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Abstract

An embedded system for the flight control of an autonomous helicopter has
been developed at the Institute for Computer Systems (ICS) at ETH Zurich.
The technical reports [1]-[3] describe its hardware core, the programming
language used, and the software core, respectively. This report covers the fol-
lowing topics: communication, data logging, navigation (state estimation),
modelling of the helicopter, state space control, and trajectory planning.
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1 Introduction

The model helicopter project originated at the Measurement and Control Laboratory (IMRT) at
ETHZ. Starting in the mid-eighties, first experiences were gained using a prototype of a heli-
copter mounted on a frame. While the frame limits the range of possible movements, it allows
a fast and precise calculation of the state1 of the helicopter (position, velocity, attitude, and
angular rotation rates) based on the measurements of an appropriate set of angles.

In 1996, a first aerial model helicopter was developed. Of course, not only the capabilities and
the range of possible missions of the helicopter were thereby multiplied, but also the problems
of state estimation and control, of communication and of power supply. In that year, the Swiss
team also achieved second place at the International Aerial Robotics Competition organized by
the International Association for Unmanned Vehicle Systems (AUVSI).

Since the first flying prototype is equipped with two standard PC 104 systems (Intel 486), the
consumption of electrical energy is relatively high (~50 W). This leads to a heavy battery pack
and thus to a short maximal duration of missions. To overcome this drawback, an embedded
system2 has been developed at the Institute for Computer Systems (ICS). It consists of the
hardware arranged around a low-power 200 MHz StrongARM processor [1], the programming
language Oberon SA including a compiler [2], and a small operating system customized to our
needs [3]. The current on-board system consumes about 15 W, 60% thereof being needed for
the GPS card.

In this report, the overall configuration is shown and the on-board tasks are described, includ-
ing the scheduling scheme. In detail, these tasks are

• IO/Communication: Signals are read from and written to peripheral devices.

• Logging: Data is logged on board and simultaneously transmitted to ground.

• Navigation: The state of the helicopter is continuously estimated by updating the previous
state estimation based on new measurements.

• Control: The control output is calculated based on the current state estimation and on a ref-
erence signal being tracked.

As the helicopter represents a very complex and broad field of research, it offers a large variety
of directions for further investigation. Therefore we conclude the report with an outlook into
future developments.

1. In the context of a physical system - such as the helicopter - the notion ‘state’ means a collection of con-
tinuously changing variables. Often, these variables correspond to some kind of energy storage, e.g.
velocity corresponds to kinetic energy, position to potential energy etc. In this report ‘state’ is also used
in the sense of a logical or discrete state e.g. describing finite state machines. The intended meaning
should be clear from the context.

2. The system has been named OLGA: Oberon Language Goes Airborne.
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2 Configuration

Only  a brief overview on the overall configuration is given in this report (Fig. 2.1). A more
detailed description can be found in [4].

There are two connections between the ground and the on-board system. First, we have the
standard remote control system operated by a human pilot. While it serves as a backup in case
the autopilot fails, it is also very useful in the process of controller design. Numerical identifi-
cation of the helicopter model can be performed by logging the sensor signals as well as the
control signals originating from remote control. Secondly, a datalink is used to upload the soft-
ware to the on-board system, to control some logical states and controller settings from ground,
to send segments of the desired trajectory to board, to get online data from the on-board system,
and to send GPS correction messages on-board. 

Note that in the final state of development the helicopter is to operate autonomously, except for
the GPS correction messages which are necessary to make the GPS work in differential mode.

Fig. 2.1. Configuration of the system
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2.1 Inputs and Outputs of the Board Computer

In the following two tables we show the characteristics of input and output signals which must
be handled by the board computer. The TYPE field indicates whether a signal is read using an
analog-to-digital converter (A/D), received in pulse-width or pulse-frequency-modulated form
(PWM/PFM), or whether it arrives over an UART (serial)1. 

All A/D, PWM, and PFM signals may be regarded as typical signals in a sampled data control
system, i.e. a procedure GetInput(input) returns an update of the input signal almost
instantaneously2. Note that we are using two different sampling times: whereas 20 ms is
regarded to be fast enough for the control loop, the navigation part is running four times faster.

The serial inputs are handled differently. Typically, about five messages arrive per channel and
second. The messages consist of an id-dependent number of characters. As the single charac-
ters arrive, they are collected to form messages. The complete messages then are either for-
warded to other devices or used locally.

