
Stacking them up: a Comparison of Virtual Machines

K John Gough �

j.gough@qut.edu.au

Abstract

A popular trend in current software technology is to
gain program portability by compiling programs to an in-
termediate form based on an abstract machine definition.
Such approaches date back at least to the 1970s, but have
achieved new impetus based on the current popularity of
the programming language Java. Implementations of lan-
guage Java compile programs to bytecodes understood by
the Java Virtual Machine (JVM). More recently Microsoft
have released preliminary details of their “.NET” platform,
which is based on an abstract machine superficially similar
to the JVM. In each case program execution is normally me-
diated by a just in time compiler (JIT), although in principle
interpretative execution is also possible.

Although these two competing technologies share some
common aims the objectives of the virtual machine designs
are significantly different. In particular, the ease with which
embedded systems might use small-footprint versions of
these virtual machines depends on detailed properties of the
machine definitions.

In this study, a compiler was implemented which can
produce output code that may be run on either the JVM
or .NET platforms. The compiler is available in the pub-
lic domain, and facilitates comparisons to be made both at
compile time and at runtime.

1 Introduction

1.1 Abstract Stack Machines

The idea of using an intermediate form within a pro-
gramming language compiler, as a means of communica-
tion between the front-end and back-end, dates back at least
to the 1970s. The idea is quite straightforward. Language
dependent front-ends compile and semantically check pro-
grams, passing an intermediate language representation of
the program to the code-generating backend. In an ideal
situation the frontend would be entirely independent of the

�Queensland University of Technology, Box 2434 Brisbane 4001, Aus-
tralia

target hardware, while the backend would be sensibly inde-
pendent of the particular language in which the source pro-
gram was written. In this way the task of writing compilers
for � languages on � machine architectures is factored
into � �� part-compilers rather than � �� complete
compilers.

Many of these intermediate language representation
were based on abstract stack machines. One particular rep-
resentation, P-Code, was invented as an intermediate form
for the ETH Pascal Compilers[1], but became pervasive as
the machine code for the UCSD Pascal System. What had
been noted by the UCSD people was that a program en-
coded for an abstract stack machine may be used in two
ways: a compiler backend may compile the code down to
the machine language of the actual target machine, or an
interpreter may be written which emulates the abstract ma-
chine on the target. This interpretative approach surrenders
a significant factor of speed, but has the advantage that pro-
grams are much more dense in the abstract machine encod-
ing. In the case of UCSD Pascal the code was so compact
that the compilers could be run on the 4k or so of mem-
ory available on the very first microcomputers. As a con-
sequence of this technology high-level languages became
available for the first time on microcomputers. As an added
benefit, the task of porting a language system to a new ma-
chine reduced to the relatively simple task of creating a new
interpreter on the new machine.

The use of abstract machines as compiler intermediate
forms has also had its adherents. For example, the Gar-
dens Point compilers all use a stack intermediate form (D-
Code) for all of the languages and platforms supported by
the system[2]. Although most implementations are fully
compiled, a special lightweight interpreted version of the
system was written in about 1990 for the Intel iapx86 archi-
tecture, allowing users with a humble IBM XT to produce
the same results as the 32-bit UNIX platforms that the other
implementations supported[3]. As a measure of the com-
plexity of the virtual machine emulator, the interpreter was
about 1k lines of assembly language, with the floating point
emulator a further 1k lines.

A largely failed attempt to leverage the portability prop-
erties of stack intermediate forms was the Open Soft-

1



ware Foundation’s Achitecture Neutral Distribution Form
(ANDF). The idea behind ANDF was to distribute programs
in an intermediate form, and complete the task of compi-
lation during an installation step. The ANDF form was
code for an abstract stack machine, but one with a slight
twist. Generators of intermediate forms such as D-Code
know enough about the target’s addressing constraints to be
able to resolve (say) record field accesses to address offsets.
In the case of ANDF the target is not yet determined at the
time of compilation, so that all such accesses must remain
symbolic. It has been suggested that this incorporation of
symbolic information into the distributed form was consid-
ered to be a threat to intellectual property rights by the ma-
jor software companies, and was a factor in the failure of
the form to achieve widespread adoption.

