
1

Architectural Support for Online Multimedia Services

Hans Eberle1 & Jürg Gutknecht2

1Sun Microsystems Laboratories
Hans.Eberle@eng.sun.com

2Swiss Federal Institute of Technology (ETH)
gutknecht@inf.ethz.ch

Abstract: Our vision is an environment that allows (ordinary) PC-clients
to profit from a rich collection of multimedia programs such as selected
TV channels, video on demand, teleported lectures etc. In this article, we
present the design and implementation of a corresponding local infra-
structure both from a hard- and software perspective. Innovation high-
lights are (a) a switch-based network with guaranteed transmission band-
width for audio/video streams, built-in multicast support and globally ac-
cessible display frame buffers, (b) a system for the integrated display of
remotely generated video streams at the client site and (c) a central server
for the management of the available multimedia programs.

Keywords: client/server multimedia system, quality of service, networked
peripherals, Oberon.

1. Introduction

Thanks to the power, versatility and low cost of today's personal computers multimedia
has become an attractive and widespread field of application. The unique combination of
high-quality memory-mapped display screens with customized software control gives
general-purpose computers invaluable conceptual superiority against even most sophisti-
cated television (TV) sets. In addition, new and more flexible kinds of data delivery
services such as video on demand, video conferencing and process monitoring can be
used much more profitably by computer-controlled clients.

A simple but useful multimedia environment consists of a set of audio/video stream
sources (typically cameras, microphones, TV receivers or special-purpose processors), a
program server/manager and a set of clients that may request programs from the server on
demand. In this context, the only function of the client station is the display of (possibly
multiple) video streams. It is therefore reasonable to aim at an architecture that saves both
communication bandwidth and processor cycles by providing direct global access to the
clients’ frame buffers, under bypassing of their processors. Other desirable properties are
the capability to multicast streams, to display moving images at high quality (no jerks or
jitter) and to smoothly integrate remotely generated contents with the client's local dis-
play management.

Our hardware approach to these design goals is the switch-based system area network
Switcherland [4]. In its most general form, Switcherland presents itself as a scalable dis-
tributed shared-memory network as depicted in Figure 1. Nodes appear in a variety of



2

forms: processor/memory, frame buffer/display, audio/video digitizer, disk or other spe-
cial purpose device. Interesting properties of the system area network are bandwidth
guarantees and a built-in multicasting capability.

M

P

M

P

P

M

P

M
P

M

P

M

S

IO

IO

IO

S

IO IO

IO S

IO

IO

S

IO IO

IO

S

S

IO

IO

IO

P

M

M

P

Figure 1: A distributed Switcherland system consisting of switches (S), proces-
sor/memory nodes (P/M) and IO nodes (IO).

At the client site we use off-the-shelf PCs connected to Switcherland via PCI adapt-
ers and proprietary display frame buffers. Clients run Oberon System 3 [5], an evolution
of the original Oberon system [15][16]. System 3 runs on bare Intel hardware. It incorpo-
rates a framework for visual objects and an elaborate concept of a display space. Figure 2
shows a snapshot of a System 3 display screen. For the purpose of the multimedia project
under discussion, the system had to be upgraded by a notion of remotely generated con-
tents, that is by visual objects whose contents bypass the local processor/memory facili-
ties.

This paper presents the application of Switcherland in combination with Oberon
System 3 to online multimedia services. We discuss in detail the hardware and software
features necessary to efficiently support the management and transport of video and audio
data streams, and we describe a client/server environment for online multimedia services.
We also give some performance measurements.

2. The Switcherland Distributed System

Current system architectures do not provide a satisfactory platform for online multimedia
services. The main shortcoming is the inability of their communication infrastructures to
provide quality of service (QoS) guarantees thus making it impossible to process or trans-
fer continuous data such as audio and video streams at a given rate and within specified
latency bounds. Further, with today’s systems data streams are often forced to take a de-
tour through a processor. A more suitable platform for online multimedia services, how-
ever, makes direct communication between source and sink devices possible. For exam-
ple, if a video stream can be transferred directly from a video digitizer to a frame buffer,



3

without involving an intermediate processor, communication bandwidth and processor
cycles are saved, and latency and also latency jitter is reduced.

Figure 2: Snapshot of an Oberon System 3 display screen.

We have addressed these shortcomings in the Switcherland project by providing the
following features:

• Most importantly, Switcherland’s communication infrastructure offers QoS guar-
antees in the form of connections with reserved bandwidths and bounded trans-
mission delays.