Therefore, a serial input cannot be sampled in the sense of actively requesting an update of the
signal. Instead, it is checked whether an update is available and, if there is, the new value is
used in the calculations.

1. Details on the implementation of drivers are found in [3].
2. With delay times of less than 5µs the A/D converter is the slowest of these components.

Table 1: Characteristics of input signals

SENSOR / 
INPUT CHANNEL

MEASURED VALUE /
TYPE OF MESSAGE

TYPE
SAMPLING 
TIME [ms]

3 accelerometers acceleration AD 5

3 gyros rate of angular rotation AD 5

temperature sensor temperature of inertial navigation unit AD 5

battery current voltage AD 20

rotor sensor frequency of rotor PFM 20

6 servos servo signals from remote control PWM 20

GPS position message (msg)
velocity msg

serial —

compass heading msg (track over ground) serial —

laser meter height-above-ground msg serial —

datalink command msg
controller msg
segment msg
GPS-correction msg (to be forwarded)

serial —
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Similar statements hold for the outputs: the control signal is sent to the servos instantaneously,
whereas the transfer of messages may suffer some delay.

2.2 Scheduling

In its simplest form, the implementation of a discrete-time controller contains the following
steps which are performed periodically, i.e. with a given rate:

1. read input signals from sensors

2. calculate control signal

3. write control signals to actuators.

There is a hard real-time condition for the sampling times; no jitter is desired. Besides that, the
time consumed for one execution of the control algorithm must fit into the time slot provided.

In our example we introduced a second sampling time. Since the ratio between the two times is
integer-valued (20 ms = 4 * 5 ms) the scheduling can be kept relatively simple. We just need a
counter to distinguish the four phases. The tasks corresponding to the three steps mentioned
above all are controlled by the same interrupt (IRQ, 200 Hz). Every time the interrupt occurs
the input task is performed while output and calculation (navigation and control) tasks are trig-
gered only every fourth time (Fig. 2.2).

Table 2: Characteristics of output signals

ACTUATOR /
OUTPUT CHANNEL

OUTPUT SIGNAL /
TYPE OF MESSAGE

TYPE
SAMPLING 
TIME [ms]

6 servos control signal PWM 20

GPS GPS-correction msg (forwarded) serial —

datalink logger msg
config msg

serial —

Fig. 2.2. Scheduling scheme
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Note that

• the calculations may last longer than 5 ms, therefore support of re-entrance is necessary

• the calculations make use of a set of input data sampled in the previous 20 ms (while the
new samples are collected in a new set)

• the output phase is not directly attached after the calculation phase; this causes an additional
delay, but it ensures that a fixed controller leads to identical closed-loop behaviour under
changing timing conditions (e.g. if some ‘overhead’ is introduced)

A second interrupt (FIQ, fast interrupt) handles the receiver part of the UARTs. Arriving char-
acters are written to buffers. During an interval of 20 ms about 5-20 FIQ interrupts occur, each
taking less than 2.5 µs. The corresponding elements have been omitted in Fig. 2.2.

In the idle phases control is given to the background tasks. 

2.3 Serial Communication: Messages

The background tasks deal with serial communication on the level of messages. They are
organised in a round-robin scheme, and we have three types of them:

• receiver tasks building up messages from incoming characters,

• transmitter tasks sending complete messages,

• logger tasks which formulate messages containing data demanded by the ground station. 

A receiver task implements a state machine which reflects the structure of the incoming mes-
sages: typically three synchronization characters are followed by the checksum (a bitwise XOR
of all other characters of the message), the identification number, the length, and the ‘real con-
tent’ (data) of the message (Fig. 2.3).

As sketched in the following excerpt of MODULE Communication, the receiver task RxGRD oper-
ates on the global record variable rxGRDinfo. That variable encapsulates all data which must
be persistent between successive activations of RxGRD.

