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Abstract. Aspect-Oriented Programming (AOP) is used to express modular and 
orthogonal functionality in software components. The orthogonal functionality is 
programmed into an aspect, join points are used to describe where in the code the 
aspect should be inserted. Then the aspect is woven into the original program. 
Unlike compile time based strategies, dynamic AOP allows aspects to be woven at 
runtime. This has been shown to be very useful to adapt applications without inter-
rupting service in a wide range of settings (business applications, wireless net-
works, robotics, etc.), thereby making dynamic AOP a prime candidate for sup-
porting advanced, adaptive middleware platforms. A potential drawback of dy-
namic AOP is the performance overhead. In this paper, we tackle the performance 
problem by proposing a mechanism to implement dynamic AOP through method 
code replacement at runtime. The idea is to use the join points not to trigger the 
execution of the aspect (or advice) as it is done in most systems but to trigger the 
recompilation of the original code. The recompiled code contains the advice al-
ready woven into it or the callbacks to the corresponding advice, thereby greatly 
increasing the efficiency of the dynamic AOP process. In the paper we describe the 
technique, discuss extensive benchmarks to evaluate the performance gain of this 
approach, and compare the resulting system to other dynamic AOP approaches. 

1   Introduction 

Aspect oriented programming (AOP) [1] is a technique that allows the expression of 
orthogonal concerns in an application. These orthogonal concerns affect the source code 
in potentially many different places and, hence, it is advantageous to express them as 
aspects that are weaved into the source code but are conceptually separated from it. AOP 
is used in cases where traditional object-oriented techniques such as inheritance are not 
adequate. The general mechanism in AOP is to describe the functionality to be added as 
aspects. An aspect defines a collection of points in the execution of a program and what 
to do when these points are reached. The execution points are called join points and the 
action to be executed at the join points is called the advice. To help expressing join 
points in a more concise manner, pattern-like constructs (e.g., regular expressions) are 
often used, giving rise to the notion of pointcut. 



Dynamic AOP extends the original notion of AOP by allowing weaving at load or run 
time. Although it uses similar mechanisms and concepts, dynamic AOP is intended for 
problems that are quite different from those addressed by compile time AOP. In particu-
lar, dynamic AOP has been shown to be a very suitable mechanism for runtime adapta-
tion of applications and services [17,18,19,20]. As such, it has become a very important 
architecture and mechanism to implement adaptive middleware. To see why, one needs 
to look in more detail at the weaving process. In conventional AOP, weaving takes place 
at compile time. That is, a special compiler takes the advices, the pointcuts, the original 
source code, and then compiles the whole thing into a new executable where the original 
code has been augmented with the advices.  For obvious reasons, the woven aspects 
cannot be added or removed at runtime and are intended as a software development tool. 
AspectJ is the best example of a system supporting compile time weaving [7]. Load time 
weaving performs the weaving of advices into the original code at the time classes are 
loaded (typically into a JVM). Examples of such systems are JAC [17], AspectWerkz 
[19] and JMangler [20]. JAC uses the Javassist bytecode manipulation library to alter the 
bytecode of a Java object at class load time. AspectWerkz uses a modified classloader to 
weave the aspects with the base-code instead. It hooks directly into the bootstrap 
classloader and can then weave aspects to any classes loaded by the preceding classload-
ers. JMangler modifies the base class of the Java class loader hierarchy, thereby enforc-
ing transformations for classes that are loaded by arbitrary class loaders, except the boot-
strap class loader. For adaptation purposes, load time weaving has the disadvantage of 
breaching the Java security mechanism (e.g., AspectWerkz). Additionally, the namespace 
visibility constrains enforced by class loader hierarchies present additional problems 
when an advice needs to access independently loaded modules.  

Runtime weaving, implemented in systems such as PROSE [5,6] and JAsCo [18], is 
based on a variety of mechanisms that support the insertion of advices on running pro-
grams. Typically the insertion is based on a preliminary insertion of a stub that will then 
make appropriate calls to other parts of the system to insert or execute the advice. In 
general terms, both load time and runtime weaving are considered dynamic AOP ap-
proaches.  For the interested reader, a comparative analysis of several Java based dy-
namic AOP systems has been recently presented in [21]. 

The key problem for dynamic AOP techniques used in adaptive middleware is the po-
tential overhead that might be inflicted on the application. This is a very challenging 
issue as it usually comes down to a trade off between flexibility, ability to adapt, and 
performance. In general terms, the goals are: not to slow down execution of the applica-
tion (e.g., some dynamic AOP solutions require to run the JVM in debugging mode); 
minimize the impact when there no advices to be woven (e.g., in some systems, the over-
head for pointcuts is paid regardless of whether there is an advice to weave or not); 
minimize the overhead involved in finding the advice to execute (potentially to be chosen 
from a large collection); and speed up the dispatch of the advice (i.e., the time need to 
resolve and call the advice that has to be executed when an active join point is reached). 
In this paper, we tackle these performance problems by proposing a novel mechanism to 
implement dynamic AOP. The idea, called method code replacement, is to weave the 
advices at runtime by triggering the recompilation of methods. That is, a pointcut affect-
ing a method will trigger the recompilation of that method. As part of the recompilation, 
and depending on the nature of the advice, the advice itself or an efficient callback 



mechanism are woven into the original bytecode. For this purpose we use the Just-in-
Time compiler of an IBM Jikes Research Virtual Machine [2] and the mechanisms pre-
sent in the JVM for just-in-time compilation of code. As with other dynamic AOP sys-
tems, we can weave and unweave advices at runtime to any application running on the 
JVM. The big advantage of the new approach is that it is far more efficient than existing 
solutions. In the paper we describe the technique in detail and perform extensive bench-
marks to evaluate its performance. The micro-measurements show a clear performance 
improvement over stub-weaving approaches (a very common technique where the origi-
nal code is augmented with stubs that are used to check whether an advice needs to be 
executed or not). The experiments also show a clear gain when comparing complete 
systems, e.g., our new system is an order of magnitude faster then JAsCo [18]. 