• Multicast is implemented in hardware, an essential feature to efficiently distribute
online multimedia contents.

• Any node can be directly accessed by any other node.
• By implementing the basic window management functions directly at the frame

buffer level display-oriented data such as video streams can be transferred directly
from a source device to a frame buffer without a detour through a processor.

2.1 Bandwidth Guarantees for Multimedia Data Streams

Switcherland realizes a global memory in that all nodes are mapped into one single ad-
dress space and all communication is translated to load and store operations giving the
programmer a uniform communication model.



4

The memory operations are transmitted in form of fixed-size 64-byte cells. The re-
sulting data streams are classified as variable bit rate (VBR) traffic and constant bit rate
(CBR) traffic. The two traffic classes differ in the guarantees provided by the switches.
For CBR traffic, the switches provide bandwidth guarantees and bounded transmission
delays. For VBR traffic, a certain amount of buffering is preallocated in the switches,
thereby guaranteeing that cells belonging to this class are never dropped due to over-
flowing buffers - this is in contrast to traditional networks. Typically, CBR connections
are used for transferring continuous data and VBR connections are used for transmitting
data that is generated in bursts, for example, by accesses to disks. Of course, there can be
many more CBR and VBR connections than physical connections – our implementation
is limited to a maximum of 128 CBR connections and 256 VBR connections per link.

The implementation of the traffic classes is best described by explaining the corre-
sponding flow control schemes: rate-based flow control is used for CBR traffic and
credit-based flow control is used for VBR traffic. In rate-based flow control, the source
injects data into the interconnection fabric at a given rate. In credit-based flow control,
the availability of buffer space is represented by a credit counter, and the source injects
data only as long as credits are available.

Rate-based and credit-based flow control are used in networks such as ATM net-
works [9][14]. Our implementation differs in that flow control is done end-to-end rather
than link-by-link.

b

CBR

VBR

b

b

r n0 ⋅ b

r n1 ⋅ b

n slots
per frame

CBR Stream0

CBR Stream1

Switch

CBR

VBR

b

Output PortsInput Ports

Figure 3: Rate-based flow control.

Rate-Based Flow Control

To describe how rate-based flow control works, we introduce the notion of a time frame
made up of n slots. A slot corresponds to the time needed to transmit a cell. If b is the to-
tal link bandwidth, bandwidth can be reserved in multiples of b/n. Once a bandwidth of
r�b/n has been allocated to a certain CBR connection, cells may be sent by the source at
a maximum rate of r cells every n slots. For this purpose, the source is equipped with a
pacing mechanism that periodically injects data into the interconnection fabric. The pac-
ing mechanism may use any slots within a frame up to a total of the reserved number of



5

slots. If fewer than the allocated number of slots are used, the unused slots are free for
use by VBR cells and, with it, are not wasted. This is useful in combination with a com-
pression method that causes a video or audio stream to be sent over a CBR connection at
a variable transmission rate – in this case, a CBR connection is still preferred over a VBR
connection to guarantee timely delivery.

The diagram in Figure 3 shows a 2 x 2 port switch with two CBR streams being for-
warded from two input ports to one output port. The bandwidth reservations for the two
streams are r0�b/n and r1�b/n, respectively. Note that the bandwidth of a link may not be
overallocated; applied to the given example r0+r1� n must be an invariant. To guarantee
that CBR cells are forwarded in bounded time, the switches use separate output buffer
queues for CBR and VBR cells and give priority to CBR cells when dequeuing cells. (As
a consequence, forwarding delays for VBR cells are variable and unbound.)

Credit-Based Flow Control

Flow control for VBR traffic is credit-based. This is illustrated in Figure 4 and works as
follows. A flow-controlled connection uses a full-duplex path between the client node
and the server node. Any operation issued by the client is translated into a request and an
acknowledgment: the client sends a request to the server, which in return sends an ac-
knowledgment back to the client. The bookkeeping required to manage the buffer alloca-
tion of a VBR connection is rather simple. At connection set up time, a credit counter in
the client is initialized to c, whereby c represents the number of buffers the client wishes
to be reserved in each switch along the path of the connection. Every time a request is
sent, the credit counter is decremented, and every time an acknowledgment is received,
the counter is incremented. Requests can be sent as long as the value of the counter has
not reached zero. With it, there can be at most c outstanding requests.