In the late 1990s Sun Microsystems released their
Java[4] language system. This system is, once again, based
on an abstract stack machine. And again, like ANDF, re-
lies on the presence of symbolic information to allow such
things as field offsets to be resolved at deployment time.
In the case of Java and the Java Virtual Machine[5] (JVM)
the “problem” of symbolic content turned out to be a virtue.
The presence of the symbolic information is the thing which
allows deployment-time and runtime enforcement of the
type system via the so-called bytecode verifier. These run-
time type safety guarantees are the basis on which applet
security is founded. As things now stand, JVMs are avail-
able for almost all computing platforms, and Java tells a
program portability story which transends almost all other
vehicles.

In mid-2000 Microsoft revealed a new technology based
on a wider use of the world wide web for service delivery.
This technology became known as the .NET system. The
technology has many components, but all of it depends on
a runtime which is object-oriented and fully garbage col-
lected. The runtime processes an intermediate form which,
like the JVM, is based on an abstract stack machine. Apart
from this common structure, the detailed design of the two
machines is quite different.

During 1999 the author had explored the applicability of
the JVM as a target for languages other than Java. As a
result of this a prototype compiler for the language Compo-
nent Pascal[6] was written. This compiler translates Com-
ponent Pascal programs into JVM bytecodes. The prototype
was written in Java. During the first half of 2000 Paul Roe
and the author were given the opportunity to work under
NDA on the then un-announced .NET platform. Building
on the experience of the prototype, an entirely new Com-
ponent Pascal compiler was written, this time implemented
in Component Pascal. The new compiler has two separate
code emitters. One produces JVM byte-codes, while the
other produces .NET intermediate language. The compiler
may be bootstrapped on either platform. The existence of

these two parallel code generators allows side by side com-
parisons to be made between the two platforms.

The remainder of this paper is organised as follows: Sec-
tion 2 gives a brief overview of the Java Virtual Machine,
while Section 3 gives an overview of the .NET execution
engine. Section 4 discusses the detailed differences be-
tween the two abstract machines, and introduces some per-
formance comparisions. Finally, Section 5 draws some con-
clusions and offers some tentative predictions of future di-
rections.

2 The Java Virtual Machine

The underlying execution mechanism of the JVM is an
evaluation stack, and a set of instruction which manipulate
this stack. As a first example, the code required to take two
local integer variables, add them together and deposit the
result in a third local variable would be –

iload_1 ; push local int variable 1
iload_2 ; push local int variable 2
iadd ; add the two top elements
istore_3 ; pop result into variable 3

Note the use of the �-prefix on all of these instructions,
encoding the fact that these all operate on integers. Notice
also that in this case the index of the local variable is en-
coded into the instruction, at least for the lowest numbered
few variables. We might therefore expect the code to be
quite dense with each of the instructions requiring only one
byte.

The instruction set of the JVM is designed with the sole
purpose of representing Java programs. There is thus direct
support for the object model of Java, and for the various
kinds of method dispatch that are required. In particular, the
instruction set allows for classes to inherit behaviour from
just one superclass, but to declare that they implement mul-
tiple fully abstract class specifications (i.e. “interfaces”).

At runtime, data is represented in just two ways. Scalar
data may exist as local variables, in fields of structures, or
on the evaluation stack of the abstract machine. Aggregate
data exists only in dynamically allocated objects which are
automatically collected when they are no longer accessible.
References to these objects may be stored in local variables,
in fields or on the evaluation stack as with other scalars.
There is no union construct.

During the execution of a method, the evaluation stack
consists of a finite stack of “slots” the depth of which is
statically determined by the compiler. Each of these slots
may contain an object reference or a 32-bit scalar value.
Long integers and floating point double values use up two
slots.

2



2.1 Class Files

At deployment time a Java program is represented by a
set of one or more dynamically loaded class files. These
files contain a specification of the behaviour of the class,
including its external contracts. The features of the class
are named in an indexed constant pool, and all references
to these features are mediated via references to the constant
pool indices.

This symbolic information allows for a significant de-
gree of type-checking to take place at load time, with a
small amount of runtime checking still required. This, to-
gether with the absence of instructions which manipulate
addresses ensures that programs encoded for the JVM will
be free from certain kinds of type errors at runtime. This is
a necessary foundation for the kind of security which users
require before executing code from untrusted sources.

As it turns out, the presence of symbolic information in-
creases the code density of programs so that typically they
are comparable in size with native code object files for com-
plete programs. Although each instruction requires only
one byte, or one byte plus a constant pool index, the con-
stant pool itself takes up a significant amount of space. Of
course, class files tend to be textually repetitious, so that
they compress quite readily for data transport.

