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Abstract

We describe a compiler, and in particular its generated code, translating from Oberon to binary

code for the Strong−ARM RISC processor. It is a very compact single−pass system (< 50K bytes).

Compiled modules are linked and down−loaded into the embedded processor. This memo is

intended to provide programmers information about generated code patterns in order to be able

to estimate the complexity of their programs.

0. Introduction

In late 1997 we decided to express the control system for the model helicopter in terms of the language

Oberon. At the same time, the decision was made to use DEC's StrongARM processor DS1035 as the core

of the control system. An immediate consequence of these decisions was the necessity of an Oberon

compiler for that processor, and, since none was available, to build one. An important objective was to

demonstrate the language's suitability for expressing programs for real−time applications, requiring

efficiency and predictable performance, and encouraging structured and modular design.

Although compiler technology is a reasonably mature subject, most people hesitate to build their own

compilers, even if considerable manpower is available, which was not the case here. A major reason for

this hesitation is that compilers are considered to be inherently complex programs. At the latest since the

advent of RISC computers, there is also good reason for this belief. The credo of the RISC movement was

that computer architectures should not be designed to please the compiler builders or the high−level

language designers, but that instead utmost code execution efficiency was the only valid goal. To bridge

the widening "semantic gap" between language and computer was the very objective of compiler

technology. Computer and compiler were to be seen as a married couple, and a highly complex,

"optimizing" compiler was to be, if not an unpleasant burden, a natural necessity. And indeed, processors

have become so fast that the worst compilation times are tolerated because hardly noticeable, and

compiler sizes in the order of megabytes are fatalistically accepted.

But the consequence that hardly anyone will consider building a compiler exists and is deplorable. The

path closest to compiler building is to construct a parser for one's special language using a toolbox

yielding a translator generating C code. This option is based on the belief that by tapping the vast C

software one gains all the benefits of highly optimizing compilers and sophisticated debugging tools

without investing much effort. It turns out to be a sobering experience.

In this project, we chose a different approach, namely that of building our own compiler from scratch.

This was reasonable in view of the author's previous experience in compiler design, but still subject to

controversy concerning the way to achieve "optimized code". A very sophisticated, highly optimizing code

generating strategy was obviously out of the question. A first version of the compiler was to be available

within a few months, and the workforce consisted of one part−time person, the author. Instead, I decided

to build the compiler along the lines of a simple, single−pass compiler with on−the−fly code generation

as elaborated in [1]. Having a scanner and a parser already available saved a few days of labour. The

crucial part, without doubt, was the code generator.

Therefore, we will report on the conventional parts of the compiler only scantily, and rather discuss in

some more details our approach to achieving the efficiency of generated code that an engineer building a

real−time control system demands. It turns out, that he must be able to depend on predictable

performance, a requirement more fundamental than mere efficiency. Modern processors perform poorly
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in this respect; their instruction pipelines and data caches speed up average performance considerably,

but provide worst cases that let this gain turn out to be of marginal value. Sophisticated compilers,

rearranging and perturbing code in obscure ways, add to this misery. A compiler producing code that can

be derived from the source program according to few, obvious rules is a much better solution. Given the

fact that modern RISC architectures depend strongly on sophisticated code generation algorithms, we

feared that we might have to sacrifice considerably with respect to run−time efficiency.

However, the performance of most systems depends critically only on the performance of a small fraction

of the entire program, typically the inner loops contained in procedures at the outer fringes of the

procedure calling hierarchy. With this in mind, we proceeded to add a few facilities to the language − a

freedom only the compiler builder possesses − facilities with the aim to let the programmer direct the

compiler at producing effient code without sophisticated source analysis. For example, the programmer

may specify certain simple variables to be allocated in registers. Such facilities, simple to implement in the

compiler, require some deeper understanding from the programmer. It has been critizised that it was

exactly the duty of the compiler to free the programmer from such implementation−specific

considerations. As this may be, our experience showed that competent programmers do have this

understanding anyway and appreciate being able to express it. The much smaller size and complexity of

the compiler, and its predictability, are infinitely more valuable. Indeed, one may observe that many

compilers have made it much too easy to concoct optimized lousy code.