Fig. 2.3. State machine reflecting a message protocol
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MODULE Communication;
IMPORT ComBase, Scheduler, HKernel;
CONST

GRDchannel = 0;

GRDsync = 0;
GRDchksum = 1;
GRDid = 2;
GRDlen = 3;
GRDdata = 4;

TYPE
RxGRDinfo = RECORD

state, syncState: INTEGER;
checksum: CHAR;
id, len: INTEGER;
data: ComBase.Buffer;
msgCount, CECount: INTEGER(* used for (error) statistics *)

END;
VAR

rxGRDinfo: RxGRDinfo;

PROCEDURE RxGRD(me: Scheduler.Task);
VAR ch: CHAR;
BEGIN

IF HKernel.Available(GRDchannel) > 0 THEN
HKernel.Receive(GRDchannel, ch);
IF rxGRDinfo.state = GRDsync THEN

(* ... *)
ELSIF rxGRDinfo.state = GRDchksum THEN

(* ... *)
ELSIF rxGRDinfo.state = GRDid THEN

(* ... *)
ELSIF rxGRDinfo.state = GRDlen THEN

(* ... *)
ELSIF rxGRDinfo.state = GRDdata THEN

(* 
- test checksum
- copy (rxGRDinfo.len-6) chars into rxGRDinfo.data
- perform appropriate action (depending on rxGRDinfo.id)
- rxGRDinfo.state := GRDsync

*)
END

END
END RxGRD;

BEGIN
rxGRDinfo.state := GRDsync; rxGRDinfo.syncState := 0;
rxGRDinfo.msgCount := 0; rxGRDinfo.CECount := 0

END Communication.

Once a message has been completed its contents are either written into a global data storage
(see also Fig. 3.1) or the message is forwarded, i.e. put into a mailbox.

The transmitter tasks handling the serial output are less complex. The messages to be sent are
taken from a mailbox and sent ‘en bloc’. That means that the transmitter task — although run-
ning in the background — blocks (defers) the other tasks. This is justified because the typical
message length lies in the range of 20-30 characters. 

In a logger task messages are formulated and put into a mailbox. The data to be logged to
ground is a subset of a collection of input signals, filtered data, and output signals. This subset
may be changed during a flight.

The complete documentation of the message types defined and their formats is given in [5].
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3 Data Flow and Access

This section contains a closer look at the data handling in our system. Especially those cases are
of interest where data items are shared by tasks of distinct priorities. Fig. 3.1 shows two global

data storages in which data originating from different modules and data used by various mod-
ules is stored. Data which is used only by single modules normally is stored in variables
belonging to those modules.

One of the global data storages is the file system on the RAM disk: this is a collection of signals
which are stored on board during a mission. The set of signals to be collected is determined at
the beginning of a mission. During the mission it is possible to (re-)start and stop the logging
process at arbitrarily chosen times. Since time stamps are stored as well, it is possible to
recover the times when logging is switched on and off. During the mission the file system is
used only for writing, and distinctly prioritized tasks write to different files. This ensures that
no problems occur concerning the access.

The second global data storage contains data which must be shared among various modules in
a more flexible way. This concerns mostly the modules Communication, Navigation,
Control, and Logger. The data storage is implemented in the module Data which also
contains methods to access the data items. The data items normally are organised in arrays and
records, as the following excerpt of module Data shows. 

Fig. 3.1. Data flow on board
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MODULE Data;

TYPE
Vector3* = ARRAY 3 OF REAL;
Vector3TLU = RECORD

vector3: Vector3;
time: INTEGER;
logged, used: BOOLEAN

END;
Vector6L = RECORD

vector6: ARRAY 6 OF INTEGER;
logged: BOOLEAN

END;

VAR
posEG: Vector3TLU;
pwmIn: Vector6L;

(* posEG *)

PROCEDURE PUTposEG*(posX, posY, posZ: REAL; time: INTEGER);
PROCEDURE GETposEG*(VAR posEGvector3: Vector3; VAR time: INTEGER);
PROCEDURE posEGlogged*(): BOOLEAN;
PROCEDURE SETposEGlogged*;
PROCEDURE posEGused*(): BOOLEAN;
PROCEDURE SETposEGused*;

(* pwmIn *)
PROCEDURE PUTpwmIn*(pwm1, pwm2, pwm3, pwm4, pwm5, pwm6: INTEGER);
PROCEDURE GETpwmIn*(channel: INTEGER; VAR pwm: INTEGER);
PROCEDURE GETallPwmIn*(VAR pwm1, pwm2, pwm3, pwm4, pwm5, pwm6: INTEGER);
PROCEDURE pwmInLogged*(): BOOLEAN;
PROCEDURE SETpwmInLogged*();

BEGIN
posEG.logged := TRUE; posEG.used := TRUE;
pwmIn.logged := TRUE

END Data.

