
An Introduction to

Java and Object Oriented

Programming

Abstract

The primary aim of the notes are to provide an introduction to the Java programing lan-
guage. It is assumed that you know one programming language moderately well. The sec-
ondary aim is to look at object oriented programming and the features that support it in
Java. The third aim is to look at the functioanlity provided in the language by the extensive
application programming interface – api.

The material in these notes is evolving as Java evolves.

Author: Ian D Chivers

Email: ian.chivers@kcl.ac.uk

Version 3.2: 24/11/2000

© Ian D Chivers. Permission to copy all or part of this work is granted, provided that the
copies are not made or distributed for resale (except a nominal copy fee may be charged),
and provided that the Author, Copyright, & No Warranty sections are retained verbatim and
are displayed conspicuously. If anyone needs other permissions that aren’t covered by the
above, please contact the author.

No Warranty: this work is provided on an as is basis. The author provides no warranty
whatsoever, either express or implied, regarding the work, including warranties with respect
to its merchantability or fitness for any particular purpose.

All comments welcome.

Table of Contents
1 Overview...16
1.1 Aims..16
1.2 Assumptions ...16
1.3 Course Material and Recommended Sources ..16
1.4 Java Versions – Bits of History ...17
1.4.1 1.0.x ..17
1.4.2 1.1.x ..17
1.4.3 1.2.x – aka Java 2...17
1.5 Development platforms ..17
1.6 Development kits and Standards..18
1.7 Miscellanea ...18
1.8 Course Timetable..19
1.9 Coda..19
1.10 Bibliography ...19
2 An Introduction to Programming Languages and Object Oriented Pro-
gramming ...24
2.1 Fortran 66, 1966 ...24
2.2 Pascal, 1975, ANSI & BSI 1982, ISO 1983, Extended Pascal 1991?......................24
2.3 Fortran 77, 1978 ...25
2.4 C, K&R 1978, Standard 1989. ...25
2.5 Modula 2, 1982, Standard 1996? ...25
2.6 Ada, ISO 8652: 1987 ...25
2.7 C++, 1986, Standard November 1997 ...25
2.8 Oberon 2, Late 1980’s, early 1990’s. ..26
2.9 Fortran 90, 1991. ..26
2.10 Eiffel, 1988 ...26
2.11 Ada, ISO 8652: 1995 ...26
2.12 Java ...27
2.13 Visual Basic..27
2.14 Language Comparison..27
2.15 Language Features..29
2.15.1 Independent Compilation ...29
2.15.2 Separate Compilation ...29
2.15.3 Concrete Data Types ..29
2.15.4 Abstract Data Types...29
2.15.5 Dynamic arrays...29
2.15.6 Numeric and General Polymorphism...29
2.15.7 Modules ...30
2.15.8 Pointers and References ...30
2.15.9 Procedure Variables ...30
2.15.10 Inheritance ..30
2.15.11 Dynamic Binding ...30
2.15.12 Operator Overloading...30
2.15.13 Threads/Multitasking..30
2.15.14 Exception Handling..31
2.16 Some Important Milestones in Program Language Development31
2.16.1 Structured Programming ..31
2.16.2 Stepwise Refinement..31
2.16.3 Data Structuring, Concrete vs Abstract Data Types..31
2.16.4 Information Hiding – Modules ..31
2.17 Terminology of Object Oriented Programming...31
2.18 Parallel Developments..31
2.18.1 Parallel Fortran – Fortran 95, Fortran 2000, SMP, MPI, HPF32
2.18.2 Parallel C++..32
2.19 Object Oriented Programming ...32
2.20 Object Oriented Languages ..33
2.20.1 Simula – 1967 ..33
2.20.2 Smalltalk – 1978 ..33
2.20.3 C++ ...33
2.20.4 Eiffel ...33

Contents 3

2.20.5 Oberon 2 ...33
2.20.6 Ada 95 ..34
2.20.7 Java ...34
2.21 Other Languages...35
2.21.1 Fortran 90 and Fortran 95 ..35
2.21.2 Modula 2...35
2.22 The OO Approach ..35
2.22.1 Meyer’s Approach..35
2.22.2 Rumbaugh et al ..36
2.22.3 Practical Steps ..36
2.23 Simple Example..37
2.24 Other Developments ...38
2.24.1 Development Environments ...38
2.24.2 Graphical Development Tools ...38
2.24.3 Software Components ..38
2.24.3.1 COM, OLE, ActiveX...39
2.24.3.2 JavaBeans...39
2.25 Coda..39
2.26 Bibliography ...40
2.27 Problems ...45
3 An Introduction to Java ...48
3.1 Program Development..48
3.2 Java Programs...48
3.3 Java Applets..48
3.4 Hello World – Java Program..48
3.5 Hello World – Java Applet ..49
3.6 Hello World: JApplet ...52
3.7 Hello World: JApplet alternate syntax...52
3.8 Hello World: JComponent ...53
3.9 Program for line i/o ..53
3.10 Program for numeric i/o ...54
3.11 Some Java Rules and Terminology..56
3.12 Good Programming Guidelines..56
3.13 Java Character Set ..57
3.14 Summary...57
3.15 Bibliography ...57
3.15.1 Java ...57
3.15.2 HTML...57
3.15.3 Character sets ...58
3.16 Problems ...58
4 Arithmetic and Expressions in Java..60
4.1 Basic numeric types ...60
4.2 Integer Numeric Type ..60
4.3 Real Numeric Type ..62
4.4 IEEE 754-1985 ...63
4.5 Numeric Type Conversion ...63
4.6 Whither complex? ..63
4.7 Constants or Parameters ...63
4.8 Operators and Expression Evaluation ..63
4.8.1 Expression Evaluation..63
4.8.2 Operators, Precedence and Associativity...64
4.8.2.1 . [member selection] object.member ...65
4.8.2.2 [] [subscripting] pointer [expr] ..65
4.8.2.3 () [function call] expr (expr_list)...65
4.8.2.4 ++ [post increment] expr ++ ...65
4.8.2.5 — [post decrement] expr —..65
4.8.2.6 ++ [pre increment] ++ expr ...65
4.8.2.7 — [pre decrement] — expr ...65
4.8.2.8 ~ [complement] ~ expr ..65
4.8.2.9 ! [not] ! expr ..65
4.8.2.10 - [unary minus] - expr..65

4 Contents

4.8.2.11 + [unary plus] + expr...65
4.8.2.12 new [create] new type..66
4.8.2.13 () [cast] (type) expr..66
4.8.2.14 * [multiply] expr * expr ..66
4.8.2.15 / [divide] expr / expt ..66
4.8.2.16 % [modulo or remainder] expr % expr ...66
4.8.2.17 + [plus] expr + expr...66
4.8.2.18 - [minus] expr - expr..66
4.8.2.19 << [shift left] expr << expr ...66
4.8.2.20 >> [shift right] expr >> expr ...66
4.8.2.21 >>> [sihift right] expr >>> expr ...66
4.8.2.22 < [less than] expr < expr ...66
4.8.2.23 <= [less than or equal] expr <= expr ..66
4.8.2.24 > [greater than] expr > expr ..66
4.8.2.25 >= [greater than or equal] expr >= expr ...66
4.8.2.26 == [equal] expr == expr ..66
4.8.2.27 != [not equal] expr != expr..66
4.8.2.28 & [bitwise AND] expr & expr ..66
4.8.2.29 ^ [bitwise exclusive OR] expr ^ expr..67
4.8.2.30 | [bitwise inclusive OR] expr | expr ..67
4.8.2.31 && [logical AND] expr && expr...67
4.8.2.32 || [logical inclusive OR] expr || expr ...67
4.8.2.33 ?: [conditional expression] expr ? expr : expr ..67
4.8.2.34 = [conventional assignment] expr = expr..67
4.8.2.35 *= [multiply and assign] expr *= expr..67
4.8.2.36 /= [divide and assign] expr /= expr ...67
4.8.2.37 %= [modulo and assign] expr %= expr ..67
4.8.2.38 += [add and assign] expr += expr ...67
4.8.2.39 -= [subtract and assign] expr -= expr ..67
4.8.2.40 <<= [shift left and assign] expr <<= expr...67
4.8.2.41 >>= [shift right and assign] expr >>= expr ..67
4.8.2.42 &= [AND and assign] expr &= expr ..67
4.8.2.43 |= [inclusive OR and assign] expr |= expr ..67
4.8.2.44 ^= [exclusive OR and assign] expr ^= expr..68
4.9 Expression Examples..68
4.10 Char...71
4.11 Boolean ...72
4.12 Example Programs..72
4.12.1 Example Program – Simple character and boolean output ...72
4.12.2 Example Program – Unicode character output..72
4.12.3 Example Program – Bitwise operators &, ^ and | ...72
4.13 Summary...73
4.14 Package java.lang ..73
4.14.1 Interface Summary ...73
4.14.1.1 Cloneable ...73
4.14.1.2 Comparable ..73
4.14.1.3 Runnable ..73
4.14.2 Class Summary...73
4.14.2.1 Boolean ..73
4.14.2.2 Byte ..74
4.14.2.3 Character ..74
4.14.2.4 Character.Subset ..74
4.14.2.5 Character.UnicodeBlock ..74
4.14.2.6 Class ...74
4.14.2.7 ClassLoader..74
4.14.2.8 Compiler...74
4.14.2.9 Double..74
4.14.2.10 Float ...74
4.14.2.11 InheritableThreadLocal ..74
4.14.2.12 Integer ..74
4.14.2.13 Long ...74
4.14.2.14 Math ...74
4.14.2.15 Number...76
4.14.2.16 Object ...76

Contents 5

4.14.2.17 Package ..76
4.14.2.18 Process ...76
4.14.2.19 Runtime..76
4.14.2.20 RuntimePermission ..76
4.14.2.21 SecurityManager ..76
4.14.2.22 Short ...76
4.14.2.23 String..76
4.14.2.24 StringBuffer ...76
4.14.2.25 System..76
4.14.2.26 Thread ..76
4.14.2.27 ThreadGroup ..76
4.14.2.28 ThreadLocal ...76
4.14.2.29 Throwable ..76
4.14.2.30 Void..76
4.15 Bibliography ...77
4.16 Problems ...77
5 Strings ...80
5.1 The basics ...80
5.2 java.lang.String ...80
5.2.1 String Methods ...81
5.2.1.1 String Example 1 – replace ...82
5.2.1.2 String Example 2 - valueOf...82
5.2.1.3 String Example 3 – as above but no import statement...83
5.3 java.lang.StringBuffer...83
5.3.1 StringBuffer Methods...84
5.3.1.1 StringBuffer Example 1 – throwing an exception and catching...............................85
5.3.1.2 StringBuffer Example 2 – throwing an exception and splat87
5.4 References...87
5.5 Unicode...88
5.6 Summary...89
5.7 Problems ...89
6 Arrays In Java ...92
6.1 Example 1...92
6.2 Example 2 Variant on 1 using alternate syntax...93
6.3 Example 3 – two dimensional arrays...94
6.4 Example 4 – 1 d array with real world -20 to +20..94
6.5 Example 5 – 2 d array initialisation...95
6.6 Whole Array Manipulation ..95
6.7 Summary...96
6.8 Problems ...96
7 Control Structures...98
7.1 Compound Statement or Block ..98
7.2 Expression...98
7.3 Boolean ...98
7.4 if (expression) statement ..98
7.4.1 Example 1...98
7.5 if (expression) statement; else statement; ..98
7.5.1 Example 1...99
7.5.2 Example 2...99
7.6 switch (expression) statement ..99
7.6.1 Example 1...99
7.7 while (expression) statement ..100
7.7.1 Example 1...100
7.8 do statement while (expression);..101
7.8.1 Example 1...101
7.9 for (init-statement;expression 1; expression 2) statement102
7.9.1 Example 1...102
7.9.2 Example 2...102
7.10 break, continue, goto statements ..102
7.11 Summary...103
7.12 Problems ...103

6 Contents

7.13 Bibliography ...105
8 Exceptions...108
8.1 Linked List – Pascal ...108
8.2 Linked List – Fortran 90 ..109
8.3 Linked List – C++, old C syntax ...110
8.4 Discussion...111
8.4.1 try..112
8.4.2 catch..112
8.4.3 finally..112
8.5 Array Subscript Errors ...112
8.6 Anticipated Errors vs Unanticipated Errors...112
8.7 Complete Example – File copy program...112
8.8 Java Errors and Exceptions ..117
8.9 Java On-line Documentation..117
8.10 Summary...117
8.11 Problems ...117
9 i/o ...120
9.1 Class vs Interface ...121
9.2 Java.io.DataInput – interface..121
9.2.1 UTF...121
9.3 java.io.DataInputStream – class ...122
9.4 java.io.DataOutput – interface ...122
9.5 java.io.DataOutputStream – class ..123
9.6 java.io.PrintStream – class ...123
9.6.1 Synchronized ..123
9.7 Example 1...124
9.8 Problems ...128
10 Threads ..130
10.1 Example 1 – extends Thread..130
10.2 Example 2 – Extends Thread ...131
10.3 Example 3 – implements Runnable ...132
10.4 Example 4 – Implements Runnable ...132
10.5 Example 5 – static variable in a thread ...133
10.6 Example 6 – synchronized ...134
10.7 Example 7 –yield..135
10.8 Example 8 – thread priority ...135
10.9 Problems ...136
10.10 Bibliography ...136
11 Introduction to Graphics Programming...138
11.1 Vector vs Raster Graphics..138
11.2 Pixels...138
11.3 Bit maps – gif vs jpg..138
11.4 Screen resolution ..138
11.4.1 Interlaced vs non-interlaced ...138
11.5 Colour Models ..138
11.6 Scanning ...139
11.7 Coordinate spaces...139
11.8 Fonts ...139
11.9 Aliasing and Antialiasing ...139
11.10 Device context ..139
11.11 Clipping ..139
11.12 Rendering..139
11.13 Putting it all togethor..139
11.14 History ..140
11.15 Example 1 – Bouncing Balls..140
11.16 Example 2 – Bouncing Balls with integer arithmetic ...141
11.17 Example 3 – Bouncing Balls with double buffering ...143
11.18 Examle 4 – Bouncing Balls with integer arithmetic and double buffering145
11.19 Example 6 – Loading jpg images – static display...147

Contents 7

11.20 Example 7 – Loading image – simple scaling...147
11.21 Example 8 – Moving image...148
11.22 Basic Drawing Methods ...149
11.22.1 Lines – g.drawline(x1,y1,x2,y2) ..149
11.22.2 Rectangles – g.drawRect(xstart,ystart,width,height)

g.fillRect(x,y,w,h)...149
11.22.3 Rounded Rectangles – g.drawRoundRect(xstart,ystart,w,h,xcurve,ycurve)150
11.22.4 3D Effects – g.draw3Drect(x,y,w,h,true)...151
11.22.5 Polygons ...151
11.22.6 Ovals – g.drawOval(x,y,w,h) and g.fillOval(x,y,w,h) ...152
11.22.7 Arcs – g.drawArc(x,y,w,h,start,end) and g.fillArc(x,y,w,h,s,e)152
11.22.8 Colour – Color..152
11.22.9 Texts and Fonts ..153
11.23 AWT 1.0.x ...154
11.23.1 Interface Summary ...155
11.23.2 Class Summary..156
11.23.3 Exception Summary ..160
11.23.4 Error Summary..160
11.23.5 java.awt.Graphics ...160
11.23.5.1 Constructor Summary ..161
11.23.5.2 Method Summary ..161
11.24 Package java.awt.Graphics2D – JDK 1.2 ..164
11.24.1 Rendering..164
11.24.2 Compatability ...165
11.24.3 Constructor Summary...165
11.24.4 Method Summary ...165
11.25 Package java.awt.geom – JDK 1.2...168
11.26 Package java.awt.im – JDK 1.2 ...168
11.27 Package java.awt.image.renderable – JDK 1.2..168
11.28 Package java.awt.print – JDK 1.2..168
11.29 Java 2D API Overview ...168
11.29.1 Enhanced Graphics, Text, and Imaging ..168
11.29.2 Rendering Model..169
11.29.3 Backward Compatibility and Platform Independence ..169
11.29.4 Setting Up the Graphics2D Context ..170
11.29.5 Rendering Graphics Primitives ..170
11.29.6 Managing and Manipulating Rasters ..170
11.29.7 Geometries ...170
11.29.8 Fonts and Text Layout ..171
11.29.9 Imaging ..171
11.29.10 Color ..171
11.29.11 ColorModels and Color Data and the BufferedImage Class...172
11.29.12 Printing ..172
11.30 Simple bouncing ball..173
11.30.1 Initialisation ..175
11.30.2 JFrame ..175
11.30.3 addWindowListener..175
11.30.4 Class WindowAdapter..175
11.31 Bouncing balls with selective erase ...175
11.32 Simple jpeg display ..178
11.33 Simple line drawing ...179
11.34 Summary...179
11.35 Problems ...180
11.36 Bibliography ...186
11.36.1 Scanning ...187
11.36.2 Fonts ...187
11.36.3 Microsoft ..187
11.36.4 Non-Microsoft ..187
12 AWT Based Windows Programming..190
12.1 Button ...190
12.2 Label ...190
12.3 Button and Label ..190

8 Contents

12.4 Scrollbar..191
12.5 Scrollbar with size information..191
12.6 Checkbox ..191
12.7 Checkbox with Grouping ...191
12.8 List ..192
12.9 TextField...192
12.10 Passwords ...192
12.11 TextArea ...193
12.12 Layout ...193
12.12.1 Panels..193
12.12.2 FlowLayout...193
12.12.3 GridLayout..194
12.12.4 Gridlayout with size ...194
12.12.5 GridBagLayout ...195
12.12.6 CardLayout ...195
12.13 Putting it all togethor..196
12.14 Problems ...196
13 Events..198
13.1 AWT Events ...198
13.1.1 Mouse Events ...198
13.1.2 Keyboard events ...198
13.1.3 Example 1 – Cut and paste text ...198
13.1.4 Example 2 – Simple mouse tracking ...199
13.1.5 Example 3 – Mouse with drag...199
13.1.6 Example 4 – Key up and key down ..200
13.2 Swing Event Handling – As of JDK 1.2.2 ..201
13.2.1 Interface Summary ...201
13.2.2 Class Summary...203
13.2.3 Package javax.swing.event ..204
13.3 ActionListener ..204
13.4 ActionEvent ..205
13.5 Example 1...205
13.5.1 Frames ..208
13.5.2 super – Constructor Chaining ..208
13.6 Example 2...208
13.7 Summary...212
13.8 Problems ...212
14 Swing...214
14.1 History ..214
14.2 What do I need? ...214
14.3 Swing Packages ..215
14.3.1 javax.accessibility...215
14.3.2 javax.swing ...215
14.3.3 javax.swing.border..215
14.3.4 javax.swing.colorchooser ...215
14.3.5 javax.swing.event ...215
14.3.6 javax.swing.filechooser ..215
14.3.7 javax.swing.pending ...215
14.3.8 javax.swing.plaf..215
14.3.9 javax.swing.table ..215
14.3.10 javax.swing.text ..215
14.3.11 javax.swing.text.html..215
14.3.12 javax.swing.tree ..215
14.3.13 javax.swing.undo ..215
14.4 Enter Microsoft Stage Left...215
14.5 Pluggable Look and Feel..216
14.6 Lightweight Components ...216
14.7 Model–View–Controller (MVC) Architecture...216
14.7.1 Model..216
14.7.2 View..216
14.7.3 Controller..216
14.8 Multithreading ..216

Contents 9

14.9 Components ..216
14.10 Simple Examples ..217
14.10.1 JButton..217
14.10.2 JLabel..217
14.10.3 Button and Label ..218
14.10.4 JScollBar...218
14.10.5 JScrollBar with size information ...218
14.10.6 CheckBox ...219
14.10.7 CheckBox with Grouping ..219
14.10.8 List ..219
14.10.9 TextField...220
14.10.10 Passwords ...220
14.10.11 TextArea ...220
14.11 Layout ...220
14.11.1 Panels..221
14.11.2 FlowLayout...221
14.11.3 GridLayout..221
14.11.4 Gridlayout with size ...221
14.11.5 GridBagLayout ...221
14.11.6 CardLayout ...221
14.11.7 Simple Graph Plotting – AWT Based ...221
14.11.8 Simple Graph Plotting – Swing Based ..222
14.12 Inheritence Revisited ..223
14.13 JApplet..223
14.14 Swing Containers and JComponent ...224
14.15 Examples...225
14.16 Problems ...225
14.17 Bibliography ...225
15 JavaBeans ...228
15.1 Package java.beans – JDK 1.1 ...230
15.2 Package java.beans.beancontext ...230
15.3 Example 1...230
15.4 Summary...232
15.5 Useful addresses ...232
15.6 Problems ...233
16 Overview of Development Environments ...236
16.1 Edit, Compile and Run...236
16.2 Workbench or IDE ...236
16.3 Visual Development Tools...238
16.4 Problems ...238
17 Forte for Java ..240
17.1 Forte Recommended Configurations ...240
17.2 The JDK..240
17.3 Documentation..240
18 Microsoft Visual J++...242
18.1 Availability and Versions...242
18.2 The Development Environment ...242
18.3 Working practices...243
18.4 Documentation Map ...243
18.5 Getting Started with Visual J++ 6.0 ..244
18.5.1 Creating a WFC Application ...244
18.5.2 Building and Running Your Application...244
18.5.3 Debugging Your Application...245
18.5.4 Packaging Your Application ..245
18.6 Getting Going ...245
18.7 Bibliography ...245
19 IBM VisualAge for Java ...248
19.1 Health Warning ..248
19.2 Versions and Availability...248
19.2.1 VisualAge® Object Connection Partners CD Version 2.0.1.248
19.2.2 MindQ: Introduction to VisualAge for Java..248

10 Contents

19.2.3 AlphaWorks..248
19.2.3.1 alphaWorks History: The Launch ..248
19.2.4 Other Offerings...249
19.3 Documentation..249
19.3.1 IDE Basics: Concepts and Tasks: 34 pages...249
19.3.2 Getting Started: 144 pages ...249
19.3.3 Visual Composition: Concepts and Tasks: 267 pages...250
19.3.4 Data Access: Concepts and Tasks: 61 pages...250
19.3.5 SCM Tools: Concepts and Tasks: 16 pages ..250
19.3.6 AgentRunner: Concepts, Tasks and Samples: 25 pages..250
19.3.7 Tool Integrators: 20 pages ...250
19.4 Installation ..250
19.5 Overview...250
19.6 Starting up Visual Age for Java...251
19.7 Summary...252
20 Multimedia ...254
20.1 Playing Audio Clips ...254
20.2 java.applet ...254
20.2.1 Interface AudioClip: Since: JDK1.0 ...254
20.2.2 Method Summary ...254
20.2.3 Method Detail...254
20.3 Example – Audio..255
20.4 Problems ...257
21 Simple Networking ..260
21.1 Package java.net: Since: JDK1.0 ...260
21.1.1 Interface Summary ...260
21.1.2 Class Summary...260
21.1.3 Exception Summary ...261
21.2 Examples...261
21.2.1 Manipulating urls ...261
21.2.2 Reading a file on a web server ..263
21.3 Problems ...264
22 Web Data Access ...266
22.1 Background...266
22.1.1 The Visual Development Environment ...266
22.1.2 The Web Server..266
22.2 Java ...266
22.3 Data Sources...266
22.3.1 Oracle..266
22.3.2 Microsoft ..267
22.3.2.1 Some entries from the FAQ ..267
22.3.3 IBM...267
22.4 JDBC API...267
22.5 Package java.sql – JDK 1.1..268
22.5.1 Interface Summary ...269
22.5.1.1 Array – JDBC 2.0 ..269
22.5.1.2 Blob – JDBC 2.0 ...269
22.5.1.3 CallableStatement ..269
22.5.1.4 Clob – JDBC 2.0 ...269
22.5.1.5 Connection ...269
22.5.1.6 DatabaseMetaData ...269
22.5.1.7 Driver ...269
22.5.1.8 PreparedStatement ...269
22.5.1.9 Ref – JDBC 2.0 ...269
22.5.1.10 ResultSet ..269
22.5.1.11 ResultSetMetaData...269
22.5.1.12 SQLData – JDBC 2.0 ..269
22.5.1.13 SQLInput – JDBC 2.0 ...269
22.5.1.14 SQLOutput – JDBC 2.0...269
22.5.1.15 Statement..269
22.5.1.16 Struct – JDBC 2.0..269
22.5.2 Class Summary...269

Contents 11

22.5.2.1 Date ..269
22.5.2.2 DriverManager ...269
22.5.2.3 DriverPropertyInfo...269
22.5.2.4 Time ...270
22.5.2.5 Timestamp..270
22.5.2.6 Types..270
22.5.3 Exception Summary ...270
22.5.3.1 BatchUpdateException – JDBC 2.0 ...270
22.5.3.2 DataTruncation...270
22.5.3.3 SQLException..270
22.5.3.4 SQLWarning ..270
22.6 Package javax.sql ..270
22.6.1 Interface Summary ...270
22.6.1.1 ConnectionEventListener...270
22.6.1.2 ConnectionPoolDataSource ...270
22.6.1.3 DataSource ...270
22.6.1.4 PooledConnection ..270
22.6.1.5 RowSet ...270
22.6.1.6 RowSetInternal...270
22.6.1.7 RowSetListener..270
22.6.1.8 RowSetMetaData ...270
22.6.1.9 RowSetReader..271
22.6.1.10 RowSetWriter...271
22.6.1.11 XAConnection ...271
22.6.1.12 XADataSource ...271
22.6.2 Class Summary...271
22.6.2.1 ConnectionEvent..271
22.6.2.2 RowSetEvent..271
22.7 Examples...271
22.8 Summary...271
22.9 Bibliography ...271
23 Servlets..274
23.1 Getting started ..274
23.1.1 Notes...278
23.1.1.1 Jar files ...278
23.1.1.2 Start the server ...278
23.1.1.3 Compiled class files...279
23.1.1.4 Incorrect example link ...279
23.1.1.5 Complete source code..279
23.1.1.6 Calling Servlets From a Browser ...279
23.1.1.7 Calling Servlets from an HTML page...280
23.2 Package java.servlet ...280
23.2.1 Interfaces ..280
23.2.2 Classes ..280
23.2.3 Exceptions ...280
23.3 Package java.servlet.http ..280
23.3.1 Interfaces ..280
23.3.2 Classes ..281
23.4 Package java.servlet.jsp..281
23.4.1 Interfaces ..281
23.4.2 Classes ...281
23.4.3 Exceptions ...281
23.5 Package java.servlet.jsp.tagtext ..281
23.5.1 Interfaces ..281
23.5.2 Classes ...281
23.6 Bibliography ...281
24 JavaServer Pages ...284
24.1 Bibliography ...284
24.1.1 JSP ..284
24.1.2 HTML...284
24.1.3 XML ...284
25 Package java.util..286
25.1 Package java.util ..286

12 Contents

25.1.1 Interface Summary ...286
25.1.1.1 Collection ...286
25.1.1.2 Comparator...286
25.1.1.3 Enumeration ...286
25.1.1.4 EventListener ...286
25.1.1.5 Iterator..286
25.1.1.6 List ...286
25.1.1.7 ListIterator..286
25.1.1.8 Map ..286
25.1.1.9 Map.Entry ..286
25.1.1.10 Observer ...286
25.1.1.11 Set...286
25.1.1.12 SortedMap..286
25.1.1.13 SortedSet ..286
25.1.2 Class Summary...287
25.1.2.1 AbstractCollection ...287
25.1.2.2 AbstractList ..287
25.1.2.3 AbstractMap...287
25.1.2.4 AbstractSequentialList ...287
25.1.2.5 AbstractSet ...287
25.1.2.6 ArrayList ..287
25.1.2.7 Arrays...287
25.1.2.8 BitSet..287
25.1.2.9 Calendar ...287
25.1.2.10 Collections ...287
25.1.2.11 Date ..287
25.1.2.12 Dictionary...287
25.1.2.13 EventObject..287
25.1.2.14 GregorianCalendar ...287
25.1.2.15 HashMap ..287
25.1.2.16 HashSet ..288
25.1.2.17 Hashtable..288
25.1.2.18 LinkedList ..288
25.1.2.19 ListResourceBundle ...288
25.1.2.20 Locale...288
25.1.2.21 Observable ...288
25.1.2.22 Properties ...288
25.1.2.23 PropertyPermission ..288
25.1.2.24 PropertyResourceBundle ...288
25.1.2.25 Random ..288
25.1.2.26 ResourceBundle ...288
25.1.2.27 SimpleTimeZone..288
25.1.2.28 Stack...288
25.1.2.29 StringTokenizer..288
25.1.2.30 TimeZone ...288
25.1.2.31 TreeMap ...288
25.1.2.32 TreeSet ...288
25.1.2.33 Vector...288
25.1.2.34 WeakHashMap...288
25.1.3 Exception Summary ...289
25.1.3.1 ConcurrentModificationException...289
25.1.3.2 EmptyStackException..289
25.1.3.3 MissingResourceException..289
25.1.3.4 NoSuchElementException ...289
25.1.3.5 TooManyListenersException ...289
25.2 Bibliography ...289
26 Package java.awt.dnd..292
26.1 Package java.awt.dnd – JDK 1.2 ...292
26.1.1 Interface Summary ...292
26.1.1.1 Autoscroll...292
26.1.1.2 DragGestureListener ..292
26.1.1.3 DragSourceListener ...292
26.1.1.4 DropTargetListener..292
26.1.2 Class Summary...292

Contents 13

26.1.2.1 DnDConstants ..292
26.1.2.2 DragGestureEvent..292
26.1.2.3 DragGestureRecognizer ...292
26.1.2.4 DragSource...292
26.1.2.5 DragSourceContext..293
26.1.2.6 DragSourceDragEvent ...293
26.1.2.7 DragSourceDropEvent ...293
26.1.2.8 DragSourceEvent ...293
26.1.2.9 DropTarget ...293
26.1.2.10 DropTarget.DropTargetAutoScroller...293
26.1.2.11 DropTargetContext ..293
26.1.2.12 DropTargetDragEvent..293
26.1.2.13 DropTargetDropEvent ...293
26.1.2.14 DropTargetEvent..293
26.1.2.15 MouseDragGestureRecognizer ..293
26.1.3 Exception Summary ...293
26.1.3.1 InvalidDnDOperationException ..293
26.2 Bibliography ...294
27 IEEE Arithmetic ..296
27.1 History ..296
27.2 IEEE 754 Specifications...297
27.2.1 Single precision floating point format. ..298
27.2.2 Double precision floating point format..299
27.2.3 Two classes of extended floating point formats. ...300
27.2.4 Accuracy requirements ..300
27.2.5 Base conversion - i.e. when converting between decimal and binary floating point for-
mats and vice versa..300
27.2.6 Exception handling...300
27.2.7 Rounding directions. ..300
27.2.8 Rounding precisions. ..300
27.3 Resumé ...300
27.4 ematics ..301
27.5 Bibliography ...301
27.5.1 Web based sources ...302
27.5.2 Hardware Sources...303
27.5.3 Operating Systems..303
27.5.4 Java and IEEE 754 ...303
27.5.5 C and IEEE 754 ...303
28 Language Standardisation..306
28.1 Sun ..306

14 Contents

1
Overview

‘The first thing we do, let’s kill all the language lawyers.’

Henry VI, part II

Aims

The aims of the chapter are to provide a background to the organisation of the
course.

1 Overview

1.1 Aims
The primary aim of the course is to provide an introduction to programming using Java.
Some of the examples are taken from the Fortran 95 and C++ courses. These examples are
available on the college web server enabling you to compare the syntax of the three lan-
guages.

The rest of the examples look at what Java has to offer in its own right. In particular there
is a coverage of both Java programs and Java applets. Java programs are usually interpreted
using the Java interpreter provided with the development kit you use, whilst Java applets
run in a web browser. We will look into the differences in more depth later.

1.2 Assumptions
It is assumed that the reader:–

� has a working knowledge of programming with one of Fortran 77, Fortran 90,
Fortran 95, Pascal, Modula 2, C or C++;

� knows about the benefits of structured programming;

� knows about the data structuring facilities in one of the above languages;

� has some knowledge of object oriented programming;

1.3 Course Material and Recommended Sources
The course material is not complete. It is useful to make the following distinctions when
learning any programming language:–

� introductory complete texts on a programming language

� reference texts on a programming language

� good programming practice in a programming language

� introductions to object oriented programming

The following are some sources I’ve found useful. The list is not exhaustive and your mile-
age will vary. To get a reasonable working knowledge of Java I’ve found that I’ve had to:–

� read a variety of books;

� used the on-line documentation that comes with each version I’ve used.

� use the links that Sun provide to their web server. They provide a lot of essential
information regarding Java.

� read the definitions of the language provided both in books published by Sun
and available on line with the development kit;

� last and most importantly write examples to test out my understanding;

Sun provide on-line turorials and you may like to have a look at what they offer. Home
page is:

http://java.sun.com/docs/books/tutorial/index.html

The tutorial is also available for download. You might want to consider this option when
working at home. Avoids the cost of the telephone.

URL is

http://java.sun.com/docs/books/tutorial/information/download.html

Chapter 1 Overview 16

© Ian D Chivers email: ian.chivers@kcl.ac.uk

The size of these may put you off downloading over a telephone line. Around 9-10 Mb in
March 2000.

1.4 Java Versions – Bits of History
Java is evolving. There are a number of versions around. The first I used was JDK 1.0.2.
The oldest books will use this version. The date of the book is very important. Later chap-
ters in the notes will provide additional information.

1.4.1 1.0.x
The first release was in early 1996. 1.0.2 was the first version I used and came out in 1996
too. 1.0.2 added an improved set of graphics classes. First College course given in
1996–1997.

1.4.2 1.1.x
Early 1997. Added a new event handling mechanism. By now the primitive nature of the
AWT (Abstract Windows Toolkit) had became apparent. 1997 saw the introduction of the
Java Foundation Classes which supersedes and includes AWT. These new components were
called Swing. JavaBeans came into existence. JavaBeans is a component architecture for the
Java platform. We will look into this in much greater depth in later chapters.

1.4.3 1.2.x – aka Java 2.
Sun rebadged Java in December 1998 when Java 1.2 became Java 2.

Be very careful when buying books on Java. You need to ensure that the books that you
buy address the version we will be using.

1.5 Development platforms
The majority of the examples have been tested using the Sun development kits (JDKs) on
both Solaris and Windows environments. These are both free. They may be downloaded
and installed on your own machine if you have one. The first JDK used was 1.0.2. I am
now using 1.2.2. JDK 1.3 is in the pipeline.

You should also get the documentation that Sun provide. This is installed on the College
web server. There are links from the Java pages. If you program at home I would download
it and install it.

The following is the sun home page:

� http://www.java.sun.com/

The following has details of the jdk

� http://java.sun.com/products/jdk/1.2/

that is available for download.

I have also used:

� IBM Visual Age for Java. It exists in three editions:–

� Entry Edition – free

� Professional – 65 UK pounds;

� Enterprise – approx 2,000 uk pounds;

Needless to say I haven’t used the Enterprise Edition.
The Entry Edition can be downloaded from the web.
Visit:

http://www7.software.ibm.com/vad.nsf

17 Overview Chapter 1

email: ian.chivers@kcl.ac.uk © Ian D Chivers

for more details.

� Microsoft Visual J++ 6.0. This comes bundled with Developer Studio Enterprise
Edition. This is available at quite a reasonable price. I also use Visual Basic and
Visual C++. I also have Visual Fortran from DEC – Now Compaq. This is inte-
grated into the Developer Studio Environment.

� Sun Java Workshop

� Netbeans

Details of the last two can be found at Sun’s addresses above.

Other implementations of Java exist and include:–

� Java Workshop – Sun

� JBuilder – Sybase

� PowerJEnterprise Edition – Sybase

� Visual Cafe

� IBM Jikes – this is freely available and provides a dos based working
enviornment on the pc.

There are a number of ways of working with Java:

� Use the command prompt under DOS or Unix and compile and run the pro-
grams.

� Use a workbench to provide a graphical interface to the above.

� Use a visual development environment that enables you to develop programs us-
ing a mouse and drag and drop components.

The quick and dirty method is to use the command prompt. The other two approaches take
additional time due to their learning curve. The environments are generally different, so
learning one may not shorten the learning curve for the next.

Web access to data is looked at too, and obviously companies like Oracle and IBM have of-
ferings in this area.

1.6 Development kits and Standards
I’ve tried to adhere to the Sun definition. Work is underway to get a formal standard. Other
implementations are available and there are differences.

The lack of a standard and the differences between the various implementations makes
learning Java more difficult than other (formally standardised) languages, e.g. Fortran,
Pascal, C. C++ has caused problems in this area, but things are improving now with the
publication of the C++ standard in November 1997.

1.7 Miscellanea
We will be using a Sun unix system to learn Java. You will have to learn about:–

� X-Windows access to the system using Vista Exceed;

� the file manager;

� terminal window access and the unix operating system;

� the editor

� html;

Chapter 1 Overview 18

© Ian D Chivers email: ian.chivers@kcl.ac.uk

� netscape and other browsers;

Coverage of these is provided in separate notes and within the body of the notes

1.8 Course Timetable
The following is a rough guideline to the ten week course. It is flexible.

� Overview of program language development and why Java is the way it is;

� Basic introduction to the Java language and its usage;

� Conventional programming language features – arithmetic, expressions, data
types, Strings, Arrays, control structures;

� Additional Java syntax and semantics, e.g. exception handling, threads, i/o and
streams, graphics, inheritance, class extension, packages, interfaces;

� AWT;

� Swing

� Java Beans – Software Components;

� Java Environments, Workbenches etc;

� Web access to data;

I’ll be putting all sources on the web server.

1.9 Coda
Be prepared to devote some time to learning Java. You can’t gain an understanding of 50
years of program language development and an object oriented language like Java without
some effort on your part. Modifying existing programs is a good place to start, but you
have to write your own from scratch to really learn a language. Think about how you learn
French, German, etc. Practice makes perfect. Be patient, Rome wasn’t built in a day.

1.10 Bibliography
Deitel H.M., Deitel P.J., Java: How to Program, Prentice Hall.

1st Edition comments. This is a very well written complete coverage of the Java lan-
guage. If you had to get just one large text then this is one to consider. 1050 pages
in all.

3rd Edition comments. I bought this edition in February 2000 and it has been up-
dated considerably. It now covers Java 2 and Swing. The CD has JDK1.2.1 on it as
well as Netbeans Developer 2.2.1 and Inprise (nee Borland) JBuilder 3 (University
Edition). It also has coverage of JDBC, servlets, remote method invocation, and the
attempt to provide an equivalent to the STL in Java. At around £30 it is very good
value. Also contains lots of links to Java resources available on the Web.

The following is a list of some of the chapters:

2. Java Applications

3. Java Applets

4. Control structures – 1

5. Control structures 2

6. Methods

7. Arrays

19 Overview Chapter 1

email: ian.chivers@kcl.ac.uk © Ian D Chivers

8. Object based programming

9. Object oriented programming

10. Straings and characters

11. Graphics and Java2D

12. Basic GUI components

13. Advanced Gui

14. Exception handling

15. Multihtreading

16. Multimedia, animation, audio, video

17. Files and streams

18. JDBC

19. Servlets

20. RMI

21. Networking

22. Data structures

23. Utilities

24. Collections

25. JavaBeans

Eckstein R., Loy M., Wood D., Java Swing, O R’Reilly.

There are a number of books on Swing and this one looks to be one of the better
ones with a coverage of most of the features I was interested in. The following are
the chapters:

1 Introducing Swing

2 Jump starting a Swing application

3 Swing component basics

4 Labels and Icons

5 Buttons

6 Bounded range components

7 Lists and Combo boxes

8 Swing containers

9 Internal frames

10 Swing dialogs

11 Speciality panes and layout managers

12 Chooser dialogs

13 Borders

14 Menus and toolbars

15 Tables

16 Advanced table examples

17 Trees

18 Undo

Chapter 1 Overview 20

© Ian D Chivers email: ian.chivers@kcl.ac.uk

19 Text

20 Document models and events

21 Styled documents and Jtextpane

22 Carets, highlighters and keymaps

23 text views

24 editorkits and text actions

25 Programming with accessibility

26 Look and feel

27 Swing utilities

28 Swing under the hood

Nilsson D.R., Jakab P.M., Developing JavaBeans Using VisualAge for Java, Wiley.

I have had a look at JavaBeans and decided that a graphical front end would proba-
bly be a good idea. This meant looking at the issue from proprietary software. As
IBM make their version available for download I chose a book that was specifically
about VisualAge for Java. Comes with 1.1.5 on a CD. Release 2 is available for
download.

Winder R., Roberts G., Developing Java Software, Wiley.

If you don’t have a formal background in programming, algorithms and data struc-
tures, object oriented programming then I would suggest that you have a look at this
book.

Hunt J., Java and Object Orientation, Springer.

If you want an introduction to object oriented programming take a look at this one.

JDK 1.2.2 On-line documentation.

This is available on the college web server. Just follow the links. You can also
download and install to your own machine. This is the source of technical informa-
tion on Java.

Arnold K., Gosling J., The Java Programming language, Addison Wesley.

Written by two of the Java team. I normally try to get hold of a book by people who
have been behind the design of a programming language when trying to learn it.
This one is very disappointing.

Gosling, Yellin and the Java Team, The Java API, Volume 1, Core Packages, Addison Wes-
ley.

Paper definition of the application programming interface. Also available on-line but
obviously more difficult to use. Covers the core of the language. Out of date as soon
as I bought it! Not recommended. Persevere and use the on-line material instead.

Gosling, Yellin and the Java Team, The Java API, Volume 2, Window Toolkit and Applets,
Addison Wesley.

The second api text. Not recommended. Use the on-line material instead.

Flanagan, Java in a Nutshell, O’Reilly & Associates.

For people familiar with the Nutshell series this book is what one would expect. It
offers an introduction to Java, programming with the Java api, a language reference
and api quick reference. If you had to buy one book then this is one to consider.

21 Overview Chapter 1

email: ian.chivers@kcl.ac.uk © Ian D Chivers

Cowell, Essential Visual J++ – fast, Springer Verlag.

One of the new series by Springer. Tries to put a quart into a pint pot and does very
well. If you want a quick introduction to what Microsoft J++ can offer then this is
one to consider.

What you get depends on your background, what access you have to a printer, and the in-
ternet. A lot of material is available from the web. Look at the above books and think about
your background and experience in:

� programming and programming languages

� algorithms

� data structures

� object oriented programming

� windows programming

and also what you want to do.

The on-line FAQ is ok. Not as good as the C++ one.

Chapter 1 Overview 22

© Ian D Chivers email: ian.chivers@kcl.ac.uk

2
Introduction to

Programming Languages
and Object Oriented

Programming

‘We have to go to another language in order to think clearly about the problem.’

Samuel R. Delany, Babel–17

Aims

The primary aim of this chapter is to look at some of the languages used in the sci-
ences. There is a look at the developments from a historical view point; a compari-
son of their features and a look at future developments.

2 An Introduction to Programming Languages and Object Oriented
Programming
The intention of this chapter is to examine, from the viewpoint of languages of use in scien-
tific problem solving, of the background of programming languages and their development.
It is essential that you develop an understanding of why there are so many programming
languages and their strengths and weaknesses. No one language is suitable for solving all
the problems that you will come across. You need to chose the right tool for the job. Think
about diy around the home. If the only tool you have is a hammer then everything seems to
be seen as a nail.

See the bibliography for a broader coverage.

2.1 Fortran 66, 1966
The original was designed by a team lead by Backus at IBM, in the late 50’s. It is therefore
quite old. This is the date of the first standard. The language quickly established itself as
the language of first choice for numeric programming.

2.2 Pascal, 1975, ANSI & BSI 1982, ISO 1983, Extended Pascal 1991?
Very successful attempt at a teaching language. Note that it precedes both C and Fortran
77. Pascal still is the most widely taught programming language in computer science de-
partments, as the introductory programming language. The following summarises the survey
done by Dick Reid taken from a number of editions:–

Language 20th 18th 15th 13th

Pascal 140 144 151 157
C++ 101 100 87 34
Ada 82 82 74 73
C 58 56 51 39
Scheme 50 49 51 50
Modula 32 32 32 35
Java 15 - - -
Modula-2 14 15 15 13
Fortran 9 9 9 8
SML 8 7 6 6
Turing 4 4 5 6
Miranda 4 4 4 3
Smalltalk 4 4 4 1
Eiffel 3 3 3 3
Oberon 3 3 2 2
ISETL 2 2 2 2
ML 2 2 2 1
Modula-3 2 2 2 2
ObjPascal 2 2 2 1
Ada95 2 - - -
Haskel 2 1 1 1
Beta 1 1 1 1
Oberon-2 1 1 1 -
Orwell 1 1 1 1
Prolog 1 1 1 1

Chapter 2 An Introduction to Programming Languages 24
and Object Oriented Programming

© Ian D Chivers email: ian.chivers@kcl.ac.uk

Simula 1 1 1 1
Blue 1 - - -

The first edition was May 1990. New editions come out about every six months. He doesn’t
keep past editions. I’ve put up the complete survey, which includes the institutions, at:–
http://www.kcl.ac.uk/kis/support/cc/fortran/dickreid20.txt

What is interesting is the following:–
http://www.kcl.ac.uk/kis/support/cc/fortran/sdickreid20.txt

which is a sorted list by language. Where is your institution?

2.3 Fortran 77, 1978
Modest attempt to update the language. Still largely Fortran 66. Added BLOCK IF, better
array subscripting and corresponding do looping. Given the knowledge of the time a very
conservative update to the language.

2.4 C, K&R 1978, Standard 1989.
C was developed by Kernighan and Ritchie at Bell Labs. Bell Labs was the research labora-
tory of the Bell Telephone company in the US. It was originally written for a PDP 11 under
UNIX. It is based on the cpl, bcpl, b family of languages and these are typeless languages.
It was designed as a systems implementation language and was used to rewrite some 95%
of the UNIX operating system. Only 5% or so ended up being written in assembler. The
UNIX tools are written in C and are a very good example of what C is best at: the construc-
tion of sharp, small tools. There are little or no facilities in the language for the construction
of larger code suites. Given the date of the publication of K&R there was the opportunity to
have tidied the language up somewhat. Look at the features of some of the other languages
covered here and the dates to see what is meant by this statement.

The X library is written in C, is over 15 years old and still leaks memory.

2.5 Modula 2, 1982, Standard 1996?
Wirth’s next language after Algol W and Pascal. Attempt to produce a professional pro-
grammers Pascal. Very many good features. Let down by the delay in getting standardised.
Introduced modules (hence the name), got rid of some of the idiosyncratic syntactic sugar
of Pascal, had the idea of separate definition and implementation. Rivals Ada without much
of the complexity of Ada for real time applications.

Numeric work in Modula 2 isn’t very attractive. Explicit type casts are required in mathe-
matical expressions. The proposed standard alleviates some of the problems in this area.

2.6 Ada, ISO 8652: 1987
Attempt to produce a powerful and expressive language by the American Department of
Defence. Given the very large defence spending budget, even a 1% gain from the adoption
of a better programming language will be repaid. Gaining ground, from a slow start. See
also Ada 95 later. First draft report was 1980.

2.7 C++, 1986, Standard November 1997
Attempt by Stroustrup to produce an object oriented version of C. He had been exposed to
Simula early on and realised the benefits of a language like that. Simula is a product of the
1960’s. The first version of Simula was available in 1967. Object oriented programming is
not new! Simula was widely used for discrete event simulation.

25 An Introduction to Programming Languages Chapter 2
and Object Oriented Programming

email: ian.chivers@kcl.ac.uk © Ian D Chivers

2.8 Oberon 2, Late 1980’s, early 1990’s.
Very clean and simple OOP language. Partly driven by the visit of Wirth and Gutnecht to
Xerox PARC, and Wirth having to take over the operating system course at ETH. Name
arises from the Voyager probe taking pictures of Uranus. Oberon is the largest moon.
Oberon was simpler than Modula 2. Oberon 2 tidied up a bit. First operational system by
the late 1980s. Oberon replaced Modula 2 in 1989 for teaching purposes at ETH. Ported to
a Apple MAC, SUN, DEC, IBM RS6000 and MS/DOS by 1991. Free versions available
from the ftp server at ETH.

Let down badly by continual development and lack of a standard. It is a research vehicle for
Wirth and the CS department at ETH in Zurich. Some of the problems here may be reme-
died in the near future with the progress being made on the standardisation front.

2.9 Fortran 90, 1991.
Modern language. Limited OO capability. Good information hiding and powerful mathe-
matical capability. The language of first choice for people involved in numeric program-
ming.

2.10 Eiffel, 1988
Date is the publication of Object Oriented Software Construction, Meyer, Prentice Hall.
Modern object oriented language. Meyer is a very keen exponent of the benefits of object
oriented programming. Meyer’s book on object oriented software construction is an ex-
tremely good introduction to OO programming.

The second edition is even better.

Eiffel is an attempt to produce an industrial strength OOP language. I hope to be able to
make available an Eiffel compiler for the alpha in the near future.

Another extremely worthwhile acquisition is Software Development Using Eiffel: There Can
Be Life Other Than C++, Richard Wiener. He highlights some of the weaknesses of C++.
If you are going to attempt a reasonable size application in C++ using OO techniques then
you should read this book. He clearly highlights some of the major pitfalls. He provides
both academic and commercial courses on C++ and Eiffel.

2.11 Ada, ISO 8652: 1995
Latest standard. Major changes from the 1987 standard are in the areas of:–

� Support for 8 and 16 bit character sets;

� Object oriented programming with run-time polymorphism;

� Extension of access types;

� Efficient data oriented synchronisation;

� library units;

� interfacing to other languages;

There are several so called Specialised Needs Annexes. These are:–

� Annex C, Systems Programming

� Annex D, Real-Time Systems

� Annex E, Distributed Systems

� Annex F, Information Systems

Chapter 2 An Introduction to Programming Languages 26
and Object Oriented Programming

© Ian D Chivers email: ian.chivers@kcl.ac.uk

� Annex G, Numerics

� Annex H, Safety and Security

2.12 Java
Bill Joy (of Sun fame) had by the late 1980’s decided that C++ was too complicated and
that an object oriented environment based upon C++ would be of use. At round about the
same time James Gosling (mister emacs) was starting to get frustrated with the implementa-
tion of an SGML editor in C++. Oak was the outcome of Gosling’s frustration.

Sun over the next few years ended up developing Oak for a variety of projects. It wasn’t
until Sun developed their own web browser, Hotjava that Java as a language hit the streets.
And as the saying goes the rest is history.

Java is a relatively simple object oriented language. Whilst it has its origins in C++ it has
dispensed with most of the dangerous features. It is OO throughout. Everything is a class.

It is interpreted and the intermediate byte code will run on any machine that has a Java vir-
tual machine for it. This is portability at the object code level, unlike portability at the
source code level – which is what we expect with most conventional languages.

It has built in garbage collection – no dispose!

It has no pointers – everything is passed by reference!

It is multithreaded, which makes it a delight for many applications.

It has a extensive windows toolkit, the so called AWT that was in the original release of the
language and Swing that came in later. It achieves much of what Visual Basic offers but
within the framework of a far more powerful language. Development environments are be-
coming widely available to aid in this task.

Finally it is fun!

Major drawback is the rapid development of the language and the large number of different
versions. Further compounded by the different virtual machines available.

2.13 Visual Basic
This language is a development by Microsoft to enable visual user interfaces to be pro-
grammed easily. It has subject to continual development and offers one of the easiest ways
of developing a windows style program for a pc running Windows 3.x, 95, 98 and NT.

2.14 Language Comparison
The following page has a simple language feature comparison. The emphasis is on high-
lighting the strengths and weaknesses of languages used mainly in the scientific area.

The following symbols are used:–

Y supported

y supported with qualification, e.g. may be achieved using a different
mechanism

- not supported

? unable to verify adequately at the time of writing

In all cases please see the more detailed coverage that follows.

27 An Introduction to Programming Languages Chapter 2
and Object Oriented Programming

email: ian.chivers@kcl.ac.uk © Ian D Chivers

Simple Program Language Feature Comparison

Fortran Pascal C C++ Ada Java
66 77 90 Modula 2

95 Oberon 2
P M2 O2 C C++

Year 66 78 91 75 82 78 86 87 95 ?
96 82 96? 89 97

Feature

Independent Y Y Y - - - Y Y - - -
compilation

Separate - - Y - Y Y - Y Y Y Y
compilation

Concrete - - Y Y Y Y Y Y Y Y 1

data types

Abstract - - Y - Y Y - Y Y Y Y
data types

Dynamic - - Y - - - Y Y Y Y Y
arrays

Modules - - Y - Y Y - y y y y
See below

Numeric - - Y - ? Y - y y y -
Polymorphism
See below

General - - Y - ? Y - Y Y Y Y
Polymorphism

Pointers - - Y Y Y Y Y Y Y Y 2

Procedure - - - Y Y Y Y Y ? ? ?
variables

Inheritance - - - - - S - M - S S
single/mult

Dynamic - - - - - Y - Y - Y Y
binding

Operator - - Y Y Y Y -
overloading

Threads - - - - Y ? - - ? Y Y
Tasking

Exception - - - ? ? - Y ? Y Y
Handling

These are some of the major features that we need to look at when comparing programming
languages and looking at the development of programming languages.
1 – Against the spirit of object oriented programming.
2 – Replaced by references

Chapter 2 An Introduction to Programming Languages 28
and Object Oriented Programming

© Ian D Chivers email: ian.chivers@kcl.ac.uk

Dates

Fortran: The dates are the dates of the standards.

Pascal: Preliminary version 1968. Major development and first operational compiler 1970.
1973 publication of first revised report. User Manual and Report 1975.

Modula: Defined experimentally 1975. Lilith research project 1977. First implementation of
Modula 2 1979. Technical report March 1980. First distributed compiler March 1981. Pro-
gramming in Modula 2 1982.

Oberon 2: 1988, N. Wirth. The Programming Language Oberon, Software Practice and Ex-
perience, 1991, Mossenbeck and Wirth, The Programming Language Oberon 2. 1991,
Reisser , The Oberon System, User Guide and Programmer’s Manual. 1993, Mossenbeck,
Object Oriented Programming in Oberon 2.

C: 1969, M Richards: BCPL A Tool for Compiler Writing and Systems Programming. 1970,
Ken Thompson, B. 1978, K and R. The C Programming Language,. 1989 ANSI C Stan-
dard.

C++: C with classes, 1979-1983 From C with Classes to C++, 1982-1985 Release 2.0:
1985-1988 Stroustrup, The C++ Programming Language, 1st edition, 1986 Stroustrup, The
C++ Programming Language, 2nd edition, 1991. Standard 1997.

Ada: 1980 original definition. Standard 1987. Latest standard is 1995.

Java: Exact date not well defined. Hopefully the standardisation effort will make life easier!

2.15 Language Features
It is illuminating to look at the languages from the viewpoint of their features and function-
ality.

2.15.1 Independent Compilation
The ability to break a problem down into parts and work on one part at a time. No checking
between compilation units.

2.15.2 Separate Compilation
As above with checking across compilation units. Major step forward in the construction of
more complex programs. Lint helps out with C. Forcheck is useful for Fortran 66 and 77
programmers.

2.15.3 Concrete Data Types
The ability for the user to define data types that mapped directly onto their problem. A ma-
jor step forward. User has to know about the implementation however.

2.15.4 Abstract Data Types
The twin concept of data types and procedures that manipulated the data. Hiding the inter-
nals from the calling routine.

2.15.5 Dynamic arrays
Arrays that are allocated dynamically at run time.

2.15.6 Numeric and General Polymorphism

Numeric Polymorphism

In the simplest case the ability to have so called mixed mode arithmetic expressions, e.g.
mix integers and reals (both of one or more underlying representations) without casting be-

29 An Introduction to Programming Languages Chapter 2
and Object Oriented Programming

email: ian.chivers@kcl.ac.uk © Ian D Chivers

tween one type and another. The explicit type casting required in some languages means
that they are not widely used for numeric programming.

At the next level the ability to call in built functions with numeric data of one or more
types. This has been in Fortran from a very early stage.

Finally the ability to create one’s own functions that accept numeric data of a variety of nu-
meric types.

Languages that support OOP have to offer the last kind of polymorphism.

General Polymorphism

OO programming languages have to offer this functionality.

2.15.7 Modules
The primary purpose of modules is to provide the ability to group related functions and pro-
cedures. This is a powerful program decomposition tool. They normally have a well con-
trolled mechanism for making visible what the external, calling routine needs to have access
to.

Terminology varies with programming languages, and so does the exact functionality that
these different languages support.

Classes and packages are two terms also used.

2.15.8 Pointers and References
Pointers in a programming language extend the range of problems that can be solved con-
siderably. Multi-dimensional structures are easily programmed using pointers, e.g. linked
lists, queues, trees, quad-trees, oct-trees etc.

The major problem is that the user is provided with very little help if they are programmed
incorrectly. It is assumed that you know what you are doing.

In Java all objects are accessed via an object reference. When you see an object variable in
a Java program you actually see a reference to an object. We will look into the concept of
references in much greater detail throughout the course.

2.15.9 Procedure Variables
An elegant way of extending the expressive power of a language. Quite old.

2.15.10 Inheritance
The first of the two major step towards OO programming. Allows the user to extend an ex-
isting type without having to know what is going on.

2.15.11 Dynamic Binding
The second of the two major features of OO programming. Provided in a limited sense via
procedure variables in older languages.

2.15.12 Operator Overloading
Syntactic sugar in many ways and over valued. Very useful to people with numeric prob-
lems. Given that C++ has 47 operators it poses problems of readability and comprehensibil-
ity with most other areas. The restrictions that C++ has in this area will be looked at later.

2.15.13 Threads/Multitasking
Multitasking and/or threads are needed in a programming language when solving problems
in the areas of real-time systems, equipment interfacing, embedded systems and parallel
programming.

Chapter 2 An Introduction to Programming Languages 30
and Object Oriented Programming

© Ian D Chivers email: ian.chivers@kcl.ac.uk

2.15.14 Exception Handling
Exception handling is needed in a programming language when solving problems in the ar-
eas of real-time systems, equipment interfacing, embedded systems, parallel programming
and robust systems.

2.16 Some Important Milestones in Program Language Development
We look here at some of the major steps forward in the way we approach problem solving
using programming languages. Often people adopted the following methodologies without
having features in a programming language that actually supported them.

