
Virtual Machines, Managed Code and Component Technology

John Gough
Queensland University of Technology

Brisbane, Australia

Abstract

Abstract machines have been used as an implementation
mechanism for programming languages for more than thirty
years. In their latest incarnation execution engines based on
virtual machines offer “Managed Execution”. The implica-
tions of this change go far beyond the superficial advan-
tages of platform portability and go to the heart of software
reliability.

In this paper it is argued that managed execution plat-
forms such as the .NET Common Language Runtime and
the Java Virtual Machine form the only reasonable basis for
trustworthy component software. There is also an overview
of current research in this field, including the vexed ques-
tion of version evolution.

1. Introduction – A Brief History

The definition of abstract machines as a mechanism for
reasoningabout programs goes back to the dawn of com-
puter science as we now understand it. The use of such ma-
chines to define program representation for compilers dates
back at least to Wirth’s “P-machine” in 1973[1]. The P-
machine was a stack-based abstract machine intended to de-
fine an intermediate form for the “portable”Pascalcom-
piler. Porting the compiler to a new execution platform re-
quired the creation of a new “back-end” that transformed
the instructions of the abstract machine into the binary code
of the target machine. However, a standard part of the port-
ing process was to write aninterpreter to simulate the P-
machine on the new target, as a first step in the bootstrap
process. This particular strategy had an unforseen conse-
quence when Kenneth Bowles atUCSD[2] dispensed with
the back-end and wrote tiny interpreters for the “P-Code”
hosted on the multitude of incompatible microprocessors
that were appearing in the early 1970s. The use of an ab-
stract machine in this context was pivotal because of the
simplicity of the interpreter that was needed. A further
benefit was the extremely high code density thatP-Code

achieved — a very important factor in the days of tiny mem-
ories.

The P-machine was designed to support just one pro-
gramming language, although it was expressive enough to
support some other languages also. A later development of
the concept wasU-Code[3] which was used as an interme-
diate form for a number of mainstream commercial com-
pilers for several languages on many target machines. With
U-Code, as withP-Code, the operational semantics of the
instructions are defined by an abstract stack-based automa-
ton. It may be argued that the main role of the abstract ma-
chine at this time was one ofcompiler factorization. By us-
ing the common intermediate form, the problem of com-
piling N different languages forM different machines is
reduced to producingN “front-ends” andM “back-ends”
rather thanN ×M monolithic compilers.

A typical expression evaluation in such a system would
be fetching the value of a 8-byte floating point fieldb of
some structurea. Typical code for a stack machine of the
era would be—

ldadr ‘a’ // load address of ‘a’
ldc.i4 4 // offset of field ‘b’
padd // pointer arithmetic
deref.r8 // load 8-byte real

Several things are worth noting at this stage: the front-end
apparently needs to know the layout of the structure on the
target machine, and the language isuntypedexcept for the
integer/floating point separation. Although front-ends based
on this scheme produced “portable” code, the output was
generally parameterized for each target machine. My own
Gardens Pointcompilers were typical[4]. They required to
know the following target information: alignment rules, ar-
gument assembly conventions, stack mark size and which
of three possible methods were used for passing structures
by value.

Abstract machines have also played an important part in
the implementation of specialist languages. TheWarren Ab-
stract Machine[5] for the Prolog language is a typical ex-
ample. There are at least two factors at work here. Lan-
guages that have dynamic aspects that make static compila-
tion unattractive have routinely used interpretation for their
implementation. The interpreter emulates an abstract ma-

1



chine that bridges the semantic gap between the source lan-
guage and the instructions of the host machines. Further-
more, the use of an intermediate language factors the im-
plementation problem when multiple machine architectures
are targetted.

So far, according to this brief history, abstract machines
have been used in two ways. A stream of instructions for an
abstract machine may be used, transiently, as an intermedi-
ate representation for program texts inside factored com-
pilers. Alternatively, the instructions for the abstract ma-
chine have been the end product of the compiler, to be sub-
sequently executed by an interpreter when the program is
run.

In 1989 a further possibility became apparent. In that
year the Open Software Foundation called for proposals
for an Architecture Neutral Distribution Form(ANDF) for
computer programs[6]. The idea was that programs written
in any source language would be compiled into an archi-
tecture neutral form, supported by the facilities of a stan-
dard environment. Each such program could be run on any
machine that possessed an “Installer” utility. The installer
would complete the compilation process by transforming
theANDF into native code for the particular computer.