The example in Figure 4 shows a connection with an initial credit c = 4. There are
three outstanding requests leaving the credit counter at a value of 1.

Client ServerSwitch Switch

Credit
Counter

1

Req

Ack

+1

-1>0

Figure 4: Credit-based flow control.

End-to-End Flow Control

To save buffer space, interconnection networks typically use link-by-link flow control
[3][7][8]. Switcherland, however, does flow control for VBR traffic end-to-end. This
simplifies the design of the switches considerably since only the nodes and not the
switches are responsible for controlling the flow of cells. Of course, as illustrated in



6

Figure 4 end-to-end flow control in general wastes buffer space since it is not possible to
use all buffers. This can only be tolerated if the network diameter is limited. In the case
of Switcherland, we restricted the length of any path connecting two nodes to at most ten
switches. With it, the round trip time for a connection can be kept short. This, in turn, re-
sults in a small window size that requires relatively few buffers in the switches.

Flow control is further simplified since we assume that the nodes can be trusted in
the sense that they never exceed their bandwidth and buffer allocations. Therefore, the
switches are not required to contain any mechanisms to enforce these allocations.

2.2 Built-in Multicast Support

Since multimedia online services typically connect a data source device with several data
sink devices, economic use of the available network bandwidth calls for a multicast capa-
bility. Multicast is easily implemented with a bus that is a broadcast medium by its nature
and, therefore, can offer the desired feature without much additional support. A broadcast
medium, however, does not scale. If scalability is a concern, as is usually the case with
distributed systems, switching techniques are an attractive alternative. Scalability, how-
ever, comes at the price of higher design complexity as the example of implementing
multicast demonstrates: switching techniques rely on point-to-point links rather than
multi-point links and, therefore, offer no obvious way to implement multi-point connec-
tions. For this reason, switch-based interconnection structures often do not implement
multicast connections in hardware but rely on software bundling of several point-to-point
connections.

Switcherland implements multicast for CBR traffic in hardware. Though multicast-
capable switches have been presented before, we describe a novel and rather simple im-
plementation that makes use of the CBR traffic’s properties. To explain how this is done,
the implementation of the switch has to be outlined first. Logically, it represents an out-
put-buffered crossbar switch. Physically, the output buffers are implemented with a sin-
gle shared memory. To be more specific, there is a cell buffer memory and a separate ad-
dress queue memory, the latter containing queues with the addresses of the cells in the
cell buffer memory. For each output port there is one CBR and one VBR queue. In addi-
tion, there is a list of free cell buffers. Figure 5 shows the corresponding arrangement.

Multicast is implemented in that the address of the cell’s buffer is written into multi-
ple address queues rather than by storing multiple copies of the cell into the cell buffer
memory. This solution is attractive since it does not increase the input bandwidth of the
cell buffer memory, which is the critical resource of the design. A complication arises
upon freeing a buffer used for a multicast cell since it needs to be determined when the
last copy of the cell has left the cell buffer memory. Our solution is to mark the buffer
address that goes into the longest queue and free the corresponding buffer by re-inserting
its address into the free list when the marked address is taken out of the queue. This
works for CBR traffic since the time it takes for a cell to leave the queue is proportional
to the length of the queue. The example in Figure 5 shows a cell in buffer 5 that is multi-
cast to output ports A and C.



7

Cell Buffer Memory

Address Queue Memory

A

B

C

D

07 6 5 4 3 2 1

0 1 53

4

2

6

7

8

8

5

AB

C B

DD

AD

AA

B B

CC

DD

ACAB A,C BA

A B C D
Free
List

Figure 5: Organization of the Switcherland switch.

2.3 Frame Buffer with Window Management Support

The frame buffer is implemented as an independent Switcherland node that is directly
accessible by any other node: it is mapped into the global address space and updated sim-
ply by sending write operations.

Direct communication via multimedia streams requires support not only by the inter-
connection structure itself but also by the individual frame buffer nodes, for example in
the form of clipping and windowing. In principle, these functions can be implemented
either in the source device or in the sink device of a stream. In combination with multi-
cast and individual overlapping constellations at the client site, the latter option is a rea-
sonable choice. However, the former option has its benefits as well, because it may save
bandwidth, if only one sink device has to be served and parts of a window displaying a
video stream are overlapped. This option was the choice in the DAN clipping nodes de-
scribed in [6].

