partitions.

16.bThe string returned by Exception_Name or Exception_Message on the result of calling the Read attribute on a given
stream has to be the same as the value returned by calling the corresponding function on the exception occurrence that
was written into the stream with the Write attribute. The string returned by Exception_Information need not be the
same, since it is implementation defined anyway.

16.cReason: This is important for supporting writing exception occurrences to external files for post-mortem analysis, as
well as propagating exceptions across remote subprogram calls in a distributed system (see E.4).

Implementation Permissions

17An implementation of Exception_Name in a space-constrained environment may return the defining_
identifier instead of the full expanded name.

18The string returned by Exception_Message may be truncated (to no less than 200 characters) by the Save_
Occurrence procedure [(not the function)], the Reraise_Occurrence procedure, and the re-raise statement.

ISO/IEC 8652:1995(E) —AARM;6.0

11.4.1 The Package Exceptions 21 December 1994 334

18.a Reason: The reason for allowing truncation is to ease implementations. The reason for choosing the number 200 is
that this is the minimum source line length that implementations have to support, and this feature seems vaguely related
since it’s usually a ‘‘one-liner’’. Note that an implementation is allowed to do this truncation even if it supports
arbitrarily long lines.

Implementation Advice

19 Exception_Message (by default) and Exception_Information should produce information useful for
debugging. Exception_Message should be short (about one line), whereas Exception_Information can be
long. Exception_Message should not include the Exception_Name. Exception_Information should in-
clude both the Exception_Name and the Exception_Message.

19.a Reason: It may seem strange to define two subprograms whose semantics is implementation defined. The idea is that
a program can print out debugging/error-logging information in a portable way. The program is portable in the sense
that it will work in any implementation; it might print out different information, but the presumption is that the
information printed out is appropriate for debugging/error analysis on that system.

19.b Implementation Note: As an example, Exception_Information might include information identifying the location
where the exception occurred, and, for predefined exceptions, the specific kind of language-defined check that failed.
There is an implementation trade-off here, between how much information is represented in an Exception_Occurrence,
and how much can be passed through a re-raise.

19.c The string returned should be in a form suitable for printing to an error log file. This means that it might need to
contain line-termination control characters with implementation-defined I/O semantics. The string should neither start
nor end with a newline.

19.d If an implementation chooses to provide additional functionality related to exceptions and their occurrences, it should
do so by providing one or more children of Ada.Exceptions.

19.e Note that exceptions behave as if declared at library level; there is no ‘‘natural scope’’ for an exception; an exception
always exists. Hence, there is no harm in saving an exception occurrence in a data structure, and reraising it later. The
reraise has to occur as part of the same program execution, so saving an exception occurrence in a file, reading it back
in from a different program execution, and then reraising it is not required to work. This is similar to I/O of access
types. Note that it is possible to use RPC to propagate exceptions across partitions.

19.f Here’s one way to implement Exception_Occurrence in the private part of the package. Using this method, an
implementation need store only the actual number of characters in exception messages. If the user always uses small
messages, then exception occurrences can be small. If the user never uses messages, then exception occurrences can be
smaller still:

19.g type Exception_Occurrence(Message_Length : Natural := 200) is
limited record

Id : Exception_Id;
Message : String(1..Message_Length);

end record;

19.h At the point where an exception is raised, an Exception_Occurrence can be allocated on the stack with exactly the right
amount of space for the message — none for an empty message. This is just like declaring a constrained object of the
type:

19.i Temp : Exception_Occurrence(10); -- for a 10-character message

19.j After finding the appropriate handler, the stack can be cut back, and the Temp copied to the right place. This is similar
to returning an unknown-sized object from a function. It is not necessary to allocate the maximum possible size for
every Exception_Occurrence. If, however, the user declares an Exception_Occurrence object, the discriminant will be
permanently set to 200. The Save_Occurrence procedure would then truncate the Exception_Message. Thus, nothing
is lost until the user tries to save the occurrence. If the user is willing to pay the cost of heap allocation, the Save_
Occurrence function can be used instead.

19.k Note that any arbitrary-sized implementation-defined Exception_Information can be handled in a similar way. For
example, if the Exception_Occurrence includes a stack traceback, a discriminant can control the number of stack
frames stored. The traceback would be truncated or entirely deleted by the Save_Occurrence procedure — as the
implementation sees fit.

19.l If the internal representation involves pointers to data structures that might disappear, it would behoove the implemen-
tation to implement it as a controlled type, so that assignment can either copy the data structures or else null out the
pointers. Alternatively, if the data structures being pointed at are in a task control block, the implementation could
keep a unique sequence number for each task, so it could tell when a task’s data structures no longer exist.

ISO/IEC 8652:1995(E) —AARM;6.0

335 21 December 1994 The Package Exceptions 11.4.1

19.mUsing the above method, heap space is never allocated unless the user calls the Save_Occurrence function.

19.nAn alternative implementation would be to store the message strings on the heap when the exception is raised. (It
could be the global heap, or it could be a special heap just for this purpose — it doesn’t matter.) This representation
would be used only for choice parameters. For normal user-defined exception occurrences, the Save_Occurrence
procedure would copy the message string into the occurrence itself, truncating as necessary. Thus, in this implemen-
tation, Exception_Occurrence would be implemented as a variant record:

19.otype Exception_Occurrence_Kind is (Normal, As_Choice_Param);

19.ptype Exception_Occurrence(Kind : Exception_Occurrence_Kind := Normal) is
limited record

case Kind is
when Normal =>

... -- space for 200 characters
when As_Choice_Param =>

... -- pointer to heap string
end case;

end record;

19.qException_Occurrences created by the run-time system during exception raising would be As_Choice_Param. User-
declared ones would be Normal — the user cannot see the discriminant, and so cannot set it to As_Choice_Param. The
strings in the heap would be freed upon completion of the handler.

19.rThis alternative implementation corresponds to a heap-based implementation of functions returning unknown-sized
results.

19.sOne possible implementation of Reraise_Occurrence is as follows:

19.tprocedure Reraise_Occurrence(X : in Exception_Occurrence) is
begin

Raise_Exception(Identity(X), Exception_Message(X));
end Reraise_Occurrence;

19.uHowever, some implementations may wish to retain more information across a re-raise — a stack traceback, for
example.

19.vRamification: Note that Exception_Occurrence is a definite subtype. Hence, values of type Exception_Occurrence
may be written to an error log for later analysis, or may be passed to subprograms for immediate error analysis.

19.wImplementation Note: If an implementation chooses to have a mode in which it supports non-Latin-1 characters in
identifiers, then it needs to define what the above functions return in the case where the name of an exception contains
such a character.

Extensions to Ada 83

19.x{extensions to Ada 83} The Identity attribute of exceptions is new, as is the package Exceptions.

11.4.2 Example of Exception Handling
Examples

1Exception handling may be used to separate the detection of an error from the response to that error:
2with Ada.Exceptions;

use Ada;
package File_System is

type File_Handle is limited private;

3File_Not_Found : exception;
procedure Open(F : in out File_Handle; Name : String);

-- raises File_Not_Found if named file does not exist

4End_Of_File : exception;
procedure Read(F : in out File_Handle; Data : out Data_Type);

-- raises End_Of_File if the file is not open

5...
end File_System;

ISO/IEC 8652:1995(E) —AARM;6.0

11.4.2 Example of Exception Handling 21 December 1994 336

6 package body File_System is
procedure Open(F : in out File_Handle; Name : String) is
begin

if File_Exists(Name) then
...

else
Exceptions.Raise_Exception(File_Not_Found’Identity,

"File not found: " & Name & ".");
end if;

end Open;

7 procedure Read(F : in out File_Handle; Data : out Data_Type) is
begin

if F.Current_Position <= F.Last_Position then
...

else
raise End_Of_File;

end if;
end Read;

8 ...

9 end File_System;

10 with Ada.Text_IO;
with Ada.Exceptions;
with File_System; use File_System;
use Ada;
procedure Main is
begin

... -- call operations in File_System
exception

when End_Of_File =>
Close(Some_File);

when Not_Found_Error : File_Not_Found =>
Text_IO.Put_Line(Exceptions.Exception_Message(Not_Found_Error));

when The_Error : others =>
Text_IO.Put_Line("Unknown error:");
if Verbosity_Desired then

Text_IO.Put_Line(Exceptions.Exception_Information(The_Error));
else

Text_IO.Put_Line(Exceptions.Exception_Name(The_Error));
Text_IO.Put_Line(Exceptions.Exception_Message(The_Error));

end if;
raise;

end Main;

11 In the above example, the File_System package contains information about detecting certain exceptional
situations, but it does not specify how to handle those situations. Procedure Main specifies how to handle
them; other clients of File_System might have different handlers, even though the exceptional situations
arise from the same basic causes.

Wording Changes From Ada 83

11.a The sections labeled ‘‘Exceptions Raised During ...’’ are subsumed by this clause, and by parts of Section 9.

11.5 Suppressing Checks
1 A pragma Suppress gives permission to an implementation to omit certain language-defined checks.

2 {language-defined check} {check (language-defined)} {run-time check: see language-defined check} {run-time error} {error

(run-time)} A language-defined check (or simply, a ‘‘check’’) is one of the situations defined by this
International Standard that requires a check to be made at run time to determine whether some condition
is true. {failure (of a language-defined check)} A check fails when the condition being checked is false, causing
an exception to be raised.

ISO/IEC 8652:1995(E) —AARM;6.0

337 21 December 1994 Suppressing Checks 11.5

2.aDiscussion: All such checks are defined under ‘‘Dynamic Semantics’’ in clauses and subclauses throughout the
standard.

Syntax

3The form of a pragma Suppress is as follows:

4pragma Suppress(identifier [, [On =>] name]);

5{configuration pragma [Suppress]} {pragma, configuration [Suppress]} A pragma Suppress is allowed only
immediately within a declarative_part, immediately within a package_specification, or as a con-
figuration pragma.

Legality Rules

6The identifier shall be the name of a check. The name (if present) shall statically denote some entity.

7For a pragma Suppress that is immediately within a package_specification and includes a name, the
name shall denote an entity (or several overloaded subprograms) declared immediately within the
package_specification.

Static Semantics

8A pragma Suppress gives permission to an implementation to omit the named check from the place of the
pragma to the end of the innermost enclosing declarative region, or, if the pragma is given in a package_
specification and includes a name, to the end of the scope of the named entity. If the pragma includes a
name, the permission applies only to checks performed on the named entity, or, for a subtype, on objects
and values of its type. Otherwise, the permission applies to all entities. {suppressed check} If permission
has been given to suppress a given check, the check is said to be suppressed.

8.aRamification: A check is suppressed even if the implementation chooses not to actually generate better code.
{Program_Error (raised by failure of run-time check)} This allows the implementation to raise Program_Error, for
example, if the erroneousness is detected.

9The following are the language-defined checks:

10• {Constraint_Error (raised by failure of run-time check)} [The following checks correspond to situa-
tions in which the exception Constraint_Error is raised upon failure.]

{Access_Check [distributed]} Access_Check 11

[When evaluating a dereference (explicit or implicit), check that the
value of the name is not null. When passing an actual parameter to a
formal access parameter, check that the value of the actual parameter is
not null.]

{Discriminant_Check [distributed]} Discriminant_Check 12

[Check that the discriminants of a composite value have the values im-
posed by a discriminant constraint. Also, when accessing a record com-
ponent, check that it exists for the current discriminant values.]

{Division_Check [distributed]} Division_Check 13

[Check that the second operand is not zero for the operations /, rem and
mod.]

{Index_Check [distributed]} Index_Check 14

[Check that the bounds of an array value are equal to the corresponding
bounds of an index constraint. Also, when accessing a component of an
array object, check for each dimension that the given index value belongs
to the range defined by the bounds of the array object. Also, when ac-
cessing a slice of an array object, check that the given discrete range is
compatible with the range defined by the bounds of the array object.]

ISO/IEC 8652:1995(E) —AARM;6.0

11.5 Suppressing Checks 21 December 1994 338

{Length_Check [distributed]} Length_Check15

[Check that two arrays have matching components, in the case of array
subtype conversions, and logical operators for arrays of boolean
components.]

{Overflow_Check [distributed]} Overflow_Check16

[Check that a scalar value is within the base range of its type, in cases
where the implementation chooses to raise an exception instead of return-
ing the correct mathematical result.]

{Range_Check [distributed]} Range_Check17

[Check that a scalar value satisfies a range constraint. Also, for the
elaboration of a subtype_indication, check that the constraint (if present)
is compatible with the subtype denoted by the subtype_mark. Also, for
an aggregate, check that an index or discriminant value belongs to the
corresponding subtype. Also, check that when the result of an operation
yields an array, the value of each component belongs to the component
subtype.]

{Tag_Check [distributed]} Tag_Check18

[Check that operand tags in a dispatching call are all equal. Check for
the correct tag on tagged type conversions, for an assignment_statement,
and when returning a tagged limited object from a function.]

19 • {Program_Error (raised by failure of run-time check)} [The following checks correspond to situations
in which the exception Program_Error is raised upon failure.]

{Elaboration_Check [distributed]} Elaboration_Check20

[When a subprogram or protected entry is called, a task activation is ac-
complished, or a generic instantiation is elaborated, check that the body
of the corresponding unit has already been elaborated.]

{Accessibility_Check [distributed]} Accessibility_Check21

[Check the accessibility level of an entity or view.]

22 • [The following check corresponds to situations in which the exception Storage_Error is
raised upon failure.]

{Storage_Check [distributed]} {Storage_Error (raised by failure of run-time check)} Storage_Check23

[Check that evaluation of an allocator does not require more space than is
available for a storage pool. Check that the space available for a task or
subprogram has not been exceeded.]

23.a Reason: We considered splitting this out into three categories: Pool_Check (for allocators), Stack_Check (for
stack usage), and Heap_Check (for implicit use of the heap — use of the heap other than through an allocator).
Storage_Check would then represent the union of these three. However, there seems to be no compelling
reason to do this, given that it is not feasible to split Storage_Error.

24 • [The following check corresponds to all situations in which any predefined exception is
raised.]

{All_Checks [distributed]} All_Checks25

Represents the union of all checks; [suppressing All_Checks suppresses
all checks.]

25.a Ramification: All_Checks includes both language-defined and implementation-defined checks.

Erroneous Execution

26 {erroneous execution} If a given check has been suppressed, and the corresponding error situation occurs, the
execution of the program is erroneous.

ISO/IEC 8652:1995(E) —AARM;6.0

339 21 December 1994 Suppressing Checks 11.5

Implementation Permissions

27An implementation is allowed to place restrictions on Suppress pragmas. An implementation is allowed
to add additional check names, with implementation-defined semantics. {unspecified [partial]} When
Overflow_Check has been suppressed, an implementation may also suppress an unspecified subset of the
Range_Checks.

27.aReason: The permission to restrict is given so the implementation can give an error message when the requested
suppression is nonsense, such as suppressing a Range_Check on a task type. It would be verbose and pointless to list
all the cases of nonsensical language-defined checks in the standard, and since the list of checks is open-ended, we
can’t list the restrictions for implementation-defined checks anyway.

27.bImplementation defined: Implementation-defined check names.

27.cDiscussion: For Overflow_Check, the intention is that the implementation will suppress any Range_Checks that are
implemented in the same manner as Overflow_Checks (unless they are free).

Implementation Advice

28The implementation should minimize the code executed for checks that have been suppressed.
28.aImplementation Note: However, if a given check comes for free (for example, the hardware automatically performs

the check in parallel with doing useful work) or nearly free (for example, the check is a tiny portion of an expensive
run-time system call), the implementation should not bother to suppress the check. Similarly, if the implementation
detects the failure at compile time and provides a warning message, there is no need to actually suppress the check.

NOTES
292 {optimization} {efficiency} There is no guarantee that a suppressed check is actually removed; hence a pragma

Suppress should be used only for efficiency reasons.

Examples

30Examples of suppressing checks:
31pragma Suppress(Range_Check);

pragma Suppress(Index_Check, On => Table);

Extensions to Ada 83

31.a{extensions to Ada 83} A pragma Suppress is allowed as a configuration pragma. A pragma Suppress without a name
is allowed in a package_specification.

31.bAdditional check names are added. We allow implementations to define their own checks.
Wording Changes From Ada 83

31.cWe define the checks in a distributed manner. Therefore, the long list of what checks apply to what is merely a NOTE.

31.dWe have removed the detailed rules about what is allowed in a pragma Suppress, and allow implementations to invent
their own. The RM83 rules weren’t quite right, and such a change is necessary anyway in the presence of
implementation-defined checks.

31.eWe make it clear that the difference between a Range_Check and an Overflow_Check is fuzzy. This was true in Ada
83, given RM83-11.6, but it was not clear. We considered removing Overflow_Check from the language or making it
obsolescent, just as we did for Numeric_Error. However, we kept it for upward compatibility, and because it may be
useful on machines where range checking costs more than overflow checking, but overflow checking still costs
something. Different compilers will suppress different checks when asked to suppress Overflow_Check — the
non-uniformity in this case is not harmful, and removing it would have a serious impact on optimizers.

31.fUnder Access_Check, dereferences cover the cases of selected_component, indexed_component, slice, and attribute that
are listed in RM83, as well as the new explicit_dereference, which was included in selected_component in RM83.

11.6 Exceptions and Optimization
1[{language-defined check} {check (language-defined)} {run-time error} {error (run-time)} {optimization} {efficiency} This

clause gives permission to the implementation to perform certain ‘‘optimizations’’ that do not necessarily
preserve the canonical semantics.]

ISO/IEC 8652:1995(E) —AARM;6.0

11.6 Exceptions and Optimization 21 December 1994 340

Dynamic Semantics

2 {canonical semantics} The rest of this International Standard (outside this clause) defines the canonical
semantics of the language. [The canonical semantics of a given (legal) program determines a set of
possible external effects that can result from the execution of the program with given inputs.]

2.a Ramification: Note that the canonical semantics is a set of possible behaviors, since some reordering, parallelism, and
non-determinism is allowed by the canonical semantics.

2.b Discussion: The following parts of the canonical semantics are of particular interest to the reader of this clause:

2.c • Behavior in the presence of abnormal objects and objects with invalid representations (see 13.9.1).

2.d • Various actions that are defined to occur in an arbitrary order.

2.e • Behavior in the presence of a misuse of Unchecked_Deallocation, Unchecked_Access, or imported or
exported entity (see Section 13).

3 [As explained in 1.1.3, ‘‘Conformity of an Implementation With the Standard’’, the external effect of a
program is defined in terms of its interactions with its external environment. Hence, the implementation
can perform any internal actions whatsoever, in any order or in parallel, so long as the external effect of
the execution of the program is one that is allowed by the canonical semantics, or by the rules of this
clause.]

3.a Ramification: Note that an optimization can change the external effect of the program, so long as the changed
external effect is an external effect that is allowed by the semantics. Note that the canonical semantics of an erroneous
execution allows any external effect whatsoever. Hence, if the implementation can prove that program execution will
be erroneous in certain circumstances, there need not be any constraints on the machine code executed in those
circumstances.

Implementation Permissions

4 The following additional permissions are granted to the implementation:

5 • {extra permission to avoid raising exceptions} {undefined result} An implementation need not always
raise an exception when a language-defined check fails. Instead, the operation that failed the
check can simply yield an undefined result. The exception need be raised by the implemen-
tation only if, in the absence of raising it, the value of this undefined result would have some
effect on the external interactions of the program. In determining this, the implementation
shall not presume that an undefined result has a value that belongs to its subtype, nor even to
the base range of its type, if scalar. [Having removed the raise of the exception, the canonical
semantics will in general allow the implementation to omit the code for the check, and some
or all of the operation itself.]

5.a Ramification: Even without this permission, an implementation can always remove a check if it cannot
possibly fail.

5.b Reason: We express the permission in terms of removing the raise, rather than the operation or the check, as it
minimizes the disturbance to the canonical semantics (thereby simplifying reasoning). By allowing the
implementation to omit the raise, it thereby does not need to "look" at what happens in the exception handler to
decide whether the optimization is allowed.

5.c Discussion: The implementation can also omit checks if they cannot possibly fail, or if they could only fail in
erroneous executions. This follows from the canonical semantics.

5.d Implementation Note: This permission is intended to allow normal "dead code removal" optimizations, even
if some of the removed code might have failed some language-defined check. However, one may not eliminate
the raise of an exception if subsequent code presumes in some way that the check succeeded. For example:

5.e if X * Y > Integer’Last then
Put_Line("X * Y overflowed");

end if;
exception

when others =>
Put_Line("X * Y overflowed");

If X*Y does overflow, you may not remove the raise of the exception if the code that does the comparison
against Integer’Last presumes that it is comparing it with an in-range Integer value, and hence always yields
False.

ISO/IEC 8652:1995(E) —AARM;6.0

341 21 December 1994 Exceptions and Optimization 11.6

5.fAs another example where a raise may not be eliminated:

5.gsubtype Str10 is String(1..10);
type P10 is access Str10;
X : P10 := null;

begin
if X.all’Last = 10 then

Put_Line("Oops");
end if;

In the above code, it would be wrong to eliminate the raise of Constraint_Error on the "X.all" (since X is null),
if the code to evaluate ’Last always yields 10 by presuming that X.all belongs to the subtype Str10, without
even "looking."

6• {extra permission to reorder actions} If an exception is raised due to the failure of a language-
defined check, then upon reaching the corresponding exception_handler (or the termination
of the task, if none), the external interactions that have occurred need reflect only that the
exception was raised somewhere within the execution of the sequence_of_statements with
the handler (or the task_body), possibly earlier (or later if the interactions are independent of
the result of the checked operation) than that defined by the canonical semantics, but not
within the execution of some abort-deferred operation or independent subprogram that does
not dynamically enclose the execution of the construct whose check failed. {independent

subprogram} An independent subprogram is one that is defined outside the library unit contain-
ing the construct whose check failed, and has no Inline pragma applied to it. {normal state of an

object} {abnormal state of an object [partial]} {disruption of an assignment [partial]} Any assignment that
occurred outside of such abort-deferred operations or independent subprograms can be dis-
rupted by the raising of the exception, causing the object or its parts to become abnormal, and
certain subsequent uses of the object to be erroneous, as explained in 13.9.1.

6.aReason: We allow such variables to become abnormal so that assignments (other than to atomic variables) can
be disrupted due to ‘‘imprecise’’ exceptions or instruction scheduling, and so that assignments can be reordered
so long as the correct results are produced in the end if no language-defined checks fail.

6.bRamification: If a check fails, no result dependent on the check may be incorporated in an external interaction.
In other words, there is no permission to output meaningless results due to postponing a check.

6.cDiscussion: We believe it is important to state the extra permission to reorder actions in terms of what the programmer
can expect at run time, rather than in terms of what the implementation can assume, or what transformations the
implementation can perform. Otherwise, how can the programmer write reliable programs?

6.dThis clause has two conflicting goals: to allow as much optimization as possible, and to make program execution as
predictable as possible (to ease the writing of reliable programs). The rules given above represent a compromise.

6.eConsider the two extremes:

6.fThe extreme conservative rule would be to delete this clause entirely. The semantics of Ada would be the canonical
semantics. This achieves the best predictability. It sounds like a disaster from the efficiency point of view, but in
practice, implementations would provide modes in which less predictability but more efficiency would be achieved.
Such a mode could even be the out-of-the-box mode. In practice, implementers would provide a compromise based on
their customer’s needs. Therefore, we view this as one viable alternative.

6.gThe extreme liberal rule would be ‘‘the language does not specify the execution of a program once a language-defined
check has failed; such execution can be unpredictable.’’ This achieves the best efficiency. It sounds like a disaster
from the predictability point of view, but in practice it might not be so bad. A user would have to assume that
exception handlers for exceptions raised by language-defined checks are not portable. They would have to isolate such
code (like all nonportable code), and would have to find out, for each implementation of interest, what behaviors can be
expected. In practice, implementations would tend to avoid going so far as to punish their customers too much in terms
of predictability.

6.hThe most important thing about this clause is that users understand what they can expect at run time, and implementers
understand what optimizations are allowed. Any solution that makes this clause contain rules that can interpreted in
more than one way is unacceptable.

6.iWe have chosen a compromise between the extreme conservative and extreme liberal rules. The current rule
essentially allows arbitrary optimizations within a library unit and inlined subprograms reachable from it, but disallow
semantics-disrupting optimizations across library units in the absence of inlined subprograms. This allows a library

ISO/IEC 8652:1995(E) —AARM;6.0

11.6 Exceptions and Optimization 21 December 1994 342

unit to be debugged, and then reused with some confidence that the abstraction it manages cannot be broken by bugs
outside the library unit.

NOTES
7 3 The permissions granted by this clause can have an effect on the semantics of a program only if the program fails a

language-defined check.

Wording Changes From Ada 83

7.a RM83-11.6 was unclear. It has been completely rewritten here; we hope this version is clearer. Here’s what happened
to each paragraph of RM83-11.6:

7.b • Paragraphs 1 and 2 contain no semantics; they are merely pointing out that anything goes if the canonical
semantics is preserved. We have similar introductory paragraphs, but we have tried to clarify that these are
not granting any ‘‘extra’’ permission beyond what the rest of the document allows.

7.c • Paragraphs 3 and 4 are reflected in the ‘‘extra permission to reorder actions’’. Note that this permission
now allows the reordering of assignments in many cases.

7.d • Paragraph 5 is moved to 4.5, ‘‘Operators and Expression Evaluation’’, where operator association is
discussed. Hence, this is no longer an ‘‘extra permission’’ but is part of the canonical semantics.

7.e • Paragraph 6 now follows from the general permission to store out-of-range values for unconstrained
subtypes. Note that the parameters and results of all the predefined operators of a type are of the
unconstrained subtype of the type.

7.f • Paragraph 7 is reflected in the ‘‘extra permission to avoid raising exceptions’’.

7.g We moved clause 11.5, ‘‘Suppressing Checks’’ from after 11.6 to before 11.6, in order to preserve the famous number
‘‘11.6’’ (given the changes to earlier clauses in Section 11).

ISO/IEC 8652:1995(E) —AARM;6.0

343 21 December 1994 Generic Units 12

Section 12: Generic Units
1{generic unit} A generic unit is a program unit that is either a generic subprogram or a generic package.

{template} A generic unit is a template[, which can be parameterized, and from which corresponding
(nongeneric) subprograms or packages can be obtained]. The resulting program units are said to be
instances of the original generic unit. {template: see generic unit} {macro: see generic unit} {parameter: see generic

formal parameter}

1.aGlossary entry: {Generic unit} A generic unit is a template for a (nongeneric) program unit; the template can be
parameterized by objects, types, subprograms, and packages. An instance of a generic unit is created by a generic_
instantiation. The rules of the language are enforced when a generic unit is compiled, using a generic contract model;
additional checks are performed upon instantiation to verify the contract is met. That is, the declaration of a generic
unit represents a contract between the body of the generic and instances of the generic. Generic units can be used to
perform the role that macros sometimed play in other languages.

2[A generic unit is declared by a generic_declaration. This form of declaration has a generic_formal_part
declaring any generic formal parameters. An instance of a generic unit is obtained as the result of a
generic_instantiation with appropriate generic actual parameters for the generic formal parameters. An
instance of a generic subprogram is a subprogram. An instance of a generic package is a package.

3Generic units are templates. As templates they do not have the properties that are specific to their
nongeneric counterparts. For example, a generic subprogram can be instantiated but it cannot be called.
In contrast, an instance of a generic subprogram is a (nongeneric) subprogram; hence, this instance can be
called but it cannot be used to produce further instances.]

12.1 Generic Declarations
1[A generic_declaration declares a generic unit, which is either a generic subprogram or a generic package.

A generic_declaration includes a generic_formal_part declaring any generic formal parameters. A
generic formal parameter can be an object; alternatively (unlike a parameter of a subprogram), it can be a
type, a subprogram, or a package.]

Syntax

2generic_declaration ::= generic_subprogram_declaration | generic_package_declaration

3generic_subprogram_declaration ::=
generic_formal_part subprogram_specification;

4generic_package_declaration ::=
generic_formal_part package_specification;

5generic_formal_part ::= generic {generic_formal_parameter_declaration | use_clause}

6generic_formal_parameter_declaration ::=
formal_object_declaration

| formal_type_declaration
| formal_subprogram_declaration
| formal_package_declaration

7The only form of subtype_indication allowed within a generic_formal_part is a subtype_mark [(that
is, the subtype_indication shall not include an explicit constraint)]. The defining name of a generic
subprogram shall be an identifier [(not an operator_symbol)].

7.aReason: The reason for forbidding constraints in subtype_indications is that it simplifies the elaboration of generic_
declarations (since there is nothing to evaluate), and that it simplifies the matching rules, and makes them more
checkable at compile time.

ISO/IEC 8652:1995(E) —AARM;6.0

12.1 Generic Declarations 21 December 1994 344

Static Semantics

8 {generic package} {generic subprogram} {generic procedure} {generic function} A generic_declaration declares a
generic unit — a generic package, generic procedure or generic function, as appropriate.

9 {generic formal} An entity is a generic formal entity if it is declared by a generic_formal_parameter_
declaration. ‘‘Generic formal,’’ or simply ‘‘formal,’’ is used as a prefix in referring to objects, subtypes
(and types), functions, procedures and packages, that are generic formal entities, as well as to their respec-
tive declarations. [Examples: ‘‘generic formal procedure’’ or a ‘‘formal integer type declaration.’’]

Dynamic Semantics

10 {elaboration [generic_declaration]} The elaboration of a generic_declaration has no effect.

NOTES
11 1 Outside a generic unit a name that denotes the generic_declaration denotes the generic unit. In contrast, within the

declarative region of the generic unit, a name that denotes the generic_declaration denotes the current instance.

11.a Proof: This is stated officially as part of the ‘‘current instance’’ rule in 8.6, ‘‘The Context of Overload Resolution’’.
See also 12.3, ‘‘Generic Instantiation’’.

12 2 Within a generic subprogram_body, the name of this program unit acts as the name of a subprogram. Hence this name
can be overloaded, and it can appear in a recursive call of the current instance. For the same reason, this name cannot
appear after the reserved word new in a (recursive) generic_instantiation.

13 3 A default_expression or default_name appearing in a generic_formal_part is not evaluated during elaboration of the
generic_formal_part; instead, it is evaluated when used. (The usual visibility rules apply to any name used in a default: the
denoted declaration therefore has to be visible at the place of the expression.)

Examples

14 Examples of generic formal parts:
15 generic -- parameterless

16 generic
Size : Natural; -- formal object

17 generic
Length : Integer := 200; -- formal object with a default expression

18 Area : Integer := Length*Length; -- formal object with a default expression

19 generic
type Item is private; -- formal type
type Index is (<>); -- formal type
type Row is array(Index range <>) of Item; -- formal type
with function "<"(X, Y : Item) return Boolean; -- formal subprogram

20 Examples of generic declarations declaring generic subprograms Exchange and Squaring:
21 generic

type Elem is private;
procedure Exchange(U, V : in out Elem);

22 generic
type Item is private;
with function "*"(U, V : Item) return Item is <>;

function Squaring(X : Item) return Item;

23 Example of a generic declaration declaring a generic package:

ISO/IEC 8652:1995(E) —AARM;6.0

345 21 December 1994 Generic Declarations 12.1

24generic
type Item is private;
type Vector is array (Positive range <>) of Item;
with function Sum(X, Y : Item) return Item;

package On_Vectors is
function Sum (A, B : Vector) return Vector;
function Sigma(A : Vector) return Item;
Length_Error : exception;

end On_Vectors;

Extensions to Ada 83

24.a{extensions to Ada 83} The syntax rule for generic_formal_parameter_declaration is modified to allow the reserved
words tagged and abstract, to allow formal derived types, and to allow formal packages.

24.bUse_clauses are allowed in generic_formal_parts. This is necessary in order to allow a use_clause within a formal part
to provide direct visibility of declarations within a generic formal package.

Wording Changes From Ada 83

24.cThe syntax for generic_formal_parameter_declaration and formal_type_definition is split up into more named categories.
The rules for these categories are moved to the appropriate clauses and subclauses. The names of the categories are
changed to be more intuitive and uniform. For example, we changed generic_parameter_declaration to generic_formal_
parameter_declaration, because the thing it declares is a generic formal, not a generic. In the others, we abbreviate
‘‘generic_formal’’ to just ‘‘formal’’. We can’t do that for generic_formal_parameter_declaration, because of confusion
with normal formal parameters of subprograms.

12.2 Generic Bodies
1{generic body} The body of a generic unit (a generic body) [is a template for the instance bodies. The

syntax of a generic body is identical to that of a nongeneric body].
1.aRamification: We also use terms like ‘‘generic function body’’ and ‘‘nongeneric package body.’’

Dynamic Semantics

2{elaboration [generic body]} The elaboration of a generic body has no other effect than to establish that the
generic unit can from then on be instantiated without failing the Elaboration_Check. If the generic body
is a child of a generic package, then its elaboration establishes that each corresponding declaration nested
in an instance of the parent (see 10.1.1) can from then on be instantiated without failing the Elaboration_
Check.

NOTES
34 The syntax of generic subprograms implies that a generic subprogram body is always the completion of a declaration.

Examples

4Example of a generic procedure body:
5procedure Exchange(U, V : in out Elem) is -- see 12.1

T : Elem; -- the generic formal type
begin

T := U;
U := V;
V := T;

end Exchange;

6Example of a generic function body:
7function Squaring(X : Item) return Item is -- see 12.1

begin
return X*X; -- the formal operator "*"

end Squaring;

8Example of a generic package body:
9package body On_Vectors is -- see 12.1

ISO/IEC 8652:1995(E) —AARM;6.0

12.2 Generic Bodies 21 December 1994 346

10 function Sum(A, B : Vector) return Vector is
Result : Vector(A’Range); -- the formal type Vector
Bias : constant Integer := B’First - A’First;

begin
if A’Length /= B’Length then

raise Length_Error;
end if;

11 for N in A’Range loop
Result(N) := Sum(A(N), B(N + Bias)); -- the formal function Sum

end loop;
return Result;

end Sum;

12 function Sigma(A : Vector) return Item is
Total : Item := A(A’First); -- the formal type Item

begin
for N in A’First + 1 .. A’Last loop

Total := Sum(Total, A(N)); -- the formal function Sum
end loop;
return Total;

end Sigma;
end On_Vectors;

12.3 Generic Instantiation
1 [{instance (of a generic unit)} An instance of a generic unit is declared by a generic_instantiation.]

Language Design Principles

1.a {generic contract model} {contract model of generics} The legality of an instance should be determinable without
looking at the generic body. Likewise, the legality of a generic body should be determinable without looking at any
instances. Thus, the generic_declaration forms a contract between the body and the instances; if each obeys the rules
with respect to the generic_declaration, then no legality problems will arise. This is really a special case of the
‘‘legality determinable via semantic dependences’’ Language Design Principle (see Section 10), given that a generic_
instantiation does not depend semantically upon the generic body, nor vice-versa.

1.b Run-time issues are another story. For example, whether parameter passing is by copy or by reference is determined in
part by the properties of the generic actuals, and thus cannot be determined at compile time of the generic body.
Similarly, the contract model does not apply to Post-Compilation Rules.

Syntax

2 generic_instantiation ::=
package defining_program_unit_name is

new generic_package_name [generic_actual_part];
| procedure defining_program_unit_name is

new generic_procedure_name [generic_actual_part];
| function defining_designator is

new generic_function_name [generic_actual_part];

3 generic_actual_part ::=
(generic_association {, generic_association})

4 generic_association ::=
[generic_formal_parameter_selector_name =>] explicit_generic_actual_parameter

5 explicit_generic_actual_parameter ::= expression | variable_name
| subprogram_name | entry_name | subtype_mark
| package_instance_name

6 {named association} {positional association} A generic_association is named or positional according to
whether or not the generic_formal_parameter_selector_name is specified. Any positional associa-
tions shall precede any named associations.

ISO/IEC 8652:1995(E) —AARM;6.0

347 21 December 1994 Generic Instantiation 12.3

7{generic actual parameter} {generic actual} {actual} The generic actual parameter is either the explicit_generic_
actual_parameter given in a generic_parameter_association for each formal, or the corresponding
default_expression or default_name if no generic_parameter_association is given for the formal. When
the meaning is clear from context, the term ‘‘generic actual,’’ or simply ‘‘actual,’’ is used as a synonym
for ‘‘generic actual parameter’’ and also for the view denoted by one, or the value of one.

Legality Rules

8In a generic_instantiation for a particular kind of program unit [(package, procedure, or function)], the
name shall denote a generic unit of the corresponding kind [(generic package, generic procedure, or
generic function, respectively)].

9The generic_formal_parameter_selector_name of a generic_association shall denote a generic_formal_
parameter_declaration of the generic unit being instantiated. If two or more formal subprograms have the
same defining name, then named associations are not allowed for the corresponding actuals.

10A generic_instantiation shall contain at most one generic_association for each formal. Each formal with-
out an association shall have a default_expression or subprogram_default.

11In a generic unit Legality Rules are enforced at compile time of the generic_declaration and generic body,
given the properties of the formals. In the visible part and formal part of an instance, Legality Rules are
enforced at compile time of the generic_instantiation, given the properties of the actuals. In other parts of
an instance, Legality Rules are not enforced; this rule does not apply when a given rule explicitly
specifies otherwise.

11.aReason: Since rules are checked using the properties of the formals, and since these properties do not always carry
over to the actuals, we need to check the rules again in the visible part of the instance. For example, only if a tagged
type is limited may an extension of it have limited components in the extension_part. A formal tagged limited type is
limited, but the actual might be nonlimited. Hence any rule that requires a tagged type to be limited runs into this
problem. Such rules are rare; in most cases, the rules for matching of formals and actuals guarantee that if the rule is
obeyed in the generic unit, then it has to be obeyed in the instance.

11.bRamification: The ‘‘properties’’ of the formals are determined without knowing anything about the actuals:

11.c• A formal derived subtype is constrained if and only if the ancestor subtype is constrained. A formal array
type is constrained if and only if the declarations says so. Other formal subtypes are unconstrained, even
though they might be constrained in an instance.

11.d• A formal subtype can be indefinite, even though the copy might be definite in an instance.

11.e• A formal object of mode in is not a static constant; in an instance, the copy is static if the actual is.

11.f• A formal subtype is not static, even though the actual might be.

11.g• Formal types are specific, even though the actual can be class-wide.

11.h• The subtype of a formal object of mode in out is not static. (This covers the case of AI-00878.)

11.i• The subtype of a formal parameter of a formal subprogram does not provide an applicable index constraint.

11.j• The profile of a formal subprogram is not subtype-conformant with any other profile. {subtype

conformance}

11.k• A generic formal function is not static.

11.lRamification: The exceptions to the above rule about when legality rules are enforced fall into these categories:

11.m• Some rules are checked in the generic declaration, and then again in both the visible and private parts of
the instance:

11.n• The parent type of a record extension has to be specific (see 3.9.1). This rule is not checked in the
instance body.

11.o• The parent type of a private extension has to be specific (see 7.3). This rule is not checked in the
instance body.

ISO/IEC 8652:1995(E) —AARM;6.0

12.3 Generic Instantiation 21 December 1994 348

11.p • A type with an access discriminant has to be a descendant of a type declared with limited, or be a
task or protected type. This rule is irrelevant in the instance body.

11.q • In the declaration of a record extension, if the parent type is nonlimited, then each of the components
of the record_extension_part have to be nonlimited (see 3.9.1). In the generic body, this rule is
checked in an assume-the-worst manner.

11.r • A preelaborated library unit has to be preelaborable (see 10.2.1). In the generic body, this rule is
checked in an assume-the-worst manner.

11.s • {accessibility rule [checking in generic units]} For the accessibility rules, the formals have nothing to say
about the property in question. Like the above rules, these rules are checked in the generic declaration, and
then again in both the visible and private parts of the instance. In the generic body, we have explicit rules
that essentially assume the worst (in the cases of type extensions and access-to-subprogram types), and we
have run-time checks (in the case of access-to-object types). See 3.9.1, 3.10.2, and 4.6.

11.t We considered run-time checks for access-to-subprogram types as well. However, this would present
difficulties for implementations that share generic bodies.

11.u • The rules requiring ‘‘reasonable’’ values for static expressions are ignored when the expected type for the
expression is a descendant of a generic formal type other than a generic formal derived type, and do not
apply in an instance.

11.v • The rule forbidding two explicit homographs in the same declarative region does not apply in an instance
of a generic unit, except that it does apply in the declaration of a record extension that appears in the
visible part of an instance.

11.w • Some rules do not apply at all in an instance, not even in the visible part:
11.x • Body_stubs are not normally allowed to be multiply nested, but the can be in instances.

11.y {generic contract issue [distributed]} Each rule that is an exception is marked with ‘‘generic contract issue;’’ look that
up in the index to find them all.

11.z Ramification: The Legality Rules are the ones labeled Legality Rules. We are talking about all Legality Rules in the
entire language here. Note that, with some exceptions, the legality of a generic unit is checked even if there are no
instantiations of the generic unit.

11.aa Ramification: The Legality Rules are described here, and the overloading rules were described earlier in this clause.
Presumably, every Static Semantic Item is sucked in by one of those. Thus, we have covered all the compile-time rules
of the language. There is no need to say anything special about the Post-Compilation Rules or the Dynamic Semantic
Items.

11.bb Discussion: Here is an example illustrating how this rule is checked: ‘‘In the declaration of a record extension, if the
parent type is nonlimited, then each of the components of the record_extension_part shall be nonlimited.’’

11.cc generic
type Parent is tagged private;
type Comp is limited private;

package G1 is
type Extension is new Parent with

record
C : Comp; -- Illegal!

end record;
end G1;

11.dd The parent type is nonlimited, and the component type is limited, which is illegal. It doesn’t matter that an one could
imagine writing an instantiation with the actual for Comp being nonlimited — we never get to the instance, because the
generic itself is illegal.

11.ee On the other hand:

11.ff generic
type Parent is tagged limited private; -- Parent is limited.
type Comp is limited private;

package G2 is
type Extension is new Parent with

record
C : Comp; -- OK.

end record;
end G2;

ISO/IEC 8652:1995(E) —AARM;6.0

349 21 December 1994 Generic Instantiation 12.3

11.ggtype Limited_Tagged is tagged limited null record;
type Non_Limited_Tagged is tagged null record;

11.hhtype Limited_Untagged is limited null record;
type Non_Limited_Untagged is null record;

11.iipackage Good_1 is new G2(Parent => Limited_Tagged,
Comp => Limited_Untagged);

package Good_2 is new G2(Parent => Non_Limited_Tagged,
Comp => Non_Limited_Untagged);

package Bad is new G2(Parent => Non_Limited_Tagged,
Comp => Limited_Untagged); -- Illegal!

11.jjThe first instantiation is legal, because in the instance the parent is limited, so the rule is not violated. Likewise, in the
second instantiation, the rule is not violated in the instance. However, in the Bad instance, the parent type is
nonlimited, and the component type is limited, so this instantiation is illegal.

Static Semantics

12A generic_instantiation declares an instance; it is equivalent to the instance declaration (a package_
declaration or subprogram_declaration) immediately followed by the instance body, both at the place of
the instantiation.

12.aRamification: The declaration and the body of the instance are not ‘‘implicit’’ in the technical sense, even though you
can’t see them in the program text. Nor are declarations within an instance ‘‘implicit’’ (unless they are implicit by
other rules). This is necessary because implicit declarations have special semantics that should not be attached to
instances. For a generic subprogram, the profile of a generic_instantiation is that of the instance declaration, by the
stated equivalence.

12.bRamification: {visible part [of an instance]} {private part [of a package]} The visible and private parts of a package
instance are defined in 7.1, ‘‘Package Specifications and Declarations’’ and 12.7, ‘‘Formal Packages’’. The visible and
private parts of a subprogram instance are defined in 8.2, ‘‘Scope of Declarations’’.

13The instance is a copy of the text of the template. [Each use of a formal parameter becomes (in the copy)
a use of the actual, as explained below.] {package instance} {subprogram instance} {procedure instance} {function

instance} {instance (of a generic package)} {instance (of a generic subprogram)} {instance (of a generic procedure)} {instance

(of a generic function)} An instance of a generic package is a package, that of a generic procedure is a
procedure, and that of a generic function is a function.

13.aRamification: An instance is a package or subprogram (because we say so), even though it contains a copy of the
generic_formal_part, and therefore doesn’t look like one. This is strange, but it’s OK, since the syntax rules are
overloading rules, and therefore do not apply in an instance.

13.bDiscussion: We use a macro-expansion model, with some explicitly-stated exceptions (see below). The main
exception is that the interpretation of each construct in a generic unit (especially including the denotation of each name)
is determined when the declaration and body of the generic unit (as opposed to the instance) are compiled, and in each
instance this interpretation is (a copy of) the template interpretation. In other words, if a construct is interpreted as a
name denoting a declaration D, then in an instance, the copy of the construct will still be a name, and will still denote D
(or a copy of D). From an implementation point of view, overload resolution is performed on the template, and not on
each copy.

13.cWe describe the substitution of generic actual parameters by saying (in most cases) that the copy of each generic formal
parameter declares a view of the actual. Suppose a name in a generic unit denotes a generic_formal_parameter_
declaration. The copy of that name in an instance will denote the copy of that generic_formal_parameter_declaration in
the instance. Since the generic_formal_parameter_declaration in the instance declares a view of the actual, the name
will denote a view of the actual.

13.dOther properties of the copy (for example, staticness, classes to which types belong) are recalculated for each instance;
this is implied by the fact that it’s a copy.

13.eAlthough the generic_formal_part is included in an instance, the declarations in the generic_formal_part are only visible
outside the instance in the case of a generic formal package whose formal_package_actual_part is (<>) — see 12.7.

14The interpretation of each construct within a generic declaration or body is determined using the over-
loading rules when that generic declaration or body is compiled. In an instance, the interpretation of each
(copied) construct is the same, except in the case of a name that denotes the generic_declaration or some

ISO/IEC 8652:1995(E) —AARM;6.0

12.3 Generic Instantiation 21 December 1994 350

declaration within the generic unit; the corresponding name in the instance then denotes the correspond-
ing copy of the denoted declaration. The overloading rules do not apply in the instance.

14.a Ramification: See 8.6, ‘‘The Context of Overload Resolution’’ for definitions of ‘‘interpretation’’ and ‘‘overloading
rule.’’

14.b Even the generic_formal_parameter_declarations have corresponding declarations in the instance, which declare views
of the actuals.

14.c Although the declarations in the instance are copies of those in the generic unit, they often have quite different
properties, as explained below. For example a constant declaration in the generic unit might declare a nonstatic
constant, whereas the copy of that declaration might declare a static constant. This can happen when the staticness
depends on some generic formal.

14.d This rule is partly a ramification of the ‘‘current instance’’ rule in 8.6, ‘‘The Context of Overload Resolution’’. Note
that that rule doesn’t cover the generic_formal_part.

14.e Although the overloading rules are not observed in the instance, they are, of course, observed in the _instantiation in
order to determine the interpretation of the constituents of the _instantiation.

14.f Since children are considered to occur within their parent’s declarative region, the above rule applies to a name that
denotes a child of a generic unit, or a declaration inside such a child.

14.g Since the Syntax Rules are overloading rules, it is possible (legal) to violate them in an instance. For example, it is
possible for an instance body to occur in a package_specification, even though the Syntax Rules forbid bodies in
package_specifications.

15 In an instance, a generic_formal_parameter_declaration declares a view whose properties are identical to
those of the actual, except as specified in 12.4, ‘‘Formal Objects’’ and 12.6, ‘‘Formal Subprograms’’.
Similarly, for a declaration within a generic_formal_parameter_declaration, the corresponding declaration
in an instance declares a view whose properties are identical to the corresponding declaration within the
declaration of the actual.

15.a Ramification: In an instance, there are no ‘‘properties’’ of types and subtypes that come from the formal. The
primitive operations of the type come from the formal, but these are declarations in their own right, and are therefore
handled separately.

15.b Note that certain properties that come from the actuals are irrelevant in the instance. For example, if an actual type is
of a class deeper in the derived-type hierarchy than the formal, it is impossible to call the additional operations of the
deeper class in the instance, because any such call would have to be a copy of some corresponding call in the generic
unit, which would have been illegal. However, it is sometimes possible to reach into the specification of the instance
from outside, and notice such properties. For example, one could pass an object declared in the instance specification
to one of the additional operations of the deeper type.

15.c A formal_type_declaration can contain discriminant_specifications, a formal_subprogram_declaration can contain formal_
parameter_specifications, and a formal_package_declaration can contain many kinds of declarations. These are all
inside the generic unit, and have corresponding declarations in the instance.

15.d This rule implies, for example, that if a subtype in a generic unit is a subtype of a generic formal subtype, then the
corresponding subtype in the instance is a subtype of the corresponding actual subtype.

15.e For a generic_instantiation, if a generic actual is a static [(scalar or string)] subtype, then each use of the corresponding
formal parameter within the specification of the instance is considered to be static. (See AI-00409.)

15.f Similarly, if a generic actual is a static expression and the corresponding formal parameter has a static [(scalar or
string)] subtype, then each use of the formal parameter in the specification of the instance is considered to be static.
(See AI-00505.)

15.g If a primitive subprogram of a type derived from a generic formal derived tagged type is not overriding (that is, it is a
new subprogram), it is possible for the copy of that subprogram in an instance to override a subprogram inherited from
the actual. For example:

15.h type T1 is tagged record ... end record;

ISO/IEC 8652:1995(E) —AARM;6.0

351 21 December 1994 Generic Instantiation 12.3

15.igeneric
type Formal is new T1;

package G is
type Derived_From_Formal is new Formal with record ... end record;
procedure Foo(X : in Derived_From_Formal); -- Does not override anything.

end G;

15.jtype T2 is new T1 with record ... end record;
procedure Foo(X : in T2);

15.kpackage Inst is new G(Formal => T2);

15.lIn the instance Inst, the declaration of Foo for Derived_From_Formal overrides the Foo inherited from T2.

15.mImplementation Note: For formal types, an implementation that shares the code among multiple instances of the
same generic unit needs to beware that things like parameter passing mechanisms (by-copy vs. by-reference) and
representation_clauses are determined by the actual.

16[Implicit declarations are also copied, and a name that denotes an implicit declaration in the generic
denotes the corresponding copy in the instance. However, for a type declared within the visible part of
the generic, a whole new set of primitive subprograms is implicitly declared for use outside the instance,
and may differ from the copied set if the properties of the type in some way depend on the properties of
some actual type specified in the instantiation. For example, if the type in the generic is derived from a
formal private type, then in the instance the type will inherit subprograms from the corresponding actual
type.

17{override} These new implicit declarations occur immediately after the type declaration in the instance, and
override the copied ones. The copied ones can be called only from within the instance; the new ones can
be called only from outside the instance, although for tagged types, the body of a new one can be ex-
ecuted by a call to an old one.]

17.aProof: This rule is stated officially in 8.3, ‘‘Visibility’’.

17.bRamification: The new ones follow from the class(es) of the formal types. For example, for a type T derived from a
generic formal private type, if the actual is Integer, then the copy of T in the instance has a "+" primitive operator,
which can be called from outside the instance (assuming T is declared in the visible part of the instance).

17.cAI-00398.

17.dSince an actual type is always in the class determined for the formal, the new subprograms hide all of the copied ones,
except for a declaration of "/=" that corresponds to an explicit declaration of "=". Such "/=" operators are special,
because unlike other implicit declarations of primitive subprograms, they do not appear by virtue of the class, but
because of an explicit declaration of "=". If the declaration of "=" is implicit (and therefore overridden in the instance),
then a corresponding implicitly declared "/=" is also overridden. But if the declaration of "=" is explicit (and therefore
not overridden in the instance), then a corresponding implicitly declared "/=" is not overridden either, even though it’s
implicit.

17.eNote that the copied ones can be called from inside the instance, even though they are hidden from all visibility,
because the names are resolved in the generic unit — visibility is irrelevant for calls in the instance.

18[In the visible part of an instance, an explicit declaration overrides an implicit declaration if they are
homographs, as described in 8.3.] On the other hand, an explicit declaration in the private part of an
instance overrides an implicit declaration in the instance, only if the corresponding explicit declaration in
the generic overrides a corresponding implicit declaration in the generic. Corresponding rules apply to
the other kinds of overriding described in 8.3.

18.aRamification: For example:

18.btype Ancestor is tagged null record;

ISO/IEC 8652:1995(E) —AARM;6.0

12.3 Generic Instantiation 21 December 1994 352

18.c generic
type Formal is new Ancestor with private;

package G is
type T is new Formal with null record;
procedure P(X : in T); -- (1)

private
procedure Q(X : in T); -- (2)

end G;

18.d type Actual is new Ancestor with null record;
procedure P(X : in Actual);
procedure Q(X : in Actual);

18.e package Instance is new G(Formal => Actual);

18.f In the instance, the copy of P at (1) overrides Actual’s P, whereas the copy of Q at (2) does not override anything; in
implementation terms, it occupies a separate slot in the type descriptor.

18.g Reason: The reason for this rule is so a programmer writing an _instantiation need not look at the private part of the
generic in order to determine which subprograms will be overridden.

Post-Compilation Rules

19 {post-compilation rules} Recursive generic instantiation is not allowed in the following sense: if a given
generic unit includes an instantiation of a second generic unit, then the instance generated by this instan-
tiation shall not include an instance of the first generic unit [(whether this instance is generated directly,
or indirectly by intermediate instantiations)].

19.a Discussion: Note that this rule is not a violation of the generic contract model, because it is not a Legality Rule. Some
implementations may be able to check this rule at compile time, but that requires access to all the bodies, so we allow
implementations to check the rule at link time.

Dynamic Semantics

20 {elaboration [generic_instantiation]} For the elaboration of a generic_instantiation, each generic_association is
first evaluated. If a default is used, an implicit generic_association is assumed for this rule. These
evaluations are done in an arbitrary order, except that the evaluation for a default actual takes place after
the evaluation for another actual if the default includes a name that denotes the other one. Finally, the
instance declaration and body are elaborated.

20.a Ramification: Note that if the evaluation of a default depends on some side-effect of some other evaluation, the order
is still arbitrary.

21 {evaluation [generic_association]} For the evaluation of a generic_association the generic actual parameter is
evaluated. Additional actions are performed in the case of a formal object of mode in (see 12.4).

21.a To be honest: Actually, the actual is evaluated only if evaluation is defined for that kind of construct — we don’t
actually ‘‘evaluate’’ subtype_marks.

NOTES
22 5 If a formal type is not tagged, then the type is treated as an untagged type within the generic body. Deriving from such

a type in a generic body is permitted; the new type does not get a new tag value, even if the actual is tagged. Overriding
operations for such a derived type cannot be dispatched to from outside the instance.

22.a Ramification: If two overloaded subprograms declared in a generic package specification differ only by the (formal)
type of their parameters and results, then there exist legal instantiations for which all calls of these subprograms from
outside the instance are ambiguous. For example:

22.b generic
type A is (<>);
type B is private;

package G is
function Next(X : A) return A;
function Next(X : B) return B;

end G;

22.c package P is new G(A => Boolean, B => Boolean);
-- All calls of P.Next are ambiguous.

ISO/IEC 8652:1995(E) —AARM;6.0

353 21 December 1994 Generic Instantiation 12.3

22.dRamification: The following example illustrates some of the subtleties of the substitution of formals and actuals:

22.egeneric
type T1 is private;
-- A predefined "=" operator is implicitly declared here:
-- function "="(Left, Right : T1) return Boolean;
-- Call this "="1.

package G is
subtype S1 is T1; -- So we can get our hands on the type from

-- outside an instance.
type T2 is new T1;
-- An inherited "=" operator is implicitly declared here:
-- function "="(Left, Right : T2) return Boolean;
-- Call this "="2.

22.fT1_Obj : T1 := ...;
Bool_1 : Boolean := T1_Obj = T1_Obj;

22.gT2_Obj : T2 := ...;
Bool_2 : Boolean := T2_Obj = T2_Obj;

end G;
...

22.hpackage P is
type My_Int is new Integer;
-- A predefined "=" operator is implicitly declared here:
-- function "="(Left, Right : My_Int) return Boolean;
-- Call this "="3.
function "="(X, Y : My_Int) return Boolean;
-- Call this "="4.
-- "="3 is hidden from all visibility by "="4.
-- Nonetheless, "="3 can ‘‘reemerge’’ in certain circumstances.

end P;
use P;
...
package I is new G(T1 => My_Int); -- "="5 is declared in I (see below).
use I;

22.iAnother_T1_Obj : S1 := 13; -- Can’t denote T1, but S1 will do.
Bool_3 : Boolean := Another_T1_Obj = Another_T1_Obj;

22.jAnother_T2_Obj : T2 := 45;
Bool_4 : Boolean := Another_T2_Obj = Another_T2_Obj;

22.kDouble : T2 := T2_Obj + Another_T2_Obj;

22.lIn the instance I, there is a copy of "="1 (call it "="1i) and "="2 (call it "="2i). The "="1i and "="2i declare views of the
predefined "=" of My_Int (that is, "="3). In the initialization of Bool_1 and Bool_2 in the generic unit G, the names
"=" denote "="1 and "="2, respectively. Therefore, the copies of these names in the instances denote "="1i and "="2i,
respectively. Thus, the initialization of I.Bool_1 and I.Bool_2 call the predefined equality operator of My_Int; they
will not call "="4.

22.mThe declarations "="1i and "="2i are hidden from all visibility. This prevents them from being called from outside the
instance.

22.nThe declaration of Bool_3 calls "="4.

22.oThe instance I also contains implicit declarations of the primitive operators of T2, such as "=" (call it "="5) and "+".
These operations cannot be called from within the instance, but the declaration of Bool_4 calls "="5.

Examples

23Examples of generic instantiations (see 12.1):
24

procedure Swap is new Exchange(Elem => Integer);
procedure Swap is new Exchange(Character); -- Swap is overloaded
function Square is new Squaring(Integer); -- "*" of Integer used by default
function Square is new Squaring(Item => Matrix, "*" => Matrix_Product);
function Square is new Squaring(Matrix, Matrix_Product); -- same as previous

25package Int_Vectors is new On_Vectors(Integer, Table, "+");

ISO/IEC 8652:1995(E) —AARM;6.0

12.3 Generic Instantiation 21 December 1994 354

26 Examples of uses of instantiated units:
27 Swap(A, B);

A := Square(A);

28 T : Table(1 .. 5) := (10, 20, 30, 40, 50);
N : Integer := Int_Vectors.Sigma(T); -- 150 (see 12.2, ‘‘Generic Bodies’’ for the body of Sigma)

29 use Int_Vectors;
M : Integer := Sigma(T); -- 150

Inconsistencies With Ada 83

29.a {inconsistencies with Ada 83} In Ada 83, all explicit actuals are evaluated before all defaults, and the defaults are
evaluated in the order of the formal declarations. This ordering requirement is relaxed in Ada 9X.

Incompatibilities With Ada 83

29.b {incompatibilities with Ada 83} We have attempted to remove every violation of the contract model. Any remaining
contract model violations should be considered bugs in the RM9X. The unfortunate property of reverting to the
predefined operators of the actual types is retained for upward compatibility. (Note that fixing this would require
subtype conformance rules.) However, tagged types do not revert in this sense.

Extensions to Ada 83

29.c {extensions to Ada 83} The syntax rule for explicit_generic_actual_parameter is modified to allow a package_
instance_name.

Wording Changes From Ada 83

29.d The fact that named associations cannot be used for two formal subprograms with the same defining name is moved to
AARM-only material, because it is a ramification of other rules, and because it is not of interest to the average user.

29.e The rule that ‘‘An explicit explicit_generic_actual_parameter shall not be supplied more than once for a given generic_
formal_parameter’’ seems to be missing from RM83, although it was clearly the intent.

29.f In the explanation that the instance is a copy of the template, we have left out RM83-12.3(5)’s ‘‘apart from the generic
formal part’’, because it seems that things in the formal part still need to exist in instances. This is particularly true for
generic formal packages, where you’re sometimes allowed to reach in and denote the formals of the formal package
from outside it. This simplifies the explanation of what each name in an instance denotes: there are just two cases: the
declaration can be inside or outside (where inside needs to include the generic unit itself). Note that the RM83
approach of listing many cases (see RM83-12.5(5-14)) would have become even more unwieldy with the addition of
generic formal packages, and the declarations that occur therein.

29.g We have corrected the definition of the elaboration of a generic_instantiation (RM83-12.3(17)); we don’t elaborate
entities, and the instance is not ‘‘implicit.’’

29.h In RM83, there is a rule saying the formal and actual shall match, and then there is much text defining what it means to
match. Here, we simply state all the latter text as rules. For example, ‘‘A formal foo is matched by an actual greenish
bar’’ becomes ‘‘For a formal foo, the actual shall be a greenish bar.’’ This is necessary to split the Name Resolution
Rules from the Legality Rules. Besides, there’s really no need to define the concept of matching for generic
parameters.

12.4 Formal Objects
1 [{generic formal object} {formal object, generic} A generic formal object can be used to pass a value or variable

to a generic unit.]

Language Design Principles

1.a A generic formal object of mode in is like a constant initialized to the value of the explicit_generic_actual_parameter.

1.b A generic formal object of mode in out is like a renaming of the explicit_generic_actual_parameter.
Syntax

2 formal_object_declaration ::=
defining_identifier_list : mode subtype_mark [:= default_expression];

ISO/IEC 8652:1995(E) —AARM;6.0

355 21 December 1994 Formal Objects 12.4

Name Resolution Rules

3{expected type [generic formal object default_expression]} The expected type for the default_expression, if any, of a
formal object is the type of the formal object.

4{expected type [generic formal in object actual]} For a generic formal object of mode in, the expected type for the
actual is the type of the formal.

5For a generic formal object of mode in out, the type of the actual shall resolve to the type of the formal.
5.aReason: See the corresponding rule for object_renaming_declarations for a discussion of the reason for this rule.

Legality Rules

6If a generic formal object has a default_expression, then the mode shall be in [(either explicitly or by
default)]; otherwise, its mode shall be either in or in out.

6.aRamification: Mode out is not allowed for generic formal objects.

7For a generic formal object of mode in, the actual shall be an expression. For a generic formal object of
mode in out, the actual shall be a name that denotes a variable for which renaming is allowed (see 8.5.1).

7.aTo be honest: The part of this that requires an expression or name is a Name Resolution Rule, but that’s too pedantic
to worry about. (The part about denoting a variable, and renaming being allowed, is most certainly not a Name
Resolution Rule.)

8The type of a generic formal object of mode in shall be nonlimited.
8.aReason: Since a generic formal object is like a constant of mode in initialized to the value of the actual, a limited type

would not make sense, since initializing a constant is not allowed for a limited type. That is, generic formal objects of
mode in are passed by copy, and limited types are not supposed to be copied.

Static Semantics

9A formal_object_declaration declares a generic formal object. The default mode is in. {nominal subtype [of a
generic formal object]} For a formal object of mode in, the nominal subtype is the one denoted by the
subtype_mark in the declaration of the formal. {static [subtype]} For a formal object of mode in out, its
type is determined by the subtype_mark in the declaration; its nominal subtype is nonstatic, even if the
subtype_mark denotes a static subtype.

10{stand-alone constant (corresponding to a formal object of mode in)} In an instance, a formal_object_declaration of
mode in declares a new stand-alone constant object whose initialization expression is the actual, whereas
a formal_object_declaration of mode in out declares a view whose properties are identical to those of the
actual.

10.aRamification: These rules imply that generic formal objects of mode in are passed by copy, whereas generic formal
objects of mode in out are passed by reference.

10.bInitialization and finalization happen for the constant declared by a formal_object_declaration of mode in as for any
constant; see 3.3.1, ‘‘Object Declarations’’ and 7.6, ‘‘User-Defined Assignment and Finalization’’.

10.c{subtype [of a generic formal object]} In an instance, the subtype of a generic formal object of mode in is as for the
equivalent constant. In an instance, the subtype of a generic formal object of mode in out is the subtype of the
corresponding generic actual.

Dynamic Semantics

11{evaluation [generic_association for a formal object of mode in]} {assignment operation (during evaluation of a generic_

association for a formal object of mode in)} For the evaluation of a generic_association for a formal object of
mode in, a constant object is created, the value of the actual parameter is converted to the nominal
subtype of the formal object, and assigned to the object[, including any value adjustment — see 7.6].
{implicit subtype conversion [generic formal object of mode in]}

ISO/IEC 8652:1995(E) —AARM;6.0

12.4 Formal Objects 21 December 1994 356

11.a Ramification: This includes evaluating the actual and doing a subtype conversion, which might raise an exception.

11.b Discussion: The rule for evaluating a generic_association for a formal object of mode in out is covered by the general
Dynamic Semantics rule in 12.3.

NOTES
12 6 The constraints that apply to a generic formal object of mode in out are those of the corresponding generic actual

parameter (not those implied by the subtype_mark that appears in the formal_object_declaration). Therefore, to avoid
confusion, it is recommended that the name of a first subtype be used for the declaration of such a formal object.

12.a Ramification: Constraint checks are done at instantiation time for formal objects of mode in, but not for formal
objects of mode in out.

Extensions to Ada 83

12.b {extensions to Ada 83} In Ada 83, it is forbidden to pass a (nongeneric) formal parameter of mode out, or a
subcomponent thereof, to a generic formal object of mode in out. This restriction is removed in Ada 9X.

Wording Changes From Ada 83

12.c We make ‘‘mode’’ explicit in the syntax. RM83 refers to the mode without saying what it is. This is also more
uniform with the way (nongeneric) formal parameters are defined.

12.d We considered allowing mode out in Ada 9X, for uniformity with (nongeneric) formal parameters. The semantics
would be identical for modes in out and out. (Note that generic formal objects of mode in out are passed by reference.
Note that for (nongeneric) formal parameters that are allowed to be passed by reference, the semantics of in out and
out is the same. The difference might serve as documentation. The same would be true for generic formal objects, if
out were allowed, so it would be consistent.) We decided not to make this change, because it does not produce any
important benefit, and any change has some cost.

12.5 Formal Types
1 [A generic formal subtype can be used to pass to a generic unit a subtype whose type is in a certain class

of types.]
1.a Reason: We considered having intermediate syntactic categories formal_integer_type_definition, formal_real_type_

definition, and formal_fixed_point_definition, to be more uniform with the syntax rules for non-generic-formal types.
However, that would make the rules for formal types slightly more complicated, and it would cause confusion, since
formal_discrete_type_definition would not fit into the scheme very well.

Syntax

2 formal_type_declaration ::=
type defining_identifier[discriminant_part] is formal_type_definition;

3 formal_type_definition ::=
formal_private_type_definition

| formal_derived_type_definition
| formal_discrete_type_definition
| formal_signed_integer_type_definition
| formal_modular_type_definition
| formal_floating_point_definition
| formal_ordinary_fixed_point_definition
| formal_decimal_fixed_point_definition
| formal_array_type_definition
| formal_access_type_definition

Legality Rules

4 {generic actual subtype} {actual subtype} {generic actual type} {actual type} For a generic formal subtype, the actual
shall be a subtype_mark; it denotes the (generic) actual subtype.

4.a Ramification: When we say simply ‘‘formal’’ or ‘‘actual’’ (for a generic formal that denotes a subtype) we’re talking
about the subtype, not the type, since a name that denotes a formal_type_declaration denotes a subtype, and the
corresponding actual also denotes a subtype.

ISO/IEC 8652:1995(E) —AARM;6.0

357 21 December 1994 Formal Types 12.5

Static Semantics

5{generic formal type} {formal type} {generic formal subtype} {formal subtype} A formal_type_declaration declares a
(generic) formal type, and its first subtype, the (generic) formal subtype.

5.aRamification: A subtype (other than the first subtype) of a generic formal type is not a generic formal subtype.

6{determined class for a formal type} {class determined for a formal type} The form of a formal_type_definition
determines a class to which the formal type belongs. For a formal_private_type_definition the reserved
words tagged and limited indicate the class (see 12.5.1). For a formal_derived_type_definition the class is
the derivation class rooted at the ancestor type. For other formal types, the name of the syntactic category
indicates the class; a formal_discrete_type_definition defines a discrete type, and so on.

6.aReason: This rule is clearer with the flat syntax rule for formal_type_definition given above. Adding formal_integer_
type_definition and others would make this rule harder to state clearly.

Legality Rules

7The actual type shall be in the class determined for the formal.
7.aRamification: For example, if the class determined for the formal is the class of all discrete types, then the actual has

to be discrete.

7.bNote that this rule does not require the actual to belong to every class to which the formal belongs. For example,
formal private types are in the class of composite types, but the actual need not be composite. Furthermore, one can
imagine an infinite number of classes that are just arbitrary sets of types that obey the closed-under-derivation rule, and
are therefore technically classes (even though we don’t give them names, since they are uninteresting). We don’t want
this rule to apply to those classes.

7.c‘‘Limited’’ is not a ‘‘interesting’’ class, but ‘‘nonlimited’’ is; it is legal to pass a nonlimited type to a limited formal
type, but not the other way around. The reserved word limited really represents a class containing both limited and
nonlimited types. ‘‘Private’’ is not a class; a generic formal private type accepts both private and nonprivate actual
types.

7.dIt is legal to pass a class-wide subtype as the actual if it is in the right class, so long as the formal has unknown
discriminants.

Static Semantics

8[The formal type also belongs to each class that contains the determined class.] The primitive sub-
programs of the type are as for any type in the determined class. For a formal type other than a formal
derived type, these are the predefined operators of the type; they are implicitly declared immediately after
the declaration of the formal type. In an instance, the copy of such an implicit declaration declares a view
of the predefined operator of the actual type, even if this operator has been overridden for the actual type.
[The rules specific to formal derived types are given in 12.5.1.]

8.aRamification: All properties of the type are as for any type in the class. Some examples: The primitive operations
available are as defined by the language for each class. The form of constraint applicable to a formal type in a subtype_
indication depends on the class of the type as for a nonformal type. The formal type is tagged if and only if it is
declared as a tagged private type, or as a type derived from a (visibly) tagged type. (Note that the actual type might be
tagged even if the formal type is not.)

NOTES
97 Generic formal types, like all types, are not named. Instead, a name can denote a generic formal subtype. Within a

generic unit, a generic formal type is considered as being distinct from all other (formal or nonformal) types.

9.aProof: This follows from the fact that each formal_type_declaration declares a type.

108 A discriminant_part is allowed only for certain kinds of types, and therefore only for certain kinds of generic formal
types. See 3.7.

10.aRamification: The term ‘‘formal floating point type’’ refers to a type defined by a formal_floating_point_definition. It
does not include a formal derived type whose ancestor is floating point. Similar terminology applies to the other kinds
of formal_type_definition.

ISO/IEC 8652:1995(E) —AARM;6.0

12.5 Formal Types 21 December 1994 358

Examples

11 Examples of generic formal types:
12 type Item is private;

type Buffer(Length : Natural) is limited private;

13 type Enum is (<>);
type Int is range <>;
type Angle is delta <>;
type Mass is digits <>;

14 type Table is array (Enum) of Item;

15 Example of a generic formal part declaring a formal integer type:
16 generic

type Rank is range <>;
First : Rank := Rank’First;
Second : Rank := First + 1; -- the operator "+" of the type Rank

Wording Changes From Ada 83

16.a RM83 has separate sections ‘‘Generic Formal Xs’’ and ‘‘Matching Rules for Formal Xs’’ (for various X’s) with most
of the text redundant between the two. We have combined the two in order to reduce the redundancy. In RM83, there
is no ‘‘Matching Rules for Formal Types’’ section; nor is there a ‘‘Generic Formal Y Types’’ section (for Y = Private,
Scalar, Array, and Access). This causes, for example, the duplication across all the ‘‘Matching Rules for Y Types’’
sections of the rule that the actual passed to a formal type shall be a subtype; the new organization avoids that problem.

16.b The matching rules are stated more concisely.

16.c We no longer consider the multiplying operators that deliver a result of type universal_fixed to be predefined for the
various types; there is only one of each in package Standard. Therefore, we need not mention them here as RM83 had
to.

12.5.1 Formal Private and Derived Types
1 [The class determined for a formal private type can be either limited or nonlimited, and either tagged or

untagged; no more specific class is known for such a type. The class determined for a formal derived
type is the derivation class rooted at the ancestor type.]

Syntax

2 formal_private_type_definition ::= [[abstract] tagged] [limited] private

3 formal_derived_type_definition ::= [abstract] new subtype_mark [with private]

Legality Rules

4 If a generic formal type declaration has a known_discriminant_part, then it shall not include a default_
expression for a discriminant.

4.a Ramification: Consequently, a generic formal subtype with a known_discriminant_part is an indefinite subtype, so the
declaration of a stand-alone variable has to provide a constraint on such a subtype, either explicitly, or by its initial
value.

5 {ancestor subtype (of a formal derived type)} The ancestor subtype of a formal derived type is the subtype
denoted by the subtype_mark of the formal_derived_type_definition. For a formal derived type decla-
ration, the reserved words with private shall appear if and only if the ancestor type is a tagged type; in
this case the formal derived type is a private extension of the ancestor type and the ancestor shall not be a
class-wide type. [Similarly, the optional reserved word abstract shall appear only if the ancestor type is a
tagged type].

5.a Reason: We use the term ‘‘ancestor’’ here instead of ‘‘parent’’ because the actual can be any descendant of the
ancestor, not necessarily a direct descendant.

ISO/IEC 8652:1995(E) —AARM;6.0

359 21 December 1994 Formal Private and Derived Types 12.5.1

6If the formal subtype is definite, then the actual subtype shall also be definite.
6.aRamification: On the other hand, for an indefinite formal subtype, the actual can be either definite or indefinite.

7For a generic formal derived type with no discriminant_part:

8• If the ancestor subtype is constrained, the actual subtype shall be constrained, and shall be
statically compatible with the ancestor;

8.aRamification: In other words, any constraint on the ancestor subtype is considered part of the ‘‘contract.’’

9• If the ancestor subtype is an unconstrained access or composite subtype, the actual subtype
shall be unconstrained.

9.aReason: This rule ensures that if a composite constraint is allowed on the formal, one is also allowed on the
actual. If the ancestor subtype is an unconstrained scalar subtype, the actual is allowed to be constrained, since
a scalar constraint does not cause further constraints to be illegal.

10• If the ancestor subtype is an unconstrained discriminated subtype, then the actual shall have
the same number of discriminants, and each discriminant of the actual shall correspond to a
discriminant of the ancestor, in the sense of 3.7.

10.aReason: This ensures that if a discriminant constraint is given on the formal subtype, the corresponding
constraint in the instance will make sense, without additional run-time checks. This is not necessary for arrays,
since the bounds cannot be overridden in a type extension. An unknown_discriminant_part may be used to relax
these matching requirements.

11The declaration of a formal derived type shall not have a known_discriminant_part. For a generic formal
private type with a known_discriminant_part:

12• The actual type shall be a type with the same number of discriminants.

13• The actual subtype shall be unconstrained.

14• The subtype of each discriminant of the actual type shall statically match the subtype of the
corresponding discriminant of the formal type. {statically matching [required]}

14.aReason: We considered defining the first and third rule to be called ‘‘subtype conformance’’ for discriminant_
parts. We rejected that idea, because it would require implicit (inherited) discriminant_parts, which seemed like
too much mechanism.

15[For a generic formal type with an unknown_discriminant_part, the actual may, but need not, have dis-
criminants, and may be definite or indefinite.]

Static Semantics

16The class determined for a formal private type is as follows:

17Type Definition Determined Class

limited private the class of all types
private the class of all nonlimited types
tagged limited private the class of all tagged types
tagged private the class of all nonlimited tagged types

18[The presence of the reserved word abstract determines whether the actual type may be abstract.]

19A formal private or derived type is a private or derived type, respectively. A formal derived tagged type
is a private extension. [A formal private or derived type is abstract if the reserved word abstract appears
in its declaration.]

20If the ancestor type is a composite type that is not an array type, the formal type inherits components from
the ancestor type (including discriminants if a new discriminant_part is not specified), as for a derived
type defined by a derived_type_definition (see 3.4).

ISO/IEC 8652:1995(E) —AARM;6.0

12.5.1 Formal Private and Derived Types 21 December 1994 360

21 For a formal derived type, the predefined operators and inherited user-defined subprograms are deter-
mined by the ancestor type, and are implicitly declared at the earliest place, if any, within the immediate
scope of the formal type, where the corresponding primitive subprogram of the ancestor is visible (see
7.3.1). In an instance, the copy of such an implicit declaration declares a view of the corresponding
primitive subprogram of the ancestor, even if this primitive has been overridden for the actual type. [In
the case of a formal private extension, however, the tag of the formal type is that of the actual type, so if
the tag in a call is statically determined to be that of the formal type, the body executed will be that
corresponding to the actual type.]

21.a Ramification: The above rule defining the properties of primitive subprograms in an instance applies even if the
subprogram has been overridden or hidden for the actual type. This rule is necessary for untagged types, because their
primitive subprograms might have been overridden by operations that are not subtype-conformant with the operations
defined for the class. For tagged types, the rule still applies, but the primitive subprograms will dispatch to the
appropriate implementation based on the type and tag of the operands. Even for tagged types, the formal parameter
names and default_expressions are determined by those of the primitive subprograms of the specified ancestor type.

22 For a prefix S that denotes a formal indefinite subtype, the following attribute is defined:

S’Definite S’Definite yields True if the actual subtype corresponding to S is definite; otherwise it23

yields False. The value of this attribute is of the predefined type Boolean.
23.a Discussion: Whether an actual subtype is definite or indefinite may have a major effect on the algorithm used in a

generic. For example, in a generic I/O package, whether to use fixed-length or variable-length records could depend on
whether the actual is definite or indefinite. This attribute is essentially a replacement for the Constrained attribute
which is now considered obsolete.

NOTES
24 9 In accordance with the general rule that the actual type shall belong to the class determined for the formal (see 12.5,

‘‘Formal Types’’):

25 • If the formal type is nonlimited, then so shall be the actual;

26 • For a formal derived type, the actual shall be in the class rooted at the ancestor subtype.

27 10 [The actual type can be abstract only if the formal type is abstract (see 3.9.3).]

27.a Reason: This is necessary to avoid contract model problems, since one or more of its primitive subprograms are
abstract; it is forbidden to create objects of the type, or to declare functions returning the type.

27.b Ramification: On the other hand, it is OK to pass a non-abstract actual to an abstract formal — abstract on the formal
indicates that the actual might be abstract.

28 11 If the formal has a discriminant_part, the actual can be either definite or indefinite. Otherwise, the actual has to be
definite.

Incompatibilities With Ada 83

28.a {incompatibilities with Ada 83} Ada 83 does not have unknown_discriminant_parts, so it allows indefinite subtypes to
be passed to definite formals, and applies a legality rule to the instance body. This is a contract model violation. Ada
9X disallows such cases at the point of the instantiation. The workaround is to add (<>) as the discriminant_part of any
formal subtype if it is intended to be used with indefinite actuals. If that’s the intent, then there can’t be anything in the
generic body that would require a definite subtype.

28.b The check for discriminant subtype matching is changed from a run-time check to a compile-time check.

12.5.2 Formal Scalar Types
1 A formal scalar type is one defined by any of the formal_type_definitions in this subclause. [The class

determined for a formal scalar type is discrete, signed integer, modular, floating point, ordinary fixed
point, or decimal.]

ISO/IEC 8652:1995(E) —AARM;6.0

361 21 December 1994 Formal Scalar Types 12.5.2

Syntax

2formal_discrete_type_definition ::= (<>)

3formal_signed_integer_type_definition ::= range <>

4formal_modular_type_definition ::= mod <>

5formal_floating_point_definition ::= digits <>

6formal_ordinary_fixed_point_definition ::= delta <>

7formal_decimal_fixed_point_definition ::= delta <> digits <>

Legality Rules

8The actual type for a formal scalar type shall not be a nonstandard numeric type.
8.aReason: This restriction is necessary because nonstandard numeric types have some number of restrictions on their

use, which could cause contract model problems in a generic body. Note that nonstandard numeric types can be passed
to formal derived and formal private subtypes, assuming they obey all the other rules, and assuming the implementation
allows it (being nonstandard means the implementation might disallow anything).

NOTES
912 The actual type shall be in the class of types implied by the syntactic category of the formal type definition (see 12.5,

‘‘Formal Types’’). For example, the actual for a formal_modular_type_definition shall be a modular type.

12.5.3 Formal Array Types
1[The class determined for a formal array type is the class of all array types.]

Syntax

2formal_array_type_definition ::= array_type_definition

Legality Rules

3The only form of discrete_subtype_definition that is allowed within the declaration of a generic formal
(constrained) array subtype is a subtype_mark.

3.aReason: The reason is the same as for forbidding constraints in subtype_indications (see 12.1).

4For a formal array subtype, the actual subtype shall satisfy the following conditions:

5• The formal array type and the actual array type shall have the same dimensionality; the
formal subtype and the actual subtype shall be either both constrained or both unconstrained.

6• For each index position, the index types shall be the same, and the index subtypes (if uncon-
strained), or the index ranges (if constrained), shall statically match (see 4.9.1). {statically

matching [required]}

7• The component subtypes of the formal and actual array types shall statically match. {statically

matching [required]}

8• If the formal type has aliased components, then so shall the actual.
8.aRamification: On the other hand, if the formal’s components are not aliased, then the actual’s components can

be either aliased or not.

Examples

9Example of formal array types:
10-- given the generic package

ISO/IEC 8652:1995(E) —AARM;6.0

12.5.3 Formal Array Types 21 December 1994 362

11 generic
type Item is private;
type Index is (<>);
type Vector is array (Index range <>) of Item;
type Table is array (Index) of Item;

package P is
...

end P;

12 -- and the types

13 type Mix is array (Color range <>) of Boolean;
type Option is array (Color) of Boolean;

14 -- then Mix can match Vector and Option can match Table

15 package R is new P(Item => Boolean, Index => Color,
Vector => Mix, Table => Option);

16 -- Note that Mix cannot match Table and Option cannot match Vector

Incompatibilities With Ada 83

16.a {incompatibilities with Ada 83} The check for matching of component subtypes and index subtypes or index ranges is
changed from a run-time check to a compile-time check. The Ada 83 rule that ‘‘If the component type is not a scalar
type, then the component subtypes shall be either both constrained or both unconstrained’’ is removed, since it is
subsumed by static matching. Likewise, the rules requiring that component types be the same is subsumed.

12.5.4 Formal Access Types
1 [The class determined for a formal access type is the class of all access types.]

Syntax

2 formal_access_type_definition ::= access_type_definition

Legality Rules

3 For a formal access-to-object type, the designated subtypes of the formal and actual types shall statically
match. {statically matching [required]}

4 If and only if the general_access_modifier constant applies to the formal, the actual shall be an access-
to-constant type. If the general_access_modifier all applies to the formal, then the actual shall be a
general access-to-variable type (see 3.10).

4.a Ramification: If no _modifier applies to the formal, then the actual type may be either a pool-specific or a general
access-to-variable type.

5 For a formal access-to-subprogram subtype, the designated profiles of the formal and the actual shall be
mode-conformant, and the calling convention of the actual shall be protected if and only if that of the
formal is protected. {mode conformance (required)}

5.a Reason: We considered requiring subtype conformance here, but mode conformance is more flexible, given that there
is no way in general to specify the convention of the formal.

Examples

6 Example of formal access types:
7 -- the formal types of the generic package

8 generic
type Node is private;
type Link is access Node;

package P is
...

end P;

9 -- can be matched by the actual types

ISO/IEC 8652:1995(E) —AARM;6.0

363 21 December 1994 Formal Access Types 12.5.4

10type Car;
type Car_Name is access Car;

11type Car is
record

Pred, Succ : Car_Name;
Number : License_Number;
Owner : Person;

end record;

12-- in the following generic instantiation

13package R is new P(Node => Car, Link => Car_Name);

Incompatibilities With Ada 83

13.a{incompatibilities with Ada 83} The check for matching of designated subtypes is changed from a run-time check to a
compile-time check. The Ada 83 rule that ‘‘If the designated type is other than a scalar type, then the designated
subtypes shall be either both constrained or both unconstrained’’ is removed, since it is subsumed by static matching.

Extensions to Ada 83

13.b{extensions to Ada 83} Formal access-to-subprogram subtypes and formal general access types are new concepts.

12.6 Formal Subprograms
1[{generic formal subprogram} {formal subprogram, generic} Formal subprograms can be used to pass callable

entities to a generic unit.]

Language Design Principles

1.aGeneric formal subprograms are like renames of the explicit_generic_actual_parameter.
Syntax

2formal_subprogram_declaration ::= with subprogram_specification [is subprogram_default];

3subprogram_default ::= default_name | <>

4default_name ::= name

Name Resolution Rules

5{expected profile [formal subprogram default_name]} The expected profile for the default_name, if any, is that of
the formal subprogram.

5.aRamification: This rule, unlike others in this clause, is observed at compile time of the generic_declaration.

5.bThe evaluation of the default_name takes place during the elaboration of each instantiation that uses the default, as
defined in 12.3, ‘‘Generic Instantiation’’.

6{expected profile [formal subprogram actual]} For a generic formal subprogram, the expected profile for the
actual is that of the formal subprogram.

Legality Rules

7The profiles of the formal and any named default shall be mode-conformant. {mode conformance (required)}

7.aRamification: This rule, unlike others in this clause, is checked at compile time of the generic_declaration.

8The profiles of the formal and actual shall be mode-conformant. {mode conformance (required)}

Static Semantics

9A formal_subprogram_declaration declares a generic formal subprogram. The types of the formal
parameters and result, if any, of the formal subprogram are those determined by the subtype_marks given
in the formal_subprogram_declaration; however, independent of the particular subtypes that are denoted
by the subtype_marks, the nominal subtypes of the formal parameters and result, if any, are defined to be
nonstatic, and unconstrained if of an array type [(no applicable index constraint is provided in a call on a

ISO/IEC 8652:1995(E) —AARM;6.0

12.6 Formal Subprograms 21 December 1994 364

formal subprogram)]. In an instance, a formal_subprogram_declaration declares a view of the actual.
The profile of this view takes its subtypes and calling convention from the original profile of the actual
entity, while taking the formal parameter names and default_expressions from the profile given in the
formal_subprogram_declaration. The view is a function or procedure, never an entry.

9.a Discussion: This rule is intended to be the same as the one for renamings-as-declarations, where the formal_
subprogram_declaration is analogous to a renaming-as-declaration, and the actual is analogous to the renamed view.

10 If a generic unit has a subprogram_default specified by a box, and the corresponding actual parameter is
omitted, then it is equivalent to an explicit actual parameter that is a usage name identical to the defining
name of the formal.

NOTES
11 13 The matching rules for formal subprograms state requirements that are similar to those applying to subprogram_

renaming_declarations (see 8.5.4). In particular, the name of a parameter of the formal subprogram need not be the same as
that of the corresponding parameter of the actual subprogram; similarly, for these parameters, default_expressions need not
correspond.

12 14 The constraints that apply to a parameter of a formal subprogram are those of the corresponding formal parameter of
the matching actual subprogram (not those implied by the corresponding subtype_mark in the _specification of the formal
subprogram). A similar remark applies to the result of a function. Therefore, to avoid confusion, it is recommended that
the name of a first subtype be used in any declaration of a formal subprogram.

13 15 The subtype specified for a formal parameter of a generic formal subprogram can be any visible subtype, including a
generic formal subtype of the same generic_formal_part.

14 16 A formal subprogram is matched by an attribute of a type if the attribute is a function with a matching specification.
An enumeration literal of a given type matches a parameterless formal function whose result type is the given type.

15 17 A default_name denotes an entity that is visible or directly visible at the place of the generic_declaration; a box used as
a default is equivalent to a name that denotes an entity that is directly visible at the place of the _instantiation.

15.a Proof: Visibility and name resolution are applied to the equivalent explicit actual parameter.

16 18 The actual subprogram cannot be abstract (see 3.9.3).

Examples

17 Examples of generic formal subprograms:
18 with function "+"(X, Y : Item) return Item is <>;

with function Image(X : Enum) return String is Enum’Image;
with procedure Update is Default_Update;

19 -- given the generic procedure declaration

20 generic
with procedure Action (X : in Item);

procedure Iterate(Seq : in Item_Sequence);

21 -- and the procedure

22 procedure Put_Item(X : in Item);

23 -- the following instantiation is possible

24 procedure Put_List is new Iterate(Action => Put_Item);

12.7 Formal Packages
1 [{generic formal package} {formal package, generic} Formal packages can be used to pass packages to a generic

unit. The formal_package_declaration declares that the formal package is an instance of a given generic
package. Upon instantiation, the actual package has to be an instance of that generic package.]

ISO/IEC 8652:1995(E) —AARM;6.0

365 21 December 1994 Formal Packages 12.7

Syntax

2formal_package_declaration ::=
with package defining_identifier is new generic_package_name formal_package_actual_part;

3formal_package_actual_part ::=
(<>) | [generic_actual_part]

Legality Rules

4{template (for a formal package)} The generic_package_name shall denote a generic package (the template for
the formal package); the formal package is an instance of the template.

5The actual shall be an instance of the template. If the formal_package_actual_part is (<>), [then the
actual may be any instance of the template]; otherwise, each actual parameter of the actual instance shall
match the corresponding actual parameter of the formal package [(whether the actual parameter is given
explicitly or by default)], as follows:

6• For a formal object of mode in the actuals match if they are static expressions with the same
value, or if they statically denote the same constant, or if they are both the literal null.

6.aReason: We can’t simply require full conformance between the two actual parameter expressions, because the
two expressions are being evaluated at different times.

7• For a formal subtype, the actuals match if they denote statically matching subtypes. {statically

matching [required]}

8• For other kinds of formals, the actuals match if they statically denote the same entity.

Static Semantics

9A formal_package_declaration declares a generic formal package.

10{visible part [of a formal package]} The visible part of a formal package includes the first list of basic_
declarative_items of the package_specification. In addition, if the formal_package_actual_part is (<>), it
also includes the generic_formal_part of the template for the formal package.

10.aRamification: If the formal_package_actual_part is (<>), then the declarations that occur immediately within the
generic_formal_part of the template for the formal package are visible outside the formal package, and can be denoted
by expanded names outside the formal package.

10.bReason: We always want either the actuals or the formals of an instance to be namable from outside, but never both.
If both were namable, one would get some funny anomalies since they denote the same entity, but, in the case of types
at least, they might have different and inconsistent sets of primitive operators due to predefined operator ‘‘reemer-
gence.’’ Formal derived types exacerbate the difference. We want the implicit declarations of the generic_formal_part
as well as the explicit declarations, so we get operations on the formal types.

10.cRamification: A generic formal package is a package, and is an instance. Hence, it is possible to pass a generic
formal package as an actual to another generic formal package.

Extensions to Ada 83

10.d{extensions to Ada 83} Formal packages are new to Ada 9X.

12.8 Example of a Generic Package
1The following example provides a possible formulation of stacks by means of a generic package. The

size of each stack and the type of the stack elements are provided as generic formal parameters.

Examples

2

ISO/IEC 8652:1995(E) —AARM;6.0

12.8 Example of a Generic Package 21 December 1994 366

3 generic
Size : Positive;
type Item is private;

package Stack is
procedure Push(E : in Item);
procedure Pop (E : out Item);
Overflow, Underflow : exception;

end Stack;

4 package body Stack is

5 type Table is array (Positive range <>) of Item;
Space : Table(1 .. Size);
Index : Natural := 0;

6 procedure Push(E : in Item) is
begin

if Index >= Size then
raise Overflow;

end if;
Index := Index + 1;
Space(Index) := E;

end Push;

7 procedure Pop(E : out Item) is
begin

if Index = 0 then
raise Underflow;

end if;
E := Space(Index);
Index := Index - 1;

end Pop;

8 end Stack;

9 Instances of this generic package can be obtained as follows:
10 package Stack_Int is new Stack(Size => 200, Item => Integer);

package Stack_Bool is new Stack(100, Boolean);

11 Thereafter, the procedures of the instantiated packages can be called as follows:
12 Stack_Int.Push(N);

Stack_Bool.Push(True);

13 Alternatively, a generic formulation of the type Stack can be given as follows (package body omitted):
14 generic

type Item is private;
package On_Stacks is

type Stack(Size : Positive) is limited private;
procedure Push(S : in out Stack; E : in Item);
procedure Pop (S : in out Stack; E : out Item);
Overflow, Underflow : exception;

private
type Table is array (Positive range <>) of Item;
type Stack(Size : Positive) is

record
Space : Table(1 .. Size);
Index : Natural := 0;

end record;
end On_Stacks;

15 In order to use such a package, an instance has to be created and thereafter stacks of the corresponding
type can be declared:

ISO/IEC 8652:1995(E) —AARM;6.0

367 21 December 1994 Example of a Generic Package 12.8

16declare
package Stack_Real is new On_Stacks(Real); use Stack_Real;
S : Stack(100);

begin
...
Push(S, 2.54);
...

end;

ISO/IEC 8652:1995(E) —AARM;6.0

13 Representation Issues 21 December 1994 368

ISO/IEC 8652:1995(E) —AARM;6.0

369 21 December 1994 Representation Issues 13

Section 13: Representation Issues
1[This section describes features for querying and controlling aspects of representation and for interfacing

to hardware.]

Wording Changes From Ada 83

1.aThe clauses of this section have been reorganized. This was necessary to preserve a logical order, given the new Ada
9X semantics given in this section.

13.1 Representation Items
1{representation item} {representation pragma [distributed]} {pragma, representation [distributed]} There are three kinds

of representation items: representation_clauses, component_clauses, and representation pragmas.
[Representation items specify how the types and other entities of the language are to be mapped onto the
underlying machine. They can be provided to give more efficient representation or to interface with
features that are outside the domain of the language (for example, peripheral hardware). Representation
items also specify other specifiable properties of entities. A representation item applies to an entity
identified by a local_name, which denotes an entity declared local to the current declarative region, or a
library unit declared immediately preceding a representation pragma in a compilation.]

Syntax

2representation_clause ::= attribute_definition_clause
| enumeration_representation_clause
| record_representation_clause
| at_clause

3local_name ::= direct_name
| direct_name’attribute_designator
| library_unit_name

4A representation pragma is allowed only at places where a representation_clause or compilation_unit
is allowed.

Name Resolution Rules

5In a representation item, if the local_name is a direct_name, then it shall resolve to denote a declaration
(or, in the case of a pragma, one or more declarations) that occurs immediately within the same
declarative_region as the representation item. If the local_name has an attribute_designator, then it shall
resolve to denote an implementation-defined component (see 13.5.1) or a class-wide type implicitly
declared immediately within the same declarative_region as the representation item. A local_name that is
a library_unit_name (only permitted in a representation pragma) shall resolve to denote the library_item
that immediately precedes (except for other pragmas) the representation pragma.

5.aReason: This is a Name Resolution Rule, because we don’t want a representation item for X to be ambiguous just
because there’s another X declared in an outer declarative region. It doesn’t make much difference, since most
representation items are for types or subtypes, and type and subtype names can’t be overloaded.

5.bRamification: The visibility rules imply that the declaration has to occur before the representation item.

5.cFor objects, this implies that representation items can be applied only to stand-alone objects.

Legality Rules

6The local_name of a representation_clause or representation pragma shall statically denote an entity (or,
in the case of a pragma, one or more entities) declared immediately preceding it in a compilation, or
within the same declarative_part, package_specification, task_definition, protected_definition, or record_

ISO/IEC 8652:1995(E) —AARM;6.0

13.1 Representation Items 21 December 1994 370

definition as the representation item. If a local_name denotes a [local] callable entity, it may do so
through a [local] subprogram_renaming_declaration [(as a way to resolve ambiguity in the presence of
overloading)]; otherwise, the local_name shall not denote a renaming_declaration.

6.a Ramification: The ‘‘statically denote’’ part implies that it is impossible to specify the representation of an object that
is not a stand-alone object, except in the case of a representation item like pragma Atomic that is allowed inside a
component_list (in which case the representation item specifies the representation of components of all objects of the
type). It also prevents the problem of renamings of things like ‘‘P.all’’ (where P is an access-to-subprogram value) or
‘‘E(I)’’ (where E is an entry family).

6.b The part about where the denoted entity has to have been declared appears twice — once as a Name Resolution Rule,
and once as a Legality Rule. Suppose P renames Q, and we have a representation item in a declarative_part whose
local_name is P. The fact that the representation item has to appear in the same declarative_part as P is a Name
Resolution Rule, whereas the fact that the representation item has to appear in the same declarative_part as Q is a
Legality Rule. This is subtle, but it seems like the least confusing set of rules.

6.c Discussion: A separate Legality Rule applies for component_clauses. See 13.5.1, ‘‘Record Representation Clauses’’.

7 {representation of an object} {size (of an object)} The representation of an object consists of a certain number of
bits (the size of the object). These are the bits that are normally read or updated by the machine code
when loading, storing, or operating-on the value of the object. This includes some padding bits, when the
size of the object is greater than the size of its subtype. {gaps} {padding bits} Such padding bits are
considered to be part of the representation of the object, rather than being gaps between objects, if these
bits are normally read and updated.

7.a To be honest: {contiguous representation [partial]} {discontiguous representation [partial]} Discontiguous represen-
tations are allowed, but the ones we’re interested in here are generally contiguous sequences of bits.

7.b Ramification: Two objects with the same value do not necessarily have the same representation. For example, an
implementation might represent False as zero and True as any odd value. Similarly, two objects (of the same type)
with the same sequence of bits do not necessarily have the same value. For example, an implementation might use a
biased representation in some cases but not others:

7.c subtype S is Integer range 1..256;
type A is array(Natural range 1..4) of S;
pragma Pack(A);
X : S := 3;
Y : A := (1, 2, 3, 4);

7.d The implementation might use a biased-by-1 representation for the array elements, but not for X. X and Y(3) have the
same value, but different representation: the representation of X is a sequence of (say) 32 bits: 0...011, whereas the
representation of Y(3) is a sequence of 8 bits: 00000010 (assuming a two’s complement representation).

7.e Such tricks are not required, but are allowed.

7.f Discussion: The value of any padding bits is not specified by the language, though for a numeric type, it will be much
harder to properly implement the predefined operations if the padding bits are not either all zero, or a sign extension.

7.g Ramification: For example, suppose S’Size = 2, and an object X is of subtype S. If the machine code typically uses a
32-bit load instruction to load the value of X, then X’Size should be 32, even though 30 bits of the value are just zeros
or sign-extension bits. On the other hand, if the machine code typically masks out those 30 bits, then X’Size should be
2. Usually, such masking only happens for components of a composite type for which packing, Component_Size, or
record layout is specified.

7.h Note, however, that the formal parameter of an instance of Unchecked_Conversion is a special case. Its Size is
required to be the same as that of its subtype.

7.i Note that we don’t generally talk about the representation of a value. A value is considered to be an amorphous blob
without any particular representation. An object is considered to be more concrete.

8 {aspect of representation [distributed]} {representation aspect} {directly specified (of an aspect of representation of an entity)}

A representation item directly specifies an aspect of representation of the entity denoted by the local_
name, except in the case of a type-related representation item, whose local_name shall denote a first
subtype, and which directly specifies an aspect of the subtype’s type. {type-related (representation item)

ISO/IEC 8652:1995(E) —AARM;6.0

371 21 December 1994 Representation Items 13.1

[distributed]} {subtype-specific (of a representation item) [distributed]} {type-related (aspect) [distributed]} {subtype-specific

(of an aspect) [distributed]} A representation item that names a subtype is either subtype-specific (Size and
Alignment clauses) or type-related (all others). [Subtype-specific aspects may differ for different sub-
types of the same type.]

8.aTo be honest: Type-related and subtype-specific are defined likewise for the corresponding aspects of representation.

8.bTo be honest: Some representation items directly specify more than one aspect.

8.cDiscussion: For example, a pragma Export specifies the convention of an entity, and also specifies that it is exported.

8.dRamification: Each specifiable attribute constitutes a separate aspect. An enumeration_representation_clause
specifies the coding aspect. A record_representation_clause (without the mod_clause) specifies the record layout
aspect. Each representation pragma specifies a separate aspect.

8.eReason: We don’t need to say that an at_clause or a mod_clause specify separate aspects, because these are equivalent
to attribute_definition_clauses. See J.7, ‘‘At Clauses’’, and J.8, ‘‘Mod Clauses’’.

8.fRamification: The following representation items are type-related:

8.g• enumeration_representation_clause

8.h• record_representation_clause

8.i• Component_Size clause

8.j• External_Tag clause

8.k• Small clause

8.l• Bit_Order clause

8.m• Storage_Pool clause

8.n• Storage_Size clause

8.o• Read clause

8.p• Write clause

8.q• Input clause

8.r• Output clause

8.s• Machine_Radix clause

8.t• pragma Pack

8.u• pragmas Import, Export, and Convention (when applied to a type)

8.v• pragmas Atomic and Volatile (when applied to a type)

8.w• pragmas Atomic_Components and Volatile_Components (when applied to an array type)

8.x• pragma Discard_Names (when applied to an enumeration or tagged type)

8.yThe following representation items are subtype-specific:

8.z• Alignment clause (when applied to a first subtype)

8.aa• Size clause (when applied to a first subtype)

8.bbThe following representation items do not apply to subtypes, so they are neither type-related nor subtype-specific:

8.cc• Address clause (applies to objects and program units)

8.dd• Alignment clause (when applied to an object)

8.ee• Size clause (when applied to an object)

8.ff• pragmas Import, Export, and Convention (when applied to anything other than a type)

8.gg• pragmas Atomic and Volatile (when applied to an object or a component)

8.hh• pragmas Atomic_Components and Volatile_Components (when applied to an array object)

ISO/IEC 8652:1995(E) —AARM;6.0

13.1 Representation Items 21 December 1994 372

8.ii • pragma Discard_Names (when applied to an exception)

8.jj • pragma Asynchronous (applies to procedures)

9 A representation item that directly specifies an aspect of a subtype or type shall appear after the type is
completely defined (see 3.11.1), and before the subtype or type is frozen (see 13.14). If a representation
item is given that directly specifies an aspect of an entity, then it is illegal to give another representation
item that directly specifies the same aspect of the entity.

9.a Ramification: The fact that a representation item that directly specifies an aspect of an entity is required to appear
before the entity is frozen prevents changing the representation of an entity after using the entity in ways that require
the representation to be known.

10 For an untagged derived type, no type-related representation items are allowed if the parent type is a
by-reference type, or has any user-defined primitive subprograms.

10.a Ramification: On the other hand, subtype-specific representation items may be given for the first subtype of such a
type.

10.b Reason: The reason for forbidding type-related representation items on untagged by-reference types is because a
change of representation is impossible when passing by reference (to an inherited subprogram). The reason for
forbidding type-related representation items on untagged types with user-defined primitive subprograms was to prevent
implicit change of representation for type-related aspects of representation upon calling inherited subprograms, because
such changes of representation are likely to be expensive at run time. Changes of subtype-specific representation
attributes, however, are likely to be cheap. This rule is not needed for tagged types, because other rules prevent a
type-related representation item from changing the representation of the parent part; we want to allow a type-related
representation item on a type extension to specify aspects of the extension part. For example, a pragma Pack will cause
packing of the extension part, but not of the parent part.

11 Representation aspects of a generic formal parameter are the same as those of the actual. A type-related
representation item is not allowed for a descendant of a generic formal untagged type.

11.a Ramification: Representation items are allowed for types whose subcomponent types or index subtypes are generic
formal types.

11.b Reason: Since it is not known whether a formal type has user-defined primitive subprograms, specifying type-related
representation items for them is not allowed, unless they are tagged (in which case only the extension part is affected in
any case).

12 A representation item that specifies the Size for a given subtype, or the size or storage place for an object
(including a component) of a given subtype, shall allow for enough storage space to accommodate any
value of the subtype.

13 A representation item that is not supported by the implementation is illegal, or raises an exception at run
time.

Static Semantics

14 If two subtypes statically match, then their subtype-specific aspects (Size and Alignment) are the same.
{statically matching [effect on subtype-specific aspects]}

14.a Reason: This is necessary because we allow (for example) conversion between access types whose designated
subtypes statically match. Note that it is illegal to specify an aspect (including a subtype-specific one) for a nonfirst
subtype.

14.b Consider, for example:

14.c package P1 is
subtype S1 is Integer range 0..2**16-1;
for S1’Size use 16; -- Illegal!

-- S1’Size would be 16 by default.
type A1 is access S1;
X1: A1;

end P1;

ISO/IEC 8652:1995(E) —AARM;6.0

373 21 December 1994 Representation Items 13.1

14.dpackage P2 is
subtype S2 is Integer range 0..2**16-1;
for S2’Size use 32; -- Illegal!
type A2 is access S2;
X2: A2;

end P2;

14.eprocedure Q is
use P1, P2;
type Array1 is array(Integer range <>) of aliased S1;
pragma Pack(Array1);
Obj1: Array1(1..100);
type Array2 is array(Integer range <>) of aliased S2;
pragma Pack(Array2);
Obj2: Array2(1..100);

begin
X1 := Obj2(17)’Access;
X2 := Obj1(17)’Access;

end Q;

14.fLoads and stores through X1 would read and write 16 bits, but X1 points to a 32-bit location. Depending on the
endianness of the machine, loads might load the wrong 16 bits. Stores would fail to zero the other half in any case.

14.gLoads and stores through X2 would read and write 32 bits, but X2 points to a 16-bit location. Thus, adjacent memory
locations would be trashed.

14.hHence, the above is illegal. Furthermore, the compiler is forbidden from choosing different Sizes by default, for the
same reason.

14.iThe same issues apply to Alignment.

15A derived type inherits each type-related aspect of its parent type that was directly specified before the
declaration of the derived type, or (in the case where the parent is derived) that was inherited by the
parent type from the grandparent type. A derived subtype inherits each subtype-specific aspect of its
parent subtype that was directly specified before the declaration of the derived type, or (in the case where
the parent is derived) that was inherited by the parent subtype from the grandparent subtype, but only if
the parent subtype statically matches the first subtype of the parent type. An inherited aspect of represen-
tation is overridden by a subsequent representation item that specifies the same aspect of the type or
subtype.

15.aTo be honest: A record_representation_clause for a record extension does not override the layout of the parent part; if
the layout was specified for the parent type, it is inherited by the record extension.

15.bRamification: If a representation item for the parent appears after the derived_type_declaration, then inheritance does
not happen for that representation item.

16Each aspect of representation of an entity is as follows:

17• {specified (of an aspect of representation of an entity)} If the aspect is specified for the entity, meaning
that it is either directly specified or inherited, then that aspect of the entity is as specified,
except in the case of Storage_Size, which specifies a minimum.

17.aRamification: This rule implies that queries of the aspect return the specified value. For example, if the user
writes ‘‘for X’Size use 32;’’, then a query of X’Size will return 32.

18• {unspecified [partial]} If an aspect of representation of an entity is not specified, it is chosen by
default in an unspecified manner.

18.aRamification: Note that representation_clauses can affect the semantics of the entity.

18.bThe rules forbid things like ‘‘for S’Base’Alignment use ...’’ and ‘‘for S’Base use record ...’’.

18.cDiscussion: The intent is that implementations will represent the components of a composite value in the same way for
all subtypes of a given composite type. Hence, Component_Size and record layout are type-related aspects.

ISO/IEC 8652:1995(E) —AARM;6.0

13.1 Representation Items 21 December 1994 374

Dynamic Semantics

19 {elaboration [representation_clause]} For the elaboration of a representation_clause, any evaluable constructs
within it are evaluated.

19.a Ramification: Elaboration of representation pragmas is covered by the general rules for pragmas in Section 2.

Implementation Permissions

20 An implementation may interpret aspects of representation in an implementation-defined manner. An
implementation may place implementation-defined restrictions on representation items. {recommended level

of support [distributed]} A recommended level of support is specified for representation items and related
features in each subclause. These recommendations are changed to requirements for implementations that
support the Systems Programming Annex (see C.2, ‘‘Required Representation Support’’).

20.a Implementation defined: The interpretation of each aspect of representation.

20.b Implementation defined: Any restrictions placed upon representation items.

20.c Ramification: Implementation-defined restrictions may be enforced either at compile time or at run time. There is no
requirement that an implementation justify any such restrictions. They can be based on avoiding implementation
complexity, or on avoiding excessive inefficiency, for example.

Implementation Advice

21 {recommended level of support [with respect to nonstatic expressions]} The recommended level of support for all
representation items is qualified as follows:

22 • An implementation need not support representation items containing nonstatic expressions,
except that an implementation should support a representation item for a given entity if each
nonstatic expression in the representation item is a name that statically denotes a constant
declared before the entity.

22.a Reason: This is to avoid the following sort of thing:

22.b X : Integer := F(...);
Y : Address := G(...);
for X’Address use Y;

22.c In the above, we have to evaluate the initialization expression for X before we know where to put the result.
This seems like an unreasonable implementation burden.

22.d The above code should instead be written like this:

22.e Y : constant Address := G(...);
X : Integer := F(...);
for X’Address use Y;

22.f This allows the expression ‘‘Y’’ to be safely evaluated before X is created.

22.g The constant could be a formal parameter of mode in.

22.h An implementation can support other nonstatic expressions if it wants to. Expressions of type Address are
hardly ever static, but their value might be known at compile time anyway in many cases.

23 • An implementation need not support a specification for the Size for a given composite sub-
type, nor the size or storage place for an object (including a component) of a given composite
subtype, unless the constraints on the subtype and its composite subcomponents (if any) are
all static constraints.

24 • An aliased component, or a component whose type is by-reference, should always be al-
located at an addressable location.

24.a Reason: The intent is that access types, type System.Address, and the pointer used for a by-reference
parameter should be implementable as a single machine address — bit-field pointers should not be required.
(There is no requirement that this implementation be used — we just want to make sure its feasible.)

24.b Implementation Note: Note that the above rule does not apply to types that merely allow by-reference
parameter passing; for such types, a copy typically needs to be made at the call site when a bit-aligned
component is passed as a parameter.

ISO/IEC 8652:1995(E) —AARM;6.0

375 21 December 1994 Representation Items 13.1

24.cRamification: A pragma Pack will typically not pack so tightly as to disobey the above rule. A Component_
Size clause or record_representation_clause will typically by illegal if it disobeys the above rule. Atomic
components have similar restrictions (see C.6, ‘‘Shared Variable Control’’).

Incompatibilities With Ada 83

24.d{incompatibilities with Ada 83} It is now illegal for a representation item to cause a derived by-reference type to have a
different record layout from its parent. This is necessary for by-reference parameter passing to be feasible. This only
affects programs that specify the representation of types derived from types containing tasks; most by-reference types
are new to Ada 9X. For example, if A1 is an array of tasks, and A2 is derived from A1, it is illegal to apply a pragma
Pack to A2.

Extensions to Ada 83

24.e{extensions to Ada 83} Ada 9X allows additional representation_clauses for objects.
Wording Changes From Ada 83

24.fThe syntax rule for type_representation_clause is removed; the right-hand side of that rule is moved up to where it was
used, in representation_clause. There are two references to ‘‘type representation clause’’ in RM83, both in Section 13;
these have been reworded.

24.gWe have defined a new term ‘‘representation item,’’ which includes both representation_clauses and representation
pragmas, as well as component_clauses. This is convenient because the rules are almost identical for all three.

24.hAll of the forcing occurrence stuff has been moved into its own subclause (see 13.14), and rewritten to use the term
‘‘freezing’’.

24.iRM83-13.1(10) requires implementation-defined restrictions on representation items to be enforced at compile time.
However, that is impossible in some cases. If the user specifies a junk (nonstatic) address in an address clause, and the
implementation chooses to detect the error (for example, using hardware memory management with protected pages),
then it’s clearly going to be a run-time error. It seems silly to call that ‘‘semantics’’ rather than ‘‘a restriction.’’

24.jRM83-13.1(10) tries to pretend that representation_clauses don’t affect the semantics of the program. One counter-
example is the Small clause. Ada 9X has more counter-examples. We have noted the opposite above.

24.kSome of the more stringent requirements are moved to C.2, ‘‘Required Representation Support’’.

13.2 Pragma Pack
1[A pragma Pack specifies that storage minimization should be the main criterion when selecting the

representation of a composite type.]

Syntax

2The form of a pragma Pack is as follows:

3pragma Pack(first_subtype_local_name);

Legality Rules

4The first_subtype_local_name of a pragma Pack shall denote a composite subtype.

Static Semantics

5{representation pragma [Pack]} {pragma, representation [Pack]} {aspect of representation [packing]} {packing (aspect of

representation)} {packed} A pragma Pack specifies the packing aspect of representation; the type (or the
extension part) is said to be packed. For a type extension, the parent part is packed as for the parent type,
and a pragma Pack causes packing only of the extension part.

5.aRamification: The only high level semantic effect of a pragma Pack is independent addressability (see 9.10, ‘‘Shared
Variables’’).

Implementation Advice

6If a type is packed, then the implementation should try to minimize storage allocated to objects of the
type, possibly at the expense of speed of accessing components, subject to reasonable complexity in
addressing calculations.

ISO/IEC 8652:1995(E) —AARM;6.0

13.2 Pragma Pack 21 December 1994 376

6.a Ramification: A pragma Pack is for gaining space efficiency, possibly at the expense of time. If more explicit control
over representation is desired, then a record_representation_clause, a Component_Size clause, or a Size clause should
be used instead of, or in addition to, a pragma Pack.

7 {recommended level of support [pragma Pack]} The recommended level of support for pragma Pack is:

8 • For a packed record type, the components should be packed as tightly as possible subject to
the Sizes of the component subtypes, and subject to any record_representation_clause that
applies to the type; the implementation may, but need not, reorder components or cross
aligned word boundaries to improve the packing. A component whose Size is greater than
the word size may be allocated an integral number of words.

8.a Ramification: The implementation can always allocate an integral number of words for a component that will
not fit in a word. The rule also allows small component sizes to be rounded up if such rounding does not waste
space. For example, if Storage_Unit = 8, then a component of size 8 is probably more efficient than a
component of size 7 plus a 1-bit gap (assuming the gap is needed anyway).

9 • For a packed array type, if the component subtype’s Size is less than or equal to the word
size, and Component_Size is not specified for the type, Component_Size should be less than
or equal to the Size of the component subtype, rounded up to the nearest factor of the word
size.

9.a Ramification: If a component subtype is aliased, its Size will generally be a multiple of Storage_Unit, so it
probably won’t get packed very tightly.

13.3 Representation Attributes
1 [{representation attribute} {attribute (representation)} The values of certain implementation-dependent charac-

teristics can be obtained by interrogating appropriate representation attributes. {attribute (specifying)

[distributed]} Some of these attributes are specifiable via an attribute_definition_clause.]

Language Design Principles

1.a In general, the meaning of a given attribute should not depend on whether the attribute was specified via an attribute_
definition_clause, or chosen by default by the implementation.

Syntax

2 attribute_definition_clause ::=
for local_name’attribute_designator use expression;

| for local_name’attribute_designator use name;

Name Resolution Rules

3 For an attribute_definition_clause that specifies an attribute that denotes a value, the form with an
expression shall be used. Otherwise, the form with a name shall be used.

4 {expected type [attribute_definition_clause expression or name]} For an attribute_definition_clause that specifies an
attribute that denotes a value or an object, the expected type for the expression or name is that of the
attribute.

4.a Ramification: For example, the Size attribute is of type universal_integer. Therefore, the expected type for Y in ‘‘for
X’Size use Y;’’ is universal_integer, which means that Y can be of any integer type.

{expected profile [attribute_definition_clause name]} For an attribute_definition_clause that specifies an attribute
that denotes a subprogram, the expected profile for the name is the profile required for the attribute.

4.b Discussion: The required profile is indicated separately for the individual attributes.

For an attribute_definition_clause that specifies an attribute that denotes some other kind of entity, the
name shall resolve to denote an entity of the appropriate kind.

4.c Ramification: For an attribute_definition_clause with a name, the name need not statically denote the entity it denotes.
For example, the following kinds of things are allowed:

ISO/IEC 8652:1995(E) —AARM;6.0

377 21 December 1994 Representation Attributes 13.3

4.dfor Some_Access_Type’Storage_Pool use Storage_Pool_Array(I);
for Some_Type’Read use Subprogram_Pointer.all;

Legality Rules

5{specifiable (of an attribute and for an entity) [distributed]} {attribute (specifiable) [distributed]} An attribute_designator
is allowed in an attribute_definition_clause only if this International Standard explicitly allows it, or for an
implementation-defined attribute if the implementation allows it. {aspect of representation [specifiable
attributes]} Each specifiable attribute constitutes an aspect of representation.

5.aDiscussion: For each specifiable attribute, we generally say something like, ‘‘The ... attribute may be specified for ...
via an attribute_definition_clause.’’

5.bThe above wording allows for T’Class’Alignment, T’Class’Size, T’Class’Input, and T’Class’Output to be specifiable.

5.cA specifiable attribute is not necessarily specifiable for all entities for which it is defined. For example, one is allowed
to ask T’Component_Size for an array subtype T, but ‘‘for T’Component_Size use ...’’ is only allowed if T is a first
subtype, because Component_Size is a type-related aspect.

6For an attribute_definition_clause that specifies an attribute that denotes a subprogram, the profile shall be
mode conformant with the one required for the attribute, and the convention shall be Ada. Additional
requirements are defined for particular attributes. {subtype conformance (required)}

6.aRamification: This implies, for example, that if one writes:

6.bfor T’Read use R;

6.cR has to be a procedure with two parameters with the appropriate subtypes and modes as shown in 13.13.2.

Static Semantics

7{Address clause} {Alignment clause} {Size clause} {Component_Size clause} {External_Tag clause} {Small clause} {Bit_

Order clause} {Storage_Pool clause} {Storage_Size clause} {Read clause} {Write clause} {Input clause} {Output clause}
{Machine_Radix clause} A Size clause is an attribute_definition_clause whose attribute_designator is Size.
Similar definitions apply to the other specifiable attributes.

7.aTo be honest: {type-related [attribute_definition_clause]} {subtype-specific [attribute_definition_clause]} An
attribute_definition_clause is type-related or subtype-specific if the attribute_designator denotes a type-related or
subtype-specific attribute, respectively.

8{storage element} {byte: see storage element} A storage element is an addressable element of storage in the
machine. {word} A word is the largest amount of storage that can be conveniently and efficiently manipu-
lated by the hardware, given the implementation’s run-time model. A word consists of an integral num-
ber of storage elements.

8.aDiscussion: A storage element is not intended to be a single bit, unless the machine can efficiently address individual
bits.

8.bRamification: For example, on a machine with 8-bit storage elements, if there exist 32-bit integer registers, with a full
set of arithmetic and logical instructions to manipulate those registers, a word ought to be 4 storage elements — that is,
32 bits.

8.cDiscussion: The ‘‘given the implementation’s run-time model’’ part is intended to imply that, for example, on an
80386 running MS-DOS, the word might be 16 bits, even though the hardware can support 32 bits.

8.dA word is what ACID refers to as a ‘‘natural hardware boundary’’.

8.eStorage elements may, but need not be, independently addressable (see 9.10, ‘‘Shared Variables’’). Words are
expected to be independently addressable.

9The following attributes are defined:

ISO/IEC 8652:1995(E) —AARM;6.0

13.3 Representation Attributes 21 December 1994 378

10 For a prefix X that denotes an object, program unit, or label:

X’Address Denotes the address of the first of the storage elements allocated to X. For a program11

unit or label, this value refers to the machine code associated with the corresponding
body or statement. The value of this attribute is of type System.Address.

11.a Ramification: Here, the ‘‘first of the storage elements’’ is intended to mean the one with the lowest address; the
endianness of the machine doesn’t matter.

{specifiable [of Address for stand-alone objects and for program units]} {Address clause} Address12

may be specified for [stand-alone] objects and for program units via an attribute_
definition_clause.

12.a Ramification: Address is not allowed for enumeration literals, predefined operators, derived task types, or derived
protected types, since they are not program units.

12.b The validity of a given address depends on the run-time model; thus, in order to use Address clauses correctly, one
needs intimate knowledge of the run-time model.

12.c If the Address of an object is specified, any explicit or implicit initialization takes place as usual, unless a pragma
Import is also specified for the object (in which case any necessary initialization is presumably done in the foreign
language).

12.d Any compilation unit containing an attribute_reference of a given type depends semantically on the declaration of the
package in which the type is declared, even if not mentioned in an applicable with_clause — see 10.1.1. In this case, it
means that if a compilation unit contains X’Address, then it depends on the declaration of System. Otherwise, the fact
that the value of Address is of a type in System wouldn’t make sense; it would violate the ‘‘legality determinable via
semantic dependences’’ Language Design Principle.

12.e AI-00305 — If X is a task type, then within the body of X, X denotes the current task object; thus, X’Address denotes
the object’s address.

12.f Interrupt entries and their addresses are described in J.7.1, ‘‘Interrupt Entries’’.

12.g If X is not allocated on a storage element boundary, X’Address points at the first of the storage elements that contains
any part of X. This is important for the definition of the Position attribute to be sensible.

Erroneous Execution

13 {erroneous execution} If an Address is specified, it is the programmer’s responsibility to ensure that the
address is valid; otherwise, program execution is erroneous.

Implementation Advice

14 For an array X, X’Address should point at the first component of the array, and not at the array bounds.
14.a Ramification: On the other hand, we have no advice to offer about discriminants and tag fields; whether or not the

address points at them is not specified by the language. If discriminants are stored separately, then the Position of a
discriminant might be negative, or might raise an exception.

15 {recommended level of support [Address attribute]} The recommended level of support for the Address attribute is:

16 • X’Address should produce a useful result if X is an object that is aliased or of a by-reference
type, or is an entity whose Address has been specified.

16.a Reason: Aliased objects are the ones for which the Unchecked_Access attribute is allowed; hence, these have
to be allocated on an addressable boundary anyway. Similar considerations apply to objects of a by-reference
type.

16.b An implementation need not go to any trouble to make Address work in other cases. For example, if an object
X is not aliased and not of a by-reference type, and the implementation chooses to store it in a register,
X’Address might return System.Null_Address (assuming registers are not addressable). For a subprogram
whose calling convention is Intrinsic, or for a package, the implementation need not generate an out-of-line
piece of code for it.

17 • An implementation should support Address clauses for imported subprograms.

18 • Objects (including subcomponents) that are aliased or of a by-reference type should be al-
located on storage element boundaries.

18.a Reason: This is necessary for the Address attribute to be useful (since First_Bit and Last_Bit apply only to
components). Implementations generally need to do this anyway, for tasking to work properly.

ISO/IEC 8652:1995(E) —AARM;6.0

379 21 December 1994 Representation Attributes 13.3

19• If the Address of an object is specified, or it is imported or exported, then the implementation
should not perform optimizations based on assumptions of no aliases.

NOTES
201 The specification of a link name in a pragma Export (see B.1) for a subprogram or object is an alternative to explicit

specification of its link-time address, allowing a link-time directive to place the subprogram or object within memory.

212 The rules for the Size attribute imply, for an aliased object X, that if X’Size = Storage_Unit, then X’Address points at a
storage element containing all of the bits of X, and only the bits of X.

Wording Changes From Ada 83

21.aThe intended meaning of the various attributes, and their attribute_definition_clauses, is more explicit.

21.bThe address_clause has been renamed to at_clause and moved to Annex J, ‘‘Obsolescent Features’’. One can use an
Address clause (‘‘for T’Address use ...;’’) instead.

21.cThe attributes defined in RM83-13.7.3 are moved to Annex G, A.5.3, and A.5.4.
Language Design Principles

21.dBy default, the Alignment of a subtype should reflect the ‘‘natural’’ alignment for objects of the subtype on the
machine. The Alignment, whether specified or default, should be known at compile time, even though Addresses are
generally not known at compile time. (The generated code should never need to check at run time the number of zero
bits at the end of an address to determine an alignment).

21.eThere are two symmetric purposes of Alignment clauses, depending on whether or not the implementation has control
over object allocation. If the implementation allocates an object, the implementation should ensure that the Address
and Alignment are consistent with each other. If something outside the implementation allocates an object, the
implementation should be allowed to assume that the Address and Alignment are consistent, but should not assume
stricter alignments than that.

Static Semantics

22For a prefix X that denotes a subtype or object:

X’Alignment The Address of an object that is allocated under control of the implementation is an 23

integral multiple of the Alignment of the object (that is, the Address modulo the
Alignment is zero). The offset of a record component is a multiple of the Alignment
of the component. For an object that is not allocated under control of the implemen-
tation (that is, one that is imported, that is allocated by a user-defined allocator, whose
Address has been specified, or is designated by an access value returned by an in-
stance of Unchecked_Conversion), the implementation may assume that the Address
is an integral multiple of its Alignment. The implementation shall not assume a
stricter alignment.

The value of this attribute is of type universal_integer, and nonnegative; zero means 24

that the object is not necessarily aligned on a storage element boundary.
24.aRamification: The Alignment is passed by an allocator to the Allocate operation; the implementation has to choose a

value such that if the address returned by Allocate is aligned as requested, the generated code can correctly access the
object.

24.bThe above mention of ‘‘modulo’’ is referring to the "mod" operator declared in System.Storage_Elements; if X mod N
= 0, then X is by definition aligned on an N-storage-element boundary.

{specifiable [of Alignment for first subtypes and objects]} {Alignment clause} Alignment may be 25

specified for first subtypes and [stand-alone] objects via an attribute_definition_
clause; the expression of such a clause shall be static, and its value nonnegative. If
the Alignment of a subtype is specified, then the Alignment of an object of the sub-
type is at least as strict, unless the object’s Alignment is also specified. The Align-
ment of an object created by an allocator is that of the designated subtype.

If an Alignment is specified for a composite subtype or object, this Alignment shall 26

be equal to the least common multiple of any specified Alignments of the subcom-
ponent subtypes, or an integer multiple thereof.

ISO/IEC 8652:1995(E) —AARM;6.0

13.3 Representation Attributes 21 December 1994 380

Erroneous Execution

27 {erroneous execution} Program execution is erroneous if an Address clause is given that conflicts with the
Alignment.

27.a Ramification: The user has to either give an Alignment clause also, or else know what Alignment the implementation
will choose by default.

28 If the Alignment is specified for an object that is not allocated under control of the implementation,
execution is erroneous if the object is not aligned according to the Alignment.

Implementation Advice

29 {recommended level of support [Alignment attribute for subtypes]} The recommended level of support for the Align-
ment attribute for subtypes is:

30 • An implementation should support specified Alignments that are factors and multiples of the
number of storage elements per word, subject to the following:

31 • An implementation need not support specified Alignments for combinations of Sizes and
Alignments that cannot be easily loaded and stored by available machine instructions.

32 • An implementation need not support specified Alignments that are greater than the maximum
Alignment the implementation ever returns by default.

33 {recommended level of support [Alignment attribute for objects]} The recommended level of support for the Align-
ment attribute for objects is:

34 • Same as above, for subtypes, but in addition:

35 • For stand-alone library-level objects of statically constrained subtypes, the implementation
should support all Alignments supported by the target linker. For example, page alignment is
likely to be supported for such objects, but not for subtypes.

NOTES
36 3 Alignment is a subtype-specific attribute.

37 4 The Alignment of a composite object is always equal to the least common multiple of the Alignments of its
components, or a multiple thereof.

37.a Discussion: For default Alignments, this follows from the semantics of Alignment. For specified Alignments, it
follows from a Legality Rule stated above.

38 5 A component_clause, Component_Size clause, or a pragma Pack can override a specified Alignment.

38.a Discussion: Most objects are allocated by the implementation; for these, the implementation obeys the Alignment.
The implementation is of course allowed to make an object more aligned than its Alignment requires — an object
whose Alignment is 4 might just happen to land at an address that’s a multiple of 4096. For formal parameters, the
implementation might want to force an Alignment stricter than the parameter’s subtype. For example, on some
systems, it is customary to always align parameters to 4 storage elements.

38.b Hence, one might initially assume that the implementation could evilly make all Alignments 1 by default, even though
integers, say, are normally aligned on a 4-storage-element boundary. However, the implementation cannot get away
with that — if the Alignment is 1, the generated code cannot assume an Alignment of 4, at least not for objects
allocated outside the control of the implementation.

38.c Of course implementations can assume anything they can prove, but typically an implementation will be unable to
prove much about the alignment of, say, an imported object. Furthermore, the information about where an address
‘‘came from’’ can be lost to the compiler due to separate compilation.

38.d The Alignment of an object that is a component of a packed composite object will usually be 0, to indicate that the
component is not necessarily aligned on a storage element boundary. For a subtype, an Alignment of 0 means that
objects of the subtype are not normally aligned on a storage element boundary at all. For example, an implementation
might choose to make Component_Size be 0 for an array of Booleans, even when pragma Pack has not been specified
for the array. In this case, Boolean’Alignment would be 0. (In the presence of tasking, this would in general be
feasible only on a machine that had atomic test-bit and set-bit instructions.)

ISO/IEC 8652:1995(E) —AARM;6.0

381 21 December 1994 Representation Attributes 13.3

38.eIf the machine has no particular natural alignments, then all subtype Alignments will probably be 1 by default.

38.fSpecifying an Alignment of 0 in an attribute_definition_clause does not require the implementation to do anything
(except return 0 when the Alignment is queried). However, it might be taken as advice on some implementations.

38.gIt is an error for an Address clause to disobey the object’s Alignment. The error cannot be detected at compile time, in
general, because the Address is not necessarily known at compile time (and is almost certainly not static). We do not
require a run-time check, since efficiency seems paramount here, and Address clauses are treading on thin ice anyway.
Hence, this misuse of Address clauses is just like any other misuse of Address clauses — it’s erroneous.

38.hA type extension can have a stricter Alignment than its parent. This can happen, for example, if the Alignment of the
parent is 4, but the extension contains a component with Alignment 8. The Alignment of a class-wide type or object
will have to be the maximum possible Alignment of any extension.

38.iThe recommended level of support for the Alignment attribute is intended to reflect a minimum useful set of
capabilities. An implementation can assume that all Alignments are multiples of each other — 1, 2, 4, and 8 might be
the only supported Alignments for subtypes. An Alignment of 3 or 6 is unlikely to be useful. For objects that can be
allocated statically, we recommend that the implementation support larger alignments, such as 4096. We do not
recommend such large alignments for subtypes, because the maximum subtype alignment will also have to be used as
the alignment of stack frames, heap objects, and class-wide objects. Similarly, we do not recommend such large
alignments for stack-allocated objects.

38.jIf the maximum default Alignment is 8 (say, Long_Float’Alignment = 8), then the implementation can refuse to accept
stricter alignments for subtypes. This simplifies the generated code, since the compiler can align the stack and
class-wide types to this maximum without a substantial waste of space (or time).

38.kNote that the recommended level of support takes into account interactions between Size and Alignment. For example,
on a 32-bit machine with 8-bit storage elements, where load and store instructions have to be aligned according to the
size of the thing being loaded or stored, the implementation might accept an Alignment of 1 if the Size is 8, but might
reject an Alignment of 1 if the Size is 32. On a machine where unaligned loads and stores are merely inefficient (as
opposed to causing hardware traps), we would expect an Alignment of 1 to be supported for any Size.

Wording Changes From Ada 83

38.lThe nonnegative part is missing from RM83 (for mod_clauses, nee alignment_clauses, which are an obsolete version of
Alignment clauses).

Static Semantics

39For a prefix X that denotes an object:

X’Size Denotes the size in bits of the representation of the object. The value of this attribute 40

is of the type universal_integer.
40.aRamification: Note that Size is in bits even if Machine_Radix is 10. Each decimal digit (and the sign) is presumably

represented as some number of bits.

{specifiable [of Size for stand-alone objects]} {Size clause} Size may be specified for [stand- 41

alone] objects via an attribute_definition_clause; the expression of such a clause shall
be static and its value nonnegative.

Implementation Advice

42{recommended level of support [Size attribute]} The recommended level of support for the Size attribute of
objects is:

43• A Size clause should be supported for an object if the specified Size is at least as large as its
subtype’s Size, and corresponds to a size in storage elements that is a multiple of the object’s
Alignment (if the Alignment is nonzero).

Static Semantics

44For every subtype S:

S’Size If S is definite, denotes the size [(in bits)] that the implementation would choose for 45

the following objects of subtype S:

46• A record component of subtype S when the record type is packed.

ISO/IEC 8652:1995(E) —AARM;6.0

13.3 Representation Attributes 21 December 1994 382

47 • The formal parameter of an instance of Unchecked_Conversion that con-
verts from subtype S to some other subtype.

If S is indefinite, the meaning is implementation defined. The value of this attribute48

is of the type universal_integer. {specifiable [of Size for first subtypes]} {Size clause} The
Size of an object is at least as large as that of its subtype, unless the object’s Size is
determined by a Size clause, a component_clause, or a Component_Size clause. Size
may be specified for first subtypes via an attribute_definition_clause; the expression
of such a clause shall be static and its value nonnegative.

48.a Implementation defined: The meaning of Size for indefinite subtypes.

48.b Reason: The effects of specifying the Size of a subtype are:

48.c • Unchecked_Conversion works in a predictable manner.

48.d • A composite type cannot be packed so tightly as to override the specified Size of a component’s subtype.

48.e • Assuming the Implementation Advice is obeyed, if the specified Size allows independent addressability,
then the Size of certain objects of the subtype should be equal to the subtype’s Size. This applies to
stand-alone objects and to components (unless a component_clause or a Component_Size clause applies).

48.f A component_clause or a Component_Size clause can cause an object to be smaller than its subtype’s specified size. A
pragma Pack cannot; if a component subtype’s size is specified, this limits how tightly the composite object can be
packed.

48.g The Size of a class-wide (tagged) subtype is unspecified, because it’s not clear what it should mean; it should certainly
not depend on all of the descendants that happen to exist in a given program. Note that this cannot be detected at
compile time, because in a generic unit, it is not necessarily known whether a given subtype is class-wide. It might
raise an exception on some implementations.

48.h Ramification: A Size clause for a numeric subtype need not affect the underlying numeric type. For example, if I say:

48.i type S is range 1..2;
for S’Size use 64;

48.j I am not guaranteed that S’Base’Last >= 2**63–1, nor that intermediate results will be represented in 64 bits.

48.k Reason: There is no need to complicate implementations for this sort of thing, because the right way to affect the base
range of a type is to use the normal way of declaring the base range:

48.l type Big is range -2**63 .. 2**63 - 1;
subtype Small is Big range 1..1000;

48.m Ramification: The Size of a large unconstrained subtype (e.g. String’Size) is likely to raise Constraint_Error, since it
is a nonstatic expression of type universal_integer that might overflow the largest signed integer type. There is no
requirement that the largest integer type be able to represent the size in bits of the largest possible object.

Implementation Requirements

49 In an implementation, Boolean’Size shall be 1.

Implementation Advice

50 If the Size of a subtype is specified, and allows for efficient independent addressability (see 9.10) on the
target architecture, then the Size of the following objects of the subtype should equal the Size of the
subtype:

51 • Aliased objects (including components).

52 • Unaliased components, unless the Size of the component is determined by a component_
clause or Component_Size clause.

52.a Ramification: Thus, on a typical 32-bit machine, ‘‘for S’Size use 32;’’ will guarantee that aliased objects of subtype
S, and components whose subtype is S, will have Size = 32 (assuming the implementation chooses to obey this
Implementation Advice). On the other hand, if one writes, ‘‘for S2’Size use 5;’’ then stand-alone objects of subtype
S2 will typically have their Size rounded up to ensure independent addressability.

52.b Note that ‘‘for S’Size use 32;’’ does not cause things like formal parameters to have Size = 32 — the implementation
is allowed to make all parameters be at least 64 bits, for example.

ISO/IEC 8652:1995(E) —AARM;6.0

383 21 December 1994 Representation Attributes 13.3

52.cNote that ‘‘for S2’Size use 5;’’ requires record components whose subtype is S2 to be exactly 5 bits if the record type
is packed. The same is not true of array components; their Size may be rounded up to the nearest factor of the word
size.

52.dImplementation Note: {gaps} On most machines, arrays don’t contain gaps between components; if the Component_
Size is greater than the Size of the component subtype, the extra bits are generally considered part of each component,
rather than gaps between components. On the other hand, a record might contain gaps between components, depending
on what sorts of loads, stores, and masking operations are generally done by the generated code.

52.eFor an array, any extra bits stored for each component will generally be part of the component — the whole point of
storing extra bits is to make loads and stores more efficient by avoiding the need to mask out extra bits. The PDP-10 is
one counter-example; since the hardware supports byte strings with a gap at the end of each word, one would want to
pack in that manner.

53A Size clause on a composite subtype should not affect the internal layout of components.
53.aReason: That’s what Pack pragmas, record_representation_clauses, and Component_Size clauses are for.

54{recommended level of support [Size attribute]} The recommended level of support for the Size attribute of
subtypes is:

55• The Size (if not specified) of a static discrete or fixed point subtype should be the number of
bits needed to represent each value belonging to the subtype using an unbiased represen-
tation, leaving space for a sign bit only if the subtype contains negative values. If such a
subtype is a first subtype, then an implementation should support a specified Size for it that
reflects this representation.

55.aImplementation Note: This applies to static enumeration subtypes, using the internal codes used to represent
the values.

55.bFor a two’s-complement machine, this implies that for a static signed integer subtype S, if all values of S are in
the range 0 .. 2n–1, or all values of S are in the range –2n–1 .. 2n–1–1, for some n less than or equal to the word
size, then S’Size should be <= the smallest such n. For a one’s-complement machine, it is the same except that
in the second range, the lower bound ‘‘–2n–1’’ is replaced by ‘‘–2n–1+1’’.

55.cIf an integer subtype (whether signed or unsigned) contains no negative values, the Size should not include
space for a sign bit.

55.dTypically, the implementation will choose to make the Size of a subtype be exactly the smallest such n.
However, it might, for example, choose a biased representation, in which case it could choose a smaller value.

55.eOn most machines, it is in general not a good idea to pack (parts of) multiple stand-alone objects into the same
storage element, because (1) it usually doesn’t save much space, and (2) it requires locking to prevent tasks
from interfering with each other, since separate stand-alone objects are independently addressable. Therefore,
if S’Size = 2 on a machine with 8-bit storage elements, the size of a stand-alone object of subtype S will
probably not be 2. It might, for example, be 8, 16 or 32, depending on the availability and efficiency of various
machine instructions. The same applies to components of composite types, unless packing, Component_Size,
or record layout is specified.

55.fFor an unconstrained discriminated object, if the implementation allocates the maximum possible size, then the
Size attribute should return that maximum possible size.

55.gRamification: The Size of an object X is not usually the same as that of its subtype S. If X is a stand-alone
object or a parameter, for example, most implementations will round X’Size up to a storage element boundary,
or more, so X’Size might be greater than S’Size. On the other hand, X’Size cannot be less than S’Size, even if
the implementation can prove, for example, that the range of values actually taken on by X during execution is
smaller than the range of S.

55.hFor example, if S is a first integer subtype whose range is 0..3, S’Size will be probably be 2 bits, and
components of packed composite types of this subtype will be 2 bits (assuming Storage_Unit is a multiple of 2),
but stand-alone objects and parameters will probably not have a size of 2 bits; they might be rounded up to 32
bits, for example. On the other hand, Unchecked_Conversion will use the 2-bit size, even when converting a
stand-alone object, as one would expect.

55.iAnother reason for making the Size of an object bigger than its subtype’s Size is to support the run-time
detection of uninitialized variables. {uninitialized variables [partial]} The implementation might add an extra
value to a discrete subtype that represents the uninitialized state, and check for this value on use. In some cases,
the extra value will require an extra bit in the representation of the object. Such detection is not required by the
language. If it is provided, the implementation has to be able to turn it off. For example, if the programmer

ISO/IEC 8652:1995(E) —AARM;6.0

13.3 Representation Attributes 21 December 1994 384

gives a record_representation_clause or Component_Size clause that makes a component too small to allow the
extra bit, then the implementation will not be able to perform the checking (not using this method, anyway).

55.j The fact that the size of an object is not necessarily the same as its subtype can be confusing:

55.k type Device_Register is range 0..2**8 - 1;
for Device_Register’Size use 8; -- Confusing!
My_Device : Device_Register;
for My_Device’Address use To_Address(16#FF00#);

55.l The programmer might think that My_Device’Size is 8, and that My_Device’Address points at an 8-bit
location. However, this is not true. In Ada 83 (and in Ada 9X), My_Device’Size might well be 32, and My_
Device’Address might well point at the high-order 8 bits of the 32-bit object, which are always all zero bits. If
My_Device’Address is passed to an assembly language subprogram, based on the programmer’s assumption,
the program will not work properly.

55.m Reason: It is not reasonable to require that an implementation allocate exactly 8 bits to all objects of subtype
Device_Register. For example, in many run-time models, stand-alone objects and parameters are always
aligned to a word boundary. Such run-time models are generally based on hardware considerations that are
beyond the control of the implementer. (It is reasonable to require that an implementation allocate exactly 8
bits to all components of subtype Device_Register, if packed.)

55.n Ramification: The correct way to write the above code is like this:

55.o type Device_Register is range 0..2**8 - 1;
My_Device : Device_Register;
for My_Device’Size use 8;
for My_Device’Address use To_Address(16#FF00#);

55.p If the implementation cannot accept 8-bit stand-alone objects, then this will be illegal. However, on a machine
where an 8-bit device register exists, the implementation will probably be able to accept 8-bit stand-alone
objects. Therefore, My_Device’Size will be 8, and My_Device’Address will point at those 8 bits, as desired.

55.q If an object of subtype Device_Register is passed to a foreign language subprogram, it will be passed according
to that subprogram’s conventions. Most foreign language implementations have similar run-time model
restrictions. For example, when passing to a C function, where the argument is of the C type char* (that is,
pointer to char), the C compiler will generally expect a full word value, either on the stack, or in a register. It
will not expect a single byte. Thus, Size clauses for subtypes really have nothing to do with passing parameters
to foreign language subprograms.

56 • For a subtype implemented with levels of indirection, the Size should include the size of the
pointers, but not the size of what they point at.

56.a Ramification: For example, if a task object is represented as a pointer to some information (including a task
stack), then the size of the object should be the size of the pointer. The Storage_Size, on the other hand, should
include the size of the stack.

NOTES
57 6 Size is a subtype-specific attribute.

58 7 A component_clause or Component_Size clause can override a specified Size. A pragma Pack cannot.

Wording Changes From Ada 83

58.a The requirement for a nonnegative value in a Size clause was not in RM83, but it’s hard to see how it would make
sense. For uniformity, we forbid negative sizes, rather than letting implementations define their meaning.

Static Semantics

59 For a prefix T that denotes a task object [(after any implicit dereference)]:

T’Storage_Size Denotes the number of storage elements reserved for the task. The value of this60

attribute is of the type universal_integer. The Storage_Size includes the size of the
task’s stack, if any. The language does not specify whether or not it includes other
storage associated with the task (such as the ‘‘task control block’’ used by some
implementations.) If a pragma Storage_Size is given, the value of the Storage_Size
attribute is at least the value specified in the pragma.

60.a Ramification: The value of this attribute is never negative, since it is impossible to ‘‘reserve’’ a negative number of
storage elements.

ISO/IEC 8652:1995(E) —AARM;6.0

385 21 December 1994 Representation Attributes 13.3

60.bIf the implementation chooses to allocate an initial amount of storage, and then increase this as needed, the Storage_
Size cannot include the additional amounts (assuming the allocation of the additional amounts can raise Storage_Error);
this is inherent in the meaning of ‘‘reserved.’’

60.cThe implementation is allowed to allocate different amounts of storage for different tasks of the same subtype.

60.dStorage_Size is also defined for access subtypes — see 13.11.

61[{Storage_Size clause: see also pragma Storage_Size} A pragma Storage_Size specifies the amount of storage to
be reserved for the execution of a task.]

Syntax

62The form of a pragma Storage_Size is as follows:

63pragma Storage_Size(expression);

64A pragma Storage_Size is allowed only immediately within a task_definition.

Name Resolution Rules

65{expected type [Storage_Size pragma argument]} The expression of a pragma Storage_Size is expected to be of
any integer type.

Dynamic Semantics

66A pragma Storage_Size is elaborated when an object of the type defined by the immediately enclosing
task_definition is created. {elaboration [Storage_Size pragma]} For the elaboration of a pragma Storage_Size,
the expression is evaluated; the Storage_Size attribute of the newly created task object is at least the value
of the expression.

66.aRamification: The implementation is allowed to round up a specified Storage_Size amount. For example, if the
implementation always allocates in chunks of 4096 bytes, the number 200 might be rounded up to 4096. Also, if the
user specifies a negative number, the implementation has to normalize this to 0, or perhaps to a positive number.

67{Storage_Check [partial]} {check, language-defined (Storage_Check)} {Storage_Error (raised by failure of run-time check)} At
the point of task object creation, or upon task activation, Storage_Error is raised if there is insufficient
free storage to accommodate the requested Storage_Size.

Static Semantics

68For a prefix X that denotes an array subtype or array object [(after any implicit dereference)]:

X’Component_Size 69

Denotes the size in bits of components of the type of X. The value of this attribute is
of type universal_integer.

{specifiable [of Component_Size for array types]} {Component_Size clause} Component_Size may 70

be specified for array types via an attribute_definition_clause; the expression of such a
clause shall be static, and its value nonnegative.

70.aImplementation Note: The intent is that the value of X’Component_Size is always nonnegative. If the array is stored
‘‘backwards’’ in memory (which might be caused by an implementation-defined pragma), X’Component_Size is still
positive.

70.bRamification: For an array object A, A’Component_Size = A(I)’Size for any index I.

Implementation Advice

71{recommended level of support [Component_Size attribute]} The recommended level of support for the Component_
Size attribute is:

72• An implementation need not support specified Component_Sizes that are less than the Size of
the component subtype.

ISO/IEC 8652:1995(E) —AARM;6.0

13.3 Representation Attributes 21 December 1994 386

73 • An implementation should support specified Component_Sizes that are factors and multiples
of the word size. For such Component_Sizes, the array should contain no gaps between
components. For other Component_Sizes (if supported), the array should contain no gaps
between components when packing is also specified; the implementation should forbid this
combination in cases where it cannot support a no-gaps representation.

73.a Ramification: For example, if Storage_Unit = 8, and Word_Size = 32, then the user is allowed to specify a
Component_Size of 1, 2, 4, 8, 16, and 32, with no gaps. In addition, n*32 is allowed for positive integers n,
again with no gaps. If the implementation accepts Component_Size = 3, then it might allocate 10 components
per word, with a 2-bit gap at the end of each word (unless packing is also specified), or it might not have any
internal gaps at all. (There can be gaps at either end of the array.)

Static Semantics

74 For every subtype S of a tagged type T (specific or class-wide), the following attribute is defined:

S’External_Tag {External_Tag clause} {specifiable [of External_Tag for a tagged type]} S’External_Tag denotes75

an external string representation for S’Tag; it is of the predefined type String.
External_Tag may be specified for a specific tagged type via an attribute_definition_
clause; the expression of such a clause shall be static. The default external tag
representation is implementation defined. See 3.9.2 and 13.13.2.

75.a Implementation defined: The default external representation for a type tag.

Implementation Requirements

76 In an implementation, the default external tag for each specific tagged type declared in a partition shall be
distinct, so long as the type is declared outside an instance of a generic body. If the compilation unit in
which a given tagged type is declared, and all compilation units on which it semantically depends, are the
same in two different partitions, then the external tag for the type shall be the same in the two partitions.
What it means for a compilation unit to be the same in two different partitions is implementation defined.
At a minimum, if the compilation unit is not recompiled between building the two different partitions that
include it, the compilation unit is considered the same in the two partitions.

76.a Implementation defined: What determines whether a compilation unit is the same in two different partitions.

76.b Reason: These requirements are important because external tags are used for input/output of class-wide types. These
requirements ensure that what is written by one program can be read back by some other program so long as they share
the same declaration for the type (and everything it depends on).

76.c The user may specify the external tag if (s)he wishes its value to be stable even across changes to the compilation unit
in which the type is declared (or changes in some unit on which it depends).

76.d We use a String rather than a Storage_Array to represent an external tag for portability.

76.e Ramification: Note that the characters of an external tag need not all be graphic characters. In other words, the
external tag can be a sequence of arbitrary 8-bit bytes.

NOTES
77 8 The following language-defined attributes are specifiable, at least for some of the kinds of entities to which they apply:

Address, Size, Component_Size, Alignment, External_Tag, Small, Bit_Order, Storage_Pool, Storage_Size, Write, Output,
Read, Input, and Machine_Radix.

78 9 It follows from the general rules in 13.1 that if one writes ‘‘for X’Size use Y;’’ then the X’Size attribute_reference will
return Y (assuming the implementation allows the Size clause). The same is true for all of the specifiable attributes except
Storage_Size.

78.a Ramification: An implementation may specify that an implementation-defined attribute is specifiable for certain
entities. This follows from the fact that the semantics of implementation-defined attributes is implementation defined.
An implementation is not allowed to make a language-defined attribute specifiable if it isn’t.

ISO/IEC 8652:1995(E) —AARM;6.0

387 21 December 1994 Representation Attributes 13.3

Examples

79Examples of attribute definition clauses:
80Byte : constant := 8;

Page : constant := 2**12;

81type Medium is range 0 .. 65_000;
for Medium’Size use 2*Byte;
for Medium’Alignment use 2;
Device_Register : Medium;
for Device_Register’Size use Medium’Size;
for Device_Register’Address use System.Storage_Elements.To_Address(16#FFFF_0020#);

82type Short is delta 0.01 range -100.0 .. 100.0;
for Short’Size use 15;

83for Car_Name’Storage_Size use -- specify access type’s storage pool size
2000*((Car’Size/System.Storage_Unit) +1); -- approximately 2000 cars

84function My_Read(Stream : access Ada.Streams.Root_Stream_Type’Class)
return T;

for T’Read use My_Read; -- see 13.13.2

NOTES
8510 Notes on the examples: In the Size clause for Short, fifteen bits is the minimum necessary, since the type definition

requires Short’Small <= 2**(–7).