It is relevant to note that the demands ofANDF necessi-
tate a higher level of abstraction than is the case forU-Code
and similar abstract machine forms. In this case there can be
no “parameterization of output for the target machine” since
the target is unknown at compilation time. Such matters as
the layout of structures needs to be deferrred for the installer
to decide. The code of our previous code snippet needs to
containsymbolic information. Something along the follow-
ing lines is needed, where we have arbitrarily assumed that
the type ofa is ATypefrom moduleMod—

ldadr Mod.AType::‘a’ // load adr of ‘a’
ldfld real64 Mod.AType::‘b’ // load field value

Consider the second instruction. Field names need to be
qualified with the type of the fieldand the type of the struc-
ture to which the field belongs. Furthermore, the distribu-
tion form must contain type declarationmetadatasufficient
to allow the installer to lay out the data.

ANDF was not a success in the market, although most
compiler people agreed that it was a stunningly good idea.
At least part of the problem was the very high levels of
symbolic information thatANDFcontained. Major software
vendors tended to be spooked by the fact that anyone with
an ANDF distribution could reconstruct fully typed, read-
able source code with minimal effort.

The next significant step in our saga arose from the
doctoral research of Michael Franz[7], a student atETH,
Zurich. This work was continued later at UCI. Michael
gave a final twist to the installer idea by invoking the in-
staller each time the program was loaded, rather than just
once when the progam was installed on the machine. Nowa-
days, we would call the “installer” a just-in-time compiler

(JIT). The “slim binaries” that were the distribution for-
mat were for a single language (Oberon-2) but were used
unchanged on different architectures. The distribution form
was extremely compact, despite the necessary presence of
the metadata. The mind-blowing result from the research
was that the time saved in reading the smaller binary from
the disk more than compensated for the processor time to
perform code generation within the installer.

And then in May 1995 languageJava was announced
by Sun Microsystems[9]. The distribution format ofJavais
part of the definition of the language, and is based on an
abstract machine: the Java virtual machine (JVM)[8]. Java
was always intended to be executed either by interpreta-
tion or by JIT compilation, and still is. The output of the
Javacompiler is one or more “class” files for everyJava
source file. Each such class file contains the “bytecodes”
that are the instructions for the stack-based virtual machine
together with the metadata that is necessary to allow true
target independence. The new element thatJavaadded to
the abstract machine story wasverification. Since all user-
declared data is statically typed in every class file it is pos-
sible to use a lightweight “theorem prover” to check that
the code is type-safe and hence memory-safe. Now, every
legal Java program is necessarily type-safe so it may ap-
pear to be overkill for theJIT to re-check what the com-
piler has already guaranteed. This would certainly be the
case if the class-files were only a transient intermediate rep-
resentation between compiler phases. However, the genera-
tion of the class files and the invocation of theJIT are sepa-
rated both temporally and spatially. The browser that down-
loads a “Java” class file as a component of an applet cannot
trust that the bytecodes were generated by a correct com-
piler, nor that the code has not been modified either acci-
dentally or with evil intent.

TheJVM was designed with the goal of supporting just
one language:Java. Nevertheless with more or less diffi-
culty theJVM can support (type-safe subsets) of an alarm-
ingly long list of languages.

The final event in our brief history took place in mid-
2000, whenMicrosoft announced their.NET system. This
system is supported by the Common Language Runtime
(CLR), another stack-based abstract machine. It features a
more expressive type system thanJava, and is explicitly de-
signed to support a wide range of languages — including
those that are type-safeandthose that are not. The type-safe
ones can be verified by theJIT while the the type-unsafe
ones skate on the same thin ice as any other binary pro-
gram representation. The authoritative source on theCom-
mon Language Infrastructurewhich includes theCLR, is
the annotated standard[10].

Generically we refer to theCLRand theJVM are being
managed execution systems. They are managed in the sense
that the final translation to machine code is controlled by

2



the explicit type and accessibility declarations that reside in
the metadata of the distribution form.Data is also managed
in the sense that objects are allocated and later deallocated
by a trusted garbage collector within the runtime. The ab-
sence of explicit deallocation (and re-allocation) of memory
is a precondition of any proof of type- and memory-safety
in such systems. An early comparison of the two virtual ma-
chines is the paper[11].