If required the following fields are added to a record:

• logged is used to keep track of whether a data item already has been logged to ground

• used indicates whether a data item has already been processed e.g. in the navigation algo-
rithm

• time indicates the arrival time1

The problem of shared access is only of significance if the accessing procedures have different
priorities. The following case is used as an illustration:

1. Some data, e.g. the Euler angles, are calculated by the navigation algorithm and written to
Data.

2. The data then is read as input to the control algorithm.

3. The data is also read by a background task to be logged to ground.

The task invoking the last operation has a lower priority than the previous two. The following
situations may ensue:

• The first two operations do not conflict. Because of the identical priorities their execution
happens sequentially.

1. Time stamps have a resolution of 5 ms
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• Since the last two operations are ‘read’ operations they do not conflict. However, one of
them may be interrupted by the other one.

• Between operations #1 and #3 there is a conflict: during reading the data may be overwrit-
ten. 

Note that the writing/reading of scalar values1 are atomic operations. In the last situation it is
therefore justified to allow the overwriting: the update of the angles for control is more impor-
tant than the logging to ground. Of course, this means that some of the triples of Euler angles
sent to the monitoring system are not consistent, i.e. at times the three angles may not belong to
the same time instant.

One last situation which does not occur in our example is a writing operation interrupted by a
reading operation. This may be the case if the heading angle delivered by the compass is used
in the navigation algorithm. The reading operation is then cancelled, and the data is read next
time the navigation is executed.

Reference [6] contains further details about the data management.

4 Navigation

To control the dynamics of a helicopter it is necessary to always know its state which consists
of position and attitude relative to an earth frame, and their derivatives with respect to time. It
might be possible to design a controller based on a subset of the chosen state. On the other hand
it is also possible to augment the state vector and improve the controller by considering the
extended model. The inclusion of certain dynamics of the rotor, the engine, the surrounding air
etc. are possible extensions. Our choice is based on mechanical insights and on experience and
has proven to lead to a working controller.

The problem of measuring the state leads to an estimation problem because 

• some of the desired variables cannot be measured directly

• the measurements are noisy / biased / delayed

• the sensors / measurements have limited bandwidths.

In the most general filter structure all available sensor data is fed synchronously into the filter
which then delivers an estimation of the whole state at once, including estimations of sensor
bias etc. Such a filter may take into account all conceivable effects of interaction between all
the signals involved. Unfortunately, such a general approach leads to a multitude of parameters
for which it is very hard to find meaningful values. 

For the time being, we concentrate on a simpler filter with the following structure2: 

• In a first step, we estimate the attitude, based on acceleration and angular rotation rate data
delivered by the inertial navigation unit and the heading sent by the compass.

1. In Oberon SA, both INTEGER & REAL types consist of 4 bytes.
2. Some of the necessary ‘small’ steps (e.g. coordinate transformations for rotations) are omitted.
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• In a second step, velocity and position of the helicopter are estimated taking GPS data into
account.

Some sensor data is sampled synchronously with the call of the navigation filters. Others, such
as compass or GPS data, are delivered asynchronously with smaller update rates. In such cases,
the navigation algorithm only makes use of refreshed data.

4.1 Attitude Filter

The attitude is given by the three Euler angles Φ (roll), Θ (pitch) and Ψ (yaw). To estimate the
Euler angles we make use of three types of sensors: compass, accelerometers, and gyros. All
sensors are mounted in a strapdown way (as opposed to using a gimballed platform). We are
using triples of accelerometers and gyros which are arranged orthogonally.

One method of calculating the Euler angles is an integration of the rates provided by the gyros.
Using suitable transformations, numerical integration propagates the estimation of Euler angles
through time1:

An alternative way to estimate the Euler angles is based on the assumption that the helicopter is
not accelerated with respect to an earth frame. Then the three accelerometers measure the com-
ponents of the gravitational vector with respect to a helicopter frame.

1. The indices k, k+1, ... correspond to the points of an equally spaced time axis. The time increment dT is
normally 5 ms in navigation algorithms and 20 ms in control algorithms.