Extensions to Ada 83

85.a{extensions to Ada 83} The syntax rule for length_clause is replaced with the new syntax rule for attribute_definition_
clause, and it is modified to allow a name (as well as an expression).

Wording Changes From Ada 83

85.bThe syntax rule for attribute_definition_clause now requires that the prefix of the attribute be a local_name; in Ada 83
this rule was stated in the text.

85.cIn Ada 83, the relationship between a representation_clause specifying a certain aspect and an attribute that queried
that aspect was unclear. In Ada 9X, they are the same, except for certain explicit exceptions.

13.4 Enumeration Representation Clauses
1[An enumeration_representation_clause specifies the internal codes for enumeration literals.]

Syntax

2enumeration_representation_clause ::=
for first_subtype_local_name use enumeration_aggregate;

3enumeration_aggregate ::= array_aggregate

Name Resolution Rules

4{expected type [enumeration_representation_clause expressions]} The enumeration_aggregate shall be written as a
one-dimensional array_aggregate, for which the index subtype is the unconstrained subtype of the
enumeration type, and each component expression is expected to be of any integer type.

4.aRamification: The ‘‘full coverage rules’’ for aggregates applies. An others is not allowed — there is no applicable
index constraint in this context.

Legality Rules

5The first_subtype_local_name of an enumeration_representation_clause shall denote an enumeration
subtype.

5.aRamification: As for all type-related representation items, the local_name is required to denote a first subtype.

6The expressions given in the array_aggregate shall be static, and shall specify distinct integer codes for
each value of the enumeration type; the associated integer codes shall satisfy the predefined ordering
relation of the type.

ISO/IEC 8652:1995(E) —AARM;6.0

13.4 Enumeration Representation Clauses 21 December 1994 388

6.a Reason: Each value of the enumeration type has to be given an internal code, even if the first subtype of the
enumeration type is constrained to only a subrange (this is only possible if the enumeration type is a derived type).
This ‘‘full coverage’’ requirement is important because one may refer to Enum’Base’First and Enum’Base’Last, which
need to have defined representations.

Static Semantics

7 {aspect of representation [coding]} {coding (aspect of representation)} An enumeration_representation_clause
specifies the coding aspect of representation. {internal code} The coding consists of the internal code for
each enumeration literal, that is, the integral value used internally to represent each literal.

Implementation Requirements

8 For nonboolean enumeration types, if the coding is not specified for the type, then for each value of the
type, the internal code shall be equal to its position number.

8.a Reason: This default representation is already used by all known Ada compilers for nonboolean enumeration types.
Therefore, we make it a requirement so users can depend on it, rather than feeling obliged to supply for every
enumeration type an enumeration representation clause that is equivalent to this default rule.

8.b Discussion: For boolean types, it is relatively common to use all ones for True, and all zeros for False, since some
hardware supports that directly. Of course, for a one-bit Boolean object (like in a packed array), False is presumably
zero and True is presumably one (choosing the reverse would be extremely unfriendly!).

Implementation Advice

9 {recommended level of support [enumeration_representation_clause]} The recommended level of support for
enumeration_representation_clauses is:

10 • An implementation should support at least the internal codes in the range System.Min_
Int..System.Max_Int. An implementation need not support enumeration_representation_
clauses for boolean types.

10.a Ramification: The implementation may support numbers outside the above range, such as numbers greater
than System.Max_Int. See AI-00564.

10.b Reason: The benefits of specifying the internal coding of a boolean type do not outweigh the implementation
costs. Consider, for example, the implementation of the logical operators on a packed array of booleans with
strange internal codes. It’s implementable, but not worth it.

NOTES
11 11 Unchecked_Conversion may be used to query the internal codes used for an enumeration type. The attributes of the

type, such as Succ, Pred, and Pos, are unaffected by the representation_clause. For example, Pos always returns the
position number, not the internal integer code that might have been specified in a representation_clause.

11.a Discussion: Suppose the enumeration type in question is derived:

11.b type T1 is (Red, Green, Blue);
subtype S1 is T1 range Red .. Green;
type S2 is new S1;
for S2 use (Red => 10, Green => 20, Blue => 30);

11.c The representation_clause has to specify values for all enumerals, even ones that are not in S2 (such as Blue). The
Base attribute can be used to get at these values. For example:

11.d for I in S2’Base loop
... -- When I equals Blue, the internal code is 30.

end loop;

11.e We considered allowing or requiring ‘‘for S2’Base use ...’’ in cases like this, but it didn’t seem worth the trouble.

Examples

12 Example of an enumeration representation clause:
13 type Mix_Code is (ADD, SUB, MUL, LDA, STA, STZ);

14 for Mix_Code use
(ADD => 1, SUB => 2, MUL => 3, LDA => 8, STA => 24, STZ =>33);

ISO/IEC 8652:1995(E) —AARM;6.0

389 21 December 1994 Enumeration Representation Clauses 13.4

Extensions to Ada 83

14.a{extensions to Ada 83} As in other similar contexts, Ada 9X allows expressions of any integer type, not just
expressions of type universal_integer, for the component expressions in the enumeration_aggregate. The preference
rules for the predefined operators of root_integer eliminate any ambiguity.

14.bFor portability, we now require that the default coding for an enumeration type be the ‘‘obvious’’ coding using position
numbers. This is satisfied by all known implementations.

13.5 Record Layout
1{aspect of representation [layout]} {layout (aspect of representation)} {aspect of representation [record layout]} {record layout

(aspect of representation)} {aspect of representation [storage place]} {storage place (of a component)} The (record) layout
aspect of representation consists of the storage places for some or all components, that is, storage place
attributes of the components. The layout can be specified with a record_representation_clause.

13.5.1 Record Representation Clauses
1[A record_representation_clause specifies the storage representation of records and record extensions,

that is, the order, position, and size of components (including discriminants, if any). {bit field: see record_

representation_clause}]

Language Design Principles

1.aIt should be feasible for an implementation to use negative offsets in the representation of composite types. However,
no implementation should be forced to support negative offsets. Therefore, negative offsets should be disallowed in
record_representation_clauses.

Syntax

2record_representation_clause ::=
for first_subtype_local_name use

record [mod_clause]
{component_clause}

end record;

3component_clause ::=
component_local_name at position range first_bit .. last_bit;

4position ::= static_expression

5first_bit ::= static_simple_expression

6last_bit ::= static_simple_expression

6.aReason: First_bit and last_bit need to be simple_expression instead of expression for the same reason as in range (see
3.5, ‘‘Scalar Types’’).

Name Resolution Rules

7{expected type [component_clause expressions]} {expected type [position]} {expected type [first_bit]} {expected type [last_bit]}

Each position, first_bit, and last_bit is expected to be of any integer type.
7.aRamification: These need not have the same integer type.

Legality Rules

8The first_subtype_local_name of a record_representation_clause shall denote a specific nonlimited
record or record extension subtype.

8.aRamification: As for all type-related representation items, the local_name is required to denote a first subtype.

9If the component_local_name is a direct_name, the local_name shall denote a component of the type. For
a record extension, the component shall not be inherited, and shall not be a discriminant that corresponds

ISO/IEC 8652:1995(E) —AARM;6.0

13.5.1 Record Representation Clauses 21 December 1994 390

to a discriminant of the parent type. If the component_local_name has an attribute_designator, the direct_
name of the local_name shall denote either the declaration of the type or a component of the type, and the
attribute_designator shall denote an implementation-defined implicit component of the type.

10 The position, first_bit, and last_bit shall be static expressions. The value of position and first_bit shall be
nonnegative. The value of last_bit shall be no less than first_bit – 1.

10.a Ramification: A component_clause such as ‘‘X at 4 range 0..–1;’’ is allowed if X can fit in zero bits.

11 At most one component_clause is allowed for each component of the type, including for each dis-
criminant (component_clauses may be given for some, all, or none of the components). Storage places
within a component_list shall not overlap, unless they are for components in distinct variants of the same
variant_part.

12 A name that denotes a component of a type is not allowed within a record_representation_clause for the
type, except as the component_local_name of a component_clause.

12.a Reason: It might seem strange to make the record_representation_clause part of the declarative region, and then
disallow mentions of the components within almost all of the record_representation_clause. The alternative would be
to treat the component_local_name like a formal parameter name in a subprogram call (in terms of visibility).
However, this rule would imply slightly different semantics, because (given the actual rule) the components can hide
other declarations. This was the rule in Ada 83, and we see no reason to change it. The following, for example, was
and is illegal:

12.b type T is
record

X : Integer;
end record;

X : constant := 31; -- Same defining name as the component.
for T use

record
X at 0 range 0..X; -- Illegal!

end record;

12.c The component X hides the named number X throughout the record_representation_clause.

Static Semantics

13 A record_representation_clause (without the mod_clause) specifies the layout. The storage place at-
tributes (see 13.5.2) are taken from the values of the position, first_bit, and last_bit expressions after
normalizing those values so that first_bit is less than Storage_Unit.

13.a Ramification: For example, if Storage_Unit is 8, then ‘‘C at 0 range 24..31;’’ defines C’Position = 3, C’First_Bit = 0,
and C’Last_Bit = 7. This is true of machines with either bit ordering.

13.b A component_clause also determines the value of the Size attribute of the component, since this attribute is related to
First_Bit and Last_Bit.

14 [A record_representation_clause for a record extension does not override the layout of the parent part;] if
the layout was specified for the parent type, it is inherited by the record extension.

Implementation Permissions

15 An implementation may generate implementation-defined components (for example, one containing the
offset of another component). An implementation may generate names that denote such implementation-
defined components; such names shall be implementation-defined attribute_references. An implemen-
tation may allow such implementation-defined names to be used in record_representation_clauses. An
implementation can restrict such component_clauses in any manner it sees fit.

15.a Implementation defined: Implementation-defined components.

ISO/IEC 8652:1995(E) —AARM;6.0

391 21 December 1994 Record Representation Clauses 13.5.1

15.bRamification: Of course, since the semantics of implementation-defined attributes is implementation defined, the
implementation need not support these names in all situations. They might be purely for the purpose of component_
clauses, for example. The visibility rules for such names are up to the implementation.

15.cWe do not allow such component names to be normal identifiers — that would constitute blanket permission to do all
kinds of evil things.

15.dDiscussion: {dope} Such implementation-defined components are known in the vernacular as ‘‘dope.’’ Their main
purpose is for storing offsets of components that depend on discriminants.

16If a record_representation_clause is given for an untagged derived type, the storage place attributes for
all of the components of the derived type may differ from those of the corresponding components of the
parent type, even for components whose storage place is not specified explicitly in the record_
representation_clause.

16.aReason: This is clearly necessary, since the whole record may need to be laid out differently.

Implementation Advice

17{recommended level of support [record_representation_clause]} The recommended level of support for record_
representation_clauses is:

18• An implementation should support storage places that can be extracted with a load, mask,
shift sequence of machine code, and set with a load, shift, mask, store sequence, given the
available machine instructions and run-time model.

19• A storage place should be supported if its size is equal to the Size of the component subtype,
and it starts and ends on a boundary that obeys the Alignment of the component subtype.

20• If the default bit ordering applies to the declaration of a given type, then for a component
whose subtype’s Size is less than the word size, any storage place that does not cross an
aligned word boundary should be supported.

20.aReason: The above recommendations are sufficient to define interfaces to most interesting hardware. This
causes less implementation burden than the definition in ACID, which requires arbitrary bit alignments of
arbitrarily large components. Since the ACID definition is neither enforced by the ACVC, nor supported by all
implementations, it seems OK for us to weaken it.

21• An implementation may reserve a storage place for the tag field of a tagged type, and dis-
allow other components from overlapping that place.

21.aRamification: Similar permission for other dope is not granted.

22• An implementation need not support a component_clause for a component of an extension
part if the storage place is not after the storage places of all components of the parent type,
whether or not those storage places had been specified.

22.aReason: These restrictions are probably necessary if block equality operations are to be feasible for class-wide
types. For block comparison to work, the implementation typically has to fill in any gaps with zero (or one)
bits. If a ‘‘gap’’ in the parent type is filled in with a component in a type extension, then this won’t work when
a class-wide object is passed by reference, as is required.

NOTES
2312 If no component_clause is given for a component, then the choice of the storage place for the component is left to the

implementation. If component_clauses are given for all components, the record_representation_clause completely
specifies the representation of the type and will be obeyed exactly by the implementation.

23.aRamification: The visibility rules prevent the name of a component of the type from appearing in a record_
representation_clause at any place except for the component_local_name of a component_clause. However, since the
record_representation_clause is part of the declarative region of the type declaration, the component names hide outer
homographs throughout.

23.bA record_representation_clause cannot be given for a protected type, even though protected types, like record types,
have components. The primary reason for this rule is that there is likely to be too much dope in a protected type —
entry queues, bit maps for barrier values, etc. In order to control the representation of the user-defined components,
simply declare a record type, give it a representation_clause, and give the protected type one component whose type is

ISO/IEC 8652:1995(E) —AARM;6.0

13.5.1 Record Representation Clauses 21 December 1994 392

the record type. Alternatively, if the protected object is protecting something like a device register, it makes more
sense to keep the thing being protected outside the protected object (possibly with a pointer to it in the protected
object), in order to keep implementation-defined components out of the way.

Examples

24 Example of specifying the layout of a record type:
25 Word : constant := 4; -- storage element is byte, 4 bytes per word

26 type State is (A,M,W,P);
type Mode is (Fix, Dec, Exp, Signif);

27 type Byte_Mask is array (0..7) of Boolean;
type State_Mask is array (State) of Boolean;
type Mode_Mask is array (Mode) of Boolean;

28 type Program_Status_Word is
record

System_Mask : Byte_Mask;
Protection_Key : Integer range 0 .. 3;
Machine_State : State_Mask;
Interrupt_Cause : Interruption_Code;
Ilc : Integer range 0 .. 3;
Cc : Integer range 0 .. 3;
Program_Mask : Mode_Mask;
Inst_Address : Address;

end record;

29 for Program_Status_Word use
record

System_Mask at 0*Word range 0 .. 7;
Protection_Key at 0*Word range 10 .. 11; -- bits 8,9 unused
Machine_State at 0*Word range 12 .. 15;
Interrupt_Cause at 0*Word range 16 .. 31;
Ilc at 1*Word range 0 .. 1; -- second word
Cc at 1*Word range 2 .. 3;
Program_Mask at 1*Word range 4 .. 7;
Inst_Address at 1*Word range 8 .. 31;

end record;

30 for Program_Status_Word’Size use 8*System.Storage_Unit;
for Program_Status_Word’Alignment use 8;

NOTES
31 13 Note on the example: The record_representation_clause defines the record layout. The Size clause guarantees that (at

least) eight storage elements are used for objects of the type. The Alignment clause guarantees that aliased, imported, or
exported objects of the type will have addresses divisible by eight.

Wording Changes From Ada 83

31.a The alignment_clause has been renamed to mod_clause and moved to Annex J, ‘‘Obsolescent Features’’.

31.b We have clarified that implementation-defined component names have to be in the form of an attribute_reference of a
component or of the first subtype itself; surely Ada 83 did not intend to allow arbitrary identifiers.

31.c The RM83-13.4(7) wording incorrectly allows components in non-variant records to overlap. We have corrected that
oversight.

13.5.2 Storage Place Attributes
Static Semantics

1 {storage place attributes (of a component)} For a component C of a composite, non-array object R, the storage
place attributes are defined:

1.a Ramification: The storage place attributes are not (individually) specifiable, but the user may control their values by
giving a record_representation_clause.

R.C’Position Denotes the same value as R.C’Address – R’Address. The value of this attribute is of2

the type universal_integer.

ISO/IEC 8652:1995(E) —AARM;6.0

393 21 December 1994 Storage Place Attributes 13.5.2

2.aRamification: Thus, R.C’Position is the offset of C in storage elements from the beginning of the object, where the
first storage element of an object is numbered zero. R’Address + R.C’Position = R.C’Address. For record extensions,
the offset is not measured from the beginning of the extension part, but from the beginning of the whole object, as
usual.

2.bIn ‘‘R.C’Address – R’Address’’, the "–" operator is the one in System.Storage_Elements that takes two Addresses and
returns a Storage_Offset.

R.C’First_Bit Denotes the offset, from the start of the first of the storage elements occupied by C, of 3

the first bit occupied by C. This offset is measured in bits. The first bit of a storage
element is numbered zero. The value of this attribute is of the type universal_integer.

R.C’Last_Bit Denotes the offset, from the start of the first of the storage elements occupied by C, of 4

the last bit occupied by C. This offset is measured in bits. The value of this attribute is
of the type universal_integer.

4.aRamification: The ordering of bits in a storage element is is defined in 13.5.3, ‘‘Bit Ordering’’.

4.bR.C’Size = R.C’Last_Bit – R.C’First_Bit + 1. (Unless the implementation chooses an indirection representation.)

4.cIf a component_clause applies to a component, then that component will be at the same relative storage place in all
objects of the type. Otherwise, there is no such requirement.

Implementation Advice

5{contiguous representation [partial]} {discontiguous representation [partial]} If a component is represented using some
form of pointer (such as an offset) to the actual data of the component, and this data is contiguous with
the rest of the object, then the storage place attributes should reflect the place of the actual data, not the
pointer. If a component is allocated discontiguously from the rest of the object, then a warning should be
generated upon reference to one of its storage place attributes.

5.aReason: For discontiguous components, these attributes make no sense. For example, an implementation might
allocate dynamic-sized components on the heap. For another example, an implementation might allocate the dis-
criminants separately from the other components, so that multiple objects of the same subtype can share discriminants.
Such representations cannot happen if there is a component_clause for that component.

13.5.3 Bit Ordering
1[The Bit_Order attribute specifies the interpretation of the storage place attributes.]

1.aReason: The intention is to provide uniformity in the interpretation of storage places across implementations on a
particular machine by allowing the user to specify the Bit_Order. It is not intended to fully support data inter-
operability across different machines, although it can be used for that purpose in some situations.

1.bWe can’t require all implementations on a given machine to use the same bit ordering by default; if the user cares, a
pragma Bit_Order can be used to force all implementations to use the same bit ordering.

Static Semantics

2{bit ordering} A bit ordering is a method of interpreting the meaning of the storage place attributes. {High_

Order_First} {big endian} {endian (big)} High_Order_First [(known in the vernacular as ‘‘big endian’’)] means
that the first bit of a storage element (bit 0) is the most significant bit (interpreting the sequence of bits
that represent a component as an unsigned integer value). {Low_Order_First} {little endian} {endian (little)}

Low_Order_First [(known in the vernacular as ‘‘little endian’’)] means the opposite: the first bit is the
least significant.

3For every specific record subtype S, the following attribute is defined:

S’Bit_Order Denotes the bit ordering for the type of S. The value of this attribute is of type 4

System.Bit_Order. {specifiable [of Bit_Order for record types and record extensions]} {Bit_Order

clause} Bit_Order may be specified for specific record types via an attribute_
definition_clause; the expression of such a clause shall be static.

ISO/IEC 8652:1995(E) —AARM;6.0

13.5.3 Bit Ordering 21 December 1994 394

5 If Word_Size = Storage_Unit, the default bit ordering is implementation defined. If Word_Size >
Storage_Unit, the default bit ordering is the same as the ordering of storage elements in a word, when
interpreted as an integer. {byte sex: see ordering of storage elements in a word}

5.a Implementation defined: If Word_Size = Storage_Unit, the default bit ordering.

5.b Ramification: Consider machines whose Word_Size = 32, and whose Storage_Unit = 8. Assume the default bit
ordering applies. On a machine with big-endian addresses, the most significant storage element of an integer is at the
address of the integer. Therefore, bit zero of a storage element is the most significant bit. On a machine with
little-endian addresses, the least significant storage element of an integer is at the address of the integer. Therefore, bit
zero of a storage element is the least significant bit.

6 The storage place attributes of a component of a type are interpreted according to the bit ordering of the
type.

6.a Ramification: This implies that the interpretation of the position, first_bit, and last_bit of a component_clause of a
record_representation_clause obey the bit ordering given in a representation item.

Implementation Advice

7 {recommended level of support [bit ordering]} The recommended level of support for the nondefault bit ordering
is:

8 • If Word_Size = Storage_Unit, then the implementation should support the nondefault bit
ordering in addition to the default bit ordering.

8.a Ramification: If Word_Size = Storage_Unit, the implementation should support both bit orderings. We don’t push
for support of the nondefault bit ordering when Word_Size > Storage_Unit (except of course for upward compatibility
with a preexisting implementation whose Ada 83 bit order did not correspond to the required Ada 9X default bit order),
because implementations are required to support storage positions that cross storage element boundaries when Word_
Size > Storage_Unit. Such storage positions will be split into two or three pieces if the nondefault bit ordering is used,
which could be onerous to support. However, if Word_Size = Storage_Unit, there might not be a natural bit ordering,
but the splitting problem need not occur.

Extensions to Ada 83

8.b {extensions to Ada 83} The Bit_Order attribute is new to Ada 9X.

13.6 Change of Representation
1 [{change of representation} {representation (change of)} A type_conversion (see 4.6) can be used to convert

between two different representations of the same array or record. To convert an array from one
representation to another, two array types need to be declared with matching component subtypes, and
convertible index types. If one type has packing specified and the other does not, then explicit conversion
can be used to pack or unpack an array.

2 To convert a record from one representation to another, two record types with a common ancestor type
need to be declared, with no inherited subprograms. Distinct representations can then be specified for the
record types, and explicit conversion between the types can be used to effect a change in representation.]

2.a Ramification: This technique does not work if the first type is an untagged type with user-defined primitive
subprograms. It does not work at all for tagged types.

Examples

3 Example of change of representation:
4 -- Packed_Descriptor and Descriptor are two different types

-- with identical characteristics, apart from their
-- representation

5 type Descriptor is
record

-- components of a descriptor
end record;

ISO/IEC 8652:1995(E) —AARM;6.0

395 21 December 1994 Change of Representation 13.6

6type Packed_Descriptor is new Descriptor;

7for Packed_Descriptor use
record
-- component clauses for some or for all components

end record;

8-- Change of representation can now be accomplished by explicit type conversions:

9D : Descriptor;
P : Packed_Descriptor;

10P := Packed_Descriptor(D); -- pack D
D := Descriptor(P); -- unpack P

13.7 The Package System
1[For each implementation there is a library package called System which includes the definitions of

certain configuration-dependent characteristics.]

Static Semantics

2The following language-defined library package exists:
2.aImplementation defined: The contents of the visible part of package System and its language-defined children.

3package System is
pragma Preelaborate(System);

4type Name is implementation-defined-enumeration-type;
System_Name : constant Name := implementation-defined;

5-- System-Dependent Named Numbers:

6Min_Int : constant := root_integer’First;
Max_Int : constant := root_integer’Last;

{Min_Int (named number in package System)} {Max_Int (named number in package System)}

7Max_Binary_Modulus : constant := implementation-defined;
Max_Nonbinary_Modulus : constant := implementation-defined;

{Max_Binary_Modulus (named number in package System)} {Max_Nonbinary_Modulus (named number in package System)}

8Max_Base_Digits : constant := root_real’Digits;
Max_Digits : constant := implementation-defined;

{Max_Base_Digits (named number in package System)} {Max_Digits (named number in package System)}

9Max_Mantissa : constant := implementation-defined;
Fine_Delta : constant := implementation-defined;

{Max_Mantissa (named number in package System)} {Fine_Delta (named number in package System)}

10Tick : constant := implementation-defined;

{Tick (named number in package System)}

11-- Storage-related Declarations:

12type Address is implementation-defined;
Null_Address : constant Address;

{address (null)} {Null_Address (constant in System)}

13Storage_Unit : constant := implementation-defined;
Word_Size : constant := implementation-defined * Storage_Unit;
Memory_Size : constant := implementation-defined;

{Storage_Unit (named number in package System)} {Word_Size (named number in package System)}

14-- {address (comparison)} Address Comparison:
function "<" (Left, Right : Address) return Boolean;
function "<="(Left, Right : Address) return Boolean;
function ">" (Left, Right : Address) return Boolean;
function ">="(Left, Right : Address) return Boolean;
function "=" (Left, Right : Address) return Boolean;

-- function "/=" (Left, Right : Address) return Boolean;
-- "/=" is implicitly defined
pragma Convention(Intrinsic, "<");
... -- and so on for all language-defined subprograms in this package

ISO/IEC 8652:1995(E) —AARM;6.0

13.7 The Package System 21 December 1994 396

15 -- Other System-Dependent Declarations:
type Bit_Order is (High_Order_First, Low_Order_First);
Default_Bit_Order : constant Bit_Order;

16 -- Priority-related declarations (see D.1):
subtype Any_Priority is Integer range implementation-defined;
subtype Priority is Any_Priority range Any_Priority’First .. implementation-defined;
subtype Interrupt_Priority is Any_Priority range Priority’Last+1 .. Any_Priority’Last;

17 Default_Priority : constant Priority := (Priority’First + Priority’Last)/2;

18 private
... -- not specified by the language

end System;

19 Name is an enumeration subtype. Values of type Name are the names of alternative machine configura-
tions handled by the implementation. System_Name represents the current machine configuration.

20 The named numbers Fine_Delta and Tick are of the type universal_real; the others are of the type
universal_integer.

21 The meanings of the named numbers are:

[Min_Int The smallest (most negative) value allowed for the expressions of a signed_integer_22

type_definition.

Max_Int The largest (most positive) value allowed for the expressions of a signed_integer_23

type_definition.

Max_Binary_Modulus24

A power of two such that it, and all lesser positive powers of two, are allowed as the
modulus of a modular_type_definition.

Max_Nonbinary_Modulus25

A value such that it, and all lesser positive integers, are allowed as the modulus of a
modular_type_definition.

25.a Ramification: There is no requirement that Max_Nonbinary_Modulus be less than or equal to Max_Binary_Modulus,
although that’s what makes most sense. On a typical 32-bit machine, for example, Max_Binary_Modulus will be
2**32 and Max_Nonbinary_Modulus will be 2**31, because supporting nonbinary moduli in above 2**31 causes
implementation difficulties.

Max_Base_Digits The largest value allowed for the requested decimal precision in a floating_point_26

definition.

Max_Digits The largest value allowed for the requested decimal precision in a floating_point_27

definition that has no real_range_specification. Max_Digits is less than or equal to
Max_Base_Digits.

Max_Mantissa The largest possible number of binary digits in the mantissa of machine numbers of a28

user-defined ordinary fixed point type. (The mantissa is defined in Annex G.)

Fine_Delta The smallest delta allowed in an ordinary_fixed_point_definition that has the real_29

range_specification range –1.0 .. 1.0.]

Tick A period in seconds approximating the real time interval during which the value of30

Calendar.Clock remains constant.
30.a Ramification: There is no required relationship between System.Tick and Duration’Small, other than the one

described here.

30.b The inaccuracy of the delay_statement has no relation to Tick. In particular, it is possible that the clock used for the
delay_statement is less accurate than Calendar.Clock.

30.c We considered making Tick a run-time-determined quantity, to allow for easier configurability. However, this would
not be upward compatible, and the desired configurability can be achieved using functionality defined in Annex D,
‘‘Real-Time Systems’’.

ISO/IEC 8652:1995(E) —AARM;6.0

397 21 December 1994 The Package System 13.7

Storage_Unit The number of bits per storage element. 31

Word_Size The number of bits per word. 32

Memory_Size An implementation-defined value [that is intended to reflect the memory size of the 33

configuration in storage elements.]
33.aDiscussion: It is unspecified whether this refers to the size of the address space, the amount of physical memory on the

machine, or perhaps some other interpretation of ‘‘memory size.’’ In any case, the value has to be given by a static
expression, even though the amount of memory on many modern machines is a dynamic quantity in several ways.
Thus, Memory_Size is not very useful.

34Address is of a definite, nonlimited type. Address represents machine addresses capable of addressing
individual storage elements. Null_Address is an address that is distinct from the address of any object or
program unit. {pointer: see type System.Address}

34.aRamification: The implementation has to ensure that there is at least one address that nothing will be allocated to;
Null_Address will be one such address.

34.bRamification: Address is the type of the result of the attribute Address.

34.cReason: Address is required to be nonlimited and definite because it is important to be able to assign addresses, and to
declare uninitialized address variables.

35See 13.5.3 for an explanation of Bit_Order and Default_Bit_Order.

Implementation Permissions

36An implementation may add additional implementation-defined declarations to package System and its
children. [However, it is usually better for the implementation to provide additional functionality via
implementation-defined children of System.] Package System may be declared pure.

36.aRamification: The declarations in package System and its children can be implicit. For example, since Address is not
limited, the predefined "=" and "/=" operations are probably sufficient. However, the implementation is not required to
use the predefined "=".

Implementation Advice

37Address should be of a private type.
37.aReason: This promotes uniformity by avoiding having implementation-defined predefined operations for the type.

We don’t require it, because implementations may want to stick with what they have.

37.bImplementation Note: It is not necessary for Address to be able to point at individual bits within a storage element.
Nor is it necessary for it to be able to point at machine registers. It is intended as a memory address that matches the
hardware’s notion of an address.

37.cThe representation of the null value of a general access type should be the same as that of Null_Address; instantiations
of Unchecked_Conversion should work accordingly. If the implementation supports interfaces to other languages, the
representation of the null value of a general access type should be the same as in those other languages, if appropriate.

37.dNote that the children of the Interfaces package will generally provide foreign-language-specific null values where
appropriate. See UI-0065 regarding Null_Address.

NOTES
3814 There are also some language-defined child packages of System defined elsewhere.

Wording Changes From Ada 83

38.aMuch of the content of System is standardized, to provide more uniformity across implementations. Implementations
can still add their own declarations to System, but are encouraged to do so via children of System.

38.bSome of the named numbers are defined more explicitly in terms of the standard numeric types.

38.cThe pragmas System_Name, Storage_Unit, and Memory_Size are no longer defined by the language. However, the
corresponding declarations in package System still exist. Existing implementations may continue to support the three
pragmas as implementation-defined pragmas, if they so desire.

ISO/IEC 8652:1995(E) —AARM;6.0

13.7 The Package System 21 December 1994 398

38.d Priority semantics, including subtype Priority, have been moved to the Real Time Annex.

13.7.1 The Package System.Storage_Elements
Static Semantics

1 The following language-defined library package exists:
2 package System.Storage_Elements is

pragma Preelaborate(System.Storage_Elements);

3 type Storage_Offset is range implementation-defined;

{Storage_Count (subtype in package System.Storage_Elements)}

4 subtype Storage_Count is Storage_Offset range 0..Storage_Offset’Last;

5 type Storage_Element is mod implementation-defined;
for Storage_Element’Size use Storage_Unit;
type Storage_Array is array

(Storage_Offset range <>) of aliased Storage_Element;
for Storage_Array’Component_Size use Storage_Unit;

6 -- {address (arithmetic)} Address Arithmetic:

7 function "+"(Left : Address; Right : Storage_Offset)
return Address;

function "+"(Left : Storage_Offset; Right : Address)
return Address;

function "-"(Left : Address; Right : Storage_Offset)
return Address;

function "-"(Left, Right : Address)
return Storage_Offset;

8 function "mod"(Left : Address; Right : Storage_Offset)
return Storage_Offset;

9 -- Conversion to/from integers:

10 type Integer_Address is implementation-defined;
function To_Address(Value : Integer_Address) return Address;
function To_Integer(Value : Address) return Integer_Address;

11 pragma Convention(Intrinsic, "+");
-- ...and so on for all language-defined subprograms declared in this package.

end System.Storage_Elements;

11.a Reason: The Convention pragmas imply that the attribute Access is not allowed for those operations.

11.b The mod function is needed so that the definition of Alignment makes sense.

12 Storage_Element represents a storage element. Storage_Offset represents an offset in storage elements.
Storage_Count represents a number of storage elements. {contiguous representation [partial]} {discontiguous

representation [partial]} Storage_Array represents a contiguous sequence of storage elements.
12.a Reason: The index subtype of Storage_Array is Storage_Offset because we wish to allow maximum flexibility. Most

Storage_Arrays will probably have a lower bound of 0 or 1, but other lower bounds, including negative ones, make
sense in some situations.

12.b Note that there are some language-defined subprograms that fill part of a Storage_Array, and return the index of the
last element filled as a Storage_Offset. The Read procedures in Streams (see 13.13.1), Streams.Stream_IO (see
A.12.1), and System.RPC (see E.5) behave in this manner. These will raise Constraint_Error if the resulting Last value
is not in Storage_Offset. This implies that the Storage_Array passed to these subprograms should not have a lower
bound of Storage_Offset’First, because then a read of 0 elements would always raise Constraint_Error. A better choice
of lower bound is 1.

13 Integer_Address is a [(signed or modular)] integer subtype. To_Address and To_Integer convert back
and forth between this type and Address.

ISO/IEC 8652:1995(E) —AARM;6.0

399 21 December 1994 The Package System.Storage_Elements 13.7.1

Implementation Requirements

14Storage_Offset’Last shall be greater than or equal to Integer’Last or the largest possible storage offset,
whichever is smaller. Storage_Offset’First shall be <= (–Storage_Offset’Last).

Implementation Permissions

15Package System.Storage_Elements may be declared pure.

Implementation Advice

16Operations in System and its children should reflect the target environment semantics as closely as is
reasonable. For example, on most machines, it makes sense for address arithmetic to ‘‘wrap around.’’
{Program_Error (raised by failure of run-time check)} Operations that do not make sense should raise Program_
Error.

16.aDiscussion: For example, on a segmented architecture, X < Y might raise Program_Error if X and Y do not point at
the same segment (assuming segments are unordered). Similarly, on a segmented architecture, the conversions
between Integer_Address and Address might not make sense for some values, and so might raise Program_Error.

16.bReason: We considered making Storage_Element a private type. However, it is better to declare it as a modular type
in the visible part, since code that uses it is already low level, and might as well have access to the underlying
representation. We also considered allowing Storage_Element to be any integer type, signed integer or modular, but it
is better to have uniformity across implementations in this regard, and viewing storage elements as unsigned seemed to
make the most sense.

16.cImplementation Note: To_Address is intended for use in Address clauses. Implementations should overload To_
Address if appropriate. For example, on a segmented architecture, it might make sense to have a record type
representing a segment/offset pair, and have a To_Address conversion that converts from that record type to type
Address.

13.7.2 The Package System.Address_To_Access_Conversions
Static Semantics

1The following language-defined generic library package exists:
2generic

type Object(<>) is limited private;
package System.Address_To_Access_Conversions is

pragma Preelaborate(Address_To_Access_Conversions);

3type Object_Pointer is access all Object;
function To_Pointer(Value : Address) return Object_Pointer;
function To_Address(Value : Object_Pointer) return Address;

4pragma Convention(Intrinsic, To_Pointer);
pragma Convention(Intrinsic, To_Address);

end System.Address_To_Access_Conversions;

5The To_Pointer and To_Address subprograms convert back and forth between values of types Object_
Pointer and Address. To_Pointer(X’Address) is equal to X’Unchecked_Access for any X that allows
Unchecked_Access. To_Pointer(Null_Address) returns null. {unspecified [partial]} For other addresses, the
behavior is unspecified. To_Address(null) returns Null_Address (for null of the appropriate type). To_
Address(Y), where Y /= null, returns Y.all’Address.

5.aDiscussion: The programmer should ensure that the address passed to To_Pointer is either Null_Address, or the
address of an object of type Object. Otherwise, the behavior of the program is unspecified; it might raise an exception
or crash, for example.

5.bReason: Unspecified is almost the same thing as erroneous; they both allow arbitrarily bad behavior. We don’t say
erroneous here, because the implementation might allow the address passed to To_Pointer to point at some memory
that just happens to ‘‘look like’’ an object of type Object. That’s not necessarily an error; it’s just not portable.
However, if the actual type passed to Object is (for example) an array type, the programmer would need to be aware of
any dope that the implementation expects to exist, when passing an address that did not come from the Address
attribute of an object of type Object.

ISO/IEC 8652:1995(E) —AARM;6.0

13.7.2 The Package System.Address_To_Access_Conversions 21 December 1994 400

5.c One might wonder why To_Pointer and To_Address are any better than unchecked conversions. The answer is that
Address does not necessarily have the same representation as an access type. For example, an access value might point
at the bounds of an array when an address would point at the first element. Or an access value might be an offset in
words from someplace, whereas an address might be an offset in bytes from the beginning of memory.

Implementation Permissions

6 An implementation may place restrictions on instantiations of Address_To_Access_Conversions.
6.a Ramification: For example, if the hardware requires aligned loads and stores, then dereferencing an access value that

is not properly aligned might raise an exception.

6.b For another example, if the implementation has chosen to use negative component offsets (from an access value), it
might not be possible to preserve the semantics, since negative offsets from the Address are not allowed. (The Address
attribute always points at ‘‘the first of the storage elements....’’) Note that while the implementation knows how to
convert an access value into an address, it might not be able to do the reverse. To avoid generic contract model
violations, the restriction might have to be detected at run time in some cases.

13.8 Machine Code Insertions
1 [{machine code insertion} A machine code insertion can be achieved by a call to a subprogram whose

sequence_of_statements contains code_statements.]

Syntax

2 code_statement ::= qualified_expression;

3 A code_statement is only allowed in the handled_sequence_of_statements of a subprogram_body.
If a subprogram_body contains any code_statements, then within this subprogram_body the only
allowed form of statement is a code_statement (labeled or not), the only allowed declarative_items
are use_clauses, and no exception_handler is allowed (comments and pragmas are allowed as
usual).

Name Resolution Rules

4 {expected type [code_statement]} The qualified_expression is expected to be of any type.

Legality Rules

5 The qualified_expression shall be of a type declared in package System.Machine_Code.
5.a Ramification: This includes types declared in children of System.Machine_Code.

6 A code_statement shall appear only within the scope of a with_clause that mentions package System.-
Machine_Code.

6.a Ramification: Note that this is not a note; without this rule, it would be possible to write machine code in compilation
units which depend on System.Machine_Code only indirectly.

Static Semantics

7 {System.Machine_Code} The contents of the library package System.Machine_Code (if provided) are im-
plementation defined. The meaning of code_statements is implementation defined. [Typically, each
qualified_expression represents a machine instruction or assembly directive.]

7.a Discussion: For example, an instruction might be a record with an Op_Code component and other components for the
operands.

7.b Implementation defined: The contents of the visible part of package System.Machine_Code, and the meaning of
code_statements.

Implementation Permissions

8 An implementation may place restrictions on code_statements. An implementation is not required to
provide package System.Machine_Code.

ISO/IEC 8652:1995(E) —AARM;6.0

401 21 December 1994 Machine Code Insertions 13.8

NOTES
915 An implementation may provide implementation-defined pragmas specifying register conventions and calling conven-

tions.

1016 Machine code functions are exempt from the rule that a return_statement is required. In fact, return_statements are
forbidden, since only code_statements are allowed.

10.aDiscussion: The idea is that the author of a machine code subprogram knows the calling conventions, and refers to
parameters and results accordingly. The implementation should document where to put the result of a machine code
function, for example, ‘‘Scalar results are returned in register 0.’’

1117 Intrinsic subprograms (see 6.3.1, ‘‘Conformance Rules’’) can also be used to achieve machine code insertions.
Interface to assembly language can be achieved using the features in Annex B, ‘‘Interface to Other Languages’’.

Examples

12Example of a code statement:
13M : Mask;

procedure Set_Mask; pragma Inline(Set_Mask);

14procedure Set_Mask is
use System.Machine_Code; -- assume ‘‘with System.Machine_Code;’’ appears somewhere above

begin
SI_Format’(Code => SSM, B => M’Base_Reg, D => M’Disp);
-- Base_Reg and Disp are implementation-defined attributes

end Set_Mask;

Extensions to Ada 83

14.a{extensions to Ada 83} Machine code functions are allowed in Ada 9X; in Ada 83, only procedures were allowed.
Wording Changes From Ada 83

14.bThe syntax for code_statement is changed to say ‘‘qualified_expression’’ instead of ‘‘subtype_mark’record_
aggregate’’. Requiring the type of each instruction to be a record type is overspecification.

13.9 Unchecked Type Conversions
1[{unchecked type conversion} {type conversion (unchecked)} {conversion (unchecked)} {type_conversion: see also unchecked

type conversion} {cast: see unchecked type conversion} An unchecked type conversion can be achieved by a call to
an instance of the generic function Unchecked_Conversion.]

Static Semantics

2The following language-defined generic library function exists:
3generic

type Source(<>) is limited private;
type Target(<>) is limited private;

function Ada.Unchecked_Conversion(S : Source) return Target;
pragma Convention(Intrinsic, Ada.Unchecked_Conversion);
pragma Pure(Ada.Unchecked_Conversion);

3.aReason: The pragma Convention implies that the attribute Access is not allowed for instances of Unchecked_
Conversion.

Dynamic Semantics

4The size of the formal parameter S in an instance of Unchecked_Conversion is that of its subtype. [This
is the actual subtype passed to Source, except when the actual is an unconstrained composite subtype, in
which case the subtype is constrained by the bounds or discriminants of the value of the actual expression
passed to S.]

5If all of the following are true, the effect of an unchecked conversion is to return the value of an object of
the target subtype whose representation is the same as that of the source object S:

6• S’Size = Target’Size.

ISO/IEC 8652:1995(E) —AARM;6.0

13.9 Unchecked Type Conversions 21 December 1994 402

6.a Ramification: Note that there is no requirement that the Sizes be known at compile time.

7 • S’Alignment = Target’Alignment.

8 • The target subtype is not an unconstrained composite subtype.

9 • {contiguous representation [partial]} {discontiguous representation [partial]} S and the target subtype both
have a contiguous representation.

10 • The representation of S is a representation of an object of the target subtype.

11 Otherwise, the effect is implementation defined; in particular, the result can be abnormal (see 13.9.1).
11.a Implementation defined: The effect of unchecked conversion.

11.b Ramification: Whenever unchecked conversions are used, it is the programmer’s responsibility to ensure that these
conversions maintain the properties that are guaranteed by the language for objects of the target type. This requires the
user to understand the underlying run-time model of the implementation. The execution of a program that violates
these properties by means of unchecked conversions is erroneous.

11.c An instance of Unchecked_Conversion can be applied to an object of a private type, assuming the implementation
allows it.

Implementation Permissions

12 An implementation may return the result of an unchecked conversion by reference, if the Source type is
not a by-copy type. [In this case, the result of the unchecked conversion represents simply a different
(read-only) view of the operand of the conversion.]

12.a Ramification: In other words, the result object of a call on an instance of Unchecked_Conversion can occupy the
same storage as the formal parameter S.

13 An implementation may place restrictions on Unchecked_Conversion.
13.a Ramification: For example, an instantiation of Unchecked_Conversion for types for which unchecked conversion

doesn’t make sense may be disallowed.

Implementation Advice

14 The Size of an array object should not include its bounds; hence, the bounds should not be part of the
converted data.

14.a Ramification: On the other hand, we have no advice to offer about discriminants and tag fields.

15 The implementation should not generate unnecessary run-time checks to ensure that the representation of
S is a representation of the target type. It should take advantage of the permission to return by reference
when possible. Restrictions on unchecked conversions should be avoided unless required by the target
environment.

15.a Implementation Note: As an example of an unnecessary run-time check, consider a record type with gaps between
components. The compiler might assume that such gaps are always zero bits. If a value is produced that does not obey
that assumption, then the program might misbehave. The implementation should not generate extra code to check for
zero bits (except, perhaps, in a special error-checking mode).

16 {recommended level of support [unchecked conversion]} The recommended level of support for unchecked conver-
sions is:

17 • Unchecked conversions should be supported and should be reversible in the cases where this
clause defines the result. {contiguous representation [partial]} {discontiguous representation [partial]} To
enable meaningful use of unchecked conversion, a contiguous representation should be used
for elementary subtypes, for statically constrained array subtypes whose component subtype
is one of the subtypes described in this paragraph, and for record subtypes without dis-
criminants whose component subtypes are described in this paragraph.

ISO/IEC 8652:1995(E) —AARM;6.0

403 21 December 1994 Data Validity 13.9.1

13.9.1 Data Validity
1Certain actions that can potentially lead to erroneous execution are not directly erroneous, but instead can

cause objects to become abnormal. Subsequent uses of abnormal objects can be erroneous.

2A scalar object can have an invalid representation, which means that the object’s representation does not
represent any value of the object’s subtype. {uninitialized variables [distributed]} The primary cause of invalid
representations is uninitialized variables.

3Abnormal objects and invalid representations are explained in this subclause.

Dynamic Semantics

4{normal state of an object [distributed]} {abnormal state of an object [distributed]} When an object is first created, and
any explicit or default initializations have been performed, the object and all of its parts are in the normal
state. Subsequent operations generally leave them normal. However, an object or part of an object can
become abnormal in the following ways:

5• {disruption of an assignment} An assignment to the object is disrupted due to an abort (see 9.8) or
due to the failure of a language-defined check (see 11.6).

6• The object is not scalar, and is passed to an in out or out parameter of an imported procedure
or language-defined input procedure, if after return from the procedure the representation of
the parameter does not represent a value of the parameter’s subtype.

7{unspecified [partial]} Whether or not an object actually becomes abnormal in these cases is not specified.
An abnormal object becomes normal again upon successful completion of an assignment to the object as
a whole.

Erroneous Execution

8{erroneous execution} It is erroneous to evaluate a primary that is a name denoting an abnormal object, or to
evaluate a prefix that denotes an abnormal object.

8.aRamification: Although a composite object with no subcomponents of an access type, and with static constraints all
the way down cannot become abnormal, a scalar subcomponent of such an object can become abnormal.

8.bThe in out or out parameter case does not apply to scalars; bad scalars are merely invalid representations, rather than
abnormal, in this case.

8.cReason: The reason we allow access objects, and objects containing subcomponents of an access type, to become
abnormal is because the correctness of an access value cannot necessarily be determined merely by looking at the bits
of the object. The reason we allow scalar objects to become abnormal is that we wish to allow the compiler to optimize
assuming that the value of a scalar object belongs to the object’s subtype, if the compiler can prove that the object is
initialized with a value that belongs to the subtype. The reason we allow composite objects to become abnormal if
some constraints are nonstatic is that such object might be represented with implicit levels of indirection; if those are
corrupted, then even assigning into a component of the object, or simply asking for its Address, might have an
unpredictable effect. The same is true if the discriminants have been destroyed.

Bounded (Run-Time) Errors

9{bounded error} {invalid representation} If the representation of a scalar object does not represent a value of the
object’s subtype (perhaps because the object was not initialized), the object is said to have an invalid
representation. It is a bounded error to evaluate the value of such an object. {Program_Error (raised by failure

of run-time check)} {Constraint_Error (raised by failure of run-time check)} If the error is detected, either Constraint_
Error or Program_Error is raised. Otherwise, execution continues using the invalid representation. The
rules of the language outside this subclause assume that all objects have valid representations. The
semantics of operations on invalid representations are as follows:

9.aDiscussion: The AARM is more explicit about what happens when the value of the case expression is an invalid
representation.

ISO/IEC 8652:1995(E) —AARM;6.0

13.9.1 Data Validity 21 December 1994 404

10 • If the representation of the object represents a value of the object’s type, the value of the type
is used.

11 • If the representation of the object does not represent a value of the object’s type, the seman-
tics of operations on such representations is implementation-defined, but does not by itself
lead to erroneous or unpredictable execution, or to other objects becoming abnormal.

Erroneous Execution

12 {erroneous execution} A call to an imported function or an instance of Unchecked_Conversion is erroneous if
the result is scalar, and the result object has an invalid representation.

12.a Ramification: In a typical implementation, every bit pattern that fits in an object of an integer subtype will represent a
value of the type, if not of the subtype. However, for an enumeration or floating point type, there are typically bit
patterns that do not represent any value of the type. In such cases, the implementation ought to define the semantics of
operations on the invalid representations in the obvious manner (assuming the bounded error is not detected): a given
representation should be equal to itself, a representation that is in between the internal codes of two enumeration literals
should behave accordingly when passed to comparison operators and membership tests, etc. We considered requiring
such sensible behavior, but it resulted in too much arcane verbiage, and since implementations have little incentive to
behave irrationally, such verbiage is not important to have.

12.b If a stand-alone scalar object is initialized to a an in-range value, then the implementation can take advantage of the fact
that any out-of-range value has to be abnormal. Such an out-of-range value can be produced only by things like
unchecked conversion, input, and disruption of an assignment due to abort or to failure of a language-defined check.
This depends on out-of-range values being checked before assignment (that is, checks are not optimized away unless
they are proven redundant).

12.c Consider the following example:

12.d type My_Int is range 0..99;
function Safe_Convert is new Unchecked_Conversion(My_Int, Integer);
function Unsafe_Convert is new Unchecked_Conversion(My_Int, Positive);
X : Positive := Safe_Convert(0); -- Raises Constraint_Error.
Y : Positive := Unsafe_Convert(0); -- Erroneous.

12.e The call to Unsafe_Convert causes erroneous execution. The call to Safe_Convert is not erroneous. The result object
is an object of subtype Integer containing the value 0. The assignment to X is required to do a constraint check; the
fact that the conversion is unchecked does not obviate the need for subsequent checks required by the language rules.

12.f Implementation Note: If an implementation wants to have a ‘‘friendly’’ mode, it might always assign an uninitialized
scalar a default initial value that is outside the object’s subtype (if there is one), and check for this value on some or all
reads of the object, so as to help detect references to uninitialized scalars. Alternatively, an implementation might want
to provide an ‘‘unsafe’’ mode where it presumed even uninitialized scalars were always within their subtype.

12.g Ramification: The above rules imply that it is a bounded error to apply a predefined operator to an object with a scalar
subcomponent having an invalid representation, since this implies reading the value of each subcomponent. Either
Program_Error or Constraint_Error is raised, or some result is produced, which if composite, might have a correspond-
ing scalar subcomponent still with an invalid representation.

12.h Note that it is not an error to assign, convert, or pass as a parameter a composite object with an uninitialized scalar
subcomponent. In the other hand, it is a (bounded) error to apply a predefined operator such as =, <, and xor to a
composite operand with an invalid scalar subcomponent.

13 The dereference of an access value is erroneous if it does not designate an object of an appropriate type or
a subprogram with an appropriate profile, if it designates a nonexistent object, or if it is an access-to-
variable value that designates a constant object. [Such an access value can exist, for example, because of
Unchecked_Deallocation, Unchecked_Access, or Unchecked_Conversion.]

13.a Ramification: The above mentioned Unchecked_... features are not the only causes of such access values. For
example, interfacing to other languages can also cause the problem.

13.b One obscure example is if the Adjust subprogram of a controlled type uses Unchecked_Access to create an access-to-
variable value designating a subcomponent of its controlled parameter, and saves this access value in a global object.
When Adjust is called during the initialization of a constant object of the type, the end result will be an access-to-
variable value that designates a constant object.

ISO/IEC 8652:1995(E) —AARM;6.0

405 21 December 1994 Data Validity 13.9.1

NOTES
1418 Objects can become abnormal due to other kinds of actions that directly update the object’s representation; such

actions are generally considered directly erroneous, however.

Wording Changes From Ada 83

14.aIn order to reduce the amount of erroneousness, we separate the concept of an undefined value into objects with invalid
representation (scalars only) and abnormal objects.

14.bReading an object with an invalid representation is a bounded error rather than erroneous; reading an abnormal object
is still erroneous. In fact, the only safe thing to do to an abnormal object is to assign to the object as a whole.

13.9.2 The Valid Attribute
1The Valid attribute can be used to check the validity of data produced by unchecked conversion, input,

interface to foreign languages, and the like.

Static Semantics

2For a prefix X that denotes a scalar object [(after any implicit dereference)], the following attribute is
defined:

X’Valid Yields True if and only if the object denoted by X is normal and has a valid represen- 3

tation. The value of this attribute is of the predefined type Boolean.
3.aRamification: Having checked that X’Valid is True, it is safe to read the value of X without fear of erroneous

execution caused by abnormality, or a bounded error caused by an invalid representation. Such a read will produce a
value in the subtype of X.

NOTES
419 Invalid data can be created in the following cases (not counting erroneous or unpredictable execution):

5• an uninitialized scalar object,

6• the result of an unchecked conversion,

7• input,

8• interface to another language (including machine code),

9• aborting an assignment,

10• disrupting an assignment due to the failure of a language-defined check (see 11.6), and

11• use of an object whose Address has been specified.

1220 X’Valid is not considered to be a read of X; hence, it is not an error to check the validity of invalid data.

12.aRamification: If X is of an enumeration type with a representation clause, then X’Valid checks that the value of X
when viewed as an integer is one of the specified internal codes.

12.bReason: Valid is defined only for scalar objects because the implementation and description burden would be too high
for other types. For example, given a typical run-time model, it is impossible to check the validity of an access value.
The same applies to composite types implemented with internal pointers. One can check the validity of a composite
object by checking the validity of each of its scalar subcomponents. The user should ensure that any composite types
that need to be checked for validity are represented in a way that does not involve implementation-defined components,
or gaps between components. Furthermore, such types should not contain access subcomponents.

12.cNote that one can safely check the validity of a composite object with an abnormal value only if the constraints on the
object and all of its subcomponents are static. Otherwise, evaluation of the prefix of the attribute_reference causes
erroneous execution (see 4.1).

Extensions to Ada 83

12.d{extensions to Ada 83} X’Valid is new in Ada 9X.

ISO/IEC 8652:1995(E) —AARM;6.0

13.10 Unchecked Access Value Creation 21 December 1994 406

13.10 Unchecked Access Value Creation
1 [The attribute Unchecked_Access is used to create access values in an unsafe manner — the programmer

is responsible for preventing ‘‘dangling references.’’]

Static Semantics

2 The following attribute is defined for a prefix X that denotes an aliased view of an object:

X’Unchecked_Access3

All rules and semantics that apply to X’Access (see 3.10.2) apply also to
X’Unchecked_Access, except that, for the purposes of accessibility rules and checks,
it is as if X were declared immediately within a library package. {Access attribute: see

also Unchecked_Access attribute}

NOTES
4 21 This attribute is provided to support the situation where a local object is to be inserted into a global linked data

structure, when the programmer knows that it will always be removed from the data structure prior to exiting the object’s
scope. The Access attribute would be illegal in this case (see 3.10.2, ‘‘Operations of Access Types’’).

4.a Ramification: {expected type [Unchecked_Access attribute]} The expected type for X’Unchecked_Access is as for
X’Access.

4.b If an attribute_reference with Unchecked_Access is used as the actual parameter for an access parameter, an
Accessibility_Check can never fail on that access parameter.

5 22 There is no Unchecked_Access attribute for subprograms.

5.a Reason: Such an attribute would allow ‘‘downward closures,’’ where an access value designating a more nested
subprogram is passed to a less nested subprogram. This requires some means of reconstructing the global environment
for the more nested subprogram, so that it can do up-level references to objects. The two methods of implementing
up-level references are displays and static links. If downward closures were supported, each access-to-subprogram
value would have to carry the static link or display with it. In the case of displays, this was judged to be infeasible, and
we don’t want to disrupt implementations by forcing them to use static links if they already use displays.

5.b If desired, an instance of Unchecked_Conversion can be used to create an access value of a global access-to-
subprogram type that designates a local subprogram. The semantics of using such a value are not specified by the
language. In particular, it is not specified what happens if such subprograms make up-level references; even if the
frame being referenced still exists, the up-level reference might go awry if the representation of a value of a global
access-to-subprogram type doesn’t include a static link.

13.11 Storage Management
1 [{user-defined storage management} {storage management (user-defined)} {user-defined heap management} {heap

management (user-defined)} Each access-to-object type has an associated storage pool. The storage allocated
by an allocator comes from the pool; instances of Unchecked_Deallocation return storage to the pool.
Several access types can share the same pool.]

2 [A storage pool is a variable of a type in the class rooted at Root_Storage_Pool, which is an abstract
limited controlled type. By default, the implementation chooses a standard storage pool for each access
type. The user may define new pool types, and may override the choice of pool for an access type by
specifying Storage_Pool for the type.]

2.a Ramification: By default, the implementation might choose to have a single global storage pool, which is used (by
default) by all access types, which might mean that storage is reclaimed automatically only upon partition completion.
Alternatively, it might choose to create a new pool at each accessibility level, which might mean that storage is
reclaimed for an access type when leaving the appropriate scope. Other schemes are possible.

Legality Rules

3 If Storage_Pool is specified for a given access type, Storage_Size shall not be specified for it.
3.a Reason: The Storage_Pool determines the Storage_Size; hence it would not make sense to specify both. Note that this

rule is simplified by the fact that the aspects in question cannot be specified for derived types, nor for non-first

ISO/IEC 8652:1995(E) —AARM;6.0

407 21 December 1994 Storage Management 13.11

subtypes, so we don’t have to worry about whether, say, Storage_Pool on a derived type overrides Storage_Size on the
parent type. For the same reason, ‘‘specified’’ means the same thing as ‘‘directly specified’’ here.

Static Semantics

4The following language-defined library package exists:
5with Ada.Finalization;

with System.Storage_Elements;
package System.Storage_Pools is

pragma Preelaborate(System.Storage_Pools);

6type Root_Storage_Pool is
abstract new Ada.Finalization.Limited_Controlled with private;

7procedure Allocate(
Pool : in out Root_Storage_Pool;
Storage_Address : out Address;
Size_In_Storage_Elements : in Storage_Elements.Storage_Count;
Alignment : in Storage_Elements.Storage_Count) is abstract;

8procedure Deallocate(
Pool : in out Root_Storage_Pool;
Storage_Address : in Address;
Size_In_Storage_Elements : in Storage_Elements.Storage_Count;
Alignment : in Storage_Elements.Storage_Count) is abstract;

9function Storage_Size(Pool : Root_Storage_Pool)
return Storage_Elements.Storage_Count is abstract;

10private
... -- not specified by the language

end System.Storage_Pools;

10.aReason: The Alignment parameter is provided to Deallocate because some allocation strategies require it. If it is not
needed, it can be ignored.

11{storage pool type} {pool type} A storage pool type (or pool type) is a descendant of Root_Storage_Pool.
{storage pool element} {pool element} {element (of a storage pool)} The elements of a storage pool are the objects
allocated in the pool by allocators.

11.aDiscussion: In most cases, an element corresponds to a single memory block allocated by Allocate. However, in some
cases the implementation may choose to associate more than one memory block with a given pool element.

12For every access subtype S, the following attributes are defined:

S’Storage_Pool Denotes the storage pool of the type of S. The type of this attribute is Root_Storage_ 13

Pool’Class.

S’Storage_Size Yields the result of calling Storage_Size(S’Storage_Pool)[, which is intended to be a 14

measure of the number of storage elements reserved for the pool.] The type of this
attribute is universal_integer.

14.aRamification: Storage_Size is also defined for task subtypes and objects — see 13.3.

14.bStorage_Size is not a measure of how much un-allocated space is left in the pool. That is, it includes both allocated and
unallocated space. Implementations and users may provide a Storage_Available function for their pools, if so desired.

15{specifiable [of Storage_Size for a non-derived access-to-object type]} {specifiable [of Storage_Pool for a non-derived access-
to-object type]} {Storage_Pool clause} {Storage_Size clause} Storage_Size or Storage_Pool may be specified for a
non-derived access-to-object type via an attribute_definition_clause; the name in a Storage_Pool clause
shall denote a variable.

16An allocator of type T allocates storage from T’s storage pool. If the storage pool is a user-defined object,
then the storage is allocated by calling Allocate, passing T’Storage_Pool as the Pool parameter. The
Size_In_Storage_Elements parameter indicates the number of storage elements to be allocated, and is no
more than D’Max_Size_In_Storage_Elements, where D is the designated subtype. The Alignment

ISO/IEC 8652:1995(E) —AARM;6.0

13.11 Storage Management 21 December 1994 408

parameter is D’Alignment. {contiguous representation [partial]} {discontiguous representation [partial]} The result
returned in the Storage_Address parameter is used by the allocator as the address of the allocated storage,
which is a contiguous block of memory of Size_In_Storage_Elements storage elements. [Any exception
propagated by Allocate is propagated by the allocator.]

16.a Ramification: If the implementation chooses to represent the designated subtype in multiple pieces, one allocator
evaluation might result in more than one call upon Allocate. In any case, allocators for the access type obtain all the
required storage for an object of the designated type by calling the specified Allocate procedure.

16.b Note that the implementation does not turn other exceptions into Storage_Error.

17 {standard storage pool} If Storage_Pool is not specified for a type defined by an access_to_object_definition,
then the implementation chooses a standard storage pool for it in an implementation-defined manner.
{Storage_Check [partial]} {check, language-defined (Storage_Check)} {Storage_Error (raised by failure of run-time check)} In
this case, the exception Storage_Error is raised by an allocator if there is not enough storage. It is
implementation defined whether or not the implementation provides user-accessible names for the stan-
dard pool type(s).

17.a Implementation defined: The manner of choosing a storage pool for an access type when Storage_Pool is not
specified for the type.

17.b Implementation defined: Whether or not the implementation provides user-accessible names for the standard pool
type(s).

17.c Ramification: An anonymous access type has no pool. An access-to-object type defined by a derived_type_definition
inherits its pool from its parent type, so all access-to-object types in the same derivation class share the same pool.
Hence the ‘‘defined by an access_to_object_definition’’ wording above.

17.d {contiguous representation [partial]} {discontiguous representation [partial]} There is no requirement that all storage
pools be implemented using a contiguous block of memory (although each allocation returns a pointer to a contiguous
block of memory).

18 If Storage_Size is specified for an access type, then the Storage_Size of this pool is at least that requested,
and the storage for the pool is reclaimed when the master containing the declaration of the access type is
left. {Storage_Error (raised by failure of run-time check)} If the implementation cannot satisfy the request,
Storage_Error is raised at the point of the attribute_definition_clause. If neither Storage_Pool nor
Storage_Size are specified, then the meaning of Storage_Size is implementation defined.

18.a Implementation defined: The meaning of Storage_Size.

18.b Ramification: The Storage_Size function and attribute will return the actual size, rather than the requested size.
Comments about rounding up, zero, and negative on task Storage_Size apply here, as well. See also AI-00557,
AI-00558, and AI-00608.

18.c The expression in a Storage_Size clause need not be static.

18.d The reclamation happens after the master is finalized.

18.e Implementation Note: For a pool allocated on the stack, normal stack cut-back can accomplish the reclamation. For a
library-level pool, normal partition termination actions can accomplish the reclamation.

19 If Storage_Pool is specified for an access type, then the specified pool is used.

20 {unspecified [partial]} The effect of calling Allocate and Deallocate for a standard storage pool directly
(rather than implicitly via an allocator or an instance of Unchecked_Deallocation) is unspecified.

20.a Ramification: For example, an allocator might put the pool element on a finalization list. If the user directly
Deallocates it, instead of calling an instance of Unchecked_Deallocation, then the implementation would probably try
to finalize the object upon master completion, which would be bad news. Therefore, the implementation should define
such situations as erroneous.

ISO/IEC 8652:1995(E) —AARM;6.0

409 21 December 1994 Storage Management 13.11

Erroneous Execution

21{erroneous execution} If Storage_Pool is specified for an access type, then if Allocate can satisfy the request,
it should allocate a contiguous block of memory, and return the address of the first storage element in
Storage_Address. The block should contain Size_In_Storage_Elements storage elements, and should be
aligned according to Alignment. The allocated storage should not be used for any other purpose while the
pool element remains in existence. If the request cannot be satisfied, then Allocate should propagate an
exception [(such as Storage_Error)]. If Allocate behaves in any other manner, then the program execu-
tion is erroneous.

Documentation Requirements

22{documentation requirements} An implementation shall document the set of values that a user-defined Allocate
procedure needs to accept for the Alignment parameter. An implementation shall document how the
standard storage pool is chosen, and how storage is allocated by standard storage pools.

22.aImplementation defined: Implementation-defined aspects of storage pools.

Implementation Advice

23An implementation should document any cases in which it dynamically allocates heap storage for a
purpose other than the evaluation of an allocator.

23.aReason: This is ‘‘Implementation Advice’’ because the term ‘‘heap storage’’ is not formally definable; therefore, it is
not testable whether the implementation obeys this advice.

24A default (implementation-provided) storage pool for an access-to-constant type should not have over-
head to support deallocation of individual objects.

24.aRamification: Unchecked_Deallocation is not defined for such types. If the access-to-constant type is library-level,
then no deallocation (other than at partition completion) will ever be necessary, so if the size needed by an allocator of
the type is known at link-time, then the allocation should be performed statically. If, in addition, the initial value of the
designated object is known at compile time, the object can be allocated to read-only memory.

24.bImplementation Note: If the Storage_Size for an access type is specified, the storage pool should consist of a
contiguous block of memory, possibly allocated on the stack. The pool should contain approximately this number of
storage elements. These storage elements should be reserved at the place of the Storage_Size clause, so that allocators
cannot raise Storage_Error due to running out of pool space until the appropriate number of storage elements has been
used up. This approximate (possibly rounded-up) value should be used as a maximum; the implementation should not
increase the size of the pool on the fly. If the Storage_Size for an access type is specified as zero, then the pool should
not take up any storage space, and any allocator for the type should raise Storage_Error.

24.cRamification: Note that most of this is approximate, and so cannot be (portably) tested. That’s why we make it an
Implementation Note. There is no particular number of allocations that is guaranteed to succeed, and there is no
particular number of allocations that is guaranteed to fail.

25A storage pool for an anonymous access type should be created at the point of an allocator for the type,
and be reclaimed when the designated object becomes inaccessible.

25.aImplementation Note: Normally the "storage pool" for an anonymous access type would not exist as a separate entity.
Instead, the designated object of the allocator would be allocated, in the case of an access parameter, as a local aliased
variable at the call site, and in the case of an access discriminant, contiguous with the object containing the
discriminant. This is similar to the way storage for aggregates is typically managed.

NOTES
2623 A user-defined storage pool type can be obtained by extending the Root_Storage_Pool type, and overriding the

primitive subprograms Allocate, Deallocate, and Storage_Size. A user-defined storage pool can then be obtained by
declaring an object of the type extension. The user can override Initialize and Finalize if there is any need for non-trivial
initialization and finalization for a user-defined pool type. For example, Finalize might reclaim blocks of storage that are
allocated separately from the pool object itself.

2724 The writer of the user-defined allocation and deallocation procedures, and users of allocators for the associated access
type, are responsible for dealing with any interactions with tasking. In particular:

ISO/IEC 8652:1995(E) —AARM;6.0

13.11 Storage Management 21 December 1994 410

28 • If the allocators are used in different tasks, they require mutual exclusion.

29 • If they are used inside protected objects, they cannot block.

30 • If they are used by interrupt handlers (see C.3, ‘‘Interrupt Support’’), the mutual exclusion mechanism has to
work properly in that context.

31 25 The primitives Allocate, Deallocate, and Storage_Size are declared as abstract (see 3.9.3), and therefore they have to
be overridden when a new (non-abstract) storage pool type is declared.

31.a Ramification: Note that the Storage_Pool attribute denotes an object, rather than a value, which is somewhat unusual
for attributes.

31.b The calls to Allocate, Deallocate, and Storage_Size are dispatching calls — this follows from the fact that the actual
parameter for Pool is T’Storage_Pool, which is of type Root_Storage_Pool’Class. In many cases (including all cases in
which Storage_Pool is not specified), the compiler can determine the tag statically. However, it is possible to construct
cases where it cannot.

31.c All access types in the same derivation class share the same pool, whether implementation defined or user defined.
This is necessary because we allow type conversions among them (even if they are pool-specific), and we want
pool-specific access values to always designate an element of the right pool.

31.d Implementation Note: If an access type has a standard storage pool, then the implementation doesn’t actually have to
follow the pool interface described here, since this would be semantically invisible. For example, the allocator could
conceivably be implemented with inline code.

Examples

32 To associate an access type with a storage pool object, the user first declares a pool object of some type
derived from Root_Storage_Pool. Then, the user defines its Storage_Pool attribute, as follows:

33 Pool_Object : Some_Storage_Pool_Type;

34 type T is access Designated;
for T’Storage_Pool use Pool_Object;

35 Another access type may be added to an existing storage pool, via:
36 for T2’Storage_Pool use T’Storage_Pool;

37 The semantics of this is implementation defined for a standard storage pool.
37.a Reason: For example, the implementation is allowed to choose a storage pool for T that takes advantage of the fact

that T is of a certain size. If T2 is not of that size, then the above will probably not work.

38 As usual, a derivative of Root_Storage_Pool may define additional operations. For example, presuming
that Mark_Release_Pool_Type has two additional operations, Mark and Release, the following is a pos-
sible use:

39 type Mark_Release_Pool_Type
(Pool_Size : Storage_Elements.Storage_Count;
Block_Size : Storage_Elements.Storage_Count)

is new Root_Storage_Pool with limited private;

40 ...

41

MR_Pool : Mark_Release_Pool_Type (Pool_Size => 2000,
Block_Size => 100);

42 type Acc is access ...;
for Acc’Storage_Pool use MR_Pool;
...

43 Mark(MR_Pool);
... -- Allocate objects using ‘‘new Designated(...)’’.
Release(MR_Pool); -- Reclaim the storage.

ISO/IEC 8652:1995(E) —AARM;6.0

411 21 December 1994 Storage Management 13.11

Extensions to Ada 83

43.a{extensions to Ada 83} User-defined storage pools are new to Ada 9X.
Wording Changes From Ada 83

43.bAda 83 had a concept called a ‘‘collection,’’ which is similar to what we call a storage pool. All access types in the
same derivation class shared the same collection. In Ada 9X, all access types in the same derivation class share the
same storage pool, but other (unrelated) access types can also share the same storage pool, either by default, or as
specified by the user. A collection was an amorphous collection of objects; a storage pool is a more concrete concept
— hence the different name.

43.cRM83 states the erroneousness of reading or updating deallocated objects incorrectly by missing various cases.

13.11.1 The Max_Size_In_Storage_Elements Attribute
1[The Max_Size_In_Storage_Elements attribute is useful in writing user-defined pool types.]

Static Semantics

2For every subtype S, the following attribute is defined:

S’Max_Size_In_Storage_Elements 3

Denotes the maximum value for Size_In_Storage_Elements that will be requested via
Allocate for an access type whose designated subtype is S. The value of this attribute
is of type universal_integer.

3.aRamification: If S is an unconstrained array subtype, or an unconstrained subtype with discriminants, S’Max_
Size_In_Storage_Elements might be very large.

13.11.2 Unchecked Storage Deallocation
1[{unchecked storage deallocation} {storage deallocation (unchecked)} {deallocation of storage} {reclamation of storage}

{freeing storage} Unchecked storage deallocation of an object designated by a value of an access type is
achieved by a call to an instance of the generic procedure Unchecked_Deallocation.]

Static Semantics

2The following language-defined generic library procedure exists:
3generic

type Object(<>) is limited private;
type Name is access Object;

procedure Ada.Unchecked_Deallocation(X : in out Name);
pragma Convention(Intrinsic, Ada.Unchecked_Deallocation);
pragma Preelaborate(Ada.Unchecked_Deallocation);

3.aReason: The pragma Convention implies that the attribute Access is not allowed for instances of Unchecked_
Deallocation.

Dynamic Semantics

4Given an instance of Unchecked_Deallocation declared as follows:
5procedure Free is

new Ada.Unchecked_Deallocation(
object_subtype_name, access_to_variable_subtype_name);

6Procedure Free has the following effect:
71. After executing Free(X), the value of X is null.

82. Free(X), when X is already equal to null, has no effect.

93. Free(X), when X is not equal to null first performs finalization, as described in 7.6. It then
deallocates the storage occupied by the object designated by X. If the storage pool is a
user-defined object, then the storage is deallocated by calling Deallocate, passing
access_to_variable_subtype_name’Storage_Pool as the Pool parameter. Storage_Address is

ISO/IEC 8652:1995(E) —AARM;6.0

13.11.2 Unchecked Storage Deallocation 21 December 1994 412

the value returned in the Storage_Address parameter of the corresponding Allocate call.
Size_In_Storage_Elements and Alignment are the same values passed to the corresponding
Allocate call. There is one exception: if the object being freed contains tasks, the object
might not be deallocated.

9.a Ramification: Free calls only the specified Deallocate procedure to do deallocation. For any given object
deallocation, the number of calls to Free (usually one) will be equal to the number of Allocate calls it took to
allocate the object. We do not define the relative order of multiple calls used to deallocate the same object —
that is, if the allocator allocated two pieces x and y, then Free might deallocate x and then y, or it might
deallocate y and then x.

10 {freed: see nonexistent} {nonexistent} After Free(X), the object designated by X, and any subcomponents
thereof, no longer exist; their storage can be reused for other purposes.

Bounded (Run-Time) Errors

11 {bounded error} It is a bounded error to free a discriminated, unterminated task object. The possible
consequences are:

11.a Reason: This is an error because the task might refer to its discriminants, and the discriminants might be deallocated
by freeing the task object.

12 • No exception is raised.

13 • {Program_Error (raised by failure of run-time check)} {Tasking_Error (raised by failure of run-time check)}
Program_Error or Tasking_Error is raised at the point of the deallocation.

14 • {Program_Error (raised by failure of run-time check)} {Tasking_Error (raised by failure of run-time check)}
Program_Error or Tasking_Error is raised in the task the next time it references any of the
discriminants.

14.a Implementation Note: This last case presumes an implementation where the task references its discriminants
indirectly, and the pointer is nulled out when the task object is deallocated.

15 In the first two cases, the storage for the discriminants (and for any enclosing object if it is designated by
an access discriminant of the task) is not reclaimed prior to task termination.

15.a Ramification: The storage might never be reclaimed.

Erroneous Execution

16 {erroneous execution} {nonexistent} Evaluating a name that denotes a nonexistent object is erroneous. The
execution of a call to an instance of Unchecked_Deallocation is erroneous if the object was created other
than by an allocator for an access type whose pool is Name’Storage_Pool.

Implementation Advice

17 For a standard storage pool, Free should actually reclaim the storage.
17.a Ramification: This is not a testable property, since we do not how much storage is used by a given pool element, nor

whether fragmentation can occur.

NOTES
18 26 The rules here that refer to Free apply to any instance of Unchecked_Deallocation.

19 27 Unchecked_Deallocation cannot be instantiated for an access-to-constant type. This is implied by the rules of 12.5.4.

13.11.3 Pragma Controlled
1 [Pragma Controlled is used to prevent any automatic reclamation of storage (garbage collection) for the

objects created by allocators of a given access type.]

ISO/IEC 8652:1995(E) —AARM;6.0

413 21 December 1994 Pragma Controlled 13.11.3

Syntax

2The form of a pragma Controlled is as follows:

3pragma Controlled(first_subtype_local_name);
3.aDiscussion: Not to be confused with type Finalization.Controlled.

Legality Rules

4The first_subtype_local_name of a pragma Controlled shall denote a non-derived access subtype.

Static Semantics

5{representation pragma [Controlled]} {pragma, representation [Controlled]} A pragma Controlled is a representation
pragma {aspect of representation [controlled]} {controlled (aspect of representation)} that specifies the controlled
aspect of representation.

6{garbage collection} Garbage collection is a process that automatically reclaims storage, or moves objects to
a different address, while the objects still exist.

6.aRamification: Storage reclamation upon leaving a master is not considered garbage collection.

6.bNote that garbage collection includes compaction of a pool (‘‘moved to a different Address’’), even if storage
reclamation is not done.

6.cReason: Programs that will be damaged by automatic storage reclamation are just as likely to be damaged by having
objects moved to different locations in memory. A pragma Controlled should turn off both flavors of garbage
collection.

6.dImplementation Note: If garbage collection reclaims the storage of a controlled object, it should first finalize it.
Finalization is not done when moving an object; any self-relative pointers will have to be updated by the garbage
collector. If an implementation provides garbage collection for a storage pool containing controlled objects (see 7.6),
then it should provide a means for deferring garbage collection of those controlled objects.

6.eReason: This allows the manager of a resource released by a Finalize operation to defer garbage collection during its
critical regions; it is up to the author of the Finalize operation to do so. Garbage collection, at least in some systems,
can happen asynchronously with respect to normal user code. Note that it is not enough to defer garbage collection
during Initialize, Adjust, and Finalize, because the resource in question might be used in other situations as well. For
example:

6.fwith Ada.Finalization;
package P is

6.gtype My_Controlled is
new Ada.Finalization.Limited_Controlled with private;

procedure Finalize(Object : in out My_Controlled);
type My_Controlled_Access is access My_Controlled;

6.hprocedure Non_Reentrant;

6.iprivate
...

end P;

6.jpackage body P is
X : Integer := 0;
A : array(Integer range 1..10) of Integer;

6.kprocedure Non_Reentrant is
begin

X := X + 1;
-- If the system decides to do a garbage collection here,
-- then we’re in trouble, because it will call Finalize on
-- the collected objects; we essentially have two threads
-- of control erroneously accessing shared variables.
-- The garbage collector behaves like a separate thread
-- of control, even though the user hasn’t declared
-- any tasks.
A(X) := ...;

end Non_Reentrant;

ISO/IEC 8652:1995(E) —AARM;6.0

13.11.3 Pragma Controlled 21 December 1994 414

6.l procedure Finalize(Object : in out My_Controlled) is
begin

Non_Reentrant;
end Finalize;

end P;

6.m with P; use P;
procedure Main is
begin

... new My_Controlled ... -- allocate some objects

... forget the pointers to some of them, so they become garbage
Non_Reentrant;

end Main;

6.n It is the user’s responsibility to protect against this sort of thing, and the implementation’s responsibility to provide the
necessary operations.

6.o We do not give these operations names, nor explain their exact semantics, because different implementations of
garbage collection might have different needs, and because garbage collection is not supported by most Ada implemen-
tations, so portability is not important here. Another reason not to turn off garbage collection during each entire
Finalize operation is that it would create a serial bottleneck; it might be only part of the Finalize operation that conflicts
with some other resource. It is the intention that the mechanisms provided be finer-grained than pragma Controlled.

7 If a pragma Controlled is specified for an access type with a standard storage pool, then garbage collec-
tion is not performed for objects in that pool.

7.a Ramification: If Controlled is not specified, the implementation may, but need not, perform garbage collection. If
Storage_Pool is specified, then a pragma Controlled for that type is ignored.

7.b Reason: Controlled means that implementation-provided garbage collection is turned off; if the Storage_Pool is
specified, the pool controls whether garbage collection is done.

Implementation Permissions

8 An implementation need not support garbage collection, in which case, a pragma Controlled has no
effect.

Wording Changes From Ada 83

8.a Ada 83 used the term ‘‘automatic storage reclamation’’ to refer to what is known traditionally as ‘‘garbage collection’’.
Because of the existence of storage pools (see 13.11), we need to distinguish this from the storage reclamation that
might happen upon leaving a master. Therefore, we now use the term ‘‘garbage collection’’ in its normal computer-
science sense. This has the additional advantage of making our terminology more accessible to people outside the Ada
world.

13.12 Pragma Restrictions
1 [A pragma Restrictions expresses the user’s intent to abide by certain restrictions. This may facilitate the

construction of simpler run-time environments.]

Syntax

2 The form of a pragma Restrictions is as follows:

3 pragma Restrictions(restriction{, restriction});

4 restriction ::= restriction_identifier
| restriction_parameter_identifier => expression

Name Resolution Rules

5 {expected type [restriction parameter expression]} Unless otherwise specified for a particular restriction, the
expression is expected to be of any integer type.

ISO/IEC 8652:1995(E) —AARM;6.0

415 21 December 1994 Pragma Restrictions 13.12

Legality Rules

6Unless otherwise specified for a particular restriction, the expression shall be static, and its value shall be
nonnegative.

Static Semantics

7The set of restrictions is implementation defined.
7.aImplementation defined: The set of restrictions allowed in a pragma Restrictions.

Post-Compilation Rules

8{post-compilation rules} {configuration pragma [Restrictions]} {pragma, configuration [Restrictions]} A pragma Restric-
tions is a configuration pragma; unless otherwise specified for a particular restriction, a partition shall
obey the restriction if a pragma Restrictions applies to any compilation unit included in the partition.

Implementation Permissions

9An implementation may place limitations on the values of the expression that are supported, and limita-
tions on the supported combinations of restrictions. The consequences of violating such limitations are
implementation defined.

9.aImplementation defined: The consequences of violating limitations on Restrictions pragmas.

9.bRamification: Such limitations may be enforced at compile time or at run time. Alternatively, the implementation is
allowed to declare violations of the restrictions to be erroneous, and not enforce them at all.

NOTES
1028 Restrictions intended to facilitate the construction of efficient tasking run-time systems are defined in D.7. Safety- and

security-related restrictions are defined in H.4.

1129 An implementation has to enforce the restrictions in cases where enforcement is required, even if it chooses not to take
advantage of the restrictions in terms of efficiency.

11.aDiscussion: It is not the intent that an implementation will support a different run-time system for every possible
combination of restrictions. An implementation might support only two run-time systems, and document a set of
restrictions that is sufficient to allow use of the more efficient and safe one.

Extensions to Ada 83

11.b{extensions to Ada 83} Pragma Restrictions is new to Ada 9X.

13.13 Streams
1{stream} {stream type} A stream is a sequence of elements comprising values from possibly different types

and allowing sequential access to these values. A stream type is a type in the class whose root type is
Streams.Root_Stream_Type. A stream type may be implemented in various ways, such as an external
sequential file, an internal buffer, or a network channel.

1.aDiscussion: A stream element will often be the same size as a storage element, but that is not required.

Extensions to Ada 83

1.b{extensions to Ada 83} Streams are new in Ada 9X.

13.13.1 The Package Streams
Static Semantics

1The abstract type Root_Stream_Type is the root type of the class of stream types. The types in this class
represent different kinds of streams. A new stream type is defined by extending the root type (or some
other stream type), overriding the Read and Write operations, and optionally defining additional primitive
subprograms, according to the requirements of the particular kind of stream. The predefined stream-

ISO/IEC 8652:1995(E) —AARM;6.0

13.13.1 The Package Streams 21 December 1994 416

oriented attributes like T’Read and T’Write make dispatching calls on the Read and Write procedures of
the Root_Stream_Type. (User-defined T’Read and T’Write attributes can also make such calls, or can
call the Read and Write attributes of other types.)

2 package Ada.Streams is
pragma Pure(Streams){unpolluted} ;

3 type Root_Stream_Type is abstract tagged limited private;

4 type Stream_Element is mod implementation-defined;
type Stream_Element_Offset is range implementation-defined;
subtype Stream_Element_Count is

Stream_Element_Offset range 0..Stream_Element_Offset’Last;
type Stream_Element_Array is

array(Stream_Element_Offset range <>) of Stream_Element;

5 procedure Read(
Stream : in out Root_Stream_Type;
Item : out Stream_Element_Array;
Last : out Stream_Element_Offset) is abstract;

6 procedure Write(
Stream : in out Root_Stream_Type;
Item : in Stream_Element_Array) is abstract;

7 private
... -- not specified by the language

end Ada.Streams;

8 The Read operation transfers Item’Length stream elements from the specified stream to fill the array Item.
The index of the last stream element transferred is returned in Last. Last is less than Item’Last only if the
end of the stream is reached.

9 The Write operation appends Item to the specified stream.

NOTES
10 30 See A.12.1, ‘‘The Package Streams.Stream_IO’’ for an example of extending type Root_Stream_Type.

13.13.2 Stream-Oriented Attributes
1 The Write, Read, Output, and Input attributes convert values to a stream of elements and reconstruct

values from a stream.

Static Semantics

2 For every subtype S of a specific type T, the following attributes are defined.

S’Write S’Write denotes a procedure with the following specification:3

4 procedure S’Write(
Stream : access Ada.Streams.Root_Stream_Type’Class;
Item : in T)

S’Write writes the value of Item to Stream.5

S’Read S’Read denotes a procedure with the following specification:6

7 procedure S’Read(
Stream : access Ada.Streams.Root_Stream_Type’Class;
Item : out T)

S’Read reads the value of Item from Stream.8

9 For elementary types, the representation in terms of stream elements is implementation defined. For
composite types, the Write or Read attribute for each component is called in a canonical order. The
canonical order of components is last dimension varying fastest for an array, and positional aggregate

ISO/IEC 8652:1995(E) —AARM;6.0

417 21 December 1994 Stream-Oriented Attributes 13.13.2

order for a record. Bounds are not included in the stream if T is an array type. If T is a discriminated
type, discriminants are included only if they have defaults. If T is a tagged type, the tag is not included.

9.aImplementation defined: The representation used by the Read and Write attributes of elementary types in terms of
stream elements.

9.bReason: A discriminant with a default value is treated simply as a component of the object. On the other hand, an
array bound or a discriminant without a default value, is treated as ‘‘descriptor’’ or ‘‘dope’’ that must be provided in
order to create the object and thus is logically separate from the regular components. Such ‘‘descriptor’’ data are
written by ’Output and produced as part of the delivered result by the ’Input function, but they are not written by ’Write
nor read by ’Read. A tag is like a discriminant without a default.

9.cRamification: For a composite object, the subprogram denoted by the Write or Read attribute of each component is
called, whether it is the default or is user-specified.

10For every subtype S’Class of a class-wide type T’Class:

S’Class’Write S’Class’Write denotes a procedure with the following specification: 11

12procedure S’Class’Write(
Stream : access Ada.Streams.Root_Stream_Type’Class;
Item : in T’Class)

Dispatches to the subprogram denoted by the Write attribute of the specific type iden- 13

tified by the tag of Item.

S’Class’Read S’Class’Read denotes a procedure with the following specification: 14

15procedure S’Class’Read(
Stream : access Ada.Streams.Root_Stream_Type’Class;
Item : out T’Class)

Dispatches to the subprogram denoted by the Read attribute of the specific type iden- 16

tified by the tag of Item.
16.aReason: It is necessary to have class-wide versions of Read and Write in order to avoid generic contract model

violations; in a generic, we don’t necessarily know at compile time whether a given type is specific or class-wide.

Implementation Advice

17If a stream element is the same size as a storage element, then the normal in-memory representation
should be used by Read and Write for scalar objects. Otherwise, Read and Write should use the smallest
number of stream elements needed to represent all values in the base range of the scalar type.

Static Semantics

18For every subtype S of a specific type T, the following attributes are defined.

S’Output S’Output denotes a procedure with the following specification: 19

20procedure S’Output(
Stream : access Ada.Streams.Root_Stream_Type’Class;
Item : in T)

S’Output writes the value of Item to Stream, including any bounds or discriminants. 21

21.aRamification: Note that the bounds are included even for an array type whose first subtype is constrained.

S’Input S’Input denotes a function with the following specification: 22

23function S’Input(
Stream : access Ada.Streams.Root_Stream_Type’Class)
return T

S’Input reads and returns one value from Stream, using any bounds or discriminants 24

written by a corresponding S’Output to determine how much to read.

25Unless overridden by an attribute_definition_clause, these subprograms execute as follows:

ISO/IEC 8652:1995(E) —AARM;6.0

13.13.2 Stream-Oriented Attributes 21 December 1994 418

26 • If T is an array type, S’Output first writes the bounds, and S’Input first reads the bounds. If T
has discriminants without defaults, S’Output first writes the discriminants (using S’Write for
each), and S’Input first reads the discriminants (using S’Read for each).

27 • S’Output then calls S’Write to write the value of Item to the stream. S’Input then creates an
object (with the bounds or discriminants, if any, taken from the stream), initializes it with
S’Read, and returns the value of the object.

28 For every subtype S’Class of a class-wide type T’Class:

S’Class’Output S’Class’Output denotes a procedure with the following specification:29

30 procedure S’Class’Output(
Stream : access Ada.Streams.Root_Stream_Type’Class;
Item : in T’Class)

First writes the external tag of Item to Stream (by calling String’Output(Tags.-31

External_Tag(Item’Tag) — see 3.9) and then dispatches to the subprogram denoted
by the Output attribute of the specific type identified by the tag.

S’Class’Input S’Class’Input denotes a function with the following specification:32

33 function S’Class’Input(
Stream : access Ada.Streams.Root_Stream_Type’Class)
return T’Class

First reads the external tag from Stream and determines the corresponding internal tag34

(by calling Tags.Internal_Tag(String’Input(Stream)) — see 3.9) and then dispatches
to the subprogram denoted by the Input attribute of the specific type identified by the
internal tag; returns that result.

35 {Range_Check [partial]} {check, language-defined (Range_Check)} In the default implementation of Read and Input
for a composite type, for each scalar component that is a discriminant or whose component_declaration
includes a default_expression, a check is made that the value returned by Read for the component belongs
to its subtype. {Constraint_Error (raised by failure of run-time check)} Constraint_Error is raised if this check
fails. For other scalar components, no check is made. For each component that is of an access type, if the
implementation can detect that the value returned by Read for the component is not a value of its subtype,
Constraint_Error is raised. If the value is not a value of its subtype and this error is not detected, the
component has an abnormal value, and erroneous execution can result (see 13.9.1).

36 {specifiable [of Read for a type]} {specifiable [of Write for a type]} {specifiable [of Input for a type]} {specifiable [of Output
for a type]} {Read clause} {Write clause} {Input clause} {Output clause} The stream-oriented attributes may be
specified for any type via an attribute_definition_clause. All nonlimited types have default implemen-
tations for these operations. An attribute_reference for one of these attributes is illegal if the type is
limited, unless the attribute has been specified by an attribute_definition_clause. For an attribute_
definition_clause specifying one of these attributes, the subtype of the Item parameter shall be the base
subtype if scalar, and the first subtype otherwise. The same rule applies to the result of the Input func-
tion.

36.a Reason: This is to simplify implementation.

NOTES
37 31 For a definite subtype S of a type T, only T’Write and T’Read are needed to pass an arbitrary value of the subtype

through a stream. For an indefinite subtype S of a type T, T’Output and T’Input will normally be needed, since T’Write
and T’Read do not pass bounds, discriminants, or tags.

38 32 User-specified attributes of S’Class are not inherited by other class-wide types descended from S.

ISO/IEC 8652:1995(E) —AARM;6.0

419 21 December 1994 Stream-Oriented Attributes 13.13.2

Examples

39Example of user-defined Write attribute:
40procedure My_Write(

Stream : access Ada.Streams.Root_Stream_Type’Class; Item : My_Integer’Base);
for My_Integer’Write use My_Write;

40.aDiscussion: Example of network input/output using input output attributes:

40.bwith Ada.Streams; use Ada.Streams;
generic

type Msg_Type(<>) is private;
package Network_IO is

-- Connect/Disconnect are used to establish the stream
procedure Connect(...);
procedure Disconnect(...);

40.c-- Send/Receive transfer messages across the network
procedure Send(X : in Msg_Type);
function Receive return Msg_Type;

private
type Network_Stream is new Root_Stream_Type with ...
procedure Read(...); -- define Read/Write for Network_Stream
procedure Write(...);

end Network_IO;

40.dwith Ada.Streams; use Ada.Streams;
package body Network_IO is

Current_Stream : aliased Network_Stream;
. . .
procedure Connect(...) is ...;
procedure Disconnect(...) is ...;

40.eprocedure Send(X : in Msg_Type) is
begin

Msg_Type’Output(Current_Stream’Access, X);
end Send;

40.ffunction Receive return Msg_Type is
begin

return Msg_Type’Input(Current_Stream’Access);
end Receive;

end Network_IO;

13.14 Freezing Rules
1[This clause defines a place in the program text where each declared entity becomes ‘‘frozen.’’ A use of

an entity, such as a reference to it by name, or (for a type) an expression of the type, causes freezing of
the entity in some contexts, as described below. The Legality Rules forbid certain kinds of uses of an
entity in the region of text where it is frozen.]

1.aReason: This concept has two purposes: a compile-time one and a run-time one.

1.bThe compile-time purpose of the freezing rules comes from the fact that the evaluation of static expressions depends on
overload resolution, and overload resolution sometimes depends on the value of a static expression. (The dependence
of static evaluation upon overload resolution is obvious. The dependence in the other direction is more subtle. There
are three rules that require static expressions in contexts that can appear in declarative places: The expression in an
attribute_designator shall be static. In a record aggregate, variant-controlling discriminants shall be static. In an array
aggregate with more than one named association, the choices shall be static. The compiler needs to know the value of
these expressions in order to perform overload resolution and legality checking.) We wish to allow a compiler to
evaluate static expressions when it sees them in a single pass over the compilation_unit. The freezing rules ensure that.

1.cThe run-time purpose of the freezing rules is called the ‘‘linear elaboration model.’’ This means that declarations are
elaborated in the order in which they appear in the program text, and later elaborations can depend on the results of
earlier ones. The elaboration of the declarations of certain entities requires run-time information about the implemen-
tation details of other entities. The freezing rules ensure that this information has been calculated by the time it is used.
For example, suppose the initial value of a constant is the result of a function call that takes a parameter of type T. In
order to pass that parameter, the size of type T has to be known. If T is composite, that size might be known only at run
time.

ISO/IEC 8652:1995(E) —AARM;6.0

13.14 Freezing Rules 21 December 1994 420

1.d (Note that in these discussions, words like ‘‘before’’ and ‘‘after’’ generally refer to places in the program text, as
opposed to times at run time.)

1.e Discussion: The ‘‘implementation details’’ we’re talking about above are:

1.f • For a tagged type, the implementations of all the primitive subprograms of the type — that is (in the
canonical implementation model), the contents of the type descriptor, which contains pointers to the code
for each primitive subprogram.

1.g • For a type, the full type declaration of any parts (including the type itself) that are private.

1.h • For a deferred constant, the full constant declaration, which gives the constant’s value. (Since this
information necessarily comes after the constant’s type and subtype are fully known, there’s no need to
worry about its type or subtype.)

1.i • For any entity, representation information specified by the user via representation items. Most represen-
tation items are for types or subtypes; however, various other kinds of entities, such as objects and
subprograms, are possible.

1.j Similar issues arise for incomplete types. However, we do not use freezing there; incomplete types have different,
more severe, restrictions. Similar issues also arise for subprograms, protected operations, tasks and generic units.
However, we do not use freezing there either; 3.11 prevents problems with run-time Elaboration_Checks.

Language Design Principles

1.k An evaluable construct should freeze anything that’s needed to evaluate it.

1.l However, if the construct is not evaluated where it appears, let it cause freezing later, when it is evaluated. This is the
case for default_expressions and default_names. (Formal parameters, generic formal parameters, and components can
have default_expressions or default_names.)

1.m The compiler should be allowed to evaluate static expressions without knowledge of their context. (I.e. there should
not be any special rules for static expressions that happen to occur in a context that requires a static expression.)

1.n Compilers should be allowed to evaluate static expressions (and record the results) using the run-time representation of
the type. For example, suppose Color’Pos(Red) = 1, but the internal code for Red is 37. If the value of a static
expression is Red, some compilers might store 1 in their symbol table, and other compilers might store 37. Either
compiler design should be feasible.

1.o Compilers should never be required to detect erroneousness or exceptions at compile time (although it’s very nice if
they do). This implies that we should not require code-generation for a nonstatic expression of type T too early, even if
we can prove that that expression will be erroneous, or will raise an exception.

1.p Here’s an example (modified from AI-00039, Example 3):

1.q type T is
record

...
end record;

function F return T;
function G(X : T) return Boolean;
Y : Boolean := G(F); -- doesn’t force T in Ada 83
for T use

record
...

end record;

1.r AI-00039 says this is legal. Of course, it raises Program_Error because the function bodies aren’t elaborated yet. A
one-pass compiler has to generate code for an expression of type T before it knows the representation of T. Here’s a
similar example, which AI-00039 also says is legal:

ISO/IEC 8652:1995(E) —AARM;6.0

421 21 December 1994 Freezing Rules 13.14

1.spackage P is
type T is private;
function F return T;
function G(X : T) return Boolean;
Y : Boolean := G(F); -- doesn’t force T in Ada 83

private
type T is

record
...

end record;
end P;

1.tIf T’s size were dynamic, that size would be stored in some compiler-generated dope; this dope would be initialized at
the place of the full type declaration. However, the generated code for the function calls would most likely allocate a
temp of the size specified by the dope before checking for Program_Error. That dope would contain uninitialized junk,
resulting in disaster. To avoid doing that, the compiler would have to determine, at compile time, that the expression
will raise Program_Error.

1.uThis is silly. If we’re going to require compilers to detect the exception at compile time, we might as well formulate
the rule as a legality rule.

1.vCompilers should not be required to generate code to load the value of a variable before the address of the variable has
been determined.

1.wAfter an entity has been frozen, no further requirements may be placed on its representation (such as by a represen-
tation item or a full_type_declaration).

2{freezing (entity) [distributed]} {freezing points (entity)} The freezing of an entity occurs at one or more places
(freezing points) in the program text where the representation for the entity has to be fully determined.
Each entity is frozen from its first freezing point to the end of the program text (given the ordering of
compilation units defined in 10.1.4).

2.aRamification: The ‘‘representation’’ for a subprogram includes its calling convention and means for referencing the
subprogram body, either a ‘‘link-name’’ or specified address. It does not include the code for the subprogram body
itself, nor its address if a link-name is used to reference the body.

3{freezing (entity caused by the end of an enclosing construct)} The end of a declarative_part, protected_body, or a
declaration of a library package or generic library package, causes freezing of each entity declared within
it, except for incomplete types. {freezing (entity caused by a body)} A noninstance body causes freezing of each
entity declared before it within the same declarative_part.

3.aDiscussion: This is worded carefully to handle nested packages and private types. Entities declared in a nested
package_specification will be frozen by some containing construct.

3.bAn incomplete type declared in the private part of a library package_specification can be completed in the body.

3.cRamification: The part about bodies does not say immediately within. A renaming-as-body does not have this
property. Nor does a pragma Import.

3.dReason: The reason bodies cause freezing is because we want proper_bodies and body_stubs to be interchangeable —
one should be able to move a proper_body to a subunit, and vice-versa, without changing the semantics. Clearly,
anything that should cause freezing should do so even if it’s inside a proper_body. However, if we make it a body_
stub, then the compiler can’t see that thing that should cause freezing. So we make body_stubs cause freezing, just in
case they contain something that should cause freezing. But that means we need to do the same for proper_bodies.

3.eAnother reason for bodies to cause freezing, there could be an added implementation burden if an entity declared in an
enclosing declarative_part is frozen within a nested body, since some compilers look at bodies after looking at the
containing declarative_part.

4{freezing (entity caused by a construct) [distributed]} A construct that (explicitly or implicitly) references an entity
can cause the freezing of the entity, as defined by subsequent paragraphs. {freezing [by a constituent of a
construct]} At the place where a construct causes freezing, each name, expression[, or range] within the
construct causes freezing:

ISO/IEC 8652:1995(E) —AARM;6.0

13.14 Freezing Rules 21 December 1994 422

4.a Ramification: Note that in the sense of this paragraph, a subtype_mark ‘‘references’’ the denoted subtype, but not the
type.

5 • {freezing [generic_instantiation]} The occurrence of a generic_instantiation causes freezing; also, if
a parameter of the instantiation is defaulted, the default_expression or default_name for that
parameter causes freezing.

6 • {freezing [object_declaration]} The occurrence of an object_declaration that has no corresponding
completion causes freezing.

6.a Ramification: Note that this does not include a formal_object_declaration.

7 • {freezing [subtype caused by a record extension]} The declaration of a record extension causes freez-
ing of the parent subtype.

7.a Ramification: This combined with another rule specifying that primitive subprogram declarations shall
precede freezing ensures that all descendants of a tagged type implement all of its dispatching operations.

7.b The declaration of a private extension does not cause freezing. The freezing is deferred until the full type
declaration, which will necessarily be for a record extension.

8 {freezing [by an expression]} A static expression causes freezing where it occurs. A nonstatic expression
causes freezing where it occurs, unless the expression is part of a default_expression, a default_name, or
a per-object expression of a component’s constraint, in which case, the freezing occurs later as part of
another construct.

9 The following rules define which entities are frozen at the place where a construct causes freezing:

10 • {freezing [type caused by an expression]} At the place where an expression causes freezing, the type
of the expression is frozen, unless the expression is an enumeration literal used as a discrete_
choice of the array_aggregate of an enumeration_representation_clause.

10.a Reason: We considered making enumeration literals never cause freezing, which would be more upward
compatible, but examples like the variant record aggregate (Discrim => Red, ...) caused us to change our mind.
Furthermore, an enumeration literal is a static expression, so the implementation should be allowed to represent
it using its representation.

10.b Ramification: The following pathological example was legal in Ada 83, but is illegal in Ada 9X:

10.c package P1 is
type T is private;
package P2 is

type Composite(D : Boolean) is
record

case D is
when False => Cf : Integer;
when True => Ct : T;

end case;
end record;

end P2;
X : Boolean := P2."="((False,1), (False,1));

private
type T is array(1..Func_Call) of Integer;

end;

10.d In Ada 9X, the declaration of X freezes Composite (because it contains an expression of that type), which in
turn freezes T (even though Ct does not exist in this particular case). But type T is not completely defined at
that point, violating the rule that a type shall be completely defined before it is frozen. In Ada 83, on the other
hand, there is no occurrence of the name T, hence no forcing occurrence of T.

11 • {freezing [entity caused by a name]} At the place where a name causes freezing, the entity denoted
by the name is frozen, unless the name is a prefix of an expanded name; {freezing [nominal
subtype caused by a name]} at the place where an object name causes freezing, the nominal
subtype associated with the name is frozen.

ISO/IEC 8652:1995(E) —AARM;6.0

423 21 December 1994 Freezing Rules 13.14

11.aRamification: This only matters in the presence of deferred constants or access types; an object_declaration
other than a deferred_constant_declaration causes freezing of the nominal subtype, plus all component junk.

11.bImplicit_dereferences are covered by expression.

12• [{freezing [type caused by a range]} At the place where a range causes freezing, the type of the
range is frozen.]

12.aProof: This is consequence of the facts that expressions freeze their type, and the Range attribute is defined to
be equivalent to a pair of expressions separated by ‘‘..’’.}

13• {freezing [designated subtype caused by an allocator]} At the place where an allocator causes freezing,
the designated subtype of its type is frozen. If the type of the allocator is a derived type, then
all ancestor types are also frozen.

13.aRamification: Allocators also freeze the named subtype, as a consequence of other rules.

13.bThe ancestor types are frozen to prevent things like this:

13.ctype Pool_Ptr is access System.Storage_Pools.Root_Storage_Pool’Class;
function F return Pool_Ptr;

13.dpackage P is
type A1 is access Boolean;
type A2 is new A1;
type A3 is new A2;
X : A3 := new Boolean; -- Don’t know what pool yet!
for A1’Storage_Pool use F.all;

end P;

13.eThis is necessary because derived access types share their parent’s pool.

14• {freezing [subtypes of the profile of a callable entity]} At the place where a callable entity is frozen,
each subtype of its profile is frozen. If the callable entity is a member of an entry family, the
index subtype of the family is frozen. {freezing [function call]} At the place where a function call
causes freezing, if a parameter of the call is defaulted, the default_expression for that
parameter causes freezing.

14.aDiscussion: We don’t worry about freezing for procedure calls or entry calls, since a body freezes everything
that precedes it, and the end of a declarative part freezes everything in the declarative part.

15• {freezing [type caused by the freezing of a subtype]} At the place where a subtype is frozen, its type is
frozen. {freezing [constituents of a full type definition]} {freezing [first subtype caused by the freezing of the
type]} At the place where a type is frozen, any expressions or names within the full type
definition cause freezing; the first subtype, and any component subtypes, index subtypes, and
parent subtype of the type are frozen as well. {freezing [class-wide type caused by the freezing of the
specific type]} {freezing [specific type caused by the freezing of the class-wide type]} For a specific tagged
type, the corresponding class-wide type is frozen as well. For a class-wide type, the cor-
responding specific type is frozen as well.

15.aRamification: Freezing a type needs to freeze its first subtype in order to preserve the property that the
subtype-specific aspects of statically matching subtypes are the same.

15.bFreezing an access type does not freeze its designated subtype.

Legality Rules

16[The explicit declaration of a primitive subprogram of a tagged type shall occur before the type is frozen
(see 3.9.2).]

16.aReason: This rule is needed because (1) we don’t want people dispatching to things that haven’t been declared yet,
and (2) we want to allow tagged type descriptors to be static (allocated statically, and initialized to link-time-known
symbols). Suppose T2 inherits primitive P from T1, and then overrides P. Suppose P is called before the declaration of
the overriding P. What should it dispatch to? If the answer is the new P, we’ve violated the first principle above. If the
answer is the old P, we’ve violated the second principle. (A call to the new one necessarily raises Program_Error, but
that’s beside the point.)

ISO/IEC 8652:1995(E) —AARM;6.0

13.14 Freezing Rules 21 December 1994 424

16.b Note that a call upon a dispatching operation of type T will freeze T.

16.c We considered applying this rule to all derived types, for uniformity. However, that would be upward incompatible, so
we rejected the idea. As in Ada 83, for an untagged type, the above call upon P will call the old P (which is arguably
confusing).

17 [A type shall be completely defined before it is frozen (see 3.11.1 and 7.3).]

18 [The completion of a deferred constant declaration shall occur before the constant is frozen (see 7.4).]

19 [A representation item that directly specifies an aspect of an entity shall appear before the entity is frozen
(see 13.1).]

19.a Discussion: From RM83-13.1(7). The wording here forbids freezing within the representation_clause itself, which
was not true of the Ada 83 wording. The wording of this rule is carefully written to work properly for type-related
representation items. For example, an enumeration_representation_clause is illegal after the type is frozen, even
though the _clause refers to the first subtype.

19.b Proof: The above Legality Rules are stated ‘‘officially’’ in the referenced clauses.

19.c Discussion: Here’s an example that illustrates when freezing occurs in the presence of defaults:

19.d type T is ...;
function F return T;
type R is

record
C : T := F;
D : Boolean := F = F;

end record;
X : R;

19.e Since the elaboration of R’s declaration does not allocate component C, there is no need to freeze C’s subtype at that
place. Similarly, since the elaboration of R does not evaluate the default_expression ‘‘F = F’’, there is no need to
freeze the types involved at that point. However, the declaration of X does need to freeze these things. Note that even
if component C did not exist, the elaboration of the declaration of X would still need information about T — even
though D is not of type T, its default_expression requires that information.

19.f Ramification: Although we define freezing in terms of the program text as a whole (i.e. after applying the rules of
Section 10), the freezing rules actually have no effect beyond compilation unit boundaries.

19.g Reason: That is important, because Section 10 allows some implementation definedness in the order of things, and we
don’t want the freezing rules to be implementation defined.

19.h Ramification: These rules also have no effect in statements — they only apply within a single declarative_part,
package_specification, task_definition, protected_definition, or protected_body.

19.i Implementation Note: An implementation may choose to generate code for default_expressions and default_names in
line at the place of use. {thunk} Alternatively, an implementation may choose to generate thunks (subprograms
implicitly generated by the compiler) for evaluation of defaults. Thunk generation cannot, in general, be done at the
place of the declaration that includes the default. Instead, they can be generated at the first freezing point of the type(s)
involved. (It is impossible to write a purely one-pass Ada compiler, for various reasons. This is one of them — the
compiler needs to store a representation of defaults in its symbol table, and then walk that representation later, no
earlier than the first freezing point.)

19.j In implementation terms, the linear elaboration model can be thought of as preventing uninitialized dope. For example,
the implementation might generate dope to contain the size of a private type. This dope is initialized at the place where
the type becomes completely defined. It cannot be initialized earlier, because of the order-of-elaboration rules. The
freezing rules prevent elaboration of earlier declarations from accessing the size dope for a private type before it is
initialized.

19.k 2.8 overrides the freezing rules in the case of unrecognized pragmas.

19.l A representation_clause for an entity should most certainly not be a freezing point for the entity.

ISO/IEC 8652:1995(E) —AARM;6.0

425 21 December 1994 Freezing Rules 13.14

Incompatibilities With Ada 83

19.m{incompatibilities with Ada 83} RM83 defines a forcing occurrence of a type as follows: ‘‘A forcing occurrence is any
occurrence [of the name of the type, subtypes of the type, or types or subtypes with subcomponents of the type] other
than in a type or subtype declaration, a subprogram specification, an entry declaration, a deferred constant declaration,
a pragma, or a representation_clause for the type itself. In any case, an occurrence within an expression is always
forcing.’’

19.nIt seems like the wording allows things like this:

19.otype A is array(Integer range 1..10) of Boolean;
subtype S is Integer range A’Range;

-- not forcing for A

19.pOccurrences within pragmas can cause freezing in Ada 9X. (Since such pragmas are ignored in Ada 83, this will
probably fix more bugs than it causes.)

Extensions to Ada 83

19.q{extensions to Ada 83} In Ada 9X, generic_formal_parameter_declarations do not normally freeze the entities from
which they are defined. For example:

19.rpackage Outer is
type T is tagged limited private;
generic

type T2 is
new T with private; -- Does not freeze T

-- in Ada 9X.
package Inner is

...
end Inner;

private
type T is ...;

end Outer;

19.sThis is important for the usability of generics. The above example uses the Ada 9X feature of formal derived types.
Examples using the kinds of formal parameters already allowed in Ada 83 are well known. See, for example,
comments 83-00627 and 83-00688. The extensive use expected for formal derived types makes this issue even more
compelling than described by those comments. Unfortunately, we are unable to solve the problem that explicit_
generic_actual_parameters cause freezing, even though a package equivalent to the instance would not cause freezing.
This is primarily because such an equivalent package would have its body in the body of the containing program unit,
whereas an instance has its body right there.

Wording Changes From Ada 83

19.tThe concept of freezing is based on Ada 83’s concept of ‘‘forcing occurrences.’’ The first freezing point of an entity
corresponds roughly to the place of the first forcing occurrence, in Ada 83 terms. The reason for changing the
terminology is that the new rules do not refer to any particular ‘‘occurrence’’ of a name of an entity. Instead, we refer
to ‘‘uses’’ of an entity, which are sometimes implicit.

19.uIn Ada 83, forcing occurrences were used only in rules about representation_clauses. We have expanded the concept
to cover private types, because the rules stated in RM83-7.4.1(4) are almost identical to the forcing occurrence rules.

19.vThe Ada 83 rules are changed in Ada 9X for the following reasons:

19.w• The Ada 83 rules do not work right for subtype-specific aspects. In an earlier version of Ada 9X, we
considered allowing representation items to apply to subtypes other than the first subtype. This was part of
the reason for changing the Ada 83 rules. However, now that we have dropped that functionality, we still
need the rules to be different from the Ada 83 rules.

19.x• The Ada 83 rules do not achieve the intended effect. In Ada 83, either with or without the AIs, it is
possible to force the compiler to generate code that references uninitialized dope, or force it to detect
erroneousness and exception raising at compile time.

19.y• It was a goal of Ada 83 to avoid uninitialized access values. However, in the case of deferred constants,
this goal was not achieved.

19.z• The Ada 83 rules are not only too weak — they are also too strong. They allow loopholes (as described
above), but they also prevent certain kinds of default_expressions that are harmless, and certain kinds of
generic_declarations that are both harmless and very useful.

19.aa• Ada 83 had a case where a representation_clause had a strong effect on the semantics of the program —
’Small. This caused certain semantic anomalies. There are more cases in Ada 9X, because the attribute_
representation_clause has been generalized.

ISO/IEC 8652:1995(E) —AARM;6.0

21 December 1994 426

ISO/IEC 8652:1995(E) —AARM;6.0

427 21 December 1994

The Standard Libraries

ISO/IEC 8652:1995(E) —AARM;6.0

A Predefined Language Environment 21 December 1994 428

ISO/IEC 8652:1995(E) —AARM;6.0

429 21 December 1994 Predefined Language Environment A

Annex A
(normative)

Predefined Language Environment

1[{Language-Defined Library Units} {predefined environment} This Annex contains the specifications of library
units that shall be provided by every implementation. There are three root library units: Ada, Interfaces,
and System; other library units are children of these:

2Standard — A.1
Ada — A.2

Asynchronous_Task_Control — D.11
Calendar — 9.6
Characters — A.3.1

Handling — A.3.2
Latin_1 — A.3.3

Command_Line — A.15
Decimal — F.2
Direct_IO — A.8.4
Dynamic_Priorities — D.5
Exceptions — 11.4.1
Finalization — 7.6
Interrupts — C.3.2

Names — C.3.2
IO_Exceptions — A.13
Numerics — A.5

Complex_Elementary_Functions — G.1.2
Complex_Types — G.1.1
Discrete_Random — A.5.2
Elementary_Functions — A.5.1
Float_Random — A.5.2
Generic_Complex_Elementary_Functions — G.1.2
Generic_Complex_Types — G.1.1
Generic_Elementary_Functions — A.5.1

Real_Time — D.8
Sequential_IO — A.8.1
Storage_IO — A.9
Streams — 13.13.1

Stream_IO — A.12.1
Strings — A.4.1

Bounded — A.4.4
Fixed — A.4.3
Maps — A.4.2

Constants — A.4.6
Unbounded — A.4.5
Wide_Bounded — A.4.7
Wide_Fixed — A.4.7
Wide_Maps — A.4.7

Wide_Constants — A.4.7
Wide_Unbounded — A.4.7

Standard (...continued)
Ada (...continued)

Synchronous_Task_Control — D.10
Tags — 3.9
Task_Attributes — C.7.2
Task_Identification — C.7.1
Text_IO — A.10.1

Complex_IO — G.1.3
Editing — F.3.3
Text_Streams — A.12.2

Unchecked_Conversion — 13.9
Unchecked_Deallocation — 13.11.2
Wide_Text_IO — A.11

Complex_IO — G.1.3
Editing — F.3.4
Text_Streams — A.12.3

Interfaces — B.2
C — B.3

Pointers — B.3.2
Strings — B.3.1

COBOL — B.4
Fortran — B.5

System — 13.7
Address_To_Access_Conversions — 13.7.2
Machine_Code — 13.8
RPC — E.5
Storage_Elements — 13.7.1
Storage_Pools — 13.11

]
2.aDiscussion: In running text, we generally leave out the ‘‘Ada.’’ when referring to a child of Ada.

2.bReason: We had no strict rule for which of Ada, Interfaces, or System should be the parent of a given library unit.
However, we have tried to place as many things as possible under Ada, except that interfacing is a separate category,
and we have tried to place library units whose use is highly non-portable under System.

ISO/IEC 8652:1995(E) —AARM;6.0

A Predefined Language Environment 21 December 1994 430

Implementation Requirements

3 The implementation shall ensure that each language defined subprogram is reentrant in the sense that
concurrent calls on the same subprogram perform as specified, so long as all parameters that could be
passed by reference denote nonoverlapping objects.

3.a Ramification: For example, simultaneous calls to Text_IO.Put will work properly, so long as they are going to two
different files. On the other hand, simultaneous output to the same file constitutes erroneous use of shared variables.

3.b To be honest: Here, ‘‘language defined subprogram’’ means a language defined library subprogram, a subprogram
declared in the visible part of a language defined library package, an instance of a language defined generic library
subprogram, or a subprogram declared in the visible part of an instance of a language defined generic library package.

3.c Ramification: The rule implies that any data local to the private part or body of the package has to be somehow
protected against simultaneous access.

Implementation Permissions

4 The implementation may restrict the replacement of language-defined compilation units. The implemen-
tation may restrict children of language-defined library units (other than Standard).

4.a Ramification: For example, the implementation may say, ‘‘you cannot compile a library unit called System’’ or ‘‘you
cannot compile a child of package System’’ or ‘‘if you compile a library unit called System, it has to be a package, and
it has to contain at least the following declarations: ...’’.

Wording Changes From Ada 83

4.b Many of Ada 83’s language-defined library units are now children of Ada or System. For upward compatibility, these
are renamed as root library units (see J.1).

4.c The order and lettering of the annexes has been changed.

A.1 The Package Standard
1 This clause outlines the specification of the package Standard containing all predefined identifiers in the

language. {unspecified [partial]} The corresponding package body is not specified by the language.

2 The operators that are predefined for the types declared in the package Standard are given in comments
since they are implicitly declared. {italics (pseudo-names of anonymous types)} Italics are used for pseudo-names
of anonymous types (such as root_real) and for undefined information (such as implementation-defined).

2.a Ramification: All of the predefined operators are of convention Intrinsic.

Static Semantics

3 The library package Standard has the following declaration:
3.a Implementation defined: The names and characteristics of the numeric subtypes declared in the visible part of

package Standard.

4 package Standard is
pragma Pure(Standard);

5 type Boolean is (False, True);

6 -- The predefined relational operators for this type are as follows:

7 -- function "=" (Left, Right : Boolean) return Boolean;
-- function "/=" (Left, Right : Boolean) return Boolean;
-- function "<" (Left, Right : Boolean) return Boolean;
-- function "<=" (Left, Right : Boolean) return Boolean;
-- function ">" (Left, Right : Boolean) return Boolean;
-- function ">=" (Left, Right : Boolean) return Boolean;

8 -- The predefined logical operators and the predefined logical
-- negation operator are as follows:

9 -- function "and" (Left, Right : Boolean) return Boolean;
-- function "or" (Left, Right : Boolean) return Boolean;
-- function "xor" (Left, Right : Boolean) return Boolean;

ISO/IEC 8652:1995(E) —AARM;6.0

431 21 December 1994 The Package Standard A.1

10-- function "not" (Right : Boolean) return Boolean;

11-- The integer type root_integer is predefined.
-- The corresponding universal type is universal_integer.

12type Integer is range implementation-defined;

13subtype Natural is Integer range 0 .. Integer’Last;
subtype Positive is Integer range 1 .. Integer’Last;

14-- The predefined operators for type Integer are as follows:

15-- function "=" (Left, Right : Integer’Base) return Boolean;
-- function "/=" (Left, Right : Integer’Base) return Boolean;
-- function "<" (Left, Right : Integer’Base) return Boolean;
-- function "<=" (Left, Right : Integer’Base) return Boolean;
-- function ">" (Left, Right : Integer’Base) return Boolean;
-- function ">=" (Left, Right : Integer’Base) return Boolean;

16-- function "+" (Right : Integer’Base) return Integer’Base;
-- function "-" (Right : Integer’Base) return Integer’Base;
-- function "abs" (Right : Integer’Base) return Integer’Base;

17-- function "+" (Left, Right : Integer’Base) return Integer’Base;
-- function "-" (Left, Right : Integer’Base) return Integer’Base;
-- function "*" (Left, Right : Integer’Base) return Integer’Base;
-- function "/" (Left, Right : Integer’Base) return Integer’Base;
-- function "rem" (Left, Right : Integer’Base) return Integer’Base;
-- function "mod" (Left, Right : Integer’Base) return Integer’Base;

18-- function "**" (Left : Integer’Base; Right : Natural) return Integer’Base;

19-- The specification of each operator for the type
-- root_integer, or for any additional predefined integer
-- type, is obtained by replacing Integer by the name of the type
-- in the specification of the corresponding operator of the type
-- Integer. The right operand of the exponentiation operator
-- remains as subtype Natural.

20-- The floating point type root_real is predefined.
-- The corresponding universal type is universal_real.

21type Float is digits implementation-defined;

22-- The predefined operators for this type are as follows:

23-- function "=" (Left, Right : Float) return Boolean;
-- function "/=" (Left, Right : Float) return Boolean;
-- function "<" (Left, Right : Float) return Boolean;
-- function "<=" (Left, Right : Float) return Boolean;
-- function ">" (Left, Right : Float) return Boolean;
-- function ">=" (Left, Right : Float) return Boolean;

24-- function "+" (Right : Float) return Float;
-- function "-" (Right : Float) return Float;
-- function "abs" (Right : Float) return Float;

25-- function "+" (Left, Right : Float) return Float;
-- function "-" (Left, Right : Float) return Float;
-- function "*" (Left, Right : Float) return Float;
-- function "/" (Left, Right : Float) return Float;

26-- function "**" (Left : Float; Right : Integer’Base) return Float;

27-- The specification of each operator for the type root_real, or for
-- any additional predefined floating point type, is obtained by
-- replacing Float by the name of the type in the specification of the
-- corresponding operator of the type Float.

28-- In addition, the following operators are predefined for the root
-- numeric types:

29function "*" (Left : root_integer; Right : root_real)
return root_real;

30function "*" (Left : root_real; Right : root_integer)
return root_real;

31function "/" (Left : root_real; Right : root_integer)
return root_real;

ISO/IEC 8652:1995(E) —AARM;6.0

A.1 The Package Standard 21 December 1994 432

32 -- The type universal_fixed is predefined.
-- The only multiplying operators defined between
-- fixed point types are

33 function "*" (Left : universal_fixed; Right : universal_fixed)
return universal_fixed;

34 function "/" (Left : universal_fixed; Right : universal_fixed)
return universal_fixed;

-- The declaration of type Character is based on the standard ISO 8859-1 character set.

35 -- There are no character literals corresponding to the positions for control characters.
-- They are indicated in italics in this definition. See 3.5.2.

type Character is

(nul, soh, stx, etx, eot, enq, ack, bel, --0 (16#00#) .. 7 (16#07#)
bs, ht, lf, vt, ff, cr, so, si, --8 (16#08#) .. 15 (16#0F#)

dle, dc1, dc2, dc3, dc4, nak, syn, etb, --16 (16#10#) .. 23 (16#17#)
can, em, sub, esc, fs, gs, rs, us, --24 (16#18#) .. 31 (16#1F#)

’ ’, ’!’, ’"’, ’#’, ’$’, ’%’, ’&’, ’’’, --32 (16#20#) .. 39 (16#27#)
’(’, ’)’, ’*’, ’+’, ’,’, ’-’, ’.’, ’/’, --40 (16#28#) .. 47 (16#2F#)

’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, --48 (16#30#) .. 55 (16#37#)
’8’, ’9’, ’:’, ’;’, ’<’, ’=’, ’>’, ’?’, --56 (16#38#) .. 63 (16#3F#)

’@’, ’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’, --64 (16#40#) .. 71 (16#47#)
’H’, ’I’, ’J’, ’K’, ’L’, ’M’, ’N’, ’O’, --72 (16#48#) .. 79 (16#4F#)

’P’, ’Q’, ’R’, ’S’, ’T’, ’U’, ’V’, ’W’, --80 (16#50#) .. 87 (16#57#)
’X’, ’Y’, ’Z’, ’[’, ’\’, ’]’, ’^’, ’_’, --88 (16#58#) .. 95 (16#5F#)

’‘’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, --96 (16#60#) .. 103 (16#67#)
’h’, ’i’, ’j’, ’k’, ’l’, ’m’, ’n’, ’o’, --104 (16#68#) .. 111 (16#6F#)

’p’, ’q’, ’r’, ’s’, ’t’, ’u’, ’v’, ’w’, --112 (16#70#) .. 119 (16#77#)
’x’, ’y’, ’z’, ’{’, ’|’, ’}’, ’~’, del, --120 (16#78#) .. 127 (16#7F#)

reserved_128, reserved_129, bph, nbh, --128 (16#80#) .. 131 (16#83#)
reserved_132, nel, ssa, esa, --132 (16#84#) .. 135 (16#87#)

hts, htj, vts, pld, plu, ri, ss2, ss3, --136 (16#88#) .. 143 (16#8F#)

dcs, pu1, pu2, sts, cch, mw, spa, epa, --144 (16#90#) .. 151 (16#97#)

sos, reserved_153, sci, csi, --152 (16#98#) .. 155 (16#9B#)
st, osc, pm, apc, --156 (16#9C#) .. 159 (16#9F#)

’ ’, ’¡’, ’¢’, ’£’, ’¤’, ’¥’, ’¦’, ’§’, --160 (16#A0#) .. 167 (16#A7#)
’¨’, ’©’, ’ª’, ’«’, ’¬’, ’-’, ’®’, ’¯’, --168 (16#A8#) .. 175 (16#AF#)

’°’, ’±’, ’²’, ’³’, ’´’, ’µ’, ’¶’, ’·’, --176 (16#B0#) .. 183 (16#B7#)
’¸’, ’¹’, ’º’, ’»’, ’¼’, ’½’, ’¾’, ’¿’, --184 (16#B8#) .. 191 (16#BF#)

’À’, ’Á’, ’Â’, ’Ã’, ’Ä’, ’Å’, ’Æ’, ’Ç’, --192 (16#C0#) .. 199 (16#C7#)
’È’, ’É’, ’Ê’, ’Ë’, ’Ì’, ’Í’, ’Î’, ’Ï’, --200 (16#C8#) .. 207 (16#CF#)

’Ð’, ’Ñ’, ’Ò’, ’Ó’, ’Ô’, ’Õ’, ’Ö’, ’×’, --208 (16#D0#) .. 215 (16#D7#)
’Ø’, ’Ù’, ’Ú’, ’Û’, ’Ü’, ’Ý’, ’Þ’, ’ß’, --216 (16#D8#) .. 223 (16#DF#)

’à’, ’á’, ’â’, ’ã’, ’ä’, ’å’, ’æ’, ’ç’, --224 (16#E0#) .. 231 (16#E7#)
’è’, ’é’, ’ê’, ’ë’, ’ì’, ’í’, ’î’, ’ï’, --232 (16#E8#) .. 239 (16#EF#)

’ð’, ’ñ’, ’ò’, ’ó’, ’ô’, ’õ’, ’ö’, ’÷’, --240 (16#F0#) .. 247 (16#F7#)
’ø’, ’ù’, ’ú’, ’û’, ’ü’, ’ý’, ’þ’, ’ÿ’); --248 (16#F8#) .. 255 (16#FF#)

36 -- The predefined operators for the type Character are the same as for
-- any enumeration type.

-- The declaration of type Wide_Character is based on the standard ISO 10646 BMP character set.
-- The first 256 positions have the same contents as type Character. See 3.5.2.

type Wide_Character is (nul, soh ... FFFE, FFFF);

ISO/IEC 8652:1995(E) —AARM;6.0

433 21 December 1994 The Package Standard A.1

package ASCII is ... end ASCII; --Obsolescent; see J.5

{ASCII (package physically nested within the declaration of Standard)}

-- Predefined string types:

37type String is array(Positive range <>) of Character;
pragma Pack(String);

38-- The predefined operators for this type are as follows:

39-- function "=" (Left, Right: String) return Boolean;
-- function "/=" (Left, Right: String) return Boolean;
-- function "<" (Left, Right: String) return Boolean;
-- function "<=" (Left, Right: String) return Boolean;
-- function ">" (Left, Right: String) return Boolean;
-- function ">=" (Left, Right: String) return Boolean;

40-- function "&" (Left: String; Right: String) return String;
-- function "&" (Left: Character; Right: String) return String;
-- function "&" (Left: String; Right: Character) return String;
-- function "&" (Left: Character; Right: Character) return String;

41type Wide_String is array(Positive range <>) of Wide_Character;
pragma Pack(Wide_String);

42-- The predefined operators for this type correspond to those for String

43type Duration is delta implementation-defined range implementation-defined;

44-- The predefined operators for the type Duration are the same as for
-- any fixed point type.

45-- The predefined exceptions:

46Constraint_Error: exception;
Program_Error : exception;
Storage_Error : exception;
Tasking_Error : exception;

47end Standard;

48Standard has no private part.
48.aReason: This is important for portability. All library packages are children of Standard, and if Standard had a private

part then it would be visible to all of them.

49In each of the types Character and Wide_Character, the character literals for the space character (position
32) and the non-breaking space character (position 160) correspond to different values. Unless indicated
otherwise, each occurrence of the character literal ’ ’ in this International Standard refers to the space
character. Similarly, the character literals for hyphen (position 45) and soft hyphen (position 173) cor-
respond to different values. Unless indicated otherwise, each occurrence of the character literal ’-’ in this
International Standard refers to the hyphen character.

Dynamic Semantics

50{elaboration [package_body of Standard]} Elaboration of the body of Standard has no effect.

50.aDiscussion: Note that the language does not define where this body appears in the environment declarative_part — see
Section 10, ‘‘Program Structure and Compilation Issues’’.

Implementation Permissions

51An implementation may provide additional predefined integer types and additional predefined floating
point types. Not all of these types need have names.

51.aTo be honest: An implementation may add representation items to package Standard, for example to specify the
internal codes of type Boolean, or the Small of type Duration.

Implementation Advice

52If an implementation provides additional named predefined integer types, then the names should end with
‘‘Integer’’ as in ‘‘Long_Integer’’. If an implementation provides additional named predefined floating
point types, then the names should end with ‘‘Float’’ as in ‘‘Long_Float’’.

ISO/IEC 8652:1995(E) —AARM;6.0

A.1 The Package Standard 21 December 1994 434

NOTES
53 1 Certain aspects of the predefined entities cannot be completely described in the language itself. For example, although

the enumeration type Boolean can be written showing the two enumeration literals False and True, the short-circuit control
forms cannot be expressed in the language.

54 2 As explained in 8.1, ‘‘Declarative Region’’ and 10.1.4, ‘‘The Compilation Process’’, the declarative region of the
package Standard encloses every library unit and consequently the main subprogram; the declaration of every library unit
is assumed to occur within this declarative region. Library_items are assumed to be ordered in such a way that there are no
forward semantic dependences. However, as explained in 8.3, ‘‘Visibility’’, the only library units that are visible within a
given compilation unit are the library units named by all with_clauses that apply to the given unit, and moreover, within the
declarative region of a given library unit, that library unit itself.

55 3 If all block_statements of a program are named, then the name of each program unit can always be written as an
expanded name starting with Standard (unless Standard is itself hidden). The name of a library unit cannot be a
homograph of a name (such as Integer) that is already declared in Standard.

56 4 The exception Standard.Numeric_Error is defined in J.6.

56.a Discussion: The declaration of Natural needs to appear between the declaration of Integer and the (implicit)
declaration of the "**" operator for Integer, because a formal parameter of "**" is of subtype Natural. This would be
impossible in normal code, because the implicit declarations for a type occur immediately after the type declaration,
with no possibility of intervening explicit declarations. But we’re in Standard, and Standard is somewhat magic
anyway.

56.b Using Natural as the subtype of the formal of "**" seems natural; it would be silly to have a textual rule about
Constraint_Error being raised when there is a perfectly good subtype that means just that. Furthermore, by not using
Integer for that formal, it helps remind the reader that the exponent remains Natural even when the left operand is
replaced with the derivative of Integer. It doesn’t logically imply that, but it’s still useful as a reminder.

56.c In any case, declaring these general-purpose subtypes of Integer close to Integer seems more readable than declaring
them much later.

Extensions to Ada 83

56.d {extensions to Ada 83} Package Standard is declared to be pure.

56.e Discussion: The introduction of the types Wide_Character and Wide_String is not an Ada 9X extension to Ada 83,
since ISO WG9 has approved these as an authorized extension of the original Ada 83 standard that is part of that
standard.

Wording Changes From Ada 83

56.f Numeric_Error is made obsolescent.

56.g The declarations of Natural and Positive are moved to just after the declaration of Integer, so that "**" can refer to
Natural without a forward reference. There’s no real need to move Positive, too — it just came along for the ride.

A.2 The Package Ada
Static Semantics

1 The following language-defined library package exists:
2 package Ada is

pragma Pure(Ada);
end Ada;

3 Ada serves as the parent of most of the other language-defined library units; its declaration is empty
(except for the pragma Pure).

Legality Rules

4 In the standard mode, it is illegal to compile a child of package Ada.
4.a Reason: The intention is that mentioning, say, Ada.Text_IO in a with_clause is guaranteed (at least in the standard

mode) to refer to the standard version of Ada.Text_IO. The user can compile a root library unit Text_IO that has no
relation to the standard version of Text_IO.

ISO/IEC 8652:1995(E) —AARM;6.0

435 21 December 1994 The Package Ada A.2

4.bRamification: Note that Ada can have non-language-defined grandchildren, assuming the implementation allows it.
Also, packages System and Interfaces can have children, assuming the implementation allows it.

4.cImplementation Note: An implementation will typically support a nonstandard mode in which compiling the
language defined library units is allowed. Whether or not this mode is made available to users is up to the
implementer.

4.dAn implementation could theoretically have private children of Ada, since that would be semantically neutral.
However, a programmer cannot compile such a library unit.

Extensions to Ada 83

4.e{extensions to Ada 83} This clause is new to Ada 9X.

A.3 Character Handling
1This clause presents the packages related to character processing: an empty pure package Characters and

child packages Characters.Handling and Characters.Latin_1. The package Characters.Handling provides
classification and conversion functions for Character data, and some simple functions for dealing with
Wide_Character data. The child package Characters.Latin_1 declares a set of constants initialized to
values of type Character.

Extensions to Ada 83

1.a{extensions to Ada 83} This clause is new to Ada 9X.

A.3.1 The Package Characters
Static Semantics

1The library package Characters has the following declaration:
2package Ada.Characters is

pragma Pure(Characters);
end Ada.Characters;

A.3.2 The Package Characters.Handling
Static Semantics

1The library package Characters.Handling has the following declaration:
2package Ada.Characters.Handling is

pragma Preelaborate(Handling);

3--Character classification functions

4function Is_Control (Item : in Character) return Boolean;
function Is_Graphic (Item : in Character) return Boolean;
function Is_Letter (Item : in Character) return Boolean;
function Is_Lower (Item : in Character) return Boolean;
function Is_Upper (Item : in Character) return Boolean;
function Is_Basic (Item : in Character) return Boolean;
function Is_Digit (Item : in Character) return Boolean;
function Is_Decimal_Digit (Item : in Character) return Boolean renames Is_Digit;
function Is_Hexadecimal_Digit (Item : in Character) return Boolean;
function Is_Alphanumeric (Item : in Character) return Boolean;
function Is_Special (Item : in Character) return Boolean;

5--Conversion functions for Character and String

6function To_Lower (Item : in Character) return Character;
function To_Upper (Item : in Character) return Character;
function To_Basic (Item : in Character) return Character;

7function To_Lower (Item : in String) return String;
function To_Upper (Item : in String) return String;
function To_Basic (Item : in String) return String;

ISO/IEC 8652:1995(E) —AARM;6.0

A.3.2 The Package Characters.Handling 21 December 1994 436

8 --Classifications of and conversions between Character and ISO 646

9 subtype ISO_646 is
Character range Character’Val(0) .. Character’Val(127);

10 function Is_ISO_646 (Item : in Character) return Boolean;
function Is_ISO_646 (Item : in String) return Boolean;

11 function To_ISO_646 (Item : in Character;
Substitute : in ISO_646 := ’ ’)

return ISO_646;

12 function To_ISO_646 (Item : in String;
Substitute : in ISO_646 := ’ ’)

return String;

13 --Classifications of and conversions between Wide_Character and Character.

14 function Is_Character (Item : in Wide_Character) return Boolean;
function Is_String (Item : in Wide_String) return Boolean;

15 function To_Character (Item : in Wide_Character;
Substitute : in Character := ’ ’)

return Character;

16 function To_String (Item : in Wide_String;
Substitute : in Character := ’ ’)

return String;

17 function To_Wide_Character (Item : in Character) return Wide_Character;

18 function To_Wide_String (Item : in String) return Wide_String;

19 end Ada.Characters.Handling;

20 In the description below for each function that returns a Boolean result, the effect is described in terms of
the conditions under which the value True is returned. If these conditions are not met, then the function
returns False.

21 Each of the following classification functions has a formal Character parameter, Item, and returns a
Boolean result.

{control character (a category of Character)} Is_Control22

True if Item is a control character. A control character is a character whose position
is in one of the ranges 0..31 or 127..159.

{graphic character (a category of Character)} Is_Graphic23

True if Item is a graphic character. A graphic character is a character whose position
is in one of the ranges 32..126 or 160..255.

{letter (a category of Character)} Is_Letter24

True if Item is a letter. A letter is a character that is in one of the ranges ’A’..’Z’ or
’a’..’z’, or whose position is in one of the ranges 192..214, 216..246, or 248..255.

{lower-case letter (a category of Character)} Is_Lower25

True if Item is a lower-case letter. A lower-case letter is a character that is in the
range ’a’..’z’, or whose position is in one of the ranges 223..246 or 248..255.

{upper-case letter (a category of Character)} Is_Upper26

True if Item is an upper-case letter. An upper-case letter is a character that is in the
range ’A’..’Z’ or whose position is in one of the ranges 192..214 or 216.. 222.

{basic letter (a category of Character)} Is_Basic27

True if Item is a basic letter. A basic letter is a character that is in one of the ranges
’A’..’Z’ and ’a’..’z’, or that is one of the following: ’Æ’, ’æ’, ’Ð’, ’ð’, ’Þ’, ’þ’, or ’ß’.

{decimal digit (a category of Character)} Is_Digit28

True if Item is a decimal digit. A decimal digit is a character in the range ’0’..’9’.

ISO/IEC 8652:1995(E) —AARM;6.0

437 21 December 1994 The Package Characters.Handling A.3.2

Is_Decimal_Digit A renaming of Is_Digit. 29

{hexadecimal digit (a category of Character)} Is_Hexadecimal_Digit 30

True if Item is a hexadecimal digit. A hexadecimal digit is a character that is either a
decimal digit or that is in one of the ranges ’A’ .. ’F’ or ’a’ .. ’f’.

{alphanumeric character (a category of Character)} Is_Alphanumeric 31

True if Item is an alphanumeric character. An alphanumeric character is a character
that is either a letter or a decimal digit.

{special graphic character (a category of Character)} Is_Special 32

True if Item is a special graphic character. A special graphic character is a graphic
character that is not alphanumeric.

33Each of the names To_Lower, To_Upper, and To_Basic refers to two functions: one that converts from
Character to Character, and the other that converts from String to String. The result of each Character-to-
Character function is described below, in terms of the conversion applied to Item, its formal Character
parameter. The result of each String-to-String conversion is obtained by applying to each element of the
function’s String parameter the corresponding Character-to-Character conversion; the result is the null
String if the value of the formal parameter is the null String. The lower bound of the result String is 1.

To_Lower Returns the corresponding lower-case value for Item if Is_Upper(Item), and returns 34

Item otherwise.

To_Upper Returns the corresponding upper-case value for Item if Is_Lower(Item) and Item has 35

an upper-case form, and returns Item otherwise. The lower case letters ’ß’ and ’ÿ’ do
not have upper case forms.

To_Basic Returns the letter corresponding to Item but with no diacritical mark, if Item is a letter 36

but not a basic letter; returns Item otherwise.

37The following set of functions test for membership in the ISO 646 character range, or convert between
ISO 646 and Character.

Is_ISO_646 The function whose formal parameter, Item, is of type Character returns True if Item 38

is in the subtype ISO_646.

Is_ISO_646 The function whose formal parameter, Item, is of type String returns True if Is_ISO_ 39

646(Item(I)) is True for each I in Item’Range.

To_ISO_646 The function whose first formal parameter, Item, is of type Character returns Item if 40

Is_ISO_646(Item), and returns the Substitute ISO_646 character otherwise.

To_ISO_646 The function whose first formal parameter, Item, is of type String returns the String 41

whose Range is 1..Item’Length and each of whose elements is given by To_ISO_646
of the corresponding element in Item.

42The following set of functions test Wide_Character values for membership in Character, or convert be-
tween corresponding characters of Wide_Character and Character.

Is_Character Returns True if Wide_Character’Pos(Item) <= Character’Pos(Character’Last). 43

Is_String Returns True if Is_Character(Item(I)) is True for each I in Item’Range. 44

To_Character Returns the Character corresponding to Item if Is_Character(Item), and returns the 45

Substitute Character otherwise.

To_String Returns the String whose range is 1..Item’Length and each of whose elements is 46

given by To_Character of the corresponding element in Item.

ISO/IEC 8652:1995(E) —AARM;6.0

A.3.2 The Package Characters.Handling 21 December 1994 438

To_Wide_Character47

Returns the Wide_Character X such that Character’Pos(Item) = Wide_
Character’Pos(X).

To_Wide_String Returns the Wide_String whose range is 1..Item’Length and each of whose elements48

is given by To_Wide_Character of the corresponding element in Item.

Implementation Advice

49 If an implementation provides a localized definition of Character or Wide_Character, then the effects of
the subprograms in Characters.Handling should reflect the localizations. See also 3.5.2.

NOTES
50 5 A basic letter is a letter without a diacritical mark.

51 6 Except for the hexadecimal digits, basic letters, and ISO_646 characters, the categories identified in the classification
functions form a strict hierarchy:

52 • Control characters

53 • Graphic characters
54 • Alphanumeric characters

55 • Letters
56 • Upper-case letters

57 • Lower-case letters

58 • Decimal digits

59 • Special graphic characters

59.a Ramification: Thus each Character value is either a control character or a graphic character but not both; each graphic
character is either an alphanumeric or special graphic but not both; each alphanumeric is either a letter or decimal digit
but not both; each letter is either upper case or lower case but not both.

A.3.3 The Package Characters.Latin_1
1 The package Characters.Latin_1 declares constants for characters in ISO 8859-1.

1.a Reason: The constants for the ISO 646 characters could have been declared as renamings of objects declared in
package ASCII, as opposed to explicit constants. The main reason for explicit constants was for consistency of style
with the upper-half constants, and to avoid emphasizing the package ASCII.

Static Semantics

2 The library package Characters.Latin_1 has the following declaration:
3 package Ada.Characters.Latin_1 is

pragma Pure(Latin_1);

4 -- Control characters:{control character [a category of Character]}

5 NUL : constant Character := Character’Val(0);
SOH : constant Character := Character’Val(1);
STX : constant Character := Character’Val(2);
ETX : constant Character := Character’Val(3);
EOT : constant Character := Character’Val(4);
ENQ : constant Character := Character’Val(5);
ACK : constant Character := Character’Val(6);
BEL : constant Character := Character’Val(7);
BS : constant Character := Character’Val(8);
HT : constant Character := Character’Val(9);
LF : constant Character := Character’Val(10);
VT : constant Character := Character’Val(11);
FF : constant Character := Character’Val(12);
CR : constant Character := Character’Val(13);
SO : constant Character := Character’Val(14);
SI : constant Character := Character’Val(15);

ISO/IEC 8652:1995(E) —AARM;6.0

439 21 December 1994 The Package Characters.Latin_1 A.3.3

6DLE : constant Character := Character’Val(16);
DC1 : constant Character := Character’Val(17);
DC2 : constant Character := Character’Val(18);
DC3 : constant Character := Character’Val(19);
DC4 : constant Character := Character’Val(20);
NAK : constant Character := Character’Val(21);
SYN : constant Character := Character’Val(22);
ETB : constant Character := Character’Val(23);
CAN : constant Character := Character’Val(24);
EM : constant Character := Character’Val(25);
SUB : constant Character := Character’Val(26);
ESC : constant Character := Character’Val(27);
FS : constant Character := Character’Val(28);
GS : constant Character := Character’Val(29);
RS : constant Character := Character’Val(30);
US : constant Character := Character’Val(31);

7-- ISO 646 graphic characters:

8Space : constant Character := ’ ’; -- Character’Val(32)
Exclamation : constant Character := ’!’; -- Character’Val(33)
Quotation : constant Character := ’"’; -- Character’Val(34)
Number_Sign : constant Character := ’#’; -- Character’Val(35)
Dollar_Sign : constant Character := ’$’; -- Character’Val(36)
Percent_Sign : constant Character := ’%’; -- Character’Val(37)
Ampersand : constant Character := ’&’; -- Character’Val(38)
Apostrophe : constant Character := ’’’; -- Character’Val(39)
Left_Parenthesis : constant Character := ’(’; -- Character’Val(40)
Right_Parenthesis : constant Character := ’)’; -- Character’Val(41)
Asterisk : constant Character := ’*’; -- Character’Val(42)
Plus_Sign : constant Character := ’+’; -- Character’Val(43)
Comma : constant Character := ’,’; -- Character’Val(44)
Hyphen : constant Character := ’-’; -- Character’Val(45)
Minus_Sign : Character renames Hyphen;
Full_Stop : constant Character := ’.’; -- Character’Val(46)
Solidus : constant Character := ’/’; -- Character’Val(47)

9-- Decimal digits ’0’ though ’9’ are at positions 48 through 57

10Colon : constant Character := ’:’; -- Character’Val(58)
Semicolon : constant Character := ’;’; -- Character’Val(59)
Less_Than_Sign : constant Character := ’<’; -- Character’Val(60)
Equals_Sign : constant Character := ’=’; -- Character’Val(61)
Greater_Than_Sign : constant Character := ’>’; -- Character’Val(62)
Question : constant Character := ’?’; -- Character’Val(63)
Commercial_At : constant Character := ’@’; -- Character’Val(64)

11-- Letters ’A’ through ’Z’ are at positions 65 through 90

12Left_Square_Bracket : constant Character := ’[’; -- Character’Val(91)
Reverse_Solidus : constant Character := ’\’; -- Character’Val(92)
Right_Square_Bracket : constant Character := ’]’; -- Character’Val(93)
Circumflex : constant Character := ’^’; -- Character’Val(94)
Low_Line : constant Character := ’_’; -- Character’Val(95)

13Grave : constant Character := ’‘’; -- Character’Val(96)
LC_A : constant Character := ’a’; -- Character’Val(97)
LC_B : constant Character := ’b’; -- Character’Val(98)
LC_C : constant Character := ’c’; -- Character’Val(99)
LC_D : constant Character := ’d’; -- Character’Val(100)
LC_E : constant Character := ’e’; -- Character’Val(101)
LC_F : constant Character := ’f’; -- Character’Val(102)
LC_G : constant Character := ’g’; -- Character’Val(103)
LC_H : constant Character := ’h’; -- Character’Val(104)
LC_I : constant Character := ’i’; -- Character’Val(105)
LC_J : constant Character := ’j’; -- Character’Val(106)
LC_K : constant Character := ’k’; -- Character’Val(107)
LC_L : constant Character := ’l’; -- Character’Val(108)
LC_M : constant Character := ’m’; -- Character’Val(109)
LC_N : constant Character := ’n’; -- Character’Val(110)
LC_O : constant Character := ’o’; -- Character’Val(111)

ISO/IEC 8652:1995(E) —AARM;6.0

A.3.3 The Package Characters.Latin_1 21 December 1994 440

14 LC_P : constant Character := ’p’; -- Character’Val(112)
LC_Q : constant Character := ’q’; -- Character’Val(113)
LC_R : constant Character := ’r’; -- Character’Val(114)
LC_S : constant Character := ’s’; -- Character’Val(115)
LC_T : constant Character := ’t’; -- Character’Val(116)
LC_U : constant Character := ’u’; -- Character’Val(117)
LC_V : constant Character := ’v’; -- Character’Val(118)
LC_W : constant Character := ’w’; -- Character’Val(119)
LC_X : constant Character := ’x’; -- Character’Val(120)
LC_Y : constant Character := ’y’; -- Character’Val(121)
LC_Z : constant Character := ’z’; -- Character’Val(122)
Left_Curly_Bracket : constant Character := ’{’; -- Character’Val(123)
Vertical_Line : constant Character := ’|’; -- Character’Val(124)
Right_Curly_Bracket : constant Character := ’}’; -- Character’Val(125)
Tilde : constant Character := ’~’; -- Character’Val(126)
DEL : constant Character := Character’Val(127);

15 -- ISO 6429 control characters:{control character [a category of Character]}

16 IS4 : Character renames FS;
IS3 : Character renames GS;
IS2 : Character renames RS;
IS1 : Character renames US;

17 Reserved_128 : constant Character := Character’Val(128);
Reserved_129 : constant Character := Character’Val(129);
BPH : constant Character := Character’Val(130);
NBH : constant Character := Character’Val(131);
Reserved_132 : constant Character := Character’Val(132);
NEL : constant Character := Character’Val(133);
SSA : constant Character := Character’Val(134);
ESA : constant Character := Character’Val(135);
HTS : constant Character := Character’Val(136);
HTJ : constant Character := Character’Val(137);
VTS : constant Character := Character’Val(138);
PLD : constant Character := Character’Val(139);
PLU : constant Character := Character’Val(140);
RI : constant Character := Character’Val(141);
SS2 : constant Character := Character’Val(142);
SS3 : constant Character := Character’Val(143);

18 DCS : constant Character := Character’Val(144);
PU1 : constant Character := Character’Val(145);
PU2 : constant Character := Character’Val(146);
STS : constant Character := Character’Val(147);
CCH : constant Character := Character’Val(148);
MW : constant Character := Character’Val(149);
SPA : constant Character := Character’Val(150);
EPA : constant Character := Character’Val(151);

19 SOS : constant Character := Character’Val(152);
Reserved_153 : constant Character := Character’Val(153);
SCI : constant Character := Character’Val(154);
CSI : constant Character := Character’Val(155);
ST : constant Character := Character’Val(156);
OSC : constant Character := Character’Val(157);
PM : constant Character := Character’Val(158);
APC : constant Character := Character’Val(159);

20 -- Other graphic characters:

ISO/IEC 8652:1995(E) —AARM;6.0

441 21 December 1994 The Package Characters.Latin_1 A.3.3

21-- Character positions 160 (16#A0#) .. 175 (16#AF#):
No_Break_Space : constant Character := ’ ’; --Character’Val(160)
NBSP : Character renames No_Break_Space;
Inverted_Exclamation : constant Character := ’¡’; --Character’Val(161)
Cent_Sign : constant Character := ’¢’; --Character’Val(162)
Pound_Sign : constant Character := ’£’; --Character’Val(163)
Currency_Sign : constant Character := ’¤’; --Character’Val(164)
Yen_Sign : constant Character := ’¥’; --Character’Val(165)
Broken_Bar : constant Character := ’¦’; --Character’Val(166)
Section_Sign : constant Character := ’§’; --Character’Val(167)
Diaeresis : constant Character := ’¨’; --Character’Val(168)
Copyright_Sign : constant Character := ’©’; --Character’Val(169)
Feminine_Ordinal_Indicator : constant Character := ’ª’; --Character’Val(170)
Left_Angle_Quotation : constant Character := ’«’; --Character’Val(171)
Not_Sign : constant Character := ’¬’; --Character’Val(172)
Soft_Hyphen : constant Character := ’-’; --Character’Val(173)
Registered_Trade_Mark_Sign : constant Character := ’®’; --Character’Val(174)
Macron : constant Character := ’¯’; --Character’Val(175)

22-- Character positions 176 (16#B0#) .. 191 (16#BF#):
Degree_Sign : constant Character := ’°’; --Character’Val(176)
Ring_Above : Character renames Degree_Sign;
Plus_Minus_Sign : constant Character := ’±’; --Character’Val(177)
Superscript_Two : constant Character := ’²’; --Character’Val(178)
Superscript_Three : constant Character := ’³’; --Character’Val(179)
Acute : constant Character := ’´’; --Character’Val(180)
Micro_Sign : constant Character := ’µ’; --Character’Val(181)
Pilcrow_Sign : constant Character := ’¶’; --Character’Val(182)
Paragraph_Sign : Character renames Pilcrow_Sign;
Middle_Dot : constant Character := ’·’; --Character’Val(183)
Cedilla : constant Character := ’¸’; --Character’Val(184)
Superscript_One : constant Character := ’¹’; --Character’Val(185)
Masculine_Ordinal_Indicator : constant Character := ’º’; --Character’Val(186)
Right_Angle_Quotation : constant Character := ’»’; --Character’Val(187)
Fraction_One_Quarter : constant Character := ’¼’; --Character’Val(188)
Fraction_One_Half : constant Character := ’½’; --Character’Val(189)
Fraction_Three_Quarters : constant Character := ’¾’; --Character’Val(190)
Inverted_Question : constant Character := ’¿’; --Character’Val(191)

23-- Character positions 192 (16#C0#) .. 207 (16#CF#):
UC_A_Grave : constant Character := ’À’; --Character’Val(192)
UC_A_Acute : constant Character := ’Á’; --Character’Val(193)
UC_A_Circumflex : constant Character := ’Â’; --Character’Val(194)
UC_A_Tilde : constant Character := ’Ã’; --Character’Val(195)
UC_A_Diaeresis : constant Character := ’Ä’; --Character’Val(196)
UC_A_Ring : constant Character := ’Å’; --Character’Val(197)
UC_AE_Diphthong : constant Character := ’Æ’; --Character’Val(198)
UC_C_Cedilla : constant Character := ’Ç’; --Character’Val(199)
UC_E_Grave : constant Character := ’È’; --Character’Val(200)
UC_E_Acute : constant Character := ’É’; --Character’Val(201)
UC_E_Circumflex : constant Character := ’Ê’; --Character’Val(202)
UC_E_Diaeresis : constant Character := ’Ë’; --Character’Val(203)
UC_I_Grave : constant Character := ’Ì’; --Character’Val(204)
UC_I_Acute : constant Character := ’Í’; --Character’Val(205)
UC_I_Circumflex : constant Character := ’Î’; --Character’Val(206)
UC_I_Diaeresis : constant Character := ’Ï’; --Character’Val(207)

ISO/IEC 8652:1995(E) —AARM;6.0

A.3.3 The Package Characters.Latin_1 21 December 1994 442

24 -- Character positions 208 (16#D0#) .. 223 (16#DF#):
UC_Icelandic_Eth : constant Character := ’Ð’; --Character’Val(208)
UC_N_Tilde : constant Character := ’Ñ’; --Character’Val(209)
UC_O_Grave : constant Character := ’Ò’; --Character’Val(210)
UC_O_Acute : constant Character := ’Ó’; --Character’Val(211)
UC_O_Circumflex : constant Character := ’Ô’; --Character’Val(212)
UC_O_Tilde : constant Character := ’Õ’; --Character’Val(213)
UC_O_Diaeresis : constant Character := ’Ö’; --Character’Val(214)
Multiplication_Sign : constant Character := ’×’; --Character’Val(215)
UC_O_Oblique_Stroke : constant Character := ’Ø’; --Character’Val(216)
UC_U_Grave : constant Character := ’Ù’; --Character’Val(217)
UC_U_Acute : constant Character := ’Ú’; --Character’Val(218)
UC_U_Circumflex : constant Character := ’Û’; --Character’Val(219)
UC_U_Diaeresis : constant Character := ’Ü’; --Character’Val(220)
UC_Y_Acute : constant Character := ’Ý’; --Character’Val(221)
UC_Icelandic_Thorn : constant Character := ’Þ’; --Character’Val(222)
LC_German_Sharp_S : constant Character := ’ß’; --Character’Val(223)

25 -- Character positions 224 (16#E0#) .. 239 (16#EF#):
LC_A_Grave : constant Character := ’à’; --Character’Val(224)
LC_A_Acute : constant Character := ’á’; --Character’Val(225)
LC_A_Circumflex : constant Character := ’â’; --Character’Val(226)
LC_A_Tilde : constant Character := ’ã’; --Character’Val(227)
LC_A_Diaeresis : constant Character := ’ä’; --Character’Val(228)
LC_A_Ring : constant Character := ’å’; --Character’Val(229)
LC_AE_Diphthong : constant Character := ’æ’; --Character’Val(230)
LC_C_Cedilla : constant Character := ’ç’; --Character’Val(231)
LC_E_Grave : constant Character := ’è’; --Character’Val(232)
LC_E_Acute : constant Character := ’é’; --Character’Val(233)
LC_E_Circumflex : constant Character := ’ê’; --Character’Val(234)
LC_E_Diaeresis : constant Character := ’ë’; --Character’Val(235)
LC_I_Grave : constant Character := ’ì’; --Character’Val(236)
LC_I_Acute : constant Character := ’í’; --Character’Val(237)
LC_I_Circumflex : constant Character := ’î’; --Character’Val(238)
LC_I_Diaeresis : constant Character := ’ï’; --Character’Val(239)

26 -- Character positions 240 (16#F0#) .. 255 (16#FF#):
LC_Icelandic_Eth : constant Character := ’ð’; --Character’Val(240)
LC_N_Tilde : constant Character := ’ñ’; --Character’Val(241)
LC_O_Grave : constant Character := ’ò’; --Character’Val(242)
LC_O_Acute : constant Character := ’ó’; --Character’Val(243)
LC_O_Circumflex : constant Character := ’ô’; --Character’Val(244)
LC_O_Tilde : constant Character := ’õ’; --Character’Val(245)
LC_O_Diaeresis : constant Character := ’ö’; --Character’Val(246)
Division_Sign : constant Character := ’÷’; --Character’Val(247)
LC_O_Oblique_Stroke : constant Character := ’ø’; --Character’Val(248)
LC_U_Grave : constant Character := ’ù’; --Character’Val(249)
LC_U_Acute : constant Character := ’ú’; --Character’Val(250)
LC_U_Circumflex : constant Character := ’û’; --Character’Val(251)
LC_U_Diaeresis : constant Character := ’ü’; --Character’Val(252)
LC_Y_Acute : constant Character := ’ý’; --Character’Val(253)
LC_Icelandic_Thorn : constant Character := ’þ’; --Character’Val(254)
LC_Y_Diaeresis : constant Character := ’ÿ’; --Character’Val(255)

end Ada.Characters.Latin_1;

Implementation Permissions

27 An implementation may provide additional packages as children of Ada.Characters, to declare names for
the symbols of the local character set or other character sets.