2. Why Managed Execution?

Both .NET andJavahave become key technologies in
the contemporary software world. This success may appear
paradoxical since both systems suffer from the same issues
that doomedANDF. Despite the best efforts of the “code ob-
fuscators” decompilation of code is still possible. We must
conclude that there are other advantages that counter the
risks of including symbolic content with the distribution.
The things that are different between 1989 and 2005 are
the “world-wide web”, web services, and the emergence of
component technology.

The importance of the web to the success of managed
execution platforms seems indisputable. In the case ofJava
the possibility of writing browser applets drove the early up-
take of the language, while web services featured in all of
the early.NET publicity1. Despite all of this emphasis on
easy access to the web, and the lure of software portabil-
ity, it is contended here that the real importance of managed
execution derives precisely from the fact that it ismanaged.

Here is the main claim of this paper —
Managed execution provides the only reasonable basis on
which the promise of component technology may be real-
ized.

2.1. Component Technology

The termcomponent technologyhas acquired somewhat
overloaded semantics so it should be clarified that in this pa-
per the term is used in the sense of Szyperski[12]. That is —
“Software components are binary units of independent pro-
duction, acquisition and deployment that interact to form a
functioning system”. Components are thus —

• units of independent deployment

• units of third-party composition

• deployed in binary form

The key issue of component technology, in this context, is
the software engineering means by which third parties may

1 Indeed the last of the code-names used within Microsoft for what be-
came.NETwas the excruciatingNGWS, an initialism for “next gener-
ation web services”.

compose binary components to create programs that are ro-
bust and perhaps even correct. It might be added that a fur-
ther challenge is to ensure that such programs continue to
operate correctly in the face of the evolution of their com-
ponent parts. This last element is discussed in Section 4.

The traditional means by which software complexity has
been tamed is by the use ofabstraction. That is, parts of the
program are replaced by abstract representations, thus lim-
iting the domain of analysis that is required to reason about
the behaviour of the whole. Implicit in the validity of this
approach is the naı̈ve belief that the abstraction capturesall
of the interactions that propagate across the boundaries of
the program parts. Many of the advances in programming
languages in the last 30 years have been introduced to pro-
gressively increase the accuracy of the abstract representa-
tions and hence reduce the naı̈vity of the belief. Three brief
examples will suffice to make the point —

• modular languages guarantee that functions may only
be called with correctly typed arguments

• fully type-safe languages guarantee that pointer refer-
ents can only be of the declared type

• languages with declarative accessibilty control enforce
the need to know principle

Every practising software engineer is familiar with the may-
hem that results when these guarantees break down, as a re-
sult of memory deallocation faults for example.

Perhaps the most elaborate example of this approach to
software design is the “design by contract” methodology
incorporated into the programming languageEiffel. In this
case software parts may be annotated with contracts in the
form of preconditions, postconditions and invariants. These
contracts are then enforced by a mixture of compile-time
and run-time checks. The evidence seems to be that such
mechanisms do indeed allow extremely robust and trustwor-
thy software to be constructed.

All of this, so far, has been good news about which soft-
ware engineers may be justly proud. The bad news is that all
of the guarantees and safeguards described above are virtu-
ally useless in the context of component software!

Consider the simple example of a program component
which depends for its correctness on the fact that a par-
ticular field of some object type may only be changed by
the code at one program point. Such fields are safeguarded
by being declaredprivate. Unfortunately, if references to
the enclosing object are accessible to other components the
field may be mutated either through program error or by ma-
licious intent. Declarative privacy counts for nothing in a bi-
nary component environment. Recall, for example, that the
buffer overflow exploits that are a commonplace in vandal-
ware seek to mutate function return addresses. In such cases
the target location is so “private” that high level languages
do not even have a mechanism to refer to the datum.

3



The issue is that all of the safeguards based on program-
ming language mechanisms depend on the compiler for en-
forcement. With binary deployment of components, partic-
ularly those produced by third parties, neither the compiler
nor the integrity of the deployment mechanism are a given.
This is precisely the problem that managed execution uses
verificationto solve.