2.16.1 Structured Programming
Structured programming in its narrowest sense concerns itself with the development of pro-
grams using a small but sufficient set of statements and in particular control statements. It
has had a great effect on program language design and most languages now support a mini-
mal set of control structures. In a broader sense it subsumes other objectives including sim-
plicity, comprehensibility, verifiability, modifiability and maintenance of programs.

The ideas are very well covered in the Dahl, Dijkstra, Hoare text. This is essential reading.

2.16.2 Stepwise Refinement
The original ideas are very well expressed a a paper by Wirth entitled Program Develop-
ment by Stepwise Refinement, published in 1971. Essential reading.

2.16.3 Data Structuring, Concrete vs Abstract Data Types
With a concrete data structure you have to know how the data structure is organised explic-
itly. With abstract data types the internals are hidden from you and all you see are a set of
procedures that provide the functionality you want.

2.16.4 Information Hiding – Modules
A major step forward in the development of programming languages. The paper by Parnas
addresses the idea of information hiding and the module concept is one that a number of
languages now offer to help in this area.

2.17 Terminology of Object Oriented Programming
The following provides a link between conventional programming language terminology
and that used in object oriented programming.

Class Extensible abstract data type

Object Instance of a class

Message Procedure call, dynamically bound

Method Procedure of a class.

See Mossenbeck for a good treatment of this. We’ll come back to the whole area of object
oriented programming after a coverage of the basics of C++.

2.18 Parallel Developments
With the increasing availability of computers with multiple processors at ever decreasing
costs the importance of languages that support parallel computation increases. Two lan-
guages that offer support in this area are based on Fortran 90 and C++. A brief coverage is
given below.

31 An Introduction to Programming Languages Chapter 2
and Object Oriented Programming

email: ian.chivers@kcl.ac.uk © Ian D Chivers

2.18.1 Parallel Fortran – Fortran 95, Fortran 2000, SMP, MPI, HPF
To quote from the HPF Language Specification, version 1.1, November 1994 The High
Performance Fortran Forum (HPFF) was founded as a coalition of industrial and aca-
demic groups working to suggest a set of standard extensions to Fortran to provide the nec-
essary information. Its intent was to develop extensions to Fortran that provide support for
high performance programming on a wide variety of machines, including massively parallel
SIMD and MIMD systems and vector processors. From its very beginning HPFF included
most vendors delivering parallel machines, a number of government laboratories and many
university research groups. Public input was encouraged to the greatest possible extent.

A number of suppliers now provide HPF Fortran extensions and these are generally based
on Fortran 90, rather than Fortran 77.

Fortran 95 and 2000 offer support for parallelisation.

SMP and MPI are two other developments in this area.

2.18.2 Parallel C++
Similar developments are in the pipeline for C++.

2.19 Object Oriented Programming
Object oriented programming is characterised by two main concepts:–

� inheritance;

� dynamic binding;

The major thing we need to consider is how to extend the functionality of an existing pro-
gram. To make sense of the benefits of OOP we need to have a good understanding of the
strengths and weaknesses of the traditional programming paradigm. We need to look at the
way our appreciation of how to use programming languages developed and what we needed
from them as the problems we tackled became more complex.

To quote Friedman:–

Object oriented programming makes good on the promise of structured program-
ming. It implements in a very practical way the principles of program decomposi-
tion, data abstraction and information hiding. It ties together and provides a frame-
work for abstraction and structure at all levels; data program and control.

...

OOP picks up where structured programming methodology leaves off. Dijkstra’s
concept of structured programming, Wirth’s stepwise refinement and Parnas’s infor-
mation hiding all contribute to a software development milieu that promised to be-
come increasingly systematic and scientific. OOP, to a great extent, fulfils that
promise. It takes the concepts of data abstraction, modular decomposition, and infor-
mation hiding and refines them in a cohesive world view, data objects are active en-
tities. Instead of passing data to procedures the user asks objects to perform opera-
tions on themselves. A complex problem is viewed as a network of objects that
communicate with each other.

The benefits of OOP come with programming in the large. If the problems you have don’t
warrant it you may never need to devote the time and effort to gain complete mastery of a
powerful and complex language like C++.

Chapter 2 An Introduction to Programming Languages 32
and Object Oriented Programming

© Ian D Chivers email: ian.chivers@kcl.ac.uk

2.20 Object Oriented Languages
The ideas are not new.

2.20.1 Simula – 1967
The seminal text on OOP is Simula BEGIN, Birtwistle, Dahl, Myhrhaug and Nygaard. The
book is very well written if a little dated today. I’d recommend it if you are involved in dis-
crete event simulation. This was what the language was used for whilst I worked at Impe-
rial College before I came to King’s in 1986. They are the first people to use the concept of
a class. Algol 60 based. Stroustrup got many of his ideas from Simula.

2.20.2 Smalltalk – 1978
The text I recommend is Smalltalk 80, The Language and its Implementation, Goldberg and
Robson. They worked at the Xerox Palo Alto Research Centre (Xerox Parc) Learning Re-
search Group. Ideas are drawn from Simula and the vision of Alan Kay. Steve Jobs was
heavily influenced by and the Apple Macintosh owes a big debt to the Xerox Parc people.
We take windowing systems for granted these days on many of the systems we work with
from the pc with Windows, to Unix workstations with their X windows interfaces and of
course the first to bring them to the mass market – the Apple Mac.

Regarded as a pure OO system by most people with everything an object.

Wirth has spent a number of periods at Xerox Parc and that is reflected in Oberon 2.

2.20.3 C++
In Stroustrup’s words ...C++ is a general purpose programming language; its core applica-
tion domain is systems programming in the broadest sense...

It is of course also used in a wide range of other application domains, notable graphics pro-
gramming. It is enormously popular, and there are a very large number of jobs advertised
for people with C++ skills. You are unlikely to be out of work if you get to be a good C++
programmer.

C++ supports inheritance through class derivation. Dynamic binding is provided by virtual
class functions.

2.20.4 Eiffel
Object Oriented Software Construction is dated 1988. As stated earlier the first four chap-
ters address OOP. The latter chapters look at Eiffel in some depth. The text is a relatively
easy read.

Achieves much of the power and expressiveness of C++ without the complexity. As is has
its origins in Ada is is also a language that offers far greater support for error protection and
safe code.

I’m informed that the Channel Tunnel software uses Eiffel!

I am looking at getting hold of an Eiffel compiler at this time, but am unsure as to what
platform it might be available on.

2.20.5 Oberon 2
The language has its origins in a visit that Gutnecht and Wirth made to Xerox PARC in
1985. They decided to design and implement a new operating system. In their words ... the
ultimate goal was to create a system for personal workstations that was not only powerful
and convenient for practical use but also describable and explicable in a convincing way...
They had originally decided to use Modula 2 but made the decision to strip out some of the

33 An Introduction to Programming Languages Chapter 2
and Object Oriented Programming

email: ian.chivers@kcl.ac.uk © Ian D Chivers

features of that language and add a very small number of features. The outcome was
Oberon. The language was defined in 1986.

The object code size of the outer core of the Oberon system is 200K, and comprises

� a kernel

� a dynamic loader and garbage collector

� a file system

� drivers for disk, diskette, asynchronous and synchronous communication, printer
and a bit mapped display;

� local network services;

� support for texts and fonts;

� a window subsystem;

� a text editor;

� the Oberon compiler;

Educational versions of the system are available from the ETH ftp server. I’d recommend
8Mb of memory and an 80486 with 1024*756 display. I’ve tried at home on a 20 MHz
80386 with 5 Mb of memory – a bit slow... Well worth a look at.

Programming in Oberon, Reiser and Wirth, is a good introductory text and combined with
OOP in Oberon 2, Mossenbeck, you have sufficient information to get started.

There is a lot of documentation that comes with the system and this can be printed.

The system integrates very well with both Windows on the PC and Apple macs. Versions
for other platforms are available.

If your are familiar with Pascal or Modula 2 then I’d recommend Oberon very highly to see
what OOP has to offer. Very low cost in time, effort and money.

2.20.6 Ada 95
Whilst I do not have access yet to an Ada 95 compiler from what I’ve read it looks a very
good language. The standard is available from a number of ftp servers, and there is also a
look at the changes from the original version to 95 available on the web. A text I’d recom-
mend is Programming in Ada 95, Barnes. This is well written. Ada 95 is the first language
that has been standardised with OOP in mind.

If you want a job in the defence industries, or see yourself working with real time embed-
ded systems then this is certainly a language to consider looking at.

2.20.7 Java
Java is a recent OO language. It is unusual in that it is the product of one company, Sun,
rather than the subject to formal language standardisation like the majority of the other lan-
guages covered in this chapter. It is hoped that it will pass out of Sun’s hands in the near
future into the mainstream of language standardisation. Freely available if you have internet
access. IBM have taken it on board in a big way and so have Microsoft. They both realise
the potential earning capacity of Java and the internet.

Due to long file names and multithreading requirements needs operating systems like Win-
dows 95 and above.

Chapter 2 An Introduction to Programming Languages 34
and Object Oriented Programming

© Ian D Chivers email: ian.chivers@kcl.ac.uk

2.21 Other Languages
There are languages that offer limited support for OOP. The two that follow fit into this cat-
egory. I don’t have completely up to date information on what is likely to be in the Modula
2 standard at this time.

2.21.1 Fortran 90 and Fortran 95
Through the functionality provided via user defined data types and modules it offers support
for object based programming. See Dupee’s MSc thesis for a good coverage of what For-
tran 90 has to offer here.

2.21.2 Modula 2
The original language was a major advance over Pascal. It corrected many of the deficien-
cies of Pascal in a straightforward way. From what I’ve seen of the draft standards it will be
a powerful and expressive language.

Standard versions of the language look like being quite expensive and it is unlikely that we
would be able to make available a compiler on any platform given the proposed cuts in ex-
penditure by the various government funding bodies.

2.22 The OO Approach
We will look at two approaches here. The work of Meyer and Rumbaugh et al are both well
regarded, and we will cover both briefly.

2.22.1 Meyer’s Approach
Meyer in his first edition (dated 1988) identified seven steps that lead towards object ori-
ented solutions. These were:–

� object based modular structure – systems are modularised on the basis of the
data structures;

� data abstraction – objects should be described as implementations of abstract
data types;

� automatic memory management – unused objects should be deallocated by the
underlying language systems, without programmer intervention;

� classes – every non simple type is a module, and every high level module is a
type;

� inheritance – a class may be defined as an extension of restriction of another;

� polymorphism and dynamic binding – program entities should be permitted to
refer to objects of more than one class and operations should be permitted to
have different realisations in different classes;

� multiple and repeated inheritance – it should be possible to declare a class as
heir to more than one class and more than once to the same class;

The second edition (dated 1997) is a new book, rather than an update of the first edition.
Chapters 1 and 2 are an introduction and overview. Chapters 3 through 6 provide coverage
of the road to object orientation. Chapters 7 through 18 are the technical core of the book
looking at object oriented techniques. There is a coverage of:

� classes

� objects

� memory management

35 An Introduction to Programming Languages Chapter 2
and Object Oriented Programming

email: ian.chivers@kcl.ac.uk © Ian D Chivers

� genericity

� design by contract

� exception handling

� supporting mechanisms

� inheritance

� multiple inheritance

� inheritance techniques

� typing

� global obects and constants

Programming is an engineering activity and has evolved considerably since the first pro-
gramming languages of the 1950’s. The changes between the first and second editions re-
flect the developments that have taken place over nearly 10 years. This book is essential
reading if you are seriously interested in objected oriented programming.

2.22.2 Rumbaugh et al
This book concentrates on OO modelling, rather than using a particular programming lan-
guage for OO programming. If you have a background in the relational database area then
much of the coverage should be quite familiar. They present a methodology for object ori-
ented development – the Object Modelling Technique or OMT. They identify four stages:–

� analysis: build a model of the real world situation;

� system design: make the high level decisions about the overall architecture;

� object design: build a design model (based on the analysis model) with imple-
mentation details;

� implementation: translate into an implementation using a particular programming
language, database, or hardware implementation;

and three kinds of models to describe the system:–

� the object model: describes the static structure of the objects and their relation-
ships;

� the dynamic model: describes the aspects of the system that change with time;

� the functional model: describes the data value transformations within the system;

and the three models are orthogonal, with cross links.

This book is a must for large scale systems.

2.22.3 Practical Steps
The two major practical steps are:–

� identify the classes; within this discriminate between:–

� an is a relationship, e.g. where one class is a sub-type of
another;

Consider the concept of a point. It has two attributes,
an x and y position. So we could write point(x,y). Now
consider the concept of a pixel – a point with the

Chapter 2 An Introduction to Programming Languages 36
and Object Oriented Programming

© Ian D Chivers email: ian.chivers@kcl.ac.uk

added attribute of colour. Now we could write
pixel(point,colour), Thus pixel is-a point.

� a has a relationship, e.g. where a class is made up of an
object of another class;

Consider the concepts of engine and car. In this case a
car has-a engine.

� define the interfaces to the classes.

Inheritance commits you to much more than becoming a client. As a client you are pro-
tected against future changes in the implementation of a class. When you inherit you gain
access to the implementation and all that goes with it.

The above have to be done before any code is written. Programming is an iterative process
and it is inevitable that you will need to cycle through the design and implementation stages
as you write code, i.e. it will be obvious that you will need to go back and redesign and
reimplement base classes in the light of experience.

2.23 Simple Example
Consider putting together a graphical drawing system. We are interested in shapes and the
concepts of moving and drawing. We can do this in a very straightforward way using an
OO approach.

Firstly we have a base abstract class shape with two associated procedures, one to move
and one to draw.

� shape(x,y)

move(shape s)

draw(shape s)

Secondly we then derive other shapes from them. We provide two derived classes with two
associated procedures:–

� square(shape,side)

move(shape s)

draw(shape s)

� rectangle(shape,length,breadth)

move(shape s)

draw(shape s)

Consider the following pseudo-code segment
...
square s(50,50,10);
rectangle r(100,100,10,20);

move(s)
draw(s)
move(r)
draw(r)

return(0)
}

37 An Introduction to Programming Languages Chapter 2
and Object Oriented Programming

email: ian.chivers@kcl.ac.uk © Ian D Chivers

We can now add another shape, e.g. circle, and still have things work without recompiling
the old code. We just compile the new move and draw procedures and link them in. The
method resolution is handled by dynamic binding. We will look into this in greater depth
later in the course.

2.24 Other Developments
The chapter rounds off with a look at recent developments that have taken place and that
apply to one or more programming languages in some cases.

2.24.1 Development Environments
The traditional working practice for program development involves the following steps:–

� edit

� compile

� link

� run

� debug

in a loop. This method has the advantage of working on most hardware and software plat-
forms. The major drawback is learning several ways of doing exactly the same thing as we
move from platform to platform and from one language to another. How many editors do
you know how to use?

There have also been developments to provide an integrated environment for program de-
velopment. These environments started out as workbenches providing simple access to the
editor, compiler, linker etc through simple key strokes and the mouse. They have grown
very sophisticated.

2.24.2 Graphical Development Tools
There has also been the development of a visual interface to programming. Increasingly
people want easy to use software that almost by definition has a wndows based interface.
Microsoft Visual Basic provides a good example of this. Products like this typically have:–

� a toolbox of components that can be dragged and dropped onto a screen

� a screen or form that the user will see – this comprises the user interface

� a set of properties for each of the components that can be tailored for your own
requirements

You typically use the mouse to select the item you want from the toolbox (menu, form etc)
drag and dop onto the form and then alter the various associated setting using the propertiy
entries on the right hand side. Skeleton code is often generated for you which you then tai-
lor to your own specific requirements.

For some alternatives to using Visual Basic to put a windows based front end to a program
have a look at the following url for more details:–
http://www.kcl.ac.uk/kis/support/cc/fortran/language.html

There will be a course later this academic year that looks at this whole area in more depth.

2.24.3 Software Components
As the problems that we attempt to solve become more complex and the interfaces we pro-
vide become more sophisticated we need better tools to help with program development.

Chapter 2 An Introduction to Programming Languages 38
and Object Oriented Programming

© Ian D Chivers email: ian.chivers@kcl.ac.uk

One major step forward is in reusable software components. This can be seen as an exten-
sions to the object oriented approach to programming.

Consider building an application that required a spelling checker. The idea is to buy one of
the shelf and slot it straight in to our program. This is gradually becoming a reality.

Sun and Microsoft both made developments in this area and we will look at each in turn.

2.24.3.1 COM, OLE, ActiveX
First let us define each of the above in turn:–

� COM – Component Object Model

� OLE – Object Linking and Embedding

� ActiveX – Now called Active Technologies

Let is look briefly at each in turn.

ActiveX is a set of technologies that enables software components to interact with one an-
other in a networked environment, regardless of the language in which they were created.
ActiveX is build on the Component Object Model.

OLE or OLE Automatation makes it possible for one application to manipulate objects im-
plemented in another application or to expose objects so that they can be manipulated.

A simple example of this would be embedding a spreadsheet of graph from Excel in a
Word document. Double clicking on the spreadsheets drops you into Excel. There are some
problems with this when working with a document on a number of computer systems with
different versions of the applications concerned.

The Component Object Model (COM) is a platform independent, distributed, object
orientded, system for creating binary software documents that can interact. COM is the
foundation technology for OLE and ActiveX.

2.24.3.2 JavaBeans
JavaBeans is the Java language software component offering. JavaBeans extends the Java
language write once run everywhere capability to resuable component development.

There is considerable interest in JavaBeans because of the platform neutrality of the devel-
oped code. Sun also provide mechanisms to migrate ActiveX/OLE/COM to JavaBeans.

Sun and Microsoft and battling this one out and there is little love lost between them.
Watch this space as they say!

2.25 Coda
There is a lot that John Backus has to be proud of. He achieved a lot with Fortran. As we
shall see Fortran is still the language of first choice for the majority of numeric based prob-
lem solving. There is a lot of very well written code in Fortran, and we find both commer-
cial and public domain numeric libraries available for most platforms.

Wirth has a lot to be proud of too with the Algol family of languages – Algol, Algol W,
Pascal, Modula, Modula 2, Oberon, Oberon 2. The sad thing that is that whilst abandoning
the previous language enabled successor languages to be well designed and compact, there
was a lot of effort required in moving production code from older languages to their succes-
sors. Knowledge of one of the more recent languages (Modula 2 or Oberon) in this family
is a worthwhile investment.

C and C++ have a considerable amount of code written in them. C++ represents a very ma-
jor advance over C, correcting some of the program correctness problems that arise in C
from array subscript checking, pointer manipulation, type checking and optimisation prob-

39 An Introduction to Programming Languages Chapter 2
and Object Oriented Programming

email: ian.chivers@kcl.ac.uk © Ian D Chivers

lems with pointer aliasing and array handling. For many applications they offer quite signif-
icant advantages over other languages. Graphical based systems are invariably written in
C++. Object oriented programming is often done in C++. The maintenance problems C
poses are considerable. The steep learning curve that C++ has poses problems for succes-
sive generations of would be C++ programmers.

Look at the Computational Science Education paper for an comparison of C, Fortran 77,
Fortran 90 and C++. This is on the college web server.

Whither Java? Java seems to be a language that will survive. How widely used it will be-
come depends obviously on the success of the internet and local intranets.

Whither Visual Basic? VB will survive. Many people need to be able to develop easy to use
programs and systems. Windows programs offer the possibility of solving this problem.

No one language is appropriate for solving every problem. Many factors come into play in
real life. Learning a variety of languages is a good idea. Learning Fortran 90, C++, Java
and Visual Basic provides you with a range of very useful skills for work in the academic,
scientific, engineering and commercial worlds.

I’ve included references to a couple of other languages that you might like to look at, and
these are Icon, Snobol, Prolog and SQL. Icon and Snobol are very good string processing
languages. SQL is the database language, and Prolog is a logic based language.

2.26 Bibliography
Adobe Systems Incorporated, Postscript Language: Tutorial and Cookbook, Addison Wes-
ley.

Adobe Systems Incorporated, Postscript Language: Reference Manual, Addison Wesley.

Adobe System Incorporated, Postscript Language: Program Design, Addison Wesley.

� The three books provide a comprehensive coverage of the facilities and capabili-
ties of Postscript.

ACM SIG PLAN, History of Programming Languages Conference – HOPL-II, ACM Press.

� One of the best sources of information on programming language developments,
from an historical perspective. The is coverage of Ada, Algol 68, C, C++, CLU,
Concurrent Pascal, Formac, Forth, Icon, Lisp, Pascal, Prolog, Smalltalk and Sim-
ulation Languages by the people involved in the original design and or imple-
mentation. Very highly recommended. This is the second in the HOPL series,
and the first was edited by Wexelblat. Details are given later.

Adams, Brainerd, Martin, Smith, Wagener, Fortran 90 Handbook: Complete ANSI/ISO Ref-
erence, McGraw Hill.

� A complete coverage of the language. As with the Metcalf and Reid book some
of the authors were on the X3J3 committee. Expensive, but very thorough.

Annals of the History of Computing, Special Issue: Fortran’s 25 Anniversary, ACM publi-
cation.

� Very interesting comments, some anecdotal, about the early work on Fortran.

Arnold K., Gosling J., The Java Programming Language, Addison Wesley.

� Written by the people who designed and implemented the language. A definitive
source on the language. A bit expensive at just under thirty uk pounds.

Chapter 2 An Introduction to Programming Languages 40
and Object Oriented Programming

© Ian D Chivers email: ian.chivers@kcl.ac.uk

Barnes J., Programming in Ada 95, Addison Wesley.

� A recent update of his previous Ada book. Comprehensive coverage of Ada 95.
Not for the beginner.

Birtwistle G.M., Dahl O. J., Myhrhaug B., Nygaard K., SIMULA BEGIN, Chartwell-Bratt
Ltd.

� A number of chapters in the book will be of interest to programmers unfamiliar
with some of the ideas involved in a variety of areas including systems and mod-
els, simulation, and co-routines. Also has some sound practical advice on prob-
lem solving.

Booch G., Object Oriented Design with Applications, Benjamin Cummings, 2nd Ed. 1994.

� I’ve not been able to get hold of a copy of this yet. One is on order at Dillons.
Don’t buy or bother with the first edition, as there are bound to be major ad-
vances in this edition due to his experience between editions. Still not available
at this time.

Brinch-Hansen P., The Programming Language Concurrent Pascal, IEEE Transactions on
Software Engineering, June 1975, 199-207.

� Looks at the extensions to Pascal necessary to support concurrent processes.

Cannan S., Otten G., SQL – The Standard Handbook, McGraw Hill.

� Very thorough coverage of the SQL standard, ISO 9075:1992(E).

Chivers I. D. and Clark M. W., History and Future of Fortran, Data Processing, vol. 27 no
1, January/February 1985.

� Short article on an early draft of the standard, around version 90.

Chivers I.D., and Sleightholme J., Introducing Fortran 90, Springer Verlag.

� An introduction to programming using Fortran 90. Aimed at numeric problem
solving.

Chivers I.D., and Sleightholme J., Introducing Fortran 95, Springer Verlag.

� An introduction to programming using Fortran 95. Aimed at numeric problem
solving. Updated to reflect the new standard and with coverage of two tecnical
updates to the language that will be part of the next standard – F2K!

Computational Science Education Project, Fortran 90 and Computational Science.

� This paper is a comparison of C, Fortran 77, C++ and Fortran 90 using the fol-
lowing five criteria:– numerical robustness, data parallelisation, data abstraction,
object oriented programming and functional programming. A copy is available
on the college web server. Essential reading if one is involved in programming
with one or more of these languages.

Cowell J., Essential Java: Fast, Springer

� Compact introduction to Java. Insufficient on its own.

Dahl O. J., Dijkstra E. W., Hoare C. A. R., Structured Programming, Academic Press, 1972

� The seminal book on structured programming.

41 An Introduction to Programming Languages Chapter 2
and Object Oriented Programming

email: ian.chivers@kcl.ac.uk © Ian D Chivers

Date C. J., A Guide to the SQL Standard, Addison Wesley.

� Date has written extensively on the whole database field, and this book looks at
the SQL language itself. As with many of Dates works quite easy to read. Ap-
pendix F provides a useful SQL bibliography.

Deitel H.M., and Deital P.J., Java – How to Program, Prentice Hall.

� A very good introductory Java text. One of the best currently available. Highly
recommended.

Dupee B., A Study of Object Oriented Methods using Fortran 90., MSc Thesis.

� A look at OO methods in F90, rather than full blown OOP.

Flanagan D., Java in a Nutshell, O’Reilly and Associates.

� One of the Nutshell series. If you want one book on Java then this is the one I’d
recommend. Four parts are introduction to Java, programming with the Java api,
Java language reference and api quick reference.

Friedman L. W. , Comparative Programming Languages, Prentice Hall.

� I’ve got this on order.

Geissman L. B., Separate Compilation in Modula 2 and the structure of the Modula 2 Com-
piler on the Personal Computer Lilith, Dissertation 7286, ETH Zurich

Jacobi C., Code Generation and the Lilith Architecture, Dissertation 7195, ETH Zurich

� Fascinating background reading concerning Modula 2 and the Lilith architecture.

Goldberg A., and Robson D., Smalltalk 80: The language and its implementation, Addison
Wesley.

� Written by some of the Xerox PARC people who have been involved with the
development of Smalltalk. Provides a good introduction (if that is possible with
the written word) of the capabilities of Smalltalk.

Goos and Hartmanis (Eds), The Programming Language Ada - Reference Manual, Springer
Verlag.

� The definition of the language.

Gosling J., Yellin F., The Java Team, The Java API, Volumes I and II, Addison Wesley.

� Volume I looks at the core packages and Volume II looks at the Window Toolkit
and Applets. I find the pricing a bit much at just under 40 uk pounds a book.

Griswold R. E., Poage J. F., Polonsky I. P., The Snobol4 Programming Language,
Prentice-Hall.

� The original book on the language. Also provides some short historical material
on the language.

Griswold R. E., Griswold M. T., The Icon Programming Language, Prentice-Hall.

� The definition of the language with a lot of good examples. Also contains infor-
mation on how to obtain public domain versions of the language for a variety of
machines and operating systems.

Hoare C.A.R., Hints on Programming Language Design, SIGACT/SIGPLAN Symposium
on Principles of Programming Languages, October 1973.

� The first sentence of the introduction sums it up beautifully: I would like in this
paper to present a philosophy of the design and evaluation of programming lan-

Chapter 2 An Introduction to Programming Languages 42
and Object Oriented Programming

© Ian D Chivers email: ian.chivers@kcl.ac.uk

guages which I have adopted and developed over a number of years, namely that
the primary purpose of a programming language is to help the programmer in
the practice of his art.

Jenson K., Wirth N., Pascal: User Manual and Report, Springer Verlag.

� The original definition of the Pascal language. Understandably dated when one
looks at more recent expositions on programming in Pascal.

Kemeny J.G., Kurtz T.E., Basic Programming, Wiley.

� The original book on Basic by its designers.

Kernighan B. W., Ritchie D. M., The C Programming Language, Prentice Hall: Englewood
Cliffs, New Jersey.

� The original work on the C language, and thus essential for serious work with C.

Kowalski R., Logic Programming in the Fifth Generation, The Knowledge Engineering Re-
view, The BCS Specialist Group on Expert Systems.

� A short paper providing a good background to Prolog and logic programming,
with an extensive bibliography.

Knuth D. E., The TeXbook, Addison Wesley.

� Knuth writes with an tremendous enthusiasm and perhaps this is understandable
as he did design TeX. Has to be read from cover to cover for a full understand-
ing of the capability of TeX.

Lemay L., Perkins, Teach Yourself Java in 21 Days, Sams net.

� Most gentle of the books I’ve found. Includes a CD with the Sun JDK.

Lyons J., Chomsky, Fontana/Collins, 1982.

� A good introduction to the work of Chomsky, with the added benefit that
Chomsky himself read and commented on it for Lyons. Very readable.

Malpas J., Prolog: A Relational Language and its Applications, Prentice-Hall.

� A good introduction to Prolog for people with some programming background.
Good bibliography. Looks at a variety of versions of Prolog.

Marcus C., Prolog Programming: Applications for Database Systems, Expert Systems and
Natural Language Systems, Addison Wesley.

� Coverage of the use of Prolog in the above areas. As with the previous book
aimed mainly at programmers, and hence not suitable as an introduction to
Prolog as only two chapters are devoted to introducing Prolog.

Metcalf M. and Reid J., Fortran 90 Explained, Oxford Science Publications, OUP.

� A clear compact coverage of the main features of Fortran 8x. Reid was secretary
of the X3J3 committee.

Meyer B., Object Oriented Software Construction, Prentice Hall.

� I’m just got the second edition. The first edition is dated 1988. Whilst obviously
Eiffel based well worth a read. Also looks at other languages. This comparision
is not as good as it could be.

43 An Introduction to Programming Languages Chapter 2
and Object Oriented Programming

email: ian.chivers@kcl.ac.uk © Ian D Chivers

Mossenbeck H., Object-Oriented Programming in Oberon-2, Springer–Verlag.

� A very good and simple introduction to OOP. Uses Oberon-2 as the implementa-
tion language. Highly recommended.

Papert S., Mindstorms - Children, Computers and Powerful Ideas, Harvester Press

� Very personal vision of the uses of computers by children. It challenges many
conventional ideas in this area.

Parnas D. L., On the Criteria to be Used in Decomposing Systems into Modules, Communi-
cations of the ACM, 15 (12), 1972.

� One of the earliest papers to look at information hiding.

Sammett J., Programming Languages: History and Fundamentals, Prentice Hall.

� Possibly the most comprehensive introduction to the history of program language
development – ends unfortunately before the 1980’s.

Reiser M., Wirth N., Programming in Oberon – Steps Beyond Pascal and Modula, Addison
Wesley.

� Good introduction to Oberon. Revealing history of the developments behind
Oberon.

Reiser M., The Oberon System: User Guide and Programmer’s Manual, Addison Wesley.

� How to use the Oberon system, rather than the language.

Rumbaugh J., Blaha M., Premerlani W., Eddy F., Lorenson W.,Object Oriented Modelling
and Design, Prentice Hall.

� I like this book a lot. Having been involved in the relational area for over 10
years the book struck an immediate chord.

Seed G., An Introduction to OOP in C++, Springer.

� Comprehensive introduction to C++ and OOP. Examples drawn from the com-
puter graphics area.

Young S. J., An Introduction to Ada, 2nd Edition, Ellis Horwood.

� A readable introduction to Ada. Greater clarity than the first edition. Dated in
terms of the recent developments with Ada 95.

Wexelblat, History of Programming Languages, HOPL I, ACM Monograph Series, Aca-
demic Press.

� Very thorough coverage of the development of programming languages up to
June 1978. Sessions on Fortran, Algol, Lisp, Cobol, APT, Jovial, GPSS, Simula,
JOSS, Basic, PL/I, Snobol and APL, with speakers involved in the original lan-
guages. Very highly recommended.

Wiener R., Software Development using Eiffel: There Can Be Life Other than C++,
Prentice Hall.

� Well written, and the case studies include an ecological simulation, a game of
strategies and investments and simulated annealing. The chapter on object ori-
ented analysis and design is highly recommended.

Chapter 2 An Introduction to Programming Languages 44
and Object Oriented Programming

© Ian D Chivers email: ian.chivers@kcl.ac.uk

Wiener R., Software Development Using Eiffel: There Can be Life After C++, Prentice
Hall.

� Very well written. I’d really recommend getting hold of this book if you are go-
ing to seriously program in C++ using oo techniques. He teaches both academic
and commercial Eiffel and C++ courses. He knows his stuff!

Winder R., Roberts G., Developing Java software, Wiley.

� Waiting to get a copy.

Wirth N., An Assessment of the Programming Language Pascal, IEEE Transactions on
Software Engineering, June 1975, 192-198.

Wirth N., Program Development by Stepwise Refinement, Communications of the ACM,
April 1971.

� Clear and simple exposition of the ideas of stepwise refinement.

Wirth N., History and Goals of Modula 2, Byte, August 1984, 145-152.

� Straight from the horse’s mouth!

Wirth N., On the Design of Programming Languages, Proc. IFIP Congress 74, 386-393,
North Holland, Amsterdam.

Wirth N., The Programming Language Pascal, Acta Informatica 1, 35-63, 1971.

Wirth N., Modula: a language for modular multi- programming, Software Practice and Ex-
perience, 7, 3-35, 1977.

Wirth N., Programming in Modula 2, Springer Verlag.

� The original definition of the language. Essential reading for anyone considering
programming in Modula 2 on a long term basis.

Wirth N. Type Extensions, ACM Trans. on Prog. Languages and Systems, 10, 2 (April
1988), 2004-214

Wirth N. From Modula 2 to Oberon, Software – Practice and Experience, 18,7 (July 1988),
661-670

Wirth N., Gutknecht J., Project Oberon: The Design of an Operating System and Compiler,
Addison Wesley.

� Fascinating background to the development of Oberon. Highly recommended for
anyone involved in large scale program development, not only in the areas of
programming languages and operating systems, but more generally.

2.27 Problems
What programming languages are available on the system you work with?

45 An Introduction to Programming Languages Chapter 2
and Object Oriented Programming

email: ian.chivers@kcl.ac.uk © Ian D Chivers

3
Introduction to

Programming in Java

‘Though this be madness, yet there is method in’t’
Shakespeare.

‘Plenty of practice’ he went on repeating, all the time that Alice was getting him on
his feet again. ‘plenty of practice.’
The White Knight, Through the Looking Glass and What Alice Found There, Lewis
Carroll.

Aims

The aims of the chapter are:–
to look at a simple hello world example;

to look at java programs;

to look at java applets;

to look at a simple string example;

to look at a simple numeric example;

to introduce some of the formal syntactical rules of Java;

to look at the Java keywords;

to provide definitions of some technical terms used throughout the rest of the
notes;

to look at the Java memory model;

to look at the Java character set;

3 An Introduction to Java
In this chapter we will look at three simple program examples. The first looks at a simple
hello world example, the second a simple text i/o and the third looks at simple numeric i/o.

We will also look at variants of these programs that occur with Java depending on whether
we want to write a Java program or a Java applet that runs within a web browser. We will
also look at the flavours of doing this that exist within Java due to the evolution of the lan-
guage.

We will also look at some of the syntax of Java programs.

3.1 Program Development
Most people will have the following model of programming:–

� write the program using an editor;

� compile the source using a compiler;

� linking the output from the compiler to produce an executable;

� running the executable;

and as most of us know this is an iterative process. We rarely get it right first time.

Java is different. There is in effect no link stage. The compiler generates byte codes that are
then interpreted directly using a java byte code interpreter. This interpreter can be a web
browser that supports java or an interpreter that runs on whatever platform that you are us-
ing.

This means that if one develops java programs as applets that run on a web browser that the
java byte codes are effectively platform independent. The applets can run on any platform
that has a java virtual machine built into the web browser.

This is probably the major reason for the take up of Java. With the increasing importance of
the web people require a way to develop portable applications. You do not have to
reimplement for each platform that you want to support. Note also that java compiled code
is small. Another big plus for web based computing.

3.2 Java Programs
Java programs have access to the underlying computer system.

3.3 Java Applets
Java applets do not have access to the native machine on which the web browser runs.

3.4 Hello World – Java Program
The following is a complete Java program.
class c0301

{
public static void main(String[] args)
{

System.out.println(“ Hello world”);
}

}

Java programs and applets comprise one or more classes. In these notes we will use the
convention of c for chapter, dd, for chapter number and xx for example within that chapter.
So this is the first example in chapter 03.

Chapter 3 An Introduction to Java 48

© Ian D Chivers email: ian.chivers@kcl.ac.uk

Within a class we have one or more procedures and data. In Java terminology these are
methods and fields.

The { character signifies the start of the class.

The public static void main(String[] args) statement signifies that this is
a Java program. We will look at turning the above into an applet in the next example.

The c0301 class contains one method – main. This method returns a value of void. There is
the concept of functions and procedures in other languages with functions like sine return-
ing a value, but within the C/C++/Java family of languages we just have functions and
when they behave as a procedure or subroutine in another language they are void, and re-
turn a void data type.

This method is static. We will look in more depth a full coverage of static throughout the
course. For the time being all that is necessary to know is that if we are writing Java pro-
grams that the main method has to be static.

This method has the public attribute. This means that the method is visible whereever the
class is used.

The main method takes one argument or parameter, args and this is of type String[].
This enables the program to access data typed at the command line. We will look at arrays
of type String in much greater depth throughout the course.

We then have the { character signifying the start of the main method. There is one state-
ment in this method and that is System.out.println(“ Hello world”). Let us
look at this statement in more depth. With object oriented languages there are the twin con-
cepts of objects and methods. What we are doing is invoking the println method on the
System class’s out object.

With Java there is the concept of the core language and additional functionality is provided
by a number of built in classes. Much work has been done with Java to provide a lot of
functionality with these additional in built classes. It is essential to develop a good working
knowledge of what has already been provide. There is little point reinventing the wheel.
This is achieved in C and C++ using the #include statement.

Text or strings are delimited in Java with “ marks.

; is the statement seperator in Java.

The } character signifies the end of the program.

There are a number of issues that are important whilst preparing java programs:–

� the file name of the java program or applet must be the same as the class name

� if using more than one platform then stick to an operating system that supports
long file names. This means that using Windows 3.x is not recommended.

� java is case sensitive – I go against the normal style in java texts and stick to
lower case. I also use short names.

� compile you java program using

javac c0301.java

� run your programs using the java interpreter

java c0301.class

3.5 Hello World – Java Applet
The following is a complete Java applet.

49 An Introduction to Java Chapter 3

email: ian.chivers@kcl.ac.uk © Ian D Chivers

import java.awt.*;

public class c0301a extends java.applet.Applet
{

public void paint(Graphics g)
{

g.drawString(“ Hello world”,10,20);
}

}

The first line identifies which of the java classes are to be made available to the applet – the
syntax is in fact the same for a Java program.

There are several core classes in the Java application program interface – api. These are:–

� java.lang

� java.io

� java.util

� java.net

� java.awt

� java.applet

and we will look at these in more depth where appropriate. A good understanding of Java
therefore requires a knowledge of the contents of each class.

When we import a class we are able to use methods within that class with a shortened name
form. So
import java.awt.*;

makes available the abstract windowing toolkit. This package is made of the following main
components:–

� graphics – for controlling fonts, colours etc;

� components – for controlling graphical user interfaces (gui, and pronounced
gooey) using buttons, menus, lists etc;

� layout managers – for the control of components within their container objects;

� image – for manipulating images;

We will look into this whole area in more detail throughout the course.

The following identifies this class as an applet, rather then a program:–
public class c0301a extends java.applet.Applet

The first thing to note is that our class c0301a is an extension of one of the inbuilt Java
classes – Applet. This is a simple example of inheritance. This means we can create our
own applets by using the build in class java.applet.Applet. This class has a number
of methods:–

� init()

� start()

� stop()

� destroy()

Chapter 3 An Introduction to Java 50

© Ian D Chivers email: ian.chivers@kcl.ac.uk

but in this example we have not bothered overriding them, rather we have relied on default
behaviour.

Within our applet we have one method:–
public void paint(Graphics g)

and the method is public and void. The paint method takes one parameter and this is an ob-
ject g of type Graphics, which is one of the data types provided.

Within this method we have one statement:–

g.drawString(“ Hello world”,10,20);

and this applies the drawString method to the object g. The arguments to drawString are:–

� “ Hello world” – the string we want to appear on the screen

� 10 – the x position in pixels

� 20 – the y position in pixels

The } character signifies the end of the applet.

The outcome of all of this is that we now have an applet that we can run within a web
browser, e.g. netscape. This is not the end of the story however. We also need an html file
that can be loaded into the browser. HyperText Markup Language (HTML) is a markup lan-
guage and is based on SGML, which is an ISO standard. Within HTML terms a document
comprises two parts, the text and the markup. Markup languages are not new and TeX and
Runoff are two widely used markup languages. HTML is widely used and is the basis for
the World Wide Web (WWW) distributed information system. The web was originally de-
veloped at the European Particle Physics Laboratory (CERN) in Geneva to enable
high-energy physics researchers to work collaboratively on online documentation; it soon
became apparent that the system could be useful to a broader section of the population, and
the software became publicly available in 1991.

Here is the html file associated with this simple applet.
<html>
<head>
<title Hello World ></title>
</head>
<body>
<applet code=c0301a.class width=300 height=100></applet>
</body>
</html>

This simple html file uses a number of tags

� <html> – an instruction to the web browser that this is an html document;

� <head> – the heading

� <title> – the title of the document which appears somewhere within the browser.
Also appears in a booklist.

� <body> – the main body of the document

� <applet> – used to signify a java applet

More infomation can be found on html on the College web server. There are links to some
very good coverages of html. You need to have a good working knowledge of html if you
are interested in Java applets. They key tag in the above is the applet tag. Let us look at this
in more depth:–

51 An Introduction to Java Chapter 3

email: ian.chivers@kcl.ac.uk © Ian D Chivers

code=c0301a.class width=300 height=100

The actual applet to run is called c0301a.class. When we compile our java programs we end
up (if there are no errors) with a file with a .class extension. So this is the compiled java
applet. The width and height are the size of the inital sizes of the browser window in pixels.
These two values must be specified.

So when we create an applet as opposed to a program we need to also create an html file
that can be used by the web browser.

The applet examples will be put up on the college web server as the course progresses.
These can then be ran using Netscape on a pc or a mac. I use Netscape 3 under both Win-
dows 95 and NT. You can run them yourselves on the Sun using the appletviewer that co-
mes with the development kit.

So the sequence is now:–

� create the java applet – use the unix editor vi

� compile the java applet – use the Sun Java compiler javac

� create the associated html file – vi

� use the appletviewer to run the html file – appletviewer. Alternatively use a web
browser.

I have put up the applets on the college web server so that you can try them out using a
web browser.

3.6 Hello World: JApplet
The next variation uses JApplet, rather than Applet. JApplet provides access to the graphi-
cal components from javax.swing.
import java.awt.*;

public class c0301b extends javax.swing.JApplet
{

public void paint(Graphics g)
{

g.drawString(“ Hello world”,10,20);
}

}

Note that we are still using the graphics components from java.awt.

3.7 Hello World: JApplet alternate syntax
This shows an alternate syntax for this program.
import java.awt.*;
import javax.swing.JApplet;

public class c0301c extends JApplet
{

public void paint(Graphics g)
{

g.drawString(“ Hello world”,10,20);
}

}

Chapter 3 An Introduction to Java 52

© Ian D Chivers email: ian.chivers@kcl.ac.uk

3.8 Hello World: JComponent
This next example shows how to do it using one of the components from JComponents.
Note that this is a program, not an applet.
import javax.swing.JOptionPane;

public class c0301d
{

public static void main(String args[])
{

JOptionPane.showMessageDialog(null," Hello world “);
System.exit(0);

}
}

We have used the simplest form of the showMessageDialog method.

We have seen four ways of achieving much the same end result. The reasons for this are
two fold. Firstly there is the concept of a program and an applet. Secondly Java is evolving
and there are now several ways to achieve (more or less) the same end result. Different
books will show you different ways of writing Java applets and programs.

3.9 Program for line i/o
This program example reads a line of input from the user and echos it. This example intro-
duces a number of very important concepts about java.
import java.io.*;

class c0302
{

public static void main(String[] args)
{

try
{

InputStream i=System.in;
DataInputStream in=new DataInputStream(i);
String Line;
System.out.println(“ Type in a line of text ”);
Line=in.readLine();
System.out.println(Line);

}
catch(IOException e)
{ System.out.println(“ Exceptions raised: ” + e); }

}
}

In this example we are interested in doing i/o. In the previous program and applet we only
did output. We first import from java.io to make available in shortened name form the vari-
ous facilities we need.

The next thing is the name of the class – c0302. Remember java is case sensitive and the
file name must match the class name.

We then have the standard statement for a java program:–

53 An Introduction to Java Chapter 3

email: ian.chivers@kcl.ac.uk © Ian D Chivers

public static void main(String[] args)

where main is made public, static and returns a void type. We have the standard arguments
to main which are the argumnets to the program when it is executed returned as a String.
Let us now look at each statement in turn.
try

Mechanisms for handling execution errors in a programming language are to be found in
most programming langauges. Java supports exception handling. This facility is also to be
found in C++, Modula 2 and Ada. It is a significant improvement over the facilities pro-
vided in older languages.

If you are doing i/o you have to include the code doing the i/o in an exception handler. So
the try statment indicates the start of an exception handling block.
InputStream i=System.in;

You should be familiar from your programming background with the the concept of a vari-
able being of a particular data type and having an initial value. So the above means that the
variable i is of type InputStream and has an initial value of System.in.
DataInputStream in=new DataInputStream(i);

This statement is similar to the above but adds one very important extension. Java is an ob-
ject oriented language and objects have to be created. The in object is of type
DataInputStream and is created by the New DataInputStream(i) statement. Objects are cre-
ated using new.
String Line;

Line is a variable of type String. In fact String is an object in Java terminology, and is not a
fundamental type like integer or float.
System.out.println(“ Type in a line of text ”);

This statement causes the text string Type in a line of text to appear on the screen.
Line=in.readLine();

This statement reads in a line of text from the keyboard.
System.out.println(Line);

This statement echos the line back to the screen.
catch(IOException e)

This is the second part of the execution handling syntax. Within the above block if an error
occurs control passes to this statement and the following statement is executed.
{ System.out.println(“ Exceptions raised: ” + e); }

In the event of an error the above message appears on the screen.

If we compare the above to similar programs in other more conventional programming lan-
guages the additional syntax looks very off putting. Text i/o in Basic, C, C++, Fortran, For-
tran 90, Pascal or Modula 2 is much simpler. However there are very considerable benefits
to the above syntax. Please perservere. The additional complexity is worth it in the longer
term.

3.10 Program for numeric i/o
The following is a complete program example of numeric i/o.
import java.io.*;
import java.lang.Float;

Chapter 3 An Introduction to Java 54

© Ian D Chivers email: ian.chivers@kcl.ac.uk

class c030301
{
public static void main(String[] args)

{
try
{

InputStream i=System.in;
DataInputStream in=new DataInputStream(i);
String Line;
float f=1.0f;
Float F=new Float(f);
System.out.println(“ Type in a number ”);
Line=in.readLine();
F=Float.valueOf(Line);
f=F.floatValue();
System.out.println(f);

}
catch(IOException e)
{ System.out.println(“ Exceptions raised: ” + e); }

}
}

Let us look at statement in turn.
class c030301

This is the name of our class. Remember that the file name used at the operating system
side must be the same.
public static void main(String[] args)

This signifies that this is a Java program. This is the standard Java program statement.
try

We are doing i/o so we must use try and catch to trap errors.
InputStream i=System.in;

I is a variable or object of type InputStream and it has an inital value of System.in.
DataInputStream in=new DataInputStream(i);

in is an object of type DataInputStream and it is created using new DataInputStream(i).
String Line;

Line is of type String.
float f=1.0f;

f is a numeric variable of type float. It is given an initial value of 1.0 – note the f extension
on the initial value. All numeric variables are of type double by default in Java.
Float F=new Float(f);

F is an object of type Float. There is the concept in Java of fundamental data types and ob-
jects. For each fundamental data type there is a corresponding object. so float and Float are
two very different concepts. This object is given an inital value by the new Float(f) state-
ment.
System.out.println(“ Type in a number ”);

55 An Introduction to Java Chapter 3

email: ian.chivers@kcl.ac.uk © Ian D Chivers

This prints a text prompt on the screen.
Line=in.readLine();

This reads in the text that the user types into Line. All interaction is done using String ob-
jects.
F=Float.valueOf(Line);

This statement extracts the numeric value from the text typed in. Note that line is of type
String and hence is an object and we are extracting an object of type Float from this text
string.
f=F.floatValue();

This converts from a Float object to the build in float data type.
System.out.println(f);

This statement echos the numeric value back to the user.
catch(IOException e)

In the event of an i/o error control passes to this statement.
{ System.out.println(“ Exceptions raised: ” + e); }

In the event of an error the above message appears on the screen.

As you have all programmed using other languages the above appears very long winded.
Something we take for granted – numeric i/o – has become seemingly unreasonably com-
plex.

This is the syntax of Java. This is what you have to adapt to if you want to become profi-
cient in Java. Learning a second natural language is difficult at first.

3.11 Some Java Rules and Terminology
Case is significant in Java. Long names using mixed case will almost invariably end up
causing compilation errors due to typing mistakes.

Class names and file names must match.

Programs in Java always have the same initial statement
public static void main(String[] args)

Applets in Java always have the same syntax
public class yourname extends java.applet.Applet

The file at the operating system level has to be called yourname.

Java keywords are given below.

3.12 Good Programming Guidelines
Every language has its own style. It is advisable to adopt a style that one is comfortable
with that draws on ones experience of other languages, and also is similar to the notational
style used by Java texts. It is inevitable that one will end up working with algorithms and
programs already written in Java, and thus one has to be familiar with the conventional Java
style of writing programs.

I prefer to match the { and } at the same indentation level. I find the style adopted in some
of the Java books difficult to work with.

I also prefer lowercase.

Chapter 3 An Introduction to Java 56

© Ian D Chivers email: ian.chivers@kcl.ac.uk

3.13 Java Character Set
A new standard is becoming increasingly popular where multiple language support is re-
quired. This is called Unicode. This is a sixteen bit character set. C++ offers support for 16
bit characters but does not demand suppport of Unicode.

Characters in Java are Unicode based. Given that the web is international you can see why
Java uses the Unicode standard. It enables everyone in the world to take advantage of Java
using their own character sets. There are two major character sets in computing. These are
ASCII (a 7 bit character standard) and ISO-Latin-1 (an 8 bit character standard, commonly
called Latin-1).

Look at the differences between

ASCII

DOS character set

Windows character set

DEC character set

Apple character set

ISO-Latin-1

in the additional notes I have provided.

When running a Java applet in a web browser you may not see the characters as they were
originally developed as your browser may not be able to support rendering of that character
set.

We will look into the whole area of characters, character sets and strings in much greater
depth in a later chapter.

3.14 Summary
Don’t be put off by the syntax of Java. It doesn’t take long to get on top of that syntax. You
wouldn’t expect natural languages to have identical syntax and semantics, so why expect it
from programming languages.

3.15 Bibliography
I’ve broken down this into three areas. It is essential to get hold of additional sources in the
first two areas, and very useful in the third.

3.15.1 Java
As with most programming langauges it is useful to make the following distinctions:–

� language tutorial and examples

� language reference

� language algorithms

The aims of the notes are to provide a brief coverage of the first and second areas. There
are little or no sources at this time of algorithms in Java.

Look at the web pages for more details of on-line sources. There are a lot of these. There
are a lot of good complete example programs.

3.15.2 HTML
Use the pointers on the college web pages. Most of these are free – you only have to pay
for the printing.

57 An Introduction to Java Chapter 3

email: ian.chivers@kcl.ac.uk © Ian D Chivers

3.15.3 Character sets
Have a look in the documentation that comes with the system that you work with. There are
also sources on the web – it just takes time to find them and get them printed.

3.16 Problems
1. Type in the examples in this chapter. You will invariably make typing mistakes. Look at
the error messages that the compiler give you. The compiler gives error messages from their
view point. Make an attempt to understand what this means.

2. What happens with the first example with characters outside of the ASCII character set?

Does the screen representation of these characters match the printed representation? Why do
you think that is?

3. With the example what happens to so called white space, i.e spaces, tabs, and carriage re-
turns?

4. With the numeric example experiment with the number format, i.e. use integers, reals,
exponential format. What happens?

5. Write a program that will read in your name and address and print them out in reverse
order.

Chapter 3 An Introduction to Java 58

© Ian D Chivers email: ian.chivers@kcl.ac.uk

4
Arithmetic,

Expressions and the primitive
data types in Java

Taking Three as the subject to reason about —
A convenient number to state —

We add Seven, and Ten, and then multiply out
By One Thousand diminished by Eight.

The result we proceed to divide, as you see,
By Nine Hundred and Ninety and Two:

Then subtract Seventeen, and the answer must be
Exactly and perfectly true.

Lewis Carroll, The Hunting of the Snark

Round numbers are always false.

Samuel Johnson.

Aims

The aims of this chapter are to introduce:–
the numeric data types available in Java;

the integer numeric model used in Java;

the floating point numeric model used within Java – the IEEE 754-1985 stan-
dard

the rules for the evaluation of arithmetic expressions;

the rules that apply in type conversion;

constants – static final;

char data type;

boolean data type;

to introduce briefly all of the operators in Java;

4 Arithmetic and Expressions in Java
This chapter looks at the fundamental numeric data types in Java and the rules for expres-
sion evaluation. There are a large number of operators and a quick look at them all is neces-
sary. However for most applications you will only require a good knowledge of a small
subset of them.

4.1 Basic numeric types
Java supports the two numeric data types we are familiar with from other programming lan-
guages, i.e. integer and real.

4.2 Integer Numeric Type
The standard requires four types of integers, byte, short , int and long, and these correspond
to:–

� byte – 8 bit signed two’s complement integer; -128 through +127

� short – 16 bit signed two’s complement integer; -32768 through +32767

� int – 32 bit signed two’s complement integer

� long – 64 bit signed two’s complement integer

They obey the laws of arithmetic modulo 2n, where n is the number of bits in the imple-
mentation. Integer arithmetic never overflows or underflows – it wraps. Add 1 to a byte in-
teger of value 127 and it becomes -128. This is not an error.

Try running the following program on the system you use. What do you think will happen?
class c0401
{

public static void main(String[] args)
{

byte i_b = (byte)1;
short i_s = (short)1;
int i= 1;
long l_l = 1;
System.out.print(i_b);System.out.print(“ ”);
System.out.print(i_s);System.out.print(“ ”);
System.out.print(i);System.out.print(“ ”);
System.out.print(i_l);System.out.println();
for (int count=1;count<33;++count)
{

i_b = (byte)(i_b * 2)
i_s = (short)(i_s * 2)
i = i * 2
i_l = i_l * 2
System.out.print(i_b);System.out.print(“ ”);
System.out.print(i_s);System.out.print(“ ”);
System.out.print(i);System.out.print(“ ”);
System.out.print(i_l);System.out.println();

}
}

}
Let us look at this program in some detail.

Chapter 4 Arithmetic and Expressions in Java 60

© Ian D Chivers email: ian.chivers@kcl.ac.uk

class c0401

Class name.
public static void main(String[] args)

Standard program header.
byte i_b = 1;

Variable declaration and initialisation.
short i_s = 1;

Variable declaration and initialisation.
int i= 1;

Variable declaration and initialisation.
long l_l = 1;

Variable declaration and initialisation.
System.out.print(i_b);System.out.print(“ ”);

Standard mechanism to print to the screen. The print method can only take one argument.
There are several print methods – one for each built in type. This makes i/o seem a little
verbose compared to more conventional programming languages.
System.out.print(i_s);System.out.print(“ ”);

Print short.
System.out.print(i);System.out.print(“ ”);

Print int.
System.out.print(i_l);System.out.println();

Print long.
for (int count=1;count<33;++count)

Java and C++ syntax of a for loop. We are allowed to declare and initialise variables with a
for statement. In this case we introduce a new variable count and initialise to 1. The ; is a
statment terminator. count < 33 means repeat the loop whilst count is less than 33. ++count
means increment count by 1 each time round the loop.
i_b = (byte)(i_b * 2)

In this example we are forced to cast the expression i_b*2 from its default type of int back
to byte. This is because an integer literal (a number) has a default type of int. Hence the 2
forces the expression i_b*2 to be promoted to be of type int. This is the Java syntax for
casting.
i_s = (short)(i_s * 2)

In this example we are forced to cast the expression i_s*2 from int to short.
i = i * 2

Familiar arithmetic expression and assignment.
i_l = i_l * 2

Familiar arithmetic expression and assignment. In this case 2 is promoted to type long by
Java automatically.
System.out.print(i_b);System.out.print(“ ”);
System.out.print(i_s);System.out.print(“ ”);
System.out.print(i);System.out.print(“ ”);
System.out.print(i_l);System.out.println();

61 Arithmetic and Expressions in Java Chapter 4

email: ian.chivers@kcl.ac.uk © Ian D Chivers

Print out the values.

The for loop will terminate when count reaches 32.

4.3 Real Numeric Type
Java uses the IEEE 754-1985 standard as a basis for floating point data types and
arithemtic. Two types are required to be supported and these are float and double. Within
this standard there are the concepts of:–

� overflow to infinity

� underflow to zero

� NAN or Not a Number, for invalid expressions

For floating point calculations with F meaning finite number we have the following:–

x y x/y x%y

F � 0.0 �� NaN
F �� � 0.0 x
� 0.0 � 0.0 NaN NaN
�� F �� NaN
�� �� NaN NaN

Floating point division and remainder can produce both NaN and infinities without raising
an exception.

Some of the major differences between IEEE 754-1985 and the Java variant are:–

� nonstop arithmetic – Java will not signal the IEEE conditions of invalid opera-
tion, division by zero overflow, underflow or inexact;

� extended formats – these are optional;

� rounding – Java rounds towards the nearest, which is the IEEE default, but it
does not offer user selectable rounding;

Java is in a state of flux in this area, and this is covered in more depth in chapter 25.

The following program provides an example of the use of each real data type supported in
Java.
class c0402
{

public static void main(String[] args)
{

float f = 1.1f;
double f_d = 1.1;
System.out.println(f);
System.out.println(f_d);

}
}

Let us look at each statement in turn.
class c0402

Every program has to be a class.
public static void main(String[] args)

Standard program statement.

Chapter 4 Arithmetic and Expressions in Java 62

© Ian D Chivers email: ian.chivers@kcl.ac.uk

float f = 1.1f;

There are two kinds of real numbers in Java. One is float. The variable f is of type float and
has an initial value of 1.1. Note that this real literal has f appended. Real constants are dou-
ble by default. You have to use a cast or append with an f. We could have also written:–
float f = (float)1.1;

To convert 1.1 from double to float.
double f_d = 1.1;

This is the second kind of real number in Java. So f_d is a variable of type double and has
an initail value of 1.1
System.out.println(f);

Print out the float variable.
System.out.println(f_d);

Print out the double variable.

4.4 IEEE 754-1985
The standard defines two basic real types – single and double, and two extended types –
single extended and double extended. Java only supports the basic types. This ensures 24
bit precision with single and 53 bit precision within double. This means 6/7 digits and
10**38 for single and 15/16 digits and 10**308 for double.

The idea behind the standard is that you can run your programs on any IEEE compliant sys-
tem and get the same numeric results.

4.5 Numeric Type Conversion
With expressions of mixed type the variable of the strongest type will cause promotion of
all others. The sequence is byte -> short -> int -> long -> float -> double. Explicit casts can
always be used.