1. The Structure of the Compiler

The compiler is structured conventionally into modules according to the following tasks: Scanning,

parsing, and code generation. In addition, a base module is provided containing the definitions of data

types used throughout the compiler, in particular the types Object, denoting elements of the "symbol

table", and Type, describing data types. This module also contains the routines for building up and

inspecting the symbol table and, moreover, generating and loading symbol files.

:

:: :

Base Defs

GeneratorScanner

Parser

Fig. 1. The compiler's module structure

The structure is shown in Fig. 1. It ignores a single import of all modules from the Scanner, namely the

import of a single procedure to mark the position of detected errors in the source file. This was necessary,

because the scanner "owns" the source file rider, i.e. no reading position is available outside module

Scanner.

Module Data "owned" Source lines Code bytes Data bytes

Scanner Source file, rider, table of keywords 247 3904 1188

Parser (main module) 710 10188 52

Generator Type Item, Code array, register allocation 1036 13712 9988

Base Types Object and Type, symbol table 357 4292 100

Total 2350 32096 11508

Care has been taken to divide the compiler into the two main modules (parser, generator) according to

the following criterion: Parts that are dependent on the source language but independent of the target

architecture were to be placed in module OSAP (parser), whereas those that depend on the target would
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belong to module OSAG (generator). As a result, the interface of the generator has become fairly large

(60 procedures).

2. The Scanner (OSAS)

The task of the scanner is the recognition of language symbols (tokens) in the source text. They are

identifiers, integers, real numbers, strings, and other symbols. The latter are either special characters,

character pairs, or keywords:

* / DIV MOD & + − OR

= # < <= > >= ↑ ↑−

. , ! : ) ] OF THEN

THEN DO TO BY ( [ ˜ :=

FALSE TRUE NIL ; END ELSE ELSIF UNTIL

IF WHILE REPEAT FOR RETURN ARRAY RECORD POINTER

RIDER CONST TYPE VAR PROCEDURE BEGIN IMPORT MODULE

RIDER, ↑−, and ! are symbols added due to language extensions. On the other hand, the following are

symbols not used in the Oberon−SA subset. They are nevertheless recognized by the scanner in order to

ensure compatibility with full Oberon implementations.

IN IS .. | } { CASE LOOP

WITH EXIT

The keywords are listed in a hash table. Hash table and function are such that most keywords are

recognized in the first try, and only a few require two tries. The source text is passed as a parameter to the

scanner by calling OSAS.Open. Then the source file is attached to the corresponding rider which keeps

track of the current reading position. Procedure OSAS.Mark is used to issue error diagnostics which refer

to the current source position.

3. The Parser (OSAP)

The syntax of the language Oberon is arranged such that programs can be parsed by a straightforward,

top−down parsing scheme with a lookahead of one symbol. We use the implementation technique of

recursive descent. In principle, every nonterminal class is represented by a parsing procedure. Since the

parser module is supposed to process all aspects that are independent of the target architecture, type

checking is also performed by this module. Code generation, however, is delegated to the generator

module through appropriate procedure calls.

The parsing of declarations results in the construction of the data structure traditionally called "symbol

table", where records are kept of all declared entities, organized according to their scope of visibility. For

each procedure declaration entered, a new scope is opened. Its local declarations form a linear list (field

next) of records of type Object.

TYPE Object = POINTER TO RECORD TYPE Type = POINTER TO RECORD

class, lev, expo: INTEGER; form, ref, nofpar, opt: INTEGER;

next, anc: Object; dsc, typobj: Object;

type: Type; base: Type;

name: Name; size: LONGINT

val: LONGINT END ;

END ;

Record field class designates the class of object represented. The various values are:

1 Var Variable (or value parameter)

2 Par VAR parameter

3 Const Constant

4 Fld Record field
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5 Typ Data type

6 SProc Standard, inline procedure

7 Mod Module

8 Reg Register variables (or value parameter in leaf procedure)

9 RegI VAR parameter in leaf procedure

Field lev denotes the level of nesting of the declared object. 0 stands for global level. expo specifies

whether or not the object is exported (from the global scope). name is the identifier (ascii string)

denoting the object, and type is a pointer to its type descriptor. val stands for the object's value in the case

of a constant. Procedures are represented as constants of a procedure type.