2.2. Safety and Security

It is important to distinguish between the separate con-
cerns ofsafetyand security. Memory safety and its pre-
requisite type-safety are necessary preconditions for forms
of program analysis based on abstraction. We need to be
able to reason piecewise about the behaviour of program
components secure in the knowledge that components do
not invalidate each others declarative invariants. Thissafety
guarantee is precisely that which verified, managed execu-
tion provides.

Securityis quite another matter. Both of the managed ex-
ecution systems that we consider provide security mecha-
nisms that regulate the security-relevant actions that partic-
ular components may perform. It is interesting to note that
checking of security permissions requires a costly traver-
sal of the whole chain of activation records, that is, astack
walk. This is necessary since it is not the permissions of a
particular function that is in doubt, but the permissions of
the complete chain of callers on whose behalf the function
has been invoked.

Security is a separate concern to memory safety. The fact
that the verifier has guaranteed the type-safety of an ap-
plet is of little consolation after the applet has reformatted
the disk. Nevertheless, the enforcement of memory safety
is a necessary foundation for a separate security mecha-
nism. Consider the possible modes of attack against a stack-
walking security permission checker. One exploit would be
to falsify the permissions that a piece of code possesses. An-
other might be to falsify the call chain record by overwrit-
ing a return address. Both of these attacks are impossible in
a verified, managed execution environment.

A more plausible security exploit involves managed code
calling out to native (unmanaged) code. Once beyond the
oversight of the verifier, anything goes. For this reason
permission to invoke unmanaged code must be carefully
guarded and sparingly granted in managed execution sys-
tems.

Some people find it somewhat artificial that discussions
of such matters as type-safety are conducted in the language
of conflict. We reason about “attackers” and try to remove
“security vulnerabilities”. This is neither a sign of paranoia,
nor a preoccupation with fantasy games. If the invariants of
a component are safe against an attacker with malicious in-

tent, then the same invariants are safe against accidental vi-
olation by program errors in other components.

3. Some Research Issues

Managed execution systems, as they currently exist, en-
force the constraints of the type declarations of the pro-
grams that they execute. This is sufficient to ensure mem-
ory safety of programs, and to ensure the absence of certain
kinds of interference between components. To achieve even
this is an important advance, however the kinds of invari-
ants that can be guaranteed by such mechanisms aresyn-
tactic and static. There is a fascinating spectrum of open
research possibilities that might broaden the range of pro-
gram properties that managed execution might ensure.

There are also interesting research issues that have to do
with the implementation of such systems.

3.1. Implementation Issues

Publicly accessible source code for bothJava and
CLR implementations exist, facilitating research on lan-
guage compilers andJIT compilers. The question of which
optimizations should be performed by each kind of com-
piler is still the subject of some experimentation, and could
very well have a different answer for theCLRand theJVM.

Reliance on just-in-time compilation also brings with it
the possibility, or should that be the challenge, of using
the extra information available at runtime to generate faster
code than is possible in an “ahead-of-time” compiler. The
field of dynamic compilation and optimization is very ac-
tive one with products starting to move from the laboratory
to the mainstream.

A more basic kind of investigation involves the mecha-
nisms of verification. It turns out that the algorithm spec-
ified for verification inJava can become computationally
costly in some pathological cases. Alternative methods of
verification based on “proof carrying code” seem promis-
ing.

Of course, it is always necessary to ensure correctness
of the algorithms (and of their implementation) that man-
aged execution relies on. The issues can be subtle. Here is
a favourite example that nicely illustrates the subtle issues
involved. One of the features of the Common Type System
(CTS) of theCLRis the possibility to mark instance fields of
structured types asinitonly. The idea is that such fields are
initialized at object creation, and are afterward immutable.
This is a really useful feature in practice, since programs
may be designed to use such fields to hold identity data,
permissions and the like. InC#we mark such fields asread-
only—

4



public class C {
public readonly long serialNm;
...
public C(long sn) { // Constructor

serialNm = sn; // assign immutable value
...

Compiling for the .NET Common Language Runtime[13]
correctly warned that in the first release of.NET the C#
compiler enforced this constraint but the verifier did not.
As might be hoped, later releases of theCLR refuse verifi-
cation to programs that attempt to mutate aninitonly field.