The rest of the paper is structured as follows: Section 2 discusses the performance 
problem in dynamic AOP systems. Section 3 describes our dynamic AOP system. Sec-
tion 4 describes the design and the implementation of our approach and highlights key 
issues and design decisions. In Section 5 we present an extensive performance evalua-
tion. Section 6 concludes the paper. 

2   Motivation 

Dynamic AOP offers many advantages in terms of possibilities to implement adaptation 
at the middleware level. The question is how much performance overhead can be toler-
ated in return for the ability to adapt. In what follows we discuss existing techniques and 
show where their limitations lie. Then we briefly outline the solution that we propose in 
this paper. 

One of the first approaches to implementing dynamic AOP was to use the debugger 
support in the JVM. The first of such systems was PROSE (PROgrammable extenSions 
of sErvices) in a version that is based on the Java Virtual Machine Debugger Interface 
(JVMDI) [6]. The JVMDI-based weaver employs the debugger interface of the JVM to 
implement the pointcuts and join points. The JVMDI is a low-level, native interface that 
allows a user to register notification requests for execution events inside a JVM and to 
take control of the execution upon each event notification. PROSE uses the JVMDI to 
stop the execution of the JVM at join points (e.g., field changes, method boundaries, 
exception throws and handlers) and then invoke the corresponding advices. After the 
advice or advices have been executed, control is returned to the application. The result-
ing system is very effective and flexible but suffers from a considerable overhead as the 
JVM must run in debugging mode. For many applications, such an overhead is not ac-
ceptable. 

The idea of using the debugger interface has also been proposed in JAsCo [18]. 
JAsCo, unlike PROSE which is Java based, uses a new language to define the aspects. 
The language introduces two additional entities: aspect beans and connectors. An aspect 
bean contains one or more hooks that describe join points or pointcuts and the corre-
sponding advice. A connector is used for deploying one or more aspect beans within a 
concrete component context. It allows to instantiate and initialize hooks. JAsCo allows to 
automatically transform a regular Java bean into a JAsCo bean by employing a preproc-



essor that inserts the traps using bytecode adaptation. Each trap refers to the JAsCo run-
time infrastructure that manages the registered connectors and aspect beans. For improv-
ing the runtime infrastructure, JAsCo uses the Jutta system, intended to generate opti-
mized code fragments that contain the combined aspectual behavior for each join point. 
To further optimize the aspect interpretation part of JAsCo, JAsCo employs the Java 
HotSwap technology which allows changing class definitions while the program that 
contains these classes is running. The runtime replacement of bytecode is done using the 
hotswap mechanism [16] of the Java Platform Debugger Architecture (JPDA). The hot-
swap mechanism allows a new class to be reloaded at runtime while under the control of 
a debugger. Dmitriev et al. [13] is considering a new API for HotSwap consisting of two 
calls: RedefineMethod() and ExtendConstantPool(). The first call accepts new bytecode 
for a method. The second call is used to extend the constant pool of a class which is 
needed to use new constant pool references in the bytecode of a redefined method. 

The JAsCo hotswap implementation allows installing traps in only those methods that 
are subject to aspect application. When a new aspect is added, all the methods affected 
are replaced (hot-swapped) by a new version that contains the traps. Similar to the 
PROSE-JVMDI implementation, Jutta requires the virtual machine to run in debugging 
mode and, therefore, suffers from the same performance limitations. 

Common to these two approaches, JAsCo and PROSE-JVMDI, is the fact that the 
weaving happens in two phases. First a hook is inserted into the bytecode. The hook 
indicates the join points and helps to notify that the execution has reached them. Then the 
execution of the advice is triggered, typically as a separate piece of code. 

An alternative design has been proposed to avoid having to execute in debugging 
mode. A second version of PROSE uses the Just-in-time compiler capabilities of the 
JVM to speed up the process [5]. We will refer to this technique as stub-weaving. The 
idea is to modify the baseline (non-optimizing) JIT compiler. PROSE uses the JIT to add 
minimal hooks (or stubs) at all potential join points (such as field operations and method 
boundaries).  

When the program execution reaches a join point, the stub checks if the join point is 
activated and calls the advice. The advantage of this approach is that the JVM does not 
need to run in debugging mode, which results in very significant performance gains [5]. 
The drawback of the PROSE stub weaving approach is that the stubs can only be placed 
on easily recognizable pieces of the bytecode. This prevents the system from using the 
optimizing compiler as that would make it very complex and in some cases impossible to 
identify the proper join points. 

In this paper we take advantage of the insights of this previous work and improve on 
their performance by using a different approach. The basic idea is not to weave just 
hooks but, whenever possible, to weave the advice directly into the original code. The 
resulting system not only does not need to run in debugging mode, it can also skip in 
many cases the overhead of stopping at a hook or stub, executing the code of the stub, 
calling the advice, and then return execution to the original code. In the cases where the 
advice cannot be directly woven, what is woven is a more efficient form of hook, called a 
callback, that also helps to minimize the overhead. The system takes advantage of the JIT 
compiler (when an aspect is inserted, the affected methods are automatically recompiled) 
but can also use optimizing versions of the compiler, thereby introducing even greater 
performance gains. 



3   The PROSE Advice Weaver 

Our implementation is based on the Jikes IBM Research Virtual Machine (RVM) [2] and 
extends the current infrastructure of PROSE [5,6]. The dynamic advice weaver instru-
ments the bytecode of a method by adding callbacks which permit the corresponding 
advice execution. Aspects can also be removed, leaving the application in its original 
state. In this case, the weaver removes any advice whose aspects were unvowen. After 
the bytecode of a method has been replaced in the virtual machine, the method has to be 
recompiled. Method replacements are performed by a module, which ensures that 
method redefinitions are activated atomically. An extensive and detailed performance 
evaluation reveals how big the performance gain is compared with other AOP ap-
proaches. 

In case of the dynamic advice weaver only those join points where aspects are applied 
upon are activated, therefore our approach does not weave unnecessary callbacks. When 
the aspects are removed the join points are deactivated. Method replacement makes re-
JITing necessary once an aspect is inserted or removed. 

The next sections present our dynamic advice weaver and show how it enables effi-
cient dynamic AOP. Section 3.1 presents the architecture of the PROSE advice weaver. 
Section 3.2 illustrates the details related to the implementation of dynamic bytecode 
instrumentation support in Jikes RVM. Section 3.3 presents the AOP engine including 
the instruments needed for weaving aspects. 