In records of type Type the field form denotes the structure of the respective type. The various values are:

1 Bool BOOLEAN

2 Char CHAR

3 Int INTEGER

4 Real REAL

5 Pointer pointer type base = type of dereferenced object

6 Rider rider type base = array element type

7 Nil

8 No type (proper procedure)

10 Proc procedure type base = result type, dsc = parameter list

11 String

12 Array array type base = element type

13 Record record type dsc = field list

For all forms, the field size indicates the number of bytes taken by an object of the respective type. The

field ref serves to hold a flag during the process of generating a symbol file (OSAB.Export). The field opt is

reserved for procedure types to indicate special cases such as leaf procedures or interrupt handlers.

The compiler's parsing procedures carry a parameter of type OSAG.Item. They not only determine whether

a syntactic construct had been properly recognized, but also deliver a description of the construct in the

form of an Item record. It contains among other details used for code generation the data type of the

construct. The parser uses this information to perform the required type consistency checks. As an

example consider

PROCEDURE term(VAR x: OSAG.Item); (*x := x op y*)

VAR y: OSAG.Item; op: INTEGER;

BEGIN factor(x);

WHILE (sym >= OSAS.times) & (sym <= OSAS.and) DO

op := sym; OSAS.Get(sym);

IF op = OSAS.and THEN CheckBool(x); OSAG.And1(x); factor(y); CheckBool(y); OSAG.And2(x, y)

ELSIF x.type.form = OSAB.Real THEN factor(y); CheckReal(y); OSAG.RealOp(op, x, y)

ELSE CheckInt(x); factor(y); CheckInt(y); OSAG.MulOp(op, x, y)

END

END

END term;

The important point is that Items are always variables local to parsing procedures. They are never allocated

dynamically on the heap, and therefore need never be collected as "garbage". This contributes significantly

to a compiler's efficiency, and it is a natural consequence of the recursive−descent parsing strategy.

4. The Strong_ARM Architecture

Before explaining certain code sequences corresponding to specific language constructs, we outline the

architecture of the Strong_ARM processor (Advanced Risc Machines) and some of its peculiarities. At first

sight, it represents the classic RISC configuration with a set of 16 registers and an arithmetic−logic unit

(ALU). Instructions specify a destination register for the result, a first source operand from a register, and

a second operand either from a register or as a constant. A unique and very useful feature is that the
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second operand can be shifted before being applied to the specified operation.

imm

mux

shift

ALU

Registers

;

;

Fig. 1. Data paths of the RISC core

Thus, the basic instructions have the following forms and formats. The operations include addition,

subtraction, the basic logical operations, and straight copying.

cond 000 opcode Rn Rd

RdRnopcode000cond

cond opcode Rn Rd

Rm

Rm

immk

4 3 5 4 4 45 2

0sm

sm 10Rs

ADDR Rd, Rn, Rm LSL k

ADDR Rd, Rn, Rm LSL Rs

ADDI Rd, Rn, imm ROR 2k

k

8

001

1

Fig. 2. Register instruction formats

The mode of shifting (sm) can be specified as logical left, logical right, arithmetic right, and rotate right.

One of the quirks of the ARM is that constants are specified as an 8−bit field only. This field, however, can

be shifted to any place within the 32−bit word. Nevertheless, this is an awkward restriction, and it is

particularly aggravating, because every instruction wastes 4 bits for specifying under which condition the

instruction is to be executed. This facility is usually available for (conditional) branch instructions only.

A similarly awkward restriction governs the load and store instructions. The address is computed either as

the sum of a register and an offset, or of two registers. The offset is a 12−bit field only; 16 would have

been much better!

STM [Rn], regset

LDM [Rn], regset
16

regset

011

cond Rnopcode

1244534

Rmcond RdRnopcode

opcode Rn Rd offset010cond
STR Rd, [Rn − offset]

LDR Rd, [Rn − offset]

LDR Rd, [Rn + Rm LSL k]

STR Rd, [Rn + Rm LSL k]
k 0sm

5 42

100

1

Fig. 3. Load/store instruction formats

Branch instructions, on the other hand, feature a large, PC−relative word offset of 24 bits. Register R15 is

the program counter PC. For procedure calls the Branch and Link instruction is used which deposits the

current PC in register R14. Upon return from the procedure, that value is moved into R15 causing a

return jump.
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13

101 L

244

offsetcond
Bcond offset*4

BL offset*4

Fig. 4. Branch instruction format

In our implementation, register R13 is reserved as stack pointer SP, and R12 as local frame pointer FP. As

a result, only registers R0 − R11 are available for intermediate results during expression evaluation.