Fig. 4.1. Euler angles calculated using rates of rotation
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The axes of the helicopter frame are shown in Fig. 4.2, A. In the case of horizontal hovering the
x- and y-components of the measured acceleration are equal to zero: az = -g (Fig. 4.2, B). If the
helicopter is inclined, the measured — gravitational — acceleration is also inclined with
respect to the helicopter frame. Some trigonometry may then be used to transform the acceler-
ation vector to roll and pitch angles1:

Both of the methods sketched have their advantages and drawbacks. While the integration
method is also usable during real flight, it is prone to errors caused by sensor drift and sensor
bias. The direct (i.e. static) method yields wrong results if the helicopter is accelerated. Biased
sensor data, on the other hand, does not lead to drifts in the estimated angles.

There are several approaches toward combining the two methods. The extended Kalman filter,
a sophisticated filter with a theoretic background in stochastic signal theory, is described in
detail in [7] and [8].

A simpler way of fusing the data sets is mixing them: support the Euler angles obtained by inte-
gration by building a weighted sum with the other set of angles:

1. See also Fig. 5.2 for details concerning the orientation of the rotation angles.

Fig. 4.3. Euler angles calculated using track over ground and rates of acceleration

Fig. 4.4. Euler angles obtained by the mixing technique
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4.2 Position Filter

The basic situation is the same as in the case of the attitude estimation: we have redundant
information for the determination of position and velocity. The acceleration vector, integrated
twice over time, delivers velocity and position whereas GPS messages yield velocity and posi-
tion directly1.

The advantages and drawbacks of the sensors are comparable to those mentioned above in the
case of attitude estimation: If the acceleration signal is biased by a constant, then the estima-
tions of velocity and position drift away (Fig. 4.5). The drift terms are linear or quadratic with
time, respectively. GPS data on the other hand is obtained absolutely, but with lower fre-
quency, with more delay, and with the values possibly being temporarily unreliable. 

The data fusion for the position estimation is performed by a Kalman filter. The dynamic sys-
tem shown in Fig. 4.5 may be formulated in a linear discrete-time time-invariant state-space
form

where the vector-sized variables xk, uk, wk, yk and rk are state, input, input noise, output and out-
put (sensor) noise, respectively, of the system at time k; the matrices F, G, and H are its system
matrix, input matrix, and output matrix. In our concrete example the first equation results in

1. Note that this argumentation only holds if the helicopter does not rotate or if the effects due to rotation
are eliminated by suited transformations.

Fig. 4.5. Biased measurement of acceleration
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If the position p is taken as the output of the dynamic system, then the second equation — with-
out noise term — yields

As shown previously, the estimated state xk drifts away from its real value if calculated by the
‘open-loop’ equation (1a). The idea behind an observer is to let the estimated state converge to
the real one by introducing a correction term

The scheme of the state estimation then is the following:

• In every time step dT the measured acceleration leads to an extrapolation step according to
equation (1a), yielding a new state xk+1.

• In case the GPS system delivers a new position, the state xk+1 is corrected according to
equations (2a) and (3). The position measured by the GPS is taken as yk+1, measured. Finally,
xk+1 is replaced by xk+1, corrected.

• If the GPS system delivers a velocity message, then the update is similar. A modified output
equation — i.e. modified matrices H and Lk — is used.

There is a number of ways for choosing the observer or, in other words, for deciding how Lk is
updated. The Kalman filter, as a special case of an observer, is based on the stochastic proper-
ties of our process. We assume that the input noise wk and the output noise rk are white, that
both types of noise as well as the initial state x0 are unbiased, i.e. E{wk}=0, E{rk}=0, E{x0}=0,
and that the respective covariances are given by the symmetric matrices E{wkwk

T}=Qk>=0,
E{rkrk

T}=Rk>0, and E{x0x0
T}=Σ0>=0. For practical purposes it is often sufficient to reduce

these matrices to (block) diagonal form, thereby neglecting cross correlation terms and weight-
ing only the relative levels of noisiness of different signals.

A full description of the Kalman filter for the position is given in [9]. Note that this is a simpler
filter than the extended Kalman filter used for the estimation of attitude. The reason is the
underlying model of the system which is nonlinear in the case of the attitude filter.
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5 Control

5.1 General Remarks

Briefly listed, the aims of the controller design are:

• stabilization of the open-loop system

• robust stability performance

• robust tracking performance

Since the helicopter is unstable by nature, the first task to be solved is the design of a controller
which stabilizes the ‘nominal’ model of the helicopter in hover flight. However, the controller
must be robust and include some stability margin to cope with model uncertainty, sensor noise,
and other imperfections.