4.6 Whither complex?
This is not provided in the language.

4.7 Constants or Parameters
A constant or parameter is defined in Java using the static and final attributes. Consider the
following example:–
static final double pi=3.14159265358

A complete example is given later.

4.8 Operators and Expression Evaluation
Java has a large number of operators, A working knowledge of the more commonly used
ones is essential for successful use of Java. You should also be aware of the rest.

4.8.1 Expression Evaluation
Expressions are evaluated left to right in Java when involving operators of a similar prece-
dence. Brackets can be used to alter the order of evaluation. The following example illus-
trates this.
class c0403
{

public static void main(String[] args)
{

63 Arithmetic and Expressions in Java Chapter 4

email: ian.chivers@kcl.ac.uk © Ian D Chivers

int i=2+3*4;
System.out.println(i);

}
}

The program prints out 14.

4.8.2 Operators, Precedence and Associativity.
The following table summarises the rules concerning precedence and associativity. All oper-
ators associate left to right except for those in the third and eighteenth position in the prece-
dence hierarchy, i.e. the unary and assignment operators.

Operator Summary

. member selection object.member
[] subscripting [expr]
() function call expr (expr_list)
++ post increment expr ++
— post decrement expr —

++ pre increment ++ expr
— pre decrement — expr
~ complement ~ expr
! not ! expr
- unary minus - expr
+ unary plus + expr

new new new object
() cast (type) expr

* multiply expr * expr
/ divide expr / expt
% modulo or remainder expr % expr

+ plus expr + expr
- minus expr - expr

<< shift left expr << expr
>> shift right, sign extend expr >> expr
>>> shift right, zero fill expr >>> expr

< less than expr < expr
<= less than or equal expr <= expr
> greater than expr > expr
>= greater than or equal expr >= expr
instanceof instanceof object instanceof object

== equal expr == expr
!= not equal expr != expr

& bitwise AND expr & expr

^ bitwise exclusive OR expr ^ expr

| bitwise inclusive OR expr | expr

Chapter 4 Arithmetic and Expressions in Java 64

© Ian D Chivers email: ian.chivers@kcl.ac.uk

&& logical AND expr && expr

|| logical OR expr || expr

?: conditional expression expr ? expr : expr

= conventional assignment lvalue = expr
*= multiply and assign lvalue *= expr
/= divide and assign lvalue /= expr
%= modulo and assign expr %= expr
+= add and assign expr += expr
-= subtract and assign expr -= expr
<<= shift left and assign expr <<= expr
>>= shift right and assign expr >>= expr
>>>= shift right and assign expr >>>= expr
&= AND and assign expr &= expr
|= inclusive OR and assign expr |= expr
^= exclusive OR and assign expr ^= expr

There will be more complete examples of each of the following in later chapters.

4.8.2.1 . [member selection] object.member
This operator allows us to select a member of a class.

4.8.2.2 [] [subscripting] pointer [expr]
The normal array subscripting operator.

4.8.2.3 () [function call] expr (expr_list)
The function call operator.

4.8.2.4 ++ [post increment] expr ++
Increment after use.

4.8.2.5 — [post decrement] expr —
Decrement after use.

4.8.2.6 ++ [pre increment] ++ expr
Increment before use.

4.8.2.7 — [pre decrement] — expr
Decrement before use.

4.8.2.8 ~ [complement] ~ expr
One’s complement operator. The operand must be of integral type. Integral promotions are
performed.

4.8.2.9 ! [not] ! expr
Logical negation operator.

4.8.2.10 - [unary minus] - expr
As stated.

4.8.2.11 + [unary plus] + expr
As stated.

65 Arithmetic and Expressions in Java Chapter 4

email: ian.chivers@kcl.ac.uk © Ian D Chivers

4.8.2.12 new [create] new type
The new operator attempts to create an object of the type to which it is applied. This type
must be an object type, and functions cannot be allocated in this way, though pointers to
functions can.

4.8.2.13 () [cast] (type) expr
An explicit type conversion.

4.8.2.14 * [multiply] expr * expr
Conventional arithmetic multiplication.

4.8.2.15 / [divide] expr / expt
Conventional arithmetic division.

4.8.2.16 % [modulo or remainder] expr % expr
Remainder.

4.8.2.17 + [plus] expr + expr
Conventional arithmetic addition.

4.8.2.18 - [minus] expr - expr
Conventional arithmetic subtraction.

4.8.2.19 << [shift left] expr << expr
Shift left. The operands must be of integral type and integral promotions are performed.

4.8.2.20 >> [shift right] expr >> expr
Shift right. Sign extend. The operands must be of integral type and integral promotions are
performed.

4.8.2.21 >>> [sihift right] expr >>> expr
Shift right. Zero fill.

4.8.2.22 < [less than] expr < expr
Conventional relational operator.

4.8.2.23 <= [less than or equal] expr <= expr
Conventional relational operator.

4.8.2.24 > [greater than] expr > expr
Conventional relational operator.

4.8.2.25 >= [greater than or equal] expr >= expr
Conventional relational operator.

4.8.2.26 == [equal] expr == expr
Conventional relational operator.

4.8.2.27 != [not equal] expr != expr
Conventional relational operator.

4.8.2.28 & [bitwise AND] expr & expr
The usual arithemic conversions are performed: the result is the bitwise and function of the
operands. The operator applies only to integral operands. If both bits are set the result is 1,
otherwise 0.

Chapter 4 Arithmetic and Expressions in Java 66

© Ian D Chivers email: ian.chivers@kcl.ac.uk

4.8.2.29 ^ [bitwise exclusive OR] expr ^ expr
The usual arithemic conversions are performed: the result is the bitwise exclusive or func-
tion of the operands. The operator applies only to integral operands. If either but not both
bits are set the result is 1, otherwise 0.

4.8.2.30 | [bitwise inclusive OR] expr | expr
The usual arithemic conversions are performed: the result is the bitwise inclusive or func-
tion of the operands. The operator applies only to integral operands. If either bit is set the
result is set, otherwise 0.

4.8.2.31 && [logical AND] expr && expr
The operands must be boolean.

Left to right evaluation is guaranteed, and the second operand is not evaluated if the first is
false.

4.8.2.32 || [logical inclusive OR] expr || expr
The operands must be boolean. The result is true if either of its operands is true and false
otherwise.

Left to right evaluation is guaranteed, and the second operand is not evaluated if the first is
true.

4.8.2.33 ?: [conditional expression] expr ? expr : expr
The first expression is converted to bool. It is evaluated and if it is true the result of the
conditional expression is the value of the second expression, otherwise that of the third.

All side effects of the first expression except for destruction of temporaries happen before
the second or third expression is evaluated.

4.8.2.34 = [conventional assignment] expr = expr
Conventional assignment.

4.8.2.35 *= [multiply and assign] expr *= expr
Multiply and assign, e.g. a=a*expression

4.8.2.36 /= [divide and assign] expr /= expr
Divide and assign, e.g. a=a/expression

4.8.2.37 %= [modulo and assign] expr %= expr
Modulo and assign, e.g. a=a%expression

4.8.2.38 += [add and assign] expr += expr
Add and assign, e.g. a=a+expression

4.8.2.39 -= [subtract and assign] expr -= expr
Subtract and assign, e.g. a=a-expression

4.8.2.40 <<= [shift left and assign] expr <<= expr
Shift left and assign

4.8.2.41 >>= [shift right and assign] expr >>= expr
Shift right and assign

4.8.2.42 &= [AND and assign] expr &= expr
AND and assign

4.8.2.43 |= [inclusive OR and assign] expr |= expr
inclusive OR and assign

67 Arithmetic and Expressions in Java Chapter 4

email: ian.chivers@kcl.ac.uk © Ian D Chivers

4.8.2.44 ^= [exclusive OR and assign] expr ^= expr
exclusive OR and assign

4.9 Expression Examples
It is not appropriate here to cover each and everyone of the above in great depth. We will
introduce examples throughout the notes as we progress.

Note that there is no exponentiation operator.

The following programs and program extracts cover some of the above.
class c0404
{

public static void main(String[] args)
{

int i=0;
int j=0;
System.out.println(++i);
System.out.println(j++);

}

}

The above example highlights the use of the pre and post increment and decrement opera-
tors. Type the above in and run it.
class c0405
{

public static void main(String[] args)
{

int i=9;
int j=2;
int k=-2;
System.out.println(i/j);
System.out.println(i/k);
System.out.println(i%j);
System.out.println(i%k);

}
}
Type this example in and run it. Java defines / and % to obey the following:–

(x/y)*y + x%y = x

Consider the following example:–
class c0406
{

public static void main(String[] args)
{

int i=0;
int j=0;
int k=0;
int l=0;
i=i+1;
j+=1;
++k;
l++;

Chapter 4 Arithmetic and Expressions in Java 68

© Ian D Chivers email: ian.chivers@kcl.ac.uk

System.out.println(i);
System.out.println(j);
System.out.println(k);
System.out.println(l);

}
}

What do you think will be the output of this program? Do we need four ways of achieving
the same thing in a programming language?

This example is taken from the Fortran 90 text. It is a direct translation.
class c0407
{

static final float light_year = (float)(9.46*10E12) ;

public static void main(String[] args)

{
float light_minute;
float distance;
float elapse ;
int minute ;
int second ;
light_minute = light_year/(float)(365.25 * 24.0 * 60.0);
distance = (float)(150.0 * 10E6) ;
elapse = distance / light_minute ;
minute = (int)elapse ;
second = (int)((elapse - minute) * (float)60) ;
System.out.print(“ Light takes ”);
System.out.print(minute);
System.out.print(“ minutes”);
System.out.print(“ ”);
System.out.print(second);
System.out.println(“ seconds”);

}
}

Let us look at each line in turn.
class c0407

Standard class definiton.
static final float light_year = (float)(9.46*10E12) ;

This is the way that you define light_year to be a constant or parameter. The two additional
keywords are static and final.

The initial value looks a little strange. Remember that real numbers are double by default in
Java. We thus have to cast the expression (9.46*10E12) to a float. Note that we have to use
brackets around the numeric expression as we are interested in casting the result of the
whole expression.
public static void main(String[] args)

Standard start of program.
float light_minute;

69 Arithmetic and Expressions in Java Chapter 4

email: ian.chivers@kcl.ac.uk © Ian D Chivers

float distance;

float elapse ;

int minute ;

int second ;

Standard variable declarations.
light_minute = light_year / (float)(365.25 * 24.0 * 60.0);

Assign value to light_minute. Part of the expression looks a little odd at first. We are doing
the complete expression as double and then casting the result to float.

distance = (float)(150.0 * 10E6) ;

Calculate distance – again cast from double to float.
elapse = distance / light_minute ;

Simple assignment.
minute = (int)elapse ;

Assignment with cast.
second = (int)((elapse - minute) * (float)60) ;

Assignment with cast. Notice the additional brackets to force the cast of the whole expres-
sion.

System.out.print(“ Light takes ”);
System.out.print(minute);
System.out.print(“ minutes”);
System.out.print(“ ”);
System.out.print(second);
System.out.println(“ seconds”);

Print out the answer.

The example looks a little unpleasant do to the requirment to cast from the various default
types. Let us now look at a slight variant using double throughout.
class c0408
{

static final double light_year = 9.46*10E12 ;

public static void main(String[] args)

{
double light_minute , distance , elapse ;
int minute , second ;
light_minute = light_year / (365.25 * 24.0 * 60.0) ;
distance = 150.0 * 10E6 ;
elapse = distance / light_minute ;
minute = (int)elapse ;
second = (int)((elapse - minute) * 60) ;
System.out.print(“ Light takes ”);
System.out.print(minute);
System.out.print(“ minutes”);
System.out.print(“ ”);
System.out.print(second);
System.out.println(“ seconds”);

Chapter 4 Arithmetic and Expressions in Java 70

© Ian D Chivers email: ian.chivers@kcl.ac.uk

}
}

Better – now look at the last variant.
class c0409
{

static final float light_year = 9.46f*10E12f ;

public static void main(String[] args)

{
float light_minute;
float distance;
float elapse ;
int minute ;
int second ;
light_minute = light_year/(365.25f * 24.0f * 60.0f) ;
distance = 150.0f * 10E6f ;
elapse = distance / light_minute ;
minute = (int)elapse ;
second = (int)((elapse - minute) * 60f) ;
System.out.print(“ Light takes ”);
System.out.print(minute);
System.out.print(“ minutes”);
System.out.print(“ ”);
System.out.print(second);
System.out.println(“ seconds”);

}
}

So the recommendation would seem to be to do all real arithmetic as double, rather than
have to cast all the time or append all variables with f. If your program is heavy on numeric
computation would you be using Java anyway?

4.10 Char
Characters are Unicode based in Java. Given the large number of natural languages in the
world and the requirements of the publishing world several companies got togthor and
formed Unicode Inc, a non-profit making consortium to draw up a standard for international
character sets. ISO was tackling the same probelm and the outcome was the Unicode Stan-
dard.

As Unicode is 16 bit based it can handle 65,536 distinct characters, which is enough for
most if not all languages in use today plus a number of older or arcane languages, e.g.
Egyptian hieroglyphs.

Note that not all computer systems can necessarily handle the display of the full Unicode
character set.

The bibliography contains some pointers to sources of information regarding Unicode. I’ve
also printed out the following:–

� ASCII character set – 7 bit

� ISO Latin 1 – 8 bit

71 Arithmetic and Expressions in Java Chapter 4

email: ian.chivers@kcl.ac.uk © Ian D Chivers

� DOS character set – code pages 437 and 850

� Windows character set

� Apple character set

� Unicode

Now you have some idea why the interchange of computer information from one system to
another can be fraught with problems.

4.11 Boolean
This is the last primitive data type supported in Java. Values are eithor true or false.

4.12 Example Programs
Here are a small number of complete Java programs illustrating some of the material in this
chapter.

4.12.1 Example Program – Simple character and boolean output
class c0410
{

public static void main(String[] args)
{

boolean ok=true;
char c=’a’;
System.out.println(c);
System.out.println(ok);

}
}

4.12.2 Example Program – Unicode character output
class c0411
{

public static void main(String[] args)
{

char c=’\u0b87’;
System.out.println(c);

}
}

4.12.3 Example Program – Bitwise operators &, ^ and |
class c0412
{

public static void main(String[] args)
{

int i=10;
int j=11;
int k,l,m;
k= i & j;
System.out.println(k);
l= i ^ j;
System.out.println(l);
m= i | j;
System.out.println(m);

Chapter 4 Arithmetic and Expressions in Java 72

© Ian D Chivers email: ian.chivers@kcl.ac.uk

}
}

4.13 Summary
There are the following primitive data types in Java:–

� boolean – true or false

� char – 16 bit Unicode character

� byte – 8 bit signed integer

� short – 16 bit signed integer

� int – 32 bit signed integer

� long – 64 bit signed integer

� float – 32 bit real: IEEE 754-1985

� double – 64 bit real: IEEE 754-1985

Integer constants in expressions are of type int. Casting is required when doing integer
arithmetic using the other integer types.

Real constants are of type double. Casting is required when doing real arithmetic using float
types.

Java draws heavily on C and C++ for its operators and syntax.. If you have some back-
ground in these languages then this obviously helps. However there are no pointers in Java,
or explicit delete mechanisms to free memory. Java has a garbage collector.

Strings and arrays are not fundamental data types, they are objects and as such are covered
in separate chapters.

Constants are provided using the static final attributes.

There is a lot of material in this chapter. Don’t panic. As the course progresses more and
more of it will stick.

4.14 Package java.lang
This package provides classes that are fundamental to Java. They do not need to be im-
ported. They are automatically imported. They have been covered here as I couldn’t think
of where else they should go!

4.14.1 Interface Summary

4.14.1.1 Cloneable
A class implements the Cloneable interface to indicate to the Object.clone() method that it
is legal for that method to make a field-for-field copy of instances of that class.

4.14.1.2 Comparable
This interface imposes a total ordering on the objects of each class that implements it.

4.14.1.3 Runnable
The Runnable interface should be implemented by any class whose instances are intended
to be executed by a thread.

4.14.2 Class Summary

4.14.2.1 Boolean
The Boolean class wraps a value of the primitive type boolean in an object.

73 Arithmetic and Expressions in Java Chapter 4

email: ian.chivers@kcl.ac.uk © Ian D Chivers

4.14.2.2 Byte
The Byte class is the standard wrapper for byte values.

4.14.2.3 Character
The Character class wraps a value of the primitive type char in an object.

4.14.2.4 Character.Subset
Instances of this class represent particular subsets of the Unicode character set.

4.14.2.5 Character.UnicodeBlock
A family of character subsets representing the character blocks defined by the Unicode 2.0
specification.

4.14.2.6 Class
Instances of the class Class represent classes and interfaces in a running Java application.

4.14.2.7 ClassLoader
The class ClassLoader is an abstract class.

4.14.2.8 Compiler
The Compiler class is provided to support Java-to-native-code compilers and related ser-
vices.

4.14.2.9 Double
The Double class wraps a value of the primitive type double in an object.

4.14.2.10 Float
The Float class wraps a value of primitive type float in an object.

4.14.2.11 InheritableThreadLocal
This class extends ThreadLocal to provide inheritance of values from parent Thread to child
Thread: when a child thread is created, the child receives initial values for all
InheritableThreadLocals for which the parent has values.

4.14.2.12 Integer
The Integer class wraps a value of the primitive type int in an object.

4.14.2.13 Long
The Long class wraps a value of the primitive type long in an object.

4.14.2.14 Math
The class Math contains methods for performing basic numeric operations such as the ele-
mentary exponential, logarithm, square root, and trigonometric functions.

Fields

� static double E The double value that is closer than any other to e, the base of
the natural logarithms.

� static double PI The double value that is closer than any other to pi, the ratio of
the circumference of a circle to its diameter.

Methods

� static double abs(double a) Returns the absolute value of a double value.

� static float abs(float a) Returns the absolute value of a float value.

� static int abs(int a) Returns the absolute value of an int value.

� static long abs(long a) Returns the absolute value of a long value.

Chapter 4 Arithmetic and Expressions in Java 74

© Ian D Chivers email: ian.chivers@kcl.ac.uk

� static double acos(double a) Returns the arc cosine of an angle, in the range of
0.0 through pi.

� static double asin(double a) Returns the arc sine of an angle, in the range of -pi/2
through pi/2.

� static double atan(double a) Returns the arc tangent of an angle, in the range of
-pi/2 through pi/2.

� static double atan2(double a, double b) Converts rectangular coordinates (b, a) to
polar (r, theta).

� static double ceil(double a) Returns the smallest (closest to negative infinity)
double value that is not less than the argument and is equal to a mathematical in-
teger.

� static double cos(double a) Returns the trigonometric cosine of an angle.

� static double exp(double a) Returns the exponential number e (i.e., 2.718...)
raised to the power of a double value.

� static double floor(double a) Returns the largest (closest to positive infinity) dou-
ble value that is not greater than the argument and is equal to a mathematical in-
teger.

� static double IEEEremainder(double f1, double f2) Computes the remainder op-
eration on two arguments as prescribed by the IEEE 754 standard.

� static double log(double a) Returns the natural logarithm (base e) of a double
value.

� static double max(double a, double b) Returns the greater of two double values.

� static float max(float a, float b) Returns the greater of two float values.

� static int max(int a, int b) Returns the greater of two int values.

� static long max(long a, long b) Returns the greater of two long values.

� static double min(double a, double b) Returns the smaller of two double values.

� static float min(float a, float b) Returns the smaller of two float values.

� static int min(int a, int b) Returns the smaller of two int values.

� static long min(long a, long b) Returns the smaller of two long values.

� static double pow(double a, double b) Returns of value of the first argument
raised to the power of the second argument.

� static double random() Returns a random number greater than or equal to 0.0 and
less than 1.0.

� static double rint(double a) returns the closest integer to the argument.

� static long round(double a) Returns the closest long to the argument.

� static int round(float a) Returns the closest int to the argument.

� static double sin(double a) Returns the trigonometric sine of an angle.

� static double sqrt(double a) Returns the square root of a double value.

� static double tan(double a) Returns the trigonometric tangent of an angle.

75 Arithmetic and Expressions in Java Chapter 4

email: ian.chivers@kcl.ac.uk © Ian D Chivers

� static double toDegrees(double angrad) Converts an angle measured in radians to
the equivalent angle measured in degrees.

� static double toRadians(double angdeg) Converts an angle measured in degrees
to the equivalent angle measured in radians.

4.14.2.15 Number
The abstract class Number is the superclass of classes Byte, Double, Float, Integer, Long,
and Short.

4.14.2.16 Object
Class Object is the root of the class hierarchy.

4.14.2.17 Package
Package objects contain version information about the implementation and specification of
a Java package.

4.14.2.18 Process
The Runtime.exec methods create a native process and return an instance of a subclass of
Process that can be used to control the process and obtain information about it.

4.14.2.19 Runtime
Every Java application has a single instance of class Runtime that allows the application to
interface with the environment in which the application is running.

4.14.2.20 RuntimePermission
This class is for runtime permissions.

4.14.2.21 SecurityManager
The security manager is a class that allows applications to implement a security policy.

4.14.2.22 Short
The Short class is the standard wrapper for short values.

4.14.2.23 String
The String class represents character strings.

4.14.2.24 StringBuffer
A string buffer implements a mutable sequence of characters.

4.14.2.25 System
The System class contains several useful class fields and methods.

4.14.2.26 Thread
A thread is a thread of execution in a program.

4.14.2.27 ThreadGroup
A thread group represents a set of threads.

4.14.2.28 ThreadLocal
This class provides ThreadLocal variables.

4.14.2.29 Throwable
The Throwable class is the superclass of all errors and exceptions in the Java language.

4.14.2.30 Void
The Void class is an uninstantiable placeholder class to hold a reference to the Class object
representing the primitive Java type void.

You must look at the on-line documentation for more details of what are in these classes.

Chapter 4 Arithmetic and Expressions in Java 76

© Ian D Chivers email: ian.chivers@kcl.ac.uk

4.15 Bibliography
IEEE 754-1985

The standard is the definitive statement. Other sources include Suns Numerical Computa-
tion Guide. Similar publications will exist for other platforms.

What Every Computer Scientist Should know About Floating Point Arithmetic

This paper first appeared in the March 1991 issue of Computing Surveys, ACM Inc. It can
also be found (after some rumaging around) on Sun systems. I recommend the paper very
highly.

4.16 Problems
1. Try typing in and running the examples given in this chapter. Remember that you need to
gain familiarity with the Java rules. You need to make mistakes and see what goes wrong.

2. Write a program that will read in your name and address and porint them out. Now mod-
ify the program to read in your age also. Print out your name, age and address.

3. One of the easiest ways to write a program is to modify an existing one. The example
given earlier, dealing with the time taken for light to travel from the sun to the earth could
form the basis of several other programs.

� many communications satellites follow a geosynchronous orbit, some 35,870 Km
above the earth’s surface. What is the time lag in using such a satellite for a tele-
phone conversation?

� the moon is about 384,400 Km from the earth (on average). what implications
does this have for control experiments on the moon? what is the time lag?

� the following table gives the distance in MKm from the sun to the planets in the
solar system:

mercury 57.9 venus 108.2
earth 149.6 mars 227.9
jupiter 778.3 saturn 1427.0
uranus 2869.6 neptune 4496.6
pluto 5900.0

Use this information to find the greatest and least time taken to send a message from the
earth to the other planets. Assume that all orbits are in the same plane and circular (if it was
good enough for copernicus, its good enough for this example). For all practical purposes
the speed of light in a vacuum is a constant, and therefore a good candidate for a const
statement. Use it.

4. Write a program to calculate the period of a pendulum. Use the following formula:–

t = 2 * pi * sqrt(length/9.81)

The length is in metres and the time is in seconds. Use a length of 10.0 metres. Use single
precision throughout.

PI is built into Java. Where would you expect it to be? So is square root.

5. Repeat the above, using double precision throughout.

6. Base conversion. The following is a complete program that looks at base conversion.
What output do you expect?

77 Arithmetic and Expressions in Java Chapter 4

email: ian.chivers@kcl.ac.uk © Ian D Chivers

class c0422
{

public static void main(String[] args)
{

float x1,x2,x3,x4,x5;
x1=(float)1.0;
x2=(float)0.1;
x3=(float)0.01;
x4=(float)0.001;
x5=(float)0.0001;
System.out.println(x1);
System.out.println(x2);
System.out.println(x3);
System.out.println(x4);
System.out.println(x5);

}
}

7. Rewrite the above program in a language that you already know. Do the results agree.

8. Modify the base conversion program to use double precision. What do expect the ansers
to be?

9. Expression equivalence. In mathematics the following expressions are equivalent.

x2 - y2 = (x-y)*(x+y) = x*x - y*y

Write a Java program to evaluate these three expressions with x=1.002 and y=1.001 There
is no exponentiation operator in Java, you have to use the pow function.

Do the three expressions give the same results?

Why do you think that is?

10. Rewrite the above in a another programming language. Do the results agree?

What about Excel?

11. If you have a pc with Java installed repeat the above examples on that system.

Chapter 4 Arithmetic and Expressions in Java 78

© Ian D Chivers email: ian.chivers@kcl.ac.uk

5
Strings

‘Don’t Panic’

Douglas Adams, The Hitch Hiler’s Guide to the Galaxy

Aims

The aims are:–
to introduce the String object;

to look at some of the implications of Strings being objects rather than a
primitive data type;

to look at the functions provided within Java for the manipulation of Strings;

5 Strings
This chapter looks at strings in Java. Where characters are a built in primitive type strings
are fully blown objects. This means that there are some very important differences between
the way we think of strings in older programming languages and Java.

5.1 The basics
There are two kinds of string objects in Java. They are objects of one of the following two
classes:–

� java.lang.String

� java.lang.StringBuffer

The first is read only. The second can be modified. Let us look at the String class and asso-
ciated methods first.

5.2 java.lang.String
Whilst Strings are objects they can be created in three ways:–

� by enclosing the text in “ marks.

� by using + and += on two strings to create a new string

� explcitly using new – as with objects

The following program illustrates all three.
class c0501
{

public static void main(String[] args)
{

int i1,i2,i3,i4;
String s1=" This is a string";
String s2=" and this is another";
String s3;
String s4=new String();
i1=s1.length();
i2=s2.length();
i4=s4.length();
System.out.println(i1);
System.out.println(i2);
System.out.println(i4);
s3=s1+s2;
i3=s3.length();
System.out.println(i3);
System.out.println(s1);
System.out.println(s2);
System.out.println(s3);
System.out.println(s4);

}
}

Let us look at each line in turn.
String s1=" This is a string";
String s2=" and this is another";

Chapter 5 Strings 80

© Ian D Chivers email: ian.chivers@kcl.ac.uk

It is important to distinguish between declaration and creation. With our knowledge of
convential programming languages we tend not to think very much about this. With object
oriented programming we have to think about it all the time. These two statements declare
s1 and s2 to be of type String and they also create s1 and s2 as String objects and give them
initial values. There is no explicit new here.
String s3;

s3 is declared to be an object of type String.
String s4=new String();

s4 is declared to be an object of type String and we have an explicit use of new here to cre-
ate the object s4.
s3=s1+s2;

s3 is created (again no explicit new) and is given an initial value of s1 concatenated with
s2. We then print out each string.
i1=s1.length();
i2=s2.length();
i4=s4.length();

These statements highlights the way in which object oriented programming differs from
conventional programming.

We have a binding of an object with an action, i.e. a String object with a length determina-
tion.

5.2.1 String Methods
Here are some of the more common String methods. They are organised into three catego-
ries.

Constructors public String()

public String(String value)

public String(char[] value)

public String(StringBuffer buffer)

Class Methods public static String copyValueOf(char[] data)

public static String valueOf(Object data)

public static String valueOf(boolean b)

public static String valueOf(char c)

public static String valueOf(int i)

public static String valueOf(long l)

public static String valueOf(float f)

public static String valueOf(double d)

Public Instance
Methods

public char charAt(int index)
public int compareTo(String str)

public boolean equals(Object o)

public boolean equalsIgnoreCase(String str)

public int indexOf(int ch)

public int indexOf(String str)

public int lastindexOf(int ch)

81 Strings Chapter 5

email: ian.chivers@kcl.ac.uk © Ian D Chivers

public int lastIndexOf(String str)

public int length()

public String replace(char old,char new)

public String substring(int i)

public String toLowerCase()

public String toString();

public String toUpperCase()

public String trim()

The first set of methods are constructors that enable us to create objects of String types. The
second set of methods are class methods. A static method doesn’t act on specific instances
of a class. Remember that with object oriented programming we have to bring objects into
existance - so called instantiation. Finally we have instance methods – these actually act or
work with String objects.

Note that we have several functions with the same name, but different signatures. This is
called overloading. It enables us to provide one name for what we want carried out, and is a
good example of abstraction. The fact that there are several functions with the same name
doesn’t matter.

Note also that we have to have methods that convert between the base types and objects
and vice versa.

5.2.1.1 String Example 1 – replace
class c0503
{

public static void main(String[] args)
{

String s1="ababcadaeafa";
System.out.println(s1);
System.out.println(s1.replace(‘a’,’e’));
System.out.println(s1);

}
}

The original String s1 is untouched.

5.2.1.2 String Example 2 - valueOf
import java.lang.*;

class c0504
{

public static void main(String[] args)
{

String s0,s1,s2,s3,s4,s5;
char c=’1’;
int i=1;
long l=1;
float f=1;
double d=1;
s1=String.valueOf(c);
s2=String.valueOf(i);

Chapter 5 Strings 82

© Ian D Chivers email: ian.chivers@kcl.ac.uk

s3=String.valueOf(l);
s4=String.valueOf(f);
s5=String.valueOf(d);
System.out.println(s1);
System.out.println(s2);
System.out.println(s3);
System.out.println(s4);
System.out.println(s5);
s0=s1+s2+s3+s4+s5;
System.out.println(s0);

}
}

The first line is very important. This makes available all of the methods within java.lang to
the following program. We can then use shortened forms of the method names within the
following program. The String class is within java.lang.

This example highlights the differences between the base types and String objects. In each
case we use the value 1. It has a different meaning in each of the contexts.

5.2.1.3 String Example 3 – as above but no import statement
class c0505
{

public static void main(String[] args)
{

String s0,s1,s2,s3,s4,s5;
char c=’1’;
int i=1;
long l=1;
float f=1;
double d=1;
s1=java.lang.String.valueOf(c);
s2=java.lang.String.valueOf(i);
s3=java.lang.String.valueOf(l);
s4=java.lang.String.valueOf(f);
s5=java.lang.String.valueOf(d);
System.out.println(s1);
System.out.println(s2);
System.out.println(s3);
System.out.println(s4);
System.out.println(s5);
s0=s1+s2+s3+s4+s5;
System.out.println(s0);

}
}
Note that in this example we have not used the import statement and have had to fully state
the method name, i.e. java.lang.String.valueof().

5.3 java.lang.StringBuffer
This class also represents a string of characters, but now the contents may be modified. This
means that:–

83 Strings Chapter 5

email: ian.chivers@kcl.ac.uk © Ian D Chivers

� it can grow in length

� characters can be replaced

� characters can be appended

� characters can be inserted

5.3.1 StringBuffer Methods
Here are some of the more commonly used StringBufer methods.

Constructors StringBuffer()

StringBuffer(int length)

StringBuffer(String str)

Instance Methods public synchronized StringBuffer append(Object obj)

public synchronized StringBuffer append(String str)

public synchronized StringBuffer append(char[] str)

public StringBuffer append(boolean b)

public synchronized StringBuffer append(char c)

public StringBuffer append(int i)

public StringBuffer append(long l)

public StringBuffer append(float f)

public StringBuffer append(double d)

public synchronized StringBuffer insert(int ,Object obj)
throws StringIndexOutOfBoundsException

public synchronized StringBuffer insert(int ,String str)
throws StringIndexOutOfBoundsException

public synchronized StringBuffer insert(int ,char[] str)
throws StringIndexOutOfBoundsException

public StringBuffer insert(int ,boolean b) throws
StringIndexOutOfBoundsException

public synchronized StringBuffer insert(int ,char c)
throws StringIndexOutOfBoundsException

public StringBuffer insert(int ,int i) throws
StringIndexOutOfBoundsException

public StringBuffer insert(int ,long l) throws
StringIndexOutOfBoundsException

public StringBuffer insert(int ,float f) throws
StringIndexOutOfBoundsException

public StringBuffer insert(int ,double d) throws
StringIndexOutOfBoundsException

public int length()

synchronized void set CharAt(int index,char ch) throws
exception StringIndexOutOfBoundsException

synchronized void setLength(innt newlength) throws
exception StringIndexOutOfBoundsException

Chapter 5 Strings 84

© Ian D Chivers email: ian.chivers@kcl.ac.uk

String toString()

Note again that we have many functions with the same name and different signatures.

There are two new concepts raised here. The first is the concept of synchronised and the
second of throwing an exception. Let us look at each in turn.

Something that you may never have thought much about is multiprocessing. With most
computer systems there will be several processes running. Type

ps -ef

the next time you are logged onto a unix system to see what proceeses are running.

If you have ever used a pc or a mac you will probably have logged into a computer system
whilst at the same time using netscape or doing some printing. Again there are several pro-
cesses running.

Java supports the concepts of threads. This means that you as the writer of a Java program
can create a program that has several threads running. This is useful when retrieving images
from another site, whilst at the same time still interacting with the user.

It will therefore be necessary to make certain methods run in a way where they have sole
access to an object. You don’t want several threads modifying the same StringBuffer object
for example.

So we declare a method synchronized to force locking of any objects that they have access
to – in reality objects that they change.

The second concept is that of error handling. Most of you will be familiar with programs
you have written that terminate when you type in unexpected values. Situations like this are
handled in Java by the ability to throw an exception. The error is then handled by an excep-
tion handler. In the example above insert methods may make the StringBuffer object too
large. In this case an exception is raised and control will pass to the error handler.

We will look at a couple of example programs to clarify the above.

5.3.1.1 StringBuffer Example 1 – throwing an exception and catching
import java.lang.*;

class c0507
{

public static void main(String[] args)
{

StringBuffer s1=new StringBuffer(“ this is the base
string”);

StringBuffer s2=new StringBuffer(“ insert this”);
System.out.println(s1);
System.out.println(s2);
try
{

s1.insert(1,s2);
System.out.println(s1);
s1.insert(10,s2);
System.out.println(s1);
s1.insert(20,s2);
System.out.println(s1);
s1.insert(99999,s2);
System.out.println(s2);

85 Strings Chapter 5

email: ian.chivers@kcl.ac.uk © Ian D Chivers

}
catch (StringIndexOutOfBoundsException e)
{

System.out.println(“ String too large”);
}

}
}
Let us look in more details at some of the statements in this program.
StringBuffer s1=new StringBuffer(“ this is the base string”);
StringBuffer s2=new StringBuffer(“ insert this”);

These two statements define and create the two StringBuffer objects with initial values.
There are only three constructors defined for the StringBuffer class compared to seven for
the String class.

The creation of String and String Buffer objects within Java is quite different, e.g.

Creation Mechanism String StringBuffer

“ Text in quotes ” Yes No

+ and += Yes No

explicit new Yes Yes

This means that code that we write for handling objects of these types is syntactically quite
different.

We next print out the two StringBuffer objects.
try
{

s1.insert(1,s2);
System.out.println(s1);
s1.insert(10,s2);
System.out.println(s1);
s1.insert(20,s2);
System.out.println(s1);
s1.insert(99999,s2);
System.out.println(s2);

}

catch (StringIndexOutOfBoundsException e)
{

System.out.println(“ String index too large”);
}
We next have the try {...} catch block. In the event of an error control will pass to the catch
statement, and the statements following will be executed. In this case in the event of an
StringIndexOutOfBounds error the message String index too large will appear.

Within the try catch block we have code which inserts one string within another and then
prints out the value of the new string.Notice the object oriented way of doing this where we
have the binding of StringBuffer object (in each case s1) with the insert action.

The the StringBuffer object s1 will grow successfully in size until we try providing a start-
ing point for the insertion that is outside of the current size of s1.

Chapter 5 Strings 86

© Ian D Chivers email: ian.chivers@kcl.ac.uk

This program highlights quite clearly the different way of thinking required when we ap-
proach things from an object oriented viewpoint.

5.3.1.2 StringBuffer Example 2 – throwing an exception and splat
import java.lang.*;

class c0508
{

public static void main(String[] args)
{

StringBuffer s1=new
StringBuffer(“ this is the base string”);
StringBuffer s2=new StringBuffer(“ insert this”);
System.out.println(s1);
System.out.println(s2);
s1.insert(1,s2);
System.out.println(s1);
s1.insert(10,s2);
System.out.println(s1);
s1.insert(20,s2);
System.out.println(s1);
s1.insert(999999,s2);

}
}

This example is very similar to the previous but now we don’t have the enclosing try catch
block. Try running both of the programs to see what happens.

We will come back to the concept of exception handling in much greater depth throughtout
the course.

5.4 References
You should be aware by now of the difference between the built in basic Java data types
(byte, short, int, long, etc) and objects. When we work with i/o for example we have the
following conversion taking place when we need to get read in a floating point number:–

� String -> Float ->float

A String an object and whenever we use a String variable we are actually using a reference
to the corresponding object. Object references are null when they don’t actually refer to
anything. For people with a knowledge of pointers this will be quite familiar.

This has some interesting implications for the == operator. Try running the following pro-
gram.
import java.lang.*;

class c0
{

public static void main(String[] args)
{

String s1,s2;
s1="Hello";
s2="Hello";
if (s1==s2) System.out.println(“ 1");

87 Strings Chapter 5

email: ian.chivers@kcl.ac.uk © Ian D Chivers

s1=s2;
if (s1==s2) System.out.println(“ 2");
if (s1 == “Hello”) System.out.println(“ 3");

}
}
What do you think the output will be?

5.5 Unicode
Java is of course Unicode based. Some knowledge of Unicode is required for successfully
using Java with characters and strings.

The following provides some information regarding the languages supported under
Unicode.

Arabic – ISO-8859-6

Catalan – ISO-8859-1

Chinese (Simplified) – GB2312

Chinese (traditional) BIG5

Danish – ISO-8859-1

Dutch – ISO-8859-1

English – ISO-8859-1

Esperanto – ISO-8859-3

Finnish – ISO-8859-1

French – ISO-8859-1

Georgian– UTF-8

German – ISO-8859-1

Hebrew – ISO-8859-1

Hungarian – ISO-8859-2

Irish Gaelic – ISO-8859-1

Italian – ISO-8859-1

Japanese – SHIFT_JIS

Korean – EUC_KR

Norwegian (Bokmal) – ISO-8859-1

Norwegian (Nynorsk) – ISO-8859-1

Occitan – ISO-8859-1

Portuguese (Brazil) – ISO-8859-1

Portuguese (Portugal) – ISO-8859-1

Romanian – ISO-8859-2

Russian – ISO-8859-5

Slovenian – ISO-8859-2

Spanish – ISO-8859-1

Swedish – ISO-8859-1

Yiddish – UTF-8

Other languages that I know are supported within Unicode include Gujariti, Telugu,
Kannada, Mayalam, Thai, Lao

Chapter 5 Strings 88

© Ian D Chivers email: ian.chivers@kcl.ac.uk

5.6 Summary
So far we’ve only looked at characters and Strings and StringBuffers. As Java is unicode
based we are dealing with 16 bit characters, and each element of a string is 16 bit.

We can also look at character manipulation in a number of other ways, that may be more
appropriate to the problem in hand. Thus we can have:–

� arrays of characters

� conversion to byte from both char and String and StringBuffer

� conversion from byte to String and StringBuffer

� arrays of bytes

and you should chose the representation that is most suited to your application.

5.7 Problems
1. Firstly try the examples out in this chapter.

2. Modify the StringBuffer example to repeatedly increase the size of the string. At what
point does the program fail, i.e. how big is the string at the time it can’t be inceased in size
any more.

3. Write a Java program to print out � , i.e. print out the character pi to the screen, not 3.14
etc.

89 Strings Chapter 5

email: ian.chivers@kcl.ac.uk © Ian D Chivers

6
Arrays in Java

‘Where shall I begin your Majesty’ he asked.
‘Begin at the beginning,’ the King said, gravely ‘and go
on until you come to the end then stop.’

Lewis Carroll, Alice’s Adventures in Wonderland.

Aims

The aims of this chapter are to:–
look at the basic array syntax in Java

look at the associated control structure, the for loop;

look at array element ordering in Java;

look forward to the use of some of the additional features of Java that enable
us to make array handling more understandable and reliable.

6 Arrays In Java
In this chapter we will look at the basic features of Java that support arrays.

The first thing to know is that arrays start at 0, i.e. an array dimensioned to 12 has indices
from 0 through 11.

The second thing to know is that arrays are objects.

Consider the following example:–

6.1 Example 1
For people who have attended the Fortran 90 and/or C++ courses the examples will look
very familiar!
class c0601
{

public static void main(String[] args)
{

float sum=(float)0.0,average=(float)0.0 ;
float[] rainfall={1,2,3,4,5,6,7,8,9,10,11,12} ;
int month ;
System.out.println(“ Rainfall values are ”);
for (month=0;month < 12 ; ++month)

System.out.println(rainfall[month]);
for (month=0;month < 12 ;++month)

sum = sum + rainfall[month];
average = sum/12;
System.out.print(“ Average is ”);
System.out.println(average);

}
}

Let us look more closely at some of the statements in this program.
float sum=(float)0.0,average=(float)0.0 ;

This statement declares the variables sum and average to be of type float and it gives them
initial values of 0.0 Remember that real constants are of type double by default, and as Java
is strongly type we must cast to float.
float[] rainfall={1,2,3,4,5,6,7,8,9,10,11,12} ;

This declares the array rainfall to be of type float – rainfall is an array of float. We then as-
sign initial values for the elements of the array. The values 1 through 12 have been chosen
to make it easy to see whether the calculations give the correct results. The size of the array
is worked out from the number of elements between the {} brackets.
for (month=0;month < 12 ; ++month)

System.out.println(rainfall[month]);

This is a simple for loop in Java. It prints out each element of the array on a new line.

The next thing of interest is the array indexing. This goes from 0 through 11. A little odd at
first, but don’t panic.

We are used to arrays starting at 1 – naturally, this is the first element. Zero didn’t exist in
mathematics for quite some time. However BASIC is a programming language that offers
arrays starting at 0 and 1 as an option in most implementations.

Lets look now at the for loop in Java. The general sytax is:–

Chapter 6 Arrays In Java 92

© Ian D Chivers email: ian.chivers@kcl.ac.uk

for (inital statement
;

expression 1 ;
expression 2)
statement

The initial statement normally sets up an initial value for the loop counter. In this case
month.

Expression 1 is the loop control mechanism. In this case we are interested in stopping once
we have processed all 12 months.

Expression 2 is normally the loop counter increment mechanism. In this case increment by
one.

statement is the statement that will be executed whilst expression 1 is true.

We will look in more detail at the for statement in a later chapter.
for (month=0;month < 12 ;++month)

sum = sum + rainfall[month];

Here we calculate the sum using a simple for loop again.

Finally we calculate and print out the average.

6.2 Example 2 Variant on 1 using alternate syntax
class c0602

{
public static void main(String[] args)
{

float sum=(float)0.0,average=(float)0.0 ;
float[] rainfall=new float[12];
int month ;
System.out.println(“ Rainfal values are ”);
for (month=0;month < rainfall.length ; ++month)
{

rainfall[month]=month+1;
System.out.println(rainfall[month]);
sum = sum + rainfall[month];

}
average = sum/12;
System.out.print(“ Average is ”);
System.out.println(average);

}
}

The first difference occurs with the array declaration and creation of an array object. In the
first example we had an implicit new using the assignment operator and {} to give initial
values to the array.
float[] rainfall=new float[12];

has the same declaration syntax but a completely different syntax for the array object cre-
ation. The array is an object so we use new to create it. It is of type float and we want it to
hold 12 values so we use float[12]

In this example we use { and } to bracket the statement under the control of the for loop.
This enables us to repeatedly execute more than one statement. Now we include the initial-

93 Arrays In Java Chapter 6

email: ian.chivers@kcl.ac.uk © Ian D Chivers

isation, printing out of the values and the actual calculation of the sum. Note that the array
index goes from 0 through 11, not 1 through 12.

We also make use of a new another feature of arrays in Java – their length attribute.
for (month=0;month < rainfall.length ; ++month)

So in this case we can terminate the loop when we have reached the length of the array.
This is a simple example of the treatment of arrays as objects.

6.3 Example 3 – two dimensional arrays
The following looks at a two dimensional array problem in Java.
class c0603
{

public static void main(String[] args)
{

int latitude,longitude;
float[][] height= new float[5][5];
for (latitude=0 ; latitude < 5 ; ++latitude)

for (longitude=0;longitude < 5 ; ++longitude)
{

height[longitude][latitude]=latitude+longitude;
System.out.println(height[longitude][latitude]);

}
}

}

float[][] height= new float[5][5];

The syntax for a 2 d array is a simple extension of the syntax for a 1 d array.

Things are now getting a little away from our original real world way of looking at prob-
lems. We now have 0–4 everywhere where the real world says 1–5.

6.4 Example 4 – 1 d array with real world -20 to +20
Now consider a simple physics example where in the real world voltage goes from -20 to
+20.
class c0604

{
public static void main(String[] args)
{

int voltage;
float[] current=new float[41];
float resistance=(float)100.0;
for (voltage=0 ; voltage <= 40 ; ++voltage)
{

current[voltage]=(voltage-20)/resistance;
System.out.println(current[voltage]);

}
}

}

The solution to the problem in a programming language is now quite removed from the
original problem. -20 through +20 has become 0 through 40. We are now having to do a
few mental gymnastics to understand what is going on.

Chapter 6 Arrays In Java 94

© Ian D Chivers email: ian.chivers@kcl.ac.uk

The real world Java

-20 0

-19 1

-18 2

.. ..

0 20

.. ..

+19 39

+20 40

This means that there is quite a gap between the representation of a problem in the real
world and its solution in Java (or C or c++ for that matter). As this is one of the major
sources of errors getting into our programs it means that Java isn’t well suited to the solu-
tion of many common mathematical problems.

6.5 Example 5 – 2 d array initialisation
In this example we look at array initialisation.
class c0605
{

public static void main(String[] args)
{

int[][] a= {
{ 1,2,3 },
{ 4,5,6 }

};
for (int row=0;row<2;row++)
{

for (int column=0;column<3;column++)
{

System.out.print(a[row][column]);
System.out.print(“ ”);

}
System.out.println();
}

}
}

6.6 Whole Array Manipulation
There is no whole array manipulation mechanism in Java, and it shares this with C++.
However in C++ we can, through the use of classes and operator overloading, provide this
functionality for one dimensional arrays, whilst still using the standard C++ array indexing
notation, i.e. []. We can also extend this to multi-dimensional arrays in C++ using the () no-
tation.

Thus Fortran 90 has very clear advantages over both Java and C++ in the mathematical
area.

95 Arrays In Java Chapter 6

email: ian.chivers@kcl.ac.uk © Ian D Chivers

6.7 Summary
There are some problems with arrays in raw Java, and the main one is the machine oriented
array dimensioning, rather than physical world array dimensioning, e.g. stepping from
0–360 instead of -180–+180. The major advance over C++ is the built in subscript check-
ing, something which can only be achieved in C++ through operator overloading.

6.8 Problems
1. Type in and run some of the examples in this chapter. Modify the program to go outside
of the array bound. What run time messages do you get?

2. Write a program to assign the following data values into a 3*3 array.

1 2 3

4 5 6

7 8 9

Produce totals for each row and column. It should produce output as shown below:

1 2 3 6

4 5 6 15

7 8 9 24

12 15 18

After successfully doing this modify the program to produce averages for each row and col-
umn as well.

3. The data below has been taken from a group of first year undergraduates. It is their
heights and weights.

1.85 85
1.80 76
1.85 85
1.70 90
1.75 69
1.67 83
1.55 64
1.63 57
1.79 65
1.78 76

Your body mass index is given by your height (in metres) squared divided by your weight
in kilos. Calulate the BMI for each person.. Use arrays to hold the height and weight infor-
mation.

Grades of obesity according to Garrow as follows:

Grade 0 (desirable) 20 - 24.9

Grade 1 (overweight) 25-29.9

Grade 2 (obese) 30-40

Grad 3 (morbidly obese) >40

Ideal BMI range,

Men, Range 20.1 to 25 kg/m2

Women, Range 18.7 to 23.8 kg/m2

If you know your own height and weight modify the above to calculate your own BMI.

Chapter 6 Arrays In Java 96

© Ian D Chivers email: ian.chivers@kcl.ac.uk

7
Control Structures

Summarising: as a slow-witted human being I have a very small head and I had
better learn to live with it and to respect my limitations and give them full credit,
rather than try to ignore them, for the latter vain effort will be punished by failure.
Edsger W. Dijkstra, Structured Programming.

Aims

The aims of this chapter are to introduce:–
selection between various courses of action as part of the problem solution

the concepts and statements in Java needed to support the above. In particu-
lar:–

logical expressions
logical operators
a block of statements
several blocks of statements

the if expression statement

the if expression statement else statement;

to introduce the switch statement with examples

iterative statements:–
while expression statement;

do statement while expression;

the for () statement
the break, continue and goto statement

7 Control Structures
There are a reasonable range of control structures in Java. We need to review a number of
other concepts before looking at them in depth.

7.1 Compound Statement or Block
A compound statement or block of statements is a sequence of statements enclosed in {}. A
compound statement is treated as a single item and may appear anywhere that a single state-
ment may occur.

7.2 Expression
An expression is made up of one or more operations. They in turn are a mixture of
operands and operators. The evaluation of an expression typically means that one or more
operations are carried out and a value is returned.

7.3 Boolean
Remember that within standard Java boolean exists as a built in type, with values of true
and false.

7.4 if (expression) statement
Simple if statement. If the expression is true execute the statement that follows. Note that
{} have to be used if it is necessary to execute multiple statements.

7.4.1 Example 1
if (i>0)

System.out.println(“ Now above 0 ”);

If i is greater than 0 the cout statement is executed.

Note that you cannot make the classic C and C++ howler in Java. If you are familiar with C
and C++ then you may be surprised to know that the following example won’t compile.
class c0703
{

public static void main(String[] args)
{

int i=0;
int j=10;
System.out.println(i);
System.out.println(j);
if (i=1)

j=99;
System.out.println(i);
System.out.println(j);

}
}

7.5 if (expression) statement; else statement;
Standard extension to the if statement. Again {} have to be used if it is necessary to execute
multiple statements.

Chapter 7 Control Structures 98

© Ian D Chivers email: ian.chivers@kcl.ac.uk

7.5.1 Example 1
if (i < 0)

System.out.println(“ Result not defined for negative val-
ues”);
else

System.out.println(“ Calculating for positive i ”);

One or other of the cout statements will be executed. Note the semi-colons. If you are fa-
miliar with Pascal or Ada this will catch you out.

7.5.2 Example 2
if (i < 0)

System.out.println(“ Entering negative region”);
else if (i == 0)

System.out.println(“ crossover reached ”);
else

System.out.println(“ Positive region entered ”);

Note the semi-colons. Again will catch the Pascal/Modula 2 programmer out.

7.6 switch (expression) statement
This is best illustrated with a simple example.

7.6.1 Example 1
import java.io.*;
import java.lang.Integer;

class c0704
{

public static void main(String[] args)
{

int i=0;
Integer I=new Integer(i);
String Line;
try
{

InputStream ip=System.in;
DataInputStream inp=new DataInputStream(ip);
System.out.println(“ Type in an integer value ”) ;
Line=inp.readLine();
I=Integer.valueOf(Line);
i=I.intValue();
switch (i)
{

case 1 : System.out.println(“ one entered ”);
break;
case 2 : System.out.println(“ two entered ”);

break;
case 3 : System.out.println(“ three entered ”);
break;
default: System.out.println(“ number other than 1,

2 or 3 entered”);

99 Control Structures Chapter 7

email: ian.chivers@kcl.ac.uk © Ian D Chivers

break;
}

}
catch(IOException e)
{

System.out.println(“ Exceptions raised ” + e);
}

}
}

Note the use of the break statement to exit from the switch statement, otherwise execution
simply drops through!

Equivalent to the case statement in other languages.

7.7 while (expression) statement
Conventional while statement, i.e. statement may never be executed. This example high-
lights both the if else statement and the while statement. It is a direct translation of the For-
tran 90 example.

7.7.1 Example 1
import java.io.*;
import java.lang.Integer;

class c0705
{

public static void main(String[] args)
{

int counter=0;
int mark=99;
Integer Mark=new Integer(mark);
int[] a={1,2,3,4,5,6,7,8,9,10,0};
String Line;
try
{

InputStream i=System.in;
DataInputStream I=new DataInputStream(i);
System.out.println(“ Type in value to look for”) ;
Line=I.readLine();
Mark=Integer.valueOf(Line);
mark=Mark.intValue();
a[a.length-1]=mark;
while (mark != a[counter]) ++counter;
if (counter == a.length-1)

System.out.println(“ Number not found”);
else
{

System.out.println(“ Number found at position”);
System.out.println(counter);

}
}
catch(IOException e)

Chapter 7 Control Structures 100

© Ian D Chivers email: ian.chivers@kcl.ac.uk

{
System.out.println(“ Exceptions raised ” + e);

}
}

}

We will look at the use of a sentinel in a later example.

7.8 do statement while (expression);
Equivalent to repeat until statement, i.e. the loop is always executed at least once as the test
is at the end of the loop. This example is the ex function taken from the Fortran 90 course.

7.8.1 Example 1
import java.io.*;
import java.lang.Float;

class c0706
{

public static void main(String[] args)
{

float tol=(float)1.0E-6;
float term=(float)1.0,x=(float)0.0,etox=(float)1.0;
int nterm=0;
Float X=new Float(x);
String Line;
try
{

InputStream i=System.in;
DataInputStream I=new DataInputStream(i);
System.out.println(“ Type in a number”) ;
Line=I.readLine();
X=Float.valueOf(Line);
x=X.floatValue();
do
{

nterm+=1;
term = (x/nterm) * term;
etox+=term;

}
while (term > tol);

}
catch(IOException e)
{

System.out.println(“ Exceptions raised ” + e);
}
System.out.println(etox);

}
}

101 Control Structures Chapter 7

email: ian.chivers@kcl.ac.uk © Ian D Chivers

7.9 for (init-statement;expression 1; expression 2) statement
Equivalent to the DO loop in Fortran or FOR loop in the Pascal family of languages. Note
that {} must be used when multiple statements need to be executed.

ini-statement may be declaration or an expression. This enables us to introduce for loop
control variables at the time we set up the for loop. Some people love the ability to intro-
duce variables in this way, others hate it. It is the way it is.

The following highlight this point–
for (int i=0;

Declare i and initialise to 0.
for (i=0;

i must have been declared prior to this statement.

expression 1 is the loop control mechanism. As long as this is true the for statement will be
executed.

expression 2 is evaluated after each loop and is generally used to modify the for loop con-
trol variable.

7.9.1 Example 1
This complete program illustrates the above.
class c0707
{

public static void main(String[] args)
{

float[] x={1,2,3,4,5,6,7,8,9,10};
int i;
System.out.println(“ Numbers are”);
for (i=0 ; i < 10 ; i++)

System.out.println(x[i]);
}

}

7.9.2 Example 2
class c0708
{

public static void main(String[] args)
{

for(;;)
System.out.println(“ Hello world”);

}
}

What happens here?

7.10 break, continue, goto statements
The break statement can only occur within a switch or loop (for, do or while). Note how-
ever that you can only break from a single loop. If it is necessary to terminate an action
within nested loops then the break won’t do what we want.

The continue statment only makes sense with a loop. Control passes immediately to the ap-
propriate statement depending on what type of loop we are in.

Chapter 7 Control Structures 102

© Ian D Chivers email: ian.chivers@kcl.ac.uk

Statements may be labelled and we can use the break statement to jump to an appropriate
point in the code.

There is no goto statement in Java.

The following is a complete program that illustrates the use of all three statements. Type
the program in and run it to see what happens.
class c0710
{

public static void main(String[] args)
{

int j=0;
goto2:
for (;;)
{

goto1:
for (;;)
{

j=j+1;
System.out.print(j);
if (j>10)

break goto2;
if ((j>=5) & (j<=7))

break goto1;
else
{

System.out.println(“ in the else clause”);
continue;

}
}

}
System.out.println(“ When will we get here”);

}
}

Study the program to see if you can predict what the output will be. Now type the program
in and compile and run it. Were you correct?

7.11 Summary
Java has a decent set of control structures. They provide us with most of the functionality
we require.

7.12 Problems
1. Write a program to print out the 12 times table. Output should be roughly of the form

1 * 12 = 12
2 * 12 = 24

2. Write a program that produces a conversion table from litres to pints and vice versa. One
litre is approximately 1 3/4 pints. The output should comprise three columns. The middle
column should be an integer and the columns to the left and right should be the correspond-
ing pints and litre values. This enables the middle column to be scanned quickly and the
corresponding equivalent in litres or pints read easily.

103 Control Structures Chapter 7

email: ian.chivers@kcl.ac.uk © Ian D Chivers

3. Rewrite the program for the period of a pendulum. The new program should print out the
length of the pendulum and period for lengths of the pendulum from 0 to 100 cm in steps of
0.5 cm.

The physical world has many examples where processes require some threshold to be over-
come before they begin operation: critical mass in nuclear reactions, a given slope to be ex-
ceeded before friction is overcome, and so on. Unfortunately, most of these sorts of calcula-
tions become rather complex and not really appropriate here. The following problem tries to
restrict the range of calculation, whilst illustrating the possibilities of decision making.

4. If a cubic equation is expressed as:

z3 + a2z2 + a1z + a0 = 0

and we let:

q=a1/3-(a2*a2)/9

and:

r=(a1*a2-3a0)/6-(a2*a2*a2)/27

we can determine the nature of the roots as follows:

q3 + r2 > 0; one real root and a pair of complex;

q3 + r2 = 0; all roots real, and at least two equal;

q3 + r2 < 0; all roots real;

Incorporate this into a suitable program, to determine the nature of the roots of a cubic from
suitable input.

5. The form of breaking waves on beaches is a continuum, but for convenience we com-
monly recognise three major types: surging, plunging and spilling. These may be classified
empirically by reference to the wave period, T (seconds), the breaker wave height, Hb
(metres), and the beach slope, m. These three variables are combined into a single parame-
ter, B, where

B = Hb/(gmT2)

g is the gravitational constant (981 cm sec–2). If B is less than .003, the breakers are surg-
ing; if B is greater than 0.068, they are spilling, and between these values, plunging break-
ers are observed.