In the description of whatinitonly means, the wording
“... and is afterward immutable” seems perfectly clear, but
is not the kind of rule that a verifier may check directly.
What we need is anoperationalformulation of a test that
checks this constraint. Here is a candidate set —

• initonly fields may only be set within a constructor for
their enclosing type

• constructors may only be called as part of the creation
of an object of the type, or as part of the creation of an
object of a derived type

The “or as” part of the second rule is necessary, since when
an object of a derived type is being constructed the (perhaps
private) fields of the base type must be initialized by invok-
ing a base class constructor on the newborn object of the
derived type.

It turns out that the candidate rule set is insufficient, since
it does not prevent a constructor from being called more
than once on the same object. Here is an exploit2 which mu-
tates aninitonly field, even in the presence of the candidate
rule set —

public class D : C { // D derives from C
...
public D(C victim, long newVal) {

ldarg.0 // push ‘this’ ref.
ldarg.2 // push newVal arg
call instance void C::’.ctor’(int64)
ldarg.1 // push victim ref.
ldarg.2 // push newVal arg
call instance void C::’.ctor’(int64)

}
The body of the constructor for typeD is shown in Com-
mon Intermediate Language (CIL), where calls to construc-
tors use the invariable name “.ctor”.

D is a dummy class, we only use objects of this type
to do our dirty work. The trick is that we have passed in
the victim object of typeC as an argument to the dummy
constructor. The second rule above does not forbid us from
passing this argument to a call of the base class construc-
tor along with the new value for the supposedly immutable
field. We cannot express this behaviour inC#, so the body

2 I am happy to share this exploit, since it does not work any more!

of the above code snippet shows how it reads inCIL lan-
guage. As a former, security-guru colleague of mine used
to say “To be good at this stuff you need to have the crimi-
nal mind”. In any case the third rule that is needed is —

• base class constructors may only be invoked on the
newborn object within a constructor for a derived class

The first three lines of the constructor body in the code snip-
pet are legal, and indeed are compulsory. These lines invoke
the base class constructor on “arg.0”, which is the location
of the reference to the object under construction. The rather
similar looking second call in the code is illegal according
to this new rule as “arg.1” is the incoming argument, that is,
the intended victim of the exploit3.

3.2. More Expressive Type Systems

One approach to strengthening the guarantees of man-
aged execution involves extension of the type-system. An-
other category of research involves the addition of such
things as program assertions and protocol checks to the
platform-enforced repetoire.

In essence, current managed execution systems enforce
the declarative constraints of the type systems of their
hosted programs. In principle any declarative aspect of a
type system that is capable of being checked by an effec-
tive procedure might be added to the execution engine.

Here is a simple example. Languages such asAda and
Pascalprovide for the declaration ofsubrangetypes, the
values of which are restricted ranges of some whole-number
type. It is usual for the compiler to ensure that every assign-
ment of a new value to a datum declared to be of such a type
respects the constraint. In a single language, known com-
piler environment consumers of such types do not need to
perform range tests on values of the type. In a multi-vendor
component environment no such trust could be justified, but
a managed execution engine could statically guarantee en-
forcement of the value constraints. As it turns out neither
of our example managed platforms provides for subrange
types in their underlying type system, and it is hard to make
a strong case for such an introduction, given the low cost of
range testing at the point of use.

The more interesting issue of execution engine enforce-
ment of program invariants such as pre- and post-conditions
has received some attention. Nam Tran’s doctoral research
at Monash University has involved implementingEiffel-
like contracts with the support of a modified version of the
“shared source” version of theCLR.

Almost all of the enforcement of managed execution sys-
tems have to do withstatic features of the type system. Ac-
cessibility constraints, conformance to the rules of sub-type

3 And of course if you are wondering, overwriting “arg.0” by “arg.1”
doesn’t get past the verifier either!

5



polymorphism, and fulfilment of contracts to implement
named interfaces, are the kinds of things that are guaran-
teed. There are a whole range of dynamic issues that relate
to correctness of component systems. These dynamic rules
may be expressed in terms ofprotocols. Protocols specify
such things as rules that certain methods may only be called
if other calls have preceeded the call in certain allowed pat-
terns. It is known that in some cases the rules cannot be de-
scribed in terms of finite state machines. The understand-
ing of such rules is an active area of research. An asso-
ciated open question is — how can such protocols be en-
forced within a component framework that allows for third
party composition of systems?