2.2 Parameter Passing

There are four different method invocation instructions,
for static methods, virtual methods, interface methods, and
virtual methods invoked statically. In each case the method
may take any number of parameters, passed by value. In all
but the static case, the methods take a this receiver, which
appears as the zero-th parameter to the callee. Methods may
return a single result.

In all cases, actual parameter values are pushed onto the
evaluation stack prior to the call, and a returned result ap-
pears on the top of the evaluation stack on the return. In-
coming values appear as the first � local variables in the
callee.

Since only scalar values and references may be pushed
on the stack, it follows that these are the only possible pa-
rameter types. However, since both arrays and structures
only exist as dynamically allocated objects accessed by ref-
erence, this is no limitation for Java programs.

As has been noted elsewhere[7, 8] the semantics of pa-
rameter passing in the JVM create a limitation in the effi-
ciency with which languages other than Java can be imple-
mented on this machine.

3 The .NET Execution Engine

The underlying execution mechanism of .NET is an eval-
uation stack, and a set of instruction which manipulate this
stack. To take the same example, the code required to take
two local integer variables, add them and deposit the result
in a third local variable would be –

ldloc.1 ; push local variable 1
ldloc.2 ; push local variable 2
add ; add the two top elements
stloc.3 ; pop result into variable 3

These instructions are all generic, with the type of the
“add” being determined from the inferred type of the stack
contents. In this case the type will be known from the de-
clared types of the local variables. Indeed, the instruction
sequence would be identical if the three variables were all
declared as floating point double type. Notice that for this
platform also, the index of the local variable is encoded into
the instruction, at least for the lowest numbered variables.

The instruction set of .NET is designed with the objective
of supporting multiple languages, and thus needs to support
all of the constructs of what Microsoft calls the Virtual Ob-
ject System (VOS). The object model supports several kinds
of method dispatch. There are three kinds of methods: static
methods and instance methods which may be either vir-
tual or non-virtual. As with Java, VOS reference classes
are permitted to inherit behaviour from just one superclass,
but may declare that they implement multiple fully abstract
class specifications (i.e. “interfaces”).

At runtime data exists as scalars, as references, and as
instances of value classes. There is a fundametal distinction
made between value and reference classes. Value classes
do not inherit behaviour, and cannot have virtual meth-
ods. As the name implies assignment of such values has
value (non-aliassing) semantics. In the newly announced
language C#, structs are implemented as value classes,
while classes are implemented as reference classes in
VOS. Value class instances may be statically allocated, auto-
matically allocated at method entry, or be boxed in dynam-
ically allocated objects. The instruction set has support for
boxing and unboxing of such values. Dynamically allocated
objects are garbage collected when no longer accessible. As
with the JVM there is no union construct.

During the execution of a method, the evaluation stack
consists of a finite stack of abstract values. The depth of the
stack is statically determined by the compiler. Each abstract
stack element may contain any value, including an instance
of a value class. Unlike the JVM, no value uses up multiple
elements.

3.1 Assembly Files

At deployment time a .NET program is represented by
a set of one or more dynamically loaded assembly files.

3



These files typically contain a specification for a single
module, which may contain a large number of separate
classes. There is provision for versioning information and
cryptographically strong signatures for such assemblies. As
with the JVM the assembly contains a significant amount of
symbolic information.

This symbolic information allows for a significant de-
gree of type-checking to take place at load time, with a
small amount of runtime checking still required. This, to-
gether with the absence of instructions which manipulate
addresses ensures that programs encoded for .NET will be
free from the same kinds of type errors that are absent in
programs executed on the JVM.

The code density of executable programs in .NET is com-
parable with the same program encoded for the JVM.

3.2 Parameter Passing

There are only two different method invocation instruc-
tions in .NET. One, callvirt, performs a virtual dis-
patch, and is used for both virtual methods and interface
implementation methods. The other, plain call, is used
for static calls and also for non-virtual dispatch of instance
methods. In each case the execution engine must determine
the semantics of the invocation from the signature of the
callee.

Methods may take any number of parameters, which
may be passed by value or by reference. Reference parame-
ters may be marked as “out”, with significance for the com-
putation of value liveness. In all but the static case, methods
take a this receiver, which appears as the zero-th parameter
to the callee. Methods may return a single result.