When it comes to dynamic flight, i.e. the tracking of trajectories, we have to find a satisfying
balance between the tracking abilities of the controller on one hand and the limitation on con-
trol signals, the noise suppression, and the robust stability on the other hand.

The signal flow in the block diagram of the control loop (Fig. 5.1) shows the reference signal r
and the control output u as ‘wired’ signals. In some sense, these types of signals are ‘trackable’
in the system, i.e. they may be measured on a wire or read from a memory address. The input to
the controller, on the other hand, is the result of the navigation, a filtering process which takes
as input all kinds of sensor data1. 

In order to concentrate on the control aspect, we now introduce ‘wired’ feedback paths, keep-
ing in mind that this is an idealized situation, and that we actually do not have direct access to
these physical variables.

1. Note that most of the sensors are mounted on the helicopter. In our setup, the only exception is the
ground antenna of the GPS.

Fig. 5.1. Block diagram of control loop
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5.2 Model

The controllers we are considering are model-based controllers, i.e. we are using an explicit
mathematical description as a model of the helicopter. The model has to cover the essential
parts of the dynamic behaviour of the helicopter. 

The controller has five outputs: one for the engine, one for the tail rotor, and the remaining
three for the swash-plate of the main rotor1. The three degrees of freedom of the swash-plate
correspond to the three control signals for roll and pitch rotations and for the collective pitch
which controls the height. The model thus has five inputs. Building a model basically means
gathering the knowledge about relations between the inputs and the internal state, and to for-
mulate them, for instance, in terms of differential equations.

The model on which our first controller is based is quite simple. We consider the dynamics in
the various directions2 to be decoupled (Fig. 5.2):

• uΦ determines the roll angle of the swash-plate and leads only to rotation around the x axis
(Φ, roll) and to translation along the y axis

• uΘ determines the pitch angle of the swash-plate and causes rotation around the y axis (Θ,
pitch) and translation along the x axis

• uC determines the collective of the swash-plate and leads to translation along the z axis

• uΨ — used for the tail rotor — only causes rotation around the z axis (Ψ)

• uE controls the engine and influences only the rotor frequency

1. Actually we have six outputs in terms of controlled servos; having some redundancy, the swash-plate is
controlled by four of them. The four servo signals are calculated by applying a linear transformation to
the controller output (roll, pitch, collective). 

2. All directions are given in the helicopter frame, therefore the subsequent statements are also valid if the
helicopter rotates.

Fig. 5.2. Axes of the helicopter frame
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The model described so far leads to five separate submodels. In the one shown in Fig. 5.3 uΦ
controls both lateral rotation and translation. The submodel of the helicopter contains a number
of integrators and two unknown blocks, G1 and G2. This structure has been found by physical
insight and inspection of logged data. It turns out that in frequency domain G1 may be approx-
imated by a PT1 transfer function, whereas G2 is approximated by a constant1:

The model built thus far is valid at least in a region around the equilibrium point of hovering.
We can easily think of situations in which it becomes invalid, e.g. when due to fast rotation
decoupling is no longer allowed.

5.3 Design of the Controller

The decomposition of the helicopter model into a number of decoupled submodels has its coun-
terpart in the design of the control algorithm (Fig. 5.4). It is reasonable to choose the dependen-
cies symmetrically: e.g. since uΦ is assumed not to affect Ψ, the control law for calculating uΦ
does not make use of the estimated value of Ψ. However, as soon as coupling terms are intro-
duced into the model, it is useful to reflect this change of structure in the controller. The control
signal uΦ is calculated by adding uΦ0 — originating from operating point conditions — and a
weighted sum of signals which represent the errors in lateral motion2. The introduction of ref-
erence signals in the velocity and position error allows the tracking of trajectories. It is assumed
that velocity and position are given consistently. The aim of the controller is to stabilize hover-
ing and ‘slow’ flight. Therefore no references are introduced for the roll angle; the helicopter is
flying with a horizontally aligned attitude.