A.4 String Handling
1 This clause presents the specifications of the package Strings and several child packages, which provide

facilities for dealing with string data. Fixed-length, bounded-length, and unbounded-length strings are
supported, for both String and Wide_String. The string-handling subprograms include searches for pat-
tern strings and for characters in program-specified sets, translation (via a character-to-character map-
ping), and transformation (replacing, inserting, overwriting, and deleting of substrings).

ISO/IEC 8652:1995(E) —AARM;6.0

443 21 December 1994 String Handling A.4

Extensions to Ada 83

1.a{extensions to Ada 83} This clause is new to Ada 9X.

A.4.1 The Package Strings
1The package Strings provides declarations common to the string handling packages.

Static Semantics

2The library package Strings has the following declaration:
3package Ada.Strings is

pragma Pure(Strings);

4Space : constant Character := ’ ’;
Wide_Space : constant Wide_Character := ’ ’;

5Length_Error, Pattern_Error, Index_Error, Translation_Error : exception;

6type Alignment is (Left, Right, Center);
type Truncation is (Left, Right, Error);
type Membership is (Inside, Outside);
type Direction is (Forward, Backward);
type Trim_End is (Left, Right, Both);

end Ada.Strings;

A.4.2 The Package Strings.Maps
1The package Strings.Maps defines the types, operations, and other entities needed for character sets and

character-to-character mappings.

Static Semantics

2The library package Strings.Maps has the following declaration:
3package Ada.Strings.Maps is

pragma Preelaborate(Maps);

4-- Representation for a set of character values:
type Character_Set is private;

5Null_Set : constant Character_Set;

6type Character_Range is
record

Low : Character;
High : Character;

end record;
-- Represents Character range Low..High

7type Character_Ranges is array (Positive range <>) of Character_Range;

8function To_Set (Ranges : in Character_Ranges) return Character_Set;

9function To_Set (Span : in Character_Range) return Character_Set;

10function To_Ranges (Set : in Character_Set) return Character_Ranges;

11function "=" (Left, Right : in Character_Set) return Boolean;

12function "not" (Right : in Character_Set) return Character_Set;
function "and" (Left, Right : in Character_Set) return Character_Set;
function "or" (Left, Right : in Character_Set) return Character_Set;
function "xor" (Left, Right : in Character_Set) return Character_Set;
function "–" (Left, Right : in Character_Set) return Character_Set;

13function Is_In (Element : in Character;
Set : in Character_Set)

return Boolean;

14function Is_Subset (Elements : in Character_Set;
Set : in Character_Set)

return Boolean;

ISO/IEC 8652:1995(E) —AARM;6.0

A.4.2 The Package Strings.Maps 21 December 1994 444

15 function "<=" (Left : in Character_Set;
Right : in Character_Set)

return Boolean renames Is_Subset;

16 -- Alternative representation for a set of character values:
subtype Character_Sequence is String;

17 function To_Set (Sequence : in Character_Sequence) return Character_Set;

18 function To_Set (Singleton : in Character) return Character_Set;

19 function To_Sequence (Set : in Character_Set) return Character_Sequence;

20 -- Representation for a character to character mapping:
type Character_Mapping is private;

21 function Value (Map : in Character_Mapping;
Element : in Character)

return Character;

22 Identity : constant Character_Mapping;

23 function To_Mapping (From, To : in Character_Sequence) return Character_Mapping;

24 function To_Domain (Map : in Character_Mapping) return Character_Sequence;
function To_Range (Map : in Character_Mapping) return Character_Sequence;

25 type Character_Mapping_Function is
access function (From : in Character) return Character;

26 private
... -- not specified by the language

end Ada.Strings.Maps;

27 An object of type Character_Set represents a set of characters.

28 Null_Set represents the set containing no characters.

29 An object Obj of type Character_Range represents the set of characters in the range Obj.Low .. Obj.High.

30 An object Obj of type Character_Ranges represents the union of the sets corresponding to Obj(I) for I in
Obj’Range.

31 function To_Set (Ranges : in Character_Ranges) return Character_Set;

32 If Ranges’Length=0 then Null_Set is returned; otherwise the returned value represents the set
corresponding to Ranges.

33 function To_Set (Span : in Character_Range) return Character_Set;

34 The returned value represents the set containing each character in Span.

35 function To_Ranges (Set : in Character_Set) return Character_Ranges;

36 If Set = Null_Set then an empty Character_Ranges array is returned; otherwise the shortest
array of contiguous ranges of Character values in Set, in increasing order of Low, is returned.

37 function "=" (Left, Right : in Character_Set) return Boolean;

38 The function "=" returns True if Left and Right represent identical sets, and False otherwise.

39 Each of the logical operators "not", "and", "or", and "xor" returns a Character_Set value that represents
the set obtained by applying the corresponding operation to the set(s) represented by the parameter(s) of
the operator. "–"(Left, Right) is equivalent to "and"(Left, "not"(Right)).

39.a Reason: The set minus operator is provided for efficiency.

ISO/IEC 8652:1995(E) —AARM;6.0

445 21 December 1994 The Package Strings.Maps A.4.2

40function Is_In (Element : in Character;
Set : in Character_Set);

return Boolean;

41Is_In returns True if Element is in Set, and False otherwise.

42function Is_Subset (Elements : in Character_Set;
Set : in Character_Set)

return Boolean;

43Is_Subset returns True if Elements is a subset of Set, and False otherwise.

44subtype Character_Sequence is String;

45The Character_Sequence subtype is used to portray a set of character values and also to identify
the domain and range of a character mapping.

45.aReason: Although a named subtype is redundant — the predefined type String could have been used for the parameter
to To_Set and To_Mapping below — the use of a differently named subtype identifies the intended purpose of the
parameter.

46function To_Set (Sequence : in Character_Sequence) return Character_Set;

function To_Set (Singleton : in Character) return Character_Set;

47Sequence portrays the set of character values that it explicitly contains (ignoring duplicates).
Singleton portrays the set comprising a single Character. Each of the To_Set functions returns
a Character_Set value that represents the set portrayed by Sequence or Singleton.

48function To_Sequence (Set : in Character_Set) return Character_Sequence;

49The function To_Sequence returns a Character_Sequence value containing each of the charac-
ters in the set represented by Set, in ascending order with no duplicates.

50type Character_Mapping is private;

51An object of type Character_Mapping represents a Character-to-Character mapping.

52function Value (Map : in Character_Mapping;
Element : in Character)

return Character;

53The function Value returns the Character value to which Element maps with respect to the
mapping represented by Map.

54{match (a character to a pattern character)} A character C matches a pattern character P with respect to a given
Character_Mapping value Map if Value(Map, C) = P. {match (a string to a pattern string)} A string S matches a
pattern string P with respect to a given Character_Mapping if their lengths are the same and if each
character in S matches its corresponding character in the pattern string P.

54.aDiscussion: In an earlier version of the string handling packages, the definition of matching was symmetrical, namely
C matches P if Value(Map,C) = Value(Map,P). However, applying the mapping to the pattern was confusing
according to some reviewers. Furthermore, if the symmetrical version is needed, it can be achieved by applying the
mapping to the pattern (via translation) prior to passing it as a parameter.

55String handling subprograms that deal with character mappings have parameters whose type is Character_
Mapping.

56Identity : constant Character_Mapping;

ISO/IEC 8652:1995(E) —AARM;6.0

A.4.2 The Package Strings.Maps 21 December 1994 446

57 Identity maps each Character to itself.

58 function To_Mapping (From, To : in Character_Sequence) return Character_Mapping;

59 To_Mapping produces a Character_Mapping such that each element of From maps to the cor-
responding element of To, and each other character maps to itself. If From’Length /=
To’Length, or if some character is repeated in From, then Translation_Error is propagated.

60 function To_Domain (Map : in Character_Mapping) return Character_Sequence;

61 To_Domain returns the shortest Character_Sequence value D such that each character not in D
maps to itself, and such that the characters in D are in ascending order. The lower bound of D
is 1.

62 function To_Range (Map : in Character_Mapping) return Character_Sequence;

63 To_Range returns the Character_Sequence value R, with lower bound 1 and upper bound
Map’Length, such that if D = To_Domain(Map) then D(I) maps to R(I) for each I in D’Range.

64 An object F of type Character_Mapping_Function maps a Character value C to the Character value
F.all(C), which is said to match C with respect to mapping function F. {match (a character to a pattern

character, with respect to a character mapping function)}

NOTES
65 7 Character_Mapping and Character_Mapping_Function are used both for character equivalence mappings in the search

subprograms (such as for case insensitivity) and as transformational mappings in the Translate subprograms.

66 8 To_Domain(Identity) and To_Range(Identity) each returns the null string.

66.a Reason: Package Strings.Maps is not pure, since it declares an access-to-subprogram type.

Examples

67 To_Mapping("ABCD", "ZZAB") returns a Character_Mapping that maps ’A’ and ’B’ to ’Z’, ’C’ to ’A’,
’D’ to ’B’, and each other Character to itself.

A.4.3 Fixed-Length String Handling
1 The language-defined package Strings.Fixed provides string-handling subprograms for fixed-length

strings; that is, for values of type Standard.String. Several of these subprograms are procedures that
modify the contents of a String that is passed as an out or an in out parameter; each has additional
parameters to control the effect when the logical length of the result differs from the parameter’s length.

2 For each function that returns a String, the lower bound of the returned value is 1.
2.a Discussion: Most operations that yields a String are provided both as a function and as a procedure. The functional

form is possibly a more aesthetic style but may introduce overhead due to extra copying or dynamic memory usage in
some implementations. Thus a procedural form, with an in out parameter so that all copying is done ‘in place’, is also
supplied.

3 The basic model embodied in the package is that a fixed-length string comprises significant characters
and possibly padding (with space characters) on either or both ends. When a shorter string is copied to a
longer string, padding is inserted, and when a longer string is copied to a shorter one, padding is stripped.
The Move procedure in Strings.Fixed, which takes a String as an out parameter, allows the programmer
to control these effects. Similar control is provided by the string transformation procedures.

ISO/IEC 8652:1995(E) —AARM;6.0

447 21 December 1994 Fixed-Length String Handling A.4.3

Static Semantics

4The library package Strings.Fixed has the following declaration:
5with Ada.Strings.Maps;

package Ada.Strings.Fixed is
pragma Preelaborate(Fixed);

6-- "Copy" procedure for strings of possibly different lengths

7procedure Move (Source : in String;
Target : out String;
Drop : in Truncation := Error;
Justify : in Alignment := Left;
Pad : in Character := Space);

8-- Search subprograms

9function Index (Source : in String;
Pattern : in String;
Going : in Direction := Forward;
Mapping : in Maps.Character_Mapping

:= Maps.Identity)
return Natural;

10function Index (Source : in String;
Pattern : in String;
Going : in Direction := Forward;
Mapping : in Maps.Character_Mapping_Function)

return Natural;

11function Index (Source : in String;
Set : in Maps.Character_Set;
Test : in Membership := Inside;
Going : in Direction := Forward)

return Natural;

12function Index_Non_Blank (Source : in String;
Going : in Direction := Forward)

return Natural;

13function Count (Source : in String;
Pattern : in String;
Mapping : in Maps.Character_Mapping

:= Maps.Identity)
return Natural;

14function Count (Source : in String;
Pattern : in String;
Mapping : in Maps.Character_Mapping_Function)

return Natural;

15function Count (Source : in String;
Set : in Maps.Character_Set)

return Natural;

16procedure Find_Token (Source : in String;
Set : in Maps.Character_Set;
Test : in Membership;
First : out Positive;
Last : out Natural);

17-- String translation subprograms

18function Translate (Source : in String;
Mapping : in Maps.Character_Mapping)

return String;

19procedure Translate (Source : in out String;
Mapping : in Maps.Character_Mapping);

20function Translate (Source : in String;
Mapping : in Maps.Character_Mapping_Function)

return String;

21procedure Translate (Source : in out String;
Mapping : in Maps.Character_Mapping_Function);

22-- String transformation subprograms

ISO/IEC 8652:1995(E) —AARM;6.0

A.4.3 Fixed-Length String Handling 21 December 1994 448

23 function Replace_Slice (Source : in String;
Low : in Positive;
High : in Natural;
By : in String)

return String;

24 procedure Replace_Slice (Source : in out String;
Low : in Positive;
High : in Natural;
By : in String;
Drop : in Truncation := Error;
Justify : in Alignment := Left;
Pad : in Character := Space);

25 function Insert (Source : in String;
Before : in Positive;
New_Item : in String)

return String;

26 procedure Insert (Source : in out String;
Before : in Positive;
New_Item : in String;
Drop : in Truncation := Error);

27 function Overwrite (Source : in String;
Position : in Positive;
New_Item : in String)

return String;

28 procedure Overwrite (Source : in out String;
Position : in Positive;
New_Item : in String;
Drop : in Truncation := Right);

29 function Delete (Source : in String;
From : in Positive;
Through : in Natural)

return String;

30 procedure Delete (Source : in out String;
From : in Positive;
Through : in Natural;
Justify : in Alignment := Left;
Pad : in Character := Space);

31 --String selector subprograms
function Trim (Source : in String;

Side : in Trim_End)
return String;

32 procedure Trim (Source : in out String;
Side : in Trim_End;
Justify : in Alignment := Left;
Pad : in Character := Space);

33 function Trim (Source : in String;
Left : in Maps.Character_Set;
Right : in Maps.Character_Set)

return String;

34 procedure Trim (Source : in out String;
Left : in Maps.Character_Set;
Right : in Maps.Character_Set;
Justify : in Alignment := Strings.Left;
Pad : in Character := Space);

35 function Head (Source : in String;
Count : in Natural;
Pad : in Character := Space)

return String;

36 procedure Head (Source : in out String;
Count : in Natural;
Justify : in Alignment := Left;
Pad : in Character := Space);

ISO/IEC 8652:1995(E) —AARM;6.0

449 21 December 1994 Fixed-Length String Handling A.4.3

37function Tail (Source : in String;
Count : in Natural;
Pad : in Character := Space)

return String;

38procedure Tail (Source : in out String;
Count : in Natural;
Justify : in Alignment := Left;
Pad : in Character := Space);

39--String constructor functions

40function "*" (Left : in Natural;
Right : in Character) return String;

41function "*" (Left : in Natural;
Right : in String) return String;

42end Ada.Strings.Fixed;

43The effects of the above subprograms are as follows.

44procedure Move (Source : in String;
Target : out String;
Drop : in Truncation := Error;
Justify : in Alignment := Left;
Pad : in Character := Space);

45The Move procedure copies characters from Source to Target. If Source has the same length as
Target, then the effect is to assign Source to Target. If Source is shorter than Target then:

46• If Justify=Left, then Source is copied into the first Source’Length characters of
Target.

47• If Justify=Right, then Source is copied into the last Source’Length characters of
Target.

48• If Justify=Center, then Source is copied into the middle Source’Length characters
of Target. In this case, if the difference in length between Target and Source is
odd, then the extra Pad character is on the right.

49• Pad is copied to each Target character not otherwise assigned.

50If Source is longer than Target, then the effect is based on Drop.

51• If Drop=Left, then the rightmost Target’Length characters of Source are copied
into Target.

52• If Drop=Right, then the leftmost Target’Length characters of Source are copied
into Target.

53• If Drop=Error, then the effect depends on the value of the Justify parameter and
also on whether any characters in Source other than Pad would fail to be copied:

54• If Justify=Left, and if each of the rightmost Source’Length-Target’Length
characters in Source is Pad, then the leftmost Target’Length characters of
Source are copied to Target.

55• If Justify=Right, and if each of the leftmost Source’Length-Target’Length
characters in Source is Pad, then the rightmost Target’Length characters of
Source are copied to Target.

56• Otherwise, Length_Error is propagated.
56.aRamification: The Move procedure will work even if Source and Target overlap.

56.bReason: The order of parameters (Source before Target) corresponds to the order in COBOL’s MOVE verb.

ISO/IEC 8652:1995(E) —AARM;6.0

A.4.3 Fixed-Length String Handling 21 December 1994 450

57 function Index (Source : in String;
Pattern : in String;
Going : in Direction := Forward;
Mapping : in Maps.Character_Mapping

:= Maps.Identity)
return Natural;

function Index (Source : in String;
Pattern : in String;
Going : in Direction := Forward;
Mapping : in Maps.Character_Mapping_Function)

return Natural;

58 Each Index function searches for a slice of Source, with length Pattern’Length, that matches
Pattern with respect to Mapping; the parameter Going indicates the direction of the lookup. If
Going = Forward, then Index returns the smallest index I such that the slice of Source starting at
I matches Pattern. If Going = Backward, then Index returns the largest index I such that the
slice of Source starting at I matches Pattern. If there is no such slice, then 0 is returned. If
Pattern is the null string then Pattern_Error is propagated.

58.a Discussion: There is no default value for the Mapping parameter that is a Character_Mapping_Function; if there were,
a call would be ambiguous since there is also a default for the Mapping parameter that is a Character_Mapping.

59 function Index (Source : in String;
Set : in Maps.Character_Set;
Test : in Membership := Inside;
Going : in Direction := Forward)

return Natural;

60 Index searches for the first or last occurrence of any of a set of characters (when Test=Inside),
or any of the complement of a set of characters (when Test=Outside). It returns the smallest
index I (if Going=Forward) or the largest index I (if Going=Backward) such that Source(I)
satisfies the Test condition with respect to Set; it returns 0 if there is no such Character in
Source.

61 function Index_Non_Blank (Source : in String;
Going : in Direction := Forward)

return Natural;

62 Returns Index(Source, Maps.To_Set(Space), Outside, Going)

63 function Count (Source : in String;
Pattern : in String;
Mapping : in Maps.Character_Mapping

:= Maps.Identity)
return Natural;

function Count (Source : in String;
Pattern : in String;
Mapping : in Maps.Character_Mapping_Function)

return Natural;

64 Returns the maximum number of nonoverlapping slices of Source that match Pattern with
respect to Mapping. If Pattern is the null string then Pattern_Error is propagated.

64.a Reason: We say ‘maximum number’ because it is possible to slice a source string in different ways yielding different
numbers of matches. For example if Source is "ABABABA" and Pattern is "ABA", then Count yields 2, although
there is a partitioning of Source that yields just 1 match, for the middle slice. Saying ‘maximum number’ is equivalent
to saying that the pattern match starts either at the low index or the high index position.

65 function Count (Source : in String;
Set : in Maps.Character_Set)

return Natural;

ISO/IEC 8652:1995(E) —AARM;6.0

451 21 December 1994 Fixed-Length String Handling A.4.3

66Returns the number of occurrences in Source of characters that are in Set.

67procedure Find_Token (Source : in String;
Set : in Maps.Character_Set;
Test : in Membership;
First : out Positive;
Last : out Natural);

68Find_Token returns in First and Last the indices of the beginning and end of the first slice of
Source all of whose elements satisfy the Test condition, and such that the elements (if any)
immediately before and after the slice do not satisfy the Test condition. If no such slice exists,
then the value returned for Last is zero, and the value returned for First is Source’First.

69function Translate (Source : in String;
Mapping : in Maps.Character_Mapping)

return String;

function Translate (Source : in String;
Mapping : in Maps.Character_Mapping_Function)

return String;

70Returns the string S whose length is Source’Length and such that S(I) is the character to which
Mapping maps the corresponding element of Source, for I in 1..Source’Length.

71procedure Translate (Source : in out String;
Mapping : in Maps.Character_Mapping);

procedure Translate (Source : in out String;
Mapping : in Maps.Character_Mapping_Function);

72Equivalent to Source := Translate(Source, Mapping).

73function Replace_Slice (Source : in String;
Low : in Positive;
High : in Natural;
By : in String)

return String;

74If Low > Source’Last+1, or High < Source’First–1, then Index_Error is propagated. Otherwise,
if High >= Low then the returned string comprises Source(Source’First..Low–1) & By &
Source(High+1..Source’Last), and if High < Low then the returned string is Insert(Source,
Before=>Low, New_Item=>By).

75procedure Replace_Slice (Source : in out String;
Low : in Positive;
High : in Natural;
By : in String;
Drop : in Truncation := Error;
Justify : in Alignment := Left;
Pad : in Character := Space);

76Equivalent to Move(Replace_Slice(Source, Low, High, By), Source, Drop, Justify, Pad).

77function Insert (Source : in String;
Before : in Positive;
New_Item : in String)

return String;

78Propagates Index_Error if Before is not in Source’First .. Source’Last+1; otherwise returns
Source(Source’First..Before–1) & New_Item & Source(Before..Source’Last), but with lower
bound 1.

ISO/IEC 8652:1995(E) —AARM;6.0

A.4.3 Fixed-Length String Handling 21 December 1994 452

79 procedure Insert (Source : in out String;
Before : in Positive;
New_Item : in String;
Drop : in Truncation := Error);

80 Equivalent to Move(Insert(Source, Before, New_Item), Source, Drop).

81 function Overwrite (Source : in String;
Position : in Positive;
New_Item : in String)

return String;

82 Propagates Index_Error if Position is not in Source’First .. Source’Last+1; otherwise returns the
string obtained from Source by consecutively replacing characters starting at Position with cor-
responding characters from New_Item. If the end of Source is reached before the characters in
New_Item are exhausted, the remaining characters from New_Item are appended to the string.

83 procedure Overwrite (Source : in out String;
Position : in Positive;
New_Item : in String;
Drop : in Truncation := Right);

84 Equivalent to Move(Overwrite(Source, Position, New_Item), Source, Drop).

85 function Delete (Source : in String;
From : in Positive;
Through : in Natural)

return String;

86 If From <= Through, the returned string is Replace_Slice(Source, From, Through, ""), other-
wise it is Source.

87 procedure Delete (Source : in out String;
From : in Positive;
Through : in Natural;
Justify : in Alignment := Left;
Pad : in Character := Space);

88 Equivalent to Move(Delete(Source, From, Through), Source, Justify => Justify, Pad => Pad).

89 function Trim (Source : in String;
Side : in Trim_End)

return String;

90 Returns the string obtained by removing from Source all leading Space characters (if Side =
Left), all trailing Space characters (if Side = Right), or all leading and trailing Space characters
(if Side = Both).

91 procedure Trim (Source : in out String;
Side : in Trim_End;
Justify : in Alignment := Left;
Pad : in Character := Space);

92 Equivalent to Move(Trim(Source, Side), Source, Justify=>Justify, Pad=>Pad).

93 function Trim (Source : in String;
Left : in Maps.Character_Set;
Right : in Maps.Character_Set)

return String;

94 Returns the string obtained by removing from Source all leading characters in Left and all
trailing characters in Right.

ISO/IEC 8652:1995(E) —AARM;6.0

453 21 December 1994 Fixed-Length String Handling A.4.3

95procedure Trim (Source : in out String;
Left : in Maps.Character_Set;
Right : in Maps.Character_Set;
Justify : in Alignment := Strings.Left;
Pad : in Character := Space);

96Equivalent to Move(Trim(Source, Left, Right), Source, Justify => Justify, Pad=>Pad).

97function Head (Source : in String;
Count : in Natural;
Pad : in Character := Space)

return String;

98Returns a string of length Count. If Count <= Source’Length, the string comprises the first
Count characters of Source. Otherwise its contents are Source concatenated with
Count–Source’Length Pad characters.

99procedure Head (Source : in out String;
Count : in Natural;
Justify : in Alignment := Left;
Pad : in Character := Space);

100Equivalent to Move(Head(Source, Count, Pad), Source, Drop=>Error, Justify=>Justify,
Pad=>Pad).

101function Tail (Source : in String;
Count : in Natural;
Pad : in Character := Space)

return String;

102Returns a string of length Count. If Count <= Source’Length, the string comprises the last
Count characters of Source. Otherwise its contents are Count-Source’Length Pad characters
concatenated with Source.

103procedure Tail (Source : in out String;
Count : in Natural;
Justify : in Alignment := Left;
Pad : in Character := Space);

104Equivalent to Move(Tail(Source, Count, Pad), Source, Drop=>Error, Justify=>Justify,
Pad=>Pad).

105function "*" (Left : in Natural;
Right : in Character) return String;

function "*" (Left : in Natural;
Right : in String) return String;

106These functions replicate a character or string a specified number of times. The first function
returns a string whose length is Left and each of whose elements is Right. The second function
returns a string whose length is Left*Right’Length and whose value is the null string if Left = 0
and is (Left–1)*Right & Right otherwise.

NOTES
1079 In the Index and Count functions taking Pattern and Mapping parameters, the actual String parameter passed to Pattern

should comprise characters occurring as target characters of the mapping. Otherwise the pattern will not match.

10810 In the Insert subprograms, inserting at the end of a string is obtained by passing Source’Last+1 as the Before
parameter.

ISO/IEC 8652:1995(E) —AARM;6.0

A.4.3 Fixed-Length String Handling 21 December 1994 454

109 11 {Constraint_Error (raised by failure of run-time check)} If a null Character_Mapping_Function is passed to any of the
string handling subprograms, Constraint_Error is propagated.

A.4.4 Bounded-Length String Handling
1 The language-defined package Strings.Bounded provides a generic package each of whose instances

yields a private type Bounded_String and a set of operations. An object of a particular Bounded_String
type represents a String whose low bound is 1 and whose length can vary conceptually between 0 and a
maximum size established at the generic instantiation. The subprograms for fixed-length string handling
are either overloaded directly for Bounded_String, or are modified as needed to reflect the variability in
length. Additionally, since the Bounded_String type is private, appropriate constructor and selector
operations are provided.

1.a Reason: Strings.Bounded declares an inner generic package, versus itself being directly a generic child of Strings, in
order to retain compatibility with a version of the string-handling packages that is generic with respect to the character
and string types.

1.b Reason: The bound of a bounded-length string is specified as a parameter to a generic, versus as the value for a
discriminant, because of the inappropriateness of assignment and equality of discriminated types for the copying and
comparison of bounded strings.

Static Semantics

2 The library package Strings.Bounded has the following declaration:
3 with Ada.Strings.Maps;

package Ada.Strings.Bounded is
pragma Preelaborate(Bounded);

4 generic
Max : Positive; -- Maximum length of a Bounded_String

package Generic_Bounded_Length is

5 Max_Length : constant Positive := Max;

6 type Bounded_String is private;

7 Null_Bounded_String : constant Bounded_String;

8 subtype Length_Range is Natural range 0 .. Max_Length;

9 function Length (Source : in Bounded_String) return Length_Range;

10 -- Conversion, Concatenation, and Selection functions

11 function To_Bounded_String (Source : in String;
Drop : in Truncation := Error)

return Bounded_String;

12 function To_String (Source : in Bounded_String) return String;

13 function Append (Left, Right : in Bounded_String;
Drop : in Truncation := Error)

return Bounded_String;

14 function Append (Left : in Bounded_String;
Right : in String;
Drop : in Truncation := Error)

return Bounded_String;

15 function Append (Left : in String;
Right : in Bounded_String;
Drop : in Truncation := Error)

return Bounded_String;

16 function Append (Left : in Bounded_String;
Right : in Character;
Drop : in Truncation := Error)

return Bounded_String;

17 function Append (Left : in Character;
Right : in Bounded_String;
Drop : in Truncation := Error)

return Bounded_String;

ISO/IEC 8652:1995(E) —AARM;6.0

455 21 December 1994 Bounded-Length String Handling A.4.4

18procedure Append (Source : in out Bounded_String;
New_Item : in Bounded_String;
Drop : in Truncation := Error);

19procedure Append (Source : in out Bounded_String;
New_Item : in String;
Drop : in Truncation := Error);

20procedure Append (Source : in out Bounded_String;
New_Item : in Character;
Drop : in Truncation := Error);

21function "&" (Left, Right : in Bounded_String)
return Bounded_String;

22function "&" (Left : in Bounded_String; Right : in String)
return Bounded_String;

23function "&" (Left : in String; Right : in Bounded_String)
return Bounded_String;

24function "&" (Left : in Bounded_String; Right : in Character)
return Bounded_String;

25function "&" (Left : in Character; Right : in Bounded_String)
return Bounded_String;

26function Element (Source : in Bounded_String;
Index : in Positive)

return Character;

27procedure Replace_Element (Source : in out Bounded_String;
Index : in Positive;
By : in Character);

28function Slice (Source : in Bounded_String;
Low : in Positive;
High : in Natural)

return String;

29function "=" (Left, Right : in Bounded_String) return Boolean;
function "=" (Left : in Bounded_String; Right : in String)

return Boolean;

30function "=" (Left : in String; Right : in Bounded_String)
return Boolean;

31function "<" (Left, Right : in Bounded_String) return Boolean;

32function "<" (Left : in Bounded_String; Right : in String)
return Boolean;

33function "<" (Left : in String; Right : in Bounded_String)
return Boolean;

34function "<=" (Left, Right : in Bounded_String) return Boolean;

35function "<=" (Left : in Bounded_String; Right : in String)
return Boolean;

36function "<=" (Left : in String; Right : in Bounded_String)
return Boolean;

37function ">" (Left, Right : in Bounded_String) return Boolean;

38function ">" (Left : in Bounded_String; Right : in String)
return Boolean;

39function ">" (Left : in String; Right : in Bounded_String)
return Boolean;

40function ">=" (Left, Right : in Bounded_String) return Boolean;

41function ">=" (Left : in Bounded_String; Right : in String)
return Boolean;

42function ">=" (Left : in String; Right : in Bounded_String)
return Boolean;

43-- Search functions

ISO/IEC 8652:1995(E) —AARM;6.0

A.4.4 Bounded-Length String Handling 21 December 1994 456

44 function Index (Source : in Bounded_String;
Pattern : in String;
Going : in Direction := Forward;
Mapping : in Maps.Character_Mapping

:= Maps.Identity)
return Natural;

45 function Index (Source : in Bounded_String;
Pattern : in String;
Going : in Direction := Forward;
Mapping : in Maps.Character_Mapping_Function)

return Natural;

46 function Index (Source : in Bounded_String;
Set : in Maps.Character_Set;
Test : in Membership := Inside;
Going : in Direction := Forward)

return Natural;

47 function Index_Non_Blank (Source : in Bounded_String;
Going : in Direction := Forward)

return Natural;

48 function Count (Source : in Bounded_String;
Pattern : in String;
Mapping : in Maps.Character_Mapping

:= Maps.Identity)
return Natural;

49 function Count (Source : in Bounded_String;
Pattern : in String;
Mapping : in Maps.Character_Mapping_Function)

return Natural;

50 function Count (Source : in Bounded_String;
Set : in Maps.Character_Set)

return Natural;

51 procedure Find_Token (Source : in Bounded_String;
Set : in Maps.Character_Set;
Test : in Membership;
First : out Positive;
Last : out Natural);

52 -- String translation subprograms

53 function Translate (Source : in Bounded_String;
Mapping : in Maps.Character_Mapping)

return Bounded_String;

54 procedure Translate (Source : in out Bounded_String;
Mapping : in Maps.Character_Mapping);

55 function Translate (Source : in Bounded_String;
Mapping : in Maps.Character_Mapping_Function)

return Bounded_String;

56 procedure Translate (Source : in out Bounded_String;
Mapping : in Maps.Character_Mapping_Function);

57 -- String transformation subprograms

58 function Replace_Slice (Source : in Bounded_String;
Low : in Positive;
High : in Natural;
By : in String;
Drop : in Truncation := Error)

return Bounded_String;

59 procedure Replace_Slice (Source : in out Bounded_String;
Low : in Positive;
High : in Natural;
By : in String;
Drop : in Truncation := Error);

ISO/IEC 8652:1995(E) —AARM;6.0

457 21 December 1994 Bounded-Length String Handling A.4.4

60function Insert (Source : in Bounded_String;
Before : in Positive;
New_Item : in String;
Drop : in Truncation := Error)

return Bounded_String;

61procedure Insert (Source : in out Bounded_String;
Before : in Positive;
New_Item : in String;
Drop : in Truncation := Error);

62function Overwrite (Source : in Bounded_String;
Position : in Positive;
New_Item : in String;
Drop : in Truncation := Error)

return Bounded_String;

63procedure Overwrite (Source : in out Bounded_String;
Position : in Positive;
New_Item : in String;
Drop : in Truncation := Error);

64function Delete (Source : in Bounded_String;
From : in Positive;
Through : in Natural)

return Bounded_String;

65procedure Delete (Source : in out Bounded_String;
From : in Positive;
Through : in Natural);

66--String selector subprograms

67function Trim (Source : in Bounded_String;
Side : in Trim_End)

return Bounded_String;
procedure Trim (Source : in out Bounded_String;

Side : in Trim_End);

68function Trim (Source : in Bounded_String;
Left : in Maps.Character_Set;
Right : in Maps.Character_Set)

return Bounded_String;

69procedure Trim (Source : in out Bounded_String;
Left : in Maps.Character_Set;
Right : in Maps.Character_Set);

70function Head (Source : in Bounded_String;
Count : in Natural;
Pad : in Character := Space;
Drop : in Truncation := Error)

return Bounded_String;

71procedure Head (Source : in out Bounded_String;
Count : in Natural;
Pad : in Character := Space;
Drop : in Truncation := Error);

72function Tail (Source : in Bounded_String;
Count : in Natural;
Pad : in Character := Space;
Drop : in Truncation := Error)

return Bounded_String;

73procedure Tail (Source : in out Bounded_String;
Count : in Natural;
Pad : in Character := Space;
Drop : in Truncation := Error);

74--String constructor subprograms

75function "*" (Left : in Natural;
Right : in Character)

return Bounded_String;

ISO/IEC 8652:1995(E) —AARM;6.0

A.4.4 Bounded-Length String Handling 21 December 1994 458

76 function "*" (Left : in Natural;
Right : in String)

return Bounded_String;

77 function "*" (Left : in Natural;
Right : in Bounded_String)

return Bounded_String;

78 function Replicate (Count : in Natural;
Item : in Character;
Drop : in Truncation := Error)

return Bounded_String;

79 function Replicate (Count : in Natural;
Item : in String;
Drop : in Truncation := Error)

return Bounded_String;

80 function Replicate (Count : in Natural;
Item : in Bounded_String;
Drop : in Truncation := Error)

return Bounded_String;

81 private
... -- not specified by the language

end Generic_Bounded_Length;

82 end Ada.Strings.Bounded;

83 Null_Bounded_String represents the null string. If an object of type Bounded_String is not otherwise
initialized, it will be initialized to the same value as Null_Bounded_String.

84 function Length (Source : in Bounded_String) return Length_Range;

85 The Length function returns the length of the string represented by Source.

86 function To_Bounded_String (Source : in String;
Drop : in Truncation := Error)

return Bounded_String;

87 If Source’Length <= Max_Length then this function returns a Bounded_String that represents
Source. Otherwise the effect depends on the value of Drop:

88 • If Drop=Left, then the result is a Bounded_String that represents the string com-
prising the rightmost Max_Length characters of Source.

89 • If Drop=Right, then the result is a Bounded_String that represents the string com-
prising the leftmost Max_Length characters of Source.

90 • If Drop=Error, then Strings.Length_Error is propagated.

91 function To_String (Source : in Bounded_String) return String;

92 To_String returns the String value with lower bound 1 represented by Source. If B is a
Bounded_String, then B = To_Bounded_String(To_String(B)).

93 Each of the Append functions returns a Bounded_String obtained by concatenating the string or character
given or represented by one of the parameters, with the string or character given or represented by the
other parameter, and applying To_Bounded_String to the concatenation result string, with Drop as
provided to the Append function.

94 Each of the procedures Append(Source, New_Item, Drop) has the same effect as the corresponding as-
signment Source := Append(Source, New_Item, Drop).

ISO/IEC 8652:1995(E) —AARM;6.0

459 21 December 1994 Bounded-Length String Handling A.4.4

95Each of the "&" functions has the same effect as the corresponding Append function, with Error as the
Drop parameter.

96function Element (Source : in Bounded_String;
Index : in Positive)

return Character;

97Returns the character at position Index in the string represented by Source; propagates Index_
Error if Index > Length(Source).

98procedure Replace_Element (Source : in out Bounded_String;
Index : in Positive;
By : in Character);

99Updates Source such that the character at position Index in the string represented by Source is
By; propagates Index_Error if Index > Length(Source).

100function Slice (Source : in Bounded_String;
Low : in Positive;
High : in Natural)

return String;

101Returns the slice at positions Low through High in the string represented by Source; propagates
Index_Error if Low > Length(Source)+1.

102Each of the functions "=", "<", ">","<=", and ">=" returns the same result as the corresponding String
operation applied to the String values given or represented by the two parameters.

103Each of the search subprograms (Index, Index_Non_Blank, Count, Find_Token) has the same effect as
the corresponding subprogram in Strings.Fixed applied to the string represented by the Bounded_String
parameter.

104Each of the Translate subprograms, when applied to a Bounded_String, has an analogous effect to the
corresponding subprogram in Strings.Fixed. For the Translate function, the translation is applied to the
string represented by the Bounded_String parameter, and the result is converted (via To_Bounded_String)
to a Bounded_String. For the Translate procedure, the string represented by the Bounded_String
parameter after the translation is given by the Translate function for fixed-length strings applied to the
string represented by the original value of the parameter.

105Each of the transformation subprograms (Replace_Slice, Insert, Overwrite, Delete), selector subprograms
(Trim, Head, Tail), and constructor functions ("*") has an effect based on its corresponding subprogram
in Strings.Fixed, and Replicate is based on Fixed."*". For each of these subprograms, the corresponding
fixed-length string subprogram is applied to the string represented by the Bounded_String parameter.
To_Bounded_String is applied the result string, with Drop (or Error in the case of Generic_Bounded_
Length."*") determining the effect when the string length exceeds Max_Length.

105.aRamification: The "/=" operations between Bounded_String and String, and between String and Bounded_String, are
automatically defined based on the corrsponding "=" operations.

Implementation Advice

106Bounded string objects should not be implemented by implicit pointers and dynamic allocation.
106.aImplementation Note: The following is a possible implementation of the private part of the package:

ISO/IEC 8652:1995(E) —AARM;6.0

A.4.4 Bounded-Length String Handling 21 December 1994 460

106.b type Bounded_String_Internals (Length : Length_Range := 0) is
record

Data : String(1..Length);
end record;

106.c type Bounded_String is
record

Data : Bounded_String_Internals; -- Unconstrained
end record;

106.d Null_Bounded_String : constant Bounded_String :=
(Data => (Length => 0,

Data => (1..0 => ’ ’)));

A.4.5 Unbounded-Length String Handling
1 The language-defined package Strings.Unbounded provides a private type Unbounded_String and a set of

operations. An object of type Unbounded_String represents a String whose low bound is 1 and whose
length can vary conceptually between 0 and Natural’Last. The subprograms for fixed-length string han-
dling are either overloaded directly for Unbounded_String, or are modified as needed to reflect the
flexibility in length. Since the Unbounded_String type is private, relevant constructor and selector opera-
tions are provided.

1.a Reason: The transformation operations for fixed- and bounded-length strings that are not necessarily length preserving
are supplied for Unbounded_String as procedures as well as functions. This allows an implementation to do an initial
allocation for an unbounded string and to avoid further allocations as long as the length does not exceed the allocated
length.

Static Semantics

2 The library package Strings.Unbounded has the following declaration:
3 with Ada.Strings.Maps;

package Ada.Strings.Unbounded is
pragma Preelaborate(Unbounded);

4 type Unbounded_String is private;

5 Null_Unbounded_String : constant Unbounded_String;

6 function Length (Source : in Unbounded_String) return Natural;

7 type String_Access is access all String;
procedure Free (X : in out String_Access);

8 -- Conversion, Concatenation, and Selection functions

9 function To_Unbounded_String (Source : in String)
return Unbounded_String;

10 function To_Unbounded_String (Length : in Natural)
return Unbounded_String;

11 function To_String (Source : in Unbounded_String) return String;

12 procedure Append (Source : in out Unbounded_String;
New_Item : in Unbounded_String);

13 procedure Append (Source : in out Unbounded_String;
New_Item : in String);

14 procedure Append (Source : in out Unbounded_String;
New_Item : in Character);

15 function "&" (Left, Right : in Unbounded_String)
return Unbounded_String;

16 function "&" (Left : in Unbounded_String; Right : in String)
return Unbounded_String;

17 function "&" (Left : in String; Right : in Unbounded_String)
return Unbounded_String;

18 function "&" (Left : in Unbounded_String; Right : in Character)
return Unbounded_String;

ISO/IEC 8652:1995(E) —AARM;6.0

461 21 December 1994 Unbounded-Length String Handling A.4.5

19function "&" (Left : in Character; Right : in Unbounded_String)
return Unbounded_String;

20function Element (Source : in Unbounded_String;
Index : in Positive)

return Character;

21procedure Replace_Element (Source : in out Unbounded_String;
Index : in Positive;
By : in Character);

22function Slice (Source : in Unbounded_String;
Low : in Positive;
High : in Natural)

return String;

23function "=" (Left, Right : in Unbounded_String) return Boolean;

24function "=" (Left : in Unbounded_String; Right : in String)
return Boolean;

25function "=" (Left : in String; Right : in Unbounded_String)
return Boolean;

26function "<" (Left, Right : in Unbounded_String) return Boolean;

27function "<" (Left : in Unbounded_String; Right : in String)
return Boolean;

28function "<" (Left : in String; Right : in Unbounded_String)
return Boolean;

29function "<=" (Left, Right : in Unbounded_String) return Boolean;

30function "<=" (Left : in Unbounded_String; Right : in String)
return Boolean;

31function "<=" (Left : in String; Right : in Unbounded_String)
return Boolean;

32function ">" (Left, Right : in Unbounded_String) return Boolean;

33function ">" (Left : in Unbounded_String; Right : in String)
return Boolean;

34function ">" (Left : in String; Right : in Unbounded_String)
return Boolean;

35function ">=" (Left, Right : in Unbounded_String) return Boolean;

36function ">=" (Left : in Unbounded_String; Right : in String)
return Boolean;

37function ">=" (Left : in String; Right : in Unbounded_String)
return Boolean;

38-- Search subprograms

39function Index (Source : in Unbounded_String;
Pattern : in String;
Going : in Direction := Forward;
Mapping : in Maps.Character_Mapping

:= Maps.Identity)
return Natural;

40function Index (Source : in Unbounded_String;
Pattern : in String;
Going : in Direction := Forward;
Mapping : in Maps.Character_Mapping_Function)

return Natural;

41function Index (Source : in Unbounded_String;
Set : in Maps.Character_Set;
Test : in Membership := Inside;
Going : in Direction := Forward) return Natural;

42function Index_Non_Blank (Source : in Unbounded_String;
Going : in Direction := Forward)

return Natural;

ISO/IEC 8652:1995(E) —AARM;6.0

A.4.5 Unbounded-Length String Handling 21 December 1994 462

43 function Count (Source : in Unbounded_String;
Pattern : in String;
Mapping : in Maps.Character_Mapping

:= Maps.Identity)
return Natural;

44 function Count (Source : in Unbounded_String;
Pattern : in String;
Mapping : in Maps.Character_Mapping_Function)

return Natural;

45 function Count (Source : in Unbounded_String;
Set : in Maps.Character_Set)

return Natural;

46 procedure Find_Token (Source : in Unbounded_String;
Set : in Maps.Character_Set;
Test : in Membership;
First : out Positive;
Last : out Natural);

47 -- String translation subprograms

48 function Translate (Source : in Unbounded_String;
Mapping : in Maps.Character_Mapping)

return Unbounded_String;

49 procedure Translate (Source : in out Unbounded_String;
Mapping : in Maps.Character_Mapping);

50 function Translate (Source : in Unbounded_String;
Mapping : in Maps.Character_Mapping_Function)

return Unbounded_String;

51 procedure Translate (Source : in out Unbounded_String;
Mapping : in Maps.Character_Mapping_Function);

52 -- String transformation subprograms

53 function Replace_Slice (Source : in Unbounded_String;
Low : in Positive;
High : in Natural;
By : in String)

return Unbounded_String;

54 procedure Replace_Slice (Source : in out Unbounded_String;
Low : in Positive;
High : in Natural;
By : in String);

55 function Insert (Source : in Unbounded_String;
Before : in Positive;
New_Item : in String)

return Unbounded_String;

56 procedure Insert (Source : in out Unbounded_String;
Before : in Positive;
New_Item : in String);

57 function Overwrite (Source : in Unbounded_String;
Position : in Positive;
New_Item : in String)

return Unbounded_String;

58 procedure Overwrite (Source : in out Unbounded_String;
Position : in Positive;
New_Item : in String);

59 function Delete (Source : in Unbounded_String;
From : in Positive;
Through : in Natural)

return Unbounded_String;

60 procedure Delete (Source : in out Unbounded_String;
From : in Positive;
Through : in Natural);

ISO/IEC 8652:1995(E) —AARM;6.0

463 21 December 1994 Unbounded-Length String Handling A.4.5

61function Trim (Source : in Unbounded_String;
Side : in Trim_End)

return Unbounded_String;

62procedure Trim (Source : in out Unbounded_String;
Side : in Trim_End);

63function Trim (Source : in Unbounded_String;
Left : in Maps.Character_Set;
Right : in Maps.Character_Set)

return Unbounded_String;

64procedure Trim (Source : in out Unbounded_String;
Left : in Maps.Character_Set;
Right : in Maps.Character_Set);

65function Head (Source : in Unbounded_String;
Count : in Natural;
Pad : in Character := Space)

return Unbounded_String;

66procedure Head (Source : in out Unbounded_String;
Count : in Natural;
Pad : in Character := Space);

67function Tail (Source : in Unbounded_String;
Count : in Natural;
Pad : in Character := Space)

return Unbounded_String;

68procedure Tail (Source : in out Unbounded_String;
Count : in Natural;
Pad : in Character := Space);

69function "*" (Left : in Natural;
Right : in Character)

return Unbounded_String;

70function "*" (Left : in Natural;
Right : in String)

return Unbounded_String;

71function "*" (Left : in Natural;
Right : in Unbounded_String)

return Unbounded_String;

72private
... -- not specified by the language

end Ada.Strings.Unbounded;

73Null_Unbounded_String represents the null String. If an object of type Unbounded_String is not other-
wise initialized, it will be initialized to the same value as Null_Unbounded_String.

74The function Length returns the length of the String represented by Source.

75The type String_Access provides a (non-private) access type for explicit processing of unbounded-length
strings. The procedure Free performs an unchecked deallocation of an object of type String_Access.

76The function To_Unbounded_String(Source : in String) returns an Unbounded_String that represents
Source. The function To_Unbounded_String(Length : in Natural) returns an Unbounded_String that
represents an uninitialized String whose length is Length.

77The function To_String returns the String with lower bound 1 represented by Source. To_String and To_
Unbounded_String are related as follows:

78• If S is a String, then To_String(To_Unbounded_String(S)) = S.

79• If U is an Unbounded_String, then To_Unbounded_String(To_String(U)) = U.

ISO/IEC 8652:1995(E) —AARM;6.0

A.4.5 Unbounded-Length String Handling 21 December 1994 464

80 For each of the Append procedures, the resulting string represented by the Source parameter is given by
the concatenation of the original value of Source and the value of New_Item.

81 Each of the "&" functions returns an Unbounded_String obtained by concatenating the string or character
given or represented by one of the parameters, with the string or character given or represented by the
other parameter, and applying To_Unbounded_String to the concatenation result string.

82 The Element, Replace_Element, and Slice subprograms have the same effect as the corresponding
bounded-length string subprograms.

83 Each of the functions "=", "<", ">","<=", and ">=" returns the same result as the corresponding String
operation applied to the String values given or represented by Left and Right.

84 Each of the search subprograms (Index, Index_Non_Blank, Count, Find_Token) has the same effect as
the corresponding subprogram in Strings.Fixed applied to the string represented by the Unbounded_String
parameter.

85 The Translate function has an analogous effect to the corresponding subprogram in Strings.Fixed. The
translation is applied to the string represented by the Unbounded_String parameter, and the result is
converted (via To_Unbounded_String) to an Unbounded_String.

86 Each of the transformation functions (Replace_Slice, Insert, Overwrite, Delete), selector functions (Trim,
Head, Tail), and constructor functions ("*") is likewise analogous to its corresponding subprogram in
Strings.Fixed. For each of the subprograms, the corresponding fixed-length string subprogram is applied
to the string represented by the Unbounded_String parameter, and To_Unbounded_String is applied the
result string.

87 For each of the procedures Translate, Replace_Slice, Insert, Overwrite, Delete, Trim, Head, and Tail, the
resulting string represented by the Source parameter is given by the corresponding function for fixed-
length strings applied to the string represented by Source’s original value.

Implementation Requirements

88 No storage associated with an Unbounded_String object shall be lost upon assignment or scope exit.
88.a Implementation Note: A sample implementation of the private part of the package and several of the subprograms

appears in the Rationale.

A.4.6 String-Handling Sets and Mappings
1 The language-defined package Strings.Maps.Constants declares Character_Set and Character_Mapping

constants corresponding to classification and conversion functions in package Characters.Handling.
1.a Discussion: The Constants package is a child of Strings.Maps since it needs visibility of the private part of

Strings.Maps in order to initialize the constants in a preelaborable way (i.e. via aggregates versus function calls).

Static Semantics

2 The library package Strings.Maps.Constants has the following declaration:
3 package Ada.Strings.Maps.Constants is

pragma Preelaborate(Constants);

ISO/IEC 8652:1995(E) —AARM;6.0

465 21 December 1994 String-Handling Sets and Mappings A.4.6

4Control_Set : constant Character_Set;
Graphic_Set : constant Character_Set;
Letter_Set : constant Character_Set;
Lower_Set : constant Character_Set;
Upper_Set : constant Character_Set;
Basic_Set : constant Character_Set;
Decimal_Digit_Set : constant Character_Set;
Hexadecimal_Digit_Set : constant Character_Set;
Alphanumeric_Set : constant Character_Set;
Special_Set : constant Character_Set;
ISO_646_Set : constant Character_Set;

5Lower_Case_Map : constant Character_Mapping;
--Maps to lower case for letters, else identity

Upper_Case_Map : constant Character_Mapping;
--Maps to upper case for letters, else identity

Basic_Map : constant Character_Mapping;
--Maps to basic letter for letters, else identity

6private
... -- not specified by the language

end Ada.Strings.Maps.Constants;

7Each of these constants represents a correspondingly named set of characters or character mapping in
Characters.Handling (see A.3.2).

A.4.7 Wide_String Handling
1Facilities for handling strings of Wide_Character elements are found in the packages Strings.Wide_Maps,

Strings.Wide_Fixed, Strings.Wide_Bounded, Strings.Wide_Unbounded, and Strings.Wide_Maps.Wide_
Constants. They provide the same string-handling operations as the corresponding packages for strings of
Character elements. {Ada.Strings.Wide_Fixed} {Ada.Strings.Wide_Bounded} {Ada.Strings.Wide_Unbounded}
{Ada.Strings.Wide_Maps.Wide_Constants}

Static Semantics

2The package Strings.Wide_Maps has the following declaration.
3package Ada.Strings.Wide_Maps is

pragma Preelaborate(Wide_Maps);

4-- Representation for a set of Wide_Character values:
type Wide_Character_Set is private;

5Null_Set : constant Wide_Character_Set;

6type Wide_Character_Range is
record

Low : Wide_Character;
High : Wide_Character;

end record;
-- Represents Wide_Character range Low..High

7type Wide_Character_Ranges is array (Positive range <>) of Wide_Character_Range;

8function To_Set (Ranges : in Wide_Character_Ranges) return Wide_Character_Set;

9function To_Set (Span : in Wide_Character_Range) return Wide_Character_Set;

10function To_Ranges (Set : in Wide_Character_Set) return Wide_Character_Ranges;

11function "=" (Left, Right : in Wide_Character_Set) return Boolean;

12function "not" (Right : in Wide_Character_Set) return Wide_Character_Set;
function "and" (Left, Right : in Wide_Character_Set) return Wide_Character_Set;
function "or" (Left, Right : in Wide_Character_Set) return Wide_Character_Set;
function "xor" (Left, Right : in Wide_Character_Set) return Wide_Character_Set;
function "–" (Left, Right : in Wide_Character_Set) return Wide_Character_Set;

13function Is_In (Element : in Wide_Character;
Set : in Wide_Character_Set)

return Boolean;

ISO/IEC 8652:1995(E) —AARM;6.0

A.4.7 Wide_String Handling 21 December 1994 466

14 function Is_Subset (Elements : in Wide_Character_Set;
Set : in Wide_Character_Set)

return Boolean;

15 function "<=" (Left : in Wide_Character_Set;
Right : in Wide_Character_Set)

return Boolean renames Is_Subset;

16 -- Alternative representation for a set of Wide_Character values:
subtype Wide_Character_Sequence is Wide_String;

17 function To_Set (Sequence : in Wide_Character_Sequence) return Wide_Character_Set;

18 function To_Set (Singleton : in Wide_Character) return Wide_Character_Set;

19 function To_Sequence (Set : in Wide_Character_Set) return Wide_Character_Sequence;

20 -- Representation for a Wide_Character to Wide_Character mapping:
type Wide_Character_Mapping is private;

21 function Value (Map : in Wide_Character_Mapping;
Element : in Wide_Character)

return Wide_Character;

22 Identity : constant Wide_Character_Mapping;

23 function To_Mapping (From, To : in Wide_Character_Sequence)
return Wide_Character_Mapping;

24 function To_Domain (Map : in Wide_Character_Mapping)
return Wide_Character_Sequence;

25 function To_Range (Map : in Wide_Character_Mapping)
return Wide_Character_Sequence;

26 type Wide_Character_Mapping_Function is
access function (From : in Wide_Character) return Wide_Character;

27 private
... -- not specified by the language

end Ada.Strings.Wide_Maps;

28 The context clause for each of the packages Strings.Wide_Fixed, Strings.Wide_Bounded, and Strings.-
Wide_Unbounded identifies Strings.Wide_Maps instead of Strings.Maps.

29 For each of the packages Strings.Fixed, Strings.Bounded, Strings.Unbounded, and Strings.Maps.-
Constants the corresponding wide string package has the same contents except that

30 • Wide_Space replaces Space

31 • Wide_Character replaces Character

32 • Wide_String replaces String

33 • Wide_Character_Set replaces Character_Set

34 • Wide_Character_Mapping replaces Character_Mapping

35 • Wide_Character_Mapping_Function replaces Character_Mapping_Function

36 • Wide_Maps replaces Maps

37 • Bounded_Wide_String replaces Bounded_String

38 • Null_Bounded_Wide_String replaces Null_Bounded_String

39 • To_Bounded_Wide_String replaces To_Bounded_String

40 • To_Wide_String replaces To_String

41 • Unbounded_Wide_String replaces Unbounded_String

42 • Null_Unbounded_Wide_String replaces Null_Unbounded_String

ISO/IEC 8652:1995(E) —AARM;6.0

467 21 December 1994 Wide_String Handling A.4.7

43• Wide_String_Access replaces String_Access

44• To_Unbounded_Wide_String replaces To_Unbounded_String

45The following additional declaration is present in Strings.Wide_Maps.Wide_Constants:
46Character_Set : constant Wide_Maps.Wide_Character_Set;

--Contains each Wide_Character value WC such that Characters.Is_Character(WC) is True

NOTES
4712 {Constraint_Error (raised by failure of run-time check)} If a null Wide_Character_Mapping_Function is passed to any

of the Wide_String handling subprograms, Constraint_Error is propagated.

4813 Each Wide_Character_Set constant in the package Strings.Wide_Maps.Wide_Constants contains no values outside the
Character portion of Wide_Character. Similarly, each Wide_Character_Mapping constant in this package is the identity
mapping when applied to any element outside the Character portion of Wide_Character.

A.5 The Numerics Packages
1The library package Numerics is the parent of several child units that provide facilities for mathematical

computation. One child, the generic package Generic_Elementary_Functions, is defined in A.5.1,
together with nongeneric equivalents; two others, the package Float_Random and the generic package
Discrete_Random, are defined in A.5.2. Additional (optional) children are defined in Annex G,
‘‘Numerics’’.

Static Semantics

2

3package Ada.Numerics is
pragma Pure(Numerics);
Argument_Error : exception;
Pi : constant :=

3.14159_26535_89793_23846_26433_83279_50288_41971_69399_37511;
e : constant :=

2.71828_18284_59045_23536_02874_71352_66249_77572_47093_69996;
end Ada.Numerics;

4The Argument_Error exception is raised by a subprogram in a child unit of Numerics to signal that one or
more of the actual subprogram parameters are outside the domain of the corresponding mathematical
function.

Implementation Permissions

5The implementation may specify the values of Pi and e to a larger number of significant digits.
5.aReason: 51 digits seem more than adequate for all present computers; converted to binary, the values given above are

accurate to more than 160 bits. Nevertheless, the permission allows implementations to accommodate unforeseen
hardware advances.

Extensions to Ada 83

5.b{extensions to Ada 83} Numerics and its children were not predefined in Ada 83.

A.5.1 Elementary Functions
1Implementation-defined approximations to the mathematical functions known as the ‘‘elementary func-

tions’’ are provided by the subprograms in Numerics.Generic_Elementary_Functions. Nongeneric equiv-
alents of this generic package for each of the predefined floating point types are also provided as children
of Numerics.

ISO/IEC 8652:1995(E) —AARM;6.0

A.5.1 Elementary Functions 21 December 1994 468

1.a Implementation defined: The accuracy actually achieved by the elementary functions.

Static Semantics

2 The generic library package Numerics.Generic_Elementary_Functions has the following declaration:
3 generic

type Float_Type is digits <>;
package Ada.Numerics.Generic_Elementary_Functions is

pragma Pure(Generic_Elementary_Functions);

4 function Sqrt (X : Float_Type’Base) return Float_Type’Base;
function Log (X : Float_Type’Base) return Float_Type’Base;
function Log (X, Base : Float_Type’Base) return Float_Type’Base;
function Exp (X : Float_Type’Base) return Float_Type’Base;
function "**" (Left, Right : Float_Type’Base) return Float_Type’Base;

5 function Sin (X : Float_Type’Base) return Float_Type’Base;
function Sin (X, Cycle : Float_Type’Base) return Float_Type’Base;
function Cos (X : Float_Type’Base) return Float_Type’Base;
function Cos (X, Cycle : Float_Type’Base) return Float_Type’Base;
function Tan (X : Float_Type’Base) return Float_Type’Base;
function Tan (X, Cycle : Float_Type’Base) return Float_Type’Base;
function Cot (X : Float_Type’Base) return Float_Type’Base;
function Cot (X, Cycle : Float_Type’Base) return Float_Type’Base;

6 function Arcsin (X : Float_Type’Base) return Float_Type’Base;
function Arcsin (X, Cycle : Float_Type’Base) return Float_Type’Base;
function Arccos (X : Float_Type’Base) return Float_Type’Base;
function Arccos (X, Cycle : Float_Type’Base) return Float_Type’Base;
function Arctan (Y : Float_Type’Base;

X : Float_Type’Base := 1.0) return Float_Type’Base;
function Arctan (Y : Float_Type’Base;

X : Float_Type’Base := 1.0;
Cycle : Float_Type’Base) return Float_Type’Base;

function Arccot (X : Float_Type’Base;
Y : Float_Type’Base := 1.0) return Float_Type’Base;

function Arccot (X : Float_Type’Base;
Y : Float_Type’Base := 1.0;
Cycle : Float_Type’Base) return Float_Type’Base;

7 function Sinh (X : Float_Type’Base) return Float_Type’Base;
function Cosh (X : Float_Type’Base) return Float_Type’Base;
function Tanh (X : Float_Type’Base) return Float_Type’Base;
function Coth (X : Float_Type’Base) return Float_Type’Base;
function Arcsinh (X : Float_Type’Base) return Float_Type’Base;
function Arccosh (X : Float_Type’Base) return Float_Type’Base;
function Arctanh (X : Float_Type’Base) return Float_Type’Base;
function Arccoth (X : Float_Type’Base) return Float_Type’Base;

8 end Ada.Numerics.Generic_Elementary_Functions;

9 {Ada.Numerics.Elementary_Functions} The library package Numerics.Elementary_Functions defines the same
subprograms as Numerics.Generic_Elementary_Functions, except that the predefined type Float is sys-
tematically substituted for Float_Type’Base throughout. Nongeneric equivalents of Numerics.Generic_
Elementary_Functions for each of the other predefined floating point types are defined similarly, with the
names Numerics.Short_Elementary_Functions, Numerics.Long_Elementary_Functions, etc.

9.a Reason: The nongeneric equivalents are provided to allow the programmer to construct simple mathematical
applications without being required to understand and use generics.

10 The functions have their usual mathematical meanings. When the Base parameter is specified, the Log
function computes the logarithm to the given base; otherwise, it computes the natural logarithm. When
the Cycle parameter is specified, the parameter X of the forward trigonometric functions (Sin, Cos, Tan,
and Cot) and the results of the inverse trigonometric functions (Arcsin, Arccos, Arctan, and Arccot) are
measured in units such that a full cycle of revolution has the given value; otherwise, they are measured in
radians.

ISO/IEC 8652:1995(E) —AARM;6.0

469 21 December 1994 Elementary Functions A.5.1

11The computed results of the mathematically multivalued functions are rendered single-valued by the
following conventions, which are meant to imply the principal branch:

12• The results of the Sqrt and Arccosh functions and that of the exponentiation operator are
nonnegative.

13• The result of the Arcsin function is in the quadrant containing the point (1.0, x), where x is
the value of the parameter X. This quadrant is I or IV; thus, the range of the Arcsin function
is approximately −π/2.0 to π/2.0 (−Cycle/4.0 to Cycle/4.0, if the parameter Cycle is
specified).

14• The result of the Arccos function is in the quadrant containing the point (x, 1.0), where x is
the value of the parameter X. This quadrant is I or II; thus, the Arccos function ranges from
0.0 to approximately π (Cycle/2.0, if the parameter Cycle is specified).

15• The results of the Arctan and Arccot functions are in the quadrant containing the point (x, y),
where x and y are the values of the parameters X and Y, respectively. This may be any
quadrant (I through IV) when the parameter X (resp., Y) of Arctan (resp., Arccot) is
specified, but it is restricted to quadrants I and IV (resp., I and II) when that parameter is
omitted. Thus, the range when that parameter is specified is approximately −π to π
(−Cycle/2.0 to Cycle/2.0, if the parameter Cycle is specified); when omitted, the range of
Arctan (resp., Arccot) is that of Arcsin (resp., Arccos), as given above. When the point (x, y)
lies on the negative x-axis, the result approximates

16• π (resp., −π) when the sign of the parameter Y is positive (resp., negative), if Float_
Type’Signed_Zeros is True;

17• π, if Float_Type’Signed_Zeros is False.

18(In the case of the inverse trigonometric functions, in which a result lying on or near one of the axes may
not be exactly representable, the approximation inherent in computing the result may place it in an ad-
jacent quadrant, close to but on the wrong side of the axis.)

Dynamic Semantics

19The exception Numerics.Argument_Error is raised, signaling a parameter value outside the domain of the
corresponding mathematical function, in the following cases:

20• by any forward or inverse trigonometric function with specified cycle, when the value of the
parameter Cycle is zero or negative;

21• by the Log function with specified base, when the value of the parameter Base is zero, one, or
negative;

22• by the Sqrt and Log functions, when the value of the parameter X is negative;

23• by the exponentiation operator, when the value of the left operand is negative or when both
operands have the value zero;

24• by the Arcsin, Arccos, and Arctanh functions, when the absolute value of the parameter X
exceeds one;

25• by the Arctan and Arccot functions, when the parameters X and Y both have the value zero;

26• by the Arccosh function, when the value of the parameter X is less than one; and

27• by the Arccoth function, when the absolute value of the parameter X is less than one.

28{Division_Check [partial]} {check, language-defined (Division_Check)} {Constraint_Error (raised by failure of run-time

check)} The exception Constraint_Error is raised, signaling a pole of the mathematical function (analogous
to dividing by zero), in the following cases, provided that Float_Type’Machine_Overflows is True:

ISO/IEC 8652:1995(E) —AARM;6.0

A.5.1 Elementary Functions 21 December 1994 470

29 • by the Log, Cot, and Coth functions, when the value of the parameter X is zero;

30 • by the exponentiation operator, when the value of the left operand is zero and the value of the
exponent is negative;

31 • by the Tan function with specified cycle, when the value of the parameter X is an odd
multiple of the quarter cycle;

32 • by the Cot function with specified cycle, when the value of the parameter X is zero or a
multiple of the half cycle; and

33 • by the Arctanh and Arccoth functions, when the absolute value of the parameter X is one.

34 {Constraint_Error (raised by failure of run-time check)} [Constraint_Error can also be raised when a finite result
overflows (see G.2.4); this may occur for parameter values sufficiently near poles, and, in the case of
some of the functions, for parameter values with sufficiently large magnitudes.]

34.a Reason: The purpose of raising Constraint_Error (rather than Numerics.Argument_Error) at the poles of a function,
when Float_Type’Machine_Overflows is True, is to provide continuous behavior as the actual parameters of the
function approach the pole and finally reach it.

{unspecified [partial]} When Float_Type’Machine_Overflows is False, the result at poles is unspecified.
34.b Discussion: It is anticipated that an Ada binding to IEC 559:1989 will be developed in the future. As part of such a

binding, the Machine_Overflows attribute of a conformant floating point type will be specified to yield False, which
will permit both the predefined arithmetic operations and implementations of the elementary functions to deliver signed
infinities (and set the overflow flag defined by the binding) instead of raising Constraint_Error in overflow situations,
when traps are disabled. Similarly, it is appropriate for the elementary functions to deliver signed infinities (and set the
zero-divide flag defined by the binding) instead of raising Constraint_Error at poles, when traps are disabled. Finally,
such a binding should also specify the behavior of the elementary functions, when sensible, given parameters with
infinite values.

35 When one parameter of a function with multiple parameters represents a pole and another is outside the
function’s domain, the latter takes precedence (i.e., Numerics.Argument_Error is raised).

Implementation Requirements

36 In the implementation of Numerics.Generic_Elementary_Functions, the range of intermediate values al-
lowed during the calculation of a final result shall not be affected by any range constraint of the subtype
Float_Type.

36.a Implementation Note: Implementations of Numerics.Generic_Elementary_Functions written in Ada should therefore
avoid declaring local variables of subtype Float_Type; the subtype Float_Type’Base should be used instead.

37 {prescribed result (for the evaluation of an elementary function)} In the following cases, evaluation of an elementary
function shall yield the prescribed result, provided that the preceding rules do not call for an exception to
be raised:

38 • When the parameter X has the value zero, the Sqrt, Sin, Arcsin, Tan, Sinh, Arcsinh, Tanh,
and Arctanh functions yield a result of zero, and the Exp, Cos, and Cosh functions yield a
result of one.

39 • When the parameter X has the value one, the Sqrt function yields a result of one, and the
Log, Arccos, and Arccosh functions yield a result of zero.

40 • When the parameter Y has the value zero and the parameter X has a positive value, the
Arctan and Arccot functions yield a result of zero.

41 • The results of the Sin, Cos, Tan, and Cot functions with specified cycle are exact when the
mathematical result is zero; those of the first two are also exact when the mathematical result
is ± 1.0.

ISO/IEC 8652:1995(E) —AARM;6.0

471 21 December 1994 Elementary Functions A.5.1

42• Exponentiation by a zero exponent yields the value one. Exponentiation by a unit exponent
yields the value of the left operand. Exponentiation of the value one yields the value one.
Exponentiation of the value zero yields the value zero.

43Other accuracy requirements for the elementary functions, which apply only in implementations conform-
ing to the Numerics Annex, and then only in the ‘‘strict’’ mode defined there (see G.2), are given in
G.2.4.

44When Float_Type’Signed_Zeros is True, the sign of a zero result shall be as follows:

45• A prescribed zero result delivered at the origin by one of the odd functions (Sin, Arcsin,
Sinh, Arcsinh, Tan, Arctan or Arccot as a function of Y when X is fixed and positive, Tanh,
and Arctanh) has the sign of the parameter X (Y, in the case of Arctan or Arccot).

46• A prescribed zero result delivered by one of the odd functions away from the origin, or by
some other elementary function, has an implementation-defined sign.

46.aImplementation defined: The sign of a zero result from some of the operators or functions in Numerics.-
Generic_Elementary_Functions, when Float_Type’Signed_Zeros is True.

47• [A zero result that is not a prescribed result (i.e., one that results from rounding or underflow)
has the correct mathematical sign.

47.aReason: This is a consequence of the rules specified in IEC 559:1989 as they apply to underflow situations
with traps disabled.

]

Implementation Permissions

48The nongeneric equivalent packages may, but need not, be actual instantiations of the generic package for
the appropriate predefined type.

Wording Changes From Ada 83

48.aThe semantics of Numerics.Generic_Elementary_Functions differs from Generic_Elementary_Functions as defined in
ISO/IEC DIS 11430 (for Ada 83) in the following ways:

48.b• The generic package is a child unit of the package defining the Argument_Error exception.

48.c• DIS 11430 specified names for the nongeneric equivalents, if provided. Here, those nongeneric equiv-
alents are required.

48.d• Implementations are not allowed to impose an optional restriction that the generic actual parameter
associated with Float_Type be unconstrained. (In view of the ability to declare variables of subtype Float_
Type’Base in implementations of Numerics.Generic_Elementary_Functions, this flexibility is no longer
needed.)

48.e• The sign of a prescribed zero result at the origin of the odd functions is specified, when Float_
Type’Signed_Zeros is True. This conforms with recommendations of Kahan and other numerical analysts.

48.f• The dependence of Arctan and Arccot on the sign of a parameter value of zero is tied to the value of Float_
Type’Signed_Zeros.

48.g• Sqrt is prescribed to yield a result of one when its parameter has the value one. This guarantee makes it
easier to achieve certain prescribed results of the complex elementary functions (see G.1.2, ‘‘Complex
Elementary Functions’’).

48.h• Conformance to accuracy requirements is conditional.

ISO/IEC 8652:1995(E) —AARM;6.0

A.5.2 Random Number Generation 21 December 1994 472

A.5.2 Random Number Generation
1 [Facilities for the generation of pseudo-random floating point numbers are provided in the package

Numerics.Float_Random; the generic package Numerics.Discrete_Random provides similar facilities for
the generation of pseudo-random integers and pseudo-random values of enumeration types. {random

number} For brevity, pseudo-random values of any of these types are called random numbers.

2 Some of the facilities provided are basic to all applications of random numbers. These include a limited
private type each of whose objects serves as the generator of a (possibly distinct) sequence of random
numbers; a function to obtain the ‘‘next’’ random number from a given sequence of random numbers
(that is, from its generator); and subprograms to initialize or reinitialize a given generator to a time-
dependent state or a state denoted by a single integer.

3 Other facilities are provided specifically for advanced applications. These include subprograms to save
and restore the state of a given generator; a private type whose objects can be used to hold the saved state
of a generator; and subprograms to obtain a string representation of a given generator state, or, given such
a string representation, the corresponding state.]

3.a Discussion: These facilities support a variety of requirements ranging from repeatable sequences (for debugging) to
unique sequences in each execution of a program.

Static Semantics

4 The library package Numerics.Float_Random has the following declaration:
5 package Ada.Numerics.Float_Random is

6 -- Basic facilities

7 type Generator is limited private;

8 subtype Uniformly_Distributed is Float range 0.0 .. 1.0;
function Random (Gen : Generator) return Uniformly_Distributed;

9 procedure Reset (Gen : in Generator;
Initiator : in Integer);

procedure Reset (Gen : in Generator);

10 -- Advanced facilities

11 type State is private;

12 procedure Save (Gen : in Generator;
To_State : out State);

procedure Reset (Gen : in Generator;
From_State : in State);

13 Max_Image_Width : constant := implementation-defined integer value;

14 function Image (Of_State : State) return String;
function Value (Coded_State : String) return State;

15 private
... -- not specified by the language

end Ada.Numerics.Float_Random;

16 The generic library package Numerics.Discrete_Random has the following declaration:
17 generic

type Result_Subtype is (<>);
package Ada.Numerics.Discrete_Random is

18 -- Basic facilities

19 type Generator is limited private;

20 function Random (Gen : Generator) return Result_Subtype;

21 procedure Reset (Gen : in Generator;
Initiator : in Integer);

procedure Reset (Gen : in Generator);

22 -- Advanced facilities

ISO/IEC 8652:1995(E) —AARM;6.0

473 21 December 1994 Random Number Generation A.5.2

23type State is private;

24procedure Save (Gen : in Generator;
To_State : out State);

procedure Reset (Gen : in Generator;
From_State : in State);

25Max_Image_Width : constant := implementation-defined integer value;

26function Image (Of_State : State) return String;
function Value (Coded_State : String) return State;

27private
... -- not specified by the language

end Ada.Numerics.Discrete_Random;

27.aImplementation defined: The value of Numerics.Float_Random.Max_Image_Width.

27.bImplementation defined: The value of Numerics.Discrete_Random.Max_Image_Width.

27.cImplementation Note: The following is a possible implementation of the private part of each package (assuming the
presence of ‘‘with Ada.Finalization;’’ as a context clause):

27.dtype State is ...;
type Access_State is access State;
type Generator is new Finalization.Limited_Controlled with

record
S : Access_State := new State’(...);

end record;
procedure Finalize (G : in out Generator);

27.eClearly some level of indirection is required in the implementation of a Generator, since the parameter mode is in for
all operations on a Generator. For this reason, Numerics.Float_Random and Numerics.Discrete_Random cannot be
declared pure.

28An object of the limited private type Generator is associated with a sequence of random numbers. Each
generator has a hidden (internal) state, which the operations on generators use to determine the position in
the associated sequence. {unspecified [partial]} All generators are implicitly initialized to an unspecified state
that does not vary from one program execution to another; they may also be explicitly initialized, or
reinitialized, to a time-dependent state, to a previously saved state, or to a state uniquely denoted by an
integer value.

28.aDiscussion: The repeatability provided by the implicit initialization may be exploited for testing or debugging
purposes.

29An object of the private type State can be used to hold the internal state of a generator. Such objects are
only needed if the application is designed to save and restore generator states or to examine or manufac-
ture them.

30The operations on generators affect the state and therefore the future values of the associated sequence.
The semantics of the operations on generators and states are defined below.

31function Random (Gen : Generator) return Uniformly_Distributed;
function Random (Gen : Generator) return Result_Subtype;

32Obtains the ‘‘next’’ random number from the given generator, relative to its current state, ac-
cording to an implementation-defined algorithm. The result of the function in Numerics.Float_
Random is delivered as a value of the subtype Uniformly_Distributed, which is a subtype of the
predefined type Float having a range of 0.0 .. 1.0. The result of the function in an instantiation
of Numerics.Discrete_Random is delivered as a value of the generic formal subtype Result_
Subtype.

32.aImplementation defined: The algorithms for random number generation.

ISO/IEC 8652:1995(E) —AARM;6.0

A.5.2 Random Number Generation 21 December 1994 474

32.b Reason: The requirement for a level of indirection in accessing the internal state of a generator arises from the desire
to make Random a function, rather than a procedure.

33 procedure Reset (Gen : in Generator;
Initiator : in Integer);

procedure Reset (Gen : in Generator);

34 {unspecified [partial]} Sets the state of the specified generator to one that is an unspecified function
of the value of the parameter Initiator (or to a time-dependent state, if only a generator
parameter is specified). {Time-dependent Reset procedure (of the random number generator)} The latter
form of the procedure is known as the time-dependent Reset procedure.

34.a Implementation Note: The time-dependent Reset procedure can be implemented by mapping the current time and
date as determined by the system clock into a state, but other implementations are possible. For example, a white-noise
generator or a radioactive source can be used to generate time-dependent states.

35 procedure Save (Gen : in Generator;
To_State : out State);

procedure Reset (Gen : in Generator;
From_State : in State);

36 Save obtains the current state of a generator. Reset gives a generator the specified state. A
generator that is reset to a state previously obtained by invoking Save is restored to the state it
had when Save was invoked.

37 function Image (Of_State : State) return String;
function Value (Coded_State : String) return State;

38 Image provides a representation of a state coded (in an implementation-defined way) as a string
whose length is bounded by the value of Max_Image_Width. Value is the inverse of Image:
Value(Image(S)) = S for each state S that can be obtained from a generator by invoking Save.

38.a Implementation defined: The string representation of a random number generator’s state.

Dynamic Semantics

39 {Range_Check [partial]} {check, language-defined (Range_Check)} {Constraint_Error (raised by failure of run-time check)}

Instantiation of Numerics.Discrete_Random with a subtype having a null range raises Constraint_Error.

40 {Range_Check [partial]} {check, language-defined (Range_Check)} {Constraint_Error (raised by failure of run-time check)}

Invoking Value with a string that is not the image of any generator state raises Constraint_Error.

Implementation Requirements

41 A sufficiently long sequence of random numbers obtained by successive calls to Random is ap-
proximately uniformly distributed over the range of the result subtype.

42 The Random function in an instantiation of Numerics.Discrete_Random is guaranteed to yield each value
in its result subtype in a finite number of calls, provided that the number of such values does not exceed
215.

43 Other performance requirements for the random number generator, which apply only in implementations
conforming to the Numerics Annex, and then only in the ‘‘strict’’ mode defined there (see G.2), are given
in G.2.5.

Documentation Requirements

44 {documentation requirements} No one algorithm for random number generation is best for all applications. To
enable the user to determine the suitability of the random number generators for the intended application,

ISO/IEC 8652:1995(E) —AARM;6.0

475 21 December 1994 Random Number Generation A.5.2

the implementation shall describe the algorithm used and shall give its period, if known exactly, or a
lower bound on the period, if the exact period is unknown. Periods that are so long that the periodicity is
unobservable in practice can be described in such terms, without giving a numerical bound.

45The implementation also shall document the minimum time interval between calls to the time-dependent
Reset procedure that are guaranteed to initiate different sequences, and it shall document the nature of the
strings that Value will accept without raising Constraint_Error.

45.aImplementation defined: The minimum time interval between calls to the time-dependent Reset procedure that are
guaranteed to initiate different random number sequences.

Implementation Advice

46Any storage associated with an object of type Generator should be reclaimed on exit from the scope of the
object.

46.aRamification: A level of indirection is implicit in the semantics of the operations, given that they all take parameters
of mode in. This implies that the full type of Generator probably should be a controlled type, with appropriate
finalization to reclaim any heap-allocated storage.

47If the generator period is sufficiently long in relation to the number of distinct initiator values, then each
possible value of Initiator passed to Reset should initiate a sequence of random numbers that does not, in
a practical sense, overlap the sequence initiated by any other value. If this is not possible, then the
mapping between initiator values and generator states should be a rapidly varying function of the initiator
value.

NOTES
4814 If two or more tasks are to share the same generator, then the tasks have to synchronize their access to the generator as

for any shared variable (see 9.10).

4915 Within a given implementation, a repeatable random number sequence can be obtained by relying on the implicit
initialization of generators or by explicitly initializing a generator with a repeatable initiator value. Different sequences of
random numbers can be obtained from a given generator in different program executions by explicitly initializing the
generator to a time-dependent state.

5016 A given implementation of the Random function in Numerics.Float_Random may or may not be capable of delivering
the values 0.0 or 1.0. Portable applications should assume that these values, or values sufficiently close to them to behave
indistinguishably from them, can occur. If a sequence of random integers from some fixed range is needed, the application
should use the Random function in an appropriate instantiation of Numerics.Discrete_Random, rather than transforming
the result of the Random function in Numerics.Float_Random. However, some applications with unusual requirements,
such as for a sequence of random integers each drawn from a different range, will find it more convenient to transform the
result of the floating point Random function. For M ≥ 1, the expression

51Integer(Float(M) * Random(G)) mod M

52transforms the result of Random(G) to an integer uniformly distributed over the range 0 .. M−1; it is valid even if Random
delivers 0.0 or 1.0. Each value of the result range is possible, provided that M is not too large. Exponentially distributed
(floating point) random numbers with mean and standard deviation 1.0 can be obtained by the transformation

53-Log(Random(G) + Float’Model_Small))

54where Log comes from Numerics.Elementary_Functions (see A.5.1); in this expression, the addition of Float’Model_Small
avoids the exception that would be raised were Log to be given the value zero, without affecting the result (in most
implementations) when Random returns a nonzero value.

Examples

55Example of a program that plays a simulated dice game:
56with Ada.Numerics.Discrete_Random;

procedure Dice_Game is

ISO/IEC 8652:1995(E) —AARM;6.0

A.5.2 Random Number Generation 21 December 1994 476

subtype Die is Integer range 1 .. 6;
subtype Dice is Integer range 2*Die’First .. 2*Die’Last;
package Random_Die is new Ada.Numerics.Discrete_Random (Die);
use Random_Die;
G : Generator;
D : Dice;

begin
Reset (G); -- Start the generator in a unique state in each run
loop

-- Roll a pair of dice; sum and process the results
D := Random(G) + Random(G);
...

end loop;
end Dice_Game;

57 Example of a program that simulates coin tosses:
58 with Ada.Numerics.Discrete_Random;

procedure Flip_A_Coin is
type Coin is (Heads, Tails);
package Random_Coin is new Ada.Numerics.Discrete_Random (Coin);
use Random_Coin;
G : Generator;

begin
Reset (G); -- Start the generator in a unique state in each run
loop

-- Toss a coin and process the result
case Random(G) is

when Heads =>
...

when Tails =>
...

end case;
...
end loop;

end Flip_A_Coin;

59 Example of a parallel simulation of a physical system, with a separate generator of event probabilities in
each task:

60 with Ada.Numerics.Float_Random;
procedure Parallel_Simulation is

use Ada.Numerics.Float_Random;
task type Worker is

entry Initialize_Generator (Initiator : in Integer);
...

end Worker;
W : array (1 .. 10) of Worker;
task body Worker is

G : Generator;
Probability_Of_Event : Uniformly_Distributed;

begin
accept Initialize_Generator (Initiator : in Integer) do

Reset (G, Initiator);
end Initialize_Generator;
loop

...
Probability_Of_Event := Random(G);
...

end loop;
end Worker;

begin
-- Initialize the generators in the Worker tasks to different states
for I in W’Range loop

W(I).Initialize_Generator (I);
end loop;
... -- Wait for the Worker tasks to terminate

end Parallel_Simulation;

ISO/IEC 8652:1995(E) —AARM;6.0

477 21 December 1994 Random Number Generation A.5.2

NOTES
6117 Notes on the last example: Although each Worker task initializes its generator to a different state, those states will be

the same in every execution of the program. The generator states can be initialized uniquely in each program execution by
instantiating Ada.Numerics.Discrete_Random for the type Integer in the main procedure, resetting the generator obtained
from that instance to a time-dependent state, and then using random integers obtained from that generator to initialize the
generators in each Worker task.

A.5.3 Attributes of Floating Point Types
Static Semantics

1{representation-oriented attributes (of a floating point subtype)} The following representation-oriented attributes are
defined for every subtype S of a floating point type T.

S’Machine_Radix Yields the radix of the hardware representation of the type T. The value of this 2

attribute is of the type universal_integer.

3{canonical form} The values of other representation-oriented attributes of a floating point subtype, and of the
‘‘primitive function’’ attributes of a floating point subtype described later, are defined in terms of a
particular representation of nonzero values called the canonical form. The canonical form (for the type T)
is the form

± mantissa⋅T’Machine_Radixexponent

where

4• mantissa is a fraction in the number base T’Machine_Radix, the first digit of which is non-
zero, and

5• exponent is an integer.

S’Machine_Mantissa 6

Yields the largest value of p such that every value expressible in the canonical form
(for the type T), having a p-digit mantissa and an exponent between T’Machine_Emin
and T’Machine_Emax, is a machine number (see 3.5.7) of the type T. This attribute
yields a value of the type universal_integer.

6.aRamification: Values of a type held in an extended register are, in general, not machine numbers of the type, since
they cannot be expressed in the canonical form with a sufficiently short mantissa.

S’Machine_Emin Yields the smallest (most negative) value of exponent such that every value express- 7

ible in the canonical form (for the type T), having a mantissa of T’Machine_Mantissa
digits, is a machine number (see 3.5.7) of the type T. This attribute yields a value of
the type universal_integer.

S’Machine_Emax Yields the largest (most positive) value of exponent such that every value expressible 8

in the canonical form (for the type T), having a mantissa of T’Machine_Mantissa
digits, is a machine number (see 3.5.7) of the type T. This attribute yields a value of
the type universal_integer.

8.aRamification: Note that the above definitions do not determine unique values for the representation-oriented attributes
of floating point types. The implementation may choose any set of values that collectively satisfies the definitions.

S’Denorm Yields the value True if every value expressible in the form 9

± mantissa⋅T’Machine_RadixT’Machine_Emin

where mantissa is a nonzero T’Machine_Mantissa-digit fraction in the number base
T’Machine_Radix, the first digit of which is zero, is a machine number (see 3.5.7) of
the type T; yields the value False otherwise. The value of this attribute is of the
predefined type Boolean.

ISO/IEC 8652:1995(E) —AARM;6.0

A.5.3 Attributes of Floating Point Types 21 December 1994 478

10 {denormalized number} The values described by the formula in the definition of S’Denorm are called
denormalized numbers. {normalized number} A nonzero machine number that is not a denormalized number
is a normalized number.

10.a Discussion: The intent is that S’Denorm be True when such denormalized numbers exist and are generated in the
circumstances defined by IEC 559:1989, though the latter requirement is not formalized here.

{represented in canonical form} {canonical-form representation} A normalized number x of a given type T is said to
be represented in canonical form when it is expressed in the canonical form (for the type T) with a
mantissa having T’Machine_Mantissa digits; the resulting form is the canonical-form representation of x.

S’Machine_Rounds11

Yields the value True if rounding is performed on inexact results of every predefined
operation that yields a result of the type T; yields the value False otherwise. The
value of this attribute is of the predefined type Boolean.

11.a Discussion: It is difficult to be more precise about what it means to round the result of a predefined operation. If the
implementation does not use extended registers, so that every arithmetic result is necessarily a machine number, then
rounding seems to imply two things:

11.b • S’Model_Mantissa = S’Machine_Mantissa, so that operand preperturbation never occurs;

11.c • when the exact mathematical result is not a machine number, the result of a predefined operation must be
the nearer of the two adjacent machine numbers.

11.d Technically, this attribute should yield False when extended registers are used, since a few computed results will cross
over the half-way point as a result of double rounding, if and when a value held in an extended register has to be
reduced in precision to that of the machine numbers. It does not seem desirable to preclude the use of extended
registers when S’Machine_Rounds could otherwise be True.

S’Machine_Overflows12

Yields the value True if overflow and divide-by-zero are detected and reported by
raising Constraint_Error for every predefined operation that yields a result of the type
T; yields the value False otherwise. The value of this attribute is of the predefined
type Boolean.

S’Signed_Zeros Yields the value True if the hardware representation for the type T has the capability13

of representing both positively and negatively signed zeros, these being generated and
used by the predefined operations of the type T as specified in IEC 559:1989; yields
the value False otherwise. The value of this attribute is of the predefined type
Boolean.

14 {normalized exponent} For every value x of a floating point type T, the normalized exponent of x is defined as
follows:

15 • the normalized exponent of zero is (by convention) zero;

16 • for nonzero x, the normalized exponent of x is the unique integer k such that T’Machine_
Radixk−1 ≤ | x | < T’Machine_Radixk.

16.a Ramification: The normalized exponent of a normalized number x is the value of exponent in the canonical-form
representation of x.

16.b The normalized exponent of a denormalized number is less than the value of T’Machine_Emin.

17 {primitive function} The following primitive function attributes are defined for any subtype S of a floating
point type T.

S’Exponent S’Exponent denotes a function with the following specification:18

19 function S’Exponent (X : T)
return universal_integer

ISO/IEC 8652:1995(E) —AARM;6.0

479 21 December 1994 Attributes of Floating Point Types A.5.3

The function yields the normalized exponent of X. 20

S’Fraction S’Fraction denotes a function with the following specification: 21

22function S’Fraction (X : T)
return T

The function yields the value X⋅T’Machine_Radix−k, where k is the normalized ex- 23

ponent of X. A zero result[, which can only occur when X is zero,] has the sign of X.
23.aDiscussion: Informally, when X is a normalized number, the result is the value obtained by replacing the exponent by

zero in the canonical-form representation of X.

23.bRamification: Except when X is zero, the magnitude of the result is greater than or equal to the reciprocal of
T’Machine_Radix and less than one; consequently, the result is always a normalized number, even when X is a
denormalized number.

23.cImplementation Note: When X is a denormalized number, the result is the value obtained by replacing the exponent
by zero in the canonical-form representation of the result of scaling X up sufficiently to normalize it.

S’Compose S’Compose denotes a function with the following specification: 24

25function S’Compose (Fraction : T;
Exponent : universal_integer)

return T

{Constraint_Error (raised by failure of run-time check)} Let v be the value 26

Fraction⋅T’Machine_RadixExponent−k, where k is the normalized exponent of Fraction.
If v is a machine number of the type T, or if | v | ≥ T’Model_Small, the function yields
v; otherwise, it yields either one of the machine numbers of the type T adjacent to v.
{Range_Check [partial]} {check, language-defined (Range_Check)} Constraint_Error is option-
ally raised if v is outside the base range of S. A zero result has the sign of Fraction
when S’Signed_Zeros is True.

26.aDiscussion: Informally, when Fraction and v are both normalized numbers, the result is the value obtained by
replacing the exponent by Exponent in the canonical-form representation of Fraction.

26.bRamification: If Exponent is less than T’Machine_Emin and Fraction is nonzero, the result is either zero, T’Model_
Small, or (if T’Denorm is True) a denormalized number.

S’Scaling S’Scaling denotes a function with the following specification: 27

28function S’Scaling (X : T;
Adjustment : universal_integer)

return T

{Constraint_Error (raised by failure of run-time check)} Let v be the value X⋅T’Machine_ 29

RadixAdjustment. If v is a machine number of the type T, or if | v | ≥ T’Model_Small, the
function yields v; otherwise, it yields either one of the machine numbers of the type T
adjacent to v. {Range_Check [partial]} {check, language-defined (Range_Check)} Constraint_
Error is optionally raised if v is outside the base range of S. A zero result has the sign
of X when S’Signed_Zeros is True.

29.aDiscussion: Informally, when X and v are both normalized numbers, the result is the value obtained by increasing the
exponent by Adjustment in the canonical-form representation of X.

29.bRamification: If Adjustment is sufficiently small (i.e., sufficiently negative), the result is either zero, T’Model_Small,
or (if T’Denorm is True) a denormalized number.

S’Floor S’Floor denotes a function with the following specification: 30

31function S’Floor (X : T)
return T

The function yields the value ⎣X⎦, i.e., the largest (most positive) integral value less 32

than or equal to X. When X is zero, the result has the sign of X; a zero result other-
wise has a positive sign.

S’Ceiling S’Ceiling denotes a function with the following specification: 33

ISO/IEC 8652:1995(E) —AARM;6.0

A.5.3 Attributes of Floating Point Types 21 December 1994 480

34 function S’Ceiling (X : T)
return T

The function yields the value ⎡X⎤, i.e., the smallest (most negative) integral value35

greater than or equal to X. When X is zero, the result has the sign of X; a zero result
otherwise has a negative sign when S’Signed_Zeros is True.

S’Rounding S’Rounding denotes a function with the following specification:36

37 function S’Rounding (X : T)
return T

The function yields the integral value nearest to X, rounding away from zero if X lies38

exactly halfway between two integers. A zero result has the sign of X when
S’Signed_Zeros is True.

S’Unbiased_Rounding39

S’Unbiased_Rounding denotes a function with the following specification:
40 function S’Unbiased_Rounding (X : T)

return T

The function yields the integral value nearest to X, rounding toward the even integer41

if X lies exactly halfway between two integers. A zero result has the sign of X when
S’Signed_Zeros is True.

S’Truncation S’Truncation denotes a function with the following specification:42

43 function S’Truncation (X : T)
return T

The function yields the value ⎡X⎤ when X is negative, and ⎣X⎦ otherwise. A zero44

result has the sign of X when S’Signed_Zeros is True.

S’Remainder S’Remainder denotes a function with the following specification:45

46 function S’Remainder (X, Y : T)
return T

{Constraint_Error (raised by failure of run-time check)} For nonzero Y, let v be the value47

X−n⋅Y, where n is the integer nearest to the exact value of X/Y; if | n−X/Y | = 1/2, then n
is chosen to be even. If v is a machine number of the type T, the function yields v;
otherwise, it yields zero. {Division_Check [partial]} {check, language-defined (Division_Check)}
Constraint_Error is raised if Y is zero. A zero result has the sign of X when
S’Signed_Zeros is True.

47.a Ramification: The magnitude of the result is less than or equal to one-half the magnitude of Y.

47.b Discussion: Given machine numbers X and Y of the type T, v is necessarily a machine number of the type T, except
when Y is in the neighborhood of zero, X is sufficiently close to a multiple of Y, and T’Denorm is False.

S’Adjacent S’Adjacent denotes a function with the following specification:48

49 function S’Adjacent (X, Towards : T)
return T

{Constraint_Error (raised by failure of run-time check)} If Towards = X, the function yields X;50

otherwise, it yields the machine number of the type T adjacent to X in the direction of
Towards, if that machine number exists. {Range_Check [partial]} {check, language-defined

(Range_Check)} If the result would be outside the base range of S, Constraint_Error is
raised. When T’Signed_Zeros is True, a zero result has the sign of X. When Towards
is zero, its sign has no bearing on the result.

50.a Ramification: The value of S’Adjacent(0.0, 1.0) is the smallest normalized positive number of the type T when
T’Denorm is False and the smallest denormalized positive number of the type T when T’Denorm is True.

S’Copy_Sign S’Copy_Sign denotes a function with the following specification:51

52 function S’Copy_Sign (Value, Sign : T)
return T

ISO/IEC 8652:1995(E) —AARM;6.0

481 21 December 1994 Attributes of Floating Point Types A.5.3

{Constraint_Error (raised by failure of run-time check)} If the value of Value is nonzero, the 53

function yields a result whose magnitude is that of Value and whose sign is that of
Sign; otherwise, it yields the value zero. {Range_Check [partial]} {check, language-defined

(Range_Check)} Constraint_Error is optionally raised if the result is outside the base
range of S. A zero result has the sign of Sign when S’Signed_Zeros is True.

53.aDiscussion: S’Copy_Sign is provided for convenience in restoring the sign to a quantity from which it has been
temporarily removed, or to a related quantity. When S’Signed_Zeros is True, it is also instrumental in determining the
sign of a zero quantity, when required. (Because negative and positive zeros compare equal in systems conforming to
IEC 559:1989, a negative zero does not appear to be negative when compared to zero.) The sign determination is
accomplished by transferring the sign of the zero quantity to a nonzero quantity and then testing for a negative result.

S’Leading_Part S’Leading_Part denotes a function with the following specification: 54

55function S’Leading_Part (X : T;
Radix_Digits : universal_integer)

return T

Let v be the value T’Machine_Radixk−Radix_Digits, where k is the normalized exponent 56

of X. The function yields the value

57• ⎣X/v⎦⋅v, when X is nonnegative and Radix_Digits is positive;

58• ⎡X/v⎤⋅v, when X is negative and Radix_Digits is positive.

{Constraint_Error (raised by failure of run-time check)} {Range_Check [partial]} {check, 59

language-defined (Range_Check)} Constraint_Error is raised when Radix_Digits is zero or
negative. A zero result[, which can only occur when X is zero,] has the sign of X.

59.aDiscussion: Informally, if X is nonzero, the result is the value obtained by retaining only the specified number of
(leading) significant digits of X (in the machine radix), setting all other digits to zero.

59.bImplementation Note: The result can be obtained by first scaling X up, if necessary to normalize it, then masking the
mantissa so as to retain only the specified number of leading digits, then scaling the result back down if X was scaled
up.

S’Machine S’Machine denotes a function with the following specification: 60

61function S’Machine (X : T)
return T

{Constraint_Error (raised by failure of run-time check)} If X is a machine number of the type 62

T, the function yields X; otherwise, it yields the value obtained by rounding or trun-
cating X to either one of the adjacent machine numbers of the type T. {Range_Check

[partial]} {check, language-defined (Range_Check)} Constraint_Error is raised if rounding or
truncating X to the precision of the machine numbers results in a value outside the
base range of S. A zero result has the sign of X when S’Signed_Zeros is True.

62.aDiscussion: All of the primitive function attributes except Rounding and Machine correspond to subprograms in the
Generic_Primitive_Functions generic package proposed as a separate ISO standard (ISO/IEC DIS 11729) for Ada 83.
The Scaling, Unbiased_Rounding, and Truncation attributes correspond to the Scale, Round, and Truncate functions,
respectively, in Generic_Primitive_Functions. The Rounding attribute rounds away from zero; this functionality was
not provided in Generic_Primitive_Functions. The name Round was not available for either of the primitive function
attributes that perform rounding, since an attribute of that name is used for a different purpose for decimal fixed point
types. Likewise, the name Scale was not available, since an attribute of that name is also used for a different purpose
for decimal fixed point types. The functionality of the Machine attribute was also not provided in Generic_Primitive_
Functions. The functionality of the Decompose procedure of Generic_Primitive_Functions is only provided in the
form of the separate attributes Exponent and Fraction. The functionality of the Successor and Predecessor functions of
Generic_Primitive_Functions is provided by the extension of the existing Succ and Pred attributes.

62.bImplementation Note: The primitive function attributes may be implemented either with appropriate floating point
arithmetic operations or with integer and logical operations that act on parts of the representation directly. The latter is
strongly encouraged when it is more efficient than the former; it is mandatory when the former cannot deliver the
required accuracy due to limitations of the implementation’s arithmetic operations.

63{model-oriented attributes (of a floating point subtype)} The following model-oriented attributes are defined for
any subtype S of a floating point type T.

ISO/IEC 8652:1995(E) —AARM;6.0

A.5.3 Attributes of Floating Point Types 21 December 1994 482

S’Model_Mantissa If the Numerics Annex is not supported, this attribute yields an implementation64

defined value that is greater than or equal to ⎡d⋅log (10)/log (T′Machine_Radix)⎤+1,
where d is the requested decimal precision of T, and less than or equal to the value of
T’Machine_Mantissa. See G.2.2 for further requirements that apply to implemen-
tations supporting the Numerics Annex. The value of this attribute is of the type
universal_integer.

S’Model_Emin If the Numerics Annex is not supported, this attribute yields an implementation65

defined value that is greater than or equal to the value of T’Machine_Emin. See
G.2.2 for further requirements that apply to implementations supporting the Numerics
Annex. The value of this attribute is of the type universal_integer.

S’Model_Epsilon Yields the value T’Machine_Radix1−T’Model_Mantissa. The value of this attribute is of66

the type universal_real.
66.a Discussion: In most implementations, this attribute yields the absolute value of the difference between one and the

smallest machine number of the type T above one which, when added to one, yields a machine number different from
one. Further discussion can be found in G.2.2.

S’Model_Small Yields the value T’Machine_RadixT’Model_Emin−1. The value of this attribute is of the67

type universal_real.
67.a Discussion: In most implementations, this attribute yields the smallest positive normalized number of the type T, i.e.

the number corresponding to the positive underflow threshold. In some implementations employing a radix-
complement representation for the type T, the positive underflow threshold is closer to zero than is the negative
underflow threshold, with the consequence that the smallest positive normalized number does not coincide with the
positive underflow threshold (i.e., it exceeds the latter). Further discussion can be found in G.2.2.

S’Model S’Model denotes a function with the following specification:68

69 function S’Model (X : T)
return T

If the Numerics Annex is not supported, the meaning of this attribute is implemen-70

tation defined; see G.2.2 for the definition that applies to implementations supporting
the Numerics Annex.

S’Safe_First Yields the lower bound of the safe range (see 3.5.7) of the type T. If the Numerics71

Annex is not supported, the value of this attribute is implementation defined; see
G.2.2 for the definition that applies to implementations supporting the Numerics An-
nex. The value of this attribute is of the type universal_real.

S’Safe_Last Yields the upper bound of the safe range (see 3.5.7) of the type T. If the Numerics72

Annex is not supported, the value of this attribute is implementation defined; see
G.2.2 for the definition that applies to implementations supporting the Numerics An-
nex. The value of this attribute is of the type universal_real.

72.a Discussion: A predefined floating point arithmetic operation that yields a value in the safe range of its result type is
guaranteed not to overflow.

72.b To be honest: An exception is made for exponentiation by a negative exponent in 4.5.6.

72.c Implementation defined: The values of the Model_Mantissa, Model_Emin, Model_Epsilon, Model, Safe_First, and
Safe_Last attributes, if the Numerics Annex is not supported.

Incompatibilities With Ada 83

72.d {incompatibilities with Ada 83} The Epsilon and Mantissa attributes of floating point types are removed from the
language and replaced by Model_Epsilon and Model_Mantissa, which may have different values (as a result of changes
in the definition of model numbers); the replacement of one set of attributes by another is intended to convert what
would be an inconsistent change into an incompatible change.

72.e The Emax, Small, Large, Safe_Emax, Safe_Small, and Safe_Large attributes of floating point types are removed from
the language. Small and Safe_Small are collectively replaced by Model_Small, which is functionally equivalent to
Safe_Small, though it may have a slightly different value. The others are collectively replaced by Safe_First and Safe_
Last. Safe_Last is functionally equivalent to Safe_Large, though it may have a different value; Safe_First is
comparable to the negation of Safe_Large but may differ slightly from it as well as from the negation of Safe_Last.

ISO/IEC 8652:1995(E) —AARM;6.0

483 21 December 1994 Attributes of Fixed Point Types A.5.4

Emax and Safe_Emax had relatively few uses in Ada 83; T’Safe_Emax can be computed in the revised language as
Integer’Min(T’Exponent(T’Safe_First), T’Exponent(T’Safe_Last)).

72.fImplementations are encouraged to eliminate the incompatibilities discussed here by retaining the old attributes, during
a transition period, in the form of implementation-defined attributes with their former values.

Extensions to Ada 83

72.g{extensions to Ada 83} The Model_Emin attribute is new. It is conceptually similar to the negation of Safe_Emax
attribute of Ada 83, adjusted for the fact that the model numbers now have the hardware radix. It is a fundamental
determinant, along with Model_Mantissa, of the set of model numbers of a type (see G.2.1).

72.hThe Denorm and Signed_Zeros attributes are new, as are all of the primitive function attributes.

A.5.4 Attributes of Fixed Point Types
Static Semantics

1{representation-oriented attributes (of a fixed point subtype)} The following representation-oriented attributes are
defined for every subtype S of a fixed point type T.

S’Machine_Radix Yields the radix of the hardware representation of the type T. The value of this 2

attribute is of the type universal_integer.

S’Machine_Rounds 3

Yields the value True if rounding is performed on inexact results of every predefined
operation that yields a result of the type T; yields the value False otherwise. The
value of this attribute is of the predefined type Boolean.

S’Machine_Overflows 4

Yields the value True if overflow and divide-by-zero are detected and reported by
raising Constraint_Error for every predefined operation that yields a result of the type
T; yields the value False otherwise. The value of this attribute is of the predefined
type Boolean.

Incompatibilities With Ada 83

4.a{incompatibilities with Ada 83} The Mantissa, Large, Safe_Small, and Safe_Large attributes of fixed point types are
removed from the language.

4.bImplementations are encouraged to eliminate the resulting incompatibility by retaining these attributes, during a
transition period, in the form of implementation-defined attributes with their former values.

Extensions to Ada 83

4.c{extensions to Ada 83} The Machine_Radix attribute is now allowed for fixed point types. It is also specifiable in an
attribute definition clause (see F.1).

A.6 Input-Output
1[{input} {output} Input-output is provided through language-defined packages, each of which is a child of

the root package Ada. The generic packages Sequential_IO and Direct_IO define input-output operations
applicable to files containing elements of a given type. The generic package Storage_IO supports reading
from and writing to an in-memory buffer. Additional operations for text input-output are supplied in the
packages Text_IO and Wide_Text_IO. Heterogeneous input-output is provided through the child
packages Streams.Stream_IO and Text_IO.Text_Streams (see also 13.13). The package IO_Exceptions
defines the exceptions needed by the predefined input-output packages.]

Inconsistencies With Ada 83

1.a{inconsistencies with Ada 83} The introduction of Append_File as a new element of the enumeration type File_Mode
in Sequential_IO and Text_IO, and the introduction of several new declarations in Text_IO, may result in name clashes
in the presence of use clauses.

ISO/IEC 8652:1995(E) —AARM;6.0

A.6 Input-Output 21 December 1994 484

Extensions to Ada 83

1.b {extensions to Ada 83} Text_IO enhancements (Get_Immediate, Look_Ahead, Standard_Error, Modular_IO,
Decimal_IO), Wide_Text_IO, and the stream input-output facilities are new in Ada 9X.

Wording Changes From Ada 83

1.c RM83-14.6, "Low Level Input-Output," is removed. This has no semantic effect, since the package was entirely
implementation defined, nobody actually implemented it, and if they did, they can always provide it as a vendor-
supplied package.

A.7 External Files and File Objects
Static Semantics

1 {external file} {name (of an external file)} {form (of an external file)} Values input from the external environment of
the program, or output to the external environment, are considered to occupy external files. An external
file can be anything external to the program that can produce a value to be read or receive a value to be
written. An external file is identified by a string (the name). A second string (the form) gives further
system-dependent characteristics that may be associated with the file, such as the physical organization or
access rights. The conventions governing the interpretation of such strings shall be documented.

2 {file (as file object)} Input and output operations are expressed as operations on objects of some file type,
rather than directly in terms of the external files. In the remainder of this section, the term file is always
used to refer to a file object; the term external file is used otherwise.

3 Input-output for sequential files of values of a single element type is defined by means of the generic
package Sequential_IO. In order to define sequential input-output for a given element type, an instan-
tiation of this generic unit, with the given type as actual parameter, has to be declared. The resulting
package contains the declaration of a file type (called File_Type) for files of such elements, as well as the
operations applicable to these files, such as the Open, Read, and Write procedures.

4 Input-output for direct access files is likewise defined by a generic package called Direct_IO. Input-
output in human-readable form is defined by the (nongeneric) packages Text_IO for Character and String
data, and Wide_Text_IO for Wide_Character and Wide_String data. Input-output for files containing
streams of elements representing values of possibly different types is defined by means of the (non-
generic) package Streams.Stream_IO.

5 Before input or output operations can be performed on a file, the file first has to be associated with an
external file. While such an association is in effect, the file is said to be open, and otherwise the file is
said to be closed.

6 The language does not define what happens to external files after the completion of the main program and
all the library tasks (in particular, if corresponding files have not been closed). {access types (input-output

unspecified)} {input-output (unspecified for access types)} {unspecified [partial]} The effect of input-output for access
types is unspecified.

7 {current mode (of an open file)} An open file has a current mode, which is a value of one of the following
enumeration types:

8 type File_Mode is (In_File, Inout_File, Out_File); -- for Direct_IO

9 These values correspond respectively to the cases where only reading, both reading and writing,
or only writing are to be performed.

ISO/IEC 8652:1995(E) —AARM;6.0

485 21 December 1994 External Files and File Objects A.7

10type File_Mode is (In_File, Out_File, Append_File);
-- for Sequential_IO, Text_IO, Wide_Text_IO, and Stream_IO

11These values correspond respectively to the cases where only reading, only writing, or only
appending are to be performed.

12The mode of a file can be changed.

13Several file management operations are common to Sequential_IO, Direct_IO, Text_IO, and Wide_
Text_IO. These operations are described in subclause A.8.2 for sequential and direct files. Any ad-
ditional effects concerning text input-output are described in subclause A.10.2.

14The exceptions that can be propagated by the execution of an input-output subprogram are defined in the
package IO_Exceptions; the situations in which they can be propagated are described following the
description of the subprogram (and in clause A.13). {Storage_Error (raised by failure of run-time check)}
{Program_Error (raised by failure of run-time check)} The exceptions Storage_Error and Program_Error may be
propagated. (Program_Error can only be propagated due to errors made by the caller of the subprogram.)
Finally, exceptions can be propagated in certain implementation-defined situations.

14.aImplementation defined: Any implementation-defined characteristics of the input-output packages.

NOTES
1518 Each instantiation of the generic packages Sequential_IO and Direct_IO declares a different type File_Type. In the

case of Text_IO, Wide_Text_IO, and Streams.Stream_IO, the corresponding type File_Type is unique.

1619 A bidirectional device can often be modeled as two sequential files associated with the device, one of mode In_File,
and one of mode Out_File. An implementation may restrict the number of files that may be associated with a given
external file.

A.8 Sequential and Direct Files
Static Semantics

1{sequential file} {direct file} Two kinds of access to external files are defined in this subclause: sequential
access and direct access. The corresponding file types and the associated operations are provided by the
generic packages Sequential_IO and Direct_IO. A file object to be used for sequential access is called a
sequential file, and one to be used for direct access is called a direct file. Access to stream files is
described in A.12.1.

2{sequential access} For sequential access, the file is viewed as a sequence of values that are transferred in the
order of their appearance (as produced by the program or by the external environment). When the file is
opened with mode In_File or Out_File, transfer starts respectively from or to the beginning of the file.
When the file is opened with mode Append_File, transfer to the file starts after the last element of the file.

2.aDiscussion: Adding stream I/O necessitates a review of the terminology. In Ada 83, ‘sequential’ implies both the
access method (purely sequential — that is, no indexing or positional access) and homogeneity. Direct access includes
purely sequential access and indexed access, as well as homogeneity. In Ada 9X, streams allow purely sequential
access but also positional access to an individual element, and are heterogeneous. We considered generalizing the
notion of ‘sequential file’ to include both Sequential_IO and Stream_IO files, but since streams allow positional access
it seems misleading to call them sequential files. Or, looked at differently, if the criterion for calling something a
sequential file is whether it permits (versus requires) purely sequential access, then one could just as soon regard a
Direct_IO file as a sequential file.

2.bIt seems better to regard ‘sequential file’ as meaning ‘only permitting purely sequential access’; hence we have decided
to supplement ‘sequential access’ and ‘direct access’ with a third category, informally called ‘access to streams’. (We
decided against the term ‘stream access’ because of possible confusion with the Stream_Access type declared in one of
the stream packages.)

ISO/IEC 8652:1995(E) —AARM;6.0

A.8 Sequential and Direct Files 21 December 1994 486

3 {direct access} {index (of an element of an open direct file)} {current size (of an external file)} For direct access, the file is
viewed as a set of elements occupying consecutive positions in linear order; a value can be transferred to
or from an element of the file at any selected position. The position of an element is specified by its
index, which is a number, greater than zero, of the implementation-defined integer type Count. The first
element, if any, has index one; the index of the last element, if any, is called the current size; the current
size is zero if there are no elements. The current size is a property of the external file.

4 {current index (of an open direct file)} An open direct file has a current index, which is the index that will be
used by the next read or write operation. When a direct file is opened, the current index is set to one. The
current index of a direct file is a property of a file object, not of an external file.

A.8.1 The Generic Package Sequential_IO
Static Semantics

1 The generic library package Sequential_IO has the following declaration:
2 with Ada.IO_Exceptions;

generic
type Element_Type(<>) is private;

package Ada.Sequential_IO is

3 type File_Type is limited private;

4 type File_Mode is (In_File, Out_File, Append_File);

5 -- File management

6 procedure Create(File : in out File_Type;
Mode : in File_Mode := Out_File;
Name : in String := "";
Form : in String := "");

7 procedure Open (File : in out File_Type;
Mode : in File_Mode;
Name : in String;
Form : in String := "");

8 procedure Close (File : in out File_Type);
procedure Delete(File : in out File_Type);
procedure Reset (File : in out File_Type; Mode : in File_Mode);
procedure Reset (File : in out File_Type);

9 function Mode (File : in File_Type) return File_Mode;
function Name (File : in File_Type) return String;
function Form (File : in File_Type) return String;

10 function Is_Open(File : in File_Type) return Boolean;

11 -- Input and output operations

12 procedure Read (File : in File_Type; Item : out Element_Type);
procedure Write (File : in File_Type; Item : in Element_Type);

13 function End_Of_File(File : in File_Type) return Boolean;

14 -- Exceptions

15 Status_Error : exception renames IO_Exceptions.Status_Error;
Mode_Error : exception renames IO_Exceptions.Mode_Error;
Name_Error : exception renames IO_Exceptions.Name_Error;
Use_Error : exception renames IO_Exceptions.Use_Error;
Device_Error : exception renames IO_Exceptions.Device_Error;
End_Error : exception renames IO_Exceptions.End_Error;
Data_Error : exception renames IO_Exceptions.Data_Error;

16 private
... -- not specified by the language

end Ada.Sequential_IO;

ISO/IEC 8652:1995(E) —AARM;6.0

487 21 December 1994 The Generic Package Sequential_IO A.8.1

Incompatibilities With Ada 83

16.a{incompatibilities with Ada 83} The new enumeration element Append_File may introduce upward incompatibilities.
It is possible that a program based on the assumption that File_Mode’Last = Out_File will be illegal (e.g., case
statement choice coverage) or execute with a different effect in Ada 9X.

A.8.2 File Management
Static Semantics

1The procedures and functions described in this subclause provide for the control of external files; their
declarations are repeated in each of the packages for sequential, direct, text, and stream input-output. For
text input-output, the procedures Create, Open, and Reset have additional effects described in subclause
A.10.2.

2procedure Create(File : in out File_Type;
Mode : in File_Mode := default_mode;
Name : in String := "";
Form : in String := "");

3Establishes a new external file, with the given name and form, and associates this external file
with the given file. The given file is left open. The current mode of the given file is set to the
given access mode. The default access mode is the mode Out_File for sequential and text
input-output; it is the mode Inout_File for direct input-output. For direct access, the size of the
created file is implementation defined.

4A null string for Name specifies an external file that is not accessible after the completion of the
main program (a temporary file). A null string for Form specifies the use of the default options
of the implementation for the external file.

5The exception Status_Error is propagated if the given file is already open. The exception
Name_Error is propagated if the string given as Name does not allow the identification of an
external file. The exception Use_Error is propagated if, for the specified mode, the external
environment does not support creation of an external file with the given name (in the absence of
Name_Error) and form.

6procedure Open(File : in out File_Type;
Mode : in File_Mode;
Name : in String;
Form : in String := "");

7Associates the given file with an existing external file having the given name and form, and sets
the current mode of the given file to the given mode. The given file is left open.

8The exception Status_Error is propagated if the given file is already open. The exception
Name_Error is propagated if the string given as Name does not allow the identification of an
external file; in particular, this exception is propagated if no external file with the given name
exists. The exception Use_Error is propagated if, for the specified mode, the external environ-
ment does not support opening for an external file with the given name (in the absence of
Name_Error) and form.

9procedure Close(File : in out File_Type);

10Severs the association between the given file and its associated external file. The given file is
left closed. In addition, for sequential files, if the file being closed has mode Out_File or
Append_File, then the last element written since the most recent open or reset is the last ele-
ment that can be read from the file. If no elements have been written and the file mode is Out_

ISO/IEC 8652:1995(E) —AARM;6.0

A.8.2 File Management 21 December 1994 488

File, then the closed file is empty. If no elements have been written and the file mode is
Append_File, then the closed file is unchanged.

11 The exception Status_Error is propagated if the given file is not open.

12 procedure Delete(File : in out File_Type);

13 Deletes the external file associated with the given file. The given file is closed, and the external
file ceases to exist.

14 The exception Status_Error is propagated if the given file is not open. The exception Use_Error
is propagated if deletion of the external file is not supported by the external environment.

15 procedure Reset(File : in out File_Type; Mode : in File_Mode);
procedure Reset(File : in out File_Type);

16 Resets the given file so that reading from its elements can be restarted from the beginning of the
file (for modes In_File and Inout_File), and so that writing to its elements can be restarted at the
beginning of the file (for modes Out_File and Inout_File) or after the last element of the file
(for mode Append_File). In particular, for direct access this means that the current index is set
to one. If a Mode parameter is supplied, the current mode of the given file is set to the given
mode. In addition, for sequential files, if the given file has mode Out_File or Append_File
when Reset is called, the last element written since the most recent open or reset is the last
element that can be read from the file. If no elements have been written and the file mode is
Out_File, the reset file is empty. If no elements have been written and the file mode is
Append_File, then the reset file is unchanged.

17 The exception Status_Error is propagated if the file is not open. The exception Use_Error is
propagated if the external environment does not support resetting for the external file and, also,
if the external environment does not support resetting to the specified mode for the external file.

18 function Mode(File : in File_Type) return File_Mode;

19 Returns the current mode of the given file.

20 The exception Status_Error is propagated if the file is not open.

21 function Name(File : in File_Type) return String;

22 Returns a string which uniquely identifies the external file currently associated with the given
file (and may thus be used in an Open operation). If an external environment allows alternative
specifications of the name (for example, abbreviations), the string returned by the function
should correspond to a full specification of the name.

23 The exception Status_Error is propagated if the given file is not open. The exception Use_Error
is propagated if the associated external file is a temporary file that cannot be opened by any
name.

24 function Form(File : in File_Type) return String;

25 Returns the form string for the external file currently associated with the given file. If an
external environment allows alternative specifications of the form (for example, abbreviations
using default options), the string returned by the function should correspond to a full specifica-
tion (that is, it should indicate explicitly all options selected, including default options).

ISO/IEC 8652:1995(E) —AARM;6.0

489 21 December 1994 File Management A.8.2

26The exception Status_Error is propagated if the given file is not open.

27function Is_Open(File : in File_Type) return Boolean;

28Returns True if the file is open (that is, if it is associated with an external file), otherwise returns
False.

Implementation Permissions

29An implementation may propagate Name_Error or Use_Error if an attempt is made to use an I/O feature
that cannot be supported by the implementation due to limitations in the external environment. Any such
restriction should be documented.

A.8.3 Sequential Input-Output Operations
Static Semantics

1The operations available for sequential input and output are described in this subclause. The exception
Status_Error is propagated if any of these operations is attempted for a file that is not open.

2procedure Read(File : in File_Type; Item : out Element_Type);

3Operates on a file of mode In_File. Reads an element from the given file, and returns the value
of this element in the Item parameter.

3.aDiscussion: We considered basing Sequential_IO.Read on Element_Type’Read from an implicit stream associated
with the sequential file. However, Element_Type’Read is a type-related attribute, whereas Sequential_IO should take
advantage of the particular constraints of the actual subtype corresponding to Element_Type to minimize the size of the
external file. Furthermore, forcing the implementation of Sequential_IO to be based on Element_Type’Read would
create an upward incompatibility since existing data files written by an Ada 83 program using Sequential_IO might not
be readable by the identical program built with an Ada 9X implementation of Sequential_IO.

3.bAn Ada 9X implementation might still use an implementation-defined attribute analogous to ’Read to implement the
procedure Read, but that attribute will likely have to be subtype-specific rather than type-related, and it need not be
user-specifiable. Such an attribute will presumably be needed to implement the generic package Storage_IO (see A.9).

4The exception Mode_Error is propagated if the mode is not In_File. The exception End_Error
is propagated if no more elements can be read from the given file. The exception Data_Error
can be propagated if the element read cannot be interpreted as a value of the subtype Element_
Type (see A.13, ‘‘Exceptions in Input-Output’’).

4.aDiscussion: Data_Error need not be propagated if the check is too complex. See A.13, ‘‘Exceptions in Input-Output’’.

5procedure Write(File : in File_Type; Item : in Element_Type);

6Operates on a file of mode Out_File or Append_File. Writes the value of Item to the given file.

7The exception Mode_Error is propagated if the mode is not Out_File or Append_File. The
exception Use_Error is propagated if the capacity of the external file is exceeded.

8function End_Of_File(File : in File_Type) return Boolean;

9Operates on a file of mode In_File. Returns True if no more elements can be read from the
given file; otherwise returns False.

10The exception Mode_Error is propagated if the mode is not In_File.

ISO/IEC 8652:1995(E) —AARM;6.0

A.8.4 The Generic Package Direct_IO 21 December 1994 490

A.8.4 The Generic Package Direct_IO
Static Semantics

1 The generic library package Direct_IO has the following declaration:
2 with Ada.IO_Exceptions;

generic
type Element_Type is private;

package Ada.Direct_IO is

3 type File_Type is limited private;

4 type File_Mode is (In_File, Inout_File, Out_File);
type Count is range 0 .. implementation-defined;
subtype Positive_Count is Count range 1 .. Count’Last;

5 -- File management

6 procedure Create(File : in out File_Type;
Mode : in File_Mode := Inout_File;
Name : in String := "";
Form : in String := "");

7 procedure Open (File : in out File_Type;
Mode : in File_Mode;
Name : in String;
Form : in String := "");

8 procedure Close (File : in out File_Type);
procedure Delete(File : in out File_Type);
procedure Reset (File : in out File_Type; Mode : in File_Mode);
procedure Reset (File : in out File_Type);

9 function Mode (File : in File_Type) return File_Mode;
function Name (File : in File_Type) return String;
function Form (File : in File_Type) return String;

10 function Is_Open(File : in File_Type) return Boolean;

11 -- Input and output operations

12 procedure Read (File : in File_Type; Item : out Element_Type;
From : in Positive_Count);

procedure Read (File : in File_Type; Item : out Element_Type);

13 procedure Write(File : in File_Type; Item : in Element_Type;
To : in Positive_Count);

procedure Write(File : in File_Type; Item : in Element_Type);

14 procedure Set_Index(File : in File_Type; To : in Positive_Count);

15 function Index(File : in File_Type) return Positive_Count;
function Size (File : in File_Type) return Count;

16 function End_Of_File(File : in File_Type) return Boolean;

17 -- Exceptions

18 Status_Error : exception renames IO_Exceptions.Status_Error;
Mode_Error : exception renames IO_Exceptions.Mode_Error;
Name_Error : exception renames IO_Exceptions.Name_Error;
Use_Error : exception renames IO_Exceptions.Use_Error;
Device_Error : exception renames IO_Exceptions.Device_Error;
End_Error : exception renames IO_Exceptions.End_Error;
Data_Error : exception renames IO_Exceptions.Data_Error;

19 private
... -- not specified by the language

end Ada.Direct_IO;

19.a Reason: The Element_Type formal of Direct_IO does not have an unknown_discriminant_part (unlike Sequential_IO)
so that the implementation can make use of the ability to declare uninitialized variables of the type.

ISO/IEC 8652:1995(E) —AARM;6.0

491 21 December 1994 Direct Input-Output Operations A.8.5

A.8.5 Direct Input-Output Operations
Static Semantics

1The operations available for direct input and output are described in this subclause. The exception
Status_Error is propagated if any of these operations is attempted for a file that is not open.

2procedure Read(File : in File_Type; Item : out Element_Type;
From : in Positive_Count);

procedure Read(File : in File_Type; Item : out Element_Type);

3Operates on a file of mode In_File or Inout_File. In the case of the first form, sets the current
index of the given file to the index value given by the parameter From. Then (for both forms)
returns, in the parameter Item, the value of the element whose position in the given file is
specified by the current index of the file; finally, increases the current index by one.

4The exception Mode_Error is propagated if the mode of the given file is Out_File. The excep-
tion End_Error is propagated if the index to be used exceeds the size of the external file. The
exception Data_Error can be propagated if the element read cannot be interpreted as a value of
the subtype Element_Type (see A.13).

5procedure Write(File : in File_Type; Item : in Element_Type;
To : in Positive_Count);

procedure Write(File : in File_Type; Item : in Element_Type);

6Operates on a file of mode Inout_File or Out_File. In the case of the first form, sets the index
of the given file to the index value given by the parameter To. Then (for both forms) gives the
value of the parameter Item to the element whose position in the given file is specified by the
current index of the file; finally, increases the current index by one.

7The exception Mode_Error is propagated if the mode of the given file is In_File. The exception
Use_Error is propagated if the capacity of the external file is exceeded.

8procedure Set_Index(File : in File_Type; To : in Positive_Count);

9Operates on a file of any mode. Sets the current index of the given file to the given index value
(which may exceed the current size of the file).

10function Index(File : in File_Type) return Positive_Count;

11Operates on a file of any mode. Returns the current index of the given file.

12function Size(File : in File_Type) return Count;

13Operates on a file of any mode. Returns the current size of the external file that is associated
with the given file.

14function End_Of_File(File : in File_Type) return Boolean;

15Operates on a file of mode In_File or Inout_File. Returns True if the current index exceeds the
size of the external file; otherwise returns False.

16The exception Mode_Error is propagated if the mode of the given file is Out_File.

NOTES
1720 Append_File mode is not supported for the generic package Direct_IO.

ISO/IEC 8652:1995(E) —AARM;6.0

A.9 The Generic Package Storage_IO 21 December 1994 492

A.9 The Generic Package Storage_IO
1 The generic package Storage_IO provides for reading from and writing to an in-memory buffer. This

generic package supports the construction of user-defined input-output packages.
1.a Reason: This package exists to allow the portable construction of user-defined direct-access-oriented input-output

packages. The Write procedure writes a value of type Element_Type into a Storage_Array of size Buffer_Size,
flattening out any implicit levels of indirection used in the representation of the type. The Read procedure reads a
value of type Element_Type from the buffer, reconstructing any implicit levels of indirection used in the representation
of the type. It also properly initializes any type tags that appear within the value, presuming that the buffer was written
by a different program and that tag values for the‘‘same’’ type might vary from one executable to another.

Static Semantics

2 The generic library package Storage_IO has the following declaration:
3 with Ada.IO_Exceptions;

with System.Storage_Elements;
generic

type Element_Type is private;
package Ada.Storage_IO is

pragma Preelaborate(Storage_IO);

4 Buffer_Size : constant System.Storage_Elements.Storage_Count := implementation-defined;
subtype Buffer_Type is System.Storage_Elements.Storage_Array(1..Buffer_Size);

5 -- Input and output operations

6 procedure Read (Buffer : in Buffer_Type; Item : out Element_Type);

7 procedure Write(Buffer : out Buffer_Type; Item : in Element_Type);

8 -- Exceptions

9 Data_Error : exception renames IO_Exceptions.Data_Error;
end Ada.Storage_IO;

10 In each instance, the constant Buffer_Size has a value that is the size (in storage elements) of the buffer
required to represent the content of an object of subtype Element_Type, including any implicit levels of
indirection used by the implementation.

10.a Reason: As with Direct_IO, the Element_Type formal of Storage_IO does not have an unknown_discriminant_part so
that there is a well-defined upper bound on the size of the buffer needed to hold the content of an object of the formal
subtype (i.e. Buffer_Size). If there are no implicit levels of indirection, Buffer_Size will typically equal:

10.b (Element_Type’Size + System.Storage_Unit - 1) / System.Storage_Unit

10.c Implementation defined: The value of Buffer_Size in Storage_IO.

The Read and Write procedures of Storage_IO correspond to the Read and Write procedures of Direct_IO
(see A.8.4), but with the content of the Item parameter being read from or written into the specified
Buffer, rather than an external file.

NOTES
11 21 A buffer used for Storage_IO holds only one element at a time; an external file used for Direct_IO holds a sequence of

elements.

A.10 Text Input-Output
Static Semantics

1 This clause describes the package Text_IO, which provides facilities for input and output in human-
readable form. Each file is read or written sequentially, as a sequence of characters grouped into lines,
and as a sequence of lines grouped into pages. The specification of the package is given below in
subclause A.10.1.

2 The facilities for file management given above, in subclauses A.8.2 and A.8.3, are available for text
input-output. In place of Read and Write, however, there are procedures Get and Put that input values of

ISO/IEC 8652:1995(E) —AARM;6.0

493 21 December 1994 Text Input-Output A.10

suitable types from text files, and output values to them. These values are provided to the Put procedures,
and returned by the Get procedures, in a parameter Item. Several overloaded procedures of these names
exist, for different types of Item. These Get procedures analyze the input sequences of characters based
on lexical elements (see Section 2) and return the corresponding values; the Put procedures output the
given values as appropriate lexical elements. Procedures Get and Put are also available that input and
output individual characters treated as character values rather than as lexical elements. Related to charac-
ter input are procedures to look ahead at the next character without reading it, and to read a character
‘‘immediately’’ without waiting for an end-of-line to signal availability.

3In addition to the procedures Get and Put for numeric and enumeration types of Item that operate on text
files, analogous procedures are provided that read from and write to a parameter of type String. These
procedures perform the same analysis and composition of character sequences as their counterparts which
have a file parameter.

4For all Get and Put procedures that operate on text files, and for many other subprograms, there are forms
with and without a file parameter. Each such Get procedure operates on an input file, and each such Put
procedure operates on an output file. If no file is specified, a default input file or a default output file is
used.

5{standard input file} {standard output file} At the beginning of program execution the default input and output
files are the so-called standard input file and standard output file. These files are open, have respectively
the current modes In_File and Out_File, and are associated with two implementation-defined external
files. Procedures are provided to change the current default input file and the current default output file.

5.aImplementation defined: external files for standard input, standard output, and standard error

6{standard error file} At the beginning of program execution a default file for program-dependent error-
related text output is the so-called standard error file. This file is open, has the current mode Out_File,
and is associated with an implementation-defined external file. A procedure is provided to change the
current default error file.

7{line terminator} {page terminator} {file terminator} From a logical point of view, a text file is a sequence of
pages, a page is a sequence of lines, and a line is a sequence of characters; the end of a line is marked by a
line terminator; the end of a page is marked by the combination of a line terminator immediately followed
by a page terminator; and the end of a file is marked by the combination of a line terminator immediately
followed by a page terminator and then a file terminator. Terminators are generated during output; either
by calls of procedures provided expressly for that purpose; or implicitly as part of other operations, for
example, when a bounded line length, a bounded page length, or both, have been specified for a file.

8The actual nature of terminators is not defined by the language and hence depends on the implementation.
Although terminators are recognized or generated by certain of the procedures that follow, they are not
necessarily implemented as characters or as sequences of characters. Whether they are characters (and if
so which ones) in any particular implementation need not concern a user who neither explicitly outputs
nor explicitly inputs control characters. The effect of input (Get) or output (Put) of control characters
(other than horizontal tabulation) is not specified by the language. {unspecified [partial]}

9{column number} {current column number} {current line number} {current page number} The characters of a line are
numbered, starting from one; the number of a character is called its column number. For a line ter-
minator, a column number is also defined: it is one more than the number of characters in the line. The

ISO/IEC 8652:1995(E) —AARM;6.0

A.10 Text Input-Output 21 December 1994 494

lines of a page, and the pages of a file, are similarly numbered. The current column number is the column
number of the next character or line terminator to be transferred. The current line number is the number
of the current line. The current page number is the number of the current page. These numbers are values
of the subtype Positive_Count of the type Count (by convention, the value zero of the type Count is used
to indicate special conditions).

10 type Count is range 0 .. implementation-defined;
subtype Positive_Count is Count range 1 .. Count’Last;

11 {maximum line length} {maximum page length} For an output file or an append file, a maximum line length can be
specified and a maximum page length can be specified. If a value to be output cannot fit on the current
line, for a specified maximum line length, then a new line is automatically started before the value is
output; if, further, this new line cannot fit on the current page, for a specified maximum page length, then
a new page is automatically started before the value is output. Functions are provided to determine the
maximum line length and the maximum page length. When a file is opened with mode Out_File or
Append_File, both values are zero: by convention, this means that the line lengths and page lengths are
unbounded. (Consequently, output consists of a single line if the subprograms for explicit control of line
and page structure are not used.) The constant Unbounded is provided for this purpose.

Extensions to Ada 83

11.a {extensions to Ada 83} Append_File is new in Ada 9X.

A.10.1 The Package Text_IO
Static Semantics

1 The library package Text_IO has the following declaration:
2 with Ada.IO_Exceptions;

package Ada.Text_IO is

3 type File_Type is limited private;

4 type File_Mode is (In_File, Out_File, Append_File);

5 type Count is range 0 .. implementation-defined;
subtype Positive_Count is Count range 1 .. Count’Last;
Unbounded : constant Count := 0; -- line and page length

6 subtype Field is Integer range 0 .. implementation-defined;
subtype Number_Base is Integer range 2 .. 16;

7 type Type_Set is (Lower_Case, Upper_Case);

8 -- File Management

9 procedure Create (File : in out File_Type;
Mode : in File_Mode := Out_File;
Name : in String := "";
Form : in String := "");

10 procedure Open (File : in out File_Type;
Mode : in File_Mode;
Name : in String;
Form : in String := "");

11 procedure Close (File : in out File_Type);
procedure Delete (File : in out File_Type);
procedure Reset (File : in out File_Type; Mode : in File_Mode);
procedure Reset (File : in out File_Type);

12 function Mode (File : in File_Type) return File_Mode;
function Name (File : in File_Type) return String;
function Form (File : in File_Type) return String;

13 function Is_Open(File : in File_Type) return Boolean;

14 -- Control of default input and output files

ISO/IEC 8652:1995(E) —AARM;6.0

495 21 December 1994 The Package Text_IO A.10.1

15procedure Set_Input (File : in File_Type);
procedure Set_Output(File : in File_Type);
procedure Set_Error (File : in File_Type);

16function Standard_Input return File_Type;
function Standard_Output return File_Type;
function Standard_Error return File_Type;

17function Current_Input return File_Type;
function Current_Output return File_Type;
function Current_Error return File_Type;

18type File_Access is access constant File_Type;

19function Standard_Input return File_Access;
function Standard_Output return File_Access;
function Standard_Error return File_Access;

20function Current_Input return File_Access;
function Current_Output return File_Access;
function Current_Error return File_Access;

21--Buffer control
procedure Flush (File : in out File_Type);
procedure Flush;

22-- Specification of line and page lengths

23procedure Set_Line_Length(File : in File_Type; To : in Count);
procedure Set_Line_Length(To : in Count);

24procedure Set_Page_Length(File : in File_Type; To : in Count);
procedure Set_Page_Length(To : in Count);

25function Line_Length(File : in File_Type) return Count;
function Line_Length return Count;

26function Page_Length(File : in File_Type) return Count;
function Page_Length return Count;

27-- Column, Line, and Page Control

28procedure New_Line (File : in File_Type;
Spacing : in Positive_Count := 1);

procedure New_Line (Spacing : in Positive_Count := 1);

29procedure Skip_Line (File : in File_Type;
Spacing : in Positive_Count := 1);

procedure Skip_Line (Spacing : in Positive_Count := 1);

30function End_Of_Line(File : in File_Type) return Boolean;
function End_Of_Line return Boolean;

31procedure New_Page (File : in File_Type);
procedure New_Page;

32procedure Skip_Page (File : in File_Type);
procedure Skip_Page;

33function End_Of_Page(File : in File_Type) return Boolean;
function End_Of_Page return Boolean;

34function End_Of_File(File : in File_Type) return Boolean;
function End_Of_File return Boolean;

35procedure Set_Col (File : in File_Type; To : in Positive_Count);
procedure Set_Col (To : in Positive_Count);

36procedure Set_Line(File : in File_Type; To : in Positive_Count);
procedure Set_Line(To : in Positive_Count);

37function Col (File : in File_Type) return Positive_Count;
function Col return Positive_Count;

38function Line(File : in File_Type) return Positive_Count;
function Line return Positive_Count;

39function Page(File : in File_Type) return Positive_Count;
function Page return Positive_Count;

40-- Character Input-Output

41procedure Get(File : in File_Type; Item : out Character);
procedure Get(Item : out Character);

ISO/IEC 8652:1995(E) —AARM;6.0

A.10.1 The Package Text_IO 21 December 1994 496

42 procedure Put(File : in File_Type; Item : in Character);
procedure Put(Item : in Character);

43 procedure Look_Ahead (File : in File_Type;
Item : out Character;
End_Of_Line : out Boolean);

procedure Look_Ahead (Item : out Character;
End_Of_Line : out Boolean);

44 procedure Get_Immediate(File : in File_Type;
Item : out Character);

procedure Get_Immediate(Item : out Character);

45 procedure Get_Immediate(File : in File_Type;
Item : out Character;
Available : out Boolean);

procedure Get_Immediate(Item : out Character;
Available : out Boolean);

46 -- String Input-Output

47 procedure Get(File : in File_Type; Item : out String);
procedure Get(Item : out String);

48 procedure Put(File : in File_Type; Item : in String);
procedure Put(Item : in String);

49 procedure Get_Line(File : in File_Type;
Item : out String;
Last : out Natural);

procedure Get_Line(Item : out String; Last : out Natural);

50 procedure Put_Line(File : in File_Type; Item : in String);
procedure Put_Line(Item : in String);

51 -- Generic packages for Input-Output of Integer Types

52 generic
type Num is range <>;

package Integer_IO is

53 Default_Width : Field := Num’Width;
Default_Base : Number_Base := 10;

54 procedure Get(File : in File_Type;
Item : out Num;
Width : in Field := 0);

procedure Get(Item : out Num;
Width : in Field := 0);

55 procedure Put(File : in File_Type;
Item : in Num;
Width : in Field := Default_Width;
Base : in Number_Base := Default_Base);

procedure Put(Item : in Num;
Width : in Field := Default_Width;
Base : in Number_Base := Default_Base);

procedure Get(From : in String;
Item : out Num;
Last : out Positive);

procedure Put(To : out String;
Item : in Num;
Base : in Number_Base := Default_Base);

56 end Integer_IO;

57 generic
type Num is mod <>;

package Modular_IO is

58 Default_Width : Field := Num’Width;
Default_Base : Number_Base := 10;

59 procedure Get(File : in File_Type;
Item : out Num;
Width : in Field := 0);

procedure Get(Item : out Num;
Width : in Field := 0);

ISO/IEC 8652:1995(E) —AARM;6.0

497 21 December 1994 The Package Text_IO A.10.1

60procedure Put(File : in File_Type;
Item : in Num;
Width : in Field := Default_Width;
Base : in Number_Base := Default_Base);

procedure Put(Item : in Num;
Width : in Field := Default_Width;
Base : in Number_Base := Default_Base);

procedure Get(From : in String;
Item : out Num;
Last : out Positive);

procedure Put(To : out String;
Item : in Num;
Base : in Number_Base := Default_Base);

61end Modular_IO;

62-- Generic packages for Input-Output of Real Types

63generic
type Num is digits <>;

package Float_IO is

64Default_Fore : Field := 2;
Default_Aft : Field := Num’Digits-1;
Default_Exp : Field := 3;

65procedure Get(File : in File_Type;
Item : out Num;
Width : in Field := 0);

procedure Get(Item : out Num;
Width : in Field := 0);

66procedure Put(File : in File_Type;
Item : in Num;
Fore : in Field := Default_Fore;
Aft : in Field := Default_Aft;
Exp : in Field := Default_Exp);

procedure Put(Item : in Num;
Fore : in Field := Default_Fore;
Aft : in Field := Default_Aft;
Exp : in Field := Default_Exp);

67procedure Get(From : in String;
Item : out Num;
Last : out Positive);

procedure Put(To : out String;
Item : in Num;
Aft : in Field := Default_Aft;
Exp : in Field := Default_Exp);

end Float_IO;

68generic
type Num is delta <>;

package Fixed_IO is

69Default_Fore : Field := Num’Fore;
Default_Aft : Field := Num’Aft;
Default_Exp : Field := 0;

70procedure Get(File : in File_Type;
Item : out Num;
Width : in Field := 0);

procedure Get(Item : out Num;
Width : in Field := 0);

71procedure Put(File : in File_Type;
Item : in Num;
Fore : in Field := Default_Fore;
Aft : in Field := Default_Aft;
Exp : in Field := Default_Exp);

procedure Put(Item : in Num;
Fore : in Field := Default_Fore;
Aft : in Field := Default_Aft;
Exp : in Field := Default_Exp);

ISO/IEC 8652:1995(E) —AARM;6.0

A.10.1 The Package Text_IO 21 December 1994 498

72 procedure Get(From : in String;
Item : out Num;
Last : out Positive);

procedure Put(To : out String;
Item : in Num;
Aft : in Field := Default_Aft;
Exp : in Field := Default_Exp);

end Fixed_IO;

73 generic
type Num is delta <> digits <>;

package Decimal_IO is

74 Default_Fore : Field := Num’Fore;
Default_Aft : Field := Num’Aft;
Default_Exp : Field := 0;

75 procedure Get(File : in File_Type;
Item : out Num;
Width : in Field := 0);

procedure Get(Item : out Num;
Width : in Field := 0);

76 procedure Put(File : in File_Type;
Item : in Num;
Fore : in Field := Default_Fore;
Aft : in Field := Default_Aft;
Exp : in Field := Default_Exp);

procedure Put(Item : in Num;
Fore : in Field := Default_Fore;
Aft : in Field := Default_Aft;
Exp : in Field := Default_Exp);

77 procedure Get(From : in String;
Item : out Num;
Last : out Positive);

procedure Put(To : out String;
Item : in Num;
Aft : in Field := Default_Aft;
Exp : in Field := Default_Exp);

end Decimal_IO;

78 -- Generic package for Input-Output of Enumeration Types

79 generic
type Enum is (<>);

package Enumeration_IO is

80 Default_Width : Field := 0;
Default_Setting : Type_Set := Upper_Case;

81 procedure Get(File : in File_Type;
Item : out Enum);

procedure Get(Item : out Enum);

82 procedure Put(File : in File_Type;
Item : in Enum;
Width : in Field := Default_Width;
Set : in Type_Set := Default_Setting);

procedure Put(Item : in Enum;
Width : in Field := Default_Width;
Set : in Type_Set := Default_Setting);

83 procedure Get(From : in String;
Item : out Enum;
Last : out Positive);

procedure Put(To : out String;
Item : in Enum;
Set : in Type_Set := Default_Setting);

end Enumeration_IO;

84 -- Exceptions

ISO/IEC 8652:1995(E) —AARM;6.0

499 21 December 1994 The Package Text_IO A.10.1

85Status_Error : exception renames IO_Exceptions.Status_Error;
Mode_Error : exception renames IO_Exceptions.Mode_Error;
Name_Error : exception renames IO_Exceptions.Name_Error;
Use_Error : exception renames IO_Exceptions.Use_Error;
Device_Error : exception renames IO_Exceptions.Device_Error;
End_Error : exception renames IO_Exceptions.End_Error;
Data_Error : exception renames IO_Exceptions.Data_Error;
Layout_Error : exception renames IO_Exceptions.Layout_Error;

private
... -- not specified by the language

end Ada.Text_IO;

Incompatibilities With Ada 83

85.a{incompatibilities with Ada 83} Append_File is a new element of enumeration type File_Mode.
Extensions to Ada 83

85.b{extensions to Ada 83} Get_Immediate, Look_Ahead, the subprograms for dealing with standard error, the type File_
Access and its associated subprograms, and the generic packages Modular_IO and Decimal_IO are new in Ada 9X.

A.10.2 Text File Management
Static Semantics

1The only allowed file modes for text files are the modes In_File, Out_File, and Append_File. The
subprograms given in subclause A.8.2 for the control of external files, and the function End_Of_File
given in subclause A.8.3 for sequential input-output, are also available for text files. There is also a
version of End_Of_File that refers to the current default input file. For text files, the procedures have the
following additional effects:

2• For the procedures Create and Open: After a file with mode Out_File or Append_File is
opened, the page length and line length are unbounded (both have the conventional value
zero). After a file (of any mode) is opened, the current column, current line, and current page
numbers are set to one. If the mode is Append_File, it is implementation defined whether a
page terminator will separate preexisting text in the file from the new text to be written.