The windowing function offers the abstraction of windows and basically requires an
address translation. Instead of addressing pixels absolute within the pixel map, window-
ing allows pixels to be addressed relative within a window. Thus, a video capture board
updates pixels in a virtual window independent of the position of the actual destination
window. In this model, the location of a pixel is specified by a window identifier and an
address relative to the origin of the window. As shown in Figure 6 the location of the
window within the pixel map is obtained by indexing a window offset table with the win-
dow identifier. The absolute address of a pixel is then given as the sum of the offset and
the relative address.

Windowing adds a third dimension in that windows can mutually overlap. When
projecting windows onto the two-dimensional screen, it needs to be determined which
parts are visible. Hidden parts of a window need to be clipped. We implemented this
functionality with the help of a clipping mask that stores the identifier of the visible win-
dow for every address of the pixel map. Executing a store operation now works as fol-
lows. First, the absolute address is calculated by the address translation mechanism de-



8

scribed. Then, the absolute address indexes the clipping mask to obtain the identifier of
the window visible at the corresponding location. Finally, this identifier is compared with
the one given as a parameter of the store operation. If they are equal, the pixel is visible
and the store operation is executed. Otherwise, the operation is ignored.

OffsetWindow Id

Window
Offsets

Window Id

Clipping
Mask

+

Relative
Address

= Write Enable

Absolute
Address

Pixel Map

Figure 6: Windowing and clipping.

3. Oberon as an Integrating Display System at the Client Site

Oberon System 3 is used in our project to control, organize and manage at the client site
the display of multimedia streams delivered by the Switcherland network. This system
distinguishes itself by a highly elaborate concept of a display space that, by definition,
comprises the entirety of currently visible objects. It is noteworthy that this entirety is a
hierarchy of containment of visual objects. In fact, the display space is a visual object it-
self. More precisely, it is an example of a container object that, as such, may contain
other container objects like compound documents or GUI panels and elementary objects
like character glyphs, buttons and sliders. Containers filled with content objects are called
composite objects.

In order to understand the specific problems caused by remotely generated objects
like multimedia streams, we need some technical background knowledge. Figure 7 shows
the internal data structure of a (complex) composite object. It is a dag (rather than a tree)
because of the so-called camera views that allow multiple display of one and the same
visual component.

By definition, the message protocol for composite objects obeys the principle of pa-
rental control. In short, this means that messages are never sent to content objects di-
rectly but always to their container ("parent") or, looked at it the other way round, that
container objects are expected to forward arriving messages to their contents, according
to the rules of the protocol. Tightly connected with parental control is the small-world
principle, basically stating that objects and in particular composite objects are encapsu-
lated worlds by themselves that can be manipulated as a whole under invariance of their
inner consistency.



9

Unfortunately, the small-world principle in its rigorous form can no longer be main-
tained in combination with remotely generated contents. The example of moving a com-
posite object containing a remotely generated component from one location in the display
space (which is the root of all container objects) to another one may serve as an example.
This is the sequence of events happening behind the scenes when an interactive user
wants to move the CNN panel in Figure 2 to a different location:

(1.) A mouse-event message is sent to the display space and forwarded to CNN.
(2.) CNN takes control, tracks the mouse and registers the desired new location.
(3.) CNN broadcasts a remove message to the display space to remove itself at the old

location. The effect of this message is a redrawing of the affected objects.
(4.) CNN broadcasts a redraw message to the display space to redraw itself at the new

location.

Target

Message Path

Panel

Message

Composite Object

Int

View 2View 1

Doc

Text

List Button

Button
Field

Text

Button Panel

Camera

ViewView

Camera

Panel

Model

Slider

Button

Figure 7: A composite visual object.

Taking a refined look at the implementation of the redraw operation, we first notice
that redraw requests are broadcast in the display space, because they typically demand
computation of a new clipping mask, what is conveniently done incrementally while the
message is travelling down the hierarchy along the context path. As far as redrawing it-
self is concerned, we now recognize a fundamental difference between locally and re-
motely generated contents. Local contents are simply bitblock-transferred or re-generated
by raster operations using the clipping mask. In contrast, remotely generated contents
have to be redirected to a different location in the display memory and, possibly, clipped.
Thanks to the architectural support provided by Switcherland frame buffers as explained



10

in the previous section, redirection and clipping are simple: adjust the offset of the con-
tent window and update the clipping mask table accordingly.