(i) On the east coast of New Zealand, the normal pattern of waves is swell waves, with
wave heights of 1 to 2 metres, and wave periods of 10 to 15 seconds. During storms, the
wave period is generally shorter, say 6 to 8 seconds, and the wave heights higher, 3 to 5
metres. The beach slope may be taken as about 0.1. What changes occur in breaker charac-
teristics as a storm builds up?

(ii) Similarly, many beaches have a concave profile. The lower beach generally has a very
low slope, say less than 1 degree (m=0.018), but towards the high tide mark, the slope in-
creases dramatically, to say 10 degrees or more (m=0.18). What changes in wave type will
be observed as the tide comes in?

6. Personal taxation is usually structured in the following way:–

no taxation on the first m0 units of income;

taxation at t1% on the next m1 units;

taxation at t2% on the next m2 units;

taxation at t3% on anything above.

Chapter 7 Control Structures 104

© Ian D Chivers email: ian.chivers@kcl.ac.uk

For some reason, this is termed progressive taxation. Write a generalised program to deter-
mine net income after tax deductions. Write out the gross income, the deductions and the
net income. You will have to make some realistic estimates of the tax thresholds mi and the
taxation levels ti. You could use this sort of model to find out how sensitive revenue from
taxation was in relation to cosmetic changes in thresholds and tax rates.

8. The specific heat capacity of water is 2009 J kg–1 K–1; the specific latent heat of fusion
(ice/water) is 335 kJ kg–1, and the specific latent heat of vaporization (water/steam) is 2500
kJ kg–1. Assume that the specific heat capacity of ice and steam are identical to that of wa-
ter. Write a program which will read in two temperatures, and will calculate the energy re-
quired to raise (or lower) ice, water or steam at the first temperature, to ice, water or steam
at the second. Take the freezing point of water as 273 K, and its boiling point as 373 K. For
those happier with Celsius, 0o C is 273 K, while 100o c is 373 K. One calorie is 4.1868 J,
and for the truly atavistic, 1 BTU is 1055 J (approximately).

7.13 Bibliography
Dahl O. J., Dijkstra E. W., Hoare C. A. R., Structured Programming, Academic Press,
1972.

� This is the original text, and a must. The quote at the start of the chapter by
Dijkstra summarises beautifully our limitations when programming and the disci-
pline we must have to successfully master programming.

Knuth D. E., Structured Programming with GOTO Statements, in Current Trends in Pro-
gramming Methodology, Volume 1, Prentice Hall.

� The chapter by Knuth provides a very succinct coverage of the arguments for the
adoption of structured programming, and dispells many of the myths concerning
the use of the GOTO statement. Highly recommended.

105 Control Structures Chapter 7

email: ian.chivers@kcl.ac.uk © Ian D Chivers

8
Exception Handling

Don’t interrupt me while I’m interrupting.

Winston Churchill.

Aims

The primary aims of the chapter are:–
to look generally at errors and how they can be handled in a programming
language;

to look at the mechanisms in Java for exception handling – try, catch, finally;

to look at a complete realistic example that highlights the power of exception
handling;

8 Exceptions
Errors always occur at run time in programs that do anything useful. The facilities for han-
dling errors have gradually improved in programming languages. The concept of raising an
exception and then passing control to an error handler is one that is now seen in a number
of programming languages including C++, Ada 95 and Java.

Let us look at some common errors and solutions:–

� invalid input: ask the user to retype the data values

� file not found: ask the user to retype the file name

� numeric overflow: terminate the program with a warning;

� numeric underflow: terminate the program with a warning;

� array out of bounds: terminate the program with an error message;

and you will all be familiar with one or more of these common errors.

One of the major problems in languages that do not support the concept of raising an ex-
ception and passing control to an error handler is that the logic of something really quite
simple can be lost completely because of the additional coding complexity.

So we have to chose between:–

� correctness by trapping all possible errors at one extreme with code that is very
difficult to understand;

and

� probable erroneous output because we have only trapped a small number of er-
rors with code that is relatively easy to understand.

Exceptions enable us to move towards overall program correctness without writing code
that is unintelligible.-

Let us look at examples in a couple of programming languages of reading user input.

Fortran 90 for example has the concept of implicit gotos via the END= and ERR= options
and also the concept of IOSTAT returing a value to let you know something has gone
wrong.

Pascal and Modula 2 have the concept of EOLN and EOF.

The following are coding examples that read all input from a user until they type CTRL Z –
end of file. The first is in Pascal, the second in Fortran 90, and the third in C++. The exam-
ples also highlight the quite different ways that languages have in their handling of end of
line and end of file.

8.1 Linked List – Pascal
PROGRAM LinkedList(INPUT,OUTPUT);
TYPE Link = @ Node

Node = RECORD
C : CHAR;
Next : Link;
END;

VAR Root : Link;
Current : Link;

BEGIN
NEW(Root);
READ(Root@.C);

Chapter 8 Exceptions 108

© Ian D Chivers email: ian.chivers@kcl.ac.uk

Current:=Root;
WHILE NOT EOF DO
BEGIN
NEW(Current@.Next);
Current:=Current@.Next);
READ(Current@.C)
END;
Current@.Next:=NIL;
Current:=Root;
WHILE Current NIL DO
BEGIN

WRITE(Current@.C);
Current:=Current@.Next

END;
END.

8.2 Linked List – Fortran 90
PROGRAM C20_01
!
! Simple linked list
!
TYPE Link

CHARACTER :: C
TYPE (Link) , POINTER :: Next

END TYPE Link
TYPE (Link) , POINTER :: Root , Current
INTEGER :: IO_Stat_Number=0

ALLOCATE(Root)
READ (UNIT=*,FMT=10,ADVANCE=’NO’,&
IOSTAT=IO_Stat_Number) Root%C
10 FORMAT(A1)
print *,io_stat_number
IF (IO_Stat_Number == -1) THEN

NULLIFY(Root%Next)
ELSE

ALLOCATE(Root%Next)
ENDIF
print *, ‘At start of input DO WHILE’
Current=Root
DO WHILE (ASSOCIATED(Current%Next))

Current=Current%Next
READ (UNIT=*,FMT=10,ADVANCE=’NO’,&
IOSTAT=IO_Stat_Number) Current%C
print *,io_stat_number
IF (IO_Stat_Number == -1) THEN

NULLIFY(Current%Next)
ELSE

ALLOCATE(Current%Next)
ENDIF

END DO

109 Exceptions Chapter 8

email: ian.chivers@kcl.ac.uk © Ian D Chivers

print *, ‘At end of input DO WHILE’
print *, ‘At start of output DO WHILE’
Current=Root
DO WHILE (ASSOCIATED(Current%Next))

PRINT * , Current%C
Current=Current%Next

END DO
print *, ‘At end of output DO WHILE’

END PROGRAM C20_01

8.3 Linked List – C++, old C syntax
#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>
struct link
{

char c;
struct link *next;

};
int main()
{

char c;
struct link *first = NULL; /* Start of list */
struct link *current; /* End of list */
struct link *ptr; /* Temporary */

/* Loop reading characters entil the End Of File (EOF) */
/* Note that one cannot use eof() to check for EOF until*/
/* one has actually tried to read it - unlike Pascal.*/

while (cin >> c) /* Loop for all characters */
{

ptr = new (link);
if (ptr == NULL)
{

cout << “ Insufficient memory\n”;
exit(1);

}

/* Add new value and clear subsequent link */
ptr->c = c;
ptr->next = NULL;

/*
Update pointers to add new value at end of list. The “if”
statement could be omitted by making the first character en-
tered a “special” case - as in Example 10.1.4 - but
generallity is a good idea!
*/

if (first == NULL) /* If this is the first character
*/

Chapter 8 Exceptions 110

© Ian D Chivers email: ian.chivers@kcl.ac.uk

first = current = ptr;
else /* Otherwise. */

current->next = ptr;
current = ptr;

}

/* Now print out the list */

ptr = first;
while (ptr != NULL)
{

cout << ptr-c;
ptr = ptr->next;

}
cout << endl;
return 0;

}

8.4 Discussion
It is apparent that the essential code is hidden to greater or lessor extent in the requirements
to handle special conditions. The Pascal code is probably the cleanest. The beauty of excep-
tion handling is that the essential logic of the code is left alone and enclosed within a try
statement. Let us look at one of the earlier examples to see how simple and straightforward
this is in Java.
import java.io.*;
class c0302
{

public static void main(String[] args)
{

try
{

InputStream i=System.in;
DataInputStream in=new DataInputStream(i);
String Line;
System.out.println(“ Type in a line of text ”);
Line=in.readLine();
System.out.println(Line);

}
catch(IOException e)
{System.out.println(“ Exceptions raised: ” + e); }

}
}
If there is an error getting a line of input from the user within the body of the try block con-
trol will pass to the catch statement and in this case an informative message is issued about
the error. The readLine() method can throw an IOException. We will come back to look at
the above example after we have covered i/o in more depth.

The general syntax is:–
try
{

111 Exceptions Chapter 8

email: ian.chivers@kcl.ac.uk © Ian D Chivers

}
catch (Exception_1 e)
{
}
catch(Exception_2 e)
{
}
...
finally
{
}

8.4.1 try
The try block can have zero or more catch clauses. An abnormal exit is one of:–

� break

� continue

� return

� exception propagation

8.4.2 catch
These are the exception handlers. They actually carry out thw work of handling the excep-
tion that was raised in the try block. The argument of the catch must be of type Throwable
(or subclass). We will look into this in more depth in the complete file copy program in this
chapter.

8.4.3 finally
This part is executed:–

� after normal termination of the try block;

� after an exception handled in a catch clause;

� after an exception that has no catch clause;

� after a break, continue or return statement;

We will look into this in more depth in the complete file copy program in this chapter.

8.5 Array Subscript Errors
Array subscript checking is always on in Java, and any attempt to go out of the bounds of
an array will raise an exception.

8.6 Anticipated Errors vs Unanticipated Errors
These are errors that one might reasonably expect to happen. End of file and an incorrectly
typed file name are two obvious ones that spring to mind.

Unanticipated errors are ones that you don’t think of!

You can trap both kinds of errors with exception handling.

8.7 Complete Example – File copy program
The following program illustrates the power of exception handling. It also illustrates most
of the syntax of how to use exception handling. It is taken directly from the Nutshell book
by David Flanagan.
// This example is from the book

Chapter 8 Exceptions 112

© Ian D Chivers email: ian.chivers@kcl.ac.uk

// _Java in a Nutshell_ by David Flanagan.
// Written by David Flanagan.
// Copyright (c) 1996 O’Reilly & Associates.
// You may study, use, modify, and
// distribute this example for any purpose.
// This example is provided WITHOUT WARRANTY
// either expressed or implied.
import java.io.*;
public class FileCopy {

public static void copy(
String source_name,
String dest_name)
throws IOException

{
File source_file = new File(source_name);
File destination_file = new File(dest_name);
FileInputStream source = null;
FileOutputStream destination = null;
byte[] buffer;
int bytes_read;

try
{

// First make sure the specified source file
// exists, is a file, and is readable.

if (!source_file.exists() || !source_file.isFile())
throw new FileCopyException(

“FileCopy: no such source file: ” +
source_name);

if (!source_file.canRead())
throw new FileCopyException(

“FileCopy: source file ” +
“is unreadable: ”
+ source_name);

// If the destination exists, make sure
// it is a writeable file
// and ask before overwriting it.
// If the destination doesn’t
// exist, make sure the directory exists
// and is writeable.

if (destination_file.exists())
{

if (destination_file.isFile())
{

DataInputStream in = new
DataInputStream(System.in);

String response;

113 Exceptions Chapter 8

email: ian.chivers@kcl.ac.uk © Ian D Chivers

if (!destination_file.canWrite())
throw new FileCopyException(

“FileCopy: destination ” +
“file is unwriteable: ” + dest_name);

System.out.print(“File ”);
System.out.print(dest_name);
System.out.print(“ already exists. Overwrite?

(Y/N): ”);
System.out.flush();
response = in.readLine();
if (!response.equals(“Y”)

&& !response.equals(“y”))
throw new FileCopyException(

“FileCopy: copy cancelled.”);
}
else

throw new FileCopyException(
“FileCopy: destination ”
+ “is not a file: ”
+ dest_name);

}
else
{

File parentdir = parent(destination_file);
if (!parentdir.exists())

throw new FileCopyException(
“FileCopy: destination ”
+ “directory doesn’t exist: ” + dest_name);

if (!parentdir.canWrite())
throw new FileCopyException(

“FileCopy: destination ”
+ “directory is unwriteable: ” + dest_name);

}

// If we’ve gotten this far,
// then everything is okay; we can
// copy the file.

source = new FileInputStream(source_file);
destination = new FileOutputStream(destination_file);
buffer = new byte[1024];
while(true) {
bytes_read = source.read(buffer);
if (bytes_read == -1) break;
destination.write(buffer, 0, bytes_read);
}

}

Chapter 8 Exceptions 114

© Ian D Chivers email: ian.chivers@kcl.ac.uk

// No matter what happens
// always close any streams we’ve opened.

finally
{

if (source != null)
try { source.close(); } catch (IOException e) { ; }

if (destination != null)
try { destination.close(); } catch (IOException e) {

; }
}

}

// File.getParent() can return null when
// the file is specified without
// a directory or is in the root directory.
// This method handles those cases.

private static File parent(File f)
{

String dirname = f.getParent();
if (dirname == null)
{

if (f.isAbsolute())
return new File(File.separator);

else
return new File(System.getProperty(“user.dir”));

}
return new File(dirname);

}

public static void main(String[] args)
{

if (args.length != 2)
{

System.err.print(“Usage: java FileCopy ”
System.err.print(“[source_file][destination_file”);

}
else
{

try
{

copy(args[0], args[1]);
}
catch (IOException e)
{

System.err.println(e.getMessage());
}

}
}

115 Exceptions Chapter 8

email: ian.chivers@kcl.ac.uk © Ian D Chivers

}

class FileCopyException extends IOException
{

public FileCopyException(String msg) { super(msg); }
}

Let us look at this example in some depth. Copying files is a frequent requirement so it
makes sense to make the file copy method that does the work public. This means we can
easily incorporate this fully tested method in another program with ease. In this example we
have a main method and thus it is a standalone program.

There are a number of errors that can occur:–

� incorrectly typed source file name

� incorrectly type destination file name

� in the wrong part of the directory structure

� destination file already exists

� don’t have write access to the file

� don’t have write access to a directory

The program copes with all of these situations.

The file is treated as a sequence of bytes – the most flexible way of handling both text and
binary files.

Let us look first at the FileCopy.copy method.
public class FileCopy
{

public static void copy(
String source_name,
String dest_name)
throws IOException

...

The copy method is public – we want it to be used.

The copy method is void – it does not have a return type. It is a subroutine or procedure in
Fortran or Modula terminology.

It takes two arguments – the source and destination file names. These are of course of type
String.

Lastly the copy method can throw an IOException. We will have to provide an error han-
dler for this later in the code.

Let look now at the last part of the program.
class FileCopyException extends IOException
{

public FileCopyException(String msg) { super(msg); }
}

IOException is a built in Java class. In this example we extend this class with our own class
FileCopyException. So when we want to throw an exception we will be throwing a
FileCopyException error, and control will pass to this error handler.

Our own FileCopyException procedure takes one argument of type String and then invokes
the method within IOException. The terms super and sub class are used to indicate where

Chapter 8 Exceptions 116

© Ian D Chivers email: ian.chivers@kcl.ac.uk

you are in a class hierarchy. We will come back to this in more depth when we look for-
mally at class extension in a later chapter.

8.8 Java Errors and Exceptions
Java discriminates between errors and exceptions. An error is treated as irrecoverable and
an exception is something that can be handled by the code writer if they want.

Note that errors and exceptions can occur both within the interpreter whilst you code is run-
ning and in your code itself.

We have the following two class hierarchies:–

Object

Throwable

Exception

and

Object

Throwable

Error

and the actual errors and exception methods are at the next level down in the tree.

8.9 Java On-line Documentation
Rather than cluuter up the notes with a complete list of all of the exceptions and errors that
can arise in Java have a look at the documentation that comes with the Java 1.1 develop-
ment kit. I’ve put this up on the College web server and you can download and install this
file on a system that runs both Netscape and supports long file names.. This provides a very
good on-line source of information regarding Java. I will try to get it installed on the Sun
that we are using for the course also.

8.10 Summary
There are a number of examples that cover this area in more depth later in the course, as it
is best to see exception handling done in a realistic context to appreciate the power and ex-
pressiveness that the concepts provide.

8.11 Problems
1. Try writing a Java version of the linked list examples in this chapter. There are a number
of catches here.

2. Try running the example program in this chapter. I’ve put it up on the Web server. Base
url is:–
http://www.kcl.ac.uk/support/cc/fortran/home.html

This method can easily be incorporated into any program that requires it very easily.

117 Exceptions Chapter 8

email: ian.chivers@kcl.ac.uk © Ian D Chivers

9
i/o

Winnie-the-Pooh read the two notices very carefully,
first from left to right, and afterwards,
in case he had missed some of it, from right to left.
A. A. Milne, Winnie-the-Pooh.

From a programmer’s point of view the user is a peripheral that types when you is-
sue a read request.
Peter Williams.

Aims

The aims of this chapter are to look at the mechanisms in Java for i/o. As Java is
fully object oriented the way Java does i/o will appear strange at first. There is a
coverage of streams and their use for both input and output.

9 i/o
There is a complete package for i/o called java.io. This contains paired streams. A stream is
an ordered sequence of data. A stream has either a source or a destination.

There is no way at the moment within Java of getting formatted output. This means that
you cannot:–

� define a minimum width on output

� define a maximum width on output

� define precision for floating point output

Thus it is impossible at present to achieve neat tabular output.

A subset is listed below.

InputStream OutputStream

ByteArrayInputStream ByteArrayOutputStream

PipedInputStream PipedOutputStream

FilterInputStream FilterOutputStream

DataInputStream DataOutputStream

FileInputStream FileOutputStream

RandomAccessFile

DataInput DataOutput

DataInputStream DataOutputStream

The complete hierarchy is given below. This highlights many of the very important con-
cepts involved in object oriented programming.

Object

File

FileDescriptor

InputStream

ByteArrayInputStream

FileInputStream

FilterInputStream

BufferedInputStream

DataInputStream

LineNumberInputStream

PushBackInputStream

PipedInputStream

SequenceInputStream

StringBufferInputStream

RandomAccessFile

DataInput

DataInputStream

DataOutput

DataOutputStream

Chapter 9 i/o 120

© Ian D Chivers email: ian.chivers@kcl.ac.uk

OutputStream

ByteArrayOutputStream

FileOutputStream

BufferedOutputStream

DataOutputStream

PrintStream

FilterOutputStream

PipedInputStream

StreamTokenizer

I recommend looking at the on-line documentation that comes with the Java 1.1 jdk. Use
netscape to browse it. All of the information required is there. We will only look at a subset
of the above in the notes.

Note that Java does not support file i/o from an applet when running on another system, i.e.
if we were loading a Java applet from system A and running it on system B, then it would
not have access to B’s file system. This would comprimise the security of Java.

A Java program will have access to the underlying file system.

9.1 Class vs Interface
A class will provide both the definition and implementation of a set of methods an object
supports.

An interface provides only a definition of the methods. The implementation must be pro-
vided by classes that extend the interface. This is the equivalent of an abstract class with
virtual methods in C++ terminology.

9.2 Java.io.DataInput – interface
An interface that defines the methods for input of the base Java types. Note that these are
object methods. You must convert from the base object to the underlying base Java type. A
subset is given below.

public abstract boolean read Boolean() throws IOException, EOFException

public abstract byte readByte() throws IOException, EOFException

public abstract char readChar() throws IOException, EOFException

public abstract double readDouble() throws IOException, EOFException

public abstract float readFloat() throws IOException, EOFException

public abstract int readInt() throws IOException, EOFException

public abstract String readLine() throws IOException, EOFException

public abstract long readLong() throws IOException, EOFException

public abstract short readShort() throws IOException, EOFException

public abstract String readUTF() throws IOException, EOFException

public abstract int readUnsignedByte() throws IOException, EOFException

public abstract int readUnsignedShort() throws IOException, EOFException

9.2.1 UTF
Most text is 7 or 8 bit based. Most computer systems support 8 bit characters. Whilst Java
uses 16 bit characters internally throughout a large part of the ineraction with the real world
will be in terms of 8 bit characters.

121 i/o Chapter 9

email: ian.chivers@kcl.ac.uk © Ian D Chivers

To aid here Java supports UTF-8, which is a multibyte coding scheme. The standard ASCII
characters only occupy 1 byte. Thus for text which is essentially ASCII we have a much
more compact data representation.

9.3 java.io.DataInputStream – class
Note that this class returns a single Java base type in binary form. The value of 1 as an int
is the following binary sequence of bits:–

0000000000000000000001

This means that they cannot be used for user interaction. When we interact with users we
do so via a stream of characters. The character value 1 is represented by the following se-
quence of bits:–

0000000000110001

Remember that Java characters are Unicode based and use 16 bits. In practical terms the in-
teraction will take place in 8 bit ASCII for many people.

public final boolean read Boolean() throws IOException, EOFException

public final byte readByte() throws IOException, EOFException

public final char readChar() throws IOException, EOFException

public final double readDouble() throws IOException, EOFException

public final float readFloat() throws IOException, EOFException

public final int readInt() throws IOException, EOFException

public final String readLine() throws IOException, EOFException

public final long readLong() throws IOException, EOFException

public final short readShort() throws IOException, EOFException

public final String readUTF() throws IOException, EOFException

public final int readUnsignedByte() throws IOException, EOFException

public final int readUnsignedShort() throws IOException, EOFException

Note that all of these methods are final – they cannot be over-ridden.

9.4 java.io.DataOutput – interface
Matching interface for data output.

public abstract void writeBoolean() throws IOException

public abstract void writeByte() throws IOException

public abstract void writeChar() throws IOException

public abstract void writeDouble() throws IOException

public abstract void writeFloat() throws IOException

public abstract void writeInt() throws IOException

public abstract void writeLine() throws IOException

public abstract void writeLong() throws IOException

public abstract void writeShort() throws IOException

public abstract void writeUTF() throws IOException

public abstract void writeUnsignedByte() throws IOException

public abstract void writeUnsignedShort() throws IOException

Chapter 9 i/o 122

© Ian D Chivers email: ian.chivers@kcl.ac.uk

9.5 java.io.DataOutputStream – class
Matching class for data output.

public final void writeBoolean() throws IOException

public final void writeByte() throws IOException

public final void writeChar() throws IOException

public final void writeDouble() throws IOException

public final void writeFloat() throws IOException

public final void writeInt() throws IOException

public final void writeLine() throws IOException

public final void writeLong() throws IOException

public final void writeShort() throws IOException

public final void writeUTF() throws IOException

public final void writeUnsignedByte() throws IOException

public final void writeUnsignedShort() throws IOException

Note that all of these methods are final – they cannot be over-ridden.

9.6 java.io.PrintStream – class
The most useful i/o stream for displaying text on the screen when running programs. For
each print method there is a corresponding println method.

public synchronized void print(char[] s)

public synchronized void print(String s)

public void print(boolean b)

public void print(char c)

public void print(double d)

public void print(float f)

public void print(int i)

public void print(long l)

public synchronized void print(Object o)

public synchronized void println(char[] s)

public synchronized void println(String s)

public synchronized void println(boolean b)

public synchronized void println(char c)

public synchronized void println(double d)

public synchronized void println(float f)

public synchronized void println(int i)

public synchronized void println(long l)

Note that when we invoke the println method with an object there is a hidden call to the
toString method associated with that object.

9.6.1 Synchronized
Java supports multiple threads. As such it is necessary to be able to indicate that a critical
section of code or method must be allowed to complete. This is because the code segment
or class is modifying the internal state of the class. The concepts introduced are not new

123 i/o Chapter 9

email: ian.chivers@kcl.ac.uk © Ian D Chivers

and anyone who has done an operating system course or real time programming would be
familiar with the ideas.

Note that does not mean that the section of code cannot be timesliced. We have a lock set
and access cannot be made to whatever the lock has been applied until it has completed.

If you would like more information see the bibliography at the end of the chapter on
threads.

9.7 Example 1
The following is a C++ program to extract all of the ASCII characters from a Microsoft
Word file.
#include <iostream.h>

int main()
{
unsigned char c;
unsigned int i=0;

while (cin.get(c))
{

i=++i;
if (c < 32 || c > 127)

c = ‘ ‘;
cout << c;

if (i > 60 && c == ‘ ‘)
{
cout << endl;
i=0;
}

}
return(0);

}

The following is a modification to the file copy program that does the same.
// This example is a simple modification of the earlier
// example on file copying.
//
// It has been rewritten to extract all of the ascii
// characters from a Microsoft Word document.
//

// This example is from the book _Java in a Nutshell_ by Da-
vid Flanagan.
// Written by David Flanagan. Copyright (c) 1996 O’Reilly &
Associates.
// You may study, use, modify, and distribute this example
for any purpose.
// This example is provided WITHOUT WARRANTY either expressed
or implied.

import java.io.*;

Chapter 9 i/o 124

© Ian D Chivers email: ian.chivers@kcl.ac.uk

public class convert {
public static void copy(String source_name, String

dest_name)
throws IOException

{
File source_file = new File(source_name);
File destination_file = new File(dest_name);
FileInputStream source = null;
FileOutputStream destination = null;
byte[] buffer;
int bytes_read;

try {
// First make sure the specified source file
// exists, is a file, and is readable.
if (!source_file.exists() || !source_file.isFile())

throw new convertException(“convert: no such source
file: ” +

source_name);
if (!source_file.canRead())

throw new convertException(“convert: source file ”
+

“is unreadable: ” + source_name);

// If the destination exists, make sure it is a
writeable file

// and ask before overwriting it. If the destination
doesn’t

// exist, make sure the directory exists and is
writeable.

if (destination_file.exists()) {
if (destination_file.isFile()) {

DataInputStream in = new DataInputStream(Sys-
tem.in);

String response;

if (!destination_file.canWrite())
throw new convertException(“convert: des-

tination ” +
“file is unwriteable: ”

+ dest_name);

System.out.print(“File ” + dest_name +
“ already exists. Overwrite? (Y/N):

”);
System.out.flush();
response = in.readLine();
if (!response.equals(“Y”) && !re-

sponse.equals(“y”))

125 i/o Chapter 9

email: ian.chivers@kcl.ac.uk © Ian D Chivers

throw new convertException(“convert: copy
cancelled.”);

}
else

throw new convertException(“convert: destina-
tion ”

+ “is not a file: ” +
dest_name);

}
else {

File parentdir = parent(destination_file);
if (!parentdir.exists())

throw new convertException(“convert: destina-
tion ”

+ “directory doesn’t exist:
” + dest_name);

if (!parentdir.canWrite())
throw new convertException(“convert: destina-

tion ”
+ “directory is unwriteable:

” + dest_name);
}

// If we’ve gotten this far, then everything is okay;
we can

// copy the file.
source = new FileInputStream(source_file);
destination = new FileOutputStream(destination_file);
int i=0;
byte carriage_return=13;
byte line_feed=10;
char c;
int byte_read;
while(true)
{

byte_read = source.read();
if (byte_read == -1) break;
i++;
if (byte_read < 32 || byte_read > 127)

byte_read=32 ;
if (i>60 && byte_read==32)
{

c=(char)carriage_return;
destination.write(c);
c=(char)line_feed;
destination.write(c);
i=0;

}
c=(char)byte_read;
destination.write(c);

Chapter 9 i/o 126

© Ian D Chivers email: ian.chivers@kcl.ac.uk

}
}
// No matter what happens, always close any streams

we’ve opened.
finally {

if (source != null)
try { source.close(); } catch (IOException e) { ; }

if (destination != null)
try { destination.close(); } catch (IOException e)

{ ; }
}

}

// File.getParent() can return null when the file is spec-
ified without

// a directory or is in the root directory.
// This method handles those cases.
private static File parent(File f) {

String dirname = f.getParent();
if (dirname == null) {

if (f.isAbsolute()) return new File(File.separator);
else return new File(System.getProperty(“user.dir”));

}
return new File(dirname);

}

public static void main(String[] args) {
if (args.length != 2)

System.err.println(“Usage: java convert ” +
“<source file> <destination file>”);

else {
try { copy(args[0], args[1]); }
catch (IOException e) { Sys-

tem.err.println(e.getMessage()); }
}

}
}

class convertException extends IOException {
public convertException(String msg) { super(msg); }

}

The key code is:
int i=0;

� Variable to count how many characters we have on a line. We have to break the
lines somewhere.

byte carriage_return=13;
byte line_feed=10;

� Variables for carriage return and line feed.

127 i/o Chapter 9

email: ian.chivers@kcl.ac.uk © Ian D Chivers

char c;

� Variable to hold the character to be written.

int byte_read;

� Read returns integers.

while(true)
{
byte_read = source.read();
if (byte_read == -1) break;

� Read returns -1 at end of file.

i++;

� Increment the character count.

if (byte_read < 32 || byte_read > 127)
byte_read=32 ;

� Convert non-printing characters to blank.

if (i>60 && byte_read==32)
{
c=(char)carriage_return;
destination.write(c);
c=(char)line_feed;
destination.write(c);
i=0;
}

� Split the output line at the first blank character after position 60.

c=(char)byte_read;
destination.write(c);

� Convert to character and write out.

The program can be run with the following command line:
java convert before.doc after.txt

9.8 Problems
1. Write a program that writes a file that contains the numbers 1 through 10 as integer val-
ues. Examine this file with an editor. What do you notice?

2. Now write a program to read in these values and print them out to the screen.

3. Repeat problem one but now use single precision reals.

4. Repeat 2 with the file containing real numbers.

5. Chapter 17 in the third edition of the Deitel book has some i/o examples. Have a look at
those to see how to create a sequential file and read it back in.

Chapter 9 i/o 128

© Ian D Chivers email: ian.chivers@kcl.ac.uk

10
Threads

A person with one watch knows what time it is; a person with two watches is never
sure
Proverb.

Aims

The aim of this chapter is to introduce the concepts and ideas involved in using
threads in Java.:–

extends Thread;

implements Runnable;

sleep;

static variables;

synchronized;

priority;

init(), start(), stop(), paint(), update(), repaint(), yield();

10 Threads
The computer systems that you use runs many processes. It is not uncommon to:–

� be listening to a cd;

� downloading a file using ftp;

� printing a file;

� reading your mail;

at the same time.

If you are using a unix system try:–

� ps -ef

If you use Windows try

� [CTRL] [ESC]

to bring up a list of tasks.

Some programming languages offer support for writing programs that can multitask. Mod-
ula 2 offers coroutines, Ada has tasks, and Java has threads.

This will enable us to write Java programs that run each of the following as a separate
thread:–

� download data from a remote system

� play sound

� interact with a user

� carry out calculations

� display the output from these calculations as the calculations run

10.1 Example 1 – extends Thread
The first example creates two threads and starts them running. The main loop of the pro-
gram then gets the current thread name and prints it out.
public class thread01 extends Thread
{

public static void main(String[] args)
{

thread01 t1=new thread01();
thread01 t2=new thread01();
t1.start();
t2.start();

}

public void run()
{

for(;;)
{

System.out.println(Thread.currentThread().getName());
}

}
}

Chapter 10 Threads 130

© Ian D Chivers email: ian.chivers@kcl.ac.uk

Let us look at the program in more depth.
public class thread01 extends Thread

This creates our own class called thread01 that is an extension of the inbuilt class thread.
thread01 t1=new thread01();
thread01 t2=new thread01();

These two statements create two objects of type thread01. We use the class name as the
constructor.

t1.start();
t2.start();

These two statements start the threads running.
System.out.println(Thread.currentThread().getName());

This is the only statement that is in the run procedure. It will get the name of the currently
executing thread and print it out.

The output of this program will depend on the system that you run it on.

10.2 Example 2 – Extends Thread
This example is a simple variant of the first.
public class thread02 extends Thread
{

int delay;

thread02(int t)
{delay=t;}

public static void main(String[] args)
{

thread02 t1=new thread02(50);
thread02 t2=new thread02(100);
t1.start();
t2.start();

}

public void run()
{

try
{

for(;;)
{

Sys-
tem.out.println(Thread.currentThread().getName());

sleep(delay);
}

}
catch(InterruptedException e)
{ return; }

}
}

131 Threads Chapter 10

email: ian.chivers@kcl.ac.uk © Ian D Chivers

The first thing of interest is the addition of a class variable delay. Whenever we create an
object of this class we will also create a variable called delay.

thread02(int t)
{delay=t;}

We now supply our own constructor for an object of type thread02. The constructor tales
one argument and will be used to provide a value for the class variable delay.

thread02 t1=new thread02(50);
thread02 t2=new thread02(100);

We now create two thread objects and provide initial values for delay. The time is in milli-
seconds.

Sys-
tem.out.println(Thread.currentThread().getName());

sleep(delay);

The run method gets the name of the cuurently executing thread and then calls the
sleepmethod with the corresponding value for delay.

10.3 Example 3 – implements Runnable
The next two examples are simple variants of the first two examples. They utilise the sec-
ond way of using threads in Java. The first way uses simple class extension. This way is not
appropriate for many problems. The following example allows us to subclass another class
if we want. The drawback with this way of doing things is that the Runnable interface does
not provide start, stop, suspend and resume methods – the only method implemented is the
run method.
public class thread03 implements Runnable
{

public static void main(String[] args)
{

Runnable t1=new thread03();
Runnable t2=new thread03();
new Thread(t1).start();
new Thread(t2).start();

}

public void run()
{

for(;;)
{

System.out.println(Thread.currentThread().getName());
}

}
}

Let us look at this example now.

10.4 Example 4 – Implements Runnable
This is the equivalent way of doing the second example.

Chapter 10 Threads 132

© Ian D Chivers email: ian.chivers@kcl.ac.uk

public class thread04 implements Runnable
{

int delay;

thread04(int t)
{

delay=t;
}

public static void main(String[] args)
{

Runnable t1=new thread04(50);
Runnable t2=new thread04(100);
new Thread(t1).start();
new Thread(t2).start();

}

public void run()
{

try
{

for(;;)
{

System.out.println(Thread.currentThread().getName());
Thread.sleep(delay);

}
}
catch(InterruptedException e)
{

return;
}

}
}

10.5 Example 5 – static variable in a thread
This example looks at some of the problems that can occur when using static variables
public class thread05 extends Thread
{

static int i;

public static void main(String[] args)
{

thread05 t1=new thread05();
thread05 t2=new thread05();
t1.start();
t2.start();

}

133 Threads Chapter 10

email: ian.chivers@kcl.ac.uk © Ian D Chivers

public void run()
{

for(;;)
{

i=0;
i++;
if(i==0)
{

System.out.print(Thread.currentThread().getName());
System.out.print(“ ”);
System.out.println(i);

}
}

}
}

10.6 Example 6 – synchronized
This example shows how to avoid potential problems when updating static class variables.
public class thread07 extends Thread
{

static int i;

public static void main(String[] args)
{

thread07 t1=new thread07();
thread07 t2=new thread07();
t1.start();
t2.start();

}

public void run()
{

for(;;)
{

synchronized (this)
{

i=0;
i++;
if(i==0)
{

Sys-
tem.out.print(Thread.currentThread().getName());

System.out.print(“ ”);
System.out.println(i);

}
}

}
}

Chapter 10 Threads 134

© Ian D Chivers email: ian.chivers@kcl.ac.uk

}

10.7 Example 7 –yield
This example shows how to get a degree of predictability in the behaviour of programs that
use threads.
public class thread08 extends Thread
{

public static void main(String[] args)
{

thread08 t1=new thread08();
thread08 t2=new thread08();
t1.start();
t2.start();

}

public void run()
{

for(;;)
{

System.out.println(Thread.currentThread().getName());
Thread.yield();

}
}

}

10.8 Example 8 – thread priority
This example looks at using threads and providing them with priorities.
public class thread09 extends Thread
{

public static void main(String[] args)
{

thread09 t1=new thread09();
thread09 t2=new thread09();
t1.setPriority(10); t1.start();
t2.setPriority(1); t2.start();

}

public void run()
{

for(;;)
{

System.out.println(Thread.currentThread().getName());
Thread.yield();

}
}

}

135 Threads Chapter 10

email: ian.chivers@kcl.ac.uk © Ian D Chivers

10.9 Problems
The important thing with these examples is to see them actually running. See if you can
predict what the output will be.

The next thing is to try all of the examples out on another platform. Do you think that you
will get the same results.

Compare the actual output for each of the examples on the various systems that you have
access to.

Chapter 15 of the Deitel book has a coverage of multithreading. They have a number of ex-
amples including one implementing a circular buffer.

10.10Bibliography
The two main types of sources are texts on operating systems and programming langauges
that support real time programming. Ada 95 and Modula 2 offer support in this area.

Barnes J., Programming in Ada 95, Addsion Wesley.

� The chapter on tasking provides a description of the way that Ada handles
multitasking.

Christian K., A Guide to Modula 2, Springer Verlag.

� The chapter on coroutines is worth looking at.

Deitel H. M., An Introduction to Operating Systems, Addison Wesley.

� There are several chapters that look at the whole area of multi-processing, asyn-
chronous and snychronous processes. Easy read. Very comprehensive bibliogra-
phy.

The following faq is excellent.

� http://www.best.com/~bos/threads-faq/

Searching Amazon will reveal a fascinating spread of books on threads. Try it!

Chapter 10 Threads 136

© Ian D Chivers email: ian.chivers@kcl.ac.uk

11
Introduction to

Graphics Programming

A picture paints a thousand words.
anon

Aims

The aim of this chapter is to introduce the concepts and ideas involved in using the
facilities offered in Java for graphical output. The coverage looks at what was avail-
able in the original 1.0.x JDK and the facilities in later releases. There is a coverage
of:

Basic graphics concepts:
vector vs raster graphics, pixels, bit maps – gif vs jpg, fonts, coordinate
space, user space, screen resolution, colour and colour models, scan-
ning, integer arithmetic, real arithmetic, flicker, double buffering, se-
lective erasure, device contexts, clipping, rendering.

java.awt

java.awt.Graphics

java.awt.Graphics2D

The imaging models supported by the Java 2D API:
The original producer consumer model

The immediate model introduced in the Java 2 JDK

The pipeline model in the Java Advanced Imaging API.

11 Introduction to Graphics Programming
This chapter looks first at a small number of concepts that are essential for successful use
of computer generated graphics.

We start with a coverage of what was available in the original 1.0.x release of Java, and
also the developments that have taken place since.

Java has moved on a long way from the first offerings in the 1.0.x JDK.

11.1 Vector vs Raster Graphics
There are two main ways of doing graphics. One involves using x-y coordinates and then
drawing lines between them. The second involves actually looking at points and whether or
not they are displayed or not.

Consider a 10*10 display space. With vector graphics we could consider drawing a line be-
tween 1,1 and 9,9. With raster graphics we consider each row of 10 points and whether a
point is on or not.

11.2 Pixels
With each x-y point we have the additional feature of a gray scale value or colour value.

11.3 Bit maps – gif vs jpg
These are the two bit map formats currently supported by Java. As jpg is smaller I recom-
mend using this bit map format rather than gif.

11.4 Screen resolution
Screens come in a number of display sizes. The following are commonly available on the
pc:–

� 640*480 – standard vga

� 800*600 – super vga

� 1024*768 – you need at least a 15 inch monitor.

� 1280*1024 – just about ok with a 17 inch, but I would consider 19 or 21 inch.

It is not worth considering the higher screen resolutions unless one has a 15 or 17 inch
monitor. The text is very difficult to read on smaller monitors.

11.4.1 Interlaced vs non-interlaced
To give a stable display a computer screen must be refreshed within quite short times, i.e.
the picture must be redrawn completely 60 times a second. With monitors with low scan
rates it will often only be possible to support higher screen resolutions if the screen is inter-
laced. I had a cheap 14 inch monitor at home and I drove it in 1024*768 mode, but I could
only do that by doing it in interlaced mode. It flickered quite badly.

In the public rooms the pc’s are all driven in 800*600 mode. Very clear and legible.

Most people find little flicker above 70 Hz.

11.5 Colour Models
There are several colour models. Some commnly used ones are:–

� RGB – red, green, blue: tends to be used with displays, additive;

� CMY – cyan, magenta, yellow: tends to be used with printers, subtractive;

Chapter 11 Introduction to Graphics Programming 138

© Ian D Chivers email: ian.chivers@kcl.ac.uk

If one needs faithful printed colour then one should use software that offers pantone colour
support. You would typically print out test sheets with the name/number of each colour and
then use that to provide the on-screen colour. This may not match very closely the printed
colour.

11.6 Scanning
Take care when scanning. Take a 5*7 inch colour photo with 300 dpi resolution.

5*300 * 7*300 = 35*9 * 10,000 = 3,150,000

11.7 Coordinate spaces
The java coordinate space is screen based in java.awt 1.0.x release and the top left is 0,0.

There is also the concept of the problem coordinate space. We then need to map between
the two.

11.8 Fonts
There is a limited choice of fonts with the early versions of the JDK and but we can use
them with a range of settings. Things have changed considerably with later versions of the
JDK.

11.9 Aliasing and Antialiasing
With simple raster plottng we get jagged edges or staircasing.

Naturally enough the term used to get rid of aliasing is antialiasing. We get better quality
images if we use antialiasing techniques. Later versions of Java supported antialiasing. See
Foley et al for a coverage of this area.

11.10Device context
A concepts that is very useful in the graphics and windows programming area is that of a
device context. All drawing can be done to a device context and this might be virtual or
physical, e.g. the screen or a printer. In Java we use the Graphics object as our device con-
text. You have seen this throughout the examples already. We will look at this area in more
depth in this chapter.

11.11Clipping
Clipping refers to the way in which a graphics object is displayed on the current area. Some
of the object will be outside the clip region and will not be displayed. See Foley et al for a
coverage of this subject.

11.12Rendering
Rendering is the production of the actual output on a graphics device.

11.13Putting it all togethor
A Java graphics context enables drawing on the screen. A Graphics object manages a
graphics context by controlling how things are drawn. The applets so far have have used
generally used the Graphics object g – which is the argument to paint.

Things have changed in this area. What follows is based on the early 1.0.x jdk. We will
come back to this whole area in later chapters.

139 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

11.14History
Things are more complicated than they need be in this area, due to the way that Java has
evolved. As you know we have had three major release of the Java jdk.

� jdk 1.0.x

� jdk 1.1.x

� jdk 1.2.x

and Sun have announced jdk 1.3 on February 15th.

There have also been several release of Swing. As problems are discovered with the current
versions Sun try and fix the problems. This makes working out the best way of doing some-
thing quite difficult in the graphics and windows programming area.

If you look at the books and examples that exist you will see several ways of achieving
what appears to be the same end result.

This chapter starts by looking at ways of doing things using the original jdk 1.0.x style.
This (hopefully) will show some of the problems that exist with the original release and
why Sun had to make changes.

11.15Example 1 – Bouncing Balls
import java.awt.*;

// Simple graphics example of a bouncing ball.
// Things to look at are the amount of flicker
// and the amount of time that the thread is put
// to sleep. This is in milliseconds. It is worth
// experimenting with this as the applet will behave
// differently on different systems.

public class graphic01 extends java.applet.Applet implements
Runnable
{

double x,y,deltax,deltay;
double xl=300;
double yl=300;
Thread ball;

public void init()
{

setBackground(Color.white);
deltax=3;
deltay=3;
x=Math.random()*xl;
y=Math.random()*yl;

}

public void start()
{

if(ball==null)
{

Chapter 11 Introduction to Graphics Programming 140

© Ian D Chivers email: ian.chivers@kcl.ac.uk

ball=new Thread(this);
ball.start();

}
}

public void stop()
{

if(ball!=null)
{

ball.stop();
ball=null;

}
}

public void run()
{

for(;;)
{

x+=deltax;
y+=deltay;
if ((x>=xl) | (x<=0)) deltax=-deltax;
if ((y>=yl) | (y<=0)) deltay=-deltay;
repaint();
try
{

Thread.sleep(1);
}
catch (InterruptedException e)
{
}

}
}

public void paint(Graphics g)
{

g.setColor(Color.blue);
g.fillOval((int)x,(int)y,20,20);

}
}

Compiling with JDK1.2.2 generates a warning about size and stop. Try running this exam-
ple on more than one platform if possible. Also try running within a web browser as well as
using the appletviewer.

11.16Example 2 – Bouncing Balls with integer arithmetic
Note that the naming convention doesn’t match the example numbering. If I get time I will
rename and renumber all examples. However this involves quite a lot of work on more than
one platform.
import java.awt.*;

141 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

// Simple graphics example of a bouncing ball.
// Things to look at are the amount of flicker
// and the amount of time that the thread is put
// to sleep. This is in milliseconds. It is worth
// experimenting with this as the applet will behave
// differently on different systems.

// this example redoes the first example by using
// integer arithmetic throughout. things to look at
// are the differences in the speed of the ball
// and also looking at varying the sleep time.

public class graphic03 extends java.applet.Applet implements
Runnable
{

int x,y,deltax,deltay;
int xl=300;
int yl=300;
Thread ball;

public void init()
{

setBackground(Color.white);
deltax=3;
deltay=3;
x=(int)(Math.random()*xl);
y=(int)(Math.random()*yl);

}

public void start()
{

if(ball==null)
{

ball=new Thread(this);
ball.start();

}
}

public void stop()
{

if(ball!=null)
{

ball.stop();
ball=null;

}
}

public void run()
{

for(;;)

Chapter 11 Introduction to Graphics Programming 142

© Ian D Chivers email: ian.chivers@kcl.ac.uk

{
x+=deltax;
y+=deltay;
if ((x>=xl) | (x<=0)) deltax=-deltax;
if ((y>=yl) | (y<=0)) deltay=-deltay;
repaint();
try
{

Thread.sleep(1);
}
catch (InterruptedException e)
{
}

}
}

public void paint(Graphics g)
{

g.setColor(Color.blue);
g.fillOval(x,y,20,20);

}
}
Compiling with -deprecation and JDK 1.2.2 generates a warning about stop.

11.17Example 3 – Bouncing Balls with double buffering
import java.awt.*;

// simple bouncing ball. this example uses an off screen
// area to do the update. this technique is common in graph-
ics
// and is called double buffering. the other technique that
this example
// show is that of so called selective erasure. This is an-
other
// common programming technique in the graphics area.
// rather than repaint the whole screen only the part that
// has to change is redrawn.
// again worth looking at the sleep times.
// the example has one small snag. the selective erase
// doesn’t work correctly.

public class graphic02 extends java.applet.Applet implements
Runnable
{

double x,y,deltax,deltay,oldx,oldy;
double xl=300;
double yl=300;
Thread ball;
Image bgi;
Graphics bgg;

143 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

public void init()
{

setBackground(Color.white);
deltax=3;
deltay=3;
x=Math.random()*xl;
y=Math.random()*yl;
bgi=createImage(this.size().width,this.size().height);
bgg=bgi.getGraphics();

}

public void start()
{

if(ball==null)
{

ball=new Thread(this);
ball.start();

}
}

public void stop()
{

if(ball!=null)
{

ball.stop();
ball=null;

}
}

public void paint(Graphics g)
{

bgg.setColor(Color.white);
bgg.fillOval((int)oldx,(int)oldy,20,20);

bgg.setColor(Color.blue);
bgg.fillOval((int)x,(int)y,20,20);

g.drawImage(bgi,0,0,this);
oldx=x;
oldy=y;

}

public void update(Graphics g)
{

paint(g);
}

public void run()
{

Chapter 11 Introduction to Graphics Programming 144

© Ian D Chivers email: ian.chivers@kcl.ac.uk

for(;;)
{

x+=deltax;
y+=deltay;
if ((x>=xl) | (x<=0)) deltax=-deltax;
if ((y>=yl) | (y<=0)) deltay=-deltay;
repaint();
try
{

Thread.sleep(1);
}
catch (InterruptedException e)
{
}

}
}

}

Compiling with JDK 1.2.2 and -deprecation generates warning about size and stop. Running
the applet on Gum using the appletviewer is very slow. Running on a P166 with 64 Mb of
memory is faster, but there are still problems with trails of where the ball has been. Run-
ning off the college web server with Netscape on the pc has the same trail behaviour.

11.18Examle 4 – Bouncing Balls with integer arithmetic and double buffering
import java.awt.*;

// simple bouncing ball. this example uses an off screen
// area to do the update. this technique is common in graph-
ics
// and is called int buffering. the other technique that
this example
// show is that of so called selective erasure. This is an-
other
// common programming technique in the graphics area.
// rather than repaint the whole screen only the part that
// has to change is redrawn.
// again worth looking at the sleep times.
// the example has one small snag. the selective erase
// doesn’t work correctly.

// arithmetic now made integer throughout.
// again look at the sleep time and the speed or the
// bouncing ball.

public class graphic04 extends java.applet.Applet implements
Runnable
{

int x,y,deltax,deltay,oldx,oldy;
int xl=300;
int yl=300;

145 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

Thread ball;
Image bgi;
Graphics bgg;

public void init()
{

setBackground(Color.white);
deltax=3;
deltay=3;
x=(int)(Math.random()*xl);
y=(int)(Math.random()*yl);
bgi=createImage(this.size().width,this.size().height);
bgg=bgi.getGraphics();

}

public void start()
{

if(ball==null)
{

ball=new Thread(this);
ball.start();

}
}

public void stop()
{

if(ball!=null)
{

ball.stop();
ball=null;

}
}

public void paint(Graphics g)
{

bgg.setColor(Color.white);
bgg.fillOval(oldx,oldy,20,20);

bgg.setColor(Color.blue);
bgg.fillOval(x,y,20,20);

g.drawImage(bgi,0,0,this);
oldx=x;
oldy=y;

}
public void update(Graphics g)
{

paint(g);
}

Chapter 11 Introduction to Graphics Programming 146

© Ian D Chivers email: ian.chivers@kcl.ac.uk

public void run()
{

for(;;)
{

x+=deltax;
y+=deltay;
if ((x>=xl) | (x<=0)) deltax=-deltax;
if ((y>=yl) | (y<=0)) deltay=-deltay;
repaint();
try
{

Thread.sleep(1);
}
catch (InterruptedException e)
{
}

}
}

}

This is now quite jerky running on the appletviewer on the pc.

11.19Example 6 – Loading jpg images – static display
import java.awt.Graphics;
import java.awt.Image;

public class ian01 extends java.applet.Applet
{

Image image01;

public void init()
{

image01=getImage(getCodeBase(),"ian01.jpg");
}

public void paint(Graphics g)
{

g.drawImage(image01,10,10,this);
}

}

Use Netscape to find some jpegs and ftp them to Gum. Have a look at their size. Other
things to consider are colour information. The three most common are 8 bit (256 colours)
16 bit and 24 bit colour. 8 bit colour isn’t too bad, especially for thumbnails.

11.20Example 7 – Loading image – simple scaling
import java.awt.Graphics;
import java.awt.Image;

public class jane extends java.applet.Applet
{

147 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

Image janeimg;

public void init()
{

janeimg=getImage(getCodeBase(),"janet.gif");
}

public void paint(Graphics g)
{

int iwidth = janeimg.getWidth(this);
int iheight = janeimg.getHeight(this);

int xpos=10;

// 25%

g.drawImage(janeimg,xpos,10,iwidth/4,iheight/4,this);

// 50%

xpos += (iwidth/4)+10;

g.drawImage(janeimg,xpos,10,iwidth/2,iheight/2,this);

// 100%

xpos += (iwidth/2)+10;

g.drawImage(janeimg,xpos,10,this);

}

}

11.21Example 8 – Moving image

import java.awt.Graphics;
import java.awt.Image;

public class joan02 extends java.applet.Applet
{

Image img;

public void init()
{

img=getImage(getCodeBase(),"joan01.gif");
}

Chapter 11 Introduction to Graphics Programming 148

© Ian D Chivers email: ian.chivers@kcl.ac.uk

public void paint(Graphics g)
{

int iwidth = img.getWidth(this);
int iheight = img.getHeight(this);
int xpos;
int ypos=10;

for (xpos=10;xpos<400;xpos+=50)
{

g.drawImage(img,xpos,ypos,this);
ypos += +50;
try {Thread.sleep(100);}
catch(InterruptedException e) {}

}
}

}

11.22Basic Drawing Methods
There are a number of basic drawing methods and they are given below with examples.

11.22.1 Lines – g.drawline(x1,y1,x2,y2)
import java.awt.*;

public class c1140 extends java.applet.Applet
{

public void init()
{

setBackground(Color.white);
}

public void paint(Graphics g)
{

int x1=0;
int y1=0;
int x2=100;
int y2=200;
g.setColor(Color.blue);
g.drawLine(x1,y1,x2,y2);

}
}

11.22.2 Rectangles – g.drawRect(xstart,ystart,width,height)
g.fillRect(x,y,w,h)

import java.awt.*;

public class c1142 extends java.applet.Applet
{

149 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

public void init()
{

setBackground(Color.white);
}

public void paint(Graphics g)
{

g.setColor(Color.blue);
g.drawRect(10,10,100,100);

}
}
import java.awt.*;

public class c1143 extends java.applet.Applet
{

public void init()
{

setBackground(Color.white);
}

public void paint(Graphics g)
{

g.setColor(Color.blue);
g.drawRect(10,10,100,100);
g.fillRect(20,20,90,90);

}
}

11.22.3 Rounded Rectangles – g.drawRoundRect(xstart,ystart,w,h,xcurve,ycurve)
import java.awt.*;

public class c1144 extends java.applet.Applet
{

public void init()
{

setBackground(Color.white);
}

public void paint(Graphics g)
{

g.setColor(Color.blue);
g.drawRoundRect(10,10,100,100,20,20);

}
}

Chapter 11 Introduction to Graphics Programming 150

© Ian D Chivers email: ian.chivers@kcl.ac.uk

11.22.4 3D Effects – g.draw3Drect(x,y,w,h,true)
This method has to be repeated several times to obtain the desired effect. true raises the
rectangle and false gives the effect of a pushed button.
import java.awt.*;

public class c1145 extends java.applet.Applet
{

public void init()
{

setBackground(Color.white);
}

public void paint(Graphics g)
{

g.setColor(Color.blue);
g.draw3DRect(10,10,100,100,true);
g.draw3DRect(11,11,98,98,true);
g.draw3DRect(12,12,96,96,true);
g.draw3DRect(13,13,94,94,true);

}
}

11.22.5 Polygons
There are two ways of doing this:–

� using arrays

� using the polygon class

The following two examples show both methods.
import java.awt.*;

public class c1146 extends java.applet.Applet
{

public void init()
{

setBackground(Color.white);
}

public void paint(Graphics g)
{

int x[]={20,30,40,40,30,20,10,10,20};
int y[]={10,10,20,30,40,40,30,20,10};
g.setColor(Color.blue);
g.drawPolygon(x,y,9);

}
}

import java.awt.*;

151 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

public class c1147 extends java.applet.Apple
{

public void init()
{

setBackground(Color.white);
}

public void paint(Graphics g)
{

Polygon octagon=new Polygon();
octagon.addPoint(20,10);
octagon.addPoint(30,10);
octagon.addPoint(40,20);
octagon.addPoint(40,30);
octagon.addPoint(30,40);
octagon.addPoint(20,40);
octagon.addPoint(10,30);
octagon.addPoint(10,20);
octagon.addPoint(20,10);
g.setColor(Color.blue);
g.drawPolygon(octagon);

}
}

11.22.6 Ovals – g.drawOval(x,y,w,h) and g.fillOval(x,y,w,h)
Left as an exercise.

11.22.7 Arcs – g.drawArc(x,y,w,h,start,end) and g.fillArc(x,y,w,h,s,e)
Left as an exercise.

11.22.8 Colour – Color
The default colour model supported by Java is the RGB model. R stands for red, g for
green and b for blue! Each colour can have an integer value in the range 0 to 255. This
gives 16 million colours. Your monitor of course may not be able to display that number of
colours. It is an additive system. There are the following predefined colours in Java:–

Colour Red Green Blue

Color.white 255 255 255

Color.black 0 0 0

Color.lightgray 192 192 192

Color.gray 128 128 128

Color.darkgray 64 64 64

Color.red 255 0 0

Color.green 0 255 0

Color.blue 0 0 255

Color.yellow 255 255 0

Color.magenta 255 0 255

Chapter 11 Introduction to Graphics Programming 152

© Ian D Chivers email: ian.chivers@kcl.ac.uk

Color.cyan 0 255 255

Color.pink 255 175 175

Color.orange 255 200 0

The other supported colour model is the hsb model (hue, saturation, brightness). There are
additional methods to support this model.

The following program cycles through the colours in steps of 10.

import java.awt.*;

public class c1160 extends java.applet.Applet
{

public void init()
{

setBackground(Color.white);
}

public void paint(Graphics g)
{

for (int red=0;red<256;red=red+10)
{

for (int green=0;green<256;green=green+10)
{

for (int blue=0;blue<256;blue=blue+10)
{

Color yeuk=new Color(red,green,blue);
g.setColor(yeuk);
g.fillOval(10,10,100,100);

}
}

}
}

}

11.22.9 Texts and Fonts
Java provides support for a number of widely available fonts. The following table gives
names on three platforms.

Java name X-Windows Windows Macintosh

Helvetica adobe-helvetica arial

TimesRoman adobe-times times new roman

Courier adobe courier courier new

Dialog b&h-lucida ms sans serif

DialogInput b&h-lucidatypewriter ms sans serif

ZapfDingbats itc-zapfdingbats windings

default misc-fixed arial

We can also use the fonts in four variations:–

� PLAIN

153 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

� BOLD

� ITALIC

� BOLDITALIC

The following example prints out some text in some of the above fonts in each of the four
variations.
import java.awt.*;
public class c1170 extends java.applet.Applet
{

String s;

public void showfont(String s)
{

Font f=new Font(s,Font.PLAIN,20);
setFont(f);
add(new Label (“ plain”));
f=new Font(s,Font.BOLD,20);
setFont(f);
add(new Label (“ bold”));
f=new Font(s,Font.ITALIC,20);
setFont(f);
add(new Label (“ italic”));
f=new Font(s,Font.BOLD + Font.ITALIC,20);
setFont(f);
add(new Label (“ bold italic”));

}

public void start()
{

s="Helvetica";
showfont(s);
s="TimesRoman";
showfont(s);
s="Courier";
showfont(s);
s="Dialog";
showfont(s);

}
}

11.23AWT 1.0.x
The package java.awt contains all of the classes for creating user interfaces and for painting
graphics and images. A user interface object such as a button or a scrollbar is called, in
AWT terminology, a component. Some components fire events when a user interacts with
the components. The AWTEvent class and its subclasses are used to represent the events
that AWT components can fire. A container is a component that can contain components
and other containers. A container can also have a layout manager that controls the visual
placement of components in the container. The AWT package contains several layout man-
ager classes and an interface for building your own layout manager.