Finally, it may be noted that both of our example man-
aged execution systems have announced enhancements to
their underlying type systems to supportparametric poly-
morphism, or “generics” as it is more commonly called. Sun
Microsystems and Microsoft have adopted very different
implementation strategies for this very significant enhance-
ment. Sun has chosen to take a less efficient implementa-
tion mechanism, but one that leaves theJVM unchanged.
Microsoft has enhanced theCLR with some additional in-
structions and lots of new metadata so that theJIT can spe-
cialize code for particular instantiations of generic types.

4. Version Evolution

Software evolution is one of the difficult issues of our
time. As many an elderlyCOBOLprogrammer remarked in
the late 1990s “Nobody expected this software to be around
for so long”. In the past the problems have been less for
monolithic software, particularly where programs are stat-
ically linked. However for distributed software, and even
more so for component software the problems of version
evolution have become acute. This is a problem that has re-
ceived a lot of attention within the Microsoft world, but no
component system can ignore these issues.

The rest of this section summarizes some informal dis-
cussions. Credit for the key ideas of these proposals be-
longs to Chris Brumme, Patrick Dussud, Anders Hejlsberg,
Jim Miller, Clemens Szyperski, Tony Williams and others
within Microsoft. Raising of these topics publicly should
not be taken as any kind of endorsement of the proposal by
Microsoft, nor as a committment to implement any of these
ideas in any future product.

4.1. The Perils of Registry

One of the most difficult problems for component based
systems is that of version evolution. The problem is famil-
iar toWindowssystem administrators. Pre-.NETcomponent
systems share dynamically linked libraries (DLLs) the iden-
tity and location of which is held in a global registry. A typi-

cal problem arises when a newly installed application brings
with it a new version of aDLL that is used by an existing ap-
plication. After installation of the new program some appar-
ently unrelated program breaks. Re-installation of the bro-
ken program restores that program’s functionality, but the
previously installed program now does not work. This situ-
ation is colloquially known as “DLL Hell”. It is caused by a
failure of backward compatibility in the evolution of the li-
brary that is shared by the two applications.

Such a backward compatibility failure does not neces-
sarily indicate incompetence on the part of the software
provider. It is an unfortunate fact that programs sometimes
depend on library behaviours that are outside that specified
in the application programming interface (API), that is, they
rely on undocumented behaviour. Furthermore it is some-
times necessary to modify even the documented behaviour,
for example to eliminate a security vulnerability. In any case
the problem is particularly difficult in systems that rely on
global registries.

The problems ofDLL-hell are lessened in the.NET
framework, which provides for “side-by-side” execution. In
this system the identity of loadable assemblies depends on
a four-part version number, and a cryptographically strong
originator signature. Every application may set a policy that
allows it to choose between the latest version of a shared
library, or to insist on one exact version. There are sev-
eral intermediate policy possibilities. All of the various li-
brary versions may co-exist in the “global assembly cache”
(GAC), and simultaneously executing applications may run
different versions of the same library “side-by-side” as the
name implies. More to the point for component based sys-
tems different components of the same application may use
different versions of the same library. This possibility effec-
tively uncouples the version dependencies of the different
components.

The .NETsystem makesDLL-hell a thing of the past, or
at least a thing of a rapidly receding present. Sadly how-
ever any belief that the version evolution problem is now
fully solved is premature. The problem is that notall as-
semblies may be executed side-by-side. For example, if a
library controls some unique resource of the machine then
only one version may run concurrently. Such a librarymust
be shared, and different versions cannot execute side-by-
side. Worse still, as more of the operating system software
migrates to managed code, more of the system-supplied ob-
jects will lock in particular versions of their defining types.

Conflicts between components may be indirect. Suppose
two components depend on different versions of the same
shared library,A say. Let us further suppose that library
A is intended to to permit side-by-side execution. Unfor-
tunately, if different versions ofA depend on different ver-
sions of some second library,B say, then ifB does not sup-
port side-by-side execution, then neither canA. It seems

6



that asDLL-hell recedes,GAC-helllooms on the horizon.

4.2. Platform and Library Types

It is likely that the problems of version evolution are fun-
damentally intractable, but there are some interesting ap-
proaches for at leastmanagingthe problem. In particular,
it is important to lessen thedomino effectcaused by chains
of dependencies between library components as described
above.