5. Storage Layout, Variable Addressing, and Procedure Calls

Every module occupies a storage block for its global variables, and following it a block for the code. After

the code follows the area for constants. The stack or workspace contains the procedure frames containing

the parameters and local variables (see Fig. 5).

R2
<

Global

variables

Code

Constants

0

R14 ret adr

R12 FP

R0

R1 params

paramsR1

R0

FPR12

ret adrR14

<

<

;

SP

FP

local

variables

variables

local

:

:
;

;

frame

frame

Fig. 5. Module block and stack frames

Before the call of a procedure, its actual parameters are evaluated and stored in the work registers in

ascending order. A branch and link instruction transfers control to the procedure and stores the return

address in R14. The entry code consists of 3 instructions. They moye the parameters, FP, and the return

address onto the stack, and they adjust FP and SP:

STM SP, [R0, R1, ... , R12, R14] push onto stack parameters, FP, and return address

ADDI FP, SP, m FP := SP + m, m = size of param space

SUBI SP, SP, n SP := SP + n, n = size of local variable space (omitted if n = 0)

The exit code restores the stack to the state before the call:

MOVR SP, FP SP := FP

LDM SP, [R12, R15] pop from stack FP and return address (to PC)

Evidently entry and exit code sequences are quite short. This is mainly due to the convenient multiple

load and store instructions which can be programmed as push and pop operations.

Variables are addressed relative to a base address. In the case of local variables the base is the FP register

(R12), and the offset is negative. Global variables use PC−relative addresses, i.e. the base address is the PC

(R15). This makes changing addresses at load−time unnecessary for module−internal references. We

allow access only to variables that are either global or strictly local. This makes it unnecessary to introduce

a so−called static link for procedure calls, which would introduce additional overhead. Nevertheless,

procedures can be nested.
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Oberon−SA features so−called leaf procedures. Their entry code differs in so far as the parameters are not

pushed onto the stack. In the special case of fast leaf procedures, neither FP nor the return address are

stored. In the extreme case of a fast leaf procedure without local variables, the entry code vanishes, and

the exit code reduces to a single instruction copying R14 into R15. Hence the term fast is well justified.

In Oberon−SA, scalar variables can be declared to be allocated in registers. If local to a procedure marked

as leaf, they are allocated adjacent to the parameters, otherwise in descending order starting with R11 as

shown in Fig. 6.

leaf

:
;

;

;

;

temporary

variables
R11

R0

temporary

variables

parameters

not leaf

FP, SP, PC FP, SP, PC
R15

Fig. 6. Register allocation

6. Constant and Address Generation

Constants are generated by instructions with an "immediate" field. In the case of the Strong−ARM

processor, the actual constant field is only 8 bits wide. It is augmented by a 4−bit rotate count which

specifies the position in the 32−bit word where the 8−bit constant is to be placed. The MVNI instruction

can be used to position an 8−bit constant before inversion of the entire 32−bit word.

For values requiring more than 8 bits, there are two possible solutions: Either compose the value through

a sequence of OR−instructions, or place the constant in some memory location and access it through a

regular load instruction. We chose the latter alternative. The short 12−bit offsets in load instructions

practically force a placement of the constants between procedures. Therefore, the compiler collects

constants in a table and appends them to the code at the end of each procedure. This may lead to further

problems if procedure code is longer than 1K words.

The offset field of load and store instructions is 12 bits wide, restricting offsets to 4K bytes or, more

significantly, to 1K instructions. Particularly in the case of global variable access, where the offset is relative

to the instruction itself, this value is too small in most cases. The obvious solution is to add an 8−bit value

shifted by 12 bit positions using an additional ADDI instruction.

Apart from loads and stores, addresses must be generated as actual parameters corresponding to formal

VAR parameters. In this case, the same severe 8−bit limitation applies as in the case of constant

generation, with the result that offset values must quite frequently be placed in separate memory

locations. The short constant and offeset fields in the ARM−instructions appear as an unpleasant, genuine

design flaw. This critizism is supported by the presence of a 4−bit condition field in every instruction that

is hardly ever used (with the exception of conditional branches, of course), and could have been used for

lengthening the offset and immediate fields.