Chapter 11 Introduction to Graphics Programming 154

© Ian D Chivers email: ian.chivers@kcl.ac.uk

11.23.1 Interface Summary
ActiveEvent

� An interface for events that know how dispatch themselves.

Adjustable

� The interface for objects which have an adjustable numeric value contained
within a bounded range of values.

Composite

� The Composite interface, along with CompositeContext, defines the methods to
compose a draw primitive with the underlying graphics area.

CompositeContext

� The CompositeContext interface defines the encapsulated and optimized environ-
ment for a compositing operation.

ItemSelectable

� The interface for objects which contain a set of items for which zero or more can
be selected.

LayoutManager

� Defines the interface for classes that know how to layout Containers.

LayoutManager2

� Defines an interface for classes that know how to layout Containers based on a
layout constraints object.

MenuContainer

� The super class of all menu related containers.

Paint

� This Paint interface defines how color patterns can be generated for Graphics2D
operations.

PaintContext

� The PaintContext interface defines the encapsulated and optimized environment
to generate color patterns in device space for fill or stroke operations on a
Graphics2D.

PrintGraphics

� An abstract class which provides a print graphics context for a page.

Shape

� The Shape interface provides definitions for objects that represent some form of
geometric shape.

Stroke

� The Stroke interface allows a Graphics2D object to obtain a Shape that is the
decorated outline, or stylistic representation of the outline, of the specified
Shape.

Transparency

� The Transparency interface defines the common transparency modes for imple-
menting classes.

155 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

11.23.2 Class Summary
AlphaComposite

� This AlphaComposite class implements the basic alpha compositing rules for
combining source and destination pixels to achieve blending and transparency ef-
fects with graphics and images.

AWTEvent

� The root event class for all AWT events.

AWTEventMulticaster

� A class which implements efficient and thread-safe multi-cast event dispatching
for the AWT events defined in the java.awt.event package.

AWTPermission

� This class is for AWT permissions.

BasicStroke

� The BasicStroke class defines a basic set of rendering attributes for the outlines
of graphics primitives.

BorderLayout

� A border layout lays out a container, arranging and resizing its components to fit
in five regions: north, south, east, west, and center.

Button

� This class creates a labeled button.

Canvas

� A Canvas component represents a blank rectangular area of the screen onto
which the application can draw or from which the application can trap input
events from the user.

CardLayout

� A CardLayout object is a layout manager for a container.

Checkbox

� A check box is a graphical component that can be in either an “on” (true) or
“off” (false) state.

CheckboxGroup

� The CheckboxGroup class is used to group together a set of Checkbox buttons.

CheckboxMenuItem

� This class represents a check box that can be included in a menu.

Choice

� The Choice class presents a pop-up menu of choices.

Color

� A class to encapsulate colors in the default sRGB color space or colors in arbi-
trary color spaces identified by a ColorSpace.

Component

� A component is an object having a graphical representation that can be displayed
on the screen and that can interact with the user.

Chapter 11 Introduction to Graphics Programming 156

© Ian D Chivers email: ian.chivers@kcl.ac.uk

ComponentOrientation

� The ComponentOrientation class encapsulates the language-sensitive orientation
that is to be used to order the elements of a component or of text.

Container

� A generic Abstract Window Toolkit(AWT) container object is a component that
can contain other AWT components.

Cursor

� A class to encapsulate the bitmap representation of the mouse cursor.

Dialog

� A Dialog is a top-level window with a title and a border that is typically used to
take some form of input from the user.

Dimension

� The Dimension class encapsulates the width and height of a component (in inte-
ger precision) in a single object.

Event

� Event is a platform-independent class that encapsulates events from the plat-
form’s Graphical User Interface in the Java 1.0 event model.

EventQueue

� EventQueue is a platform-independent class that queues events, both from the
underlying peer classes and from trusted application classes.

FileDialog

� The FileDialog class displays a dialog window from which the user can select a
file.

FlowLayout

� A flow layout arranges components in a left-to-right flow, much like lines of text
in a paragraph.

Font

� The Font class represents fonts.

FontMetrics

� The FontMetrics class defines a font metrics object, which encapsulates informa-
tion about the rendering of a particular font on a particular screen.

Frame

� A Frame is a top-level window with a title and a border.

GradientPaint

� The GradientPaint class provides a way to fill a Shape with a linear color gradi-
ent pattern.

Graphics

� The Graphics class is the abstract base class for all graphics contexts that allow
an application to draw onto components that are realized on various devices, as
well as onto off-screen images.

Graphics2D

157 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

� This Graphics2D class extends the Graphics class to provide more sophisticated
control over geometry, coordinate transformations, color management, and text
layout.

GraphicsConfigTemplate

� The GraphicsConfigTemplate class is used to obtain a valid
GraphicsConfiguration.

GraphicsConfiguration

� The GraphicsConfiguration class describes the characteristics of a graphics desti-
nation such as a printer or monitor.

GraphicsDevice

� The GraphicsDevice class describes the graphics devices that might be available
in a particular graphics environment.

GraphicsEnvironment

� The GraphicsEnvironment class describes the collection of GraphicsDevice ob-
jects and Font objects available to a Java(tm) application on a particular plat-
form.

GridBagConstraints

� The GridBagConstraints class specifies constraints for components that are laid
out using the GridBagLayout class.

GridBagLayout

� The GridBagLayout class is a flexible layout manager that aligns components
vertically and horizontally, without requiring that the components be of the same
size.

GridLayout

� The GridLayout class is a layout manager that lays out a container’s components
in a rectangular grid.

Image

� The abstract class Image is the superclass of all classes that represent graphical
images.

Insets

� An Insets object is a representation of the borders of a container.

Label

� A Label object is a component for placing text in a container.

List

� The List component presents the user with a scrolling list of text items.

MediaTracker

� The MediaTracker class is a utility class to track the status of a number of media
objects.

Menu

� A Menu object is a pull-down menu component that is deployed from a menu
bar.

Chapter 11 Introduction to Graphics Programming 158

© Ian D Chivers email: ian.chivers@kcl.ac.uk

MenuBar

� The MenuBar class encapsulates the platform’s concept of a menu bar bound to
a frame.

MenuComponent

� The abstract class MenuComponent is the superclass of all menu-related compo-
nents.

MenuItem

� All items in a menu must belong to the class MenuItem, or one of its subclasses.

MenuShortcut

� A class which represents a keyboard accelerator for a MenuItem.

Panel

� Panel is the simplest container class.

Point

� A point representing a location in (x, y) coordinate space, specified in integer
precision.

Polygon

� The Polygon class encapsulates a description of a closed, two-dimensional re-
gion within a coordinate space.

PopupMenu

� A class that implements a menu which can be dynamically popped up at a speci-
fied position within a component.

PrintJob

� An abstract class which initiates and executes a print job.

Rectangle

� A Rectangle specifies an area in a coordinate space that is enclosed by the Rect-
angle object’s top-left point (x, y) in the coordinate space, its width, and its
height.

RenderingHints

� The RenderingHints class contains rendering hints that can be used by the
Graphics2D class, and classes that implement BufferedImageOp and Raster.

RenderingHints.Key

� Defines the base type of all keys used to control various aspects of the rendering
and imaging pipelines.

Scrollbar

� The Scrollbar class embodies a scroll bar, a familiar user-interface object.

ScrollPane

� A container class which implements automatic horizontal and/or vertical scroll-
ing for a single child component.

SystemColor

� A class to encapsulate symbolic colors representing the color of GUI objects on
a system.

159 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

TextArea

� A TextArea object is a multi-line region that displays text.

TextComponent

� The TextComponent class is the superclass of any component that allows the ed-
iting of some text.

TextField

� A TextField object is a text component that allows for the editing of a single line
of text.

TexturePaint

� The TexturePaint class provides a way to fill a Shape with a texture that is speci-
fied as a BufferedImage.

Toolkit

� This class is the abstract superclass of all actual implementations of the Abstract
Window Toolkit.

Window

� A Window object is a top-level window with no borders and no menubar.

11.23.3 Exception Summary
AWTException

� Signals that an Absract Window Toolkit exception has occurred.

IllegalComponentStateException

� Signals that an AWT component is not in an appropriate state for the requested
operation.

11.23.4 Error Summary
AWTError

� Thrown when a serious Abstract Window Toolkit error has occurred.

The original AWT has some problems associated with it, and you can see now why it was
necessary to develop a better windowing development system. We will look at Swing in a
later chapter. We will next look at some of the developments that have taken place with the
original AWT.

11.23.5 java.awt.Graphics
The Graphics class is the abstract base class for all graphics contexts that allow an applica-
tion to draw onto components that are realized on devices. You need to know about what is
in this package as the other more recent packages will inherit from this package. A Graph-
ics object has state information needed for the basic rendering operations that Java supports.
This state information includes the following properties:

� The Component object on which to draw.

� A translation origin for rendering and clipping coordinates.

� The current clip.

� The current color.

� The current font.

� The current logical pixel operation function (XOR or Paint).

Chapter 11 Introduction to Graphics Programming 160

© Ian D Chivers email: ian.chivers@kcl.ac.uk

� The current XOR alternation color (see setXORMode(java.awt.Color)).

Coordinates are infinitely thin and lie between the pixels of the output device. Operations
that draw the outline of a figure operate by traversing an infinitely thin path between pixels
with a pixel-sized pen that hangs down and to the right of the anchor point on the path.
This means:

� If you draw a figure that covers a given rectangle, that figure occupies one extra
row of pixels on the right and bottom edges as compared to filling a figure that
is bounded by that same rectangle.

� If you draw a horizontal line along the same y coordinate as the baseline of a
line of text, that line is drawn entirely below the text, except for any descenders.

Operations that fill a figure operate by filling the interior of that infinitely thin path. Opera-
tions that render horizontal text render the ascending portion of character glyphs entirely
above the baseline coordinate.

All coordinates that appear as arguments to the methods of this Graphics object are consid-
ered relative to the translation origin of this Graphics object prior to the invocation of the
method. All rendering operations modify only pixels which lie within the area bounded by
the current clip, which is specified by a Shape in user space and is controlled by the pro-
gram using the Graphics object. This user clip is transformed into device space and com-
bined with the device clip, which is defined by the visibility of windows and device extents.
The combination of the user clip and device clip defines the composite clip, which deter-
mines the final clipping region. The user clip cannot be modified by the rendering system to
reflect the resulting composite clip. The user clip can only be changed through the setClip
or clipRect methods. All drawing or writing is done in bsthe current color, using the current
paint mode, and in the current font.

11.23.5.1 Constructor Summary
Graphics()

� Constructs a new Graphics object.

11.23.5.2 Method Summary
abstract void clearRect(int x, int y, int width, int height)

� Clears the specified rectangle by filling it with the background color of the cur-
rent drawing surface.

abstract void clipRect(int x, int y, int width, int height)

� Intersects the current clip with the specified rectangle.

abstract void copyArea(int x, int y, int width, int height, int dx, int dy)

� Copies an area of the component by a distance specified by dx and dy.

abstract Graphics create()

� Creates a new Graphics object that is a copy of this Graphics object.

Graphics create(int x, int y, int width, int height)

� Creates a new Graphics object based on this Graphics object, but with a new
translation and clip area.

abstract void dispose()

� Disposes of this graphics context and releases any system resources that it is us-
ing.

161 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

void draw3DRect(int x, int y, int width, int height, boolean raised)

� Draws a 3-D highlighted outline of the specified rectangle.

abstract void drawArc(int x, int y, int width, int height, int startAngle, int arcAngle)

� Draws the outline of a circular or elliptical arc covering the specified rectangle.

void drawBytes(byte[] data, int offset, int length, int x, int y)

� Draws the text given by the specified byte array, using this graphics context’s
current font and color.

void drawChars(char[] data, int offset, int length, int x, int y)

� Draws the text given by the specified character array, using this graphics con-
text’s current font and color.

abstract boolean drawImage(Image img, int x, int y, Color bgcolor, ImageObserver ob-
server)

� Draws as much of the specified image as is currently available.

abstract boolean drawImage(Image img, int x, int y, ImageObserver observer)

� Draws as much of the specified image as is currently available.

abstract boolean drawImage(Image img, int x, int y, int width, int height, Color bgcolor,
ImageObserver observer)

� Draws as much of the specified image as has already been scaled to fit inside the
specified rectangle.

abstract boolean drawImage(Image img, int x, int y, int width, int height, ImageObserver
observer)

� Draws as much of the specified image as has already been scaled to fit inside the
specified rectangle.

abstract boolean drawImage(Image img, int dx1, int dy1, int dx2, int dy2, int sx1, int sy1,
int sx2, int sy2, Color bgcolor, ImageObserver observer)

� Draws as much of the specified area of the specified image as is currently avail-
able, scaling it on the fly to fit inside the specified area of the destination
drawable surface.

abstract boolean drawImage(Image img, int dx1, int dy1, int dx2, int dy2, int sx1, int sy1,
int sx2, int sy2, ImageObserver observer)

� Draws as much of the specified area of the specified image as is currently avail-
able, scaling it on the fly to fit inside the specified area of the destination
drawable surface.

abstract void drawLine(int x1, int y1, int x2, int y2)

� Draws a line, using the current color, between the points (x1, y1) and (x2, y2) in
this graphics context’s coordinate system.

abstract void drawOval(int x, int y, int width, int height)

� Draws the outline of an oval.

abstract void drawPolygon(int[] xPoints, int[] yPoints, int nPoints)

� Draws a closed polygon defined by arrays of x and y coordinates.

void drawPolygon(Polygon p)

� Draws the outline of a polygon defined by the specified Polygon object.

Chapter 11 Introduction to Graphics Programming 162

© Ian D Chivers email: ian.chivers@kcl.ac.uk

abstract void drawPolyline(int[] xPoints, int[] yPoints, int nPoints)

� Draws a sequence of connected lines defined by arrays of x and y coordinates.

void drawRect(int x, int y, int width, int height)

� Draws the outline of the specified rectangle.

abstract void drawRoundRect(int x, int y, int width, int height, int arcWidth, int arcHeight)

� Draws an outlined round-cornered rectangle using this graphics context’s current
color.

abstract void drawString(AttributedCharacterIterator iterator, int x, int y)

� Draws the text given by the specified iterator, using this graphics context’s cur-
rent color.

abstract void drawString(String str, int x, int y)

� Draws the text given by the specified string, using this graphics context’s current
font and color.

void fill3DRect(int x, int y, int width, int height, boolean raised)

� Paints a 3-D highlighted rectangle filled with the current color.

abstract void fillArc(int x, int y, int width, int height, int startAngle, int arcAngle)

� Fills a circular or elliptical arc covering the specified rectangle.

abstract void fillOval(int x, int y, int width, int height)

� Fills an oval bounded by the specified rectangle with the current color.

abstract void fillPolygon(int[] xPoints, int[] yPoints, int nPoints)

� Fills a closed polygon defined by arrays of x and y coordinates.

void fillPolygon(Polygon p)

� Fills the polygon defined by the specified Polygon object with the graphics con-
text’s current color.

abstract void fillRect(int x, int y, int width, int height)

� Fills the specified rectangle.

abstract void fillRoundRect(int x, int y, int width, int height, int arcWidth, int arcHeight)

� Fills the specified rounded corner rectangle with the current color.

void finalize()

� Disposes of this graphics context once it is no longer referenced.

abstract Shape getClip()

� Gets the current clipping area.

abstract Rectangle getClipBounds()

� Returns the bounding rectangle of the current clipping area.

Rectangle getClipBounds(Rectangle r)

� Returns the bounding rectangle of the current clipping area.

Rectangle getClipRect()

� Deprecated. As of JDK version 1.1, replaced by getClipBounds().

abstract Color getColor()

� Gets this graphics context’s current color.

163 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

abstract Font getFont()

� Gets the current font.

FontMetrics getFontMetrics()

� Gets the font metrics of the current font.

abstract FontMetrics getFontMetrics(Font f)

� Gets the font metrics for the specified font.

boolean hitClip(int x, int y, int width, int height)

� Returns true if the specified rectangular area intersects the bounding rectangle of
the current clipping area.

abstract void setClip(int x, int y, int width, int height)

� Sets the current clip to the rectangle specified by the given coordinates.

abstract void setClip(Shape clip)

� Sets the current clipping area to an arbitrary clip shape.

abstract void setColor(Color c)

� Sets this graphics context’s current color to the specified color.

abstract void setFont(Font font)

� Sets this graphics context’s font to the specified font.

abstract void setPaintMode()

� Sets the paint mode of this graphics context to overwrite the destination with this
graphics context’s current color.

abstract void setXORMode(Color c1)

� Sets the paint mode of this graphics context to alternate between this graphics
context’s current color and the new specified color.

String toString()

� Returns a String object representing this Graphics object’s value.

abstract void translate(int x, int y)

� Translates the origin of the graphics context to the point (x, y) in the current co-
ordinate system

11.24Package java.awt.Graphics2D – JDK 1.2
This Graphics2D class extends the Graphics class to provide more sophisticated control
over geometry, coordinate transformations, color management, and text layout. This is the
fundamental class for rendering 2-dimensional shapes, text and images on the Java plat-
form. All coordinates passed to a Graphics2D object are specified in a device-independent
coordinate system called User Space, which is used by applications. The Graphics2D object
contains an AffineTransform object as part of its rendering state that defines how to convert
coordinates from user space to device-dependent coordinates in Device Space.

Where possible use Graphics2D in preference to Graphics.

11.24.1 Rendering
The Rendering Process can be broken down into four phases that are controlled by the
Graphics2D rendering attributes:

� Determine what to render.

Chapter 11 Introduction to Graphics Programming 164

© Ian D Chivers email: ian.chivers@kcl.ac.uk

� Constrain the rendering operation to the current Clip

� Determine what colors to render.

� Apply the colors to the destination drawing surface using the current Composite
attribute in the Graphics2D context.

The three types of rendering operations are:

� Shape operations

� Text operations

� Image Operations

applied to a Graphics2D context.

11.24.2 Compatability
Whilst the rendering models are different between jdk 1.1.x and jdk 1.2.x (this supports anti
aliasing) Sun have attempted to ensure backwards compatability when running legacy code
under 1.2.x.

11.24.3 Constructor Summary
protected Graphics2D()

� Constructs a new Graphics2D object.

11.24.4 Method Summary
abstract void addRenderingHints(Map hints)

� Sets the values of an arbitrary number of preferences for the rendering algo-
rithms.

abstract void clip(Shape s)

� Intersects the current Clip with the interior of the specified Shape and sets the
Clip to the resulting intersection.

abstract void draw(Shape s)

� Strokes the outline of a Shape using the settings of the current Graphics2D con-
text.

void draw3DRect(int x, int y, int width, int height, boolean raised)

� Draws a 3-D highlighted outline of the specified rectangle.

abstract void drawGlyphVector(GlyphVector g, float x, float y)

� Renders the text of the specified GlyphVector using the Graphics2D context’s
rendering attributes.

abstract void drawImage(BufferedImage img, BufferedImageOp op, int x, int y)

� Renders a BufferedImage that is filtered with a BufferedImageOp.

abstract boolean drawImage(Image img, AffineTransform xform, ImageObserver obs)

� Renders an image, applying a transform from image space into user space before
drawing.

abstract void drawRenderableImage(RenderableImage img, AffineTransform xform)

� Renders a RenderableImage, applying a transform from image space into user
space before drawing.

abstract void drawRenderedImage(RenderedImage img, AffineTransform xform)

165 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

� Renders a RenderedImage, applying a transform from image space into user
space before drawing.

abstract void drawString(AttributedCharacterIterator iterator, float x, float y)

� Renders the text of the specified iterator, using the Graphics2D context’s current
Paint.

abstract void drawString(AttributedCharacterIterator iterator, int x, int y)

� Renders the text of the specified iterator, using the Graphics2D context’s current
Paint.

abstract void drawString(String s, float x, float y)

� Renders the text specified by the specified String, using the current Font and
Paint attributes in the Graphics2D context.

abstract void drawString(String str, int x, int y)

� Renders the text of the specified String, using the current Font and Paint attrib-
utes in the Graphics2D context.

abstract void fill(Shape s)

� Fills the interior of a Shape using the settings of the Graphics2D context.

void fill3DRect(int x, int y, int width, int height, boolean raised)

� Paints a 3-D highlighted rectangle filled with the current color.

abstract Color getBackground()

� Returns the background color used for clearing a region.

abstract Composite getComposite()

� Returns the current Composite in the Graphics2D context.

abstract GraphicsConfiguration getDeviceConfiguration()

� Returns the device configuration associated with this Graphics2D.

abstract FontRenderContext getFontRenderContext()

� Get the rendering context of the Font within this Graphics2D context.

abstract Paint getPaint()

� Returns the current Paint of the Graphics2D context.

abstract Object getRenderingHint(RenderingHints.Key hintKey)

� Returns the value of a single preference for the rendering algorithms.

abstract RenderingHints getRenderingHints()

� Gets the preferences for the rendering algorithms.

abstract Stroke getStroke()

� Returns the current Stroke in the Graphics2D context.

abstract AffineTransform getTransform()

� Returns a copy of the current Transform in the Graphics2D context.

abstract boolean hit(Rectangle rect, Shape s, boolean onStroke)

� Checks whether or not the specified Shape intersects the specified Rectangle,
which is in device space.

abstract void rotate(double theta)

Chapter 11 Introduction to Graphics Programming 166

© Ian D Chivers email: ian.chivers@kcl.ac.uk

� Concatenates the current Graphics2D Transform with a rotation transform.

abstract void rotate(double theta, double x, double y)

� Concatenates the current Graphics2D Transform with a translated rotation trans-
form.

abstract void scale(double sx, double sy)

� Concatenates the current Graphics2D Transform with a scaling transformation
Subsequent rendering is resized according to the specified scaling factors relative
to the previous scaling.

abstract void setBackground(Color color)

� Sets the background color for the Graphics2D context.

abstract void setComposite(Composite comp)

� Sets the Composite for the Graphics2D context.

abstract void setPaint(Paint paint)

� Sets the Paint attribute for the Graphics2D context.

abstract void setRenderingHint(RenderingHints.Key hintKey, Object hintValue)

� Sets the value of a single preference for the rendering algorithms.

abstract void setRenderingHints(Map hints)

� Replaces the values of all preferences for the rendering algorithms with the spec-
ified hints.

abstract void setStroke(Stroke s)

� Sets the Stroke for the Graphics2D context.

abstract void setTransform(AffineTransform Tx)

� Sets the Transform in the Graphics2D context.

abstract void shear(double shx, double shy)

� Concatenates the current Graphics2D Transform with a shearing transform.

abstract void transform(AffineTransform Tx)

� Composes an AffineTransform object with the Transform in this Graphics2D ac-
cording to the rule last-specified-first-applied.

abstract void translate(double tx, double ty)

� Concatenates the current Graphics2D Transform with a translation transform.

abstract void translate(int x, int y)

� Translates the origin of the Graphics2D context to the point (x, y) in the current
coordinate system.

Methods inherited from class java.awt.Graphics include clearRect, clipRect, copyArea, cre-
ate, create, dispose, drawArc, drawBytes, drawChars, drawImage, drawImage, drawImage,
drawImage, drawImage, drawImage, drawLine, drawOval, drawPolygon, drawPolygon,
drawPolyline, drawRect, drawRoundRect, fillArc, fillOval, fillPolygon, fillPolygon, fillRect,
fillRoundRect, finalize, getClip, getClipBounds, getClipBounds, getClipRect, getColor,
getFont, getFontMetrics, getFontMetrics, hitClip, setClip, setClip, setColor, setFont,
setPaintMode, setXORMode, toString

167 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

11.25Package java.awt.geom – JDK 1.2
Provides the Java 2D classes for defining and performing operations on objects related to
two-dimensional geometry. Some important features of the package include classes for ma-
nipulating geometry, such as AffineTransform and the PathIterator interface which is imple-
mented by all Shape objects, classes that implement the Shape interface, such as
CubicCurve2D, Ellipse2D, Line2D, Rectangle2D, and GeneralShape, the Area class which
provides mechanisms for add (union), subtract, intersect, and exclusiveOR operations on
other Shape objects. Provides the Java 2D classes for defining and performing operations on
objects related to two-dimensional geometry.

11.26Package java.awt.im – JDK 1.2
Provides classes and an interface for the input method framework. This framework enables
all text editing components to receive Japanese, Chinese, or Korean text input through input
methods. An input method lets users enter thousands of different characters using keyboards
with far fewer keys. Typically a sequence of several characters needs to be typed and then
converted to create one or more characters. Text editing components can use this package
and related classes in java.awt.event to support the on-the-spot input style.

11.27Package java.awt.image.renderable – JDK 1.2
Provides classes and interfaces for producing rendering-independent images.

11.28Package java.awt.print – JDK 1.2
Provides classes and interfaces for a general printing API. The API includes such features
as the ability to specify document types, mechanisms for control of page setup and page
formats, the ability to manage job control dialogs.

We will now look at rewriting our earlier examples to use the 1.2.x offerings in the graph-
ics area. We need to cover a number of concepts first.

11.29Java 2D API Overview
The Java 2DTM API enhances the graphics, text, and imaging capabilities of the Abstract
Windowing Toolkit (AWT), enabling the development of richer user interfaces and new
types of Java applications.

Along with these richer graphics, font, and image APIs, the Java 2D API supports enhanced
color definition and composition, hit detection on arbitrary geometric shapes and text, and a
uniform rendering model for printers and display devices.

The Java 2D API also enables the creation of advanced graphics libraries, such as
CAD-CAM libraries and graphics or imaging special effects libraries, as well as the cre-
ation of image and graphic file read/write filters.

When used in conjunction with the Java Media Framework and other Java Media APIs, the
Java 2D APIs can be used to create and display animations and other multimedia presenta-
tions. The Java Animation and Java Media Framework APIs rely on the Java 2D API for
rendering support.

11.29.1 Enhanced Graphics, Text, and Imaging
Early versions of the AWT provided a simple rendering package suitable for rendering
common HTML pages, but not full-featured enough for complex graphics, text, or imaging.
As a simplified rendering package, the early AWT embodied specific cases of more general
rendering concepts. The Java 2DTM API provides a more flexible, full-featured rendering
package by expanding the AWT to support more general graphics and rendering operations.

Chapter 11 Introduction to Graphics Programming 168

© Ian D Chivers email: ian.chivers@kcl.ac.uk

For example, through the Graphics class you can draw rectangles, ovals, and polygons.
Graphics2D enhances the concept of geometric rendering by providing a mechanism for
rendering virtually any geometric shape. Similarly, with the Java 2D API you can draw
styled lines of any width and fill geometric shapes with virtually any texture.

11.29.2 Rendering Model
The basic graphics rendering model has not changed with the addition of the Java 2D APIs.
To render a graphic, you set up the graphics context and invoke a rendering method on the
Graphics object.

The Java 2D API class Graphics2D extends Graphics to support more graphics attributes
and provide new rendering methods.

The Java 2D API automatically compensates for differences in rendering devices and pro-
vides a uniform rendering model across different types of devices. At the application level,
the rendering process is the same whether the target rendering device is a display or a
printer.

11.29.3 Backward Compatibility and Platform Independence
The Java 2DTM API maintains backward compatibility with JDK 1.1 software. It is also
architected so that applications can maintain platform-independence.

To ensure backward compatibility, the functionality of existing JDK graphics and imaging
classes and interfaces was maintained. Existing features were not removed and no package
designations were changed for existing classes. The Java 2D API enhances the functionality
of the AWT by implementing new methods in existing classes, extending existing classes,
and adding new classes and interfaces that don’t affect the legacy APIs.

The Java 2D API functionality is delivered through an expanded graphics context,
Graphics2D. To provide this extended graphics context while maintaining backward com-
patibility, Graphics2D extends the Graphic s class from the JDK 1.1 release.

The usage model of the graphics context remains unchanged. The AWT passes a graphics
context to an AWT Component through the following methods:

� paint

� paintAll

� update

� print

� printAll

� getGraphics

A JDK 1.1 applet interprets the graphics context that’s passed in as an instance of Graphics.
To gain access to the new features implemented in Graphics2D, a Java 2D API-compatible
applet casts the graphics context to a Graphics2D object:
public void Paint (Graphics g)

{
Graphics2D g2 = (Graphics2D) g;
...
...
g2.setTransform (t);

}

169 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

Note that we still invoke paint with Graphics and switch to Graphics2D with an explicit
cast.

To enable the development of platform-independent applications, the Java 2D API makes
no assumptions about the resolution, color space, or color model of the target rendering de-
vice. Nor does the Java 2D API assume any particular image file format.

Truly platform-independent fonts are possible only when the fonts are built-in (provided as
part of the JDK software), or when they are mathematically or programmatically generated.
The Java 2D API does not currently support built-in or mathematically generated fonts, but
it does enable the programmatic definition of entire fonts through their glyph set. Each
glyph can in turn be defined by a Shape that consists of line segments and curves. Many
fonts of particular styles and sizes can be deriv ed from a single glyph set.

11.29.4 Setting Up the Graphics2D Context
To configure the Graphics2D context for rendering, you use the Graphics2D set methods to
specify attributes such as the RenderingHints, Stroke, Paint, clipping path, Composite, and
Transform.

11.29.5 Rendering Graphics Primitives
Graphics2D provides rendering methods for Shapes, Text, and Images:

� draw—strokes a Shape’s path using the Stroke and Paint objects in the
Graphics2D context.

� fill—fills a Shape using the Paint in the Graphics2D context.

� drawString—renders the specified text string using the Paint in the Graphics2D
context.

� drawImage—renders the specified image.

To stroke and fill a shape, you must call both the draw and fill methods.

Graphics2D also supports the draw and fill methods from previous versions of the JDK
software, such as drawOval and fillRect.

11.29.6 Managing and Manipulating Rasters
A BufferedImage object uses a Raster to manage its rectangular array of pixel data. The
Raster class defines fields for the image’s coordinate system—width, height, and origin. A
Raster object itself uses two objects to manage the pixel data, a DataBuffer and a
SampleModel. The DataBuffer is the object that stores pixel data for the raster, and the
SampleModel provides the interpretation of pixel data from the DataBuffer.

11.29.7 Geometries
The Java 2DTM API provides several classes that define common geometric objects, such
as points, lines, curves, and rectangles. These new geometry classes are part of the
java.awt.geom package. For backward compatibility, the geometry classes tha t existed in
previous versions of the JDK software, such as Rectangle, Point, and Polygon, remain in
the java.awt package.

The Java 2D API geometries such as GeneralPath, Arc2D, and Rectangle2D implement the
Shape interface defined in java.awt. Shape provides a common protocol for describing and
inspecting geometric path objects. A new interface, PathIterator, defines methods for re-
trieving elements from a geometry.

Chapter 11 Introduction to Graphics Programming 170

© Ian D Chivers email: ian.chivers@kcl.ac.uk

11.29.8 Fonts and Text Layout
You can use the Java 2DTM API transformation and drawing mechanisms with text strings.
In addition, the Java 2D API provides text-related classes that support fine-grain font con-
trol and sophisticated text layout. These include an enhanced Font c lass and the new
TextLayout class.

11.29.9 Imaging
The Java 2DTM API supports three imaging models

� The producer/consumer (push) model provided in previous versions of the JDK
software.

� The immediate mode model introduced in the Java 2 SDK software release.

� The pipeline (pull) model compatible with the immediate mode model and that
will be fully implemented in the forthcoming Java Advanced Imaging API.

The following table contrasts the features of each of these imaging models.

Push Immediate Pull

Class Image BufferedImage RenderableImage

Interface ImageProducer Ratser RenderableImageOp

ImageConsumer BufferedImageOp RenderedOp

ImageObserver RatserOp RenderableOp

TiledImage

Pros Driven by image Simplest Required

availability Programming data only

processed interface Lazy

incrementally Commonly used evaluation

Cons Transfer memory required more complex

required for whole image interface and

more complex api complete image implementation

processing

This API supports accessing image data in a variety of storage formats and manipulating
image data through several types of filtering operations.

11.29.10 Color
Color imaging is one of the fundamental components of any graphics system, and it is often
a source of great complexity in the imaging model. The Java 2D API provides support for
high-quality color output that is easy to use and allows advanced clients to make sophisti-
cated use of color.

The key color management classes in the Java 2D API are ColorSpace, Color, ColorModel:

A ColorSpace represents a system for measuring colors, typically using three separate nu-
merical values or components. The ColorSpace class contains methods for converting be-
tween the color space and two standard color spaces, CI EXYZ and RGB.

171 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

A Color is a fixed color, defined in terms of its components in a particular ColorSpace. To
draw a Shape in a color, such as red, you pass a Color object representing that color to the
Graphics2D cont ext. Color is defined in the java.awt package.

A ColorModel describes a particular way that pixel values are mapped to colors. A
ColorModel is typically associated with an Image or BufferedImage and provides the infor-
mation necessary to correctly interpret the pixel values. ColorModel is defined in the
java.awt.image package.

11.29.11 ColorModels and Color Data and the BufferedImage Class
In addition to the Raster object for managing image data, the BufferedImage class includes
a ColorModel for interpreting that data as color pixel values. The abstract ColorModel class
defines methods for turning an image’s pixel data into a color value in its associated
ColorSpace.

The java.awt.image package provides four types of color models:

� PackedColorModel – An abstract ColorModel that represents pixel values that
have color components embedded directly in the bits of an integer pixel. A
DirectColorModel is a subclass of PackedColorModel.

� DirectColorModel – a ColorModel that represents pixel values that have RGB
color components embedded directly in the bits of the pixel itself.
DirectColorModel model is similar to an X11 TrueColor visual.

� ComponentColorModel – a ColorModel that can handle an arbitrary ColorSpace
and an array of color components to match the ColorSpace.

� IndexColorModel – a ColorModel that represents pixel values that are indices
into a fixed color map in the sRGB color space.

ComponentColorModel and PackedColorModel are new in the JavaTM 2 SDK software re-
lease.

11.29.12 Printing
The Java Printing API enables applications to:

� Print all AWT and Java 2DTM graphics, including composited graphics and im-
ages.

� Control document-composition functions such as soft collating, reverse order
printing, and booklet printing.

� Invoke printer-specific functions such as duplex (two-sided) printing and sta-
pling.

� Print on all platforms, including Windows and Solaris. This includes printers di-
rectly attached to the computer as well as those that the platform software is able
to access using network printing protocols.

Not all of these features are supported in the Java 2 SDK Printing API and implementation.
The API will be extended to support all of these features in future releases. For example,
additional printer controls will be added by augmenting the set of named properties of a
print job that the application can control.

Sun also make available a lot of sample programs. This is available at their web site. It was
about 350 Kb in March 2000. I use these as a last resort. If you get stuck then have a look
to see if there is an example that does some or all of what you are trying to do.

Redoing the earlier examples

Chapter 11 Introduction to Graphics Programming 172

© Ian D Chivers email: ian.chivers@kcl.ac.uk

We will now look at redoing some of the earlier examples to use the newer, preferred meth-
ods.

11.30Simple bouncing ball
import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;
import java.awt.image.*;
import javax.swing.*;

public class graphic11 extends java.applet.Applet implements
Runnable
{

double x,y,deltax,deltay;
double xl=300;
double yl=300;
Thread ball;

public void init()
{

setBackground(Color.white);
deltax=Math.random();
deltay=Math.random();
x=Math.random()*xl;
y=Math.random()*yl;

}

public void start()
{

if(ball==null)
{

ball=new Thread(this);
ball.start();

}
}

public void stop()
{

if(ball!=null)
{

ball.stop();
ball=null;

}
}

public void run()
{

for(;;)
{

x+=deltax;

173 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

y+=deltay;
if ((x>=xl) | (x<=0)) deltax=-deltax;
if ((y>=yl) | (y<=0)) deltay=-deltay;
repaint();
try
{

Thread.sleep(1);
}
catch (InterruptedException e)
{
}

}
}

public void paint(Graphics g)
{

Graphics2D g2d = (Graphics2D) g;
g2d.setColor(Color.blue);
g2d.fillOval((int)x,(int)y,20,20);

}

public static void main(String argv[])
{

final graphic11 g11 = new graphic11();
g11.init();
JFrame jf = new JFrame(“ Using Graphics2D ”);
jf.addWindowListener(new WindowAdapter()
{

public void windowClosing(WindowEvent e)
{

System.exit(0);
}

});
}

}

In this example we add imports for the new event handling and we are also using compo-
nents from Swing.

The first difference is that we use objects of ype Graphics2D now, rather than the original
Graphics. The examples Sun make available still callpaint with an object of type Graphics
and then explicitly cast within paint to Graphics2D.

The second difference is the addition of the main routine at the end. Within this routine we:

� create a variable of type graphic11

� initialise the variable

� create a JFrame variable

� register the JFrame as a window listener

� override windowClosing

Chapter 11 Introduction to Graphics Programming 174

© Ian D Chivers email: ian.chivers@kcl.ac.uk

11.30.1 Initialisation
public void init()

Called by the browser or applet viewer to inform this applet that it has been loaded into the
system. It is always called before the first time that the start method is called.

A subclass of Applet should override this method if it has initialization to perform. For ex-
ample, an applet with threads would use the init method to create the threads and the de-
stroy method to kill them. The implementation of this method provided by the Applet class
does nothing.

11.30.2 JFrame
public class JFrame extends Frame

implements WindowConstants, Accessible, RootPaneContainer

An extended version of java.awt.Frame that adds support for interposing input and painting
behavior in front of the frame’s children (see glassPane), support for special children that
are managed by a LayeredPane (see rootPane) and for Swing MenuBars.

The JFrame class is slightly incompatible with java.awt.Frame. JFrame contains a
JRootPane as it’s only child. The contentPane should be the parent of any children of the
JFrame.

11.30.3 addWindowListener
public void addWindowListener(WindowListener l)

Adds the specified window listener to receive window events from this window. If l is null,
no exception is thrown and no action is performed.

11.30.4 Class WindowAdapter
public abstract class WindowAdapter extends Object implements WindowListener

An abstract adapter class for receiving window events. The methods in this class are empty.
This class exists as convenience for creating listener objects.

Extend this class to create a WindowEvent listener and override the methods for the events
of interest. (If you implement the WindowrListener interface, you have to define all of the
methods in it. This abstract class defines null methods for them all, so you can only have to
define methods for events you care about.)

Create a listener object using the extended class and then register it with a Window using
the window’s addWindowListener method. When the window’s status changes by virtue of
being opened, closed, activated or deactivated, iconified or deiconified, the relevant method
in the listener object is invoked, and the WindowEvent is passed to it.

Experiment with the sleep time.

We will look into the above in more detail in later chapters.

11.31Bouncing balls with selective erase
import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;
import java.awt.image.*;
import javax.swing.*;

public class graphic12 extends java.applet.Applet implements
Runnable

175 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

{
double x,y,deltax,deltay,oldx,oldy;
double xl=300;
double yl=300;
Thread ball;
BufferedImage bgi;
Graphics bgg;

public void init()
{

setBackground(Color.white);
deltax=Math.random();
deltay=Math.random();
x=Math.random()*xl;
y=Math.random()*yl;
bgi=(BufferedImage)

createImage(this.size().width,this.size().height);
bgg=bgi.getGraphics();

}

public void start()
{

if(ball==null)
{

ball=new Thread(this);
ball.start();

}
}

public void stop()
{

if(ball!=null)
{

ball.stop();
ball=null;

}
}

public void paint(Graphics g)
{

Graphics2D g2d = (Graphics2D) g;

bgg.setColor(Color.white);
bgg.fillOval((int)oldx,(int)oldy,20,20);

bgg.setColor(Color.blue);
bgg.fillOval((int)x,(int)y,20,20);

g2d.drawImage(bgi,0,0,this);
oldx=x;

Chapter 11 Introduction to Graphics Programming 176

© Ian D Chivers email: ian.chivers@kcl.ac.uk

oldy=y;
}

public void update(Graphics g)
{

paint(g);
}

public void run()
{

for(;;)
{

x+=deltax;
y+=deltay;
if ((x>=xl) | (x<=0)) deltax=-deltax;
if ((y>=yl) | (y<=0)) deltay=-deltay;
repaint();
try
{

Thread.sleep(10);
}
catch (InterruptedException e)
{
}

}
}

public static void main(String argv[])
{

final graphic12 g12 = new graphic12();
g12.init();
JFrame jf = new JFrame(“ Using Graphics2D ”);
jf.addWindowListener(new WindowAdapter()
{

public void windowClosing(WindowEvent e)
{

System.exit(0);
}

});
}

}

The differences are:

� The init method creates a BufferedImage from an Image. An explicit cast is re-
quired.

� The paint method uses Graphics2D variables, and again we have an explicit cast.

� A main method has been added, which is identical with that used in 11.30.

Experiment with the sleep time.

177 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

11.32Simple jpeg display
import java.awt.*;

import java.awt.event.*;

import java.awt.geom.*;

import java.awt.image.*;

import javax.swing.*;

public class ian11 extends javax.swing.JApplet

{

Image image01;

BufferedImage bimage01;

public void init()

{

image01 = getImage(getCodeBase(),"ian01.jpg");

}

public void displayimage(int w, int h,Graphics2D g2d)
{

int iw;
int ih;
BufferedImage bi = (BufferedImage) createImage (w,h);
Graphics2D big = bi.createGraphics();
iw=image01.getWidth(this);
ih=image01.getHeight(this);
big.drawImage(image01,10,10,iw,ih,this);
g2d.drawImage(bi,0,0,this);

}

public void paint(Graphics g)
{

Graphics2D g2d = (Graphics2D) g;
Dimension d = getSize();
displayimage(d.width,d.height,g2d);

}

public static void main(String argv[])
{

final ian11 i11 = new ian11();
i11.init();
JFrame jf = new JFrame(“ Java 2d version ”);
jf.addWindowListener(new WindowAdapter()
{

public void windowClosing(WindowEvent e)
{

System.exit(0);

Chapter 11 Introduction to Graphics Programming 178

© Ian D Chivers email: ian.chivers@kcl.ac.uk

}
});

}
}

Differences include:

� We are now working with buffered images

� paint creates a Graphics2D context from a Graphics context.

� We pick up the size

� We call dispalyimage with the current Graphics2d context and size

� displayimage creates a buffered image and graphics 2d context based on the size
from the calling routine.

� We get the height and width of the jpg file associated image.

� Draw the image

� Force the display with g2d.drawImage

The main method is identical to the last two examples in this section.

11.33Simple line drawing
import java.awt.*;

public class c11401 extends java.applet.Applet
{

public void init()
{

setBackground(Color.white);
}

public void paint(Graphics g)
{

Graphics2D g2d = (Graphics2D) g;
int x1=0;
int y1=0;
int x2=100;
int y2=200;
g2d.setColor(Color.blue);
g2d.drawLine(x1,y1,x2,y2);

}
}

Very simple example. Minimal changes have been made in this case.

11.34Summary
There is a lot to this subject. I have only provided a very brief coverage. It is essential to
get a background to the field of computer graphics if you are going to use Java for graphi-
cal output.

179 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

11.35Problems
Try the examples out in this chapter.

I would also have a look at the examples that come with the Sun JDK. These came with an
early AWT based version.

� ArcTest

� BarChart

� Blink

� BouncingHeads

� CardTest

� DitherTest

� DrawTest

� Fractal

� GraphLayout

� GraphicsTest

� ImageMap

� ImageTest

� JumpingBox

� MoleculeViewer

� NervousText

� ScrollingImages

� SimpleGraph

� SpreadSheet

� TicTacToe

� TumblingDuke

� UnderConstruction

� WireFrame

They can all be found on the College web server in the demo directory, under the Java
home page.

The following is the source of the bouncing heads example. Taking this as a basis modify
the program to replace the images with your own. Look at the images with Netscape and
look at the size information that Netscape provides. The width and height variables contain
details of the expected sizes.
/*
* %W% %E%
*
* Copyright (c) 1994-1995 Sun Microsystems, Inc. All Rights

Reserved.
*
* Permission to use, copy, modify, and distribute this

software

Chapter 11 Introduction to Graphics Programming 180

© Ian D Chivers email: ian.chivers@kcl.ac.uk

* and its documentation for NON-COMMERCIAL or COMMERCIAL
purposes and
* without fee is hereby granted.
* Please refer to the file http://java.sun.com/copy_trade-

marks.html
* for further important copyright and trademark information

and to
* http://java.sun.com/licensing.html for further important

licensing
* information for the Java (tm) Technology.
*
* SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE

SUITABILITY OF
* THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT

NOT LIMITED
* TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE LIA-
BLE FOR

* ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MOD-
IFYING OR

* DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.

*

* THIS SOFTWARE IS NOT DESIGNED OR INTENDED FOR USE OR RESALE AS
ON-LINE

* CONTROL EQUIPMENT IN HAZARDOUS ENVIRONMENTS REQUIRING
FAIL-SAFE

* PERFORMANCE, SUCH AS IN THE OPERATION OF NUCLEAR FACILITIES,
AIRCRAFT

* NAVIGATION OR COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL, DI-
RECT LIFE
* SUPPORT MACHINES, OR WEAPONS SYSTEMS, IN WHICH THE FAIL-

URE OF THE
* SOFTWARE COULD LEAD DIRECTLY TO DEATH, PERSONAL INJURY,

OR SEVERE
* PHYSICAL OR ENVIRONMENTAL DAMAGE (“HIGH RISK ACTIVITIES”).

SUN
* SPECIFICALLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF

FITNESS FOR
* HIGH RISK ACTIVITIES.
*/

import java.util.Hashtable;
import java.applet.*;
import java.io.*;
import java.awt.*;
import java.net.*;

/**

181 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

* @author Jonathan Payne
* @version %I%, %G%
*/

class BounceImage {
static float inelasticity = .96f;
static float Ax = 0.0f;
static float Ay = 0.0002f;
static float Ar = 0.9f;

public float x = 0;
public float y = 0;
public int width;
public int height;
public float Vx = 0.1f;
public float Vy = 0.05f;
public int index;
public float Vr = 0.005f + (float)Math.random() *

0.001f;
public float findex = 0f;

BounceItem parent;
static boolean imagesReadIn = false;

public void play(int n) {
if (parent.sounds[n] != null) {

parent.sounds[n].play();
}

}

public BounceImage(BounceItem parent) {
this.parent = parent;
width = 65;
height = 72;

}

public void move(float x1, float y1) {
x = x1;
y = y1;

}

public void paint(Graphics g) {
int i = index;

if (parent.bounceimages[i] == null) {
i = 0;

}
g.drawImage(parent.bounceimages[i], (int)x, (int)y,

null);
}

Chapter 11 Introduction to Graphics Programming 182

© Ian D Chivers email: ian.chivers@kcl.ac.uk

public void step(long deltaT) {
boolean collision_x = false;
boolean collision_y = false;

float jitter = (float)Math.random() * .01f - .005f;

x += Vx * deltaT + (Ax / 2.0) * deltaT * deltaT;
y += Vy * deltaT + (Ay / 2.0) * deltaT * deltaT;
if (x <= 0.0f) {

x = 0.0f;
Vx = -Vx * inelasticity + jitter;
collision_x = true;
play((int)(Math.random() * 3));

}
Dimension d = parent.size();
if (x + width >= d.width) {

x = d.width - width;
Vx = -Vx * inelasticity + jitter;
collision_x = true;
play((int)(Math.random() * 3));

}
if (y <= 0) {

y = 0;
Vy = -Vy * inelasticity + jitter;
collision_y = true;
play((int)(Math.random() * 3));

}
if (y + height >= d.height) {

y = d.height - height;
Vx *= inelasticity;
Vy = -Vy * inelasticity + jitter;
collision_y = true;

}
move(x, y);
Vy = Vy + Ay * deltaT;
Vx = Vx + Ax * deltaT;

findex += Vr * deltaT;
if (collision_x || collision_y) {

Vr *= Ar;
}

while (findex <= 0.0) {
findex += parent.bounceimages.length;

}
index = ((int) findex) % parent.bounceimages.length;

}
}

183 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

public class BounceItem extends Applet implements Runnable {
boolean images_initialized = false;
BounceImage images[];

boolean time_to_die;
AudioClip music;
AudioClip sounds[];
Image bounceimages[];

public BounceItem() {
}

void makeImages(int nimages) {

bounceimages = new Image[8];
for (int i = 1 ; i <= 8 ; i++) {

bounceimages[i-1] = getImage(getCodeBase(),
“images/jon/T” + i + “.gif”);

//System.out.println(“d = ” +
bounceimages[i-1].getWidth() + “,” +
bounceimages[i-1].getHeight());

}

images = new BounceImage[nimages];
for (int i = 0; i < nimages; i++) {

BounceImage img = images[i] = new
BounceImage(this);

img.move(1 + img.width * .8f * (i % 3) + i /
3 * .3f * img.width,

img.height * .3f + (i % 3) * .3f *
img.height);

}

sounds = new AudioClip[4];
sounds[0] = getAudioClip(getCodeBase(), “au-

dio/ooh.au”);
sounds[1] = getAudioClip(getCodeBase(), “au-

dio/ah.au”);
sounds[2] = getAudioClip(getCodeBase(), “au-

dio/dah.au”);
sounds[3] = getAudioClip(getCodeBase(), “au-

dio/gong.au”);
music = getAudioClip(getCodeBase(), “au-

dio/spacemusic.au”);
}

public void run() {
long lasttime;

Chapter 11 Introduction to Graphics Programming 184

© Ian D Chivers email: ian.chivers@kcl.ac.uk

try {
if (images == null) {

System.out.println(“Making images ...”);
makeImages(4);

}

if (music != null) {
music.loop();

}
lasttime = System.currentTimeMillis();
while (!time_to_die) {

int i;
long now = System.currentTimeMillis();
long deltaT = now - lasttime;
boolean active = false;
Dimension d = size();

for (i = 0; i < images.length; i++) {
BounceImage img = images[i];

img.step(deltaT);
if (img.Vy > .05 || -img.Vy > .05 ||

img.y + img.width < d.height - 10) {
active = true;

}
}
if (!active && images.length != 0) {

for (i = 0; i < images.length; i++) {
BounceImage img = images[i];

img.Vx = (float)Math.random() /
4.0f - 0.125f;

img.Vy = -(float)Math.random() /
4.0f - 0.2f;

img.Vr = 0.05f - (float)Math.ran-
dom() * 0.1f;

}
if (sounds[3] != null) {

sounds[3].play();
}

}
repaint();
lasttime = now;
try {

Thread.sleep(100);
} catch (InterruptedException e) {

return;
}

}
} finally {

185 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

if (music != null) {
music.stop();

}
}

}

public void init() {
Dimension d = size();
if ((d.width <= 100) || (d.height <= 100)) {

resize(500, 300);
}

}

public void start() {
time_to_die = false;
(new Thread(this)).start();

}

public void stop() {
time_to_die = true;
music.stop();

}

public void paint(Graphics g) {
Dimension d = size();
g.setColor(Color.gray);
g.drawRect(0, 0, d.width - 1, d.height - 1);
if (images != null) {

for (int i = 0; i < images.length; i++) {
if (images[i] != null) {

images[i].paint(g);
}

}
}

}
}

If you feel really adventurous replace the sounds too.

Also have a look at Chapter 11 of the Deitel book.

11.36Bibliography
One of the best books I’ve found is:

Foley, van Dam, Feiner, Hughes, Computer Graphics: Principles and Practice, Addison
Wesley.

� There is a good coverage of most of the things that you need to know. Not
cheap, about 35-40 uk pounds the last time I looked.

Chapter 11 Introduction to Graphics Programming 186

© Ian D Chivers email: ian.chivers@kcl.ac.uk

The other source of information is of course the on-line JDK documentation. This is a mix-
ture of actual inforation that actually is installed on the College web server or your own pc,
with links to the Sun site.

The documentation tells you what is on-line and what is on the Sun web server. A modem
is therefore very useful when working at home.

Sun also make available a lot of examples on their web site. I normally bookmark some of
the key components to make it easier to use with Netscape.

11.36.1 Scanning
The following is a very useful source of information regarding scanning. If you make sure
that your iamges look good then I strongly recommend having a look at this FAQ.

http://www.infomedia.net/scan/The-Scan-FAQ.html

http://www.infomedia.net/scan/The-Scan-FAQ.html

11.36.2 Fonts
If you want information about fonts then I’ve put up a pdf version of the Norman Walsh
comp.fonts.FAQ Address is

� http://mountain-ash.cnit.kcl.ac.uk/fonts/cffq215_ps.pdf

Note it doesn’t look great on screen but will print ok. After reading and digesting the infor-
mation in the FAQ you may be able to explain why this is the case. :-)

11.36.3 Microsoft
A couple of their urls are:

� http://www.microsoft.com/typography/default.asp

� http://www.microsoft.com/typography/users.htm

� http://www.microsoft.com/typography/history/history.htm

11.36.4 Non-Microsoft

� http://www.truetype.demon.co.uk/tthist.htm

187 Introduction to Graphics Programming Chapter 11

email: ian.chivers@kcl.ac.uk © Ian D Chivers

12
AWT Based Windows

Programming

‘When I use a word,’ Humpty Dumpty said, in a rather scornful tone, ‘it means just
what I choose it to mean - neither more nor less’
‘The question is,’ said Alice, ‘whether you can make words mean so many different
things.’

Lewis Carroll, Through the Looking Glass and What Alice found there.

Aims

The aims are to introduce some of facilities provided within the Abstract Windows
Toolkit for Windows programming. The examples are based on the early 1.0.x jdk.
There is a coverage of:–

buttons

labels

buttons and lables

scrollbars

checkboxes

checkboxgroups

list items

text fields

passwords

text fields on multiple lines

layout managers
flowlayout

gridlayout

gridbag layout with constraints

12 AWT Based Windows Programming
Java provides a range of methods for writing and developing window based programs. This
chapter looks at what was available in the earliest releases and provides a simple example
of each. Note that complete examples that actually do something useful are given after we
have covered events. The later chapter on Swing looks at the more powerful and easier to
use facilties provided in later versions. There is a quick coverage of some of the common
graphuical user interface components.

12.1 Button
import java.awt.*;
public class c1110 extends java.applet.Applet
{

public void init()
{

Font f=new Font(“Arial”,Font.PLAIN,20);
setFont(f);
add(new Button(“ QPR”));
add(new Button(“ Arsenal”));
add(new Button(“ Spurs”));

}
}

12.2 Label
import java.awt.*;
public class c1111 extends java.applet.Apple
{

public void init()
{

Font f=new Font(“Arial”,Font.PLAIN,20);
setFont(f);
add(new Label(“ QPR”));
add(new Label(“ Arsenal”));
add(new Label(“ Spurs”));

}
}

12.3 Button and Label
import java.awt.*;
public class c1112 extends java.applet.Apple
{

public void init()
{

Font f=new Font(“Arial”,Font.PLAIN,20);
setFont(f);
add(new Button(“ qpr”));
add(new Button(“ arsenal”));
add(new Button(“ spurs”));
add(new Button(“ chelsea”));
add(new Label(“ QPR”));

Chapter 12 AWT Based Windows Programming 190

© Ian D Chivers email: ian.chivers@kcl.ac.uk

add(new Label(“ Arsenal”));
add(new Label(“ Spurs”));

}
}

12.4 Scrollbar
import java.awt.*;
public class c1113 extends java.applet.Applet
{

public void init()
{

add(new Scrollbar());
add(new Scrollbar(Scrollbar.HORIZONTAL));

}
}

12.5 Scrollbar with size information
import java.awt.*;
public class c1114 extends java.applet.Applet
{

public void init()
{

add(new Scrollbar());
add(new Scrollbar(Scrollbar.HORIZONTAL,10,50,1,50));

}
}

12.6 Checkbox
import java.awt.*;
public class c1115 extends java.applet.Applet
{

public void init()
{

Font f=new Font(“Arial”,Font.PLAIN,20);
setFont(f);
add(new Checkbox(“ QPR”,null,true));
add(new Checkbox(“ Arsenal”));
add(new Checkbox(“ Spurs”));

}
}

12.7 Checkbox with Grouping
import java.awt.*;
public class c1116 extends java.applet.Applet
{

public void init()
{

Font f=new Font(“Arial”,Font.PLAIN,20);
setFont(f);
CheckboxGroup g=new CheckboxGroup();

191 AWT Based Windows Programming Chapter 12

email: ian.chivers@kcl.ac.uk © Ian D Chivers

add(new Checkbox(“ QPR”,g,false));
add(new Checkbox(“ Arsenal”,g,false));

}
}

12.8 List
import java.awt.*;
public class c1117 extends java.applet.Applet
{

public void init()
{

// Font f=new Font(“Arial”,Font.PLAIN,20);
// setFont(f);

List l=new List(3,false);
l.addItem(“ Qpr”);
l.addItem(“ Arsenal”);
l.addItem(“ Spurs”);
l.addItem(“ Chelsea”);
l.addItem(“ Crystal Palace”);
add(l);

}
}

12.9 TextField
import java.awt.*;
public class c1118 extends java.applet.Applet
{

public void init()
{

add(new TextField(“ Who are you favourite London
team?”,50));

add(new Label(“ Who is your favourite player”));
add(new TextField(20));

}
}

12.10Passwords
import java.awt.*;
public class c1119 extends java.applet.Applet
{

public void init()
{

add(new Label(“ Type in your password”));
TextField t=new TextField(20);
t.setEchoCharacter(‘*’);
add(t);

}
}

Chapter 12 AWT Based Windows Programming 192

© Ian D Chivers email: ian.chivers@kcl.ac.uk

12.11TextArea
import java.awt.*;
public class c1120 extends java.applet.Applet
{

public void init()
{

String s=" This is some text that is going\n" +
“ to spread over several lines\n” +
“ and use the control characters for \n” +
“ end of line - as in c and c++”;

add(new TextArea(s,10,10));
}

}

12.12Layout
There are a number of layout managers in Java. We look at each in turn and privide simple
examples.

The following methods apply to all 5 layout classes:–

add(String,component) add the component

remove(component) remove the component

layoutContainer() reshape the components in the container to
meet the requirements of the BorderLayout ob-
ject

minimumLayoutSize(container) return the minimum dimensions needed to lay-
out the components

preferredLayoutSize(container) return the preferred dimensions needed to lay-
out the components

12.12.1 Panels
The first thing to look at is the concept of dividing the screen up into panels. We can then
use the various layout managers within these panels.