3.1   System Architecture 

The architecture is divided into two layers: the AOP engine layer and the execution 
monitor layer. Fig.1 gives an overview of this architecture. The AOP engine accepts 
aspects (1) and transforms them into join point requests (2). It activates the join point 
requests by invoking methods of the execution monitor (3). 

The execution monitor is divided into two layers. The lower layer extends the Jikes 
RVM by adding support for method code replacement at runtime. The upper layer ac-
cepts weaving requests (3), gets the original bytecode of each method (4) and the con-
stant pool bytecode of the classes which actually contains the methods (5), instruments 
the affected methods (by adding advice callbacks at the corresponding bytecode loca-
tions (6.1), extends the constant pools of all affected classes (6.2)) and installs the in-
strumented methods in the virtual machine, using the services offered by the Class Evolu-
tion module (6.3).  

The bytecode manipulations and the methods instrumentation (4 - 6.3) are performed 
by the Bytecode Advice Weaver module. This module contains three main classes: 
FieldWeaver, MethodWeaver and RedefineWeaver. The main class that handles advice 
weaving at bytecode level is MethodWeaver. Field access and modification requests are 
handled by the FieldWeaver class, whereas method redefine requests are handled by the 
RedefineWeaver class. When the program execution reaches one of the activated join 
points (7), the execution monitor notifies the AOP engine which then executes an advice 
(8). When the aspects are removed the join points are deactivated, the weaver unweaves 
any advice whose aspects were removed, and the original bytecode of each method are 



installed. Our goals were to define a clear interface of the execution monitor, which is 
responsible for the implementation of dynamic weavers on top of it, and to provide this 
interface at a low implementation cost. 
 

 

Fig.1: Architecture of the PROSE advice weaver 

3.2   The Execution Monitor 

The execution monitor contains the functionality for activating join points and the call-
back functionality for notifying the AOP engine that a join point has been reached. When 
a new aspect is added to the system, the AOP engine activates join points using the API 
methods of the execution monitor. The lower layer of the execution monitor is integrated 
with the JVM. It extends Jikes RVM by adding basic support for dynamic weaving, while 
the AOP system is treated as an exchangeable module on top of the basic support. The 
Bytecode Advice Weaver module is responsible for the extraction of bytecode and re-
placement with new bytecode simultaneously. 

In this section, we will discuss the important issues related to the implementation of 
dynamic bytecode instrumentation support in Jikes RVM. Fig.2 contains the core inter-
face of the execution monitor which supports VM services to change a class at runtime. 

When a new method is redefined, the execution monitor replaces the original bytecode 
of a method with the new bytecode, using the redefineMethod method of the 
VM_ClassEvolution class. The first parameter is the method that will be redefined. The 
second parameter represents the new bytecode that will be installed in the VM. The new 
method becomes active only when the commit method is invoked. It is possible to rede-
fine several methods before committing them. The commit method should be called after 
instrumenting all required methods. 



1 public final class VM_ClassEvolution { 
2   // get the bytecode of the method “m” 
3   public static byte[] getMethodCode(Method m); 
4   // replace the bytecode of method “m” with the new bytecode 
   “codes” 
5   public static void redefineMethod(Method m, byte[] codes); 
6   // get the constant pool bytecode of the class “c” 
7   public static byte[] getConstantPoolCode(Class c); 
8   // extend the constant pool bytecode of the class “c” with new 
    bytecode “codes” 
9   public static void extendConstantPool(Class c, byte[] codes); 
10  // install the new redefined methods 
11  public static void commit(); 
12} 

Fig.2: The Class Evolution API 
 
The bytecode of a method is obtained by the getMethodCode method. More exactly, 

the bytecode that represent the method_info structure defined in the Java Virtual Ma-
chine Specification [15] are returned. Jikes RVM doesn’t store the bytecode of a method 
when loading the class containing this method. There is a field called 
VM_Method.bytecode but this only represents the Code attribute which corresponds to 
the body of a method (a part of the method_info structure). Therefore, in order to imple-
ment the getMethodCode method, we adapted the VM_Method.readMethod method and 
added an additional field to the VM_NormalMethod class which finally contains the 
whole bytecode of a method. 

The method responsible for retrieving the bytecode that makes up the constant pool of 
a class is getConstantPoolCode. If the constant pool has been extended before with the 
extendConstantPool method, the extended version will be returned even if those changes 
are not committed. This allows increasingly extending the constant pool of a specific 
class without committing. In order to implement getConstantPoolCode in Jikes RVM, 
we had to apply some changes to the VM_Class class. The constant pool bytecode is 
processed in the constructor of the VM_Class class but is not saved. Therefore, we added 
another field to the VM_Class class which holds the bytecode of the constant pool. 

In order to support dynamic bytecode instrumentation in Jikes RVM, two lists are 
maintained: one for the method redefinitions and one for the constant pool extensions. 
The constant pool extensions are installed first because the method redefinitions rely on 
them. Method redefinitions are applied one after the other and are performed by the fol-
lowing steps: (1) read the bytecode of the new method, (2) create a new method instance, 
(3) replace the old method with the new one (in the list of the declared methods in its 
class, in all subclasses and in the static/virtual/interface method lists) and (4) install and 
activate the new method.  

The new method gets activated by calling VM_Class.updateMethod on the class ob-
ject where the method is declared. The static, virtual or interface method table entry is 
updated (JTOC (Jikes RVM table of content) for static methods, TIB (type information 
block) for virtual methods, or IMT (interface method table) for interface methods [11]). 
This entry contains a pointer to the native machine code that will be executed next time 
when the method is invoked. However, it is not the JIT compiled code of the new method 
which is used. A lazy compilation stub is used instead that will trigger the JIT compila-
tion when the method is being executed for the first time. With this optimization, meth-



ods which are never executed are not compiled, thus saving the overhead that would be 
needed to compile the method at runtime. 

Implementing this API required minimal changes to the existing Jikes RVM code 
(90% of the necessary code was kept in the VM_ClassEvolution class). The advantage of 
implementing this API is that it is very simple to use. Our goal was to demonstrate the 
feasibility of dynamic bytecode instrumentation technology and measure the performance 
overhead related to the advice dispatching.  