1. At this stage of modelling, the MATLAB identification toolbox has been used. G1 and G2 are assumed
to be linear transfer functions of a certain order containing some unknown parameters. Then the param-
eters are chosen such that the measured time series fit best. Inspecting the resulting transfer function
gives some clues as to whether its order has been chosen too high, as e.g. in the cases of small time con-
stants or pole/zero-cancellations.

2. The acceleration is not included because it is assumed to be proportional to the roll angle.

Fig. 5.3. Submodel of lateral movement: rotation and translation
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The structure for the other control outputs is similar. The following table lists the error and ref-
erence signals that contribute to the various control signals:

5.4 Implementation of the Controller 

The minimal structure of the five subcontrollers is not transferred to the implementation
directly. Instead, a full version of the feedback equation

with , , and  is implemented offering support for more general
controllers. Using this structure for the decoupled controller means that the K matrix just con-
tains 18 relevant elements, all other a priori being equal to zero.

Fig. 5.4. Control of lateral movements

Table 3: Connections between reference, error and control signals
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Matrix multiplications are widely used not only in the control but also — and even more often
— in the navigation algorithms. For the sake of efficiency the following facilities have been
integrated into the compiler [2]:

1. Leaf procedures

A procedure that does not contain any procedure calls may be declared as a leaf procedure.
Parameters of leaf procedures are kept in their registers.

2. Register variables

Variables used in the scope of a leaf procedure may be declared as register variables. Such
variables are allocated in registers rather than in memory.

3. Riders

Access to array elements is often realized by indexing. The rider concept makes use of the
fact that often the index is increased or decreased by a constant value between consecutive
accesses. Riders may be set to certain positions. After each access they are moved a fixed
stride. There is a test to check whether a given index limit has been reached.

Examples of the all those concepts are given in [2]. Of course, matrix multiplication is not the
only task deriving benefits from them.

Another aspect of the implementation, the numerical correctness, is not as critical in the control
algorithm as it is in the filter algorithms [8]. Beyond that, the errors due to the control algorithm
are outnumbered by the errors already contained in its input data. 

As a last aspect of the implementation we have a quick look at some subtleties which are nec-
essary to overcome the drawbacks of the given algorithm. As soon as an integral part is present
in a controller we have to deal with the so called wind-up effect. This effect may occur in the
following way: a long lasting error — due to a crosswind for example, which prevents the hel-
icopter from moving to its reference position — ‘fills’ the integrator and brings the control sig-
nal in a range which is beyond the actuator’s capabilities (Fig. 5.5). Once the position error

disappears, the controller tends to compensate the previously accumulated error: the integrator
first must be depleted before the control signal returns to its range of operation. To prevent this
effect a patch (anti-wind-up) is applied to the control algorithm: the state (i.e. the value) of the
controller’s integrator is always clipped such that the resulting control output lies within a pre-
defined range1.

1. Note that a pure clipping of the control output does not change the situation.

Fig. 5.5. Reaction of actuator to control signal
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As a side effect, this anti-windup setup offers an elegant method to continually increase the
effect of the controller in the control loop. In the phase of testing a new set of control coeffi-
cients, the range of allowed control signals may first be chosen rather small, and then gradually
be opened.

6 Trajectory Generator

Whereas in the case of hover flight the generation of reference signals is quite a trivial task, we
also need to create reference signals for ‘real’ flight. For instance, we wish to formulate flight
manoeuvres on an abstract level, such as

• start, i.e. take off to a certain height above ground

• fly from point A to point B

• search a given field (e.g. defined by four points as corners).

The process of converting the manoeuvres to reference points includes the following steps:

• Waypoints are points which must be contained in the trajectory.

• Segments are parametric descriptions of parts of a trajectory. For example, we defined a
segment of constant velocity, a segment of constant acceleration etc.

• Reference points contain the reference input to the controller (position, velocity, heading).

By passing the transformation steps from manoeuvres down to segments, a number of parame-
ters and constraints are involved:

For instance, in a search manoeuvre we want to have a certain grid width, height over ground,
maximal velocity, maximal acceleration, maximal rotational rate of the heading angle, and
maximal time to accomplish. Some of these items may even be refined further, such as acceler-
ation in different directions: horizontal vs. vertical, radial vs. tangential. Other requirements
concern the grid itself: do we want to fly exactly on the grid or do we just want to somehow
cover the whole field?