12.12.2 FlowLayout
This is the simplest layout manager. The objects are displayed from left to right in the order
they are added to the screen.
import java.awt.*;
public class c1130 extends java.applet.Applet
{

public void init()
{

// layout using the FlowLayout mananger

Font f=new Font(“Arial”,Font.PLAIN,20);
setFont(f);
setLayout(new FlowLayout(FlowLayout.LEFT));
add(new Button(“ QPR”));
add(new Button(“ Arsenal”));

193 AWT Based Windows Programming Chapter 12

email: ian.chivers@kcl.ac.uk © Ian D Chivers

add(new Button(“ Spurs”));
add(new Button(“ Chelsea”));
add(new Button(“ West Ham”));
add(new Button(“ Crystal Palace”));

}
}

12.12.3 GridLayout
This layout manager divides the screen into a grid of rows and columns. Objects are added
at the top left and we move horizantally until the row is full.
import java.awt.*;
public class c1131 extends java.applet.Applet
{

public void init()
{

// layout using the GridLayout mananger

Font f=new Font(“Arial”,Font.PLAIN,20);
setFont(f);
setLayout(new GridLayout(4,2));
add(new Button(“ QPR”));
add(new Button(“ Arsenal”));
add(new Button(“ Spurs”));
add(new Button(“ Chelsea”));
add(new Button(“ West Ham”));
add(new Button(“ Crystal Palace”));

}
}

12.12.4 Gridlayout with size
Similar to GridLayout, but now the components can vary in size.
import java.awt.*;
public class c1132 extends java.applet.Applet
{

public void init()
{

// layout using the GridLayout mananger

Font f=new Font(“Arial”,Font.PLAIN,20);
setFont(f);
setLayout(new GridLayout(4,2,10,10));
add(new Button(“ QPR”));
add(new Button(“ Arsenal”));
add(new Button(“ Spurs”));
add(new Button(“ Chelsea”));
add(new Button(“ West Ham”));
add(new Button(“ Crystal Palace”));

}

Chapter 12 AWT Based Windows Programming 194

© Ian D Chivers email: ian.chivers@kcl.ac.uk

}

12.12.5 GridBagLayout
import java.awt.*;
public class c1133 extends java.applet.Applet
{

public void nb(String s,
GridBagLayout gb,
GridBagConstraints gbc)

{
Button b=new Button(s);
gb.setConstraints(b,gbc);
add(b);

}

public void init()
{

// layout using the GridBagLayout mananger
// plus constraints

Font f=new Font(“Arial”,Font.PLAIN,18);
setFont(f);
GridBagLayout gb = new GridBagLayout();
GridBagConstraints gbc = new GridBagConstraints();
setLayout(gb);
gbc.gridwidth=4;
gbc.gridheight=4;
gbc.weightx=4.0;
gbc.fill=GridBagConstraints.HORIZONTAL;
gbc.gridwidth=GridBagConstraints.REMAINDER;
nb(“Goalkeeper”,gb,gbc);
gbc.weightx=1.0;
gbc.fill=GridBagConstraints.NONE;
gbc.gridwidth=4;
nb(“Right back ”,gb,gbc);
nb(“Centre Half ”,gb,gbc);
nb(“Centre Half ”,gb,gbc);
gbc.fill=GridBagConstraints.HORIZONTAL;
gbc.gridwidth=GridBagConstraints.REMAINDER;
nb(“Left back ”,gb,gbc);

}
}

12.12.6 CardLayout
This layout manager stacks things like a deck of cards. Only the top is visible.
import java.awt.CardLayout;
import java.awt.*;
public class c1134 extends java.applet.Applet

195 AWT Based Windows Programming Chapter 12

email: ian.chivers@kcl.ac.uk © Ian D Chivers

{

// layout using the card layout mananger

Font f=new Font(“Arial”,Font.PLAIN,20);
Panel p=new Panel();

public void init()
{

setFont(f);
setLayout(new CardLayout());
add(new Label(“ QPR”));
add(new Label(“ Arsenal”));
add(new Label(“ Spurs”));
add(new Label(“ Chelsea”));
add(new Label(“ West Ham”));
add(new Label(“ Crystal Palace”));

}

public void start()
{
}

}

12.13Putting it all togethor
We will look at two examples on the College web server. These are ones that are provided
by Sun and are often included in third party Java compilers. URLs are

http://www.kcl.ac.uk/kis/support/cit//fortran/java/demo/GraphLayout/

and

http://www.kcl.ac.uk/kis/support/cit//fortran/java/demo/GraphicsTest/

You run the them by clicking on the example1.html file.

We will not be doing anything more complex with this way of doing things as they have
been superceded by later versions of the jdk.

12.14Problems
Try the examples out in this chapter.

Chapter 12 AWT Based Windows Programming 196

© Ian D Chivers email: ian.chivers@kcl.ac.uk

13
Events

For Madmen Only

Hermann Hesse, Steppenwolf.

Aims

The aims of this chapter are to introduce some of the ideas involved in the use of
events in Java. This is an area where there have been major changes since the origi-
nal Java 1.0.x JDK.

13 Events
Java supports windows programming and therefore has to offer facilities for handling
events. This is another area where Java differs from conventional procedural programming.
In the first part of this chapter we will look at event handling based on the early 1.0.x jdk.

13.1 AWT Events
We will look at AWT based event handling first.

There are two kinds of AWT event handling mechanisms provided in Java, one for the key-
board and the other for handling the mouse. We will look at each in turn.

13.1.1 Mouse Events
public boolean mouseDown(Event e, int x,int y)

public boolena mouseUp(Event e,int x,int y)

public boolean mouseMove(Event e, int x,int y)

public boolena mouseExit(Event e,int x,int y)

public boolean mouseEnter(Event e, int x,int y)

public boolena mouseDrag(Event e,int x,int y)

13.1.2 Keyboard events
public boolean controlDown()

bublic boolean metaDown()

public boolean shiftDown

public final static int LEFT

public final static int RIGHT

public final static int END

public final static int HOME

public final static int PGDN

public final static int PGUP

public final static int Fx

Function keys 1 through 12.

13.1.3 Example 1 – Cut and paste text
This example illustrates some of the above.
import java.applet.Applet;
import java.awt.*;

public class c1401 extends Applet
{

private TextArea t1,t2;
private Button b;

public void init()
{

String s="This is some text that spans\n" +
“several line. We use the control n \n” +
“character to do this.”;

Chapter 13 Events 198

© Ian D Chivers email:ian.chivers@kcl.ac.uk

t1=new TextArea(5,10);
t1.setText(s);

t2=new TextArea(5,20);
b=new Button(“ copy text -> ”);

setLayout(new FlowLayout(FlowLayout.LEFT,5,5));

add(t1);
add(b);
add(t2);

}

public boolean action(Event e,Object o)
{

if (e.target == b)
{

t2.setText(t1.getSelectedText());
return true;

}

return false;
}

}

13.1.4 Example 2 – Simple mouse tracking
import java.applet.Applet;
import java.awt.*;

public class c1402 extends Applet
{

public boolean mouseMove(Event e,int x,int y)
{

showStatus(“ Mouse at (” + x + “ , ” + y + “)”);
return true;

}
}

13.1.5 Example 3 – Mouse with drag
import java.applet.Applet;
import java.awt.*;

public class c1403 extends Applet
{

private int x,y;
private boolean firsttime;

public void init()
{

199 Events Chapter 13

email:ian.chivers@kcl.ac.uk © Ian D Chivers

firsttime=true;
}

public void paint(Graphics g)
{

if(!firsttime)
{

g.fillOval(x,y,4,4);
}

}

public void update(Graphics g)
{

paint(g);
}

public boolean mouseDrag(Event e,int xx,int yy)
{

x=xx;
y=yy;

firsttime=false;

repaint();

showStatus(“ Event mouse drag ”);

return true;
}

}

13.1.6 Example 4 – Key up and key down
import java.applet.Applet;
import java.awt.*;

public class c1404 extends Applet
{

private Font f;
private String letter;
private boolean first;

public void init()
{

f=new Font(“Courier”,Font.BOLD,30);
first=true;

}

public void paint(Graphics g)
{

Chapter 13 Events 200

© Ian D Chivers email:ian.chivers@kcl.ac.uk

g.setFont(f);
if (!first)
{

g.drawString(letter,50,50);
}

}

public boolean keyDown(Event e,int key)
{

showStatus(“ key down the ” + (char) key + “ was
pressed ”);

letter=String.valueOf((char)key);
first=false;
repaint();

return true;
}

public boolean keyUp(Event e,int key)
{

showStatus(“ key up the ” + (char)key + “ was released
”);

return true;
}

}

13.2 Swing Event Handling – As of JDK 1.2.2
I have included a brief coverage of all that exist at this release. Consult the on-line docu-
mentation for more details.

We now look at the concept of an event listener and an event handler. There are two places
to look at:

� java.awt.event

and

� javax.swing.event

and some of the event clases are interfaces – equivalent to a C++ abstract class, and hence
you must provide the code to do the event handling.

With the advent of Swing there came several new event types.

We will look at complete examples that illustrate the above in the Swing chapter.

13.2.1 Interface Summary
AncestorListener

� AncestorListener Interface to support notification when changes occur to a
JComponent or one of its ancestors.

CaretListener

� Listener for changes in the caret position of a text component.

201 Events Chapter 13

email:ian.chivers@kcl.ac.uk © Ian D Chivers

CellEditorListener

� CellEditorListener defines the interface for an object that listens to changes in a
CellEditor

ChangeListener

� Defines an object which listens for ChangeEvents.

DocumentEvent

� Interface for document change notifications.

DocumentEvent.ElementChange

� Describes changes made to a specific element.

DocumentListener

� Interface for an observer to register to receive notifications of changes to a text
document.

HyperlinkListener

� HyperlinkListener

InternalFrameListener

� The listener interface for receiving internal frame events.

ListDataListener

� ListDataListener

ListSelectionListener

� The listener that’s notified when a lists selection value changes.

MenuDragMouseListener

� Defines a menu mouse-drag listener.

MenuKeyListener

� MenuKeyListener

MenuListener

� Defines a listener for menu events.

MouseInputListener

� A listener implementing all the methods in both the MouseListener and
MouseMotionListener interfaces.

PopupMenuListener

� A popup menu listener

TableColumnModelListener

� TableColumnModelListener defines the interface for an object that listens to
changes in a TableColumnModel.

TableModelListener

� TableModelListener defines the interface for an object that listens to changes in
a TableModel.

TreeExpansionListener

� The listener that’s notified when a tree expands or collapses a node.

TreeModelListener

Chapter 13 Events 202

© Ian D Chivers email:ian.chivers@kcl.ac.uk

� TreeChangeListener defines the interface for an object that listens to changes in
a TreeModel.

TreeSelectionListener

� The listener that’s notified when the selection in a TreeSelectionModel changes.

TreeWillExpandListener

� The listener that’s notified when a tree expands or collapses a node.

UndoableEditListener

� Interface implemented by a class interested in hearing about undoable opera-
tions.

13.2.2 Class Summary
AncestorEvent

� An event reported to a child component that originated from an ancestor in the
component hierarchy.

CaretEvent

� CaretEvent is used to notify interested parties that the text caret has changed in
the event source.

ChangeEvent

� ChangeEvent is used to notify interested parties that state has changed in the
event source.

DocumentEvent.EventType

� Enumeration for document event types

EventListenerList

� A class which holds a list of EventListeners.

HyperlinkEvent

� HyperlinkEvent is used to notify interested parties that something has happened
with respect to a hypertext link.

HyperlinkEvent.EventType

� Defines the ENTERED, EXITED, and ACTIVATED event types, along with
their string representations, returned by toString().

InternalFrameAdapter

� An abstract adapter class for receiving internal frame events.

InternalFrameEvent

� InternalFrameEvent: an AWTEvent which adds support for JInternalFrame ob-
jects as the event source.

ListDataEvent

� Defines an event that encapsulates changes to a list.

ListSelectionEvent

� An event that characterizes a change in the current selection.

MenuDragMouseEvent

203 Events Chapter 13

email:ian.chivers@kcl.ac.uk © Ian D Chivers

� MenuDragMouseEvent is used to notify interested parties that the menu element
has received a MouseEvent forwarded to it under drag conditions.

MenuEvent

� MenuEvent is used to notify interested parties that the menu which is the event
source has been posted, selected, or canceled.

MenuKeyEvent

� MenuKeyEvent is used to notify interested parties that the menu element bshas
received a KeyEvent forwarded to it in a menu tree.

MouseInputAdapter

� The adapter which receives mouse events and mouse motion events.

PopupMenuEvent

� PopupMenuEvent only contains the source of the event which is the JPoupMenu
sending the event

SwingPropertyChangeSupport

� This subclass of java.beans.PropertyChangeSupport is identical in functionality
— it sacrifices thread-safety (not a Swing concern) for reduce memory consump-
tion, which helps performance (both big Swing concerns).

TableColumnModelEvent

� TableColumnModelEvent is used to notify listeners that a table column model
has changed, such as a column was added, removed, or moved.

TableModelEvent

� TableModelEvent is used to notify listeners that a table model has changed.

TreeExpansionEvent

� An event used to identify a single path in a tree.

TreeModelEvent

� Encapsulates information describing changes to a tree model, and used to notify
tree model listeners of the change.

TreeSelectionEvent

� An event that characterizes a change in the current selection.

UndoableEditEvent

� An event indicating that an operation which can be undone has occurred.

13.2.3 Package javax.swing.event
Provides for events fired by Swing components. It contains event classes and corresponding
event listener interfaces for events fired by Swing components in addition to those events in
the java.awt.event package.

13.3 ActionListener
The listener interface for receiving action events. The class that is interested in processing
an action event implements this interface, and the object created with that class is registered
with a component, using the component’s addActionListener method. When the action
event occurs, that object’s actionPerformed method is invoked.

Chapter 13 Events 204

© Ian D Chivers email:ian.chivers@kcl.ac.uk

13.4 ActionEvent
A semantic event which indicates that a component-defined action occured. This high-level
event is generated by a component (such as a Button) when the component-specific action
occurs (such as being pressed). The event is passed to every every ActionListener object
that registered to receive such events using the component’s addActionListener method.

The object that implements the ActionListener interface gets this ActionEvent when the
event occurs. The listener is therefore spared the details of processing individual mouse
movements and mouse clicks, and can instead process a “meaningful” (semantic) event like
“button pressed”.

13.5 Example 1
This is taken from the Java Swing book. It is in several files.
/*
* CCPHandler.java
* A Cut, Copy, and Paste event handler. Nothing too
* fancy, just define
* some constants that can be used to set
* the actionCommands on buttons.
*/

import java.awt.event.*;

public class CCPHandler implements ActionListener {

public final static String CUT = “cut”;
public final static String COPY = “copy”;
public final static String PASTE = “paste”;

public void actionPerformed(ActionEvent e) {
String command = e.getActionCommand();
if (command == CUT) { // we can do this since we’re

comparing statics
System.out.println(“Got Cut event”);

}
else if (command == COPY) {

System.out.println(“Got Copy event”);
}
else if (command == PASTE) {

System.out.println(“Got Paste event”);
}

}
}
This is the second file.
/*
* LnFListener.java
* A listener that can swing the look and feel of a frame

based on
* the actionCommand of an ActionEvent object.
* Supported look and feels are:

205 Events Chapter 13

email:ian.chivers@kcl.ac.uk © Ian D Chivers

* * Metal
* * Windows
* * Motif
*/

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class LnFListener implements ActionListener {
Frame frame;

public LnFListener(Frame f) {
frame = f;

}

public void actionPerformed(ActionEvent e) {
String lnfName = null;

if (e.getActionCommand().equals(“Metal”)) {
lnfName = “javax.swing.plaf.metal.MetalLookAndFeel”;

} else if (e.getActionCommand().equals(“Motif”)) {
lnfName = “com.sun.java.swing.plaf.mo-

tif.MotifLookAndFeel”;
} else {

lnfName = “com.sun.java.swing.plaf.win-
dows.WindowsLookAndFeel”;

}

try {
UIManager.setLookAndFeel(lnfName);
SwingUtilities.updateComponentTreeUI(frame);

}
catch (UnsupportedLookAndFeelException ex1) {

System.err.println(“Unsupported LookAndFeel: ” +
lnfName);

}
catch (ClassNotFoundException ex2) {

System.err.println(“LookAndFeel class not found: ” +
lnfName);

}
catch (InstantiationException ex3) {

System.err.println(“Could not load LookAndFeel: ” +
lnfName);

}
catch (IllegalAccessException ex4) {

System.err.println(“Cannot use LookAndFeel: ” +
lnfName);

}
}

Chapter 13 Events 206

© Ian D Chivers email:ian.chivers@kcl.ac.uk

}

This is the third file.
/*
* ToolbarFrame4.java
* The Swing-ified button example.
* The buttons in this toolbar all carry
* images but no text.

*/

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ToolbarFrame4 extends Frame {

// This time, let’s use JButtons!
JButton cutButton, copyButton, pasteButton;
JButton winButton, javaButton, motifButton;

public ToolbarFrame4() {
super(“Toolbar Example (Swing no text)”);
setSize(450, 250);
addWindowListener(new BasicWindowMonitor());

// JPanel works much like Panel does, so we’ll use it
JPanel toolbar = new JPanel();
toolbar.setLayout(new FlowLayout(FlowLayout.LEFT));

CCPHandler handler = new CCPHandler();

cutButton = new JButton(new ImageIcon(“cut.gif”));
cutButton.setActionCommand(CCPHandler.CUT);
cutButton.addActionListener(handler);
toolbar.add(cutButton);

copyButton = new JButton(new ImageIcon(“copy.gif”));
copyButton.setActionCommand(CCPHandler.COPY);
copyButton.addActionListener(handler);
toolbar.add(copyButton);

pasteButton = new JButton(new ImageIcon(“paste.gif”));
pasteButton.setActionCommand(CCPHandler.PASTE);
pasteButton.addActionListener(handler);
toolbar.add(pasteButton);

add(toolbar, BorderLayout.NORTH);

// Add the look and feel controls
JPanel lnfPanel = new JPanel();

207 Events Chapter 13

email:ian.chivers@kcl.ac.uk © Ian D Chivers

LnFListener lnfListener = new LnFListener(this);
javaButton = new JButton(“Metal”);
javaButton.addActionListener(lnfListener);
lnfPanel.add(javaButton);
motifButton = new JButton(“Motif”);
motifButton.addActionListener(lnfListener);
lnfPanel.add(motifButton);
winButton = new JButton(“Windows”);
winButton.addActionListener(lnfListener);
lnfPanel.add(winButton);
add(lnfPanel, BorderLayout.SOUTH);

}

public static void main(String args[]) {
ToolbarFrame4 tf4 = new ToolbarFrame4();
tf4.setVisible(true);

}
}

Points to note:

� a separate handler class.

� the import of java.awt.event

� the import of javax.swing

� the class extends Frame

� each of the buttons is a JButton

� explicit call to super class constructor

� add the window listener

� create a panel with layout

� set up the three buttons

� create a new panel

� set up the three look and feel buttons

13.5.1 Frames
public class Frame extends Window implements MenuContainer

A Frame is a top-level window with a title and a border.

13.5.2 super – Constructor Chaining
super is a reserved word in Java. One of its uses is to call the constructor of a superclass.
This is what we have in this example.

13.6 Example 2
This is taken from the Deitel book.
// Fig. 6.9: Craps.java
// Craps
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

Chapter 13 Events 208

© Ian D Chivers email:ian.chivers@kcl.ac.uk

public class Craps extends JApplet implements ActionListener
{

// constant variables for status of game
final int WON = 0, LOST = 1, CONTINUE = 2;

// other variables used in program
boolean firstRoll = true; // true if first roll
int sumOfDice = 0; // sum of the dice
int myPoint = 0; // point if no win/loss on first roll
int gameStatus = CONTINUE; // game not over yet

// graphical user interface components
JLabel die1Label, die2Label, sumLabel, pointLabel;
JTextField firstDie, secondDie, sum, point;
JButton roll;

// setup graphical user interface components
public void init()
{

Container c = getContentPane();
c.setLayout(new FlowLayout());

die1Label = new JLabel(“Die 1");
c.add(die1Label);
firstDie = new JTextField(10);
firstDie.setEditable(false);
c.add(firstDie);

die2Label = new JLabel(“Die 2");
c.add(die2Label);
secondDie = new JTextField(10);
secondDie.setEditable(false);
c.add(secondDie);

sumLabel = new JLabel(“Sum is”);
c.add(sumLabel);
sum = new JTextField(10);
sum.setEditable(false);
c.add(sum);

pointLabel = new JLabel(“Point is”);
c.add(pointLabel);
point = new JTextField(10);
point.setEditable(false);
c.add(point);

roll = new JButton(“Roll Dice”);
roll.addActionListener(this);
c.add(roll);

209 Events Chapter 13

email:ian.chivers@kcl.ac.uk © Ian D Chivers

}

// call method play when button is pressed
public void actionPerformed(ActionEvent e)
{

play();
}

// process one roll of the dice
public void play()
{

if (firstRoll) { // first roll of the
dice

sumOfDice = rollDice();

switch (sumOfDice) {
case 7: case 11: // win on first roll

gameStatus = WON;
point.setText(“”); // clear point text

field
break;

case 2: case 3: case 12: // lose on first roll
gameStatus = LOST;
point.setText(“”); // clear point text

field
break;

default: // remember point
gameStatus = CONTINUE;
myPoint = sumOfDice;
point.setText(Integer.toString(myPoint)

);
firstRoll = false;
break;

}
}
else {

sumOfDice = rollDice();

if (sumOfDice == myPoint) // win by making
point

gameStatus = WON;
else

if (sumOfDice == 7) // lose by roll-
ing 7

gameStatus = LOST;
}

if (gameStatus == CONTINUE)
showStatus(“Roll again.”);

else {

Chapter 13 Events 210

© Ian D Chivers email:ian.chivers@kcl.ac.uk

if (gameStatus == WON)
showStatus(“Player wins. ” +

“Click Roll Dice to play again.”);
else

showStatus(“Player loses. ” +
“Click Roll Dice to play again.”);

firstRoll = true;
}

}

// roll the dice
public int rollDice()
{

int die1, die2, workSum;

die1 = 1 + (int) (Math.random() * 6);
die2 = 1 + (int) (Math.random() * 6);
workSum = die1 + die2;

firstDie.setText(Integer.toString(die1));
secondDie.setText(Integer.toString(die2));
sum.setText(Integer.toString(workSum));

return workSum;
}

}

/***

* (C) Copyright 1999 by Deitel & Associates, Inc. and

Prentice Hall. *
* All Rights Reserved.

*
*

*
* DISCLAIMER: The authors and publisher of this book have

used their *
* best efforts in preparing the book. These efforts include

the *
* development, research, and testing of the theories and

programs *
* to determine their effectiveness. The authors and pub-

lisher make *
* no warranty of any kind, expressed or implied, with re-

gard to these *
* programs or to the documentation contained in these

books. The authors *
* and publisher shall not be liable in any event for inci-

dental or *

211 Events Chapter 13

email:ian.chivers@kcl.ac.uk © Ian D Chivers

* consequential damages in connection with, or arising out
of, the *
* furnishing, performance, or use of these programs.

*

**
***********/

Things to note:

� we now extend JApplet

� we in turn implement ActionListener – compare this with the previous example.

� set up some variables

� set up the graphical components within init()

� over ride actionPerformed() – this calls play()

� play actually plays the game.

� roll the dice – this updates the text atrea.

These examples show two of the different ways that we can program event handling using
actionListener. We will come back to this area in more depth in later chapters.

13.7 Summary
Event driven programming takes a while to get used to. We will look at how this all works
in later chapters.

13.8 Problems
Try the examples out to see what happens.

Chapter 13 Events 212

© Ian D Chivers email:ian.chivers@kcl.ac.uk

14
Swing

A man should keep his brain attic stacked with all the furniture he is likely to use,
and the rest he can put away in the lumber room of his library, where he can get at
it if he wants.

Sir Arthur Conan Doyle, Five Orange Pips.

Aims

The aims of this chapter are to look at Swing.

14 Swing
It should be obvious by now that graphics programming requires some effort. It was real-
ised that the AWT was not adequate, and if Java was to succeed in the graphics area then
this had to be addressed. The AWT were tied to the local platform. The Java Foundation
Classes or JFC were created to ease the design and implementation of the user interface.
These include things that people take for granted with windows based software, e.g. menus,
dialog boxes etc. There is a coverage of each of them in this chapter. We will first look at
the history of the JFC and Swing.

14.1 History
The original JDK release that these examples were based on was 1.0.2. As you have seen
during the course some of the examples generate warning messages when compiled. This is
due to the evolution that is taking place with Java.

One of the major drawbacks of the early releases was the platform specific behaviour of
many program. Hardly write once and run anywhere.

JDK 1.1 fixed some of the problems. The new event model was a massive step forward, but
the AWT was still platform specific. Now we had an event subscriber model rather than a
chain based model. This eliminated a lot of the overhead of event propagation.

In April 1997 the JFC were announced. One of the new components were given the name
Swing. They JFC comprises:–

� Swing

We will cover this in this chapter;

� AWT

The basic gui;

� Accessibility

This package is for people who find access using a keyboard, mouse and
screen a problem;

� 2D API

Package for painting, complex shapes, fonts etc;

� Drag and Drop

This package allows users to implement a visual interface to their code.

Swing was based on both Netscape’s Internet Foundation Classes and input from IBM’s
Taligent division and Lighthouse Design.

Swing sits on top of AWT. Swing is written entirely in Java and has a consistent look and
feel across platforms.

14.2 What do I need?
I would recommend getting hold of the 1.2 JDK as this will have everything you require.

I would also recommend getting hold of the on-line documentation. This is up on the Col-
lege web server. The url is:–

http://www.kcl.ac.uk/kis/support/cc/fortran/java/jdk1.2.2/docs/

If you program on a pc then I would install this in conjunction with JDK 1.2.

Chapter 14 Swing 214

© Ian D Chivers email ian.chivers@kcl.ac.uk

14.3 Swing Packages
There is a problem here is that Sun have had more than one resting place for the Swing
package. It was first released in:

� com.sun.java.swing

and has since moved to:

� javax.swing

The IBM VisualAge version I use expects them in the first place. The Sun version I use ex-
pects them in the second. I can’t find them at all within Microsoft J++.

The following is a complete list of what is in Swing.

14.3.1 javax.accessibility
Support for people who have difficulty using the traditional user interface methods, i.e. key-
board, mouse, screen.

14.3.2 javax.swing
The major part of Swing.

14.3.3 javax.swing.border
Fancy borders.

14.3.4 javax.swing.colorchooser
Colour access.

14.3.5 javax.swing.event
Event handling.

14.3.6 javax.swing.filechooser
File access.

14.3.7 javax.swing.pending
Stuff waiting to be formally released.

14.3.8 javax.swing.plaf
Pluggable look and feel.

14.3.9 javax.swing.table
Table support.

14.3.10 javax.swing.text
Text manipulation.

14.3.11 javax.swing.text.html
Html support.

14.3.12 javax.swing.tree
Tree handling.

14.3.13 javax.swing.undo
Undoable operation support.

14.4 Enter Microsoft Stage Left
As developments were taking place coordinated by Sun, Microsoft set off on their own. An
outcome of their work was AFC or Application Foundation Classes. This was intended to
do very similar things to Swing, and worked with the 1.0.2 release. The two parts to it are:

215 Swing Chapter 14

email ian.chivers@kcl.ac.uk © Ian D Chivers

� UI – the user interface component

� FX – the classes for control of graphics etc

Legal battles have been taking place. If you have Microsoft Visual J++ then you can see
what Microsoft have to offer.

14.5 Pluggable Look and Feel
There are a number of gui interfaces around, and they include:

� Apple Mac

� PC and Windows

� Unix and Motif

The aim of Plaf is to provide the user with the choice of which look and feel they want.
The default look and feel is called metal.

14.6 Lightweight Components
One meaning of the term lightweight component is that the component has the ability to
render itself onto the screen. This allows developers to draw the look and feel of the appli-
cation at run-time, instead of the host operating system.

14.7 Model–View–Controller (MVC) Architecture
Swing uses the MVC architecture as the basis of the design of the components.

14.7.1 Model
The state data for the component. There are several models here depending on the compo-
nent. A menu is different to a scrollbar.

14.7.2 View
The way it looks on the screen.

14.7.3 Controller
How the components interact via events – mouse clicks, gaining or losing focus, keyboard
etc.

14.8 Multithreading
You have already seen some of the problems that can occur with threads in an earlier chap-
ter. A swing component paints itself based on the state of the component. If the state
changes during the paint process what should happen? Incorrectly painting itself is obvi-
ously not acceptable. To handle this there is an event dispatch queue. This is a system
thread that handles the communication of evenets to other components.

14.9 Components
There a number of Swing components and they include:

� Menus

� Buttons

� Dialog Boxes

� List Boxes

� Combo Boxes

� Layout Managers

Chapter 14 Swing 216

© Ian D Chivers email ian.chivers@kcl.ac.uk

� Tables

� Trees

� Undo

� Look and Feel

We will look at each in turn and use the examples from the AWT chapter as our starting
point.

14.10Simple Examples
Given the sheer size of Swing we are only going to touch briefly on what can be done. In
this section we will simply rewrite the AWT examples to use Swing classes where possible
and simply compare the differences. What we will try in most cases is a minimal set of
changes to the original examples. Some will work, some won’t.

We will look at the new ways of doing things later on in the chapter.

14.10.1 JButton
In this case we only have to make very minor changes. The first is the extra import line and
the simple replacement of Button with JButton.
import java.awt.*;
import javax.swing.*;

public class s1410 extends java.applet.Applet
{

public void init()
{

Font f=new Font(“Arial”,Font.PLAIN,20);
setFont(f);
add(new JButton(“ QPR”));
add(new JButton(“ Arsenal”));
add(new JButton(“ Spurs”));

}
}

Compile and run the program. Compare this example with the AWT equivalent.

14.10.2 JLabel
import java.awt.*;
import javax.swing.*;

public class s1411 extends java.applet.Applet
{

public void init()
{

Font f=new Font(“Arial”,Font.PLAIN,20);
setFont(f);
add(new JLabel(“ QPR”));
add(new JLabel(“ Arsenal”));
add(new JLabel(“ Spurs”));

}
}

217 Swing Chapter 14

email ian.chivers@kcl.ac.uk © Ian D Chivers

Compile and run this example. Compare with the AWT equivalent.

14.10.3 Button and Label
import java.awt.*;
import javax.swing.*;

public class s1412 extends java.applet.Applet
{

public void init()
{

Font f=new Font(“Arial”,Font.PLAIN,20);
setFont(f);
add(new JButton(“ qpr”));
add(new JButton(“ arsenal”));
add(new JButton(“ spurs”));
add(new JButton(“ chelsea”));
add(new JLabel(“ QPR”));
add(new JLabel(“ Arsenal”));
add(new JLabel(“ Spurs”));

}
}

14.10.4 JScollBar
import java.awt.*;
import javax.swing.*;

public class s1413 extends java.applet.Applet
{

public void init()
{

add(new JScrollBar());
add(new JScrollBar(JScrollBar.HORIZONTAL));

}
}

14.10.5 JScrollBar with size information
import java.awt.*;
import javax.swing.*;
public class s1414 extends java.applet.Applet
{

public void init()
{

add(new JScrollBar());
add(new JScrollBar(JScrollBar.HORIZONTAL,10,30,1,50));

}
}

The parameters changed for the second form of the constructor. Check the on-line docu-
mentation for details.

Chapter 14 Swing 218

© Ian D Chivers email ian.chivers@kcl.ac.uk

14.10.6 CheckBox
import java.awt.*;
import javax.swing.*;
public class s1415 extends java.applet.Applet
{

public void init()
{

Font f=new Font(“Arial”,Font.PLAIN,20);
setFont(f);
add(new JCheckBox(“ QPR”,null,true));
add(new JCheckBox(“ Arsenal”));
add(new JCheckBox(“ Spurs”));

}
}

14.10.7 CheckBox with Grouping
import java.awt.*;
import javax.swing.*;
public class s1416 extends java.applet.Applet
{

public void init()
{

Font f=new Font(“Arial”,Font.PLAIN,20);
setFont(f);
JCheckBoxGroup g=new JCheckBoxGroup();
add(new JCheckBox(“ QPR”,g,false));
add(new JCheckBox(“ Arsenal”,g,false));

}
}

This example won’t compile. Look at the on-line documentation and work out what we
need from Swing to replace what we have in the above AWT based example.

14.10.8 List
import java.awt.*;
import javax.swing.*;
public class s1417 extends java.applet.Applet
{

public void init()
{

// Font f=new Font(“Arial”,Font.PLAIN,20);
// setFont(f);

JList l=new JList(3,false);
l.addItem(“ Qpr”);
l.addItem(“ Arsenal”);
l.addItem(“ Spurs”);
l.addItem(“ Chelsea”);
l.addItem(“ Crystal Palace”);
add(l);

}
}

219 Swing Chapter 14

email ian.chivers@kcl.ac.uk © Ian D Chivers

This compiles with 6 error messages. Do you think it will run? Try it what. What do you
think has happened?

14.10.9 TextField
import java.awt.*;
import javax.swing.*;
public class s1418 extends java.applet.Applet
{

public void init()
{

add(new JTextField(“ Who are you favourite London
team?”,50));

add(new JLabel(“ Who is your favourite player”));
add(new JTextField(20));

}
}

14.10.10 Passwords
import java.awt.*;
import javax.swing.*;
public class s1419 extends java.applet.Applet
{

public void init()
{

add(new JLabel(“ Type in your password”));
JTextField t=new JTextField(20);
t.setEchoCharacter(‘*’);
add(t);

}
}

This example won’t compile. Have a look at the on-line documentation and make the neces-
sary changes to make it work.

14.10.11 TextArea
import java.awt.*;
import javax.swing.*;

public class s1420 extends java.applet.Applet
{

public void init()
{

String s=" This is some text that is going\n" +
“ to spread over several lines\n” +
“ and use the control characters for \n” +
“ end of line - as in c and c++”;

add(new JTextArea(s,10,10));
}

}

14.11Layout

Chapter 14 Swing 220

© Ian D Chivers email ian.chivers@kcl.ac.uk

14.11.1 Panels
A Panel is the simplest container class. A panel provides space in which an application can
attach any other component, including other panels.

14.11.2 FlowLayout
import java.awt.*;
import javax.swing.*;
public class s1430 extends java.applet.Applet
{

public void init()
{

// layout using the FlowLayout mananger

Font f=new Font(“Arial”,Font.PLAIN,20);
setFont(f);
setLayout(new FlowLayout(FlowLayout.LEFT));
add(new JButton(“ QPR”));
add(new JButton(“ Arsenal”));
add(new JButton(“ Spurs”));
add(new JButton(“ Chelsea”));
add(new JButton(“ West Ham”));
add(new JButton(“ Crystal Palace”));

}
}

14.11.3 GridLayout
Not available at this time.

14.11.4 Gridlayout with size
Not available at this time.

14.11.5 GridBagLayout
Not available at this time.

14.11.6 CardLayout
Not available at this time.

14.11.7 Simple Graph Plotting – AWT Based
This example shows how to plot a sine curve, and it does so using an AWT based ap-
proach.
import java.awt.*;
import java.lang.Math.*;

public class c1180 extends java.applet.Applet
{

public void init()
{

setBackground(Color.white);
}

221 Swing Chapter 14

email ian.chivers@kcl.ac.uk © Ian D Chivers

public void paint(Graphics g)
{

int x=0;
int y=180;

int angled;
double angler;

g.setColor(Color.blue);

for (angled=0;angled<361;++angled)
{

x = angled;

g.drawLine(x,y,x,y);

angler = angled*2*Math.PI/360;

y = 180 + (int) (180 * Math.sin(angler));

}
}

}

Things to note include:

� The origin at the top left causes a few problems.

� We are forced to shift the y values down and in this exam-
ple I have chosen 180.

� I have also scaled the values returned by the sine function.

� We are forced to qualify both PI and the sine function with Math. This is a little
verbose.

14.11.8 Simple Graph Plotting – Swing Based
This is the same example but now we use the new Swing way of doing things.
import java.awt.*;
import javax.swing.JApplet;
import java.lang.Math.*;

public class c1184 extends javax.swing.JApplet
{

public void init()
{

setBackground(Color.white);
}

public void paint(Graphics g)

Chapter 14 Swing 222

© Ian D Chivers email ian.chivers@kcl.ac.uk

{
int x=0;
int y=180;

int angled;
double angler;

g.setColor(Color.blue);

for (angled=0;angled<361;++angled)
{

x = angled;

g.drawLine(x,y,x,y);

angler = angled*2*Math.PI/360;

y = 180 + (int) (180 * Math.sin(angler));

}
}

}

Things to note include:

� This example will not run under Netscape 4.5 It generates a class not found error
for Javax.Swing.JApplet.

� It will run under the Appletviewer that comes with the 1.2.2 JDK.

� We are now using the enhanaced functionality provided by JApplet over the
original Applet. This is done using:

� import javax.swing.JApplet;

� We extend JApplet using:

� public class c1184 extends javax.swing.JApplet

The rest of the code is identical.

14.12Inheritence Revisited
You have now seen the power of OO programming and the benefits it has to offer. We have
been able to accept the default behaviour of most of the classes we have used and rely on
the fact that a lot of complexity is hidden from us.

You have also seen that there is more than one way to acheive something within Java in a
lot of cases. Part of this is due to the fact that Sun released Java as an incomplete language
and it has evolved in response to the demands that people have made on it. Java is now be-
ing used in areas well beyond what it was originally capable of doing.

We are now going to look at two ways of doing things within Swing. The first will inherit
from JApplet. The second will inherit from JComponent

14.13JApplet
JApplet is well down the Java class hierarchy, and this is shown below.

223 Swing Chapter 14

email ian.chivers@kcl.ac.uk © Ian D Chivers

java.lang.Object –> java.awt.Component –> java.awt.Container –> java.awt.Panel –>
java.applet.Applet –> javax.swing.JApplet

An extended version of java.applet.Applet that adds support for interposing input and paint-
ing behavior in front of the applets children (see glassPane), support for special children
that are managed by a LayeredPane (see rootPane) and for Swing MenuBars.

The JApplet class is slightly incompatible with java.applet.Applet. JApplet contains a
JRootPane as it’s only child. The contentPane should be the parent of any children of the
JApplet. This is different than java.applet.Applet, e.g. to add a child to an an java.ap-
plet.Applet you’d write:
applet.add(child);

However using JApplet you need to add the child to the JApplet’s contentPane instead:
applet.getContentPane().add(child);

The same is true for setting LayoutManagers, removing components, listing children, etc.
All these methods should normally be sent to the contentPane() instead of the JApplet itself.
The contentPane() will always be non-null. Attempting to set it to null will cause the
JApplet to throw an exception. The default contentPane() will have a BorderLayout man-
ager set on it.

14.14Swing Containers and JComponent
JComponent is the base class for the Swing components. JComponent provides:

� A “pluggable look and feel” (l&f) that can be specified by the programmer or
(optionally) selected by the user at runtime.

� Components that are designed to be combined and extended in order to create
custom components.

� Comprehensive keystroke-handling that works with nested components.

� Action objects, for single-point control of program actions initiated by multiple
components.

� A border property that implicitly defines the component’s insets.

� The ability to set the preferred, minimim, and maximum size for a component.

� ToolTips — short descriptions that pop up when the cursor lingers over a com-
ponent.

� Autoscrolling — automatic scrolling in a list, table, or tree that occurs when the
user is dragging the mouse.

� Simple, easy dialog construction using static methods in the JOptionPane class
that let you display information and query the user.

� Slow-motion graphics rendering using debugGraphics so you can see what is be-
ing displayed on screen and whether or not it is being overwritten.

� Support for Accessibility.

� Support for international Localization.

The following are sub-classes:

� AbstractButton, BasicInternalFrameTitlePane, JColorChooser, JComboBox,
JFileChooser, JInternalFrame, JInternalFrame.JDesktopIcon, JLabel,
JLayeredPane, JList, JMenuBar, JOptionPane, JPanel, JPopupMenu,

Chapter 14 Swing 224

© Ian D Chivers email ian.chivers@kcl.ac.uk

JProgressBar, JRootPane, JScrollBar, JScrollPane, JSeparator, JSlider,
JSplitPane, JTabbedPane, JTable, JTableHeader, JTextComponent, JToolBar,
JToolTip, JTree, JViewport

For more information on these subjects, see the Swing package description

14.15Examples
Chapters 12 and 13 of the Deitel book look at basic and advanced gui programming. I
would recommend looking at some of these examples to see the newer and better ways of
doing things.

The Eckstein book has a very comprehensive coverage. Over 1200 pages.

Sun provide a very comprehensive demonstration program that can be found on the College
web server. The url is:

http://www.kcl.ac.uk/kis/support/cit//fortran/java/jdk1.2.2/jfc/SwingSet/

I would recommend trying to run this. You will need to get all the source java files and
then compile them and run under the appletviewer. If you have the jdk installed on your
machine they are in the demo directory hanging off the root of the installation. There are
about 30 files, taking up 320Kb on my local hard disk.

14.16Problems
0. Try the programs out in this chapter, especially the SwingSet demo.

14.17Bibliography
The major sources I used during the development of these examples include:

� The on-line jdk documentation.

� This is essential. The information you need will be there
but digging it out may take a long time.

� Deitel and Deitel, Java: How to Program, Prentice Hall, various versions.

� Very good general coverage of the whole of the Java lan-
guage. The two chapters on graphical user interface pro-
gramming are enough to get you started.

� Eckstein, Loy, Wood, Java Swing, O’Reilly

� Really good coverage of Swing. Much deeper coverage
than the first.

� Foley, van Dam, Feiner, Hughes, Computer Graphics, Addison Wesley

� Java now offers very good functionality in the graphics
area. I’d get hold of a copy to fill in the missing gaps.

225 Swing Chapter 14

email ian.chivers@kcl.ac.uk © Ian D Chivers

15
JavaBeans

Common sense is the best distributed commodity in the world, for every man is con-
vinced that he is well supplied with it.

Descartes.

Aims

The aims of this chapter are look at JavaBeans.

15 JavaBeans
When we look at programming with older langauges (Fortran 66 and Fortran 77, C, the
original Pascal) they support so called procedural programming. Fortran 90 adds object
based programming and C++ adds object oriented programming. Java is completely object
based. With the addition of Java Beans we have added one more programming paradigm –
reusabe software components. They enable us to construct solutions based on using building
blocks.

JavaBeans can be used to create applications or applets. They can be simple, such as a text
box or label, or they can be complex, such as a mail tool or a data inspector. Beans typi-
cally have a set of:

� properties: are the attributes exposed by a bean

� methods: are the actions that a bea makes available for use by other beans.

� events. the events that the bean makes happen.

JavaBeans is a component architecture for the Java platform. ActiveX is Microsoft’s offer-
ing.

The following is taken verbatim from the Sun blurb about JavaBeans. I couldn’t resist!

THE CHOICE IS CLEAR: Write to the JavaBeansTM Component Architecture.

Throughout the industry, JavaBeans component architecture is the architecture of
choice. More than 1,000,000 developers around the world have already embraced
the JavaTM platform. And no wonder. The Java platform has opened up an entirely
new world of opportunities for building fully portable network-aware applications.
Yet many developers are not yet sure how best to take advantage of the capabilities
and benefits the Java platform delivers without sacrificing their existing investment
in legacy applications. The Answer is JavaBeans Component Architecture

JavaBeans component architecture is the platform-neutral architecture for the Java
application environment. It’s the ideal choice for developing or assembling net-
work-aware solutions for heterogeneous hardware and operating system environ-
ments—within the enterprise or across the Internet. In fact, it’s the only component
architecture you should consider if you’re developing for the Java platform.

JavaBeans component architecture extends “Write Once, Run AnywhereTM” capa-
bility to reusable component evelopment. In fact, the JavaBeans architecture takes
interoperability a major step forward—your code runs on every OS and also within
any application environment. A beans developer secures a future in the emerging
network software market without losing customers that use proprietary platforms,
because JavaBeans components interoperate with ActiveX. JavaBeans architecture
connects via bridges into other component models such as ActiveX. Software com-
ponents that use JavaBeans APIs are thus portable to containers including Internet
Explorer, Visual Basic, Microsoft Word, Lotus Notes, and others.

The JavaBeans specification – which was completed ahead of schedule – defines a
set of standard component software APIs for the Java platform. The specification
was developed by Sun with a number of leading industry partners and was then re-
fined based on broad general input from developers, customers, and end-users dur-
ing a public review period.

Better than apple pie, mum, etc.

Chapter 15 JavaBeans 228

© Ian D Chivers email: ian.chivers@kcl.ac.uk

If you have used Visual Basic or Delphi you will be familiar with the way in which you can
develop a program using a visual interface. Look at the screen shot on the next page when
reading the following. With Visual Basic you drag and drop tools from the toolbar on the
left and drop them onto the form in the middle. You then alter the state of the object by us-
ing the propertires displayed on the right hand side. This process is similar in all visual de-
velopment environments, just the words and phrases change.

This is called visual development. You don’t actually have to write any code – or so the
claims go.

JavaBeans in conjunction with java.awt.dnd opens up this possibility with Java.

To do this properly you obviously need a graphical work environment. We have been com-
piling from the unix or dos prompt so far.

I recommend getting hold of IBM Visual Age for Java and installing that. The entry level
version is free of charge.

I would also recommmend getting hold of the BeanBox Development Kit. This enables you
to test out your beans. The url is given later in this chapter.

Java Beans will obviously vary in functionality but will have one or more of the following
attributes:

� Introspection: looking inside and finding out how a bean works.

� Customization: how to alter the appearance and behavior of a bean.

� Event handling: events they can handle and events they generate

� Properties: beans can be programmed and customised

� Persistence: saving state information, e.g. saving a word processing document.

229 JavaBeans Chapter 15

email: ian.chivers@kcl.ac.uk © Ian D Chivers

Beans can be programmed as well as handled by visual tools.

In the simple case you need only add a pair of methods to an existing class definition in or-
der to make it a Bean. This can be done either by modifying the source for an existing
class, or by extending the behavior of an existing class by subclassing it.

15.1 Package java.beans – JDK 1.1
Contains classes related to Java Beans development. A few of the classes are used by beans
while they run in an application. For example, the event classes are used by beans that fire
property and vetoable change events (see PropertyChangeEvent). However, most of the
classes in this package are meant to be used by a bean editor (that is, a development envi-
ronment for customizing and putting together beans to create an application). In particular,
these classes help the bean editor create a user interface that the user can use to customize
the bean. For example, a bean may contain a property of a special type that a bean editor
may not know how to handle. By using the PropertyEditor interface, a bean developer can
provide an editor for this special type. To minimize the resources used by a bean, the
classes used by bean editors are loaded only when the bean is being edited. They are not
needed while the bean is running in an application and therefore not loaded. This informa-
tion is kept in what’s called a bean-info.

15.2 Package java.beans.beancontext
Provides classes and interfaces relating to bean context. A bean context is a container for
beans and defines the execution environment for the beans it contains. There can be several
beans in a single bean context, and a bean context can be nested within another bean con-
text. This package also contains events and listener interface for beans being added and re-
moved from a bean context.

15.3 Example 1
This example is a complete reworking of the earlier example of a moving graphics image.
Rather than use AWT I’ve moved over to the swing way of doing things. I have also used
the networking component to use a url to locate the image.
package jbean01;

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;
import javax.swing.*;

public class bean01 extends JPanel
implements ActionListener, Serializable

{

protected ImageIcon img;

public bean01()
{

img = new ImageIcon();

URL url;

Chapter 15 JavaBeans 230

© Ian D Chivers email: ian.chivers@kcl.ac.uk

url = getClass().getResource(“joan01.gif”);

img = new ImageIcon(url);

}

public void paintComponent(Graphics g)
{

super.paintComponent(g);

int xpos;
int ypos=10;

if (img.getImageLoadStatus() == MediaTracker.COMPLETE)
{

for (xpos=10;xpos<=400;xpos+=50)
{

img.paintIcon(this,g,xpos,ypos);
ypos += +50;

try {Thread.sleep(50);}

catch(InterruptedException e) {}
}

}
}

public void actionPerformed(ActionEvent e)
{

repaint();
}

public static void main(String args[])
{

bean01 joanbean = new bean01();

JFrame app = new JFrame(“ Bean test ”);

app.getContentPane().add(joanbean , BorderLayout.CENTER);

app.addWindowListener
(new WindowAdapter()

{
public void windowClosing(WindowEvent e)
{

System.exit(0);
}

}
);

231 JavaBeans Chapter 15

email: ian.chivers@kcl.ac.uk © Ian D Chivers

app.setSize(400,400);
app.show();

}
}

Note that the first line of the program is a package statement. We put classes into a package
when working with beans. There is also an additional compilation option required, and this
would be in the above case:
javac -d . bean01.java

where . is the current directory. The development environment is set up to create a subdi-
rectory based on your package name. In this case you will end up with the compiled class
file in jbean01.

After successful compilation we then need to create the Java Archive File or .jar file. You
can put more than one bean into a jar file. We do this with the following command:
jar cfm bean01.jar manifest.tmp jbean01*.*

and note again that everything will refers to this sub-directory.

The manifest file is required and I’ve followed the Sun naming convention, calling it mani-
fest.tmp. The manifest file from this example is given below:
Main-Class: jbean01.bean01

Name: bean01.class
Java-Bean: True

The next major difference occurs when defing our own class bean01. In this case we now
have an additioal element in the function header and this is Serializable. This means that the
state of the bean is remembered. Another term for this is persistence.

When developing this example I didn’t rebuild the jar file after recompiling the Java source
and it ran as before.

You can examine the archive with:
jar tvf bean01.jar

We run the program with the following command:
java -jar bean01.jar

15.4 Summary
I’ve only briefly touched on what beans can do in this chapter. They really come into their
own when used in conjuction with a visual development environment.

We are currently trying to install Netbeans on Gum. I will notify people when we have
successully installed it and I’ll provide details on how to use the environment.

You also have details of IBM Visual Age for Java and I would recommed installing that on
your pc and working through the pdf documentation. More details are in the chapter on
IBM Visual Age for Java.

15.5 Useful addresses
I would visit the following and print out some of the material. You mileage will vary.

http://java.sun.com/beans/

� Sun’s home page and a very good place to start.

Chapter 15 JavaBeans 232

© Ian D Chivers email: ian.chivers@kcl.ac.uk

http://java.sun.com/beans/training.html

� links to both instructor led and on line training resources specifically for
JavaBeans component developers.

http://developer.java.sun.com/developer/onlineTraining/index.html

� Links to Java Beans training material.

http://developer.java.sun.com/developer/onlineTraining/Beans/EJBTutorial/index.html

� Enterprise JavaBeansTM Tutorial: Building Your First Stateless Session Bean

15.6 Problems
Try converting some of your existing Java programs to a bean. Be prepared to devote some
time to this!

233 JavaBeans Chapter 15

email: ian.chivers@kcl.ac.uk © Ian D Chivers

16
Overview of

Development Environments

The good teacher is a guide who helps others dispense with his services.

R. S. Peters, Ethics and Education

Aims

The aims of this chapter are look at some of the development environments available, both
free and commercial.

16 Overview of Development Environments
In this chapter we will look at the various options open to us for Java programming.

16.1 Edit, Compile and Run
Sun make the development kits freely available for a numer of platforms including Solaris
and Windows. The development kit comprises:–

� the compiler

� the interpreter or Java Virtual machine

and this is one of the reasons that people have shown such an interest in Java as you can try
things out for zero cost in monetary terms.

We then use whatever native editor we like and are involved in the traditional programming
cycle of:–

� edit

� compile

� run

that we see with the Fortran and C families of languages.

16.2 Workbench or IDE
The next level of sophistication is to provide and integrated environment. Terms use in-
clude:–

� workbench

� ide – integrated development environment

Chapter 16 Overview of Development Environments 236

© Ian D Chivers email: ian.chivers@kcl.ac.uk

Salford Fortran Development Environment

and they vary quite considerably from the very straighforward to extremely complex. The
Salford Fortran 90 and 95 compilers come with a simple environment called Plato. The

Compaq Fortran compiler works within Microsoft Developer Studio which is a very com-

237 Overview of Development Environments Chapter 16

email: ian.chivers@kcl.ac.uk © Ian D Chivers

Compaq Fortran Development Environment

Salford Fortran Development Environment

plex environment that takes some time to get on top off. The following screen shots show
these.

16.3 Visual Development Tools
The next level of sophisticaion comes with visual development tools. Microsoft Visual Ba-
sic s a very good example of what can be achieved.

These are normaly the most costly, but they do offer considerable benefits (eventually) in
terms of speed of development. Putting a visual interace onto a program is obviously going
to be much easier using visual development tools, rather than raw programming.

16.4 Problems

Chapter 16 Overview of Development Environments 238

© Ian D Chivers email: ian.chivers@kcl.ac.uk

Visual Basic Development Environment

17
Forte for Java

Make it as simple as possible, but no simpler.
Albert Einstein

Aims

The aims of this chapter are to provide an overview of Sun’s offerings in this area.

17 Forte for Java
So far we have only looked at a simple command line interface to Java programming. We
have been able to achieve quite a lot with this approach, and working under Unix or Dos is
almost identical. We are now going to look at another way of working – with a complete
development environment. There are two components to a complete environment and these
comprise:–

� the JDK

� the graphical interface

and you need both, and they need to work togethor.

The early Sun development environments were not very good. They then took an interest in
a third party product called Netbeans and bought the product and rebadged it. It is now
called Forte for Java. The following urls are useful:

� http://java.sun.com/j2se/1.3/download-windows.html

� provides details of several IDEs for Java.

� http://www.sun.com/forte/ffj/ce/

� is the Forte home page.

The IDE is written entirely in Java. The idea is that through a set of wizards, utilities, and
templates you can write code quicker. The IDE provides the ability to design a graphical
user interface using a form editor.

17.1 Forte Recommended Configurations
Sun’s recommendation on an Intel platform is Intel Pentium II processor with a 300-MHz
CPU, 128 Mbytes of memory, and 30Mbytes of disk space. I’ve tried the following:

� P120 with 64 Mb of memory, Windows 95: runs like a dog.

� P II 266 with 128 Mb of memory, Windows NT: ok.

� P II 350, 192 Mb of memory, Windows 98: fine.

Be patient whichever version you use!

17.2 The JDK
You need to install a compatible version of the JDK.

17.3 Documentation
Sun provide 3 documents that can be printed in the release I installed:

� QuickStart – 36 pages

� Tutorials – 38

� UserGuide – 299

and these are all Adobe PDF format. I recommend printing them, and working through the
first two to help you familiarise yourself with the environment.

There is extensive on-line help. More difficult to work with though.

Chapter 17 Forte for Java 240

© Ian D Chivers email: ian.chivers@kcl.ac.uk

18
Microsoft

Visual J++

‘Can you do addition?’ the White Queen asked. ‘What’s one and one and one and
one and one and one and one and one and one and one?’ ‘I don’t know’ said Alice.
‘I lost count.’ ‘She can’t do addition,’ the Red Queen interrupted.

Lewis Carroll, Through the Looking Glass and What Alice Found There.

Aims

The aims of this chapter are to provide a brief coverage of Microsoft Visual J++.

18 Microsoft Visual J++
This chapter looks at Microsoft Visual J++.

18.1 Availability and Versions
There are two versions:

� Standard

� Professional

I’ve been using the latter and it provides the following additional features over the standard
edition:

� Database access

� Visual data controls

� Professional visual development tools

� Visual component manager

� Remote debugging

Both provide programming wizards and access to the Windows Foundation Classes. The
on-line documentation is adequate. I’ve provided details of third party books in the bibliog-
raphy.

The emphasis throughout is on creating Windows based applications or programs using
Java. If you don’t mind sticking to the Windows platform then this doesn’t matter. However
if you want an application that can run on any platform then this is a major headache, and
you would be better off with another development environment or compiler.

18.2 The Development Environment
If you have used Visual Basic or Visual C++ then you will be quite at home. If you haven’t
don’t panic. Work through the examples provided. I would start by using the help menu and

Chapter 18 Microsoft Visual J++ 242

© Ian D Chivers email: ian.chivers@kcl.ac.uk

following the links to the Java documentation and work through that. The Cowell book is
another option.

18.3 Working practices
Work is directory based. Do not mix code in one directory. I have developed examples in
one directory as I started learning Java using the Sun JDK. This working habit is a disaster
with both Microsoft Visual J++ and IBM VisualAge for Java.

18.4 Documentation Map
Below is an overview of what you’ll find in the Visual J++ documentation:

� What’s New: Highlights the new features in Visual J++.

� Getting Started: Explains how to get up and running with Visual J++.

� User’s Guide: Shows how to use Visual J++.

� Programmer’s Guide Provides in-depth information on using the Windows
Foundation Classes for Java (WFC), and discusses other advanced programming
techniques.

� WFC and Java Reference: Contains detailed reference information for the WFC
API and controls, the Java API, and the Java Language Specification.

243 Microsoft Visual J++ Chapter 18

email: ian.chivers@kcl.ac.uk © Ian D Chivers

Microsoft J++

� Visual J++ Reference: Contains comprehensive reference information for the Vi-
sual J++ Code Model, extensibility, conditional compilation, reserved words, and
compiler errors.

� Samples: Provides a rich collection of ready-to-run samples that illustrate key
technologies.

Located elsewhere in the MSDN Library, the following documentation sets can be found:

� Java Package Manager

� ActiveX Data Objects (ADO)

� Remote Data Service (RDS)

� Database Designer

� Query Designer

� VBScript

� JScript

� Active Server Pages (ASP) and server script

� Microsoft Transaction Server

18.5 Getting Started with Visual J++ 6.0
Microsoft Visual J++ is an integrated Windows-hosted development tool for Java program-
ming. If you have used Visual Basic then you will feel quite comfortable with the develop-
ment environment. Visual J++ 6.0 introduces the Windows Foundation Classes for Java
(WFC). This new application framework accesses the Microsoft Windows API, enabling
you to write full-featured Windows applications with the Java programming language. WFC
also wraps the Dynamic HTML object model implemented in Internet Explorer 4.0, which
allows you to dynamically manipulate HTML on both the client and the server.

18.5.1 Creating a WFC Application
When you create a Windows application with WFC, your project contains a form that is the
main window of the application. You can then add WFC controls to the form to design the
graphical user interface.

Use the Forms Designer to modify your form. The RAD features of the Forms Designer al-
low you to quickly drop controls onto your form, configure their properties, and add event
handlers.