3.3   The AOP Engine 

When an aspect is added to the system (Fig.1, step 1), the Join Point Generator decom-
poses the aspect into join point requests (step 2) and activates join points using the API 
methods of the execution monitor (step 3). When an active join point is reached (step 7), 
the Callback Manager notifies the AOP engine and the corresponding advice is executed 
(step 8). 

PROSE does not define a new aspect language and provides a simple way to describe 
aspects. Fig.3 shows a simple PROSE aspect which redefines the original version of a 
method with a new one.  

1 public class ExampleAspect extends Aspect { 
2   public Crosscut doRedef = new MethodRedefineCut() { 
3      public void METHOD_ARGS (Foo ob, int x) { 
4         // the new method code 
5      } 
6      protected PointCutter pointCutter() { 
7         return Within.method("bar"); 
8      } 
9   }; 
10} 

Fig.3: Example of a PROSE aspect 
 

Aspects in PROSE extend the Aspect base class (line 1). An aspect may contain one or 
more crosscut objects. A crosscut object defines an advice method called 
METHOD_ARGS (line 3) and a pointcut method (line 6) which defines a set of join 
points where the advice should be executed. In Fig.3, there is just one crosscut, corre-
sponding to the doRedef instance field (line 2).  

To implement a method redefinition in PROSE we introduced a new crosscut type 
called MethodRedefineCut (line 2), similar to the around advice construct in AspectJ. 
The aspect showed in Fig.3 redefines the method bar (line 7) from the Foo class (line 3) 
with the new code specified in the advice (line 4). When the aspect is inserted, the origi-
nal bytecode of a method, in our example bar, in replaced with the bytecode of the ad-
vice, using the support for method code replacement at runtime.  

AspectJ enables us to execute the advice around the join point. An around construct 
applied to an AspectJ execution join point will replace the captured method code by the 
advice, resulting in a method redefinition. AspectJ allows to execute the surrounded code 
by invoking proceed() in the body of the advice. Our implementation doesn’t support the 
functionality to call the redefined code in the body of the advice. The redefined code is 
not accessible until the aspect is withdrawn.  



PROSE aspects are expressed in the Java source language. Therefore, there are some 
limitations in case of method redefinitions. When writing an advice method for a method 
redefinition, the resulting bytecode is transplanted into the methods that will be rede-
fined. References to the current aspect instance are not allowed since the aspect object is 
not available in the captured methods. This means that the this keyword cannot be used 
in the advice method. Even implicit this references are not allowed (no instance field 
reference and no instance method invocation on the current object). Especially, getThis-
JoinPoint() is not possible in such an advice method. 

The second limitation is related to Java class-member access protection. Consider that 
we want to access non-public fields of the Foo class in the advice method. In this case 
the Java compiler will refuse to compile the aspect. However, this problem was solved 
using Reflection which allows accessing non-public members at will. 

One important issue is the support for atomic weaving. The PROSE engine provides 
this support as follows. Atomic weaving can be implemented by blocking the advice 
execution until the weaving operation completes. Every time when a join point is 
reached, a callback method is called, instead of the actual advice.  

4   Design and Implementation 

This section describes the design and the implementation of the dynamic advice weaver. 
Our approach weaves advice calls at runtime into the bytecode of a method wherever 
they are needed, but not at all potential join points. When an aspect is inserted, the 
matching join points are activated which implies that all affected methods are instru-
mented with the corresponding advice call. These methods have to be recompiled after-
wards by the JIT compiler. Exception join points (e.g., exception throws and handlers) 
are treated differently. They are implemented by extending the runtime exception handler 
of Jikes RVM. Section 4.1 provides details concerning the bytecode instrumentation for 
several join point types supported by PROSE. In Section 4.2, we discuss implementation 
issues. 

4.1   Dynamic Bytecode Instrumentation 

Bytecode instrumentation [13] is a term used to denote various manipulations of the 
bytecode, typically performed automatically by tools and libraries according to a rela-
tively high-level specification. The current implementation of the dynamic advice weaver 
employs the BCEL (Byte Code Engineering Library) [12], a bytecode manipulation li-
brary. 

We will now discuss the details concerning the bytecode instrumentation for several 
join point types supported by PROSE. 

 
•  Method entry join point 
Weaving method entry advice is done by adding a call to the advice before the 

original bytecode of a method. The arguments of the called method are accessible 
from the advice because they are passed as parameters to the advice method.  



•  Method exit join point 
Weaving method exit advice is much more difficult than weaving method entry 

advice. In this case, we have to be very careful with the control flow. For example, 
consider a method that just returns a value. In that case we could simply weave the 
method advice before the return bytecode instruction. This solution is not correct if 
the method contains two or more return statements or, even worse, if an exception 
might be thrown. 

Therefore, we chose another solution: to introduce a try-finally construct. The 
original body of the method is put into the try block and in the finally block we invoke 
the method exit advice. According to the Java Language Specification [14] the finally 
block is guaranteed to be executed after the try clause. It doesn’t matter whether the 
try block finishes successfully or because an exception has been thrown. The Java Vir-
tual Machine Specification [15] presents detailed information about how the try-
finally construct is translated from Java source to bytecode.  

For normal control transfer from the try block the compiler makes use of two spe-
cial instructions: jsr (“jump to subroutine”) and ret (“return from subroutine”). The in-
structions of the finally clause are located in the same method, much like exception 
handlers. Before each return instruction, the returned value (if any) is stored into a lo-
cal variable, and then a jsr to the start of the finally instructions is performed. The last 
finally instruction is the ret instruction; it fetches the return address from the local 
variable and transfers control to the instruction at the return address. 

In the case of abrupt control transfer, i.e. when an exception has been thrown in 
the try clause, an exception handler is added. This handler catches instances of the 
class Throwable, thus exceptions of any type. In the catch block a jsr instruction does 
a subroutine call to the code for the finally block, similar to normal control transfer. 
After that, the exception is thrown again. 
 

•  Field access join point 
The problem with field access crosscuts is not the weaving process itself but to 

get the information about where an actual field access happens. For example, assume 
that we want to execute an advice before a public field declared in a class is accessed. 
Potentially, every method in every class loaded into the VM could access this field. 