We can now characterize our approach and solution as based on (a) tagging remotely
generated objects in the display space and (b) augmenting the message protocol, so that
containers are obliged to forward critical messages to their tagged components. Obvi-
ously, to make this work correctly, containers need to "inherit" the remote-tag from their
contents.

Another principal problem are the already mentioned camera views in combination
with remotely generated contents. A camera view in Oberon is a (possibly partial) view
of some visual object, for example a picture or drawing. In the case of local contents,
multiple camera views on the same object may well be present simultaneously in the dis-
play space. This, however, is no longer true for remotely generated contents under the
current architecture, because streams may not be multiplied in the same frame buffer. The
current implementation always directs a stream to its latest view.

4. The Resulting Multimedia Client/Server Environment

We envisage a Switcherland environment whose sole purpose is to provide multimedia
programs. The main hardware constituents are data sources, connections, switches and
clients. Many different forms of sources are conceivable, among them cameras and mi-
crophones, TV receivers and CD players. Some of them require a selection among a set
of potentially available channels.

Taking an imaginary snapshot of the environment, we see a possibly large number of
video and audio streams flowing from their source to one or several clients. The opera-
tions "show/stop program P on client station C" or, more technically, "open/close stream
P from source S to client C's frame buffer" define the basic state transitions. Obviously, a
coordinating authority is needed for the handling of such requests. For that purpose, we
have implemented a central program server, again a PC running Oberon with a connec-
tion to the Switcherland hardware via a PCI adapter. Its main responsibilities are book
keeping, routing and multiplexing of multimedia streams. Although we have not done it,
the server could easily be upgraded by an authorization and access control on a per-client
and per-program basis.

It is important to realize that the server is used momentarily only to answer client re-
quests and is not further involved in the actual data transfer. Hence, the non-scalability of
the central server architecture is not an issue in this case. In detail, the client-oriented
services of the program server are:

(1.) Enumerate all currently available streams
(2.) Open a desired stream for a client
(3.) Close a specific stream to a client

Streams are identified to the program server by a qualified name of the form Sour-
ceId.StreamId, for example: TV.Video or TV.Audio. Obviously, a client station can dis-
play many different video streams but play back just one audio stream (that of the pro-
gram focused on) at any time.

In addition to client-oriented operations, the program server offers a central control
interface for convenient maintenance of different sources. The provided commands are:



11

(4.) Select a desired channel for a certain source
(5.) Start/stop stream
(6.) Define the pixel resolution of a (video) stream

Figure 8 is a special case of Figure 1. It shows a system consisting of a frame grabber
FG acting as a video source, two clients and a program server. Server and clients use PCs
connected to Switcherland switches via PCI adapters (PCIA). At the beginning, there is a
video stream V1 originating at the frame grabber FG and ending at the frame buffer FB1

of Client1. Client2 now sends a request to the program server to open stream V1 and send
it to frame buffer FB2. In response, the program server updates the switches' routing ta-
bles RTable0 and RTable2 by modifying the entries indexed by the identifier of connec-
tion C1, which is used for transporting stream V1. An entry contains a bit vector that
identifies the output ports the stream has to be forwarded to.

P C 2 S 2 FB 2

Client2

S 0F G
Video

Source
P C 0

Program
Server

P C 1 S 1 FB 1

Client1

V 1

OpenSt ream(V1,FB2)

V 1

0101

RTab le0

C 1

Wr i te(RTable0+ C 1,1010)

Wr i te(RTable2+ C 1,0100)

0010C 1

RTab le2

PCIAPCI

PCIAPCI

PCIA

Figure 8: Client/server architecture.

5. Switcherland System Performance

Our environment currently consists of seven Switcherland workstations each containing a
switch, a frame buffer and a PC. PCs are connected via PCI adapters. In addition, there is
a PC running the program server. Workstations and server are interconnected by an addi-
tional six switches.

We have implemented a 4 x 4 port switch. Each port connects to a 265.625 Mbit/s
full-duplex serial link compatible with the physical layer of the FibreChannel standard.
Not considering the overhead caused by the 8B/10B encoding scheme [10] used on the
links, a 4 x 4 port switch offers an aggregate bandwidth of 0.85 Gbit/s. The latency is 1.5
µs per switch, which is at least an order of magnitude faster than the latency measured for
ATM switches [1].