2.aReason: For a file with mode Append_File, although it may seem more sensible for Open to set the current
column, line, and page number based on the number of pages in the file, the number of lines on the last page,
and the number of columns in the last line, we rejected this approach because of implementation costs; it would
require the implementation to scan the file before doing the append, or to do processing that would be
equivalent in effect.

2.bFor similar reasons, there is no requirement to erase the last page terminator of the file, nor to insert an explicit
page terminator in the case when the final page terminator of a file is represented implicitly by the implemen-
tation.

3• For the procedure Close: If the file has the current mode Out_File or Append_File, has the
effect of calling New_Page, unless the current page is already terminated; then outputs a file
terminator.

4• For the procedure Reset: If the file has the current mode Out_File or Append_File, has the
effect of calling New_Page, unless the current page is already terminated; then outputs a file
terminator. The current column, line, and page numbers are set to one, and the line and page
lengths to Unbounded. If the new mode is Append_File, it is implementation defined
whether a page terminator will separate preexisting text in the file from the new text to be
written.

4.aReason: The behavior of Reset should be similar to closing a file and reopening it with the given mode

5The exception Mode_Error is propagated by the procedure Reset upon an attempt to change the mode of a
file that is the current default input file, the current default output file, or the current default error file.

ISO/IEC 8652:1995(E) —AARM;6.0

A.10.2 Text File Management 21 December 1994 500

NOTES
6 22 An implementation can define the Form parameter of Create and Open to control effects including the following:

7 • the interpretation of line and column numbers for an interactive file, and

8 • the interpretation of text formats in a file created by a foreign program.

A.10.3 Default Input, Output, and Error Files
Static Semantics

1 The following subprograms provide for the control of the particular default files that are used when a file
parameter is omitted from a Get, Put, or other operation of text input-output described below, or when
application-dependent error-related text is to be output.

2 procedure Set_Input(File : in File_Type);

3 Operates on a file of mode In_File. Sets the current default input file to File.

4 The exception Status_Error is propagated if the given file is not open. The exception Mode_
Error is propagated if the mode of the given file is not In_File.

5 procedure Set_Output(File : in File_Type);
procedure Set_Error (File : in File_Type);

6 Each operates on a file of mode Out_File or Append_File. Set_Output sets the current default
output file to File. Set_Error sets the current default error file to File. The exception Status_
Error is propagated if the given file is not open. The exception Mode_Error is propagated if the
mode of the given file is not Out_File or Append_File.

7 function Standard_Input return File_Type;
function Standard_Input return File_Access;

8 Returns the standard input file (see A.10), or an access value designating the standard input file,
respectively.

9 function Standard_Output return File_Type;
function Standard_Output return File_Access;

10 Returns the standard output file (see A.10) or an access value designating the standard output
file, respectively.

11 function Standard_Error return File_Type;
function Standard_Error return File_Access;

12 Returns the standard error file (see A.10), or an access value designating the standard output
file, respectively.

13 The Form strings implicitly associated with the opening of Standard_Input, Standard_Output,
and Standard_Error at the start of program execution are implementation defined.

14 function Current_Input return File_Type;
function Current_Input return File_Access;

15 Returns the current default input file, or an access value designating the current default input
file, respectively.

16 function Current_Output return File_Type;
function Current_Output return File_Access;

ISO/IEC 8652:1995(E) —AARM;6.0

501 21 December 1994 Default Input, Output, and Error Files A.10.3

17Returns the current default output file, or an access value designating the current default output
file, respectively.

18function Current_Error return File_Type;
function Current_Error return File_Access;

19Returns the current default error file, or an access value designating the current default error
file, respectively.

20procedure Flush (File : in out File_Type);
procedure Flush;

21The effect of Flush is the same as the corresponding subprogram in Streams.Stream_IO (see
A.12.1). If File is not explicitly specified, Current_Output is used.

Erroneous Execution

22{erroneous execution} The execution of a program is erroneous if it attempts to use a current default input,
default output, or default error file that no longer exists.

23If the Close operation is applied to a file object that is also serving as the default input, default output, or
default error file, then subsequent operations on such a default file are erroneous.

NOTES
2423 The standard input, standard output, and standard error files cannot be opened, closed, reset, or deleted, because the

parameter File of the corresponding procedures has the mode in out.

2524 The standard input, standard output, and standard error files are different file objects, but not necessarily different
external files.

A.10.4 Specification of Line and Page Lengths
Static Semantics

1The subprograms described in this subclause are concerned with the line and page structure of a file of
mode Out_File or Append_File. They operate either on the file given as the first parameter, or, in the
absence of such a file parameter, on the current default output file. They provide for output of text with a
specified maximum line length or page length. In these cases, line and page terminators are output
implicitly and automatically when needed. When line and page lengths are unbounded (that is, when they
have the conventional value zero), as in the case of a newly opened file, new lines and new pages are only
started when explicitly called for.

2In all cases, the exception Status_Error is propagated if the file to be used is not open; the exception
Mode_Error is propagated if the mode of the file is not Out_File or Append_File.

3procedure Set_Line_Length(File : in File_Type; To : in Count);
procedure Set_Line_Length(To : in Count);

4Sets the maximum line length of the specified output or append file to the number of characters
specified by To. The value zero for To specifies an unbounded line length.

4.aRamification: The setting does not affect the lengths of lines in the existing file, rather it only influences subsequent
output operations.

5The exception Use_Error is propagated if the specified line length is inappropriate for the as-
sociated external file.

ISO/IEC 8652:1995(E) —AARM;6.0

A.10.4 Specification of Line and Page Lengths 21 December 1994 502

6 procedure Set_Page_Length(File : in File_Type; To : in Count);
procedure Set_Page_Length(To : in Count);

7 Sets the maximum page length of the specified output or append file to the number of lines
specified by To. The value zero for To specifies an unbounded page length.

8 The exception Use_Error is propagated if the specified page length is inappropriate for the
associated external file.

9 function Line_Length(File : in File_Type) return Count;
function Line_Length return Count;

10 Returns the maximum line length currently set for the specified output or append file, or zero if
the line length is unbounded.

11 function Page_Length(File : in File_Type) return Count;
function Page_Length return Count;

12 Returns the maximum page length currently set for the specified output or append file, or zero if
the page length is unbounded.

A.10.5 Operations on Columns, Lines, and Pages
Static Semantics

1 The subprograms described in this subclause provide for explicit control of line and page structure; they
operate either on the file given as the first parameter, or, in the absence of such a file parameter, on the
appropriate (input or output) current default file. The exception Status_Error is propagated by any of
these subprograms if the file to be used is not open.

2 procedure New_Line(File : in File_Type; Spacing : in Positive_Count := 1);
procedure New_Line(Spacing : in Positive_Count := 1);

3 Operates on a file of mode Out_File or Append_File.

4 For a Spacing of one: Outputs a line terminator and sets the current column number to one.
Then increments the current line number by one, except in the case that the current line number
is already greater than or equal to the maximum page length, for a bounded page length; in that
case a page terminator is output, the current page number is incremented by one, and the current
line number is set to one.

5 For a Spacing greater than one, the above actions are performed Spacing times.

6 The exception Mode_Error is propagated if the mode is not Out_File or Append_File.

7 procedure Skip_Line(File : in File_Type; Spacing : in Positive_Count := 1);
procedure Skip_Line(Spacing : in Positive_Count := 1);

8 Operates on a file of mode In_File.

9 For a Spacing of one: Reads and discards all characters until a line terminator has been read,
and then sets the current column number to one. If the line terminator is not immediately
followed by a page terminator, the current line number is incremented by one. Otherwise, if the
line terminator is immediately followed by a page terminator, then the page terminator is
skipped, the current page number is incremented by one, and the current line number is set to
one.

10 For a Spacing greater than one, the above actions are performed Spacing times.

ISO/IEC 8652:1995(E) —AARM;6.0

503 21 December 1994 Operations on Columns, Lines, and Pages A.10.5

11The exception Mode_Error is propagated if the mode is not In_File. The exception End_Error
is propagated if an attempt is made to read a file terminator.

12function End_Of_Line(File : in File_Type) return Boolean;
function End_Of_Line return Boolean;

13Operates on a file of mode In_File. Returns True if a line terminator or a file terminator is next;
otherwise returns False.

14The exception Mode_Error is propagated if the mode is not In_File.

15procedure New_Page(File : in File_Type);
procedure New_Page;

16Operates on a file of mode Out_File or Append_File. Outputs a line terminator if the current
line is not terminated, or if the current page is empty (that is, if the current column and line
numbers are both equal to one). Then outputs a page terminator, which terminates the current
page. Adds one to the current page number and sets the current column and line numbers to
one.

17The exception Mode_Error is propagated if the mode is not Out_File or Append_File.

18procedure Skip_Page(File : in File_Type);
procedure Skip_Page;

19Operates on a file of mode In_File. Reads and discards all characters and line terminators until
a page terminator has been read. Then adds one to the current page number, and sets the current
column and line numbers to one.

20The exception Mode_Error is propagated if the mode is not In_File. The exception End_Error
is propagated if an attempt is made to read a file terminator.

21function End_Of_Page(File : in File_Type) return Boolean;
function End_Of_Page return Boolean;

22Operates on a file of mode In_File. Returns True if the combination of a line terminator and a
page terminator is next, or if a file terminator is next; otherwise returns False.

23The exception Mode_Error is propagated if the mode is not In_File.

24function End_Of_File(File : in File_Type) return Boolean;
function End_Of_File return Boolean;

25Operates on a file of mode In_File. Returns True if a file terminator is next, or if the combina-
tion of a line, a page, and a file terminator is next; otherwise returns False.

26The exception Mode_Error is propagated if the mode is not In_File.

27The following subprograms provide for the control of the current position of reading or writing
in a file. In all cases, the default file is the current output file.

28procedure Set_Col(File : in File_Type; To : in Positive_Count);
procedure Set_Col(To : in Positive_Count);

29If the file mode is Out_File or Append_File:

30• If the value specified by To is greater than the current column number, outputs
spaces, adding one to the current column number after each space, until the current
column number equals the specified value. If the value specified by To is equal to
the current column number, there is no effect. If the value specified by To is less

ISO/IEC 8652:1995(E) —AARM;6.0

A.10.5 Operations on Columns, Lines, and Pages 21 December 1994 504

than the current column number, has the effect of calling New_Line (with a spacing
of one), then outputs (To – 1) spaces, and sets the current column number to the
specified value.

31 • The exception Layout_Error is propagated if the value specified by To exceeds
Line_Length when the line length is bounded (that is, when it does not have the
conventional value zero).

32 If the file mode is In_File:

33 • Reads (and discards) individual characters, line terminators, and page terminators,
until the next character to be read has a column number that equals the value
specified by To; there is no effect if the current column number already equals this
value. Each transfer of a character or terminator maintains the current column,
line, and page numbers in the same way as a Get procedure (see A.10.6). (Short
lines will be skipped until a line is reached that has a character at the specified
column position.)

34 • The exception End_Error is propagated if an attempt is made to read a file ter-
minator.

35 procedure Set_Line(File : in File_Type; To : in Positive_Count);
procedure Set_Line(To : in Positive_Count);

36 If the file mode is Out_File or Append_File:

37 • If the value specified by To is greater than the current line number, has the effect of
repeatedly calling New_Line (with a spacing of one), until the current line number
equals the specified value. If the value specified by To is equal to the current line
number, there is no effect. If the value specified by To is less than the current line
number, has the effect of calling New_Page followed by a call of New_Line with a
spacing equal to (To – 1).

38 • The exception Layout_Error is propagated if the value specified by To exceeds
Page_Length when the page length is bounded (that is, when it does not have the
conventional value zero).

39 If the mode is In_File:

40 • Has the effect of repeatedly calling Skip_Line (with a spacing of one), until the
current line number equals the value specified by To; there is no effect if the cur-
rent line number already equals this value. (Short pages will be skipped until a
page is reached that has a line at the specified line position.)

41 • The exception End_Error is propagated if an attempt is made to read a file ter-
minator.

42 function Col(File : in File_Type) return Positive_Count;
function Col return Positive_Count;

43 Returns the current column number.

44 The exception Layout_Error is propagated if this number exceeds Count’Last.

45 function Line(File : in File_Type) return Positive_Count;
function Line return Positive_Count;

46 Returns the current line number.

47 The exception Layout_Error is propagated if this number exceeds Count’Last.

ISO/IEC 8652:1995(E) —AARM;6.0

505 21 December 1994 Operations on Columns, Lines, and Pages A.10.5

48function Page(File : in File_Type) return Positive_Count;
function Page return Positive_Count;

49Returns the current page number.

50The exception Layout_Error is propagated if this number exceeds Count’Last.

51The column number, line number, or page number are allowed to exceed Count’Last (as a consequence of
the input or output of sufficiently many characters, lines, or pages). These events do not cause any
exception to be propagated. However, a call of Col, Line, or Page propagates the exception Layout_Error
if the corresponding number exceeds Count’Last.

NOTES
5225 A page terminator is always skipped whenever the preceding line terminator is skipped. An implementation may

represent the combination of these terminators by a single character, provided that it is properly recognized on input.

A.10.6 Get and Put Procedures
Static Semantics

1The procedures Get and Put for items of the type Character, String, numeric types, and enumeration types
are described in subsequent subclauses. Features of these procedures that are common to most of these
types are described in this subclause. The Get and Put procedures for items of type Character and String
deal with individual character values; the Get and Put procedures for numeric and enumeration types treat
the items as lexical elements.

2All procedures Get and Put have forms with a file parameter, written first. Where this parameter is
omitted, the appropriate (input or output) current default file is understood to be specified. Each proce-
dure Get operates on a file of mode In_File. Each procedure Put operates on a file of mode Out_File or
Append_File.

3All procedures Get and Put maintain the current column, line, and page numbers of the specified file: the
effect of each of these procedures upon these numbers is the result of the effects of individual transfers of
characters and of individual output or skipping of terminators. Each transfer of a character adds one to
the current column number. Each output of a line terminator sets the current column number to one and
adds one to the current line number. Each output of a page terminator sets the current column and line
numbers to one and adds one to the current page number. For input, each skipping of a line terminator
sets the current column number to one and adds one to the current line number; each skipping of a page
terminator sets the current column and line numbers to one and adds one to the current page number.
Similar considerations apply to the procedures Get_Line, Put_Line, and Set_Col.

4Several Get and Put procedures, for numeric and enumeration types, have format parameters which
specify field lengths; these parameters are of the nonnegative subtype Field of the type Integer.

5{blank (in text input for enumeration and numeric types)} Input-output of enumeration values uses the syntax of the
corresponding lexical elements. Any Get procedure for an enumeration type begins by skipping any
leading blanks, or line or page terminators. Get procedures for numeric or enumeration types start by
skipping leading blanks, where a blank is defined as a space or a horizontal tabulation character. Next,
characters are input only so long as the sequence input is an initial sequence of an identifier or of a
character literal (in particular, input ceases when a line terminator is encountered). The character or line
terminator that causes input to cease remains available for subsequent input.

ISO/IEC 8652:1995(E) —AARM;6.0

A.10.6 Get and Put Procedures 21 December 1994 506

6 For a numeric type, the Get procedures have a format parameter called Width. If the value given for this
parameter is zero, the Get procedure proceeds in the same manner as for enumeration types, but using the
syntax of numeric literals instead of that of enumeration literals. If a nonzero value is given, then exactly
Width characters are input, or the characters up to a line terminator, whichever comes first; any skipped
leading blanks are included in the count. The syntax used for numeric literals is an extended syntax that
allows a leading sign (but no intervening blanks, or line or page terminators) and that also allows (for real
types) an integer literal as well as forms that have digits only before the point or only after the point.

7 Any Put procedure, for an item of a numeric or an enumeration type, outputs the value of the item as a
numeric literal, identifier, or character literal, as appropriate. This is preceded by leading spaces if re-
quired by the format parameters Width or Fore (as described in later subclauses), and then a minus sign
for a negative value; for an enumeration type, the spaces follow instead of leading. The format given for
a Put procedure is overridden if it is insufficiently wide, by using the minimum needed width.

8 Two further cases arise for Put procedures for numeric and enumeration types, if the line length of the
specified output file is bounded (that is, if it does not have the conventional value zero). If the number of
characters to be output does not exceed the maximum line length, but is such that they cannot fit on the
current line, starting from the current column, then (in effect) New_Line is called (with a spacing of one)
before output of the item. Otherwise, if the number of characters exceeds the maximum line length, then
the exception Layout_Error is propagated and nothing is output.

9 The exception Status_Error is propagated by any of the procedures Get, Get_Line, Put, and Put_Line if
the file to be used is not open. The exception Mode_Error is propagated by the procedures Get and Get_
Line if the mode of the file to be used is not In_File; and by the procedures Put and Put_Line, if the mode
is not Out_File or Append_File.

10 The exception End_Error is propagated by a Get procedure if an attempt is made to skip a file terminator.
The exception Data_Error is propagated by a Get procedure if the sequence finally input is not a lexical
element corresponding to the type, in particular if no characters were input; for this test, leading blanks
are ignored; for an item of a numeric type, when a sign is input, this rule applies to the succeeding
numeric literal. The exception Layout_Error is propagated by a Put procedure that outputs to a parameter
of type String, if the length of the actual string is insufficient for the output of the item.

Examples

11 In the examples, here and in subclauses A.10.8 and A.10.9, the string quotes and the lower case letter b
are not transferred: they are shown only to reveal the layout and spaces.

12 N : Integer;
...

Get(N);

13

-- Characters at input Sequence input Value of N

-- bb–12535b –12535 –12535
-- bb12_535e1b 12_535e1 125350
-- bb12_535e; 12_535e (none) Data_Error raised

14 Example of overridden width parameter:
15 Put(Item => -23, Width => 2); -- "–23"

ISO/IEC 8652:1995(E) —AARM;6.0

507 21 December 1994 Input-Output of Characters and Strings A.10.7

A.10.7 Input-Output of Characters and Strings
Static Semantics

1For an item of type Character the following procedures are provided:

2procedure Get(File : in File_Type; Item : out Character);
procedure Get(Item : out Character);

3After skipping any line terminators and any page terminators, reads the next character from the
specified input file and returns the value of this character in the out parameter Item.

4The exception End_Error is propagated if an attempt is made to skip a file terminator.

5procedure Put(File : in File_Type; Item : in Character);
procedure Put(Item : in Character);

6If the line length of the specified output file is bounded (that is, does not have the conventional
value zero), and the current column number exceeds it, has the effect of calling New_Line with
a spacing of one. Then, or otherwise, outputs the given character to the file.

7procedure Look_Ahead (File : in File_Type;
Item : out Character;
End_Of_Line : out Boolean);

procedure Look_Ahead (Item : out Character;
End_Of_Line : out Boolean);

8Mode_Error is propagated if the mode of the file is not In_File. Sets End_Of_Line to True if at
end of line, including if at end of page or at end of file; in each of these cases the value of Item
is not specified. {unspecified [partial]} Otherwise End_Of_Line is set to False and Item is set to the
the next character (without consuming it) from the file.

9procedure Get_Immediate(File : in File_Type;
Item : out Character);

procedure Get_Immediate(Item : out Character);

10Reads the next character, either control or graphic, from the specified File or the default input
file. Mode_Error is propagated if the mode of the file is not In_File. End_Error is propagated
if at the end of the file. The current column, line and page numbers for the file are not affected.

11procedure Get_Immediate(File : in File_Type;
Item : out Character;
Available : out Boolean);

procedure Get_Immediate(Item : out Character;
Available : out Boolean);

12If a character, either control or graphic, is available from the specified File or the default input
file, then the character is read; Available is True and Item contains the value of this character.
If a character is not available, then Available is False and the value of Item is not specified.
{unspecified [partial]} Mode_Error is propagated if the mode of the file is not In_File. End_Error is
propagated if at the end of the file. The current column, line and page numbers for the file are
not affected.

13For an item of type String the following procedures are provided:

14procedure Get(File : in File_Type; Item : out String);
procedure Get(Item : out String);

15Determines the length of the given string and attempts that number of Get operations for suc-
cessive characters of the string (in particular, no operation is performed if the string is null).

ISO/IEC 8652:1995(E) —AARM;6.0

A.10.7 Input-Output of Characters and Strings 21 December 1994 508

16 procedure Put(File : in File_Type; Item : in String);
procedure Put(Item : in String);

17 Determines the length of the given string and attempts that number of Put operations for succes-
sive characters of the string (in particular, no operation is performed if the string is null).

18 procedure Get_Line(File : in File_Type; Item : out String; Last : out Natural);
procedure Get_Line(Item : out String; Last : out Natural);

19 Reads successive characters from the specified input file and assigns them to successive charac-
ters of the specified string. Reading stops if the end of the string is met. Reading also stops if
the end of the line is met before meeting the end of the string; in this case Skip_Line is (in
effect) called with a spacing of 1. {unspecified [partial]} The values of characters not assigned are
not specified.

20 If characters are read, returns in Last the index value such that Item(Last) is the last character
assigned (the index of the first character assigned is Item’First). If no characters are read,
returns in Last an index value that is one less than Item’First. The exception End_Error is
propagated if an attempt is made to skip a file terminator.

21 procedure Put_Line(File : in File_Type; Item : in String);
procedure Put_Line(Item : in String);

22 Calls the procedure Put for the given string, and then the procedure New_Line with a spacing of
one.

Implementation Advice

23 The Get_Immediate procedures should be implemented with unbuffered input. For a device such as a
keyboard, input should be ‘‘available’’ if a key has already been typed, whereas for a disk file, input
should always be available except at end of file. For a file associated with a keyboard-like device, any
line-editing features of the underlying operating system should be disabled during the execution of Get_
Immediate.

NOTES
24 26 Get_Immediate can be used to read a single key from the keyboard ‘‘immediately’’; that is, without waiting for an end

of line. In a call of Get_Immediate without the parameter Available, the caller will wait until a character is available.

25 27 In a literal string parameter of Put, the enclosing string bracket characters are not output. Each doubled string bracket
character in the enclosed string is output as a single string bracket character, as a consequence of the rule for string literals
(see 2.6).

26 28 A string read by Get or written by Put can extend over several lines. An implementation is allowed to assume that
certain external files do not contain page terminators, in which case Get_Line and Skip_Line can return as soon as a line
terminator is read.

A.10.8 Input-Output for Integer Types
Static Semantics

1 The following procedures are defined in the generic packages Integer_IO and Modular_IO, which have to
be instantiated for the appropriate signed integer or modular type respectively (indicated by Num in the
specifications).

2 Values are output as decimal or based literals, without low line characters or exponent, and, for
Integer_IO, preceded by a minus sign if negative. The format (which includes any leading spaces and
minus sign) can be specified by an optional field width parameter. Values of widths of fields in output

ISO/IEC 8652:1995(E) —AARM;6.0

509 21 December 1994 Input-Output for Integer Types A.10.8

formats are of the nonnegative integer subtype Field. Values of bases are of the integer subtype Number_
Base.

3subtype Number_Base is Integer range 2 .. 16;

4The default field width and base to be used by output procedures are defined by the following variables
that are declared in the generic packages Integer_IO and Modular_IO:

5Default_Width : Field := Num’Width;
Default_Base : Number_Base := 10;

6The following procedures are provided:

7procedure Get(File : in File_Type; Item : out Num; Width : in Field := 0);
procedure Get(Item : out Num; Width : in Field := 0);

8If the value of the parameter Width is zero, skips any leading blanks, line terminators, or page
terminators, then reads a plus sign if present or (for a signed type only) a minus sign if present,
then reads the longest possible sequence of characters matching the syntax of a numeric literal
without a point. If a nonzero value of Width is supplied, then exactly Width characters are
input, or the characters (possibly none) up to a line terminator, whichever comes first; any
skipped leading blanks are included in the count.

9Returns, in the parameter Item, the value of type Num that corresponds to the sequence input.

10The exception Data_Error is propagated if the sequence of characters read does not form a legal
integer literal or if the value obtained is not of the subtype Num (for Integer_IO) or is not in the
base range of Num (for Modular_IO).

11procedure Put(File : in File_Type;
Item : in Num;
Width : in Field := Default_Width;
Base : in Number_Base := Default_Base);

procedure Put(Item : in Num;
Width : in Field := Default_Width;
Base : in Number_Base := Default_Base);

12Outputs the value of the parameter Item as an integer literal, with no low lines, no exponent,
and no leading zeros (but a single zero for the value zero), and a preceding minus sign for a
negative value.

13If the resulting sequence of characters to be output has fewer than Width characters, then lead-
ing spaces are first output to make up the difference.

14Uses the syntax for decimal literal if the parameter Base has the value ten (either explicitly or
through Default_Base); otherwise, uses the syntax for based literal, with any letters in upper
case.

15procedure Get(From : in String; Item : out Num; Last : out Positive);

16Reads an integer value from the beginning of the given string, following the same rules as the
Get procedure that reads an integer value from a file, but treating the end of the string as a file
terminator. Returns, in the parameter Item, the value of type Num that corresponds to the
sequence input. Returns in Last the index value such that From(Last) is the last character read.

17The exception Data_Error is propagated if the sequence input does not have the required syntax
or if the value obtained is not of the subtype Num.

ISO/IEC 8652:1995(E) —AARM;6.0

A.10.8 Input-Output for Integer Types 21 December 1994 510

18 procedure Put(To : out String;
Item : in Num;
Base : in Number_Base := Default_Base);

19 Outputs the value of the parameter Item to the given string, following the same rule as for
output to a file, using the length of the given string as the value for Width.

20 Integer_Text_IO is a library package that is a nongeneric equivalent to Text_IO.Integer_IO for the
predefined type Integer:

21 with Ada.Text_IO;
package Ada.Integer_Text_IO is new Ada.Text_IO.Integer_IO(Integer);

22 For each predefined signed integer type, a nongeneric equivalent to Text_IO.Integer_IO is provided, with
names such as Ada.Long_Integer_Text_IO.

Implementation Permissions

23 The nongeneric equivalent packages may, but need not, be actual instantiations of the generic package for
the appropriate predefined type.

NOTES
24 29 For Modular_IO, execution of Get propagates Data_Error if the sequence of characters read forms an integer literal

outside the range 0..Num’Last.

Examples

25

26 package Int_IO is new Integer_IO(Small_Int); use Int_IO;
-- default format used at instantiation,
-- Default_Width = 4, Default_Base = 10

27 Put(126); -- "b126"
Put(-126, 7); -- "bbb–126"
Put(126, Width => 13, Base => 2); -- "bbb2#1111110#"

A.10.9 Input-Output for Real Types
Static Semantics

1 The following procedures are defined in the generic packages Float_IO, Fixed_IO, and Decimal_IO,
which have to be instantiated for the appropriate floating point, ordinary fixed point, or decimal fixed
point type respectively (indicated by Num in the specifications).

2 Values are output as decimal literals without low line characters. The format of each value output con-
sists of a Fore field, a decimal point, an Aft field, and (if a nonzero Exp parameter is supplied) the letter E
and an Exp field. The two possible formats thus correspond to:

3 Fore . Aft

4 and to:
5 Fore . Aft E Exp

6 without any spaces between these fields. The Fore field may include leading spaces, and a minus sign for
negative values. The Aft field includes only decimal digits (possibly with trailing zeros). The Exp field
includes the sign (plus or minus) and the exponent (possibly with leading zeros).

7 For floating point types, the default lengths of these fields are defined by the following variables that are
declared in the generic package Float_IO:

ISO/IEC 8652:1995(E) —AARM;6.0

511 21 December 1994 Input-Output for Real Types A.10.9

8Default_Fore : Field := 2;
Default_Aft : Field := Num’Digits-1;
Default_Exp : Field := 3;

9For ordinary or decimal fixed point types, the default lengths of these fields are defined by the following
variables that are declared in the generic packages Fixed_IO and Decimal_IO, respectively:

10Default_Fore : Field := Num’Fore;
Default_Aft : Field := Num’Aft;
Default_Exp : Field := 0;

11The following procedures are provided:

12procedure Get(File : in File_Type; Item : out Num; Width : in Field := 0);
procedure Get(Item : out Num; Width : in Field := 0);

13If the value of the parameter Width is zero, skips any leading blanks, line terminators, or page
terminators, then reads the longest possible sequence of characters matching the syntax of any
of the following (see 2.4):

14• [+|–]numeric_literal

15• [+|–]numeral.[exponent]

16• [+|–].numeral[exponent]

17• [+|–]base#based_numeral.#[exponent]

18• [+|–]base#.based_numeral#[exponent]

19If a nonzero value of Width is supplied, then exactly Width characters are input, or the charac-
ters (possibly none) up to a line terminator, whichever comes first; any skipped leading blanks
are included in the count.

20Returns in the parameter Item the value of type Num that corresponds to the sequence input,
preserving the sign (positive if none has been specified) of a zero value if Num is a floating
point type and Num’Signed_Zeros is True.

21The exception Data_Error is propagated if the sequence input does not have the required syntax
or if the value obtained is not of the subtype Num.

22procedure Put(File : in File_Type;
Item : in Num;
Fore : in Field := Default_Fore;
Aft : in Field := Default_Aft;
Exp : in Field := Default_Exp);

procedure Put(Item : in Num;
Fore : in Field := Default_Fore;
Aft : in Field := Default_Aft;
Exp : in Field := Default_Exp);

23Outputs the value of the parameter Item as a decimal literal with the format defined by Fore,
Aft and Exp. If the value is negative, or if Num is a floating point type where Num’Signed_
Zeros is True and the value is a negatively signed zero, then a minus sign is included in the
integer part. If Exp has the value zero, then the integer part to be output has as many digits as
are needed to represent the integer part of the value of Item, overriding Fore if necessary, or
consists of the digit zero if the value of Item has no integer part.

24If Exp has a value greater than zero, then the integer part to be output has a single digit, which
is nonzero except for the value 0.0 of Item.

ISO/IEC 8652:1995(E) —AARM;6.0

A.10.9 Input-Output for Real Types 21 December 1994 512

25 In both cases, however, if the integer part to be output has fewer than Fore characters, including
any minus sign, then leading spaces are first output to make up the difference. The number of
digits of the fractional part is given by Aft, or is one if Aft equals zero. The value is rounded; a
value of exactly one half in the last place is rounded away from zero.

26 If Exp has the value zero, there is no exponent part. If Exp has a value greater than zero, then
the exponent part to be output has as many digits as are needed to represent the exponent part of
the value of Item (for which a single digit integer part is used), and includes an initial sign (plus
or minus). If the exponent part to be output has fewer than Exp characters, including the sign,
then leading zeros precede the digits, to make up the difference. For the value 0.0 of Item, the
exponent has the value zero.

27 procedure Get(From : in String; Item : out Num; Last : out Positive);

28 Reads a real value from the beginning of the given string, following the same rule as the Get
procedure that reads a real value from a file, but treating the end of the string as a file ter-
minator. Returns, in the parameter Item, the value of type Num that corresponds to the se-
quence input. Returns in Last the index value such that From(Last) is the last character read.

29 The exception Data_Error is propagated if the sequence input does not have the required syntax,
or if the value obtained is not of the subtype Num.

30 procedure Put(To : out String;
Item : in Num;
Aft : in Field := Default_Aft;
Exp : in Field := Default_Exp);

31 Outputs the value of the parameter Item to the given string, following the same rule as for
output to a file, using a value for Fore such that the sequence of characters output exactly fills
the string, including any leading spaces.

32 Float_Text_IO is a library package that is a nongeneric equivalent to Text_IO.Float_IO for the predefined
type Float:

33 with Ada.Text_IO;
package Ada.Float_Text_IO is new Ada.Text_IO.Float_IO(Float);

34 For each predefined floating point type, a nongeneric equivalent to Text_IO.Float_IO is provided, with
names such as Ada.Long_Float_Text_IO.

Implementation Permissions

35 An implementation may extend Get [and Put] for floating point types to support special values such as
infinities and NaNs.

35.a Discussion: See also the similar permission for the Wide_Value attribute in 3.5.

36 The implementation of Put need not produce an output value with greater accuracy than is supported for
the base subtype. The additional accuracy, if any, of the value produced by Put when the number of
requested digits in the integer and fractional parts exceeds the required accuracy is implementation
defined.

36.a Discussion: The required accuracy is thus Num’Base’Digits digits if Num is a floating point subtype. For a fixed
point subtype the required accuracy is a function of the subtype’s Fore, Aft, and Delta attributes.

36.b Implementation defined: The accuracy of the value produced by Put.

ISO/IEC 8652:1995(E) —AARM;6.0

513 21 December 1994 Input-Output for Real Types A.10.9

37The nongeneric equivalent packages may, but need not, be actual instantiations of the generic package for
the appropriate predefined type.

NOTES
3830 For an item with a positive value, if output to a string exactly fills the string without leading spaces, then output of the

corresponding negative value will propagate Layout_Error.

3931 The rules for the Value attribute (see 3.5) and the rules for Get are based on the same set of formats.

Examples

40

41package Real_IO is new Float_IO(Real); use Real_IO;
-- default format used at instantiation, Default_Exp = 3

42X : Real := -123.4567; -- digits 8 (see 3.5.7)

43

Put(X); -- default format "–1.2345670E+02"
Put(X, Fore => 5, Aft => 3, Exp => 2); -- "bbb–1.235E+2"
Put(X, 5, 3, 0); -- "b–123.457"

A.10.10 Input-Output for Enumeration Types
Static Semantics

1The following procedures are defined in the generic package Enumeration_IO, which has to be instan-
tiated for the appropriate enumeration type (indicated by Enum in the specification).

2Values are output using either upper or lower case letters for identifiers. This is specified by the
parameter Set, which is of the enumeration type Type_Set.

3type Type_Set is (Lower_Case, Upper_Case);

4The format (which includes any trailing spaces) can be specified by an optional field width parameter.
The default field width and letter case are defined by the following variables that are declared in the
generic package Enumeration_IO:

5Default_Width : Field := 0;
Default_Setting : Type_Set := Upper_Case;

6The following procedures are provided:

7procedure Get(File : in File_Type; Item : out Enum);
procedure Get(Item : out Enum);

8After skipping any leading blanks, line terminators, or page terminators, reads an identifier
according to the syntax of this lexical element (lower and upper case being considered equiv-
alent), or a character literal according to the syntax of this lexical element (including the
apostrophes). Returns, in the parameter Item, the value of type Enum that corresponds to the
sequence input.

9The exception Data_Error is propagated if the sequence input does not have the required syntax,
or if the identifier or character literal does not correspond to a value of the subtype Enum.

10procedure Put(File : in File_Type;
Item : in Enum;
Width : in Field := Default_Width;
Set : in Type_Set := Default_Setting);

ISO/IEC 8652:1995(E) —AARM;6.0

A.10.10 Input-Output for Enumeration Types 21 December 1994 514

procedure Put(Item : in Enum;
Width : in Field := Default_Width;
Set : in Type_Set := Default_Setting);

11 Outputs the value of the parameter Item as an enumeration literal (either an identifier or a
character literal). The optional parameter Set indicates whether lower case or upper case is used
for identifiers; it has no effect for character literals. If the sequence of characters produced has
fewer than Width characters, then trailing spaces are finally output to make up the difference. If
Enum is a character type, the sequence of characters produced is as for Enum’Image(Item), as
modified by the Width and Set parameters.

11.a Discussion: For a character type, the literal might be a Wide_Character or a control character. Whatever Image does
for these things is appropriate here, too.

12 procedure Get(From : in String; Item : out Enum; Last : out Positive);

13 Reads an enumeration value from the beginning of the given string, following the same rule as
the Get procedure that reads an enumeration value from a file, but treating the end of the string
as a file terminator. Returns, in the parameter Item, the value of type Enum that corresponds to
the sequence input. Returns in Last the index value such that From(Last) is the last character
read.

14 The exception Data_Error is propagated if the sequence input does not have the required syntax,
or if the identifier or character literal does not correspond to a value of the subtype Enum.

14.a To be honest: For a character type, it is permissible for the implementation to make Get do the inverse of what Put
does, in the case of wide character_literals and control characters.

15 procedure Put(To : out String;
Item : in Enum;
Set : in Type_Set := Default_Setting);

16 Outputs the value of the parameter Item to the given string, following the same rule as for
output to a file, using the length of the given string as the value for Width.

17 Although the specification of the generic package Enumeration_IO would allow instantiation for an float
type, this is not the intended purpose of this generic package, and the effect of such instantiations is not
defined by the language.

NOTES
18 32 There is a difference between Put defined for characters, and for enumeration values. Thus

19 Ada.Text_IO.Put(’A’); -- outputs the character A

20 package Char_IO is new Ada.Text_IO.Enumeration_IO(Character);
Char_IO.Put(’A’); -- outputs the character ’A’, between apostrophes

21 33 The type Boolean is an enumeration type, hence Enumeration_IO can be instantiated for this type.

A.11 Wide Text Input-Output
1 The package Wide_Text_IO provides facilities for input and output in human-readable form. Each file is

read or written sequentially, as a sequence of wide characters grouped into lines, and as a sequence of
lines grouped into pages.

Static Semantics

2 {Ada.Wide_Text_IO} The specification of package Wide_Text_IO is the same as that for Text_IO, except
that in each Get, Look_Ahead, Get_Immediate, Get_Line, Put, and Put_Line procedure, any occurrence
of Character is replaced by Wide_Character, and any occurrence of String is replaced by Wide_String.

ISO/IEC 8652:1995(E) —AARM;6.0

515 21 December 1994 Wide Text Input-Output A.11

3{Ada.Integer_Wide_Text_IO} {Ada.Float_Wide_Text_IO} Nongeneric equivalents of Wide_Text_IO.Integer_IO
and Wide_Text_IO.Float_IO are provided (as for Text_IO) for each predefined numeric type, with names
such as Ada.Integer_Wide_Text_IO, Ada.Long_Integer_Wide_Text_IO, Ada.Float_Wide_Text_IO,
Ada.Long_Float_Wide_Text_IO.

Extensions to Ada 83

3.a{extensions to Ada 83} Support for Wide_Character and Wide_String I/O is new in Ada 9X.

A.12 Stream Input-Output
1The packages Streams.Stream_IO, Text_IO.Text_Streams, and Wide_Text_IO.Text_Streams provide

stream-oriented operations on files.

A.12.1 The Package Streams.Stream_IO
1{heterogeneous input-output} [The subprograms in the child package Streams.Stream_IO provide control over

stream files. Access to a stream file is either sequential, via a call on Read or Write to transfer an array of
stream elements, or positional (if supported by the implementation for the given file), by specifying a
relative index for an element. Since a stream file can be converted to a Stream_Access value, calling
stream-oriented attribute subprograms of different element types with the same Stream_Access value
provides heterogeneous input-output.] See 13.13 for a general discussion of streams.

Static Semantics

2The library package Streams.Stream_IO has the following declaration:
3with Ada.IO_Exceptions;

package Ada.Streams.Stream_IO is

4type Stream_Access is access all Root_Stream_Type’Class;

5type File_Type is limited private;

6type File_Mode is (In_File, Out_File, Append_File);

7type Count is range 0 .. implementation-defined;
subtype Positive_Count is Count range 1 .. Count’Last;
-- Index into file, in stream elements.

8procedure Create (File : in out File_Type;
Mode : in File_Mode := Out_File;
Name : in String := "";
Form : in String := "");

9procedure Open (File : in out File_Type;
Mode : in File_Mode;
Name : in String;
Form : in String := "");

10procedure Close (File : in out File_Type);
procedure Delete (File : in out File_Type);
procedure Reset (File : in out File_Type; Mode : in File_Mode);
procedure Reset (File : in out File_Type);

11function Mode (File : in File_Type) return File_Mode;
function Name (File : in File_Type) return String;
function Form (File : in File_Type) return String;

12function Is_Open (File : in File_Type) return Boolean;
function End_Of_File (File : in File_Type) return Boolean;

13function Stream (File : in File_Type) return Stream_Access;
-- Return stream access for use with T’Input and T’Output

14

ISO/IEC 8652:1995(E) —AARM;6.0

A.12.1 The Package Streams.Stream_IO 21 December 1994 516

15 -- Read array of stream elements from file
procedure Read (File : in File_Type;

Item : out Stream_Element_Array;
Last : out Stream_Element_Offset;
From : in Positive_Count);

16 procedure Read (File : in File_Type;
Item : out Stream_Element_Array;
Last : out Stream_Element_Offset);

17

18 -- Write array of stream elements into file
procedure Write (File : in File_Type;

Item : in Stream_Element_Array;
To : in Positive_Count);

19 procedure Write (File : in File_Type;
Item : in Stream_Element_Array);

20

21 -- Operations on position within file

22 procedure Set_Index(File : in File_Type; To : in Positive_Count);

23 function Index(File : in File_Type) return Positive_Count;
function Size (File : in File_Type) return Count;

24 procedure Set_Mode(File : in out File_Type; Mode : in File_Mode);

25 procedure Flush(File : in out File_Type);

26 -- exceptions
Status_Error : exception renames IO_Exceptions.Status_Error;
Mode_Error : exception renames IO_Exceptions.Mode_Error;
Name_Error : exception renames IO_Exceptions.Name_Error;
Use_Error : exception renames IO_Exceptions.Use_Error;
Device_Error : exception renames IO_Exceptions.Device_Error;
End_Error : exception renames IO_Exceptions.End_Error;
Data_Error : exception renames IO_Exceptions.Data_Error;

27 private
... -- not specified by the language

end Ada.Streams.Stream_IO;

28 The subprograms Create, Open, Close, Delete, Reset, Mode, Name, Form, Is_Open, and End_of_File
have the same effect as the corresponding subprograms in Sequential_IO (see A.8.2).

29 The Stream function returns a Stream_Access result from a File_Type object, thus allowing the stream-
oriented attributes Read, Write, Input, and Output to be used on the same file for multiple types.

30 The procedures Read and Write are equivalent to the corresponding operations in the package Streams.
Read propagates Mode_Error if the mode of File is not In_File. Write propagates Mode_Error if the
mode of File is not Out_File or Append_File. The Read procedure with a Positive_Count parameter starts
reading at the specified index. The Write procedure with a Positive_Count parameter starts writing at the
specified index.

31 The Index function returns the current file index, as a count (in stream elements) from the beginning of
the file. The position of the first element in the file is 1.

31.a Ramification: The notion of Index for Stream_IO is analogous to that of Index in Direct_IO, except that the former is
measured in Stream_Element units, whereas the latter is in terms of Element_Type values.

32 The Set_Index procedure sets the current index to the specified value.

33 If positioning is not supported for the given file, then a call of Index or Set_Index propagates Use_Error.
Similarly, a call of Read or Write with a Positive_Count parameter propagates Use_Error.

ISO/IEC 8652:1995(E) —AARM;6.0

517 21 December 1994 The Package Streams.Stream_IO A.12.1

34The Size function returns the current size of the file, in stream elements.

35The Set_Mode procedure changes the mode of the file. If the new mode is Append_File, the file is
positioned to its end; otherwise, the position in the file is unchanged.

36The Flush procedure synchronizes the external file with the internal file (by flushing any internal buffers)
without closing the file or changing the position. Mode_Error is propagated if the mode of the file is In_
File.

A.12.2 The Package Text_IO.Text_Streams
1The package Text_IO.Text_Streams provides a function for treating a text file as a stream.

Static Semantics

2The library package Text_IO.Text_Streams has the following declaration:
3with Ada.Streams;

package Ada.Text_IO.Text_Streams is
type Stream_Access is access all Streams.Root_Stream_Type’Class;

4function Stream (File : in File_Type) return Stream_Access;
end Ada.Text_IO.Text_Streams;

5The Stream function has the same effect as the corresponding function in Streams.Stream_IO.

NOTES
634 The ability to obtain a stream for a text file allows Current_Input, Current_Output, and Current_Error to be processed

with the functionality of streams, including the mixing of text and binary input-output, and the mixing of binary
input-output for different types.

735 Performing operations on the stream associated with a text file does not affect the column, line, or page counts.

A.12.3 The Package Wide_Text_IO.Text_Streams
1The package Wide_Text_IO.Text_Streams provides a function for treating a wide text file as a stream.

Static Semantics

2The library package Wide_Text_IO.Text_Streams has the following declaration:
3with Ada.Streams;

package Ada.Wide_Text_IO.Text_Streams is
type Stream_Access is access all Streams.Root_Stream_Type’Class;

4function Stream (File : in File_Type) return Stream_Access;
end Ada.Wide_Text_IO.Text_Streams;

5The Stream function has the same effect as the corresponding function in Streams.Stream_IO.

A.13 Exceptions in Input-Output
1The package IO_Exceptions defines the exceptions needed by the predefined input-output packages.

Static Semantics

2The library package IO_Exceptions has the following declaration:
3package Ada.IO_Exceptions is

pragma Pure(IO_Exceptions);

ISO/IEC 8652:1995(E) —AARM;6.0

A.13 Exceptions in Input-Output 21 December 1994 518

4 Status_Error : exception;
Mode_Error : exception;
Name_Error : exception;
Use_Error : exception;
Device_Error : exception;
End_Error : exception;
Data_Error : exception;
Layout_Error : exception;

5 end Ada.IO_Exceptions;

6 If more than one error condition exists, the corresponding exception that appears earliest in the following
list is the one that is propagated.

7 The exception Status_Error is propagated by an attempt to operate upon a file that is not open, and by an
attempt to open a file that is already open.

8 The exception Mode_Error is propagated by an attempt to read from, or test for the end of, a file whose
current mode is Out_File or Append_File, and also by an attempt to write to a file whose current mode is
In_File. In the case of Text_IO, the exception Mode_Error is also propagated by specifying a file whose
current mode is Out_File or Append_File in a call of Set_Input, Skip_Line, End_Of_Line, Skip_Page, or
End_Of_Page; and by specifying a file whose current mode is In_File in a call of Set_Output, Set_Line_
Length, Set_Page_Length, Line_Length, Page_Length, New_Line, or New_Page.

9 The exception Name_Error is propagated by a call of Create or Open if the string given for the parameter
Name does not allow the identification of an external file. For example, this exception is propagated if
the string is improper, or, alternatively, if either none or more than one external file corresponds to the
string.

10 The exception Use_Error is propagated if an operation is attempted that is not possible for reasons that
depend on characteristics of the external file. For example, this exception is propagated by the procedure
Create, among other circumstances, if the given mode is Out_File but the form specifies an input only
device, if the parameter Form specifies invalid access rights, or if an external file with the given name
already exists and overwriting is not allowed.

11 The exception Device_Error is propagated if an input-output operation cannot be completed because of a
malfunction of the underlying system.

12 The exception End_Error is propagated by an attempt to skip (read past) the end of a file.

13 The exception Data_Error can be propagated by the procedure Read (or by the Read attribute) if the
element read cannot be interpreted as a value of the required subtype. This exception is also propagated
by a procedure Get (defined in the package Text_IO) if the input character sequence fails to satisfy the
required syntax, or if the value input does not belong to the range of the required subtype.

14 The exception Layout_Error is propagated (in text input-output) by Col, Line, or Page if the value
returned exceeds Count’Last. The exception Layout_Error is also propagated on output by an attempt to
set column or line numbers in excess of specified maximum line or page lengths, respectively (excluding
the unbounded cases). It is also propagated by an attempt to Put too many characters to a string.

ISO/IEC 8652:1995(E) —AARM;6.0

519 21 December 1994 File Sharing A.14

Documentation Requirements

15{documentation requirements} The implementation shall document the conditions under which Name_Error,
Use_Error and Device_Error are propagated.

Implementation Permissions

16If the associated check is too complex, an implementation need not propagate Data_Error as part of a
procedure Read (or the Read attribute) if the value read cannot be interpreted as a value of the required
subtype.

16.aRamification: An example where the implementation may choose not to perform the check is an enumeration type
with a representation clause with ‘‘holes’’ in the range of internal codes.

Erroneous Execution

17{erroneous execution} [If the element read by the procedure Read (or by the Read attribute) cannot be
interpreted as a value of the required subtype, but this is not detected and Data_Error is not propagated,
then the resulting value can be abnormal, and subsequent references to the value can lead to erroneous
execution, as explained in 13.9.1. {normal state of an object [partial]} {abnormal state of an object [partial]}]

A.14 File Sharing
Dynamic Semantics

1{unspecified [partial]} It is not specified by the language whether the same external file can be associated
with more than one file object. If such sharing is supported by the implementation, the following effects
are defined:

2• Operations on one text file object do not affect the column, line, and page numbers of any
other file object.

3• Standard_Input and Standard_Output are associated with distinct external files, so operations
on one of these files cannot affect operations on the other file. In particular, reading from
Standard_Input does not affect the current page, line, and column numbers for Standard_
Output, nor does writing to Standard_Output affect the current page, line, and column num-
bers for Standard_Input.

4• For direct and stream files, the current index is a property of each file object; an operation on
one file object does not affect the current index of any other file object.

5• For direct and stream files, the current size of the file is a property of the external file.

6All other effects are identical.

A.15 The Package Command_Line
1The package Command_Line allows a program to obtain the values of its arguments and to set the exit

status code to be returned on normal termination.
1.aImplementation defined: The meaning of Argument_Count, Argument, and Command_Name.

Static Semantics

2The library package Ada.Command_Line has the following declaration:
3package Ada.Command_Line is

pragma Preelaborate(Command_Line);

4function Argument_Count return Natural;

5function Argument (Number : in Positive) return String;

6function Command_Name return String;

ISO/IEC 8652:1995(E) —AARM;6.0

A.15 The Package Command_Line 21 December 1994 520

7 type Exit_Status is implementation-defined integer type;

8 Success : constant Exit_Status;
Failure : constant Exit_Status;

9 procedure Set_Exit_Status (Code : in Exit_Status);

10 private
... -- not specified by the language

end Ada.Command_Line;

11 function Argument_Count return Natural;

12 If the external execution environment supports passing arguments to a program, then
Argument_Count returns the number of arguments passed to the program invoking the function.
Otherwise it returns 0. The meaning of ‘‘number of arguments’’ is implementation defined.

13 function Argument (Number : in Positive) return String;

14 If the external execution environment supports passing arguments to a program, then Argument
returns an implementation-defined value corresponding to the argument at relative position
Number. {Constraint_Error (raised by failure of run-time check)} If Number is outside the range
1..Argument_Count, then Constraint_Error is propagated.

14.a Ramification: If the external execution environment does not support passing arguments to a program, then
Argument(N) for any N will raise Constraint_Error, since Argument_Count is 0.

15 function Command_Name return String;

16 If the external execution environment supports passing arguments to a program, then
Command_Name returns an implementation-defined value corresponding to the name of the
command invoking the program; otherwise Command_Name returns the null string.

17 The type Exit_Status represents the range of exit status values supported by the external execu-
tion environment. The constants Success and Failure correspond to success and failure, respec-
tively.

18 procedure Set_Exit_Status (Code : in Exit_Status);

19 If the external execution environment supports returning an exit status from a program, then
Set_Exit_Status sets Code as the status. Normal termination of a program returns as the exit
status the value most recently set by Set_Exit_Status, or, if no such value has been set, then the
value Success. If a program terminates abnormally, the status set by Set_Exit_Status is ignored,
and an implementation-defined exit status value is set.

20 {unspecified [partial]} If the external execution environment does not support returning an exit
value from a program, then Set_Exit_Status does nothing.

Implementation Permissions

21 An alternative declaration is allowed for package Command_Line if different functionality is appropriate
for the external execution environment.

NOTES
22 36 Argument_Count, Argument, and Command_Name correspond to the C language’s argc, argv[n] (for n>0) and

argv[0], respectively.

22.a Ramification: The correspondence of Argument_Count to argc is not direct — argc would be one more than
Argument_Count, since the argc count includes the command name, whereas Argument_Count does not.

ISO/IEC 8652:1995(E) —AARM;6.0

521 21 December 1994 The Package Command_Line A.15

Extensions to Ada 83

22.b{extensions to Ada 83} This clause is new in Ada 9X.

ISO/IEC 8652:1995(E) —AARM;6.0

B Interface to Other Languages 21 December 1994 522

ISO/IEC 8652:1995(E) —AARM;6.0

523 21 December 1994 Interface to Other Languages B

Annex B
(normative)

Interface to Other Languages

1{interface to other languages} {language (interface to non-Ada)} {mixed-language programs} This Annex describes
features for writing mixed-language programs. General interface support is presented first; then specific
support for C, COBOL, and Fortran is defined, in terms of language interface packages for each of these
languages.

1.aRamification: This Annex is not a ‘‘Specialized Needs’’ annex. Every implementation must support all non-optional
features defined here (mainly the package Interfaces).

Language Design Principles

1.bAda should have strong support for mixed-language programming.
Extensions to Ada 83

1.c{extensions to Ada 83} Much of the functionality in this Annex is new to Ada 9X.
Wording Changes From Ada 83

1.dThis Annex contains what used to be RM83-13.8.

B.1 Interfacing Pragmas
1A pragma Import is used to import an entity defined in a foreign language into an Ada program, thus

allowing a foreign-language subprogram to be called from Ada, or a foreign-language variable to be
accessed from Ada. In contrast, a pragma Export is used to export an Ada entity to a foreign language,
thus allowing an Ada subprogram to be called from a foreign language, or an Ada object to be accessed
from a foreign language. The pragmas Import and Export are intended primarily for objects and sub-
programs, although implementations are allowed to support other entities.

2A pragma Convention is used to specify that an Ada entity should use the conventions of another lan-
guage. It is intended primarily for types and ‘‘callback’’ subprograms. For example, ‘‘pragma
Convention(Fortran, Matrix);’’ implies that Matrix should be represented according to the conventions of
the supported Fortran implementation, namely column-major order.

3A pragma Linker_Options is used to specify the system linker parameters needed when a given compila-
tion unit is included in a partition.

Syntax

4{interfacing pragma [distributed]} {interfacing pragma [Import]} {pragma, interfacing [Import]} {interfacing pragma

[Export]} {pragma, interfacing [Export]} {interfacing pragma [Convention]} {pragma, interfacing [Convention]}
{pragma, interfacing [Linker_Options]} An interfacing pragma is a representation pragma that is one of the
pragmas Import, Export, or Convention. Their forms, together with that of the related pragma
Linker_Options, are as follows:

5pragma Import(
[Convention =>] convention_identifier, [Entity =>] local_name

[, [External_Name =>] string_expression] [, [Link_Name =>] string_expression]);

ISO/IEC 8652:1995(E) —AARM;6.0

B.1 Interfacing Pragmas 21 December 1994 524

6 pragma Export(
[Convention =>] convention_identifier, [Entity =>] local_name

[, [External_Name =>] string_expression] [, [Link_Name =>] string_expression]);

7 pragma Convention([Convention =>] convention_identifier,[Entity =>] local_name);

8 pragma Linker_Options(string_expression);

9 A pragma Linker_Options is allowed only at the place of a declarative_item.

Name Resolution Rules

10 {expected type [link name]} The expected type for a string_expression in an interfacing pragma or in pragma
Linker_Options is String.

10.a Ramification: There is no language-defined support for external or link names of type Wide_String, or of other string
types. Implementations may, of course, have additional pragmas for that purpose. Note that allowing both String and
Wide_String in the same pragma would cause ambiguities.

Legality Rules

11 {convention} The convention_identifier of an interfacing pragma shall be the name of a convention. The
convention names are implementation defined, except for certain language-defined ones, such as Ada and
Intrinsic, as explained in 6.3.1, ‘‘Conformance Rules’’. [Additional convention names generally
represent the calling conventions of foreign languages, language implementations, or specific run-time
models.] {calling convention} The convention of a callable entity is its calling convention.

11.a Implementation defined: Implementation-defined convention names.

11.b Discussion: We considered representing the convention names using an enumeration type declared in System. Then,
convention_identifier would be changed to convention_name, and we would make its expected type be the enumeration
type. We didn’t do this because it seems to introduce extra complexity, and because the list of available languages is
better represented as the list of children of package Interfaces — a more open-ended sort of list.

12 {compatible (a type, with a convention)} If L is a convention_identifier for a language, then a type T is said to be
compatible with convention L, (alternatively, is said to be an L-compatible type) if any of the following
conditions are met:

13 • T is declared in a language interface package corresponding to L and is defined to be
L-compatible (see B.3, B.3.1, B.3.2, B.4, B.5),

14 • {eligible (a type, for a convention)} Convention L has been specified for T in a pragma Convention,
and T is eligible for convention L; that is:

15 • T is an array type with either an unconstrained or statically-constrained first subtype,
and its component type is L-compatible,

16 • T is a record type that has no discriminants and that only has components with
statically-constrained subtypes, and each component type is L-compatible,

17 • T is an access-to-object type, and its designated type is L-compatible,

18 • T is an access-to-subprogram type, and its designated profile’s parameter and result
types are all L-compatible.

19 • T is derived from an L-compatible type,

20 • The implementation permits T as an L-compatible type.
20.a Discussion: For example, an implementation might permit Integer as a C-compatible type, though the C type

to which it corresponds might be different in different environments.

21 If pragma Convention applies to a type, then the type shall either be compatible with or eligible for the
convention specified in the pragma.

ISO/IEC 8652:1995(E) —AARM;6.0

525 21 December 1994 Interfacing Pragmas B.1

21.aRamification: If a type is derived from an L-compatible type, the derived type is by default L-compatible, but it is also
permitted to specify pragma Convention for the derived type.

21.bIt is permitted to specify pragma Convention for an incomplete type, but in the complete declaration each component
must be L-compatible.

21.cIf each component of a record type is L-compatible, then the record type itself is only L-compatible if it has a pragma
Convention.

22A pragma Import shall be the completion of a declaration. {notwithstanding} Notwithstanding any rule to
the contrary, a pragma Import may serve as the completion of any kind of (explicit) declaration if sup-
ported by an implementation for that kind of declaration. If a completion is a pragma Import, then it shall
appear in the same declarative_part, package_specification, task_definition or protected_definition as the
declaration. For a library unit, it shall appear in the same compilation, before any subsequent
compilation_units other than pragmas. If the local_name denotes more than one entity, then the pragma
Import is the completion of all of them.

22.aDiscussion: For declarations of deferred constants and subprograms, we mention pragma Import explicitly as a
possible completion. For other declarations that require completions, we ignore the possibility of pragma Import.
Nevertheless, if an implementation chooses to allow a pragma Import to complete the declaration of a task, protected
type, incomplete type, private type, etc., it may do so, and the normal completion is then not allowed for that
declaration.

23{imported entity} {exported entity} An entity specified as the Entity argument to a pragma Import (or pragma
Export) is said to be imported (respectively, exported).

24The declaration of an imported object shall not include an explicit initialization expression. [Default
initializations are not performed.]

24.aProof: This follows from the ‘‘Notwithstanding ...’’ wording in the Dynamics Semantics paragraphs below.

25The type of an imported or exported object shall be compatible with the convention specified in the
corresponding pragma.

25.aRamification: This implies, for example, that importing an Integer object might be illegal, whereas importing an
object of type Interfaces.C.int would be permitted.

26For an imported or exported subprogram, the result and parameter types shall each be compatible with the
convention specified in the corresponding pragma.

27The external name and link name string_expressions of a pragma Import or Export, and the
string_expression of a pragma Linker_Options, shall be static.

Static Semantics

28{representation pragma [Import]} {pragma, representation [Import]} {representation pragma [Export]} {pragma,

representation [Export]} {representation pragma [Convention]} {pragma, representation [Convention]} {aspect of

representation [convention, calling convention]} {convention (aspect of representation)} Import, Export, and Convention
pragmas are representation pragmas that specify the convention aspect of representation. {aspect of

representation [imported]} {imported (aspect of representation)} {aspect of representation [exported]} {exported (aspect of

representation)} In addition, Import and Export pragmas specify the imported and exported aspects of
representation, respectively.

29{program unit pragma [Import]} {pragma, program unit [Import]} {program unit pragma [Export]} {pragma, program unit

[Export]} {program unit pragma [Convention]} {pragma, program unit [Convention]} An interfacing pragma is a
program unit pragma when applied to a program unit (see 10.1.5).

ISO/IEC 8652:1995(E) —AARM;6.0

B.1 Interfacing Pragmas 21 December 1994 526

30 An interfacing pragma defines the convention of the entity denoted by the local_name. The convention
represents the calling convention or representation convention of the entity. For an access-to-subprogram
type, it represents the calling convention of designated subprograms. In addition:

31 • A pragma Import specifies that the entity is defined externally (that is, outside the Ada
program).

32 • A pragma Export specifies that the entity is used externally.

33 • A pragma Import or Export optionally specifies an entity’s external name, link name, or
both.

34 {external name} An external name is a string value for the name used by a foreign language program either
for an entity that an Ada program imports, or for referring to an entity that an Ada program exports.

35 {link name} A link name is a string value for the name of an exported or imported entity, based on the
conventions of the foreign language’s compiler in interfacing with the system’s linker tool.

36 The meaning of link names is implementation defined.
36.a Implementation defined: The meaning of link names.

36.b Ramification: For example, an implementation might always prepend "_", and then pass it to the system linker.

If neither a link name nor the Address attribute of an imported or exported entity is specified, then a link
name is chosen in an implementation-defined manner, based on the external name if one is specified.

36.c Implementation defined: The manner of choosing link names when neither the link name nor the address of an
imported or exported entity is specified.

36.d Ramification: Normally, this will be the entity’s defining name, or some simple transformation thereof.

37 Pragma Linker_Options has the effect of passing its string argument as a parameter to the system linker
(if one exists), if the immediately enclosing compilation unit is included in the partition being linked. The
interpretation of the string argument, and the way in which the string arguments from multiple Linker_
Options pragmas are combined, is implementation defined.

37.a Implementation defined: The effect of pragma Linker_Options.

Dynamic Semantics

38 {elaboration [declaration named by a pragma Import]} {notwithstanding} Notwithstanding what this International
Standard says elsewhere, the elaboration of a declaration denoted by the local_name of a pragma Import
does not create the entity. Such an elaboration has no other effect than to allow the defining name to
denote the external entity.

38.a Ramification: This implies that default initializations are skipped. (Explicit initializations are illegal.) For example,
an imported access object is not initialized to null.

38.b Note that the local_name in a pragma Import might denote more than one declaration; in that case, the entity of all of
those declarations will be the external entity.

38.c Discussion: This ‘‘notwithstanding’’ wording is better than saying ‘‘unless named by a pragma Import’’ on every
definition of elaboration. It says we recognize the contradiction, and this rule takes precedence.

Implementation Advice

39 If an implementation supports pragma Export to a given language, then it should also allow the main
subprogram to be written in that language. It should support some mechanism for invoking the elabora-
tion of the Ada library units included in the system, and for invoking the finalization of the environment
task. On typical systems, the recommended mechanism is to provide two subprograms whose link names

ISO/IEC 8652:1995(E) —AARM;6.0

527 21 December 1994 Interfacing Pragmas B.1

are "adainit" and "adafinal". Adainit should contain the elaboration code for library units. Adafinal
should contain the finalization code. These subprograms should have no effect the second and sub-
sequent time they are called.

39.aRamification: For example, if the main subprogram is written in C, it can call adainit before the first call to an Ada
subprogram, and adafinal after the last.

40Automatic elaboration of preelaborated packages should be provided when pragma Export is supported.

41For each supported convention L other than Intrinsic, an implementation should support Import and Ex-
port pragmas for objects of L-compatible types and for subprograms, and pragma Convention for
L-eligible types and for subprograms, presuming the other language has corresponding features. Pragma
Convention need not be supported for scalar types.

41.aReason: Pragma Convention is not necessary for scalar types, since the language interface packages declare scalar
types corresponding to those provided by the respective foreign languages.

41.bImplementation Note: If an implementation supports interfacing to C++, it should do so via the convention identifier
C_Plus_Plus (in additional to any C++-implementation-specific ones).

41.cReason: The reason for giving the advice about C++ is to encourage uniformity among implementations, given that
the name of the language is not syntactically legal as an identifier. We place this advice in the AARM, rather than the
RM9X proper, because (as of this writing) C++ is not an international standard, and we don’t want to refer to a such a
language from an international standard.

NOTES
421 Implementations may place restrictions on interfacing pragmas; for example, requiring each exported entity to be

declared at the library level.

42.aProof: Arbitrary restrictions are allowed by 13.1.

42.bRamification: Such a restriction might be to disallow them altogether. Alternatively, the implementation might allow
them only for certain kinds of entities, or only for certain conventions.

432 A pragma Import specifies the conventions for accessing external entities. It is possible that the actual entity is written
in assembly language, but reflects the conventions of a particular language. For example, pragma Import(Ada, ...) can be
used to interface to an assembly language routine that obeys the Ada compiler’s calling conventions.

443 To obtain ‘‘call-back’’ to an Ada subprogram from a foreign language environment, pragma Convention should be
specified both for the access-to-subprogram type and the specific subprogram(s) to which ’Access is applied.

454 It is illegal to specify more than one of Import, Export, or Convention for a given entity.

465 The local_name in an interfacing pragma can denote more than one entity in the case of overloading. Such a pragma
applies to all of the denoted entities.

476 See also 13.8, ‘‘Machine Code Insertions’’.

47.aRamification: The Intrinsic convention (see 6.3.1) implies that the entity is somehow ‘‘built in’’ to the implemen-
tation. Thus, it generally does not make sense for users to specify Intrinsic in a pragma Import. The intention is that
only implementations will specify Intrinsic in a pragma Import. The language also defines certain subprograms to be
Intrinsic.

47.bDiscussion: There are many imaginable interfacing pragmas that don’t make any sense. For example, setting the
Convention of a protected procedure to Ada is probably wrong. Rather than enumerating all such cases, however, we
leave it up to implementations to decide what is sensible.

487 If both External_Name and Link_Name are specified for an Import or Export pragma, then the External_Name is
ignored.

498 An interfacing pragma might result in an effect that violates Ada semantics.

ISO/IEC 8652:1995(E) —AARM;6.0

B.1 Interfacing Pragmas 21 December 1994 528

Examples

50 Example of interfacing pragmas:
51 package Fortran_Library is

function Sqrt (X : Float) return Float;
function Exp (X : Float) return Float;

private
pragma Import(Fortran, Sqrt);
pragma Import(Fortran, Exp);

end Fortran_Library;

Extensions to Ada 83

51.a {extensions to Ada 83} Interfacing pragmas are new to Ada 9X. Pragma Import replaces Ada 83’s pragma Interface.
Existing implementations can continue to support pragma Interface for upward compatibility.

B.2 The Package Interfaces
1 Package Interfaces is the parent of several library packages that declare types and other entities useful for

interfacing to foreign languages. It also contains some implementation-defined types that are useful
across more than one language (in particular for interfacing to assembly language).

1.a Implementation defined: The contents of the visible part of package Interfaces and its language-defined descendants.

Static Semantics

2 The library package Interfaces has the following skeletal declaration:
3 package Interfaces is

pragma Pure(Interfaces);

4 type Integer_n is range -2**(n-1) .. 2**(n-1) - 1; --2’s complement

5 type Unsigned_n is mod 2**n;

6 function Shift_Left (Value : Unsigned_n; Amount : Natural) return Unsigned_n;
function Shift_Right (Value : Unsigned_n; Amount : Natural) return Unsigned_n;
function Shift_Right_Arithmetic (Value : Unsigned_n; Amount : Natural)

return Unsigned_n;
function Rotate_Left (Value : Unsigned_n; Amount : Natural) return Unsigned_n;
function Rotate_Right (Value : Unsigned_n; Amount : Natural) return Unsigned_n;
...

end Interfaces;

Implementation Requirements

7 An implementation shall provide the following declarations in the visible part of package Interfaces:

8 • Signed and modular integer types of n bits, if supported by the target architecture, for each n
that is at least the size of a storage element and that is a factor of the word size. The names
of these types are of the form Integer_n for the signed types, and Unsigned_n for the modular
types;

8.a Ramification: For example, for a typical 32-bit machine the corresponding types might be Integer_8,
Unsigned_8, Integer_16, Unsigned_16, Integer_32, and Unsigned_32.

8.b The wording above implies, for example, that Integer_16’Size = Unsigned_16’Size = 16. Unchecked conver-
sions between same-Sized types will work as expected.

9 • {shift} {rotate} For each such modular type in Interfaces, shifting and rotating subprograms as
specified in the declaration of Interfaces above. These subprograms are Intrinsic. They
operate on a bit-by-bit basis, using the binary representation of the value of the operands to
yield a binary representation for the result. The Amount parameter gives the number of bits
by which to shift or rotate. For shifting, zero bits are shifted in, except in the case of Shift_
Right_Arithmetic, where one bits are shifted in if Value is at least half the modulus.

9.a Reason: We considered making shifting and rotating be primitive operations of all modular types. However, it
is a design principle of Ada that all predefined operations should be operators (not functions named by
identifiers). (Note that an early version of Ada had "abs" as an identifier, but it was changed to a reserved word

ISO/IEC 8652:1995(E) —AARM;6.0

529 21 December 1994 The Package Interfaces B.2

operator before standardization of Ada 83.) This is important because the implicit declarations would hide
non-overloadable declarations with the same name, whereas operators are always overloadable. Therefore, we
would have had to make shift and rotate into reserved words, which would have been upward incompatible, or
else invent new operator symbols, which seemed like too much mechanism.

10• Floating point types corresponding to each floating point format fully supported by the
hardware.

10.aImplementation Note: The names for these floating point types are not specified. {IEEE floating point

arithmetic} However, if IEEE arithmetic is supported, then the names should be IEEE_Float_32 and IEEE_
Float_64 for single and double precision, respectively.

Implementation Permissions

11An implementation may provide implementation-defined library units that are children of Interfaces, and
may add declarations to the visible part of Interfaces in addition to the ones defined above.

11.aImplementation defined: Implementation-defined children of package Interfaces. The contents of the visible part of
package Interfaces.

Implementation Advice

12For each implementation-defined convention identifier, there should be a child package of package Inter-
faces with the corresponding name. This package should contain any declarations that would be useful
for interfacing to the language (implementation) represented by the convention. Any declarations useful
for interfacing to any language on the given hardware architecture should be provided directly in Inter-
faces.

12.aRamification: For example, package Interfaces.XYZ_Pascal might contain declarations of types that match the data
types provided by the XYZ implementation of Pascal, so that it will be more convenient to pass parameters to a
subprogram whose convention is XYZ_Pascal.

13An implementation supporting an interface to C, COBOL, or Fortran should provide the corresponding
package or packages described in the following clauses.

13.aImplementation Note: The intention is that an implementation might support several implementations of the foreign
language: Interfaces.This_Fortran and Interfaces.That_Fortran might both exist. The ‘‘default’’ implementation,
overridable by the user, should be declared as a renaming:

13.bpackage Interfaces.Fortran renames Interfaces.This_Fortran;

B.3 Interfacing with C
1{interface to C} {C interface} The facilities relevant to interfacing with the C language are the package

Interfaces.C and its children; and support for the Import, Export, and Convention pragmas with
convention_identifier C.

2The package Interfaces.C contains the basic types, constants and subprograms that allow an Ada program
to pass scalars and strings to C functions.

Static Semantics

3The library package Interfaces.C has the following declaration:
4package Interfaces.C is

pragma Pure(C);

5-- Declarations based on C’s <limits.h>

6CHAR_BIT : constant := implementation-defined; -- typically 8
SCHAR_MIN : constant := implementation-defined; -- typically -128
SCHAR_MAX : constant := implementation-defined; -- typically 127
UCHAR_MAX : constant := implementation-defined; -- typically 255

ISO/IEC 8652:1995(E) —AARM;6.0

B.3 Interfacing with C 21 December 1994 530

7 -- Signed and Unsigned Integers
type int is range implementation-defined;
type short is range implementation-defined;
type long is range implementation-defined;

8 type signed_char is range SCHAR_MIN .. SCHAR_MAX;
for signed_char’Size use CHAR_BIT;

9 type unsigned is mod implementation-defined;
type unsigned_short is mod implementation-defined;
type unsigned_long is mod implementation-defined;

10 type unsigned_char is mod (UCHAR_MAX+1);
for unsigned_char’Size use CHAR_BIT;

11 subtype plain_char is implementation-defined;

12 type ptrdiff_t is range implementation-defined;

13 type size_t is mod implementation-defined;

14 -- Floating Point

15 type C_float is digits implementation-defined;

16 type double is digits implementation-defined;

17 type long_double is digits implementation-defined;

18 -- Characters and Strings

19 type char is <implementation-defined character type>;

20 nul : constant char := char’First;

21 function To_C (Item : in Character) return char;

22 function To_Ada (Item : in char) return Character;

23 type char_array is array (size_t range <>) of aliased char;
pragma Pack(char_array);
for char_array’Component_Size use CHAR_BIT;

24 function Is_Nul_Terminated (Item : in char_array) return Boolean;

25 function To_C (Item : in String;
Append_Nul : in Boolean := True)

return char_array;

26 function To_Ada (Item : in char_array;
Trim_Nul : in Boolean := True)

return String;

27 procedure To_C (Item : in String;
Target : out char_array;
Count : out size_t;
Append_Nul : in Boolean := True);

28 procedure To_Ada (Item : in char_array;
Target : out String;
Count : out Natural;
Trim_Nul : in Boolean := True);

29 -- Wide Character and Wide String

30 type wchar_t is implementation-defined;

31 wide_nul : constant wchar_t := wchar_t’First;

32 function To_C (Item : in Wide_Character) return wchar_t;
function To_Ada (Item : in wchar_t) return Wide_Character;

33 type wchar_array is array (size_t range <>) of aliased wchar_t;

34 pragma Pack(wchar_array);

35 function Is_Nul_Terminated (Item : in wchar_array) return Boolean;

36 function To_C (Item : in Wide_String;
Append_Nul : in Boolean := True)

return wchar_array;

37 function To_Ada (Item : in wchar_array;
Trim_Nul : in Boolean := True)

return Wide_String;

ISO/IEC 8652:1995(E) —AARM;6.0

531 21 December 1994 Interfacing with C B.3

38procedure To_C (Item : in Wide_String;
Target : out wchar_array;
Count : out size_t;
Append_Nul : in Boolean := True);

39procedure To_Ada (Item : in wchar_array;
Target : out Wide_String;
Count : out Natural;
Trim_Nul : in Boolean := True);

40Terminator_Error : exception;

41end Interfaces.C;

42Each of the types declared in Interfaces.C is C-compatible.

43The types int, short, long, unsigned, ptrdiff_t, size_t, double, char, and wchar_t correspond respectively to
the C types having the same names. The types signed_char, unsigned_short, unsigned_long, unsigned_
char, C_float, and long_double correspond respectively to the C types signed char, unsigned short, un-
signed long, unsigned char, float, and long double.

44The type of the subtype plain_char is either signed_char or unsigned_char, depending on the C implemen-
tation.

45function To_C (Item : in Character) return char;
function To_Ada (Item : in char) return Character;

46The functions To_C and To_Ada map between the Ada type Character and the C type char.

47function Is_Nul_Terminated (Item : in char_array) return Boolean;

48The result of Is_Nul_Terminated is True if Item contains nul, and is False otherwise.

49function To_C (Item : in String; Append_Nul : in Boolean := True)
return char_array;

function To_Ada (Item : in char_array; Trim_Nul : in Boolean := True)
return String;

50The result of To_C is a char_array value of length Item’Length (if Append_Nul is False) or
Item’Length+1 (if Append_Nul is True). The lower bound is 0. For each component Item(I),
the corresponding component in the result is To_C applied to Item(I). The value nul is ap-
pended if Append_Nul is True.

51The result of To_Ada is a String whose length is Item’Length (if Trim_Nul is False) or the
length of the slice of Item preceding the first nul (if Trim_Nul is True). The lower bound of the
result is 1. If Trim_Nul is False, then for each component Item(I) the corresponding component
in the result is To_Ada applied to Item(I). If Trim_Nul is True, then for each component
Item(I) before the first nul the corresponding component in the result is To_Ada applied to
Item(I). The function propagates Terminator_Error if Trim_Nul is True and Item does not
contain nul.

52procedure To_C (Item : in String;
Target : out char_array;
Count : out size_t;
Append_Nul : in Boolean := True);

procedure To_Ada (Item : in char_array;
Target : out String;
Count : out Natural;
Trim_Nul : in Boolean := True);

ISO/IEC 8652:1995(E) —AARM;6.0

B.3 Interfacing with C 21 December 1994 532

53 For procedure To_C, each element of Item is converted (via the To_C function) to a char,
which is assigned to the corresponding element of Target. If Append_Nul is True, nul is then
assigned to the next element of Target. In either case, Count is set to the number of Target
elements assigned. {Constraint_Error (raised by failure of run-time check)} If Target is not long enough,
Constraint_Error is propagated.

54 For procedure To_Ada, each element of Item (if Trim_Nul is False) or each element of Item
preceding the first nul (if Trim_Nul is True) is converted (via the To_Ada function) to a
Character, which is assigned to the corresponding element of Target. Count is set to the num-
ber of Target elements assigned. {Constraint_Error (raised by failure of run-time check)} If Target is not
long enough, Constraint_Error is propagated. If Trim_Nul is True and Item does not contain
nul, then Terminator_Error is propagated.

55 function Is_Nul_Terminated (Item : in wchar_array) return Boolean;

56 The result of Is_Nul_Terminated is True if Item contains wide_nul, and is False otherwise.

57 function To_C (Item : in Wide_Character) return wchar_t;
function To_Ada (Item : in wchar_t) return Wide_Character;

58 To_C and To_Ada provide the mappings between the Ada and C wide character types.

59 function To_C (Item : in Wide_String;
Append_Nul : in Boolean := True)

return wchar_array;

function To_Ada (Item : in wchar_array;
Trim_Nul : in Boolean := True)

return Wide_String;

procedure To_C (Item : in Wide_String;
Target : out wchar_array;
Count : out size_t;
Append_Nul : in Boolean := True);

procedure To_Ada (Item : in wchar_array;
Target : out Wide_String;
Count : out Natural;
Trim_Nul : in Boolean := True);

60 The To_C and To_Ada subprograms that convert between Wide_String and wchar_array have
analogous effects to the To_C and To_Ada subprograms that convert between String and char_
array, except that wide_nul is used instead of nul.

60.a Discussion: The Interfaces.C package provides an implementation-defined character type, char, designed to model the
C run-time character set, and mappings between the types char and Character.

60.b One application of the C interface package is to compose a C string and pass it to a C function. One way to do this is
for the programmer to declare an object that will hold the C array, and then pass this array to the C function. This is
realized via the type char_array:

60.c type char_array is array (size_t range <>) of Char;

60.d The programmer can declare an Ada String, convert it to a char_array, and pass the char_array as actual parameter to
the C function that is expecting a char *.

60.e An alternative approach is for the programmer to obtain a C char pointer from an Ada String (or from a char_array) by
invoking an allocation function. The package Interfaces.C.Strings (see below) supplies the needed facilities, including
a private type chars_ptr that corresponds to C’s char *, and two allocation functions. To avoid storage leakage, a Free
procedure releases the storage that was allocated by one of these allocate functions.

60.f It is typical for a C function that deals with strings to adopt the convention that the string is delimited by a nul char.
The C interface packages support this convention. A constant nul of type Char is declared, and the function
Value(Chars_Ptr) in Interfaces.C.Strings returns a char_array up to and including the first nul in the array that the
chars_ptr points to. The Allocate_Chars function allocates an array that is nul terminated.

ISO/IEC 8652:1995(E) —AARM;6.0

533 21 December 1994 Interfacing with C B.3

60.gSome C functions that deal with strings take an explicit length as a parameter, thus allowing strings to be passed that
contain nul as a data element. Other C functions take an explicit length that is an upper bound: the prefix of the string
up to the char before nul, or the prefix of the given length, is used by the function, whichever is shorter. The C
Interface packages support calling such functions.

Implementation Requirements

61An implementation shall support pragma Convention with a C convention_identifier for a C-eligible type
(see B.1)

Implementation Permissions

62An implementation may provide additional declarations in the C interface packages.

Implementation Advice

63An implementation should support the following interface correspondences between Ada and C.

64• An Ada procedure corresponds to a void-returning C function.
64.aDiscussion: The programmer can also choose an Ada procedure when the C function returns an int that is to be

discarded.

65• An Ada function corresponds to a non-void C function.

66• An Ada in scalar parameter is passed as a scalar argument to a C function.

67• An Ada in parameter of an access-to-object type with designated type T is passed as a t*
argument to a C function, where t is the C type corresponding to the Ada type T.

68• An Ada access T parameter, or an Ada out or in out parameter of an elementary type T, is
passed as a t* argument to a C function, where t is the C type corresponding to the Ada type
T. In the case of an elementary out or in out parameter, a pointer to a temporary copy is used
to preserve by-copy semantics.

69• An Ada parameter of a record type T, of any mode, is passed as a t* argument to a C
function, where t is the C struct corresponding to the Ada type T.

70• An Ada parameter of an array type with component type T, of any mode, is passed as a t*
argument to a C function, where t is the C type corresponding to the Ada type T.

71• An Ada parameter of an access-to-subprogram type is passed as a pointer to a C function
whose prototype corresponds to the designated subprogram’s specification.

NOTES
729 Values of type char_array are not implicitly terminated with nul. If a char_array is to be passed as a parameter to an

imported C function requiring nul termination, it is the programmer’s responsibility to obtain this effect.

7310 To obtain the effect of C’s sizeof(item_type), where Item_Type is the corresponding Ada type, evaluate the expres-
sion: size_t(Item_Type’Size/CHAR_BIT).

7411 There is no explicit support for C’s union types. Unchecked conversions can be used to obtain the effect of C unions.

7512 A C function that takes a variable number of arguments can correspond to several Ada subprograms, taking various
specific numbers and types of parameters.

Examples

76Example of using the Interfaces.C package:

ISO/IEC 8652:1995(E) —AARM;6.0

B.3 Interfacing with C 21 December 1994 534

77 --Calling the C Library Function strcpy
with Interfaces.C;
procedure Test is

package C renames Interfaces.C;
use type C.char_array;
-- Call <string.h>strcpy:
-- C definition of strcpy: char *strcpy(char *s1, const char *s2);
-- This function copies the string pointed to by s2 (including the terminating null character)
-- into the array pointed to by s1. If copying takes place between objects that overlap,
-- the behavior is undefined. The strcpy function returns the value of s1.

78 -- Note: since the C function’s return value is of no interest, the Ada interface is a procedure
procedure Strcpy (Target : out C.char_array;

Source : in C.char_array);

79 pragma Import(C, Strcpy, "strcpy");

80 Chars1 : C.char_array(1..20);
Chars2 : C.char_array(1..20);

81 begin
Chars2(1..6) := "qwert" & C.nul;

82 Strcpy(Chars1, Chars2);

83 -- Now Chars1(1..6) = "qwert" & C.Nul

84 end Test;

B.3.1 The Package Interfaces.C.Strings
1 The package Interfaces.C.Strings declares types and subprograms allowing an Ada program to allocate,

reference, update, and free C-style strings. In particular, the private type chars_ptr corresponds to a
common use of ‘‘char *’’ in C programs, and an object of this type can be passed to a subprogram to
which pragma Import(C,...) has been applied, and for which ‘‘char *’’ is the type of the argument of the C
function.

Static Semantics

2 The library package Interfaces.C.Strings has the following declaration:
3 package Interfaces.C.Strings is

pragma Preelaborate(Strings);

4 type char_array_access is access all char_array;

5 type chars_ptr is private;

6 type chars_ptr_array is array (size_t range <>) of chars_ptr;

7 Null_Ptr : constant chars_ptr;

8 function To_Chars_Ptr (Item : in char_array_access;
Nul_Check : in Boolean := False)

return chars_ptr;

9 function New_Char_Array (Chars : in char_array) return chars_ptr;

10 function New_String (Str : in String) return chars_ptr;

11 procedure Free (Item : in out chars_ptr);

12 Dereference_Error : exception;

13 function Value (Item : in chars_ptr) return char_array;

14 function Value (Item : in chars_ptr; Length : in size_t)
return char_array;

15 function Value (Item : in chars_ptr) return String;

16 function Value (Item : in chars_ptr; Length : in size_t)
return String;

17 function Strlen (Item : in chars_ptr) return size_t;

ISO/IEC 8652:1995(E) —AARM;6.0

535 21 December 1994 The Package Interfaces.C.Strings B.3.1

18procedure Update (Item : in chars_ptr;
Offset : in size_t;
Chars : in char_array;
Check : in Boolean := True);

19procedure Update (Item : in chars_ptr;
Offset : in size_t;
Str : in String;
Check : in Boolean := True);

20Update_Error : exception;

21private
... -- not specified by the language

end Interfaces.C.Strings;

21.aDiscussion: The string manipulation types and subprograms appear in a child of Interfaces.C versus being there
directly, since it is useful to have Interfaces.C specified as pragma Pure.

21.bDifferently named functions New_String and New_Char_Array are declared, since if there were a single overloaded
function a call with a string literal as actual parameter would be ambiguous.

22The type chars_ptr is C-compatible and corresponds to the use of C’s ‘‘char *’’ for a pointer to the first
char in a char array terminated by nul. When an object of type chars_ptr is declared, its value is by
default set to Null_Ptr, unless the object is imported (see B.1).

22.aDiscussion: The type char_array_access is not necessarily C-compatible, since an object of this type may carry
‘‘dope’’ information. The programmer should convert from char_array_access to chars_ptr for objects imported from,
exported to, or passed to C.

23function To_Chars_Ptr (Item : in char_array_access;
Nul_Check : in Boolean := False)

return chars_ptr;

24If Item is null, then To_Chars_Ptr returns Null_Ptr. Otherwise, if Nul_Check is True and
Item.all does not contain nul, then the function propagates Terminator_Error; if Nul_Check is
True and Item.all does contain nul, To_Chars_Ptr performs a pointer conversion with no alloca-
tion of memory.

25function New_Char_Array (Chars : in char_array) return chars_ptr;

26This function returns a pointer to an allocated object initialized to Chars(Chars’First .. Index) &
nul, where

27• Index = Chars’Last if Chars does not contain nul, or

28• Index is the smallest size_t value I such that Chars(I+1) = nul.
Storage_Error is propagated if the allocation fails.

29function New_String (Str : in String) return chars_ptr;

30This function is equivalent to New_Char_Array(To_C(Str)).

31procedure Free (Item : in out chars_ptr);

32If Item is Null_Ptr, then Free has no effect. Otherwise, Free releases the storage occupied by
Value(Item), and resets Item to Null_Ptr.

33function Value (Item : in chars_ptr) return char_array;

34If Item = Null_Ptr then Value propagates Dereference_Error. Otherwise Value returns the
prefix of the array of chars pointed to by Item, up to and including the first nul. The lower
bound of the result is 0. If Item does not point to a nul-terminated string, then execution of
Value is erroneous.

ISO/IEC 8652:1995(E) —AARM;6.0

B.3.1 The Package Interfaces.C.Strings 21 December 1994 536

35 function Value (Item : in chars_ptr; Length : in size_t)
return char_array;

36 If Item = Null_Ptr then Value(Item) propagates Dereference_Error. Otherwise Value returns
the shorter of two arrays: the first Length chars pointed to by Item, and Value(Item). The
lower bound of the result is 0.

36.a Ramification: Value(New_Char_Array(Chars)) = Chars if Chars does not contain nul; else Value(New_Char_
Array(Chars)) is the prefix of Chars up to and including the first nul.

37 function Value (Item : in chars_ptr) return String;

38 Equivalent to To_Ada(Value(Item), Trim_Nul=>True).

39 function Value (Item : in chars_ptr; Length : in size_t)
return String;

40 Equivalent to To_Ada(Value(Item, Length), Trim_Nul=>True).

41 function Strlen (Item : in chars_ptr) return size_t;

42 Returns Val’Length–1 where Val = Value(Item); propagates Dereference_Error if Item = Null_
Ptr.

42.a Ramification: Strlen returns the number of chars in the array pointed to by Item, up to and including the char
immediately before the first nul.

42.b Strlen has the same possibility for erroneous execution as Value, in cases where the string has not been nul-terminated.

42.c Strlen has the effect of C’s strlen function.

43 procedure Update (Item : in chars_ptr;
Offset : in size_t;
Chars : in char_array;
Check : Boolean := True);

44 This procedure updates the value pointed to by Item, starting at position Offset, using Chars as
the data to be copied into the array. Overwriting the nul terminator, and skipping with the
Offset past the nul terminator, are both prevented if Check is True, as follows:

45 • Let N = Strlen(Item). If Check is True, then:
46 • If Offset+Chars’Length>N, propagate Update_Error.

47 • Otherwise, overwrite the data in the array pointed to by Item, starting at the
char at position Offset, with the data in Chars.

48 • If Check is False, then processing is as above, but with no check that
Offset+Chars’Length>N.

48.a Ramification: If Chars contains nul, Update’s effect may be to ‘‘shorten’’ the pointed-to char array.

49 procedure Update (Item : in chars_ptr;
Offset : in size_t;
Str : in String;
Check : in Boolean := True);

50 Equivalent to Update(Item, Offset, To_C(Str), Check).

Erroneous Execution

51 {erroneous execution} Execution of any of the following is erroneous if the Item parameter is not null_ptr and
Item does not point to a nul-terminated array of chars.

52 • a Value function not taking a Length parameter,

ISO/IEC 8652:1995(E) —AARM;6.0

537 21 December 1994 The Package Interfaces.C.Strings B.3.1

53• the Free procedure,

54• the Strlen function.

55Execution of Free(X) is also erroneous if the chars_ptr X was not returned by New_Char_Array or New_
String.

56Reading or updating a freed char_array is erroneous.

57Execution of Update is erroneous if Check is False and a call with Check equal to True would have
propagated Update_Error.

NOTES
5813 New_Char_Array and New_String might be implemented either through the allocation function from the C environ-

ment (‘‘malloc’’) or through Ada dynamic memory allocation (‘‘new’’). The key points are

59• the returned value (a chars_ptr) is represented as a C ‘‘char *’’ so that it may be passed to C functions;

60• the allocated object should be freed by the programmer via a call of Free, not by a called C function.

B.3.2 The Generic Package Interfaces.C.Pointers
1The generic package Interfaces.C.Pointers allows the Ada programmer to perform C-style operations on

pointers. It includes an access type Pointer, Value functions that dereference a Pointer and deliver the
designated array, several pointer arithmetic operations, and ‘‘copy’’ procedures that copy the contents of
a source pointer into the array designated by a destination pointer. As in C, it treats an object Ptr of type
Pointer as a pointer to the first element of an array, so that for example, adding 1 to Ptr yields a pointer to
the second element of the array.

2The generic allows two styles of usage: one in which the array is terminated by a special terminator
element; and another in which the programmer needs to keep track of the length.

Static Semantics

3The generic library package Interfaces.C.Pointers has the following declaration:
4generic

type Index is (<>);
type Element is private;
type Element_Array is array (Index range <>) of aliased Element;
Default_Terminator : Element;

package Interfaces.C.Pointers is
pragma Preelaborate(Pointers);

5type Pointer is access all Element;

6function Value(Ref : in Pointer;
Terminator : in Element := Default_Terminator)

return Element_Array;

7function Value(Ref : in Pointer;
Length : in ptrdiff_t)

return Element_Array;

8Pointer_Error : exception;

9-- C-style Pointer arithmetic

10function "+" (Left : in Pointer; Right : in ptrdiff_t) return Pointer;
function "+" (Left : in ptrdiff_t; Right : in Pointer) return Pointer;
function "-" (Left : in Pointer; Right : in ptrdiff_t) return Pointer;
function "-" (Left : in Pointer; Right : in Pointer) return ptrdiff_t;

11procedure Increment (Ref : in out Pointer);
procedure Decrement (Ref : in out Pointer);

ISO/IEC 8652:1995(E) —AARM;6.0

B.3.2 The Generic Package Interfaces.C.Pointers 21 December 1994 538

12 pragma Convention (Intrinsic, "+");
pragma Convention (Intrinsic, "-");
pragma Convention (Intrinsic, Increment);
pragma Convention (Intrinsic, Decrement);

13 function Virtual_Length (Ref : in Pointer;
Terminator : in Element := Default_Terminator)

return ptrdiff_t;

14 procedure Copy_Terminated_Array (Source : in Pointer;
Target : in Pointer;
Limit : in ptrdiff_t := ptrdiff_t’Last;
Terminator : in Element := Default_Terminator);

15 procedure Copy_Array (Source : in Pointer;
Target : in Pointer;
Length : in ptrdiff_t);

16 end Interfaces.C.Pointers;

17 The type Pointer is C-compatible and corresponds to one use of C’s ‘‘Element *’’. An object of type
Pointer is interpreted as a pointer to the initial Element in an Element_Array. Two styles are supported:

18 • Explicit termination of an array value with Default_Terminator (a special terminator value);

19 • Programmer-managed length, with Default_Terminator treated simply as a data element.

20 function Value(Ref : in Pointer;
Terminator : in Element := Default_Terminator)

return Element_Array;

21 This function returns an Element_Array whose value is the array pointed to by Ref, up to and
including the first Terminator; the lower bound of the array is Index’First. Interfaces.C.-
Strings.Dereference_Error is propagated if Ref is null.

22 function Value(Ref : in Pointer;
Length : in ptrdiff_t)

return Element_Array;

23 This function returns an Element_Array comprising the first Length elements pointed to by Ref.
The exception Interfaces.C.Strings.Dereference_Error is propagated if Ref is null.

24 The "+" and "–" functions perform arithmetic on Pointer values, based on the Size of the array elements.
In each of these functions, Pointer_Error is propagated if a Pointer parameter is null.

25 procedure Increment (Ref : in out Pointer);

26 Equivalent to Ref := Ref+1.

27 procedure Decrement (Ref : in out Pointer);

28 Equivalent to Ref := Ref–1.

29 function Virtual_Length (Ref : in Pointer;
Terminator : in Element := Default_Terminator)

return ptrdiff_t;

30 Returns the number of Elements, up to the one just before the first Terminator, in Value(Ref,
Terminator).

31 procedure Copy_Terminated_Array (Source : in Pointer;
Target : in Pointer;
Limit : in ptrdiff_t := ptrdiff_t’Last;
Terminator : in Element := Default_Terminator);

ISO/IEC 8652:1995(E) —AARM;6.0

539 21 December 1994 The Generic Package Interfaces.C.Pointers B.3.2

32This procedure copies Value(Source, Terminator) into the array pointed to by Target; it stops
either after Terminator has been copied, or the number of elements copied is Limit, whichever
occurs first. Dereference_Error is propagated if either Source or Target is null.

32.aRamification: It is the programmer’s responsibility to ensure that elements are not copied beyond the logical length of
the target array.

32.bImplementation Note: The implementation has to take care to check the Limit first.

33procedure Copy_Array (Source : in Pointer;
Target : in Pointer;
Length : in ptrdiff_t);

34This procedure copies the first Length elements from the array pointed to by Source, into the
array pointed to by Target. Dereference_Error is propagated if either Source or Target is null.

Erroneous Execution

35{erroneous execution} It is erroneous to dereference a Pointer that does not designate an aliased Element.
35.aDiscussion: Such a Pointer could arise via "+", "-", Increment, or Decrement.

36Execution of Value(Ref, Terminator) is erroneous if Ref does not designate an aliased Element in an
Element_Array terminated by Terminator.

37Execution of Value(Ref, Length) is erroneous if Ref does not designate an aliased Element in an
Element_Array containing at least Length Elements between the designated Element and the end of the
array, inclusive.

38Execution of Virtual_Length(Ref, Terminator) is erroneous if Ref does not designate an aliased Element
in an Element_Array terminated by Terminator.

39Execution of Copy_Terminated_Array(Source, Target, Limit, Terminator) is erroneous in either of the
following situations:

40• Execution of both Value(Source,Terminator) and Value(Source,Limit) are erroneous, or

41• Copying writes past the end of the array containing the Element designated by Target.

42Execution of Copy_Array(Source, Target, Length) is erroneous if either Value(Source, Length) is er-
roneous, or copying writes past the end of the array containing the Element designated by Target.

NOTES
4314 To compose a Pointer from an Element_Array, use ’Access on the first element. For example (assuming appropriate

instantiations):

44Some_Array : Element_Array(0..5) ;
Some_Pointer : Pointer := Some_Array(0)’Access;

Examples

45Example of Interfaces.C.Pointers:
46with Interfaces.C.Pointers;

with Interfaces.C.Strings;
procedure Test_Pointers is

package C renames Interfaces.C;
package Char_Ptrs is

new C.Pointers (Index => C.size_t,
Element => C.char,
Element_Array => C.char_array,
Default_Terminator => C.nul);

ISO/IEC 8652:1995(E) —AARM;6.0

B.3.2 The Generic Package Interfaces.C.Pointers 21 December 1994 540

47 use type Char_Ptrs.Pointer;
subtype Char_Star is Char_Ptrs.Pointer;

48 procedure Strcpy (Target_Ptr, Source_Ptr : Char_Star) is
Target_Temp_Ptr : Char_Star := Target_Ptr;
Source_Temp_Ptr : Char_Star := Source_Ptr;
Element : C.char;

begin
if Target_Temp_Ptr = null or Source_Temp_Ptr = null then

raise C.Strings.Dereference_Error;
end if;

49 loop
Element := Source_Temp_Ptr.all;
Target_Temp_Ptr.all := Element;
exit when Element = C.nul;
Char_Ptrs.Increment(Target_Temp_Ptr);
Char_Ptrs.Increment(Source_Temp_Ptr);

end loop;
end Strcpy;

begin
...

end Test_Pointers;

B.4 Interfacing with COBOL
1 {interface to COBOL} {COBOL interface} The facilities relevant to interfacing with the COBOL language are

the package Interfaces.COBOL and support for the Import, Export and Convention pragmas with
convention_identifier COBOL.

2 The COBOL interface package supplies several sets of facilities:

3 • A set of types corresponding to the native COBOL types of the supported COBOL im-
plementation (so-called ‘‘internal COBOL representations’’), allowing Ada data to be passed
as parameters to COBOL programs

4 • A set of types and constants reflecting external data representations such as might be found in
files or databases, allowing COBOL-generated data to be read by an Ada program, and Ada-
generated data to be read by COBOL programs

5 • A generic package for converting between an Ada decimal type value and either an internal
or external COBOL representation

Static Semantics

6 The library package Interfaces.COBOL has the following declaration:
7 package Interfaces.COBOL is

pragma Preelaborate(COBOL);

8 -- Types and operations for internal data representations

9 type Floating is digits implementation-defined;
type Long_Floating is digits implementation-defined;

10 type Binary is range implementation-defined;
type Long_Binary is range implementation-defined;

11 Max_Digits_Binary : constant := implementation-defined;
Max_Digits_Long_Binary : constant := implementation-defined;

12 type Decimal_Element is mod implementation-defined;
type Packed_Decimal is array (Positive range <>) of Decimal_Element;
pragma Pack(Packed_Decimal);

13 type COBOL_Character is implementation-defined character type;

14 Ada_To_COBOL : array (Character) of COBOL_Character := implementation-defined;

15 COBOL_To_Ada : array (COBOL_Character) of Character := implementation-defined;

ISO/IEC 8652:1995(E) —AARM;6.0

541 21 December 1994 Interfacing with COBOL B.4

16type Alphanumeric is array (Positive range <>) of COBOL_Character;
pragma Pack(Alphanumeric);

17function To_COBOL (Item : in String) return Alphanumeric;
function To_Ada (Item : in Alphanumeric) return String;

18procedure To_COBOL (Item : in String;
Target : out Alphanumeric;
Last : out Natural);

19procedure To_Ada (Item : in Alphanumeric;
Target : out String;
Last : out Natural);

20type Numeric is array (Positive range <>) of COBOL_Character;
pragma Pack(Numeric);

21-- Formats for COBOL data representations

22type Display_Format is private;

23Unsigned : constant Display_Format;
Leading_Separate : constant Display_Format;
Trailing_Separate : constant Display_Format;
Leading_Nonseparate : constant Display_Format;
Trailing_Nonseparate : constant Display_Format;

24type Binary_Format is private;

25High_Order_First : constant Binary_Format;
Low_Order_First : constant Binary_Format;
Native_Binary : constant Binary_Format;

26type Packed_Format is private;

27Packed_Unsigned : constant Packed_Format;
Packed_Signed : constant Packed_Format;

28-- Types for external representation of COBOL binary data

29type Byte is mod 2**COBOL_Character’Size;
type Byte_Array is array (Positive range <>) of Byte;
pragma Pack (Byte_Array);

30Conversion_Error : exception;

31generic
type Num is delta <> digits <>;

package Decimal_Conversions is

32-- Display Formats: data values are represented as Numeric

33function Valid (Item : in Numeric;
Format : in Display_Format) return Boolean;

34function Length (Format : in Display_Format) return Natural;

35function To_Decimal (Item : in Numeric;
Format : in Display_Format) return Num;

36function To_Display (Item : in Num;
Format : in Display_Format) return Numeric;

37-- Packed Formats: data values are represented as Packed_Decimal

38function Valid (Item : in Packed_Decimal;
Format : in Packed_Format) return Boolean;

39function Length (Format : in Packed_Format) return Natural;

40function To_Decimal (Item : in Packed_Decimal;
Format : in Packed_Format) return Num;

41function To_Packed (Item : in Num;
Format : in Packed_Format) return Packed_Decimal;

42-- Binary Formats: external data values are represented as Byte_Array

43function Valid (Item : in Byte_Array;
Format : in Binary_Format) return Boolean;

44function Length (Format : in Binary_Format) return Natural;
function To_Decimal (Item : in Byte_Array;

Format : in Binary_Format) return Num;

ISO/IEC 8652:1995(E) —AARM;6.0

B.4 Interfacing with COBOL 21 December 1994 542

45 function To_Binary (Item : in Num;
Format : in Binary_Format) return Byte_Array;

46 -- Internal Binary formats: data values are of type Binary or Long_Binary

47 function To_Decimal (Item : in Binary) return Num;
function To_Decimal (Item : in Long_Binary) return Num;

48 function To_Binary (Item : in Num) return Binary;
function To_Long_Binary (Item : in Num) return Long_Binary;

49 end Decimal_Conversions;

50 private
... -- not specified by the language

end Interfaces.COBOL;

50.a Implementation defined: The types Floating, Long_Floating, Binary, Long_Binary, Decimal_Element, and COBOL_
Character; and the initializations of the variables Ada_To_COBOL and COBOL_To_Ada, in Interfaces.COBOL

51 Each of the types in Interfaces.COBOL is COBOL-compatible.

52 The types Floating and Long_Floating correspond to the native types in COBOL for data items with
computational usage implemented by floating point. The types Binary and Long_Binary correspond to
the native types in COBOL for data items with binary usage, or with computational usage implemented
by binary.

53 Max_Digits_Binary is the largest number of decimal digits in a numeric value that is represented as
Binary. Max_Digits_Long_Binary is the largest number of decimal digits in a numeric value that is
represented as Long_Binary.

54 The type Packed_Decimal corresponds to COBOL’s packed-decimal usage.

55 The type COBOL_Character defines the run-time character set used in the COBOL implementation.
Ada_To_COBOL and COBOL_To_Ada are the mappings between the Ada and COBOL run-time
character sets.

55.a Reason: The character mappings are visible variables, since the user needs the ability to modify them at run time.

56 Type Alphanumeric corresponds to COBOL’s alphanumeric data category.

57 Each of the functions To_COBOL and To_Ada converts its parameter based on the mappings Ada_To_
COBOL and COBOL_To_Ada, respectively. The length of the result for each is the length of the
parameter, and the lower bound of the result is 1. Each component of the result is obtained by applying
the relevant mapping to the corresponding component of the parameter.

58 Each of the procedures To_COBOL and To_Ada copies converted elements from Item to Target, using
the appropriate mapping (Ada_To_COBOL or COBOL_To_Ada, respectively). The index in Target of
the last element assigned is returned in Last (0 if Item is a null array). {Constraint_Error (raised by failure of

run-time check)} If Item’Length exceeds Target’Length, Constraint_Error is propagated.

59 Type Numeric corresponds to COBOL’s numeric data category with display usage.

60 The types Display_Format, Binary_Format, and Packed_Format are used in conversions between Ada
decimal type values and COBOL internal or external data representations. The value of the constant
Native_Binary is either High_Order_First or Low_Order_First, depending on the implementation.

61 function Valid (Item : in Numeric;
Format : in Display_Format) return Boolean;

ISO/IEC 8652:1995(E) —AARM;6.0

543 21 December 1994 Interfacing with COBOL B.4

62The function Valid checks that the Item parameter has a value consistent with the value of
Format. If the value of Format is other than Unsigned, Leading_Separate, and Trailing_
Separate, the effect is implementation defined. If Format does have one of these values, the
following rules apply:

63• Format=Unsigned: if Item comprises zero or more leading space characters fol-
lowed by one or more decimal digit characters then Valid returns True, else it
returns False.

64• Format=Leading_Separate: if Item comprises zero or more leading space charac-
ters, followed by a single occurrence of the plus or minus sign character, and then
one or more decimal digit characters, then Valid returns True, else it returns False.

65• Format=Trailing_Separate: if Item comprises zero or more leading space charac-
ters, followed by one or more decimal digit characters and finally a plus or minus
sign character, then Valid returns True, else it returns False.

66function Length (Format : in Display_Format) return Natural;

67The Length function returns the minimal length of a Numeric value sufficient to hold any value
of type Num when represented as Format.

68function To_Decimal (Item : in Numeric;
Format : in Display_Format) return Num;

69Produces a value of type Num corresponding to Item as represented by Format. The number of
digits after the assumed radix point in Item is Num’Scale. Conversion_Error is propagated if
the value represented by Item is outside the range of Num.

69.aDiscussion: There is no issue of truncation versus rounding, since the number of decimal places is established by
Num’Scale.

70function To_Display (Item : in Num;
Format : in Display_Format) return Numeric;

71This function returns the Numeric value for Item, represented in accordance with Format.
Conversion_Error is propagated if Num is negative and Format is Unsigned.

72function Valid (Item : in Packed_Decimal;
Format : in Packed_Format) return Boolean;

73This function returns True if Item has a value consistent with Format, and False otherwise. The
rules for the formation of Packed_Decimal values are implementation defined.

74function Length (Format : in Packed_Format) return Natural;

75This function returns the minimal length of a Packed_Decimal value sufficient to hold any
value of type Num when represented as Format.

76function To_Decimal (Item : in Packed_Decimal;
Format : in Packed_Format) return Num;

77Produces a value of type Num corresponding to Item as represented by Format. Num’Scale is
the number of digits after the assumed radix point in Item. Conversion_Error is propagated if
the value represented by Item is outside the range of Num.

78function To_Packed (Item : in Num;
Format : in Packed_Format) return Packed_Decimal;

ISO/IEC 8652:1995(E) —AARM;6.0

B.4 Interfacing with COBOL 21 December 1994 544

79 This function returns the Packed_Decimal value for Item, represented in accordance with For-
mat. Conversion_Error is propagated if Num is negative and Format is Packed_Unsigned.

80 function Valid (Item : in Byte_Array;
Format : in Binary_Format) return Boolean;

81 This function returns True if Item has a value consistent with Format, and False otherwise.
81.a Ramification: This function returns False only when the represented value is outside the range of Num.

82 function Length (Format : in Binary_Format) return Natural;

83 This function returns the minimal length of a Byte_Array value sufficient to hold any value of
type Num when represented as Format.

84 function To_Decimal (Item : in Byte_Array;
Format : in Binary_Format) return Num;

85 Produces a value of type Num corresponding to Item as represented by Format. Num’Scale is
the number of digits after the assumed radix point in Item. Conversion_Error is propagated if
the value represented by Item is outside the range of Num.

86 function To_Binary (Item : in Num;
Format : in Binary_Format) return Byte_Array;

87 This function returns the Byte_Array value for Item, represented in accordance with Format.

88 function To_Decimal (Item : in Binary) return Num;

function To_Decimal (Item : in Long_Binary) return Num;

89 These functions convert from COBOL binary format to a corresponding value of the decimal
type Num. Conversion_Error is propagated if Item is too large for Num.

89.a Ramification: There is no rescaling performed on the conversion. That is, the returned value in each case is a ‘‘bit
copy’’ if Num has a binary radix. The programmer is responsible for maintaining the correct scale.

90 function To_Binary (Item : in Num) return Binary;

function To_Long_Binary (Item : in Num) return Long_Binary;

91 These functions convert from Ada decimal to COBOL binary format. Conversion_Error is
propagated if the value of Item is too large to be represented in the result type.

91.a Discussion: One style of interface supported for COBOL, similar to what is provided for C, is the ability to call and
pass parameters to an existing COBOL program. Thus the interface package supplies types that can be used in an Ada
program as parameters to subprograms whose bodies will be in COBOL. These types map to COBOL’s alphanumeric
and numeric data categories.

91.b Several types are provided for support of alphanumeric data. Since COBOL’s run-time character set is not necessarily
the same as Ada’s, Interfaces.COBOL declares an implementation-defined character type COBOL_Character, and
mappings between Character and COBOL_Character. These mappings are visible variables (rather than, say, functions
or constant arrays), since in the situation where COBOL_Character is EBCDIC, the flexibility of dynamically
modifying the mappings is needed. Corresponding to COBOL’s alphanumeric data is the string type Alphanumeric.

91.c Numeric data may have either a ‘‘display’’ or ‘‘computational’’ representation in COBOL. On the Ada side, the data is
of a decimal fixed point type. Passing an Ada decimal data item to a COBOL program requires conversion from the
Ada decimal type to some type that reflects the representation expected on the COBOL side.

91.d • Computational Representation

91.e Floating point representation is modeled by Ada floating point types, Floating and Long_Floating. Con-
version between these types and Ada decimal types is obtained directly, since the type name serves as a
conversion function.

91.f Binary representation is modeled by an Ada integer type, Binary, and possibly other types such as Long_
Binary. Conversion between, say, Binary and a decimal type is through functions from an instantiation of
the generic package Decimal_Conversions.

ISO/IEC 8652:1995(E) —AARM;6.0

545 21 December 1994 Interfacing with COBOL B.4

91.gPacked decimal representation is modeled by the Ada array type Packed_Decimal. Conversion between
packed decimal and a decimal type is through functions from an instantiation of the generic package
Decimal_Conversions.

91.h• Display Representation

91.iDisplay representation for numeric data is modeled by the array type Numeric. Conversion between
display representation and a decimal type is through functions from an instantiation of the generic package
Decimal_Conversions. A parameter to the conversion function indicates the desired interpretation of the
data (e.g., signed leading separate, etc.)

91.jPragma Convention(COBOL, T) may be applied to a record type T to direct the compiler to choose a COBOL-
compatible representation for objects of the type.

91.kThe package Interfaces.COBOL allows the Ada programmer to deal with data from files (or databases) created by a
COBOL program. For data that is alphanumeric, or in display or packed decimal format, the approach is the same as
for passing parameters (instantiate Decimal_Conversions to obtain the needed conversion functions). For binary data,
the external representation is treated as a Byte array, and an instantiation of Decimal_IO produces a package that
declares the needed conversion functions. A parameter to the conversion function indicates the desired interpretation
of the data (e.g., high- versus low-order byte first).

Implementation Requirements

92An implementation shall support pragma Convention with a COBOL convention_identifier for a COBOL-
eligible type (see B.1).

92.aRamification: An implementation supporting this package shall ensure that if the bounds of a Packed_Decimal,
Alphanumeric, or Numeric variable are static, then the representation of the object comprises solely the array
components (that is, there is no implicit run-time ‘‘descriptor’’ that is part of the object).

Implementation Permissions

93An implementation may provide additional constants of the private types Display_Format, Binary_For-
mat, or Packed_Format.

93.aReason: This is to allow exploitation of other external formats that may be available in the COBOL implementation.

94An implementation may provide further floating point and integer types in Interfaces.COBOL to match
additional native COBOL types, and may also supply corresponding conversion functions in the generic
package Decimal_Conversions.

Implementation Advice

95An Ada implementation should support the following interface correspondences between Ada and
COBOL.

96• An Ada access T parameter is passed as a ‘‘BY REFERENCE’’ data item of the COBOL
type corresponding to T.

97• An Ada in scalar parameter is passed as a ‘‘BY CONTENT’’ data item of the corresponding
COBOL type.

98• Any other Ada parameter is passed as a ‘‘BY REFERENCE’’ data item of the COBOL type
corresponding to the Ada parameter type; for scalars, a local copy is used if necessary to
ensure by-copy semantics.

NOTES
9915 An implementation is not required to support pragma Convention for access types, nor is it required to support pragma

Import, Export or Convention for functions.

99.aReason: COBOL does not have a pointer facility, and a COBOL program does not return a value.

10016 If an Ada subprogram is exported to COBOL, then a call from COBOL call may specify either ‘‘BY CONTENT’’ or
‘‘BY REFERENCE’’.

ISO/IEC 8652:1995(E) —AARM;6.0

B.4 Interfacing with COBOL 21 December 1994 546

Examples

101 Examples of Interfaces.COBOL:
102 with Interfaces.COBOL;

procedure Test_Call is

103 -- Calling a foreign COBOL program
-- Assume that a COBOL program PROG has the following declaration
-- in its LINKAGE section:
-- 01 Parameter-Area
-- 05 NAME PIC X(20).
-- 05 SSN PIC X(9).
-- 05 SALARY PIC 99999V99 USAGE COMP.
-- The effect of PROG is to update SALARY based on some algorithm

104 package COBOL renames Interfaces.COBOL;

105 type Salary_Type is delta 0.01 digits 7;

106 type COBOL_Record is
record

Name : COBOL.Numeric(1..20);
SSN : COBOL.Numeric(1..9);
Salary : COBOL.Binary; -- Assume Binary = 32 bits

end record;
pragma Convention (COBOL, COBOL_Record);

107 procedure Prog (Item : in out COBOL_Record);
pragma Import (COBOL, Prog, "PROG");

108 package Salary_Conversions is
new COBOL.Decimal_Conversions(Salary_Type);

109 Some_Salary : Salary_Type := 12_345.67;
Some_Record : COBOL_Record :=

(Name => "Johnson, John ",
SSN => "111223333",
Salary => Salary_Conversions.To_Binary(Some_Salary));

110 begin
Prog (Some_Record);
...

end Test_Call;

111 with Interfaces.COBOL;
with COBOL_Sequential_IO; -- Assumed to be supplied by implementation
procedure Test_External_Formats is

112 -- Using data created by a COBOL program
-- Assume that a COBOL program has created a sequential file with
-- the following record structure, and that we need to
-- process the records in an Ada program
-- 01 EMPLOYEE-RECORD
-- 05 NAME PIC X(20).
-- 05 SSN PIC X(9).
-- 05 SALARY PIC 99999V99 USAGE COMP.
-- 05 ADJUST PIC S999V999 SIGN LEADING SEPARATE.
-- The COMP data is binary (32 bits), high-order byte first

113 package COBOL renames Interfaces.COBOL;

114 type Salary_Type is delta 0.01 digits 7;
type Adjustments_Type is delta 0.001 digits 6;

115 type COBOL_Employee_Record_Type is -- External representation
record

Name : COBOL.Alphanumeric(1..20);
SSN : COBOL.Alphanumeric(1..9);
Salary : COBOL.Byte_Array(1..4);
Adjust : COBOL.Numeric(1..7); -- Sign and 6 digits

end record;
pragma Convention (COBOL, COBOL_Employee_Record_Type);

116 package COBOL_Employee_IO is
new COBOL_Sequential_IO(COBOL_Employee_Record_Type);

use COBOL_Employee_IO;

ISO/IEC 8652:1995(E) —AARM;6.0

547 21 December 1994 Interfacing with COBOL B.4

117COBOL_File : File_Type;

118type Ada_Employee_Record_Type is -- Internal representation
record

Name : String(1..20);
SSN : String(1..9);
Salary : Salary_Type;
Adjust : Adjustments_Type;

end record;

119COBOL_Record : COBOL_Employee_Record_Type;
Ada_Record : Ada_Employee_Record_Type;

120package Salary_Conversions is
new COBOL.Decimal_Conversions(Salary_Type);

use Salary_Conversions;

121package Adjustments_Conversions is
new COBOL.Decimal_Conversions(Adjustments_Type);

use Adjustments_Conversions;

122begin
Open (COBOL_File, Name => "Some_File");

123loop
Read (COBOL_File, COBOL_Record);

124Ada_Record.Name := To_Ada(COBOL_Record.Name);
Ada_Record.SSN := To_Ada(COBOL_Record.SSN);
Ada_Record.Salary :=

To_Decimal(COBOL_Record.Salary, COBOL.High_Order_First);
Ada_Record.Adjust :=

To_Decimal(COBOL_Record.Adjust, COBOL.Leading_Separate);
... -- Process Ada_Record

end loop;
exception

when End_Error => ...
end Test_External_Formats;

B.5 Interfacing with Fortran
1{interface to Fortran} {Fortran interface} The facilities relevant to interfacing with the Fortran language are the

package Interfaces.Fortran and support for the Import, Export and Convention pragmas with
convention_identifier Fortran.

2The package Interfaces.Fortran defines Ada types whose representations are identical to the default
representations of the Fortran intrinsic types Integer, Real, Double Precision, Complex, Logical, and
Character in a supported Fortran implementation. These Ada types can therefore be used to pass objects
between Ada and Fortran programs.

Static Semantics

3The library package Interfaces.Fortran has the following declaration:
4with Ada.Numerics.Generic_Complex_Types; -- see G.1.1

pragma Elaborate_All(Ada.Numerics.Generic_Complex_Types);
package Interfaces.Fortran is

pragma Pure(Fortran);

5type Fortran_Integer is range implementation-defined;

6type Real is digits implementation-defined;
type Double_Precision is digits implementation-defined;

7type Logical is new Boolean;

8package Single_Precision_Complex_Types is
new Ada.Numerics.Generic_Complex_Types (Real);

9type Complex is new Single_Precision_Complex_Types.Complex;

ISO/IEC 8652:1995(E) —AARM;6.0

B.5 Interfacing with Fortran 21 December 1994 548

10 subtype Imaginary is Single_Precision_Complex_Types.Imaginary;
i : Imaginary renames Single_Precision_Complex_Types.i;
j : Imaginary renames Single_Precision_Complex_Types.j;

11

type Character_Set is implementation-defined character type;

12 type Fortran_Character is array (Positive range <>) of Character_Set;
pragma Pack (Fortran_Character);

13 function To_Fortran (Item : in Character) return Character_Set;
function To_Ada (Item : in Character_Set) return Character;

14 function To_Fortran (Item : in String) return Fortran_Character;
function To_Ada (Item : in Fortran_Character) return String;

15 procedure To_Fortran (Item : in String;
Target : out Fortran_Character;
Last : out Natural);

16 procedure To_Ada (Item : in Fortran_Character;
Target : out String;
Last : out Natural);

17 end Interfaces.Fortran;

17.a Ramification: The means by which the Complex type is provided in Interfaces.Fortran creates a dependence of
Interfaces.Fortran on Numerics.Generic_Complex_Types (see G.1.1). This dependence is intentional and unavoidable,
if the Fortran-compatible Complex type is to be useful in Ada code without duplicating facilities defined elsewhere.

18 The types Fortran_Integer, Real, Double_Precision, Logical, Complex, and Fortran_Character are
Fortran-compatible.

19 The To_Fortran and To_Ada functions map between the Ada type Character and the Fortran type
Character_Set, and also between the Ada type String and the Fortran type Fortran_Character. The To_
Fortran and To_Ada procedures have analogous effects to the string conversion subprograms found in
Interfaces.COBOL.

Implementation Requirements

20 An implementation shall support pragma Convention with a Fortran convention_identifier for a Fortran-
eligible type (see B.1).

Implementation Permissions

21 An implementation may add additional declarations to the Fortran interface packages. For example, the
Fortran interface package for an implementation of Fortran 77 (ANSI X3.9-1978) that defines types like
Integer*n, Real*n, Logical*n, and Complex*n may contain the declarations of types named Integer_
Star_n, Real_Star_n, Logical_Star_n, and Complex_Star_n. (This convention should not apply to
Character*n, for which the Ada analog is the constrained array subtype Fortran_Character (1..n).)
Similarly, the Fortran interface package for an implementation of Fortran 90 that provides multiple kinds
of intrinsic types, e.g. Integer (Kind=n), Real (Kind=n), Logical (Kind=n), Complex (Kind=n), and
Character (Kind=n), may contain the declarations of types with the recommended names Integer_Kind_n,
Real_Kind_n, Logical_Kind_n, Complex_Kind_n, and Character_Kind_n.

21.a Discussion: Implementations may add auxiliary declarations as needed to assist in the declarations of additional
Fortran-compatible types. For example, if a double precision complex type is defined, then Numerics.Generic_
Complex_Types may be instantiated for the double precision type. Similarly, if a wide character type is defined to
match a Fortran 90 wide character type (accessible in Fortran 90 with the Kind modifier), then an auxiliary character
set may be declared to serve as its component type.

Implementation Advice

22 An Ada implementation should support the following interface correspondences between Ada and
Fortran:

ISO/IEC 8652:1995(E) —AARM;6.0

549 21 December 1994 Interfacing with Fortran B.5

23• An Ada procedure corresponds to a Fortran subroutine.

24• An Ada function corresponds to a Fortran function.

25• An Ada parameter of an elementary, array, or record type T is passed as a TF argument to a
Fortran procedure, where TF is the Fortran type corresponding to the Ada type T, and where
the INTENT attribute of the corresponding dummy argument matches the Ada formal
parameter mode; the Fortran implementation’s parameter passing conventions are used. For
elementary types, a local copy is used if necessary to ensure by-copy semantics.

26• An Ada parameter of an access-to-subprogram type is passed as a reference to a Fortran
procedure whose interface corresponds to the designated subprogram’s specification.

NOTES
2717 An object of a Fortran-compatible record type, declared in a library package or subprogram, can correspond to a

Fortran common block; the type also corresponds to a Fortran ‘‘derived type’’.

Examples

28Example of Interfaces.Fortran:
29with Interfaces.Fortran;

use Interfaces.Fortran;
procedure Ada_Application is

30type Fortran_Matrix is array (Integer range <>,
Integer range <>) of Double_Precision;

pragma Convention (Fortran, Fortran_Matrix); -- stored in Fortran’s
-- column-major order

procedure Invert (Rank : in Fortran_Integer; X : in out Fortran_Matrix);
pragma Import (Fortran, Invert); -- a Fortran subroutine

31Rank : constant Fortran_Integer := 100;
My_Matrix : Fortran_Matrix (1 .. Rank, 1 .. Rank);

32begin

33...
My_Matrix := ...;
...
Invert (Rank, My_Matrix);
...

34end Ada_Application;

ISO/IEC 8652:1995(E) —AARM;6.0

C Systems Programming 21 December 1994 550

ISO/IEC 8652:1995(E) —AARM;6.0

551 21 December 1994 Systems Programming C

Annex C
(normative)

Systems Programming

1[{systems programming} {low-level programming} {real-time systems} {embedded systems} {distributed systems} {information

systems} The Systems Programming Annex specifies additional capabilities provided for low-level pro-
gramming. These capabilities are also required in many real-time, embedded, distributed, and infor-
mation systems.]

Extensions to Ada 83

1.a{extensions to Ada 83} This Annex is new to Ada 9X.

C.1 Access to Machine Operations
1[This clause specifies rules regarding access to machine instructions from within an Ada program.]

1.aImplementation defined: Support for access to machine instructions.

Implementation Requirements

2{machine code insertion} The implementation shall support machine code insertions (see 13.8) or intrinsic
subprograms (see 6.3.1) (or both). Implementation-defined attributes shall be provided to allow the use
of Ada entities as operands.

Implementation Advice

3The machine code or intrinsics support should allow access to all operations normally available to as-
sembly language programmers for the target environment, including privileged instructions, if any.

3.aRamification: Of course, on a machine with protection, an attempt to execute a privileged instruction in user mode
will probably trap. Nonetheless, we want implementations to provide access to them so that Ada can be used to write
systems programs that run in privileged mode.

4{interface to assembly language} {language (interface to assembly)} {mixed-language programs} {assembly language} The
interfacing pragmas (see Annex B) should support interface to assembler; the default assembler should be
associated with the convention identifier Assembler.

5If an entity is exported to assembly language, then the implementation should allocate it at an addressable
location, and should ensure that it is retained by the linking process, even if not otherwise referenced from
the Ada code. The implementation should assume that any call to a machine code or assembler sub-
program is allowed to read or update every object that is specified as exported.

Documentation Requirements

6{documentation requirements} The implementation shall document the overhead associated with calling
machine-code or intrinsic subprograms, as compared to a fully-inlined call, and to a regular out-of-line
call.

7The implementation shall document the types of the package System.Machine_Code usable for machine
code insertions, and the attributes to be used in machine code insertions for references to Ada entities.

ISO/IEC 8652:1995(E) —AARM;6.0

C.1 Access to Machine Operations 21 December 1994 552

8 The implementation shall document the subprogram calling conventions associated with the convention
identifiers available for use with the interfacing pragmas (Ada and Assembler, at a minimum), including
register saving, exception propagation, parameter passing, and function value returning.

9 For exported and imported subprograms, the implementation shall document the mapping between the
Link_Name string, if specified, or the Ada designator, if not, and the external link name used for such a
subprogram.

9.a Implementation defined: Implementation-defined aspects of access to machine operations.

Implementation Advice

10 The implementation should ensure that little or no overhead is associated with calling intrinsic and
machine-code subprograms.

11 It is recommended that intrinsic subprograms be provided for convenient access to any machine opera-
tions that provide special capabilities or efficiency and that are not otherwise available through the lan-
guage constructs. Examples of such instructions include:

12 • Atomic read-modify-write operations — e.g., test and set, compare and swap, decrement and
test, enqueue/dequeue.

13 • Standard numeric functions — e.g., sin, log.

14 • String manipulation operations — e.g., translate and test.

15 • Vector operations — e.g., compare vector against thresholds.

16 • Direct operations on I/O ports.

C.2 Required Representation Support
1 This clause specifies minimal requirements on the implementation’s support for representation items and

related features.

Implementation Requirements

2 {recommended level of support [required in Systems Programming Annex]} The implementation shall support at least
the functionality defined by the recommended levels of support in Section 13.

C.3 Interrupt Support
1 [This clause specifies the language-defined model for hardware interrupts in addition to mechanisms for

handling interrupts.] {signal: see interrupt}

Dynamic Semantics

2 {interrupt} [An interrupt represents a class of events that are detected by the hardware or the system
software.] {occurrence (of an interrupt)} Interrupts are said to occur. An occurrence of an interrupt is
separable into generation and delivery. {generation (of an interrupt)} Generation of an interrupt is the event in
the underlying hardware or system that makes the interrupt available to the program. {delivery (of an

interrupt)} Delivery is the action that invokes part of the program as response to the interrupt occurrence.
{pending interrupt occurrence} Between generation and delivery, the interrupt occurrence [(or interrupt)] is
pending. {blocked interrupt} Some or all interrupts may be blocked. When an interrupt is blocked, all
occurrences of that interrupt are prevented from being delivered. {attaching (to an interrupt)} {reserved

interrupt} Certain interrupts are reserved. The set of reserved interrupts is implementation defined. A
reserved interrupt is either an interrupt for which user-defined handlers are not supported, or one which

ISO/IEC 8652:1995(E) —AARM;6.0

553 21 December 1994 Interrupt Support C.3

already has an attached handler by some other implementation-defined means. {interrupt handler} Program
units can be connected to non-reserved interrupts. While connected, the program unit is said to be
attached to that interrupt. The execution of that program unit, the interrupt handler, is invoked upon
delivery of the interrupt occurrence.

2.aImplementation defined: Implementation-defined aspects of interrupts.

2.bTo be honest: As an obsolescent feature, interrupts may be attached to task entries by an address clause. See J.7.1.

3While a handler is attached to an interrupt, it is called once for each delivered occurrence of that interrupt.
While the handler executes, the corresponding interrupt is blocked.

4While an interrupt is blocked, all occurrences of that interrupt are prevented from being delivered.
Whether such occurrences remain pending or are lost is implementation defined.

5{default treatment} Each interrupt has a default treatment which determines the system’s response to an
occurrence of that interrupt when no user-defined handler is attached. The set of possible default treat-
ments is implementation defined, as is the method (if one exists) for configuring the default treatments for
interrupts.

6An interrupt is delivered to the handler (or default treatment) that is in effect for that interrupt at the time
of delivery.

7An exception propagated from a handler that is invoked by an interrupt has no effect.

8[If the Ceiling_Locking policy (see D.3) is in effect, the interrupt handler executes with the active priority
that is the ceiling priority of the corresponding protected object.]

Implementation Requirements

9The implementation shall provide a mechanism to determine the minimum stack space that is needed for
each interrupt handler and to reserve that space for the execution of the handler. [This space should
accommodate nested invocations of the handler where the system permits this.]

10If the hardware or the underlying system holds pending interrupt occurrences, the implementation shall
provide for later delivery of these occurrences to the program.

11If the Ceiling_Locking policy is not in effect, the implementation shall provide means for the application
to specify whether interrupts are to be blocked during protected actions.

Documentation Requirements

12{documentation requirements} The implementation shall document the following items:
12.aDiscussion: This information may be different for different forms of interrupt handlers.

131. For each interrupt, which interrupts are blocked from delivery when a handler attached to
that interrupt executes (either as a result of an interrupt delivery or of an ordinary call on a
procedure of the corresponding protected object).

142. Any interrupts that cannot be blocked, and the effect of attaching handlers to such inter-
rupts, if this is permitted.

153. Which run-time stack an interrupt handler uses when it executes as a result of an interrupt
delivery; if this is configurable, what is the mechanism to do so; how to specify how much
space to reserve on that stack.

ISO/IEC 8652:1995(E) —AARM;6.0

C.3 Interrupt Support 21 December 1994 554

16 4. Any implementation- or hardware-specific activity that happens before a user-defined inter-
rupt handler gets control (e.g., reading device registers, acknowledging devices).

17 5. Any timing or other limitations imposed on the execution of interrupt handlers.

18 6. The state (blocked/unblocked) of the non-reserved interrupts when the program starts; if
some interrupts are unblocked, what is the mechanism a program can use to protect itself
before it can attach the corresponding handlers.

19 7. Whether the interrupted task is allowed to resume execution before the interrupt handler
returns.

20 8. The treatment of interrupt occurrences that are generated while the interrupt is blocked; i.e.,
whether one or more occurrences are held for later delivery, or all are lost.

21 9. Whether predefined or implementation-defined exceptions are raised as a result of the oc-
currence of any interrupt, and the mapping between the machine interrupts (or traps) and the
predefined exceptions.

22 10. On a multi-processor, the rules governing the delivery of an interrupt to a particular proces-
sor.

Implementation Permissions

23 If the underlying system or hardware does not allow interrupts to be blocked, then no blocking is required
[as part of the execution of subprograms of a protected object whose one of its subprograms is an inter-
rupt handler].

24 In a multi-processor with more than one interrupt subsystem, it is implementation defined whether (and
how) interrupt sources from separate subsystems share the same Interrupt_ID type (see C.3.2).

24.a Discussion: This issue is tightly related to the issue of scheduling on a multi-processor. In a sense, if a particular
interrupt source is not available to all processors, the system is not truly homogeneous.

24.b One way to approach this problem is to assign sub-ranges within Interrupt_ID to each interrupt subsystem, such that
‘‘similar’’ interrupt sources (e.g. a timer) in different subsystems get a distinct id.

In particular, the meaning of a blocked or pending interrupt may then be applicable to one processor only.

25 Implementations are allowed to impose timing or other limitations on the execution of interrupt handlers.
25.a Reason: These limitations are often necessary to ensure proper behavior of the implementation.

26 Other forms of handlers are allowed to be supported, in which case, the rules of this subclause should be
adhered to.

27 The active priority of the execution of an interrupt handler is allowed to vary from one occurrence of the
same interrupt to another.

Implementation Advice

28 If the Ceiling_Locking policy is not in effect, the implementation should provide means for the applica-
tion to specify which interrupts are to be blocked during protected actions, if the underlying system
allows for a finer-grain control of interrupt blocking.

NOTES
29 1 The default treatment for an interrupt can be to keep the interrupt pending or to deliver it to an implementation-defined

handler. Examples of actions that an implementation-defined handler is allowed to perform include aborting the partition,
ignoring (i.e., discarding occurrences of) the interrupt, or queuing one or more occurrences of the interrupt for possible
later delivery when a user-defined handler is attached to that interrupt.

ISO/IEC 8652:1995(E) —AARM;6.0

555 21 December 1994 Interrupt Support C.3

302 It is a bounded error to call Task_Identification.Current_Task (see C.7.1) from an interrupt handler.

313 The rule that an exception propagated from an interrupt handler has no effect is modeled after the rule about exceptions
propagated out of task bodies.

C.3.1 Protected Procedure Handlers
Syntax

1The form of a pragma Interrupt_Handler is as follows:

2pragma Interrupt_Handler(handler_name);

3The form of a pragma Attach_Handler is as follows:

4pragma Attach_Handler(handler_name, expression);

Name Resolution Rules

5For the Interrupt_Handler and Attach_Handler pragmas, the handler_name shall resolve to denote a
protected procedure with a parameterless profile.

6For the Attach_Handler pragma, the expected type for the expression is Interrupts.Interrupt_ID (see
C.3.2).

Legality Rules

7The Attach_Handler pragma is only allowed immediately within the protected_definition where the cor-
responding subprogram is declared. The corresponding protected_type_declaration or single_protected_
declaration shall be a library level declaration.

7.aDiscussion: In the case of a protected_type_declaration, an object_declaration of an object of that type need not be at
library level.

8The Interrupt_Handler pragma is only allowed immediately within a protected_definition. The cor-
responding protected_type_declaration shall be a library level declaration. In addition, any object_
declaration of such a type shall be a library level declaration.

Dynamic Semantics

9If the pragma Interrupt_Handler appears in a protected_definition, then the corresponding procedure can
be attached dynamically, as a handler, to interrupts (see C.3.2). [Such procedures are allowed to be
attached to multiple interrupts.]

10{creation (of a protected object)} {initialization (of a protected object)} The expression in the Attach_Handler pragma
[as evaluated at object creation time] specifies an interrupt. As part of the initialization of that object, if
the Attach_Handler pragma is specified, the handler procedure is attached to the specified interrupt.
{Reserved_Check [partial]} {check, language-defined (Reserved_Check)} A check is made that the corresponding
interrupt is not reserved. {Program_Error (raised by failure of run-time check)} Program_Error is raised if the
check fails, and the existing treatment for the interrupt is not affected.

11{initialization (of a protected object)} {Ceiling_Check [partial]} {check, language-defined (Ceiling_Check)} If the Ceiling_
Locking policy (see D.3) is in effect then upon the initialization of a protected object that either an
Attach_Handler or Interrupt_Handler pragma applies to one of its procedures, a check is made that the
ceiling priority defined in the protected_definition is in the range of System.Interrupt_Priority. {Program_

Error (raised by failure of run-time check)} If the check fails, Program_Error is raised.

ISO/IEC 8652:1995(E) —AARM;6.0

C.3.1 Protected Procedure Handlers 21 December 1994 556

12 {finalization (of a protected object)} When a protected object is finalized, for any of its procedures that are
attached to interrupts, the handler is detached. If the handler was attached by a procedure in the Interrupts
package or if no user handler was previously attached to the interrupt, the default treatment is restored.
Otherwise, [that is, if an Attach_Handler pragma was used,] the previous handler is restored.

12.a Discussion: Since only library-level protected procedures can be attached as handlers using the Interrupts package, the
finalization discussed above occurs only as part of the finalization of all library-level packages in a partition.

13 When a handler is attached to an interrupt, the interrupt is blocked [(subject to the Implementation Per-
mission in C.3)] during the execution of every protected action on the protected object containing the
handler.

Erroneous Execution

14 {erroneous execution} If the Ceiling_Locking policy (see D.3) is in effect and an interrupt is delivered to a
handler, and the interrupt hardware priority is higher than the ceiling priority of the corresponding
protected object, the execution of the program is erroneous.

Metrics

15 {metrics} The following metric shall be documented by the implementation:
16 1. The worst case overhead for an interrupt handler that is a parameterless protected procedure,

in clock cycles. This is the execution time not directly attributable to the handler procedure
or the interrupted execution. It is estimated as C – (A+B), where A is how long it takes to
complete a given sequence of instructions without any interrupt, B is how long it takes to
complete a normal call to a given protected procedure, and C is how long it takes to com-
plete the same sequence of instructions when it is interrupted by one execution of the same
procedure called via an interrupt.

16.a Implementation Note: The instruction sequence and interrupt handler used to measure interrupt handling
overhead should be chosen so as to maximize the execution time cost due to cache misses. For example, if the
processor has cache memory and the activity of an interrupt handler could invalidate the contents of cache
memory, the handler should be written such that it invalidates all of the cache memory.

Implementation Permissions

17 When the pragmas Attach_Handler or Interrupt_Handler apply to a protected procedure, the implemen-
tation is allowed to impose implementation-defined restrictions on the corresponding protected_type_
declaration and protected_body.

17.a Ramification: The restrictions may be on the constructs that are allowed within them, and on ordinary calls (i.e. not
via interrupts) on protected operations in these protected objects.

18 An implementation may use a different mechanism for invoking a protected procedure in response to a
hardware interrupt than is used for a call to that protected procedure from a task.

18.a Discussion: This is despite the fact that the priority of an interrupt handler (see D.1) is modeled after a hardware task
calling the handler.

19 {notwithstanding} Notwithstanding what this subclause says elsewhere, the Attach_Handler and Interrupt_
Handler pragmas are allowed to be used for other, implementation defined, forms of interrupt handlers.

19.a Ramification: For example, if an implementation wishes to allow interrupt handlers to have parameters, it is allowed
to do so via these pragmas; it need not invent implementation-defined pragmas for the purpose.

Implementation Advice

20 Whenever possible, the implementation should allow interrupt handlers to be called directly by the
hardware.

ISO/IEC 8652:1995(E) —AARM;6.0

557 21 December 1994 Protected Procedure Handlers C.3.1

21Whenever practical, the implementation should detect violations of any implementation-defined restric-
tions before run time.

NOTES
224 The Attach_Handler pragma can provide static attachment of handlers to interrupts if the implementation supports

preelaboration of protected objects. (See C.4.)

235 The ceiling priority of a protected object that one of its procedures is attached to an interrupt should be at least as high
as the highest processor priority at which that interrupt will ever be delivered.

246 Protected procedures can also be attached dynamically to interrupts via operations declared in the predefined package
Interrupts.

257 An example of a possible implementation-defined restriction is disallowing the use of the standard storage pools within
the body of a protected procedure that is an interrupt handler.

C.3.2 The Package Interrupts
Static Semantics

1The following language-defined packages exist:
2with System;

package Ada.Interrupts is
type Interrupt_ID is implementation-defined;
type Parameterless_Handler is

access protected procedure;

3

4function Is_Reserved (Interrupt : Interrupt_ID)
return Boolean;

5function Is_Attached (Interrupt : Interrupt_ID)
return Boolean;

6function Current_Handler (Interrupt : Interrupt_ID)
return Parameterless_Handler;

7procedure Attach_Handler
(New_Handler : in Parameterless_Handler;
Interrupt : in Interrupt_ID);

8procedure Exchange_Handler
(Old_Handler : out Parameterless_Handler;
New_Handler : in Parameterless_Handler;
Interrupt : in Interrupt_ID);

9procedure Detach_Handler
(Interrupt : in Interrupt_ID);

10function Reference(Interrupt : Interrupt_ID)
return System.Address;

11private
... -- not specified by the language

end Ada.Interrupts;

12

package Ada.Interrupts.Names is
implementation-defined : constant Interrupt_ID :=

implementation-defined;
. . .

implementation-defined : constant Interrupt_ID :=
implementation-defined;

end Ada.Interrupts.Names;

Dynamic Semantics

13The Interrupt_ID type is an implementation-defined discrete type used to identify interrupts.

ISO/IEC 8652:1995(E) —AARM;6.0

C.3.2 The Package Interrupts 21 December 1994 558

14 The Is_Reserved function returns True if and only if the specified interrupt is reserved.

15 The Is_Attached function returns True if and only if a user-specified interrupt handler is attached to the
interrupt.

16 The Current_Handler function returns a value that represents the attached handler of the interrupt. If no
user-defined handler is attached to the interrupt, Current_Handler returns a value that designates the
default treatment; calling Attach_Handler or Exchange_Handler with this value restores the default treat-
ment.

17 The Attach_Handler procedure attaches the specified handler to the interrupt, overriding any existing
treatment (including a user handler) in effect for that interrupt. If New_Handler is null, the default
treatment is restored. {Program_Error (raised by failure of run-time check)} If New_Handler designates a
protected procedure to which the pragma Interrupt_Handler does not apply, Program_Error is raised. In
this case, the operation does not modify the existing interrupt treatment.

18 The Exchange_Handler procedure operates in the same manner as Attach_Handler with the addition that
the value returned in Old_Handler designates the previous treatment for the specified interrupt.

18.a Ramification: Calling Attach_Handler or Exchange_Handler with this value for New_Handler restores the previous
handler.

19 The Detach_Handler procedure restores the default treatment for the specified interrupt.

20 For all operations defined in this package that take a parameter of type Interrupt_ID, with the exception of
Is_Reserved and Reference, a check is made that the specified interrupt is not reserved. {Program_Error

(raised by failure of run-time check)} Program_Error is raised if this check fails.

21 If, by using the Attach_Handler, Detach_Handler, or Exchange_Handler procedures, an attempt is made
to detach a handler that was attached statically (using the pragma Attach_Handler), the handler is not
detached and Program_Error is raised. {Program_Error (raised by failure of run-time check)}

22 The Reference function returns a value of type System.Address that can be used to attach a task entry, via
an address clause (see J.7.1) to the interrupt specified by Interrupt. This function raises Program_Error if
attaching task entries to interrupts (or to this particular interrupt) is not supported. {Program_Error (raised by

failure of run-time check)}

Implementation Requirements

23 At no time during attachment or exchange of handlers shall the current handler of the corresponding
interrupt be undefined.

Documentation Requirements

24 {documentation requirements} If the Ceiling_Locking policy (see D.3) is in effect the implementation shall
document the default ceiling priority assigned to a protected object that contains either the Attach_Hand-
ler or Interrupt_Handler pragmas, but not the Interrupt_Priority pragma. [This default need not be the
same for all interrupts.]

Implementation Advice

25 If implementation-defined forms of interrupt handler procedures are supported, such as protected
procedures with parameters, then for each such form of a handler, a type analogous to Parameterless_
Handler should be specified in a child package of Interrupts, with the same operations as in the predefined
package Interrupts.

ISO/IEC 8652:1995(E) —AARM;6.0

559 21 December 1994 The Package Interrupts C.3.2

NOTES
268 The package Interrupts.Names contains implementation-defined names (and constant values) for the interrupts that are

supported by the implementation.

Examples

27Example of interrupt handlers:
28Device_Priority : constant

array (1..5) of System.Interrupt_Priority := (...);
protected type Device_Interface
(Int_ID : Ada.Interrupts.Interrupt_ID) is
procedure Handler;
pragma Attach_Handler(Handler, Int_ID);
...
pragma Interrupt_Priority(Device_Priority(Int_ID));

end Device_Interface;
...

Device_1_Driver : Device_Interface(1);
...

Device_5_Driver : Device_Interface(5);
...

C.4 Preelaboration Requirements
1[This clause specifies additional implementation and documentation requirements for the Preelaborate

pragma (see 10.2.1).]

Implementation Requirements

2The implementation shall not incur any run-time overhead for the elaboration checks of subprograms and
protected_bodies declared in preelaborated library units.

3The implementation shall not execute any memory write operations after load time for the elaboration of
constant objects declared immediately within the declarative region of a preelaborated library package, so
long as the subtype and initial expression (or default initial expressions if initialized by default) of the
object_declaration satisfy the following restrictions. {load time} The meaning of load time is implemen-
tation defined.

3.aDiscussion: On systems where the image of the partition is initially copied from disk to RAM, or from ROM to RAM,
prior to starting execution of the partition, the intention is that ‘‘load time’’ consist of this initial copying step. On
other systems, load time and run time might actually be interspersed.

4• Any subtype_mark denotes a statically constrained subtype, with statically constrained sub-
components, if any;

5• any constraint is a static constraint;

6• any allocator is for an access-to-constant type;

7• any uses of predefined operators appear only within static expressions;

8• any primaries that are names, other than attribute_references for the Access or Address at-
tributes, appear only within static expressions;

8.aRamification: This cuts out attribute_references that are not static, except for Access and Address.

9• any name that is not part of a static expression is an expanded name or direct_name that
statically denotes some entity;

9.aRamification: This cuts out function_calls and type_conversions that are not static, including calls on attribute
functions like ’Image and ’Value.

ISO/IEC 8652:1995(E) —AARM;6.0

C.4 Preelaboration Requirements 21 December 1994 560

10 • any discrete_choice of an array_aggregate is static;

11 • no language-defined check associated with the elaboration of the object_declaration can fail.
11.a Reason: The intent is that aggregates all of whose scalar subcomponents are static, and all of whose access

subcomponents are null, allocators for access-to-constant types, or X’Access, will be supported with no
run-time code generated.

Documentation Requirements

12 {documentation requirements} The implementation shall document any circumstances under which the
elaboration of a preelaborated package causes code to be executed at run time.

13 The implementation shall document whether the method used for initialization of preelaborated variables
allows a partition to be restarted without reloading.

13.a Implementation defined: Implementation-defined aspects of preelaboration.

13.b Discussion: This covers the issue of the RTS itself being restartable, so that need not be a separate Documentation
Requirement.

Implementation Advice

14 It is recommended that preelaborated packages be implemented in such a way that there should be little or
no code executed at run time for the elaboration of entities not already covered by the Implementation
Requirements.

C.5 Pragma Discard_Names
1 [A pragma Discard_Names may be used to request a reduction in storage used for the names of certain

entities.]

Syntax

2 The form of a pragma Discard_Names is as follows:

3 pragma Discard_Names[([On =>] local_name)];

4 A pragma Discard_Names is allowed only immediately within a declarative_part, immediately
within a package_specification, or as a configuration pragma.

Legality Rules

5 The local_name (if present) shall denote a non-derived enumeration [first] subtype, a tagged [first] sub-
type, or an exception. The pragma applies to the type or exception. Without a local_name, the pragma
applies to all such entities declared after the pragma, within the same declarative region. Alternatively,
the pragma can be used as a configuration pragma. If the pragma applies to a type, then it applies also to
all descendants of the type.

Static Semantics

6 {representation pragma [Discard_Names]} {pragma, representation [Discard_Names]} If a local_name is given, then a
pragma Discard_Names is a representation pragma.

7 If the pragma applies to an enumeration type, then the semantics of the Wide_Image and Wide_Value
attributes are implementation defined for that type; [the semantics of Image and Value are still defined in
terms of Wide_Image and Wide_Value.] In addition, the semantics of Text_IO.Enumeration_IO are
implementation defined. If the pragma applies to a tagged type, then the semantics of the Tags.-
Expanded_Name function are implementation defined for that type. If the pragma applies to an excep-

ISO/IEC 8652:1995(E) —AARM;6.0

561 21 December 1994 Pragma Discard_Names C.5

tion, then the semantics of the Exceptions.Exception_Name function are implementation defined for that
exception.

7.aImplementation defined: The semantics of pragma Discard_Names.

7.bRamification: The Width attribute is still defined in terms of Image.

7.cThe semantics of S’Wide_Image and S’Wide_Value are implementation defined for any subtype of an enumeration
type to which the pragma applies. (The pragma actually names the first subtype, of course.)

Implementation Advice

8If the pragma applies to an entity, then the implementation should reduce the amount of storage used for
storing names associated with that entity.

8.aReason: A typical implementation of the Image attribute for enumeration types is to store a table containing the names
of all the enumeration literals. Pragma Discard_Names allows the implementation to avoid storing such a table without
having to prove that the Image attribute is never used (which can be difficult in the presence of separate compilation).

8.bWe did not specify the semantics of the Image attribute in the presence of this pragma because different semantics
might be desirable in different situations. In some cases, it might make sense to use the Image attribute to print out a
useful value that can be used to identify the entity given information in compiler-generated listings. In other cases, it
might make sense to get an error at compile time or at run time. In cases where memory is plentiful, the simplest
implementation makes sense: ignore the pragma. Implementations that are capable of avoiding the extra storage in
cases where the Image attribute is never used might also wish to ignore the pragma.

8.cThe same applies to the Tags.Expanded_Name and Exceptions.Exception_Name functions.

C.6 Shared Variable Control
1[This clause specifies representation pragmas that control the use of shared variables.]

Syntax

2The form for pragmas Atomic, Volatile, Atomic_Components, and Volatile_Components is as fol-
lows:

3pragma Atomic(local_name);

4pragma Volatile(local_name);

5pragma Atomic_Components(array_local_name);

6pragma Volatile_Components(array_local_name);

7{atomic} An atomic type is one to which a pragma Atomic applies. An atomic object (including a com-
ponent) is one to which a pragma Atomic applies, or a component of an array to which a pragma Atomic_
Components applies, or any object of an atomic type.

8{volatile} A volatile type is one to which a pragma Volatile applies. A volatile object (including a com-
ponent) is one to which a pragma Volatile applies, or a component of an array to which a pragma
Volatile_Components applies, or any object of a volatile type. In addition, every atomic type or object is
also defined to be volatile. Finally, if an object is volatile, then so are all of its subcomponents [(the same
does not apply to atomic)].

Name Resolution Rules

9The local_name in an Atomic or Volatile pragma shall resolve to denote either an object_declaration, a
non-inherited component_declaration, or a full_type_declaration. The array_local_name in an Atomic_
Components or Volatile_Components pragma shall resolve to denote the declaration of an array type or
an array object of an anonymous type.

ISO/IEC 8652:1995(E) —AARM;6.0

C.6 Shared Variable Control 21 December 1994 562

Legality Rules

10 {indivisible} It is illegal to apply either an Atomic or Atomic_Components pragma to an object or type if
the implementation cannot support the indivisible reads and updates required by the pragma (see below).