One way to solve this problem is to scan all methods and check if they access this 
field. But this would be very inefficient and time consuming. Therefore, we chose a 
different solution: When a class is loaded into the VM, for each method declared in 
this class we track every field access. These accessors (set of methods that access a 
certain field) must be computed for every field available.  

There are two bytecode instructions that deal with field accesses, getfield and get-
static. The second instruction is used to read the content of a static field, and the first 
one for normal (non-static) instance fields. 
 

•  Field modification join point 
Weaving field modification advice can be done in the same way as for field ac-

cesses. Instead of a set of accessor methods for each field, we need a set of modifiers. 
These modifiers can be computed by looking at each putfield and putstatic instruction. 

 



•  Exception join points 
PROSE supports two exception join point types: exception throw and exception 

catch. With these join points it is possible to execute advice when an exception is 
thrown or when it is caught by a catch block. Weaving an advice for exception join 
points is different from the other join point types. One possibility is to add bytecode 
instructions which call an advice at the appropriate join points. To realize this, one 
must know every method which throws a certain exception or which declares a certain 
handler. This leads to the same problem as with the field join points where we need a 
mapping from the field to the methods which access or modify this field. Therefore, 
we chose a different solution. We implement these types of join points by extending 
the runtime exception handler of Jikes RVM. We adapt the Jikes RVM exception 
handler by adding callbacks. On the VM side, exception handling can not be done at 
compile time. It must be done at runtime because the handler must walk the stack for a 
thrown exception until it finds a catch block. 

4.2   Implementation Details 

Dynamic advice weaver provides an API in order to allow weaving advice calls at run-
time into the bytecode of a method wherever they are needed. The main class that weaves 
advice calls at bytecode level is MethodWeaver. There is a one-to-one relationship be-
tween method weavers and methods. Instances of the class MethodWeaver are responsi-
ble for exactly one method. Each method has exactly one method weaver object. If no 
method weaver exists for a certain method then it is created during the first invocation of 
getMethodWeaver().  

All modified method weavers will install their new method bytecode if the static 
method commit() is called. We iterate over all method weaver objects and check if they 
are modified. If yes, the weaver will weave callbacks for all activated join points of this 
method, using the weave() method, which performs the following steps: 

1. Prepare the weaving process by initializing the BCEL bytecode generator objects. 
2. If a redefine advice is registered, replace the old bytecode instructions with the 

transformed instructions of the advice method. 
3. Iterate over all bytecode instructions. If it is a field instruction (getstatic, getfield, 

putstatic, putfield) and the referenced field is in the list of watched fields, then insert a 
field access/modification callback. 

4. Check if a method entry join point is activated. If yes, insert a method entry call-
back before the first instruction. 

5. Check if a method exit join point is activated. If yes, create a try-finally construct, 
move all instructions into the try block and add a method exit callback in the finally 
block.  

6. Generate the final instructions and install them into the VM using the services of the 
VM_ClassEvolution class. 

7. Clean up BCEL bytecode generator objects. 
 
The commit() method should be called after instrumenting all required methods. It is 

possible to add as many callbacks as needed before actually committing bytecode in-



strumentation. After all method weavers have installed the new bytecode, the changes are 
activated in the VM. 

All the methods which have been woven with the corresponding callbacks can be re-
stored, using restoreAll() method. We iterate over all method weavers and install the 
original bytecode of each method. Finally, all the changes are committed using the ser-
vices of VM_ClassEvolution. 

Field access and modification requests are handled by the FieldWeaver class. For each 
method that references the specified field, a callback is woven. Method redefine requests 
are handled by the helper class RedefineWeaver. Method redefinition takes place if the 
setRedefineAdvice() method is called. 

Weaving an advice for exception join points is different from the other join point 
types. The Jikes RVM JIT compilers translate each athrow instruction into an invocation 
of the VM_Runtime.athrow() method which finally invokes deliverException(). There-
fore, we get the event of a thrown exception for no additional cost. Exception handling is 
performed in deliverException(). The method invocation stack is walked until an appro-
priate catch block is found. The thread will be terminated if the execution is not caught. 
If there is a catch block, exception handling is delegated to a subclass of 
VM_ExceptionDeliverer, depending on the JIT that compiled the method which contains 
the catch clause (VM_BaselineExceptionDeliverer for methods compiled by the baseline 
compiler, and VM_OptExceptionDeliverer for methods compiled by the optimizing com-
piler). 

5   Performance Evaluation 

In order to evaluate the performance gain of our PROSE dynamic advice weaver we 
performed extensive benchmarks. The enhanced PROSE performance is compared to 
other AOP approaches. This section experimentally assesses the performance of the 
dynamic advice weaver approach. Section 5.1 describes the experimental setup, the 
benchmark suite, and the Jikes RVM configurations used in the experiments. The per-
formance of the execution monitor introduced in Section 3.2 is assessed in Section 5.2. 
Finally, Section 5.3 presents the performance evaluation of the AOP engine. 

5.1   Experimental Methodology 

All experiments in this paper were performed on an AMD Athlon MP 1600+ 1.4 GHz, 
double processor machine with 1 GB RAM running Linux 2.4.20. In this paper, we com-
pare results using the following Java environments: Jikes RVM 2.3.0.1 and Sun Java 
SDK 1.4.2. The IBM Jikes RVM begins execution by reading from a boot image file, 
which contains the core services (e.g. class loader, object allocator, compiler) of Jikes 
RVM precompiled to machine code [10]. Jikes RVM supports several configurations. In 
our experiments we ran the following Jikes RVM configurations: 

- prototype: the Jikes RVM configured to use the baseline compiler as JIT. This con-
figuration does not include the optimizing compiler [8] or the adaptive optimization 
system [9].  