PROCEDURE P(x, y, z: INTEGER; VAR w: INTEGER);

BEGIN P(5, 53248, −3, z) (*13 * 2↑12 = 53248*)

END P;

0 E92D 500F STM [0, 1, 2, 3, 12, 14] entry code, save x, y, z, w, FP, LINK on stack

1 E28D C010 ADDI R12, R13, 16 FP := SP + 16

2 E3A0 0005 MOVI R0, 5 R0 := 5

3 E3A0 1A0D MOVI R1, 13 ROR 20 R1 := 53248

4 E3E0 2002 MVNI R2, 2 R2 := −3

5 E24C 3F02 SUBI R3, R12, 2 ROR 30 R3 := FP − 8
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6 EBFF FFF8 BL P P

7 E1A0 D00C MOVR R13, R12 exit code, SP := FP

8 E8BD 9000 LDM [12, 15] restore FP, PC

7. Code Generation for INTEGER Expressions

The parameter of type Item of parsing procedures not only specifies the type of the construct parsed (see

above), but also its mode. That is, it specifies whether for example a term is located in a register, in store

as a local or global variable, whether it is directly or indirectly addressed, and so on.

TYPE Item = RECORD

mode: INTEGER;

type: OSAB.Type;

a, b, r: LONGINT (*private fields*)

END ;

An Item is essentially like an Object, but whereas an Object denotes a named entity and belongs to the

symbol table, the Item is a temporary entity occurring during expression evaluation. Items are allocated as

local variables in the stack, whereas Objects are allocated in the heap. The attribute mode corresponds to

the attribute class of objects. The set of Item modes is primarily determined by the set of addressing

modes featured by the processor. An Object is transformed into an Item by procedure OSAG.MakeItem. A

copy of its attributes is made rather than passing a reference. This is advisable, because Items, i.e. their

type and mode, may change, for example due to detection of type inconsistencies, whereas Objects must

never be altered.

Var denotes the normal addressing of variables in memory, with attribute r specifying the base address (in

register FP for local, PC for global variables), and a the offset. Par denotes indirect access (as needed for

parameters) with r and a used as in the Var case, and with b denoting the second offset. Const denotes a

constant with a being its value, Reg a variable or intermediate result in register r, and RegI a variable's

address in register r. CC specifies that the operand is represented by the condition code (procesor status

flags), Var1 that an operand's address is the sum of the two values held in registers r and a. And finally

RegQ indicates that the denoted variable is indirectly accessed via a rider in register r with stride a.

1 Var Variable (or value parameter) a = offset r = base reg

2 Par VAR parameter a = offset0 b = offset1 r = base reg

3 Const Constant a = value

4 Fld Record field a = offset

6 SProc Standard, inline procedure a = proc. no.

8 Reg Register variables r = reg no

9 RegI VAR parameter in leaf procedure r = adr reg no

12 Var1 Variable a = reg no r = reg no

13 CC Condition code a = F−chain b = T−chain r = cond code

14 RegQ Rider mode a = stride r = reg no

The result of an evaluation is either assigned to a variable, or it is passed as a parameter to a procedure. In

both cases, the value must be placed in a register. The respective Item must have mode = Reg. Procedure

load causes values to be transferred into registers. Registers are used like a stack to hold intermediate

results. Consider the following assignments and the resulting code:

PROCEDURE P(x, y: INTEGER; VAR z: INTEGER);

VAR w: INTEGER;

BEGIN w := x − 9; z := (x + y) * (x − y)

END P;

3 E51C 000C LDR R0, [FP−12] mode of x is Var

4 E250 0009 SUBI R0, R0, 9 mode of "9" is Const

5 E50C 0010 STR R0, [FP−16] mode of w is Var
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6 E51C 000C LDR R0, [FP−12] x