One possibility receiving some debate currently involves
adding a new declarative attribute to type definitions. At its
simplest the idea is to mark every type as being either aplat-
form type or alibrary type. Each denotation implies a con-
tractual obligation as to future evolution. Library types are
free to evolve between versions, but guarantee that differ-
ent versions will be able to execute side-by-side. Platform
types are bound to a much higher level of compatibility. Ap-
plications do not have a choice as to the version of a plat-
form type that they use. As the name implies, the software
must use whatever version of the type that the platform sup-
plies, and all components on the machine will use the same
version.

Platform types are not capable of side-by-side execution,
either because they depend on a non-sharable resource, or
because they are locked by a dependency on the underlying
operating system or even theCLRversion. For example the
character string typeSystem.Stringmust be a platform type,
since the type is built in to the execution engine.

DependenciesThe constraints on the dependencies be-
tween the two categories of types can be easily deduced.

Library types may freely depend on platform types. They
may use platform types in the implementation of their own
behaviour, and may expose platform types in their visible
interface. Any such dependency does not constrain the evo-
lution of the type, nor does it add further dependencies to
users of the type. Library types may also depend on other
library types. This will make the type dependent on a par-
ticular version of the other types. If the “other” library types
are not exposed in the visible interface of the type, then the
usersof the type do not become contaminated by spurious
version dependencies. In a typical scenario several library
types would be defined in a single library. These types will
depend on each other, but will evolve together, compatibly,
as their containing library evolves.

Platform types, on the other hand, are bound by a stricter
regime. A platform type may depend on library types in its
implementation, if necessary it can deploy with the library
version that it requires. However, a platform type must never
expose any library type in its visible interface. Thus for such
types every public field, every formal argument of a pub-
lic method and every return type must be a platform type.

A platform type cannot derive from a base class that is a li-
brary type, nor may it implement an interface that is a li-
brary type. Rather less obviously platform types may not
allow library methods to escape in (for example) arrays of
System.Objector onto a system clipboard.

Using Platform and Library Types The separation be-
tween platform and library types only becomes significant
at the boundaries of software components. Creators of com-
ponents will expect their components to have to use what-
ever version of the platform types that the platform offers.
But since every other component of the application will nec-
essarily use the same version, there is no possibility of con-
flict.

Components may use library types of their own choos-
ing to implement their own behaviour. They will thereby ac-
quire a dependency on a particular library or libraries, but
they can deploy with the version of the library that they de-
pend on, and lock down that exact version if necessary. Pro-
vided that the component does not expose the dependency
to its users, there will be no conflict if another component
has locked in a different version of the same library type. In
effect, these constraints mean that components must inter-
act and communicate using only platform types. If, contrary
to this advice, components communicate by exchanging li-
brary types then the components must agree to use the same
exact library version. This clearly places a very strong lim-
itation on third-party composition of such components.

Designing Platform Types Platform types appear to be
more versatile, so it may appear attractive to make as many
types as possible platform types. This is not a good idea.
The evolution of platform types is necessarily slow and
painstaking. Platform types have contracted to maintain an
almost impossibly high level of backward compatibility.
When a new version is released every existing application
will have to use it ... so it better just work. We may con-
clude that an extremely high level of quality assurance will
be needed to maintain platform types, and this will be ex-
pensive.

The challenge is that the required compatibility for plat-
form types is not just at the level of using the same method
signatures in the binary form, but at thebehaviourallevel.
Every aspect of documented behaviour must be maintained
in new versions of the type. Conversely,any aspect of un-
documented behaviour visible to users provides the oppor-
tunity for user code to be broken by future version evolu-
tion.

Choosing to create a platform type should thus be ap-
proached with some caution. Since the users of the code
will be very upset if the behaviour ever changes the design
has to be right first time. And then, having designed it right,
the company needs to expensively maintain the type for as
long as it plans to stay in business.

7



4.3. But Will it Fly?

The separation of types into categories according to the
style of their evolution may or may not find its way into the
type systems of the mainstream managed platforms. Never-
theless, the very idea of such a separation is an important
tool in tackling versioning issues in component systems.
The concept, and the design rules that flow from it, have
a wider applicability to all large scale systems for which it
is necessary to upgrade subsystems piecewise. In that case,
even if all the sub-systems come from a single vendor, new
subsystem versions must interwork with other subsystems
that will be replaced at later times. The key lesson is to
tightly control the evolution of the types that cross the sub-
system boundaries.