- prototype-jvmai: prototype configuration with the Jikes RVM configured to use a 
modified baseline compiler as a JIT. The modified baseline complier weaves minimal 
hooks (join point stub instructions) at native code locations that correspond to join 
points. This configuration does not include the optimizing compiler or the adaptive 
optimization system. The stub-based weaver makes use of this configuration. 
- production: the Jikes RVM configured to use the optimizing compiler as a JIT. This 
is a fully functional configuration of Jikes RVM with the highest performance that in-
cludes the optimizing compiler and the adaptive optimization system. Additionally, 
two command line options (“-X:aos:adaptive_inlining=false” and “-
X:opt:inline=false”) were used to prevent inlining, and the initial compiler is set to the 
optimizing compiler (“-X:aos:initial_compiler=opt”). Using the last command line op-
tion all dynamically compiled methods are compiled with the optimizing compiler. 
The advice-based weaver makes use of this configuration. 

We evaluate our approach using three benchmark applications: SPECjvm98 [4], Java 
Grande [3], and JAC [22]. SPECjvm98 is a benchmark suite which consists of different 
tests that measure the efficiency of JVM, the just-in-time (JIT) compiler, and operating 
system implementations. SPECjvm98 applications include text compression, MPEG 
decoding, compilation speed, graphics, and database functions. The Java Grande bench-
mark suite consists of a set of benchmarks that are relevant for testing the performance of 
Java for scientific computations. The benchmark suite is broken up into three different 
areas: low-level benchmarks that test general language features and operations; scientific 
and numerical application kernels; and full-scale science and engineering applications. 
The benchmarks used in this paper are the scientific and numerical application kernels, 
short codes which reflect the type of computation which might be found in the most 
computationally intense parts of real numerical application. The JAC benchmark consists 
of a set of public methods with different method signatures and simple method body 
implementation. This benchmark allows to measure the overhead for applied aspects. 

5.2   Evaluation of the Execution Monitor 

To measure the efficiency of the advice execution monitor, we performed a number of 
micro-measurements. We compare the advice weaver with the stub-based weaver and 
AspectJ. For a micro-measurement, we calculate the time needed to execute a simple 
operation (e.g. an empty method call, a field set, a field get, exception throw and han-
dler). We measure the execution time of a simple operation for a large number of itera-
tions and for each join point type. We ran all the experiments one hundred times and then 
we calculate the average of the execution times measured. The standard deviation for all 
the micro-measurements is less than 8%.  

The micro-measurement results are summarized in Table 1 and Table 2. The results 
indicate how much time is spend in the execution monitor and is a good indicator of the 
AOP system efficiency. Each row contains the average time needed to execute a byte-
code instruction, under various configurations of AOP support. 

In the first experiment, we made the measurements with an activated join point (e.g. 
method boundaries (entry, exit), field operations (access, modification)). Each micro-
measurement has an activated join point with a simple advice attached to it that increases 



a counter each time it is executed. The results are summarized in Table 1. The first col-
umn contains the seven basic operations that we have evaluated. The second and the third 
columns represent the time needed to execute an instruction when the execution monitor 
has one active join point. An activated join point always results in a call to the advice 
manager component. The cost in case of the stub weaver is significant: 400 
ns/instruction, roughly the time needed to execute an invokevirtual instruction. The cost 
is significantly reduced (by half) in case of the advice weaver: the times needed to exe-
cute all method invocation instructions are roughly 200 ns/instruction. In case of field 
instructions, the execution time is roughly 350 ns/instruction. For comparison, a similar 
AspectJ advice (that increases a counter each time it is executed), compiled into the test 
has been used. AspectJ is employed as performance reference. 

 
 Stub weaving Advice weaving AspectJ 

Instruction type 
Call to advice method because of an 

active join point 
Call to advice method because of an 

active join point 
AspectJ call to an advice 

getfield 395.2 ns 347.91 ns 11.48 ns 
putfield 389.97 ns 350.66 ns 12.44 s 

invokevirtual 409.79 ns 408.58 ns 183.13 ns 185.81 ns 17.63 ns 17.93 ns 
sync invokevirtual 575.11 ns 569.9 ns 211.18 ns 206.3 ns 45.74 ns 44.79 ns 

invokeinterface 672.61 ns 675.34 ns 200.16 ns 194.08 ns 16.23 ns 24.58 ns 
invokestatic 395.7 ns 389.98 ns 190.14 ns 185.28 ns 14.88 ns 16.33 ns 

invokespecial 400.79 ns 402.88 ns 190.48 ns 187.65 ns 17.98 ns 17.78 ns 

 Met.Entry Met.Exit Met.Entry Met.Exit Met.Entry Met.Exit 

Table 1: Join point costs on the JVM with AspectJ, stub weaver and advice weaver 
 
In the second experiment, we made the measurements under other configurations of 

AOP support. Table 2 illustrates the results of this experiment. The first column contains 
the seven basic operations that we have evaluated. The second and the fourth columns 
represent the time needed to execute an instruction when the execution monitor has no 
active join points. The third and the fifth columns contain the cost of executing an opera-
tion for which a join point was registered and then locked.  

 
 Stub weaving Advice weaving 

Instruction type 

No call to  
advice because  

join point is  
not activated 

No call to advice  
because join point is 
activated but locked 

No call to 
advice because 

join point is  
not activated 

No call to advice  
because join point is  
activated but locked 

getfield 16.45 ns 19.32 ns 3.55 ns 311 ns 

putfield 15.15 ns 20.03 ns 2.93 ns 307.35 ns 

invokevirtual 33.64 ns 35.06 ns 36.31 ns 6.72 ns 169.94 ns 162.75 ns 
sync  

invokevirtual 
185.32 ns 184.61 ns 184.61 ns 41.12 ns 184.85 ns 182.87 ns 

invokeinterface 287.17 ns 284.93 ns 301.33 ns 12.89 ns 172.92 ns 170.17 ns 

invokestatic 25.04 ns 27.47 ns 27.75 ns 16.53 ns 164.89 ns 163.32 ns 

invokespecial 28.98 ns 31.61 ns 29.34 ns 7.15 ns 166.3 ns 163.08 ns 

  Met.Entry Met.Exit  Met.Entry     Met.Exit 

Table 2: Join point costs on the JVM with stub weaver and advice weaver 
 
When program execution reaches a join point, the code stubs emitted by the stub 

weaver first check if the join point is active or not. The advice weaver does not perform 
this check because advice callbacks are only woven for active join points. The bytecode 
of a method without active join points is equal to the original bytecode of the method. 
Therefore, the overhead for inactive join points is heavily reduced. 