11 It is illegal to specify the Size attribute of an atomic object, the Component_Size attribute for an array
type with atomic components, or the layout attributes of an atomic component, in a way that prevents the
implementation from performing the required indivisible reads and updates.

12 If an atomic object is passed as a parameter, then the type of the formal parameter shall either be atomic
or allow pass by copy [(that is, not be a nonatomic by-reference type)]. If an atomic object is used as an
actual for a generic formal object of mode in out, then the type of the generic formal object shall be
atomic. If the prefix of an attribute_reference for an Access attribute denotes an atomic object [(including
a component)], then the designated type of the resulting access type shall be atomic. If an atomic type is
used as an actual for a generic formal derived type, then the ancestor of the formal type shall be atomic or
allow pass by copy. Corresponding rules apply to volatile objects and types.

13 If a pragma Volatile, Volatile_Components, Atomic, or Atomic_Components applies to a stand-alone
constant object, then a pragma Import shall also apply to it.

13.a Ramification: Hence, no initialization expression is allowed for such a constant. Note that a constant that is atomic or
volatile because of its type is allowed.

13.b Reason: Stand-alone constants that are explicitly specified as Atomic or Volatile only make sense if they are being
manipulated outside the Ada program. From the Ada perspective the object is read-only. Nevertheless, if imported and
atomic or volatile, the implementation should presume it might be altered externally. For an imported stand-alone
constant that is not atomic or volatile, the implementation can assume that it will not be altered.

Static Semantics

14 {representation pragma [Atomic]} {pragma, representation [Atomic]} {representation pragma [Volatile]} {pragma,

representation [Volatile]} {representation pragma [Atomic_Components]} {pragma, representation [Atomic_Components]}
{representation pragma [Volatile_Components]} {pragma, representation [Volatile_Components]} These pragmas are
representation pragmas (see 13.1).

Dynamic Semantics

15 For an atomic object (including an atomic component) all reads and updates of the object as a whole are
indivisible.

16 For a volatile object all reads and updates of the object as a whole are performed directly to memory.
16.a Implementation Note: This precludes any use of register temporaries, caches, and other similar optimizations for that

object.

17 {sequential (actions)} Two actions are sequential (see 9.10) if each is the read or update of the same atomic
object.

18 {by-reference type [atomic or volatile]} If a type is atomic or volatile and it is not a by-copy type, then the type is
defined to be a by-reference type. If any subcomponent of a type is atomic or volatile, then the type is
defined to be a by-reference type.

19 If an actual parameter is atomic or volatile, and the corresponding formal parameter is not, then the
parameter is passed by copy.

19.a Implementation Note: Note that in the case where such a parameter is normally passed by reference, a copy of the
actual will have to be produced at the call-site, and a pointer to the copy passed to the formal parameter. If the actual is
atomic, any copying has to use indivisible read on the way in, and indivisible write on the way out.

ISO/IEC 8652:1995(E) —AARM;6.0

563 21 December 1994 Shared Variable Control C.6

19.bReason: It has to be known at compile time whether an atomic or a volatile parameter is to be passed by copy or by
reference. For some types, it is unspecified whether parameters are passed by copy or by reference. The above rules
further specify the parameter passing rules involving atomic and volatile types and objects.

Implementation Requirements

20{external effect [volatile/atomic objects]} The external effect of a program (see 1.1.3) is defined to include each
read and update of a volatile or atomic object. The implementation shall not generate any memory reads
or updates of atomic or volatile objects other than those specified by the program.

20.aDiscussion: The presumption is that volatile or atomic objects might reside in an ‘‘active’’ part of the address space
where each read has a potential side-effect, and at the very least might deliver a different value.

20.bThe rule above and the definition of external effect are intended to prevent (at least) the following incorrect
optimizations, where V is a volatile variable:

20.c• X:= V; Y:=V; cannot be allowed to be translated as Y:=V; X:=V;

20.d• Deleting redundant loads: X:= V; X:= V; shall read the value of V from memory twice.

20.e• Deleting redundant stores: V:= X; V:= X; shall write into V twice.

20.f• Extra stores: V:= X+Y; should not translate to something like V:= X; V:= V+Y;

20.g• Extra loads: X:= V; Y:= X+Z; X:=X+B; should not translate to something like Y:= V+Z; X:= V+B;

20.h• Reordering of loads from volatile variables: X:= V1; Y:= V2; (whether or not V1 = V2) should not
translate to Y:= V2; X:= V1;

20.i• Reordering of stores to volatile variables: V1:= X; V2:= X; should not translate to V2:=X; V1:= X;

21If a pragma Pack applies to a type any of whose subcomponents are atomic, the implementation shall not
pack the atomic subcomponents more tightly than that for which it can support indivisible reads and
updates.

21.aImplementation Note: A warning might be appropriate if no packing whatsoever can be achieved.

NOTES
229 An imported volatile or atomic constant behaves as a constant (i.e. read-only) with respect to other parts of the Ada

program, but can still be modified by an ‘‘external source.’’

Incompatibilities With Ada 83

22.a{incompatibilities with Ada 83} Pragma Atomic replaces Ada 83’s pragma Shared. The name ‘‘Shared’’ was
confusing, because the pragma was not used to mark variables as shared.

C.7 Task Identification and Attributes
1[This clause describes operations and attributes that can be used to obtain the identity of a task. In

addition, a package that associates user-defined information with a task is defined.]

C.7.1 The Package Task_Identification
Static Semantics

1The following language-defined library package exists:
2package Ada.Task_Identification is

type Task_ID is private;
Null_Task_ID : constant Task_ID;
function "=" (Left, Right : Task_ID) return Boolean;

3function Image (T : Task_ID) return String;
function Current_Task return Task_ID;
procedure Abort_Task (T : in out Task_ID);

ISO/IEC 8652:1995(E) —AARM;6.0

C.7.1 The Package Task_Identification 21 December 1994 564

4 function Is_Terminated(T : Task_ID) return Boolean;
function Is_Callable (T : Task_ID) return Boolean;

private
... -- not specified by the language

end Ada.Task_Identification;

Dynamic Semantics

5 A value of the type Task_ID identifies an existent task. The constant Null_Task_ID does not identify any
task. Each object of the type Task_ID is default initialized to the value of Null_Task_ID.

6 The function "=" returns True if and only if Left and Right identify the same task or both have the value
Null_Task_ID.

7 The function Image returns an implementation-defined string that identifies T. If T equals Null_Task_ID,
Image returns an empty string.

7.a Implementation defined: The result of the Task_Identification.Image attribute.

8 The function Current_Task returns a value that identifies the calling task.

9 The effect of Abort_Task is the same as the abort_statement for the task identified by T. [In addition, if T
identifies the environment task, the entire partition is aborted, See E.1.]

10 The functions Is_Terminated and Is_Callable return the value of the corresponding attribute of the task
identified by T.

11 For a prefix T that is of a task type [(after any implicit dereference)], the following attribute is defined:

T’Identity Yields a value of the type Task_ID that identifies the task denoted by T.12

13 For a prefix E that denotes an entry_declaration, the following attribute is defined:

E’Caller Yields a value of the type Task_ID that identifies the task whose call is now being14

serviced. Use of this attribute is allowed only inside an entry_body or accept_
statement corresponding to the entry_declaration denoted by E.

15 {Program_Error (raised by failure of run-time check)} Program_Error is raised if a value of Null_Task_ID is
passed as a parameter to Abort_Task, Is_Terminated, and Is_Callable.

16 {potentially blocking operation [Abort_Task]} {blocking, potentially [Abort_Task]} Abort_Task is a potentially block-
ing operation (see 9.5.1).

Bounded (Run-Time) Errors

17 {bounded error} It is a bounded error to call the Current_Task function from an entry body or an interrupt
handler. {Program_Error (raised by failure of run-time check)} Program_Error is raised, or an implementation-
defined value of the type Task_ID is returned.

17.a Implementation defined: The value of Current_Task when in a protected entry or interrupt handler.

17.b Implementation Note: This value could be Null_Task_ID, or the ID of some user task, or that of an internal task
created by the implementation.

Erroneous Execution

18 {erroneous execution} If a value of Task_ID is passed as a parameter to any of the operations declared in this
package (or any language-defined child of this package), and the corresponding task object no longer
exists, the execution of the program is erroneous.

ISO/IEC 8652:1995(E) —AARM;6.0

565 21 December 1994 The Package Task_Identification C.7.1

Documentation Requirements

19{documentation requirements} The implementation shall document the effect of calling Current_Task from an
entry body or interrupt handler.

19.aImplementation defined: The effect of calling Current_Task from an entry body or interrupt handler.

NOTES
2010 This package is intended for use in writing user-defined task scheduling packages and constructing server tasks.

Current_Task can be used in conjunction with other operations requiring a task as an argument such as Set_Priority (see
D.5).

2111 The function Current_Task and the attribute Caller can return a Task_ID value that identifies the environment task.

C.7.2 The Package Task_Attributes
Static Semantics

1The following language-defined generic library package exists:
2with Ada.Task_Identification; use Ada.Task_Identification;

generic
type Attribute is private;
Initial_Value : in Attribute;

package Ada.Task_Attributes is

3type Attribute_Handle is access all Attribute;

4function Value(T : Task_ID := Current_Task)
return Attribute;

5function Reference(T : Task_ID := Current_Task)
return Attribute_Handle;

6procedure Set_Value(Val : in Attribute;
T : in Task_ID := Current_Task);

procedure Reinitialize(T : in Task_ID := Current_Task);

7end Ada.Task_Attributes;

Dynamic Semantics

8When an instance of Task_Attributes is elaborated in a given active partition, an object of the actual type
corresponding to the formal type Attribute is implicitly created for each task (of that partition) that exists
and is not yet terminated. This object acts as a user-defined attribute of the task. A task created
previously in the partition and not yet terminated has this attribute from that point on. Each task sub-
sequently created in the partition will have this attribute when created. In all these cases, the initial value
of the given attribute is Initial_Value.

9The Value operation returns the value of the corresponding attribute of T.

10The Reference operation returns an access value that designates the corresponding attribute of T.

11The Set_Value operation performs any finalization on the old value of the attribute of T and assigns Val
to that attribute (see 5.2 and 7.6).

12The effect of the Reinitialize operation is the same as Set_Value where the Val parameter is replaced with
Initial_Value.

12.aImplementation Note: In most cases, the attribute memory can be reclaimed at this point.

13{Tasking_Error (raised by failure of run-time check)} For all the operations declared in this package, Tasking_
Error is raised if the task identified by T is terminated. {Program_Error (raised by failure of run-time check)}

Program_Error is raised if the value of T is Null_Task_ID.

ISO/IEC 8652:1995(E) —AARM;6.0

C.7.2 The Package Task_Attributes 21 December 1994 566

Erroneous Execution

14 {erroneous execution} It is erroneous to dereference the access value returned by a given call on Reference
after a subsequent call on Reinitialize for the same task attribute, or after the associated task terminates.

14.a Reason: This allows the storage to be reclaimed for the object associated with an attribute upon Reinitialize or task
termination.

15 If a value of Task_ID is passed as a parameter to any of the operations declared in this package and the
corresponding task object no longer exists, the execution of the program is erroneous.

Implementation Requirements

16 The implementation shall perform each of the above operations for a given attribute of a given task
atomically with respect to any other of the above operations for the same attribute of the same task.

16.a Ramification: Hence, other than by dereferencing an access value returned by Reference, an attribute of a given task
can be safely read and updated concurrently by multiple tasks.

17 When a task terminates, the implementation shall finalize all attributes of the task, and reclaim any other
storage associated with the attributes.

Documentation Requirements

18 {documentation requirements} The implementation shall document the limit on the number of attributes per
task, if any, and the limit on the total storage for attribute values per task, if such a limit exists.

19 In addition, if these limits can be configured, the implementation shall document how to configure them.
19.a Implementation defined: Implementation-defined aspects of Task_Attributes.

Metrics

20 {metrics} The implementation shall document the following metrics: A task calling the following sub-
programs shall execute in a sufficiently high priority as to not be preempted during the measurement
period. This period shall start just before issuing the call and end just after the call completes. If the
attributes of task T are accessed by the measurement tests, no other task shall access attributes of that task
during the measurement period. For all measurements described here, the Attribute type shall be a scalar
whose size is equal to the size of the predefined integer size. For each measurement, two cases shall be
documented: one where the accessed attributes are of the calling task [(that is, the default value for the T
parameter is used)], and the other, where T identifies another, non-terminated, task.

21 The following calls (to subprograms in the Task_Attributes package) shall be measured:

22 • a call to Value, where the return value is Initial_Value;

23 • a call to Value, where the return value is not equal to Initial_Value;

24 • a call to Reference, where the return value designates a value equal to Initial_Value;

25 • a call to Reference, where the return value designates a value not equal to Initial_Value;

26 • a call to Set_Value where the Val parameter is not equal to Initial_Value and the old attribute
value is equal to Initial_Value.

27 • a call to Set_Value where the Val parameter is not equal to Initial_Value and the old attribute
value is not equal to Initial_Value.

Implementation Permissions

28 An implementation need not actually create the object corresponding to a task attribute until its value is
set to something other than that of Initial_Value, or until Reference is called for the task attribute.

ISO/IEC 8652:1995(E) —AARM;6.0

567 21 December 1994 The Package Task_Attributes C.7.2

Similarly, when the value of the attribute is to be reinitialized to that of Initial_Value, the object may
instead be finalized and its storage reclaimed, to be recreated when needed later. While the object does
not exist, the function Value may simply return Initial_Value, rather than implicitly creating the object.

28.aDiscussion: The effect of this permission can only be observed if the assignment operation for the corresponding type
has side-effects.

28.bImplementation Note: This permission means that even though every task has every attribute, storage need only be
allocated for those attributes that have been Reference’d or set to a value other than that of Initial_Value.

29An implementation is allowed to place restrictions on the maximum number of attributes a task may have,
the maximum size of each attribute, and the total storage size allocated for all the attributes of a task.

Implementation Advice

30Some implementations are targeted to domains in which memory use at run time must be completely
deterministic. For such implementations, it is recommended that the storage for task attributes will be
pre-allocated statically and not from the heap. This can be accomplished by either placing restrictions on
the number and the size of the task’s attributes, or by using the pre-allocated storage for the first N
attribute objects, and the heap for the others. In the latter case, N should be documented.

NOTES
3112 An attribute always exists (after instantiation), and has the initial value. It need not occupy memory until the first

operation that potentially changes the attribute value. The same holds true after Reinitialize.

3213 The result of the Reference function should be used with care; it is always safe to use that result in the task body
whose attribute is being accessed. However, when the result is being used by another task, the programmer must make
sure that the task whose attribute is being accessed is not yet terminated. Failing to do so could make the program
execution erroneous.

3314 As specified in C.7.1, if the parameter T (in a call on a subprogram of an instance of this package) identifies a
nonexistent task, the execution of the program is erroneous.

ISO/IEC 8652:1995(E) —AARM;6.0

D Real-Time Systems 21 December 1994 568

ISO/IEC 8652:1995(E) —AARM;6.0

569 21 December 1994 Real-Time Systems D

Annex D
(normative)

Real-Time Systems

1{real-time systems} {embedded systems} This Annex specifies additional characteristics of Ada implementations
intended for real-time systems software. To conform to this Annex, an implementation shall also con-
form to the Systems Programming Annex.

Metrics

2{metrics} The metrics are documentation requirements; an implementation shall document the values of
the language-defined metrics for at least one configuration [of hardware or an underlying system] sup-
ported by the implementation, and shall document the details of that configuration.

2.aImplementation defined: Values of all Metrics.

2.bReason: The actual values of the metrics are likely to depend on hardware configuration details that are variable and
generally outside the control of a compiler vendor.

3The metrics do not necessarily yield a simple number. [For some, a range is more suitable, for others a
formula dependent on some parameter is appropriate, and for others, it may be more suitable to break the
metric into several cases.] Unless specified otherwise, the metrics in this annex are expressed in proces-
sor clock cycles. For metrics that require documentation of an upper bound, if there is no upper bound,
the implementation shall report that the metric is unbounded.

3.aDiscussion: There are several good reasons to specify metrics in seconds; there are however equally good reasons to
specify them in processor clock cycles. In defining the metrics, we have tried to strike a balance on a case-by-case
basis.

3.bIt has been suggested that all metrics should be given names, so that ‘‘data-sheets’’ could be formulated and published
by vendors. However the paragraph number can serve that purpose.

NOTES
41 The specification of the metrics makes a distinction between upper bounds and simple execution times. Where

something is just specified as ‘‘the execution time of’’ a piece of code, this leaves one the freedom to choose a
nonpathological case. This kind of metric is of the form ‘‘there exists a program such that the value of the metric is V’’.
Conversely, the meaning of upper bounds is ‘‘there is no program such that the value of the metric is greater than V’’.
This kind of metric can only be partially tested, by finding the value of V for one or more test programs.

52 The metrics do not cover the whole language; they are limited to features that are specified in Annex C, ‘‘Systems
Programming’’ and in this Annex. The metrics are intended to provide guidance to potential users as to whether a
particular implementation of such a feature is going to be adequate for a particular real-time application. As such, the
metrics are aimed at known implementation choices that can result in significant performance differences.

63 The purpose of the metrics is not necessarily to provide fine-grained quantitative results or to serve as a comparison
between different implementations on the same or different platforms. Instead, their goal is rather qualitative; to define a
standard set of approximate values that can be measured and used to estimate the general suitability of an implementation,
or to evaluate the comparative utility of certain features of an implementation for a particular real-time application.

Extensions to Ada 83

6.a{extensions to Ada 83} This Annex is new to Ada 9X.

ISO/IEC 8652:1995(E) —AARM;6.0

D.1 Task Priorities 21 December 1994 570

D.1 Task Priorities
1 [This clause specifies the priority model for real-time systems. In addition, the methods for specifying

priorities are defined.]

Syntax

2 The form of a pragma Priority is as follows:

3 pragma Priority(expression);

4 The form of a pragma Interrupt_Priority is as follows:

5 pragma Interrupt_Priority[(expression)];

Name Resolution Rules

6 {expected type [Priority pragma argument]} {expected type [Interrupt_Priority pragma argument]} The expected type for
the expression in a Priority or Interrupt_Priority pragma is Integer.

Legality Rules

7 A Priority pragma is allowed only immediately within a task_definition, a protected_definition, or the
declarative_part of a subprogram_body. An Interrupt_Priority pragma is allowed only immediately
within a task_definition or a protected_definition. At most one such pragma shall appear within a given
construct.

8 For a Priority pragma that appears in the declarative_part of a subprogram_body, the expression shall be
static, and its value shall be in the range of System.Priority.

8.a Reason: This value is needed before it gets elaborated, when the environment task starts executing.

Static Semantics

9 The following declarations exist in package System:
10 subtype Any_Priority is Integer range implementation-defined;

subtype Priority is Any_Priority range Any_Priority’First .. implementation-defined;
subtype Interrupt_Priority is Any_Priority range Priority’Last+1 .. Any_Priority’Last;

11 Default_Priority : constant Priority := (Priority’First + Priority’Last)/2;

11.a Implementation defined: The declarations of Any_Priority and Priority.

12 The full range of priority values supported by an implementation is specified by the subtype Any_
Priority. The subrange of priority values that are high enough to require the blocking of one or more
interrupts is specified by the subtype Interrupt_Priority. [The subrange of priority values below System.-
Interrupt_Priority’First is specified by the subtype System.Priority.]

13 The priority specified by a Priority or Interrupt_Priority pragma is the value of the expression in the
pragma, if any. If there is no expression in an Interrupt_Priority pragma, the priority value is Interrupt_
Priority’Last.

Dynamic Semantics

14 A Priority pragma has no effect if it occurs in the declarative_part of the subprogram_body of a sub-
program other than the main subprogram.

15 {task priority} {priority} {priority inheritance} {base priority} {active priority} A task priority is an integer value that
indicates a degree of urgency and is the basis for resolving competing demands of tasks for resources.
Unless otherwise specified, whenever tasks compete for processors or other implementation-defined

ISO/IEC 8652:1995(E) —AARM;6.0

571 21 December 1994 Task Priorities D.1

resources, the resources are allocated to the task with the highest priority value. The base priority of a
task is the priority with which it was created, or to which it was later set by Dynamic_Priorities.Set_
Priority (see D.5). At all times, a task also has an active priority, which generally reflects its base priority
as well as any priority it inherits from other sources. Priority inheritance is the process by which the
priority of a task or other entity (e.g. a protected object; see D.3) is used in the evaluation of another
task’s active priority.

15.aImplementation defined: Implementation-defined execution resources.

16The effect of specifying such a pragma in a protected_definition is discussed in D.3.

17{creation (of a task object)} The expression in a Priority or Interrupt_Priority pragma that appears in a task_
definition is evaluated for each task object (see 9.1). For a Priority pragma, the value of the expression is
converted to the subtype Priority; for an Interrupt_Priority pragma, this value is converted to the subtype
Any_Priority. The priority value is then associated with the task object whose task_definition contains the
pragma. {implicit subtype conversion [pragma Priority]} {implicit subtype conversion [pragma Interrupt_Priority]}

18Likewise, the priority value is associated with the environment task if the pragma appears in the
declarative_part of the main subprogram.

19The initial value of a task’s base priority is specified by default or by means of a Priority or Interrupt_
Priority pragma. [After a task is created, its base priority can be changed only by a call to Dynamic_
Priorities.Set_Priority (see D.5).] The initial base priority of a task in the absence of a pragma is the base
priority of the task that creates it at the time of creation (see 9.1). If a pragma Priority does not apply to
the main subprogram, the initial base priority of the environment task is System.Default_Priority. [The
task’s active priority is used when the task competes for processors. Similarly, the task’s active priority is
used to determine the task’s position in any queue when Priority_Queuing is specified (see D.4).]

20At any time, the active priority of a task is the maximum of all the priorities the task is inheriting at that
instant. For a task that is not held (see D.11), its base priority is always a source of priority inheritance.
Other sources of priority inheritance are specified under the following conditions:

20.aDiscussion: Other parts of the annex, e.g. D.11, define other sources of priority inheritance.

21• During activation, a task being activated inherits the active priority of the its activator (see
9.2).

22• During rendezvous, the task accepting the entry call inherits the active priority of the caller
(see 9.5.3).

23• During a protected action on a protected object, a task inherits the ceiling priority of the
protected object (see 9.5 and D.3).

24In all of these cases, the priority ceases to be inherited as soon as the condition calling for the inheritance
no longer exists.

Implementation Requirements

25The range of System.Interrupt_Priority shall include at least one value.

26The range of System.Priority shall include at least 30 values.

ISO/IEC 8652:1995(E) —AARM;6.0

D.1 Task Priorities 21 December 1994 572

NOTES
27 4 The priority expression can include references to discriminants of the enclosing type.

28 5 It is a consequence of the active priority rules that at the point when a task stops inheriting a priority from another
source, its active priority is re-evaluated. This is in addition to other instances described in this Annex for such
re-evaluation.

29 6 An implementation may provide a non-standard mode in which tasks inherit priorities under conditions other than those
specified above.

29.a Ramification: The use of a Priority or Interrupt_Priority pragma does not require the package System to be named in
a with_clause for the enclosing compilation_unit.

Extensions to Ada 83

29.b {extensions to Ada 83} The priority of a task is per-object and not per-type.

29.c Priorities need not be static anymore (except for the main subprogram).
Wording Changes From Ada 83

29.d The description of the Priority pragma has been moved to this annex.

D.2 Priority Scheduling
1 [This clause describes the rules that determine which task is selected for execution when more than one

task is ready (see 9.2). The rules have two parts: the task dispatching model (see D.2.1), and a specific
task dispatching policy (see D.2.2).]

D.2.1 The Task Dispatching Model
1 [The task dispatching model specifies preemptive scheduling, based on conceptual priority-ordered ready

queues.]

Dynamic Semantics

2 A task runs (that is, it becomes a running task) only when it is ready (see 9.2) and the execution resources
required by that task are available. Processors are allocated to tasks based on each task’s active priority.

3 It is implementation defined whether, on a multiprocessor, a task that is waiting for access to a protected
object keeps its processor busy.

3.a Implementation defined: Whether, on a multiprocessor, a task that is waiting for access to a protected object keeps its
processor busy.

4 {task dispatching} {dispatching, task} {task dispatching point [distributed]} {dispatching point [distributed]} Task dispatch-
ing is the process by which one ready task is selected for execution on a processor. This selection is done
at certain points during the execution of a task called task dispatching points. A task reaches a task
dispatching point whenever it becomes blocked, and whenever it becomes ready. In addition, the comple-
tion of an accept_statement (see 9.5.2), and task termination are task dispatching points for the executing
task. [Other task dispatching points are defined throughout this Annex.]

4.a Ramification: On multiprocessor systems, more than one task can be chosen, at the same time, for execution on more
than one processor, as explained below.

5 {ready queue} {head (of a queue)} {tail (of a queue)} {ready task} {task dispatching policy [partial]} {dispatching policy for

tasks [partial]} Task dispatching policies are specified in terms of conceptual ready queues, task states, and
task preemption. A ready queue is an ordered list of ready tasks. The first position in a queue is called
the head of the queue, and the last position is called the tail of the queue. A task is ready if it is in a ready
queue, or if it is running. Each processor has one ready queue for each priority value. At any instant,

ISO/IEC 8652:1995(E) —AARM;6.0

573 21 December 1994 The Task Dispatching Model D.2.1

each ready queue of a processor contains exactly the set of tasks of that priority that are ready for execu-
tion on that processor, but are not running on any processor; that is, those tasks that are ready, are not
running on any processor, and can be executed using that processor and other available resources. A task
can be on the ready queues of more than one processor.

5.aDiscussion: The core language defines a ready task as one that is not blocked. Here we refine this definition and talk
about ready queues.

6{running task} Each processor also has one running task, which is the task currently being executed by that
processor. Whenever a task running on a processor reaches a task dispatching point, one task is selected
to run on that processor. The task selected is the one at the head of the highest priority nonempty ready
queue; this task is then removed from all ready queues to which it belongs.

6.aDiscussion: There is always at least one task to run, if we count the idle task.

7{preemptible resource} A preemptible resource is a resource that while allocated to one task can be allocated
(temporarily) to another instead. Processors are preemptible resources. Access to a protected object (see
9.5.1) is a nonpreemptible resource.

7.aReason: A processor that is executing a task is available to execute tasks of higher priority, within the set of tasks that
that processor is able to execute. Write access to a protected object, on the other hand, cannot be granted to a new task
before the old task has released it.

{preempted task} When a higher-priority task is dispatched to the processor, and the previously running task
is placed on the appropriate ready queue, the latter task is said to be preempted.

8{task dispatching point [partial]} {dispatching point [partial]} A new running task is also selected whenever there is
a nonempty ready queue with a higher priority than the priority of the running task, or when the task
dispatching policy requires a running task to go back to a ready queue. [These are also task dispatching
points.]

8.aRamification: Thus, when a task becomes ready, this is a task dispatching point for all running tasks of lower priority.

Implementation Permissions

9An implementation is allowed to define additional resources as execution resources, and to define the
corresponding allocation policies for them. Such resources may have an implementation defined effect
on task dispatching (see D.2.2).

9.aImplementation defined: The affect of implementation defined execution resources on task dispatching.

10An implementation may place implementation-defined restrictions on tasks whose active priority is in the
Interrupt_Priority range.

10.aRamification: For example, on some operating systems, it might be necessary to disallow them altogether. This
permission applies to tasks whose priority is set to interrupt level for any reason: via a pragma, via a call to Dynamic_
Priorities.Set_Priority, or via priority inheritance.

NOTES
117 Section 9 specifies under which circumstances a task becomes ready. The ready state is affected by the rules for task

activation and termination, delay statements, and entry calls. {blocked [partial]} When a task is not ready, it is said to be
blocked.

128 An example of a possible implementation-defined execution resource is a page of physical memory, which needs to be
loaded with a particular page of virtual memory before a task can continue execution.

139 The ready queues are purely conceptual; there is no requirement that such lists physically exist in an implementation.

1410 While a task is running, it is not on any ready queue. Any time the task that is running on a processor is added to a
ready queue, a new running task is selected for that processor.

ISO/IEC 8652:1995(E) —AARM;6.0

D.2.1 The Task Dispatching Model 21 December 1994 574

15 11 In a multiprocessor system, a task can be on the ready queues of more than one processor. At the extreme, if several
processors share the same set of ready tasks, the contents of their ready queues is identical, and so they can be viewed as
sharing one ready queue, and can be implemented that way. [Thus, the dispatching model covers multiprocessors where
dispatching is implemented using a single ready queue, as well as those with separate dispatching domains.]

16 12 The priority of a task is determined by rules specified in this subclause, and under D.1, ‘‘Task Priorities’’, D.3,
‘‘Priority Ceiling Locking’’, and D.5, ‘‘Dynamic Priorities’’.

D.2.2 The Standard Task Dispatching Policy
Syntax

1 The form of a pragma Task_Dispatching_Policy is as follows:

2 pragma Task_Dispatching_Policy(policy_identifier);

Legality Rules

3 The policy_identifier shall either be FIFO_Within_Priorities or an implementation-defined identifier.
3.a Implementation defined: Implementation-defined policy_identifiers allowed in a pragma Task_Dispatching_Policy.

Post-Compilation Rules

4 {post-compilation rules} {configuration pragma [Task_Dispatching_Policy]} {pragma, configuration [Task_Dispatching_
Policy]} A Task_Dispatching_Policy pragma is a configuration pragma.

5 If the FIFO_Within_Priorities policy is specified for a partition, then the Ceiling_Locking policy (see
D.3) shall also be specified for the partition.

Dynamic Semantics

6 {task dispatching policy} [A task dispatching policy specifies the details of task dispatching that are not
covered by the basic task dispatching model. These rules govern when tasks are inserted into and deleted
from the ready queues, and whether a task is inserted at the head or the tail of the queue for its active
priority.] The task dispatching policy is specified by a Task_Dispatching_Policy configuration pragma.
{unspecified [partial]} If no such pragma appears in any of the program units comprising a partition, the task
dispatching policy for that partition is unspecified.

7 The language defines only one task dispatching policy, FIFO_Within_Priorities; when this policy is in
effect, modifications to the ready queues occur only as follows:

8 • When a blocked task becomes ready, it is added at the tail of the ready queue for its active
priority.

9 • When the active priority of a ready task that is not running changes, or the setting of its base
priority takes effect, the task is removed from the ready queue for its old active priority and is
added at the tail of the ready queue for its new active priority, except in the case where the
active priority is lowered due to the loss of inherited priority, in which case the task is added
at the head of the ready queue for its new active priority.

10 • When the setting of the base priority of a running task takes effect, the task is added to the
tail of the ready queue for its active priority.

11 • When a task executes a delay_statement that does not result in blocking, it is added to the tail
of the ready queue for its active priority.

11.a Ramification: If the delay does result in blocking, the task moves to the ‘‘delay queue’’, not to the ready
queue.

ISO/IEC 8652:1995(E) —AARM;6.0

575 21 December 1994 The Standard Task Dispatching Policy D.2.2

12{task dispatching point [partial]} {dispatching point [partial]} Each of the events specified above is a task dispatch-
ing point (see D.2.1).

13In addition, when a task is preempted, it is added at the head of the ready queue for its active priority.

Documentation Requirements

14{documentation requirements} {priority inversion} Priority inversion is the duration for which a task remains at
the head of the highest priority ready queue while the processor executes a lower priority task. The
implementation shall document:

15• The maximum priority inversion a user task can experience due to activity of the implemen-
tation (on behalf of lower priority tasks), and

16• whether execution of a task can be preempted by the implementation processing of delay
expirations for lower priority tasks, and if so, for how long.

16.aImplementation defined: Implementation-defined aspects of priority inversion.

Implementation Permissions

17Implementations are allowed to define other task dispatching policies, but need not support more than one
such policy per partition.

18[For optimization purposes,] an implementation may alter the points at which task dispatching occurs, in
an implementation defined manner. However, a delay_statement always corresponds to at least one task
dispatching point.

18.aImplementation defined: Implementation defined task dispatching.

NOTES
1913 If the active priority of a running task is lowered due to loss of inherited priority (as it is on completion of a protected

operation) and there is a ready task of the same active priority that is not running, the running task continues to run
(provided that there is no higher priority task).

2014 The setting of a task’s base priority as a result of a call to Set_Priority does not always take effect immediately when
Set_Priority is called. The effect of setting the task’s base priority is deferred while the affected task performs a protected
action.

2115 Setting the base priority of a ready task causes the task to move to the end of the queue for its active priority,
regardless of whether the active priority of the task actually changes.

D.3 Priority Ceiling Locking
1[This clause specifies the interactions between priority task scheduling and protected object ceilings. This

interaction is based on the concept of the ceiling priority of a protected object.]

Syntax

2The form of a pragma Locking_Policy is as follows:

3pragma Locking_Policy(policy_identifier);

Legality Rules

4The policy_identifier shall either be Ceiling_Locking or an implementation-defined identifier.
4.aImplementation defined: Implementation-defined policy_identifiers allowed in a pragma Locking_Policy.

ISO/IEC 8652:1995(E) —AARM;6.0

D.3 Priority Ceiling Locking 21 December 1994 576

Post-Compilation Rules

5 {post-compilation rules} {configuration pragma [Locking_Policy]} {pragma, configuration [Locking_Policy]} A Locking_
Policy pragma is a configuration pragma.

Dynamic Semantics

6 {locking policy} [A locking policy specifies the details of protected object locking. These rules specify
whether or not protected objects have priorities, and the relationships between these priorities and task
priorities. In addition, the policy specifies the state of a task when it executes a protected action, and how
its active priority is affected by the locking.] The locking policy is specified by a Locking_Policy
pragma. For implementation-defined locking policies, the effect of a Priority or Interrupt_Priority
pragma on a protected object is implementation defined. If no Locking_Policy pragma appears in any of
the program units comprising a partition, the locking policy for that partition, as well as the effect of
specifying either a Priority or Interrupt_Priority pragma for a protected object, are implementation
defined.

7 There is one predefined locking policy, Ceiling_Locking; this policy is defined as follows:

8 • {ceiling priority (of a protected object)} Every protected object has a ceiling priority, which is
determined by either a Priority or Interrupt_Priority pragma as defined in D.1. The ceiling
priority of a protected object (or ceiling, for short) is an upper bound on the active priority a
task can have when it calls protected operations of that protected object.

9 • The expression of a Priority or Interrupt_Priority pragma is evaluated as part of the creation
of the corresponding protected object and converted to the subtype System.Any_Priority or
System.Interrupt_Priority, respectively. The value of the expression is the ceiling priority of
the corresponding protected object. {implicit subtype conversion [pragma Priority]} {implicit subtype

conversion [pragma Interrupt_Priority]}

10 • If an Interrupt_Handler or Attach_Handler pragma (see C.3.1) appears in a protected_
definition without an Interrupt_Priority pragma, the ceiling priority of protected objects of
that type is implementation defined, but in the range of the subtype System.Interrupt_
Priority.

10.a Implementation defined: Default ceiling priorities.

11 • If no pragma Priority, Interrupt_Priority, Interrupt_Handler, or Attach_Handler is specified
in the protected_definition, then the ceiling priority of the corresponding protected object is
System.Priority’Last.

12 • While a task executes a protected action, it inherits the ceiling priority of the corresponding
protected object.

13 • {Ceiling_Check [partial]} {check, language-defined (Ceiling_Check)} {Program_Error (raised by failure of

run-time check)} When a task calls a protected operation, a check is made that its active priority
is not higher than the ceiling of the corresponding protected object; Program_Error is raised
if this check fails.

Implementation Permissions

14 The implementation is allowed to round all ceilings in a certain subrange of System.Priority or System.-
Interrupt_Priority up to the top of that subrange, uniformly.

14.a Discussion: For example, an implementation might use Priority’Last for all ceilings in Priority, and Interrupt_
Priority’Last for all ceilings in Interrupt_Priority. This would be equivalent to having two ceiling priorities for
protected objects, ‘‘nonpreemptible’’ and ‘‘noninterruptible’’, and is an allowed behavior.

14.b Note that the implementation cannot choose a subrange that crosses the boundary between normal and interrupt
priorities.

ISO/IEC 8652:1995(E) —AARM;6.0

577 21 December 1994 Priority Ceiling Locking D.3

15Implementations are allowed to define other locking policies, but need not support more than one such
policy per partition.

16[Since implementations are allowed to place restrictions on code that runs at an interrupt-level active
priority (see C.3.1 and D.2.1), the implementation may implement a language feature in terms of a
protected object with an implementation-defined ceiling, but the ceiling shall be no less than
Priority’Last.]

16.aImplementation defined: The ceiling of any protected object used internally by the implementation.

16.bProof: This permission follows from the fact that the implementation can place restrictions on interrupt handlers and
on any other code that runs at an interrupt-level active priority.

16.cThe implementation might protect a storage pool with a protected object whose ceiling is Priority’Last, which would
cause allocators to fail when evaluated at interrupt priority. Note that the ceiling of such an object has to be at least
Priority’Last, since there is no permission for allocators to fail when evaluated at a non-interrupt priority.

Implementation Advice

17The implementation should use names that end with ‘‘_Locking’’ for implementation-defined locking
policies.

NOTES
1816 While a task executes in a protected action, it can be preempted only by tasks whose active priorities are higher than

the ceiling priority of the protected object.

1917 If a protected object has a ceiling priority in the range of Interrupt_Priority, certain interrupts are blocked while
protected actions of that object execute. In the extreme, if the ceiling is Interrupt_Priority’Last, all blockable interrupts are
blocked during that time.

2018 The ceiling priority of a protected object has to be in the Interrupt_Priority range if one of its procedures is to be used
as an interrupt handler (see C.3).

2119 When specifying the ceiling of a protected object, one should choose a value that is at least as high as the highest
active priority at which tasks can be executing when they call protected operations of that object. In determining this value
the following factors, which can affect active priority, should be considered: the effect of Set_Priority, nested protected
operations, entry calls, task activation, and other implementation-defined factors.

2220 Attaching a protected procedure whose ceiling is below the interrupt hardware priority to an interrupt causes the
execution of the program to be erroneous (see C.3.1).

2321 On a single processor implementation, the ceiling priority rules guarantee that there is no possibility of deadlock
involving only protected subprograms (excluding the case where a protected operation calls another protected operation on
the same protected object).

D.4 Entry Queuing Policies
1[{queuing policy} This clause specifies a mechanism for a user to choose an entry queuing policy. It also

defines one such policy. Other policies are implementation defined.]
1.aImplementation defined: Implementation-defined queuing policies.

Syntax

2The form of a pragma Queuing_Policy is as follows:

3pragma Queuing_Policy(policy_identifier);

Legality Rules

4The policy_identifier shall be either FIFO_Queuing, Priority_Queuing or an implementation-defined
identifier.

ISO/IEC 8652:1995(E) —AARM;6.0

D.4 Entry Queuing Policies 21 December 1994 578

Post-Compilation Rules

5 {post-compilation rules} {configuration pragma [Queuing_Policy]} {pragma, configuration [Queuing_Policy]} A Queuing_
Policy pragma is a configuration pragma.

Dynamic Semantics

6 {queuing policy} [A queuing policy governs the order in which tasks are queued for entry service, and the
order in which different entry queues are considered for service.] The queuing policy is specified by a
Queuing_Policy pragma.

6.a Ramification: The queuing policy includes entry queuing order, the choice among open alternatives of a selective_
accept, and the choice among queued entry calls of a protected object when more than one entry_barrier condition is
True.

7 Two queuing policies, FIFO_Queuing and Priority_Queuing, are language defined. If no Queuing_Policy
pragma appears in any of the program units comprising the partition, the queuing policy for that partition
is FIFO_Queuing. The rules for this policy are specified in 9.5.3 and 9.7.1.

8 The Priority_Queuing policy is defined as follows:

9 • {priority of an entry call} The calls to an entry [(including a member of an entry family)] are
queued in an order consistent with the priorities of the calls. The priority of an entry call is
initialized from the active priority of the calling task at the time the call is made, but can
change later. Within the same priority, the order is consistent with the calling (or requeuing,
or priority setting) time (that is, a FIFO order).

10 • After a call is first queued, changes to the active priority of a task do not affect the priority of
the call, unless the base priority of the task is set.

11 • When the base priority of a task is set (see D.5), if the task is blocked on an entry call, and
the call is queued, the priority of the call is updated to the new active priority of the calling
task. This causes the call to be removed from and then reinserted in the queue at the new
active priority.

11.a Reason: A task is blocked on an entry call if the entry call is simple, conditional, or timed. If the call came
from the triggering_statement of an asynchronous_select, or a requeue thereof, then the task is not blocked on
that call; such calls do not have their priority updated. Thus, there can exist many queued calls from a given
task (caused by many nested ATC’s), but a task can be blocked on only one call at a time.

11.b A previous version of Ada 9X required queue reordering in the asynchronous_select case as well. If the call
corresponds to a ‘‘synchronous’’ entry call, then the task is blocked while queued, and it makes good sense to
move it up in the queue if its priority is raised.

11.c However, if the entry call is ‘‘asynchronous,’’ that is, it is due to an asynchronous_select whose triggering_
statement is an entry call, then the task is not waiting for this entry call, so the placement of the entry call on the
queue is irrelevant to the rate at which the task proceeds.

11.d Furthermore, when an entry is used for asynchronous_selects, it is almost certain to be a ‘‘broadcast’’ entry or
have only one caller at a time. For example, if the entry is used to notify tasks of a mode switch, then all tasks
on the entry queue would be signaled when the mode changes. Similarly, if it is indicating some interrupting
event such as a control-C, all tasks sensitive to the interrupt will want to be informed that the event occurred.
Hence, the order on such a queue is essentially irrelevant.

11.e Given the above, it seems an unnecessary semantic and implementation complexity to specify that
asynchronous queued calls are moved in response to dynamic priority changes. Furthermore, it is somewhat
inconsistent, since the call was originally queued based on the active priority of the task, but dynamic priority
changes are changing the base priority of the task, and only indirectly the active priority. We say explicitly that
asynchronous queued calls are not affected by normal changes in active priority during the execution of an
abortable_part. Saying that, if a change in the base priority affects the active priority, then we do want the calls
reordered, would be inconsistent. It would also require the implementation to maintain a readily accessible list
of all queued calls which would not otherwise be necessary.

11.f Several rules were removed or simplified when we changed the rules so that calls due to asynchronous_selects
are never moved due to intervening changes in active priority, be they due to protected actions, some other
priority inheritance, or changes in the base priority.

ISO/IEC 8652:1995(E) —AARM;6.0

579 21 December 1994 Entry Queuing Policies D.4

12• When more than one condition of an entry_barrier of a protected object becomes True, and
more than one of the respective queues is nonempty, the call with the highest priority is
selected. If more than one such call has the same priority, the call that is queued on the entry
whose declaration is first in textual order in the protected_definition is selected. For members
of the same entry family, the one with the lower family index is selected.

13• If the expiration time of two or more open delay_alternatives is the same and no other
accept_alternatives are open, the sequence_of_statements of the delay_alternative that is
first in textual order in the selective_accept is executed.

14• When more than one alternative of a selective_accept is open and has queued calls, an alter-
native whose queue has the highest-priority call at its head is selected. If two or more open
alternatives have equal-priority queued calls, then a call on the entry in the accept_alternative
that is first in textual order in the selective_accept is selected.

Implementation Permissions

15Implementations are allowed to define other queuing policies, but need not support more than one such
policy per partition.

Implementation Advice

16The implementation should use names that end with ‘‘_Queuing’’ for implementation-defined queuing
policies.

D.5 Dynamic Priorities
1[This clause specifies how the base priority of a task can be modified or queried at run time.]

Static Semantics

2The following language-defined library package exists:
3with System;

with Ada.Task_Identification; -- See C.7.1
package Ada.Dynamic_Priorities is

4procedure Set_Priority(Priority : in System.Any_Priority;
T : in Ada.Task_Identification.Task_ID :=
Ada.Task_Identification.Current_Task);

5function Get_Priority (T : Ada.Task_Identification.Task_ID :=
Ada.Task_Identification.Current_Task)
return System.Any_Priority;

6end Ada.Dynamic_Priorities;

Dynamic Semantics

7The procedure Set_Priority sets the base priority of the specified task to the specified Priority value. Set_
Priority has no effect if the task is terminated.

8The function Get_Priority returns T’s current base priority. {Tasking_Error (raised by failure of run-time check)}

Tasking_Error is raised if the task is terminated.
8.aReason: There is no harm in setting the priority of a terminated task. A previous version of Ada 9X made this a

run-time error. However, there is little difference between setting the priority of a terminated task, and setting the
priority of a task that is about to terminate very soon; neither case should be an error. Furthermore, the run-time check
is not necessarily feasible to implement on all systems, since priority changes might be deferred due to inter-processor
communication overhead, so the error might not be detected until after Set_Priority has returned.

8.bHowever, we wish to allow implementations to avoid storing ‘‘extra’’ information about terminated tasks. Therefore,
we make Get_Priority of a terminated task raise an exception; the implementation need not continue to store the
priority of a task that has terminated.

ISO/IEC 8652:1995(E) —AARM;6.0

D.5 Dynamic Priorities 21 December 1994 580

9 {Program_Error (raised by failure of run-time check)} Program_Error is raised by Set_Priority and Get_Priority if
T is equal to Null_Task_ID.

10 Setting the task’s base priority to the new value takes place as soon as is practical but not while the task is
performing a protected action. This setting occurs no later then the next abort completion point of the
task T (see 9.8).

10.a Implementation Note: When Set_Priority is called by a task T1 to set the priority of T2, if T2 is blocked, waiting on
an entry call queued on a protected object, the entry queue needs to be reordered. Since T1 might have a priority that is
higher than the ceiling of the protected object, T1 cannot, in general, do the reordering. One way to implement this is
to wake T2 up and have T2 do the work. This is similar to the disentangling of queues that needs to happen when a
high-priority task aborts a lower-priority task, which might have a call queued on a protected object with a low ceiling.

10.b Reason: A previous version of Ada 9X made it a run-time error for a high-priority task to set the priority of a
lower-priority task that has a queued call on a protected object with a low ceiling. This was changed because:

10.c • The check was not feasible to implement on all systems, since priority changes might be deferred due to
inter-processor communication overhead. The calling task would continue to execute without finding out
whether the operation succeeded or not.

10.d • The run-time check would tend to cause intermittent system failures — how is the caller supposed to know
whether the other task happens to have a queued call at any given time? Consider for example an interrupt
that needs to trigger a priority change in some task. The interrupt handler could not safely call Set_Priority
without knowing exactly what the other task is doing, or without severely restricting the ceilings used in
the system. If the interrupt handler wants to hand the job off to a third task whose job is to call Set_
Priority, this won’t help, because one would normally want the third task to have high priority.

Bounded (Run-Time) Errors

11 {bounded error} If a task is blocked on a protected entry call, and the call is queued, it is a bounded error to
raise its base priority above the ceiling priority of the corresponding protected object. When an entry call
is cancelled, it is a bounded error if the priority of the calling task is higher than the ceiling priority of the
corresponding protected object. {Program_Error (raised by failure of run-time check)} In either of these cases,
either Program_Error is raised in the task that called the entry, or its priority is temporarily lowered, or
both, or neither.

11.a Ramification: Note that the error is ‘‘blamed’’ on the task that did the entry call, not the task that called Set_Priority.
This seems to make sense for the case of a task blocked on a call, since if the Set_Priority had happened a little bit
sooner, before the task queued a call, the entry-calling task would get the error. In the other case, there is no reason not
to raise the priority of a task that is executing in an abortable_part, so long as its priority is lowered before it gets to the
end and needs to cancel the call. The priority might need to be lowered to allow it to remove the call from the entry
queue, in order to avoid violating the ceiling. This seems relatively harmless, since there is an error, and the task is
about to start raising an exception anyway.

Erroneous Execution

12 {erroneous execution} If any subprogram in this package is called with a parameter T that specifies a task
object that no longer exists, the execution of the program is erroneous.

12.a Ramification: Note that this rule overrides the above rule saying that Program_Error is raised on Get_Priority of a
terminated task. If the task object still exists, and the task is terminated, Get_Priority raises Program_Error. However,
if the task object no longer exists, calling Get_Priority causes erroneous execution.

Metrics

13 {metrics} The implementation shall document the following metric:

14 • The execution time of a call to Set_Priority, for the nonpreempting case, in processor clock
cycles. This is measured for a call that modifies the priority of a ready task that is not
running (which cannot be the calling one), where the new base priority of the affected task is
lower than the active priority of the calling task, and the affected task is not on any entry
queue and is not executing a protected operation.

ISO/IEC 8652:1995(E) —AARM;6.0

581 21 December 1994 Dynamic Priorities D.5

NOTES
1522 Setting a task’s base priority affects task dispatching. First, it can change the task’s active priority. Second, under the

standard task dispatching policy it always causes the task to move to the tail of the ready queue corresponding to its active
priority, even if the new base priority is unchanged.

1623 Under the priority queuing policy, setting a task’s base priority has an effect on a queued entry call if the task is
blocked waiting for the call. That is, setting the base priority of a task causes the priority of a queued entry call from that
task to be updated and the call to be removed and then reinserted in the entry queue at the new priority (see D.4), unless the
call originated from the triggering_statement of an asynchronous_select.

1724 The effect of two or more Set_Priority calls executed in parallel on the same task is defined as executing these calls in
some serial order.

17.aProof: This follows from the general reentrancy requirements stated near the beginning of Annex A, ‘‘Predefined
Language Environment’’.

1825 The rule for when Tasking_Error is raised for Set_Priority or Get_Priority is different from the rule for when Tasking_
Error is raised on an entry call (see 9.5.3). In particular, setting or querying the priority of a completed or an abnormal task
is allowed, so long as the task is not yet terminated.

1926 Changing the priorities of a set of tasks can be performed by a series of calls to Set_Priority for each task separately.
For this to work reliably, it should be done within a protected operation that has high enough ceiling priority to guarantee
that the operation completes without being preempted by any of the affected tasks.

D.6 Preemptive Abort
1[This clause specifies requirements on the immediacy with which an aborted construct is completed.]

Dynamic Semantics

2On a system with a single processor, an aborted construct is completed immediately at the first point that
is outside the execution of an abort-deferred operation.

Documentation Requirements

3{documentation requirements} On a multiprocessor, the implementation shall document any conditions that
cause the completion of an aborted construct to be delayed later than what is specified for a single
processor.

3.aImplementation defined: On a multiprocessor, any conditions that cause the completion of an aborted construct to be
delayed later than what is specified for a single processor.

Metrics

4{metrics} The implementation shall document the following metrics:

5• The execution time, in processor clock cycles, that it takes for an abort_statement to cause
the completion of the aborted task. This is measured in a situation where a task T2 preempts
task T1 and aborts T1. T1 does not have any finalization code. T2 shall verify that T1 has
terminated, by means of the Terminated attribute.

6• On a multiprocessor, an upper bound in seconds, on the time that the completion of an
aborted task can be delayed beyond the point that it is required for a single processor.

7• An upper bound on the execution time of an asynchronous_select, in processor clock cycles.
This is measured between a point immediately before a task T1 executes a protected opera-
tion Pr.Set that makes the condition of an entry_barrier Pr.Wait true, and the point where task
T2 resumes execution immediately after an entry call to Pr.Wait in an asynchronous_select.
T1 preempts T2 while T2 is executing the abortable part, and then blocks itself so that T2 can
execute. The execution time of T1 is measured separately, and subtracted.

8• An upper bound on the execution time of an asynchronous_select, in the case that no
asynchronous transfer of control takes place. This is measured between a point immediately
before a task executes the asynchronous_select with a nonnull abortable part, and the point

ISO/IEC 8652:1995(E) —AARM;6.0

D.6 Preemptive Abort 21 December 1994 582

where the task continues execution immediately after it. The execution time of the abortable
part is subtracted.

Implementation Advice

9 Even though the abort_statement is included in the list of potentially blocking operations (see 9.5.1), it is
recommended that this statement be implemented in a way that never requires the task executing the
abort_statement to block.

10 On a multi-processor, the delay associated with aborting a task on another processor should be bounded;
the implementation should use periodic polling, if necessary, to achieve this.

NOTES
11 27 Abortion does not change the active or base priority of the aborted task.

12 28 Abortion cannot be more immediate than is allowed by the rules for deferral of abortion during finalization and in
protected actions.

D.7 Tasking Restrictions
1 [This clause defines restrictions that can be used with a pragma Restrictions (see 13.12) to facilitate the

construction of highly efficient tasking run-time systems.]

Static Semantics

2 The following restriction_identifiers are language defined:

{Restrictions (No_Task_Hierarchy)} No_Task_Hierarchy3

All (nonenvironment) tasks depend directly on the environment task of the partition.

{Restrictions (No_Nested_Finalization)} No_Nested_Finalization4

Objects with controlled parts and access types that designate such objects shall be
declared only at library level.

4.a Ramification: Note that protected types with entries and interrupt-handling protected types have nontrivial finaliza-
tion actions. However, this restriction does not restrict those things.

{Restrictions (No_Abort_Statements)} No_Abort_Statements5

There are no abort_statements, and there are no calls on Task_Identification.Abort_
Task.

{Restrictions (No_Terminate_Alternatives)} No_Terminate_Alternatives6

There are no selective_accepts with terminate_alternatives.

{Restrictions (No_Task_Allocators)} No_Task_Allocators7

There are no allocators for task types or types containing task subcomponents.

{Restrictions (No_Implicit_Heap_Allocations)} No_Implicit_Heap_Allocations8

There are no operations that implicitly require heap storage allocation to be per-
formed by the implementation. The operations that implicitly require heap storage
allocation are implementation defined.

8.a Implementation defined: Any operations that implicitly require heap storage allocation.

No_Dynamic_Priorities9

There are no semantic dependences on the package Dynamic_Priorities. {Restrictions

(No_Dynamic_Priorities)}

{Restrictions (No_Asynchronous_Control)} No_Asynchronous_Control10

There are no semantic dependences on the package Asynchronous_Task_Control.

ISO/IEC 8652:1995(E) —AARM;6.0

583 21 December 1994 Tasking Restrictions D.7

11The following restriction_parameter_identifiers are language defined:

{Restrictions (Max_Select_Alternatives)} Max_Select_Alternatives 12

Specifies the maximum number of alternatives in a selective_accept.

{Restrictions (Max_Task_Entries)} Max_Task_Entries 13

Specifies the maximum number of entries per task. The bounds of every entry family
of a task unit shall be static, or shall be defined by a discriminant of a subtype whose
corresponding bound is static. [A value of zero indicates that no rendezvous are
possible.]

Max_Protected_Entries 14

Specifies the maximum number of entries per protected type. The bounds of every
entry family of a protected unit shall be static, or shall be defined by a discriminant of
a subtype whose corresponding bound is static. {Restrictions (Max_Protected_Entries)}

Dynamic Semantics

15If the following restrictions are violated, the behavior is implementation defined. {Storage_Check [partial]}
{check, language-defined (Storage_Check)} {Storage_Error (raised by failure of run-time check)} If an implementation
chooses to detect such a violation, Storage_Error should be raised.

16The following restriction_parameter_identifiers are language defined:

{Restrictions (Max_Storage_At_Blocking)} Max_Storage_At_Blocking 17

Specifies the maximum portion [(in storage elements)] of a task’s Storage_Size that
can be retained by a blocked task.

{Restrictions (Max_Asynchronous_Select_Nesting)} Max_Asynchronous_Select_Nesting 18

Specifies the maximum dynamic nesting level of asynchronous_selects. [A value of
zero prevents the use of any asynchronous_select.]

{Restrictions (Max_Tasks)} Max_Tasks 19

Specifies the maximum number of task creations that may be executed over the
lifetime of a partition, not counting the creation of the environment task.

19.aRamification: Note that this is not a limit on the number of tasks active at a given time; it is a limit on the total
number of task creations that occur.

19.bImplementation Note: We envision an implementation approach that places TCBs or pointers to them in a fixed-size
table, and never reuses table elements.

20It is implementation defined whether the use of pragma Restrictions results in a reduction in executable
program size, storage requirements, or execution time. If possible, the implementation should provide
quantitative descriptions of such effects for each restriction.

20.aImplementation defined: Implementation-defined aspects of pragma Restrictions.

Implementation Advice

21When feasible, the implementation should take advantage of the specified restrictions to produce a more
efficient implementation.

NOTES
2229 The above Storage_Checks can be suppressed with pragma Suppress.

ISO/IEC 8652:1995(E) —AARM;6.0

D.8 Monotonic Time 21 December 1994 584

D.8 Monotonic Time
1 [This clause specifies a high-resolution, monotonic clock package.]

Static Semantics

2 The following language-defined library package exists:
3 package Ada.Real_Time is

4 type Time is private;
Time_First : constant Time;
Time_Last : constant Time;
Time_Unit : constant := implementation-defined-real-number;

5

6 type Time_Span is private;
Time_Span_First : constant Time_Span;
Time_Span_Last : constant Time_Span;
Time_Span_Zero : constant Time_Span;
Time_Span_Unit : constant Time_Span;

7

Tick : constant Time_Span;
function Clock return Time;

8

function "+" (Left : Time; Right : Time_Span) return Time;
function "+" (Left : Time_Span; Right : Time) return Time;
function "-" (Left : Time; Right : Time_Span) return Time;
function "-" (Left : Time; Right : Time) return Time_Span;

9

function "<" (Left, Right : Time) return Boolean;
function "<="(Left, Right : Time) return Boolean;
function ">" (Left, Right : Time) return Boolean;
function ">="(Left, Right : Time) return Boolean;

10

function "+" (Left, Right : Time_Span) return Time_Span;
function "-" (Left, Right : Time_Span) return Time_Span;
function "-" (Right : Time_Span) return Time_Span;
function "*" (Left : Time_Span; Right : Integer) return Time_Span;
function "*" (Left : Integer; Right : Time_Span) return Time_Span;
function "/" (Left, Right : Time_Span) return Integer;
function "/" (Left : Time_Span; Right : Integer) return Time_Span;

11 function "abs"(Right : Time_Span) return Time_Span;

12

function "<" (Left, Right : Time_Span) return Boolean;
function "<="(Left, Right : Time_Span) return Boolean;
function ">" (Left, Right : Time_Span) return Boolean;
function ">="(Left, Right : Time_Span) return Boolean;

13

function To_Duration (TS : Time_Span) return Duration;
function To_Time_Span (D : Duration) return Time_Span;

14

function Nanoseconds (NS : Integer) return Time_Span;
function Microseconds (US : Integer) return Time_Span;
function Milliseconds (MS : Integer) return Time_Span;

15 type Seconds_Count is range implementation-defined;

16 procedure Split(T : in Time; SC : out Seconds_Count; TS : out Time_Span);
function Time_Of(SC : Seconds_Count; TS : Time_Span) return Time;

17 private
... -- not specified by the language

end Ada.Real_Time;

ISO/IEC 8652:1995(E) —AARM;6.0

585 21 December 1994 Monotonic Time D.8

17.aImplementation defined: Implementation-defined aspects of package Real_Time.

18{real time} In this Annex, real time is defined to be the physical time as observed in the external environ-
ment. The type Time is a time type as defined by 9.6; [values of this type may be used in a delay_until_
statement.] Values of this type represent segments of an ideal time line. The set of values of the type
Time corresponds one-to-one with an implementation-defined range of mathematical integers.

18.aDiscussion: Informally, real time is defined to be the International Atomic Time (TAI) which is monotonic and
nondecreasing. We use it here for the purpose of discussing rate of change and monotonic behavior only. It does not
imply anything about the absolute value of Real_Time.Clock, or about Real_Time.Time being synchronized with TAI.
It is also used for real time in the metrics, for comparison purposes.

18.bImplementation Note: The specification of TAI as ‘‘real time’’ does not preclude the use of a simulated TAI clock
for simulated execution environments.

19{epoch} {unspecified [partial]} The Time value I represents the half-open real time interval that starts with
E+I*Time_Unit and is limited by E+(I+1)*Time_Unit, where Time_Unit is an implementation-defined
real number and E is an unspecified origin point, the epoch, that is the same for all values of the type
Time. It is not specified by the language whether the time values are synchronized with any standard
time reference. [For example, E can correspond to the time of system initialization or it can correspond to
the epoch of some time standard.]

19.aDiscussion: E itself does not have to be a proper time value.

19.bThis half-open interval I consists of all real numbers R such that E+I*Time_Unit <= R < E+(I+1)*Time_Unit.

20Values of the type Time_Span represent length of real time duration. The set of values of this type
corresponds one-to-one with an implementation-defined range of mathematical integers. The Time_Span
value corresponding to the integer I represents the real-time duration I*Time_Unit.

20.aReason: The purpose of this type is similar to Standard.Duration; the idea is to have a type with a higher resolution.

20.bDiscussion: We looked at many possible names for this type: Real_Time.Duration, Fine_Duration, Interval, Time_
Interval_Length, Time_Measure, and more. Each of these names had some problems, and we’ve finally settled for
Time_Span.

21Time_First and Time_Last are the smallest and largest values of the Time type, respectively. Similarly,
Time_Span_First and Time_Span_Last are the smallest and largest values of the Time_Span type, respec-
tively.

22A value of type Seconds_Count represents an elapsed time, measured in seconds, since the epoch.

Dynamic Semantics

23Time_Unit is the smallest amount of real time representable by the Time type; it is expressed in seconds.
Time_Span_Unit is the difference between two successive values of the Time type. It is also the smallest
positive value of type Time_Span. Time_Unit and Time_Span_Unit represent the same real time dura-
tion. {clock tick} A clock tick is a real time interval during which the clock value (as observed by calling
the Clock function) remains constant. Tick is the average length of such intervals.

24The function To_Duration converts the value TS to a value of type Duration. Similarly, the function To_
Time_Span converts the value D to a value of type Time_Span. For both operations, the result is rounded
to the nearest exactly representable value (away from zero if exactly halfway between two exactly
representable values).

25To_Duration(Time_Span_Zero) returns 0.0, and To_Time_Span(0.0) returns Time_Span_Zero.

ISO/IEC 8652:1995(E) —AARM;6.0

D.8 Monotonic Time 21 December 1994 586

26 The functions Nanoseconds, Microseconds, and Milliseconds convert the input parameter to a value of
the type Time_Span. NS, US, and MS are interpreted as a number of nanoseconds, microseconds, and
milliseconds respectively. The result is rounded to the nearest exactly representable value (away from
zero if exactly halfway between two exactly representable values).

26.a Discussion: The above does not imply that the Time_Span type will have to accommodate Integer’Last of mil-
liseconds; Constraint_Error is allowed to be raised.

27 The effects of the operators on Time and Time_Span are as for the operators defined for integer types.
27.a Implementation Note: Though time values are modeled by integers, the types Time and Time_Span need not be

implemented as integers.

28 The function Clock returns the amount of time since the epoch.

29 The effects of the Split and Time_Of operations are defined as follows, treating values of type Time,
Time_Span, and Seconds_Count as mathematical integers. The effect of Split(T,SC,TS) is to set SC and
TS to values such that T*Time_Unit = SC*1.0 + TS*Time_Unit, and 0.0 <= TS*Time_Unit < 1.0. The
value returned by Time_Of(SC,TS) is the value T such that T*Time_Unit = SC*1.0 + TS*Time_Unit.

Implementation Requirements

30 The range of Time values shall be sufficient to uniquely represent the range of real times from program
start-up to 50 years later. Tick shall be no greater than 1 millisecond. Time_Unit shall be less than or
equal to 20 microseconds.

30.a Implementation Note: The required range and accuracy of Time are such that 32-bits worth of seconds and 32-bits
worth of ticks in a second could be used as the representation.

31 Time_Span_First shall be no greater than –3600 seconds, and Time_Span_Last shall be no less than 3600
seconds.

31.a Reason: This is equivalent to ± one hour and there is still room for a two-microsecond resolution.

32 {clock jump} A clock jump is the difference between two successive distinct values of the clock (as ob-
served by calling the Clock function). There shall be no backward clock jumps.

Documentation Requirements

33 {documentation requirements} The implementation shall document the values of Time_First, Time_Last,
Time_Span_First, Time_Span_Last, Time_Span_Unit, and Tick.

34 The implementation shall document the properties of the underlying time base used for the clock and for
type Time, such as the range of values supported and any relevant aspects of the underlying hardware or
operating system facilities used.

34.a Discussion: If there is an underlying operating system, this might include information about which system call is used
to implement the clock. Otherwise, it might include information about which hardware clock is used.

35 The implementation shall document whether or not there is any synchronization with external time
references, and if such synchronization exists, the sources of synchronization information, the frequency
of synchronization, and the synchronization method applied.

36 The implementation shall document any aspects of the the external environment that could interfere with
the clock behavior as defined in this clause.

36.a Discussion: For example, the implementation is allowed to rely on the time services of an underlying operating
system, and this operating system clock can implement time zones or allow the clock to be reset by an operator. This
dependence has to be documented.

ISO/IEC 8652:1995(E) —AARM;6.0

587 21 December 1994 Monotonic Time D.8

Metrics

37{metrics} For the purpose of the metrics defined in this clause, real time is defined to be the International
Atomic Time (TAI).

38The implementation shall document the following metrics:

39• An upper bound on the real-time duration of a clock tick. This is a value D such that if t1 and
t2 are any real times such that t1 < t2 and Clockt1 = Clockt2 then t2 – t1 <= D.

40• An upper bound on the size of a clock jump.

41• {drift rate} An upper bound on the drift rate of Clock with respect to real time. This is a real
number D such that

42E*(1-D) <= (Clockt+E – Clockt) <= E*(1+D)
provided that: Clockt + E*(1+D) <= Time_Last.

43• where Clockt is the value of Clock at time t, and E is a real time duration not less than 24
hours. The value of E used for this metric shall be reported.

43.aReason: This metric is intended to provide a measurement of the long term (cumulative) deviation; therefore,
24 hours is the lower bound on the measurement period. On some implementations, this is also the maximum
period, since the language does not require that the range of the type Duration be more than 24 hours. On those
implementations that support longer-range Duration, longer measurements should be performed.

44• An upper bound on the execution time of a call to the Clock function, in processor clock
cycles.

45• Upper bounds on the execution times of the operators of the types Time and Time_Span, in
processor clock cycles.

45.aImplementation Note: A fast implementation of the Clock function involves repeated reading until you get
the same value twice. It is highly improbable that more than three reads will be necessary. Arithmetic on time
values should not be significantly slower than 64-bit arithmetic in the underlying machine instruction set.

Implementation Permissions

46Implementations targeted to machines with word size smaller than 32 bits need not support the full range
and granularity of the Time and Time_Span types.

46.aDiscussion: These requirements are based on machines with a word size of 32 bits.

46.bSince the range and granularity are implementation defined, the supported values need to be documented.

Implementation Advice

47When appropriate, implementations should provide configuration mechanisms to change the value of
Tick.

47.aReason: This is often needed when the compilation system was originally targeted to a particular processor with a
particular interval timer, but the customer uses the same processor with a different interval timer.

47.bDiscussion: Tick is a deferred constant and not a named number specifically for this purpose.

47.cImplementation Note: This can be achieved either by pre-run-time configuration tools, or by having Tick be
initialized (in the package private part) by a function call residing in a board specific module.

48It is recommended that Calendar.Clock and Real_Time.Clock be implemented as transformations of the
same time base.

49It is recommended that the ‘‘best’’ time base which exists in the underlying system be available to the
application through Clock. ‘‘Best’’ may mean highest accuracy or largest range.

ISO/IEC 8652:1995(E) —AARM;6.0

D.8 Monotonic Time 21 December 1994 588

NOTES
50 30 The rules in this clause do not imply that the implementation can protect the user from operator or installation errors

which could result in the clock being set incorrectly.

51 31 Time_Unit is the granularity of the Time type. In contrast, Tick represents the granularity of Real_Time.Clock. There
is no requirement that these be the same.

D.9 Delay Accuracy
1 [This clause specifies performance requirements for the delay_statement. The rules apply both to delay_

relative_statement and to delay_until_statement. Similarly, they apply equally to a simple delay_
statement and to one which appears in a delay_alternative.]

Dynamic Semantics

2 The effect of the delay_statement for Real_Time.Time is defined in terms of Real_Time.Clock:

3 • If C1 is a value of Clock read before a task executes a delay_relative_statement with duration
D, and C2 is a value of Clock read after the task resumes execution following that delay_
statement, then C2 – C1 >= D.

4 • If C is a value of Clock read after a task resumes execution following a delay_until_statement
with Real_Time.Time value T, then C >= T.

5 {potentially blocking operation [delay_statement]} {blocking, potentially [delay_statement]} A simple delay_statement
with a negative or zero value for the expiration time does not cause the calling task to be blocked; it is
nevertheless a potentially blocking operation (see 9.5.1).

6 When a delay_statement appears in a delay_alternative of a timed_entry_call the selection of the entry
call is attempted, regardless of the specified expiration time.

6.a Ramification: The effect of these requirements is that one has to always attempt a rendezvous, regardless of the value
of the delay expression. This can be tested by issuing a timed_entry_call with an expiration time of zero, to an open
entry.

When a delay_statement appears in a selective_accept_alternative, and a call is queued on one of the
open entries, the selection of that entry call proceeds, regardless of the value of the delay expression.

Documentation Requirements

7 {documentation requirements} The implementation shall document the minimum value of the delay expres-
sion of a delay_relative_statement that causes the task to actually be blocked.

8 The implementation shall document the minimum difference between the value of the delay expression of
a delay_until_statement and the value of Real_Time.Clock, that causes the task to actually be blocked.

8.a Implementation defined: Implementation-defined aspects of delay_statements.

Metrics

9 {metrics} The implementation shall document the following metrics:

10 • An upper bound on the execution time, in processor clock cycles, of a delay_relative_
statement whose requested value of the delay expression is less than or equal to zero.

11 • An upper bound on the execution time, in processor clock cycles, of a delay_until_statement
whose requested value of the delay expression is less than or equal to the value of Real_
Time.Clock at the time of executing the statement. Similarly, for Calendar.Clock.

12 • {lateness} {actual duration} An upper bound on the lateness of a delay_relative_statement, for a
positive value of the delay expression, in a situation where the task has sufficient priority to

ISO/IEC 8652:1995(E) —AARM;6.0

589 21 December 1994 Delay Accuracy D.9

preempt the processor as soon as it becomes ready, and does not need to wait for any other
execution resources. The upper bound is expressed as a function of the value of the delay
expression. The lateness is obtained by subtracting the value of the delay expression from
the actual duration. The actual duration is measured from a point immediately before a task
executes the delay_statement to a point immediately after the task resumes execution follow-
ing this statement.

13• An upper bound on the lateness of a delay_until_statement, in a situation where the value of
the requested expiration time is after the time the task begins executing the statement, the
task has sufficient priority to preempt the processor as soon as it becomes ready, and it does
not need to wait for any other execution resources. The upper bound is expressed as a
function of the difference between the requested expiration time and the clock value at the
time the statement begins execution. The lateness of a delay_until_statement is obtained by
subtracting the requested expiration time from the real time that the task resumes execution
following this statement.

NOTES
1432 The execution time of a delay_statement that does not cause the task to be blocked (e.g. ‘‘delay 0.0;’’) is of interest in

situations where delays are used to achieve voluntary round-robin task dispatching among equal-priority tasks.

Wording Changes From Ada 83

14.aThe rules regarding a timed_entry_call with a very small positive Duration value, have been tightened to always require
the check whether the rendezvous is immediately possible.

D.10 Synchronous Task Control
1[This clause describes a language-defined private semaphore (suspension object), which can be used for

two-stage suspend operations and as a simple building block for implementing higher-level queues.]

Static Semantics

2The following language-defined package exists:
3package Ada.Synchronous_Task_Control is

4type Suspension_Object is limited private;
procedure Set_True(S : in out Suspension_Object);
procedure Set_False(S : in out Suspension_Object);
function Current_State(S : Suspension_Object) return Boolean;
procedure Suspend_Until_True(S : in out Suspension_Object);

private
... -- not specified by the language

end Ada.Synchronous_Task_Control;

5The type Suspension_Object is a by-reference type.
5.aImplementation Note: The implementation can ensure this by, for example, making the full view a limited record

type.

Dynamic Semantics

6An object of the type Suspension_Object has two visible states: true and false. Upon initialization, its
value is set to false.

6.aDiscussion: This object is assumed to be private to the declaring task, i.e. only that task will call Suspend_Until_True
on this object, and the count of callers is at most one. Other tasks can, of course, change and query the state of this
object.

7The operations Set_True and Set_False are atomic with respect to each other and with respect to
Suspend_Until_True; they set the state to true and false respectively.

ISO/IEC 8652:1995(E) —AARM;6.0

D.10 Synchronous Task Control 21 December 1994 590

8 Current_State returns the current state of the object.
8.a Discussion: This state can change immediately after the operation returns.

9 The procedure Suspend_Until_True blocks the calling task until the state of the object S is true; at that
point the task becomes ready and the state of the object becomes false.

10 {potentially blocking operation [Suspend_Until_True]} {blocking, potentially [Suspend_Until_True]} {Program_Error (raised

by failure of run-time check)} Program_Error is raised upon calling Suspend_Until_True if another task is
already waiting on that suspension object. Suspend_Until_True is a potentially blocking operation (see
9.5.1).

Implementation Requirements

11 The implementation is required to allow the calling of Set_False and Set_True during any protected
action, even one that has its ceiling priority in the Interrupt_Priority range.

D.11 Asynchronous Task Control
1 [This clause introduces a language-defined package to do asynchronous suspend/resume on tasks. It uses

a conceptual held priority value to represent the task’s held state.]

Static Semantics

2 The following language-defined library package exists:
3 with Ada.Task_Identification;

package Ada.Asynchronous_Task_Control is
procedure Hold(T : in Ada.Task_Identification.Task_ID);
procedure Continue(T : in Ada.Task_Identification.Task_ID);
function Is_Held(T : Ada.Task_Identification.Task_ID)
return Boolean;

end Ada.Asynchronous_Task_Control;

Dynamic Semantics

4 {task state [held]} {held priority} {idle task} After the Hold operation has been applied to a task, the task
becomes held.

4.a Discussion: This state should not be confused with the blocked state as defined in 9.2; the task is still ready.

For each processor there is a conceptual idle task, which is always ready. The base priority of the idle
task is below System.Any_Priority’First. The held priority is a constant of the type integer whose value
is below the base priority of the idle task.

5 The Hold operation sets the state of T to held. For a held task: the task’s own base priority does not
constitute an inheritance source (see D.1), and the value of the held priority is defined to be such a source
instead.

5.a Ramification: For example, if T is currently inheriting priorities from other sources (e.g. it is executing in a protected
action), its active priority does not change, and it continues to execute until it leaves the protected action.

6 The Continue operation resets the state of T to not-held; T’s active priority is then reevaluated as
described in D.1. [This time, T’s base priority is taken into account.]

7 The Is_Held function returns True if and only if T is in the held state.
7.a Discussion: Note that the state of T can be changed immediately after Is_Held returns.

ISO/IEC 8652:1995(E) —AARM;6.0

591 21 December 1994 Asynchronous Task Control D.11

8As part of these operations, a check is made that the task identified by T is not terminated. {Tasking_Error

(raised by failure of run-time check)} Tasking_Error is raised if the check fails. {Program_Error (raised by failure of

run-time check)} Program_Error is raised if the value of T is Null_Task_ID.

Erroneous Execution

9{erroneous execution} If any operation in this package is called with a parameter T that specifies a task
object that no longer exists, the execution of the program is erroneous.

Implementation Permissions

10An implementation need not support Asynchronous_Task_Control if it is infeasible to support it in the
target environment.

10.aReason: A direct implementation of the Asynchronous_Task_Control semantics using priorities is not necessarily
efficient enough. Thus, we envision implementations that use some other mechanism to set the ‘‘held’’ state. If there
is no other such mechanism, support for Asynchronous_Task_Control might be infeasible, because an implementation
in terms of priority would require one idle task per processor. On some systems, programs are not supposed to know
how many processors are available, so creating enough idle tasks would be problematic.

NOTES
1133 It is a consequence of the priority rules that held tasks cannot be dispatched on any processor in a partition (unless they

are inheriting priorities) since their priorities are defined to be below the priority of any idle task.

1234 The effect of calling Get_Priority and Set_Priority on a Held task is the same as on any other task.

1335 Calling Hold on a held task or Continue on a non-held task has no effect.

1436 The rules affecting queuing are derived from the above rules, in addition to the normal priority rules:

15• When a held task is on the ready queue, its priority is so low as to never reach the top of the queue as long as
there are other tasks on that queue.

16• If a task is executing in a protected action, inside a rendezvous, or is inheriting priorities from other sources
(e.g. when activated), it continues to execute until it is no longer executing the corresponding construct.

17• If a task becomes held while waiting (as a caller) for a rendezvous to complete, the active priority of the
accepting task is not affected.

18• If a task becomes held while waiting in a selective_accept, and a entry call is issued to one of the open entries,
the corresponding accept body executes. When the rendezvous completes, the active priority of the accepting
task is lowered to the held priority (unless it is still inheriting from other sources), and the task does not
execute until another Continue.

19• The same holds if the held task is the only task on a protected entry queue whose barrier becomes open. The
corresponding entry body executes.

D.12 Other Optimizations and Determinism Rules
1[This clause describes various requirements for improving the response and determinism in a real-time

system.]

Implementation Requirements

2If the implementation blocks interrupts (see C.3) not as a result of direct user action (e.g. an execution of
a protected action) there shall be an upper bound on the duration of this blocking.

2.aRamification: The implementation shall not allow itself to be interrupted when it is in a state where it is unable to
support all the language-defined operations permitted in the execution of interrupt handlers. (see 9.5.1).

3The implementation shall recognize entry-less protected types. The overhead of acquiring the execution
resource of an object of such a type (see 9.5.1) shall be minimized.

3.aImplementation Note: Ideally just a spin-lock.

In particular, there should not be any overhead due to evaluating entry_barrier conditions.

ISO/IEC 8652:1995(E) —AARM;6.0

D.12 Other Optimizations and Determinism Rules 21 December 1994 592

4 Unchecked_Deallocation shall be supported for terminated tasks that are designated by access types, and
shall have the effect of releasing all the storage associated with the task. This includes any run-time
system or heap storage that has been implicitly allocated for the task by the implementation.

Documentation Requirements

5 {documentation requirements} The implementation shall document the upper bound on the duration of inter-
rupt blocking caused by the implementation. If this is different for different interrupts or interrupt priority
levels, it should be documented for each case.

5.a Implementation defined: The upper bound on the duration of interrupt blocking caused by the implementation.

Metrics

6 {metrics} The implementation shall document the following metric:

7 • The overhead associated with obtaining a mutual-exclusive access to an entry-less protected
object. This shall be measured in the following way:

8 For a protected object of the form:
9 protected Lock is

procedure Set;
function Read return Boolean;

private
Flag : Boolean := False;

end Lock;

10 protected body Lock is
procedure Set is
begin

Flag := True;
end Set;
function Read return Boolean
Begin

return Flag;
end Read;

end Lock;

11 The execution time, in processor clock cycles, of a call to Set. This shall be measured
between the point just before issuing the call, and the point just after the call completes. The
function Read shall be called later to verify that Set was indeed called (and not optimized
away). The calling task shall have sufficiently high priority as to not be preempted during
the measurement period. The protected object shall have sufficiently high ceiling priority to
allow the task to call Set.

12 For a multiprocessor, if supported, the metric shall be reported for the case where no conten-
tion (on the execution resource) exists [from tasks executing on other processors].

ISO/IEC 8652:1995(E) —AARM;6.0

593 21 December 1994 Distributed Systems E

Annex E
(normative)

Distributed Systems

1[This Annex defines facilities for supporting the implementation of distributed systems using multiple
partitions working cooperatively as part of a single Ada program.]

Extensions to Ada 83

1.a{extensions to Ada 83} This Annex is new to Ada 9X.
Post-Compilation Rules

2{post-compilation rules} {processing node} {storage node} {distributed system} A distributed system is an intercon-
nection of one or more processing nodes (a system resource that has both computational and storage
capabilities), and zero or more storage nodes (a system resource that has only storage capabilities, with
the storage addressable by one or more processing nodes).

3{distributed program} A distributed program comprises one or more partitions that execute independently
(except when they communicate) in a distributed system.

4{configuration (of the partitions of a program)} The process of mapping the partitions of a program to the nodes
in a distributed system is called configuring the partitions of the program.

Implementation Requirements

5The implementation shall provide means for explicitly assigning library units to a partition and for the
configuring and execution of a program consisting of multiple partitions on a distributed system; the
means are implementation defined.

5.aImplementation defined: The means for creating and executing distributed programs.

Implementation Permissions

6An implementation may require that the set of processing nodes of a distributed system be homogeneous.

NOTES
71 The partitions comprising a program may be executed on differently configured distributed systems or on a non-

distributed system without requiring recompilation. A distributed program may be partitioned differently from the same
set of library units without recompilation. The resulting execution is semantically equivalent.

82 A distributed program retains the same type safety as the equivalent single partition program.

E.1 Partitions
1[The partitions of a distributed program are classified as either active or passive.]

Post-Compilation Rules

2{post-compilation rules} {active partition} {passive partition} An active partition is a partition as defined in 10.2.
A passive partition is a partition that has no thread of control of its own, whose library units are all
preelaborated, and whose data and subprograms are accessible to one or more active partitions.

2.aDiscussion: In most situations, a passive partition does not execute, and does not have a ‘‘real’’ environment task.
Any execution involved in its elaboration and initialization occurs before it comes into existence in a distributed
program (like most preelaborated entities). Likewise, there is no concrete meaning to passive partition termination.

ISO/IEC 8652:1995(E) —AARM;6.0

E.1 Partitions 21 December 1994 594

3 A passive partition shall include only library_items that either are declared pure or are shared passive (see
10.2.1 and E.2.1).

4 An active partition shall be configured on a processing node. A passive partition shall be configured
either on a storage node or on a processing node.

5 The configuration of the partitions of a program onto a distributed system shall be consistent with the
possibility for data references or calls between the partitions implied by their semantic dependences.
{remote access} Any reference to data or call of a subprogram across partitions is called a remote access.

5.a Discussion: For example, an active partition that includes a unit with a semantic dependence on the declaration of
another RCI package of some other active partition has to be connected to that other partition by some sort of a
message passing mechanism.

5.b A passive partition that is accessible to an active partition should have its storage addressable to the processor(s) of the
active partition. The processor(s) should be able to read and write from/to that storage, as well as to perform
‘‘read-modify-write’’ operations (in order to support entry-less protected objects).

Dynamic Semantics

6 {elaboration (partition)} A library_item is elaborated as part of the elaboration of each partition that includes
it. If a normal library unit (see E.2) has state, then a separate copy of the state exists in each active
partition that elaborates it. [The state evolves independently in each such partition.]

6.a Ramification: Normal library units cannot be included in passive partitions.

7 {termination (of a partition)} {abort (of a partition)} {inaccessible partition} {accessible partition} [An active partition
terminates when its environment task terminates.] A partition becomes inaccessible if it terminates or if it
is aborted. An active partition is aborted when its environment task is aborted. In addition, if a partition
fails during its elaboration, it becomes inaccessible to other partitions. Other implementation-defined
events can also result in a partition becoming inaccessible.

7.a Implementation defined: Any events that can result in a partition becoming inaccessible.

8 For a prefix D that denotes a library-level declaration, excepting a declaration of or within a declared-pure
library unit, the following attribute is defined:

D’Partition_ID Denotes a value of the type universal_integer that identifies the partition in which D9

was elaborated. If D denotes the declaration of a remote call interface library unit
(see E.2.3) the given partition is the one where the body of D was elaborated.

Bounded (Run-Time) Errors

10 {bounded error} It is a bounded error for there to be cyclic elaboration dependences between the active
partitions of a single distributed program. {Program_Error (raised by failure of run-time check)} The possible
effects are deadlock during elaboration, or the raising of Program_Error in one or all of the active par-
titions involved.

Implementation Permissions

11 An implementation may allow multiple active or passive partitions to be configured on a single process-
ing node, and multiple passive partitions to be configured on a single storage node. In these cases, the
scheduling policies, treatment of priorities, and management of shared resources between these partitions
are implementation defined.

11.a Implementation defined: The scheduling policies, treatment of priorities, and management of shared resources
between partitions in certain cases.

ISO/IEC 8652:1995(E) —AARM;6.0

595 21 December 1994 Partitions E.1

12An implementation may allow separate copies of an active partition to be configured on different process-
ing nodes, and to provide appropriate interactions between the copies to present a consistent state of the
partition to other active partitions.

12.aRamification: The language does not specify the nature of these interactions, nor the actual level of consistency
preserved.

13In an implementation, the partitions of a distributed program need not be loaded and elaborated all at the
same time; they may be loaded and elaborated one at a time over an extended period of time. An
implementation may provide facilities to abort and reload a partition during the execution of a distributed
program.

14An implementation may allow the state of some of the partitions of a distributed program to persist while
other partitions of the program terminate and are later reinvoked.

NOTES
153 Library units are grouped into partitions after compile time, but before run time. At compile time, only the relevant

library unit properties are identified using categorization pragmas.

164 The value returned by the Partition_ID attribute can be used as a parameter to implementation-provided subprograms in
order to query information about the partition.

E.2 Categorization of Library Units
1[Library units can be categorized according to the role they play in a distributed program. Certain restric-

tions are associated with each category to ensure that the semantics of a distributed program remain close
to the semantics for a nondistributed program.]

2{categorization pragma [distributed]} {pragma, categorization [distributed]} {library unit pragma [categorization pragmas]}
{pragma, library unit [categorization pragmas]} {categorized library unit} A categorization pragma is a library unit
pragma (see 10.1.5) that restricts the declarations, child units, or semantic dependences of the library unit
to which it applies. A categorized library unit is a library unit to which a categorization pragma applies.

3The pragmas Shared_Passive, Remote_Types, and Remote_Call_Interface are categorization pragmas. In
addition, for the purposes of this Annex, the pragma Pure (see 10.2.1) is considered a categorization
pragma.

4{shared passive library unit} A library package or generic library package is called a shared passive library
unit if a Shared_Passive pragma applies to it. {remote types library unit} A library package or generic library
package is called a remote types library unit if a Remote_Types pragma applies to it. {remote call interface}

A library package or generic library package is called a remote call interface if a Remote_Call_Interface
pragma applies to it. {normal library unit} A normal library unit is one to which no categorization pragma
applies.

5[The various categories of library units and the associated restrictions are described in this clause and its
subclauses. The categories are related hierarchically in that the library units of one category can depend
semantically only on library units of that category or an earlier one, except that the body of a remote types
or remote call interface library unit is unrestricted.

6The overall hierarchy (including declared pure) is as follows:

ISO/IEC 8652:1995(E) —AARM;6.0

E.2 Categorization of Library Units 21 December 1994 596

Declared Pure Can depend only on other declared pure library units;7

Shared Passive Can depend only on other shared passive or declared pure library units;8

Remote Types The declaration of the library unit can depend only on other remote types library9

units, or one of the above; the body of the library unit is unrestricted;

Remote Call Interface10

The declaration of the library unit can depend only on other remote call interfaces, or
one of the above; the body of the library unit is unrestricted;

Normal Unrestricted.11

12 Declared pure and shared passive library units are preelaborated. The declaration of a remote types or
remote call interface library unit is required to be preelaborable.]

Implementation Requirements

13 For a given library-level type declared in a preelaborated library unit or in the declaration of a remote
types or remote call interface library unit, the implementation shall choose the same representation for the
type upon each elaboration of the type’s declaration for different partitions of the same program.

Implementation Permissions

14 Implementations are allowed to define other categorization pragmas.

E.2.1 Shared Passive Library Units
1 [A shared passive library unit is used for managing global data shared between active partitions. The

restrictions on shared passive library units prevent the data or tasks of one active partition from being
accessible to another active partition through references implicit in objects declared in the shared passive
library unit.]

Language Design Principles

1.a The restrictions governing a shared passive library unit are designed to ensure that objects and subprograms declared in
the package can be used safely from multiple active partitions, even though the active partitions live in different
address spaces, and have separate run-time systems.

Syntax

2 {categorization pragma [Shared_Passive]} {pragma, categorization [Shared_Passive]} The form of a pragma
Shared_Passive is as follows:

3 pragma Shared_Passive[(library_unit_name)];

Legality Rules

4 {shared passive library unit} A shared passive library unit is a library unit to which a Shared_Passive pragma
applies. The following restrictions apply to such a library unit:

5 • [it shall be preelaborable (see 10.2.1);]
5.a Ramification: It cannot contain library-level declarations of protected objects with entries, nor of task objects.

Task objects are disallowed because passive partitions don’t have any threads of control of their own, nor any
run-time system of their own. Protected objects with entries are disallowed because an entry queue contains
references to calling tasks, and that would require in effect a pointer from a passive partition back to a task in
some active partition.

6 • it shall depend semantically only upon declared pure or shared passive library units;
6.a Reason: Shared passive packages cannot depend semantically upon remote types packages because the values

of an access type declared in a remote types package refer to the local heap of the active partition including the
remote types package.

ISO/IEC 8652:1995(E) —AARM;6.0

597 21 December 1994 Shared Passive Library Units E.2.1

7• it shall not contain a library-level declaration of an access type that designates a class-wide
type, task type, or protected type with entry_declarations; if the shared passive library unit is
generic, it shall not contain a declaration for such an access type unless the declaration is
nested within a body other than a package_body.

7.aReason: These kinds of access types are disallowed because the object designated by an access value of such a
type could contain an implicit reference back to the active partition on whose behalf the designated object was
created.

8{accessibility [from shared passive library units]} {notwithstanding} Notwithstanding the definition of accessibility
given in 3.10.2, the declaration of a library unit P1 is not accessible from within the declarative region of
a shared passive library unit P2, unless the shared passive library unit P2 depends semantically on P1.

8.aDiscussion: We considered a more complex rule, but dropped it. This is the simplest rule that recognizes that a shared
passive package may outlive some other library package, unless it depends semantically on that package. In a
nondistributed program, all library packages are presumed to have the same lifetime.

8.bImplementations may define additional pragmas that force two library packages to be in the same partition, or to have
the same lifetime, which would allow this rule to be relaxed in the presence of such pragmas.

Static Semantics

9{preelaborated [partial]} A shared passive library unit is preelaborated.

Post-Compilation Rules

10{post-compilation rules} A shared passive library unit shall be assigned to at most one partition within a
given program.

11{compilation units needed [shared passive library unit]} {needed [shared passive library unit]} {notwithstanding}

Notwithstanding the rule given in 10.2, a compilation unit in a given partition does not need (in the sense
of 10.2) the shared passive library units on which it depends semantically to be included in that same
partition; they will typically reside in separate passive partitions.

E.2.2 Remote Types Library Units
1[A remote types library unit supports the definition of types intended for use in communication between

active partitions.]

Language Design Principles

1.aThe restrictions governing a remote types package are similar to those for a declared pure package. However, the
restrictions are relaxed deliberately to allow such a package to contain declarations that violate the stateless property of
pure packages, though it is presumed that any state-dependent properties are essentially invisible outside the package.

Syntax

2{categorization pragma [Remote_Types]} {pragma, categorization [Remote_Types]} The form of a pragma
Remote_Types is as follows:

3pragma Remote_Types[(library_unit_name)];

Legality Rules

4{remote types library unit} A remote types library unit is a library unit to which the pragma Remote_Types
applies. The following restrictions apply to the declaration of such a library unit:

5• [it shall be preelaborable;]

6• it shall depend semantically only on declared pure, shared passive, or other remote types
library units;

ISO/IEC 8652:1995(E) —AARM;6.0

E.2.2 Remote Types Library Units 21 December 1994 598

7 • it shall not contain the declaration of any variable within the visible part of the library unit;
7.a Reason: This is essentially a ‘‘methodological’’ restriction. A separate copy of a remote types package is

included in each partition that references it, just like a normal package. Nevertheless, a remote types package is
thought of as an ‘‘essentially pure’’ package for defining types to be used for interpartition communication, and
it could be misleading to declare visible objects when no remote data access is actually being provided.

8 • if the full view of a type declared in the visible part of the library unit has a part that is of a
non-remote access type, then that access type, or the type of some part that includes the
access type subcomponent, shall have user-specified Read and Write attributes.

8.a Reason: This is to prevent the use of the predefined Read and Write attributes of an access type as part of the
Read and Write attributes of a visible type.

9 {remote access type} An access type declared in the visible part of a remote types or remote call interface
library unit is called a remote access type. {remote access-to-subprogram type} {remote access-to-class-wide type}

Such a type shall be either an access-to-subprogram type or a general access type that designates a
class-wide limited private type.

10 The following restrictions apply to the use of a remote access-to-subprogram type:

11 • A value of a remote access-to-subprogram type shall be converted only to another (subtype-
conformant) remote access-to-subprogram type;

12 • The prefix of an Access attribute_reference that yields a value of a remote access-to-
subprogram type shall statically denote a (subtype-conformant) remote subprogram.

13 The following restrictions apply to the use of a remote access-to-class-wide type:

14 • The primitive subprograms of the corresponding specific limited private type shall only have
access parameters if they are controlling formal parameters; the types of all the non-
controlling formal parameters shall have Read and Write attributes.

15 • A value of a remote access-to-class-wide type shall be explicitly converted only to another
remote access-to-class-wide type;

16 • A value of a remote access-to-class-wide type shall be dereferenced (or implicitly converted
to an anonymous access type) only as part of a dispatching call where the value designates a
controlling operand of the call (see E.4, ‘‘Remote Subprogram Calls’’);

17 • The Storage_Pool and Storage_Size attributes are not defined for remote access-to-class-wide
types; the expected type for an allocator shall not be a remote access-to-class-wide type; a
remote access-to-class-wide type shall not be an actual parameter for a generic formal access
type;

17.a Reason: All three of these restrictions are because there is no storage pool associated with a remote
access-to-class-wide type.

NOTES
18 5 A remote types library unit need not be pure, and the types it defines may include levels of indirection implemented by

using access types. User-specified Read and Write attributes (see 13.13.2) provide for sending values of such a type
between active partitions, with Write marshalling the representation, and Read unmarshalling any levels of indirection.

E.2.3 Remote Call Interface Library Units
1 [A remote call interface library unit can be used as an interface for remote procedure calls (RPCs) (or

remote function calls) between active partitions.]

ISO/IEC 8652:1995(E) —AARM;6.0

599 21 December 1994 Remote Call Interface Library Units E.2.3

Language Design Principles

1.aThe restrictions governing a remote call interface library unit are intended to ensure that the values of the actual
parameters in a remote call can be meaningfully sent between two active partitions.

Syntax

2{categorization pragma [Remote_Call_Interface]} {pragma, categorization [Remote_Call_Interface]} The form of a
pragma Remote_Call_Interface is as follows:

3pragma Remote_Call_Interface[(library_unit_name)];

4The form of a pragma All_Calls_Remote is as follows:

5pragma All_Calls_Remote[(library_unit_name)];

6{library unit pragma [All_Calls_Remote]} {pragma, library unit [All_Calls_Remote]} A pragma All_Calls_
Remote is a library unit pragma.

Legality Rules

7{remote call interface} {RCI (library unit)} {RCI (package)} {RCI (generic)} {remote subprogram} A remote call inter-
face (RCI) is a library unit to which the pragma Remote_Call_Interface applies. A subprogram declared
in the visible part of such a library unit is called a remote subprogram.

8The declaration of an RCI library unit shall be preelaborable (see 10.2.1), and shall depend semantically
only upon declared pure, shared passive, remote types, or other remote call interface library units.

9In addition, the following restrictions apply to the visible part of an RCI library unit:

10• it shall not contain the declaration of a variable;
10.aReason: Remote call interface packages do not provide remote data access. A shared passive package has to

be used for that.

11• it shall not contain the declaration of a limited type;
11.aReason: We disallow the declaration of task and protected types, since calling an entry or a protected

subprogram implicitly passes an object of a limited type (the target task or protected object). We disallow other
limited types since we require that such types have user-defined Read and Write attributes, but we certainly
don’t want the Read and Write attributes themselves to involve remote calls (thereby defeating their purpose of
marshalling the value for remote calls).

12• it shall not contain a nested generic_declaration;
12.aReason: This is disallowed because the body of the nested generic would presumably have access to data

inside the body of the RCI package, and if instantiated in a different partition, remote data access might result,
which is not supported.

13• it shall not contain the declaration of a subprogram to which a pragma Inline applies;

14• it shall not contain a subprogram (or access-to-subprogram) declaration whose profile has an
access parameter, or a formal parameter of a limited type unless that limited type has user-
specified Read and Write attributes;

15• any public child of the library unit shall be a remote call interface library unit.
15.aReason: No restrictions apply to the private part of an RCI package, and since a public child can ‘‘see’’ the

private part of its parent, such a child must itself have a Remote_Call_Interface pragma, and be assigned to the
same partition (see below).

15.bDiscussion: We considered making the public child of an RCI package implicitly RCI, but it seemed better to
require an explicit pragma to avoid any confusion.

15.cNote that there is no need for a private child to be an RCI package, since it can only be seen from the body of
its parent or its siblings, all of which are required to be in the same active partition.

ISO/IEC 8652:1995(E) —AARM;6.0

E.2.3 Remote Call Interface Library Units 21 December 1994 600

16 If a pragma All_Calls_Remote applies to a library unit, the library unit shall be a remote call interface.

Post-Compilation Rules

17 {post-compilation rules} A remote call interface library unit shall be assigned to at most one partition of a
given program. A remote call interface library unit whose parent is also an RCI library unit shall be
assigned only to the same partition as its parent.

17.a Implementation Note: The declaration of an RCI package, with a calling-stub body, is automatically included in all
active partitions with compilation units that depend on it. However the whole RCI library unit, including its (non-stub)
body, will only be in one of the active partitions.

18 {compilation units needed [remote call interface]} {needed [remote call interface]} {notwithstanding} Notwithstanding the
rule given in 10.2, a compilation unit in a given partition that semantically depends on the declaration of
an RCI library unit, needs (in the sense of 10.2) only the declaration of the RCI library unit, not the body,
to be included in that same partition. [Therefore, the body of an RCI library unit is included only in the
partition to which the RCI library unit is explicitly assigned.]

Implementation Requirements

19 If a pragma All_Calls_Remote applies to a given RCI library package, then the implementation shall
route any call to a subprogram of the RCI package from outside the declarative region of the package
through the Partition Communication Subsystem (PCS); see E.5. Calls to such subprograms from within
the declarative region of the package are defined to be local and shall not go through the PCS.

19.a Discussion: Without this pragma, it is presumed that most implementations will make direct calls if the call originates
in the same partition as that of the RCI package. With this pragma, all calls from outside the subsystem rooted at the
RCI package are treated like calls from outside the partition, ensuring that the PCS is involved in all such calls (for
debugging, redundancy, etc.).

19.b Reason: There is no point to force local calls (or calls from children) to go through the PCS, since on the target
system, these calls are always local, and all the units are in the same active partition.

Implementation Permissions

20 An implementation need not support the Remote_Call_Interface pragma nor the All_Calls_Remote
pragma. [Explicit message-based communication between active partitions can be supported as an alter-
native to RPC.]

20.a Ramification: Of course, it is pointless to support the All_Calls_Remote pragma if the Remote_Call_Interface pragma
(or some approximate equivalent) is not supported.

E.3 Consistency of a Distributed System
1 [This clause defines attributes and rules associated with verifying the consistency of a distributed

program.]

Language Design Principles

1.a The rules guarantee that remote call interface and shared passive packages are consistent among all partitions prior to
the execution of a distributed program, so that the semantics of the distributed program are well defined.

Static Semantics

2 For a prefix P that statically denotes a program unit, the following attributes are defined:

P’Version Yields a value of the predefined type String that identifies the version of the compila-3

tion unit that contains the declaration of the program unit.

P’Body_Version Yields a value of the predefined type String that identifies the version of the compila-4

tion unit that contains the body (but not any subunits) of the program unit.

ISO/IEC 8652:1995(E) —AARM;6.0

601 21 December 1994 Consistency of a Distributed System E.3

5{version (of a compilation unit)} The version of a compilation unit changes whenever the version changes for
any compilation unit on which it depends semantically. The version also changes whenever the compila-
tion unit itself changes in a semantically significant way. It is implementation defined whether there are
other events (such as recompilation) that result in the version of a compilation unit changing.

5.aImplementation defined: Events that cause the version of a compilation unit to change.

Bounded (Run-Time) Errors

6{bounded error} {unit consistency} In a distributed program, a library unit is consistent if the same version of
its declaration is used throughout. It is a bounded error to elaborate a partition of a distributed program
that contains a compilation unit that depends on a different version of the declaration of a shared passive
or RCI library unit than that included in the partition to which the shared passive or RCI library unit was
assigned. {Program_Error (raised by failure of run-time check)} As a result of this error, Program_Error can be
raised in one or both partitions during elaboration; in any case, the partitions become inaccessible to one
another.

6.aRamification: Because a version changes if anything on which it depends undergoes a version change, requiring
consistency for shared passive and remote call interface library units is sufficient to ensure consistency for the declared
pure and remote types library units that define the types used for the objects and parameters through which interpar-
tition communication takes place.

6.bNote that we do not require matching Body_Versions; it is irrelevant for shared passive and remote call interface
packages, since only one copy of their body exists in a distributed program (in the absence of implicit replication), and
we allow the bodies to differ for declared pure and remote types packages from partition to partition, presuming that
the differences are due to required error corrections that took place during the execution of a long-running distributed
program. The Body_Version attribute provides a means for performing stricter consistency checks.

E.4 Remote Subprogram Calls
1{remote subprogram call} {asynchronous remote procedure call [distributed]} {calling partition} {called partition} {remote

subprogram binding} A remote subprogram call is a subprogram call that invokes the execution of a sub-
program in another partition. The partition that originates the remote subprogram call is the calling
partition, and the partition that executes the corresponding subprogram body is the called partition.
Some remote procedure calls are allowed to return prior to the completion of subprogram execution.
These are called asynchronous remote procedure calls.

2There are three different ways of performing a remote subprogram call:

3• As a direct call on a (remote) subprogram explicitly declared in a remote call interface;

4• As an indirect call through a value of a remote access-to-subprogram type;

5• As a dispatching call with a controlling operand designated by a value of a remote access-to-
class-wide type.

6The first way of calling corresponds to a static binding between the calling and the called partition. The
latter two ways correspond to a dynamic binding between the calling and the called partition.

7A remote call interface library unit (see E.2.3) defines the remote subprograms or remote access types
used for remote subprogram calls.

Language Design Principles

7.aRemote subprogram calls are standardized since the RPC paradigm is widely-used, and establishing an interface to it in
the annex will increase the portability and reusability of distributed programs.

ISO/IEC 8652:1995(E) —AARM;6.0

E.4 Remote Subprogram Calls 21 December 1994 602

Legality Rules

8 In a dispatching call with two or more controlling operands, if one controlling operand is designated by a
value of a remote access-to-class-wide type, then all shall be.

Dynamic Semantics

9 {marshalling} {unmarshalling} {execution [remote subprogram call]} For the execution of a remote subprogram call,
subprogram parameters (and later the results, if any) are passed using a stream-oriented representation
(see 13.13.1) [which is suitable for transmission between partitions]. This action is called marshalling.
Unmarshalling is the reverse action of reconstructing the parameters or results from the stream-oriented
representation.[Marshalling is performed initially as part of the remote subprogram call in the calling
partition; unmarshalling is done in the called partition. After the remote subprogram completes, marshall-
ing is performed in the called partition, and finally unmarshalling is done in the calling partition.]

10 {calling stub} {receiving stub} A calling stub is the sequence of code that replaces the subprogram body of a
remotely called subprogram in the calling partition. A receiving stub is the sequence of code (the ‘‘wrap-
per’’) that receives a remote subprogram call on the called partition and invokes the appropriate sub-
program body.

10.a Discussion: The use of the term stub in this annex should not be confused with body_stub as defined in 10.1.3. The
term stub is used here because it is a commonly understood term when talking about the RPC paradigm.

11 {at-most-once execution} Remote subprogram calls are executed at most once, that is, if the subprogram call
returns normally, then the called subprogram’s body was executed exactly once.

12 The task executing a remote subprogram call blocks until the subprogram in the called partition returns,
unless the call is asynchronous. For an asynchronous remote procedure call, the calling task can become
ready before the procedure in the called partition returns.

13 {cancellation of a remote subprogram call} If a construct containing a remote call is aborted, the remote sub-
program call is cancelled. Whether the execution of the remote subprogram is immediately aborted as a
result of the cancellation is implementation defined.

13.a Implementation defined: Whether the execution of the remote subprogram is immediately aborted as a result of
cancellation.

14 If a remote subprogram call is received by a called partition before the partition has completed its elabora-
tion, the call is kept pending until the called partition completes its elaboration (unless the call is can-
celled by the calling partition prior to that).

15 If an exception is propagated by a remotely called subprogram, and the call is not an asynchronous call,
the corresponding exception is reraised at the point of the remote subprogram call. For an asynchronous
call, if the remote procedure call returns prior to the completion of the remotely called subprogram, any
exception is lost.

16 The exception Communication_Error (see E.5) is raised if a remote call cannot be completed due to
difficulties in communicating with the called partition.

17 {potentially blocking operation [remote subprogram call]} {blocking, potentially [remote subprogram call]} All forms of
remote subprogram calls are potentially blocking operations (see 9.5.1).

17.a Reason: Asynchronous remote procedure calls are potentially blocking since the implementation may require waiting
for the availability of shared resources to initiate the remote call.

ISO/IEC 8652:1995(E) —AARM;6.0

603 21 December 1994 Remote Subprogram Calls E.4

18{Accessibility_Check [partial]} {check, language-defined (Accessibility_Check)} In a remote subprogram call with a
formal parameter of a class-wide type, a check is made that the tag of the actual parameter identifies a
tagged type declared in a declared-pure or shared passive library unit, or in the visible part of a remote
types or remote call interface library unit. {Program_Error (raised by failure of run-time check)} Program_Error is
raised if this check fails.

18.aDiscussion: This check makes certain that the specific type passed in an RPC satisfies the rules for a "communicable"
type. Normally this is guaranteed by the compile-time restrictions on remote call interfaces. However, with class-wide
types, it is possible to pass an object whose tag identifies a type declared outside the "safe" packages.

18.bThis is considered an accessibility_check since only the types declared in "safe" packages are considered truly "global"
(cross-partition). Other types are local to a single partition. This is analogous to the "accessibility" of global vs. local
declarations in a single-partition program.

18.cThis rule replaces a rule from an earlier version of Ada 9X which was given in the subclause on Remote Types Library
Units (now E.2.2, ‘‘Remote Types Library Units’’). That rule tried to prevent "bad" types from being sent by arranging
for their tags to mismatch between partitions. However, that interfered with other uses of tags. The new rule allows
tags to agree in all partitions, even for those types which are not "safe" to pass in an RPC.

19{Partition_Check [partial]} {check, language-defined (Partition_Check)} In a dispatching call with two or more con-
trolling operands that are designated by values of a remote access-to-class-wide type, a check is made [(in
addition to the normal Tag_Check — see 11.5)] that all the remote access-to-class-wide values originated
from Access attribute_references that were evaluated by tasks of the same active partition. {Constraint_

Error (raised by failure of run-time check)} Constraint_Error is raised if this check fails.
19.aImplementation Note: When a remote access-to-class-wide value is created by an Access attribute_reference, the

identity of the active partition that evaluated the attribute_reference should be recorded in the representation of the
remote access value.

Implementation Requirements

20The implementation of remote subprogram calls shall conform to the PCS interface as defined by the
specification of the language-defined package System.RPC (see E.5). The calling stub shall use the Do_
RPC procedure unless the remote procedure call is asynchronous in which case Do_APC shall be used.
On the receiving side, the corresponding receiving stub shall be invoked by the RPC-receiver.

20.aImplementation Note: One possible implementation model is as follows:

20.bThe code for calls to subprograms declared in an RCI package is generated normally, that is, the call-site is the same as
for a local subprogram call. The code for the remotely callable subprogram bodies is also generated normally.
Subprogram’s prologue and epilogue are the same as for a local call.

20.cWhen compiling the specification of an RCI package, the compiler generates calling stubs for each visible subprogram.
Similarly, when compiling the body of an RCI package, the compiler generates receiving stubs for each visible
subprogram together with the appropriate tables to allow the RPC-receiver to locate the correct receiving stub.

20.dFor the statically bound remote calls, the identity of the remote partition is statically determined (it is resolved at
configuration/link time).

20.eThe calling stub operates as follows:

20.f• It allocates (or reuses) a stream of Params_Stream_Type of Initial_Size, and initializes it by repeatedly
calling Write operations, first to identify which remote subprogram in the receiving partition is being
called, and then to pass the incoming value of each of the in and in out parameters of the call.

20.g• It allocates (or reuses) a stream for the Result, unless a pragma Asynchronous is applied to the procedure.

20.h• It calls Do_RPC unless a pragma Asynchronous is applied to the procedure in which case it calls Do_APC.
An access value designating the message stream allocated and initialized above is passed as the Params
parameter. An access value designating the Result stream is passed as the Result parameter.

20.i• If the pragma Asynchronous is not specified for the procedure, Do_RPC blocks until a reply message
arrives, and then returns to the calling stub. The stub returns after extracting from the Result stream, using
Read operations, the in out and out parameters or the function result. If the reply message indicates that

ISO/IEC 8652:1995(E) —AARM;6.0

E.4 Remote Subprogram Calls 21 December 1994 604

the execution of the remote subprogram propagated an exception, the exception is propagated from Do_
RPC to the calling stub, and thence to the point of the original remote subprogram call. If Do_RPC detects
that communication with the remote partition has failed, it propagates Communication_Error.

20.j On the receiving side, the RPC-receiver procedure operates as follows:

20.k • It is called from the PCS when a remote-subprogram-call message is received. The call originates in some
remote call receiver task executed and managed in the context of the PCS.

20.l • It extracts information from the stream to identify the appropriate receiving stub.

20.m • The receiving stub extracts the in and in out parameters using Read from the stream designated by the
Params parameter.

20.n • The receiving stub calls the actual subprogram body and, upon completion of the subprogram, uses Write
to insert the results into the stream pointed to by the Result parameter. The receiving stub returns to the
RPC-receiver procedure which in turn returns to the PCS. If the actual subprogram body propagates an
exception, it is propagated by the RPC-receiver to the PCS, which handles the exception, and indicates in
the reply message that the execution of the subprogram body propagated an exception. The exception
occurrence can be represented in the reply message using the Write attribute of Ada.Exceptions.-
Exception_Occurrence.

20.o For remote access-to-subprogram types:

20.p A value of a remote access-to-subprogram type can be represented by the following components: a reference to the
remote partition, an index to the package containing the remote subprogram, and an index to the subprogram within the
package. The values of these components are determined at run time when the remote access value is created. These
three components serve the same purpose when calling Do_APC/RPC, as in the statically bound remote calls; the only
difference is that they are evaluated dynamically.

20.q For remote access-to-class-wide types:

20.r For each remote access-to-class-wide type, a calling stub is generated for each dispatching operation of the designated
type. In addition, receiving stubs are generated to perform the remote dispatching operations in the called partition.
The appropriate subprogram_body is determined as for a local dispatching call once the receiving stub has been
reached.

20.s A value of a remote access-to-class-wide type can be represented with the following components: a reference to the
remote partition, an index to a table (created one per each such access type) containing addresses of all the dispatching
operations of the designated type, and an access value designating the actual remote object.

20.t Alternatively, a remote access-to-class-wide value can be represented as a normal access value, pointing to a "stub"
object which in turn contains the information mentioned above. A call on any dispatching operation of such a stub
object does the remote call, if necessary, using the information in the stub object to locate the target partition, etc. This
approach has the advantage that less special-casing is required in the compiler. All access values can remain just a
simple address.

20.u {Constraint_Error (raised by failure of run-time check)} For a call to Do_RPC or Do_APC: The partition ID of all
controlling operands are checked for equality (a Constraint_Error is raised if this check fails). The partition ID value is
used for the Partition parameter. An index into the tagged-type-descriptor is created. This index points to the
receiving stub of the class-wide operation. This index and the index to the table (described above) are written to the
stream. Then, the actual parameters are marshalled into the message stream. For a controlling operand, only the access
value designating the remote object is required (the other two components are already present in the other parameters).

20.v On the called partition (after the RPC-receiver has transferred control to the appropriate receiving stub) the parameters
are first unmarshalled. Then, the tags of the controlling operands (obtained by dereferencing the pointer to the object)
are checked for equality. {Constraint_Error (raised by failure of run-time check)} If the check fails Constraint_Error
is raised and propagated back to the calling partition, unless it is a result of an asynchronous call. Finally, a dispatching
call to the specific subprogram (based on the controlling object’s tag) is made. Note that since this subprogram is not in
an RCI package, no specific stub is generated for it, it is called normally from the dispatching stub.

NOTES
21 6 A given active partition can both make and receive remote subprogram calls. Thus, an active partition can act as both a

client and a server.

22 7 If a given exception is propagated by a remote subprogram call, but the exception does not exist in the calling partition,
the exception can be handled by an others choice or be propagated to and handled by a third partition.

ISO/IEC 8652:1995(E) —AARM;6.0

605 21 December 1994 Remote Subprogram Calls E.4

22.aDiscussion: This situation can happen in a case of dynamically nested remote subprogram calls, where an intermediate
call executes in a partition that does not include the library unit that defines the exception.

E.4.1 Pragma Asynchronous
1[This subclause introduces the pragma Asynchronous which allows a remote subprogram call to return

prior to completion of the execution of the corresponding remote subprogram body.]

Syntax

2The form of a pragma Asynchronous is as follows:

3pragma Asynchronous(local_name);

Legality Rules

4The local_name of a pragma Asynchronous shall denote either:

5• One or more remote procedures; the formal parameters of the procedure(s) shall all be of
mode in;

6• The first subtype of a remote access-to-procedure type; the formal parameters of the desig-
nated profile of the type shall all be of mode in;

7• The first subtype of a remote access-to-class-wide type.

Static Semantics

8{representation pragma [Asynchronous]} {pragma, representation [Asynchronous]} A pragma Asynchronous is a
representation pragma. When applied to a type, it specifies the type-related asynchronous aspect of the
type.

Dynamic Semantics

9{remote procedure call (asynchronous)} {asynchronous (remote procedure call)} A remote call is asynchronous if it is
a call to a procedure, or a call through a value of an access-to-procedure type, to which a pragma
Asynchronous applies. In addition, if a pragma Asynchronous applies to a remote access-to-class-wide
type, then a dispatching call on a procedure with a controlling operand designated by a value of the type
is asynchronous if the formal parameters of the procedure are all of mode in.

Implementation Requirements

10Asynchronous remote procedure calls shall be implemented such that the corresponding body executes at
most once as a result of the call.

10.aTo be honest: It is not clear that this rule can be tested or even defined formally.

E.4.2 Example of Use of a Remote Access-to-Class-Wide Type
Examples

1Example of using a remote access-to-class-wide type to achieve dynamic binding across active partitions:
2package Tapes is

pragma Pure(Tapes);
type Tape is abstract tagged limited private;
-- Primitive dispatching operations where
-- Tape is controlling operand
procedure Copy (From, To : access Tape; Num_Recs : in Natural) is abstract;
procedure Rewind (T : access Tape) is abstract;
-- More operations

private
type Tape is ...

end Tapes;

ISO/IEC 8652:1995(E) —AARM;6.0

E.4.2 Example of Use of a Remote Access-to-Class-Wide Type 21 December 1994 606

3 with Tapes;
package Name_Server is

pragma Remote_Call_Interface;
-- Dynamic binding to remote operations is achieved
-- using the access-to-limited-class-wide type Tape_Ptr
type Tape_Ptr is access all Tapes.Tape’Class;
-- The following statically bound remote operations
-- allow for a name-server capability in this example
function Find (Name : String) return Tape_Ptr;
procedure Register (Name : in String; T : in Tape_Ptr);
procedure Remove (T : in Tape_Ptr);
-- More operations

end Name_Server;

4 package Tape_Driver is
-- Declarations are not shown, they are irrelevant here

end Tape_Driver;

5 with Tapes, Name_Server;
package body Tape_Driver is

type New_Tape is new Tapes.Tape with ...
procedure Copy
(From, To : access New_Tape; Num_Recs: in Natural) is
begin

. . .
end Copy;
procedure Rewind (T : access New_Tape) is
begin

. . .
end Rewind;
-- Objects remotely accessible through use
-- of Name_Server operations
Tape1, Tape2 : aliased New_Tape;

begin
Name_Server.Register ("NINE-TRACK", Tape1’Access);
Name_Server.Register ("SEVEN-TRACK", Tape2’Access);

end Tape_Driver;

6 with Tapes, Name_Server;
-- Tape_Driver is not needed and thus not mentioned in the with_clause
procedure Tape_Client is

T1, T2 : Name_Server.Tape_Ptr;
begin

T1 := Name_Server.Find ("NINE-TRACK");
T2 := Name_Server.Find ("SEVEN-TRACK");
Tapes.Rewind (T1);
Tapes.Rewind (T2);
Tapes.Copy (T1, T2, 3);

end Tape_Client;

7 Notes on the example:
7.a Discussion: The example does not show the case where tapes are removed from or added to the system. In the former

case, an appropriate exception needs to be defined to instruct the client to use another tape. In the latter, the Name_
Server should have a query function visible to the clients to inform them about the availability of the tapes in the
system.

8

9 • The package Tapes provides the necessary declarations of the type and its primitive opera-
tions.

10 • Name_Server is a remote call interface package and is elaborated in a separate active par-
tition to provide the necessary naming services (such as Register and Find) to the entire
distributed program through remote subprogram calls.

11 • Tape_Driver is a normal package that is elaborated in a partition configured on the process-
ing node that is connected to the tape device(s). The abstract operations are overridden to

ISO/IEC 8652:1995(E) —AARM;6.0

607 21 December 1994 Example of Use of a Remote Access-to-Class-Wide Type E.4.2

support the locally declared tape devices (Tape1, Tape2). The package is not visible to its
clients, but it exports the tape devices (as remote objects) through the services of the Name_
Server. This allows for tape devices to be dynamically added, removed or replaced without
requiring the modification of the clients’ code.

12• The Tape_Client procedure references only declarations in the Tapes and Name_Server
packages. Before using a tape for the first time, it needs to query the Name_Server for a
system-wide identity for that tape. From then on, it can use that identity to access the tape
device.

13• Values of remote access type Tape_Ptr include the necessary information to complete the
remote dispatching operations that result from dereferencing the controlling operands T1 and
T2.

E.5 Partition Communication Subsystem
1{partition communication subsystem (PCS)} {PCS (partition communication subsystem)} [The Partition Communication

Subsystem (PCS) provides facilities for supporting communication between the active partitions of a
distributed program. The package System.RPC is a language-defined interface to the PCS.]

1.aReason: The prefix RPC is used rather than RSC because the term remote procedure call and its acronym are more
familiar.

An implementation conforming to this Annex shall use the RPC interface to implement remote sub-
program calls.

Static Semantics

2The following language-defined library package exists:
3with Ada.Streams; -- see 13.13.1

package System.RPC is

4type Partition_ID is range 0 .. implementation-defined;

5Communication_Error : exception;

6type Params_Stream_Type(
Initial_Size : Ada.Streams.Stream_Element_Count) is new
Ada.Streams.Root_Stream_Type with private;

7procedure Read(
Stream : in out Params_Stream_Type;
Item : out Ada.Streams.Stream_Element_Array;
Last : out Ada.Streams.Stream_Element_Offset);

8procedure Write(
Stream : in out Params_Stream_Type;
Item : in Ada.Streams.Stream_Element_Array);

9-- Synchronous call
procedure Do_RPC(

Partition : in Partition_ID;
Params : access Params_Stream_Type;
Result : access Params_Stream_Type);

10-- Asynchronous call
procedure Do_APC(

Partition : in Partition_ID;
Params : access Params_Stream_Type);

11-- The handler for incoming RPCs
type RPC_Receiver is access procedure(

Params : access Params_Stream_Type;
Result : access Params_Stream_Type);

12procedure Establish_RPC_Receiver(
Partition : in Partition_ID;
Receiver : in RPC_Receiver);

ISO/IEC 8652:1995(E) —AARM;6.0

E.5 Partition Communication Subsystem 21 December 1994 608

13 private
... -- not specified by the language

end System.RPC;

14 A value of the type Partition_ID is used to identify a partition.

15 An object of the type Params_Stream_Type is used for identifying the particular remote subprogram that
is being called, as well as marshalling and unmarshalling the parameters or result of a remote subprogram
call, as part of sending them between partitions.

16 [The Read and Write procedures override the corresponding abstract operations for the type Params_
Stream_Type.]

Dynamic Semantics

17 The Do_RPC and Do_APC procedures send a message to the active partition identified by the Partition
parameter.

17.a Implementation Note: It is assumed that the RPC interface is above the message-passing layer of the network
protocol stack and is implemented in terms of it.

18 After sending the message, Do_RPC blocks the calling task until a reply message comes back from the
called partition or some error is detected by the underlying communication system in which case
Communication_Error is raised at the point of the call to Do_RPC.

18.a Reason: Only one exception is defined in System.RPC, although many sources of errors might exist. This is so
because it is not always possible to distinguish among these errors. In particular, it is often impossible to tell the
difference between a failing communication link and a failing processing node. Additional information might be
associated with a particular Exception_Occurrence for a Communication_Error.

19 Do_APC operates in the same way as Do_RPC except that it is allowed to return immediately after
sending the message.

20 Upon normal return, the stream designated by the Result parameter of Do_RPC contains the reply mes-
sage.

21 {elaboration [partition]} The procedure System.RPC.Establish_RPC_Receiver is called once, immediately
after elaborating the library units of an active partition (that is, right after the elaboration of the partition)
if the partition includes an RCI library unit, but prior to invoking the main subprogram, if any. The
Partition parameter is the Partition_ID of the active partition being elaborated. {RPC-receiver} The
Receiver parameter designates an implementation-provided procedure called the RPC-receiver which will
handle all RPCs received by the partition from the PCS. Establish_RPC_Receiver saves a reference to
the RPC-receiver; when a message is received at the called partition, the RPC-receiver is called with the
Params stream containing the message. When the RPC-receiver returns, the contents of the stream desig-
nated by Result is placed in a message and sent back to the calling partition.

21.a Implementation Note: It is defined by the PCS implementation whether one or more threads of control should be
available to process incoming messages and to wait for their completion.

21.b Implementation Note: At link-time, the linker provides the RPC-receiver and the necessary tables to support it. A
call on Establish_RPC_Receiver is inserted just before the call on the main subprogram.

21.c Reason: The interface between the PCS (the System.RPC package) and the RPC-receiver is defined to be dynamic in
order to allow the elaboration sequence to notify the PCS that all packages have been elaborated and that it is safe to
call the receiving stubs. It is not guaranteed that the PCS units will be the last to be elaborated, so some other indication
that elaboration is complete is needed.

ISO/IEC 8652:1995(E) —AARM;6.0

609 21 December 1994 Partition Communication Subsystem E.5

22If a call on Do_RPC is aborted, a cancellation message is sent to the called partition, to request that the
execution of the remotely called subprogram be aborted.

22.aTo be honest: The full effects of this message are dependent on the implementation of the PCS.

23{potentially blocking operation [RPC operations]} {blocking, potentially [RPC operations]} The subprograms declared in
System.RPC are potentially blocking operations.

Implementation Requirements

24The implementation of the RPC-receiver shall be reentrant[, thereby allowing concurrent calls on it from
the PCS to service concurrent remote subprogram calls into the partition].

24.aReason: There seems no reason to allow the implementation of RPC-receiver to be nonreentrant, even though we
don’t require that every implementation of the PCS actually perform concurrent calls on the RPC-receiver.

Documentation Requirements

25{documentation requirements} The implementation of the PCS shall document whether the RPC-receiver is
invoked from concurrent tasks. If there is an upper limit on the number of such tasks, this limit shall be
documented as well, together with the mechanisms to configure it (if this is supported).

25.aImplementation defined: Implementation-defined aspects of the PCS.

Implementation Permissions

26The PCS is allowed to contain implementation-defined interfaces for explicit message passing, broad-
casting, etc. Similarly, it is allowed to provide additional interfaces to query the state of some remote
partition (given its partition ID) or of the PCS itself, to set timeouts and retry parameters, to get more
detailed error status, etc. These additional interfaces should be provided in child packages of System.-
RPC.

26.aImplementation defined: Implementation-defined interfaces in the PCS.

27A body for the package System.RPC need not be supplied by the implementation.
27.aReason: It is presumed that a body for the package System.RPC might be extremely environment specific. Therefore,

we do not require that a body be provided by the (compiler) implementation. The user will have to write a body, or
acquire one, appropriate for the target environment.

Implementation Advice

28Whenever possible, the PCS on the called partition should allow for multiple tasks to call the RPC-
receiver with different messages and should allow them to block until the corresponding subprogram
body returns.

29The Write operation on a stream of type Params_Stream_Type should raise Storage_Error if it runs out of
space trying to write the Item into the stream.

29.aImplementation Note: An implementation could also dynamically allocate more space as needed, only propagating
Storage_Error if the allocator it calls raises Storage_Error. This storage could be managed through a controlled
component of the stream object, to ensure that it is reclaimed when the stream object is finalized.

NOTES
308 The package System.RPC is not designed for direct calls by user programs. It is instead designed for use in the

implementation of remote subprograms calls, being called by the calling stubs generated for a remote call interface library
unit to initiate a remote call, and in turn calling back to an RPC-receiver that dispatches to the receiving stubs generated for
the body of a remote call interface, to handle a remote call received from elsewhere.

ISO/IEC 8652:1995(E) —AARM;6.0

F Information Systems 21 December 1994 610

ISO/IEC 8652:1995(E) —AARM;6.0

611 21 December 1994 Information Systems F

Annex F
(normative)

Information Systems

1{information systems} This Annex provides a set of facilities relevant to Information Systems programming.
These fall into several categories:

2• an attribute definition clause specifying Machine_Radix for a decimal subtype;

3• the package Decimal, which declares a set of constants defining the implementation’s
capacity for decimal types, and a generic procedure for decimal division; and

4• the child packages Text_IO.Editing and Wide_Text_IO.Editing, which support formatted and
localized output of decimal data, based on ‘‘picture String’’ values.

5See also: 3.5.9, ‘‘Fixed Point Types’’; 3.5.10, ‘‘Operations of Fixed Point Types’’; 4.6, ‘‘Type Conver-
sions’’; 13.3, ‘‘Representation Attributes’’; A.10.9, ‘‘Input-Output for Real Types’’; B.4, ‘‘Interfacing
with COBOL’’; B.3, ‘‘Interfacing with C’’; Annex G, ‘‘Numerics’’.

6The character and string handling packages in Annex A, ‘‘Predefined Language Environment’’ are also
relevant for Information Systems.

Implementation Advice

7If COBOL (respectively, C) is widely supported in the target environment, implementations supporting
the Information Systems Annex should provide the child package Interfaces.COBOL (respectively,
Interfaces.C) specified in Annex B and should support a convention_identifier of COBOL (respectively,
C) in the interfacing pragmas (see Annex B), thus allowing Ada programs to interface with programs
written in that language.

Extensions to Ada 83

7.a{extensions to Ada 83} This Annex is new to Ada 9X.

F.1 Machine_Radix Attribute Definition Clause
Static Semantics

1{specifiable [of Machine_Radix for decimal first subtypes]} {Machine_Radix clause} Machine_Radix may be specified
for a decimal first subtype (see 3.5.9) via an attribute_definition_clause; the expression of such a clause
shall be static, and its value shall be 2 or 10. A value of 2 implies a binary base range; a value of 10
implies a decimal base range.

1.aRamification: In the absence of a Machine_Radix clause, the choice of 2 versus 10 for S’Machine_Radix is not
specified.

Implementation Advice

2Packed decimal should be used as the internal representation for objects of subtype S when S’Machine_
Radix = 10.

2.aDiscussion: The intent of a decimal Machine_Radix attribute definition clause is to allow the programmer to declare
an Ada decimal data object whose representation matches a particular COBOL implementation’s representation of
packed decimal items. The Ada object may then be passed to an interfaced COBOL program that takes a packed

ISO/IEC 8652:1995(E) —AARM;6.0

F.1 Machine_Radix Attribute Definition Clause 21 December 1994 612

decimal data item as a parameter, assuming that convention COBOL has been specified for the Ada object’s type in a
pragma Convention.

2.b Additionally, the Ada compiler may choose to generate arithmetic instructions that exploit the packed decimal
representation.

Examples

3 Example of Machine_Radix attribute definition clause:
4 type Money is delta 0.01 digits 15;

for Money’Machine_Radix use 10;

F.2 The Package Decimal
Static Semantics

1 The library package Decimal has the following declaration:
2 package Ada.Decimal is

pragma Pure(Decimal);

3 Max_Scale : constant := implementation-defined;
Min_Scale : constant := implementation-defined;

4 Min_Delta : constant := 10.0**(-Max_Scale);
Max_Delta : constant := 10.0**(-Min_Scale);

5 Max_Decimal_Digits : constant := implementation-defined;

6 generic
type Dividend_Type is delta <> digits <>;
type Divisor_Type is delta <> digits <>;
type Quotient_Type is delta <> digits <>;
type Remainder_Type is delta <> digits <>;

procedure Divide (Dividend : in Dividend_Type;
Divisor : in Divisor_Type;
Quotient : out Quotient_Type;
Remainder : out Remainder_Type);

pragma Convention(Intrinsic, Divide);

7 end Ada.Decimal;

7.a Implementation defined: The values of named numbers in the package Decimal.

8 Max_Scale is the largest N such that 10.0**(-N) is allowed as a decimal type’s delta. Its type is
universal_integer.

9 Min_Scale is the smallest N such that 10.0**(-N) is allowed as a decimal type’s delta. Its type is
universal_integer.

10 Min_Delta is the smallest value allowed for delta in a decimal_fixed_point_definition. Its type is
universal_real.

11 Max_Delta is the largest value allowed for delta in a decimal_fixed_point_definition. Its type is
universal_real.

12 Max_Decimal_Digits is the largest value allowed for digits in a decimal_fixed_point_definition. Its type is
universal_integer.

12.a Reason: The name is Max_Decimal_Digits versus Max_Digits, in order to avoid confusion with the named number
System.Max_Digits relevant to floating point.

Static Semantics

13 The effect of Divide is as follows. The value of Quotient is Quotient_Type(Dividend/Divisor). The
value of Remainder is Remainder_Type(Intermediate), where Intermediate is the difference between
Dividend and the product of Divisor and Quotient; this result is computed exactly.

ISO/IEC 8652:1995(E) —AARM;6.0

613 21 December 1994 The Package Decimal F.2

Implementation Requirements

14Decimal.Max_Decimal_Digits shall be at least 18.

15Decimal.Max_Scale shall be at least 18.

16Decimal.Min_Scale shall be at most 0.

NOTES
171 The effect of division yielding a quotient with control over rounding versus truncation is obtained by applying either the

function attribute Quotient_Type’Round or the conversion Quotient_Type to the expression Dividend/Divisor.

F.3 Edited Output for Decimal Types
1The child packages Text_IO.Editing and Wide_Text_IO.Editing provide localizable formatted text out-

put, known as edited output {edited output} , for decimal types. An edited output string is a function of a
numeric value, program-specifiable locale elements, and a format control value. The numeric value is of
some decimal type. The locale elements are:

2• the currency string;

3• the digits group separator character;

4• the radix mark character; and

5• the fill character that replaces leading zeros of the numeric value.

6For Text_IO.Editing the edited output and currency strings are of type String, and the locale characters
are of type Character. For Wide_Text_IO.Editing their types are Wide_String and Wide_Character,
respectively.

7Each of the locale elements has a default value that can be replaced or explicitly overridden.

8A format-control value is of the private type Picture; it determines the composition of the edited output
string and controls the form and placement of the sign, the position of the locale elements and the decimal
digits, the presence or absence of a radix mark, suppression of leading zeros, and insertion of particular
character values.

9A Picture object is composed from a String value, known as a picture String, that serves as a template for
the edited output string, and a Boolean value that controls whether a string of all space characters is
produced when the number’s value is zero. A picture String comprises a sequence of one- or two-
Character symbols, each serving as a placeholder for a character or string at a corresponding position in
the edited output string. The picture String symbols fall into several categories based on their effect on
the edited output string:

10

Decimal Digit: ’9’
Radix Control: ’.’ ’V’
Sign Control: ’+’ ’-’ ’<’ ’>’ "CR" "DB"
Currency Control: ’$’ ’#’
Zero Suppression: ’Z’ ’*’
Simple Insertion: ’_’ ’B’ ’0’ ’/’

11The entries are not case-sensitive. Mixed- or lower-case forms for "CR" and "DB", and lower-case forms
for ’V’, ’Z’, and ’B’, have the same effect as the upper-case symbols shown.

ISO/IEC 8652:1995(E) —AARM;6.0

F.3 Edited Output for Decimal Types 21 December 1994 614

12 An occurrence of a ’9’ Character in the picture String represents a decimal digit position in the edited
output string.

13 A radix control Character in the picture String indicates the position of the radix mark in the edited output
string: an actual character position for ’.’, or an assumed position for ’V’.

14 A sign control Character in the picture String affects the form of the sign in the edited output string. The
’<’ and ’>’ Character values indicate parentheses for negative values. A Character ’+’, ’-’, or ’<’ appears
either singly, signifying a fixed-position sign in the edited output, or repeated, signifying a floating-
position sign that is preceded by zero or more space characters and that replaces a leading 0.

15 A currency control Character in the picture String indicates an occurrence of the currency string in the
edited output string. The ’$’ Character represents the complete currency string; the ’#’ Character
represents one character of the currency string. A ’$’ Character appears either singly, indicating a fixed-
position currency string in the edited output, or repeated, indicating a floating-position currency string
that occurs in place of a leading 0. A sequence of ’#’ Character values indicates either a fixed- or
floating-position currency string, depending on context.

16 A zero suppression Character in the picture String allows a leading zero to be replaced by either the space
character (for ’Z’) or the fill character (for ’*’).

17 A simple insertion Character in the picture String represents, in general, either itself (if ’/’ or ’0’), the
space character (if ’B’), or the digits group separator character (if ’_’). In some contexts it is treated as
part of a floating sign, floating currency, or zero suppression string.

18 An example of a picture String is "<###Z_ZZ9.99>". If the currency string is "FF", the separator charac-
ter is ’,’, and the radix mark is ’.’ then the edited output string values for the decimal values 32.10 and
–5432.10 are "bbFFbbb32.10b" and "(bFF5,432.10)", respectively, where ’b’ indicates the space charac-
ter.

19 The generic packages Text_IO.Decimal_IO and Wide_Text_IO.Decimal_IO (see A.10.9, ‘‘Input-Output
for Real Types’’) provide text input and non-edited text output for decimal types.

NOTES
20 2 A picture String is of type Standard.String, both for Text_IO.Editing and Wide_Text_IO.Editing.

F.3.1 Picture String Formation
1 {picture String (for edited output)} {well-formed picture String (for edited output)} A well-formed picture String, or

simply picture String, is a String value that conforms to the syntactic rules, composition constraints, and
character replication conventions specified in this clause.

Dynamic Semantics

2

3 picture_string ::=
fixed_$_picture_string

| fixed_#_picture_string
| floating_currency_picture_string
| non_currency_picture_string

ISO/IEC 8652:1995(E) —AARM;6.0

615 21 December 1994 Picture String Formation F.3.1

4fixed_$_picture_string ::=
[fixed_LHS_sign] fixed_$_char {direct_insertion} [zero_suppression]
number [RHS_sign]

| [fixed_LHS_sign {direct_insertion}] [zero_suppression]
number fixed_$_char {direct_insertion} [RHS_sign]

| floating_LHS_sign number fixed_$_char {direct_insertion} [RHS_sign]

| [fixed_LHS_sign] fixed_$_char {direct_insertion}
all_zero_suppression_number {direct_insertion} [RHS_sign]

| [fixed_LHS_sign {direct_insertion}] all_zero_suppression_number {direct_insertion}
fixed_$_char {direct_insertion} [RHS_sign]

| all_sign_number {direct_insertion} fixed_$_char {direct_insertion} [RHS_sign]

5fixed_#_picture_string ::=
[fixed_LHS_sign] single_#_currency {direct_insertion}
[zero_suppression] number [RHS_sign]

| [fixed_LHS_sign] multiple_#_currency {direct_insertion}
zero_suppression number [RHS_sign]

| [fixed_LHS_sign {direct_insertion}] [zero_suppression]
number fixed_#_currency {direct_insertion} [RHS_sign]

| floating_LHS_sign number fixed_#_currency {direct_insertion} [RHS_sign]

| [fixed_LHS_sign] single_#_currency {direct_insertion}
all_zero_suppression_number {direct_insertion} [RHS_sign]

| [fixed_LHS_sign] multiple_#_currency {direct_insertion}
all_zero_suppression_number {direct_insertion} [RHS_sign]

| [fixed_LHS_sign {direct_insertion}] all_zero_suppression_number {direct_insertion}
fixed_#_currency {direct_insertion} [RHS_sign]

| all_sign_number {direct_insertion} fixed_#_currency {direct_insertion} [RHS_sign]

6floating_currency_picture_string ::=
[fixed_LHS_sign] {direct_insertion} floating_$_currency number [RHS_sign]

| [fixed_LHS_sign] {direct_insertion} floating_#_currency number [RHS_sign]
| [fixed_LHS_sign] {direct_insertion} all_currency_number {direct_insertion} [RHS_sign]

7non_currency_picture_string ::=
[fixed_LHS_sign {direct_insertion}] zero_suppression number [RHS_sign]

| [floating_LHS_sign] number [RHS_sign]
| [fixed_LHS_sign {direct_insertion}] all_zero_suppression_number {direct_insertion} [RHS_sign]
| all_sign_number {direct_insertion}
| fixed_LHS_sign direct_insertion {direct_insertion} number [RHS_sign]

8fixed_LHS_sign ::= LHS_Sign

ISO/IEC 8652:1995(E) —AARM;6.0

F.3.1 Picture String Formation 21 December 1994 616

9 LHS_Sign ::= + | – | <

10 fixed_$_char ::= $

11 direct_insertion ::= simple_insertion

12 simple_insertion ::= _ | B | 0 | /

13 zero_suppression ::= Z {Z | context_sensitive_insertion} | fill_string

14 context_sensitive_insertion ::= simple_insertion

15 fill_string ::= * {* | context_sensitive_insertion}

16 number ::=
fore_digits [radix [aft_digits] {direct_insertion}]

| radix aft_digits {direct_insertion}

17 fore_digits ::= 9 {9 | direct_insertion}

18 aft_digits ::= {9 | direct_insertion} 9

19 radix ::= . | V

20 RHS_sign ::= + | – | > | CR | DB

21 floating_LHS_sign ::=
LHS_Sign {context_sensitive_insertion} LHS_Sign {LHS_Sign | context_sensitive_insertion}

22 single_#_currency ::= #

23 multiple_#_currency ::= ## {#}

24 fixed_#_currency ::= single_#_currency | multiple_#_currency

25 floating_$_currency ::=
$ {context_sensitive_insertion} $ {$ | context_sensitive_insertion}

26 floating_#_currency ::=
{context_sensitive_insertion} # {# | context_sensitive_insertion}

27 all_sign_number ::= all_sign_fore [radix [all_sign_aft]] [>]

28 all_sign_fore ::=
sign_char {context_sensitive_insertion} sign_char {sign_char | context_sensitive_insertion}

29 all_sign_aft ::= {all_sign_aft_char} sign_char

all_sign_aft_char ::= sign_char | context_sensitive_insertion

30 sign_char ::= + | - | <

31 all_currency_number ::= all_currency_fore [radix [all_currency_aft]]

ISO/IEC 8652:1995(E) —AARM;6.0

617 21 December 1994 Picture String Formation F.3.1

32all_currency_fore ::=
currency_char {context_sensitive_insertion}
currency_char {currency_char | context_sensitive_insertion}

33all_currency_aft ::= {all_currency_aft_char} currency_char

all_currency_aft_char ::= currency_char | context_sensitive_insertion

34currency_char ::= $ | #

35all_zero_suppression_number ::= all_zero_suppression_fore [radix [all_zero_suppression_aft]]

36all_zero_suppression_fore ::=
zero_suppression_char {zero_suppression_char | context_sensitive_insertion}

37all_zero_suppression_aft ::= {all_zero_suppression_aft_char} zero_suppression_char

all_zero_suppression_aft_char ::= zero_suppression_char | context_sensitive_insertion

38zero_suppression_char ::= Z | *

39The following composition constraints apply to a picture String:

40• A floating_LHS_sign does not have occurrences of different LHS_Sign Character values.

41• If a picture String has ’<’ as fixed_LHS_sign, then it has ’>’ as RHS_sign.

42• If a picture String has ’<’ in a floating_LHS_sign or in an all_sign_number, then it has an
occurrence of ’>’.

43• If a picture String has ’+’ or ’-’ as fixed_LHS_sign, in a floating_LHS_sign, or in an all_sign_
number, then it has no RHS_sign.

44• An instance of all_sign_number does not have occurrences of different sign_char Character
values.

45• An instance of all_currency_number does not have occurrences of different currency_char
Character values.

46• An instance of all_zero_suppression_number does not have occurrences of different zero_
suppression_char Character values, except for possible case differences between ’Z’ and ’z’.

47A replicable Character is a Character that, by the above rules, can occur in two consecutive positions in a
picture String.

48A Character replication is a String
49char & ’(’ & spaces & count_string & ’)’

50where char is a replicable Character, spaces is a String (possibly empty) comprising only space Character
values, and count_string is a String of one or more decimal digit Character values. A Character replica-
tion in a picture String has the same effect as (and is said to be equivalent to) a String comprising n
consecutive occurrences of char, where n=Integer’Value(count_string).

51An expanded picture String is a picture String containing no Character replications.
51.aDiscussion: Since ’B’ is not allowed after a RHS sign, there is no need for a special rule to disallow "9.99DB(2)" as an

abbreviation for "9.99DBB"

ISO/IEC 8652:1995(E) —AARM;6.0

F.3.1 Picture String Formation 21 December 1994 618

NOTES
52 3 Although a sign to the left of the number can float, a sign to the right of the number is in a fixed position.

F.3.2 Edited Output Generation
Dynamic Semantics

1 The contents of an edited output string are based on:

2 • A value, Item, of some decimal type Num,

3 • An expanded picture String Pic_String,

4 • A Boolean value, Blank_When_Zero,

5 • A Currency string,

6 • A Fill character,

7 • A Separator character, and

8 • A Radix_Mark character.

9 The combination of a True value for Blank_When_Zero and a ’*’ character in Pic_String is inconsistent;
no edited output string is defined.

10 A layout error is identified in the rules below if leading non-zero digits of Item, character values of the
Currency string, or a negative sign would be truncated; in such cases no edited output string is defined.

11 The edited output string has lower bound 1 and upper bound N where N = Pic_String’Length + Currency_
Length_Adjustment - Radix_Adjustment, and

12 • Currency_Length_Adjustment = Currency’Length – 1 if there is some occurrence of ’$’ in
Pic_String, and 0 otherwise.

13 • Radix_Adjustment = 1 if there is an occurrence of ’V’ or ’v’ in Pic_Str, and 0 otherwise.

14 {displayed magnitude (of a decimal value)} Let the magnitude of Item be expressed as a base-10 number
Ip⋅⋅⋅I1.F1⋅⋅⋅Fq, called the displayed magnitude of Item, where:

15 • q = Min(Max(Num’Scale, 0), n) where n is 0 if Pic_String has no radix and is otherwise the
number of digit positions following radix in Pic_String, where a digit position corresponds to
an occurrence of ’9’, a zero_suppression_char (for an all_zero_suppression_number), a
currency_char (for an all_currency_number), or a sign_char (for an all_sign_number).

16 • Ip /= 0 if p>0.

17 If n < Num’Scale, then the above number is the result of rounding (away from 0 if exactly midway
between values).

18 If Blank_When_Zero = True and the displayed magnitude of Item is zero, then the edited output string
comprises all space character values. Otherwise, the picture String is treated as a sequence of instances of
syntactic categories based on the rules in F.3.1, and the edited output string is the concatenation of string
values derived from these categories according to the following mapping rules.

19 Table F-1 shows the mapping from a sign control symbol to a corresponding character or string in the
edited output. In the columns showing the edited output, a lower-case ’b’ represents the space character.
If there is no sign control symbol but the value of Item is negative, a layout error occurs and no edited
output string is produced.

ISO/IEC 8652:1995(E) —AARM;6.0

619 21 December 1994 Edited Output Generation F.3.2

Table F-1: Edited Output for Sign Control Symbols

Sign Control Symbol
Edited Output for

Non-Negative Number
Edited Output for
Negative Number

’+’ ’+’ ’-’

’-’ ’b’ ’-’

’<’ ’b’ ’(’

’>’ ’b’ ’)’

"CR" "bb" "CR"

"DB" "bb" "DB"

20An instance of fixed_LHS_sign maps to a character as shown in Table F-1.

21An instance of fixed_$_char maps to Currency.

22An instance of direct_insertion maps to Separator if direct_insertion = ’_’, and to the direct_insertion
Character otherwise.

23An instance of number maps to a string integer_part & radix_part & fraction_part where:

24• The string for integer_part is obtained as follows:
251. Occurrences of ’9’ in fore_digits of number are replaced from right to left with the

decimal digit character values for I1, ..., Ip, respectively.

262. Each occurrence of ’9’ in fore_digits to the left of the leftmost ’9’ replaced according
to rule 1 is replaced with ’0’.

273. If p exceeds the number of occurrences of ’9’ in fore_digits of number, then the
excess leftmost digits are eligible for use in the mapping of an instance of zero_
suppression, floating_LHS_sign, floating_$_currency, or floating_#_currency to the
left of number; if there is no such instance, then a layout error occurs and no edited
output string is produced.

28• The radix_part is:
29• "" if number does not include a radix, if radix = ’V’, or if radix = ’v’

30• Radix_Mark if number includes ’.’ as radix

31• The string for fraction_part is obtained as follows:
321. Occurrences of ’9’ in aft_digits of number are replaced from left to right with the

decimal digit character values for F1, ... Fq.

332. Each occurrence of ’9’ in aft_digits to the right of the rightmost ’9’ replaced accord-
ing to rule 1 is replaced by ’0’.

34An instance of zero_suppression maps to the string obtained as follows:
351. The rightmost ’Z’, ’z’, or ’*’ Character values are replaced with the excess digits (if any)

from the integer_part of the mapping of the number to the right of the zero_suppression
instance,

362. A context_sensitive_insertion Character is replaced as though it were a direct_insertion
Character, if it occurs to the right of some ’Z’, ’z’, or ’*’ in zero_suppression that has been
mapped to an excess digit,

ISO/IEC 8652:1995(E) —AARM;6.0

F.3.2 Edited Output Generation 21 December 1994 620

37 3. Each Character to the left of the leftmost Character replaced according to rule 1 above is
replaced by:

38 • the space character if the zero suppression Character is ’Z’ or ’z’, or

39 • the Fill character if the zero suppression Character is ’*’.

40 4. A layout error occurs if some excess digits remain after all ’Z’, ’z’, and ’*’ Character values
in zero_suppression have been replaced via rule 1; no edited output string is produced.

41 An instance of RHS_sign maps to a character or string as shown in Table F-1.

42 An instance of floating_LHS_sign maps to the string obtained as follows.
43 1. Up to all but one of the rightmost LHS_Sign Character values are replaced by the excess

digits (if any) from the integer_part of the mapping of the number to the right of the
floating_LHS_sign instance.

44 2. The next Character to the left is replaced with the character given by the entry in Table F-1
corresponding to the LHS_Sign Character.

45 3. A context_sensitive_insertion Character is replaced as though it were a direct_insertion
Character, if it occurs to the right of the leftmost LHS_Sign character replaced according to
rule 1.

46 4. Any other Character is replaced by the space character..

47 5. A layout error occurs if some excess digits remain after replacement via rule 1; no edited
output string is produced.

48 An instance of fixed_#_currency maps to the Currency string with n space character values concatenated
on the left (if the instance does not follow a radix) or on the right (if the instance does follow a radix),
where n is the difference between the length of the fixed_#_currency instance and Currency’Length. A
layout error occurs if Currency’Length exceeds the length of the fixed_#_currency instance; no edited
output string is produced.

49 An instance of floating_$_currency maps to the string obtained as follows:
50 1. Up to all but one of the rightmost ’$’ Character values are replaced with the excess digits (if

any) from the integer_part of the mapping of the number to the right of the
floating_$_currency instance.

51 2. The next Character to the left is replaced by the Currency string.

52 3. A context_sensitive_insertion Character is replaced as though it were a direct_insertion
Character, if it occurs to the right of the leftmost ’$’ Character replaced via rule 1.

53 4. Each other Character is replaced by the space character.

54 5. A layout error occurs if some excess digits remain after replacement by rule 1; no edited
output string is produced.

55 An instance of floating_#_currency maps to the string obtained as follows:
56 1. Up to all but one of the rightmost ’#’ Character values are replaced with the excess digits (if

any) from the integer_part of the mapping of the number to the right of the
floating_#_currency instance.

57 2. The substring whose last Character occurs at the position immediately preceding the
leftmost Character replaced via rule 1, and whose length is Currency’Length, is replaced by
the Currency string.

ISO/IEC 8652:1995(E) —AARM;6.0

621 21 December 1994 Edited Output Generation F.3.2

583. A context_sensitive_insertion Character is replaced as though it were a direct_insertion
Character, if it occurs to the right of the leftmost ’#’ replaced via rule 1.

594. Any other Character is replaced by the space character.

605. A layout error occurs if some excess digits remain after replacement rule 1, or if there is no
substring with the required length for replacement rule 2; no edited output string is
produced.