Actual parameter values are pushed onto the evaluation
stack prior to the call, and a returned result appears on the
top of the evaluation stack on the return. Incoming values
appear as a list of arguments distinct from local variables.

Because a wide range of values may be pushed onto the
stack, it follows that a wide range of parameter passing se-
mantics may be created. In particular structs may be
passed by value, and formal values mutated without affect-
ing the corresponding actual parameter value.

The wide range of parameter passing semantics is in-
tended to support a range of languages. This goal appears
to be well met. Note however that arrays values in .NET are
always references, and that it is these array references that
are able to be passed either by value or by reference. In or-
der to obtain non-aliassing behaviour for array parameters
with this platform an array copy must be explicitly encoded
either in the caller or in the callee prolog.

4 Comparing the Virtual Machines

4.1 Overall Philosophy

There are some clear differences in the underlying
philosophies of design for these two virtual machines.
However, it might be well to first highlight the design
choices that are in common.

The two designs both rely on a virtual machine speci-
fication which reveal an underlying object oriented model.
In the case of the JVM this model is closely isomorphic to
the Java language, while for .NET the model is the some-
what more general VOS. An alternative would have been to
have a lower-level model which relied on explicit operations
for computing target addresses for such things as virtual
method dispatch. However, such a choice would give up
the chance to perform load-time verification of type safety,
and would thus miss out on one of the main attractions of
the VM approach. In any case, this choice is in common, as
is the single-inheritance, multiple interface implementation
choice. In each case, as might be expected, the designs rely
on garbage collection for memory management.

The most striking design difference is that the .NET ma-
chine designers seem to have been willing to surrender the
option of interpretative execution. This choice is signalled
by a number of the details. Perhaps the first hint is the pres-
ence in the instruction set of generic instructions such as
add with no specified data type. In order to interpret such
an instruction it would be necessary for the interpreter to
track the data type of the top of stack element. This would
appear to require more computation than the rest of the in-
terpreter fetch execute cycle, thus extracting crippling per-
formance penalties. Just to choose one other example, in
both virtual machines the compiled code declares the num-
ber of local variables which each method uses. In the case
of the JVM this is the maximum number of 32-bit slots that
the method uses. The code may reuse slots either singly or
in pairs for any data type. In the .NET machine, by con-
strast, local variables are logically distinct, and each has a
declared data type. Variables may only be recycled for an-
other datum of the same type. Any overlaying of data of
different types in the same stack frame, if it happens at all,
is performed by the JIT. Recall also that in .NET local vari-
ables may be entire structs, rather than being restricted to
32 and 64-bit data, as is the case in the JVM. As a conse-
quence, in .NET the size of the stack frame is not directly
specified in the bytecode.

By contrast, interpretation of JVM byte-codes was an ex-
plicit goal, and one that is still preferred in some contexts
where the runtime of a program does not adequately amor-
tise the high cost of JIT-compiling. The historical origins
of the Java language lie in a project at Sun Microsystems
which was specifically aimed at small footprint, embedded

4



machines for network appliances.
In the conclusion, the possibility of interpreting a pre-

processed version of .NET intermediate language is consid-
ered.

As might be expected, there are a number of detailed
differences in the byte-code format which are of importance
to the compiler writer, but do not indicate a difference in
expressivity in the languages. As an example, consider the
instructions for loading the integer field “fld” of the object
whose reference is on the top of the stack. They are –

getfield ClassName/fld I // I means int��

ldfld int32 ClassName::fld

Apart from the order of operands, there is a subtle differ-
ence: in the first example the class name is the class of the
object on the stack. In the second case the class name is the
name of the class from which the object inherits the field.

4.2 Code Density

Neither of the machines has a significant edge over the
other in program density. As a rough spot-check, the two
encodings of the Gardens Point Component Pascal compiler
were compared. The compiler consists of 29k lines of code
in 31 modules. The 117 class files of the JVM version oc-
cupy 550k bytes, while the 31 dynamically loaded libraries
of the .NET version occupy 480k bytes.