If a join point is active, both weaving approaches must check whether the join point is 
locked. The stub weaver performs this check right after checking for join point activity. 
Only a small overhead increase is observed compared to the case of an inactive join 
point. The values for the advice weaver are larger. When the advice weaver weaves an 
advice callback into a method, some information has to be passed to the advice: a refer-
ence to the current instance (“this”) is passed as well as the method that reached the join 
point. Additionally, all the arguments of the method containing the callback are for-
warded. 

Although the advice weaver is slower for locked join points this is not a major disad-
vantage. The advice weaver is faster for active join points as can be seen from the previ-
ous measurements. Locked join points occur only occasionally, they are much rarer than 
active or inactive join points. 

In order to assess the performance gain of the advice execution monitor, we made 
other micro-measurement tests. Table 3 illustrates the results of this experiment. In this 
experiment, we made the measurements with an activated exception join point (exception 
throw, exception catch). The results for the exception join points must be interpreted 
independently. Both the stub weaver and the advice weaver implement the exception join 
points by extending the exception handling mechanism of the VM. Exception handling is 
slow because the VM must walk the method frames on the stack and seek for an appro-
priate handler (catch block). Therefore, the measured results are bigger compared to the 
other join point types. The stub weaver can not use the optimizations available in Jikes 
RVM because only the baseline compiler is modified to emit the stubs. The advice 
weaver can use the adaptive optimization system of Jikes RVM and is therefore faster. 

 
 Stub weaving Advice weaving AspectJ 

Instruction 
type 

Call to advice method because of an 
active, unlocked join point 

Call to advice method because of an 
active, unlocked join point 

AspectJ call to an 
advice 

Exception Throw 7183.3 ns 5285.9 ns - 
Exception Catch 7192.6 ns 5309.5 ns 22.81 ns 

Table 3: Join-point costs on the JVM with AspectJ, stub weaver and advice weaver 
 

Execution time  
with AOP support Benchmark 

Stub weaving Advice weaving 
Java Grande benchmark suite 

LUFact:Kernel 2.4 s 1.22 s 
Crypt:Kernel 3.35 s 2.26 s 
SOR:Kernel 12.92 s 3.23 s 

SparseMatmult:Kernel 13.69 s 7.37 s 
Series:Kernel 21.37 s 19.28 s 

HeapSort:Kernel 3.62 s 1.26 s 
FFT:Kernel 30.14 s 29.81 s 

SPECjvm98 benchmark suite 
check 1.35 s 0.51 s 
jess 34.36 s 5.32 s 
db 54.23 s 25.52 s 

jack 20.95 s 4.67 s 
javac 37.8 s 9.07 s 

compress 40.82 s 12.79 s 
mpegaudio 33.62 s 7.19 s 

Table 4: The execution times for the stub and advice weavers with AOP support for method 
boundaries, method redefinition, field sets, field gets, and exception handlers 



In the fourth experiment, we compare the original JVM with the JVM containing the 
execution monitor. In this experiment the execution monitor is not activated. To measure 
the performance loss incurred by the existence of the AOP support, on the SPECjvm98 
benchmarks, we report the average of the execution times measured for one hundred 
runs, all run during a single JVM execution, with the size 100 (large) inputs. For the Java 
Grande benchmark, we report the average times for one hundred runs, each run in a sepa-
rate VM. Table 4 summarizes the average execution times for each test for the stub and 
advice weavers. Fig.4 and 5 shows the relative overhead of the AOP enhanced JVM for 
the SPECjvm98 and Java Grande benchmarks. The standard deviation for this experi-
ment is less than 7%. 

SPECjvm98 benchmark suite
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Fig.4: Relative overhead for advice weaver with AOP support for method boundaries, method 

redefinition, field sets, field gets, and exception handlers 
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Fig.5: Relative overhead for advice weaver with AOP support for method boundaries, method 
redefinition, field sets, field gets, and exception handlers 

 
When an aspect is inserted, the matching join points are activated which implies that 

all affected methods have to be recompiled by the JIT compiler. In this experiment, we 
measured the compilation time for each join point type. Each measurement has an acti-
vated join point with a simple advice attached to it that contains a simple field operation 



each time it is executed. The methods are compiled on first invocation with the baseline 
or the optimizing compiler and no recompilations will take place. Table 5 shows the 
average compilation times for one hundred runs. The standard deviation is less than 5%. 
 

Relative rejit overhead 
Type of join points 

Optimizer compiler Baseline compiler 

Method entry 3.59 ms 0.19 ms 
Method exit 3.51 ms 0.26 ms 

Method redefinition 1.01 ms 0.10 ms 
Field access 3.46 ms 0.22 ms 

Field modification 3.34 ms 0.23 ms 

 
Table 5: Relative rejit overhead 

5.3   Evaluation of the AOP Engine 

 
Invoke type 

 
Parameters Jikes / PROSE 

(Stub weaving) 
Jikes / PROSE 

(Advice weaving) 
Jikes / AspectJ 

invokevirtual () 37.91 µs 36.01 µs 3.82 µs 3.74 µs 0.07 µs 0.07 µs 
sync invokevirtual () 36.24 µs 36.06 µs 3.69 µs 3.44 µs 0.13 µs 0.13 µs 

invokeinterface () 35.76 µs 35.67 µs 3.63 µs 3.68 µs 0.09 µs 0.09 µs 
invokestatic () 31.57 µs 30.92 µs 3.66 µs 3.66 µs 0.04 µs 0.05 µs 

invokespecial () 35.13 µs 35.29 µs 3.67 µs 3.7 µs 0.05 µs 0.05 µs 
        

invokevirtual (Object, Object) 40.95 µs 40.67 µs 4.1 µs 3.78 µs 0.05 µs 0.05 µs 
sync invokevirtual (Object, Object) 41.32 µs 40.86 µs 3.82 µs 4.07 µs 0.11 µs 0.12 µs 

invokeinterface (Object, Object) 40.98 µs 40.99 µs 3.79 µs 4.09 µs 0.08 µs 0.08 µs 
invokestatic (Object, Object) 37.96 µs 37.87 µs 4.03 µs 3.79 µs 0.04 µs 0.04 µs 