61An instance of all_zero_suppression_number maps to:

62• a string of all spaces if the displayed magnitude of Item is zero, the zero_suppression_char is
’Z’ or ’z’, and the instance of all_zero_suppression_number does not have a radix at its last
character position;

63• a string containing the Fill character in each position except for the character (if any) cor-
responding to radix, if zero_suppression_char = ’*’ and the displayed magnitude of Item is
zero;

64• otherwise, the same result as if each zero_suppression_char in all_zero_suppression_aft
were ’9’, interpreting the instance of all_zero_suppression_number as either zero_
suppression number (if a radix and all_zero_suppression_aft are present), or as zero_
suppression otherwise.

65An instance of all_sign_number maps to:

66• a string of all spaces if the displayed magnitude of Item is zero and the instance of all_sign_
number does not have a radix at its last character position;

67• otherwise, the same result as if each sign_char in all_sign_number_aft were ’9’, interpreting
the instance of all_sign_number as either floating_LHS_sign number (if a radix and all_sign_
number_aft are present), or as floating_LHS_sign otherwise.

68An instance of all_currency_number maps to:

69• a string of all spaces if the displayed magnitude of Item is zero and the instance of all_
currency_number does not have a radix at its last character position;

70• otherwise, the same result as if each currency_char in all_currency_number_aft were ’9’,
interpreting the instance of all_currency_number as floating_$_currency number or
floating_#_currency number (if a radix and all_currency_number_aft are present), or as
floating_$_currency or floating_#_currency otherwise.

Examples

71In the result string values shown below, ’b’ represents the space character.
72Item: Picture and Result Strings:

73123456.78 Picture: "-###**_***_**9.99"
"bbb$***123,456.78"
"bbFF***123.456,78" (currency = "FF",

separator = ’.’,
radix mark = ’,’)

74123456.78 Picture: "-$$$**_***_**9.99"
Result: "bbb$***123,456.78"

"bbbFF***123.456,78" (currency = "FF",
separator = ’.’,
radix mark = ’,’)

750.0 Picture: "-$$$$$$.$$"
Result: "bbbbbbbbbb"

760.20 Picture: "-$$$$$$.$$"
Result: "bbbbbb$.20"

ISO/IEC 8652:1995(E) —AARM;6.0

F.3.2 Edited Output Generation 21 December 1994 622

77 -1234.565 Picture: "<<<<_<<<.<<###>"
Result: "bb(1,234.57DMb)" (currency = "DM")

78 12345.67 Picture: "###_###_##9.99"
Result: "bbCHF12,345.67" (currency = "CHF")

F.3.3 The Package Text_IO.Editing
1 The package Text_IO.Editing provides a private type Picture with associated operations, and a generic

package Decimal_Output. An object of type Picture is composed from a well-formed picture String (see
F.3.1) and a Boolean item indicating whether a zero numeric value will result in an edited output string of
all space characters. The package Decimal_Output contains edited output subprograms implementing the
effects defined in F.3.2.

Static Semantics

2 The library package Text_IO.Editing has the following declaration:
3 package Ada.Text_IO.Editing is

4 type Picture is private;

5 function Valid (Pic_String : in String;
Blank_When_Zero : in Boolean := False) return Boolean;

6 function To_Picture (Pic_String : in String;
Blank_When_Zero : in Boolean := False)

return Picture;

7 function Pic_String (Pic : in Picture) return String;
function Blank_When_Zero (Pic : in Picture) return Boolean;

8 Max_Picture_Length : constant := implementation_defined;

9 Picture_Error : exception;

10 Default_Currency : constant String := "$";
Default_Fill : constant Character := ’*’;
Default_Separator : constant Character := ’,’;
Default_Radix_Mark : constant Character := ’.’;

11 generic
type Num is delta <> digits <>;
Default_Currency : in String := Text_IO.Editing.Default_Currency;
Default_Fill : in Character := Text_IO.Editing.Default_Fill;
Default_Separator : in Character := Text_IO.Editing.Default_Separator;
Default_Radix_Mark : in Character := Text_IO.Editing.Default_Radix_Mark;

package Decimal_Output is
function Length (Pic : in Picture;

Currency : in String := Default_Currency)
return Natural;

12 function Valid (Item : in Num;
Pic : in Picture;
Currency : in String := Default_Currency)

return Boolean;

13 function Image (Item : in Num;
Pic : in Picture;
Currency : in String := Default_Currency;
Fill : in Character := Default_Fill;
Separator : in Character := Default_Separator;
Radix_Mark : in Character := Default_Radix_Mark)

return String;

14 procedure Put (File : in File_Type;
Item : in Num;
Pic : in Picture;
Currency : in String := Default_Currency;
Fill : in Character := Default_Fill;
Separator : in Character := Default_Separator;
Radix_Mark : in Character := Default_Radix_Mark);

ISO/IEC 8652:1995(E) —AARM;6.0

623 21 December 1994 The Package Text_IO.Editing F.3.3

15procedure Put (Item : in Num;
Pic : in Picture;
Currency : in String := Default_Currency;
Fill : in Character := Default_Fill;
Separator : in Character := Default_Separator;
Radix_Mark : in Character := Default_Radix_Mark);

16procedure Put (To : out String;
Item : in Num;
Pic : in Picture;
Currency : in String := Default_Currency;
Fill : in Character := Default_Fill;
Separator : in Character := Default_Separator;
Radix_Mark : in Character := Default_Radix_Mark);

end Decimal_Output;
private

... -- not specified by the language
end Ada.Text_IO.Editing;

16.aImplementation defined: The value of Max_Picture_Length in the package Text_IO.Editing

17The exception Constraint_Error is raised if the Image function or any of the Put procedures is invoked
with a null string for Currency.

18function Valid (Pic_String : in String;
Blank_When_Zero : in Boolean := False) return Boolean;

19Valid returns True if Pic_String is a well-formed picture String (see F.3.1) the length of whose
expansion does not exceed Max_Picture_Length, and if either Blank_When_Zero is False or
Pic_String contains no ’*’.

20function To_Picture (Pic_String : in String;
Blank_When_Zero : in Boolean := False)

return Picture;

21To_Picture returns a result Picture such that the application of the function Pic_String to this
result yields an expanded picture String equivalent to Pic_String, and such that Blank_When_
Zero applied to the result Picture is the same value as the parameter Blank_When_Zero.
Picture_Error is raised if not Valid(Pic_String, Blank_When_Zero).

22function Pic_String (Pic : in Picture) return String;

function Blank_When_Zero (Pic : in Picture) return Boolean;

23If Pic is To_Picture(String_Item, Boolean_Item) for some String_Item and Boolean_Item, then:

24• Pic_String(Pic) returns an expanded picture String equivalent to String_Item and
with any lower-case letter replaced with its corresponding upper-case form, and

25• Blank_When_Zero(Pic) returns Boolean_Item.

26If Pic_1 and Pic_2 are objects of type Picture, then "="(Pic_1, Pic_2) is True when

27• Pic_String(Pic_1) = Pic_String(Pic_2), and

28• Blank_When_Zero(Pic_1) = Blank_When_Zero(Pic_2).

29function Length (Pic : in Picture;
Currency : in String := Default_Currency)

return Natural;

30Length returns Pic_String(Pic)’Length + Currency_Length_Adjustment - Radix_Adjustment
where

ISO/IEC 8652:1995(E) —AARM;6.0

F.3.3 The Package Text_IO.Editing 21 December 1994 624

31 • Currency_Length_Adjustment =

32 • Currency’Length – 1 if there is some occurrence of ’$’ in Pic_String(Pic),
and

33 • 0 otherwise.

34 • Radix_Adjustment =
35 • 1 if there is an occurrence of ’V’ or ’v’ in Pic_Str(Pic), and

36 • 0 otherwise.

37 function Valid (Item : in Num;
Pic : in Picture;
Currency : in String := Default_Currency)

return Boolean;

38 Valid returns True if Image(Item, Pic, Currency) does not raise Layout_Error, and returns False
otherwise.

39 function Image (Item : in Num;
Pic : in Picture;
Currency : in String := Default_Currency;
Fill : in Character := Default_Fill;
Separator : in Character := Default_Separator;
Radix_Mark : in Character := Default_Radix_Mark)

return String;

40 Image returns the edited output String as defined in F.3.2 for Item, Pic_String(Pic), Blank_
When_Zero(Pic), Currency, Fill, Separator, and Radix_Mark. If these rules identify a layout
error, then Image raises the exception Layout_Error.

41 procedure Put (File : in File_Type;
Item : in Num;
Pic : in Picture;
Currency : in String := Default_Currency;
Fill : in Character := Default_Fill;
Separator : in Character := Default_Separator;
Radix_Mark : in Character := Default_Radix_Mark);

procedure Put (Item : in Num;
Pic : in Picture;
Currency : in String := Default_Currency;
Fill : in Character := Default_Fill;
Separator : in Character := Default_Separator;
Radix_Mark : in Character := Default_Radix_Mark);

42 Each of these Put procedures outputs Image(Item, Pic, Currency, Fill, Separator, Radix_Mark)
consistent with the conventions for Put for other real types in case of bounded line length (see
A.10.6, ‘‘Get and Put Procedures’’).

43 procedure Put (To : out String;
Item : in Num;
Pic : in Picture;
Currency : in String := Default_Currency;
Fill : in Character := Default_Fill;
Separator : in Character := Default_Separator;
Radix_Mark : in Character := Default_Radix_Mark);

44 Put copies Image(Item, Pic, Currency, Fill, Separator, Radix_Mark) to the given string, right
justified. Otherwise unassigned Character values in To are assigned the space character. If
To’Length is less than the length of the string resulting from Image, then Layout_Error is
raised.

ISO/IEC 8652:1995(E) —AARM;6.0

625 21 December 1994 The Package Text_IO.Editing F.3.3

Implementation Requirements

45Max_Picture_Length shall be at least 30. The implementation shall support currency strings of length up
to at least 10, both for Default_Currency in an instantiation of Decimal_Output, and for Currency in an
invocation of Image or any of the Put procedures.

45.aDiscussion: This implies that a picture string with character replications need not be supported (i.e., To_Picture will
raise Picture_Error) if its expanded form exceeds 30 characters.

NOTES
464 The rules for edited output are based on COBOL (ANSI X3.23:1985, endorsed by ISO as ISO 1989-1985), with the

following differences:

47• The COBOL provisions for picture string localization and for ’P’ format are absent from Ada.

48• The following Ada facilities are not in COBOL:
49• currency symbol placement after the number,

50• localization of edited output string for multi-character currency string values, including support for both
length-preserving and length-expanding currency symbols in picture strings

51• localization of the radix mark, digits separator, and fill character, and

52• parenthesization of negative values.
The value of 30 for Max_Picture_Length is the same limit as in COBOL.

52.aReason: There are several reasons we have not adopted the COBOL-style permission to provide a single-character
replacement in the picture string for the ‘$’ as currency symbol, or to interchange the roles of ‘.’ and ‘,’ in picture
strings

52.b• It would have introduced considerable complexity into Ada, as well as confusion between run-time and
compile-time character interpretation, since picture Strings are dynamically computable in Ada, in contrast
with COBOL

52.c• Ada’s rules for real literals provide a natural interpretation of ‘_’ as digits separator and ‘.’ for radix mark;
it is not essential to allow these to be localized in picture strings, since Ada does not allow them to be
localized in real literals.

52.d• The COBOL restriction for the currency symbol in a picture string to be replaced by a single character
currency symbol is a compromise solution. For general international usage a mechanism is needed to
localize the edited output to be a multi-character currency string. Allowing a single-Character localization
for the picture Character, and a multiple-character localization for the currency string, would be an
unnecessary complication.

F.3.4 The Package Wide_Text_IO.Editing
Static Semantics

1{Ada.Wide_Text_IO.Editing} The child package Wide_Text_IO.Editing has the same contents as Text_IO.-
Editing, except that:

2• each occurrence of Character is replaced by Wide_Character,

3• each occurrence of Text_IO is replaced by Wide_Text_IO,

4• the subtype of Default_Currency is Wide_String rather than String, and

5• each occurrence of String in the generic package Decimal_Output is replaced by Wide_
String.

5.aImplementation defined: The value of Max_Picture_Length in the package Wide_Text_IO.Editing

NOTES
65 Each of the functions Wide_Text_IO.Editing.Valid, To_Picture, and Pic_String has String (versus Wide_String) as its

parameter or result subtype, since a picture String is not localizable.

ISO/IEC 8652:1995(E) —AARM;6.0

G Numerics 21 December 1994 626

ISO/IEC 8652:1995(E) —AARM;6.0

627 21 December 1994 Numerics G

Annex G
(normative)

Numerics

1{numerics} The Numerics Annex specifies

2• features for complex arithmetic, including complex I/O;

3• a mode (‘‘strict mode’’), in which the predefined arithmetic operations of floating point and
fixed point types and the functions and operations of various predefined packages have to
provide guaranteed accuracy or conform to other numeric performance requirements, which
the Numerics Annex also specifies;

4• a mode (‘‘relaxed mode’’), in which no accuracy or other numeric performance requirements
need be satisfied, as for implementations not conforming to the Numerics Annex;

5• models of floating point and fixed point arithmetic on which the accuracy requirements of
strict mode are based; and

6• the definitions of the model-oriented attributes of floating point types that apply in the strict
mode.

Implementation Advice

7If Fortran (respectively, C) is widely supported in the target environment, implementations supporting the
Numerics Annex should provide the child package Interfaces.Fortran (respectively, Interfaces.C)
specified in Annex B and should support a convention_identifier of Fortran (respectively, C) in the inter-
facing pragmas (see Annex B), thus allowing Ada programs to interface with programs written in that
language.

Extensions to Ada 83

7.a{extensions to Ada 83} This Annex is new to Ada 9X.

G.1 Complex Arithmetic
1Types and arithmetic operations for complex arithmetic are provided in Generic_Complex_Types, which

is defined in G.1.1. Implementation-defined approximations to the complex analogs of the mathematical
functions known as the ‘‘elementary functions’’ are provided by the subprograms in Generic_Complex_
Elementary_Functions, which is defined in G.1.2. Both of these library units are generic children of the
predefined package Numerics (see A.5). Nongeneric equivalents of these generic packages for each of
the predefined floating point types are also provided as children of Numerics.

1.aImplementation defined: The accuracy actually achieved by the complex elementary functions and by other complex
arithmetic operations.

1.bDiscussion: Complex arithmetic is defined in the Numerics Annex, rather than in the core, because it is considered to
be a specialized need of (some) numeric applications.

ISO/IEC 8652:1995(E) —AARM;6.0

G.1.1 Complex Types 21 December 1994 628

G.1.1 Complex Types
Static Semantics

1 The generic library package Numerics.Generic_Complex_Types has the following declaration:
2 generic

type Real is digits <>;
package Ada.Numerics.Generic_Complex_Types is

pragma Pure(Generic_Complex_Types);

3 type Complex is
record

Re, Im : Real’Base;
end record;

4 type Imaginary is private;

5 i : constant Imaginary;
j : constant Imaginary;

6 function Re (X : Complex) return Real’Base;
function Im (X : Complex) return Real’Base;
function Im (X : Imaginary) return Real’Base;

7 procedure Set_Re (X : in out Complex;
Re : in Real’Base);

procedure Set_Im (X : in out Complex;
Im : in Real’Base);

procedure Set_Im (X : out Imaginary;
Im : in Real’Base);

8 function Compose_From_Cartesian (Re, Im : Real’Base) return Complex;
function Compose_From_Cartesian (Re : Real’Base) return Complex;
function Compose_From_Cartesian (Im : Imaginary) return Complex;

9 function Modulus (X : Complex) return Real’Base;
function "abs" (Right : Complex) return Real’Base renames Modulus;

10 function Argument (X : Complex) return Real’Base;
function Argument (X : Complex;

Cycle : Real’Base) return Real’Base;

11 function Compose_From_Polar (Modulus, Argument : Real’Base)
return Complex;

function Compose_From_Polar (Modulus, Argument, Cycle : Real’Base)
return Complex;

12 function "+" (Right : Complex) return Complex;
function "-" (Right : Complex) return Complex;
function Conjugate (X : Complex) return Complex;

13 function "+" (Left, Right : Complex) return Complex;
function "-" (Left, Right : Complex) return Complex;
function "*" (Left, Right : Complex) return Complex;
function "/" (Left, Right : Complex) return Complex;

14 function "**" (Left : Complex; Right : Integer) return Complex;

15 function "+" (Right : Imaginary) return Imaginary;
function "-" (Right : Imaginary) return Imaginary;
function Conjugate (X : Imaginary) return Imaginary renames "-";
function "abs" (Right : Imaginary) return Real’Base;

16 function "+" (Left, Right : Imaginary) return Imaginary;
function "-" (Left, Right : Imaginary) return Imaginary;
function "*" (Left, Right : Imaginary) return Real’Base;
function "/" (Left, Right : Imaginary) return Real’Base;

17 function "**" (Left : Imaginary; Right : Integer) return Complex;

18 function "<" (Left, Right : Imaginary) return Boolean;
function "<=" (Left, Right : Imaginary) return Boolean;
function ">" (Left, Right : Imaginary) return Boolean;
function ">=" (Left, Right : Imaginary) return Boolean;

ISO/IEC 8652:1995(E) —AARM;6.0

629 21 December 1994 Complex Types G.1.1

19function "+" (Left : Complex; Right : Real’Base) return Complex;
function "+" (Left : Real’Base; Right : Complex) return Complex;
function "-" (Left : Complex; Right : Real’Base) return Complex;
function "-" (Left : Real’Base; Right : Complex) return Complex;
function "*" (Left : Complex; Right : Real’Base) return Complex;
function "*" (Left : Real’Base; Right : Complex) return Complex;
function "/" (Left : Complex; Right : Real’Base) return Complex;
function "/" (Left : Real’Base; Right : Complex) return Complex;

20function "+" (Left : Complex; Right : Imaginary) return Complex;
function "+" (Left : Imaginary; Right : Complex) return Complex;
function "-" (Left : Complex; Right : Imaginary) return Complex;
function "-" (Left : Imaginary; Right : Complex) return Complex;
function "*" (Left : Complex; Right : Imaginary) return Complex;
function "*" (Left : Imaginary; Right : Complex) return Complex;
function "/" (Left : Complex; Right : Imaginary) return Complex;
function "/" (Left : Imaginary; Right : Complex) return Complex;

21function "+" (Left : Imaginary; Right : Real’Base) return Complex;
function "+" (Left : Real’Base; Right : Imaginary) return Complex;
function "-" (Left : Imaginary; Right : Real’Base) return Complex;
function "-" (Left : Real’Base; Right : Imaginary) return Complex;
function "*" (Left : Imaginary; Right : Real’Base) return Imaginary;
function "*" (Left : Real’Base; Right : Imaginary) return Imaginary;
function "/" (Left : Imaginary; Right : Real’Base) return Imaginary;
function "/" (Left : Real’Base; Right : Imaginary) return Imaginary;

22private

23type Imaginary is new Real’Base;
i : constant Imaginary := 1.0;
j : constant Imaginary := 1.0;

24end Ada.Numerics.Generic_Complex_Types;

25{Ada.Numerics.Complex_Types} The library package Numerics.Complex_Types defines the same types, con-
stants, and subprograms as Numerics.Generic_Complex_Types, except that the predefined type Float is
systematically substituted for Real’Base throughout. Nongeneric equivalents of Numerics.Generic_
Complex_Types for each of the other predefined floating point types are defined similarly, with the
names Numerics.Short_Complex_Types, Numerics.Long_Complex_Types, etc.

25.aReason: The nongeneric equivalents are provided to allow the programmer to construct simple mathematical
applications without being required to understand and use generics.

25.bReason: The nongeneric equivalents all export the types Complex and Imaginary and the constants i and j (rather than
uniquely named types and constants, such as Short_Complex, Long_Complex, etc.) to preserve their equivalence to
actual instantiations of the generic package and to allow the programmer to change the precision of an application
globally by changing a single context clause.

26[Complex is a visible type with cartesian components.]
26.aReason: The cartesian representation is far more common than the polar representation, in practice. The accuracy of

the results of the complex arithmetic operations and of the complex elementary functions is dependent on the
representation; thus, implementers need to know that representation. The type is visible so that complex ‘‘literals’’ can
be written in aggregate notation, if desired.

27[Imaginary is a private type; its full type is derived from Real’Base.]
27.aReason: The Imaginary type and the constants i and j are provided for two reasons:

27.b• They allow complex ‘‘literals’’ to be written in the alternate form of a + b*i (or a + b*j), if desired. Of
course, in some contexts the sum will need to be parenthesized.

27.c• When an Ada binding to IEC 559:1989 that provides (signed) infinities as the result of operations that
overflow becomes available, it will be important to allow arithmetic between pure-imaginary and complex
operands without requiring the former to be represented as (or promoted to) complex values with a real
component of zero. For example, the multiplication of a + b*i by d*i should yield −b⋅d + a⋅d*i, but if one
cannot avoid representing the pure-imaginary value d*i as the complex value 0.0 + d*i, then a NaN
("Not-a-Number") could be produced as the result of multiplying a by 0.0 (e.g., when a is infinite); the
NaN could later trigger an exception. Providing the Imaginary type and overloadings of the arithmetic

ISO/IEC 8652:1995(E) —AARM;6.0

G.1.1 Complex Types 21 December 1994 630

operators for mixtures of Imaginary and Complex operands gives the programmer the same control over
avoiding premature coercion of pure-imaginary values to complex as is already provided for pure-real
values.

27.d Reason: The Imaginary type is private, rather than being visibly derived from Real’Base, for two reasons:

27.e • to preclude implicit conversions of real literals to the Imaginary type (such implicit conversions would
make many common arithmetic expressions ambiguous); and

27.f • to suppress the implicit derivation of the multiplication, division, and absolute value operators with
Imaginary operands and an Imaginary result (the result type would be incorrect).

27.g Reason: The base subtype Real’Base is used for the component type of Complex, the parent type of Imaginary, and
the parameter and result types of some of the subprograms to maximize the chances of being able to pass meaningful
values into the subprograms and receive meaningful results back. The generic formal parameter Real therefore plays
only one role, that of providing the precision to be maintained in complex arithmetic calculations. Thus, the
subprograms in Numerics.Generic_Complex_Types share with those in Numerics.Generic_Elementary_Functions, and
indeed even with the predefined arithmetic operations (see 4.5), the property of being free of range checks on input and
output, i.e., of being able to exploit the base range of the relevant floating point type fully. As a result, the user loses
the ability to impose application-oriented bounds on the range of values that the components of a complex variable can
acquire; however, it can be argued that few, if any, applications have a naturally square domain (as opposed to a
circular domain) anyway.

28 The arithmetic operations and the Re, Im, Modulus, Argument, and Conjugate functions have their usual
mathematical meanings. When applied to a parameter of pure-imaginary type, the ‘‘imaginary-part’’
function Im yields the value of its parameter, as the corresponding real value.

28.a Reason: The latter case can be understood by considering the parameter of pure-imaginary type to represent a
complex value with a zero real part.

The remaining subprograms have the following meanings:

29 • The Set_Re and Set_Im procedures replace the designated component of a complex
parameter with the given real value; applied to a parameter of pure-imaginary type, the
Set_Im procedure replaces the value of that parameter with the imaginary value correspond-
ing to the given real value.

30 • The Compose_From_Cartesian function constructs a complex value from the given real and
imaginary components. If only one component is given, the other component is implicitly
zero.

31 • The Compose_From_Polar function constructs a complex value from the given modulus
(radius) and argument (angle). When the value of the parameter Modulus is positive (resp.,
negative), the result is the complex value represented by the point in the complex plane lying
at a distance from the origin given by the absolute value of Modulus and forming an angle
measured counterclockwise from the positive (resp., negative) real axis given by the value of
the parameter Argument.

32 When the Cycle parameter is specified, the result of the Argument function and the parameter Argument
of the Compose_From_Polar function are measured in units such that a full cycle of revolution has the
given value; otherwise, they are measured in radians.

33 The computed results of the mathematically multivalued functions are rendered single-valued by the
following conventions, which are meant to imply the principal branch:

34 • The result of the Modulus function is nonnegative.

35 • The result of the Argument function is in the quadrant containing the point in the complex
plane represented by the parameter X. This may be any quadrant (I through IV); thus, the
range of the Argument function is approximately −π to π (−Cycle/2.0 to Cycle/2.0, if the
parameter Cycle is specified). When the point represented by the parameter X lies on the
negative real axis, the result approximates

ISO/IEC 8652:1995(E) —AARM;6.0

631 21 December 1994 Complex Types G.1.1

36• π (resp., −π) when the sign of the imaginary component of X is positive (resp., nega-
tive), if Real’Signed_Zeros is True;

37• π, if Real’Signed_Zeros is False.

38• Because a result lying on or near one of the axes may not be exactly representable, the
approximation inherent in computing the result may place it in an adjacent quadrant, close to
but on the wrong side of the axis.

Dynamic Semantics

39The exception Numerics.Argument_Error is raised by the Argument and Compose_From_Polar functions
with specified cycle, signaling a parameter value outside the domain of the corresponding mathematical
function, when the value of the parameter Cycle is zero or negative.

40{Division_Check [partial]} {check, language-defined (Division_Check)} {Constraint_Error (raised by failure of run-time

check)} The exception Constraint_Error is raised by the division operator when the value of the right
operand is zero, and by the exponentiation operator when the value of the left operand is zero and the
value of the exponent is negative, provided that Real’Machine_Overflows is True; when Real’Machine_
Overflows is False, the result is unspecified. {unspecified [partial]} [Constraint_Error can also be raised
when a finite result overflows (see G.2.6).]

40.aDiscussion: It is anticipated that an Ada binding to IEC 559:1989 will be developed in the future. As part of such a
binding, the Machine_Overflows attribute of a conformant floating point type will be specified to yield False, which
will permit implementations of the complex arithmetic operations to deliver results with an infinite component (and set
the overflow flag defined by the binding) instead of raising Constraint_Error in overflow situations, when traps are
disabled. Similarly, it is appropriate for the complex arithmetic operations to deliver results with infinite components
(and set the zero-divide flag defined by the binding) instead of raising Constraint_Error in the situations defined above,
when traps are disabled. Finally, such a binding should also specify the behavior of the complex arithmetic operations,
when sensible, given operands with infinite components.

Implementation Requirements

41In the implementation of Numerics.Generic_Complex_Types, the range of intermediate values allowed
during the calculation of a final result shall not be affected by any range constraint of the subtype Real.

41.aImplementation Note: Implementations of Numerics.Generic_Complex_Types written in Ada should therefore avoid
declaring local variables of subtype Real; the subtype Real’Base should be used instead.

42{prescribed result (for the evaluation of a complex arithmetic operation)} In the following cases, evaluation of a
complex arithmetic operation shall yield the prescribed result, provided that the preceding rules do not
call for an exception to be raised:

43• The results of the Re, Im, and Compose_From_Cartesian functions are exact.

44• The real (resp., imaginary) component of the result of a binary addition operator that yields a
result of complex type is exact when either of its operands is of pure-imaginary (resp., real)
type.

44.aRamification: The result of the addition operator is exact when one of its operands is of real type and the other
is of pure-imaginary type. In this particular case, the operator is analogous to the Compose_From_Cartesian
function; it performs no arithmetic.

45• The real (resp., imaginary) component of the result of a binary subtraction operator that
yields a result of complex type is exact when its right operand is of pure-imaginary (resp.,
real) type.

46• The real component of the result of the Conjugate function for the complex type is exact.

47• When the point in the complex plane represented by the parameter X lies on the nonnegative
real axis, the Argument function yields a result of zero.

ISO/IEC 8652:1995(E) —AARM;6.0

G.1.1 Complex Types 21 December 1994 632

47.a Discussion: Argument(X + i*Y) is analogous to EF.Arctan(Y, X), where EF is an appropriate instance of
Numerics.Generic_Elementary_Functions, except when X and Y are both zero, in which case the former yields
the value zero while the latter raises Numerics.Argument_Error.

48 • When the value of the parameter Modulus is zero, the Compose_From_Polar function yields
a result of zero.

49 • When the value of the parameter Argument is equal to a multiple of the quarter cycle, the
result of the Compose_From_Polar function with specified cycle lies on one of the axes. In
this case, one of its components is zero, and the other has the magnitude of the parameter
Modulus.

50 • Exponentiation by a zero exponent yields the value one. Exponentiation by a unit exponent
yields the value of the left operand. Exponentiation of the value one yields the value one.
Exponentiation of the value zero yields the value zero, provided that the exponent is nonzero.
When the left operand is of pure-imaginary type, one component of the result of the exponen-
tiation operator is zero.

51 When the result, or a result component, of any operator of Numerics.Generic_Complex_Types has a
mathematical definition in terms of a single arithmetic or relational operation, that result or result com-
ponent exhibits the accuracy of the corresponding operation of the type Real.

52 Other accuracy requirements for the Modulus, Argument, and Compose_From_Polar functions, and ac-
curacy requirements for the multiplication of a pair of complex operands or for division by a complex
operand, all of which apply only in the strict mode, are given in G.2.6.

53 The sign of a zero result or zero result component yielded by a complex arithmetic operation or function
is implementation defined when Real’Signed_Zeros is True.

53.a Implementation defined: The sign of a zero result (or a component thereof) from any operator or function in
Numerics.Generic_Complex_Types, when Real’Signed_Zeros is True.

Implementation Permissions

54 The nongeneric equivalent packages may, but need not, be actual instantiations of the generic package for
the appropriate predefined type.

55 Implementations may obtain the result of exponentiation of a complex or pure-imaginary operand by
repeated complex multiplication, with arbitrary association of the factors and with a possible final com-
plex reciprocation (when the exponent is negative). Implementations are also permitted to obtain the
result of exponentiation of a complex operand, but not of a pure-imaginary operand, by converting the left
operand to a polar representation; exponentiating the modulus by the given exponent; multiplying the
argument by the given exponent, when the exponent is positive, or dividing the argument by the absolute
value of the given exponent, when the exponent is negative; and reconverting to a cartesian represen-
tation. Because of this implementation freedom, no accuracy requirement is imposed on complex ex-
ponentiation (except for the prescribed results given above, which apply regardless of the implementation
method chosen).

Implementation Advice

56 Because the usual mathematical meaning of multiplication of a complex operand and a real operand is
that of the scaling of both components of the former by the latter, an implementation should not perform
this operation by first promoting the real operand to complex type and then performing a full complex
multiplication. In systems that, in the future, support an Ada binding to IEC 559:1989, the latter tech-
nique will not generate the required result when one of the components of the complex operand is infinite.

ISO/IEC 8652:1995(E) —AARM;6.0

633 21 December 1994 Complex Types G.1.1

(Explicit multiplication of the infinite component by the zero component obtained during promotion
yields a NaN that propagates into the final result.) Analogous advice applies in the case of multiplication
of a complex operand and a pure-imaginary operand, and in the case of division of a complex operand by
a real or pure-imaginary operand.

57Likewise, because the usual mathematical meaning of addition of a complex operand and a real operand
is that the imaginary operand remains unchanged, an implementation should not perform this operation by
first promoting the real operand to complex type and then performing a full complex addition. In im-
plementations in which the Signed_Zeros attribute of the component type is True (and which therefore
conform to IEC 559:1989 in regard to the handling of the sign of zero in predefined arithmetic opera-
tions), the latter technique will not generate the required result when the imaginary component of the
complex operand is a negatively signed zero. (Explicit addition of the negative zero to the zero obtained
during promotion yields a positive zero.) Analogous advice applies in the case of addition of a complex
operand and a pure-imaginary operand, and in the case of subtraction of a complex operand and a real or
pure-imaginary operand.

58Implementations in which Real’Signed_Zeros is True should attempt to provide a rational treatment of
the signs of zero results and result components. As one example, the result of the Argument function
should have the sign of the imaginary component of the parameter X when the point represented by that
parameter lies on the positive real axis; as another, the sign of the imaginary component of the Compose_
From_Polar function should be the same as (resp., the opposite of) that of the Argument parameter when
that parameter has a value of zero and the Modulus parameter has a nonnegative (resp., negative) value.

Wording Changes From Ada 83

58.aThe semantics of Numerics.Generic_Complex_Types differs from Generic_Complex_Types as defined in ISO/IEC CD
13813 (for Ada 83) in the following ways:

58.b• The generic package is a child of the package defining the Argument_Error exception.

58.c• The nongeneric equivalents export types and constants with the same names as those exported by the
generic package, rather than with names unique to the package.

58.d• Implementations are not allowed to impose an optional restriction that the generic actual parameter
associated with Real be unconstrained. (In view of the ability to declare variables of subtype Real’Base in
implementations of Numerics.Generic_Complex_Types, this flexibility is no longer needed.)

58.e• The dependence of the Argument function on the sign of a zero parameter component is tied to the value of
Real’Signed_Zeros.

58.f• Conformance to accuracy requirements is conditional.

G.1.2 Complex Elementary Functions
Static Semantics

1The generic library package Numerics.Generic_Complex_Elementary_Functions has the following decla-
ration:

2with Ada.Numerics.Generic_Complex_Types;
generic

with package Complex_Types is new Ada.Numerics.Generic_Complex_Types (<>);
use Complex_Types;

package Ada.Numerics.Generic_Complex_Elementary_Functions is
pragma Pure(Generic_Complex_Elementary_Functions);

ISO/IEC 8652:1995(E) —AARM;6.0

G.1.2 Complex Elementary Functions 21 December 1994 634

3 function Sqrt (X : Complex) return Complex;
function Log (X : Complex) return Complex;
function Exp (X : Complex) return Complex;
function Exp (X : Imaginary) return Complex;
function "**" (Left : Complex; Right : Complex) return Complex;
function "**" (Left : Complex; Right : Real’Base) return Complex;
function "**" (Left : Real’Base; Right : Complex) return Complex;

4 function Sin (X : Complex) return Complex;
function Cos (X : Complex) return Complex;
function Tan (X : Complex) return Complex;
function Cot (X : Complex) return Complex;

5 function Arcsin (X : Complex) return Complex;
function Arccos (X : Complex) return Complex;
function Arctan (X : Complex) return Complex;
function Arccot (X : Complex) return Complex;

6 function Sinh (X : Complex) return Complex;
function Cosh (X : Complex) return Complex;
function Tanh (X : Complex) return Complex;
function Coth (X : Complex) return Complex;

7 function Arcsinh (X : Complex) return Complex;
function Arccosh (X : Complex) return Complex;
function Arctanh (X : Complex) return Complex;
function Arccoth (X : Complex) return Complex;

8 end Ada.Numerics.Generic_Complex_Elementary_Functions;

9 {Ada.Numerics.Complex_Elementary_Functions} The library package Numerics.Complex_Elementary_Functions
defines the same subprograms as Numerics.Generic_Complex_Elementary_Functions, except that the
predefined type Float is systematically substituted for Real’Base, and the Complex and Imaginary types
exported by Numerics.Complex_Types are systematically substituted for Complex and Imaginary,
throughout. Nongeneric equivalents of Numerics.Generic_Complex_Elementary_Functions correspond-
ing to each of the other predefined floating point types are defined similarly, with the names Numerics.-
Short_Complex_Elementary_Functions, Numerics.Long_Complex_Elementary_Functions, etc.

9.a Reason: The nongeneric equivalents are provided to allow the programmer to construct simple mathematical
applications without being required to understand and use generics.

10 The overloading of the Exp function for the pure-imaginary type is provided to give the user an alternate
way to compose a complex value from a given modulus and argument. In addition to Compose_From_
Polar(Rho, Theta) (see G.1.1), the programmer may write Rho * Exp(i * Theta).

11 The imaginary (resp., real) component of the parameter X of the forward hyperbolic (resp., trigonometric)
functions and of the Exp function (and the parameter X, itself, in the case of the overloading of the Exp
function for the pure-imaginary type) represents an angle measured in radians, as does the imaginary
(resp., real) component of the result of the Log and inverse hyperbolic (resp., trigonometric) functions.

12 The functions have their usual mathematical meanings. However, the arbitrariness inherent in the place-
ment of branch cuts, across which some of the complex elementary functions exhibit discontinuities, is
eliminated by the following conventions:

13 • The imaginary component of the result of the Sqrt and Log functions is discontinuous as the
parameter X crosses the negative real axis.

14 • The result of the exponentiation operator when the left operand is of complex type is discon-
tinuous as that operand crosses the negative real axis.

15 • The real (resp., imaginary) component of the result of the Arcsin and Arccos (resp., Arctanh)
functions is discontinuous as the parameter X crosses the real axis to the left of −1.0 or the
right of 1.0.

ISO/IEC 8652:1995(E) —AARM;6.0

635 21 December 1994 Complex Elementary Functions G.1.2

16• The real (resp., imaginary) component of the result of the Arctan (resp., Arcsinh) function is
discontinuous as the parameter X crosses the imaginary axis below −i or above i.

17• The real component of the result of the Arccot function is discontinuous as the parameter X
crosses the imaginary axis between −i and i.

18• The imaginary component of the Arccosh function is discontinuous as the parameter X
crosses the real axis to the left of 1.0.

19• The imaginary component of the result of the Arccoth function is discontinuous as the
parameter X crosses the real axis between −1.0 and 1.0.

20The computed results of the mathematically multivalued functions are rendered single-valued by the
following conventions, which are meant to imply the principal branch:

21• The real component of the result of the Sqrt and Arccosh functions is nonnegative.

22• The same convention applies to the imaginary component of the result of the Log function as
applies to the result of the natural-cycle version of the Argument function of Numerics.-
Generic_Complex_Types (see G.1.1).

23• The range of the real (resp., imaginary) component of the result of the Arcsin and Arctan
(resp., Arcsinh and Arctanh) functions is approximately −π/2.0 to π/2.0.

24• The real (resp., imaginary) component of the result of the Arccos and Arccot (resp., Arccoth)
functions ranges from 0.0 to approximately π.

25• The range of the imaginary component of the result of the Arccosh function is approximately
−π to π.

26In addition, the exponentiation operator inherits the single-valuedness of the Log function.

Dynamic Semantics

27The exception Numerics.Argument_Error is raised by the exponentiation operator, signaling a parameter
value outside the domain of the corresponding mathematical function, when the value of the left operand
is zero and the real component of the exponent (or the exponent itself, when it is of real type) is zero.

28{Division_Check [partial]} {check, language-defined (Division_Check)} {Constraint_Error (raised by failure of run-time

check)} The exception Constraint_Error is raised, signaling a pole of the mathematical function (analogous
to dividing by zero), in the following cases, provided that Complex_Types.Real’Machine_Overflows is
True:

29• by the Log, Cot, and Coth functions, when the value of the parameter X is zero;

30• by the exponentiation operator, when the value of the left operand is zero and the real com-
ponent of the exponent (or the exponent itself, when it is of real type) is negative;

31• by the Arctan and Arccot functions, when the value of the parameter X is ± i;

32• by the Arctanh and Arccoth functions, when the value of the parameter X is ± 1.0.

33[Constraint_Error can also be raised when a finite result overflows (see G.2.6); this may occur for
parameter values sufficiently near poles, and, in the case of some of the functions, for parameter values
having components of sufficiently large magnitude.]

33.aReason: The purpose of raising Constraint_Error (rather than Numerics.Argument_Error) at the poles of a function,
when Float_Type’Machine_Overflows is True, is to provide continuous behavior as the actual parameters of the
function approach the pole and finally reach it.

{unspecified [partial]} When Complex_Types.Real’Machine_Overflows is False, the result at poles is un-
specified.

ISO/IEC 8652:1995(E) —AARM;6.0

G.1.2 Complex Elementary Functions 21 December 1994 636

33.b Discussion: It is anticipated that an Ada binding to IEC 559:1989 will be developed in the future. As part of such a
binding, the Machine_Overflows attribute of a conformant floating point type will be specified to yield False, which
will permit implementations of the complex elementary functions to deliver results with an infinite component (and set
the overflow flag defined by the binding) instead of raising Constraint_Error in overflow situations, when traps are
disabled. Similarly, it is appropriate for the complex elementary functions to deliver results with an infinite component
(and set the zero-divide flag defined by the binding) instead of raising Constraint_Error at poles, when traps are
disabled. Finally, such a binding should also specify the behavior of the complex elementary functions, when sensible,
given parameters with infinite components.

Implementation Requirements

34 In the implementation of Numerics.Generic_Complex_Elementary_Functions, the range of intermediate
values allowed during the calculation of a final result shall not be affected by any range constraint of the
subtype Complex_Types.Real.

34.a Implementation Note: Implementations of Numerics.Generic_Complex_Elementary_Functions written in Ada should
therefore avoid declaring local variables of subtype Complex_Types.Real; the subtype Complex_Types.Real’Base
should be used instead.

35 {prescribed result (for the evaluation of a complex elementary function)} In the following cases, evaluation of a
complex elementary function shall yield the prescribed result (or a result having the prescribed com-
ponent), provided that the preceding rules do not call for an exception to be raised:

36 • When the parameter X has the value zero, the Sqrt, Sin, Arcsin, Tan, Arctan, Sinh, Arcsinh,
Tanh, and Arctanh functions yield a result of zero; the Exp, Cos, and Cosh functions yield a
result of one; the Arccos and Arccot functions yield a real result; and the Arccoth function
yields an imaginary result.

37 • When the parameter X has the value one, the Sqrt function yields a result of one; the Log,
Arccos, and Arccosh functions yield a result of zero; and the Arcsin function yields a real
result.

38 • When the parameter X has the value −1.0, the Sqrt function yields the result
39 • i (resp., −i), when the sign of the imaginary component of X is positive (resp., nega-

tive), if Complex_Types.Real’Signed_Zeros is True;

40 • i, if Complex_Types.Real’Signed_Zeros is False;

41 • the Log function yields an imaginary result; and the Arcsin and Arccos functions yield a real
result.

42 • When the parameter X has the value ± i, the Log function yields an imaginary result.

43 • Exponentiation by a zero exponent yields the value one. Exponentiation by a unit exponent
yields the value of the left operand (as a complex value). Exponentiation of the value one
yields the value one. Exponentiation of the value zero yields the value zero.

43.a Discussion: It is possible to give many other prescribed results restricting the result to the real or imaginary axis when
the parameter X is appropriately restricted to easily testable portions of the domain. We follow the proposed ISO/IEC
standard for Generic_Complex_Elementary_Functions (for Ada 83), CD 13813, in not doing so, however.

44 Other accuracy requirements for the complex elementary functions, which apply only in the strict mode,
are given in G.2.6.

45 The sign of a zero result or zero result component yielded by a complex elementary function is implemen-
tation defined when Complex_Types.Real’Signed_Zeros is True.

45.a Implementation defined: The sign of a zero result (or a component thereof) from any operator or function in
Numerics.Generic_Complex_Elementary_Functions, when Complex_Types.Real’Signed_Zeros is True.

ISO/IEC 8652:1995(E) —AARM;6.0

637 21 December 1994 Complex Elementary Functions G.1.2

Implementation Permissions

46The nongeneric equivalent packages may, but need not, be actual instantiations of the generic package
with the appropriate predefined nongeneric equivalent of Numerics.Generic_Complex_Types; if they are,
then the latter shall have been obtained by actual instantiation of Numerics.Generic_Complex_Types.

47The exponentiation operator may be implemented in terms of the Exp and Log functions. Because this
implementation yields poor accuracy in some parts of the domain, no accuracy requirement is imposed on
complex exponentiation.

48{unspecified [partial]} The implementation of the Exp function of a complex parameter X is allowed to raise
the exception Constraint_Error, signaling overflow, when the real component of X exceeds an unspecified
threshold that is approximately log (Complex_Types.Real’Safe_Last). This permission recognizes the
impracticality of avoiding overflow in the marginal case that the exponential of the real component of X
exceeds the safe range of Complex_Types.Real but both components of the final result do not. Similarly,
the Sin and Cos (resp., Sinh and Cosh) functions are allowed to raise the exception Constraint_Error,
signaling overflow, when the absolute value of the imaginary (resp., real) component of the parameter X
exceeds an unspecified threshold that is approximately log (Complex_Types.Real’Safe_Last)+log (2.0).
{unspecified [partial]} This permission recognizes the impracticality of avoiding overflow in the marginal
case that the hyperbolic sine or cosine of the imaginary (resp., real) component of X exceeds the safe
range of Complex_Types.Real but both components of the final result do not.

Implementation Advice

49Implementations in which Complex_Types.Real’Signed_Zeros is True should attempt to provide a ra-
tional treatment of the signs of zero results and result components. For example, many of the complex
elementary functions have components that are odd functions of one of the parameter components; in
these cases, the result component should have the sign of the parameter component at the origin. Other
complex elementary functions have zero components whose sign is opposite that of a parameter com-
ponent at the origin, or is always positive or always negative.

Wording Changes From Ada 83

49.aThe semantics of Numerics.Generic_Complex_Elementary_Functions differs from Generic_Complex_Elementary_
Functions as defined in ISO/IEC CD 13814 (for Ada 83) in the following ways:

49.b• The generic package is a child unit of the package defining the Argument_Error exception.

49.c• The proposed Generic_Complex_Elementary_Functions standard (for Ada 83) specified names for the
nongeneric equivalents, if provided. Here, those nongeneric equivalents are required.

49.d• The generic package imports an instance of Numerics.Generic_Complex_Types rather than a long list of
individual types and operations exported by such an instance.

49.e• The dependence of the imaginary component of the Sqrt and Log functions on the sign of a zero parameter
component is tied to the value of Complex_Types.Real’Signed_Zeros.

49.f• Conformance to accuracy requirements is conditional.

G.1.3 Complex Input-Output
1The generic package Text_IO.Complex_IO defines procedures for the formatted input and output of com-

plex values. The generic actual parameter in an instantiation of Text_IO.Complex_IO is an instance of
Numerics.Generic_Complex_Types for some floating point subtype. Exceptional conditions are reported
by raising the appropriate exception defined in Text_IO.

1.aImplementation Note: An implementation of Text_IO.Complex_IO can be built around an instance of Text_IO.-
Float_IO for the base subtype of Complex_Types.Real, where Complex_Types is the generic formal package
parameter of Text_IO.Complex_IO. There is no need for an implementation of Text_IO.Complex_IO to parse real
values.

ISO/IEC 8652:1995(E) —AARM;6.0

G.1.3 Complex Input-Output 21 December 1994 638

Static Semantics

2 The generic library package Text_IO.Complex_IO has the following declaration:
2.a Ramification: Because this is a child of Text_IO, the declarations of the visible part of Text_IO are directly visible

within it.

3 with Ada.Numerics.Generic_Complex_Types;
generic

with package Complex_Types is new Ada.Numerics.Generic_Complex_Types (<>);
package Ada.Text_IO.Complex_IO is

4 use Complex_Types;

5 Default_Fore : Field := 2;
Default_Aft : Field := Real’Digits - 1;
Default_Exp : Field := 3;

6 procedure Get (File : in File_Type;
Item : out Complex;
Width : in Field := 0);

procedure Get (Item : out Complex;
Width : in Field := 0);

7 procedure Put (File : in File_Type;
Item : in Complex;
Fore : in Field := Default_Fore;
Aft : in Field := Default_Aft;
Exp : in Field := Default_Exp);

procedure Put (Item : in Complex;
Fore : in Field := Default_Fore;
Aft : in Field := Default_Aft;
Exp : in Field := Default_Exp);

8 procedure Get (From : in String;
Item : out Complex;
Last : out Positive);

procedure Put (To : out String;
Item : in Complex;
Aft : in Field := Default_Aft;
Exp : in Field := Default_Exp);

9 end Ada.Text_IO.Complex_IO;

10 The semantics of the Get and Put procedures are as follows:

11 procedure Get (File : in File_Type;
Item : out Complex;
Width : in Field := 0);

procedure Get (Item : out Complex;
Width : in Field := 0);

12 The input sequence is a pair of optionally signed real literals representing the real and imagi-
nary components of a complex value; optionally, the pair of components may be separated by a
comma and/or surrounded by a pair of parentheses. Blanks are freely allowed before each of
the components and before the parentheses and comma, if either is used. If the value of the
parameter Width is zero, then

13 • line and page terminators are also allowed in these places;

14 • the components shall be separated by at least one blank or line terminator if the
comma is omitted; and

15 • reading stops when the right parenthesis has been read, if the input sequence in-
cludes a left parenthesis, or when the imaginary component has been read, other-
wise.

If a nonzero value of Width is supplied, then

ISO/IEC 8652:1995(E) —AARM;6.0

639 21 December 1994 Complex Input-Output G.1.3

16• the components shall be separated by at least one blank if the comma is omitted;
and

17• exactly Width characters are read, or the characters (possibly none) up to a line
terminator, whichever comes first (blanks are included in the count).

17.aReason: The parenthesized and comma-separated form is the form produced by Put on output (see below), and also by
list-directed output in Fortran. The other allowed forms match several common styles of edit-directed output in
Fortran, allowing most preexisting Fortran data files containing complex data to be read easily. When such files
contain complex values with no separation between the real and imaginary components, the user will have to read those
components separately, using an instance of Text_IO.Float_IO.

18Returns, in the parameter Item, the value of type Complex that corresponds to the input se-
quence.

19The exception Text_IO.Data_Error is raised if the input sequence does not have the required
syntax or if the components of the complex value obtained are not of the base subtype of
Complex_Types.Real.

20procedure Put (File : in File_Type;
Item : in Complex;
Fore : in Field := Default_Fore;
Aft : in Field := Default_Aft;
Exp : in Field := Default_Exp);

procedure Put (Item : in Complex;
Fore : in Field := Default_Fore;
Aft : in Field := Default_Aft;
Exp : in Field := Default_Exp);

21Outputs the value of the parameter Item as a pair of decimal literals representing the real and
imaginary components of the complex value, using the syntax of an aggregate. More specifi-
cally,

22• outputs a left parenthesis;

23• outputs the value of the real component of the parameter Item with the format
defined by the corresponding Put procedure of an instance of Text_IO.Float_IO for
the base subtype of Complex_Types.Real, using the given values of Fore, Aft, and
Exp;

24• outputs a comma;

25• outputs the value of the imaginary component of the parameter Item with the for-
mat defined by the corresponding Put procedure of an instance of Text_IO.-
Float_IO for the base subtype of Complex_Types.Real, using the given values of
Fore, Aft, and Exp;

26• outputs a right parenthesis.
26.aDiscussion: If the file has a bounded line length, a line terminator may be output implicitly before any element of the

sequence itemized above.

26.bDiscussion: The option of outputting the complex value as a pair of reals without additional punctuation is not
provided, since it can be accomplished by outputting the real and imaginary components of the complex value
separately.

27procedure Get (From : in String;
Item : out Complex;
Last : out Positive);

28Reads a complex value from the beginning of the given string, following the same rule as the
Get procedure that reads a complex value from a file, but treating the end of the string as a line
terminator. Returns, in the parameter Item, the value of type Complex that corresponds to the
input sequence. Returns in Last the index value such that From(Last) is the last character read.

ISO/IEC 8652:1995(E) —AARM;6.0

G.1.3 Complex Input-Output 21 December 1994 640

29 The exception Text_IO.Data_Error is raised if the input sequence does not have the required
syntax or if the components of the complex value obtained are not of the base subtype of
Complex_Types.Real.

30 procedure Put (To : out String;
Item : in Complex;
Aft : in Field := Default_Aft;
Exp : in Field := Default_Exp);

31 Outputs the value of the parameter Item to the given string as a pair of decimal literals
representing the real and imaginary components of the complex value, using the syntax of an
aggregate. More specifically,

32 • a left parenthesis, the real component, and a comma are left justified in the given
string, with the real component having the format defined by the Put procedure (for
output to a file) of an instance of Text_IO.Float_IO for the base subtype of
Complex_Types.Real, using a value of zero for Fore and the given values of Aft
and Exp;

33 • the imaginary component and a right parenthesis are right justified in the given
string, with the imaginary component having the format defined by the Put proce-
dure (for output to a file) of an instance of Text_IO.Float_IO for the base subtype
of Complex_Types.Real, using a value for Fore that completely fills the remainder
of the string, together with the given values of Aft and Exp.

33.a Reason: This rule is the one proposed in LSN-1051. Other rules were considered, including one that would have read
‘‘Outputs the value of the parameter Item to the given string, following the same rule as for output to a file, using a
value for Fore such that the sequence of characters output exactly fills, or comes closest to filling, the string; in the
latter case, the string is filled by inserting one extra blank immediately after the comma.’’ While this latter rule might
be considered the closest analogue to the rule for output to a string in Text_IO.Float_IO, it requires a more difficult and
inefficient implementation involving special cases when the integer part of one component is substantially longer than
that of the other and the string is too short to allow both to be preceded by blanks. Unless such a special case applies,
the latter rule might produce better columnar output if several such strings are ultimately output to a file, but very
nearly the same output can be produced by outputting to the file directly, with the appropriate value of Fore; in any
case, it might validly be assumed that output to a string is intended for further computation rather than for display, so
that the precise formatting of the string to achieve a particular appearance is not the major concern.

34 The exception Text_IO.Layout_Error is raised if the given string is too short to hold the for-
matted output.

Implementation Permissions

35 Other exceptions declared (by renaming) in Text_IO may be raised by the preceding procedures in the
appropriate circumstances, as for the corresponding procedures of Text_IO.Float_IO.

G.1.4 The Package Wide_Text_IO.Complex_IO
Static Semantics

1 {Ada.Wide_Text_IO.Complex_IO} Implementations shall also provide the generic library package Wide_
Text_IO.Complex_IO. Its declaration is obtained from that of Text_IO.Complex_IO by systematically
replacing Text_IO by Wide_Text_IO and String by Wide_String; the description of its behavior is ob-
tained by additionally replacing references to particular characters (commas, parentheses, etc.) by those
for the corresponding wide characters.

ISO/IEC 8652:1995(E) —AARM;6.0

641 21 December 1994 Numeric Performance Requirements G.2

G.2 Numeric Performance Requirements
Implementation Requirements

1{accuracy} {strict mode} Implementations shall provide a user-selectable mode in which the accuracy and
other numeric performance requirements detailed in the following subclauses are observed. This mode,
referred to as the strict mode, may or may not be the default mode; it directly affects the results of the
predefined arithmetic operations of real types and the results of the subprograms in children of the
Numerics package, and indirectly affects the operations in other language defined packages. {relaxed

mode} Implementations shall also provide the opposing mode, which is known as the relaxed mode.
1.aReason: On the assumption that the users of an implementation that does not support the Numerics Annex have no

particular need for numerical performance, such an implementation has no obligation to meet any particular require-
ments in this area. On the other hand, users of an implementation that does support the Numerics Annex are provided
with a way of ensuring that their programs achieve a known level of numerical performance and that the performance is
portable to other such implementations. The relaxed mode is provided to allow implementers to offer an efficient but
not fully accurate alternative in the case that the strict mode entails a time overhead that some users may find excessive.
In some of its areas of impact, the relaxed mode may be fully equivalent to the strict mode.

1.bImplementation Note: The relaxed mode may, for example, be used to exploit the implementation of (some of) the
elementary functions in hardware, when available. Such implementations often do not meet the accuracy requirements
of the strict mode, or do not meet them over the specified range of parameter values, but compensate in other ways that
may be important to the user, such as their extreme speed.

1.cRamification: For implementations supporting the Numerics Annex, the choice of mode has no effect on the selection
of a representation for a real type or on the values of attributes of a real type.

Implementation Permissions

2Either mode may be the default mode.
2.aImplementation defined: Whether the strict mode or the relaxed mode is the default.

3The two modes need not actually be different.

Extensions to Ada 83

3.a{extensions to Ada 83} The choice between strict and relaxed numeric performance was not available in Ada 83.

G.2.1 Model of Floating Point Arithmetic
1In the strict mode, the predefined operations of a floating point type shall satisfy the accuracy require-

ments specified here and shall avoid or signal overflow in the situations described. This behavior is
presented in terms of a model of floating point arithmetic that builds on the concept of the canonical form
(see A.5.3).

Static Semantics

2Associated with each floating point type is an infinite set of model numbers. The model numbers of a
type are used to define the accuracy requirements that have to be satisfied by certain predefined opera-
tions of the type; through certain attributes of the model numbers, they are also used to explain the
meaning of a user-declared floating point type declaration. The model numbers of a derived type are
those of the parent type; the model numbers of a subtype are those of its type.

3{model number} The model numbers of a floating point type T are zero and all the values expressible in the
canonical form (for the type T), in which mantissa has T’Model_Mantissa digits and exponent has a value
greater than or equal to T’Model_Emin. (These attributes are defined in G.2.2.)

3.aDiscussion: The model is capable of describing the behavior of most existing hardware that has a mantissa-exponent
representation. As applied to a type T, it is parameterized by the values of T’Machine_Radix, T’Model_Mantissa,
T’Model_Emin, T’Safe_First, and T’Safe_Last. The values of these attributes are determined by how, and how well,
the hardware behaves. They in turn determine the set of model numbers and the safe range of the type, which figure in
the accuracy and range (overflow avoidance) requirements.

ISO/IEC 8652:1995(E) —AARM;6.0

G.2.1 Model of Floating Point Arithmetic 21 December 1994 642

3.b In hardware that is free of arithmetic anomalies, T’Model_Mantissa, T’Model_Emin, T’Safe_First, and T’Safe_Last
will yield the same values as T’Machine_Mantissa, T’Machine_Emin, T’Base’First, and T’Base’Last, respectively, and
the model numbers in the safe range of the type T will coincide with the machine numbers of the type T. In less perfect
hardware, it is not possible for the model-oriented attributes to have these optimal values, since the hardware, by
definition, and therefore the implementation, cannot conform to the stringencies of the resulting model; in this case, the
values yielded by the model-oriented parameters have to be made more conservative (i.e., have to be penalized), with
the result that the model numbers are more widely separated than the machine numbers, and the safe range is a
subrange of the base range. The implementation will then be able to conform to the requirements of the weaker model
defined by the sparser set of model numbers and the smaller safe range.

4 {model interval} A model interval of a floating point type is any interval whose bounds are model numbers
of the type. {model interval (associated with a value)} The model interval of a type T associated with a value v
is the smallest model interval of T that includes v. (The model interval associated with a model number
of a type consists of that number only.)

Implementation Requirements

5 The accuracy requirements for the evaluation of certain predefined operations of floating point types are
as follows.

5.a Discussion: This subclause does not cover the accuracy of an operation of a static expression; such operations have to
be evaluated exactly (see 4.9). It also does not cover the accuracy of the predefined attributes of a floating point
subtype that yield a value of the type; such operations also yield exact results (see 3.5.8 and A.5.3).

6 {operand interval} An operand interval is the model interval, of the type specified for the operand of an
operation, associated with the value of the operand.

7 For any predefined arithmetic operation that yields a result of a floating point type T, the required bounds
on the result are given by a model interval of T (called the result interval) defined in terms of the operand
values as follows:

8 • {result interval (for the evaluation of a predefined arithmetic operation)} The result interval is the
smallest model interval of T that includes the minimum and the maximum of all the values
obtained by applying the (exact) mathematical operation to values arbitrarily selected from
the respective operand intervals.

9 The result interval of an exponentiation is obtained by applying the above rule to the sequence of mul-
tiplications defined by the exponent, assuming arbitrary association of the factors, and to the final division
in the case of a negative exponent.

10 The result interval of a conversion of a numeric value to a floating point type T is the model interval of T
associated with the operand value, except when the source expression is of a fixed point type with a small
that is not a power of T’Machine_Radix or is a fixed point multiplication or division either of whose
operands has a small that is not a power of T’Machine_Radix; in these cases, the result interval is im-
plementation defined.

10.a Implementation defined: The result interval in certain cases of fixed-to-float conversion.

11 {Overflow_Check [partial]} {check, language-defined (Overflow_Check)} For any of the foregoing operations, the
implementation shall deliver a value that belongs to the result interval when both bounds of the result
interval are in the safe range of the result type T, as determined by the values of T’Safe_First and T’Safe_
Last; otherwise,

12 • {Constraint_Error (raised by failure of run-time check)} if T’Machine_Overflows is True, the im-
plementation shall either deliver a value that belongs to the result interval or raise
Constraint_Error;

ISO/IEC 8652:1995(E) —AARM;6.0

643 21 December 1994 Model of Floating Point Arithmetic G.2.1

13• if T’Machine_Overflows is False, the result is implementation defined.
13.aImplementation defined: The result of a floating point arithmetic operation in overflow situations, when the

Machine_Overflows attribute of the result type is False.

14For any predefined relation on operands of a floating point type T, the implementation may deliver any
value (i.e., either True or False) obtained by applying the (exact) mathematical comparison to values
arbitrarily chosen from the respective operand intervals.

15The result of a membership test is defined in terms of comparisons of the operand value with the lower
and upper bounds of the given range or type mark (the usual rules apply to these comparisons).

Implementation Permissions

16If the underlying floating point hardware implements division as multiplication by a reciprocal, the result
interval for division (and exponentiation by a negative exponent) is implementation defined.

16.aImplementation defined: The result interval for division (or exponentiation by a negative exponent), when the
floating point hardware implements division as multiplication by a reciprocal.

Wording Changes From Ada 83

16.bThe Ada 9X model numbers of a floating point type that are in the safe range of the type are comparable to the Ada 83
safe numbers of the type. There is no analog of the Ada 83 model numbers. The Ada 9X model numbers, when not
restricted to the safe range, are an infinite set.

Inconsistencies With Ada 83

16.c{inconsistencies with Ada 83} Giving the model numbers the hardware radix, instead of always a radix of two, allows
(in conjunction with other changes) some borderline declared types to be represented with less precision than in Ada 83
(i.e., with single precision, whereas Ada 83 would have used double precision). Because the lower precision satisfies
the requirements of the model (and did so in Ada 83 as well), this change is viewed as a desirable correction of an
anomaly, rather than a worrisome inconsistency. (Of course, the wider representation chosen in Ada 83 also remains
eligible for selection in Ada 9X.)

16.dAs an example of this phenomenon, assume that Float is represented in single precision and that a double precision
type is also available. Also assume hexadecimal hardware with clean properties, for example certain IBM hardware.
Then,

16.etype T is digits Float’Digits range -Float’Last .. Float’Last;

16.fresults in T being represented in double precision in Ada 83 and in single precision in Ada 9X. The latter is intuitively
correct; the former is counterintuitive. The reason why the double precision type is used in Ada 83 is that Float has
model and safe numbers (in Ada 83) with 21 binary digits in their mantissas, as is required to model the hypothesized
hexadecimal hardware using a binary radix; thus Float’Last, which is not a model number, is slightly outside the range
of safe numbers of the single precision type, making that type ineligible for selection as the representation of T even
though it provides adequate precision. In Ada 9X, Float’Last (the same value as before) is a model number and is in
the safe range of Float on the hypothesized hardware, making Float eligible for the representation of T.

Extensions to Ada 83

16.g{extensions to Ada 83} Giving the model numbers the hardware radix allows for practical implementations on decimal
hardware.

Wording Changes From Ada 83

16.hThe wording of the model of floating point arithmetic has been simplified to a large extent.

G.2.2 Model-Oriented Attributes of Floating Point Types
1In implementations that support the Numerics Annex, the model-oriented attributes of floating point types

shall yield the values defined here, in both the strict and the relaxed modes. These definitions add
conditions to those in A.5.3.

Static Semantics

2For every subtype S of a floating point type T:

ISO/IEC 8652:1995(E) —AARM;6.0

G.2.2 Model-Oriented Attributes of Floating Point Types 21 December 1994 644

S’Model_Mantissa Yields the number of digits in the mantissa of the canonical form of the model num-3

bers of T (see A.5.3). The value of this attribute shall be greater than or equal to
⎡d⋅log (10)/log (T′Machine_Radix)⎤+1, where d is the requested decimal precision of
T. In addition, it shall be less than or equal to the value of T’Machine_Mantissa.
This attribute yields a value of the type universal_integer.

3.a Ramification: S’Model_Epsilon, which is defined in terms of S’Model_Mantissa (see A.5.3), yields the absolute
value of the difference between one and the next model number of the type T above one. It is equal to or larger than
the absolute value of the difference between one and the next machine number of the type T above one.

S’Model_Emin Yields the minimum exponent of the canonical form of the model numbers of T (see4

A.5.3). The value of this attribute shall be greater than or equal to the value of
T’Machine_Emin. This attribute yields a value of the type universal_integer.

4.a Ramification: S’Model_Small, which is defined in terms of S’Model_Emin (see A.5.3), yields the smallest positive
(nonzero) model number of the type T.

S’Safe_First Yields the lower bound of the safe range of T. The value of this attribute shall be a5

model number of T and greater than or equal to the lower bound of the base range of
T. In addition, if T is declared by a floating_point_definition or is derived from such a
type, and the floating_point_definition includes a real_range_specification specifying a
lower bound of lb, then the value of this attribute shall be less than or equal to lb;
otherwise, it shall be less than or equal to −10.04⋅d, where d is the requested decimal
precision of T. This attribute yields a value of the type universal_real.

S’Safe_Last Yields the upper bound of the safe range of T. The value of this attribute shall be a6

model number of T and less than or equal to the upper bound of the base range of T.
In addition, if T is declared by a floating_point_definition or is derived from such a
type, and the floating_point_definition includes a real_range_specification specifying
an upper bound of ub, then the value of this attribute shall be greater than or equal to
ub; otherwise, it shall be greater than or equal to 10.04⋅d, where d is the requested
decimal precision of T. This attribute yields a value of the type universal_real.

{Constraint_Error (raised by failure of run-time check)} S’Model7

Denotes a function (of a parameter X) whose specification is given in A.5.3. If X is a
model number of T, the function yields X; otherwise, it yields the value obtained by
rounding or truncating X to either one of the adjacent model numbers of T. {Overflow_

Check [partial]} {check, language-defined (Overflow_Check)} Constraint_Error is raised if the
resulting model number is outside the safe range of S. A zero result has the sign of X
when S’Signed_Zeros is True.

8 Subject to the constraints given above, the values of S’Model_Mantissa and S’Safe_Last are to be max-
imized, and the values of S’Model_Emin and S’Safe_First minimized, by the implementation as follows:

9 • First, S’Model_Mantissa is set to the largest value for which values of S’Model_Emin,
S’Safe_First, and S’Safe_Last can be chosen so that the implementation satisfies the strict-
mode requirements of G.2.1 in terms of the model numbers and safe range induced by these
attributes.

10 • Next, S’Model_Emin is set to the smallest value for which values of S’Safe_First and
S’Safe_Last can be chosen so that the implementation satisfies the strict-mode requirements
of G.2.1 in terms of the model numbers and safe range induced by these attributes and the
previously determined value of S’Model_Mantissa.

11 • Finally, S’Safe_First and S’Safe_last are set (in either order) to the smallest and largest
values, respectively, for which the implementation satisfies the strict-mode requirements of
G.2.1 in terms of the model numbers and safe range induced by these attributes and the
previously determined values of S’Model_Mantissa and S’Model_Emin.

ISO/IEC 8652:1995(E) —AARM;6.0

645 21 December 1994 Model-Oriented Attributes of Floating Point Types G.2.2

11.aRamification: {IEEE floating point arithmetic} {IEC 559:1989} The following table shows appropriate attribute
values for IEEE basic single and double precision types (ANSI/IEEE Std 754-1985, IEC 559:1989). Here, we use the
names IEEE_Float_32 and IEEE_Float_64, the names that would typically be declared in package Interfaces, in an
implementation that supports IEEE arithmetic. In such an implementation, the attributes would typically be the same
for Standard.Float and Long_Float, respectively.

11.bAttribute IEEE_Float_32 IEEE_Float_64

11.c’Machine_Radix 2 2
’Machine_Mantissa 24 53
’Machine_Emin -125 -1021
’Machine_Emax 128 1024
’Denorm True True
’Machine_Rounds True True
’Machine_Overflows True/False True/False
’Signed_Zeros should be True should be True

11.d’Model_Mantissa (same as ’Machine_Mantissa) (same as ’Machine_Mantissa)
’Model_Emin (same as ’Machine_Emin) (same as ’Machine_Emin)
’Model_Epsilon 2.0**(-23) 2.0**(-52)
’Model_Small 2.0**(-126) 2.0**(-1022)
’Safe_First -2.0**128*(1.0-2.0**(-24)) -2.0**1024*(1.0-2.0**(-53))
’Safe_Last 2.0**128*(1.0-2.0**(-24)) 2.0**1024*(1.0-2.0**(-53))

11.e’Digits 6 15
’Base’Digits (same as ’Digits) (same as ’Digits)

11.f’First (same as ’Safe_First) (same as ’Safe_First)
’Last (same as ’Safe_Last) (same as ’Safe_Last)
’Size 32 64

11.gNote: ’Machine_Overflows can be True or False, depending on whether the Ada implementation raises Constraint_
Error or delivers a signed infinity in overflow and zerodivide situations (and at poles of the elementary functions).

G.2.3 Model of Fixed Point Arithmetic
1In the strict mode, the predefined arithmetic operations of a fixed point type shall satisfy the accuracy

requirements specified here and shall avoid or signal overflow in the situations described.

Implementation Requirements

2The accuracy requirements for the predefined fixed point arithmetic operations and conversions, and the
results of relations on fixed point operands, are given below.

2.aDiscussion: This subclause does not cover the accuracy of an operation of a static expression; such operations have to
be evaluated exactly (see 4.9).

3The operands of the fixed point adding operators, absolute value, and comparisons have the same type.
These operations are required to yield exact results, unless they overflow.

4Multiplications and divisions are allowed between operands of any two fixed point types; the result has to
be (implicitly or explicitly) converted to some other numeric type. For purposes of defining the accuracy
rules, the multiplication or division and the conversion are treated as a single operation whose accuracy
depends on three types (those of the operands and the result). For decimal fixed point types, the attribute
T’Round may be used to imply explicit conversion with rounding (see 3.5.10).

5When the result type is a floating point type, the accuracy is as given in G.2.1. {perfect result set} For some
combinations of the operand and result types in the remaining cases, the result is required to belong to a
small set of values called the perfect result set; {close result set} for other combinations, it is required merely
to belong to a generally larger and implementation-defined set of values called the close result set. When
the result type is a decimal fixed point type, the perfect result set contains a single value; thus, operations
on decimal types are always fully specified.

ISO/IEC 8652:1995(E) —AARM;6.0

G.2.3 Model of Fixed Point Arithmetic 21 December 1994 646

5.a Implementation defined: The definition of close result set, which determines the accuracy of certain fixed point
multiplications and divisions.

6 When one operand of a fixed-fixed multiplication or division is of type universal_real, that operand is not
implicitly converted in the usual sense, since the context does not determine a unique target type, but the
accuracy of the result of the multiplication or division (i.e., whether the result has to belong to the perfect
result set or merely the close result set) depends on the value of the operand of type universal_real and on
the types of the other operand and of the result.

6.a Discussion: We need not consider here the multiplication or division of two such operands, since in that case either the
operation is evaluated exactly (i.e., it is an operation of a static expression all of whose operators are of a root numeric
type) or it is considered to be an operation of a floating point type.

7 For a fixed point multiplication or division whose (exact) mathematical result is v, and for the conversion
of a value v to a fixed point type, the perfect result set and close result set are defined as follows:

8 • If the result type is an ordinary fixed point type with a small of s,
9 • if v is an integer multiple of s, then the perfect result set contains only the value v;

10 • otherwise, it contains the integer multiple of s just below v and the integer multiple of s
just above v.

11 The close result set is an implementation-defined set of consecutive integer multiples of s
containing the perfect result set as a subset.

12 • If the result type is a decimal type with a small of s,
13 • if v is an integer multiple of s, then the perfect result set contains only the value v;

14 • otherwise, if truncation applies then it contains only the integer multiple of s in the
direction toward zero, whereas if rounding applies then it contains only the nearest
integer multiple of s (with ties broken by rounding away from zero).

15 The close result set is an implementation-defined set of consecutive integer multiples of s
containing the perfect result set as a subset.

15.a Ramification: As a consequence of subsequent rules, this case does not arise when the operand types are also
decimal types.

16 • If the result type is an integer type,
17 • if v is an integer, then the perfect result set contains only the value v;

18 • otherwise, it contains the integer nearest to the value v (if v lies equally distant from
two consecutive integers, the perfect result set contains the one that is further from
zero).

19 The close result set is an implementation-defined set of consecutive integers containing the
perfect result set as a subset.

20 The result of a fixed point multiplication or division shall belong either to the perfect result set or to the
close result set, as described below, if overflow does not occur. In the following cases, if the result type
is a fixed point type, let s be its small; otherwise, i.e. when the result type is an integer type, let s be 1.0.

21 • For a multiplication or division neither of whose operands is of type universal_real, let l and
r be the smalls of the left and right operands. For a multiplication, if (l⋅r)/s is an integer or
the reciprocal of an integer (the smalls are said to be ‘‘compatible’’ in this case), the result
shall belong to the perfect result set; otherwise, it belongs to the close result set. For a
division, if l/(r⋅s) is an integer or the reciprocal of an integer (i.e., the smalls are compatible),
the result shall belong to the perfect result set; otherwise, it belongs to the close result set.

ISO/IEC 8652:1995(E) —AARM;6.0

647 21 December 1994 Model of Fixed Point Arithmetic G.2.3

21.aRamification: When the operand and result types are all decimal types, their smalls are necessarily com-
patible; the same is true when they are all ordinary fixed point types with binary smalls.

22• For a multiplication or division having one universal_real operand with a value of v, note
that it is always possible to factor v as an integer multiple of a ‘‘compatible’’ small, but the
integer multiple may be ‘‘too big.’’ If there exists a factorization in which that multiple is
less than some implementation-defined limit, the result shall belong to the perfect result set;
otherwise, it belongs to the close result set.

22.aImplementation defined: Conditions on a universal_real operand of a fixed point multiplication or division
for which the result shall be in the perfect result set.

23A multiplication P * Q of an operand of a fixed point type F by an operand of an integer type I, or
vice-versa, and a division P / Q of an operand of a fixed point type F by an operand of an integer type I,
are also allowed. In these cases, the result has a type of F; explicit conversion of the result is never
required. The accuracy required in these cases is the same as that required for a multiplication F(P * Q)
or a division F(P / Q) obtained by interpreting the operand of the integer type to have a fixed point type
with a small of 1.0.

24The accuracy of the result of a conversion from an integer or fixed point type to a fixed point type, or
from a fixed point type to an integer type, is the same as that of a fixed point multiplication of the source
value by a fixed point operand having a small of 1.0 and a value of 1.0, as given by the foregoing rules.
The result of a conversion from a floating point type to a fixed point type shall belong to the close result
set. The result of a conversion of a universal_real operand to a fixed point type shall belong to the
perfect result set.

25The possibility of overflow in the result of a predefined arithmetic operation or conversion yielding a
result of a fixed point type T is analogous to that for floating point types, except for being related to the
base range instead of the safe range. {Overflow_Check [partial]} {check, language-defined (Overflow_Check)} If all of
the permitted results belong to the base range of T, then the implementation shall deliver one of the
permitted results; otherwise,

26• {Constraint_Error (raised by failure of run-time check)} if T’Machine_Overflows is True, the im-
plementation shall either deliver one of the permitted results or raise Constraint_Error;

27• if T’Machine_Overflows is False, the result is implementation defined.
27.aImplementation defined: The result of a fixed point arithmetic operation in overflow situations, when the

Machine_Overflows attribute of the result type is False.

Inconsistencies With Ada 83

27.b{inconsistencies with Ada 83} Since the values of a fixed point type are now just the integer multiples of its small, the
possibility of using extra bits available in the chosen representation for extra accuracy rather than for increasing the
base range would appear to be removed, raising the possibility that some fixed point expressions will yield less
accurate results than in Ada 83. However, this is partially offset by the ability of an implementation to choose a
smaller default small than before. Of course, if it does so for a type T then T’Small will have a different value than it
previously had.

27.cThe accuracy requirements in the case of incompatible smalls are relaxed to foster wider support for non-binary smalls.
If this relaxation is exploited for a type that was previously supported, lower accuracy could result; however, there is no
particular incentive to exploit the relaxation in such a case.

Wording Changes From Ada 83

27.dThe fixed point accuracy requirements are now expressed without reference to model or safe numbers, largely because
the full generality of the former model was never exploited in the case of fixed point types (particularly in regard to
operand perturbation). Although the new formulation in terms of perfect result sets and close result sets is still verbose,
it can be seen to distill down to two cases:

27.e• a case where the result must be the exact result, if the exact result is representable, or, if not, then either
one of the adjacent values of the type (in some subcases only one of those adjacent values is allowed);

ISO/IEC 8652:1995(E) —AARM;6.0

G.2.3 Model of Fixed Point Arithmetic 21 December 1994 648

27.f • a case where the accuracy is not specified by the language.

G.2.4 Accuracy Requirements for the Elementary Functions
1 In the strict mode, the performance of Numerics.Generic_Elementary_Functions shall be as specified

here.

Implementation Requirements

2 {result interval (for the evaluation of an elementary function)} {maximum relative error (for the evaluation of an elementary

function)} When an exception is not raised, the result of evaluating a function in an instance EF of
Numerics.Generic_Elementary_Functions belongs to a result interval, defined as the smallest model in-
terval of EF.Float_Type that contains all the values of the form f⋅(1.0+d), where f is the exact value of the
corresponding mathematical function at the given parameter values, d is a real number, and | d | is less
than or equal to the function’s maximum relative error. {Overflow_Check [partial]} {check, language-defined

(Overflow_Check)} The function delivers a value that belongs to the result interval when both of its bounds
belong to the safe range of EF.Float_Type; otherwise,

3 • {Constraint_Error (raised by failure of run-time check)} if EF.Float_Type’Machine_Overflows is
True, the function either delivers a value that belongs to the result interval or raises
Constraint_Error, signaling overflow;

4 • if EF.Float_Type’Machine_Overflows is False, the result is implementation defined.
4.a Implementation defined: The result of an elementary function reference in overflow situations, when the

Machine_Overflows attribute of the result type is False.

5 The maximum relative error exhibited by each function is as follows:

6 • 2.0⋅EF.Float_Type’Model_Epsilon, in the case of the Sqrt, Sin, and Cos functions;

7 • 4.0⋅EF.Float_Type’Model_Epsilon, in the case of the Log, Exp, Tan, Cot, and inverse
trigonometric functions; and

8 • 8.0⋅EF.Float_Type’Model_Epsilon, in the case of the forward and inverse hyperbolic func-
tions.

9 The maximum relative error exhibited by the exponentiation operator, which depends on the values of the
operands, is (4.0 + | Right⋅log (Left) | / 32.0)⋅EF.Float_Type’Model_Epsilon.

10 The maximum relative error given above applies throughout the domain of the forward trigonometric
functions when the Cycle parameter is specified. {angle threshold} When the Cycle parameter is omitted,
the maximum relative error given above applies only when the absolute value of the angle parameter X is
less than or equal to some implementation-defined angle threshold, which shall be at least EF.Float_
Type’Machine_Radix⎣EF.Float_Type’Machine_Mantissa/2⎦. Beyond the angle threshold, the accuracy of the for-
ward trigonometric functions is implementation defined.

10.a Implementation defined: The value of the angle threshold, within which certain elementary functions, complex
arithmetic operations, and complex elementary functions yield results conforming to a maximum relative error bound.

10.b Implementation defined: The accuracy of certain elementary functions for parameters beyond the angle threshold.

10.c Implementation Note: The angle threshold indirectly determines the amount of precision that the implementation has
to maintain during argument reduction.

11 The prescribed results specified in A.5.1 for certain functions at particular parameter values take
precedence over the maximum relative error bounds; effectively, they narrow to a single value the result
interval allowed by the maximum relative error bounds. Additional rules with a similar effect are given

ISO/IEC 8652:1995(E) —AARM;6.0

649 21 December 1994 Accuracy Requirements for the Elementary Functions G.2.4

by the table below for the inverse trigonometric functions, at particular parameter values for which the
mathematical result is possibly not a model number of EF.Float_Type (or is, indeed, even transcen-
dental). In each table entry, the values of the parameters are such that the result lies on the axis between
two quadrants; the corresponding accuracy rule, which takes precedence over the maximum relative error
bounds, is that the result interval is the model interval of EF.Float_Type associated with the exact math-
ematical result given in the table.

12

Tightly Approximated Elementary Function Results

Function Value of X Value of Y

Exact Result
when Cycle

Specified

Exact Result
when Cycle

Omitted

Arcsin 1.0 n.a. Cycle/4.0 π/2.0

Arcsin −1.0 n.a. −Cycle/4.0 −π/2.0

Arccos 0.0 n.a. Cycle/4.0 π/2.0

Arccos −1.0 n.a. Cycle/2.0 π

Arctan and Arccot 0.0 positive Cycle/4.0 π/2.0

Arctan and Arccot 0.0 negative −Cycle/4.0 −π/2.0

Arctan and Arccot negative +0.0 Cycle/2.0 π

Arctan and Arccot negative −0.0 −Cycle/2.0 −π

Arctan and Arccot negative 0.0 Cycle/2.0 π

13The last line of the table is meant to apply when EF.Float_Type’Signed_Zeros is False; the two lines just
above it, when EF.Float_Type’Signed_Zeros is True and the parameter Y has a zero value with the
indicated sign.

14The amount by which the result of an inverse trigonometric function is allowed to spill over into a
quadrant adjacent to the one corresponding to the principal branch, as given in A.5.1, is limited. The rule
is that the result belongs to the smallest model interval of EF.Float_Type that contains both boundaries of
the quadrant corresponding to the principal branch. This rule also takes precedence over the maximum
relative error bounds, effectively narrowing the result interval allowed by them.

15Finally, the following specifications also take precedence over the maximum relative error bounds:

16• The absolute value of the result of the Sin, Cos, and Tanh functions never exceeds one.

17• The absolute value of the result of the Coth function is never less than one.

18• The result of the Cosh function is never less than one.

Implementation Advice

19The versions of the forward trigonometric functions without a Cycle parameter should not be im-
plemented by calling the corresponding version with a Cycle parameter of 2.0*Numerics.Pi, since this
will not provide the required accuracy in some portions of the domain. For the same reason, the version
of Log without a Base parameter should not be implemented by calling the corresponding version with a
Base parameter of Numerics.e.

ISO/IEC 8652:1995(E) —AARM;6.0

G.2.4 Accuracy Requirements for the Elementary Functions 21 December 1994 650

Wording Changes From Ada 83

19.a The semantics of Numerics.Generic_Elementary_Functions differs from Generic_Elementary_Functions as defined in
ISO/IEC DIS 11430 (for Ada 83) in the following ways related to the accuracy specified for strict mode:

19.b • The maximum relative error bounds use the Model_Epsilon attribute instead of the Base’Epsilon attribute.

19.c • The accuracy requirements are expressed in terms of result intervals that are model intervals. On the one
hand, this facilitates the description of the required results in the presence of underflow; on the other hand,
it slightly relaxes the requirements expressed in ISO/IEC DIS 11430.

G.2.5 Performance Requirements for Random Number Generation
1 In the strict mode, the performance of Numerics.Float_Random and Numerics.Discrete_Random shall be

as specified here.

Implementation Requirements

2 Two different calls to the time-dependent Reset procedure shall reset the generator to different states,
provided that the calls are separated in time by at least one second and not more than fifty years.

3 The implementation’s representations of generator states and its algorithms for generating random num-
bers shall yield a period of at least 231−2; much longer periods are desirable but not required.

4 The implementations of Numerics.Float_Random.Random and Numerics.Discrete_Random.Random
shall pass at least 85% of the individual trials in a suite of statistical tests. For Numerics.Float_Random,
the tests are applied directly to the floating point values generated (i.e., they are not converted to integers
first), while for Numerics.Discrete_Random they are applied to the generated values of various discrete
types. Each test suite performs 6 different tests, with each test repeated 10 times, yielding a total of 60
individual trials. An individual trial is deemed to pass if the chi-square value (or other statistic) cal-
culated for the observed counts or distribution falls within the range of values corresponding to the 2.5
and 97.5 percentage points for the relevant degrees of freedom (i.e., it shall be neither too high nor too
low). For the purpose of determining the degrees of freedom, measurement categories are combined
whenever the expected counts are fewer than 5.

4.a Implementation Note: In the floating point random number test suite, the generator is reset to a time-dependent state
at the beginning of the run. The test suite incorporates the following tests, adapted from D. E. Knuth, The Art of
Computer Programming, vol. 2: Seminumerical Algorithms. In the descriptions below, the given number of degrees of
freedom is the number before reduction due to any necessary combination of measurement categories with small
expected counts; it is one less than the number of measurement categories.

4.b • Proportional Distribution Test (a variant of the Equidistribution Test). The interval 0.0 .. 1.0 is partitioned
into K subintervals. K is chosen randomly between 4 and 25 for each repetition of the test, along with the
boundaries of the subintervals (subject to the constraint that at least 2 of the subintervals have a width of
0.001 or more). 5000 random floating point numbers are generated. The counts of random numbers
falling into each subinterval are tallied and compared with the expected counts, which are proportional to
the widths of the subintervals. The number of degrees of freedom for the chi-square test is K−1.

4.c • Gap Test. The bounds of a range A .. B, with 0.0 ≤ A < B ≤ 1.0, are chosen randomly for each repetition of
the test, subject to the constraint that 0.2 ≤ B−A ≤ 0.6. Random floating point numbers are generated until
5000 falling into the range A .. B have been encountered. Each of these 5000 is preceded by a ‘‘gap’’ (of
length greater than or equal to 0) of consecutive random numbers not falling into the range A .. B. The
counts of gaps of each length from 0 to 15, and of all lengths greater than 15 lumped together, are tallied
and compared with the expected counts. Let P = B−A. The probability that a gap has a length of L is
(1−P)L⋅P for L ≤ 15, while the probability that a gap has a length of 16 or more is (1−P)16. The number of
degrees of freedom for the chi-square test is 16.

4.d • Permutation Test. 5000 tuples of 4 different random floating point numbers are generated. (An entire
4-tuple is discarded in the unlikely event that it contains any two exactly equal components.) The counts
of each of the 4! = 24 possible relative orderings of the components of the 4-tuples are tallied and
compared with the expected counts. Each of the possible relative orderings has an equal probability. The
number of degrees of freedom for the chi-square test is 23.

ISO/IEC 8652:1995(E) —AARM;6.0

651 21 December 1994 Performance Requirements for Random Number Generation G.2.5

4.e• Increasing-Runs Test. Random floating point numbers are generated until 5000 increasing runs have been
observed. An ‘‘increasing run’’ is a sequence of random numbers in strictly increasing order; it is
followed by a random number that is strictly smaller than the preceding random number. (A run under
construction is entirely discarded in the unlikely event that one random number is followed immediately by
an exactly equal random number.) The decreasing random number that follows an increasing run is
discarded and not included with the next increasing run. The counts of increasing runs of each length from
1 to 4, and of all lengths greater than 4 lumped together, are tallied and compared with the expected counts.
The probability that an increasing run has a length of L is 1/L! − 1/(L+1)! for L ≤ 4, while the probability
that an increasing run has a length of 5 or more is 1/5!. The number of degrees of freedom for the
chi-square test is 4.

4.f• Decreasing-Runs Test. The test is similar to the Increasing Runs Test, but with decreasing runs.

4.g• Maximum-of-t Test (with t = 5). 5000 tuples of 5 random floating point numbers are generated. The
maximum of the components of each 5-tuple is determined and raised to the 5th power. The uniformity of
the resulting values over the range 0.0 .. 1.0 is tested as in the Proportional Distribution Test.

4.hImplementation Note: In the discrete random number test suite, Numerics.Discrete_Random is instantiated as
described below. The generator is reset to a time-dependent state after each instantiation. The test suite incorporates
the following tests, adapted from D. E. Knuth (op. cit.) and other sources. The given number of degrees of freedom for
the chi-square test is reduced by any necessary combination of measurement categories with small expected counts, as
described above.

4.i• Equidistribution Test. In each repetition of the test, a number R between 2 and 30 is chosen randomly, and
Numerics.Discrete_Random is instantiated with an integer subtype whose range is 1 .. R. 5000 integers are
generated randomly from this range. The counts of occurrences of each integer in the range are tallied and
compared with the expected counts, which have equal probabilities. The number of degrees of freedom for
the chi-square test is R−1.

4.j• Simplified Poker Test. Numerics.Discrete_Random is instantiated once with an enumeration subtype
representing the 13 denominations (Two through Ten, Jack, Queen, King, and Ace) of an infinite deck of
playing cards. 2000 ‘‘poker’’ hands (5-tuples of values of this subtype) are generated randomly. The
counts of hands containing exactly K different denominations (1 ≤ K ≤ 5) are tallied and compared with the
expected counts. The probability that a hand contains exactly K different denominations is given by a
formula in Knuth. The number of degrees of freedom for the chi-square test is 4.

4.k• Coupon Collector’s Test. Numerics.Discrete_Random is instantiated in each repetition of the test with an
integer subtype whose range is 1 .. R, where R varies systematically from 2 to 11. Integers are generated
randomly from this range until each value in the range has occurred, and the number K of integers
generated is recorded. This constitutes a ‘‘coupon collector’s segment’’ of length K. 2000 such segments
are generated. The counts of segments of each length from R to R+29, and of all lengths greater than R+29
lumped together, are tallied and compared with the expected counts. The probability that a segment has
any given length is given by formulas in Knuth. The number of degrees of freedom for the chi-square test
is 30.

4.l• Craps Test (Lengths of Games). Numerics.Discrete_Random is instantiated once with an integer subtype
whose range is 1 .. 6 (representing the six numbers on a die). 5000 craps games are played, and their
lengths are recorded. (The length of a craps game is the number of rolls of the pair of dice required to
produce a win or a loss. A game is won on the first roll if the dice show 7 or 11; it is lost if they show 2, 3,
or 12. If the dice show some other sum on the first roll, it is called the point, and the game is won if and
only if the point is rolled again before a 7 is rolled.) The counts of games of each length from 1 to 18, and
of all lengths greater than 18 lumped together, are tallied and compared with the expected counts. For
2 ≤ S ≤ 12, let DS be the probability that a roll of a pair of dice shows the sum S, and let

QS(L) = DS⋅(1 − (DS + D7))L−2⋅(DS + D7). Then, the probability that a game has a length of 1 is
D7 + D11 + D2 + D3 + D12 and, for L > 1, the probability that a game has a length of L is
Q4(L) + Q5(L) + Q6(L) + Q8(L) + Q9(L) + Q10(L). The number of degrees of freedom for the chi-square test
is 18.

4.m• Craps Test (Lengths of Passes). This test is similar to the last, but enough craps games are played for 3000
losses to occur. A string of wins followed by a loss is called a pass, and its length is the number of wins
preceding the loss. The counts of passes of each length from 0 to 7, and of all lengths greater than 7
lumped together, are tallied and compared with the expected counts. For L ≥ 0, the probability that a pass
has a length of L is WL⋅(1−W), where W, the probability that a game ends in a win, is 244.0/495.0. The
number of degrees of freedom for the chi-square test is 8.

4.n• Collision Test. Numerics.Discrete_Random is instantiated once with an integer or enumeration type
representing binary bits. 15 successive calls on the Random function are used to obtain the bits of a 15-bit

ISO/IEC 8652:1995(E) —AARM;6.0

G.2.5 Performance Requirements for Random Number Generation 21 December 1994 652

binary integer between 0 and 32767. 3000 such integers are generated, and the number of collisions
(integers previously generated) is counted and compared with the expected count. A chi-square test is not
used to assess the number of collisions; rather, the limits on the number of collisions, corresponding to the
2.5 and 97.5 percentage points, are (from formulas in Knuth) 112 and 154. The test passes if and only if
the number of collisions is in this range.

G.2.6 Accuracy Requirements for Complex Arithmetic
1 In the strict mode, the performance of Numerics.Generic_Complex_Types and Numerics.Generic_

Complex_Elementary_Functions shall be as specified here.

Implementation Requirements

2 When an exception is not raised, the result of evaluating a real function of an instance CT of Numerics.-
Generic_Complex_Types (i.e., a function that yields a value of subtype CT.Real’Base or CT.Imaginary)
belongs to a result interval defined as for a real elementary function (see G.2.4).

3 {result interval (for a component of the result of evaluating a complex function)} When an exception is not raised, each
component of the result of evaluating a complex function of such an instance, or of an instance of
Numerics.Generic_Complex_Elementary_Functions obtained by instantiating the latter with CT (i.e., a
function that yields a value of subtype CT.Complex), also belongs to a result interval. The result inter-
vals for the components of the result are either defined by a maximum relative error bound or by a
maximum box error bound. {maximum relative error (for a component of the result of evaluating a complex function)}

When the result interval for the real (resp., imaginary) component is defined by maximum relative error,
it is defined as for that of a real function, relative to the exact value of the real (resp., imaginary) part of
the result of the corresponding mathematical function.

3.a Discussion: The maximum relative error could be specified separately for each component, but we do not take
advantage of that freedom here.

{maximum box error (for a component of the result of evaluating a complex function)} When defined by maximum box
error, the result interval for a component of the result is the smallest model interval of CT.Real that
contains all the values of the corresponding part of f⋅(1.0+d), where f is the exact complex value of the
corresponding mathematical function at the given parameter values, d is complex, and | d | is less than or
equal to the given maximum box error.

3.b Discussion: Note that f⋅(1.0+d) defines a small circular region of the complex plane centered at f, and the result
intervals for the real and imaginary components of the result define a small rectangular box containing that circle.

3.c Reason: Box error is used when the computation of the result risks loss of significance in a component due to
cancellation.

3.d Ramification: The components of a complex function that exhibits bounded relative error in each component have to
have the correct sign. In contrast, one of the components of a complex function that exhibits bounded box error may
have the wrong sign, since the dimensions of the box containing the result are proportional to the modulus of the
mathematical result and not to either component of the mathematical result individually. Thus, for example, the box
containing the computed result of a complex function whose mathematical result has a large modulus but lies very
close to the imaginary axis might well straddle that axis, allowing the real component of the computed result to have
the wrong sign. In this case, the distance between the computed result and the mathematical result is, nevertheless, a
small fraction of the modulus of the mathematical result.

{Overflow_Check [partial]} {check, language-defined (Overflow_Check)} The function delivers a value that belongs to
the result interval (or a value both of whose components belong to their respective result intervals) when
both bounds of the result interval(s) belong to the safe range of CT.Real; otherwise,

4 • {Constraint_Error (raised by failure of run-time check)} if CT.Real’Machine_Overflows is True, the
function either delivers a value that belongs to the result interval (or a value both of whose
components belong to their respective result intervals) or raises Constraint_Error, signaling
overflow;

ISO/IEC 8652:1995(E) —AARM;6.0

653 21 December 1994 Accuracy Requirements for Complex Arithmetic G.2.6

5• if CT.Real’Machine_Overflows is False, the result is implementation defined.
5.aImplementation defined: The result of a complex arithmetic operation or complex elementary function

reference in overflow situations, when the Machine_Overflows attribute of the corresponding real type is False.

6The error bounds for particular complex functions are tabulated below. In the table, the error bound is
given as the coefficient of CT.Real’Model_Epsilon.

7

Error Bounds for Particular Complex Functions

Function or Operator
Nature of

Result
Nature of

Bound Error Bound

Modulus real max. rel. error 3.0

Argument real max. rel. error 4.0

Compose_From_Polar complex max. rel. error 3.0

"*" (both operands complex) complex max. box error 5.0

"/" (right operand complex) complex max. box error 13.0

Sqrt complex max. rel. error 6.0

Log complex max. box error 13.0

Exp (complex parameter) complex max. rel. error 7.0

Exp (imaginary parameter) complex max. rel. error 2.0

Sin, Cos, Sinh, and Cosh complex max. rel. error 11.0

Tan, Cot, Tanh, and Coth complex max. rel. error 35.0

inverse trigonometric complex max. rel. error 14.0

inverse hyperbolic complex max. rel. error 14.0

8The maximum relative error given above applies throughout the domain of the Compose_From_Polar
function when the Cycle parameter is specified. When the Cycle parameter is omitted, the maximum
relative error applies only when the absolute value of the parameter Argument is less than or equal to the
angle threshold (see G.2.4). For the Exp function, and for the forward hyperbolic (resp., trigonometric)
functions, the maximum relative error given above likewise applies only when the absolute value of the
imaginary (resp., real) component of the parameter X (or the absolute value of the parameter itself, in the
case of the Exp function with a parameter of pure-imaginary type) is less than or equal to the angle
threshold. For larger angles, the accuracy is implementation defined.

8.aImplementation defined: The accuracy of certain complex arithmetic operations and certain complex elementary
functions for parameters (or components thereof) beyond the angle threshold.

9The prescribed results specified in G.1.2 for certain functions at particular parameter values take
precedence over the error bounds; effectively, they narrow to a single value the result interval allowed by
the error bounds for a component of the result. Additional rules with a similar effect are given below for
certain inverse trigonometric and inverse hyperbolic functions, at particular parameter values for which a
component of the mathematical result is transcendental. In each case, the accuracy rule, which takes
precedence over the error bounds, is that the result interval for the stated result component is the model
interval of CT.Real associated with the component’s exact mathematical value. The cases in question are
as follows:

ISO/IEC 8652:1995(E) —AARM;6.0

G.2.6 Accuracy Requirements for Complex Arithmetic 21 December 1994 654

10 • When the parameter X has the value zero, the real (resp., imaginary) component of the result
of the Arccot (resp., Arccoth) function is in the model interval of CT.Real associated with the
value π/2.0.

11 • When the parameter X has the value one, the real component of the result of the Arcsin
function is in the model interval of CT.Real associated with the value π/2.0.

12 • When the parameter X has the value −1.0, the real component of the result of the Arcsin
(resp., Arccos) function is in the model interval of CT.Real associated with the value −π/2.0
(resp., π).

12.a Discussion: It is possible to give many other prescribed results in which a component of the parameter is restricted to a
similar model interval when the parameter X is appropriately restricted to an easily testable portion of the domain. We
follow the proposed ISO/IEC standard for Generic_Complex_Elementary_Functions (for Ada 83) in not doing so,
however.

13 The amount by which a component of the result of an inverse trigonometric or inverse hyperbolic func-
tion is allowed to spill over into a quadrant adjacent to the one corresponding to the principal branch, as
given in G.1.2, is limited. The rule is that the result belongs to the smallest model interval of CT.Real that
contains both boundaries of the quadrant corresponding to the principal branch. This rule also takes
precedence to the maximum error bounds, effectively narrowing the result interval allowed by them.

14 Finally, the results allowed by the error bounds are narrowed by one further rule: The absolute value of
each component of the result of the Exp function, for a pure-imaginary parameter, never exceeds one.

Implementation Advice

15 The version of the Compose_From_Polar function without a Cycle parameter should not be implemented
by calling the corresponding version with a Cycle parameter of 2.0*Numerics.Pi, since this will not
provide the required accuracy in some portions of the domain.

Wording Changes From Ada 83

15.a The semantics of Numerics.Generic_Complex_Types and Numerics.Generic_Complex_Elementary_Functions differs
from Generic_Complex_Types and Generic_Complex_Elementary_Functions as defined in ISO/IEC CDs 13813 and
13814 (for Ada 83) in ways analogous to those identified for the elementary functions in G.2.4. In addition, we do not
generally specify the signs of zero results (or result components), although those proposed standards do.

ISO/IEC 8652:1995(E) —AARM;6.0

655 21 December 1994 Safety and Security H

Annex H
(normative)

Safety and Security

1{safety-critical systems} {secure systems} This Annex addresses requirements for systems that are safety critical
or have security constraints. It provides facilities and specifies documentation requirements that relate to
several needs:

2• Understanding program execution;

3• Reviewing object code;

4• Restricting language constructs whose usage might complicate the demonstration of program
correctness

Execution understandability is supported by pragma Normalize_Scalars, and also by requirements for the
implementation to document the effect of a program in the presence of a bounded error or where the
language rules leave the effect unspecified. {unspecified [partial]}

5The pragmas Reviewable and Restrictions relate to the other requirements addressed by this Annex.

NOTES
61 The Valid attribute (see 13.9.2) is also useful in addressing these needs, to avoid problems that could otherwise arise

from scalars that have values outside their declared range constraints.

6.aDiscussion: The Annex tries to provide high assurance rather than language features. However, it is not possible, in
general, to test for high assurance. For any specific language feature, it is possible to demonstrate its presence by a
functional test, as in the ACVC. One can also check for the presence of some documentation requirements, but it is not
easy to determine objectively that the documentation is ‘‘adequate’’.

Extensions to Ada 83

6.b{extensions to Ada 83} This Annex is new to Ada 9X.

H.1 Pragma Normalize_Scalars
1This pragma ensures that an otherwise uninitialized scalar object is set to a predictable value, but out of

range if possible.
1.aDiscussion: The goal of the pragma is to reduce the impact of a bounded error that results from a reference to an

uninitialized scalar object, by having such a reference violate a range check and thus raise Constraint_Error.

Syntax

2The form of a pragma Normalize_Scalars is as follows:

3pragma Normalize_Scalars;

Post-Compilation Rules

4{post-compilation rules} {configuration pragma [Normalize_Scalars]} {pragma, configuration [Normalize_Scalars]} Pragma
Normalize_Scalars is a configuration pragma. It applies to all compilation_units included in a partition.

Documentation Requirements

5{documentation requirements} If a pragma Normalize_Scalars applies, the implementation shall document the
implicit initial value for scalar subtypes, and shall identify each case in which such a value is used and is
not an invalid representation.

ISO/IEC 8652:1995(E) —AARM;6.0

H.1 Pragma Normalize_Scalars 21 December 1994 656

5.a To be honest: It’s slightly inaccurate to say that the value is a representation, but the point should be clear anyway.

5.b Discussion: By providing a type with a size specification so that spare bits are present, it is possible to force an
implementation of Normalize_Scalars to use an out of range value. This can be tested for by ensuring that Constraint_
Error is raised. Similarly, for an unconstrained integer type, in which no spare bit is surely present, one can check that
the initialization takes place to the value specified in the documentation of the implementation. For a floating point
type, spare bits might not be available, but a range constraint can provide the ability to use an out of range value.

5.c If it is difficult to document the general rule for the implicit initial value, the implementation might choose instead to
record the value on the object code listing or similar output produced during compilation.

Implementation Advice

6 Whenever possible, the implicit initial value for a scalar subtype should be an invalid representation (see
13.9.1).

6.a Discussion: When an out of range value is used for the initialization, it is likely that constraint checks will detect it. In
addition, it can be detected by the Valid attribute.

NOTES
7 2 The initialization requirement applies to uninitialized scalar objects that are subcomponents of composite objects, to

allocated objects, and to stand-alone objects. It also applies to scalar out parameters. Scalar subcomponents of composite
out parameters are initialized to the corresponding part of the actual, by virtue of 6.4.1.

8 3 The initialization requirement does not apply to a scalar for which pragma Import has been specified, since initialization
of an imported object is performed solely by the foreign language environment (see B.1).

9 4 The use of pragma Normalize_Scalars in conjunction with Pragma Restrictions(No_Exceptions) may result in erroneous
execution (see H.4).

9.a Discussion: Since the effect of an access to an out of range value will often be to raise Constraint_Error, it is clear that
suppressing the exception mechanism could result in erroneous execution. In particular, the assignment to an array,
with the array index out of range, will result in a write to an arbitrary store location, having unpredictable effects.

H.2 Documentation of Implementation Decisions
Documentation Requirements

1 {documentation requirements} {unspecified [partial]} The implementation shall document the range of effects for
each situation that the language rules identify as either a bounded error or as having an unspecified effect.
If the implementation can constrain the effects of erroneous execution for a given construct, then it shall
document such constraints. [The documentation might be provided either independently of any compila-
tion unit or partition, or as part of an annotated listing for a given unit or partition. See also 1.1.3, and
1.1.2.]

1.a Implementation defined: Information regarding bounded errors and erroneous execution.

NOTES
2 5 Among the situations to be documented are the conventions chosen for parameter passing, the methods used for the

management of run-time storage, and the method used to evaluate numeric expressions if this involves extended range or
extra precision.

2.a Discussion: Look up ‘‘unspecified’’ and ‘‘erroneous execution’’ in the index for a list of the cases.

2.b The management of run-time storage is particularly important. For safety applications, it is often necessary to show that
a program cannot raise Storage_Error, and for security applications that information cannot leak via the run-time
system. Users are likely to prefer a simple storage model that can be easily validated.

2.c The documentation could helpfully take into account that users may well adopt a subset to avoid some forms of
erroneous execution, for instance, not using the abort statement, so that the effects of a partly completed assignment_
statement do not have to be considered in the validation of a program (see 9.8). For this reason documentation linked
to an actual compilation may be most useful. Similarly, an implementation may be able to take into account use of the
Restrictions pragma.

ISO/IEC 8652:1995(E) —AARM;6.0

657 21 December 1994 Reviewable Object Code H.3

H.3 Reviewable Object Code
1Object code review and validation are supported by pragmas Reviewable and Inspection_Point.

H.3.1 Pragma Reviewable
1This pragma directs the implementation to provide information to facilitate analysis and review of a

program’s object code, in particular to allow determination of execution time and storage usage and to
identify the correspondence between the source and object programs.

1.aDiscussion: Since the purpose of this pragma is to provide information to the user, it is hard to objectively test for
conformity. In practice, users want the information in an easily understood and convenient form, but neither of these
properties can be easily measured.

Syntax

2The form of a pragma Reviewable is as follows:

3pragma Reviewable;

Post-Compilation Rules

4{post-compilation rules} {configuration pragma [Reviewable]} {pragma, configuration [Reviewable]} Pragma Reviewable
is a configuration pragma. It applies to all compilation_units included in a partition.

Implementation Requirements

5The implementation shall provide the following information for any compilation unit to which such a
pragma applies:

5.aDiscussion: The list of requirements can be checked for, even if issues like intelligibility are not addressed.

6• Where compiler-generated run-time checks remain;
6.aDiscussion: A constraint check which is implemented via a check on the upper and lower bound should clearly

be indicated. If a check is implicit in the form of machine instructions used (such an overflow checking), this
should also be covered by the documentation. It is particularly important to cover those checks which are not
obvious from the source code, such as that for stack overflow.

7• An identification of any construct with a language-defined check that is recognized prior to
run time as certain to fail if executed (even if the generation of run-time checks has been
suppressed);

7.aDiscussion: In this case, if the compiler determines that a check must fail, the user should be informed of this.
However, since it is not in general possible to know what the compiler will detect, it is not easy to test for this.
In practice, it is thought that compilers claiming conformity to this Annex will perform significant optimiza-
tions and therefore will detect such situations. Of course, such events could well indicate a programmer error.

8• For each reference to a scalar object, an identification of the reference as either ‘‘known to be
initialized,’’ or ‘‘possibly uninitialized,’’ independent of whether pragma Normalize_Scalars
applies;

8.aDiscussion: This issue again raises the question as to what the compiler has determined. A lazy implemen-
tation could clearly mark all scalars as ‘‘possibly uninitialized’’, but this would be very unhelpful to the user. It
should be possible to analyze a range of scalar uses and note the percentage in each class. Note that an access
marked ‘‘known to be initialized’’ does not imply that the value is in range, since the initialization could be
from an (erroneous) call of unchecked conversion, or by means external to the Ada program.

9• Where run-time support routines are implicitly invoked;
9.aDiscussion: Validators will need to know the calls invoked in order to check for the correct functionality. For

instance, for some safety applications, it may be necessary to ensure that certain sections of code can execute in
a particular time.

10• An object code listing, including:

ISO/IEC 8652:1995(E) —AARM;6.0

H.3.1 Pragma Reviewable 21 December 1994 658

11 • Machine instructions, with relative offsets;
11.a Discussion: The machine instructions should be in a format that is easily understood, such as the symbolic

format of the assembler. The relative offsets are needed in numeric format, to check any alignment restrictions
that the architecture might impose.

12 • Where each data object is stored during its lifetime;
12.a Discussion: This requirement implies that if the optimizer assigns a variable to a register, this needs to be

evident.

13 • Correspondence with the source program, including an identification of the code
produced per declaration and per statement.

13.a Discussion: This correspondence will be quite complex when extensive optimization is performed. In
particular, address calculation to access some data structures could be moved from the actual access. However,
when all the machine code arising from a statement or declaration is in one basic block, this must be indicated
by the implementation.

14 • An identification of each construct for which the implementation detects the possibility of
erroneous execution;

14.a Discussion: This requirement is quite vague. In general, it is hard for compilers to detect erroneous execution
and therefore the requirement will be rarely invoked. However, if the pragma Suppress is used and the compiler
can show that a predefined exception will be raised, then such an identification would be useful.

15 • For each subprogram, block, task, or other construct implemented by reserving and sub-
sequently freeing an area on a run-time stack, an identification of the length of the fixed-size
portion of the area and an indication of whether the non-fixed size portion is reserved on the
stack or in a dynamically-managed storage region.

15.a Discussion: This requirement is vital for those requiring to show that the storage available to a program is
sufficient. This is crucial in those cases in which the internal checks for stack overflow are suppressed (perhaps
by pragma Restrictions(No_Exceptions)).

16 The implementation shall provide the following information for any partition to which the pragma ap-
plies:

17 • An object code listing of the entire partition, including initialization and finalization code as
well as run-time system components, and with an identification of those instructions and data
that will be relocated at load time;

17.a Discussion: The object code listing should enable a validator to estimate upper bounds for the time taken by
critical parts of a program. Similarly, by an analysis of the entire partition, it should be possible to ensure that
the storage requirements are suitably bounded, assuming that the partition was written in an appropriate
manner.

18 • A description of the run-time model relevant to the partition.
18.a Discussion: For example, a description of the storage model is vital, since the Ada language does not explicitly

define such a model.

The implementation shall provide control- and data-flow information, both within each compilation unit
and across the compilation units of the partition.

18.b Discussion: This requirement is quite vague, since it is unclear what control and data flow information the compiler
has produced. It is really a plea not to throw away information that could be useful to the validator. Note that the data
flow information is relevant to the detection of ‘‘possibly uninitialized’’ objects referred to above.

Implementation Advice

19 The implementation should provide the above information in both a human-readable and machine-
readable form, and should document the latter so as to ease further processing by automated tools.

20 Object code listings should be provided both in a symbolic format and also in an appropriate numeric
format (such as hexadecimal or octal).

ISO/IEC 8652:1995(E) —AARM;6.0

659 21 December 1994 Pragma Reviewable H.3.1

20.aReason: This is to enable other tools to perform any analysis that the user needed to aid validation. The format should
be in some agreed form.

NOTES
216 The order of elaboration of library units will be documented even in the absence of pragma Reviewable (see 10.2).

21.aDiscussion: There might be some interactions between pragma Reviewable and compiler optimizations. For example,
an implementation may disable some optimizations when pragma Reviewable is in force if it would be overly
complicated to provide the detailed information to allow review of the optimized object code. See also pragma
Optimize (2.8).

H.3.2 Pragma Inspection_Point
1An occurrence of a pragma Inspection_Point identifies a set of objects each of whose values is to be

available at the point(s) during program execution corresponding to the position of the pragma in the
compilation unit. The purpose of such a pragma is to facilitate code validation.

1.aDiscussion: Inspection points are a high level equivalent of break points used by debuggers.

Syntax

2The form of a pragma Inspection_Point is as follows:

3pragma Inspection_Point[(object_name {, object_name})];

Legality Rules

4A pragma Inspection_Point is allowed wherever a declarative_item or statement is allowed. Each
object_name shall statically denote the declaration of an object.

4.aDiscussion: The static denotation is required, since no dynamic evaluation of a name is involved in this pragma.

Static Semantics

5{inspection point} An inspection point is a point in the object code corresponding to the occurrence of a
pragma Inspection_Point in the compilation unit.

5.aRamification: If a pragma Inspection_Point is in an in-lined subprogram, there might be numerous inspection points
in the object code corresponding to the single occurrence of the pragma in the source; similar considerations apply if
such a pragma is in a generic, or in a loop that has been ‘‘unrolled’’ by an optimizer.

{inspectable object} An object is inspectable at an inspection point if the corresponding pragma Inspection_
Point either has an argument denoting that object, or has no arguments.

5.bDiscussion: If the short form of the pragma is used, then all objects are inspectable. This implies that objects out of
scope at the point of the pragma are inspectable. A good interactive debugging system could provide information
similar to a post-mortem dump at such inspection points. The annex does not require that any inspection facility is
provided, merely that the information is available to understand the state of the machine at those points.

Dynamic Semantics

6Execution of a pragma Inspection_Point has no effect.
6.aDiscussion: Although an inspection point has no (semantic) effect, the removal or adding a new point could change

the machine code generated by the compiler.

Implementation Requirements

7Reaching an inspection point is an external interaction with respect to the values of the inspectable ob-
jects at that point (see 1.1.3).

7.aRamification: The compiler is inhibited from moving an assignment to an inspectable variable past an inspection
point for that variable. On the other hand, the evaluation of an expression that might raise an exception may be moved
past an inspection point (see 11.6).

ISO/IEC 8652:1995(E) —AARM;6.0

H.3.2 Pragma Inspection_Point 21 December 1994 660

Documentation Requirements

8 {documentation requirements} For each inspection point, the implementation shall identify a mapping between
each inspectable object and the machine resources (such as memory locations or registers) from which the
object’s value can be obtained.

8.a Implementation defined: Implementation-defined aspects of pragma Inspection_Point.

NOTES
9 7 The implementation is not allowed to perform ‘‘dead store elimination’’ on the last assignment to a variable prior to a

point where the variable is inspectable. Thus an inspection point has the effect of an implicit reference to each of its
inspectable objects.

10 8 Inspection points are useful in maintaining a correspondence between the state of the program in source code terms, and
the machine state during the program’s execution. Assertions about the values of program objects can be tested in machine
terms at inspection points. Object code between inspection points can be processed by automated tools to verify programs
mechanically.

10.a Discussion: Although it is not a requirement of the annex, it would be useful if the state of the stack and heap could be
interrogated. This would allow users to check that a program did not have a ‘storage leak’.

11 9 The identification of the mapping from source program objects to machine resources is allowed to be in the form of an
annotated object listing, in human-readable or tool-processable form.

11.a Discussion: In principle, it is easy to check an implementation for this pragma, since one merely needs to check the
content of objects against those values known from the source listing. In practice, one needs a tool similar to an
interactive debugger to perform the check.

H.4 Safety and Security Restrictions
1 This clause defines restrictions that can be used with pragma Restrictions (see 13.12); these facilitate the

demonstration of program correctness by allowing tailored versions of the run-time system.
1.a Discussion: Note that the restrictions are absolute. If a partition has 100 library units and just one needs Unchecked_

Conversion, then the pragma cannot be used to ensure the other 99 units do not use Unchecked_Conversion. Note also
that these are restrictions on all Ada code within a partition, and therefore it may not be evident from the specification
of a package whether a restriction can be imposed.

Static Semantics

2 The following restrictions, the same as in D.7, apply in this Annex: No_Task_Hierarchy, No_Abort_
Statement, No_Implicit_Heap_Allocation, Max_Task_Entries is 0, Max_Asynchronous_Select_Nesting
is 0, and Max_Tasks is 0. [The last three restrictions are checked prior to program execution.]

3 The following additional restrictions apply in this Annex.

4 Tasking-related restriction:

{Restrictions (No_Protected_Types)} No_Protected_Types5

There are no declarations of protected types or protected objects.

Memory-management related restrictions:6

{Restrictions (No_Allocators)} No_Allocators7

There are no occurrences of an allocator.

{Restrictions (No_Local_Allocators)} No_Local_Allocators8

Allocators are prohibited in subprograms, generic subprograms, tasks, and entry
bodies; instantiations of generic packages are also prohibited in these contexts.

8.a Ramification: Thus allocators are permitted only in expressions whose evaluation can only be performed before the
main subprogram is invoked.

8.b Reason: The reason for the prohibition against instantiations of generic packages is to avoid contract model violations.
An alternative would be to prohibit allocators from generic packages, but it seems preferable to allow generality on the

ISO/IEC 8652:1995(E) —AARM;6.0

661 21 December 1994 Safety and Security Restrictions H.4

defining side and then place the restrictions on the usage (instantiation), rather than inhibiting what can be in the
generic while liberalizing where they can be instantiated.

{Restrictions (No_Unchecked_Deallocation)} No_Unchecked_Deallocation 9

Semantic dependence on Unchecked_Deallocation is not allowed.
9.aDiscussion: This restriction would be useful in those contexts in which heap storage is needed on program start-up,

but need not be increased subsequently. The danger of a dangling pointer can therefore be avoided.

Immediate_Reclamation 10

Except for storage occupied by objects created by allocators and not deallocated via
unchecked deallocation, any storage reserved at run time for an object is immediately
reclaimed when the object no longer exists. {Restrictions (Immediate_Reclamation)}

10.aDiscussion: Immediate reclamation would apply to storage created by the compiler, such as for a return value from a
function whose size is not known at the call site.

Exception-related restriction: 11

{Restrictions (No_Exceptions)} No_Exceptions 12

Raise_statements and exception_handlers are not allowed. No language-defined run-
time checks are generated; however, a run-time check performed automatically by the
hardware is permitted.

12.aDiscussion: This restriction mirrors a method of working that is quite common in the safety area. The programmer is
required to show that exceptions cannot be raised. Then a simplified run-time system is used without exception
handling. However, some hardware checks may still be enforced. If the software check would have failed, or if the
hardware check actually fails, then the execution of the program is unpredictable. There are obvious dangers in this
approach, but it is similar to programming at the assembler level.

Other restrictions: 13

{Restrictions (No_Floating_Point)} No_Floating_Point 14

Uses of predefined floating point types and operations, and declarations of new float-
ing point types, are not allowed.

14.aDiscussion: The intention is to avoid the use of floating point hardware at run time, but this is expressed in language
terms. It is conceivable that floating point is used implicitly in some contexts, say fixed point type conversions of high
accuracy. However, the Implementation Requirements below make it clear that the restriction would apply to the
‘‘run-time system’’ and hence not be allowed. This parameter could be used to inform a compiler that a variant of the
architecture is being used which does not have floating point instructions.

{Restrictions (No_Fixed_Point)} No_Fixed_Point 15

Uses of predefined fixed point types and operations, and declarations of new fixed
point types, are not allowed.

15.aDiscussion: This restriction would have the side-effect of prohibiting the delay_relative_statement. As with the No_
Floating_Point restriction, this might be used to avoid any question of rounding errors. Unless an Ada run-time is
written in Ada, it seems hard to rule out implicit use of fixed point, since at the machine level, fixed point is virtually
the same as integer arithmetic.

{Restrictions (No_Unchecked_Conversion)} No_Unchecked_Conversion 16

Semantic dependence on the predefined generic Unchecked_Conversion is not al-
lowed.

16.aDiscussion: Most critical applications would require some restrictions or additional validation checks on uses of
unchecked conversion. If the application does not require the functionality, then this restriction provides a means of
ensuring the design requirement has been satisfied. The same applies to several of the following restrictions.

No_Access_Subprograms 17

The declaration of access-to-subprogram types is not allowed. {Restrictions (No_Access_

Subprograms)}

{Restrictions (No_Unchecked_Access)} No_Unchecked_Access 18

The Unchecked_Access attribute is not allowed.

ISO/IEC 8652:1995(E) —AARM;6.0

H.4 Safety and Security Restrictions 21 December 1994 662

{Restrictions (No_Dispatch)} No_Dispatch19

Occurrences of T’Class are not allowed, for any (tagged) subtype T.

{Restrictions (No_IO)} No_IO20

Semantic dependence on any of the library units Sequential_IO, Direct_IO, Text_IO,
Wide_Text_IO, or Stream_IO is not allowed.

20.a Discussion: Excluding the input-output facilities of an implementation may be needed in those environments which
cannot support the supplied functionality. A program in such an environment is likely to require some low level
facilities or a call on a non-Ada feature.

{Restrictions (No_Delay)} No_Delay21

Delay_Statements and semantic dependence on package Calendar are not allowed.
21.a Ramification: This implies that delay_alternatives in a select_statement are prohibited. The purpose of this restriction

is to avoid the need for timing facilities within the run-time system.

{Restrictions (No_Recursion)} No_Recursion22

As part of the execution of a subprogram, the same subprogram is not invoked.

{Restrictions (No_Reentrancy)} No_Reentrancy23

During the execution of a subprogram by a task, no other task invokes the same
subprogram.

Implementation Requirements

24 If an implementation supports pragma Restrictions for a particular argument, then except for the restric-
tions No_Unchecked_Deallocation, No_Unchecked_Conversion, No_Access_Subprograms, and No_
Unchecked_Access, the associated restriction applies to the run-time system.

24.a Reason: Permission is granted for the run-time system to use the specified otherwise-restricted features, since the use
of these features may simplify the run-time system by allowing more of it to be written in Ada.

24.b Discussion: The restrictions that are applied to the partition are also applied to the run-time system. For example, if
No_Floating_Point is specified, then an implementation that uses floating point for implementing the delay statement
(say) would require that No_Floating_Point is only used in conjunction with No_Delay. It is clearly important that
restrictions are effective so that Max_Tasks=0 does imply that tasking is not used, even implicitly (for input-output,
say).

24.c An implementation of tasking could be produced based upon a run-time system written in Ada in which the rendezvous
was controlled by protected types. In this case, No_Protected_Types could only be used in conjunction with Max_
Task_Entries=0. Other implementation dependencies could be envisaged.

24.d If the run-time system is not written in Ada, then the wording needs to be applied in an appropriate fashion.

Documentation Requirements

25 {documentation requirements} If a pragma Restrictions(No_Exceptions) is specified, the implementation shall
document the effects of all constructs where language-defined checks are still performed automatically
(for example, an overflow check performed by the processor).

25.a Implementation defined: Implementation-defined aspects of pragma Restrictions.

25.b Discussion: The documentation requirements here are quite difficult to satisfy. One method is to review the object
code generated and determine the checks that are still present, either explicitly, or implicitly within the architecture. As
another example from that of overflow, consider the question of deferencing a null pointer. This could be undertaken
by a memory access trap when checks are performed. When checks are suppressed via the argument No_Exceptions, it
would not be necessary to have the memory access trap mechanism enabled.

Erroneous Execution

26 {erroneous execution} Program execution is erroneous if pragma Restrictions(No_Exceptions) has been
specified and the conditions arise under which a generated language-defined run-time check would fail.

26.a Discussion: The situation here is very similar to the application of pragma Suppress. Since users are removing some
of the protection the language provides, they had better be careful!

ISO/IEC 8652:1995(E) —AARM;6.0

663 21 December 1994 Safety and Security Restrictions H.4

27Program execution is erroneous if pragma Restrictions(No_Recursion) has been specified and a sub-
program is invoked as part of its own execution, or if pragma Restrictions(No_Reentrancy) has been
specified and during the execution of a subprogram by a task, another task invokes the same subprogram.

27.aDiscussion: In practice, many implementations may not exploit the absence of recursion or need for reentrancy, in
which case the program execution would be unaffected by the use of recursion or reentrancy, even though the program
is still formally erroneous.

27.bImplementation defined: Any restrictions on pragma Restrictions.

ISO/IEC 8652:1995(E) —AARM;6.0

J Obsolescent Features 21 December 1994 664

ISO/IEC 8652:1995(E) —AARM;6.0

665 21 December 1994 Obsolescent Features J

Annex J
(normative)

Obsolescent Features

1[{obsolescent feature} This Annex contains descriptions of features of the language whose functionality is
largely redundant with other features defined by this International Standard. Use of these features is not
recommended in newly written programs.]

1.aRamification: These features are still part of the language, and have to be implemented by conforming implemen-
tations. The primary reason for putting these descriptions here is to get redundant features out of the way of most
readers. The designers of the next version of Ada after Ada 9X will have to assess whether or not it makes sense to
drop these features from the language.

Wording Changes From Ada 83

1.bThe following features have been removed from the language, rather than declared to be obsolescent:

1.c• The package Low_Level_IO (see A.6).

1.d• The Epsilon, Mantissa, Emax, Small, Large, Safe_Emax, Safe_Small, and Safe_Large attributes of floating
point types (see A.5.3).

1.e• The pragma Interface (see B.1).

1.f• The pragmas System_Name, Storage_Unit, and Memory_Size (see 13.7).

1.g• The pragma Shared (see C.6).

1.hImplementations can continue to support the above features for upward compatibility.

J.1 Renamings of Ada 83 Library Units
Static Semantics

1The following library_unit_renaming_declarations exist:
2with Ada.Unchecked_Conversion;

generic function Unchecked_Conversion renames Ada.Unchecked_Conversion;

3with Ada.Unchecked_Deallocation;
generic procedure Unchecked_Deallocation renames Ada.Unchecked_Deallocation;

4with Ada.Sequential_IO;
generic package Sequential_IO renames Ada.Sequential_IO;

5with Ada.Direct_IO;
generic package Direct_IO renames Ada.Direct_IO;

6with Ada.Text_IO;
package Text_IO renames Ada.Text_IO;

7with Ada.IO_Exceptions;
package IO_Exceptions renames Ada.IO_Exceptions;

8with Ada.Calendar;
package Calendar renames Ada.Calendar;

9with System.Machine_Code;
package Machine_Code renames System.Machine_Code; -- If supported.

Implementation Requirements

10The implementation shall allow the user to replace these renamings.

ISO/IEC 8652:1995(E) —AARM;6.0

J.2 Allowed Replacements of Characters 21 December 1994 666

J.2 Allowed Replacements of Characters
Syntax

1 The following replacements are allowed for the vertical line, number sign, and quotation mark
characters:

2 • A vertical line character (|) can be replaced by an exclamation mark (!) where used as a
delimiter.

3 • The number sign characters (#) of a based_literal can be replaced by colons (:) provided
that the replacement is done for both occurrences.

3.a To be honest: The intent is that such a replacement works in the Value and Wide_Value attributes, and in the
Get procedures of Text_IO, so that things like ‘‘16:.123:’’ is acceptable.

4 • The quotation marks (") used as string brackets at both ends of a string literal can be
replaced by percent signs (%) provided that the enclosed sequence of characters contains
no quotation mark, and provided that both string brackets are replaced. Any percent
sign within the sequence of characters shall then be doubled and each such doubled
percent sign is interpreted as a single percent sign character value.

5 These replacements do not change the meaning of the program.
5.a Reason: The original purpose of this feature was to support hardware (for example, teletype machines) that has long

been obsolete. The feature is no longer necessary for that reason. Another use of the feature has been to replace the
vertical line character (|) when using certain hardware that treats that character as a (non-English) letter. The feature is
no longer necessary for that reason, either, since Ada 9X has full support for international character sets. Therefore, we
believe this feature is no longer necessary.

5.b Users of equipment that still uses | to represent a letter will continue to do so. Perhaps by next the time Ada is revised,
such equipment will no longer be in use.

5.c Note that it was never legal to use this feature as a convenient method of including double quotes in a string without
doubling them — the string literal:

5.d %"This is quoted."%

5.e is not legal in Ada 83, nor will it be in Ada 9X. One has to write:

5.f """This is quoted."""

J.3 Reduced Accuracy Subtypes
1 A digits_constraint may be used to define a floating point subtype with a new value for its requested

decimal precision, as reflected by its Digits attribute. Similarly, a delta_constraint may be used to define
an ordinary fixed point subtype with a new value for its delta, as reflected by its Delta attribute.

1.a Discussion: It might be more direct to make these attributes specifiable via an attribute_definition_clause, and
eliminate the syntax for these _constraints.

Syntax

2 delta_constraint ::= delta static_expression [range_constraint]

Name Resolution Rules

3 {expected type [delta_constraint expression]} The expression of a delta_constraint is expected to be of any real
type.

Legality Rules

4 The expression of a delta_constraint shall be static.

ISO/IEC 8652:1995(E) —AARM;6.0

667 21 December 1994 Reduced Accuracy Subtypes J.3

5For a subtype_indication with a delta_constraint, the subtype_mark shall denote an ordinary fixed point
subtype.

6{notwithstanding} For a subtype_indication with a digits_constraint, the subtype_mark shall denote either a
decimal fixed point subtype or a floating point subtype (notwithstanding the rule given in 3.5.9 that only
allows a decimal fixed point subtype).

6.aDiscussion: We may need a better way to deal with obsolescent features with rules that contradict those of the
non-obsolescent parts of the standard.

Static Semantics

7A subtype_indication with a subtype_mark that denotes an ordinary fixed point subtype and a delta_
constraint defines an ordinary fixed point subtype with a delta given by the value of the expression of the
delta_constraint. If the delta_constraint includes a range_constraint, then the ordinary fixed point sub-
type is constrained by the range_constraint.

8A subtype_indication with a subtype_mark that denotes a floating point subtype and a digits_constraint
defines a floating point subtype with a requested decimal precision (as reflected by its Digits attribute)
given by the value of the expression of the digits_constraint. If the digits_constraint includes a range_
constraint, then the floating point subtype is constrained by the range_constraint.

Dynamic Semantics

9{compatibility [delta_constraint with an ordinary fixed point subtype]} A delta_constraint is compatible with an
ordinary fixed point subtype if the value of the expression is no less than the delta of the subtype, and the
range_constraint, if any, is compatible with the subtype.

10{compatibility [digits_constraint with a floating point subtype]} A digits_constraint is compatible with a floating
point subtype if the value of the expression is no greater than the requested decimal precision of the
subtype, and the range_constraint, if any, is compatible with the subtype.

11{elaboration [delta_constraint]} The elaboration of a delta_constraint consists of the elaboration of the range_
constraint, if any.

11.aReason: A numeric subtype is considered ‘‘constrained’’ only if a range constraint applies to it. The only effect of a
digits_constraint or a delta_constraint without a range_constraint is to specify the value of the corresponding Digits or
Delta attribute in the new subtype. The set of values of the subtype is not ‘‘constrained’’ in any way by such
_constraints.

Wording Changes From Ada 83

11.bIn Ada 83, a delta_constraint is called a fixed_point_constraint, and a digits_constraint is called a floating_point_
constraint. We have adopted other terms because digits_constraints apply primarily to decimal fixed point types now
(they apply to floating point types only as an obsolescent feature).

J.4 The Constrained Attribute
Static Semantics

1For every private subtype S,
1.aDiscussion: including a generic formal private subtype

the following attribute is defined:

S’Constrained Yields the value False if S denotes an unconstrained nonformal private subtype with 2

discriminants; also yields the value False if S denotes a generic formal private sub-
type, and the associated actual subtype is either an unconstrained subtype with dis-
criminants or an unconstrained array subtype; yields the value True otherwise. The
value of this attribute is of the predefined subtype Boolean.

ISO/IEC 8652:1995(E) —AARM;6.0

J.4 The Constrained Attribute 21 December 1994 668

2.a Reason: Because Ada 9X has unknown_discriminant_parts, the Constrained attribute of private subtypes is obsolete.
This is fortunate, since its Ada 83 definition was confusing, as explained below. Because this attribute is obsolete, we
do not bother to extend its definition to private extensions.

2.b The Constrained attribute of an object is not obsolete.

2.c Note well: S’Constrained matches the Ada 9X definition of ‘‘constrained’’ only for composite subtypes. For
elementary subtypes, S’Constrained is always true, whether or not S is constrained. (The Constrained attribute of an
object does not have this problem, as it is only defined for objects of a discriminated type.) So one should think of its
designator as being ’Constrained_Or_Elementary.

J.5 ASCII
Static Semantics

1 The following declaration exists in the declaration of package Standard:
2 package ASCII is

3 -- Control characters:

4

NUL : constant Character := nul; SOH : constant Character := soh;
STX : constant Character := stx; ETX : constant Character := etx;
EOT : constant Character := eot; ENQ : constant Character := enq;
ACK : constant Character := ack; BEL : constant Character := bel;
BS : constant Character := bs; HT : constant Character := ht;
LF : constant Character := lf; VT : constant Character := vt;
FF : constant Character := ff; CR : constant Character := cr;
SO : constant Character := so; SI : constant Character := si;
DLE : constant Character := dle; DC1 : constant Character := dc1;
DC2 : constant Character := dc2; DC3 : constant Character := dc3;
DC4 : constant Character := dc4; NAK : constant Character := nak;
SYN : constant Character := syn; ETB : constant Character := etb;
CAN : constant Character := can; EM : constant Character := em;
SUB : constant Character := sub; ESC : constant Character := esc;
FS : constant Character := fs; GS : constant Character := gs;
RS : constant Character := rs; US : constant Character := us;
DEL : constant Character := del;

5 -- Other characters:

6 Exclam : constant Character:= ’!’; Quotation : constant Character:= ’"’;
Sharp : constant Character:= ’#’; Dollar : constant Character:= ’$’;
Percent : constant Character:= ’%’; Ampersand : constant Character:= ’&’;
Colon : constant Character:= ’:’; Semicolon : constant Character:= ’;’;
Query : constant Character:= ’?’; At_Sign : constant Character:= ’@’;
L_Bracket : constant Character:= ’[’; Back_Slash: constant Character:= ’\’;
R_Bracket : constant Character:= ’]’; Circumflex: constant Character:= ’^’;
Underline : constant Character:= ’_’; Grave : constant Character:= ’‘’;
L_Brace : constant Character:= ’{’; Bar : constant Character:= ’|’;
R_Brace : constant Character:= ’}’; Tilde : constant Character:= ’~’;

7 -- Lower case letters:

8 LC_A: constant Character:= ’a’;
...
LC_Z: constant Character:= ’z’;

9 end ASCII;

J.6 Numeric_Error
Static Semantics

1 The following declaration exists in the declaration of package Standard:
2 Numeric_Error : exception renames Constraint_Error;

2.a Discussion: This is true even though it is not shown in A.1.

2.b Reason: In Ada 83, it was unclear which situations should raise Numeric_Error, and which should raise Constraint_
Error. The permissions of RM83-11.6 could often be used to allow the implementation to raise Constraint_Error in a

ISO/IEC 8652:1995(E) —AARM;6.0

669 21 December 1994 Numeric_Error J.6

situation where one would normally expect Numeric_Error. To avoid this confusion, all situations that raise Numeric_
Error in Ada 83 are changed to raise Constraint_Error in Ada 9X. Numeric_Error is changed to be a renaming of
Constraint_Error to avoid most of the upward compatibilities associated with this change.

2.cIn new code, Constraint_Error should be used instead of Numeric_Error.

J.7 At Clauses
Syntax

1at_clause ::= for direct_name use at expression;

Static Semantics

2An at_clause of the form ‘‘for x use at y;’’ is equivalent to an attribute_definition_clause of the form ‘‘for
x’Address use y;’’.

2.aReason: The preferred syntax for specifying the address of an entity is an attribute_definition_clause specifying the
Address attribute. Therefore, the special-purpose at_clause syntax is now obsolete.

2.bThe above equivalence implies, for example, that only one at_clause is allowed for a given entity. Similarly, it is
illegal to give both an at_clause and an attribute_definition_clause specifying the Address attribute.

Extensions to Ada 83

2.c{extensions to Ada 83} We now allow to define the address of an entity using an attribute_definition_clause. This is
because Ada 83’s at_clause is so hard to remember: programmers often tend to write ‘‘for X’Address use...;’’.

Wording Changes From Ada 83

2.dAda 83’s address_clause is now called an at_clause to avoid confusion with the new term ‘‘Address clause’’ (that is,
an attribute_definition_clause for the Address attribute).

J.7.1 Interrupt Entries
1[Implementations are permitted to allow the attachment of task entries to interrupts via the address clause.

Such an entry is referred to as an interrupt entry.

2The address of the task entry corresponds to a hardware interrupt in an implementation-defined manner.
(See Ada.Interrupts.Reference in C.3.2.)]

Static Semantics

3The following attribute is defined:

4For any task entry X:

{interrupt entry} X’Address 5

For a task entry whose address is specified (an interrupt entry), the value refers to the
corresponding hardware interrupt. For such an entry, as for any other task entry, the
meaning of this value is implementation defined. The value of this attribute is of the
type of the subtype System.Address.

{specifiable [of Address for entries]} Address may be specified for single entries via an 6

attribute_definition_clause.
6.aReason: Because of the equivalence of at_clauses and attribute_definition_clauses, an interrupt entry may be specified

via either notation.

Dynamic Semantics

7{initialization [of a task object]} As part of the initialization of a task object, the address clause for an interrupt
entry is elaborated[, which evaluates the expression of the address clause]. A check is made that the
address specified is associated with some interrupt to which a task entry may be attached. {Program_Error

ISO/IEC 8652:1995(E) —AARM;6.0

J.7.1 Interrupt Entries 21 December 1994 670

(raised by failure of run-time check)} If this check fails, Program_Error is raised. Otherwise, the interrupt entry
is attached to the interrupt associated with the specified address.

8 {finalization [of a task object]} Upon finalization of the task object, the interrupt entry, if any, is detached from
the corresponding interrupt and the default treatment is restored.

9 While an interrupt entry is attached to an interrupt, the interrupt is reserved (see C.3).

10 An interrupt delivered to a task entry acts as a call to the entry issued by a hardware task whose priority is
in the System.Interrupt_Priority range. It is implementation defined whether the call is performed as an
ordinary entry call, a timed entry call, or a conditional entry call; which kind of call is performed can
depend on the specific interrupt.

Bounded (Run-Time) Errors

11 {bounded error} It is a bounded error to evaluate E’Caller (see C.7.1) in an accept_statement for an inter-
rupt entry. The possible effects are the same as for calling Current_Task from an entry body.

Documentation Requirements

12 {documentation requirements} The implementation shall document to which interrupts a task entry may be
attached.

13 The implementation shall document whether the invocation of an interrupt entry has the effect of an
ordinary entry call, conditional call, or a timed call, and whether the effect varies in the presence of
pending interrupts.

Implementation Permissions

14 The support for this subclause is optional.

15 Interrupts to which the implementation allows a task entry to be attached may be designated as reserved
for the entire duration of program execution[; that is, not just when they have an interrupt entry attached
to them].

16 Interrupt entry calls may be implemented by having the hardware execute directly the appropriate accept
body. Alternatively, the implementation is allowed to provide an internal interrupt handler to simulate the
effect of a normal task calling the entry.

17 The implementation is allowed to impose restrictions on the specifications and bodies of tasks that have
interrupt entries.

18 It is implementation defined whether direct calls (from the program) to interrupt entries are allowed.

19 If a select_statement contains both a terminate_alternative and an accept_alternative for an interrupt
entry, then an implementation is allowed to impose further requirements for the selection of the
terminate_alternative in addition to those given in 9.3.

NOTES
20 1 Queued interrupts correspond to ordinary entry calls. Interrupts that are lost if not immediately processed correspond to

conditional entry calls. It is a consequence of the priority rules that an accept body executed in response to an interrupt can
be executed with the active priority at which the hardware generates the interrupt, taking precedence over lower priority
tasks, without a scheduling action.

ISO/IEC 8652:1995(E) —AARM;6.0

671 21 December 1994 Interrupt Entries J.7.1

212 Control information that is supplied upon an interrupt can be passed to an associated interrupt entry as one or more
parameters of mode in.

Examples

22Example of an interrupt entry:
23task Interrupt_Handler is

entry Done;
for Done’Address use Ada.Interrupts.Reference(Ada.Interrupts.Names.Device_Done);

end Interrupt_Handler;

Wording Changes From Ada 83

23.aRM83-13.5.1 did not adequately address the problems associate with interrupts. This feature is now obsolescent and is
replaced by the Ada 9X interrupt model as specified in the Systems Programming Annex.

J.8 Mod Clauses
Syntax

1mod_clause ::= at mod static_expression;

Static Semantics

2A record_representation_clause of the form:
3for r use

record at mod a
...

end record;

4is equivalent to:
5for r’Alignment use a;

for r use
record

...
end record;

5.aReason: The preferred syntax for specifying the alignment of an entity is an attribute_definition_clause specifying the
Alignment attribute. Therefore, the special-purpose mod_clause syntax is now obsolete.

5.bThe above equivalence implies, for example, that it is illegal to give both a mod_clause and an attribute_definition_
clause specifying the Alignment attribute for the same type.

Wording Changes From Ada 83

5.cAda 83’s alignment_clause is now called a mod_clause to avoid confusion with the new term ‘‘Alignment clause’’ (that
is, an attribute_definition_clause for the Alignment attribute).

J.9 The Storage_Size Attribute
Static Semantics

1For any task subtype T, the following attribute is defined:

T’Storage_Size Denotes an implementation-defined value of type universal_integer representing the 2

number of storage elements reserved for a task of the subtype T.
2.aTo be honest: T’Storage_Size cannot be particularly meaningful in the presence of a pragma Storage_Size, especially

when the expression is dynamic, or depends on a discriminant of the task, because the Storage_Size will be different
for different objects of the type. Even without such a pragma, the Storage_Size can be different for different objects of
the type, and in any case, the value is implementation defined. Hence, it is always implementation defined.

{specifiable [of Storage_Size for a task first subtype]} Storage_Size may be specified for a task 3

first subtype via an attribute_definition_clause.

ISO/IEC 8652:1995(E) —AARM;6.0

K Language-Defined Attributes 21 December 1994 672

ISO/IEC 8652:1995(E) —AARM;6.0

673 21 December 1994 Language-Defined Attributes K

Annex K
(informative)

Language-Defined Attributes

1{attribute} This annex summarizes the definitions given elsewhere of the language-defined attributes.

P’Access For a prefix P that denotes a subprogram: 2

P’Access yields an access value that designates the subprogram denoted by P. The 3

type of P’Access is an access-to-subprogram type (S), as determined by the expected
type. See 3.10.2.

X’Access For a prefix X that denotes an aliased view of an object: 4

X’Access yields an access value that designates the object denoted by X. The type of 5

X’Access is an access-to-object type, as determined by the expected type. The ex-
pected type shall be a general access type. See 3.10.2.

X’Address For a prefix X that denotes an object, program unit, or label: 6

Denotes the address of the first of the storage elements allocated to X. For a program 7

unit or label, this value refers to the machine code associated with the corresponding
body or statement. The value of this attribute is of type System.Address. See 13.3.

S’Adjacent For every subtype S of a floating point type T: 8

S’Adjacent denotes a function with the following specification: 9

10function S’Adjacent (X, Towards : T)
return T

{Constraint_Error (raised by failure of run-time check)} If Towards = X, the function yields X; 11

otherwise, it yields the machine number of the type T adjacent to X in the direction of
Towards, if that machine number exists. {Range_Check [partial]} {check, language-defined

(Range_Check)} If the result would be outside the base range of S, Constraint_Error is
raised. When T’Signed_Zeros is True, a zero result has the sign of X. When Towards
is zero, its sign has no bearing on the result. See A.5.3.

S’Aft For every fixed point subtype S: 12

S’Aft yields the number of decimal digits needed after the decimal point to accom- 13

modate the delta of the subtype S, unless the delta of the subtype S is greater than 0.1,
in which case the attribute yields the value one. [(S’Aft is the smallest positive
integer N for which (10**N)*S’Delta is greater than or equal to one.)] The value of
this attribute is of the type universal_integer. See 3.5.10.

X’Alignment For a prefix X that denotes a subtype or object: 14

The Address of an object that is allocated under control of the implementation is an 15

integral multiple of the Alignment of the object (that is, the Address modulo the
Alignment is zero). The offset of a record component is a multiple of the Alignment
of the component. For an object that is not allocated under control of the implemen-
tation (that is, one that is imported, that is allocated by a user-defined allocator, whose
Address has been specified, or is designated by an access value returned by an in-
stance of Unchecked_Conversion), the implementation may assume that the Address
is an integral multiple of its Alignment. The implementation shall not assume a
stricter alignment.

ISO/IEC 8652:1995(E) —AARM;6.0

K Language-Defined Attributes 21 December 1994 674

The value of this attribute is of type universal_integer, and nonnegative; zero means16

that the object is not necessarily aligned on a storage element boundary. See 13.3.

S’Base For every scalar subtype S:17

S’Base denotes an unconstrained subtype of the type of S. This unconstrained subtype18

is called the base subtype of the type. See 3.5.

S’Bit_Order For every specific record subtype S:19

Denotes the bit ordering for the type of S. The value of this attribute is of type20

System.Bit_Order. See 13.5.3.

P’Body_Version For a prefix P that statically denotes a program unit:21

Yields a value of the predefined type String that identifies the version of the compila-22

tion unit that contains the body (but not any subunits) of the program unit. See E.3.

T’Callable For a prefix T that is of a task type [(after any implicit dereference)]:23

Yields the value True when the task denoted by T is callable, and False otherwise;24

See 9.9.

E’Caller For a prefix E that denotes an entry_declaration:25

Yields a value of the type Task_ID that identifies the task whose call is now being26

serviced. Use of this attribute is allowed only inside an entry_body or accept_
statement corresponding to the entry_declaration denoted by E. See C.7.1.

S’Ceiling For every subtype S of a floating point type T:27

S’Ceiling denotes a function with the following specification:28

29 function S’Ceiling (X : T)
return T

The function yields the value ⎡X⎤, i.e., the smallest (most negative) integral value30

greater than or equal to X. When X is zero, the result has the sign of X; a zero result
otherwise has a negative sign when S’Signed_Zeros is True. See A.5.3.

S’Class For every subtype S of a tagged type T (specific or class-wide):31

S’Class denotes a subtype of the class-wide type (called T’Class in this International32

Standard) for the class rooted at T (or if S already denotes a class-wide subtype, then
S’Class is the same as S).

{unconstrained (subtype)} {constrained (subtype)} S’Class is unconstrained. However, if S33

is constrained, then the values of S’Class are only those that when converted to the
type T belong to S. See 3.9.

S’Class For every subtype S of an untagged private type whose full view is tagged:34

Denotes the class-wide subtype corresponding to the full view of S. This attribute is35

allowed only from the beginning of the private part in which the full view is declared,
until the declaration of the full view. [After the full view, the Class attribute of the
full view can be used.] See 7.3.1.

X’Component_Size36

For a prefix X that denotes an array subtype or array object [(after any implicit
dereference)]:

Denotes the size in bits of components of the type of X. The value of this attribute is37

of type universal_integer. See 13.3.

S’Compose For every subtype S of a floating point type T:38

S’Compose denotes a function with the following specification:39

ISO/IEC 8652:1995(E) —AARM;6.0

675 21 December 1994 Language-Defined Attributes K

40function S’Compose (Fraction : T;
Exponent : universal_integer)

return T

{Constraint_Error (raised by failure of run-time check)} Let v be the value 41

Fraction⋅T’Machine_RadixExponent−k, where k is the normalized exponent of Fraction.
If v is a machine number of the type T, or if | v | ≥ T’Model_Small, the function yields
v; otherwise, it yields either one of the machine numbers of the type T adjacent to v.
{Range_Check [partial]} {check, language-defined (Range_Check)} Constraint_Error is option-
ally raised if v is outside the base range of S. A zero result has the sign of Fraction
when S’Signed_Zeros is True. See A.5.3.

A’Constrained For a prefix A that is of a discriminated type [(after any implicit dereference)]: 42

Yields the value True if A denotes a constant, a value, or a constrained variable, and 43

False otherwise. See 3.7.2.

S’Copy_Sign For every subtype S of a floating point type T: 44

S’Copy_Sign denotes a function with the following specification: 45

46function S’Copy_Sign (Value, Sign : T)
return T

{Constraint_Error (raised by failure of run-time check)} If the value of Value is nonzero, the 47

function yields a result whose magnitude is that of Value and whose sign is that of
Sign; otherwise, it yields the value zero. {Range_Check [partial]} {check, language-defined

(Range_Check)} Constraint_Error is optionally raised if the result is outside the base
range of S. A zero result has the sign of Sign when S’Signed_Zeros is True. See
A.5.3.

E’Count For a prefix E that denotes an entry of a task or protected unit: 48

Yields the number of calls presently queued on the entry E of the current instance of 49

the unit. The value of this attribute is of the type universal_integer. See 9.9.

S’Definite For a prefix S that denotes a formal indefinite subtype: 50

S’Definite yields True if the actual subtype corresponding to S is definite; otherwise it 51

yields False. The value of this attribute is of the predefined type Boolean. See
12.5.1.

S’Delta For every fixed point subtype S: 52

S’Delta denotes the delta of the fixed point subtype S. The value of this attribute is of 53

the type universal_real. See 3.5.10.

S’Denorm For every subtype S of a floating point type T: 54

Yields the value True if every value expressible in the form 55

± mantissa⋅T’Machine_RadixT’Machine_Emin

where mantissa is a nonzero T’Machine_Mantissa-digit fraction in the number base
T’Machine_Radix, the first digit of which is zero, is a machine number (see 3.5.7) of
the type T; yields the value False otherwise. The value of this attribute is of the
predefined type Boolean. See A.5.3.

S’Digits For every decimal fixed point subtype S: 56

S’Digits denotes the digits of the decimal fixed point subtype S, which corresponds to 57

the number of decimal digits that are representable in objects of the subtype. The
value of this attribute is of the type universal_integer. See 3.5.10.

S’Digits For every floating point subtype S: 58

ISO/IEC 8652:1995(E) —AARM;6.0

K Language-Defined Attributes 21 December 1994 676

S’Digits denotes the requested decimal precision for the subtype S. The value of this59

attribute is of the type universal_integer. See 3.5.8.

S’Exponent For every subtype S of a floating point type T:60

S’Exponent denotes a function with the following specification:61

62 function S’Exponent (X : T)
return universal_integer

The function yields the normalized exponent of X. See A.5.3.63

S’External_Tag For every subtype S of a tagged type T (specific or class-wide):64

{External_Tag clause} {specifiable [of External_Tag for a tagged type]} S’External_Tag denotes65

an external string representation for S’Tag; it is of the predefined type String.
External_Tag may be specified for a specific tagged type via an attribute_definition_
clause; the expression of such a clause shall be static. The default external tag
representation is implementation defined. See 3.9.2 and 13.13.2. See 13.3.

A’First(N) For a prefix A that is of an array type [(after any implicit dereference)], or denotes a66

constrained array subtype:

A’First(N) denotes the lower bound of the N-th index range; its type is the cor-67

responding index type. See 3.6.2.

A’First For a prefix A that is of an array type [(after any implicit dereference)], or denotes a68

constrained array subtype:

A’First denotes the lower bound of the first index range; its type is the corresponding69

index type. See 3.6.2.