4.3 Sharing out the Bit-budget

Both of these virtual machines have approximately 250
instructions defined, fitting with the concept of being “byte-
codes”. The way in which this budget is shared out among
the various functions is somewhat different. In JVM there
are multiple versions of arithmetic instructions, and four
rather than two method invoke instructions. There is also
a substantial number of codes which are used for “quick”
versions of other instructions. The idea behind these in-
structions seems to have been an attempt to allow loaded
class files to be overwritten once some of the more costly
operations have been performed. This would allow subse-
quent executions to use the updated instructions and avoid
repetition of the costly operation. The widespread adop-
tion of JIT-compiler technology probably means that these
codes are a wasteful legacy obligation.

In the .NET encoding there are some savings due to the
generic operations, but this is lessened to some extent by the
need for both trapping and non-trapping versions of the inte-
ger arithmetic operations. Furthermore, there are a number
of extra instructions required to deal with reference parame-
ters, and with the pushing and popping of instances of value
classes. The need to use different instructions to access ar-
guments and local variables also burns up some extra space
here. As in the case of the “quick” instructions of the JVM,

there is a trace of a false start in the design of the .NET in-
struction set. In the encoding there are a number of instruc-
tions which define annotations for the control flow graph.
In principle this would have allowed front-ends to assist the
JIT in constructing a static single assignment representation
of each method. It now seems that the JITs would rather
rely on their own computations of such attributes, rather
than trust a third party frontend processor. In the current
release, these instructions are no-ops.

In each case, most of the leftover space in the budget of
256 instructions has been used up with specialised versions
of the common instructions. Examples of this have been
seen in Sections-2 and 3, where access to the low-numbered
local variables use a single byte instruction, without the
need for an index. Both machines use these for loading and
storing locals, and for loading a number of commonly oc-
curring literal values. Curiously, the JVM instruction set al-
lows for at least two implicit literal loads for long and float-
ing point constants (0 and 1, predictably), while the .NET
platform uses the resource for four-byte integers only. It is
not clear whether this decision is based on careful simula-
tion or a wet finger in the wind.

4.4 Multi-language Support

The .NET platform is explicitly intended to support mul-
tiple languages, and at the initial announcement of the plat-
form a variety of language implementations were demon-
strated by both research and commercial language groups.
These languages included contemporary logic, functional
and object-oriented languages. Indeed, Fujitsu demon-
strated an implementation of Object Oriented COBOL in-
terworking with Microsoft’s visual studio languages.

The case with the JVM is less clear, since multi-language
support was never a goal. There are a number of implemen-
tations of at least subsets of other languages on the JVM,
but these need to overcome a number of difficulties[7, 8].
In particular, the absence of reference parameters leads to
a number of contortions which will be familiar to anyone
who has had to translate standard algorithms to Java. The
boxing and unboxing of values required to simulate ref-
erence parameters are strikingly demonstrated in the Hen-
nessy benchmarks in Figure 1

These times are for the same program compiled with
Gardens Point Component Pascal, but using either the .NET
or the JVM code emitter. These are thus the same programs
compiled with the same compiler and run on the same ma-
chine with the two different virtual machines. This Figure
gives the results for a number of classic but idealised algo-
rithms. It will be noted that for some of these non-object
oriented codes the JVM platform is faster than .NET. Notice
however that for the first program, perm, the JVM is worse
by a factor more than ten. This overhead arises in a single

5



Benchmark gpcp/NET gpcp/JVM
perm 2.8 38.1
towers 4.2 4.7
queens 2.7 2.6
intMM 5.0 10.2
puzzle 15.3 13.7
quick 3.3 3.5
bubble 4.7 2.7
trees 4.2 5.3

Figure 1. Time in seconds for the Hennessy
integer benchmarks

call site in the program, where a swap() procedure swaps
the values of two reference parameters. The need to box
and unbox one of these (the other secretly sneaks back as
the function result) causes the observed blowout. (It might
also be added that this example gives yet another power-
ful argument against the use of toy benchmarks in which a
single statement can dominate the entire runtime.)

It should be noted that these figures compare a rela-
tively well-tuned JVM code emitter running on a second-
generation virtual machine with a prototype .NET code gen-
erator running on a pre-beta VM. We would predict a clos-
ing of the gap between these figures as gpcp climbs the
.NET learning curve.

There are some difficulties with some language con-
structs, even for the .NET platform. For example, meth-
ods with covariant return types are not directly supported
by the VOS, and require some encoding magic to emulate.
This is even more the case for some of the more exotic lan-
guages, although an experimental implementation of most
of the Eiffel language showed that generic code can be sup-
ported, with some effort.