12

The frame buffer stores pixel values as true-color 24-bit RGB values in a 1024 x 768
pixel map. The pixel map can be accessed at the full link bandwidth. Clipping mask and
window offset table of the frame buffer work with 8-bit window identifiers, thus, a total
of 256 windows can be supported. While the number of video windows in our system is
mainly limited by the available link bandwidth, many other systems and, in particular,
commodity systems are restricted to one or only a few video windows. Further, these
systems are often limited in that video windows cannot be overlapped at all or display
update performance is severely degraded when windows overlap.

The following two sections investigate the bandwidth available to update the display
screen. We distinguish between VBR and CBR connections: CBR connections are used
to transmit video data from a video source device to the frame buffer and VBR connec-
tions serve to transmit control data as well as textual and graphical data from a PC to the
frame buffer.

5.1 VBR Data to the Display

Figure 9 shows the amount of bandwidth available when an application writes VBR data
to the frame buffer. The bandwidth was measured as a function of the block size of the
written data. Measurements were done for connections with different amounts of credits.
The graphs show that a throughput close to the full link bandwidth can be achieved if a
sufficient number of credits is available and large enough block sizes are chosen. The
performance degradation for smaller blocks can be explained by overhead caused by the
driver.

The measurement setup used a frame buffer directly connected to a host. For a path
containing the maximum number of ten switches another 13 credits have to be added to
achieve performance numbers similar to the ones presented. This number is given by the
latency added by the switches.

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16

Block Size [kByte]

B
an

d
w

id
th

 [
M

B
yt

e/
s]

c=1
c=2
c=3
max.

Figure 9: VBR throughput.



13

5.2 CBR Data to the Display

Figure 10 shows the update rates measured as a function of the size of the written block.
Measurements were done for different bandwidth allocations. Again, for smaller block
sizes the allocated bandwidth cannot be fully utilized due to driver overhead.

The maximum bandwidth available for transmitting CBR video streams to the frame
buffer is given by the link capacity. Taking the overhead given by the link encoding as
well as the cell headers into account, data can be written into frame buffers at a maximum
rate of 183 Mbit/s. When transmitted, pixel values are packed as 32-bit values giving a
maximum rate of 5.7 MPixel/s. This rate corresponds to about 12 video streams displayed
at a resolution of 160 x 120 pixels per frame and 25 frames per second, or 3 video
streams displayed at a resolution of 320 x 240 pixels per frame and 25 frames per second.

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16

Block Size [kByte]

B
an

d
w

id
th

 [
M

B
yt

e/
s]

r=16
r=48
r=80
r=112

Figure 10: CBR throughput.

6. Related Work

Architectures and frameworks for processing multimedia data are the topic of many re-
search efforts. Their focus typically is the timely manipulation of continuous data, which
is a prerequisite for a multimedia system. As we have shown, certain types of multimedia
systems can further benefit from a communication infrastructure that enables data trans-
fers directly between peripheral devices. To make this possible, modifications to their
hardware and software are necessary. The literature, however, does not cover this aspect
sufficiently.

Medusa [17] is a networked multimedia environment based on ATM technology.
Much like Switcherland nodes, peripherals including cameras, displays and audio in-
put/output are separate components, each independently connected to the network with-
out being attached to a specific workstation. The software system uses a peer-to-peer ar-
chitecture based on point-to-point connections that allows source devices to send data
directly to sink devices.

Similar to Medusa, the VuSystem [12] uses ATM technology to interconnect general-
purpose workstations and network-based multimedia devices. It provides a programming



14

system for multimedia applications that perform complex computations on video and
audio data. Applications are mapped onto a media-flow architecture consisting of three
modules: source, filter and sink. Communication between modules is again point-to-
point.

Medusa and the VuSystem do not consider the delivery of a data stream to multiple
sink devices. In this respect, the Nemesis project [11] provides an infrastructure better
suitable for this task. Nemesis is an operating system that provides QoS guarantees to ap-
plications. The Nemesis Device Driver Architecture makes a clear separation of control-
path and data-path operations. In [2] Barham gives an example of a frame buffer driver
and corresponding window system where all rendering is performed by the client and up-
dates to the frame buffer are performed directly by the client at a rate determined by per-
connection QoS parameters. The frame store used [13] provides clipping and windowing
mechanisms similar to the ones described here. While Nemesis allows several clients to
share a frame buffer, no control mechanism is described that allows a stream to be multi-
cast, that is, to be shared by several frame buffers.