S’First For every scalar subtype S:70

S’First denotes the lower bound of the range of S. The value of this attribute is of the71

type of S. See 3.5.

R.C’First_Bit For a component C of a composite, non-array object R:72

Denotes the offset, from the start of the first of the storage elements occupied by C, of73

the first bit occupied by C. This offset is measured in bits. The first bit of a storage
element is numbered zero. The value of this attribute is of the type universal_integer.
See 13.5.2.

S’Floor For every subtype S of a floating point type T:74

S’Floor denotes a function with the following specification:75

76 function S’Floor (X : T)
return T

The function yields the value ⎣X⎦, i.e., the largest (most positive) integral value less77

than or equal to X. When X is zero, the result has the sign of X; a zero result other-
wise has a positive sign. See A.5.3.

S’Fore For every fixed point subtype S:78

S’Fore yields the minimum number of characters needed before the decimal point for79

the decimal representation of any value of the subtype S, assuming that the represen-
tation does not include an exponent, but includes a one-character prefix that is either a
minus sign or a space. (This minimum number does not include superfluous zeros or
underlines, and is at least 2.) The value of this attribute is of the type universal_
integer. See 3.5.10.

S’Fraction For every subtype S of a floating point type T:80

S’Fraction denotes a function with the following specification:81

ISO/IEC 8652:1995(E) —AARM;6.0

677 21 December 1994 Language-Defined Attributes K

82function S’Fraction (X : T)
return T

The function yields the value X⋅T’Machine_Radix−k, where k is the normalized ex- 83

ponent of X. A zero result[, which can only occur when X is zero,] has the sign of X.
See A.5.3.

E’Identity For a prefix E that denotes an exception: 84

E’Identity returns the unique identity of the exception. The type of this attribute is 85

Exception_Id. See 11.4.1.

T’Identity For a prefix T that is of a task type [(after any implicit dereference)]: 86

Yields a value of the type Task_ID that identifies the task denoted by T. See C.7.1. 87

S’Image For every scalar subtype S: 88

S’Image denotes a function with the following specification: 89

90function S’Image(Arg : S’Base)
return String

The function returns an image of the value of Arg as a String. See 3.5. 91

S’Class’Input For every subtype S’Class of a class-wide type T’Class: 92

S’Class’Input denotes a function with the following specification: 93

94function S’Class’Input(
Stream : access Ada.Streams.Root_Stream_Type’Class)
return T’Class

First reads the external tag from Stream and determines the corresponding internal tag 95

(by calling Tags.Internal_Tag(String’Input(Stream)) — see 3.9) and then dispatches
to the subprogram denoted by the Input attribute of the specific type identified by the
internal tag; returns that result. See 13.13.2.

S’Input For every subtype S of a specific type T: 96

S’Input denotes a function with the following specification: 97

98function S’Input(
Stream : access Ada.Streams.Root_Stream_Type’Class)
return T

S’Input reads and returns one value from Stream, using any bounds or discriminants 99

written by a corresponding S’Output to determine how much to read. See 13.13.2.

A’Last(N) For a prefix A that is of an array type [(after any implicit dereference)], or denotes a 100

constrained array subtype:

A’Last(N) denotes the upper bound of the N-th index range; its type is the cor- 101

responding index type. See 3.6.2.

A’Last For a prefix A that is of an array type [(after any implicit dereference)], or denotes a 102

constrained array subtype:

A’Last denotes the upper bound of the first index range; its type is the corresponding 103

index type. See 3.6.2.

S’Last For every scalar subtype S: 104

S’Last denotes the upper bound of the range of S. The value of this attribute is of the 105

type of S. See 3.5.

R.C’Last_Bit For a component C of a composite, non-array object R: 106

Denotes the offset, from the start of the first of the storage elements occupied by C, of 107

the last bit occupied by C. This offset is measured in bits. The value of this attribute is
of the type universal_integer. See 13.5.2.

ISO/IEC 8652:1995(E) —AARM;6.0

K Language-Defined Attributes 21 December 1994 678

S’Leading_Part For every subtype S of a floating point type T:108

S’Leading_Part denotes a function with the following specification:109

110 function S’Leading_Part (X : T;
Radix_Digits : universal_integer)

return T

Let v be the value T’Machine_Radixk−Radix_Digits, where k is the normalized exponent111

of X. The function yields the value

112 • ⎣X/v⎦⋅v, when X is nonnegative and Radix_Digits is positive;

113 • ⎡X/v⎤⋅v, when X is negative and Radix_Digits is positive.

{Constraint_Error (raised by failure of run-time check)} {Range_Check [partial]} {check,114

language-defined (Range_Check)} Constraint_Error is raised when Radix_Digits is zero or
negative. A zero result[, which can only occur when X is zero,] has the sign of X.
See A.5.3.

A’Length(N) For a prefix A that is of an array type [(after any implicit dereference)], or denotes a115

constrained array subtype:

A’Length(N) denotes the number of values of the N-th index range (zero for a null116

range); its type is universal_integer. See 3.6.2.

A’Length For a prefix A that is of an array type [(after any implicit dereference)], or denotes a117

constrained array subtype:

A’Length denotes the number of values of the first index range (zero for a null range);118

its type is universal_integer. See 3.6.2.

S’Machine For every subtype S of a floating point type T:119

S’Machine denotes a function with the following specification:120

121 function S’Machine (X : T)
return T

{Constraint_Error (raised by failure of run-time check)} If X is a machine number of the type122

T, the function yields X; otherwise, it yields the value obtained by rounding or trun-
cating X to either one of the adjacent machine numbers of the type T. {Range_Check

[partial]} {check, language-defined (Range_Check)} Constraint_Error is raised if rounding or
truncating X to the precision of the machine numbers results in a value outside the
base range of S. A zero result has the sign of X when S’Signed_Zeros is True. See
A.5.3.

S’Machine_Emax For every subtype S of a floating point type T:123

Yields the largest (most positive) value of exponent such that every value expressible124

in the canonical form (for the type T), having a mantissa of T’Machine_Mantissa
digits, is a machine number (see 3.5.7) of the type T. This attribute yields a value of
the type universal_integer. See A.5.3.

S’Machine_Emin For every subtype S of a floating point type T:125

Yields the smallest (most negative) value of exponent such that every value express-126

ible in the canonical form (for the type T), having a mantissa of T’Machine_Mantissa
digits, is a machine number (see 3.5.7) of the type T. This attribute yields a value of
the type universal_integer. See A.5.3.

S’Machine_Mantissa127

For every subtype S of a floating point type T:

Yields the largest value of p such that every value expressible in the canonical form128

(for the type T), having a p-digit mantissa and an exponent between T’Machine_Emin
and T’Machine_Emax, is a machine number (see 3.5.7) of the type T. This attribute
yields a value of the type universal_integer. See A.5.3.

ISO/IEC 8652:1995(E) —AARM;6.0

679 21 December 1994 Language-Defined Attributes K

S’Machine_Overflows 129

For every subtype S of a fixed point type T:

Yields the value True if overflow and divide-by-zero are detected and reported by 130

raising Constraint_Error for every predefined operation that yields a result of the type
T; yields the value False otherwise. The value of this attribute is of the predefined
type Boolean. See A.5.4.

S’Machine_Overflows 131

For every subtype S of a floating point type T:

Yields the value True if overflow and divide-by-zero are detected and reported by 132

raising Constraint_Error for every predefined operation that yields a result of the type
T; yields the value False otherwise. The value of this attribute is of the predefined
type Boolean. See A.5.3.

S’Machine_Radix For every subtype S of a fixed point type T: 133

Yields the radix of the hardware representation of the type T. The value of this 134

attribute is of the type universal_integer. See A.5.4.

S’Machine_Radix For every subtype S of a floating point type T: 135

Yields the radix of the hardware representation of the type T. The value of this 136

attribute is of the type universal_integer. See A.5.3.

S’Machine_Rounds 137

For every subtype S of a fixed point type T:

Yields the value True if rounding is performed on inexact results of every predefined 138

operation that yields a result of the type T; yields the value False otherwise. The
value of this attribute is of the predefined type Boolean. See A.5.4.

S’Machine_Rounds 139

For every subtype S of a floating point type T:

Yields the value True if rounding is performed on inexact results of every predefined 140

operation that yields a result of the type T; yields the value False otherwise. The
value of this attribute is of the predefined type Boolean. See A.5.3.

S’Max For every scalar subtype S: 141

S’Max denotes a function with the following specification: 142

143function S’Max(Left, Right : S’Base)
return S’Base

The function returns the greater of the values of the two parameters. See 3.5. 144

S’Max_Size_In_Storage_Elements 145

For every subtype S:

Denotes the maximum value for Size_In_Storage_Elements that will be requested via 146

Allocate for an access type whose designated subtype is S. The value of this attribute
is of type universal_integer. See 13.11.1.

S’Min For every scalar subtype S: 147

S’Min denotes a function with the following specification: 148

149function S’Min(Left, Right : S’Base)
return S’Base

The function returns the lesser of the values of the two parameters. See 3.5. 150

S’Model For every subtype S of a floating point type T: 151

ISO/IEC 8652:1995(E) —AARM;6.0

K Language-Defined Attributes 21 December 1994 680

S’Model denotes a function with the following specification:152

153 function S’Model (X : T)
return T

If the Numerics Annex is not supported, the meaning of this attribute is implemen-154

tation defined; see G.2.2 for the definition that applies to implementations supporting
the Numerics Annex. See A.5.3.

S’Model_Emin For every subtype S of a floating point type T:155

If the Numerics Annex is not supported, this attribute yields an implementation156

defined value that is greater than or equal to the value of T’Machine_Emin. See
G.2.2 for further requirements that apply to implementations supporting the Numerics
Annex. The value of this attribute is of the type universal_integer. See A.5.3.

S’Model_Epsilon For every subtype S of a floating point type T:157

Yields the value T’Machine_Radix1−T’Model_Mantissa. The value of this attribute is of158

the type universal_real. See A.5.3.

S’Model_Mantissa For every subtype S of a floating point type T:159

If the Numerics Annex is not supported, this attribute yields an implementation160

defined value that is greater than or equal to ⎡d⋅log (10)/log (T′Machine_Radix)⎤+1,
where d is the requested decimal precision of T, and less than or equal to the value of
T’Machine_Mantissa. See G.2.2 for further requirements that apply to implemen-
tations supporting the Numerics Annex. The value of this attribute is of the type
universal_integer. See A.5.3.

S’Model_Small For every subtype S of a floating point type T:161

Yields the value T’Machine_RadixT’Model_Emin−1. The value of this attribute is of the162

type universal_real. See A.5.3.

S’Modulus For every modular subtype S:163

S’Modulus yields the modulus of the type of S, as a value of the type universal_164

integer. See 3.5.4.

S’Class’Output For every subtype S’Class of a class-wide type T’Class:165

S’Class’Output denotes a procedure with the following specification:166

167 procedure S’Class’Output(
Stream : access Ada.Streams.Root_Stream_Type’Class;
Item : in T’Class)

First writes the external tag of Item to Stream (by calling String’Output(Tags.-168

External_Tag(Item’Tag) — see 3.9) and then dispatches to the subprogram denoted
by the Output attribute of the specific type identified by the tag. See 13.13.2.

S’Output For every subtype S of a specific type T:169

S’Output denotes a procedure with the following specification:170

171 procedure S’Output(
Stream : access Ada.Streams.Root_Stream_Type’Class;
Item : in T)

S’Output writes the value of Item to Stream, including any bounds or discriminants.172

See 13.13.2.

D’Partition_ID For a prefix D that denotes a library-level declaration, excepting a declaration of or173

within a declared-pure library unit:

Denotes a value of the type universal_integer that identifies the partition in which D174

was elaborated. If D denotes the declaration of a remote call interface library unit
(see E.2.3) the given partition is the one where the body of D was elaborated. See
E.1.

ISO/IEC 8652:1995(E) —AARM;6.0

681 21 December 1994 Language-Defined Attributes K

S’Pos For every discrete subtype S: 175

S’Pos denotes a function with the following specification: 176

177function S’Pos(Arg : S’Base)
return universal_integer

This function returns the position number of the value of Arg, as a value of type 178

universal_integer. See 3.5.5.

R.C’Position For a component C of a composite, non-array object R: 179

Denotes the same value as R.C’Address – R’Address. The value of this attribute is of 180

the type universal_integer. See 13.5.2.

S’Pred For every scalar subtype S: 181

S’Pred denotes a function with the following specification: 182

183function S’Pred(Arg : S’Base)
return S’Base

{Constraint_Error (raised by failure of run-time check)} For an enumeration type, the function 184

returns the value whose position number is one less than that of the value of Arg;
{Range_Check [partial]} {check, language-defined (Range_Check)} Constraint_Error is raised if
there is no such value of the type. For an integer type, the function returns the result
of subtracting one from the value of Arg. For a fixed point type, the function returns
the result of subtracting small from the value of Arg. For a floating point type, the
function returns the machine number (as defined in 3.5.7) immediately below the
value of Arg; {Range_Check [partial]} {check, language-defined (Range_Check)} Constraint_
Error is raised if there is no such machine number. See 3.5.

A’Range(N) For a prefix A that is of an array type [(after any implicit dereference)], or denotes a 185

constrained array subtype:

A’Range(N) is equivalent to the range A’First(N) .. A’Last(N), except that the prefix 186

A is only evaluated once. See 3.6.2.

A’Range For a prefix A that is of an array type [(after any implicit dereference)], or denotes a 187

constrained array subtype:

A’Range is equivalent to the range A’First .. A’Last, except that the prefix A is only 188

evaluated once. See 3.6.2.

S’Range For every scalar subtype S: 189

S’Range is equivalent to the range S’First .. S’Last. See 3.5. 190

S’Class’Read For every subtype S’Class of a class-wide type T’Class: 191

S’Class’Read denotes a procedure with the following specification: 192

193procedure S’Class’Read(
Stream : access Ada.Streams.Root_Stream_Type’Class;
Item : out T’Class)

Dispatches to the subprogram denoted by the Read attribute of the specific type iden- 194

tified by the tag of Item. See 13.13.2.

S’Read For every subtype S of a specific type T: 195

S’Read denotes a procedure with the following specification: 196

197procedure S’Read(
Stream : access Ada.Streams.Root_Stream_Type’Class;
Item : out T)

S’Read reads the value of Item from Stream. See 13.13.2. 198

ISO/IEC 8652:1995(E) —AARM;6.0

K Language-Defined Attributes 21 December 1994 682

S’Remainder For every subtype S of a floating point type T:199

S’Remainder denotes a function with the following specification:200

201 function S’Remainder (X, Y : T)
return T

{Constraint_Error (raised by failure of run-time check)} For nonzero Y, let v be the value202

X−n⋅Y, where n is the integer nearest to the exact value of X/Y; if | n−X/Y | = 1/2, then n
is chosen to be even. If v is a machine number of the type T, the function yields v;
otherwise, it yields zero. {Division_Check [partial]} {check, language-defined (Division_Check)}
Constraint_Error is raised if Y is zero. A zero result has the sign of X when
S’Signed_Zeros is True. See A.5.3.

S’Round For every decimal fixed point subtype S:203

S’Round denotes a function with the following specification:204

205 function S’Round(X : universal_real)
return S’Base

The function returns the value obtained by rounding X (away from 0, if X is midway206

between two values of the type of S). See 3.5.10.

S’Rounding For every subtype S of a floating point type T:207

S’Rounding denotes a function with the following specification:208

209 function S’Rounding (X : T)
return T

The function yields the integral value nearest to X, rounding away from zero if X lies210

exactly halfway between two integers. A zero result has the sign of X when
S’Signed_Zeros is True. See A.5.3.

S’Safe_First For every subtype S of a floating point type T:211

Yields the lower bound of the safe range (see 3.5.7) of the type T. If the Numerics212

Annex is not supported, the value of this attribute is implementation defined; see
G.2.2 for the definition that applies to implementations supporting the Numerics An-
nex. The value of this attribute is of the type universal_real. See A.5.3.

S’Safe_Last For every subtype S of a floating point type T:213

Yields the upper bound of the safe range (see 3.5.7) of the type T. If the Numerics214

Annex is not supported, the value of this attribute is implementation defined; see
G.2.2 for the definition that applies to implementations supporting the Numerics An-
nex. The value of this attribute is of the type universal_real. See A.5.3.

S’Scale For every decimal fixed point subtype S:215

S’Scale denotes the scale of the subtype S, defined as the value N such that S’Delta =216

10.0**(–N). {scale (of a decimal fixed point subtype)} [The scale indicates the position of
the point relative to the rightmost significant digits of values of subtype S.] The value
of this attribute is of the type universal_integer. See 3.5.10.

S’Scaling For every subtype S of a floating point type T:217

S’Scaling denotes a function with the following specification:218

219 function S’Scaling (X : T;
Adjustment : universal_integer)

return T

{Constraint_Error (raised by failure of run-time check)} Let v be the value X⋅T’Machine_220

RadixAdjustment. If v is a machine number of the type T, or if | v | ≥ T’Model_Small, the
function yields v; otherwise, it yields either one of the machine numbers of the type T
adjacent to v. {Range_Check [partial]} {check, language-defined (Range_Check)} Constraint_
Error is optionally raised if v is outside the base range of S. A zero result has the sign
of X when S’Signed_Zeros is True. See A.5.3.

ISO/IEC 8652:1995(E) —AARM;6.0

683 21 December 1994 Language-Defined Attributes K

S’Signed_Zeros For every subtype S of a floating point type T: 221

Yields the value True if the hardware representation for the type T has the capability 222

of representing both positively and negatively signed zeros, these being generated and
used by the predefined operations of the type T as specified in IEC 559:1989; yields
the value False otherwise. The value of this attribute is of the predefined type
Boolean. See A.5.3.

S’Size For every subtype S: 223

If S is definite, denotes the size [(in bits)] that the implementation would choose for 224

the following objects of subtype S:

225• A record component of subtype S when the record type is packed.

226• The formal parameter of an instance of Unchecked_Conversion that con-
verts from subtype S to some other subtype.

If S is indefinite, the meaning is implementation defined. The value of this attribute 227

is of the type universal_integer. See 13.3.

X’Size For a prefix X that denotes an object: 228

Denotes the size in bits of the representation of the object. The value of this attribute 229

is of the type universal_integer. See 13.3.

S’Small For every fixed point subtype S: 230

S’Small denotes the small of the type of S. The value of this attribute is of the type 231

universal_real. See 3.5.10.

S’Storage_Pool For every access subtype S: 232

Denotes the storage pool of the type of S. The type of this attribute is Root_Storage_ 233

Pool’Class. See 13.11.

S’Storage_Size For every access subtype S: 234

Yields the result of calling Storage_Size(S’Storage_Pool)[, which is intended to be a 235

measure of the number of storage elements reserved for the pool.] The type of this
attribute is universal_integer. See 13.11.

T’Storage_Size For a prefix T that denotes a task object [(after any implicit dereference)]: 236

Denotes the number of storage elements reserved for the task. The value of this 237

attribute is of the type universal_integer. The Storage_Size includes the size of the
task’s stack, if any. The language does not specify whether or not it includes other
storage associated with the task (such as the ‘‘task control block’’ used by some
implementations.) See 13.3.

S’Succ For every scalar subtype S: 238

S’Succ denotes a function with the following specification: 239

240function S’Succ(Arg : S’Base)
return S’Base

{Constraint_Error (raised by failure of run-time check)} For an enumeration type, the function 241

returns the value whose position number is one more than that of the value of Arg;
{Range_Check [partial]} {check, language-defined (Range_Check)} Constraint_Error is raised if
there is no such value of the type. For an integer type, the function returns the result
of adding one to the value of Arg. For a fixed point type, the function returns the
result of adding small to the value of Arg. For a floating point type, the function
returns the machine number (as defined in 3.5.7) immediately above the value of Arg;
{Range_Check [partial]} {check, language-defined (Range_Check)} Constraint_Error is raised if
there is no such machine number. See 3.5.

ISO/IEC 8652:1995(E) —AARM;6.0

K Language-Defined Attributes 21 December 1994 684

S’Tag For every subtype S of a tagged type T (specific or class-wide):242

S’Tag denotes the tag of the type T (or if T is class-wide, the tag of the root type of243

the corresponding class). The value of this attribute is of type Tag. See 3.9.

X’Tag For a prefix X that is of a class-wide tagged type [(after any implicit dereference)]:244

X’Tag denotes the tag of X. The value of this attribute is of type Tag. See 3.9.245

T’Terminated For a prefix T that is of a task type [(after any implicit dereference)]:246

Yields the value True if the task denoted by T is terminated, and False otherwise.247

The value of this attribute is of the predefined type Boolean. See 9.9.

S’Truncation For every subtype S of a floating point type T:248

S’Truncation denotes a function with the following specification:249

250 function S’Truncation (X : T)
return T

The function yields the value ⎡X⎤ when X is negative, and ⎣X⎦ otherwise. A zero251

result has the sign of X when S’Signed_Zeros is True. See A.5.3.

S’Unbiased_Rounding252

For every subtype S of a floating point type T:

S’Unbiased_Rounding denotes a function with the following specification:253

254 function S’Unbiased_Rounding (X : T)
return T

The function yields the integral value nearest to X, rounding toward the even integer255

if X lies exactly halfway between two integers. A zero result has the sign of X when
S’Signed_Zeros is True. See A.5.3.

X’Unchecked_Access256

For a prefix X that denotes an aliased view of an object:

All rules and semantics that apply to X’Access (see 3.10.2) apply also to257

X’Unchecked_Access, except that, for the purposes of accessibility rules and checks,
it is as if X were declared immediately within a library package. See 13.10.

S’Val For every discrete subtype S:258

S’Val denotes a function with the following specification:259

260 function S’Val(Arg : universal_integer)
return S’Base

{evaluation [Val]} {Constraint_Error (raised by failure of run-time check)} This function returns261

a value of the type of S whose position number equals the value of Arg. See 3.5.5.

X’Valid For a prefix X that denotes a scalar object [(after any implicit dereference)]:262

Yields True if and only if the object denoted by X is normal and has a valid represen-263

tation. The value of this attribute is of the predefined type Boolean. See 13.9.2.

S’Value For every scalar subtype S:264

S’Value denotes a function with the following specification:265

266 function S’Value(Arg : String)
return S’Base

This function returns a value given an image of the value as a String, ignoring any267

leading or trailing spaces. See 3.5.

P’Version For a prefix P that statically denotes a program unit:268

Yields a value of the predefined type String that identifies the version of the compila-269

tion unit that contains the declaration of the program unit. See E.3.

ISO/IEC 8652:1995(E) —AARM;6.0

685 21 December 1994 Language-Defined Attributes K

S’Wide_Image For every scalar subtype S: 270

S’Wide_Image denotes a function with the following specification: 271

272function S’Wide_Image(Arg : S’Base)
return Wide_String

{image (of a value)} The function returns an image of the value of Arg, that is, a 273

sequence of characters representing the value in display form. See 3.5.

S’Wide_Value For every scalar subtype S: 274

S’Wide_Value denotes a function with the following specification: 275

276function S’Wide_Value(Arg : Wide_String)
return S’Base

This function returns a value given an image of the value as a Wide_String, ignoring 277

any leading or trailing spaces. See 3.5.

S’Wide_Width For every scalar subtype S: 278

S’Wide_Width denotes the maximum length of a Wide_String returned by S’Wide_ 279

Image over all values of the subtype S. It denotes zero for a subtype that has a null
range. Its type is universal_integer. See 3.5.

S’Width For every scalar subtype S: 280

S’Width denotes the maximum length of a String returned by S’Image over all values 281

of the subtype S. It denotes zero for a subtype that has a null range. Its type is
universal_integer. See 3.5.

S’Class’Write For every subtype S’Class of a class-wide type T’Class: 282

S’Class’Write denotes a procedure with the following specification: 283

284procedure S’Class’Write(
Stream : access Ada.Streams.Root_Stream_Type’Class;
Item : in T’Class)

Dispatches to the subprogram denoted by the Write attribute of the specific type iden- 285

tified by the tag of Item. See 13.13.2.

S’Write For every subtype S of a specific type T: 286

S’Write denotes a procedure with the following specification: 287

288procedure S’Write(
Stream : access Ada.Streams.Root_Stream_Type’Class;
Item : in T)

S’Write writes the value of Item to Stream. See 13.13.2. 289

ISO/IEC 8652:1995(E) —AARM;6.0

L Language-Defined Pragmas 21 December 1994 686

ISO/IEC 8652:1995(E) —AARM;6.0

687 21 December 1994 Language-Defined Pragmas L

Annex L
(informative)

Language-Defined Pragmas

1{pragma} This Annex summarizes the definitions given elsewhere of the language-defined pragmas.

2pragma All_Calls_Remote[(library_unit_name)]; — See E.2.3.

3pragma Asynchronous(local_name); — See E.4.1.

4pragma Atomic(local_name); — See C.6.

5pragma Atomic_Components(array_local_name); — See C.6.

6pragma Attach_Handler(handler_name, expression); — See C.3.1.

7pragma Controlled(first_subtype_local_name); — See 13.11.3.

8pragma Convention([Convention =>] convention_identifier,[Entity =>] local_name); — See B.1.

9pragma Discard_Names[([On =>] local_name)]; — See C.5.

10pragma Elaborate(library_unit_name{, library_unit_name}); — See 10.2.1.

11pragma Elaborate_All(library_unit_name{, library_unit_name}); — See 10.2.1.

12pragma Elaborate_Body[(library_unit_name)]; — See 10.2.1.

13pragma Export([Convention =>] convention_identifier, [Entity =>] local_name [, [External_Name =>]
string_expression] [, [Link_Name =>] string_expression]); — See B.1.

14pragma Import([Convention =>] convention_identifier, [Entity =>] local_name [, [External_Name =>]
string_expression] [, [Link_Name =>] string_expression]); — See B.1.

15pragma Inline(name {, name}); — See 6.3.2.

16pragma Inspection_Point[(object_name {, object_name})]; — See H.3.2.

17pragma Interrupt_Handler(handler_name); — See C.3.1.

18pragma Interrupt_Priority[(expression)]; — See D.1.

19pragma Linker_Options(string_expression); — See B.1.

20pragma List(identifier); — See 2.8.

21pragma Locking_Policy(policy_identifier); — See D.3.

ISO/IEC 8652:1995(E) —AARM;6.0

L Language-Defined Pragmas 21 December 1994 688

22 pragma Normalize_Scalars; — See H.1.

23 pragma Optimize(identifier); — See 2.8.

24 pragma Pack(first_subtype_local_name); — See 13.2.

25 pragma Page; — See 2.8.

26 pragma Preelaborate[(library_unit_name)]; — See 10.2.1.

27 pragma Priority(expression); — See D.1.

28 pragma Pure[(library_unit_name)]; — See 10.2.1.

29 pragma Queuing_Policy(policy_identifier); — See D.4.

30 pragma Remote_Call_Interface[(library_unit_name)]; — See E.2.3.

31 pragma Remote_Types[(library_unit_name)]; — See E.2.2.

32 pragma Restrictions(restriction{, restriction}); — See 13.12.

33 pragma Reviewable; — See H.3.1.

34 pragma Shared_Passive[(library_unit_name)]; — See E.2.1.

35 pragma Storage_Size(expression); — See 13.3.

36 pragma Suppress(identifier [, [On =>] name]); — See 11.5.

37 pragma Task_Dispatching_Policy(policy_identifier); — See D.2.2.

38 pragma Volatile(local_name); — See C.6.

39 pragma Volatile_Components(array_local_name); — See C.6.

Wording Changes From Ada 83

39.a Pragmas List, Page, and Optimize are now officially defined in 2.8, ‘‘Pragmas’’.

ISO/IEC 8652:1995(E) —AARM;6.0

689 21 December 1994 Implementation-Defined Characteristics M

Annex M
(informative)

Implementation-Defined Characteristics

1{implementation defined (summary of characteristics)} The Ada language allows for certain machine dependences
in a controlled manner. {documentation (required of an implementation)} Each Ada implementation must docu-
ment all implementation-defined characteristics:

1.aRamification: {unspecified} {specified (not!)} It need not document unspecified characteristics.

1.bSome of the items in this list require documentation only for implementations that conform to Specialized Needs
Annexes.

2• Whether or not each recommendation given in Implementation Advice is followed. See
1.1.2(37).

3• Capacity limitations of the implementation. See 1.1.3(3).

4• Variations from the standard that are impractical to avoid given the implementation’s execu-
tion environment. See 1.1.3(6).

5• Which code_statements cause external interactions. See 1.1.3(10).

6• The coded representation for the text of an Ada program. See 2.1(4).

7• The control functions allowed in comments. See 2.1(14).

8• The representation for an end of line. See 2.2(2).

9• Maximum supported line length and lexical element length. See 2.2(15).

10• Implementation-defined pragmas. See 2.8(14).

11• Effect of pragma Optimize. See 2.8(27).

12• The sequence of characters of the value returned by S’Image when some of the graphic
characters of S’Wide_Image are not defined in Character. See 3.5(37).

13• The predefined integer types declared in Standard. See 3.5.4(25).

14• Any nonstandard integer types and the operators defined for them. See 3.5.4(26).

15• Any nonstandard real types and the operators defined for them. See 3.5.6(8).

16• What combinations of requested decimal precision and range are supported for floating point
types. See 3.5.7(7).

17• The predefined floating point types declared in Standard. See 3.5.7(16).

18• The small of an ordinary fixed point type. See 3.5.9(8).

19• What combinations of small, range, and digits are supported for fixed point types. See
3.5.9(10).

20• The result of Tags.Expanded_Name for types declared within an unnamed block_statement.
See 3.9(10).

21• Implementation-defined attributes. See 4.1.4(12).

ISO/IEC 8652:1995(E) —AARM;6.0

M Implementation-Defined Characteristics 21 December 1994 690

22 • Any implementation-defined time types. See 9.6(6).

23 • The time base associated with relative delays. See 9.6(20).

24 • The time base of the type Calendar.Time. See 9.6(23).

25 • The timezone used for package Calendar operations. See 9.6(24).

26 • Any limit on delay_until_statements of select_statements. See 9.6(29).

27 • Whether or not two nonoverlapping parts of a composite object are independently address-
able, in the case where packing, record layout, or Component_Size is specified for the object.
See 9.10(1).

28 • The representation for a compilation. See 10.1(2).

29 • Any restrictions on compilations that contain multiple compilation_units. See 10.1(4).

30 • The mechanisms for creating an environment and for adding and replacing compilation units.
See 10.1.4(3).

31 • The manner of explicitly assigning library units to a partition. See 10.2(2).

32 • The implementation-defined means, if any, of specifying which compilation units are needed
by a given compilation unit. See 10.2(2).

33 • The manner of designating the main subprogram of a partition. See 10.2(7).

34 • The order of elaboration of library_items. See 10.2(18).

35 • Parameter passing and function return for the main subprogram. See 10.2(21).

36 • The mechanisms for building and running partitions. See 10.2(24).

37 • The details of program execution, including program termination. See 10.2(25).

38 • The semantics of any nonactive partitions supported by the implementation. See 10.2(28).

39 • The information returned by Exception_Message. See 11.4.1(10).

40 • The result of Exceptions.Exception_Name for types declared within an unnamed block_
statement. See 11.4.1(12).

41 • The information returned by Exception_Information. See 11.4.1(13).

42 • Implementation-defined check names. See 11.5(27).

43 • The interpretation of each aspect of representation. See 13.1(20).

44 • Any restrictions placed upon representation items. See 13.1(20).

45 • The meaning of Size for indefinite subtypes. See 13.3(48).

46 • The default external representation for a type tag. See 13.3(75).

47 • What determines whether a compilation unit is the same in two different partitions. See
13.3(76).

48 • Implementation-defined components. See 13.5.1(15).

49 • If Word_Size = Storage_Unit, the default bit ordering. See 13.5.3(5).

50 • The contents of the visible part of package System and its language-defined children. See
13.7(2).

ISO/IEC 8652:1995(E) —AARM;6.0

691 21 December 1994 Implementation-Defined Characteristics M

51• The contents of the visible part of package System.Machine_Code, and the meaning of code_
statements. See 13.8(7).

52• The effect of unchecked conversion. See 13.9(11).

53• The manner of choosing a storage pool for an access type when Storage_Pool is not specified
for the type. See 13.11(17).

54• Whether or not the implementation provides user-accessible names for the standard pool
type(s). See 13.11(17).

55• The meaning of Storage_Size. See 13.11(18).

56• Implementation-defined aspects of storage pools. See 13.11(22).

57• The set of restrictions allowed in a pragma Restrictions. See 13.12(7).

58• The consequences of violating limitations on Restrictions pragmas. See 13.12(9).

59• The representation used by the Read and Write attributes of elementary types in terms of
stream elements. See 13.13.2(9).

60• The names and characteristics of the numeric subtypes declared in the visible part of package
Standard. See A.1(3).

61• The accuracy actually achieved by the elementary functions. See A.5.1(1).

62• The sign of a zero result from some of the operators or functions in Numerics.Generic_
Elementary_Functions, when Float_Type’Signed_Zeros is True. See A.5.1(46).

63• The value of Numerics.Float_Random.Max_Image_Width. See A.5.2(27).

64• The value of Numerics.Discrete_Random.Max_Image_Width. See A.5.2(27).

65• The algorithms for random number generation. See A.5.2(32).

66• The string representation of a random number generator’s state. See A.5.2(38).

67• The minimum time interval between calls to the time-dependent Reset procedure that are
guaranteed to initiate different random number sequences. See A.5.2(45).

68• The values of the Model_Mantissa, Model_Emin, Model_Epsilon, Model, Safe_First, and
Safe_Last attributes, if the Numerics Annex is not supported. See A.5.3(72).

69• Any implementation-defined characteristics of the input-output packages. See A.7(14).

70• The value of Buffer_Size in Storage_IO. See A.9(10).

71• external files for standard input, standard output, and standard error See A.10(5).

72• The accuracy of the value produced by Put. See A.10.9(36).

73• The meaning of Argument_Count, Argument, and Command_Name. See A.15(1).

74• Implementation-defined convention names. See B.1(11).

75• The meaning of link names. See B.1(36).

76• The manner of choosing link names when neither the link name nor the address of an im-
ported or exported entity is specified. See B.1(36).

77• The effect of pragma Linker_Options. See B.1(37).

78• The contents of the visible part of package Interfaces and its language-defined descendants.
See B.2(1).

ISO/IEC 8652:1995(E) —AARM;6.0

M Implementation-Defined Characteristics 21 December 1994 692

79 • Implementation-defined children of package Interfaces. The contents of the visible part of
package Interfaces. See B.2(11).

80 • The types Floating, Long_Floating, Binary, Long_Binary, Decimal_Element, and COBOL_
Character; and the initializations of the variables Ada_To_COBOL and COBOL_To_Ada, in
Interfaces.COBOL See B.4(50).

81 • Support for access to machine instructions. See C.1(1).

82 • Implementation-defined aspects of access to machine operations. See C.1(9).

83 • Implementation-defined aspects of interrupts. See C.3(2).

84 • Implementation-defined aspects of preelaboration. See C.4(13).

85 • The semantics of pragma Discard_Names. See C.5(7).

86 • The result of the Task_Identification.Image attribute. See C.7.1(7).

87 • The value of Current_Task when in a protected entry or interrupt handler. See C.7.1(17).

88 • The effect of calling Current_Task from an entry body or interrupt handler. See C.7.1(19).

89 • Implementation-defined aspects of Task_Attributes. See C.7.2(19).

90 • Values of all Metrics. See D(2).

91 • The declarations of Any_Priority and Priority. See D.1(11).

92 • Implementation-defined execution resources. See D.1(15).

93 • Whether, on a multiprocessor, a task that is waiting for access to a protected object keeps its
processor busy. See D.2.1(3).

94 • The affect of implementation defined execution resources on task dispatching. See D.2.1(9).

95 • Implementation-defined policy_identifiers allowed in a pragma Task_Dispatching_Policy.
See D.2.2(3).

96 • Implementation-defined aspects of priority inversion. See D.2.2(16).

97 • Implementation defined task dispatching. See D.2.2(18).

98 • Implementation-defined policy_identifiers allowed in a pragma Locking_Policy. See D.3(4).

99 • Default ceiling priorities. See D.3(10).

100 • The ceiling of any protected object used internally by the implementation. See D.3(16).

101 • Implementation-defined queuing policies. See D.4(1).

102 • On a multiprocessor, any conditions that cause the completion of an aborted construct to be
delayed later than what is specified for a single processor. See D.6(3).

103 • Any operations that implicitly require heap storage allocation. See D.7(8).

104 • Implementation-defined aspects of pragma Restrictions. See D.7(20).

105 • Implementation-defined aspects of package Real_Time. See D.8(17).

106 • Implementation-defined aspects of delay_statements. See D.9(8).

107 • The upper bound on the duration of interrupt blocking caused by the implementation. See
D.12(5).

ISO/IEC 8652:1995(E) —AARM;6.0

693 21 December 1994 Implementation-Defined Characteristics M

108• The means for creating and executing distributed programs. See E(5).

109• Any events that can result in a partition becoming inaccessible. See E.1(7).

110• The scheduling policies, treatment of priorities, and management of shared resources be-
tween partitions in certain cases. See E.1(11).

111• Events that cause the version of a compilation unit to change. See E.3(5).

112• Whether the execution of the remote subprogram is immediately aborted as a result of cancel-
lation. See E.4(13).

113• Implementation-defined aspects of the PCS. See E.5(25).

114• Implementation-defined interfaces in the PCS. See E.5(26).

115• The values of named numbers in the package Decimal. See F.2(7).

116• The value of Max_Picture_Length in the package Text_IO.Editing See F.3.3(16).

117• The value of Max_Picture_Length in the package Wide_Text_IO.Editing See F.3.4(5).

118• The accuracy actually achieved by the complex elementary functions and by other complex
arithmetic operations. See G.1(1).

119• The sign of a zero result (or a component thereof) from any operator or function in
Numerics.Generic_Complex_Types, when Real’Signed_Zeros is True. See G.1.1(53).

120• The sign of a zero result (or a component thereof) from any operator or function in
Numerics.Generic_Complex_Elementary_Functions, when Complex_Types.Real’Signed_
Zeros is True. See G.1.2(45).

121• Whether the strict mode or the relaxed mode is the default. See G.2(2).

122• The result interval in certain cases of fixed-to-float conversion. See G.2.1(10).

123• The result of a floating point arithmetic operation in overflow situations, when the Machine_
Overflows attribute of the result type is False. See G.2.1(13).

124• The result interval for division (or exponentiation by a negative exponent), when the floating
point hardware implements division as multiplication by a reciprocal. See G.2.1(16).

125• The definition of close result set, which determines the accuracy of certain fixed point mul-
tiplications and divisions. See G.2.3(5).

126• Conditions on a universal_real operand of a fixed point multiplication or division for which
the result shall be in the perfect result set. See G.2.3(22).

127• The result of a fixed point arithmetic operation in overflow situations, when the Machine_
Overflows attribute of the result type is False. See G.2.3(27).

128• The result of an elementary function reference in overflow situations, when the Machine_
Overflows attribute of the result type is False. See G.2.4(4).

129• The value of the angle threshold, within which certain elementary functions, complex arith-
metic operations, and complex elementary functions yield results conforming to a maximum
relative error bound. See G.2.4(10).

130• The accuracy of certain elementary functions for parameters beyond the angle threshold. See
G.2.4(10).

131• The result of a complex arithmetic operation or complex elementary function reference in
overflow situations, when the Machine_Overflows attribute of the corresponding real type is
False. See G.2.6(5).

ISO/IEC 8652:1995(E) —AARM;6.0

M Implementation-Defined Characteristics 21 December 1994 694

132 • The accuracy of certain complex arithmetic operations and certain complex elementary func-
tions for parameters (or components thereof) beyond the angle threshold. See G.2.6(8).

133 • Information regarding bounded errors and erroneous execution. See H.2(1).

134 • Implementation-defined aspects of pragma Inspection_Point. See H.3.2(8).

135 • Implementation-defined aspects of pragma Restrictions. See H.4(25).

136 • Any restrictions on pragma Restrictions. See H.4(27).

ISO/IEC 8652:1995(E) —AARM;6.0

695 21 December 1994 Glossary N

Annex N
(informative)

Glossary

1{Glossary} This Annex contains informal descriptions of some terms used in this International Standard.
To find more formal definitions, look the term up in the index.

2Access type. {Access type} An access type has values that designate aliased objects. Access types cor-
respond to ‘‘pointer types’’ or ‘‘reference types’’ in some other languages.

3Aliased. {Aliased} An aliased view of an object is one that can be designated by an access value. Objects
allocated by allocators are aliased. Objects can also be explicitly declared as aliased with the reserved
word aliased. The Access attribute can be used to create an access value designating an aliased object.

4Array type. {Array type} An array type is a composite type whose components are all of the same type.
Components are selected by indexing.

5Character type. {Character type} A character type is an enumeration type whose values include characters.

6Class. {Class} {closed under derivation} A class is a set of types that is closed under derivation, which means
that if a given type is in the class, then all types derived from that type are also in the class. The set of
types of a class share common properties, such as their primitive operations.

7Compilation unit. {Compilation unit} The text of a program can be submitted to the compiler in one or
more compilations. Each compilation is a succession of compilation_units. A compilation_unit contains
either the declaration, the body, or a renaming of a program unit.

8Composite type. {Composite type} A composite type has components.

9Construct. {Construct} A construct is a piece of text (explicit or implicit) that is an instance of a syntactic
category defined under ‘‘Syntax.’’

10Controlled type. {Controlled type} A controlled type supports user-defined assignment and finalization.
Objects are always finalized before being destroyed.

11Declaration. {Declaration} A declaration is a language construct that associates a name with (a view of)
an entity. {explicit declaration} {implicit declaration} A declaration may appear explicitly in the program text
(an explicit declaration), or may be supposed to occur at a given place in the text as a consequence of the
semantics of another construct (an implicit declaration).

12Definition. {Definition} {view} All declarations contain a definition for a view of an entity. A view consists
of an identification of the entity (the entity of the view), plus view-specific characteristics that affect the
use of the entity through that view (such as mode of access to an object, formal parameter names and
defaults for a subprogram, or visibility to components of a type). In most cases, a declaration also
contains the definition for the entity itself (a renaming_declaration is an example of a declaration that
does not define a new entity, but instead defines a view of an existing entity (see 8.5)).

ISO/IEC 8652:1995(E) —AARM;6.0

N Glossary 21 December 1994 696

13 Derived type. {Derived type} A derived type is a type defined in terms of another type, which is the parent
type of the derived type. Each class containing the parent type also contains the derived type. The
derived type inherits properties such as components and primitive operations from the parent. A type
together with the types derived from it (directly or indirectly) form a derivation class.

14 Discrete type. {Discrete type} A discrete type is either an integer type or an enumeration type. Discrete
types may be used, for example, in case_statements and as array indices.

15 Discriminant. {Discriminant} A discriminant is a parameter of a composite type. It can control, for
example, the bounds of a component of the type if that type is an array type. A discriminant of a task
type can be used to pass data to a task of the type upon creation.

16 Elementary type. {Elementary type} An elementary type does not have components.

17 Enumeration type. {Enumeration type} An enumeration type is defined by an enumeration of its values,
which may be named by identifiers or character literals.

18 Exception. {Exception} An exception represents a kind of exceptional situation; an occurrence of such a
situation (at run time) is called an exception occurrence.[{raise [an exception]} To raise an exception is to
abandon normal program execution so as to draw attention to the fact that the corresponding situation has
arisen. {handle [an exception]} Performing some actions in response to the arising of an exception is called
handling the exception.]

19 Execution. {Execution} The process by which a construct achieves its run-time effect is called execution.
{elaboration} {evaluation} Execution of a declaration is also called elaboration. Execution of an expression
is also called evaluation.

20 Generic unit. {Generic unit} A generic unit is a template for a (nongeneric) program unit; the template can
be parameterized by objects, types, subprograms, and packages. An instance of a generic unit is created
by a generic_instantiation. The rules of the language are enforced when a generic unit is compiled, using
a generic contract model; additional checks are performed upon instantiation to verify the contract is met.
That is, the declaration of a generic unit represents a contract between the body of the generic and
instances of the generic. Generic units can be used to perform the role that macros sometimed play in
other languages.

21 Integer type. {Integer type} Integer types comprise the signed integer types and the modular types. A
signed integer type has a base range that includes both positive and negative numbers, and has operations
that may raise an exception when the result is outside the base range. A modular type has a base range
whose lower bound is zero, and has operations with ‘‘wraparound’’ semantics. Modular types subsume
what are called ‘‘unsigned types’’ in some other languages.

22 Library unit. {Library unit} A library unit is a separately compiled program unit, and is always a package,
subprogram, or generic unit. Library units may have other (logically nested) library units as children, and
may have other program units physically nested within them. {subsystem} A root library unit, together
with its children and grandchildren and so on, form a subsystem.

23 Limited type. {Limited type} A limited type is (a view of) a type for which the assignment operation is not
allowed. A nonlimited type is a (view of a) type for which the assignment operation is allowed.

ISO/IEC 8652:1995(E) —AARM;6.0

697 21 December 1994 Glossary N

24Object. {Object} An object is either a constant or a variable. An object contains a value. An object is
created by an object_declaration or by an allocator. A formal parameter is (a view of) an object. A
subcomponent of an object is an object.

25Package. {Package} Packages are program units that allow the specification of groups of logically related
entities. Typically, a package contains the declaration of a type (often a private type or private extension)
along with the declarations of primitive subprograms of the type, which can be called from outside the
package, while their inner workings remain hidden from outside users.

26Partition. {Partition} A partition is a part of a program. Each partition consists of a set of library units.
Each partition may run in a separate address space, possibly on a separate computer. A program may
contain just one partition. A distributed program typically contains multiple partitions, which can execute
concurrently.

27Pragma. {Pragma} A pragma is a compiler directive. There are language-defined pragmas that give
instructions for optimization, listing control, etc. An implementation may support additional
(implementation-defined) pragmas.

28Primitive operations. {Primitive operations} The primitive operations of a type are the operations (such as
subprograms) declared together with the type declaration. They are inherited by other types in the same
class of types. For a tagged type, the primitive subprograms are dispatching subprograms, providing
run-time polymorphism. A dispatching subprogram may be called with statically tagged operands, in
which case the subprogram body invoked is determined at compile time. Alternatively, a dispatching
subprogram may be called using a dispatching call, in which case the subprogram body invoked is deter-
mined at run time.

29Private extension. {Private extension} A private extension is like a record extension, except that the com-
ponents of the extension part are hidden from its clients.

30Private type. {Private type} A private type is a partial view of a type whose full view is hidden from its
clients.

31Program unit. {Program unit} A program unit is either a package, a task unit, a protected unit, a protected
entry, a generic unit, or an explicitly declared subprogram other than an enumeration literal. Certain
kinds of program units can be separately compiled. Alternatively, they can appear physically nested
within other program units.

32Program. {Program} A program is a set of partitions, each of which may execute in a separate address
space, possibly on a separate computer. A partition consists of a set of library units.

33Protected type. {Protected type} A protected type is a composite type whose components are protected
from concurrent access by multiple tasks.

34Real type. {Real type} A real type has values that are approximations of the real numbers. Floating point
and fixed point types are real types.

35Record extension. {Record extension} A record extension is a type that extends another type by adding
additional components.

ISO/IEC 8652:1995(E) —AARM;6.0

N Glossary 21 December 1994 698

36 Record type. {Record type} A record type is a composite type consisting of zero or more named com-
ponents, possibly of different types.

37 Scalar type. {Scalar type} A scalar type is either a discrete type or a real type.

38 Subtype. {Subtype} A subtype is a type together with a constraint, which constrains the values of the
subtype to satisfy a certain condition. The values of a subtype are a subset of the values of its type.

39 Tagged type. {Tagged type} The objects of a tagged type have a run-time type tag, which indicates the
specific type with which the object was originally created. An operand of a class-wide tagged type can be
used in a dispatching call; the tag indicates which subprogram body to invoke. Nondispatching calls, in
which the subprogram body to invoke is determined at compile time, are also allowed. Tagged types may
be extended with additional components.

40 Task type. {Task type} A task type is a composite type whose values are tasks, which are active entities
that may execute concurrently with other tasks. The top-level task of a partition is called the environment
task.

41 Type. {Type} Each object has a type. A type has an associated set of values, and a set of primitive
operations which implement the fundamental aspects of its semantics. Types are grouped into classes.
The types of a given class share a set of primitive operations. {closed under derivation} Classes are closed
under derivation; that is, if a type is in a class, then all of its derivatives are in that class.

42 View. {View} (See Definition.)

ISO/IEC 8652:1995(E) —AARM;6.0

699 21 December 1994 Syntax Summary P

Annex P
(informative)

Syntax Summary

1{syntax (complete listing)} {grammar (complete listing)} {context free grammar (complete listing)} {BNF (Backus-Naur Form)

(complete listing)} {Backus-Naur Form (BNF) (complete listing)} This Annex summarizes the complete syntax of the
language. See 1.1.4 for a description of the notation used.

2.1:
character ::= graphic_character | format_effector | other_control_function

2.1:
graphic_character ::= identifier_letter | digit | space_character | special_character

2.3:
identifier ::=

identifier_letter {[underline] letter_or_digit}

2.3:
letter_or_digit ::= identifier_letter | digit

2.4:
numeric_literal ::= decimal_literal | based_literal

2.4.1:
decimal_literal ::= numeral [.numeral] [exponent]

2.4.1:
numeral ::= digit {[underline] digit}

2.4.1:
exponent ::= E [+] numeral | E – numeral

2.4.2:
based_literal ::=

base # based_numeral [.based_numeral] # [exponent]

2.4.2:
base ::= numeral

2.4.2:
based_numeral ::=

extended_digit {[underline] extended_digit}

2.4.2:
extended_digit ::= digit | A | B | C | D | E | F

2.5:
character_literal ::= ’graphic_character’

2.6:
string_literal ::= "{string_element}"

2.6:
string_element ::= "" | non_quotation_mark_graphic_character

A string_element is either a pair of quotation marks (""),
or a single graphic_character other than a quotation mark.

2.7:
comment ::= --{non_end_of_line_character}

2.8:
pragma ::=

pragma identifier [(pragma_argument_association {, pragma_argument_association})];

ISO/IEC 8652:1995(E) —AARM;6.0

P Syntax Summary 21 December 1994 700

2.8:
pragma_argument_association ::=

[pragma_argument_identifier =>] name
| [pragma_argument_identifier =>] expression

3.1:
basic_declaration ::=

type_declaration | subtype_declaration
| object_declaration | number_declaration
| subprogram_declaration | abstract_subprogram_declaration
| package_declaration | renaming_declaration
| exception_declaration | generic_declaration
| generic_instantiation

3.1:
defining_identifier ::= identifier

3.2.1:
type_declaration ::= full_type_declaration

| incomplete_type_declaration
| private_type_declaration
| private_extension_declaration

3.2.1:
full_type_declaration ::=

type defining_identifier [known_discriminant_part] is type_definition;
| task_type_declaration
| protected_type_declaration

3.2.1:
type_definition ::=

enumeration_type_definition | integer_type_definition
| real_type_definition | array_type_definition
| record_type_definition | access_type_definition
| derived_type_definition

3.2.2:
subtype_declaration ::=

subtype defining_identifier is subtype_indication;

3.2.2:
subtype_indication ::= subtype_mark [constraint]

3.2.2:
subtype_mark ::= subtype_name

3.2.2:
constraint ::= scalar_constraint | composite_constraint

3.2.2:
scalar_constraint ::=

range_constraint | digits_constraint | delta_constraint

3.2.2:
composite_constraint ::=

index_constraint | discriminant_constraint

3.3.1:
object_declaration ::=

defining_identifier_list : [aliased] [constant] subtype_indication [:= expression];
| defining_identifier_list : [aliased] [constant] array_type_definition [:= expression];
| single_task_declaration
| single_protected_declaration

3.3.1:
defining_identifier_list ::=

defining_identifier {, defining_identifier}

3.3.2:
number_declaration ::=

defining_identifier_list : constant := static_expression;

3.4:
derived_type_definition ::= [abstract] new parent_subtype_indication [record_extension_part]

ISO/IEC 8652:1995(E) —AARM;6.0

701 21 December 1994 Syntax Summary P

3.5:
range_constraint ::= range range

3.5:
range ::= range_attribute_reference

| simple_expression .. simple_expression

3.5.1:
enumeration_type_definition ::=

(enumeration_literal_specification {, enumeration_literal_specification})

3.5.1:
enumeration_literal_specification ::= defining_identifier | defining_character_literal

3.5.1:
defining_character_literal ::= character_literal

3.5.4:
integer_type_definition ::= signed_integer_type_definition | modular_type_definition

3.5.4:
signed_integer_type_definition ::= range static_simple_expression .. static_simple_expression

3.5.4:
modular_type_definition ::= mod static_expression

3.5.6:
real_type_definition ::=

floating_point_definition | fixed_point_definition

3.5.7:
floating_point_definition ::=

digits static_expression [real_range_specification]

3.5.7:
real_range_specification ::=
range static_simple_expression .. static_simple_expression

3.5.9:
fixed_point_definition ::= ordinary_fixed_point_definition | decimal_fixed_point_definition

3.5.9:
ordinary_fixed_point_definition ::=

delta static_expression real_range_specification

3.5.9:
decimal_fixed_point_definition ::=

delta static_expression digits static_expression [real_range_specification]

3.5.9:
digits_constraint ::=

digits static_expression [range_constraint]

3.6:
array_type_definition ::=

unconstrained_array_definition | constrained_array_definition

3.6:
unconstrained_array_definition ::=

array(index_subtype_definition {, index_subtype_definition}) of component_definition

3.6:
index_subtype_definition ::= subtype_mark range <>

3.6:
constrained_array_definition ::=

array (discrete_subtype_definition {, discrete_subtype_definition}) of component_definition

3.6:
discrete_subtype_definition ::= discrete_subtype_indication | range

3.6:
component_definition ::= [aliased] subtype_indication

3.6.1:
index_constraint ::= (discrete_range {, discrete_range})

ISO/IEC 8652:1995(E) —AARM;6.0

P Syntax Summary 21 December 1994 702

3.6.1:
discrete_range ::= discrete_subtype_indication | range

3.7:
discriminant_part ::= unknown_discriminant_part | known_discriminant_part

3.7:
unknown_discriminant_part ::= (<>)

3.7:
known_discriminant_part ::=

(discriminant_specification {; discriminant_specification})

3.7:
discriminant_specification ::=

defining_identifier_list : subtype_mark [:= default_expression]
| defining_identifier_list : access_definition [:= default_expression]

3.7:
default_expression ::= expression

3.7.1:
discriminant_constraint ::=

(discriminant_association {, discriminant_association})

3.7.1:
discriminant_association ::=

[discriminant_selector_name {| discriminant_selector_name} =>] expression

3.8:
record_type_definition ::= [[abstract] tagged] [limited] record_definition

3.8:
record_definition ::=

record
component_list

end record
| null record

3.8:
component_list ::=

component_item {component_item}
| {component_item} variant_part
| null;

3.8:
component_item ::= component_declaration | representation_clause

3.8:
component_declaration ::=

defining_identifier_list : component_definition [:= default_expression];

3.8.1:
variant_part ::=

case discriminant_direct_name is
variant
{variant}

end case;

3.8.1:
variant ::=

when discrete_choice_list =>
component_list

3.8.1:
discrete_choice_list ::= discrete_choice {| discrete_choice}

3.8.1:
discrete_choice ::= expression | discrete_range | others

3.9.1:
record_extension_part ::= with record_definition

ISO/IEC 8652:1995(E) —AARM;6.0

703 21 December 1994 Syntax Summary P

3.10:
access_type_definition ::=

access_to_object_definition
| access_to_subprogram_definition

3.10:
access_to_object_definition ::=

access [general_access_modifier] subtype_indication

3.10:
general_access_modifier ::= all | constant

3.10:
access_to_subprogram_definition ::=

access [protected] procedure parameter_profile
| access [protected] function parameter_and_result_profile

3.10:
access_definition ::= access subtype_mark

3.10.1:
incomplete_type_declaration ::= type defining_identifier [discriminant_part];

3.11:
declarative_part ::= {declarative_item}

3.11:
declarative_item ::=

basic_declarative_item | body

3.11:
basic_declarative_item ::=

basic_declaration | representation_clause | use_clause

3.11:
body ::= proper_body | body_stub

3.11:
proper_body ::=

subprogram_body | package_body | task_body | protected_body

4.1:
name ::=

direct_name | explicit_dereference
| indexed_component | slice
| selected_component | attribute_reference
| type_conversion | function_call
| character_literal

4.1:
direct_name ::= identifier | operator_symbol

4.1:
prefix ::= name | implicit_dereference

4.1:
explicit_dereference ::= name.all

4.1:
implicit_dereference ::= name

4.1.1:
indexed_component ::= prefix(expression {, expression})

4.1.2:
slice ::= prefix(discrete_range)

4.1.3:
selected_component ::= prefix . selector_name

4.1.3:
selector_name ::= identifier | character_literal | operator_symbol

4.1.4:
attribute_reference ::= prefix’attribute_designator

ISO/IEC 8652:1995(E) —AARM;6.0

P Syntax Summary 21 December 1994 704

4.1.4:
attribute_designator ::=

identifier[(static_expression)]
| Access | Delta | Digits

4.1.4:
range_attribute_reference ::= prefix’range_attribute_designator

4.1.4:
range_attribute_designator ::= Range[(static_expression)]

4.3:
aggregate ::= record_aggregate | extension_aggregate | array_aggregate

4.3.1:
record_aggregate ::= (record_component_association_list)

4.3.1:
record_component_association_list ::=

record_component_association {, record_component_association}
| null record

4.3.1:
record_component_association ::=

[component_choice_list =>] expression

4.3.1:
component_choice_list ::=

component_selector_name {| component_selector_name}
| others

4.3.2:
extension_aggregate ::=

(ancestor_part with record_component_association_list)

4.3.2:
ancestor_part ::= expression | subtype_mark

4.3.3:
array_aggregate ::=

positional_array_aggregate | named_array_aggregate

4.3.3:
positional_array_aggregate ::=

(expression, expression {, expression})
| (expression {, expression}, others => expression)

4.3.3:
named_array_aggregate ::=

(array_component_association {, array_component_association})

4.3.3:
array_component_association ::=

discrete_choice_list => expression

4.4:
expression ::=

relation {and relation} | relation {and then relation}
| relation {or relation} | relation {or else relation}
| relation {xor relation}

4.4:
relation ::=

simple_expression [relational_operator simple_expression]
| simple_expression [not] in range
| simple_expression [not] in subtype_mark

4.4:
simple_expression ::= [unary_adding_operator] term {binary_adding_operator term}

4.4:
term ::= factor {multiplying_operator factor}

4.4:
factor ::= primary [** primary] | abs primary | not primary

ISO/IEC 8652:1995(E) —AARM;6.0

705 21 December 1994 Syntax Summary P

4.4:
primary ::=

numeric_literal | null | string_literal | aggregate
| name | qualified_expression | allocator | (expression)

4.5:
logical_operator ::= and | or | xor

4.5:
relational_operator ::= = | /= | < | <= | > | >=

4.5:
binary_adding_operator ::= + | – | &

4.5:
unary_adding_operator ::= + | –

4.5:
multiplying_operator ::= * | / | mod | rem

4.5:
highest_precedence_operator ::= ** | abs | not

4.6:
type_conversion ::=

subtype_mark(expression)
| subtype_mark(name)

4.7:
qualified_expression ::=

subtype_mark’(expression) | subtype_mark’aggregate

4.8:
allocator ::=

new subtype_indication | new qualified_expression

5.1:
sequence_of_statements ::= statement {statement}

5.1:
statement ::=

{label} simple_statement | {label} compound_statement

5.1:
simple_statement ::= null_statement

| assignment_statement | exit_statement
| goto_statement | procedure_call_statement
| return_statement | entry_call_statement
| requeue_statement | delay_statement
| abort_statement | raise_statement
| code_statement

5.1:
compound_statement ::=

if_statement | case_statement
| loop_statement | block_statement
| accept_statement | select_statement

5.1:
null_statement ::= null;

5.1:
label ::= <<label_statement_identifier>>

5.1:
statement_identifier ::= direct_name

5.2:
assignment_statement ::=

variable_name := expression;

ISO/IEC 8652:1995(E) —AARM;6.0

P Syntax Summary 21 December 1994 706

5.3:
if_statement ::=

if condition then
sequence_of_statements

{elsif condition then
sequence_of_statements}

[else
sequence_of_statements]

end if;

5.3:
condition ::= boolean_expression

5.4:
case_statement ::=

case expression is
case_statement_alternative
{case_statement_alternative}

end case;

5.4:
case_statement_alternative ::=

when discrete_choice_list =>
sequence_of_statements

5.5:
loop_statement ::=

[loop_statement_identifier:]
[iteration_scheme] loop

sequence_of_statements
end loop [loop_identifier];

5.5:
iteration_scheme ::= while condition

| for loop_parameter_specification

5.5:
loop_parameter_specification ::=

defining_identifier in [reverse] discrete_subtype_definition

5.6:
block_statement ::=

[block_statement_identifier:]
[declare

declarative_part]
begin

handled_sequence_of_statements
end [block_identifier];

5.7:
exit_statement ::=

exit [loop_name] [when condition];

5.8:
goto_statement ::= goto label_name;

6.1:
subprogram_declaration ::= subprogram_specification;

6.1:
abstract_subprogram_declaration ::= subprogram_specification is abstract;

6.1:
subprogram_specification ::=

procedure defining_program_unit_name parameter_profile
| function defining_designator parameter_and_result_profile

6.1:
designator ::= [parent_unit_name .]identifier | operator_symbol

6.1:
defining_designator ::= defining_program_unit_name | defining_operator_symbol

ISO/IEC 8652:1995(E) —AARM;6.0

707 21 December 1994 Syntax Summary P

6.1:
defining_program_unit_name ::= [parent_unit_name .]defining_identifier

6.1:
operator_symbol ::= string_literal

6.1:
defining_operator_symbol ::= operator_symbol

6.1:
parameter_profile ::= [formal_part]

6.1:
parameter_and_result_profile ::= [formal_part] return subtype_mark

6.1:
formal_part ::=

(parameter_specification {; parameter_specification})

6.1:
parameter_specification ::=

defining_identifier_list : mode subtype_mark [:= default_expression]
| defining_identifier_list : access_definition [:= default_expression]

6.1:
mode ::= [in] | in out | out

6.3:
subprogram_body ::=

subprogram_specification is
declarative_part

begin
handled_sequence_of_statements

end [designator];

6.4:
procedure_call_statement ::=

procedure_name;
| procedure_prefix actual_parameter_part;

6.4:
function_call ::=

function_name
| function_prefix actual_parameter_part

6.4:
actual_parameter_part ::=

(parameter_association {, parameter_association})

6.4:
parameter_association ::=

[formal_parameter_selector_name =>] explicit_actual_parameter

6.4:
explicit_actual_parameter ::= expression | variable_name

6.5:
return_statement ::= return [expression];

7.1:
package_declaration ::= package_specification;

7.1:
package_specification ::=

package defining_program_unit_name is
{basic_declarative_item}

[private
{basic_declarative_item}]

end [[parent_unit_name.]identifier]

ISO/IEC 8652:1995(E) —AARM;6.0

P Syntax Summary 21 December 1994 708

7.2:
package_body ::=

package body defining_program_unit_name is
declarative_part

[begin
handled_sequence_of_statements]

end [[parent_unit_name.]identifier];

7.3:
private_type_declaration ::=

type defining_identifier [discriminant_part] is [[abstract] tagged] [limited] private;

7.3:
private_extension_declaration ::=

type defining_identifier [discriminant_part] is
[abstract] new ancestor_subtype_indication with private;

8.4:
use_clause ::= use_package_clause | use_type_clause

8.4:
use_package_clause ::= use package_name {, package_name};

8.4:
use_type_clause ::= use type subtype_mark {, subtype_mark};

8.5:
renaming_declaration ::=

object_renaming_declaration
| exception_renaming_declaration
| package_renaming_declaration
| subprogram_renaming_declaration
| generic_renaming_declaration

8.5.1:
object_renaming_declaration ::= defining_identifier : subtype_mark renames object_name;

8.5.2:
exception_renaming_declaration ::= defining_identifier : exception renames exception_name;

8.5.3:
package_renaming_declaration ::= package defining_program_unit_name renames package_name;

8.5.4:
subprogram_renaming_declaration ::= subprogram_specification renames callable_entity_name;

8.5.5:
generic_renaming_declaration ::=

generic package defining_program_unit_name renames generic_package_name;
| generic procedure defining_program_unit_name renames generic_procedure_name;
| generic function defining_program_unit_name renames generic_function_name;

9.1:
task_type_declaration ::=

task type defining_identifier [known_discriminant_part] [is task_definition];

9.1:
single_task_declaration ::=

task defining_identifier [is task_definition];

9.1:
task_definition ::=

{task_item}
[private

{task_item}]
end [task_identifier]

9.1:
task_item ::= entry_declaration | representation_clause

ISO/IEC 8652:1995(E) —AARM;6.0

709 21 December 1994 Syntax Summary P

9.1:
task_body ::=

task body defining_identifier is
declarative_part

begin
handled_sequence_of_statements

end [task_identifier];

9.4:
protected_type_declaration ::=

protected type defining_identifier [known_discriminant_part] is protected_definition;

9.4:
single_protected_declaration ::=
protected defining_identifier is protected_definition;

9.4:
protected_definition ::=

{ protected_operation_declaration }
[private

{ protected_element_declaration }]
end [protected_identifier]

9.4:
protected_operation_declaration ::= subprogram_declaration

| entry_declaration
| representation_clause

9.4:
protected_element_declaration ::= protected_operation_declaration

| component_declaration

9.4:
protected_body ::=
protected body defining_identifier is
{ protected_operation_item }
end [protected_identifier];

9.4:
protected_operation_item ::= subprogram_declaration

| subprogram_body
| entry_body
| representation_clause

9.5.2:
entry_declaration ::=

entry defining_identifier [(discrete_subtype_definition)] parameter_profile;

9.5.2:
accept_statement ::=

accept entry_direct_name [(entry_index)] parameter_profile [do
handled_sequence_of_statements

end [entry_identifier]];

9.5.2:
entry_index ::= expression

9.5.2:
entry_body ::=
entry defining_identifier entry_body_formal_part entry_barrier is

declarative_part
begin

handled_sequence_of_statements
end [entry_identifier];

9.5.2:
entry_body_formal_part ::= [(entry_index_specification)] parameter_profile

9.5.2:
entry_barrier ::= when condition

9.5.2:
entry_index_specification ::= for defining_identifier in discrete_subtype_definition

ISO/IEC 8652:1995(E) —AARM;6.0

P Syntax Summary 21 December 1994 710

9.5.3:
entry_call_statement ::= entry_name [actual_parameter_part];

9.5.4:
requeue_statement ::= requeue entry_name [with abort];

9.6:
delay_statement ::= delay_until_statement | delay_relative_statement

9.6:
delay_until_statement ::= delay until delay_expression;

9.6:
delay_relative_statement ::= delay delay_expression;

9.7:
select_statement ::=

selective_accept
| timed_entry_call
| conditional_entry_call
| asynchronous_select

9.7.1:
selective_accept ::=

select
[guard]

select_alternative
{ or

[guard]
select_alternative }

[else
sequence_of_statements]
end select;

9.7.1:
guard ::= when condition =>

9.7.1:
select_alternative ::=

accept_alternative
| delay_alternative
| terminate_alternative

9.7.1:
accept_alternative ::=

accept_statement [sequence_of_statements]

9.7.1:
delay_alternative ::=

delay_statement [sequence_of_statements]

9.7.1:
terminate_alternative ::= terminate;

9.7.2:
timed_entry_call ::=

select
entry_call_alternative
or
delay_alternative
end select;

9.7.2:
entry_call_alternative ::=

entry_call_statement [sequence_of_statements]

9.7.3:
conditional_entry_call ::=
select
entry_call_alternative
else
sequence_of_statements
end select;

ISO/IEC 8652:1995(E) —AARM;6.0

711 21 December 1994 Syntax Summary P

9.7.4:
asynchronous_select ::=

select
triggering_alternative
then abort
abortable_part
end select;

9.7.4:
triggering_alternative ::= triggering_statement [sequence_of_statements]

9.7.4:
triggering_statement ::= entry_call_statement | delay_statement

9.7.4:
abortable_part ::= sequence_of_statements

9.8:
abort_statement ::= abort task_name {, task_name};

10.1.1:
compilation ::= {compilation_unit}

10.1.1:
compilation_unit ::=

context_clause library_item
| context_clause subunit

10.1.1:
library_item ::= [private] library_unit_declaration
| library_unit_body
| [private] library_unit_renaming_declaration

10.1.1:
library_unit_declaration ::=

subprogram_declaration | package_declaration
| generic_declaration | generic_instantiation

10.1.1:
library_unit_renaming_declaration ::=

package_renaming_declaration
| generic_renaming_declaration
| subprogram_renaming_declaration

10.1.1:
library_unit_body ::= subprogram_body | package_body

10.1.1:
parent_unit_name ::= name

10.1.2:
context_clause ::= {context_item}

10.1.2:
context_item ::= with_clause | use_clause

10.1.2:
with_clause ::= with library_unit_name {, library_unit_name};

10.1.3:
body_stub ::= subprogram_body_stub | package_body_stub | task_body_stub | protected_body_stub

10.1.3:
subprogram_body_stub ::= subprogram_specification is separate;

10.1.3:
package_body_stub ::= package body defining_identifier is separate;

10.1.3:
task_body_stub ::= task body defining_identifier is separate;

10.1.3:
protected_body_stub ::= protected body defining_identifier is separate;

10.1.3:
subunit ::= separate (parent_unit_name) proper_body

ISO/IEC 8652:1995(E) —AARM;6.0

P Syntax Summary 21 December 1994 712

11.1:
exception_declaration ::= defining_identifier_list : exception;

11.2:
handled_sequence_of_statements ::=

sequence_of_statements
[exception

exception_handler
{exception_handler}]

11.2:
exception_handler ::=
when [choice_parameter_specification:] exception_choice {| exception_choice} =>

sequence_of_statements

11.2:
choice_parameter_specification ::= defining_identifier

11.2:
exception_choice ::= exception_name | others

11.3:
raise_statement ::= raise [exception_name];

12.1:
generic_declaration ::= generic_subprogram_declaration | generic_package_declaration

12.1:
generic_subprogram_declaration ::=

generic_formal_part subprogram_specification;

12.1:
generic_package_declaration ::=

generic_formal_part package_specification;

12.1:
generic_formal_part ::= generic {generic_formal_parameter_declaration | use_clause}

12.1:
generic_formal_parameter_declaration ::=

formal_object_declaration
| formal_type_declaration
| formal_subprogram_declaration
| formal_package_declaration

12.3:
generic_instantiation ::=

package defining_program_unit_name is
new generic_package_name [generic_actual_part];

| procedure defining_program_unit_name is
new generic_procedure_name [generic_actual_part];

| function defining_designator is
new generic_function_name [generic_actual_part];

12.3:
generic_actual_part ::=

(generic_association {, generic_association})

12.3:
generic_association ::=

[generic_formal_parameter_selector_name =>] explicit_generic_actual_parameter

12.3:
explicit_generic_actual_parameter ::= expression | variable_name

| subprogram_name | entry_name | subtype_mark
| package_instance_name

12.4:
formal_object_declaration ::=

defining_identifier_list : mode subtype_mark [:= default_expression];

12.5:
formal_type_declaration ::=

type defining_identifier[discriminant_part] is formal_type_definition;

ISO/IEC 8652:1995(E) —AARM;6.0

713 21 December 1994 Syntax Summary P

12.5:
formal_type_definition ::=

formal_private_type_definition
| formal_derived_type_definition
| formal_discrete_type_definition
| formal_signed_integer_type_definition
| formal_modular_type_definition
| formal_floating_point_definition
| formal_ordinary_fixed_point_definition
| formal_decimal_fixed_point_definition
| formal_array_type_definition
| formal_access_type_definition

12.5.1:
formal_private_type_definition ::= [[abstract] tagged] [limited] private

12.5.1:
formal_derived_type_definition ::= [abstract] new subtype_mark [with private]

12.5.2:
formal_discrete_type_definition ::= (<>)

12.5.2:
formal_signed_integer_type_definition ::= range <>

12.5.2:
formal_modular_type_definition ::= mod <>

12.5.2:
formal_floating_point_definition ::= digits <>

12.5.2:
formal_ordinary_fixed_point_definition ::= delta <>

12.5.2:
formal_decimal_fixed_point_definition ::= delta <> digits <>

12.5.3:
formal_array_type_definition ::= array_type_definition

12.5.4:
formal_access_type_definition ::= access_type_definition

12.6:
formal_subprogram_declaration ::= with subprogram_specification [is subprogram_default];

12.6:
subprogram_default ::= default_name | <>

12.6:
default_name ::= name

12.7:
formal_package_declaration ::=

with package defining_identifier is new generic_package_name formal_package_actual_part;

12.7:
formal_package_actual_part ::=

(<>) | [generic_actual_part]

13.1:
representation_clause ::= attribute_definition_clause

| enumeration_representation_clause
| record_representation_clause
| at_clause

13.1:
local_name ::= direct_name

| direct_name’attribute_designator
| library_unit_name

13.3:
attribute_definition_clause ::=

for local_name’attribute_designator use expression;
| for local_name’attribute_designator use name;

ISO/IEC 8652:1995(E) —AARM;6.0

P Syntax Summary 21 December 1994 714

13.4:
enumeration_representation_clause ::=

for first_subtype_local_name use enumeration_aggregate;

13.4:
enumeration_aggregate ::= array_aggregate

13.5.1:
record_representation_clause ::=

for first_subtype_local_name use
record [mod_clause]

{component_clause}
end record;

13.5.1:
component_clause ::=

component_local_name at position range first_bit .. last_bit;

13.5.1:
position ::= static_expression

13.5.1:
first_bit ::= static_simple_expression

13.5.1:
last_bit ::= static_simple_expression

13.8:
code_statement ::= qualified_expression;

13.12:
restriction ::= restriction_identifier

| restriction_parameter_identifier => expression

J.3:
delta_constraint ::= delta static_expression [range_constraint]

J.7:
at_clause ::= for direct_name use at expression;

J.8:
mod_clause ::= at mod static_expression;

ISO/IEC 8652:1995(E) —AARM;6.0

715 21 December 1994 Syntax Summary P

Syntax Cross Reference

{syntax (cross reference)} {grammar (cross reference)} {context free grammar (cross reference)} {BNF (Backus-Naur Form)

(cross reference)} {Backus-Naur Form (BNF) (cross reference)}
abort_statement

simple_statement 5.1

abortable_part
asynchronous_select 9.7.4

abstract_subprogram_declaration
basic_declaration 3.1

accept_alternative
select_alternative 9.7.1

accept_statement
accept_alternative 9.7.1
compound_statement 5.1

access_definition
discriminant_specification 3.7
parameter_specification 6.1

access_type_definition
formal_access_type_definition 12.5.4
type_definition 3.2.1

access_to_object_definition
access_type_definition 3.10

access_to_subprogram_definition
access_type_definition 3.10

actual_parameter_part
entry_call_statement 9.5.3
function_call 6.4
procedure_call_statement 6.4

aggregate
primary 4.4
qualified_expression 4.7

allocator
primary 4.4

ancestor_part
extension_aggregate 4.3.2

array_aggregate
aggregate 4.3
enumeration_aggregate 13.4

array_component_association
named_array_aggregate 4.3.3

array_type_definition
formal_array_type_definition 12.5.3
object_declaration 3.3.1
type_definition 3.2.1

assignment_statement
simple_statement 5.1

asynchronous_select
select_statement 9.7

at_clause

representation_clause 13.1

attribute_definition_clause
representation_clause 13.1

attribute_designator
attribute_definition_clause 13.3
attribute_reference 4.1.4
local_name 13.1

attribute_reference
name 4.1

base
based_literal 2.4.2

based_literal
numeric_literal 2.4

based_numeral
based_literal 2.4.2

basic_declaration
basic_declarative_item 3.11

basic_declarative_item
declarative_item 3.11
package_specification 7.1

binary_adding_operator
simple_expression 4.4

block_statement
compound_statement 5.1

body
declarative_item 3.11

body_stub
body 3.11

case_statement
compound_statement 5.1

case_statement_alternative
case_statement 5.4

character
comment 2.7

character_literal
defining_character_literal 3.5.1
name 4.1
selector_name 4.1.3

choice_parameter_specification
exception_handler 11.2

code_statement
simple_statement 5.1

compilation_unit
compilation 10.1.1

ISO/IEC 8652:1995(E) —AARM;6.0

P Syntax Summary 21 December 1994 716

component_choice_list
record_component_association 4.3.1

component_clause
record_representation_clause 13.5.1

component_declaration
component_item 3.8
protected_element_declaration 9.4

component_definition
component_declaration 3.8
constrained_array_definition 3.6
unconstrained_array_definition 3.6

component_item
component_list 3.8

component_list
record_definition 3.8
variant 3.8.1

composite_constraint
constraint 3.2.2

compound_statement
statement 5.1

condition
entry_barrier 9.5.2
exit_statement 5.7
guard 9.7.1
if_statement 5.3
iteration_scheme 5.5

conditional_entry_call
select_statement 9.7

constrained_array_definition
array_type_definition 3.6

constraint
subtype_indication 3.2.2

context_clause
compilation_unit 10.1.1

context_item
context_clause 10.1.2

decimal_fixed_point_definition
fixed_point_definition 3.5.9

decimal_literal
numeric_literal 2.4

declarative_item
declarative_part 3.11

declarative_part
block_statement 5.6
entry_body 9.5.2
package_body 7.2
subprogram_body 6.3
task_body 9.1

default_expression
component_declaration 3.8
discriminant_specification 3.7

formal_object_declaration 12.4
parameter_specification 6.1

default_name
subprogram_default 12.6

defining_character_literal
enumeration_literal_specification 3.5.1

defining_designator
generic_instantiation 12.3
subprogram_specification 6.1

defining_identifier
choice_parameter_specification 11.2
defining_identifier_list 3.3.1
defining_program_unit_name 6.1
entry_body 9.5.2
entry_declaration 9.5.2
entry_index_specification 9.5.2
enumeration_literal_specification 3.5.1
exception_renaming_declaration 8.5.2
formal_package_declaration 12.7
formal_type_declaration 12.5
full_type_declaration 3.2.1
incomplete_type_declaration 3.10.1
loop_parameter_specification 5.5
object_renaming_declaration 8.5.1
package_body_stub 10.1.3
private_extension_declaration 7.3
private_type_declaration 7.3
protected_body 9.4
protected_body_stub 10.1.3
protected_type_declaration 9.4
single_protected_declaration 9.4
single_task_declaration 9.1
subtype_declaration 3.2.2
task_body 9.1
task_body_stub 10.1.3
task_type_declaration 9.1

defining_identifier_list
component_declaration 3.8
discriminant_specification 3.7
exception_declaration 11.1
formal_object_declaration 12.4
number_declaration 3.3.2
object_declaration 3.3.1
parameter_specification 6.1

defining_operator_symbol
defining_designator 6.1

defining_program_unit_name
defining_designator 6.1
generic_instantiation 12.3
generic_renaming_declaration 8.5.5
package_body 7.2
package_renaming_declaration 8.5.3
package_specification 7.1
subprogram_specification 6.1

delay_alternative
select_alternative 9.7.1
timed_entry_call 9.7.2

delay_relative_statement
delay_statement 9.6

ISO/IEC 8652:1995(E) —AARM;6.0

717 21 December 1994 Syntax Summary P

delay_statement
delay_alternative 9.7.1
simple_statement 5.1
triggering_statement 9.7.4

delay_until_statement
delay_statement 9.6

delta_constraint
scalar_constraint 3.2.2

derived_type_definition
type_definition 3.2.1

designator
subprogram_body 6.3

digit
extended_digit 2.4.2
graphic_character 2.1
letter_or_digit 2.3
numeral 2.4.1

digits_constraint
scalar_constraint 3.2.2

direct_name
accept_statement 9.5.2
at_clause J.7
local_name 13.1
name 4.1
statement_identifier 5.1
variant_part 3.8.1

discrete_choice
discrete_choice_list 3.8.1

discrete_choice_list
array_component_association 4.3.3
case_statement_alternative 5.4
variant 3.8.1

discrete_range
discrete_choice 3.8.1
index_constraint 3.6.1
slice 4.1.2

discrete_subtype_definition
constrained_array_definition 3.6
entry_declaration 9.5.2
entry_index_specification 9.5.2
loop_parameter_specification 5.5

discriminant_association
discriminant_constraint 3.7.1

discriminant_constraint
composite_constraint 3.2.2

discriminant_part
formal_type_declaration 12.5
incomplete_type_declaration 3.10.1
private_extension_declaration 7.3
private_type_declaration 7.3

discriminant_specification
known_discriminant_part 3.7

entry_barrier

entry_body 9.5.2

entry_body
protected_operation_item 9.4

entry_body_formal_part
entry_body 9.5.2

entry_call_alternative
conditional_entry_call 9.7.3
timed_entry_call 9.7.2

entry_call_statement
entry_call_alternative 9.7.2
simple_statement 5.1
triggering_statement 9.7.4

entry_declaration
protected_operation_declaration 9.4
task_item 9.1

entry_index
accept_statement 9.5.2

entry_index_specification
entry_body_formal_part 9.5.2

enumeration_aggregate
enumeration_representation_clause 13.4

enumeration_literal_specification
enumeration_type_definition 3.5.1

enumeration_representation_clause
representation_clause 13.1

enumeration_type_definition
type_definition 3.2.1

exception_choice
exception_handler 11.2

exception_declaration
basic_declaration 3.1

exception_handler
handled_sequence_of_statements 11.2

exception_renaming_declaration
renaming_declaration 8.5

exit_statement
simple_statement 5.1

explicit_actual_parameter
parameter_association 6.4

explicit_dereference
name 4.1

explicit_generic_actual_parameter
generic_association 12.3

exponent
based_literal 2.4.2
decimal_literal 2.4.1

expression
ancestor_part 4.3.2

ISO/IEC 8652:1995(E) —AARM;6.0

P Syntax Summary 21 December 1994 718

array_component_association 4.3.3
assignment_statement 5.2
at_clause J.7
attribute_definition_clause 13.3
attribute_designator 4.1.4
case_statement 5.4
condition 5.3
decimal_fixed_point_definition 3.5.9
default_expression 3.7
delay_relative_statement 9.6
delay_until_statement 9.6
delta_constraint J.3
digits_constraint 3.5.9
discrete_choice 3.8.1
discriminant_association 3.7.1
entry_index 9.5.2
explicit_actual_parameter 6.4
explicit_generic_actual_parameter 12.3
floating_point_definition 3.5.7
indexed_component 4.1.1
mod_clause J.8
modular_type_definition 3.5.4
number_declaration 3.3.2
object_declaration 3.3.1
ordinary_fixed_point_definition 3.5.9
position 13.5.1
positional_array_aggregate 4.3.3
pragma_argument_association 2.8
primary 4.4
qualified_expression 4.7
range_attribute_designator 4.1.4
record_component_association 4.3.1
restriction 13.12
return_statement 6.5
type_conversion 4.6

extended_digit
based_numeral 2.4.2

extension_aggregate
aggregate 4.3

factor
term 4.4

first_bit
component_clause 13.5.1

fixed_point_definition
real_type_definition 3.5.6

floating_point_definition
real_type_definition 3.5.6

formal_access_type_definition
formal_type_definition 12.5

formal_array_type_definition
formal_type_definition 12.5

formal_decimal_fixed_point_definition
formal_type_definition 12.5

formal_derived_type_definition
formal_type_definition 12.5

formal_discrete_type_definition
formal_type_definition 12.5

formal_floating_point_definition
formal_type_definition 12.5

formal_modular_type_definition
formal_type_definition 12.5

formal_object_declaration
generic_formal_parameter_declaration 12.1

formal_ordinary_fixed_point_definition
formal_type_definition 12.5

formal_package_actual_part
formal_package_declaration 12.7

formal_package_declaration
generic_formal_parameter_declaration 12.1

formal_part
parameter_and_result_profile 6.1
parameter_profile 6.1

formal_private_type_definition
formal_type_definition 12.5

formal_signed_integer_type_definition
formal_type_definition 12.5

formal_subprogram_declaration
generic_formal_parameter_declaration 12.1

formal_type_declaration
generic_formal_parameter_declaration 12.1

formal_type_definition
formal_type_declaration 12.5

format_effector
character 2.1

full_type_declaration
type_declaration 3.2.1

function_call
name 4.1

general_access_modifier
access_to_object_definition 3.10

generic_actual_part
formal_package_actual_part 12.7
generic_instantiation 12.3

generic_association
generic_actual_part 12.3

generic_declaration
basic_declaration 3.1
library_unit_declaration 10.1.1

generic_formal_parameter_declaration
generic_formal_part 12.1

generic_formal_part
generic_package_declaration 12.1
generic_subprogram_declaration 12.1

generic_instantiation
basic_declaration 3.1

ISO/IEC 8652:1995(E) —AARM;6.0

719 21 December 1994 Syntax Summary P

library_unit_declaration 10.1.1

generic_package_declaration
generic_declaration 12.1

generic_renaming_declaration
library_unit_renaming_declaration 10.1.1
renaming_declaration 8.5

generic_subprogram_declaration
generic_declaration 12.1

goto_statement
simple_statement 5.1

graphic_character
character 2.1
character_literal 2.5
string_element 2.6

guard
selective_accept 9.7.1

handled_sequence_of_statements
accept_statement 9.5.2
block_statement 5.6
entry_body 9.5.2
package_body 7.2
subprogram_body 6.3
task_body 9.1

identifier
accept_statement 9.5.2
attribute_designator 4.1.4
block_statement 5.6
defining_identifier 3.1
designator 6.1
direct_name 4.1
entry_body 9.5.2
loop_statement 5.5
package_body 7.2
package_specification 7.1
pragma 2.8
pragma_argument_association 2.8
protected_body 9.4
protected_definition 9.4
restriction 13.12
selector_name 4.1.3
task_body 9.1
task_definition 9.1

identifier_letter
graphic_character 2.1
identifier 2.3
letter_or_digit 2.3

if_statement
compound_statement 5.1

implicit_dereference
prefix 4.1

incomplete_type_declaration
type_declaration 3.2.1

index_constraint
composite_constraint 3.2.2

index_subtype_definition

unconstrained_array_definition 3.6

indexed_component
name 4.1

integer_type_definition
type_definition 3.2.1

iteration_scheme
loop_statement 5.5

known_discriminant_part
discriminant_part 3.7
full_type_declaration 3.2.1
protected_type_declaration 9.4
task_type_declaration 9.1

label
statement 5.1

last_bit
component_clause 13.5.1

letter_or_digit
identifier 2.3

library_item
compilation_unit 10.1.1

library_unit_body
library_item 10.1.1

library_unit_declaration
library_item 10.1.1

library_unit_renaming_declaration
library_item 10.1.1

local_name
attribute_definition_clause 13.3
component_clause 13.5.1
enumeration_representation_clause 13.4
record_representation_clause 13.5.1

loop_parameter_specification
iteration_scheme 5.5

loop_statement
compound_statement 5.1

mod_clause
record_representation_clause 13.5.1

mode
formal_object_declaration 12.4
parameter_specification 6.1

modular_type_definition
integer_type_definition 3.5.4

multiplying_operator
term 4.4

name
abort_statement 9.8
assignment_statement 5.2
attribute_definition_clause 13.3
default_name 12.6
entry_call_statement 9.5.3

ISO/IEC 8652:1995(E) —AARM;6.0

P Syntax Summary 21 December 1994 720

exception_choice 11.2
exception_renaming_declaration 8.5.2
exit_statement 5.7
explicit_actual_parameter 6.4
explicit_dereference 4.1
explicit_generic_actual_parameter 12.3
formal_package_declaration 12.7
function_call 6.4
generic_instantiation 12.3
generic_renaming_declaration 8.5.5
goto_statement 5.8
implicit_dereference 4.1
local_name 13.1
object_renaming_declaration 8.5.1
package_renaming_declaration 8.5.3
parent_unit_name 10.1.1
pragma_argument_association 2.8
prefix 4.1
primary 4.4
procedure_call_statement 6.4
raise_statement 11.3
requeue_statement 9.5.4
subprogram_renaming_declaration 8.5.4
subtype_mark 3.2.2
type_conversion 4.6
use_package_clause 8.4
with_clause 10.1.2

named_array_aggregate
array_aggregate 4.3.3

null_statement
simple_statement 5.1

number_declaration
basic_declaration 3.1

numeral
base 2.4.2
decimal_literal 2.4.1
exponent 2.4.1

numeric_literal
primary 4.4

object_declaration
basic_declaration 3.1

object_renaming_declaration
renaming_declaration 8.5

operator_symbol
defining_operator_symbol 6.1
designator 6.1
direct_name 4.1
selector_name 4.1.3

ordinary_fixed_point_definition
fixed_point_definition 3.5.9

other_control_function
character 2.1

package_body
library_unit_body 10.1.1
proper_body 3.11

package_body_stub
body_stub 10.1.3

package_declaration
basic_declaration 3.1
library_unit_declaration 10.1.1

package_renaming_declaration
library_unit_renaming_declaration 10.1.1
renaming_declaration 8.5

package_specification
generic_package_declaration 12.1
package_declaration 7.1

parameter_and_result_profile
access_to_subprogram_definition 3.10
subprogram_specification 6.1

parameter_association
actual_parameter_part 6.4

parameter_profile
accept_statement 9.5.2
access_to_subprogram_definition 3.10
entry_body_formal_part 9.5.2
entry_declaration 9.5.2
subprogram_specification 6.1

parameter_specification
formal_part 6.1

parent_unit_name
defining_program_unit_name 6.1
designator 6.1
package_body 7.2
package_specification 7.1
subunit 10.1.3

position
component_clause 13.5.1

positional_array_aggregate
array_aggregate 4.3.3

pragma_argument_association
pragma 2.8

prefix
attribute_reference 4.1.4
function_call 6.4
indexed_component 4.1.1
procedure_call_statement 6.4
range_attribute_reference 4.1.4
selected_component 4.1.3
slice 4.1.2

primary
factor 4.4

private_extension_declaration
type_declaration 3.2.1

private_type_declaration
type_declaration 3.2.1

procedure_call_statement
simple_statement 5.1

proper_body
body 3.11
subunit 10.1.3

ISO/IEC 8652:1995(E) —AARM;6.0

721 21 December 1994 Syntax Summary P

protected_body
proper_body 3.11

protected_body_stub
body_stub 10.1.3

protected_definition
protected_type_declaration 9.4
single_protected_declaration 9.4

protected_element_declaration
protected_definition 9.4

protected_operation_declaration
protected_definition 9.4
protected_element_declaration 9.4

protected_operation_item
protected_body 9.4

protected_type_declaration
full_type_declaration 3.2.1

qualified_expression
allocator 4.8
code_statement 13.8
primary 4.4

raise_statement
simple_statement 5.1

range
discrete_range 3.6.1
discrete_subtype_definition 3.6
range_constraint 3.5
relation 4.4

range_attribute_designator
range_attribute_reference 4.1.4

range_attribute_reference
range 3.5

range_constraint
delta_constraint J.3
digits_constraint 3.5.9
scalar_constraint 3.2.2

real_range_specification
decimal_fixed_point_definition 3.5.9
floating_point_definition 3.5.7
ordinary_fixed_point_definition 3.5.9

real_type_definition
type_definition 3.2.1

record_aggregate
aggregate 4.3

record_component_association
record_component_association_list 4.3.1

record_component_association_list
extension_aggregate 4.3.2
record_aggregate 4.3.1

record_definition
record_extension_part 3.9.1
record_type_definition 3.8

record_extension_part
derived_type_definition 3.4

record_representation_clause
representation_clause 13.1

record_type_definition
type_definition 3.2.1

relation
expression 4.4

relational_operator
relation 4.4

renaming_declaration
basic_declaration 3.1

representation_clause
basic_declarative_item 3.11
component_item 3.8
protected_operation_declaration 9.4
protected_operation_item 9.4
task_item 9.1

requeue_statement
simple_statement 5.1

return_statement
simple_statement 5.1

scalar_constraint
constraint 3.2.2

select_alternative
selective_accept 9.7.1

select_statement
compound_statement 5.1

selected_component
name 4.1

selective_accept
select_statement 9.7

selector_name
component_choice_list 4.3.1
discriminant_association 3.7.1
generic_association 12.3
parameter_association 6.4
selected_component 4.1.3

sequence_of_statements
abortable_part 9.7.4
accept_alternative 9.7.1
case_statement_alternative 5.4
conditional_entry_call 9.7.3
delay_alternative 9.7.1
entry_call_alternative 9.7.2
exception_handler 11.2
handled_sequence_of_statements 11.2
if_statement 5.3
loop_statement 5.5
selective_accept 9.7.1
triggering_alternative 9.7.4

signed_integer_type_definition
integer_type_definition 3.5.4

ISO/IEC 8652:1995(E) —AARM;6.0

P Syntax Summary 21 December 1994 722

simple_expression
first_bit 13.5.1
last_bit 13.5.1
range 3.5
real_range_specification 3.5.7
relation 4.4
signed_integer_type_definition 3.5.4

simple_statement
statement 5.1

single_protected_declaration
object_declaration 3.3.1

single_task_declaration
object_declaration 3.3.1

slice
name 4.1

space_character
graphic_character 2.1

special_character
graphic_character 2.1

statement
sequence_of_statements 5.1

statement_identifier
block_statement 5.6
label 5.1
loop_statement 5.5

string_element
string_literal 2.6

string_literal
operator_symbol 6.1
primary 4.4

subprogram_body
library_unit_body 10.1.1
proper_body 3.11
protected_operation_item 9.4

subprogram_body_stub
body_stub 10.1.3

subprogram_declaration
basic_declaration 3.1
library_unit_declaration 10.1.1
protected_operation_declaration 9.4
protected_operation_item 9.4

subprogram_default
formal_subprogram_declaration 12.6

subprogram_renaming_declaration
library_unit_renaming_declaration 10.1.1
renaming_declaration 8.5

subprogram_specification
abstract_subprogram_declaration 6.1
formal_subprogram_declaration 12.6
generic_subprogram_declaration 12.1
subprogram_body 6.3
subprogram_body_stub 10.1.3
subprogram_declaration 6.1

subprogram_renaming_declaration 8.5.4

subtype_declaration
basic_declaration 3.1

subtype_indication
access_to_object_definition 3.10
allocator 4.8
component_definition 3.6
derived_type_definition 3.4
discrete_range 3.6.1
discrete_subtype_definition 3.6
object_declaration 3.3.1
private_extension_declaration 7.3
subtype_declaration 3.2.2

subtype_mark
access_definition 3.10
ancestor_part 4.3.2
discriminant_specification 3.7
explicit_generic_actual_parameter 12.3
formal_derived_type_definition 12.5.1
formal_object_declaration 12.4
index_subtype_definition 3.6
object_renaming_declaration 8.5.1
parameter_and_result_profile 6.1
parameter_specification 6.1
qualified_expression 4.7
relation 4.4
subtype_indication 3.2.2
type_conversion 4.6
use_type_clause 8.4

subunit
compilation_unit 10.1.1

task_body
proper_body 3.11

task_body_stub
body_stub 10.1.3

task_definition
single_task_declaration 9.1
task_type_declaration 9.1

task_item
task_definition 9.1

task_type_declaration
full_type_declaration 3.2.1

term
simple_expression 4.4

terminate_alternative
select_alternative 9.7.1

timed_entry_call
select_statement 9.7

triggering_alternative
asynchronous_select 9.7.4

triggering_statement
triggering_alternative 9.7.4

type_conversion
name 4.1

ISO/IEC 8652:1995(E) —AARM;6.0

723 21 December 1994 Syntax Summary P

type_declaration
basic_declaration 3.1

type_definition
full_type_declaration 3.2.1

unary_adding_operator
simple_expression 4.4

unconstrained_array_definition
array_type_definition 3.6

underline
based_numeral 2.4.2
identifier 2.3
numeral 2.4.1

unknown_discriminant_part
discriminant_part 3.7

use_clause
basic_declarative_item 3.11
context_item 10.1.2
generic_formal_part 12.1

use_package_clause
use_clause 8.4

use_type_clause
use_clause 8.4

variant
variant_part 3.8.1

variant_part
component_list 3.8

with_clause
context_item 10.1.2

ISO/IEC 8652:1995(E) —AARM;6.0

21 December 1994 724

& operator — Ada.Numerics.Complex_Types

725 21 December 1994 Index

Index
Index entries are given by paragraph number. A list of all language-defined library units may be found
under Language-Defined Library Units. A list of all language-defined types may be found under
Language-Defined Types.

& operator 4.4(1), 4.5.3(3)

* operator 4.4(1), 4.5.5(1)
** operator 4.4(1), 4.5.6(7)

+ operator 4.4(1), 4.5.3(1), 4.5.4(1)

= operator 4.4(1), 4.5.2(1)

- operator 4.4(1), 4.5.3(1), 4.5.4(1)

/ operator 4.4(1), 4.5.5(1)
/= operator 4.4(1), 4.5.2(1)

< operator 4.4(1), 4.5.2(1)
<= operator 4.4(1), 4.5.2(1)

> operator 4.4(1), 4.5.2(1)
>= operator 4.4(1), 4.5.2(1)

10646-1:1993, ISO/IEC standard 1.2(8)
1539:1991, ISO/IEC standard 1.2(3)
1989:1985, ISO standard 1.2(4)

6429:1992, ISO/IEC standard 1.2(5)
646:1991, ISO/IEC standard 1.2(2)

8859-1:1987, ISO/IEC standard 1.2(6)

9899:1990, ISO/IEC standard 1.2(7)

A 6.3.1(21), 7.3(7), 7.3.1(7), 8.6(34),
9.5.2(13), 10.1.1(12), 10.1.2(8),
10.2(27), 12.3(22), 13.1(7), 13.14(19)

A.B 10.1.2(8)
A.B.C 10.1.2(8)
A.B.C.D 10.1.2(8)
A.B.X 10.1.2(8)
A.B.Y 10.1.2(8)
A_Form 4.6(66)
A_View 6.3.1(21)
A0 3.10.2(22)
A1 3.10.2(22), 13.1(14), 13.14(13)
A2 13.1(14), 13.14(13)
A3 13.14(13)
abnormal completion 7.6.1(2)
abnormal state of an object 13.9.1(4)

[partial] 9.8(21), 11.6(6), A.13(17)
abnormal task 9.8(4)
abnormal termination

of a partition 10.2(25)
abort

of a partition E.1(7)
of a task 9.8(4)
of the execution of a construct 9.8(5)

abort completion point 9.8(15)
abort-deferred operation 9.8(5)
abort_statement 9.8(2)

used 5.1(4), P(1)
Abort_Task C.7.1(3)
abortable_part 9.7.4(5)

used 9.7.4(2), P(1)
abs operator 4.4(1), 4.5.6(1)
absolute value 4.4(1), 4.5.6(1)
abstract data type (ADT)

See also abstract type 3.9.3(1)
See private types and private extensions

7.3(1)
abstract subprogram 3.9.3(1), 3.9.3(3)
abstract type 3.9.3(1), 3.9.3(2)
abstract_subprogram_declaration 6.1(3)

used 3.1(3), P(1)
Acc 13.11(42)
accept_alternative 9.7.1(5)

used 9.7.1(4), P(1)
accept_statement 9.5.2(3)

used 5.1(5), 9.7.1(5), P(1)
acceptable interpretation 8.6(14)
Access attribute 3.10.2(24), 3.10.2(32), K(2),

K(4)
See also Unchecked_Access attribute

13.10(3)
access discriminant 3.7(9)
access parameter 6.1(24)
access paths

distinct 6.2(12)
Access type 3.2(2), 3.10(1), N(2)
access types

input-output unspecified A.7(6)
access value 3.10(1)
access-to-constant type 3.10(10)
access-to-object type 3.10(7)
access-to-subprogram type 3.10(7), 3.10(11)
access-to-variable type 3.10(10)
Access_Check 11.5(11)

[partial] 4.1(13), 4.6(49)
access_definition 3.10(6)

used 3.7(5), 6.1(15), P(1)
Access_State A.5.2(27)
access_type_definition 3.10(2)

used 3.2.1(4), 12.5.4(2), P(1)
access_to_object_definition 3.10(3)

used 3.10(2), P(1)
access_to_subprogram_definition 3.10(5)

used 3.10(2), P(1)
accessibility

from shared passive library units E.2.1(8)
accessibility level 3.10.2(3)
accessibility rule

Access attribute 3.10.2(28), 3.10.2(32)
checking in generic units 12.3(11)
not part of generic contract 3.9.1(4)
record extension 3.9.1(3)
requeue statement 9.5.4(6)
type conversion 4.6(17), 4.6(20)

Accessibility_Check 11.5(21)

[partial] 3.10.2(28), 4.6(48), 6.5(17),
E.4(18)

accessible partition E.1(7)
accuracy 4.6(32), G.2(1)
ACID 1.3(1)
ACK A.3.3(5), J.5(4)
acquire

execution resource associated with
protected object 9.5.1(5)

Activate 6.4(19)
activation

of a task 9.2(1)
activation failure 9.2(1)
activator

of a task 9.2(5)
active partition 10.2(28), E.1(2)
active priority D.1(15)
actual 12.3(7), 12.3(18)
actual duration D.9(12)
actual parameter

for a formal parameter 6.4.1(3)
actual subtype 3.3(23), 12.5(4)

of an object 3.3.1(9)
actual type 12.5(4)
actual_parameter_part 6.4(4)

used 6.4(2), 6.4(3), 9.5.3(2), P(1)
Acute A.3.3(22)
ACVC

Ada Compiler Validation Capability
1.1.2(37)

Ada A.2(2)
Ada calling convention 6.3.1(3)
Ada Commentary Integration Document

(ACID) 1.3(1)
Ada Compiler Validation Capability

ACVC 1.1.2(37)
Ada Issue (AI) 1.3(1)
Ada Rapporteur Group (ARG) 1.3(1)
Ada.Asynchronous_Task_Control D.11(3)
Ada.Calendar 9.6(10)
Ada.Characters A.3.1(2)
Ada.Characters.Handling A.3.2(2)
Ada.Characters.Latin_1 A.3.3(3)
Ada.Command_Line A.15(3)
Ada.Decimal F.2(2)
Ada.Direct_IO A.8.4(2)
Ada.Dynamic_Priorities D.5(3)
Ada.Exceptions 11.4.1(2)
Ada.Finalization 7.6(4)
Ada.Float_Text_IO A.10.9(33)
Ada.Float_Wide_Text_IO A.11(3)
Ada.Integer_Text_IO A.10.8(21)
Ada.Integer_Wide_Text_IO A.11(3)
Ada.Interrupts C.3.2(2)
Ada.Interrupts.Names C.3.2(12)
Ada.Numerics A.5(3)
Ada.Numerics.Complex_Elementary_Func-

tions G.1.2(9)

Ada.Numerics.Discrete_Random — associated components

Index 21 December 1994 726

Ada.Numerics.Complex_Types G.1.1(25)
Ada.Numerics.Discrete_Random A.5.2(17)
Ada.Numerics.Elementary_Functions

A.5.1(9)
Ada.Numerics.Float_Random A.5.2(5)
Ada.Numerics.Generic_Complex_

Elementary_Functions G.1.2(2)
Ada.Numerics.Generic_Complex_Types

G.1.1(2)
Ada.Numerics.Generic_Elementary_Functions

A.5.1(3)
Ada.Real_Time D.8(3)
Ada.Sequential_IO A.8.1(2)
Ada.Storage_IO A.9(3)
Ada.Streams 13.13.1(2)
Ada.Streams.Stream_IO A.12.1(3)
Ada.Strings A.4.1(3)
Ada.Strings.Bounded A.4.4(3)
Ada.Strings.Fixed A.4.3(5)
Ada.Strings.Maps A.4.2(3)
Ada.Strings.Maps.Constants A.4.6(3)
Ada.Strings.Unbounded A.4.5(3)
Ada.Strings.Wide_Bounded A.4.7(1)
Ada.Strings.Wide_Fixed A.4.7(1)
Ada.Strings.Wide_Maps A.4.7(3)
Ada.Strings.Wide_Maps.Wide_Constants

A.4.7(1)
Ada.Strings.Wide_Unbounded A.4.7(1)
Ada.Synchronous_Task_Control D.10(3)
Ada.Tags 3.9(6)
Ada.Task_Attributes C.7.2(2)
Ada.Task_Identification C.7.1(2)
Ada.Text_IO A.10.1(2)
Ada.Text_IO.Complex_IO G.1.3(3)
Ada.Text_IO.Editing F.3.3(3)
Ada.Text_IO.Text_Streams A.12.2(3)
Ada.Unchecked_Conversion 13.9(3)
Ada.Unchecked_Deallocation 13.11.2(3)
Ada.Wide_Text_IO A.11(2)
Ada.Wide_Text_IO.Complex_IO G.1.4(1)
Ada.Wide_Text_IO.Editing F.3.4(1)
Ada.Wide_Text_IO.Text_Streams A.12.3(3)
Ada.IO_Exceptions A.13(3)
Ada_Application B.5(29)
Ada_Employee_Record_Type B.4(118)
Add 10.1.1(35)
Addition 3.9.1(16)
Address 13.7(12)

arithmetic 13.7.1(6)
comparison 13.7(14)
null 13.7(12)

Address attribute 13.3(11), J.7.1(5), K(6)
Address clause 13.3(7), 13.3(12)
Address_To_Access_Conversions

child of System 13.7.2(2)
Adjacent attribute A.5.3(48), K(8)
Adjust 7.6(2), 7.6(6)
adjusting the value of an object 7.6(15),

7.6(16)
adjustment 7.6(15), 7.6(16)

as part of assignment 5.2(14)
Adjustments_Conversions B.4(121)
Adjustments_Type B.4(114)
ADT (abstract data type)

See also abstract type 3.9.3(1)
See private types and private extensions

7.3(1)
advice 1.1.2(37)
Aft attribute 3.5.10(5), K(12)

aggregate 4.3(1), 4.3(2)
used 4.4(7), 4.7(2), P(1)
See also composite type 3.2(2)

AI 1.3(1)
aliased 3.10(9), N(3)
aliasing

See distinct access paths 6.2(12)
Alignment A.4.1(6)
Alignment attribute 13.3(23), K(14)
Alignment clause 13.3(7), 13.3(25)
All_Calls_Remote pragma E.2.3(5), L(2)
All_Checks 11.5(25)
Allocate 13.11(7)
allocator 4.8(2)

used 4.4(7), P(1)
Alphanumeric B.4(16)
alphanumeric character

a category of Character A.3.2(31)
Alphanumeric_Set A.4.6(4)
ambiguous 8.6(30)
ambiguous grammar 1.1.4(14)
ampersand 2.1(15), A.3.3(8)
ampersand operator 4.4(1), 4.5.3(3)
ancestor 3.9.3(6), 12.3(18)

of a library unit 10.1.1(11)
of a type 3.4.1(10)
ultimate 3.4.1(10)

ancestor subtype
of a private_extension_declaration 7.3(8)
of a formal derived type 12.5.1(5)

ancestor_part 4.3.2(3)
used 4.3.2(2), P(1)

and operator 4.4(1), 4.5.1(2)
and then (short-circuit control form) 4.4(1),

4.5.1(1)
Angle 12.5(13)
angle threshold G.2.4(10)
Annex

informative 1.1.2(18)
normative 1.1.2(14)
Specialized Needs 1.1.2(7)

anonymous access type 3.10(12)
anonymous array type 3.3.1(1)
anonymous protected type 3.3.1(1)
anonymous task type 3.3.1(1)
anonymous type 3.2.1(7)
Another_Int 7.3.1(7)
Any_Priority 13.7(16), D.1(10)
APC A.3.3(19)
apostrophe 2.1(15), A.3.3(8)
Append A.4.4(13), A.4.4(14), A.4.4(15),

A.4.4(16), A.4.4(17), A.4.4(18),
A.4.4(19), A.4.4(20), A.4.5(12),
A.4.5(13), A.4.5(14)

Append_All 10.1.1(35)
Append_Image 10.1.1(35)
applicable index constraint 4.3.3(10)
application areas 1.1.2(7)
apply

to a loop_statement by an exit_statement
5.7(4)

to a callable construct by a return_
statement 6.5(4)

to a program unit by a program unit
pragma 10.1.5(2)

arbitrary order 1.1.4(18)
Arccos A.5.1(6), G.1.2(5)
Arccosh A.5.1(7), G.1.2(7)
Arccot A.5.1(6), G.1.2(5)

Arccoth A.5.1(7), G.1.2(7)
Arcsin A.5.1(6), G.1.2(5)
Arcsinh A.5.1(7), G.1.2(7)
Arctan A.5.1(6), G.1.2(5)
Arctanh A.5.1(7), G.1.2(7)
ARG 1.3(1)
Argument A.15(5), G.1.1(10)
argument of a pragma 2.8(9)
Argument_Count A.15(4)
Argument_Error A.5(3)
array 3.6(1)
array component expression 4.3.3(6)
array indexing

See indexed_component 4.1.1(1)
array slice 4.1.2(1)
Array type 3.2(2), 3.6(1), N(4)
array_aggregate 4.3.3(2)

used 4.3(2), 13.4(3), P(1)
array_component_association 4.3.3(5)

used 4.3.3(4), P(1)
array_type_definition 3.6(2)

used 3.2.1(4), 3.3.1(2), 12.5.3(2), P(1)
Array1 13.1(14)
Array2 13.1(14)
ASCII A.1(36), J.5(2)

package physically nested within the decla-
ration of Standard A.1(36)

aspect of representation 13.1(8)
coding 13.4(7)
controlled 13.11.3(5)
convention, calling convention B.1(28)
exported B.1(28)
imported B.1(28)
layout 13.5(1)
packing 13.2(5)
record layout 13.5(1)
specifiable attributes 13.3(5)
storage place 13.5(1)

assembly language C.1(4)
assign 7.6(17)

See assignment operation 5.2(3)
assigning back of parameters 6.4.1(17)
assignment

user-defined 7.6(1)
assignment operation 5.2(3), 5.2(12), 7.6(13)

during elaboration of an object_declaration
3.3.1(19)

during evaluation of a generic_association
for a formal object of mode in
12.4(11)

during evaluation of a parameter_
association 6.4.1(11)

during evaluation of an aggregate 4.3(5)
during evaluation of an initialized allocator

4.8(7)
during evaluation of an uninitialized al-

locator 4.8(9), 4.8(10)
during evaluation of concatenation

4.5.3(10)
during execution of a for loop 5.5(9)
during execution of a return_statement

6.5(21)
during execution of an assignment_

statement 5.2(12)
during parameter copy back 6.4.1(17)
list of uses 7.6.1(24)

assignment_statement 5.2(2)
used 5.1(4), P(1)

associated components

associated discriminants — Binop_Ptr

727 21 December 1994 Index

of a record_component_association
4.3.1(10)

associated discriminants
of a named discriminant_association

3.7.1(5)
of a positional discriminant_association

3.7.1(5)
associated object

of a value of a by-reference type 6.2(10)
of a value of a limited type 6.2(10)

asterisk 2.1(15), A.3.3(8)
asynchronous

remote procedure call E.4.1(9)
Asynchronous pragma E.4.1(3), L(3)
asynchronous remote procedure call E.4(1)
asynchronous_select 9.7.4(2)

used 9.7(2), P(1)
Asynchronous_Task_Control

child of Ada D.11(3)
at-most-once execution E.4(11)
at_clause J.7(1)

used 13.1(2), P(1)
atomic C.6(7)
Atomic pragma C.6(3), L(4)
Atomic_Components pragma C.6(5), L(5)
Attach_Handler C.3.2(7)
Attach_Handler pragma C.3.1(4), L(6)
attaching

to an interrupt C.3(2)
attribute 4.1.4(1), C.7.2(2), K(1)

representation 13.3(1)
specifiable 13.3(5)
specifying 13.3(1)

attribute_definition_clause 13.3(2)
used 13.1(2), P(1)

attribute_designator 4.1.4(3)
used 4.1.4(2), 13.1(3), 13.3(2), P(1)

Attribute_Handle C.7.2(3)
attribute_reference 4.1.4(2)

used 4.1(2), P(1)
attributes

Access 3.10.2(24), 3.10.2(32), K(2), K(4)
Address 13.3(11), J.7.1(5), K(6)
Adjacent A.5.3(48), K(8)
Aft 3.5.10(5), K(12)
Alignment 13.3(23), K(14)
Base 3.5(15), K(17)
Bit_Order 13.5.3(4), K(19)
Body_Version E.3(4), K(21)
Callable 9.9(2), K(23)
Caller C.7.1(14), K(25)
Ceiling A.5.3(33), K(27)
Class 3.9(14), 7.3.1(9), K(31), K(34)
Component_Size 13.3(69), K(36)
Compose A.5.3(24), K(38)
Constrained 3.7.2(3), J.4(2), K(42)
Copy_Sign A.5.3(51), K(44)
Count 9.9(5), K(48)
Definite 12.5.1(23), K(50)
Delta 3.5.10(3), K(52)
Denorm A.5.3(9), K(54)
Digits 3.5.8(2), 3.5.10(7), K(56), K(58)
Exponent A.5.3(18), K(60)
External_Tag 13.3(75), K(64)
First 3.5(12), 3.6.2(3), K(68), K(70)
First(N) 3.6.2(4), K(66)
First_Bit 13.5.2(3), K(72)
Floor A.5.3(30), K(74)
Fore 3.5.10(4), K(78)

Fraction A.5.3(21), K(80)
Identity 11.4.1(9), C.7.1(12), K(84),

K(86)
Image 3.5(35), K(88)
Input 13.13.2(22), 13.13.2(32), K(92),

K(96)
Last 3.5(13), 3.6.2(5), K(102), K(104)
Last(N) 3.6.2(6), K(100)
Last_Bit 13.5.2(4), K(106)
Leading_Part A.5.3(54), K(108)
Length 3.6.2(9), K(117)
Length(N) 3.6.2(10), K(115)
Machine A.5.3(60), K(119)
Machine_Emax A.5.3(8), K(123)
Machine_Emin A.5.3(7), K(125)
Machine_Mantissa A.5.3(6), K(127)
Machine_Overflows A.5.3(12), A.5.4(4),

K(129), K(131)
Machine_Radix A.5.3(2), A.5.4(2),

K(133), K(135)
Machine_Rounds A.5.3(11), A.5.4(3),

K(137), K(139)
Max 3.5(19), K(141)
Max_Size_In_Storage_Elements

13.11.1(3), K(145)
Min 3.5(16), K(147)
Model A.5.3(68), G.2.2(7), K(151)
Model_Emin A.5.3(65), G.2.2(4), K(155)
Model_Epsilon A.5.3(66), K(157)
Model_Mantissa A.5.3(64), G.2.2(3),

K(159)
Model_Small A.5.3(67), K(161)
Modulus 3.5.4(17), K(163)
Output 13.13.2(19), 13.13.2(29), K(165),

K(169)
Partition_ID E.1(9), K(173)
Pos 3.5.5(2), K(175)
Position 13.5.2(2), K(179)
Pred 3.5(25), K(181)
Range 3.5(14), 3.6.2(7), K(187), K(189)
Range(N) 3.6.2(8), K(185)
Read 13.13.2(6), 13.13.2(14), K(191),

K(195)
Remainder A.5.3(45), K(199)
Round 3.5.10(12), K(203)
Rounding A.5.3(36), K(207)
Safe_First A.5.3(71), G.2.2(5), K(211)
Safe_Last A.5.3(72), G.2.2(6), K(213)
Scale 3.5.10(11), K(215)
Scaling A.5.3(27), K(217)
Signed_Zeros A.5.3(13), K(221)
Size 13.3(40), 13.3(45), K(223), K(228)
Small 3.5.10(2), K(230)
Storage_Pool 13.11(13), K(232)
Storage_Size 13.3(60), 13.11(14), J.9(2),

K(234), K(236)
Succ 3.5(22), K(238)
Tag 3.9(16), 3.9(18), K(242), K(244)
Terminated 9.9(3), K(246)
Truncation A.5.3(42), K(248)
Unbiased_Rounding A.5.3(39), K(252)
Unchecked_Access 13.10(3), H.4(19),

K(256)
Val 3.5.5(5), K(258)
Valid 13.9.2(3), H(7), K(262)
Value 3.5(52), K(264)
Version E.3(3), K(268)
Wide_Image 3.5(28), K(270)
Wide_Value 3.5(40), K(274)

Wide_Width 3.5(38), K(278)
Width 3.5(39), K(280)
Write 13.13.2(3), 13.13.2(11), K(282),

K(286)
avoid overspecifying environmental issues

10(3)

B 6.3.1(21), 10.1.1(12), 10.2(27), 12.3(22)
Backus-Naur Form (BNF)

complete listing P(1)
cross reference P(1)
notation 1.1.4(3)
under Syntax heading 1.1.2(25)

Bad 4.9(44), 12.3(11)
Bag 10.1.1(35)
Bag_Image 10.1.1(35)
Bags_Of_My_Type 10.1.1(35)
base 2.4.2(3), 2.4.2(6)
base 16 literal 2.4.2(1)

used 2.4.2(2), P(1)
base 2 literal 2.4.2(1)
base 8 literal 2.4.2(1)
Base attribute 3.5(15), K(17)
base decimal precision

of a floating point type 3.5.7(9), 3.5.7(10)
base priority D.1(15)
base range

of a decimal fixed point type 3.5.9(16)
of a fixed point type 3.5.9(12)
of a floating point type 3.5.7(8), 3.5.7(10)
of a modular type 3.5.4(10)
of a scalar type 3.5(6)
of a signed integer type 3.5.4(9)
of an enumeration type 3.5(6)
of an ordinary fixed point type 3.5.9(13)

base subtype
of a type 3.5(15)

based_literal 2.4.2(2)
used 2.4(2), P(1)

based_numeral 2.4.2(4)
used 2.4.2(2), P(1)

basic letter
a category of Character A.3.2(27)

basic_declaration 3.1(3)
used 3.11(4), P(1)

basic_declarative_item 3.11(4)
used 3.11(3), 7.1(3), P(1)

Basic_Map A.4.6(5)
Basic_Set A.4.6(4)
Beaujolais effect 8.4(1)

[partial] 3.6(18), 8.6(22), 8.6(34)
become nonlimited 7.3.1(5), 7.5(16)
BEL A.3.3(5)
belong

to a range 3.5(4)
to a subtype 3.2(8)

Bias 12.2(10)
bibliography 1.2(1)
Big 13.3(48)
big endian 13.5.3(2)
binary B.4(10)

literal 2.4.2(1)
binary adding operator 4.5.3(1)
binary literal 2.4.2(1)
binary operator 4.5(9)
binary_adding_operator 4.5(4)

used 4.4(4), P(1)
Binary_Format B.4(24)
Binary_Operation 3.9.1(15)

bit field — check, language-defined

Index 21 December 1994 728

Binop_Ptr 3.10(22)
bit field

See record_representation_clause
13.5.1(1)

bit ordering 13.5.3(2)
bit string

See logical operators on boolean arrays
4.5.1(2)

Bit_Order 13.7(15)
Bit_Order attribute 13.5.3(4), K(19)
Bit_Order clause 13.3(7), 13.5.3(4)
Bit_Vector 3.6(26)
blank

in text input for enumeration and numeric
types A.10.6(5)

block_statement 5.6(2)
used 5.1(5), P(1)

blocked
[partial] D.2.1(11)
a task state 9(10)
during an entry call 9.5.3(19)
execution of a selective_accept 9.7.1(16)
on a delay_statement 9.6(21)
on an accept_statement 9.5.2(24)
waiting for activations to complete 9.2(5)
waiting for dependents to terminate 9.3(5)

blocked interrupt C.3(2)
blocking, potentially 9.5.1(8)

Abort_Task C.7.1(16)
delay_statement 9.6(34), D.9(5)
remote subprogram call E.4(17)
RPC operations E.5(23)
Suspend_Until_True D.10(10)

BMP 3.5.2(2), 3.5.2(3)
BNF (Backus-Naur Form)

complete listing P(1)
cross reference P(1)
notation 1.1.4(3)
under Syntax heading 1.1.2(25)

body 3.11(5)
used 3.11(3), P(1)

body_stub 10.1.3(2)
used 3.11(5), P(1)

Body_Version attribute E.3(4), K(21)
Boolean 3.5.3(1), A.1(5)
boolean type 3.5.3(1)
Bounded

child of Ada.Strings A.4.4(3)
bounded error 1.1.2(31), 1.1.5(8), 6.2(12),

7.6.1(14), 9.5.1(8), 9.8(20), 10.2(26),
13.9.1(9), 13.11.2(11), C.7.1(17),
D.5(11), E.1(10), E.3(6), J.7.1(11)

Bounded_String A.4.4(6), A.4.4(106)
Bounded_String_Internals A.4.4(106)
bounds

of a discrete_range 3.6.1(6)
of an array 3.6(13)
of the index range of an array_aggregate

4.3.3(24)
box

compound delimiter 3.6(15)
broadcast signal

See protected object 9.4(1)
See requeue 9.5.4(1)

Broken_Bar A.3.3(21)
BS A.3.3(5), J.5(4)
Buffer 3.7(33), 9.11(8), 9.11(9), 12.5(12)
Buffer_Size 3.5.4(35), A.9(4)
Buffer_Type A.9(4)

by copy parameter passing 6.2(2)
by reference parameter passing 6.2(2)
by-copy type 6.2(3)
by-reference type 6.2(4)

atomic or volatile C.6(18)
Byte 3.5.4(36), 13.3(80), B.4(29)

See storage element 13.3(8)
byte sex

See ordering of storage elements in a word
13.5.3(5)

Byte_Array B.4(29)
Byte_Mask 13.5.1(27)

C 3.6(11), 4.3.3(42), 10.1.1(12), 10.2(27),
B.3(77), B.3.2(46)

child of Interfaces B.3(4)
C interface B.3(1)
C standard 1.2(7)
C_float B.3(15)
Calendar J.1(8)

child of Ada 9.6(10)
call 6(2)
call on a dispatching operation 3.9.2(2)
callable 9.9(2)
Callable attribute 9.9(2), K(23)
callable construct 6(2)
callable entity 6(2)
called partition E.4(1)
Caller attribute C.7.1(14), K(25)
calling convention 6.3.1(2), B.1(11)

Ada 6.3.1(3)
associated with a designated profile

3.10(11)
entry 6.3.1(13)
Intrinsic 6.3.1(4)
protected 6.3.1(12)

calling partition E.4(1)
calling stub E.4(10)
CAN A.3.3(6), J.5(4)
cancellation

of a delay_statement 9.6(22)
of an entry call 9.5.3(20)

cancellation of a remote subprogram call
E.4(13)

canonical form A.5.3(3)
canonical semantics 11.6(2)
canonical-form representation A.5.3(10)
Car 3.10.1(19), 3.10.1(21), 12.5.4(10),

12.5.4(11)
Car_Name 3.10.1(20), 12.5.4(10)
case insensitive 2.3(5)
case_statement 5.4(2)

used 5.1(5), P(1)
case_statement_alternative 5.4(3)

used 5.4(2), P(1)
cast

See type conversion 4.6(1)
See unchecked type conversion 13.9(1)

catch (an exception)
See handle 11(1)

categorization pragma E.2(2)
Remote_Call_Interface E.2.3(2)
Remote_Types E.2.2(2)
Shared_Passive E.2.1(2)

categorized library unit E.2(2)
catenation operator

See concatenation operator 4.4(1),
4.5.3(3)

CCH A.3.3(18)

Cedilla A.3.3(22)
Ceiling attribute A.5.3(33), K(27)
ceiling priority

of a protected object D.3(8)
Ceiling_Check

[partial] C.3.1(11), D.3(13)
Cell 3.10.1(15), 3.10.1(16)
Cent_Sign A.3.3(21)
change of representation 13.6(1)
char B.3(19)
char_array B.3(23), B.3(60)
CHAR_BIT B.3(6)
Char_Ptrs B.3.2(46)
Char_Star B.3.2(47)
Char_IO A.10.10(20)
character 2.1(2), 3.5.2(2), A.1(35)

used 2.7(2), P(1)
character set 2.1(1)
character set standard

16-bit 1.2(8)
7-bit 1.2(2)
8-bit 1.2(6)
control functions 1.2(5)

Character type 3.2(2), 3.5.2(1), N(5)
character_literal 2.5(2)

used 3.5.1(4), 4.1(2), 4.1.3(3), P(1)
Character_Mapping A.4.2(20)
Character_Mapping_Function A.4.2(25)
Character_Put 6.3.2(5)
Character_Range A.4.2(6)
Character_Ranges A.4.2(7)
Character_Sequence A.4.2(16)
Character_Set A.4.2(4), A.4.7(46), B.5(11)
characteristics 7.3(15)
Characters

child of Ada A.3.1(2)
chars_ptr B.3.1(5)
check

language-defined 11.5(2), 11.6(1)
check, language-defined

Access_Check 4.1(13), 4.6(49)
Accessibility_Check 3.10.2(28), 4.6(48),

6.5(17), E.4(18)
Ceiling_Check C.3.1(11), D.3(13)
Discriminant_Check 4.1.3(15), 4.3(6),

4.3.2(8), 4.6(43), 4.6(45), 4.6(51),
4.6(52), 4.7(4), 4.8(10)

Division_Check 3.5.4(20), 4.5.5(22),
A.5.1(28), A.5.3(47), G.1.1(40),
G.1.2(28), K(202)

Elaboration_Check 3.11(9)
Index_Check 4.1.1(7), 4.1.2(7), 4.3.3(29),

4.3.3(30), 4.5.3(8), 4.6(51), 4.7(4),
4.8(10)

Length_Check 4.5.1(8), 4.6(37), 4.6(52)
Overflow_Check 3.5.4(20), 4.4(11),

5.4(13), G.2.1(11), G.2.2(7), G.2.3(25),
G.2.4(2), G.2.6(3)

Partition_Check E.4(19)
Range_Check 3.2.2(11), 3.5(24), 3.5(27),

3.5(43), 3.5(44), 3.5(51), 3.5(55),
3.5.5(7), 3.5.9(19), 4.2(11), 4.3.3(28),
4.5.1(8), 4.5.6(6), 4.5.6(13), 4.6(28),
4.6(38), 4.6(46), 4.6(51), 4.7(4),
13.13.2(35), A.5.2(39), A.5.2(40),
A.5.3(26), A.5.3(29), A.5.3(50),
A.5.3(53), A.5.3(58), A.5.3(62), K(11),
K(41), K(47), K(113), K(122), K(184),
K(220), K(241)

child — Constraint_Error

729 21 December 1994 Index

Reserved_Check C.3.1(10)
Storage_Check 11.1(6), 13.3(67),

13.11(17), D.7(15)
Tag_Check 3.9.2(16), 4.6(42), 4.6(52),

5.2(10), 6.5(9)
child

of a library unit 10.1.1(1)
choice

of an exception_handler 11.2(5)
choice parameter 11.2(9)
choice_parameter_specification 11.2(4)

used 11.2(3), P(1)
Circumflex A.3.3(12)
class 3.2(2), N(6)

See also package 7(1)
See also tag 3.9(3)
of types 3.2(2)

Class attribute 3.9(14), 7.3.1(9), K(31), K(34)
class determined for a formal type 12.5(6)
class-wide type 3.4.1(4), 3.7(26)
cleanup

See finalization 7.6.1(1)
clock 9.6(6), 9.6(12), D.8(7)
clock jump D.8(32)
clock tick D.8(23)
Close 7.5(19), 7.5(20), A.8.1(8), A.8.4(8),

A.10.1(11), A.12.1(10)
close result set G.2.3(5)
closed entry 9.5.3(5)

of a protected object 9.5.3(7)
of a task 9.5.3(6)

closed under derivation 3.2(1), 3.2(2),
3.4(28), N(6), N(41)

closure
downward 3.10.2(37)

COBOL B.4(104), B.4(113)
child of Interfaces B.4(7)

COBOL interface B.4(1)
COBOL standard 1.2(4)
COBOL_Character B.4(13)
COBOL_Employee_Record_Type B.4(115)
COBOL_Employee_IO B.4(116)
COBOL_Record B.4(106)
Code 4.7(7)
code_statement 13.8(2)

used 5.1(4), P(1)
coding

aspect of representation 13.4(7)
Coefficient 3.5.7(20)
Coin A.5.2(58)
Col A.10.1(37)
colon 2.1(15), A.3.3(10), J.5(6)
Color 3.2.1(15), 3.5.1(14)
Column 3.2.1(15)
column number A.10(9)
Column_Ptr 3.5.4(35)
comma 2.1(15), A.3.3(8)
Command_Line

child of Ada A.15(3)
Command_Name A.15(6)
comment 2.7(2)
comments, instructions for submission (58)
Commercial_At A.3.3(10)
Communication_Error E.5(5)
Comp 12.3(11)
Comp1 7.3.1(7)
Comp2 7.3.1(7)
comparison operator

See relational operator 4.5.2(1)

compatibility
composite_constraint with an access sub-

type 3.10(15)
constraint with a subtype 3.2.2(12)
delta_constraint with an ordinary fixed

point subtype J.3(9)
digits_constraint with a decimal fixed point

subtype 3.5.9(18)
digits_constraint with a floating point sub-

type J.3(10)
discriminant constraint with a subtype

3.7.1(10)
index constraint with a subtype 3.6.1(7)
range with a scalar subtype 3.5(8)
range_constraint with a scalar subtype

3.5(8)
compatible

a type, with a convention B.1(12)
compilation 10.1.1(2)

separate 10.1(1)
Compilation unit 10.1(2), 10.1.1(9), N(7)
compilation units needed

by a compilation unit 10.2(2)
remote call interface E.2.3(18)
shared passive library unit E.2.1(11)

compilation_unit 10.1.1(3)
used 10.1.1(2), P(1)

compile-time error 1.1.2(27), 1.1.5(4)
compile-time semantics 1.1.2(28)
complete context 8.6(4)
completely defined 3.11.1(8)
completion

abnormal 7.6.1(2)
compile-time concept 3.11.1(1)
normal 7.6.1(2)
run-time concept 7.6.1(2)

completion and leaving (completed and left)
7.6.1(2)

completion legality
entry_body 9.5.2(16)
[partial] 3.10.1(13)

Complex 3.8(28), B.5(9), G.1.1(3)
Complex_Elementary_Functions

child of Ada.Numerics G.1.2(9)
Complex_Types

child of Ada.Numerics G.1.1(25)
Complex_IO

child of Ada.Text_IO G.1.3(3)
child of Ada.Wide_Text_IO G.1.4(1)

component 3.2(2), 9.4(31), 9.4(32)
component subtype 3.6(10)
component_choice_list 4.3.1(5)

used 4.3.1(4), P(1)
component_clause 13.5.1(3)

used 13.5.1(2), P(1)
component_declaration 3.8(6)

used 3.8(5), 9.4(6), P(1)
component_definition 3.6(7)

used 3.6(3), 3.6(5), 3.8(6), P(1)
component_item 3.8(5)

used 3.8(4), P(1)
component_list 3.8(4)

used 3.8(3), 3.8.1(3), P(1)
Component_Size attribute 13.3(69), K(36)
Component_Size clause 13.3(7), 13.3(70)
components

of a record type 3.8(9)
Compose attribute A.5.3(24), K(38)
Compose_From_Cartesian G.1.1(8)

Compose_From_Polar G.1.1(11)
Composite 13.14(10)
composite type 3.2(2), N(8)
composite_constraint 3.2.2(7)

used 3.2.2(5), P(1)
compound delimiter 2.2(10)
compound_statement 5.1(5)

used 5.1(3), P(1)
Compute 5.1(16)
concatenation operator 4.4(1), 4.5.3(3)
concrete subprogram

See nonabstract subprogram 3.9.3(1)
concrete type

See nonabstract type 3.9.3(1)
concurrent processing

See task 9(1)
condition 5.3(3)

used 5.3(2), 5.5(3), 5.7(2), 9.5.2(7),
9.7.1(3), P(1)

See also exception 11(1)
conditional_entry_call 9.7.3(2)

used 9.7(2), P(1)
configuration

of the partitions of a program E(4)
configuration pragma 10.1.5(8)

Locking_Policy D.3(5)
Normalize_Scalars H.1(4)
Queuing_Policy D.4(5)
Restrictions 13.12(8)
Reviewable H.3.1(4)
Suppress 11.5(5)
Task_Dispatching_Policy D.2.2(4)

conformance 6.3.1(1)
of an implementation with the Standard

1.1.3(1)
See also full conformance, mode confor-

mance, subtype conformance, type con-
formance

Conjugate G.1.1(12), G.1.1(15)
Connect 13.13.2(40)
consistency

among compilation units 10.1.4(5)
constant 3.3(13)

See also literal 4.2(1)
See also static 4.9(1)
result of a function_call 6.4(12)

constant object 3.3(13)
constant view 3.3(13)
Constants

child of Ada.Strings.Maps A.4.6(3)
constituent

of a construct 1.1.4(17)
constrained 3.2(9)

object 3.3.1(9), 3.10(9), 6.4.1(16)
subtype 3.2(9), 3.4(6), 3.5(7), 3.5.1(10),

3.5.4(9), 3.5.4(10), 3.5.7(11), 3.5.9(13),
3.5.9(16), 3.6(15), 3.6(16), 3.7(26),
3.9(15), 3.10(14), K(33)

Constrained attribute 3.7.2(3), J.4(2), K(42)
constrained by its initial value 3.3.1(9),

3.10(9)
[partial] 4.8(6)

constrained_array_definition 3.6(5)
used 3.6(2), P(1)

constraint 3.2.2(5)
used 3.2.2(3), P(1)
[partial] 3.2(7)
of a first array subtype 3.6(16)
of an object 3.3.1(9)

Construct — defining_character_literal

Index 21 December 1994 730

Constraint_Error A.1(46)
raised by failure of run-time check

1.1.5(12), 3.2.2(12), 3.5(24), 3.5(27),
3.5(43), 3.5(44), 3.5(51), 3.5(55),
3.5.4(20), 3.5.5(7), 3.5.9(19), 3.9.2(16),
4.1(13), 4.1.1(7), 4.1.2(7), 4.1.3(15),
4.2(11), 4.3(6), 4.3.2(8), 4.3.3(31),
4.4(11), 4.5(10), 4.5(11), 4.5(12),
4.5.1(8), 4.5.3(8), 4.5.5(22), 4.5.6(6),
4.5.6(12), 4.5.6(13), 4.6(28), 4.6(57),
4.6(60), 4.7(4), 4.8(10), 5.2(10),
5.4(13), 6.5(9), 11.1(4), 11.4.1(14),
11.5(10), 13.9.1(9), 13.13.2(35),
A.4.3(109), A.4.7(47), A.5.1(28),
A.5.1(34), A.5.2(39), A.5.2(40),
A.5.3(26), A.5.3(29), A.5.3(47),
A.5.3(50), A.5.3(53), A.5.3(59),
A.5.3(62), A.15(14), B.3(53), B.3(54),
B.4(58), E.4(19), E.4(20), G.1.1(40),
G.1.2(28), G.2.1(12), G.2.2(7),
G.2.3(26), G.2.4(3), G.2.6(4), K(11),
K(41), K(47), K(114), K(122), K(184),
K(202), K(220), K(241), K(261)

Construct 1.1.4(16), N(9)
constructor

See initialization 3.3.1(19), 7.6(1)
See initialization expression 3.3.1(4)
See Initialize 7.6(1)
See initialized alligator 4.8(4)

Consumer 9.11(5), 9.11(6)
context free grammar

complete listing P(1)
cross reference P(1)
notation 1.1.4(3)
under Syntax heading 1.1.2(25)

context_clause 10.1.2(2)
used 10.1.1(3), P(1)

context_item 10.1.2(3)
used 10.1.2(2), P(1)

contiguous representation
[partial] 13.1(7), 13.5.2(5), 13.7.1(12),

13.9(9), 13.9(17), 13.11(16), 13.11(17)
Continue D.11(3)
contract model of generics 12.3(1)
control character

See also format_effector 2.1(13)
See also other_control_function 2.1(14)
a category of Character A.3.2(22),

A.3.3(4), A.3.3(15)
Control_Set A.4.6(4)
Controlled 7.6(5)

aspect of representation 13.11.3(5)
Controlled pragma 13.11.3(3), L(7)
controlled type 7.6(2), 7.6(9), N(10)
Controller 9.1(26)
controlling formal parameter 3.9.2(2)
controlling operand 3.9.2(2)
controlling result 3.9.2(2)
controlling tag

for a call on a dispatching operation
3.9.2(1)

controlling tag value 3.9.2(14)
for the expression in an assignment_

statement 5.2(9)
convention 6.3.1(2), B.1(11)

aspect of representation B.1(28)
Convention pragma B.1(7), L(8)
conversion 4.6(1), 4.6(28)

access 4.6(13), 4.6(18), 4.6(47)

arbitrary order 1.1.4(18)
array 4.6(9), 4.6(36)
composite (non-array) 4.6(21), 4.6(40)
enumeration 4.6(21), 4.6(34)
numeric 4.6(8), 4.6(29)
unchecked 13.9(1)
value 4.6(5)
view 4.6(5)

Conversion_Error B.4(30)
convertible 4.6(4)

required 3.7(16), 3.7.1(9), 4.6(11),
4.6(15), 6.4.1(6)

Copy 6.2(12), E.4.2(2), E.4.2(5)
copy back of parameters 6.4.1(17)
copy parameter passing 6.2(2)
Copy_Array B.3.2(15)
Copy_Sign attribute A.5.3(51), K(44)
Copy_Terminated_Array B.3.2(14)
Copyright_Sign A.3.3(21)
core language 1.1.2(2)
corresponding constraint 3.4(6)
corresponding discriminants 3.7(18)
corresponding index

for an array_aggregate 4.3.3(8)
corresponding subtype 3.4(18)
corresponding value

of the target type of a conversion 4.6(28)
Cos A.5.1(5), G.1.2(4)
Cosh A.5.1(7), G.1.2(6)
Cot A.5.1(5), G.1.2(4)
Coth A.5.1(7), G.1.2(6)
Count A.4.3(13), A.4.3(14), A.4.3(15),

A.4.4(48), A.4.4(49), A.4.4(50),
A.4.5(43), A.4.5(44), A.4.5(45),
A.8.4(4), A.10(10), A.10.1(5),
A.12.1(7)

Count attribute 9.9(5), K(48)
Counter 3.4(37)
Counter_Type 3.6(11)
cover

a type 3.4.1(9)
of a choice and an exception 11.2(6)

cover a value 3.8.1(1)
by a discrete_choice_list 3.8.1(13)
by a discrete_choice 3.8.1(9)

CPU_Identifier 7.4(14)
CR A.3.3(5)
create 3.1(12), A.8.1(6), A.8.4(6), A.10.1(9),

A.12.1(8)
creation

of a protected object C.3.1(10)
of a task object D.1(17)
of an object 3.3(1)

critical section
See intertask communication 9.5(1)

CSI A.3.3(19)
Currency_Sign A.3.3(21)
current column number A.10(9)
current index

of an open direct file A.8(4)
current instance

of a generic unit 8.6(18)
of a type 8.6(17)

current line number A.10(9)
current mode

of an open file A.7(7)
current page number A.10(9)
current size

of an external file A.8(3)

Current_Error A.10.1(17), A.10.1(20)
Current_Handler C.3.2(6)
Current_Input A.10.1(17), A.10.1(20)
Current_Output A.10.1(17), A.10.1(20)
Current_State D.10(4)
Current_Stream 13.13.2(40)
Current_Task C.7.1(3)

D 3.5.9(18)
dangling references

prevention via accessibility rules
3.10.2(3)

Data_Error A.8.1(15), A.8.4(18), A.9(9),
A.10.1(85), A.12.1(26), A.13(4)

Date 3.8(27)
Day 3.5.1(14), 9.6(13)
Day_Duration 9.6(11)
Day_Number 9.6(11)
DC1 A.3.3(6)
DC2 A.3.3(6), J.5(4)
DC3 A.3.3(6)
DC4 A.3.3(6), J.5(4)
DCS A.3.3(18)
Deallocate 13.11(8)
deallocation of storage 13.11.2(1)
Decimal

child of Ada F.2(2)
decimal digit

a category of Character A.3.2(28)
decimal fixed point type 3.5.9(1), 3.5.9(6)
Decimal_Conversions B.4(31)
Decimal_Digit_Set A.4.6(4)
Decimal_Element B.4(12)
decimal_fixed_point_definition 3.5.9(4)

used 3.5.9(2), P(1)
decimal_literal 2.4.1(2)

used 2.4(2), P(1)
Decimal_Output F.3.3(11)
Decimal_IO A.10.1(73)
Declaration 3.1(5), 3.1(6), N(11)
declarative region

of a construct 8.1(1)
declarative_item 3.11(3)

used 3.11(2), P(1)
declarative_part 3.11(2)

used 5.6(2), 6.3(2), 7.2(2), 9.1(6),
9.5.2(5), P(1)

declare 3.1(8), 3.1(12)
declared pure 10.2.1(17)
Decrement B.3.2(11)
deeper

accessibility level 3.10.2(3)
statically 3.10.2(4), 3.10.2(17)

default entry queuing policy 9.5.3(17)
default treatment C.3(5)
Default_Bit_Order 13.7(15)
Default_Currency F.3.3(10)
default_expression 3.7(6)

used 3.7(5), 3.8(6), 6.1(15), 12.4(2), P(1)
Default_Fill F.3.3(10)
Default_Message_Procedure 3.10(26)
default_name 12.6(4)

used 12.6(3), P(1)
Default_Priority 13.7(17), D.1(11)
Default_Radix_Mark F.3.3(10)
Default_Separator F.3.3(10)
deferred constant 7.4(2)
deferred constant declaration 3.3.1(6), 7.4(2)
defining name 3.1(10)

defining_designator — documentation requirements

731 21 December 1994 Index

defining_character_literal 3.5.1(4)
used 3.5.1(3), P(1)

defining_designator 6.1(6)
used 6.1(4), 12.3(2), P(1)

defining_identifier 3.1(4)
used 3.2.1(3), 3.2.2(2), 3.3.1(3), 3.5.1(3),

3.10.1(2), 5.5(4), 6.1(7), 7.3(2), 7.3(3),
8.5.1(2), 8.5.2(2), 9.1(2), 9.1(3), 9.1(6),
9.4(2), 9.4(3), 9.4(7), 9.5.2(2), 9.5.2(5),
9.5.2(8), 10.1.3(4), 10.1.3(5), 10.1.3(6),
11.2(4), 12.5(2), 12.7(2), P(1)

defining_identifier_list 3.3.1(3)
used 3.3.1(2), 3.3.2(2), 3.7(5), 3.8(6),

6.1(15), 11.1(2), 12.4(2), P(1)
defining_operator_symbol 6.1(11)

used 6.1(6), P(1)
defining_program_unit_name 6.1(7)

used 6.1(4), 6.1(6), 7.1(3), 7.2(2),
8.5.3(2), 8.5.5(2), 12.3(2), P(1)

Definite attribute 12.5.1(23), K(50)
definite subtype 3.3(23)
Definition 3.1(7), N(12)
Deg_To_Rad 4.9(44)
Degree_Sign A.3.3(22)
DEL A.3.3(14), J.5(4)
delay_alternative 9.7.1(6)

used 9.7.1(4), 9.7.2(2), P(1)
delay_relative_statement 9.6(4)

used 9.6(2), P(1)
delay_statement 9.6(2)

used 5.1(4), 9.7.1(6), 9.7.4(4), P(1)
delay_until_statement 9.6(3)

used 9.6(2), P(1)
Delete A.4.3(29), A.4.3(30), A.4.4(64),

A.4.4(65), A.4.5(59), A.4.5(60),
A.8.1(8), A.8.4(8), A.10.1(11),
A.12.1(10)

delimiter 2.2(8)
delivery

of an interrupt C.3(2)
delta

of a fixed point type 3.5.9(1)
Delta attribute 3.5.10(3), K(52)
delta_constraint J.3(2)

used 3.2.2(6), P(1)
Denorm attribute A.5.3(9), K(54)
denormalized number A.5.3(10)
denote 8.6(16)

informal definition 3.1(8)
name used as a pragma argument 8.6(32)

depend on a discriminant
for a constraint or component_definition

3.7(19)
for a component 3.7(20)

dependence
elaboration 10.2(9)
of a task on a master 9.3(1)
of a task on another task 9.3(4)
semantic 10.1.1(26)

depth
accessibility level 3.10.2(3)

dereference 4.1(8)
Dereference_Error B.3.1(12)
derivation class

for a type 3.4.1(2)
derived from

directly or indirectly 3.4.1(2)
derived type 3.4(1), N(13)

[partial] 3.4(24)

Derived_From_Formal 12.3(15)
derived_type_definition 3.4(2)

used 3.2.1(4), P(1)
descendant 10.1.1(11)

of a type 3.4.1(10)
relationship with scope 8.2(4)

Descriptor 13.6(5)
designate 3.10(1)
designated profile

of an access-to-subprogram type 3.10(11)
designated subtype

of a named access type 3.10(10)
of an anonymous access type 3.10(12)

designated type
of a named access type 3.10(10)
of an anonymous access type 3.10(12)

designator 6.1(5)
used 6.3(2), P(1)

destructor
See finalization 7.6(1), 7.6.1(1)

Detach_Handler C.3.2(9)
determined class for a formal type 12.5(6)
determines

a type by a subtype_mark 3.2.2(8)
Device 3.8.1(24)
Device_Error A.8.1(15), A.8.4(18),

A.10.1(85), A.12.1(26), A.13(4)
Device_Interface C.3.2(28)
Device_Priority C.3.2(28)
Device_Register 13.3(55)
Diaeresis A.3.3(21)
Dice A.5.2(56)
Dice_Game A.5.2(56)
Die A.5.2(56)
digit 2.1(10)

used 2.1(3), 2.3(3), 2.4.1(3), 2.4.2(5), P(1)
digits

of a decimal fixed point subtype 3.5.9(6),
3.5.10(7)

Digits attribute 3.5.8(2), 3.5.10(7), K(56),
K(58)

digits_constraint 3.5.9(5)
used 3.2.2(6), P(1)

dimensionality
of an array 3.6(12)

direct access A.8(3)
direct file A.8(1)
direct_name 4.1(3)

used 3.8.1(2), 4.1(2), 5.1(8), 9.5.2(3),
13.1(3), J.7(1), P(1)

Direct_IO J.1(5)
child of Ada A.8.4(2), A.9(3)

Direction A.4.1(6)
directly specified

of an aspect of representation of an entity
13.1(8)

directly visible 8.3(2), 8.3(21)
within a pragma in a context_clause

10.1.6(3)
within a pragma that appears at the place of

a compilation unit 10.1.6(5)
within a use_clause in a context_clause

10.1.6(3)
within a with_clause 10.1.6(2)
within the parent_unit_name of a library

unit 10.1.6(2)
within the parent_unit_name of a subunit

10.1.6(4)
Discard_Names pragma C.5(3), L(9)

Disconnect 13.13.2(40)
discontiguous representation

[partial] 13.1(7), 13.5.2(5), 13.7.1(12),
13.9(9), 13.9(17), 13.11(16), 13.11(17)

discrete array type 4.5.2(1)
Discrete type 3.2(2), 3.2(3), 3.5(1), N(14)
discrete_choice 3.8.1(5)

used 3.8.1(4), P(1)
discrete_choice_list 3.8.1(4)

used 3.8.1(3), 4.3.3(5), 5.4(3), P(1)
Discrete_Random

child of Ada.Numerics A.5.2(17)
discrete_range 3.6.1(3)

used 3.6.1(2), 3.8.1(5), 4.1.2(2), P(1)
discrete_subtype_definition 3.6(6)

used 3.6(5), 5.5(4), 9.5.2(2), 9.5.2(8), P(1)
discriminant 3.2(5), 3.7(1), N(15)

of a variant_part 3.8.1(6)
discriminant_association 3.7.1(3)

used 3.7.1(2), P(1)
Discriminant_Check 11.5(12)

[partial] 4.1.3(15), 4.3(6), 4.3.2(8),
4.6(43), 4.6(45), 4.6(51), 4.6(52),
4.7(4), 4.8(10)

discriminant_constraint 3.7.1(2)
used 3.2.2(7), P(1)

discriminant_part 3.7(2)
used 3.10.1(2), 7.3(2), 7.3(3), 12.5(2),

P(1)
discriminant_specification 3.7(5)

used 3.7(4), P(1)
discriminants

known 3.7(26)
unknown 3.7(1), 3.7(26)

discriminated type 3.7(8)
Disk_Unit 3.8.1(27)
dispatching 3.9(3)
dispatching call

on a dispatching operation 3.9.2(1)
dispatching operation 3.9.2(1), 3.9.2(2)

[partial] 3.9(1)
dispatching point D.2.1(4)

[partial] D.2.1(8), D.2.2(12)
dispatching policy for tasks 9(10)

[partial] D.2.1(5)
dispatching, task D.2.1(4)
Display_Format B.4(22)
displayed magnitude (of a decimal value)

F.3.2(14)
disruption of an assignment 9.8(21),

13.9.1(5)
[partial] 11.6(6)

distinct access paths 6.2(12)
distributed program E(3)
distributed system E(2)
distributed systems C(1)
divide 2.1(15), F.2(6)
divide operator 4.4(1), 4.5.5(1)
Dividend_Type F.2(6)
Division_Check 11.5(13)

[partial] 3.5.4(20), 4.5.5(22), A.5.1(28),
A.5.3(47), G.1.1(40), G.1.2(28), K(202)