5 Conclusions

The comparison of these two virtual machines shows
clear evidence of quite different original design goals. In
the case of the JVM the evolution of the whole Java move-
ment has taken the platform well beyond the original design
context. All of this has taken place in the full glare of pub-
lic scrutiny, and in a context where backward compatability
at the VM level has almost certainly become a costly con-
straint.

By contrast, the designers of the .NET VM have had the
luxury of a postponed decision on the freezing of the in-
struction set. Presumably they have also learned from the
Java experience, insofar as the design goals overlap.

For the JVM the most important evolutionary decision
will be whether or not the machine can be extended so as

to efficiently implement some of the desirable language ex-
tensions. These include parametric polyporphism, and di-
rect support for local or nested classes. (At the moment
the JVM does not provide support for nested classes, and
instead depends on a particularly ugly name-mangling con-
vention.) Parametric polymorphism (or generics) is a likely
extension to the Java language, and could be implemented
without VM changes. However, there are significant advan-
tages in changing the VM to directly support this. Perhaps
we may see the disappearance of the “quick” instructions in
favour of some of this support for advanced language fea-
tures.

In the case of .NET similar considerations apply, at least
for generics. However a more pertinent consideration may
be the issue of small footprint embedded versions. As has
been argued above, the .NET intermediate language does
not lend itself to interpretation. However, it would be possi-
ble to perform an offline pre-processing step which converts
to a different form which is more interpreter-friendly. Par-
ticularly if the conversion accepts responsibility for the type
safety issues, the form could be trimmed of its symbolic
information, and achieve much higher code density. This
would be perfectly acceptable for real “embedded” systems
which did not have to resolve the issues of dynamic load-
ing of modules, and runtime type safety and security model
checks. There is actually a double gain to be had along
this path. Not only is there a significant opportunity to in-
crease code density, but the footprint of the VM itself can be
substantially shrunk. The figures quoted for the interpreted
version of gpm[3] give a reasonable limit for just how small
a general purpose VM can be.

It may be noted that some lightweight implementations
of the JVM involve such a philosophy, although in that
case the option of dynamic loading is retained and thus the
opportunity to trim all of the symbolic information is not
taken.

The project to create Gardens Point Component Pascal
has been an interesting one. It has enabled us to make
a very detailed side-by-side comparison of the two VMs
which will fight it out for market share on the world’s desk-
tops. The compiler itself is open source software, under the
Free Software Foundation’s General Public Licence. We
expect to use the compiler as a platform for further language
research, with the implementation of parametric polymor-
phism the first goal in the second half of year-2000.

6 Acknowledgment

Parts of this project were supported by ARC Grant
A49700626. Continuing work on the .NET platform is sup-
ported by Microsoft, and by the CRC for Enterprise Dis-
tributed Systems Technology.

6



References

[1] U Ammann, ‘Code Generation for a Pascal Compiler’,
chapter in Pascal the Language and its Implementa-
tion, Editor: D W Barron, Wiley 1981.

[2] K John Gough, ‘Multi-language, Multi-target Com-
piler Development: Evolution of the Gardens Point
Compiler Project’ Joint Modula Languages Confer-
ence JMLC1997, Linz, March 1997, LNCS 1204,
Springer.

[3] K J Gough, C Cifuentes, D Corney, J Hynd
and P Kolb. ‘An Experiment in Mixed Compi-
lation/Interpretation’ Proceedings of the Australian
Computer Science Conference ACSC-14, Hobart,
Australia, 1992. Australian Computer Society.

[4] J. Gosling, B. Joy and G. Steele, The Java Language
Specification, Addison-Wesley, Reading MA, 1997.

[5] T. Lindholm and F. Yellin, The Java Virtual Machine
Specification, Addison-Wesley, Reading MA, 1997.

[6] Oberon Microsystems, ‘Component Pas-
cal Language Report’ available at —
http://www.oberon.ch/resources

[7] K John Gough, ‘Parameter Passing for the Java Virtual
Machine’ Australian Computer Science Conference
ACSC2000, Canberra, February 2000, IEEE Press.

[8] K John Gough and Diane Corney, ‘Evaluating the
Java Virtual Machine as a target for Languages
Other than Java’ Joint Modula Languages Conference
JMLC2000, Zurich, September 2000, (to appear in
LNCS, Springer).

7