Use Class Outline and the Text editor to modify your code. Class Outline provides a dy-
namic view of the contents and structure of your Java classes, and can assist you in adding
methods and member variables. The Text editor supports IntelliSense features, such as
Statement Completion, to help you write code.

Use the WFC data controls and components toa ccess data from your form. WFC uses
ADO to retrieve data and perform simple data binding.

18.5.2 Building and Running Your Application
When you build your application, any compilation errors appear in the Task List. After you
correct these errors, you can run your application from within the development environ-
ment.

Chapter 18 Microsoft Visual J++ 244

© Ian D Chivers email: ian.chivers@kcl.ac.uk

18.5.3 Debugging Your Application
Although your application may compile without errors, it may not run as expected. The pro-
cess of finding and fixing logic and run-time errors is known as debugging. Using
theintegrated debugger, you can set breakpoints to step through your code one statement at
a time and view the values of variables and properties.

18.5.4 Packaging Your Application
When you have finished modifying and debugging your application, you canpackage it to
into an .exe or .cab file and deploy it to the Web.

18.6 Getting Going
Either follow the steps provided or get hold of the Cowell book.

18.7 Bibliography
Cowell J., Essential Visual J++ 6.0 Fast, Springer.

Quick introduction. Walks you through the use of the development environment and
worth it for that alone. No coverage of Swing of course.

245 Microsoft Visual J++ Chapter 18

email: ian.chivers@kcl.ac.uk © Ian D Chivers

19
IBM Visual Age

for Java

Aims

The aim of this chapter is to provide a brief introduction to IBM Visual Age for Java.

19 IBM VisualAge for Java
The aim of this chapter is to provide a brief introduction to IBM Visual Age for Java.

19.1 Health Warning
The major part of the development work in this chapter has been done on a 350 MHz
Pentium PII with 64 Mb of memory. I’ve also tried the entry level on a Cyrix clone (be-
tween a Pentium 133 and Pentium 166) with 32Mb of memory. This is slow.

19.2 Versions and Availability
Home page for VisualAge Developer Domain is:–
http://www7.software.ibm.com/vad.nsf

Three versions are available:–

� Entry

� Professional

� Enterprise

The first is free. At the time of writing these notes VisualAge 2.0 Entry Edition was avail-
able. This includes support for:–

� JDK 1.1.6

� Swing 1.0.2

You have to register to get a user id and password that allows you to then download the
various offerings. Don’t forget our password – I’ve forgotten mine!

The Professional Edition costs about 80 uk pounds. It comes with a couple of additional
CDs containing a variety of material.

I’ve included some details of what you get below.

19.2.1 VisualAge® Object Connection Partners CD Version 2.0.1.
This CD provides a number of Java products built with or built for IBM VisualAge for
Java. It contains software, including JavaBeans and tools, and documentation provided by
IBM’s Object Connection program members. It is provided solely for evaluation purposes,
much of it is in trial version form.

19.2.2 MindQ: Introduction to VisualAge for Java
This is produced by MindQ Publishing. It is a multimedia CD. A little confusing at first.

19.2.3 AlphaWorks
Home url is

http://www.alphaworks.ibm.com/

19.2.3.1 alphaWorks History: The Launch
I quote IBM alphaWorks began its life in 1996 in Armonk, NY, spear-headed by John Pat-
rick (IBM Vice President, Internet Division). Patrick’s vision was to create a Web site that
surfaced IBM’s hottest Internet technologies from research, and established a cutting-edge
Web presence for IBM. Three college supplementals and five IBM’ers built the alphaWorks
Web site in 30 days. The alphaWorks Web site launched on August 26, 1996, with press
coverage and attention, attracting curious developers to download “alpha-code” technolo-
gies from IBM. alphaWorks was even featured in IBM Chairman, Louis V. Gerstner’s key-
note address at Fall Internet World in October 1996. John Patrick then decided to move
the team closer to the epicenter of technology and Internet innovation - Silicon Valley.

Chapter 19 IBM VisualAge for Java 248

© Ian D Chivers email: ian.chivers@kcl.ac.uk

alphaWorks moved into the IBM Almaden Research Center in January 1997, and relocated
once more to the IBM Center for Java Technology in Cupertino, CA.

19.2.4 Other Offerings
A beta version of VisualAge Professional Edition 3.0 is also available. Typically we are
looking at 80-100 Mb. I don’t recommend downloading this at home over the telephone
line.

I have a copy of:–

Nilsson D.R., Jakab P.M., Developing JavaBeans Using VisualAge for Java, Wiley

and the CD has the following on it:–

� VisualAge for Java Entry Edition 1.0

� VisualAge for Java Patch Set 1

� Sun Java Developers Toolkit 1.1.5

� Sun Java Runtime Environment 1.1.5

Take care when buying a book with a CD to get hold of as recent a version as you can.

19.3 Documentation
IBM provide a lot of documentation in Adobe Acrobat Portable Document Format. Acrobat
readers are free over the web. The following url:–

http://www.kcl.ac.uk/www/adoacr.html

provides more information.

19.3.1 IDE Basics: Concepts and Tasks: 34 pages
How to use the integrated development environment. Print this guide if you can. Have a
quick browse to get a feel for some of the things you will need to know to develop a Java
applet.

19.3.2 Getting Started: 144 pages
General introduction to using the basic features of Visual Age for Java. Print this guide if
you can. I would work through the following chapters:

� Chapter 2: The Basics

� Chapter 3: Building your first applet

at least. I would also work through:–

� Chapter 4: Adding State Checking to your Applet

� Chapter 5: Enhancing the To-Do List Program

� Chapter 6: What Else can you do with the Visual Composition Editor

Chapter 6 takes you through the use of working with Beans including:

� manipulating beans

� moving them around

� changing their properties

� connecting beans

There is also a coverage of working with relational using the select bean.

249 IBM VisualAge for Java Chapter 19

email: ian.chivers@kcl.ac.uk © Ian D Chivers

19.3.3 Visual Composition: Concepts and Tasks: 267 pages
IBM provide (and I quote) a state of the art object oriented visual composition editor for
assembling programs visually from JavaBeans components.

19.3.4 Data Access: Concepts and Tasks: 61 pages
Web access to data is becoming increasingly important. This takes you through some of
what IBM have done to make this possible with Java.

19.3.5 SCM Tools: Concepts and Tasks: 16 pages
Software Configuration Management.

19.3.6 AgentRunner: Concepts, Tasks and Samples: 25 pages
Create and run Domino based agents.

19.3.7 Tool Integrators: 20 pages
Integrate file-based code within the IDE.

19.4 Installation
Follow the installation guidelines for which ever version you have.

19.5 Overview
If you are used to thinking in terms of a program being made up of one or more source files
and going through the following cycle:–

� edit

� compile

� link – if no errors

� run

then the first time you meet a development environment can be quite a shock. Both
Microsoft Visual Basic and Developer Studio take a while to get used to. Visual Basic also
introduces the concept of visual development where one can drap and drop visual compo-
nents. Well VisualAge for Java takes things one step further.

The workbench and components are object based, rather than file based. You need to think
in terms of

� projects

� packages

� classes

� interfaces

� methods

and the hierarchy associated with these will provide a structure.

I am used to working with directories when programming and typically organise my work
into:

� f90: fortran 90 code

� f95: fortran 95 code

� java: java code

� cxx: c++ code

Chapter 19 IBM VisualAge for Java 250

© Ian D Chivers email: ian.chivers@kcl.ac.uk

This no longer works very well when working with a development environment. You can
use the above but you have to add directories below the above to keep related work files.
This is true when working with:

� Compaq/Dec Fortran 95 under Microsoft Visual Studio

� Microsoft Visual C++ under Visual Studio

� Microsoft Visual J++

� IBM VisualAge for Java

Don’t point one of the Java programming environments at your Java directory. It will try
reading everything in and compiling it!

19.6 Starting up Visual Age for Java
The following is the opening screen.

As you can see we have a similar layout to Visual Basic which we looked at in an earlier
chapter. The key things to note are:

� the left hand side has the tools - in this case Beans

� the middle is where we can lay things out.

� there are a variety of toolbars, menus etc to enable us to work with the environ-
ment and develop our applet.

251 IBM VisualAge for Java Chapter 19

email: ian.chivers@kcl.ac.uk © Ian D Chivers

1 Opening Screen

The composition editor provides with access to four sets of beans. These are:

� swing

� awt

� other

� available, and under available we have:

� IBM Data Access Beans: Select and DB Navigator

� Domino Java Class Library 4.6.1

� Sun BDK Examples 1.0

� IBM Domino Examples 2.0

� Sun JDK Examples 1.1.6

� Sun JFC Examples 1.0.2

� IBM Java Examples 2.0

19.7 Summary
Follow the instructions in the two documents and be patient. It takes a while to get used to
working in this new way. The key feature is the way that everything is based around beans.
This is a major step forward when developing professional Java applets. The learning curve
is steep, but your productivity will increase.

Chapter 19 IBM VisualAge for Java 252

© Ian D Chivers email: ian.chivers@kcl.ac.uk

20
Multimedia

Aims

The aims of this chapter are to provide a brief coverage of standardisation efforts, imple-
mentation differences and future developments.

20 Multimedia
For more general capabilities you will need to download the Sun Java Media Framework.
Visit
http://java.sun.com/products/java-media/jmf/

There are verisons for Windows and Solaris.

The JavaTM Media Framework (JMF) is an application programming interface (API) for
incorporating time-based media into Java applications and applets. The JMF 1.0 API (the
Java Media Player API) enabled programmers to develop Java programs that presented
time-based media. The JMF 2.0 API extends the framework to provide support for captur-
ing, storing, and broadcasting media data, using custom codecs, and manipulating media
data before it is rendered.

The JMF 2.0 API was developed by Sun Microsystems, Inc. and IBM. The JMF 1.0 API
was developed by Sun Microsystems, Inc., Silicon Graphics Inc., and Intel Corporation.

JMF 2.0 supports a wide array of media types, including

� protocols: FILE, HTTP, FTP, RTP

� audio: AIFF, AU, AVI, GSM, MIDI, MP2, MP3, QT, RMF, WAV

� video: AVI, MPEG-1, QT

� other: Flash 2, HotMedia

20.1 Playing Audio Clips
This chapter only looks at audio clips at the moment.

20.2 java.applet

20.2.1 Interface AudioClip: Since: JDK1.0
public interface AudioClip

The AudioClip interface is a simple abstraction for playing a sound clip. Multiple
AudioClip items can be playing at the same time, and the resulting sound is mixed together
to produce a composite.

20.2.2 Method Summary
void loop()

� Starts playing this audio clip in a loop.

void play()

� Starts playing this audio clip.

void stop()

� Stops playing this audio clip.

20.2.3 Method Detail
play

public void play()

� Starts playing this audio clip. Each time this method is called, the clip is re-
started from the beginning.

loop

public void loop()

Chapter 20 Multimedia 254

© Ian D Chivers email: ian.chivers@kcl.ac.uk

� Starts playing this audio clip in a loop.

stop

public void stop()

� Stops playing this audio clip.

getAudioClip

public AudioClip getAudioClip(URL url)

� Returns the AudioClip object specified by the URL argument.

� This method always returns immediately, whether or not the audio clip exists.
When this applet attempts to play the audio clip, the data will be loaded.

� Parameters: url - an absolute URL giving the location of the audio clip.

� Returns: the audio clip at the specified URL.

getAudioClip

public AudioClip getAudioClip(URL url, String name)

� Returns the AudioClip object specified by the URL and name arguments.

� This method always returns immediately, whether or not the audio clip exists.
When this applet attempts to play the audio clip, the data will be loaded.

� Parameters: url - an absolute URL giving the base location of the audio clip.
name - the location of the audio clip, relative to the url argument.

� Returns: the audio clip at the specified URL.

newAudioClip

public static final AudioClip newAudioClip(URL url)

� Get an audio clip from the given URL

� Parameters: url - Points to the audio clip

20.3 Example – Audio
This is example 2 from chapter 16 of the Deitel book.
// Fig. 16.2: LoadAudioAndPlay.java
// Load an audio clip and play it.
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class LoadAudioAndPlay extends JApplet {
private AudioClip sound1, sound2, currentSound;
private JButton playSound, loopSound, stopSound;
private JComboBox chooseSound;

// load the image when the applet begins executing
public void init()
{

Container c = getContentPane();
c.setLayout(new FlowLayout());

255 Multimedia Chapter 20

email: ian.chivers@kcl.ac.uk © Ian D Chivers

String choices[] = { “Welcome”, “Hi” };
chooseSound = new JComboBox(choices);
chooseSound.addItemListener(

new ItemListener() {
public void itemStateChanged(ItemEvent e)
{

currentSound.stop();

currentSound =
chooseSound.getSelectedIndex() == 0 ?

sound1 : sound2;
}

}
);
c.add(chooseSound);

ButtonHandler handler = new ButtonHandler();
playSound = new JButton(“Play”);
playSound.addActionListener(handler);
c.add(playSound);
loopSound = new JButton(“Loop”);
loopSound.addActionListener(handler);
c.add(loopSound);
stopSound = new JButton(“Stop”);
stopSound.addActionListener(handler);
c.add(stopSound);

sound1 = getAudioClip(
getDocumentBase(), “welcome.wav”);

sound2 = getAudioClip(
getDocumentBase(), “hi.au”);

currentSound = sound1;
}

// stop the sound when the user switches Web pages
// (i.e., be polite to the user)
public void stop()
{

currentSound.stop();
}

private class ButtonHandler implements ActionListener {
public void actionPerformed(ActionEvent e)
{

if (e.getSource() == playSound)
currentSound.play();

else if (e.getSource() == loopSound)
currentSound.loop();

else if (e.getSource() == stopSound)
currentSound.stop();

Chapter 20 Multimedia 256

© Ian D Chivers email: ian.chivers@kcl.ac.uk

}
}

}

/***

* (C) Copyright 1999 by Deitel & Associates, Inc. and

Prentice Hall. *
* All Rights Reserved.

*
*

*
* DISCLAIMER: The authors and publisher of this book have

used their *
* best efforts in preparing the book. These efforts include

the *
* development, research, and testing of the theories and

programs *
* to determine their effectiveness. The authors and pub-

lisher make *
* no warranty of any kind, expressed or implied, with re-

gard to these *
* programs or to the documentation contained in these

books. The authors *
* and publisher shall not be liable in any event for inci-

dental or *
* consequential damages in connection with, or arising out

of, the *
* furnishing, performance, or use of these programs.

*

**
***********/
Try it out. Obviously you will need a sound card and speakers to hear anything.

There are two sound file format files used in this example:

� wav

� au

If you have a pc try:

� dir /s /p *.wav

from the root of your c drive to see what wav files you have.

Java 1.3 increases the support considerably in this area.

20.4 Problems
Try the example out on the pc. You obviously need a sound card and speakers. Have a look
at what sounds Microsoft provide. Can you get them to play?

257 Multimedia Chapter 20

email: ian.chivers@kcl.ac.uk © Ian D Chivers

21
Simple

Networking

Aims

The aims of this chapter are to provide a brief coverage of networking.

21 Simple Networking
This chapter looks at using Java for networking.

21.1 Package java.net: Since: JDK1.0
Provides the classes for implementing networking applications. Using the socket classes,
you can communicate with any server on the Internet or implement your own Internet
server. A number of classes are provided to make it convenient to use Universal Resource
Locators (URLs) to retrieve data on the Internet.

21.1.1 Interface Summary
ContentHandlerFactory: This interface defines a factory for content handlers.

FileNameMap: A simple interface which provides a mechanism to map between between a
file name and a MIME type string.

SocketImplFactory: This interface defines a factory for socket implementations.

SocketOptions: Interface of methods to get/set socket options.

URLStreamHandlerFactory: This interface defines a factory for URL stream protocol han-
dlers.

21.1.2 Class Summary
Authenticator: The class Authenticator represents an object that knows how to obtain au-
thentication for a network connection.

ContentHandler: The abstract class ContentHandler is the superclass of all classes that read
an Object from a URLConnection.

DatagramPacket: This class represents a datagram packet.

DatagramSocket: This class represents a socket for sending and receiving datagram packets.

DatagramSocketImpl: Abstract datagram and multicast socket implementation base class.

HttpURLConnection: A URLConnection with support for HTTP-specific features.

InetAddress: This class represents an Internet Protocol (IP) address.

JarURLConnection: A URL Connection to a Java ARchive (JAR) file or an entry in a JAR
file.

MulticastSocket: The multicast datagram socket class is useful for sending and receiving IP
multicast packets.

NetPermission: This class is for various network permissions.

PasswordAuthentication: The class PasswordAuthentication is a data holder that is used by
Authenticator.

ServerSocket: This class implements server sockets.

Socket: This class implements client sockets (also called just “sockets”).

SocketImpl: The abstract class SocketImpl is a common superclass of all classes that actu-
ally implement sockets.

SocketPermission: This class represents access to a network via sockets.

URL: Class URL represents a Uniform Resource Locator, a pointer to a “resource” on the
World Wide Web.

URLClassLoader: This class loader is used to load classes and resources from a search path
of URLs referring to both JAR files and directories.

URLConnection: The abstract class URLConnection is the superclass of all classes that rep-
resent a communications link between the application and a URL.

Chapter 21 Simple Networking 260

© Ian D Chivers email: ian.chivers@kcl.ac.uk

URLDecoder: The class contains a utility method for converting from a MIME format
called “x-www-form-urlencoded” to a String

URLEncoder: The class contains a utility method for converting a String into a MIME for-
mat called “x-www-form-urlencoded” format.

URLStreamHandler: The abstract class URLStreamHandler is the common superclass for

all stream protocol handlers.

21.1.3 Exception Summary
BindException: Signals that an error occurred while attempting to bind a socket to a local
address and port.

ConnectException: Signals that an error occurred while attempting to connect a socket to a
remote address and port.

MalformedURLException: Thrown to indicate that a malformed URL has occurred.

NoRouteToHostException: Signals that an error occurred while attempting to connect a
socket to a remote address and port.

ProtocolException: Thrown to indicate that there is an error in the underlying protocol, such
as a TCP error.

SocketException: Thrown to indicate that there is an error in the underlying protocol, such
as a TCP error.

UnknownHostException: Thrown to indicate that the IP address of a host could not be de-
termined.

UnknownServiceException: Thrown to indicate that an unknown service exception has oc-
curred.

21.2 Examples
There are a couple of examples in this chapter.

21.2.1 Manipulating urls
import java.awt.*;
import java.net.*;
import java.applet.Applet;

public class network01 extends Applet {
Site sites[];

public void init()
{
sites = new Site[6];

sites[0]=new Site(“Home”,
“http://www.kcl.ac.uk/kis/support/cc/fortran/”);

sites[1]=new Site(“Fortran 90",
“http://www.kcl.ac.uk/kis/support/cc/for-

tran/f90home.html”);

sites[2]=new Site(“C++”,

261 Simple Networking Chapter 21

email: ian.chivers@kcl.ac.uk © Ian D Chivers

“http://www.kcl.ac.uk/kis/support/cc/for-
tran/cpp/cpp.html”);

sites[3]=new Site(“Java”,
“http://www.kcl.ac.uk/kis/support/cc/for-

tran/java/javahome.html”);

sites[4]=new Site(“Compiler support on Gum”,
“http://www.kcl.ac.uk/kis/support/cc/fortran/com-

piler.html”);

sites[5]=new Site(“Scientific Data Management”,
“http://www.kcl.ac.uk/kis/support/cc/fortran/data-

base/database.html”);

for (int i = 0; i < sites.length; i++)
add(new Button(sites[i].getTitle()));

}

public boolean action(Event e, Object arg)
{

if (e.target instanceof Button) {
String title;
URL location;

for (int i = 0; i < sites.length; i++) {
title = sites[i].getTitle();
location =

sites[i].getLocation();

if (title.equals(arg.toString())) {
gotoSite(location);
return true; // event handled

}
}

}

return false; // event not handled yet
}

public void gotoSite(URL loc)
{

// this must be executed in a broswer such as
Netscape

getAppletContext().showDocument(loc);
}

}

class Site extends Button {
private String title;

Chapter 21 Simple Networking 262

© Ian D Chivers email: ian.chivers@kcl.ac.uk

private URL location;

public Site(String siteTitle, String siteLocation)
{

title = siteTitle;

try {
location = new URL(siteLocation);

}
catch (MalformedURLException e) {

System.err.println(“Invalid URL: ” + siteLocation
);

}
}

public String getTitle() { return title; }

public URL getLocation() { return location; }
}

21.2.2 Reading a file on a web server
import java.awt.*;
import java.net.*;
import java.io.*;
import java.applet.Applet;

public class network02 extends Applet
{

URL fileURL;
TextArea contents;
InputStream input;
DataInputStream dataInput;

public void init()
{

contents = new TextArea(“Connecting ...”, 400,400);
add(contents);

try
{

fileURL = new URL(
“http://www.kcl.ac.uk/kis/sup-

port/cc/staff/ian.html”);
}

catch (MalformedURLException e)
{

showStatus(“Exception: ” + e.toString());
}

}

263 Simple Networking Chapter 21

email: ian.chivers@kcl.ac.uk © Ian D Chivers

public void start()
{

String text;

try
{

input = fileURL.openStream();
dataInput = new DataInputStream(input);
contents.setText(“Replace with your ego trip:\n”

);

while ((text = dataInput.readLine()) != null)

contents.appendText(text + “\n”);

dataInput.close();
}

catch (IOException e)
{

showStatus(“Exception: ” + e.toString());
}

}
}

What do you notice about the output?

The original source file is on the college web server. Save the file and have a look at it in
an editor.

21.3 Problems
Try out the examples in this chapter. Try them out on Gum and your own pc. They are also
on the College web server. Run them from there using Netscape.

Chapter 21 Simple Networking 264

© Ian D Chivers email: ian.chivers@kcl.ac.uk

22
Web Data Access

Aims

The aims of this chapter are to provide a brief coverage of web data access.

22 Web Data Access

22.1 Background
I’ve done this in the past using a product called Tango. This is freely available on the
Internet and can be installed on your own machine. I recommend an NT server.

The company that sells Tango can be found at:

� http://www.pervasive.com/

and their download offerings are to be found at:

� http://www.pervasive.com/products/download/

The product is made up of a number of components.

22.1.1 The Visual Development Environment
If you are familiar with Visual Basic then you will appreciate the ease of use that Tango of-
fers. You drag the items you want from a toolbox on the left and drop them onto a form in
the middle. You then have the database connectivity handled by a visual interface on the
right.

It uses ODBC to handle database access. Register the database within the ODBC manager
under NT and the data sources will appear in the Tango visual interface. Clicking on the
datbase will then throw up the tables. You can then drag and drop the columns you want
onto the form.

22.1.2 The Web Server
It will install a web add on to your server which will handle all web access. It passes the re-
quest onto the database via the odbc driver and will then dynamically generate the html on
the fly as the data is returned.

I have accessed the following data sources in this way:

� Microsoft Access

� RBTI Rbase

� Oracle

� dBase

Oracle requires the installation of an Oracle data manager.

22.2 Java
Java obviously has to work in a similar fashion. So you need at least:

� a database on a web accessible machine

� a jdbc driver for that database

� a web server process to handle the jdbc request

22.3 Data Sources
You will obviously need a data source. This is best done using an SQL based relational da-
tabase management system.

22.3.1 Oracle
You obviously need an Oracle data source. You can get a personal copy of Oracle from the
Oracle site. They also offer it on a cd.

Chapter 22 Web Data Access 266

© Ian D Chivers email: ian.chivers@kcl.ac.uk

22.3.2 Microsoft
If you have Office then you may already have Access. This combined with Microsoft Vi-
sual J++ should be enough to get you started.

Another possibility would be SQL server, but this would imply NT as well. I am not sure of
the cost of SQL server for NT.

22.3.2.1 Some entries from the FAQ
Are there any ODBC drivers that do not work with the JDBC-ODBC Bridge?

� Most ODBC 2.0 drivers should work with the Bridge. Since there is some varia-
tion in functionality between ODBC drivers, the functionality of the bridge may
be affected. The bridge works with popular PC databases, such as Microsoft Ac-
cess and FoxPro.

How can I use the JDBC API to access a desktop database like Microsoft Access over the
network?

� Most desktop databases currently require a JDBC solution that uses ODBC un-
derneath. This is because the vendors of these database products haven’t imple-
mented all-Java JDBC drivers. The best approach is to use a commercial JDBC
driver that supports ODBC and the database you want to use. See the JDBC
drivers page for a list of available JDBC drivers. The JDBC-ODBC bridge from
Sun’s Java Software does not provide network access to desktop databases by it-
self. The JDBC-ODBC bridge loads ODBC as a local DLL, and typical ODBC
drivers for desktop databases like Access aren’t networked. The JDBC-ODBC
bridge can be used together with the RMI-JDBC bridge , however, to access a
desktop database like Access over the net. This RMI-JDBC-ODBC solution is
free.

Does the JDBC-ODBC Bridge work with Microsoft J++?

� No, J++ does not support the JDBC-ODBC bridge since it doesn’t implement the
Java Native Interface (JNI). Any all-Java JDBC driver should work with J++,
however.

22.3.3 IBM
DB2 would imply using OS/2 as your data source and Visual Age for Java.

22.4 JDBC API
The JDBCTM API provides universal data access from the JavaTM programming language.
Using the JDBC 2.0 API, you can access virtually any data source, from relational data-
bases to spreadsheets and flat files. JDBC technology also provides a common base on
which tools and alternate interfaces can be built.

The JDBC 2.0 API includes two packages: the java.sql package, known as the JDBC 2.0
core API, and the javax.sql package, known as the JDBC Standard Extension.

The JavaTM 2 SDK, Standard Edition, includes the JDBC 2.0 core API and the
JDBC-ODBC Bridge.

The JavaTM 2 SDK, Enterprise Edition, includes the JDBC 2.0 core API and also the
JDBC 2.0 Standard Extension. If you do not need everything that is included in the Enter-
prise Edition, you can download the JDBC Standard Extension separately.

Note that if the javax.sql package is bundled with your JDBC 2.0 technology driver, you
will not need to download it.

267 Web Data Access Chapter 22

email: ian.chivers@kcl.ac.uk © Ian D Chivers

JDBC Technology Drivers

To use the JDBC API with a particular database management system, you need a JDBC
technology-based driver to mediate between JDBC technology and the database. Depending
on various factors, a driver might be written purely in the Java programming language or in
a mixture of the Java programming language and Java Native Interface (JNI) native meth-
ods. The JDBC web site maintains a list of vendors with drivers currently available or un-
der development.

The latest SDK includes the JDBC-ODBC Bridge. This JDBC technology-based driver
makes most Open Database Connectivity (ODBC) drivers available to programmers using
the JDBC API. The JDBC-ODBC Bridge Guide describes the current status of this soft-
ware. Drivers: Types of JDBC technology drivers

JDBC technology drivers fit into one of four categories:

� 1. A JDBC-ODBC bridge provides JDBC API access via one or more ODBC
drivers. Note that some ODBC native code and in many cases native database
client code must be loaded on each client machine that uses this type of driver.
Hence, this kind of driver is generally most appropriate when automatic installa-
tion and downloading of a Java technology application is not important. For in-
formation on the JDBC-ODBC bridge driver provided by Sun, see JDBC-ODBC
Bridge Driver.

� 2. A native-API partly Java technology-enabled driver converts JDBC calls into
calls on the client API for Oracle, Sybase, Informix, DB2, or other DBMS. Note
that, like the bridge driver, this style of driver requires that some binary code be
loaded on each client machine.

� 3. A net-protocol fully Java technology-enabled driver translates JDBC API calls
into a DBMS-independent net protocol which is then translated to a DBMS pro-
tocol by a server. This net server middleware is able to connect all of its Java
technology-based clients to many different databases. The specific protocol used
depends on the vendor. In general, this is the most flexible JDBC API alterna-
tive. It is likely that all vendors of this solution will provide roducts suitable for
Intranet use. In order for these products to also support Internet access they must
handle the additional requirements for security, access through firewalls, etc.,
that the Web imposes. Several vendors are adding JDBC technology-based driv-
ers to their existing database middleware products.

� 4. A native-protocol fully Java technology-enabled driver converts JDBC tech-
nology calls into the network protcol used by DBMSs directly. This allows a di-
rect call from the client machine to the DBMS server and is a practical solution
for Intranet access. Since many of these protocols are proprietary the database
vendors themselves will be the primary source for this style of driver. Several
database vendors have these in progress.

22.5 Package java.sql – JDK 1.1
Provides the JDBC package. JDBC is a standard API for executing SQL statements. It con-
tains classes and interfaces for creating SQL statements, and retrieving the results of execut-
ing those statements against relational databases. JDBC has a framework whereby different
‘’drivers’’ can be installed dynamically to access different databases.

Chapter 22 Web Data Access 268

© Ian D Chivers email: ian.chivers@kcl.ac.uk

22.5.1 Interface Summary

22.5.1.1 Array – JDBC 2.0

22.5.1.2 Blob – JDBC 2.0

22.5.1.3 CallableStatement
The interface used to execute SQL stored procedures.

22.5.1.4 Clob – JDBC 2.0
The mapping in the JavaTM programming language for the SQL CLOB type.

22.5.1.5 Connection
A connection (session) with a specific database.

22.5.1.6 DatabaseMetaData
Comprehensive information about the database as a whole.

22.5.1.7 Driver
The interface that every driver class must implement.

22.5.1.8 PreparedStatement
An object that represents a precompiled SQL statement.

22.5.1.9 Ref – JDBC 2.0
A reference to an SQL structured type value in the database.

22.5.1.10 ResultSet
A ResultSet provides access to a table of data.

22.5.1.11 ResultSetMetaData
An object that can be used to find out about the types and properties of the columns in a
ResultSet.

22.5.1.12 SQLData – JDBC 2.0
The interface used for the custom mapping of SQL user-defined types.

22.5.1.13 SQLInput – JDBC 2.0
A input stream that contains a stream of values representing an instance of an SQL struc-
tured or distinct type.

22.5.1.14 SQLOutput – JDBC 2.0
The output stream for writing the attributes of a user-defined type back to the database.

22.5.1.15 Statement
The object used for executing a static SQL statement and obtaining the results produced by
it.

22.5.1.16 Struct – JDBC 2.0

22.5.2 Class Summary

22.5.2.1 Date
A thin wrapper around a millisecond value that allows JDBC to identify this as a SQL
DATE.

22.5.2.2 DriverManager
The basic service for managing a set of JDBC drivers.

22.5.2.3 DriverPropertyInfo
Driver properties for making a connection.

269 Web Data Access Chapter 22

email: ian.chivers@kcl.ac.uk © Ian D Chivers

22.5.2.4 Time
A thin wrapper around java.util.Date that allows JDBC to identify this as a SQL TIME
value.

22.5.2.5 Timestamp
This class is a thin wrapper around java.util.Date that allows JDBC to identify this as a
SQL TIMESTAMP value.

22.5.2.6 Types
The class that defines constants that are used to identify generic SQL types, called JDBC
types.

22.5.3 Exception Summary

22.5.3.1 BatchUpdateException – JDBC 2.0

22.5.3.2 DataTruncation
An exception that reports a DataTruncation warning (on reads) or throws a DataTruncation
exception (on writes) when JDBC unexpectedly truncates a data value.

22.5.3.3 SQLException
An exception that provides information on a database access error.

22.5.3.4 SQLWarning
An exception that provides information on database access warnings.

22.6 Package javax.sql

22.6.1 Interface Summary

22.6.1.1 ConnectionEventListener
A ConnectionEventListener is an object that registers to receive events generated by a
PooledConnection.

22.6.1.2 ConnectionPoolDataSource
A ConnectionPoolDataSource object is a factory for PooledConnection objects.

22.6.1.3 DataSource
A DataSource object is a factory for Connection objects.

22.6.1.4 PooledConnection
A PooledConnection object is a connection object that provides hooks for connection pool
management.

22.6.1.5 RowSet
The RowSet interface adds support to the JDBC API for the JavaBeans(TM) component
model.

22.6.1.6 RowSetInternal
A rowset object presents itself to a reader or writer as an instance of RowSetInternal.

22.6.1.7 RowSetListener
The RowSetListener interface is implemented by a component that wants to be notified
when a significant event happens in the life of a RowSet

22.6.1.8 RowSetMetaData
The RowSetMetaData interface extends ResultSetMetaData with methods that allow a
metadata object to be initialized.

Chapter 22 Web Data Access 270

© Ian D Chivers email: ian.chivers@kcl.ac.uk

22.6.1.9 RowSetReader
An object implementing the RowSetReader interface may be registered with a RowSet ob-
ject that supports the reader/writer paradigm.

22.6.1.10 RowSetWriter
An object that implements the RowSetWriter interface may be registered with a RowSet ob-
ject that supports the reader/writer paradigm.

22.6.1.11 XAConnection
An XAConnection object provides support for distributed transactions.

22.6.1.12 XADataSource
A factory for XAConnection objects.

22.6.2 Class Summary

22.6.2.1 ConnectionEvent
The ConnectionEvent class provides information about the source of a connection related
event.

22.6.2.2 RowSetEvent
A RowSetEvent is generated when something important happens in the life of a rowset, like
when a column value changes.

22.7 Examples
Deitel provides three examples. You will need to register the Access database with the
ODCB manager which is in the control panel. They are in chapter 18. You will need to
download all of the files and try them out on a pc. Register them as a User Data Source
Name. Choose the Access driver.

Look carefully at the Deitel source. Yoy need to ensure that you register the database with
the same names as those used in the Java source.

You need a basic understanding of SQL and the relational model. I’ve provided references
at the end of this chapter.

I have Access installed and used this to look at the databases provided. This enables to see
much more about the databases concerned.

Note that

22.8 Summary
If you have Microsoft Visual J++ then you can try out jdbc using this.

If you are going to try out anything original then you will need Access to create your own
databases. Various versions of Microsoft Office include Access.

22.9 Bibliography
Cannen S., Otten G., SQL: The Standard Handbook, McGraw Hill

� This is a very good reference text to the SQL standard.

Date C., An Introduction to Database Systems, Addison Wesley.

� One of the most prolific writers about database systems.

Pratt P.J., A Guide to SQL, Boyd and Fraser.

� Very good gentle introduction with clear examples.

Rbase Technologies Inc., Rbase 2000, Release 6.5, Rbase Technologies Inc.

271 Web Data Access Chapter 22

email: ian.chivers@kcl.ac.uk © Ian D Chivers

� This is the relational database management system I recommend on the pc. It is
SQL level 2 conformant and when used in conjunction with Tango provides a
very good web database development solution. Sales in the UK handled by As-
pen Software. Requires an NT server.

Chapter 22 Web Data Access 272

© Ian D Chivers email: ian.chivers@kcl.ac.uk

23
Servlets

Aims

The aims of this chapter are to provide a coverage of servlets.

23 Servlets
The basic idea of a servlet is that of a program that runs on a web server and provides a
service to other programs that make requests to it.

They are written in Java and have access to the Java API. This obviously includes the
JDBC API to access databases and Sun saw their initial use to provide secure web-based
access to data which is presented using HTML web pages, interactively viewing or modify-
ing that data using dynamic web page generation techniques.

Sun also see servlets as a popular choice for building interactive web applications.
Third-party Servlet containers are available for Apache Web Server, iPlanet Web Server
(formerly Netscape Enterprise Server), Microsoft IIS, and others. Servlet containers can also
be integrated with web-enabled application servers, such as BEA WebLogic Application
Server, IBM WebSphere, Netscape Application Server, and others.

23.1 Getting started
You will need to download and install a number of things. I recommend starting at:

� http://java.sun.com/products/servlet/index.html

and downloading the following:–

� the Java servlet api documentation

� the Java servlet development kit

and following the instructions.

I have had mixed results with the install depending on what I’ve already got installed. I
would not recommend installing:

� jdk1.3

� Forte for Java, which currently requires the 1.3 jdk.

� IBM Visual Age for Java

I would recommend installing in the directory where you have the JDK.

The 2.1 JSDK will create the following directory structure and associated files on you sys-
tem.
.:

8978 Apr 27 1999 LICENSE.txt
3028 Apr 28 1999 README.txt
837 Apr 27 1999 default.cfg

92904 Apr 21 1999 server.jar
22562 Apr 21 1999 servlet.jar
1397 Apr 21 1999 startserver
664 Apr 27 1999 startserver.bat

1162 Apr 21 1999 stopserver
648 Apr 27 1999 stopserver.bat

0 Jul 11 13:45 unix.txt

./etc:
1696 Apr 27 1999 SimpleStartup.java

./examples:

./examples/WEB-INF:

Chapter 23 Servlets 274

© Ian D Chivers email: ian.chivers@kcl.ac.uk

237 Apr 27 1999 mappings.properties
219 Apr 27 1999 mime.properties
350 Apr 27 1999 servlets.properties
324 Apr 27 1999 webapp.properties

./examples/WEB-INF/jsp:

./examples/WEB-INF/jsp/beans:

./examples/WEB-INF/jsp/beans/cal:
1630 Apr 21 1999 Entries.class
1088 Apr 27 1999 Entries.java
771 Apr 21 1999 Entry.class
586 Apr 27 1999 Entry.java

3112 Apr 21 1999 JspCalendar.class
2949 Apr 27 1999 JspCalendar.java
2018 Apr 21 1999 TableBean.class
1890 Apr 27 1999 TableBean.java

./examples/WEB-INF/jsp/beans/colors:
1858 Apr 21 1999 ColorGameBean.class
2788 Apr 27 1999 ColorGameBean.java

./examples/WEB-INF/jsp/beans/error:
463 Apr 21 1999 Smart.class
231 Apr 27 1999 Smart.java

./examples/WEB-INF/servlets:
3265 Apr 21 1999 CookieExample.class
3398 Apr 27 1999 CookieExample.java
1721 Apr 21 1999 HelloWorldExample.class
1714 Apr 27 1999 HelloWorldExample.java
1354 Apr 27 1999 LocalStrings.properties
2251 Apr 21 1999 RequestHeaderExample.class
2153 Apr 27 1999 RequestHeaderExample.java
2464 Apr 21 1999 RequestInfoExample.class
2814 Apr 27 1999 RequestInfoExample.java
2661 Apr 21 1999 RequestParamExample.class
2973 Apr 27 1999 RequestParamExample.java
3407 Apr 21 1999 SessionExample.class
3574 Apr 27 1999 SessionExample.java

./examples/images:
292 Apr 21 1999 code.gif

1242 Apr 21 1999 execute.gif
1231 Apr 21 1999 return.gif

./examples/servlets:
1895 Apr 21 1999 cookies.html
1854 Apr 21 1999 helloworld.html

275 Servlets Chapter 23

email: ian.chivers@kcl.ac.uk © Ian D Chivers

4451 Apr 21 1999 index.html
1414 Apr 21 1999 reqheaders.html
2818 Apr 21 1999 reqinfo.html
1684 Apr 21 1999 reqparams.html
2475 Apr 21 1999 sessions.html

./src:

./src/javax:

./src/javax/servlet:
12920 Apr 27 1999 GenericServlet.java

234 Apr 27 1999 LocalStrings.properties
4634 Apr 27 1999 RequestDispatcher.java
6846 Apr 27 1999 Servlet.java
3147 Apr 27 1999 ServletConfig.java

16714 Apr 27 1999 ServletContext.java
3957 Apr 27 1999 ServletException.java
3169 Apr 27 1999 ServletInputStream.java
8939 Apr 27 1999 ServletOutputStream.java

12239 Apr 27 1999 ServletRequest.java
6269 Apr 27 1999 ServletResponse.java
1813 Apr 27 1999 SingleThreadModel.java
5802 Apr 27 1999 UnavailableException.java

./src/javax/servlet/http:
15649 Apr 27 1999 Cookie.java
32100 Apr 27 1999 HttpServlet.java
14856 Apr 27 1999 HttpServletRequest.java
18425 Apr 27 1999 HttpServletResponse.java
10584 Apr 27 1999 HttpSession.java
2950 Apr 27 1999 HttpSessionBindingEvent.java
1966 Apr 27 1999 HttpSessionBindingListener.java
1895 Apr 27 1999 HttpSessionContext.java
8826 Apr 27 1999 HttpUtils.java
720 Apr 27 1999 LocalStrings.properties

./src/javax/servlet/jsp:
622 Apr 27 1999 HttpJspPage.java
660 Apr 27 1999 JSPPage.java

./tmp:

./tmp/1b6f5a49:

./tmp/35475a49:

./webpages:
1967 Apr 28 1999 index.html

Chapter 23 Servlets 276

© Ian D Chivers email: ian.chivers@kcl.ac.uk

./webpages/WEB-INF:
235 Apr 27 1999 mappings.properties

2138 Apr 27 1999 mime.properties
300 Apr 27 1999 servlets.properties
324 Apr 27 1999 webapp.properties

./webpages/WEB-INF/servlets:
1047 Jul 11 13:16 HTTPGetServlet.class
5293 Apr 21 1999 SnoopServlet.class
4898 Apr 27 1999 SnoopServlet.java

./webpages/docs:

./webpages/docs/api:
2506 Apr 21 1999 allclasses-frame.html

10258 Apr 21 1999 deprecated-list.html
7789 Apr 21 1999 help-doc.html

83183 Apr 21 1999 index-all.html
756 Apr 21 1999 index.html
942 Apr 21 1999 overview-frame.html

4289 Apr 21 1999 overview-summary.html
7247 Apr 21 1999 overview-tree.html

33 Apr 21 1999 package-list
618 Apr 21 1999 packages.html

7183 Apr 21 1999 serialized-form.html
1240 Apr 21 1999 stylesheet.css

./webpages/docs/api/javax:

./webpages/docs/api/javax/servlet:
27030 Apr 21 1999 GenericServlet.html
12099 Apr 21 1999 RequestDispatcher.html
15433 Apr 21 1999 Servlet.html
10447 Apr 21 1999 ServletConfig.html
33416 Apr 21 1999 ServletContext.html
12917 Apr 21 1999 ServletException.html
10649 Apr 21 1999 ServletInputStream.html
22170 Apr 21 1999 ServletOutputStream.html
27468 Apr 21 1999 ServletRequest.html
15027 Apr 21 1999 ServletResponse.html
6147 Apr 21 1999 SingleThreadModel.html

15644 Apr 21 1999 UnavailableException.html
1939 Apr 21 1999 package-frame.html
7671 Apr 21 1999 package-summary.html
6194 Apr 21 1999 package-tree.html

10677 Apr 21 1999 package-use.html

./webpages/docs/api/javax/servlet/class-use:
5830 Apr 21 1999 GenericServlet.html
6043 Apr 21 1999 RequestDispatcher.html

277 Servlets Chapter 23

email: ian.chivers@kcl.ac.uk © Ian D Chivers

10034 Apr 21 1999 Servlet.html
9758 Apr 21 1999 ServletConfig.html
7072 Apr 21 1999 ServletContext.html

17706 Apr 21 1999 ServletException.html
7584 Apr 21 1999 ServletInputStream.html
5991 Apr 21 1999 ServletOutputStream.html

10510 Apr 21 1999 ServletRequest.html
10430 Apr 21 1999 ServletResponse.html
4324 Apr 21 1999 SingleThreadModel.html
4337 Apr 21 1999 UnavailableException.html

./webpages/docs/api/javax/servlet/http:
27615 Apr 21 1999 Cookie.html
36459 Apr 21 1999 HttpServlet.html
33325 Apr 21 1999 HttpServletRequest.html
53488 Apr 21 1999 HttpServletResponse.html
21842 Apr 21 1999 HttpSession.html
12208 Apr 21 1999 HttpSessionBindingEvent.html
9306 Apr 21 1999 HttpSessionBindingListener.html
8509 Apr 21 1999 HttpSessionContext.html

13297 Apr 21 1999 HttpUtils.html
1556 Apr 21 1999 package-frame.html
7080 Apr 21 1999 package-summary.html
6360 Apr 21 1999 package-tree.html
7362 Apr 21 1999 package-use.html

./webpages/docs/api/javax/servlet/http/class-use:
6737 Apr 21 1999 Cookie.html
4338 Apr 21 1999 HttpServlet.html

11913 Apr 21 1999 HttpServletRequest.html
10684 Apr 21 1999 HttpServletResponse.html
8635 Apr 21 1999 HttpSession.html
6799 Apr 21 1999 HttpSessionBindingEvent.html
4451 Apr 21 1999 HttpSessionBindingListener.html
6137 Apr 21 1999 HttpSessionContext.html
4324 Apr 21 1999 HttpUtils.html

23.1.1 Notes

23.1.1.1 Jar files
Copy the:

� server.jar

and

� servlet.jar

files in the root directory into:

� F:\jdk1.2.2\jre\lib\ext

This is the JDK extensions directory. You can’t compile and run servlets without doing this.

23.1.1.2 Start the server
You must start the server. This is done by running the

Chapter 23 Servlets 278

© Ian D Chivers email: ian.chivers@kcl.ac.uk

� startserver.bat

file which is in the following directory:

� f:\jdk1.2.2\jsdk2.1

on my system.

I get variable results with this. Error messages include:
Can’t set up server admin
java.rmi.server.ExportException: Listen failed on port: 1109;
nested exception is:
java.net.SocketException: Descriptor not a socket: listen
failed

23.1.1.3 Compiled class files
You must copy all servlet .class files to

� F:\jdk1.2.2\jsdk2.1\webpages\WEB-INF\servlets

to get them to run.

23.1.1.4 Incorrect example link
The Java Server Development kit documentation home page is:

� f:\jdk1.2.2\jsdk2.1\webpages\index.html

The servlet example link is incorrect. Try

� f:\jdk1.2.2\jsdk2.1\examples\servlets\index.html

instead.

The examples links don’t work.

23.1.1.5 Complete source code
The source code listed is incomplete. The complete code is in:

� F:\jdk1.2.2\jsdk2.1\examples\WEB-INF\servlets

and so are the class files. Don’t forget to copy them to

� F:\jdk1.2.2\jsdk2.1\webpages\WEB-INF\servlets

HTML files to run the examples

The html files do not run the servlets. Example html files are not included.!

23.1.1.6 Calling Servlets From a Browser
The URL for a servlet has the following general form, where servlet-name corresponds to
the name you have given your servlet:

� http://machine-name:port/servlet/servlet-name

The following:

� http://localhost:8080/servlet/HTTPGetServlet

runs the first Deitel Java servlet example.

Servlet URLs can contain queries, such as for HTTP GET requests. For example, the servlet
that delivers details about a particuar book takes the stock-number of the book as a query.
The servlet’s name is bookdetails; the URL for the servlet to GET and display all the infor-
mation about the bookstore’s featured book is:

� http://localhost:8080/servlet/bookdetails?bookId=203

279 Servlets Chapter 23

email: ian.chivers@kcl.ac.uk © Ian D Chivers

23.1.1.7 Calling Servlets from an HTML page
The following html file runs the first Deitel servlet example.
<!— Fig. 19.6: HTTPGetServlet.html —>
<HTML>

<HEAD>
<TITLE>

Servlet HTTP GET Example
</TITLE>

</HEAD>
<BODY>

<FORM
ACTION="http://localhost:8080/servlet/HTTPGetServlet"
METHOD="GET">
<P>Click the button to have the servlet send

an HTML document</P>
<INPUT TYPE="submit" VALUE="Get HTML Document">
</FORM>

</BODY>
</HTML>

23.2 Package java.servlet

23.2.1 Interfaces
RequestDispatcher

Servlet

ServletConfig

ServletContext

ServletRequest

ServletResponse

SingleThreadModel

23.2.2 Classes
GenericServlet

ServletInputStream

ServletOutputStream

23.2.3 Exceptions
ServletException

UnavailableException

23.3 Package java.servlet.http

23.3.1 Interfaces
HttpServletRequest

HttpServletResponse

HttpSession

Chapter 23 Servlets 280

© Ian D Chivers email: ian.chivers@kcl.ac.uk

HttpSessionBindingListener

HttpSessionContext

23.3.2 Classes
Cookie

HttpServlet

HttpSessionBindingEvent

HttpUtils

23.4 Package java.servlet.jsp

23.4.1 Interfaces
HttpJspPage

JspPage

23.4.2 Classes
JspEngineInfo

JspFactory

JspWriter

PageContext

23.4.3 Exceptions
JspException

JspTagException

23.5 Package java.servlet.jsp.tagtext

23.5.1 Interfaces
BodyTag

Tag

23.5.2 Classes
BodyContent

BodyTagSupport

TagAttributeInfo

TagData

TagExtraInfo

TagInfo

TagLibraryInfo

TagSupport

VariableInfo

We will look at java server pages in more depth in the next chapter. In this chapter we will
concentrate on some simple examples looking at:

23.6 Bibliography
Probably the best place to start is

� http://java.sun.com/products/servlet/index.html

Follow the links.

281 Servlets Chapter 23

email: ian.chivers@kcl.ac.uk © Ian D Chivers

The following provides on-line documentation.

� http://java.sun.com/products/servlet/2.2/javadoc/index.html

The following is a white paper on servlets.

� http://java.sun.com/products/servlet/whitepaper.html

Also try

� http://java.sun.com/docs/books/tutorial/servlets/TOC.html

for an on-line tutorial.

Chapter 23 Servlets 282

© Ian D Chivers email: ian.chivers@kcl.ac.uk

24
JavaServer Pages

Aims

The aims of this chapter are to provide a coverage of the package java.util.

24 JavaServer Pages
JavaServer pages (JSP) are Sun’s response to Microsoft’s Active Server Pages. Both are de-
signed to create dynamic web pages. ASP is restricted to the Microsoft platform. ASP are
found on Microsoft Internet Information Server (IIS) and work under Windows NT Server.
The following url:–

� http://mountain-ash.cnit.kcl.ac.uk/

will be the system we will be using for some of the following examples.

JSP is Sun’s platform independent variant of ASP. JSP technology uses XML-like tags and
scriptlets written in the Java programming language to encapsulate the logic that generates
the content for the page. Additionally, the application logic can reside in server-based re-
sources (e.g. JavaBeans) that the page accesses with these tags and scriptlets. Any and all
formatting (HTML or XML) tags are passed directly back to the response page. By separat-
ing the page logic from its design and display and supporting a reusable component-based
design, JSP technology makes it fast and easy (if you believe that you’ll believe anything!)
to build web-based applications.

24.1 Bibliography

24.1.1 JSP
Visit

� http://java.sun.com/products/jsp/

Also have a look at:

� http://www.serverpages.com/Java_Server_Pages/

24.1.2 HTML
Visit:–

� http://members.aol.com/htmlguru/

or just try putting in html to AskJeeves.

24.1.3 XML
Visit:–

� http://www.xml.org/

and

� http://www.xml.org/xmlorg_resources/whitepapers.shtml

Chapter 24 JavaServer Pages 284

© Ian D Chivers email: ian.chivers@kcl.ac.uk

25
Package java.util

Aims

The aims of this chapter are to provide a coverage of the package java.util.

25 Package java.util
This chapter looks at some of the the java.util package. It should be apparent by now that a
working knowledge of the class library is essential for a good understanding of any object
oriented language.

25.1 Package java.util
Contains the collections framework, legacy collection classes, event model, date and time
facilities, internationalization, and miscellaneous utility classes (a string tokenizer, a ran-
dom-number generator, and a bit array).

25.1.1 Interface Summary

25.1.1.1 Collection
The root interface in the collection hierarchy.

25.1.1.2 Comparator
A comparison function, which imposes a total ordering on some collection of objects.

25.1.1.3 Enumeration
An object that implements the Enumeration interface generates a series of elements, one at
a time.

25.1.1.4 EventListener
A tagging interface that all event listener interfaces must extend.

25.1.1.5 Iterator
An iterator over a collection.

25.1.1.6 List
An ordered collection (also known as a sequence).

25.1.1.7 ListIterator
An iterator for lists that allows the programmer to traverse the list in either direction and
modify the list during iteration.

25.1.1.8 Map
An object that maps keys to values.

25.1.1.9 Map.Entry
A map entry (key-value pair).

25.1.1.10 Observer
A class can implement the Observer interface when it wants to be informed of changes in
observable objects.

25.1.1.11 Set
A collection that contains no duplicate elements.

25.1.1.12 SortedMap
A map that further guarantees that it will be in ascending key order, sorted according to the
natural ordering of its keys (see the Comparable interface), or by a comparator provided at
sorted map creation time.

25.1.1.13 SortedSet
A set that further guarantees that its iterator will traverse the set in ascending element order,
sorted according to the natural ordering of its elements (see Comparable), or by a Compara-
tor provided at sorted set creation time.

Chapter 25 Package java.util 286

© Ian D Chivers email: ian.chivers@kcl.ac.uk

25.1.2 Class Summary

25.1.2.1 AbstractCollection
This class provides a skeletal implementation of the Collection interface, to minimize the
effort required to implement this interface.

25.1.2.2 AbstractList
This class provides a skeletal implementation of the List interface to minimize the effort re-
quired to implement this interface backed by a “random access” data store (such as

an array).

25.1.2.3 AbstractMap
This class provides a skeletal implementation of the Map interface, to minimize the effort
required to implement this interface.

25.1.2.4 AbstractSequentialList
This class provides a skeletal implementation of the List interface to minimize the effort re-
quired to implement this interface backed by a “sequential access” data store (such as a
linked list).

25.1.2.5 AbstractSet
This class provides a skeletal implementation of the Set interface to minimize the effort re-
quired to implement this interface.

25.1.2.6 ArrayList
Resizable-array implementation of the List interface.

25.1.2.7 Arrays
This class contains various methods for manipulating arrays (such as sorting and searching).

25.1.2.8 BitSet
This class implements a vector of bits that grows as needed.

25.1.2.9 Calendar
Calendar is an abstract base class for converting between a Date object and a set of integer
fields such as YEAR, MONTH, DAY, HOUR, and so on.

25.1.2.10 Collections
This class consists exclusively of static methods that operate on or return collections.

25.1.2.11 Date
The class Date represents a specific instant in time, with millisecond precision.

25.1.2.12 Dictionary
The Dictionary class is the abstract parent of any class, such as Hashtable, which maps keys
to values.

25.1.2.13 EventObject
The Event class is the abstract root class from which all event state objects shall be derived.

25.1.2.14 GregorianCalendar
GregorianCalendar is a concrete subclass of Calendar and provides the standard calendar
used by most of the world.

25.1.2.15 HashMap
Hash table based implementation of the Map interface.

287 Package java.util Chapter 25

email: ian.chivers@kcl.ac.uk © Ian D Chivers

25.1.2.16 HashSet
This class implements the Set interface, backed by a hash table (actually a HashMap in-
stance).

25.1.2.17 Hashtable
This class implements a hashtable, which maps keys to values.

25.1.2.18 LinkedList
Linked list implementation of the List interface.

25.1.2.19 ListResourceBundle
ListResourceBundle is a abstract subclass of ResourceBundle that manages resources for a
locale in a convenient and easy to use list.

25.1.2.20 Locale
A Locale object represents a specific geographical, political, or cultural region.

25.1.2.21 Observable
This class represents an observable object, or “data” in the model-view paradigm.

25.1.2.22 Properties
The Properties class represents a persistent set of properties.

25.1.2.23 PropertyPermission
This class is for property permissions.

25.1.2.24 PropertyResourceBundle
PropertyResourceBundle is a concrete subclass of ResourceBundle that manages resources
for a locale using a set of static strings from a property file.

25.1.2.25 Random
An instance of this class is used to generate a stream of pseudorandom numbers.

25.1.2.26 ResourceBundle
Resource bundles contain locale-specific objects.

25.1.2.27 SimpleTimeZone
SimpleTimeZone is a concrete subclass of TimeZone that represents a time zone for use
with a Gregorian calendar.

25.1.2.28 Stack
The Stack class represents a last-in-first-out (LIFO) stack of objects.

25.1.2.29 StringTokenizer
The string tokenizer class allows an application to break a string into tokens.

25.1.2.30 TimeZone
TimeZone represents a time zone offset, and also figures out daylight savings.

25.1.2.31 TreeMap
Red-Black tree based implementation of the SortedMap interface.

25.1.2.32 TreeSet
This class implements the Set interface, backed by a TreeMap instance.

25.1.2.33 Vector
The Vector class implements a growable array of objects.

25.1.2.34 WeakHashMap
A hashtable-based Map implementation with weak keys.

Chapter 25 Package java.util 288

© Ian D Chivers email: ian.chivers@kcl.ac.uk

25.1.3 Exception Summary

25.1.3.1 ConcurrentModificationException
This exception may be thrown by methods that have detected concurrent modification of a

backing object when such modification is not permissible.

25.1.3.2 EmptyStackException
Thrown by methods in the Stack class to indicate that the stack is empty.

25.1.3.3 MissingResourceException
Signals that a resource is missing.

25.1.3.4 NoSuchElementException
Thrown by the nextElement method of an Enumeration to indicate that there are no more
elements in the enumeration.

25.1.3.5 TooManyListenersException
The TooManyListenersException Exception is used as part of the Java Event model to an-
notate and implement a unicast special case of a multicast Event Source.

25.2 Bibliography

289 Package java.util Chapter 25

email: ian.chivers@kcl.ac.uk © Ian D Chivers

26
Package java.awt.dnd

Aims

The aims of this chapter are to provide a coverage of some of the the package java.awt.dnd.

26 Package java.awt.dnd
This chapter looks at some of the the java.awt.dnd package.

26.1 Package java.awt.dnd – JDK 1.2
Drag and Drop is a direct manipulation gesture found in many Graphical User Interface sys-
tems that provides a mechanism to transfer information between two entities logically asso-
ciated with presentation elements in the GUI. Normally driven by a physical gesture of a
human user using an appropriate input device, Drag and Drop provides both a mechanism
to enable continuous feedback regarding the possible outcome of any subsequent data trans-
fer to the user during navigation over the presentation elements in the GUI, and the facili-
ties to provide for any subsequent data negotiation and transfer.

This package defines the classes and interfaces necessary to perform Drag and Drop opera-
tions in Java. It defines classes for the drag-source and the drop-target, as well as events for
transferring the data being dragged. This package also provides a means for giving visual
feedback to the user throughout the duration of the Drag and Drop operation.

26.1.1 Interface Summary

26.1.1.1 Autoscroll
During DnD operations it is possible that a user may wish to drop the subject of the opera-
tion on a region of a scrollable GUI control that is not currently visible to the user.

26.1.1.2 DragGestureListener
This interface is sourced from a DragGestureRecognizer and is invoked when an object of
that (sub)class detects a drag initiating gesture.

26.1.1.3 DragSourceListener
The DragSourceListener defines the event interface for originators of Drag and Drop opera-
tions to track the state of the user’s gesture, and to provide appropriate “drag over” feed-
back to the user throughout the Drag and Drop operation.