7. Conclusion

Direct communication between multimedia peripherals is the key to an efficient integra-
tion of online multimedia services into computer networks. The necessary changes and
additions to existing system architectures have been described in this paper: on the hard-
ware side, guaranteed transmission bandwidth for audio/video streams, multicast support,
and globally accessible display frame buffers are needed; on the software side, the man-
agement of visual objects has to cope with remotely generated contents.

A corresponding system has been successfully implemented. It allows the delivery of
high-quality audio and video to the user at no extra cost in respect to processing power.
Displaying video is done with the help of visual objects that can be manipulated like tra-
ditional local objects, in particular, that can be moved around and overlapped arbitrarily.

Acknowledgements

Patrick Saladin has adapted System 3 to Switcherland. Daniel Scherrer has implemented
the program server. Michaela Blott, Erwin Oertli and Peter Ryser have built the
Switcherland switch and nodes used for this project.

References

[1] G. Babic, A. Durresi, R. Jain, J. Dolske, S. Shahpurwala: ATM Switch Performance
Testing Experiences, ATM Forum/97-0178R1, April 1997,
http://www.cis.ohio-state.edu/~jain/atmf/a-0178r1.htm.

[2] P. Barham: Devices in a Multi-Service Operating System. Technical Report 403,
University of Cambridge, October 1996.

[3] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, J. Seizovic, W. Su: Myri-
net: A Gigabit-per-Second Local Area Network. IEEE Micro, vol. 15, no. 1, Febru-
ary 1995, pp. 29-36.

[4] H. Eberle: Switcherland: A Scalable Interconnection Structure for Distributed Sys-
tems. Journal of System Architectures, Elsevier, vol. 44, nr. 2, 1997, pp. 227-240.



15

[5] J. Gutknecht: Oberon System 3: Vision of a Future Software Technology. Software -
Concepts and Tools, Springer, February 1994. vol. 15, nr. 1, 1994. p 26-33.

[6] M. Hayter, D. McAuley: The Desk-Area Network. ACM Operating Systems Re-
view, vol. 25, no. 4, October 1991, pp. 14-21.

[7] R. Horst: TNet: A Reliable System Area Network. IEEE Micro, vol. 15, no. 1, Feb-
ruary 1995, pp. 37-45.

[8] M. Katevenis: Telegraphos: High-Speed Communications Architecture for Parallel
and Distributed Computer Systems. Technical Report 123, Foundation for Research
and Technology, Heraklio, Crete, 1994.

[9] H. Kung, R. Morris: Credit-Based Flow Control for ATM Networks. IEEE Network,
40-48, March/April 1995.

[10] C. Jurgens, FibreChannel: A Connection to the Future. IEEE Computer, vol. 28, no.
8, August 1995, pp. 88-90.

[11] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R. Fairbairns, E.
Hyden: The Design and Implementation of an Operating System to Support Distrib-
uted Multimedia Applications. IEEE Journal on Selected Areas in Communication,
vol. 14, nr. 7, September 1996, pp. 1280 -1297.

[12] C. Lindblad, D. Tennenhouse: The VuSystem: A programming System for Compute-
Intensive Multimedia. IEEE Journal on Selected Areas in Communications, vol. 14,
nr. 7, September 1996. 1298-1313.

[13] I. Pratt: A Key Based Framestore for the Desk Area Network. In ATM Document
Collection 3 (The Green Book), University of Cambridge, October 1995, pp.1 4.

[14] K. Ramakrishnan, P. Newman. Integration of Rate and Credit Schemes for ATM
Flow Control. IEEE Network, 49-56, March/April 1995.

[15] N. Wirth: The Programming Language Oberon. Software - Practice and Experi-
ence, vol. 18, nr. 7, 671-690, 1988, pp. 671-690.

[16] N. Wirth, J. Gutknecht: The Oberon System. Software - Practice and Experience,
vol. 19, nr. 9, 1989, pp. 857-893.

[17] S. Wray, T. Glauert, A. Hopper: Networked Multimedia: The Medusa Environment.
IEEE Multimedia, vol. 1, nr. 4, Winter 1994, pp. 54-63.

[18] G. Krasner and S. Pope: A Cookbook for using the Model-View-Controller
user interface paradigm in Smalltalk-80, Journal of Object-Oriented Programming,
vol. 1, nr. 3, August 1988, pp. 26-49.