Finally it may be noted that within the component world,
with third-party composition of independently developed
components, the type-safety guarantees of managed exe-
cution are critical to controlling the versioning problem. It
is also relevant to observe that managed execution systems
restrict the visibility of implementation artifacts, and thus
make it less likely that the user of a platform type can de-
pend on undocumented features of a particular version of
the type.

5. Concluding Remarks

This quick overview has reviewed the historical context
in which abstract machines have morphed into the currently
popular managed execution systems. The recital of the his-
tory goes some way towards explaining how the current sys-
tems came to use abstract machines to represent program
behaviour. Nevertheless, the notion of managed execution
(or alternativelymetadata mediated execution) and the use
of abstract stack machine representations are independent.
In fact it may be argued that some slight advantage might be
gained by using a program representation other than the in-
structions for an abstract stack machine. Even the advantage
of high program density traditionally claimed for stack ma-
chines seems dubious, given the significant volume of meta-
data that must accompany the bytecodes in these systems.

Irrespective of the choice of instruction set, managed ex-
ecution systems with their reliance on symbolic metadata,
provide representations of program behaviour that are suit-
ably abstracted from the details of any particular machine.
In principle they provide for a level of software portabil-
ity that goes beyond anything previously achieved. This is a
one reason for the importance of such systems, but not the
most important.

The real importance of managed execution systems, and
their critical role in the future of software development de-
pends on the fact that they aremanaged. Managed execu-
tion provides for the enforcement of type- and memory-

safety in environments where the integrity of neither the
originating compiler nor the deployment mechanism may
be guaranteed. Memory safety is, in turn, the guarantee that
is required to ensure lack of interference between program
parts in a component framework. The enforcement of type-
system invariants is also an essential factor in managing ver-
sion evolution.

References

[1] K. V. Nori, U. Ammann, K. Jensen, H. H. Nageli and Ch. Ja-
cobi, “Pascal-P Implementation Notes” Ch. 9 in D. W. Bar-
ron (Ed),Pascal – the Language and its Implementation. J
Wiley, 1981.

[2] K. Bowles, Beginner’s Guide for the UCSD Pascal System,
Byte Books, 1980.

[3] D. R. Perkins and R. L. Sites, “Machine-indpendent Pas-
cal code optimization”. Proc. 1979 SIGPLAN symposium on
Compiler Construction, ACM, 1979.

[4] K. John Gough, “Multi-language, Multi-target Compiler De-
velopment”, JMLC, Linz Austria, March 1997. Also inMod-
ular Programming Languages, H. Mössenb̈ock (Ed), LNCS
No. 1204, Springer Verlag.

[5] Hassan Äıt-Kaci,Warren’s Abstract Machine: A Tutorial Re-
construction. MIT Press, 1991.

[6] S. Macrakis, “From UNCOL to ANDF: Progress in Standard
Intermediate Languages.” Technical Report, Open Software
Foundation Research Institute, 1993.

[7] M. Franz,Code Generation On-the-Fly: A Key to Portable
Software. Doctoral Dissertation No. 10497, ETH Zurich,
March 1994.

[8] T. Lindholm and F. Yellin,The Java Virtual Machine Speci-
fication. Addison-Wesley, Reading MA, 1997.

[9] Sun Microsystems, “Java Technology: the Early Years”
http://java.sun.com/features/1998/05/birthday.html

[10] J. Miller and S. Ragsdale,The Common Language Infras-
tructure Annotated Standard. Addison-Wesley, New York,
NY, 2004.

[11] K. John Gough, “Stacking them up: a Comparison of Virtual
Machines”. Australian Computer Systems and Architecture
Conference (ACSAC-2001), Gold Coast, Australia, Febru-
ary 2001.

[12] C. Szyperski,Component Software: Beyond Object Oriented
Programming. ACM Press and Addison-Wesley, New York,
NY, 1998.

[13] J. Gough,Compiling for the .NET Common Language Run-
time. Prentice-Hall, Saddle River, NJ, 2002.

8


	Introduction -- A Brief History
	Why Managed Execution?
	Component Technology
	Safety and Security

	Some Research Issues
	Implementation Issues
	More Expressive Type Systems

	Version Evolution
	The Perils of Registry
	Platform and Library Types
	But Will it Fly?

	Concluding Remarks