invokespecial (Object, Object) 40.58 µs 40.54 µs 4.04 µs 4.08 µs 0.05 µs 0.06 µs 
        

invokevirtual (int, int) 38.68 µs 38.39 µs 4.17 µs 4.48 µs 0.06 µs 0.05 µs 
sync invokevirtual (int, int) 38.55 µs 38.36 µs 4.23 µs 4.39 µs 0.1 µs 0.09 µs 

invokeinterface (int, int) 38.82 µs 38.14 µs 4.16 µs 4.2 µs 0.09 µs 0.09 µs 
invokestatic (int, int) 33.88 µs 34.1 µs 4.36 µs 4.18 µs 0.03 µs 0.04 µs 

invokespecial (int, int) 37.82 µs 38.05 µs 4.32 µs 4.42 µs 0.05 µs 0.05 µs 
        

invokevirtual (long, long) 38.4 µs 38.33 µs 4.26 µs 4.23 µs 0.06 µs 0.07 µs 
sync invokevirtual (long, long) 38.7 µs 38.11 µs 4.47 µs 4.48 µs 0.1 µs 0.1 µs 

invokeinterface (long, long) 38.7 µs 38.49 µs 4.48 µs 4.47 µs 0.09 µs 0.09 µs 
invokestatic (long, long) 34.02 µs 34.32 µs 4.45 µs 4.46 µs 0.04 µs 0.04 µs 

invokespecial (long, long) 38.12 µs 38.63 µs 4.51 µs 4.49 µs 0.05 µs 0.05 µs 
        

invokevirtual (double, double) 37.96 µs 38.28 µs 4.6 µs 4.59 µs 0.06 µs 0.06 µs 
sync invokevirtual (double, double) 38.61 µs 38.15 µs 4.57 µs 4.66 µs 0.11 µs 0.11 µs 

invokeinterface (double, double) 38.8 µs 38.51 µs 4.72 µs 4.65 µs 0.08 µs 0.09 µs 
invokestatic (double, double) 34 µs 34.23 µs 4.55 µs 4.58 µs 0.05 µs 0.04 µs 

invokespecial (double, double) 38.43 µs 38.45 µs 4.85 µs 4.58 µs 0.05 µs 0.05 µs 

  Met.Entry Met.Exit Met.Entry Met.Exit Met.Entry Met.Exit 

 
Table 6: Micro measurements with PROSE and AspectJ 

 
To measure the efficiency of the dynamic advice weaver, we made a number of micro-
measurements, this time with the complete AOP system (the AOP engine running on top 
of the execution monitor). In this experiment, one simple aspect is applied upon a 
method. This aspect describes an advice that increases a counter each time it is executed. 
We measured the cost of executing an advice for a method invocation operation for one 



million method calls. We ran all the experiments one hundred times and then we calcu-
late the average of the execution times measured. Table 6 illustrates the results. Each line 
contains the total time needed to execute a method call plus an additional advice on 
method entry and exit. The advices were woven dynamically using the stub weaver (col-
umn 3) and the advice weaver (column 4), and statically using AspectJ (column 5). All 
the method invocation instructions that we have evaluated are contained in the first col-
umn. We tested different method signatures with parameters of different types (column 
2). We repeated the measurements until the standard deviation is less than 7%.  

The cost of executing an advice for advice weaver is roughly 10 times faster than that 
of executing an advice for stub weaver. As illustrated by Table 6, the performance gain 
of the advice weaver is very significant. The complete advice weaver (execution monitor 
plus AOP engine) is significantly faster than the stub weaver. 

5.4   Comparisons with JAsCo including the just-in-time compiler Jutta 

In order to evaluate the performance of PROSE advice weaver, we compare it also with 
an other AOP approach: JAsCo including the just-in-time-compiler Jutta. We made simi-
lar experiments as Vaderperren et al. [18]. We employed the JAC benchmark application 
for all the experiments. The benchmark consists of a set of eight public methods with 
different method signatures and simple method body implementation. For each AOP 
approach, 100000 “direct” iterations were performed. 

In the first experiment, one aspect is applied upon each public method. The aspect de-
scribes an around advice that increases a counter each time it is executed. The results of 
this experiment are summarized in Table 7. As illustrated by Table 7, the performance 
gain of the PROSE advice weaver is very significant. This is mainly the mechanism sup-
port for method code replacement at runtime. Our approach weaves the actual advice 
code and therefore improves the performance due to a reduction of the number of indi-
rect references. 

One around aspect / 
eight public methods 

JAC benchmark 

AspectJ 1.1.1 6 ms 
PROSE 1.2.0 6 ms 
JAsCo 0.5.3 247 ms 

 
Table 7: Measurements with PROSE, JAsCo and AspectJ 

 
In the last experiment, one single around aspect is applied upon one specific method 

defined within the JAC benchmark application. Table 8 illustrates the results of this ex-
periment. The experiments show a clear gain when comparing complete systems, e.g., 
our new system is an order of magnitude faster then JAsCo. 

 
One around aspect / 
one public method 

JAC benchmark 

AspectJ 1.1.1 2 ms 
PROSE 1.2.0 4 ms 
JAsCo 0.5.3 33 ms 

 
Table 8: Measurements with PROSE, JAsCo and AspectJ 



6   Conclusions 

In this paper we have presented the PROSE advice weaver, a modular and flexible archi-
tecture intended to improve the efficiency of the dynamic AOP process. We proposed a 
mechanism to implement dynamic AOP through method code replacement at runtime. 
The idea is to weave the advices at run time by triggering the recompilation of methods. 
As part of the recompilation, and depending on the nature of the advice, the advice itself 
or an efficient callback mechanism are woven into the original bytecode. The system 
takes advantage of the JIT compiler (when an aspect is inserted, the affected methods are 
automatically recompiled), but can also use optimizing versions of the compiler, thereby 
introducing even greater performance gains. In this paper we presented the technique in 
detail, perform extensive benchmarks to evaluate the performance gain of this approach 
and compare it with other dynamic AOP systems. The measurements show that our ap-
proach is more efficient than the existing solutions. PROSE is an open source project and 
can be obtained from http://prose.ethz.ch. 
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