26.1.1.4 DropTargetListener
The DropTargetListener interface is the callback interface used by the DropTarget class to
provide notification of DnD operations that involve the subject DropTarget.

26.1.2 Class Summary

26.1.2.1 DnDConstants
This class contains constant values representing the type of action(s) to be

performed by a Drag and Drop operation.

26.1.2.2 DragGestureEvent
A DragGestureEvent is passed to DragGestureListener’s dragGestureRecognized() method
when a particular DragGestureRecognizer detects that a platform dependent drag initiating

gesture has occurred on the Component that it is tracking.

26.1.2.3 DragGestureRecognizer
The DragGestureRecognizer is an abstract base class for the specification of a plat-
form-dependent listener that can be associated with a particular Component in order to iden-
tify platform-dependent drag initiating gestures.

26.1.2.4 DragSource
The DragSource is the entity responsible for the initiation of the Drag and Drop operation,
and may be used in a number of scenarios: 1

Chapter 26 Package java.awt.dnd 292

© Ian D Chivers email: ian.chivers@kcl.ac.uk

default instance per JVM for the lifetime of that JVM.

26.1.2.5 DragSourceContext
The DragSourceContext class is responsible for managing the initiator side of the Drag and
Drop protocol.

26.1.2.6 DragSourceDragEvent
The DragSourceDragEvent is delivered from the DragSourceContextPeer, via the
DragSourceContext, to the currently registered DragSourceListener.

26.1.2.7 DragSourceDropEvent
The DragSourceDropEvent is delivered from the DragSourceContextPeer, via the
DragSourceContext, to its currently registered DragSourceListener’s dragDropEnd()
method.

26.1.2.8 DragSourceEvent
This class is the base class for DragSourceDragEvent and DragSourceDropEvent.

26.1.2.9 DropTarget
The DropTarget is associated with a Component when that Component wishes to accept
drops during Drag and Drop operations.

26.1.2.10 DropTarget.DropTargetAutoScroller
this protected nested class implements autoscrolling

26.1.2.11 DropTargetContext
A DropTargetContext is created whenever the logical cursor associated with a Drag and
Drop operation coincides with the visible geometry of a Component associated with a
DropTarget.

26.1.2.12 DropTargetDragEvent
The DropTargetDragEvent is delivered to a DropTargetListener via its dragEnter() and
dragOver() methods.

26.1.2.13 DropTargetDropEvent
The DropTargetDropEvent is delivered via the DropTargetListener drop() method.

26.1.2.14 DropTargetEvent
The DropTargetEvent is the base class for both the DropTargetDragEvent and the
DropTargetDropEvent.

26.1.2.15 MouseDragGestureRecognizer
This abstract subclass of DragGestureRecognizer defines a DragGestureRecognizer for
mouse based gestures.

26.1.3 Exception Summary

26.1.3.1 InvalidDnDOperationException
This exception is thrown by various methods in the java.awt.dnd package.

A typical Drag and Drop operation can be decomposed into the following states (not en-
tirely sequentially):

� A DragSource comes into existence, associated with some presentation element
(Component) in the GUI, to initiate a Drag and Drop of some potentially Trans-
ferable data.

293 Package java.awt.dnd Chapter 26

email: ian.chivers@kcl.ac.uk © Ian D Chivers

� 1 or more DropTarget(s) come into/go out of existence, associated with presenta-
tion elements in the GUI (Components), potentially capable of consuming Trans-
ferable data types.

� A DragGestureRecognizer is obtained from the DragSource and is associated
with a Component in order to track and identify any Drag initiating gesture by
the user over the Component.

� A user makes a Drag gesture over the Component, which the registered
DragGestureRecognizer detects, and notifies its DragGestureListener of.

� Note: Although this API consistently refers to the stimulus for a drag and drop
operation being a physical gesture by a human user, this does not preclude a pro-
grammatically driven DnD operation given the appropriate implementation of a
DragSource. This package contains the abstract class
MouseDragGestureRecognizer for recognizing mouse device gestures. Other ab-
stract subclasses may be provided by the platform to support other input devices
or particular Component class semantics.

� The DragGestureListener causes the DragSource to initiate the Drag and Drop
operation on behalf of the user, perhaps animating the GUI Cursor and/or render-
ing an Image of the item(s) that are the subject of the operation.

� As the user gestures navigate over Component(s) in the GUI with associated
DropTarget(s), the DragSource receives notifications in order to provide “Drag
Over” feedback effects, and the DropTarget(s) receive notifications in order to
provide “Drag Under” feedback effects based upon the operation(s) supported
and the data type(s) involved.

The gesture itself moves a logical cursor across the GUI hierarchy, intersecting the geome-
try of GUI Component(s), possibly resulting in the logical “Drag” cursor entering, crossing,
and subsequently leaving Component(s) and associated DropTarget(s).

The DragSource object manifests “Drag Over” feedback to the user, in the typical case by
animating the GUI Cursor associated with the logical cursor.

DropTarget objects manifest “Drag Under” feedback to the user, in the typical case, by ren-
dering animations into their associated GUI Component(s) under the GUI Cursor.

The determination of the feedback effects, and the ultimate success or failure of the data
transfer, should one occur, is parameterized as follows:

� By the transfer “operation” selected by the user, and supported by both the
DragSource and DropTarget: Copy, Move or Reference(link).

� By the intersection of the set of data types provided by the DragSource and the
set of data types comprehensible by the DropTarget.

� When the user terminates the drag operation, normally resulting in a successful
Drop, both the DragSource and DropTarget receive notifications that include,
and result in the type negotiation and transfer of, the information associated with
the DragSource via a Transferable object.

26.2 Bibliography

Chapter 26 Package java.awt.dnd 294

© Ian D Chivers email: ian.chivers@kcl.ac.uk

27
IEEE Arithmetic

‘Can you do Addition?’ the White Queen asked. ‘What’s one and one and one and
one and one and one and one and one and one and one?’

‘I don’t know,’ said Alice. ‘I lost count.’

Through the Looking Glass, Lewis Carroll.

Aims

The aims of this chapter are to look in more depth at arithmetic and in particular
what support Java has for the IEEE 754 standard. There is a coverage of:

Hardware support for arithmetic.

Integer formats.

Floating point formats: single and double.

Special values: denormal, infinity and not a number - NAN.

Exceptions and flags: divide by zero, inexact, invalid, overflow, underflow.

27 IEEE Arithmetic
This chapter is based on material from:

Chivers I.D., Sleightholme J., Introducing Fortran 95, Springer Verlag.

The literature contains details of the IEEE 754 standard and the bibliography contains de-
tails of a number of printed and on-line sources.

27.1 History
When we use programming languages to do arithmetic two major concerns are the ability to
develop reliable and portable numerical software. Arithmetic is done in hardware and there
are number of things to consider:

The range of hardware available both now and in the past.

The evolution of hardware.

and there has been a very considerable change in arithmetic units since the first computers.
The following is a list of hardware and computing systems that the authors have some used
or have heard of. It is not exhaustive or definitive. It reflects the authors age and experi-
ence.

� CDC

� Cray

� IBM

� ICL

� Fujitsu

� DEC

� Compaq

� Gateway

� Sun

� Silicon Graphics

� Hewlett Packard

� Data General

� Honeywell

� Elliot

� Mostek

� National Semiconductors

� Intel

� Zilog

� Motorola

� Signetics

� Amdahl

� Texas Instruments

� Cyrix

Some of the operating systems include:

Chapter 27 IEEE Arithmetic 296

© Ian D Chivers email: ian.chivers@kcl.ac.uk

� NOS

� NOS/BE

� Kronos

� Unix

� VMS

� Dos

� Windows

� MVS

� VM

� CP/M

and again the list is not exhaustive or definitive. The intention is to provide with some idea
of wide range of hardware, computer manufacturers and operating systems that have existed
in the last 50 years.

To help with the anarchy that existed in this area Doctor Robert Stewart (acting on behalf
of the IEEE) convened a meeting which led to the birth of IEEE 754.

The first draft was prepared by Willam Kahan, Jerome Coonen and Harold Stone, called the
KCS draft and eventually adopted as IEEE 754. A fascinating account of the development
of this standard can be found in An Interview with the Old Man of Floating Point, and the
bibliography provides a web address of this interview. Kahan went on to get the ACM Tu-
ring Award in 1989 for his work in this area

This has become a de facto standard amongst arithmetic units in modern hardware. Note
that it is not possibe to precisely describe the answers a program will give and the authors
of the standard knew this. This goal is virtually impossible to achieve when one considers
floating point arithmetic. Reasons for this include:

� The conversions of numbers between decimal and binary formats.

� The use of elementary library functions.

� Results of calculations may be in hardware inaccessible to the programmer.

� Intermediate results in subexpressions or arguments to procedures.

The bibliography contains details of a paper that addresses this issue in much greater depth
– Differences Among IEEE 754 Implementions.

Fortran is one of a small number of languages to provide access to IEEE arithmetic, and it
achives this via TR1880 which will become an integral part of Fortran 2000. The C stan-
dard (C9X) addresses this issue and Java offers limited IEEE arithmetic support. More in-
formation can be found in the references at the end of the chapter.

27.2 IEEE 754 Specifications
The standard specifies a number of things including:

� Single precision floating point format.

� Double precision floating point format.

� Two classes of extended floating point formats.

� Accuracy requirements on the following floating point operations:

� Add.

297 IEEE Arithmetic Chapter 27

email: ian.chivers@kcl.ac.uk © Ian D Chivers

� Subtract.

� Multiply.

� Divide.

� Square root.

� Remainder.

� Round numbers in floating point format to integer values.

� Convert between different floating point formats.

� Convert between floating point and integer format.

� Compare

� Base conversion - i.e. when converting between decimal and binary floating
point formats and vice versa.

� Exception handling for:

� Divide by zero.

� Overflow.

� Underflow.

� Invalid operation.

� Inexact.

� Rounding directions.

� Rounding precisions.

and we will look briefly at each of these requirements.

27.2.1 Single precision floating point format.
This is a 32 bit quantity made up of a sign bit, 8 bit baised exponent and 23 bit mantissa.
The standard also specifies that certain of the bit patterns are set aside and do not represent
normal numbers. This means that valid numbers are in the range 3.40282347E+38 to
1.17549435E-38 and the precision is between 6 and 9 digits depending on the numbers.

The special bit patterns provide the following:

� +0

� -0

� subnormal numbers in the range 1.17549421E-38 to 1.40129846-45

� + infinity

� - infinity

� quiet NaN (Not a Number)

� signalling NaN

One of the first systems that the authors worked with that had special bits patterns set aside
were the CDC 6000 range of computers that had negative indefinite and infinity. The ideas
are not new therefore, as this was in the late 1970s.

The support of positive and negative zero means that certain problems can be handled cor-
rectly including:

� The evaluation of the log function which has a discontinuity at zero.

Chapter 27 IEEE Arithmetic 298

© Ian D Chivers email: ian.chivers@kcl.ac.uk

� The equation 1 1
z z� can be solved when z = -1.

See also the Kahan paper Branch Cuts for Complex Elementary Functions, or Much Ado
About Nothing’s Sign Bit for more details.

Subnormals, which permit gradual underflow, fill the gap between 0 and the smallest nor-
mal number.

Simply stated underflow occurs when the result of an arithmetic operation is so small that it
is subject to a larger than normal rounding error when stored. The existence of subnormals
means that greater precision is available with these small numbers than normal numbers.
The key features of gradual underflow are:

� When underflow does occur there should never be a loss of accuracy any greater
than from ordinary roundoff.

� The operations of addition, subtraction comparision and remainder are always
exact.

� Algorithms written to take advanage of subnormal numbers have smaller error
bounds than other systems.

� If x and y are within a factor of 2 then x-y is error free, which is used in a num-
ber of algorithms that increase the precision at critical regions.

The combination of postive and negative zero and subnormal numbers means that when x
and y are small and x-y has been flushed to zero the evaluation of:

�
1

()x y�

can be flagged and located.

Certain arithmetic operations cause problems including:

� 0 * �

� 0 / 0

� x when x < 0

and the support for NaN handles these cases.

The support for positive and negative infinity allows the handling of:

� x / 0 when x is non-zero and of either sign

and the outcome of this means that we write our programs to take the appropriate action. In
some cases this would mean recalculating using another approach.

For more information see the references in the bibliography.

27.2.2 Double precision floating point format.
This is a 64 bit quantity made up of a sign bit, 11 bit biased exponent and 52 bit mantissa.
As with single precision the standard specifies that certain of the bit patterns are set aside
and do not represent normal numbers. This means we have valid numbers in the range
1.7976931348623157E308 to 2.2250738585072014E-308 and precsion between 15 and 17
digits depending on the numbers.

As with single precision there are bit patterns set aside for the same special conditions.

Note that his does not mean that the hardware has to handle the manipulation of this 64 bit
quantity in an identical fashion. The Sparc and Intel family handle the above as two 32 bit
quantities but the order of the 2 component parts is reversed – so called big endian and little
endian.

299 IEEE Arithmetic Chapter 27

email: ian.chivers@kcl.ac.uk © Ian D Chivers

27.2.3 Two classes of extended floating point formats.
These formats are not mandatory. A number of variants of double extended exist including:

Sun – 4 32 bit words, one sign bit, 15 bit biased exponent and 112 bit mantissa, numbers in
the range 3.362E-4932 to 1.189E4932, 33 to 36 digits of significance.

Intel – 10 bytes – one sign bit, 15 bit biased exponent, 63 bit mantissa, numbers in the
range 3.362E-4932 to 1.189E4932, 18-21 digits of significance.

PowerPC – as Sun.

27.2.4 Accuracy requirements
Remainder and compare must be exact. The rest should return the exact result if possible. If
not there are well defined rounding rules to apply.

27.2.5 Base conversion - i.e. when converting between decimal and binary floating
point formats and vice versa.
These results should be exact if possible, if not the results must differ by tolerances that de-
pend on rounding mode.

27.2.6 Exception handling
It must be possible to signal to the user the occurence of the following conditions or excep-
tions.

� Divide by zero.

� Overflow.

� Underflow.

� Invalid operation.

� Inexact.

The ability to detect the above is a big step forward in our ability to write robust and porta-
ble code. These operations do occur in calculations and it is essential to have user program-
mer control over what action to take.

27.2.7 Rounding directions.
Four rounding directions are available:

� nearest – the default

� down

� up

� chop

Access to directed rounding can be used to implement interval arithmetic for example.

27.2.8 Rounding precisions.
The only mandatory part here is that machines that computations in extended mode let the
programmer control the precision via a control word. This means that if software is being
developed on machines that support extended modes they can be switched to a mode that
would enable the software to run on a system that didn’t support extended mode. This area
looks like a can of worms. Look at the Kahan paper for more information – Lecture Notes
on the Status of IEEE 754.

27.3 Resumé
The above has provided a quick tour on IEEE 754.

Chapter 27 IEEE Arithmetic 300

© Ian D Chivers email: ian.chivers@kcl.ac.uk

27.4 ematics
This is the best place to start:

http://www.cs.berkeley.edu/~darcy/Borneo/

Abstract

The design of Java relies heavily on experiences with programming languages past. Major
Java features, including garbage collection, object-oriented programming, and strong static
type checking, have all proved their worth over many years. However, Java breaks with tra-
dition in its floating point support: instead of accepting whatever floating point format a
machine might provide, Java mandates use of the nearly ubiquitous IEEE Standard for Bi-
nary Floating Point Arithmetic (IEEE 754-1985). Unfortunately, Java’s specification creates
several problems for numerical computation. Only a proper subset of IEEE 754’s required
features are supported by Java; useful IEEE 754 features are either explicitly forbidden or
omitted from the Java specification. Java does not allow use of the IEEE 754 recommended
double extended format on the x86. Using the double extended format often protects simple
numerical formulas from floating point anomalies. Strict adherence to Java’s floating point
semantics leads to significant performance penalties on popular architectures, including both
the x86 and PowerPC.

To address these problems, the Borneo language changes and extends Java so that all IEEE
754 features can be expressed and so that new numeric types can be easily created. Borneo
allows either better hardware use than Java or (nearly) exact reproducibility while in all
cases being predictable.

Summary

Unlike other languages designed to support IEEE 754 features (such as Modula-3, C9X, and
RealJava), Borneo does not just add library functions to set and query the floating point
state. Borneo has scoped language declarations to control the rounding mode, sticky flags,
and trapping status. Lexical scoping permits more optimizations and makes reasoning about
the program easier. One major change to Java not directly related to floating point is Bor-
neo’s addition of operator overloading. Besides the ability to overload existing operators, as
in C++, Borneo also lets novel, user-defined, operators be defined and overloaded. Except
for some new keywords, Borneo is upwards compatible with Java. Given a Java class P
compiled to bytecode, another Java class cannot determine whether P was compiled under
Borneo semantics or Java semantics. (Borneo semantics disallow some floating point
optimizations permitted in Java).

Also have a look at

http://math.nist.gov/javanumerics/reports/jgfnwg-01.html

27.5 Bibliography
Hauser J.R., Handling Floating Point Exceptions in Numeric Programs, ACM Transaction
on Programming Languages and Systems, Vol. 18, No. 2, March 1996, Pages 139-174.

The paper looks at a number of techniques for handling floating point exceptions in nu-
meric code. One of the conclusions is for better structured support for floating point excep-
tion handling in new programming languages, or of course later standards of existing lan-
guages.

IEEE, IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985, Insti-
tute of Electrical and Electronic Engineers Inc.

The formal definition of IEEE 754.

301 IEEE Arithmetic Chapter 27

email: ian.chivers@kcl.ac.uk © Ian D Chivers

Knuth D., Seminumerical Algorithms, Addison Wesley.

There is a coverage of floating point arithmetic, multiple precision arithmetic, radix conver-
sion and rational arithmetic.

Sun, Numerical Computation Guide, SunPro.

Very good coverage of the numeric formats for IEEE Standard 754 for Binary
Floating-Point Arithmetic. All SunPro compiler products support the features of the IEEE
754 standard.

27.5.1 Web based sources
http://validgh.com/goldberg/addendum.html

Differences Among IEEE 754 Implementations. The material in this paper will eventually be
included in the Sun Numerical Computation Guide as an addendum to Appendix D, David
Goldberg’s What Every Computer Scientist Should Know about Floating Point Arithmetic.

http://docs.sun.com/

Follow the links to the Floating Point and Common Tools AnswerBook. The Numerical
Computation Guide can be browsed on-line or downloaded as a pdf file. The last time we
checked it was about 260 pages. Good source of information if you have Sun equipment.

http://www.validgh.com/

This web site contains technical and business information relating to the validgh profes-
sional consulting practice of David G. Hough. Contains links to the Goldber paper and the
above addendum by Doug Priest.

http://babbage.cs.qc.edu/courses/cs341/IEEE-754references.html

Brief coverage of IEEE arithmetic with pointers to further sources. There is also a coverage
of the storage layout and ranges of floating point numbers. Computer Science 341 is an in-
troduction to the design of a computer’s hardware, particularly the CPU and memory sys-
tems.

http://www.nag.co.uk/nagware/NP/TR.html

NAG provide coverage of TR 15580 and TR 15581. The first is the support Fortran has for
IEEE arithmetic.

http://www.cs.berkeley.edu/~wkahan/

Willam Kahan home page.

http://www.cs.berkeley.edu/~wkahan/ieee754status/754story.html

An Interview with the Old Man of Floating Point. Reminiscences elicited from William
Kahan by Charles Severance, which appears in an issue of IEEE Computer - March 1998
(not confirmed).

http://www.cs.berkeley.edu/~wkahan/ieee754status/ieee754.ps

Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point Arithmetic.
Well worth a read.

http://www.stewart.cs.sdsu.edu/cs575/labs/l3floatpt.html

CS 575 Supercomputing – Lab 3: Floating Point Arithmetic. CS 575 is an interdisciplinary
course to introduce students in the sciences and engineering to advanced computing tech-
niques using the supercomputers at the San Diego Supercomputer Center (SDSC).

http://www.mathcom.com/nafaq/index.html

FAQ: Numerical Analysis and Associated Fielda Resource Guide. A summary of Internet
resources for a number of fields related to numercial analysis.

Chapter 27 IEEE Arithmetic 302

© Ian D Chivers email: ian.chivers@kcl.ac.uk

http://www.math.psu.edu/dna/disasters/ariadne.html

The Explosion of the Ariane 5: A 64 bit floating point number relating to the horizontal ve-
locity of the rocket with respect to the platform was converted to a 16 bit signed integer.
The number was larger than 32,768, the largest integer storeable in a 16 bit signed integer,
and thus the conversion failed.

27.5.2 Hardware Sources
Osbourne A., Kane G., 4 and 8 Bit Microprocessor Handbook, Osbourne/McGraw Hill.

Good source of information on 4 and 8 bit microprocessors.

Osbourne A., Kane G., 16 Bit Microprocessor Handbook, Osbourne/McGraw Hill.

Ditto 16 bit microprocessors.

Intel, 386 DX Microprocessor Hardware Reference Manual, Intel

The first Intel offering with 32 bit addressing.

Intel, 80386 System Software Writer’s Guide, Intel

Developer’s Guide to the above.

http://www.intel.com/

Intel’s home page.

http://developer.intel.com/design/pentiumiii/

Details of the Pentium III processor.

http://www.cyrix.com/

Cyrix home page.

Bhandarkar D.P., Alpha Implementations and Architceure: Complete Reference and Guide,
Digital Press

Looks at some of the trade offs and design philosophy behind the alpha chip. The author
worked with VAX, MicroVAX and VAX vectors as well as the Prism. Also looks at the
GEM compiler technology that DEC/Compaq use.

http://www.digital.com/alphaserver/workstations/

Home page for the Compaq/DEC Alpha systems.

http://www.sgi.com/

Silicon Graphics home page.

http://www.sun.com/

Sun home page.

http://www.ibm.com/

IBM home page.

27.5.3 Operating Systems
Deitel H.M., An Introduction to Operating Systems, Addison Wesley.

The revised first edition includes case studies of Unix, VMS, CP/M, MVS and VM.

27.5.4 Java and IEEE 754
http://www.cs.berkeley.edu/~darcy/Borneo/

Borneo Language Homepage: Borneo is a dialect of the Java language designed to have
true support for the IEEE 754 floating point standard. Well worth reading.

27.5.5 C and IEEE 754
http://wwwold.dkuug.dk/JTC1/SC22/WG14/

303 IEEE Arithmetic Chapter 27

email: ian.chivers@kcl.ac.uk © Ian D Chivers

The official home of JTC1/SC22/WG14 - C. The C programming language standard
ISO/IEC 9899 was adopted by ISO in 1990. ANSI then replaced their first standard X3.159
by the ANSI/ISO 9899 standard identical to ISO/IEC 9899:1990.

http://www.c9x.org/

Another source of information regarding C9X. There is a draft of the standard available and
Annex F, G and H contain details of the changes concerning arithmetic.

Chapter 27 IEEE Arithmetic 304

© Ian D Chivers email: ian.chivers@kcl.ac.uk

28
Language

Standardisation

Aims

The aims of this chapter are to provide a brief coverage of standardisation efforts, imple-
mentation differences and future developments.

28 Language Standardisation
This chapter looks at standardisation efforts, standard conformance, implementation differ-
ences and future developments.

28.1 Sun
Sun are obviously one of the major driving forces behind Java. However other companies
quickly saw the potential that Java had and there was an attempt to get the language stand-
ardised. This has had mixed success. Currently Sun has pulled out of the standardisation ex-
ercise and there have been legal battles involving Microsoft being the most widely known.

The first place to start is at Sun’s site. They make available the Java Language Specifica-
tion, and the second edition draft is now available for public review. The draft includes all
changes, clarifications and amendments made to the Java programming language since the
publication of the first edition of the language specification in 1996. Of particular note is
the full integration of the changes made in the 1.1 release of the Java platform into the
specification, especially nested classes and interfaces. The document is available in the fol-
lowing formats:

� HTML (tar.Z, ~865K)

� HTML (zip, ~600K)

� PDF (~3706K)

� PostScript (tar.Z, ~1765K)

� PostScript (zip, ~1267K)

You’ve also seen what else they make available during the course by using the on-line doc-
umentation.

Chapter 28 Language Standardisation 306

© Ian D Chivers email: ian.chivers@kcl.ac.uk

	Ta ble of Con tents
	1 Over view 16
	1.1 Aims 16
	1.2 As sump tions 16
	1.3 Course Ma te rial and Rec om mended Sources 16
	1.4 Java Ver sions Œ Bits of His tory 17
	1.4.1 1.0.x 17
	1.4.2 1.1.x 17
	1.4.3 1.2.x Œ aka Java 2. 17

	1.5 De vel op ment plat forms 17
	1.6 De vel op ment kits and Stan dards 18
	1.7 Mis cel la nea 18
	1.8 Course Time ta ble 19
	1.9 Coda 19
	1.10 Bib li og ra phy 19

	2 An In tro duc tion to Pro gramming Lan guages and Ob ject Ori ented Pro gramming 24
	2.1 For tran 66, 1966 24
	2.2 Pascal, 1975, ANSI & BSI 1982, ISO 1983, Ex tended Pascal 1991? 24
	2.3 For tran 77, 1978 25
	2.4 C, K&R 1978, Stan dard 1989. 25
	2.5 Mod ula 2, 1982, Stan dard 1996? 25
	2.6 Ada, ISO 8652: 1987 25
	2.7 C++, 1986, Stan dard No vem ber 1997 25
	2.8 Oberon 2, Late 1980™s, early 1990™s. 26
	2.9 For tran 90, 1991. 26
	2.10 Eif fel, 1988 26
	2.11 Ada, ISO 8652: 1995 26
	2.12 Java 27
	2.13 Vi sual Ba sic 27
	2.14 Lan guage Com par i son 27
	2.15 Lan guage Fea tures 29
	2.15.1 In de pend ent Com pi la tion 29
	2.15.2 Sep a rate Com pi la tion 29
	2.15.3 Con crete Data Types 29
	2.15.4 Ab stract Data Types 29
	2.15.5 Dy namic ar rays 29
	2.15.6 Nu meric and Gen eral Poly mor phism 29
	2.15.7 Mod ules 30
	2.15.8 Pointers and Ref er ences 30
	2.15.9 Pro ce dure Vari ables 30
	2.15.10 In her i tance 30
	2.15.11 Dy namic Bind ing 30
	2.15.12 Op er a tor Over loading 30
	2.15.13 Threads/Multitasking 30
	2.15.14 Ex cep tion Han dling 31

	2.16 Some Im por tant Mile stones in Pro gram Lan guage De vel op ment 31
	2.16.1 Struc tured Pro gramming 31
	2.16.2 Step wise Re fine ment 31
	2.16.3 Data Struc turing, Con crete vs Ab stract Data Types 31
	2.16.4 In for ma tion Hiding Œ Mod ules 31

	2.17 Ter mi nol ogy of Ob ject Ori ented Pro gramming 31
	2.18 Par al lel De vel op ments 31
	2.18.1 Par al lel For tran Œ For tran 95, For tran 2000, SMP, MPI, HPF 32
	2.18.2 Par al lel C++ 32

	2.19 Ob ject Ori ented Pro gramming 32
	2.20 Ob ject Ori ented Lan guages 33
	2.20.1 Simula Œ 1967 33
	2.20.2 Smalltalk Œ 1978 33
	2.20.3 C++ 33
	2.20.4 Eif fel 33
	2.20.5 Oberon 2 33
	2.20.6 Ada 95 34
	2.20.7 Java 34

	2.21 Other Lan guages 35
	2.21.1 For tran 90 and For tran 95 35
	2.21.2 Mod ula 2 35

	2.22 The OO Ap proach 35
	2.22.1 Meyer™s Ap proach 35
	2.22.2 Rumbaugh et al 36
	2.22.3 Prac ti cal Steps 36

	2.23 Sim ple Ex am ple 37
	2.24 Other De vel op ments 38
	2.24.1 De vel op ment En vi ron ments 38
	2.24.2 Graph i cal De vel op ment Tools 38
	2.24.3 Soft ware Com po nents 38
	2.24.3.1 COM, OLE, ActiveX 39
	2.24.3.2 JavaBeans 39

	2.25 Coda 39
	2.26 Bib li og ra phy 40
	2.27 Prob lems 45

	3 An In tro duc tion to Java 48
	3.1 Pro gram De vel op ment 48
	3.2 Java Pro grams 48
	3.3 Java Ap plets 48
	3.4 Hello World Œ Java Pro gram 48
	3.5 Hello World Œ Java Ap plet 49
	3.6 Hello World: JApplet 52
	3.7 Hello World: JApplet al ter nate syn tax 52
	3.8 Hello World: JComponent 53
	3.9 Pro gram for line i/o 53
	3.10 Pro gram for nu meric i/o 54
	3.11 Some Java Rules and Ter mi nol ogy 56
	3.12 Good Pro gramming Guide lines 56
	3.13 Java Char ac ter Set 57
	3.14 Sum mary 57
	3.15 Bib li og ra phy 57
	3.15.1 Java 57
	3.15.2 HTML 57
	3.15.3 Char ac ter sets 58

	3.16 Prob lems 58

	4 Arith me tic and Ex pres sions in Java 60
	4.1 Ba sic nu meric types 60
	4.2 In te ger Nu meric Type 60
	4.3 Real Nu meric Type 62
	4.4 IEEE 754-1985 63
	4.5 Nu meric Type Con ver sion 63
	4.6 Whither com plex? 63
	4.7 Con stants or Pa ram e ters 63
	4.8 Op er a tors and Ex pres sion Eval u a tion 63
	4.8.1 Ex pres sion Eval u a tion 63
	4.8.2 Op er a tors, Pre ce dence and As so cia tiv ity. 64
	4.8.2.1 . [mem ber se lec tion] ob ject.mem ber 65
	4.8.2.2 [] [subscripting] pointer [expr] 65
	4.8.2.3 () [func tion call] expr (expr_list) 65
	4.8.2.4 ++ [post in cre ment] expr ++ 65
	4.8.2.5 Š [post dec re ment] expr Š 65
	4.8.2.6 ++ [pre in cre ment] ++ expr 65
	4.8.2.7 Š [pre dec re ment] Š expr 65
	4.8.2.8 ~ [com ple ment] ~ expr 65
	4.8.2.9 ! [not] ! expr 65
	4.8.2.10 - [unary mi nus] - expr 65
	4.8.2.11 + [unary plus] + expr 65
	4.8.2.12 new [cre ate] new type 66
	4.8.2.13 () [cast] (type) expr 66
	4.8.2.14 * [mul ti ply] expr * expr 66
	4.8.2.15 / [di vide] expr / expt 66
	4.8.2.16 % [modulo or re main der] expr % expr 66
	4.8.2.17 + [plus] expr + expr 66
	4.8.2.18 - [mi nus] expr - expr 66
	4.8.2.19 << [shift left] expr << expr 66
	4.8.2.20 >> [shift right] expr >> expr 66
	4.8.2.21 >>> [sihift right] expr >>> expr 66
	4.8.2.22 < [less than] expr < expr 66
	4.8.2.23 <= [less than or equal] expr <= expr 66
	4.8.2.24 > [greater than] expr > expr 66
	4.8.2.25 >= [greater than or equal] expr >= expr 66
	4.8.2.26 == [equal] expr == expr 66
	4.8.2.27 != [not equal] expr != expr 66
	4.8.2.28 & [bitwise AND] expr & expr 66
	4.8.2.29 ^ [bitwise ex clu sive OR] expr ^ expr 67
	4.8.2.30 | [bitwise in clu sive OR] expr | expr 67
	4.8.2.31 && [log i cal AND] expr && expr 67
	4.8.2.32 || [log i cal in clu sive OR] expr || expr 67
	4.8.2.33 ?: [con di tional ex pres sion] expr ? expr : expr 67
	4.8.2.34 = [con ven tional as sign ment] expr = expr 67
	4.8.2.35 *= [mul ti ply and as sign] expr *= expr 67
	4.8.2.36 /= [di vide and as sign] expr /= expr 67
	4.8.2.37 %= [modulo and as sign] expr %= expr 67
	4.8.2.38 += [add and as sign] expr += expr 67
	4.8.2.39 -= [sub tract and as sign] expr -= expr 67
	4.8.2.40 <<= [shift left and as sign] expr <<= expr 67
	4.8.2.41 >>= [shift right and as sign] expr >>= expr 67
	4.8.2.42 &= [AND and as sign] expr &= expr 67
	4.8.2.43 |= [in clu sive OR and as sign] expr |= expr 67
	4.8.2.44 ^= [ex clu sive OR and as sign] expr ^= expr 68

	4.9 Ex pres sion Ex am ples 68
	4.10 Char 71
	4.11 Boolean 72
	4.12 Ex am ple Pro grams 72
	4.12.1 Ex am ple Pro gram Œ Sim ple char ac ter and boolean out put 72
	4.12.2 Ex am ple Pro gram Œ Unicode char ac ter out put 72
	4.12.3 Ex am ple Pro gram Œ Bitwise op er a tors &, ^ and | 72

	4.13 Sum mary 73
	4.14 Pack age java.lang 73
	4.14.1 In ter face Sum mary 73
	4.14.1.1 Cloneable 73
	4.14.1.2 Com pa ra ble 73
	4.14.1.3 Runnable 73

	4.14.2 Class Sum mary 73
	4.14.2.1 Boolean 73
	4.14.2.2 Byte 74
	4.14.2.3 Char ac ter 74
	4.14.2.4 Char ac ter.Sub set 74
	4.14.2.5 Char ac ter.UnicodeBlock 74
	4.14.2.6 Class 74
	4.14.2.7 ClassLoader 74
	4.14.2.8 Com piler 74
	4.14.2.9 Dou ble 74
	4.14.2.10 Float 74
	4.14.2.11 InheritableThreadLocal 74
	4.14.2.12 In te ger 74
	4.14.2.13 Long 74
	4.14.2.14 Math 74
	4.14.2.15 Num ber 76
	4.14.2.16 Ob ject 76
	4.14.2.17 Pack age 76
	4.14.2.18 Pro cess 76
	4.14.2.19 Runtime 76
	4.14.2.20 RuntimePermission 76
	4.14.2.21 SecurityManager 76
	4.14.2.22 Short 76
	4.14.2.23 String 76
	4.14.2.24 StringBuffer 76
	4.14.2.25 Sys tem 76
	4.14.2.26 Thread 76
	4.14.2.27 ThreadGroup 76
	4.14.2.28 ThreadLocal 76
	4.14.2.29 Throwable 76
	4.14.2.30 Void 76

	4.15 Bib li og ra phy 77
	4.16 Prob lems 77

	5 Strings 80
	5.1 The ba sics 80
	5.2 java.lang.String 80
	5.2.1 String Methods 81
	5.2.1.1 String Ex am ple 1 Œ re place 82
	5.2.1.2 String Ex am ple 2 - valueOf 82
	5.2.1.3 String Ex am ple 3 Œ as above but no im port state ment 83

	5.3 java.lang.StringBuffer 83
	5.3.1 StringBuffer Methods 84
	5.3.1.1 StringBuffer Ex am ple 1 Œ throw ing an ex cep tion and catch ing 85
	5.3.1.2 StringBuffer Ex am ple 2 Œ throw ing an ex cep tion and splat 87

	5.4 Ref er ences 87
	5.5 Unicode 88
	5.6 Sum mary 89
	5.7 Prob lems 89

	6 Ar rays In Java 92
	6.1 Ex am ple 1 92
	6.2 Ex am ple 2 Vari ant on 1 us ing al ter nate syn tax 93
	6.3 Ex am ple 3 Œ two di men sional ar rays 94
	6.4 Ex am ple 4 Œ 1 d ar ray with real world -20 to +20 94
	6.5 Ex am ple 5 Œ 2 d ar ray in itial is ation 95
	6.6 Whole Ar ray Ma nip u la tion 95
	6.7 Sum mary 96
	6.8 Prob lems 96

	7 Con trol Struc tures 98
	7.1 Com pound State ment or Block 98
	7.2 Ex pres sion 98
	7.3 Boolean 98
	7.4 if (ex pres sion) state ment 98
	7.4.1 Ex am ple 1 98

	7.5 if (ex pres sion) state ment; else state ment; 98
	7.5.1 Ex am ple 1 99
	7.5.2 Ex am ple 2 99

	7.6 switch (ex pres sion) state ment 99
	7.6.1 Ex am ple 1 99

	7.7 while (ex pres sion) state ment 100
	7.7.1 Ex am ple 1 100

	7.8 do state ment while (ex pres sion); 101
	7.8.1 Ex am ple 1 101

	7.9 for (init-statement;ex pres sion 1; ex pres sion 2) state ment 102
	7.9.1 Ex am ple 1 102
	7.9.2 Ex am ple 2 102

	7.10 break, con tinue, goto state ments 102
	7.11 Sum mary 103
	7.12 Prob lems 103
	7.13 Bib li og ra phy 105

	8 Ex cep tions 108
	8.1 Linked List Œ Pascal 108
	8.2 Linked List Œ For tran 90 109
	8.3 Linked List Œ C++, old C syn tax 110
	8.4 Dis cus sion 111
	8.4.1 try 112
	8.4.2 catch 112
	8.4.3 fi nally 112

	8.5 Ar ray Sub script Er rors 112
	8.6 An tic i pated Er rors vs Un an tic i pated Er rors 112
	8.7 Com plete Ex am ple Œ File copy pro gram 112
	8.8 Java Er rors and Ex cep tions 117
	8.9 Java On-line Doc u men ta tion 117
	8.10 Sum mary 117
	8.11 Prob lems 117

	9 i/o 120
	9.1 Class vs In ter face 121
	9.2 Java.io.DataInput Œ in ter face 121
	9.2.1 UTF 121

	9.3 java.io.DataInputStream Œ class 122
	9.4 java.io.DataOutput Œ in ter face 122
	9.5 java.io.DataOutputStream Œ class 123
	9.6 java.io.PrintStream Œ class 123
	9.6.1 Syn chro nized 123

	9.7 Ex am ple 1 124
	9.8 Prob lems 128

	10 Threads 130
	10.1 Ex am ple 1 Œ ex tends Thread 130
	10.2 Ex am ple 2 Œ Ex tends Thread 131
	10.3 Ex am ple 3 Œ im ple ments Runnable 132
	10.4 Ex am ple 4 Œ Im ple ments Runnable 132
	10.5 Ex am ple 5 Œ static vari able in a thread 133
	10.6 Ex am ple 6 Œ syn chro nized 134
	10.7 Ex am ple 7 Œyield 135
	10.8 Ex am ple 8 Œ thread pri or ity 135
	10.9 Prob lems 136
	10.10 Bib li og ra phy 136

	11 In tro duc tion to Graph ics Pro gramming 138
	11.1 Vec tor vs Ras ter Graph ics 138
	11.2 Pixels 138
	11.3 Bit maps Œ gif vs jpg 138
	11.4 Screen res o lu tion 138
	11.4.1 In ter laced vs non-interlaced 138

	11.5 Col our Models 138
	11.6 Scanning 139
	11.7 Co or di nate spaces 139
	11.8 Fonts 139
	11.9 Aliasing and Antialiasing 139
	11.10 De vice con text 139
	11.11 Clip ping 139
	11.12 Ren der ing 139
	11.13 Putting it all togethor 139
	11.14 His tory 140
	11.15 Ex am ple 1 Œ Bouncing Balls 140
	11.16 Ex am ple 2 Œ Bouncing Balls with in te ger arith me tic 141
	11.17 Ex am ple 3 Œ Bouncing Balls with dou ble buff er ing 143
	11.18 Examle 4 Œ Bouncing Balls with in te ger arith me tic and dou ble buff er ing 145
	11.19 Ex am ple 6 Œ Loading jpg im ages Œ static dis play 147
	11.20 Ex am ple 7 Œ Loading im age Œ sim ple scal ing 147
	11.21 Ex am ple 8 Œ Moving im age 148
	11.22 Ba sic Draw ing Methods 149
	11.22.1 Lines Œ g.drawline(x1,y1,x2,y2) 149
	11.22.2 Rect an gles Œ g.drawRect(xstart,ystart,width,height) g.fillRect(x,y,w,h) 149
	11.22.3 Rounded Rect an gles Œ g.drawRoundRect(xstart,ystart,w,h,xcurve,ycurve) 150
	11.22.4 3D Ef fects Œ g.draw3Drect(x,y,w,h,true) 151
	11.22.5 Poly gons 151
	11.22.6 Ovals Œ g.drawOval(x,y,w,h) and g.fillOval(x,y,w,h) 152
	11.22.7 Arcs Œ g.drawArc(x,y,w,h,start,end) and g.fillArc(x,y,w,h,s,e) 152
	11.22.8 Col our Œ Color 152
	11.22.9 Texts and Fonts 153

	11.23 AWT 1.0.x 154
	11.23.1 In ter face Sum mary 155
	11.23.2 Class Sum mary 156
	11.23.3 Ex cep tion Sum mary 160
	11.23.4 Er ror Sum mary 160
	11.23.5 java.awt.Graph ics 160
	11.23.5.1 Con struc tor Sum mary 161
	11.23.5.2 Method Sum mary 161

	11.24 Pack age java.awt.Graphics2D Œ JDK 1.2 164
	11.24.1 Ren der ing 164
	11.24.2 Compatability 165
	11.24.3 Con struc tor Sum mary 165
	11.24.4 Method Sum mary 165

	11.25 Pack age java.awt.geom Œ JDK 1.2 168
	11.26 Pack age java.awt.im Œ JDK 1.2 168
	11.27 Pack age java.awt.im age.renderable Œ JDK 1.2 168
	11.28 Pack age java.awt.print Œ JDK 1.2 168
	11.29 Java 2D API Over view 168
	11.29.1 En hanced Graph ics, Text, and Im aging 168
	11.29.2 Ren der ing Model 169
	11.29.3 Back ward Com pat i bil ity and Plat form In de pend ence 169
	11.29.4 Set ting Up the Graphics2D Con text 170
	11.29.5 Ren der ing Graph ics Prim i tives 170
	11.29.6 Man aging and Ma nip u lating Ras ters 170
	11.29.7 Ge om e tries 170
	11.29.8 Fonts and Text Lay out 171
	11.29.9 Im aging 171
	11.29.10 Color 171
	11.29.11 ColorModels and Color Data and the BufferedImage Class 172
	11.29.12 Print ing 172

	11.30 Sim ple bounc ing ball 173
	11.30.1 In itial is ation 175
	11.30.2 JFrame 175
	11.30.3 addWindowListener 175
	11.30.4 Class WindowAdapter 175

	11.31 Bouncing balls with se lec tive erase 175
	11.32 Sim ple jpeg dis play 178
	11.33 Sim ple line draw ing 179
	11.34 Sum mary 179
	11.35 Prob lems 180
	11.36 Bib li og ra phy 186
	11.36.1 Scanning 187
	11.36.2 Fonts 187
	11.36.3 Microsoft 187
	11.36.4 Non-Microsoft 187

	12 AWT Based Win dows Pro gramming 190
	12.1 But ton 190
	12.2 La bel 190
	12.3 But ton and La bel 190
	12.4 Scrollbar 191
	12.5 Scrollbar with size in for ma tion 191
	12.6 Checkbox 191
	12.7 Checkbox with Grouping 191
	12.8 List 192
	12.9 TextField 192
	12.10 Pass words 192
	12.11 TextArea 193
	12.12 Lay out 193
	12.12.1 Panels 193
	12.12.2 FlowLayout 193
	12.12.3 GridLayout 194
	12.12.4 Gridlayout with size 194
	12.12.5 GridBagLayout 195
	12.12.6 CardLayout 195

	12.13 Putting it all togethor 196
	12.14 Prob lems 196

	13 Events 198
	13.1 AWT Events 198
	13.1.1 Mouse Events 198
	13.1.2 Key board events 198
	13.1.3 Ex am ple 1 Œ Cut and paste text 198
	13.1.4 Ex am ple 2 Œ Sim ple mouse track ing 199
	13.1.5 Ex am ple 3 Œ Mouse with drag 199
	13.1.6 Ex am ple 4 Œ Key up and key down 200

	13.2 Swing Event Han dling Œ As of JDK 1.2.2 201
	13.2.1 In ter face Sum mary 201
	13.2.2 Class Sum mary 203
	13.2.3 Pack age javax.swing.event 204

	13.3 ActionListener 204
	13.4 ActionEvent 205
	13.5 Ex am ple 1 205
	13.5.1 Frames 208
	13.5.2 super Œ Con struc tor Chaining 208

	13.6 Ex am ple 2 208
	13.7 Sum mary 212
	13.8 Prob lems 212

	14 Swing 214
	14.1 His tory 214
	14.2 What do I need? 214
	14.3 Swing Pack ages 215
	14.3.1 javax.ac ces si bil ity 215
	14.3.2 javax.swing 215
	14.3.3 javax.swing.bor der 215
	14.3.4 javax.swing.colorchooser 215
	14.3.5 javax.swing.event 215
	14.3.6 javax.swing.filechooser 215
	14.3.7 javax.swing.pend ing 215
	14.3.8 javax.swing.plaf 215
	14.3.9 javax.swing.ta ble 215
	14.3.10 javax.swing.text 215
	14.3.11 javax.swing.text.html 215
	14.3.12 javax.swing.tree 215
	14.3.13 javax.swing.undo 215

	14.4 En ter Microsoft Stage Left 215
	14.5 Pluggable Look and Feel 216
	14.6 Light weight Com po nents 216
	14.7 ModelŒViewŒCon trol ler (MVC) Ar chi tec ture 216
	14.7.1 Model 216
	14.7.2 View 216
	14.7.3 Con trol ler 216

	14.8 Multithreading 216
	14.9 Com po nents 216
	14.10 Sim ple Ex am ples 217
	14.10.1 JButton 217
	14.10.2 JLabel 217
	14.10.3 But ton and La bel 218
	14.10.4 JScollBar 218
	14.10.5 JScrollBar with size in for ma tion 218
	14.10.6 CheckBox 219
	14.10.7 CheckBox with Grouping 219
	14.10.8 List 219
	14.10.9 TextField 220
	14.10.10 Pass words 220
	14.10.11 TextArea 220

	14.11 Lay out 220
	14.11.1 Panels 221
	14.11.2 FlowLayout 221
	14.11.3 GridLayout 221
	14.11.4 Gridlayout with size 221
	14.11.5 GridBagLayout 221
	14.11.6 CardLayout 221
	14.11.7 Sim ple Graph Plotting Œ AWT Based 221
	14.11.8 Sim ple Graph Plotting Œ Swing Based 222

	14.12 Inheritence Re visited 223
	14.13 JApplet 223
	14.14 Swing Con tainers and JComponent 224
	14.15 Ex am ples 225
	14.16 Prob lems 225
	14.17 Bib li og ra phy 225

	15 JavaBeans 228
	15.1 Pack age java.beans Œ JDK 1.1 230
	15.2 Pack age java.beans.beancontext 230
	15.3 Ex am ple 1 230
	15.4 Sum mary 232
	15.5 Use ful ad dresses 232
	15.6 Prob lems 233

	16 Over view of De vel op ment En vi ron ments 236
	16.1 Edit, Com pile and Run 236
	16.2 Work bench or IDE 236
	16.3 Vi sual De vel op ment Tools 238
	16.4 Prob lems 238

	17 Forte for Java 240
	17.1 Forte Rec om mended Con fig u ra tions 240
	17.2 The JDK 240
	17.3 Doc u men ta tion 240

	18 Microsoft Vi sual J++ 242
	18.1 Avail abil ity and Ver sions 242
	18.2 The De vel op ment En vi ron ment 242
	18.3 Working prac tices 243
	18.4 Doc u men ta tion Map 243
	18.5 Getting Started with Vi sual J++ 6.0 244
	18.5.1 Cre ating a WFC Ap pli ca tion 244
	18.5.2 Build ing and Run ning Your Ap pli ca tion 244
	18.5.3 De bugging Your Ap pli ca tion 245
	18.5.4 Pack aging Your Ap pli ca tion 245

	18.6 Getting Going 245
	18.7 Bib li og ra phy 245

	19 IBM VisualAge for Java 248
	19.1 Health Warn ing 248
	19.2 Ver sions and Avail abil ity 248
	19.2.1 VisualAge® Ob ject Con nec tion Part ners CD Ver sion 2.0.1. 248
	19.2.2 MindQ: In tro duc tion to VisualAge for Java 248
	19.2.3 AlphaWorks 248
	19.2.3.1 alphaWorks His tory: The Launch 248

	19.2.4 Other Of fer ings 249

	19.3 Doc u men ta tion 249
	19.3.1 IDE Ba sics: Con cepts and Tasks: 34 pages 249
	19.3.2 Getting Started: 144 pages 249
	19.3.3 Vi sual Com po si tion: Con cepts and Tasks: 267 pages 250
	19.3.4 Data Ac cess: Con cepts and Tasks: 61 pages 250
	19.3.5 SCM Tools: Con cepts and Tasks: 16 pages 250
	19.3.6 AgentRunner: Con cepts, Tasks and Sam ples: 25 pages 250
	19.3.7 Tool In te gra tors: 20 pages 250

	19.4 In stal la tion 250
	19.5 Over view 250
	19.6 Starting up Vi sual Age for Java 251
	19.7 Sum mary 252

	20 Mul ti me dia 254
	20.1 Playing Au dio Clips 254
	20.2 java.ap plet 254
	20.2.1 In ter face AudioClip: Since: JDK1.0 254
	20.2.2 Method Sum mary 254
	20.2.3 Method De tail 254

	20.3 Ex am ple Œ Au dio 255
	20.4 Prob lems 257

	21 Sim ple Net working 260
	21.1 Pack age java.net: Since: JDK1.0 260
	21.1.1 In ter face Sum mary 260
	21.1.2 Class Sum mary 260
	21.1.3 Ex cep tion Sum mary 261

	21.2 Ex am ples 261
	21.2.1 Ma nip u lating urls 261
	21.2.2 Read ing a file on a web server 263

	21.3 Prob lems 264

	22 Web Data Ac cess 266
	22.1 Back ground 266
	22.1.1 The Vi sual De vel op ment En vi ron ment 266
	22.1.2 The Web Server 266

	22.2 Java 266
	22.3 Data Sources 266
	22.3.1 Or a cle 266
	22.3.2 Microsoft 267
	22.3.2.1 Some en tries from the FAQ 267

	22.3.3 IBM 267

	22.4 JDBC API 267
	22.5 Pack age java.sql Œ JDK 1.1 268
	22.5.1 In ter face Sum mary 269
	22.5.1.1 Ar ray Œ JDBC 2.0 269
	22.5.1.2 Blob Œ JDBC 2.0 269
	22.5.1.3 CallableStatement 269
	22.5.1.4 Clob Œ JDBC 2.0 269
	22.5.1.5 Con nec tion 269
	22.5.1.6 DatabaseMetaData 269
	22.5.1.7 Driver 269
	22.5.1.8 PreparedStatement 269
	22.5.1.9 Ref Œ JDBC 2.0 269
	22.5.1.10 ResultSet 269
	22.5.1.11 ResultSetMetaData 269
	22.5.1.12 SQLData Œ JDBC 2.0 269
	22.5.1.13 SQLInput Œ JDBC 2.0 269
	22.5.1.14 SQLOutput Œ JDBC 2.0 269
	22.5.1.15 State ment 269
	22.5.1.16 Struct Œ JDBC 2.0 269

	22.5.2 Class Sum mary 269
	22.5.2.1 Date 269
	22.5.2.2 DriverManager 269
	22.5.2.3 DriverPropertyInfo 269
	22.5.2.4 Time 270
	22.5.2.5 Timestamp 270
	22.5.2.6 Types 270

	22.5.3 Ex cep tion Sum mary 270
	22.5.3.1 BatchUpdateException Œ JDBC 2.0 270
	22.5.3.2 DataTruncation 270
	22.5.3.3 SQLException 270
	22.5.3.4 SQLWarning 270

	22.6 Pack age javax.sql 270
	22.6.1 In ter face Sum mary 270
	22.6.1.1 ConnectionEventListener 270
	22.6.1.2 ConnectionPoolDataSource 270
	22.6.1.3 DataSource 270
	22.6.1.4 PooledConnection 270
	22.6.1.5 RowSet 270
	22.6.1.6 RowSetInternal 270
	22.6.1.7 RowSetListener 270
	22.6.1.8 RowSetMetaData 270
	22.6.1.9 RowSetReader 271
	22.6.1.10 RowSetWriter 271
	22.6.1.11 XAConnection 271
	22.6.1.12 XADataSource 271

	22.6.2 Class Sum mary 271
	22.6.2.1 ConnectionEvent 271
	22.6.2.2 RowSetEvent 271

	22.7 Ex am ples 271
	22.8 Sum mary 271
	22.9 Bib li og ra phy 271

	23 Servlets 274
	23.1 Getting started 274
	23.1.1 Notes 278
	23.1.1.1 Jar files 278
	23.1.1.2 Start the server 278
	23.1.1.3 Com piled class files 279
	23.1.1.4 In cor rect ex am ple link 279
	23.1.1.5 Com plete source code 279
	23.1.1.6 Call ing Servlets From a Browser 279
	23.1.1.7 Call ing Servlets from an HTML page 280

	23.2 Pack age java.servlet 280
	23.2.1 In ter faces 280
	23.2.2 Classes 280
	23.2.3 Ex cep tions 280

	23.3 Pack age java.servlet.http 280
	23.3.1 In ter faces 280
	23.3.2 Classes 281

	23.4 Pack age java.servlet.jsp 281
	23.4.1 In ter faces 281
	23.4.2 Classes 281
	23.4.3 Ex cep tions 281

	23.5 Pack age java.servlet.jsp.tagtext 281
	23.5.1 In ter faces 281
	23.5.2 Classes 281

	23.6 Bib li og ra phy 281

	24 JavaServer Pages 284
	24.1 Bib li og ra phy 284
	24.1.1 JSP 284
	24.1.2 HTML 284
	24.1.3 XML 284

	25 Pack age java.util 286
	25.1 Pack age java.util 286
	25.1.1 In ter face Sum mary 286
	25.1.1.1 Col lec tion 286
	25.1.1.2 Com para tor 286
	25.1.1.3 Enu mer a tion 286
	25.1.1.4 EventListener 286
	25.1.1.5 Iterator 286
	25.1.1.6 List 286
	25.1.1.7 ListIterator 286
	25.1.1.8 Map 286
	25.1.1.9 Map.En try 286
	25.1.1.10 Ob server 286
	25.1.1.11 Set 286
	25.1.1.12 SortedMap 286
	25.1.1.13 SortedSet 286

	25.1.2 Class Sum mary 287
	25.1.2.1 AbstractCollection 287
	25.1.2.2 AbstractList 287
	25.1.2.3 AbstractMap 287
	25.1.2.4 AbstractSequentialList 287
	25.1.2.5 AbstractSet 287
	25.1.2.6 ArrayList 287
	25.1.2.7 Ar rays 287
	25.1.2.8 BitSet 287
	25.1.2.9 Cal en dar 287
	25.1.2.10 Col lec tions 287
	25.1.2.11 Date 287
	25.1.2.12 Dic tio nary 287
	25.1.2.13 EventObject 287
	25.1.2.14 GregorianCalendar 287
	25.1.2.15 HashMap 287
	25.1.2.16 HashSet 288
	25.1.2.17 Hashtable 288
	25.1.2.18 LinkedList 288
	25.1.2.19 ListResourceBundle 288
	25.1.2.20 Lo cale 288
	25.1.2.21 Ob serv able 288
	25.1.2.22 Prop erties 288
	25.1.2.23 PropertyPermission 288
	25.1.2.24 PropertyResourceBundle 288
	25.1.2.25 Ran dom 288
	25.1.2.26 ResourceBundle 288
	25.1.2.27 SimpleTimeZone 288
	25.1.2.28 Stack 288
	25.1.2.29 StringTokenizer 288
	25.1.2.30 TimeZone 288
	25.1.2.31 TreeMap 288
	25.1.2.32 TreeSet 288
	25.1.2.33 Vec tor 288
	25.1.2.34 WeakHashMap 288

	25.1.3 Ex cep tion Sum mary 289
	25.1.3.1 ConcurrentModificationException 289
	25.1.3.2 EmptyStackException 289
	25.1.3.3 MissingResourceException 289
	25.1.3.4 NoSuchElementException 289
	25.1.3.5 TooManyListenersException 289

	25.2 Bib li og ra phy 289

	26 Pack age java.awt.dnd 292
	26.1 Pack age java.awt.dnd Œ JDK 1.2 292
	26.1.1 In ter face Sum mary 292
	26.1.1.1 Autoscroll 292
	26.1.1.2 DragGestureListener 292
	26.1.1.3 DragSourceListener 292
	26.1.1.4 DropTargetListener 292

	26.1.2 Class Sum mary 292
	26.1.2.1 DnDConstants 292
	26.1.2.2 DragGestureEvent 292
	26.1.2.3 DragGestureRecognizer 292
	26.1.2.4 DragSource 292
	26.1.2.5 DragSourceContext 293
	26.1.2.6 DragSourceDragEvent 293
	26.1.2.7 DragSourceDropEvent 293
	26.1.2.8 DragSourceEvent 293
	26.1.2.9 DropTarget 293
	26.1.2.10 DropTarget.DropTargetAutoScroller 293
	26.1.2.11 DropTargetContext 293
	26.1.2.12 DropTargetDragEvent 293
	26.1.2.13 DropTargetDropEvent 293
	26.1.2.14 DropTargetEvent 293
	26.1.2.15 MouseDragGestureRecognizer 293

	26.1.3 Ex cep tion Sum mary 293
	26.1.3.1 InvalidDnDOperationException 293

	26.2 Bib li og ra phy 294

	27 IEEE Arith me tic 296
	27.1 His tory 296
	27.2 IEEE 754 Spec i fi ca tions 297
	27.2.1 Sin gle pre ci sion float ing point for mat. 298
	27.2.2 Dou ble pre ci sion float ing point for mat. 299
	27.2.3 Two classes of ex tended float ing point for mats. 300
	27.2.4 Ac cu racy re quire ments 300
	27.2.5 Base con ver sion - i.e. when con vert ing be tween dec i mal and bi nary float ing point for mats and vice versa. 300
	27.2.6 Ex cep tion han dling 300
	27.2.7 Rounding di rec tions. 300
	27.2.8 Rounding precisions. 300

	27.3 Resumé 300
	27.4 ematics 301
	27.5 Bib li og ra phy 301
	27.5.1 Web based sources 302
	27.5.2 Hard ware Sources 303
	27.5.3 Op er ating Sys tems 303
	27.5.4 Java and IEEE 754 303
	27.5.5 C and IEEE 754 303

	28 Lan guage Stand ardi sa tion 306
	28.1 Sun 306