Division_Sign A.3.3(26)
Divisor_Type F.2(6)
DLE A.3.3(6), J.5(4)
Do_APC E.5(10)
Do_RPC E.5(9)
Do_Something 3.9.3(6)
documentation (required of an implemen-

tation) 1.1.3(18), M(1)

Dollar_Sign — erroneous execution

Index 21 December 1994 732

documentation requirements 1.1.2(34),
1.1.3(18), 13.11(22), A.5.2(44),
A.13(15), C.1(6), C.3(12), C.3.2(24),
C.4(12), C.7.1(19), C.7.2(18),
D.2.2(14), D.6(3), D.8(33), D.9(7),
D.12(5), E.5(25), H.1(5), H.2(1),
H.3.2(8), H.4(25), J.7.1(12)

Dollar_Sign A.3.3(8)
Done J.7.1(23)
dope 13.5.1(15)
dot 2.1(15)
dot selection

See selected_component 4.1.3(1)
Dot_Product 6.1(39), 6.3(11)
double B.3(16)
Double_Precision B.5(6)
Double_Square 3.7(36)
downward closure 3.10.2(37)
Dozen 4.6(70)
drift rate D.8(41)
Drum_Ref 3.10(24)
Drum_Unit 3.8.1(27)
Duration A.1(43)
dynamic binding

See dispatching operation 3.9(1)
dynamic semantics 1.1.2(30)
Dynamic_Priorities

child of Ada D.5(3)
dynamically determined tag 3.9.2(1)
dynamically enclosing

of one execution by another 11.4(2)
dynamically tagged 3.9.2(5)

E 9.4(20), 9.5.2(13), A.5(3)
edited output F.3(1)
Editing

child of Ada.Text_IO F.3.3(3)
child of Ada.Wide_Text_IO F.3.4(1)

Ee 9.4(20)
effect

external 1.1.3(8)
efficiency 11.5(29), 11.6(1)
elaborable 3.1(11)
Elaborate pragma 10.2.1(20), L(10)
Elaborate_All pragma 10.2.1(21), L(11)
Elaborate_Body pragma 10.2.1(22), L(12)
elaborated 3.11(8)
elaboration 3.1(11), N(19)

abstract_subprogram_declaration 6.1(31)
access_definition 3.10(17)
access_type_definition 3.10(16)
array_type_definition 3.6(21)
choice_parameter_specification 11.4(7)
component_declaration 3.8(17)
component_definition 3.6(22), 3.8(18)
component_list 3.8(17)
declaration named by a pragma Import

B.1(38)
declarative_part 3.11(7)
deferred constant declaration 7.4(10)
delta_constraint J.3(11)
derived_type_definition 3.4(26)
digits_constraint 3.5.9(19)
discrete_subtype_definition 3.6(22)
discriminant_constraint 3.7.1(12)
entry_declaration 9.5.2(22)
enumeration_type_definition 3.5.1(10)
exception_declaration 11.1(5)
fixed_point_definition 3.5.9(17)

floating_point_definition 3.5.7(13)
full type definition 3.2.1(11)
full_type_declaration 3.2.1(11)
generic body 12.2(2)
generic_declaration 12.1(10)
generic_instantiation 12.3(20)
incomplete_type_declaration 3.10.1(12)
index_constraint 3.6.1(8)
integer_type_definition 3.5.4(18)
loop_parameter_specification 5.5(9)
non-generic subprogram_body 6.3(6)
nongeneric package_body 7.2(6)
number_declaration 3.3.2(7)
object_declaration 3.3.1(15), 7.6(10)
package_body of Standard A.1(50)
package_declaration 7.1(8)
partition E.1(6), E.5(21)
pragma 2.8(12)
private_extension_declaration 7.3(17)
private_type_declaration 7.3(17)
protected declaration 9.4(12)
protected_body 9.4(15)
protected_definition 9.4(13)
range_constraint 3.5(9)
real_type_definition 3.5.6(5)
record_definition 3.8(16)
record_extension_part 3.9.1(5)
record_type_definition 3.8(16)
renaming_declaration 8.5(3)
representation_clause 13.1(19)
single_protected_declaration 9.4(12)
single_task_declaration 9.1(10)
Storage_Size pragma 13.3(66)
subprogram_declaration 6.1(31)
subtype_declaration 3.2.2(9)
subtype_indication 3.2.2(9)
task declaration 9.1(10)
task_body 9.1(13)
task_definition 9.1(11)
use_clause 8.4(12)
variant_part 3.8.1(22)

elaboration control 10.2.1(1)
elaboration dependence

library_item on another 10.2(9)
Elaboration_Check 11.5(20)

[partial] 3.11(9)
Elem 12.1(21)
Element 10.1.1(35), A.4.4(26), A.4.5(20),

B.3.2(4)
of a storage pool 13.11(11)

Element_Array B.3.2(4)
Element_Type 3.9.3(15), A.8.1(2), A.8.4(2),

A.9(3)
elementary type 3.2(2), N(16)
Elementary_Functions

child of Ada.Numerics A.5.1(9)
eligible

a type, for a convention B.1(14)
else part

of a selective_accept 9.7.1(11)
EM A.3.3(6)
embedded systems C(1), D(1)
Empty 3.9.3(15)
encapsulation

See package 7(1)
enclosing

immediately 8.1(13)
end of a line 2.2(2)
End_Error A.8.1(15), A.8.4(18), A.10.1(85),

A.12.1(26), A.13(4)

End_Of_File 11.4.2(4), A.8.1(13), A.8.4(16),
A.10.1(34), A.12.1(12)

End_Of_Line A.10.1(30)
End_Of_Page A.10.1(33)
endian

big 13.5.3(2)
little 13.5.3(2)

ENQ A.3.3(5)
entity 3.1(12)

[partial] 3.1(1)
entry

closed 9.5.3(5)
open 9.5.3(5)
single 9.5.2(20)

entry call 9.5.3(1)
simple 9.5.3(1)

entry calling convention 6.3.1(13)
entry family 9.5.2(20)
entry index subtype 3.8(18), 9.5.2(20)
entry queue 9.5.3(12)
entry queuing policy 9.5.3(17)

default policy 9.5.3(17)
entry_barrier 9.5.2(7)

used 9.5.2(5), P(1)
entry_body 9.5.2(5)

used 9.4(8), P(1)
entry_body_formal_part 9.5.2(6)

used 9.5.2(5), P(1)
entry_call_alternative 9.7.2(3)

used 9.7.2(2), 9.7.3(2), P(1)
entry_call_statement 9.5.3(2)

used 5.1(4), 9.7.2(3), 9.7.4(4), P(1)
entry_declaration 9.5.2(2)

used 9.1(5), 9.4(5), P(1)
entry_index 9.5.2(4)

used 9.5.2(3), P(1)
entry_index_specification 9.5.2(8)

used 9.5.2(6), P(1)
Enum 12.5(13), A.10.1(79)
Enum_IO 8.5.5(7)
enumeration literal 3.5.1(6)
Enumeration type 3.2(2), 3.2(3), 3.5.1(1),

N(17)
enumeration_aggregate 13.4(3)

used 13.4(2), P(1)
enumeration_literal_specification 3.5.1(3)

used 3.5.1(2), P(1)
enumeration_representation_clause 13.4(2)

used 13.1(2), P(1)
enumeration_type_definition 3.5.1(2)

used 3.2.1(4), P(1)
Enumeration_IO A.10.1(79)
environment declarative_part 10.1.4(1)

for the environment task of a partition
10.2(13)

environment 10.1.4(1)
environment task 10.2(8)
EOF 8.5.2(6)
EOT A.3.3(5), J.5(4)
EPA A.3.3(18)
epoch D.8(19)
equal operator 4.4(1), 4.5.2(1)
equality operator 4.5.2(1)

special inheritance rule for tagged types
3.4(17), 4.5.2(14)

equals sign 2.1(15)
Equals_Sign A.3.3(10)
equivalence of use_clauses and selected_

components 8.4(1)

error — expected type

733 21 December 1994 Index

erroneous execution 1.1.2(32), 1.1.5(10),
3.7.2(4), 9.8(21), 9.10(11), 11.5(26),
13.3(13), 13.3(27), 13.9.1(8),
13.9.1(12), 13.11(21), 13.11.2(16),
A.10.3(22), A.13(17), B.3.1(51),
B.3.2(35), C.3.1(14), C.7.1(18),
C.7.2(14), D.5(12), D.11(9), H.4(26)

error 11.1(8)
compile-time 1.1.2(27), 1.1.5(4)
link-time 1.1.2(29), 1.1.5(4)
run-time 1.1.2(30), 1.1.5(6), 11.5(2),

11.6(1)
See also bounded error, erroneous execu-

tion
ESA A.3.3(17)
ESC A.3.3(6)
Establish_RPC_Receiver E.5(12)
ETB A.3.3(6)
ETX A.3.3(5)
evaluable 3.1(11)
evaluation 3.1(11), N(19)

aggregate 4.3(5)
allocator 4.8(7)
array_aggregate 4.3.3(21)
attribute_reference 4.1.4(11)
concatenation 4.5.3(5)
dereference 4.1(13)
discrete_range 3.6.1(8)
extension_aggregate 4.3.2(7)
generic_association 12.3(21)
generic_association for a formal object of

mode in 12.4(11)
indexed_component 4.1.1(7)
initialized allocator 4.8(7)
membership test 4.5.2(27)
name 4.1(11)
name that has a prefix 4.1(12)
null literal 4.2(9)
numeric literal 4.2(9)
parameter_association 6.4.1(7)
prefix 4.1(12)
primary that is a name 4.4(10)
qualified_expression 4.7(4)
range 3.5(9)
range_attribute_reference 4.1.4(11)
record_aggregate 4.3.1(18)
record_component_association_list

4.3.1(19)
selected_component 4.1.3(14)
short-circuit control form 4.5.1(7)
slice 4.1.2(7)
string_literal 4.2(10)
uninitialized allocator 4.8(8)
Val 3.5.5(7), K(261)
Value 3.5(55)
value conversion 4.6(28)
view conversion 4.6(52)
Wide_Value 3.5(43)

Exception 11(1), 11.1(1), N(18)
exception occurrence 11(1)
exception_choice 11.2(5)

used 11.2(3), P(1)
exception_declaration 11.1(2)

used 3.1(3), P(1)
exception_handler 11.2(3)

used 11.2(2), P(1)
Exception_Identity 11.4.1(5)
Exception_Information 11.4.1(5)
Exception_Message 11.4.1(4)

Exception_Name 11.4.1(2), 11.4.1(5)
Exception_Occurrence 11.4.1(3), 11.4.1(19)
Exception_Occurrence_Access 11.4.1(3)
Exception_Occurrence_Kind 11.4.1(19)
exception_renaming_declaration 8.5.2(2)

used 8.5(2), P(1)
Exception_Id 11.4.1(2)
Exceptions

child of Ada 11.4.1(2)
Exchange 12.1(21), 12.2(5)
Exchange_Handler C.3.2(8)
Exclam J.5(6)
Exclamation A.3.3(8)
executable 3.1(11)
execution 3.1(11), N(19)

abort_statement 9.8(4)
aborting the execution of a construct

9.8(5)
accept_statement 9.5.2(24)
Ada program 9(1)
assignment_statement 5.2(7), 7.6(17),

7.6.1(12)
asynchronous_select with a delay_state-

ment trigger 9.7.4(7)
asynchronous_select with an entry call trig-

ger 9.7.4(6)
block_statement 5.6(5)
call on a dispatching operation 3.9.2(14)
call on an inherited subprogram 3.4(27)
case_statement 5.4(11)
conditional_entry_call 9.7.3(3)
delay_statement 9.6(20)
dynamically enclosing 11.4(2)
entry_body 9.5.2(26)
entry_call_statement 9.5.3(8)
exit_statement 5.7(5)
goto_statement 5.8(5)
handled_sequence_of_statements

11.2(10)
handler 11.4(7)
if_statement 5.3(5)
included by another execution 11.4(2)
instance of Unchecked_Deallocation

7.6.1(10)
loop_statement 5.5(7)
loop_statement with a for iteration_scheme

5.5(9)
loop_statement with a while iteration_

scheme 5.5(8)
null_statement 5.1(13)
partition 10.2(25)
pragma 2.8(12)
program 10.2(25)
protected subprogram call 9.5.1(3)
raise_statement with an exception_name

11.3(4)
re-raise statement 11.3(4)
remote subprogram call E.4(9)
requeue protected entry 9.5.4(9)
requeue task entry 9.5.4(8)
requeue_statement 9.5.4(7)
return_statement 6.5(6)
selective_accept 9.7.1(15)
sequence_of_statements 5.1(15)
subprogram call 6.4(10)
subprogram_body 6.3(7)
task 9.2(1)
task_body 9.2(1)
timed_entry_call 9.7.2(4)

execution resource
associated with a protected object 9.4(18)
required for a task to run 9(10)

exit_statement 5.7(2)
used 5.1(4), P(1)

Exp A.5.1(4), B.1(51), G.1.2(3)
expanded name 4.1.3(4)
Expanded_Name 3.9(7)
expected profile 8.6(26)

accept_statement entry_direct_name
9.5.2(11)

Access attribute_reference prefix 3.10.2(2)
attribute_definition_clause name 13.3(4)
character_literal 4.2(3)
formal subprogram actual 12.6(6)
formal subprogram default_name 12.6(5)
subprogram_renaming_declaration

8.5.4(3)
expected type 8.6(20)

abort_statement task_name 9.8(3)
access attribute_reference 3.10.2(2)
actual parameter 6.4.1(3)
aggregate 4.3(3)
allocator 4.8(3)
array_aggregate 4.3.3(7)
array_aggregate component expression

4.3.3(7)
array_aggregate discrete_choice 4.3.3(8)
assignment_statement expression 5.2(4)
assignment_statement variable_name

5.2(4)
attribute_definition_clause expression or

name 13.3(4)
attribute_designator expression 4.1.4(7)
case expression 5.4(4)
case_statement_alternative discrete_choice

5.4(4)
character_literal 4.2(3)
code_statement 13.8(4)
component_clause expressions 13.5.1(7)
component_declaration default_expression

3.8(7)
condition 5.3(4)
decimal fixed point type digits 3.5.9(6)
delay_relative_statement expression

9.6(5)
delay_until_statement expression 9.6(5)
delta_constraint expression J.3(3)
dereference name 4.1(8)
discrete_subtype_definition range 3.6(8)
discriminant default_expression 3.7(7)
discriminant_association expression

3.7.1(6)
entry_index 9.5.2(11)
enumeration_representation_clause expres-

sions 13.4(4)
extension_aggregate 4.3.2(4)
extension_aggregate ancestor expression

4.3.2(4)
first_bit 13.5.1(7)
fixed point type delta 3.5.9(6)
generic formal in object actual 12.4(4)
generic formal object default_expression

12.4(3)
index_constraint discrete_range 3.6.1(4)
indexed_component expression 4.1.1(4)
Interrupt_Priority pragma argument

D.1(6)
last_bit 13.5.1(7)

expiration time — formal_decimal_fixed_point_definition

Index 21 December 1994 734

link name B.1(10)
membership test simple_expression

4.5.2(3)
modular_type_definition expression

3.5.4(5)
null literal 4.2(2)
number_declaration expression 3.3.2(3)
object_declaration initialization expression

3.3.1(4)
parameter default_expression 6.1(17)
position 13.5.1(7)
Priority pragma argument D.1(6)
range simple_expressions 3.5(5)
range_attribute_designator expression

4.1.4(7)
range_constraint range 3.5(5)
real_range_specification bounds 3.5.7(5)
record_aggregate 4.3.1(8)
record_component_association expression

4.3.1(10)
requested decimal precision 3.5.7(4)
restriction parameter expression 13.12(5)
return expression 6.5(3)
short-circuit control form relation 4.5.1(1)
signed_integer_type_definition simple_ex-

pression 3.5.4(5)
slice discrete_range 4.1.2(4)
Storage_Size pragma argument 13.3(65)
string_literal 4.2(4)
type_conversion operand 4.6(6)
Unchecked_Access attribute 13.10(4)
variant_part discrete_choice 3.8.1(6)

expiration time
[partial] 9.6(1)
for a delay_relative_statement 9.6(20)
for a delay_until_statement 9.6(20)

explicit declaration 3.1(5), N(11)
explicit initial value 3.3.1(1)
explicit_actual_parameter 6.4(6)

used 6.4(5), P(1)
explicit_dereference 4.1(5)

used 4.1(2), P(1)
explicit_generic_actual_parameter 12.3(5)

used 12.3(4), P(1)
explicitly assign 10.2(2)
exponent 2.4.1(4), 4.5.6(11)

used 2.4.1(2), 2.4.2(2), P(1)
Exponent attribute A.5.3(18), K(60)
exponentiation operator 4.4(1), 4.5.6(7)
Export pragma B.1(6), L(13)
exported

aspect of representation B.1(28)
exported entity B.1(23)
Expr_Ptr 3.9.1(14)
expression 3.9(33), 4.4(1), 4.4(2)

used 2.8(3), 3.3.1(2), 3.3.2(2), 3.5.4(4),
3.5.7(2), 3.5.9(3), 3.5.9(4), 3.5.9(5),
3.7(6), 3.7.1(3), 3.8.1(5), 4.1.1(2),
4.1.4(3), 4.1.4(5), 4.3.1(4), 4.3.2(3),
4.3.3(3), 4.3.3(5), 4.4(7), 4.6(2), 4.7(2),
5.2(2), 5.3(3), 5.4(2), 6.4(6), 6.5(2),
9.5.2(4), 9.6(3), 9.6(4), 12.3(5), 13.3(2),
13.3(63), 13.5.1(4), 13.12(4), B.1(5),
B.1(6), B.1(8), B.1(10), C.3.1(4),
D.1(3), D.1(5), J.3(2), J.7(1), J.8(1),
L(6), L(13), L(14), L(18), L(19), L(27),
L(35), P(1)

extended_digit 2.4.2(5)
used 2.4.2(4), P(1)

extension 12.3(11)
of a private type 3.9(2), 3.9.1(1)
of a record type 3.9(2), 3.9.1(1)
of a type 3.9(2), 3.9.1(1)

extension_aggregate 4.3.2(2)
used 4.3(2), P(1)

extensions to Ada 83 1.1.2(39), 2.1(18),
2.8(19), 2.8(29), 3.2.3(8), 3.3(26),
3.3.1(33), 3.3.2(10), 3.4(38), 3.5(63),
3.5.2(9), 3.5.4(36), 3.5.5(17), 3.5.9(28),
3.6(30), 3.6.1(18), 3.6.3(8), 3.7(37),
3.7.2(4), 3.8(31), 3.8.1(29), 3.9(33),
3.9.1(17), 3.9.2(24), 3.10(26),
3.10.1(23), 3.10.2(41), 3.11(14),
4.1(17), 4.1.3(19), 4.1.4(16), 4.2(14),
4.3(6), 4.3.1(31), 4.3.2(13), 4.3.3(43),
4.4(15), 4.5.2(39), 4.5.3(14), 4.5.5(35),
4.6(71), 4.8(20), 4.9(44), 5.1(19),
5.2(28), 5.4(18), 6.1(42), 6.2(13),
6.3(11), 6.3.1(25), 6.3.2(7), 6.4.1(17),
6.6(9), 7.3(24), 7.4(14), 7.5(23),
7.6(21), 8.2(12), 8.3(29), 8.4(16),
8.5.5(7), 8.6(34), 9.1(32), 9.4(35),
9.5.2(37), 9.5.4(20), 9.6(40), 9.7(4),
9.7.4(13), 10.1.1(35), 10.1.2(9),
10.1.3(24), 10.2(34), 10.2.1(28),
11.2(12), 11.4.1(19), 11.5(31),
12.1(24), 12.3(29), 12.4(12),
12.5.4(13), 12.7(10), 13.1(24),
13.3(85), 13.4(14), 13.5.3(8), 13.8(14),
13.9.2(12), 13.11(43), 13.12(11),
13.13(1), 13.14(19), A.1(56), A.2(4),
A.3(1), A.4(1), A.5(5), A.5.3(72),
A.5.4(4), A.6(1), A.10(11), A.10.1(85),
A.11(3), A.15(22), B(1), B.1(51), C(1),
D(6), D.1(29), E(1), F(7), G(7), G.2(3),
G.2.1(16), H(6), J.7(2)

external call 9.5(4)
external effect

of the execution of an Ada program
1.1.3(8)

volatile/atomic objects C.6(20)
external file A.7(1)
external interaction 1.1.3(8)
external name B.1(34)
external requeue 9.5(7)
External_Tag 3.9(7)
External_Tag attribute 13.3(75), K(64)
External_Tag clause 13.3(7), 13.3(75), K(65)
extra permission to avoid raising exceptions

11.6(5)
extra permission to reorder actions 11.6(6)

F 3.4(38), 3.9.1(4), 3.10.2(22), 5.2(4),
5.4(18), 6.3.1(21), 8.5.4(6), 8.6(34),
13.14(1), 13.14(13), 13.14(19)

F_View 6.3.1(21)
factor 4.4(6)

used 4.4(5), P(1)
failure A.15(8)

of a language-defined check 11.5(2)
False 3.5.3(1)
family

entry 9.5.2(20)
Feminine_Ordinal_Indicator A.3.3(21)
FF A.3.3(5), J.5(4)
Field A.10.1(6)
Field_Size 3.9.3(3)
file

as file object A.7(2)
file terminator A.10(7)
File_Access A.10.1(18)
File_Descriptor 7.5(20)
File_Handle 11.4.2(2)
File_Mode A.8.1(4), A.8.4(4), A.10.1(4),

A.12.1(6)
File_Name 7.3(22), 7.5(18), 7.5(19)
File_Not_Found 11.4.2(3)
File_System 11.4.2(2), 11.4.2(6)
File_Type A.8.1(3), A.8.4(3), A.10.1(3),

A.12.1(5)
Finalization

child of Ada 7.6(4)
of a master 7.6.1(4)
of a protected object 9.4(20), C.3.1(12)
of a task object J.7.1(8)
of an object 7.6.1(5)

Finalize 7.6(2), 7.6(6), 7.6(8), 13.11.3(6),
A.5.2(27)

Find E.4.2(3)
Find_Token A.4.3(16), A.4.4(51), A.4.5(46)
Fine_Delta 13.7(9)

named number in package System 13.7(9)
First attribute 3.5(12), 3.6.2(3), K(68), K(70)
first subtype 3.2.1(6), 3.4.1(5)
First(N) attribute 3.6.2(4), K(66)
first_bit 13.5.1(5)

used 13.5.1(3), P(1)
First_Bit attribute 13.5.2(3), K(72)
Fixed

child of Ada.Strings A.4.3(5)
fixed point type 3.5.9(1)
fixed_point_definition 3.5.9(2)

used 3.5.6(2), P(1)
Fixed_IO A.10.1(68)
Flip_A_Coin A.5.2(58)
Float 3.5.7(12), 3.5.7(14), A.1(21)
Float_Random

child of Ada.Numerics A.5.2(5)
Float_Text_IO

child of Ada A.10.9(32)
Float_Type A.5.1(3)
Float_Wide_Text_IO

child of Ada A.11(3)
Float_IO A.10.1(63)
Floating B.4(9)
floating point type 3.5.7(1)
floating_point_definition 3.5.7(2)

used 3.5.6(2), P(1)
Floor attribute A.5.3(30), K(74)
Flush A.10.1(21), A.12.1(25)
Foo 3.9.3(3), 7.3(7), 12.3(15)
Fore attribute 3.5.10(4), K(78)
form A.8.1(9), A.8.4(9), A.10.1(12),

A.12.1(11)
of an external file A.7(1)

Formal 12.3(15), 12.3(18)
formal object, generic 12.4(1)
formal package, generic 12.7(1)
formal parameter

of a subprogram 6.1(17)
formal subprogram, generic 12.6(1)
formal subtype 12.5(5)
formal type 12.5(5)
formal_access_type_definition 12.5.4(2)

used 12.5(3), P(1)
formal_array_type_definition 12.5.3(2)

used 12.5(3), P(1)

formal_derived_type_definition — Graphic_Set

735 21 December 1994 Index

formal_decimal_fixed_point_definition
12.5.2(7)

used 12.5(3), P(1)
formal_derived_type_definition 12.5.1(3)

used 12.5(3), P(1)
formal_discrete_type_definition 12.5.2(2)

used 12.5(3), P(1)
formal_floating_point_definition 12.5.2(5)

used 12.5(3), P(1)
formal_modular_type_definition 12.5.2(4)

used 12.5(3), P(1)
formal_object_declaration 12.4(2)

used 12.1(6), P(1)
formal_ordinary_fixed_point_definition

12.5.2(6)
used 12.5(3), P(1)

formal_package_actual_part 12.7(3)
used 12.7(2), P(1)

formal_package_declaration 12.7(2)
used 12.1(6), P(1)

formal_part 6.1(14)
used 6.1(12), 6.1(13), P(1)

formal_private_type_definition 12.5.1(2)
used 12.5(3), P(1)

formal_signed_integer_type_definition
12.5.2(3)

used 12.5(3), P(1)
formal_subprogram_declaration 12.6(2)

used 12.1(6), P(1)
formal_type_declaration 12.5(2)

used 12.1(6), P(1)
formal_type_definition 12.5(3)

used 12.5(2), P(1)
format_effector 2.1(13)

used 2.1(2), P(1)
Fortran

child of Interfaces B.5(4)
Fortran interface B.5(1)
FORTRAN standard 1.2(3)
Fortran_Character B.5(12)
Fortran_Integer B.5(5)
Fortran_Library B.1(51)
Fortran_Matrix B.5(30)
Fraction 3.5.9(27)
Fraction attribute A.5.3(21), K(80)
Fraction_One_Half A.3.3(22)
Fraction_One_Quarter A.3.3(22)
Fraction_Three_Quarters A.3.3(22)
Free 13.11.2(5), A.4.5(7), B.3.1(11)
freed

See nonexistent 13.11.2(10)
freeing storage 13.11.2(1)
freezing

by a constituent of a construct 13.14(4)
by an expression 13.14(8)
class-wide type caused by the freezing of

the specific type 13.14(15)
constituents of a full type definition

13.14(15)
designated subtype caused by an allocator

13.14(13)
entity 13.14(2)
entity caused by a body 13.14(3)
entity caused by a construct 13.14(4)
entity caused by a name 13.14(11)
entity caused by the end of an enclosing

construct 13.14(3)
first subtype caused by the freezing of the

type 13.14(15)

function call 13.14(14)
generic_instantiation 13.14(5)
nominal subtype caused by a name

13.14(11)
object_declaration 13.14(6)
specific type caused by the freezing of the

class-wide type 13.14(15)
subtype caused by a record extension

13.14(7)
subtypes of the profile of a callable entity

13.14(14)
type caused by a range 13.14(12)
type caused by an expression 13.14(10)
type caused by the freezing of a subtype

13.14(15)
freezing points

entity 13.14(2)
FS A.3.3(6), J.5(4)
full conformance

for discrete_subtype_definitions 6.3.1(24)
for known_discriminant_parts 6.3.1(23)
for expressions 6.3.1(19)
for profiles 6.3.1(18)
required 3.10.1(4), 6.3(4), 7.3(9), 8.5.4(5),

9.5.2(14), 9.5.2(16), 9.5.2(17),
10.1.3(11), 10.1.3(12)

full constant declaration 3.3.1(6)
full declaration 7.4(2)
full stop 2.1(15)
full type 3.2.1(8)
full type definition 3.2.1(8)
full view

of a type 7.3(4)
Full_Stop A.3.3(8)
full_type_declaration 3.2.1(3)

used 3.2.1(2), P(1)
function 6(1)
function instance 12.3(13)
function_call 6.4(3)

used 4.1(2), P(1)

G 3.10.2(22), 4.9(26), 12.3(15), 12.3(18),
12.3(22), 13.14(1)

G1 12.3(11)
G2 12.3(11)
gaps 13.1(7), 13.3(52)
garbage collection 13.11.3(6)
Gender 3.5.1(14)
general access type 3.10(7), 3.10(8)
general_access_modifier 3.10(4)

used 3.10(3), P(1)
generation

of an interrupt C.3(2)
Generator A.5.2(7), A.5.2(19), A.5.2(27)
generic actual 12.3(7)
generic actual parameter 12.3(7)
generic actual subtype 12.5(4)
generic actual type 12.5(4)
generic body 12.2(1)
generic contract issue 10.2.1(10), 12.3(11)

[partial] 3.9.1(3), 3.10.2(28), 3.10.2(32),
4.6(17), 4.6(20), 6.3.1(17), 6.5(20),
8.3(26), 10.2.1(11)

generic contract model 12.3(1)
generic contract/private type contract analogy

7.3(19)
generic formal 12.1(9)
generic formal object 12.4(1)
generic formal package 12.7(1)

generic formal subprogram 12.6(1)
generic formal subtype 12.5(5)
generic formal type 12.5(5)
generic function 12.1(8)
generic package 12.1(8)
generic procedure 12.1(8)
generic subprogram 12.1(8)
generic unit 12(1), N(20)

See also dispatching operation 3.9(1)
generic_actual_part 12.3(3)

used 12.3(2), 12.7(3), P(1)
generic_association 12.3(4)

used 12.3(3), P(1)
Generic_Bags 10.1.1(35)
Generic_Bags.Generic_Iterators 10.1.1(35)
Generic_Bounded_Length A.4.4(4)
Generic_Complex_Elementary_Functions

child of Ada.Numerics G.1.2(2)
Generic_Complex_Types

child of Ada.Numerics G.1.1(2)
generic_declaration 12.1(2)

used 3.1(3), 10.1.1(5), P(1)
Generic_Elementary_Functions

child of Ada.Numerics A.5.1(3)
generic_formal_parameter_declaration

12.1(6)
used 12.1(5), P(1)

generic_formal_part 12.1(5)
used 12.1(3), 12.1(4), P(1)

generic_instantiation 12.3(2)
used 3.1(3), 10.1.1(5), P(1)

generic_package_declaration 12.1(4)
used 12.1(2), P(1)

generic_renaming_declaration 8.5.5(2)
used 8.5(2), 10.1.1(6), P(1)

generic_subprogram_declaration 12.1(3)
used 12.1(2), P(1)

Get 10.1.1(30), A.10.1(41), A.10.1(47),
A.10.1(54), A.10.1(55), A.10.1(59),
A.10.1(60), A.10.1(65), A.10.1(67),
A.10.1(70), A.10.1(72), A.10.1(75),
A.10.1(77), A.10.1(81), A.10.1(83),
G.1.3(6), G.1.3(8)

Get_Immediate A.10.1(44), A.10.1(45)
Get_Key 7.3.1(15), 7.3.1(16)
Get_Line A.10.1(49)
Get_Next 3.6(11)
Get_Priority D.5(5)
Global 9.3(20)
global to 8.1(15)
Glossary N(1)
Good_1 12.3(11)
Good_2 12.3(11)
goto_statement 5.8(2)

used 5.1(4), P(1)
govern a variant_part 3.8.1(20)
govern a variant 3.8.1(20)
Gp 3.9.1(4)
grammar

ambiguous 1.1.4(14)
complete listing P(1)
cross reference P(1)
notation 1.1.4(3)
resolution of ambiguity 1.1.4(14), 8.6(3)
under Syntax heading 1.1.2(25)

graphic character
a category of Character A.3.2(23)

graphic_character 2.1(3)
used 2.1(2), 2.5(2), 2.6(3), P(1)

greater than operator — inheritance

Index 21 December 1994 736

Graphic_Set A.4.6(4)
greater than operator 4.4(1), 4.5.2(1)
greater than or equal operator 4.4(1), 4.5.2(1)
greater-than sign 2.1(15)
Greater_Than_Sign A.3.3(10)
GS A.3.3(6)
guard 9.7.1(3)

used 9.7.1(2), P(1)

Half_Pi 4.9(44)
handle

an exception 11(1), N(18)
an exception occurrence 11(1), 11.4(1),

11.4(7)
handled_sequence_of_statements 11.2(2)

used 5.6(2), 6.3(2), 7.2(2), 9.1(6),
9.5.2(3), 9.5.2(5), P(1)

handler 11.2(5), C.3.2(28)
Handling

child of Ada.Characters A.3.2(2)
Hash_Index 3.5.4(36)
head (of a queue) D.2.1(5)
Head A.4.3(35), A.4.3(36), A.4.4(70),

A.4.4(71), A.4.5(65), A.4.5(66)
heap management

See also alligator 4.8(1)
user-defined 13.11(1)

held priority D.11(4)
Hello 3.3.1(31)
heterogeneous input-output A.12.1(1)
Hexa 3.5.1(15)
hexadecimal

literal 2.4.2(1)
hexadecimal digit

a category of Character A.3.2(30)
hexadecimal literal 2.4.2(1)
Hexadecimal_Digit_Set A.4.6(4)
hidden from all visibility 8.3(5), 8.3(14)

by lack of a with_clause 8.3(20)
for a declaration completed by a sub-

sequent declaration 8.3(19)
for overridden declaration 8.3(15)
within the declaration itself 8.3(16)

hidden from direct visibility 8.3(5), 8.3(21)
by an inner homograph 8.3(22)
where hidden from all visibility 8.3(23)

hiding 8.3(5)
High_Order_First 13.5.3(2), B.4(25)
highest precedence operator 4.5.6(1)
highest_precedence_operator 4.5(7)
Hold D.11(3)
homograph 8.3(8)
HT A.3.3(5)
HTJ A.3.3(17)
HTS A.3.3(17)
Hyphen A.3.3(8)
hyphen-minus 2.1(15)

I 3.9.1(4), 4.9(26), 12.3(22), G.1.1(5),
G.1.1(23)

identifier 2.3(2)
used 2.8(2), 2.8(3), 2.8(21), 2.8(23),

3.1(4), 4.1(3), 4.1.3(3), 4.1.4(3), 5.5(2),
5.6(2), 6.1(5), 7.1(3), 7.2(2), 9.1(4),
9.1(6), 9.4(4), 9.4(7), 9.5.2(3), 9.5.2(5),
11.5(4), 13.12(4), B.1(5), B.1(6),
B.1(7), D.2.2(2), D.2.2(3), D.3(3),
D.3(4), D.4(3), D.4(4), L(8), L(13),
L(14), L(20), L(21), L(23), L(29),
L(36), L(37), M(95), M(98), P(1)

identifier specific to a pragma 2.8(10)
identifier_letter 2.1(7)

used 2.1(3), 2.3(2), 2.3(3), P(1)
Identity A.4.2(22), A.4.7(22)
Identity attribute 11.4.1(9), C.7.1(12), K(84),

K(86)
idle task D.11(4)
IEC 559:1989 G.2.2(11)
IEEE floating point arithmetic B.2(10),

G.2.2(11)
if_statement 5.3(2)

used 5.1(5), P(1)
illegal

construct 1.1.2(27)
partition 1.1.2(29)

Im 10.1.1(35), G.1.1(6)
image 10.1.1(35), A.5.2(14), A.5.2(26),

C.7.1(3), F.3.3(13)
of a value 3.5(30), K(273)

Image attribute 3.5(35), K(88)
Imaginary B.5(10), G.1.1(4), G.1.1(23)
immediate scope

of (a view of) an entity 8.2(11)
of a declaration 8.2(2)

immediately enclosing 8.1(13)
immediately visible 8.3(4), 8.3(21)
immediately within 8.1(13)
implementation 1.1.3(1)
implementation advice 1.1.2(37)
implementation defined 1.1.3(18)

summary of characteristics M(1)
implementation permissions 1.1.2(36)
implementation requirements 1.1.2(33)
implementation-dependent

See unspecified 1.1.3(18)
implicit declaration 3.1(5), N(11)
implicit initial values

for a subtype 3.3.1(10)
implicit subtype conversion 4.6(59), 4.6(60)

Access attribute 3.10.2(30)
access discriminant 3.7(27)
array bounds 4.6(38)
array index 4.1.1(7)
assignment to view conversion 4.6(55)
assignment_statement 5.2(11)
bounds of a decimal fixed point type

3.5.9(16)
bounds of a fixed point type 3.5.9(14)
bounds of a floating point type 3.5.7(11)
bounds of a range 3.5(9), 3.6(18)
bounds of signed integer type 3.5.4(9)
choices of aggregate 4.3.3(22)
component defaults 3.3.1(13)
delay expression 9.6(20)
derived type discriminants 3.4(21)
discriminant values 3.7.1(12)
entry index 9.5.2(24)
expressions in aggregate 4.3.1(19)
expressions of aggregate 4.3.3(23)
function return 6.5(6)
generic formal object of mode in 12.4(11)
inherited enumeration literal 3.4(29)
initialization expression 3.3.1(17)
initialization expression of allocator

4.8(7)
named number value 3.3.2(6)
operand of concatenation 4.5.3(9)
parameter passing 6.4.1(10), 6.4.1(11),

6.4.1(17)

pragma Interrupt_Priority D.1(17), D.3(9)
pragma Priority D.1(17), D.3(9)
qualified_expression 4.7(4)
reading a view conversion 4.6(56)
result of inherited function 3.4(27)

implicit_dereference 4.1(6)
used 4.1(4), P(1)

Import pragma B.1(5), L(14)
imported

aspect of representation B.1(28)
imported entity B.1(23)
in (membership test) 4.4(1), 4.5.2(2)
inaccessible partition E.1(7)
inactive

a task state 9(10)
included

one execution by another 11.4(2)
one range in another 3.5(4)

incompatibilities with Ada 83 1.1.2(39),
2.8(19), 2.9(3), 3.2.2(15), 3.2.3(8),
3.4(38), 3.5(63), 3.5.2(9), 3.6.3(8),
4.2(14), 4.6(71), 4.8(20), 4.9(44),
6.5(24), 7.1(17), 8.6(34), 12.3(29),
12.5.1(28), 12.5.3(16), 12.5.4(13),
13.1(24), 13.14(19), A.5.3(72),
A.5.4(4), A.8.1(16), A.10.1(85),
C.6(22)

incomplete type 3.10.1(11)
incomplete_type_declaration 3.10.1(2)

used 3.2.1(2), P(1)
inconsistencies with Ada 83 1.1.2(39),

3.4(38), 3.5.2(9), 3.5.7(22), 3.5.9(28),
3.6.3(8), 3.7.1(15), 4.5.3(14), 9.6(40),
11.1(8), 12.3(29), A.6(1), G.2.1(16),
G.2.3(27)

Increment 6.1(37), B.3.2(11)
indefinite subtype 3.3(23), 3.7(26)
independent subprogram 11.6(6)
independently addressable 9.10(1)
index 12.1(19), 12.5.3(11), A.4.3(9),

A.4.3(10), A.4.3(11), A.4.4(44),
A.4.4(45), A.4.4(46), A.4.5(39),
A.4.5(40), A.4.5(41), A.8.4(15),
A.12.1(23), B.3.2(4)

of an array 3.6(9)
of an element of an open direct file A.8(3)

index range 3.6(13)
index subtype 3.6(9)
index type 3.6(9)
Index_Check 11.5(14)

[partial] 4.1.1(7), 4.1.2(7), 4.3.3(29),
4.3.3(30), 4.5.3(8), 4.6(51), 4.7(4),
4.8(10)

index_constraint 3.6.1(2)
used 3.2.2(7), P(1)

Index_Non_Blank A.4.3(12), A.4.4(47),
A.4.5(42)

index_subtype_definition 3.6(4)
used 3.6(3), P(1)

indexed_component 4.1.1(2)
used 4.1(2), P(1)

indivisible C.6(10)
information hiding

See package 7(1)
See private types and private extensions

7.3(1)
information systems C(1), F(1)
informative 1.1.2(18)
inheritance

inherited — Language-Defined Library Units

737 21 December 1994 Index

See also tagged types and type extension
3.9(1)

See derived types and classes 3.4(1)
inherited

from an ancestor type 3.4.1(11)
inherited component 3.4(11), 3.4(12)
inherited discriminant 3.4(11)
inherited entry 3.4(12)
inherited protected subprogram 3.4(12)
inherited subprogram 3.4(17)
initialization

of a protected object 9.4(14), C.3.1(10),
C.3.1(11)

of a task object 9.1(12), J.7.1(7)
of an object 3.3.1(19)

initialization expression 3.3.1(1), 3.3.1(4)
Initialize 7.6(2), 7.6(6), 7.6(8)
Initialize_Generator A.5.2(60)
initialized allocator 4.8(4)
Inline pragma 6.3.2(3), L(15)
Inner 9.5.2(13), 10.1.3(20), 10.1.3(21),

10.1.3(23), 10.1.3(24), 13.14(19)
innermost dynamically enclosing 11.4(2)
input A.6(1)
Input attribute 13.13.2(22), 13.13.2(32),

K(92), K(96)
Input clause 13.3(7), 13.13.2(36)
input-output

unspecified for access types A.7(6)
Insert A.4.3(25), A.4.3(26), A.4.4(60),

A.4.4(61), A.4.5(55), A.4.5(56)
inspectable object H.3.2(5)
inspection point H.3.2(5)
Inspection_Point pragma H.3.2(3), L(16)
Inst 12.3(15)
instance 12.3(18)

of a generic function 12.3(13)
of a generic package 12.3(13)
of a generic procedure 12.3(13)
of a generic subprogram 12.3(13)
of a generic unit 12.3(1)

instructions for comment submission (58)
Int 3.2.2(15), 9.5.2(13), 12.5(13), B.3(7)
Int_Plus 8.5.4(15)
Int_Ptr 3.10.2(22)
Int_Vectors 12.3(25)
Int_IO A.10.8(26)
Int_Op 7.3.1(7)
Int10 4.9(26)
Integer 3.5.4(11), 3.5.4(21), A.1(12)
integer literal 2.4(1)
integer literals 3.5.4(14), 3.5.4(30)
Integer type 3.2(2), 3.5.4(1), N(21)
Integer_Address 13.7.1(10)
Integer_Text_IO

child of Ada A.10.8(20)
integer_type_definition 3.5.4(2)

used 3.2.1(4), P(1)
Integer_Wide_Text_IO

child of Ada A.11(3)
Integer_IO A.10.1(52)
interaction

between tasks 9(1)
interface to assembly language C.1(4)
interface to C B.3(1)
interface to COBOL B.4(1)
interface to Fortran B.5(1)
interface to other languages B(1)
Interfaces B.2(3)

Interfaces.COBOL B.4(7)
Interfaces.Fortran B.2(13), B.5(4)
Interfaces.C B.3(4)
Interfaces.C.Pointers B.3.2(4)
Interfaces.C.Strings B.3.1(3)
interfacing pragma B.1(4)

Convention B.1(4)
Export B.1(4)
Import B.1(4)

internal call 9.5(3)
internal code 13.4(7)
internal requeue 9.5(7)
Internal_Tag 3.9(7)
interpretation

of a complete context 8.6(10)
of a constituent of a complete context

8.6(15)
overload resolution 8.6(14)

interrupt C.3(2)
example using asynchronous_select

9.7.4(10), 9.7.4(12)
interrupt entry J.7.1(5)
interrupt handler C.3(2)
Interrupt_Handler J.7.1(23)
Interrupt_Handler pragma C.3.1(2), L(17)
Interrupt_Priority 13.7(16), D.1(10)
Interrupt_Priority pragma D.1(5), L(18)
Interrupt_ID C.3.2(2)
Interrupts

child of Ada C.3.2(2)
Intersection 3.9.3(15)
intertask communication 9.5(1)

See also task 9(1)
Intrinsic calling convention 6.3.1(4)
invalid representation 13.9.1(9)
Invert B.5(30)
Inverted_Exclamation A.3.3(21)
Inverted_Question A.3.3(22)
IO 6.3.2(5)
IO_Exceptions J.1(7)

child of Ada A.13(3)
IO_Package 7.5(18), 7.5(20)
Is_Alphanumeric A.3.2(4)
Is_Attached C.3.2(5)
Is_Basic A.3.2(4)
Is_Callable C.7.1(4)
Is_Character A.3.2(14)
Is_Control A.3.2(4)
Is_Decimal_Digit A.3.2(4)
Is_Digit A.3.2(4)
Is_Graphic A.3.2(4)
Is_Held D.11(3)
Is_Hexadecimal_Digit A.3.2(4)
Is_ISO_646 A.3.2(10)
Is_Letter A.3.2(4)
Is_Lower A.3.2(4)
Is_Open A.8.1(10), A.8.4(10), A.10.1(13),

A.12.1(12)
Is_Reserved C.3.2(4)
Is_Special A.3.2(4)
Is_String A.3.2(14)
Is_Subset A.4.2(14), A.4.7(14)
Is_Terminated C.7.1(4)
Is_Upper A.3.2(4)
Is_In A.4.2(13), A.4.7(13)
ISO 10646 3.5.2(2), 3.5.2(3)
ISO 1989:1985 1.2(4)
ISO/IEC 10646-1:1993 1.2(8)
ISO/IEC 1539:1991 1.2(3)

ISO/IEC 6429:1992 1.2(5)
ISO/IEC 646:1991 1.2(2)
ISO/IEC 8859-1:1987 1.2(6)
ISO/IEC 9899:1990 1.2(7)
ISO_646 A.3.2(9)
ISO_646_Set A.4.6(4)
issue

an entry call 9.5.3(8)
italics

formal parameters of attribute functions
3.5(18)

implementation-defined 1.1.3(5)
nongraphic characters 3.5.2(2)
pseudo-names of anonymous types

3.2.1(7), A.1(2)
syntax rules 1.1.4(14)
terms introduced or defined 1.3(1)

italics, like this 1(2)
Item 3.7(37), 12.1(19), 12.1(22), 12.1(24),

12.5(12), 12.5.3(11), 12.8(3), 12.8(14)
Iterate 10.1.1(35), 12.6(20)
iteration_scheme 5.5(3)

used 5.5(2), P(1)
Iterators_Of_Bags_Of_My_Type 10.1.1(35)
Iters 10.1.1(35)

j G.1.1(5), G.1.1(23)

Key 7.3(22), 7.3.1(15)
Key_Manager 7.3.1(15), 7.3.1(16)
Keyboard 9.1(32)
Keyboard_Driver 9.1(24)
Kilo 4.9(43)
known discriminants 3.7(26)
known_discriminant_part 3.7(4)

used 3.2.1(3), 3.7(2), 9.1(2), 9.4(2), P(1)

L_Brace J.5(6)
L_Bracket J.5(6)
label 5.1(7)

used 5.1(3), P(1)
language

interface to assembly C.1(4)
interface to non-Ada B(1)

language-defined check 11.5(2), 11.6(1)
language-defined class

[partial] 3.2(10)
of types 3.2(2)

Language-Defined Library Units A(1)
Ada A.2(2)
Ada.Asynchronous_Task_Control

D.11(3)
Ada.Calendar 9.6(10)
Ada.Characters A.3.1(2)
Ada.Characters.Handling A.3.2(2)
Ada.Characters.Latin_1 A.3.3(3)
Ada.Command_Line A.15(3)
Ada.Decimal F.2(2)
Ada.Direct_IO A.8.4(2), A.9(3)
Ada.Dynamic_Priorities D.5(3)
Ada.Exceptions 11.4.1(2)
Ada.Finalization 7.6(4)
Ada.Float_Text_IO A.10.9(32)
Ada.Float_Wide_Text_IO A.11(3)
Ada.Integer_Text_IO A.10.8(20)
Ada.Integer_Wide_Text_IO A.11(3)
Ada.Interrupts C.3.2(2)
Ada.Interrupts.Names C.3.2(12)
Ada.IO_Exceptions A.13(3)

Language-Defined Types — Latin_1

Index 21 December 1994 738

Ada.Numerics A.5(3)
Ada.Numerics.Complex_Elementary_

Functions G.1.2(9)
Ada.Numerics.Complex_Types G.1.1(25)
Ada.Numerics.Discrete_Random

A.5.2(17)
Ada.Numerics.Elementary_Functions

A.5.1(9)
Ada.Numerics.Float_Random A.5.2(5)
Ada.Numerics.Generic_Complex_

Elementary_Functions G.1.2(2)
Ada.Numerics.Generic_Complex_Types

G.1.1(2)
Ada.Numerics.Generic_Elementary_Func-

tions A.5.1(3)
Ada.Real_Time D.8(3)
Ada.Sequential_IO A.8.1(2)
Ada.Storage_IO A.9(3)
Ada.Streams 13.13.1(2)
Ada.Streams.Stream_IO A.12.1(3)
Ada.Strings A.4.1(3)
Ada.Strings.Bounded A.4.4(3)
Ada.Strings.Fixed A.4.3(5)
Ada.Strings.Maps A.4.2(3)
Ada.Strings.Maps.Constants A.4.6(3)
Ada.Strings.Unbounded A.4.5(3)
Ada.Strings.Wide_Bounded A.4.7(1)
Ada.Strings.Wide_Fixed A.4.7(1)
Ada.Strings.Wide_Maps A.4.7(3)
Ada.Strings.Wide_Maps.Wide_Constants

A.4.7(1)
Ada.Strings.Wide_Unbounded A.4.7(1)
Ada.Synchronous_Task_Control D.10(3)
Ada.Tags 3.9(6)
Ada.Task_Attributes C.7.2(2)
Ada.Task_Identification C.7.1(2)
Ada.Text_IO A.10.1(2)
Ada.Text_IO.Complex_IO G.1.3(3)
Ada.Text_IO.Editing F.3.3(3)
Ada.Text_IO.Text_Streams A.12.2(3)
Ada.Unchecked_Conversion 13.9(3)
Ada.Unchecked_Deallocation 13.11.2(3)
Ada.Wide_Text_IO A.11(2)
Ada.Wide_Text_IO.Complex_IO

G.1.4(1)
Ada.Wide_Text_IO.Editing F.3.4(1)
Ada.Wide_Text_IO.Text_Streams

A.12.3(3)
Interfaces B.2(3)
Interfaces.C B.3(4)
Interfaces.C.Pointers B.3.2(4)
Interfaces.C.Strings B.3.1(3)
Interfaces.COBOL B.4(7)
Interfaces.Fortran B.5(4)
Standard A.1(4)
System 13.7(3)
System.Address_To_Access_Conversions

13.7.2(2)
System.Machine_Code 13.8(7)
System.RPC E.5(3)
System.Storage_Elements 13.7.1(2)
System.Storage_Pools 13.11(5)

Language-Defined Types
Address, in System 13.7(12)
Alignment, in Ada.Strings A.4.1(6)
Alphanumeric, in Interfaces.COBOL

B.4(16)
Attribute_Handle, in Ada.Task_Attributes

C.7.2(3)

Binary, in Interfaces.COBOL B.4(10)
Binary_Format, in Interfaces.COBOL

B.4(24)
Bit_Order, in System 13.7(15)
Boolean, in Standard A.1(5)
Bounded_String, in Ada.Strings.Bounded.-

Generic_Bounded_Length A.4.4(6)
Byte, in Interfaces.COBOL B.4(29)
Byte_Array, in Interfaces.COBOL

B.4(29)
C_float, in Interfaces.C B.3(15)
char, in Interfaces.C B.3(19)
char_array, in Interfaces.C B.3(23)
char_array_access, in Interfaces.C

B.3.1(4)
Character, in Standard A.1(35)
Character_Set, in Ada.Strings.Maps

A.4.2(4)
chars_ptr, in Interfaces.C B.3.1(5)
chars_ptr_array, in Interfaces.C B.3.1(6)
COBOL_Character, in Interfaces.COBOL

B.4(13)
Complex, in Ada.Numerics.Generic_

Complex_Types G.1.1(3)
Controlled, in Ada.Finalization 7.6(5)
Count, in Ada.Direct_IO A.8.4(4)
Count, in Ada.Text_IO A.10.1(5)
Decimal_Element, in Interfaces.COBOL

B.4(12)
Direction, in Ada.Strings A.4.1(6)
Display_Format, in Interfaces.COBOL

B.4(22)
double, in Interfaces.C B.3(16)
Duration, in Standard A.1(43)
Exception_Occurrence, in Ada.Exceptions

11.4.1(3)
Exception_Occurrence_Access, in Ada.-

Exceptions 11.4.1(3)
Exception_Id, in Ada.Exceptions

11.4.1(2)
File_Mode, in Ada.Direct_IO A.8.4(4)
File_Mode, in Ada.Sequential_IO

A.8.1(4)
File_Mode, in Ada.Text_IO A.10.1(4)
File_Type, in Ada.Direct_IO A.8.4(3)
File_Type, in Ada.Sequential_IO A.8.1(3)
File_Type, in Ada.Text_IO A.10.1(3)
Float, in Standard A.1(21)
Floating, in Interfaces.COBOL B.4(9)
Generator, in Ada.Numerics.Discrete_Ran-

dom A.5.2(19)
Generator, in Ada.Numerics.Float_Random

A.5.2(7)
Imaginary, in Ada.Numerics.Generic_

Complex_Types G.1.1(4)
int, in Interfaces.C B.3(7)
Integer, in Standard A.1(12)
Integer_Address, in System.Storage_Ele-

ments 13.7.1(10)
Interrupt_ID, in Ada.Interrupts C.3.2(2)
Limited_Controlled, in Ada.Finalization

7.6(7)
long, in Interfaces.C B.3(7)
Long_Binary, in Interfaces.COBOL

B.4(10)
long_double, in Interfaces.C B.3(17)
Long_Floating, in Interfaces.COBOL

B.4(9)
Membership, in Ada.Strings A.4.1(6)

Name, in System 13.7(4)
Numeric, in Interfaces.COBOL B.4(20)
Packed_Decimal, in Interfaces.COBOL

B.4(12)
Packed_Format, in Interfaces.COBOL

B.4(26)
Parameterless_Handler, in Ada.Interrupts

C.3.2(2)
Partition_ID, in System.RPC E.5(4)
Picture, in Ada.Text_IO.Editing F.3.3(4)
Picture, in Ada.Wide_Text_IO.Editing

F.3.4(1)
plain_char, in Interfaces.C B.3(11)
Pointer, in Interfaces.C.Pointers B.3.2(5)
ptrdiff_t, in Interfaces.C B.3(12)
Root_Storage_Pool, in System.Storage_

Pools 13.11(6)
Root_Stream_Type, in Ada.Streams

13.13.1(3)
Seconds_Count, in Ada.Real_Time

D.8(15)
short, in Interfaces.C B.3(7)
signed_char, in Interfaces.C B.3(8)
size_t, in Interfaces.C B.3(13)
State, in Ada.Numerics.Discrete_Random

A.5.2(23)
State, in Ada.Numerics.Float_Random

A.5.2(11)
Storage_Array, in System.Storage_Ele-

ments 13.7.1(5)
Storage_Element, in System.Storage_Ele-

ments 13.7.1(5)
Storage_Offset, in System.Storage_Ele-

ments 13.7.1(3)
Stream_Access, in Ada.Streams.Stream_IO

A.12.1(4)
String, in Standard A.1(37)
Suspension_Object, in Ada.Synchronous_

Task_Control D.10(4)
Tag, in Tags 3.9(6)
Task_ID, in Ada.Task_Identification

C.7.1(2)
Time, in Ada.Calendar 9.6(10)
Time, in Ada.Real_Time D.8(4)
Time_Span, in Ada.Real_Time D.8(6)
Trim_End, in Ada.Strings A.4.1(6)
Truncation, in Ada.Strings A.4.1(6)
Type_Set, in Ada.Text_IO A.10.1(7)
Unbounded_String, in Ada.Strings.-

Unbounded A.4.5(4)
unsigned, in Interfaces.C B.3(9)
unsigned_char, in Interfaces.C B.3(10)
unsigned_long, in Interfaces.C B.3(9)
unsigned_short, in Interfaces.C B.3(9)
wchar_array, in Interfaces.C B.3(33)
wchar_t, in Interfaces.C B.3(30)
Wide_Character, in Standard A.1(36)
Wide_Character_Set, in Ada.Strings.Wide_

Maps A.4.7(4)
Wide_String, in Standard A.1(41)

Last attribute 3.5(13), 3.6.2(5), K(102),
K(104)

Last(N) attribute 3.6.2(6), K(100)
last_bit 13.5.1(6)

used 13.5.1(3), P(1)
Last_Bit attribute 13.5.2(4), K(106)
lateness D.9(12)
Latin-1 3.5.2(2)
Latin_1

layout — machine numbers

739 21 December 1994 Index

child of Ada.Characters A.3.3(3)
layout

aspect of representation 13.5(1)
Layout_Error A.10.1(85), A.13(4)
LC_German_Sharp_S A.3.3(24)
LC_Icelandic_Eth A.3.3(26)
LC_Icelandic_Thorn A.3.3(26)
LC_A A.3.3(13), J.5(8)
LC_A_Acute A.3.3(25)
LC_A_Circumflex A.3.3(25)
LC_A_Diaeresis A.3.3(25)
LC_A_Grave A.3.3(25)
LC_A_Ring A.3.3(25)
LC_A_Tilde A.3.3(25)
LC_AE_Diphthong A.3.3(25)
LC_B A.3.3(13)
LC_C A.3.3(13)
LC_C_Cedilla A.3.3(25)
LC_D A.3.3(13)
LC_E A.3.3(13)
LC_E_Acute A.3.3(25)
LC_E_Circumflex A.3.3(25)
LC_E_Diaeresis A.3.3(25)
LC_E_Grave A.3.3(25)
LC_F A.3.3(13)
LC_G A.3.3(13)
LC_H A.3.3(13)
LC_I A.3.3(13)
LC_I_Acute A.3.3(25)
LC_I_Circumflex A.3.3(25)
LC_I_Diaeresis A.3.3(25)
LC_I_Grave A.3.3(25)
LC_J A.3.3(13)
LC_K A.3.3(13)
LC_L A.3.3(13)
LC_M A.3.3(13)
LC_N A.3.3(13)
LC_N_Tilde A.3.3(26)
LC_O A.3.3(13)
LC_O_Acute A.3.3(26)
LC_O_Circumflex A.3.3(26)
LC_O_Diaeresis A.3.3(26)
LC_O_Grave A.3.3(26)
LC_O_Oblique_Stroke A.3.3(26)
LC_O_Tilde A.3.3(26)
LC_P A.3.3(14)
LC_Q A.3.3(14)
LC_R A.3.3(14)
LC_S A.3.3(14)
LC_T A.3.3(14)
LC_U A.3.3(14)
LC_U_Acute A.3.3(26)
LC_U_Circumflex A.3.3(26)
LC_U_Diaeresis A.3.3(26)
LC_U_Grave A.3.3(26)
LC_V A.3.3(14)
LC_W A.3.3(14)
LC_X A.3.3(14)
LC_Y A.3.3(14)
LC_Y_Acute A.3.3(26)
LC_Y_Diaeresis A.3.3(26)
LC_Z A.3.3(14), J.5(8)
Leading_Nonseparate B.4(23)
Leading_Part attribute A.5.3(54), K(108)
Leading_Separate B.4(23)
leaving 7.6.1(3)
left 7.6.1(3)
left curly bracket 2.1(15)
left parenthesis 2.1(15)

left square bracket 2.1(15)
Left_Angle_Quotation A.3.3(21)
Left_Curly_Bracket A.3.3(14)
Left_Parenthesis A.3.3(8)
Left_Square_Bracket A.3.3(12)
legal

construct 1.1.2(27)
partition 1.1.2(29)

legality determinable via semantic depen-
dences 10(3)

legality rules 1.1.2(27)
length A.4.4(9), A.4.5(6), B.4(34), B.4(39),

B.4(44), F.3.3(11)
of a dimension of an array 3.6(13)
of a one-dimensional array 3.6(13)

Length attribute 3.6.2(9), K(117)
Length(N) attribute 3.6.2(10), K(115)
Length_Check 11.5(15)

[partial] 4.5.1(8), 4.6(37), 4.6(52)
Length_Error 12.1(24)
Length_Range A.4.4(8)
less than operator 4.4(1), 4.5.2(1)
less than or equal operator 4.4(1), 4.5.2(1)
less-than sign 2.1(15)
Less_Than_Sign A.3.3(10)
letter

a category of Character A.3.2(24)
Letter_Set A.4.6(4)
letter_or_digit 2.3(3)

used 2.3(2), P(1)
Level 3.5.1(14)

accessibility 3.10.2(3)
library 3.10.2(22)

Level_1 3.10.2(22)
Level_1_Type 3.10.2(22)
Level_2 3.10.2(22)
lexical element 2.2(1)
lexicographic order 4.5.2(26)
LF A.3.3(5), J.5(4)
Lib_Unit 3.10.2(22)
library 10.1.4(9)

informal introduction 10(2)
library level 3.10.2(22)
library unit 10.1(3), 10.1.1(9), N(22)

informal introduction 10(2)
See also language-defined library units

library unit pragma 10.1.5(7)
All_Calls_Remote E.2.3(6)
categorization pragmas E.2(2)
Elaborate_Body 10.2.1(24)
Preelaborate 10.2.1(4)
Pure 10.2.1(15)

library_item 10.1.1(4)
used 10.1.1(3), P(1)
informal introduction 10(2)

library_unit_body 10.1.1(7)
used 10.1.1(4), P(1)

library_unit_declaration 10.1.1(5)
used 10.1.1(4), P(1)

library_unit_renaming_declaration 10.1.1(6)
used 10.1.1(4), P(1)

lifetime 3.10.2(3)
Light 3.5.1(14)
Limit 3.3.1(33), 7.5(20)
limited type 7.5(1), 7.5(3), N(23)

becoming nonlimited 7.3.1(5), 7.5(16)
Limited_Controlled 7.6(7)
Limited_Tagged 12.3(11)
Limited_Untagged 12.3(11)

line 2.2(2), 3.6(28), A.10.1(38)
line terminator A.10(7)
Line_Length A.10.1(25)
Line_Size 3.5.4(34)
Link 3.10.1(15), 12.5.4(8)
link name B.1(35)
link-time error

See post-compilation error 1.1.2(29),
1.1.5(4)

Linker_Options pragma B.1(8), L(19)
linking

See partition building 10.2(2)
List 7.3(24)
List pragma 2.8(21), L(20)
literal 3.9.1(13), 4.2(1)

See also aggregate 4.3(1)
based 2.4.2(1)
decimal 2.4.1(1)
numeric 2.4(1)

little endian 13.5.3(2)
load time C.4(3)
Local 7.3(7), 9.3(20)
local to 8.1(14)
Local_Coordinate 3.4(37)
local_name 13.1(3)

used 13.2(3), 13.3(2), 13.4(2), 13.5.1(2),
13.5.1(3), 13.11.3(3), B.1(5), B.1(6),
B.1(7), C.5(3), C.6(3), C.6(4), C.6(5),
C.6(6), E.4.1(3), L(3), L(4), L(5), L(7),
L(8), L(9), L(13), L(14), L(24), L(38),
L(39), P(1)

localization 3.5.2(4), 3.5.2(5)
Lock D.12(9), D.12(10)
locking policy D.3(6)
Locking_Policy pragma D.3(3), L(21)
Log A.5.1(4), G.1.2(3)
Logical B.5(7)
logical operator 4.5.1(2)

See also not operator 4.5.6(3)
logical_operator 4.5(2)
Long 4.9(43), B.3(7)
Long_Binary B.4(10)
long_double B.3(17)
Long_Float 3.5.7(15), 3.5.7(16), 3.5.7(17)
Long_Floating B.4(9)
Long_Integer 3.5.4(22), 3.5.4(25), 3.5.4(28)
Look_Ahead A.10.1(43)
loop parameter 5.5(6)
loop_parameter_specification 5.5(4)

used 5.5(3), P(1)
loop_statement 5.5(2)

used 5.1(5), P(1)
low line 2.1(15)
low-level programming C(1)
Low_Limit 3.3.1(33)
Low_Line A.3.3(12)
Low_Order_First 13.5.3(2), B.4(25)
lower bound

of a range 3.5(4)
lower-case letter

a category of Character A.3.2(25)
lower_case_identifier_letter 2.1(9)
Lower_Case_Map A.4.6(5)
Lower_Set A.4.6(4)
LR(1) 1.1.4(14)

Machine attribute A.5.3(60), K(119)
machine code insertion 13.8(1), C.1(2)
machine numbers

Machine_Code — Native_Binary

Index 21 December 1994 740

of a floating point type 3.5.7(8)
Machine_Code J.1(9)

child of System 13.8(7)
Machine_Emax attribute A.5.3(8), K(123)
Machine_Emin attribute A.5.3(7), K(125)
Machine_Mantissa attribute A.5.3(6), K(127)
Machine_Overflows attribute A.5.3(12),

A.5.4(4), K(129), K(131)
Machine_Radix attribute A.5.3(2), A.5.4(2),

K(133), K(135)
Machine_Radix clause 13.3(7), F.1(1)
Machine_Rounds attribute A.5.3(11),

A.5.4(3), K(137), K(139)
macro

See generic unit 12(1)
Macron A.3.3(21)
Main 3.9.2(20), 3.10.2(22), 6.3.1(21),

6.3.2(5), 7.3(7), 7.6.1(18), 9.4(20),
10.1.1(33), 11.4.2(10), 13.11.3(6)

main subprogram
for a partition 10.2(7)

Major 3.5.1(16)
Male 3.2.2(15)
malloc

See allocator 4.8(1)
Maps

child of Ada.Strings A.4.2(3)
Mark_Release_Pool_Type 13.11(39)
marshalling E.4(9)
Masculine_Ordinal_Indicator A.3.3(22)
Mask 4.7(7)
Mass 3.5.7(21), 12.5(13)
master 7.6.1(3)
match

a character to a pattern character
A.4.2(54)

a character to a pattern character, with
respect to a character mapping function
A.4.2(64)

a string to a pattern string A.4.2(54)
matching components 4.5.2(16)
Matrix 3.6(26)
Matrix_Rec 3.7(34)
Max 3.3.2(10)
Max attribute 3.5(19), K(141)
Max_Base_Digits 3.5.7(6), 13.7(8)

named number in package System 13.7(8)
Max_Binary_Modulus 3.5.4(7), 13.7(7)

named number in package System 13.7(7)
Max_Decimal_Digits F.2(5)
Max_Delta F.2(4)
Max_Digits 3.5.7(6), 13.7(8)

named number in package System 13.7(8)
Max_Digits_Binary B.4(11)
Max_Digits_Long_Binary B.4(11)
Max_Image_Width A.5.2(13), A.5.2(25)
Max_Int 3.5.4(14), 13.7(6)

named number in package System 13.7(6)
Max_Length A.4.4(5)
Max_Line_Size 3.3.2(10)
Max_Mantissa 13.7(9)

named number in package System 13.7(9)
Max_Nonbinary_Modulus 3.5.4(7), 13.7(7)

named number in package System 13.7(7)
Max_Scale F.2(3)
Max_Size_In_Storage_Elements attribute

13.11.1(3), K(145)
maximum box error

for a component of the result of evaluating
a complex function G.2.6(3)

maximum line length A.10(11)
maximum page length A.10(11)
maximum relative error

for a component of the result of evaluating
a complex function G.2.6(3)

for the evaluation of an elementary func-
tion G.2.4(2)

Medium 13.3(81)
Mega 4.9(43)
Membership A.4.1(6)
membership test 4.5.2(2)
Memory_Size 13.7(13)
mentioned in a with_clause 10.1.2(6)
message

See dispatching call 3.9.2(1)
Message_Procedure 3.10(26)
method

See dispatching subprogram 3.9.2(1)
methodological restriction 10.1.3(13)
metrics 1.1.2(35), C.3.1(15), C.7.2(20), D(2),

D.5(13), D.6(4), D.8(37), D.9(9),
D.12(6)

Micro_Sign A.3.3(22)
Microseconds D.8(14)
Middle_Dot A.3.3(22)
Midweek 3.4(37)
Milliseconds D.8(14)
Min attribute 3.5(16), K(147)
Min_Cell 6.1(39)
Min_Delta F.2(4)
Min_Int 3.5.4(14), 13.7(6)

named number in package System 13.7(6)
Min_Scale F.2(3)
Minimum 8.5.4(21)
minus 2.1(15)
minus operator 4.4(1), 4.5.3(1), 4.5.4(1)
Mix 12.5.3(13)
Mix_Code 13.4(13)
Mixed 3.5.1(15)
mixed-language programs B(1), C.1(4)
mod operator 4.4(1), 4.5.5(1)
mod_clause J.8(1)

used 13.5.1(2), P(1)
mode 6.1(16), 8.5(7), 13.5.1(26), A.8.1(9),

A.8.4(9), A.10.1(12), A.12.1(11)
used 6.1(15), 12.4(2), P(1)

mode conformance 6.3.1(16)
required 8.5.4(4), 12.5.4(5), 12.6(7),

12.6(8)
mode of operation

nonstandard 1.1.5(11)
standard 1.1.5(11)

Mode_Error A.8.1(15), A.8.4(18),
A.10.1(85), A.12.1(26), A.13(4)

Mode_Mask 13.5.1(27)
Model attribute A.5.3(68), G.2.2(7), K(151)
model interval G.2.1(4)

associated with a value G.2.1(4)
model number G.2.1(3)
model-oriented attributes

of a floating point subtype A.5.3(63)
Model_Emin attribute A.5.3(65), G.2.2(4),

K(155)
Model_Epsilon attribute A.5.3(66), K(157)
Model_Mantissa attribute A.5.3(64),

G.2.2(3), K(159)
Model_Small attribute A.5.3(67), K(161)
modular type 3.5.4(1)
modular_type_definition 3.5.4(4)

used 3.5.4(2), P(1)
Modular_IO A.10.1(57)
module

See package 7(1)
modulus G.1.1(9)

of a modular type 3.5.4(7)
Modulus attribute 3.5.4(17), K(163)
Money 3.5.9(28), F.1(4)
Month 9.6(13)
Month_Number 9.6(11)
Move 6.2(12), A.4.3(7)
Msg_Type 13.13.2(40)
multi-dimensional array 3.6(12)
Multiplication_Sign A.3.3(24)
multiply 2.1(15)
multiply operator 4.4(1), 4.5.5(1)
multiplying operator 4.5.5(1)
multiplying_operator 4.5(6)

used 4.4(5), P(1)
mutable 3.7(28), 7.6(17)
MW A.3.3(18)
My_Abstraction 10.1.1(35)
My_Controlled 13.11.3(6)
My_Controlled_Access 13.11.3(6)
My_Field_Size 3.9.3(3)
My_Int 7.3.1(7), 12.3(22), 13.9.1(12)
My_Read 13.3(84)
My_Type 10.1.1(35)
My_Write 8.5.4(14), 13.13.2(40)

N 4.9(37), 8.6(29)
n-dimensional array_aggregate 4.3.3(6)
NAK A.3.3(6)
name 4.1(2), 13.7(4), 13.11.2(3), A.8.1(9),

A.8.4(9), A.10.1(12), A.12.1(11)
used 2.8(3), 3.2.2(4), 4.1(4), 4.1(5),

4.1(6), 4.4(7), 4.6(2), 5.2(2), 5.7(2),
5.8(2), 6.3.2(3), 6.4(2), 6.4(3), 6.4(6),
8.4(3), 8.5.1(2), 8.5.2(2), 8.5.3(2),
8.5.4(2), 8.5.5(2), 9.5.3(2), 9.5.4(2),
9.8(2), 10.1.1(8), 10.1.2(4), 10.2.1(3),
10.2.1(14), 10.2.1(20), 10.2.1(21),
10.2.1(22), 11.2(5), 11.3(2), 11.5(4),
12.3(2), 12.3(5), 12.6(4), 12.7(2),
13.1(3), 13.3(2), C.3.1(2), C.3.1(4),
E.2.1(3), E.2.2(3), E.2.3(3), E.2.3(5),
H.3.2(3), L(2), L(6), L(10), L(11),
L(12), L(15), L(16), L(17), L(26),
L(28), L(30), L(31), L(34), L(36), P(1)

[partial] 3.1(1)
of (a view of) an entity 3.1(8)
of a pragma 2.8(9)
of an external file A.7(1)

name resolution rules 1.1.2(26)
Name_Error A.8.1(15), A.8.4(18),

A.10.1(85), A.12.1(26), A.13(4)
Name_Server E.4.2(3)
named association 6.4(7), 12.3(6)
named component association 4.3.1(6)
named discriminant association 3.7.1(4)
named entry index 9.5.2(21)
named number 3.3(24)
named type 3.2.1(7)
named_array_aggregate 4.3.3(4)

used 4.3.3(2), P(1)
Names

child of Ada.Interrupts C.3.2(12)
names of special_characters 2.1(15)
Nanoseconds D.8(14)

Natural — operator

741 21 December 1994 Index

Native_Binary B.4(25)
Natural 3.5.4(12), 3.5.4(13), A.1(13)
NBH A.3.3(17)
needed

of a compilation unit by another 10.2(2)
remote call interface E.2.3(18)
shared passive library unit E.2.1(11)

needed component
extension_aggregate record_component_

association_list 4.3.2(6)
record_aggregate record_component_

association_list 4.3.1(9)
NEL A.3.3(17)
Nested 3.10.2(22), 7.3.1(7)
Nested_Type 3.10.2(22)
Network_Stream 13.13.2(40)
Network_IO 13.13.2(40)
new

See allocator 4.8(1)
New_Char_Array B.3.1(9)
New_Line A.10.1(28)
New_Page A.10.1(31)
New_String B.3.1(10)
New_Tape E.4.2(5)
Next 8.5.4(17), 12.3(22)
Next_Action 9.1(27)
Next_Frame 6.1(39)
Next_Lexeme 9.1(27)
Next_Work_Item 9.1(23)
Next_Id 3.6(11)
Ninety_Six 3.6.3(8)
No_Break_Space A.3.3(21)
Node 12.5.4(8)
nominal subtype 3.3(23), 3.3.1(8)

associated with a type_conversion 4.6(27)
associated with a dereference 4.1(9)
associated with an indexed_component

4.1.1(5)
of a name 4.1(9)
of a component 3.6(20)
of a formal parameter 6.1(23)
of a generic formal object 12.4(9)
of a record component 3.8(14)
of the result of a function_call 6.4(12)

non-normative
See informative 1.1.2(18)

Non_Limited_Tagged 12.3(11)
Non_Limited_Untagged 12.3(11)
Non_Reentrant 13.11.3(6)
nondispatching call

on a dispatching operation 3.9.2(1)
nonexistent 13.11.2(10), 13.11.2(16)
nongraphic character 3.5(32)
nonlimited type 7.5(7)

becoming nonlimited 7.3.1(5), 7.5(16)
nonstandard integer type 3.5.4(26)
nonstandard mode 1.1.5(11)
nonstandard real type 3.5.6(8)
normal completion 7.6.1(2)
normal library unit E.2(4)
normal state of an object 11.6(6), 13.9.1(4)

[partial] 9.8(21), A.13(17)
normal termination

of a partition 10.2(25)
Normalize_Scalars pragma H.1(3), L(22)
normalized exponent A.5.3(14)
normalized number A.5.3(10)
normative 1.1.2(14)
not equal operator 4.4(1), 4.5.2(1)

not in (membership test) 4.4(1), 4.5.2(2)
not operator 4.4(1), 4.5.6(3)
Not_Sign A.3.3(21)
notes 1.1.2(38)
notwithstanding 10.1.6(2), 10.2(18), B.1(22),

B.1(38), C.3.1(19), E.2.1(8), E.2.1(11),
E.2.3(18), J.3(6)

NT 3.4(38), 3.9.1(4)
NT2 3.9.1(4)
NUL A.3.3(5), B.3(20), J.5(4)
null access value 4.2(9)
null array 3.6.1(7)
null constraint 3.2(7)
null pointer

See null access value 4.2(9)
null range 3.5(4)
null record 3.8(15)
null slice 4.1.2(7)
null string literal 2.6(6)
null value

of an access type 3.10(13)
Null_Address 13.7(12)

constant in System 13.7(12)
Null_Bounded_String A.4.4(7), A.4.4(106)
Null_Key 7.3.1(15), 7.4(13)
Null_Occurrence 11.4.1(3)
Null_Ptr B.3.1(7)
Null_Set A.4.2(5), A.4.7(5)
null_statement 5.1(6)

used 5.1(4), P(1)
Null_Task_ID C.7.1(2)
Null_Unbounded_String A.4.5(5)
Null_Id 11.4.1(2)
Num A.10.1(52), A.10.1(57), A.10.1(63),

A.10.1(68), A.10.1(73), B.4(31),
F.3.3(11)

number sign 2.1(15)
Number_Base A.10.1(6), A.10.8(3)
number_declaration 3.3.2(2)

used 3.1(3), P(1)
Number_Sign A.3.3(8)
numeral 2.4.1(3)

used 2.4.1(2), 2.4.1(4), 2.4.2(3), P(1)
Numeric B.4(20)
numeric type 3.5(1)
Numeric_Error J.6(2)
numeric_literal 2.4(2)

used 4.4(7), P(1)
Numerics G(1)

child of Ada A.5(3)

object 3.3(2), 13.7.2(2), 13.11.2(3), N(24)
[partial] 3.2(1)

object-oriented programming (OOP)
See dispatching operations of tagged types

3.9.2(1)
See tagged types and type extensions

3.9(1)
object_declaration 3.3.1(2)

used 3.1(3), P(1)
Object_Pointer 13.7.2(3)
object_renaming_declaration 8.5.1(2)

used 8.5(2), P(1)
obsolescent feature J(1)
occur immediately within 8.1(13)
occurrence (of an exception) 11(1)
occurrence

of an interrupt C.3(2)
octal

literal 2.4.2(1)
octal literal 2.4.2(1)
On_Stacks 12.8(14)
On_Vectors 12.1(24), 12.2(9)
one’s complement

modular types 3.5.4(27)
one-dimensional array 3.6(12)
one-pass context_clauses 10.1.2(1)
One_Discrim 7.3(13)
only as a completion

entry_body 9.5.2(16)
OOP (object-oriented programming)

See dispatching operations of tagged types
3.9.2(1)

See tagged types and type extensions
3.9(1)

Op_A 3.9.2(20)
Op_B 3.9.2(20)
Op1 7.3.1(7), 9.5(4)
Op2 7.3.1(7), 9.5(4)
opaque type

See private types and private extensions
7.3(1)

Open 7.5(19), 7.5(20), 11.4.2(3), 11.4.2(6),
A.8.1(7), A.8.4(7), A.10.1(10),
A.12.1(9)

open alternative 9.7.1(14)
open entry 9.5.3(5)

of a protected object 9.5.3(7)
of a task 9.5.3(6)

operand
of a type_conversion 4.6(3)
of a qualified_expression 4.7(3)

operand interval G.2.1(6)
operand type

of a type_conversion 4.6(3)
operates on a type 3.2.3(1)
operation 3.2(10)
operator 6.6(1)

& 4.4(1), 4.5.3(3)
* 4.4(1), 4.5.5(1)
** 4.4(1), 4.5.6(7)
+ 4.4(1), 4.5.3(1), 4.5.4(1)
= 4.4(1), 4.5.2(1)
- 4.4(1), 4.5.3(1), 4.5.4(1)
/ 4.4(1), 4.5.5(1)
/= 4.4(1), 4.5.2(1)
< 4.4(1), 4.5.2(1)
<= 4.4(1), 4.5.2(1)
> 4.4(1), 4.5.2(1)
>= 4.4(1), 4.5.2(1)
abs 4.4(1), 4.5.6(1)
ampersand 4.4(1), 4.5.3(3)
and 4.4(1), 4.5.1(2)
binary 4.5(9)
binary adding 4.5.3(1)
concatenation 4.4(1), 4.5.3(3)
divide 4.4(1), 4.5.5(1)
equal 4.4(1), 4.5.2(1)
equality 4.5.2(1)
exponentiation 4.4(1), 4.5.6(7)
greater than 4.4(1), 4.5.2(1)
greater than or equal 4.4(1), 4.5.2(1)
highest precedence 4.5.6(1)
less than 4.4(1), 4.5.2(1)
less than or equal 4.4(1), 4.5.2(1)
logical 4.5.1(2)
minus 4.4(1), 4.5.3(1), 4.5.4(1)
mod 4.4(1), 4.5.5(1)

operator precedence — position

Index 21 December 1994 742

multiply 4.4(1), 4.5.5(1)
multiplying 4.5.5(1)
not 4.4(1), 4.5.6(3)
not equal 4.4(1), 4.5.2(1)
or 4.4(1), 4.5.1(2)
ordering 4.5.2(1)
plus 4.4(1), 4.5.3(1), 4.5.4(1)
predefined 4.5(9)
relational 4.5.2(1)
rem 4.4(1), 4.5.5(1)
times 4.4(1), 4.5.5(1)
unary 4.5(9)
unary adding 4.5.4(1)
user-defined 6.6(1)
xor 4.4(1), 4.5.1(2)

operator precedence 4.5(1)
operator_symbol 6.1(9)

used 4.1(3), 4.1.3(3), 6.1(5), 6.1(11), P(1)
optimization 11.5(29), 11.6(1)
Optimize pragma 2.8(23), L(23)
Option 12.5.3(13)
or else (short-circuit control form) 4.4(1),

4.5.1(1)
or operator 4.4(1), 4.5.1(2)
ordering operator 4.5.2(1)
ordinary fixed point type 3.5.9(1), 3.5.9(8)
ordinary_fixed_point_definition 3.5.9(3)

used 3.5.9(2), P(1)
Origin 3.9.1(12)
OSC A.3.3(19)
other_control_function 2.1(14)

used 2.1(2), P(1)
Other_Procedure 3.10(26)
others choice 4.3.3(6)
Outer 13.14(19)
output A.6(1)
Output attribute 13.13.2(19), 13.13.2(29),

K(165), K(169)
Output clause 13.3(7), 13.13.2(36)
overall interpretation

of a complete context 8.6(10)
Overflow_Check 11.5(16)

[partial] 3.5.4(20), 4.4(11), 5.4(13),
G.2.1(11), G.2.2(7), G.2.3(25),
G.2.4(2), G.2.6(3)

overload resolution 8.6(1)
overloadable 8.3(7)
overloaded 8.3(6)

enumeration literal 3.5.1(9)
overloading rules 1.1.2(26), 8.6(2)
override 8.3(9), 12.3(17)

a primitive subprogram 3.2.3(7)
Overwrite A.4.3(27), A.4.3(28), A.4.4(62),

A.4.4(63), A.4.5(57), A.4.5(58)

P 3.4(34), 3.4(38), 3.9.1(4), 3.9.3(3),
3.9.3(16), 3.10(9), 3.10.2(22), 7.3(7),
7.3(9), 7.3(13), 7.3.1(7), 7.5(2), 8.2(3),
8.3(26), 8.4(7), 8.5.4(8), 9.2(11),
10.1.1(9), 12.3(18), 12.3(22),
12.5.3(11), 12.5.4(8), 13.11.3(6),
13.14(1), 13.14(13)

P.Q 7.3.1(7), 8.2(3), 8.3(26)
P1 3.9.2(20), 5.2(4), 7.3(7), 13.1(14),

13.14(10)
P10 11.6(5)
P2 3.9.2(20), 5.2(4), 7.3(7), 13.1(14),

13.14(10)
Pack 3.9.3(10), 3.10.1(23)

Pack pragma 13.2(3), L(24)
Pack.Child 3.10.1(23)
Pack1 3.9.3(6)
Pack2 3.9.3(6)
Pack3 3.9.3(6)
Package 7(1), N(25)
package instance 12.3(13)
package-private extension 7.3(14)
package-private type 7.3(14)
package_body 7.2(2)

used 3.11(6), 10.1.1(7), P(1)
package_body_stub 10.1.3(4)

used 10.1.3(2), P(1)
package_declaration 7.1(2)

used 3.1(3), 10.1.1(5), P(1)
package_renaming_declaration 8.5.3(2)

used 8.5(2), 10.1.1(6), P(1)
package_specification 7.1(3)

used 7.1(2), 12.1(4), P(1)
packed 13.2(5)
Packed_Decimal B.4(12)
Packed_Descriptor 13.6(6)
Packed_Format B.4(26)
Packed_Signed B.4(27)
Packed_Unsigned B.4(27)
packing

aspect of representation 13.2(5)
padding bits 13.1(7)
Page 13.3(80), A.10.1(39)
Page pragma 2.8(22), L(25)
page terminator A.10(7)
Page_Length A.10.1(26)
Page_Num 3.5.4(34)
Painted_Point 3.9.1(11)
Pair 6.4(20)
parallel processing

See task 9(1)
Parallel_Simulation A.5.2(60)
parameter

See also discriminant 3.7(1)
See also loop parameter 5.5(6)
See formal parameter 6.1(17)
See generic formal parameter 12(1)

parameter assigning back 6.4.1(17)
parameter copy back 6.4.1(17)
parameter mode 6.1(18)
parameter passing 6.4.1(1)
parameter_and_result_profile 6.1(13)

used 3.10(5), 6.1(4), P(1)
parameter_association 6.4(5)

used 6.4(4), P(1)
parameter_profile 6.1(12)

used 3.10(5), 6.1(4), 9.5.2(2), 9.5.2(3),
9.5.2(6), P(1)

parameter_specification 6.1(15)
used 6.1(14), P(1)

Parameterless_Handler C.3.2(2)
Params_Stream_Type E.5(6)
Parent 7.3(7), 7.3.1(7), 8.4(7), 10.1.3(20),

10.1.3(21), 10.1.3(23), 12.3(11)
parent body

of a subunit 10.1.3(8)
parent declaration

of a library_item 10.1.1(10)
of a library unit 10.1.1(10)

parent subtype 3.4(3)
parent type 3.4(3)
parent unit

of a library unit 10.1.1(10)

Parent.Child 7.3.1(7), 8.4(7)
parent_unit_name 10.1.1(8)

used 6.1(5), 6.1(7), 7.1(3), 7.2(2),
10.1.3(7), P(1)

Parser 9.1(27)
part

of an object or value 3.2(6)
partial view

of a type 7.3(4)
Partition 10(1), 10.2(2), N(26)
partition building 10.2(2)
partition communication subsystem (PCS)

E.5(1)
Partition_Check

[partial] E.4(19)
Partition_ID E.5(4)
Partition_ID attribute E.1(9), K(173)
pass by copy 6.2(2)
pass by reference 6.2(2)
passive partition E.1(2)
PC-map approach to finalization 7.6.1(24)
PCS (partition communication subsystem)

E.5(1)
pending interrupt occurrence C.3(2)
per-object constraint 3.8(18)
per-object expression 3.8(18)
Percent J.5(6)
Percent_Sign A.3.3(8)
perfect result set G.2.3(5)
periodic task

See delay_until_statement 9.6(39)
example 9.6(39)

Peripheral 3.8.1(25)
Peripheral_Ref 3.10(22)
Person 3.10.1(19), 3.10.1(22)
Person_Name 3.10.1(20)
Pi A.5(3)
Pic_String F.3.3(7)
Picture F.3.3(4)
picture String

for edited output F.3.1(1)
Picture_Error F.3.3(9)
Pilcrow_Sign A.3.3(22)
plain_char B.3(11)
PLD A.3.3(17)
PLU A.3.3(17)
plus operator 4.4(1), 4.5.3(1), 4.5.4(1)
plus sign 2.1(15)
Plus_Minus_Sign A.3.3(22)
Plus_Sign A.3.3(8)
PM A.3.3(19)
PO 9.4(20)
point 2.1(15), 3.9(32)
pointer B.3.2(5)

See access value 3.10(1)
See type System.Address 13.7(34)

pointer type
See access type 3.10(1)

Pointer_Error B.3.2(8)
Pointers

child of Interfaces.C B.3.2(4)
polymorphism 3.9(1), 3.9.2(1)
pool element 3.10(7), 13.11(11)
pool type 13.11(11)
pool-specific access type 3.10(7), 3.10(8)
Pool_Ptr 13.14(13)
Pop 12.8(3), 12.8(7), 12.8(14)
Pos attribute 3.5.5(2), K(175)
position 13.5.1(4)

Position attribute — profile

743 21 December 1994 Index

used 13.5.1(3), P(1)
Position attribute 13.5.2(2), K(179)
position number 3.5(1)

of an enumeration value 3.5.1(7)
of an integer value 3.5.4(15)

positional association 6.4(7), 12.3(6)
positional component association 4.3.1(6)
positional discriminant association 3.7.1(4)
positional_array_aggregate 4.3.3(3)

used 4.3.3(2), P(1)
Positive 3.5.4(12), 3.5.4(13), 3.6.3(3),

A.1(13)
Positive_Count A.8.4(4), A.10(10),

A.10.1(5), A.12.1(7)
POSIX 1.2(8)
possible interpretation 8.6(14)

for direct_names 8.3(24)
for selector_names 8.3(24)

post-compilation error 1.1.2(29)
post-compilation rules 1.1.2(29), 10.1.3(15),

10.1.5(8), 10.2(2), 12.3(19), 13.12(8),
D.2.2(4), D.3(5), D.4(5), E(2), E.1(2),
E.2.1(10), E.2.3(17), H.1(4), H.3.1(4)

potentially blocking operation 9.5.1(8)
Abort_Task C.7.1(16)
delay_statement 9.6(34), D.9(5)
remote subprogram call E.4(17)
RPC operations E.5(23)
Suspend_Until_True D.10(10)

potentially use-visible 8.4(8)
Pound_Sign A.3.3(21)
Power_16 3.3.2(10)
Pragma 2.8(1), 2.8(2), L(1), N(27)
pragma argument 2.8(9)
pragma name 2.8(9)
pragma, categorization E.2(2)

Remote_Call_Interface E.2.3(2)
Remote_Types E.2.2(2)
Shared_Passive E.2.1(2)

pragma, configuration 10.1.5(8)
Locking_Policy D.3(5)
Normalize_Scalars H.1(4)
Queuing_Policy D.4(5)
Restrictions 13.12(8)
Reviewable H.3.1(4)
Suppress 11.5(5)
Task_Dispatching_Policy D.2.2(4)

pragma, identifier specific to 2.8(10)
pragma, interfacing

Convention B.1(4)
Export B.1(4)
Import B.1(4)
Linker_Options B.1(4)

pragma, library unit 10.1.5(7)
All_Calls_Remote E.2.3(6)
categorization pragmas E.2(2)
Elaborate_Body 10.2.1(24)
Preelaborate 10.2.1(4)
Pure 10.2.1(15)

pragma, program unit 10.1.5(2)
Convention B.1(29)
Export B.1(29)
Import B.1(29)
Inline 6.3.2(2)
library unit pragmas 10.1.5(7)

pragma, representation 13.1(1)
Asynchronous E.4.1(8)
Atomic C.6(14)
Atomic_Components C.6(14)

Controlled 13.11.3(5)
Convention B.1(28)
Discard_Names C.5(6)
Export B.1(28)
Import B.1(28)
Pack 13.2(5)
Volatile C.6(14)
Volatile_Components C.6(14)

pragma_argument_association 2.8(3)
used 2.8(2), P(1)

pragmas
All_Calls_Remote E.2.3(5), L(2)
Asynchronous E.4.1(3), L(3)
Atomic C.6(3), L(4)
Atomic_Components C.6(5), L(5)
Attach_Handler C.3.1(4), L(6)
Controlled 13.11.3(3), L(7)
Convention B.1(7), L(8)
Discard_Names C.5(3), L(9)
Elaborate 10.2.1(20), L(10)
Elaborate_All 10.2.1(21), L(11)
Elaborate_Body 10.2.1(22), L(12)
Export B.1(6), L(13)
Import B.1(5), L(14)
Inline 6.3.2(3), L(15)
Inspection_Point H.3.2(3), L(16)
Interrupt_Handler C.3.1(2), L(17)
Interrupt_Priority D.1(5), L(18)
Linker_Options B.1(8), L(19)
List 2.8(21), L(20)
Locking_Policy D.3(3), L(21)
Normalize_Scalars H.1(3), L(22)
Optimize 2.8(23), L(23)
Pack 13.2(3), L(24)
Page 2.8(22), L(25)
Preelaborate 10.2.1(3), L(26)
Priority D.1(3), L(27)
Pure 10.2.1(14), L(28)
Queuing_Policy D.4(3), L(29)
Remote_Call_Interface E.2.3(3), L(30)
Remote_Types E.2.2(3), L(31)
Restrictions 13.12(3), L(32)
Reviewable H.3.1(3), L(33)
Shared_Passive E.2.1(3), L(34)
Storage_Size 13.3(63), L(35)
Suppress 11.5(4), L(36)
Task_Dispatching_Policy D.2.2(2), L(37)
Volatile C.6(4), L(38)
Volatile_Components C.6(6), L(39)

precedence of operators 4.5(1)
Pred attribute 3.5(25), K(181)
predefined environment A(1)
predefined exception 11.1(4)
predefined library unit

See language-defined library units
predefined operation

of a type 3.2.3(1)
predefined operations

of a discrete type 3.5.5(10)
of a fixed point type 3.5.10(17)
of a floating point type 3.5.8(3)
of a record type 3.8(24)
of an access type 3.10.2(34)
of an array type 3.6.2(15)

predefined operator 4.5(9)
[partial] 3.2.1(9)

predefined type 3.2.1(10)
See language-defined types

Predefined_Equal 8.5.4(8)

preelaborable
of an elaborable construct 10.2.1(5)

Preelaborate pragma 10.2.1(3), L(26)
preelaborated 10.2.1(11)

[partial] 10.2.1(11), E.2.1(9)
preempted task D.2.1(7)
preemptible resource D.2.1(7)
preference

for root numeric operators and ranges
8.6(29)

preference control
See requeue 9.5.4(1)

prefix 4.1(4)
used 4.1.1(2), 4.1.2(2), 4.1.3(2), 4.1.4(2),

4.1.4(4), 6.4(2), 6.4(3), P(1)
prescribed result

for the evaluation of a complex arithmetic
operation G.1.1(42)

for the evaluation of a complex elementary
function G.1.2(35)

for the evaluation of an elementary func-
tion A.5.1(37)

Pri 3.10.1(23)
primary 4.4(7)

used 4.4(6), P(1)
primitive function A.5.3(17)
primitive operation

[partial] 3.2(1)
primitive operations 3.2.3(1), N(28)

of a type 3.2.3(1)
primitive operator

of a type 3.2.3(8)
primitive subprograms

of a type 3.2.3(2)
Print 3.9.3(3), 6.4.1(5)
Print_Header 6.1(42)
Priority 13.7(16), D.1(10), D.1(15)
priority inheritance D.1(15)
priority inversion D.2.2(14)
priority of an entry call D.4(9)
Priority pragma D.1(3), L(27)
private declaration of a library unit 10.1.1(12)
private descendant

of a library unit 10.1.1(12)
Private extension 3.2(2), 3.2(4), 3.9(2),

3.9.1(1), N(29)
[partial] 7.3(14)

private library unit 10.1.1(12)
private operations 7.3.1(1)
private part 8.2(5)

of a package 7.1(6), 12.3(12)
of a protected unit 9.4(11)
of a task unit 9.1(9)

Private type 3.2(2), 3.2(4), N(30)
[partial] 7.3(14)

private types and private extensions 7.3(1)
private_extension_declaration 7.3(3)

used 3.2.1(2), P(1)
private_type_declaration 7.3(2)

used 3.2.1(2), P(1)
Probability 3.5.7(22)
procedure 6(1)
procedure instance 12.3(13)
procedure_call_statement 6.4(2)

used 5.1(4), P(1)
processing node E(2)
Producer 9.11(2), 9.11(3)
profile 6.1(22)

associated with a dereference 4.1(10)

profile resolution rule — recommended level of support

Index 21 December 1994 744

fully conformant 6.3.1(18)
mode conformant 6.3.1(16)
subtype conformant 6.3.1(17)
type conformant 6.3.1(15)

profile resolution rule
name with a given expected profile

8.6(26)
Prog B.4(107)
Program 10(1), 10.2(1), N(32)
program execution 10.2(1)
program library

See library 10(2), 10.1.4(9)
Program unit 10.1(1), N(31)
program unit pragma 10.1.5(2)

Convention B.1(29)
Export B.1(29)
Import B.1(29)
Inline 6.3.2(2)
library unit pragmas 10.1.5(7)

program-counter-map approach to finalization
7.6.1(24)

Program_Error A.1(46)
raised by failure of run-time check

1.1.3(17), 1.1.3(20), 1.1.5(8), 1.1.5(12),
3.5(32), 3.5.5(8), 3.10.2(29), 3.11(14),
4.6(57), 6.2(12), 6.4(11), 6.5(20),
7.6.1(15), 7.6.1(16), 7.6.1(17),
7.6.1(18), 7.6.1(20), 9.4(20), 9.5.1(17),
9.5.3(7), 9.7.1(21), 9.8(20), 10.2(26),
11.1(4), 11.5(8), 11.5(19), 13.7.1(16),
13.9.1(9), 13.11.2(13), 13.11.2(14),
A.7(14), C.3.1(10), C.3.1(11),
C.3.2(17), C.3.2(20), C.3.2(21),
C.3.2(22), C.7.1(15), C.7.1(17),
C.7.2(13), D.3(13), D.5(9), D.5(11),
D.10(10), D.11(8), E.1(10), E.3(6),
E.4(18), J.7.1(7)

Program_Status_Word 13.5.1(28)
propagate 11.4(1)

an exception by a construct 11.4(6)
an exception by an execution 11.4(6)
an exception occurrence by an execution,

to a dynamically enclosing execution
11.4(6)

proper_body 3.11(6)
used 3.11(5), 10.1.3(7), P(1)

protected action 9.5.1(4)
complete 9.5.1(6)
start 9.5.1(5)

protected calling convention 6.3.1(12)
protected declaration 9.4(1)
protected entry 9.4(1)
protected function 9.5.1(1)
protected object 9(3), 9.4(1)
protected operation 9.4(1)
protected procedure 9.5.1(1)
protected subprogram 9.4(1), 9.5.1(1)
Protected type 3.2(2), N(33)
protected unit 9.4(1)
protected_body 9.4(7)

used 3.11(6), P(1)
protected_body_stub 10.1.3(6)

used 10.1.3(2), P(1)
protected_definition 9.4(4)

used 9.4(2), 9.4(3), P(1)
protected_element_declaration 9.4(6)

used 9.4(4), P(1)
protected_operation_declaration 9.4(5)

used 9.4(4), 9.4(6), P(1)

protected_operation_item 9.4(8)
used 9.4(7), P(1)

protected_type_declaration 9.4(2)
used 3.2.1(3), P(1)

Pt 9.5(4)
ptrdiff_t B.3(12)
PU1 A.3.3(18)
PU2 A.3.3(18)
public declaration of a library unit 10.1.1(12)
public descendant

of a library unit 10.1.1(12)
public library unit 10.1.1(12)
Public_Part 3.9.3(16)
pure 10.2.1(16)
Pure pragma 10.2.1(14), L(28)
Push 6.3(9), 12.8(3), 12.8(6), 12.8(14)
Put 6.3.2(5), 6.4(26), 10.1.1(30), A.10.1(42),

A.10.1(48), A.10.1(55), A.10.1(60),
A.10.1(66), A.10.1(67), A.10.1(71),
A.10.1(72), A.10.1(76), A.10.1(77),
A.10.1(82), A.10.1(83), F.3.3(14),
F.3.3(15), F.3.3(16), G.1.3(7), G.1.3(8)

Put_Item 12.6(22)
Put_Line A.10.1(50)
Put_List 12.6(24)

Q 3.9.1(4), 3.9.3(3), 3.10.2(22), 7.3(7),
7.5(2), 8.2(12), 8.5.4(8), 12.3(18),
13.1(14)

qualified_expression 4.7(2)
used 4.4(7), 4.8(2), 13.8(2), P(1)

Query J.5(6)
Question 3.6.3(7), A.3.3(10)
queuing policy D.4(1), D.4(6)
Queuing_Policy pragma D.4(3), L(29)
Quotation A.3.3(8)
quotation mark 2.1(15)
quoted string

See string_literal 2.6(1)
Quotient_Type F.2(6)

R 3.3.1(20), 3.10.2(22), 7.3.1(7), 7.5(2),
8.2(3), 8.2(12), 12.5.3(15), 12.5.4(13),
13.14(19)

R_Brace J.5(6)
R_Bracket J.5(6)
R2 7.5(2)
Rad_To_Deg 4.9(44)
Rainbow 3.2.2(15), 3.5.1(16)
raise

an exception 11(1), 11.3(4), N(18)
an exception occurrence 11.4(3)

Raise_Exception 11.4.1(4)
raise_statement 11.3(2)

used 5.1(4), P(1)
Random 6.1(38), A.5.2(8), A.5.2(20)
random number A.5.2(1)
Random_Coin A.5.2(58)
Random_Die A.5.2(56)
range 3.5(3), 3.5(4)

used 3.5(2), 3.6(6), 3.6.1(3), 4.4(3), P(1)
of a scalar subtype 3.5(7)

Range attribute 3.5(14), 3.6.2(7), K(187),
K(189)

Range(N) attribute 3.6.2(8), K(185)
range_attribute_designator 4.1.4(5)

used 4.1.4(4), P(1)
range_attribute_reference 4.1.4(4)

used 3.5(3), P(1)

Range_Check 11.5(17)
[partial] 3.2.2(11), 3.5(24), 3.5(27),

3.5(43), 3.5(44), 3.5(51), 3.5(55),
3.5.5(7), 3.5.9(19), 4.2(11), 4.3.3(28),
4.5.1(8), 4.5.6(6), 4.5.6(13), 4.6(28),
4.6(38), 4.6(46), 4.6(51), 4.7(4),
13.13.2(35), A.5.2(39), A.5.2(40),
A.5.3(26), A.5.3(29), A.5.3(50),
A.5.3(53), A.5.3(58), A.5.3(62), K(11),
K(41), K(47), K(113), K(122), K(184),
K(220), K(241)

range_constraint 3.5(2)
used 3.2.2(6), 3.5.9(5), J.3(2), P(1)

Rank 12.5(16), B.5(31)
Rational 7.1(13)
Rational_Numbers 7.1(12), 7.2(10),

10.1.1(32)
Rational_Numbers.Reduce 10.1.1(31)
Rational_Numbers.IO 10.1.1(30)
Rational_IO 10.1.1(34)
RCI

generic E.2.3(7)
library unit E.2.3(7)
package E.2.3(7)

Re G.1.1(6)
re-raise statement 11.3(3)
read 7.5(19), 7.5(20), 9.1(24), 9.5.2(33),

9.11(8), 9.11(10), 11.4.2(4), 11.4.2(7),
13.13.1(5), 13.13.2(40), A.8.1(12),
A.8.4(12), A.9(6), A.12.1(15),
A.12.1(16), D.12(9), D.12(10), E.5(7)

the value of an object 3.3(14)
Read attribute 13.13.2(6), 13.13.2(14),

K(191), K(195)
Read clause 13.3(7), 13.13.2(36)
ready

a task state 9(10)
ready queue D.2.1(5)
ready task D.2.1(5)
Real 3.5.7(21), B.5(6), G.1.1(2)
real literal 2.4(1)
real literals 3.5.6(4)
real time D.8(18)
Real type 3.2(2), 3.2(3), 3.5.6(1), N(34)
real-time systems C(1), D(1)
Real_Plus 8.5.4(15)
real_range_specification 3.5.7(3)

used 3.5.7(2), 3.5.9(3), 3.5.9(4), P(1)
Real_Time

child of Ada D.8(3)
real_type_definition 3.5.6(2)

used 3.2.1(4), P(1)
Real_IO A.10.9(41)
Rec 3.10.2(22)
Rec_Ptr 3.10.2(22)
Receive 13.13.2(40)
receiving stub E.4(10)
reclamation of storage 13.11.2(1)
recommended level of support 13.1(20)

enumeration_representation_clause
13.4(9)

record_representation_clause 13.5.1(17)
Address attribute 13.3(15)
Alignment attribute for objects 13.3(33)
Alignment attribute for subtypes 13.3(29)
bit ordering 13.5.3(7)
Component_Size attribute 13.3(71)
pragma Pack 13.2(7)
required in Systems Programming Annex

record — Rot

745 21 December 1994 Index

C.2(2)
Size attribute 13.3(42), 13.3(54)
unchecked conversion 13.9(16)
with respect to nonstatic expressions

13.1(21)
record 3.8(1)
Record extension 3.2(2), 3.4(5), 3.9.1(1),

N(35)
record layout

aspect of representation 13.5(1)
Record type 3.2(2), 3.8(1), N(36)
record_aggregate 4.3.1(2)

used 4.3(2), 13.8(14), P(1)
record_component_association 4.3.1(4)

used 4.3.1(3), P(1)
record_component_association_list 4.3.1(3)

used 4.3.1(2), 4.3.2(2), P(1)
record_definition 3.8(3)

used 3.8(2), 3.9.1(2), P(1)
record_extension_part 3.9.1(2)

used 3.4(2), P(1)
record_representation_clause 13.5.1(2)

used 13.1(2), P(1)
record_type_definition 3.8(2)

used 3.2.1(4), P(1)
Red_Blue 3.2.2(15)
Reference C.3.2(10), C.7.2(5)
reference parameter passing 6.2(2)
references 1.2(1)
Register E.4.2(3)
Registered_Trade_Mark_Sign A.3.3(21)
Reinitialize C.7.2(6)
relation 4.4(3)

used 4.4(2), P(1)
relational operator 4.5.2(1)
relational_operator 4.5(3)

used 4.4(3), P(1)
relaxed mode G.2(1)
Release 9.4(27), 9.4(29)

execution resource associated with
protected object 9.5.1(6)

rem operator 4.4(1), 4.5.5(1)
Remainder attribute A.5.3(45), K(199)
Remainder_Type F.2(6)
remote access E.1(5)
remote access type E.2.2(9)
remote access-to-class-wide type E.2.2(9)
remote access-to-subprogram type E.2.2(9)
remote call interface E.2(4), E.2.3(7)
remote procedure call

asynchronous E.4.1(9)
remote subprogram E.2.3(7)
remote subprogram binding E.4(1)
remote subprogram call E.4(1)
remote types library unit E.2(4), E.2.2(4)
Remote_Call_Interface pragma E.2.3(3),

L(30)
Remote_Types pragma E.2.2(3), L(31)
Remove E.4.2(3)
renamed entity 8.5(3)
renamed view 8.5(3)
renaming-as-body 8.5.4(1)
renaming-as-declaration 8.5.4(1)
renaming_declaration 8.5(2)

used 3.1(3), P(1)
rendezvous 9.5.2(25)
Replace_Element A.4.4(27), A.4.5(21)
Replace_Slice A.4.3(23), A.4.3(24),

A.4.4(58), A.4.4(59), A.4.5(53),
A.4.5(54)

Replicate A.4.4(78), A.4.4(79), A.4.4(80)
representation

change of 13.6(1)
representation aspect 13.1(8)
representation attribute 13.3(1)
representation item 13.1(1)
representation of an object 13.1(7)
representation pragma 13.1(1)

Asynchronous E.4.1(8)
Atomic C.6(14)
Atomic_Components C.6(14)
Controlled 13.11.3(5)
Convention B.1(28)
Discard_Names C.5(6)
Export B.1(28)
Import B.1(28)
Pack 13.2(5)
Volatile C.6(14)
Volatile_Components C.6(14)

representation-oriented attributes
of a fixed point subtype A.5.4(1)
of a floating point subtype A.5.3(1)

representation_clause 13.1(2)
used 3.8(5), 3.11(4), 9.1(5), 9.4(5), 9.4(8),

P(1)
represented in canonical form A.5.3(10)
Request 9.1(26), 9.5.2(33)
requested decimal precision

of a floating point type 3.5.7(4)
requeue 9.5.4(1)
requeue-with-abort 9.5.4(13)
requeue_statement 9.5.4(2)

used 5.1(4), P(1)
requires a completion 3.11.1(1), 3.11.1(6)

incomplete_type_declaration 3.10.1(3)
protected_declaration 9.4(10)
task_declaration 9.1(8)
generic_package_declaration 7.1(5)
generic_subprogram_declaration 6.1(20)
package_declaration 7.1(5)
subprogram_declaration 6.1(20)
declaration of a partial view 7.3(4)
declaration to which a pragma Elaborate_

Body applies 10.2.1(25)
deferred constant declaration 7.4(2)
library_unit_declaration 10.2(18)
protected entry_declaration 9.5.2(16)

Reraise_Occurrence 11.4.1(4), 11.4.1(19)
reserved interrupt C.3(2)
reserved word 2.9(2)
Reserved_128 A.3.3(17)
Reserved_129 A.3.3(17)
Reserved_132 A.3.3(17)
Reserved_153 A.3.3(19)
Reserved_Check

[partial] C.3.1(10)
Reset A.5.2(9), A.5.2(12), A.5.2(21),

A.5.2(24), A.8.1(8), A.8.4(8),
A.10.1(11), A.12.1(10)

resolution rules 1.1.2(26)
resolve

overload resolution 8.6(14)
Resource 9.4(27), 9.4(28)
restriction 13.12(4)

used 13.12(3), L(32)
Restrictions

Immediate_Reclamation H.4(10)
Max_Asynchronous_Select_Nesting

D.7(18)

Max_Protected_Entries D.7(14)
Max_Select_Alternatives D.7(12)
Max_Storage_At_Blocking D.7(17)
Max_Task_Entries D.7(13)
Max_Tasks D.7(19)
No_Abort_Statements D.7(5)
No_Access_Subprograms H.4(17)
No_Allocators H.4(7)
No_Asynchronous_Control D.7(10)
No_Delay H.4(21)
No_Dispatch H.4(19)
No_Dynamic_Priorities D.7(9)
No_Exceptions H.4(12)
No_Fixed_Point H.4(15)
No_Floating_Point H.4(14)
No_Implicit_Heap_Allocations D.7(8)
No_Local_Allocators H.4(8)
No_Nested_Finalization D.7(4)
No_Protected_Types H.4(5)
No_Recursion H.4(22)
No_Reentrancy H.4(23)
No_Task_Allocators D.7(7)
No_Task_Hierarchy D.7(3)
No_Terminate_Alternatives D.7(6)
No_Unchecked_Access H.4(18)
No_Unchecked_Conversion H.4(16)
No_Unchecked_Deallocation H.4(9)
No_IO H.4(20)

Restrictions pragma 13.12(3), L(32)
result interval

for a component of the result of evaluating
a complex function G.2.6(3)

for the evaluation of a predefined arith-
metic operation G.2.1(8)

for the evaluation of an elementary func-
tion G.2.4(2)

result subtype
of a function 6.5(3)

Result_Subtype A.5.2(17)
return expression 6.5(3)
return-by-reference type 6.5(11)
return_statement 6.5(2)

used 5.1(4), P(1)
Reverse_Solidus A.3.3(12)
Reviewable pragma H.3.1(3), L(33)
Rewind E.4.2(2), E.4.2(5)
RI A.3.3(17)
right curly bracket 2.1(15)
right parenthesis 2.1(15)
right square bracket 2.1(15)
Right_Angle_Quotation A.3.3(22)
Right_Curly_Bracket A.3.3(14)
Right_Indent 6.1(37)
Right_Parenthesis A.3.3(8)
Right_Square_Bracket A.3.3(12)
Roman 3.6(26)
Roman_Digit 3.5.2(9)
Root 7.3.1(7)
root library unit 10.1.1(10)
root type

of a class 3.4.1(2)
root_integer 3.5.4(14)

[partial] 3.4.1(8)
root_real 3.5.6(3)

[partial] 3.4.1(8)
Root_Storage_Pool 13.11(6)
Root_Stream_Type 13.13.1(3)
rooted at a type 3.4.1(2)
Rosso 8.5.4(16)

rotate — size_t

Index 21 December 1994 746

Rot 8.5.4(16)
rotate B.2(9)
Rotate_Left B.2(6)
Rotate_Right B.2(6)
Rouge 8.5.4(16)
Round attribute 3.5.10(12), K(203)
Rounding attribute A.5.3(36), K(207)
Row 12.1(19)
RPC

child of System E.5(3)
RPC-receiver E.5(21)
RPC_Receiver E.5(11)
RS A.3.3(6), J.5(4)
run-time check

See language-defined check 11.5(2)
run-time error 1.1.2(30), 1.1.5(6), 11.5(2),

11.6(1)
run-time polymorphism 3.9.2(1)
run-time semantics 1.1.2(30)
run-time type

See tag 3.9(3)
running a program

See program execution 10.2(1)
running task D.2.1(6)

S 5.4(18), 13.1(7), 13.3(48), 13.14(19)
S’Adjacent A.5.3(49), K(10)
S’Ceiling A.5.3(34), K(29)
S’Class’Input 13.13.2(33), K(94)
S’Class’Output 13.13.2(30), K(167)
S’Class’Read 13.13.2(15), K(193)
S’Class’Write 13.13.2(12), K(284)
S’Compose A.5.3(25), K(40)
S’Copy_Sign A.5.3(52), K(46)
S’Exponent A.5.3(19), K(62)
S’Floor A.5.3(31), K(76)
S’Fraction A.5.3(22), K(82)
S’Input 13.13.2(23), K(98)
S’Leading_Part A.5.3(55), K(110)
S’Machine A.5.3(61), K(121)
S’Model A.5.3(69), K(153)
S’Output 13.13.2(20), K(171)
S’Read 13.13.2(7), K(197)
S’Remainder A.5.3(46), K(201)
S’Rounding A.5.3(37), K(209)
S’Scaling A.5.3(28), K(219)
S’Truncation A.5.3(43), K(250)
S’Unbiased_Rounding A.5.3(40), K(254)
S’Write 13.13.2(4), K(288)
S1 3.4(34), 12.3(22), 13.1(14), 13.4(11)
S2 13.1(14), 13.4(11)
safe range

of a floating point type 3.5.7(9), 3.5.7(10)
safe separate compilation 10(3)
Safe_Convert 13.9.1(12)
Safe_First attribute A.5.3(71), G.2.2(5),

K(211)
Safe_Last attribute A.5.3(72), G.2.2(6),

K(213)
safety-critical systems H(1)
Salary 3.5.9(28)
Salary_Conversions B.4(108), B.4(120)
Salary_Type B.4(105), B.4(114)
same value

for a limited type 6.2(10)
Same_Denominator 7.2(11)
satisfies

a discriminant constraint 3.7.1(11)
a range constraint 3.5(4)

an index constraint 3.6.1(7)
for an access value 3.10(15)

Save A.5.2(12), A.5.2(24)
Save_Occurrence 11.4.1(6)
Scalar type 3.2(2), 3.2(3), 3.5(1), N(37)
scalar_constraint 3.2.2(6)

used 3.2.2(5), P(1)
scale

of a decimal fixed point subtype
3.5.10(11), K(216)

Scale attribute 3.5.10(11), K(215)
Scaling attribute A.5.3(27), K(217)
SCHAR_MAX B.3(6)
SCHAR_MIN B.3(6)
Schedule 3.6(28)
scope

informal definition 3.1(8)
of (a view of) an entity 8.2(11)
of a use_clause 8.4(6)
of a with_clause 10.1.2(5)
of a declaration 8.2(10)

Seconds 9.6(13)
Seconds_Count D.8(15)
Section_Sign A.3.3(21)
secure systems H(1)
Seize 9.4(27), 9.4(28), 9.5.2(33)
select an entry call

from an entry queue 9.5.3(13), 9.5.3(16)
immediately 9.5.3(8)

select_alternative 9.7.1(4)
used 9.7.1(2), P(1)

select_statement 9.7(2)
used 5.1(5), P(1)

selected_component 4.1.3(2)
used 4.1(2), P(1)

selection
of an entry caller 9.5.2(24)

selective_accept 9.7.1(2)
used 9.7(2), P(1)

selector_name 4.1.3(3)
used 3.7.1(3), 4.1.3(2), 4.3.1(5), 6.4(5),

12.3(4), P(1)
semantic dependence

of one compilation unit upon another
10.1.1(26)

semicolon 2.1(15), A.3.3(10)
Send 13.13.2(40)
Sep 3.10.1(23)
separate compilation 10.1(1)

safe 10(3)
separator 2.2(3)
Sequence 4.6(70)
sequence of characters

of a string_literal 2.6(5)
sequence_of_statements 5.1(2)

used 5.3(2), 5.4(3), 5.5(2), 9.7.1(2),
9.7.1(5), 9.7.1(6), 9.7.2(3), 9.7.3(2),
9.7.4(3), 9.7.4(5), 11.2(2), 11.2(3), P(1)

sequential
actions 9.10(11), C.6(17)

sequential access A.8(2)
sequential file A.8(1)
Sequential_IO J.1(4)

child of Ada A.8.1(2)
Server 9.1(23), 9.7.1(24)
service

an entry queue 9.5.3(13)
Set 3.9.3(15), 6.4(27), D.12(9), D.12(10)
Set_Col A.10.1(35)

Set_Component 9.4(31), 9.4(33)
Set_Error A.10.1(15)
Set_False D.10(4)
Set_Index A.8.4(14), A.12.1(22)
Set_Input A.10.1(15)
Set_Line A.10.1(36)
Set_Line_Length A.10.1(23)
Set_Mask 13.8(13), 13.8(14)
Set_Mode A.12.1(24)
Set_Output A.10.1(15)
Set_Page_Length A.10.1(24)
Set_Priority D.5(4)
Set_True D.10(4)
Set_Value C.7.2(6)
Set_Im G.1.1(7)
Set_Re G.1.1(7)
Sets 3.9.3(15)
shared passive library unit E.2(4), E.2.1(4)
shared variable

protection of 9.10(1)
Shared_Array 9.4(31), 9.4(32)
Shared_Passive pragma E.2.1(3), L(34)
Sharp J.5(6)
shift B.2(9)
Shift_Left B.2(6)
Shift_Right B.2(6)
Shift_Right_Arithmetic B.2(6)
Short 13.3(82), B.3(7)
short-circuit control form 4.5.1(1)
Short_Float 3.5.7(16)
Short_Int 4.9(44)
Short_Integer 3.5.4(25)
Shut_Down 9.1(23)
SI A.3.3(5)
Sigma 12.1(24), 12.2(12)
signal (an exception)

See raise 11(1)
signal

See interrupt C.3(1)
as defined between actions 9.10(2)

signal handling
example 9.7.4(10)

signed integer type 3.5.4(1)
signed_char B.3(8)
signed_integer_type_definition 3.5.4(3)

used 3.5.4(2), P(1)
Signed_Zeros attribute A.5.3(13), K(221)
simple entry call 9.5.3(1)
simple_expression 4.4(4)

used 3.5(3), 3.5.4(3), 3.5.7(3), 4.4(3),
13.5.1(5), 13.5.1(6), P(1)

simple_statement 5.1(4)
used 5.1(3), P(1)

Sin A.5.1(5), G.1.2(4)
single

class expected type 8.6(27)
single entry 9.5.2(20)
Single_Precision_Complex_Types B.5(8)
single_protected_declaration 9.4(3)

used 3.3.1(2), P(1)
single_task_declaration 9.1(3)

used 3.3.1(2), P(1)
Singular 11.1(8)
Sinh A.5.1(7), G.1.2(6)
size A.8.4(15), A.12.1(23)

of an object 13.1(7)
Size attribute 13.3(40), 13.3(45), K(223),

K(228)
Size clause 13.3(7), 13.3(41), 13.3(48)

Skip_Line — Strings

747 21 December 1994 Index

size_t B.3(13)
Skip_Line A.10.1(29)
Skip_Page A.10.1(32)
slice 4.1.2(2), A.4.4(28), A.4.5(22)

used 4.1(2), P(1)
small 13.3(48)

of a fixed point type 3.5.9(8)
Small attribute 3.5.10(2), K(230)
Small clause 3.5.10(2), 13.3(7)
Small_Int 3.2.2(15), 3.5.4(35)
SO A.3.3(5), J.5(4)
Soft_Hyphen A.3.3(21)
SOH A.3.3(5)
solidus 2.1(15), A.3.3(8)
Source 13.9(3)
SPA A.3.3(18)
Space A.3.3(8), A.4.1(4)
space_character 2.1(11)

used 2.1(3), P(1)
special graphic character

a category of Character A.3.2(32)
special_character 2.1(12)

used 2.1(3), P(1)
names 2.1(15)

Special_Key 3.4(38)
Special_Set A.4.6(4)
Specialized Needs Annexes 1.1.2(7)
specifiable (of an attribute and for an entity)

13.3(5)
specifiable

of Address for entries J.7.1(6)
of Address for stand-alone objects and for

program units 13.3(12)
of Alignment for first subtypes and objects

13.3(25)
of Bit_Order for record types and record

extensions 13.5.3(4)
of Component_Size for array types

13.3(70)
of External_Tag for a tagged type

13.3(75), K(65)
of Input for a type 13.13.2(36)
of Machine_Radix for decimal first sub-

types F.1(1)
of Output for a type 13.13.2(36)
of Read for a type 13.13.2(36)
of Size for first subtypes 13.3(48)
of Size for stand-alone objects 13.3(41)
of Small for fixed point types 3.5.10(2)
of Storage_Pool for a non-derived access-

to-object type 13.11(15)
of Storage_Size for a task first subtype

J.9(3)
of Storage_Size for a non-derived access-

to-object type 13.11(15)
of Write for a type 13.13.2(36)

specific type 3.4.1(3)
specified (not!) 1.1.3(18), M(1)
specified

of an aspect of representation of an entity
13.1(17)

specified discriminant 3.7(18)
Spin 9.7.3(6)
Split 9.6(14), D.8(16)
Sqrt A.5.1(4), B.1(51), G.1.2(3)
Square 3.2.2(15), 3.7(35), 12.3(24)
Squaring 12.1(22), 12.2(7)
squirrel away

included in fairness to alligators 8.5.4(8)

SS2 A.3.3(17)
SS3 A.3.3(17)
SSA A.3.3(17)
ST A.3.3(19)
Stack 12.8(3), 12.8(4), 12.8(14)
Stack_Bool 12.8(10)
Stack_Int 12.8(10)
Stack_Real 12.8(16)
stand-alone constant 3.3.1(23)

corresponding to a formal object of mode
in 12.4(10)

stand-alone object 3.3.1(1)
stand-alone variable 3.3.1(23)
Standard A.1(4)
standard error file A.10(6)
standard input file A.10(5)
standard mode 1.1.5(11)
standard output file A.10(5)
standard storage pool 13.11(17)
Standard_Error A.10.1(16), A.10.1(19)
Standard_Input A.10.1(16), A.10.1(19)
Standard_Output A.10.1(16), A.10.1(19)
State 3.8.1(24), 13.5.1(26), A.5.2(11),

A.5.2(23), A.5.2(27)
State_Mask 13.5.1(27)
statement 5.1(3)

used 5.1(2), P(1)
statement_identifier 5.1(8)

used 5.1(7), 5.5(2), 5.6(2), P(1)
static 3.3.2(1), 4.9(1)

constant 4.9(24)
constraint 4.9(27)
delta constraint 4.9(29)
digits constraint 4.9(29)
discrete_range 4.9(25)
discriminant constraint 4.9(31)
expression 4.9(2)
function 4.9(18)
index constraint 4.9(30)
range 4.9(25)
range constraint 4.9(29)
scalar subtype 4.9(26)
string subtype 4.9(26)
subtype 4.9(26), 12.4(9)
value 4.9(13)

static semantics 1.1.2(28)
statically

constrained 4.9(32)
denote 4.9(14)

statically compatible
for a constraint and a scalar subtype

4.9.1(4)
for a constraint and an access or composite

subtype 4.9.1(4)
for two subtypes 4.9.1(4)

statically deeper 3.10.2(4), 3.10.2(17)
statically determined tag 3.9.2(1)

[partial] 3.9.2(15), 3.9.2(19)
statically matching

effect on subtype-specific aspects
13.1(14)

for constraints 4.9.1(1)
for ranges 4.9.1(3)
for subtypes 4.9.1(2)
required 3.9.2(10), 3.10.2(27), 4.6(12),

4.6(16), 6.3.1(16), 6.3.1(17), 6.3.1(23),
7.3(13), 12.5.1(14), 12.5.3(6),
12.5.3(7), 12.5.4(3), 12.7(7)

statically tagged 3.9.2(4)

Status_Error A.8.1(15), A.8.4(18),
A.10.1(85), A.12.1(26), A.13(4)

storage deallocation
unchecked 13.11.2(1)

storage element 13.3(8)
storage management

user-defined 13.11(1)
storage node E(2)
storage place

of a component 13.5(1)
storage place attributes

of a component 13.5.2(1)
storage pool 3.10(7)
storage pool element 13.11(11)
storage pool type 13.11(11)
Storage_Array 13.7.1(5)
Storage_Check 11.5(23)

[partial] 11.1(6), 13.3(67), 13.11(17),
D.7(15)

Storage_Count 13.7.1(4)
subtype in package System.Storage_Ele-

ments 13.7.1(3)
Storage_Element 13.7.1(5)
Storage_Elements

child of System 13.7.1(2)
Storage_Error A.1(46)

raised by failure of run-time check
4.8(14), 11.1(4), 11.1(6), 11.5(23),
13.3(67), 13.11(17), 13.11(18), A.7(14),
D.7(15)

Storage_Offset 13.7.1(3)
Storage_Pool attribute 13.11(13), K(232)
Storage_Pool clause 13.3(7), 13.11(15)
Storage_Pools

child of System 13.11(5)
Storage_Size 13.11(9)
Storage_Size attribute 13.3(60), 13.11(14),

J.9(2), K(234), K(236)
Storage_Size clause 13.3(7), 13.11(15)

See also pragma Storage_Size 13.3(61)
Storage_Size pragma 13.3(63), L(35)
Storage_Unit 13.7(13)

named number in package System
13.7(13)

Storage_IO
child of Ada A.9(3)

Str10 11.6(5)
Strcpy B.3(78), B.3.2(48)
stream 13.13(1), A.12.1(13), A.12.2(4),

A.12.3(4)
stream type 13.13(1)
Stream_Access A.12.1(4), A.12.2(3),

A.12.3(3)
Stream_Element 13.13.1(4)
Stream_Element_Array 13.13.1(4)
Stream_Element_Count 13.13.1(4)
Stream_Element_Offset 13.13.1(4)
Stream_IO

child of Ada.Streams A.12.1(3)
Streams

child of Ada 13.13.1(2)
strict mode G.2(1)
String 3.6.3(4), A.1(37)
string type 3.6.3(1)
String_Access A.4.5(7)
string_element 2.6(3)

used 2.6(2), P(1)
string_literal 2.6(2)

used 4.4(7), 6.1(9), P(1)

Strlen — terminal interrupt

Index 21 December 1994 748

Strings
child of Ada A.4.1(3)
child of Interfaces.C B.3.1(3)

Strlen B.3.1(17)
structure

See record type 3.8(1)
STS A.3.3(18)
STX A.3.3(5), J.5(4)
Sub 8.3(26), A.3.3(6), J.5(4)
subaggregate

of an array_aggregate 4.3.3(6)
subcomponent 3.2(6)
subprogram 6(1)

abstract 3.9.3(3)
subprogram call 6.4(1)
subprogram instance 12.3(13)
subprogram_body 6.3(2)

used 3.11(6), 9.4(8), 10.1.1(7), P(1)
subprogram_body_stub 10.1.3(3)

used 10.1.3(2), P(1)
subprogram_declaration 6.1(2)

used 3.1(3), 9.4(5), 9.4(8), 10.1.1(5), P(1)
subprogram_default 12.6(3)

used 12.6(2), P(1)
subprogram_renaming_declaration 8.5.4(2)

used 8.5(2), 10.1.1(6), P(1)
subprogram_specification 6.1(4)

used 6.1(2), 6.1(3), 6.3(2), 8.5.4(2),
10.1.3(3), 12.1(3), 12.6(2), P(1)

subsystem 10.1(3), N(22)
Subtraction 3.9.1(16)
subtype (of an object)

See actual subtype of an object 3.3(23),
3.3.1(9)

Subtype 3.2(1), 3.2(8), N(38)
of a generic formal object 12.4(10)

subtype conformance 6.3.1(17), 12.3(11)
[partial] 3.10.2(34), 9.5.4(17)
required 3.9.2(10), 3.10.2(32), 4.6(19),

8.5.4(5), 9.5.4(5), 13.3(6)
subtype conversion

See also implicit subtype conversion
4.6(1)

See type conversion 4.6(1)
subtype-specific

attribute_definition_clause 13.3(7)
of a representation item 13.1(8)
of an aspect 13.1(8)

subtype_declaration 3.2.2(2)
used 3.1(3), P(1)

subtype_indication 3.2.2(3)
used 3.2.2(2), 3.3.1(2), 3.4(2), 3.6(6),

3.6(7), 3.6.1(3), 3.10(3), 4.8(2), 7.3(3),
P(1)

subtype_mark 3.2.2(4)
used 3.2.2(3), 3.6(4), 3.7(5), 3.10(6),

4.3.2(3), 4.4(3), 4.6(2), 4.7(2), 6.1(13),
6.1(15), 8.4(4), 8.5.1(2), 12.3(5),
12.4(2), 12.5.1(3), 13.8(14), P(1)

subtypes
of a profile 6.1(25)

subunit 10.1.3(7), 10.1.3(8)
used 10.1.1(3), P(1)

Succ attribute 3.5(22), K(238)
Suit 3.5.1(14)
Sum 12.1(24), 12.2(10)
super

See view conversion 4.6(5)
Superscript_One A.3.3(22)

Superscript_Three A.3.3(22)
Superscript_Two A.3.3(22)
Suppress pragma 11.5(4), L(36)
suppressed check 11.5(8)
Suspend_Until_True D.10(4)
Suspension_Object D.10(4)
Swap 12.3(24)
Switch 6.1(37)
SYN A.3.3(6), J.5(4)
synchronization 9(1)
Synchronous_Task_Control

child of Ada D.10(3)
syntactic category 1.1.4(15)
syntax

complete listing P(1)
cross reference P(1)
notation 1.1.4(3)
under Syntax heading 1.1.2(25)

System 13.7(3)
System.Address_To_Access_Conversions

13.7.2(2)
System.Machine_Code 13.8(7)
System.RPC E.5(3)
System.Storage_Elements 13.7.1(2)
System.Storage_Pools 13.11(5)
System_Name 13.7(4)
systems programming C(1)

T 3.4(38), 3.6(11), 3.9.1(4), 3.9.3(3),
3.9.3(10), 3.9.3(16), 3.10.2(22), 7.3(7),
7.3(9), 7.5(2), 8.4(7), 8.5.4(8), 8.6(34),
9.4(20), 9.5.2(13), 12.3(18), 13.5.1(12),
13.11(34), 13.14(1), 13.14(10),
13.14(19), G.2.1(16)

T1 3.4(34), 3.9.2(20), 3.9.3(6), 3.10(9),
7.3(7), 7.6(11), 12.3(15), 12.3(22),
13.4(11)

T2 3.4(34), 3.9.2(20), 3.9.3(6), 3.10(9),
7.3(7), 7.3(13), 7.3.1(7), 7.6(11),
12.3(15), 12.3(22), 13.14(19)

T3 7.3.1(7)
T4 7.3.1(7)
T5 7.3.1(7)
Table 3.2.1(15), 3.6(28), 12.5(14),

12.5.3(11), 12.8(5), 12.8(14)
Tag 3.9(6)
Tag attribute 3.9(16), 3.9(18), K(242),

K(244)
tag indeterminate 3.9.2(6)
tag of an object 3.9(3)

class-wide object 3.9(22)
object created by an allocator 3.9(21)
preserved by type conversion and

parameter passing 3.9(25)
returned by a function 3.9(23), 3.9(24)
stand-alone object, component, or

aggregate 3.9(20)
Tag_Check 11.5(18)

[partial] 3.9.2(16), 4.6(42), 4.6(52),
5.2(10), 6.5(9)

Tag_Error 3.9(8)
tagged type 3.9(2), N(39)
Tags

child of Ada 3.9(6)
tail (of a queue) D.2.1(5)
Tail A.4.3(37), A.4.3(38), A.4.4(72),

A.4.4(73), A.4.5(67), A.4.5(68)
Take 3.9.3(15)
Tan A.5.1(5), G.1.2(4)

Tanh A.5.1(7), G.1.2(6)
Tape E.4.2(2)
Tape_Client E.4.2(6)
Tape_Driver E.4.2(4), E.4.2(5)
Tape_Ptr E.4.2(3)
Tapes E.4.2(2)
target 13.9(3)

of an assignment_statement 5.2(3)
of an assignment operation 5.2(3)

target entry
of a requeue_statement 9.5.4(3)

target object
of a requeue_statement 9.5(7)
of a call on an entry or a protected sub-

program 9.5(2)
target statement

of a goto_statement 5.8(3)
target subtype

of a type_conversion 4.6(3)
task 9(1)

activation 9.2(1)
completion 9.3(1)
dependence 9.3(1)
execution 9.2(1)
termination 9.3(1)

task declaration 9.1(1)
task dispatching D.2.1(4)
task dispatching point D.2.1(4)

[partial] D.2.1(8), D.2.2(12)
task dispatching policy 9(10), D.2.2(6)

[partial] D.2.1(5)
task priority D.1(15)
task state

abnormal 9.8(4)
blocked 9(10)
callable 9.9(2)
held D.11(4)
inactive 9(10)
ready 9(10)
terminated 9(10)

Task type 3.2(2), N(40)
task unit 9(9)
Task_Attributes

child of Ada C.7.2(2)
task_body 9.1(6)

used 3.11(6), P(1)
task_body_stub 10.1.3(5)

used 10.1.3(2), P(1)
task_definition 9.1(4)

used 9.1(2), 9.1(3), P(1)
Task_Dispatching_Policy pragma D.2.2(2),

L(37)
Task_Identification

child of Ada C.7.1(2)
task_item 9.1(5)

used 9.1(4), P(1)
task_type_declaration 9.1(2)

used 3.2.1(3), P(1)
Task_ID C.7.1(2)
Tasking_Error A.1(46)

raised by failure of run-time check 9.2(5),
9.5.3(21), 11.1(4), 13.11.2(13),
13.11.2(14), C.7.2(13), D.5(8), D.11(8)

template 12(1)
See generic unit 12(1)
for a formal package 12.7(4)

term 4.4(5)
used 4.4(4), P(1)

terminal interrupt

terminate_alternative — UCHAR_MAX

749 21 December 1994 Index

example 9.7.4(10)
terminate_alternative 9.7.1(7)

used 9.7.1(4), P(1)
terminated

a task state 9(10)
Terminated attribute 9.9(3), K(246)
termination

abnormal 10.2(25)
normal 10.2(25)
of a partition 10.2(25), E.1(7)

Terminator_Error B.3(40)
Test B.3(77)
Test_Call B.4(102)
Test_External_Formats B.4(111)
Test_Pointers B.3.2(46)
tested type

of a membership test 4.5.2(3)
text of a program 2.2(1)
Text_Streams

child of Ada.Text_IO A.12.2(3),
A.12.3(3)

Text_IO J.1(6)
child of Ada A.10.1(2)

throw (an exception)
See raise 11(1)

thunk 13.14(19)
tick 2.1(15), 13.7(10), D.8(7)

named number in package System
13.7(10)

Tilde A.3.3(14)
Time 9.6(10), D.8(4)
time base 9.6(6)
time limit

example 9.7.4(12)
time type 9.6(6)
Time-dependent Reset procedure

of the random number generator
A.5.2(34)

time-out
See asynchronous_select 9.7.4(12)
See selective_accept 9.7.1(1)
See timed_entry_call 9.7.2(1)
example 9.7.4(12)

Time_Error 9.6(18)
Time_First D.8(4)
Time_Last D.8(4)
Time_Span D.8(6)
Time_Span_First D.8(6)
Time_Span_Last D.8(6)
Time_Span_Unit D.8(6)
Time_Span_Zero D.8(6)
Time_Unit D.8(4)
Time_Of 9.6(15), D.8(16)
timed_entry_call 9.7.2(2)

used 9.7(2), P(1)
timer interrupt

example 9.7.4(12)
times operator 4.4(1), 4.5.5(1)
timing

See delay_statement 9.6(1)
TM 8.5.3(6)
To_Ada B.3(22), B.3(26), B.3(28), B.3(32),

B.3(37), B.3(39), B.4(17), B.4(19),
B.5(13), B.5(14), B.5(16)

To_Address 13.7.1(10), 13.7.2(3)
To_Basic A.3.2(6), A.3.2(7)
To_Binary B.4(45), B.4(48)
To_Bounded_String A.4.4(11)
To_Character A.3.2(15)

To_COBOL B.4(17), B.4(18)
To_Decimal B.4(35), B.4(40), B.4(44),

B.4(47)
To_Display B.4(36)
To_Domain A.4.2(24), A.4.7(24)
To_Duration D.8(13)
To_Fortran B.5(13), B.5(14), B.5(15)
To_Integer 13.7.1(10)
To_ISO_646 A.3.2(11), A.3.2(12)
To_Long_Binary B.4(48)
To_Lower A.3.2(6), A.3.2(7)
To_Mapping A.4.2(23), A.4.7(23)
To_Packed B.4(41)
To_Picture F.3.3(6)
To_Pointer 13.7.2(3)
To_Range A.4.2(24), A.4.7(25)
To_Ranges A.4.2(10), A.4.7(10)
To_Sequence A.4.2(19), A.4.7(19)
To_Set A.4.2(8), A.4.2(9), A.4.2(17),

A.4.2(18), A.4.7(8), A.4.7(9),
A.4.7(17), A.4.7(18)

To_String A.3.2(16), A.4.4(12), A.4.5(11)
To_Time_Span D.8(13)
To_Unbounded_String A.4.5(9), A.4.5(10)
To_Upper A.3.2(6), A.3.2(7)
To_Wide_Character A.3.2(17)
To_Wide_String A.3.2(18)
To_C B.3(21), B.3(25), B.3(27), B.3(32),

B.3(36), B.3(38)
token

See lexical element 2.2(1)
Tolerance 3.3.1(33)
Trailing_Nonseparate B.4(23)
Trailing_Separate B.4(23)
transfer of control 5.1(14)
Translate A.4.3(18), A.4.3(19), A.4.3(20),

A.4.3(21), A.4.4(53), A.4.4(54),
A.4.4(55), A.4.4(56), A.4.5(48),
A.4.5(49), A.4.5(50), A.4.5(51)

Traverse_Tree 6.1(37)
triggering_alternative 9.7.4(3)

used 9.7.4(2), P(1)
triggering_statement 9.7.4(4)

used 9.7.4(3), P(1)
Trim A.4.3(31), A.4.3(32), A.4.3(33),

A.4.3(34), A.4.4(67), A.4.4(68),
A.4.4(69), A.4.5(61), A.4.5(62),
A.4.5(63), A.4.5(64)

Trim_End A.4.1(6)
True 3.5.3(1)
Truncation A.4.1(6)
Truncation attribute A.5.3(42), K(248)
TT 3.9.1(4)
two’s complement

modular types 3.5.4(29)
Two_Discrims 7.3(13)
Two_Pi 3.3.2(9)
type 3.2(1), N(41)

See also tag 3.9(3)
abstract 3.9.3(2)
See also language-defined types

type conformance 6.3.1(15)
[partial] 3.4(17), 8.3(8), 8.3(26),

10.1.4(4)
required 3.11.1(5), 4.1.4(14), 8.6(26),

9.5.4(3)
type conversion 4.6(1)

See also qualified_expression 4.7(1)
access 4.6(13), 4.6(18), 4.6(47)

arbitrary order 1.1.4(18)
array 4.6(9), 4.6(36)
composite (non-array) 4.6(21), 4.6(40)
enumeration 4.6(21), 4.6(34)
numeric 4.6(8), 4.6(29)
unchecked 13.9(1)

type conversion, implicit
See implicit subtype conversion 4.6(1)

type extension 3.9(2), 3.9.1(1)
type of a discrete_range 3.6.1(4)
type of a range 3.5(4)
type parameter

See discriminant 3.7(1)
type profile

See profile, type conformant 6.3.1(15)
type resolution rules 8.6(20)

if any type in a specified class of types is
expected 8.6(21)

if expected type is specific 8.6(22)
if expected type is universal or class-wide

8.6(21)
type tag

See tag 3.9(3)
type-related

aspect 13.1(8)
attribute_definition_clause 13.3(7)
representation item 13.1(8)

type_conversion 4.6(2)
used 4.1(2), P(1)
See also unchecked type conversion

13.9(1)
type_declaration 3.2.1(2)

used 3.1(3), P(1)
type_definition 3.2.1(4)

used 3.2.1(3), P(1)
Type_Set A.10.1(7), A.10.10(3)
types

of a profile 6.1(29)

UC_Icelandic_Eth A.3.3(24)
UC_Icelandic_Thorn A.3.3(24)
UC_A_Acute A.3.3(23)
UC_A_Circumflex A.3.3(23)
UC_A_Diaeresis A.3.3(23)
UC_A_Grave A.3.3(23)
UC_A_Ring A.3.3(23)
UC_A_Tilde A.3.3(23)
UC_AE_Diphthong A.3.3(23)
UC_C_Cedilla A.3.3(23)
UC_E_Acute A.3.3(23)
UC_E_Circumflex A.3.3(23)
UC_E_Diaeresis A.3.3(23)
UC_E_Grave A.3.3(23)
UC_I_Acute A.3.3(23)
UC_I_Circumflex A.3.3(23)
UC_I_Diaeresis A.3.3(23)
UC_I_Grave A.3.3(23)
UC_N_Tilde A.3.3(24)
UC_O_Acute A.3.3(24)
UC_O_Circumflex A.3.3(24)
UC_O_Diaeresis A.3.3(24)
UC_O_Grave A.3.3(24)
UC_O_Oblique_Stroke A.3.3(24)
UC_O_Tilde A.3.3(24)
UC_U_Acute A.3.3(24)
UC_U_Circumflex A.3.3(24)
UC_U_Diaeresis A.3.3(24)
UC_U_Grave A.3.3(24)
UC_Y_Acute A.3.3(24)

UI — Worker

Index 21 December 1994 750

UCHAR_MAX B.3(6)
UI 1.3(1)
ultimate ancestor

of a type 3.4.1(10)
unary adding operator 4.5.4(1)
unary operator 4.5(9)
unary_adding_operator 4.5(5)

used 4.4(4), P(1)
Unbiased_Rounding attribute A.5.3(39),

K(252)
Unbounded A.10.1(5)

child of Ada.Strings A.4.5(3)
Unbounded_String A.4.5(4)
unchecked storage deallocation 13.11.2(1)
unchecked type conversion 13.9(1)
Unchecked_Access attribute 13.10(3),

H.4(19), K(256)
See also Access attribute 3.10.2(24)

Unchecked_Conversion J.1(2)
child of Ada 13.9(3)

Unchecked_Deallocation J.1(3)
child of Ada 13.11.2(3)

unconstrained 3.2(9)
object 3.3.1(9), 3.10(9), 6.4.1(16)
subtype 3.2(9), 3.4(6), 3.5(7), 3.5.1(10),

3.5.4(9), 3.5.4(10), 3.5.7(11), 3.5.9(13),
3.5.9(16), 3.6(15), 3.6(16), 3.7(26),
3.9(15), 3.10(14), K(33)

unconstrained_array_definition 3.6(3)
used 3.6(2), P(1)

undefined result 11.6(5)
underline 2.1(15), J.5(6)

used 2.3(2), 2.4.1(3), 2.4.2(4), P(1)
Uniformity Issue (UI) 1.3(1)
Uniformity Rapporteur Group (URG) 1.3(1)
Uniformly_Distributed A.5.2(8)
uninitialized allocator 4.8(4)
uninitialized variables 13.9.1(2)

[partial] 3.3.1(21), 13.3(55)
Union 3.9.3(15)
unit consistency E.3(6)
Unit_Set 3.9.3(15)
universal type 3.4.1(6)
universal_fixed

[partial] 3.5.6(4)
universal_integer 3.5.4(30)

[partial] 3.5.4(14)
universal_real

[partial] 3.5.6(4)
unknown discriminants 3.7(26)

[partial] 3.7(1)
unknown_discriminant_part 3.7(3)

used 3.7(2), P(1)
unmarshalling E.4(9)
unpolluted 13.13.1(2)
Unrelated 7.3.1(7)
Unsafe_Convert 13.9.1(12)
unsigned B.3(9), B.4(23)
unsigned type

See modular type 3.5.4(1)
Unsigned_ B.2(5)
unsigned_char B.3(10)
unsigned_long B.3(9)
unsigned_short B.3(9)
unspecified 1.1.3(18), M(1)

[partial] 2.1(5), 4.5.2(13), 4.5.5(21),
6.2(11), 7.2(5), 9.8(14), 10.2(26),
11.1(6), 11.5(27), 13.1(18), 13.7.2(5),
13.9.1(7), 13.11(20), A.1(1), A.5.1(34),
A.5.2(28), A.5.2(34), A.7(6), A.10(8),

A.10.7(8), A.10.7(12), A.10.7(19),
A.14(1), A.15(20), D.2.2(6), D.8(19),
G.1.1(40), G.1.2(33), G.1.2(48), H(4),
H.2(1)

Up_To_K 3.2.2(15)
update B.3.1(18), B.3.1(19)

the value of an object 3.3(14)
Update_Error B.3.1(20)
upper bound

of a range 3.5(4)
upper-case letter

a category of Character A.3.2(26)
upper_case_identifier_letter 2.1(8)
Upper_Case_Map A.4.6(5)
Upper_Set A.4.6(4)
URG 1.3(1)
US A.3.3(6)
usage name 3.1(10)
use-visible 8.3(4), 8.4(9)
use_clause 8.4(2)

used 3.11(4), 10.1.2(3), 12.1(5), P(1)
Use_Error A.8.1(15), A.8.4(18), A.10.1(85),

A.12.1(26), A.13(4)
use_package_clause 8.4(3)

used 8.4(2), P(1)
use_type_clause 8.4(4)

used 8.4(2), P(1)
User 9.1(28)
user-defined assignment 7.6(1)
user-defined heap management 13.11(1)
user-defined operator 6.6(1)
user-defined storage management 13.11(1)
User_Defined_Equal 8.5.4(8)

Val attribute 3.5.5(5), K(258)
Valid B.4(33), B.4(38), B.4(43), F.3.3(5),

F.3.3(12)
Valid attribute 13.9.2(3), H(7), K(262)
value 3.2(10), A.4.2(21), A.5.2(14),

A.5.2(26), B.3.1(13), B.3.1(14),
B.3.1(15), B.3.1(16), B.3.2(6), B.3.2(7),
C.7.2(4)

Value attribute 3.5(52), K(264)
value conversion 4.6(5)
Var_Line 3.6.1(17)
variable 3.3(13)
variable object 3.3(13)
variable view 3.3(13)
variant 3.8.1(3)

used 3.8.1(2), P(1)
See also tagged type 3.9(1)

variant_part 3.8.1(2)
used 3.8(4), P(1)

Vector 3.6(26), 12.1(24), 12.5.3(11)
version

of a compilation unit E.3(5)
Version attribute E.3(3), K(268)
vertical line 2.1(15)
Vertical_Line A.3.3(14)
view 3.1(7), N(12), N(42)
view conversion 4.6(5)
virtual function

See dispatching subprogram 3.9.2(1)
Virtual_Length B.3.2(13)
visibility

direct 8.3(2), 8.3(21)
immediate 8.3(4), 8.3(21)
use clause 8.3(4), 8.4(9)

visibility rules 8.3(1)

visible 8.3(2), 8.3(14)
within a pragma in a context_clause

10.1.6(3)
within a pragma that appears at the place of

a compilation unit 10.1.6(5)
within a with_clause 10.1.6(2)
within a use_clause in a context_clause

10.1.6(3)
within the parent_unit_name of a library

unit 10.1.6(2)
within the parent_unit_name of a subunit

10.1.6(4)
visible part 8.2(5)

of a formal package 12.7(10)
of a generic unit 8.2(8)
of a package (other than a generic formal

package) 7.1(6)
of a protected unit 9.4(11)
of a task unit 9.1(9)
of a view of a callable entity 8.2(6)
of a view of a composite type 8.2(7)
of an instance 12.3(12)

volatile C.6(8)
Volatile pragma C.6(4), L(38)
Volatile_Components pragma C.6(6), L(39)
Volt 3.5.9(26)
VT A.3.3(5)
VTS A.3.3(17)

wchar_t B.3(30)
Weekday 3.5.1(16)
well-formed picture String

for edited output F.3.1(1)
Wide_Bounded

child of Ada.Strings A.4.7(1)
Wide_Character 3.5.2(3), A.1(36)
Wide_Character_Mapping A.4.7(20)
Wide_Character_Mapping_Function

A.4.7(26)
Wide_Character_Range A.4.7(6)
Wide_Character_Sequence A.4.7(16)
Wide_Character_Set A.4.7(4)
Wide_Constants

child of Ada.Strings.Wide_Maps A.4.7(1)
Wide_Fixed

child of Ada.Strings A.4.7(1)
Wide_Image attribute 3.5(28), K(270)
Wide_Maps

child of Ada.Strings A.4.7(3)
wide_nul B.3(31)
Wide_Space A.4.1(4)
Wide_String 3.6.3(4), A.1(41)
Wide_Text_IO

child of Ada A.11(2)
Wide_Unbounded

child of Ada.Strings A.4.7(1)
Wide_Value attribute 3.5(40), K(274)
Wide_Width attribute 3.5(38), K(278)
Width attribute 3.5(39), K(280)
with_clause 10.1.2(4)

used 10.1.2(3), P(1)
mentioned in 10.1.2(6)

within
immediately 8.1(13)

word 13.3(8), 13.5.1(25)
Word_Size 13.7(13)

named number in package System
13.7(13)

wording changes from Ada 83 1.1.2(39)

Write — Yen_Sign

751 21 December 1994 Index

Worker A.5.2(60)
Write 7.5(19), 7.5(20), 9.1(24), 9.11(8),

9.11(9), 13.13.1(6), 13.13.2(40),
A.8.1(12), A.8.4(13), A.9(7),
A.12.1(18), A.12.1(19), E.5(8)

Write attribute 13.13.2(3), 13.13.2(11),
K(282), K(286)

Write clause 13.3(7), 13.13.2(36)

X 4.9(37), 8.2(3), 8.2(12), 8.3(29), 13.5.1(12)
xor operator 4.4(1), 4.5.1(2)

Y 3.10.2(22), 13.1(22)
Year 9.6(13)
Year_Number 9.6(11)
Yen_Sign A.3.3(21)