The current state of development is the following: sequences of segments are calculated on the
ground, then sent to the helicopter. On board, segments are collected in a flightplan; reference
points are extracted from the current segment. This allows a very careful testing of the strate-
gies involved in the generation of segments and reference points. 

Fig. 6.1. Levels of abstractions for trajectories
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The calculation of segments happens in an environment written in MATLAB. For the time
being we are gaining experience with different types of manoeuvres and with various types of
algorithms for transforming them to segments. Strategies which prove to be useful are then
integrated into the board system.

The MATLAB environment consists of three main blocks, each of which is realized in a sepa-
rate graphical user interface.

1. The purpose of the first block is the creation of segments. Both the definition of manoeuvres
and the conversion of waypoints to segments are possible in a kind of plug-in style. This
results in a very flexible way to develop and test new strategies.

2. The second block is mainly for the verification of resulting sequences of reference points.
The algorithm used to calculate the reference points is the same as the one used on-board.
The calculated reference points are visualized, and the consistency of position, velocity and
heading angle is clearly visible. Segments can also be transferred to the helicopter.

3. The last block is used for the simultaneous simulation of trajectories, models of the helicop-
ter, and controllers. For instance, a controller may be tuned to certain types of trajectories, or
vice versa. One possibility not yet exhausted is the improved handling of the knowledge of
future reference points.

7 Finite State Machines

The navigation and control part described so far deals only with the situation when the loop is
up and running. To have a refined control over various partial aspects of the helicopter, we
want to introduce some special control actions, as e.g:

• start align phase of navigation (calibration of accelerometers)

• start take-off (reference for rotor frequency is increased)

• activate / deactivate engine controller

Fig. 6.2. MATLAB environment for the development of trajectories
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• activate / deactivate control of main rotor and tail rotor

Some of the actions need more work than seems to be necessary at first sight. Switching a con-
troller on and off, for example, does not just mean to enable and disable the feedthrough from
the controller output to the actuators. Since the control algorithm normally contains an integral
part, the control signal is likely to saturate. Therefore, at the time of reactivating the controller,
a reinitialization of the controller is needed to ensure a bumpless control signal.

To support the handling of these logical states, finite state machines have been introduced.

8 Further Development

8.1 General Ideas

The system described so far of course offers a certain potential of improvements in the area of
‘fine-tuning’ the existing navigation and control algorithms. But beyond that a large number of
challenging problems are waiting to be solved. From a control engineer’s point of view, they
include:

• fast and precise flight along ‘demanding’ trajectories

• flexibility in initiating and interrupting manoeuvres

• ability to land with autorotation (with engine turned off)

This leads to a number of problems which must be solved first, e.g.:

• an improved model of the helicopter must be identified which includes the coupling effects
among the various directions 

• the navigation algorithms must be robust against the effects of dynamic flight, especially
the fact that the acceleration no longer is ‘constant’

• model predictive (or a least reference predictive) features must be included

• a combined control of engine and trajectory tracking also is advantageous in the sense of
timely reactions.

8.2 Varying Number and Quality of Sensors Used

The system described in the previous chapters relies on a large set of expensive sensors. At the
moment we are assembling a simpler system which makes use of a reduced set of sensors,
namely a low-cost inertial navigation unit consisting of three gyros and three accelerometers.
Using an adapted version of the attitude filter, an estimation of the Euler angles is possible.
This allows to control the attitude but not the position. Therefore, such a controller cannot pre-
vent the helicopter from drifting away over time.

Such a system is ideally suited for the inexperienced (human) pilot. Pilot and autopilot comple-
ment each other in that their control signals are mixed together: while the pilot perhaps has
trouble stabilizing the attitude, it is easy for him to control the position.
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In a current term paper a small differential GPS system is being developed. The correction sig-
nal used is a radio signal. Compared to the ‘local’ high quality correction signal this ‘global’1

lower quality signal leads to a precision in the range of just meters.

8.3 Geographical Information Systems

The current helicopter system works in environments for which certain assumptions hold. For
instance, the flight field is more or less flat. This simplifies manoeuvring.

To make the helicopter system more versatile, some kind of geographical information system
needs to be integrated into the existing trajectory generation software. As a first approach this
may be a grid model (e.g. on a 25-meter base), while in more sophisticated versions we are
interested in objects such as power lines or ropeways.
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