7 E51C 1008 LDR R1, [FP−8] y

8 E090 0001 ADDR R0, R0, R1 mode of x+y is Reg

9 E51C 100C LDR R1, [FP−12] x

10 E51C 2008 LDR R2, [FP−8] y

11 E051 1002 SUBR R1, R1, R2 x−y

12 E010 0091 MUL R0, R0, R1 (x + y) * (x − y)

13 E51C 1004 LDR R1, [FP−4] mode of z is Par

14 E581 0000 STR R0, [R1+0] z

If parameters and local variables are held in registers, the code is considerably shorter:

PROCEDURE* P(x, y: INTEGER; VAR z: INTEGER);

VAR w: INTEGER*;

BEGIN w := x − 9; z := (x + y) * (x − y)

END P;

2 E250 3009 SUBI R3, R0, 9 w := x−9

3 E090 4001 ADDR R4, R0, R1 R4 := x+y

4 E050 5001 SUBR R5, R0, R1 R5 := x−y

5 E014 0495 MUL R4, R4, R5 R4 := R4*R5

6 E582 4000 STR R4, [R2+0] z := R4

8. Local Code Improvements

The employed technique of code generation on−the−fly, in conjunction with delayed code emission in

the case of constant operands, allows for some code improvements without additional complication.

Apart from the direct evaluation of expressions of constants (constant folding). Obvious cases are

multiplication or division by a power of 2, where a single shift replaces a multiply or a divide instruction.

For the Strong−ARM this is particularly essential, because there is no divide instruction at all. The facility

of a combined shift and add instruction goes one step further: It allows the use of a shift in all cases

where the multiplier is of the form 2i or 2i+1. In order to keep the code listing in the following example

reasonably short, variables are allocated in registers:

PROCEDURE* P(x, y: INTEGER);

VAR z: INTEGER*;

BEGIN z := x * 8; z := 3*x;

z := x DIV 4; z := x MOD 256; z := x MOD 1000000H

END P;

2 E1B0 2180 MOVR R2, R0 LSL 3 z := 8*x

3 E090 2080 ADDR R2, R0, R0 LSL 1 z := x + 2*x

4 E1B0 2140 MOVR R2, R0 ASR 2 z := x DIV 4

5 E200 20FF ANDI R2, R0, 0FFH z := x MOD 100H

6 E3D0 24FF BICI R2, R0, 0FFH ROR 8 z := x MOD 1000000H

The modulus operation is implemented by a AND instruction, if the modulus is 2n with n <= 8. It mask

out all but the last n bits. If 24 <= n < 32, a BIC instruction is used with an appropriate shift.

The described optimizations can be handled well within the concept of context−free compilation. This

means that the code for any parsed sentential construct depends only on its syntactic constituents. We

have breached this concept in the case of assignments (and in the function ODD). Without this breach,

an assignment to a register variable, say z := x+y, would first evaluate the expression, placing the sum into

some work register. The parsing procedure for assignment would then have to move this result into the

register representing z. In order to avoid this redundant move instruction, the last instruction previously

issued is inspected, and its destination field is changed accordingly. This implies a code fixup of the sort

systematically performed in peephole optimization.
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9. Code Generation for REAL Expressions

The DS1035 processor does not feature a floating−point unit. Therefore, operations on numbers of type

REAL must be programmed as procedures using integer arithmetic. First, in the expectation of acquiring a

floating−point unit later when available, an emulator package was designed. The compiler generated

ARM floating−point instructions, which the processor would recognize as undefined coprocessor

instructions causing a trap. When it turned out that an FP−unit would not be forthcoming, we decided to

replace the trap interpreter by a regular module containing a set of procedures representing the basic

floating−point operations:

PROCEDURE* Add(x, y: INTEGER);

PROCEDURE* Multiply(x, y: INTEGER);

PROCEDURE* Divide(x, y: INTEGER);

PROCEDURE* Floor(x: INTEGER);

PROCEDURE* Float(x: INTEGER);

These procedures are implemented as fast leaf procedures. It turned out as a big surprise that this change

boosted floating−point performance by the large factor of 3. The primary reason is that the saving and

restoring of the entire bank of registers can be omitted. The reasonably complex decomposition of

instructions into their component fields during trap handling is avoided too.

The drawback is that the arguments must, according to the general parameter convention, be placed in

registers R0 and R1, with the result being returned in register R0. Therefore, either expressions must be

restricted and never have more than a single intermediate result, or intermediate results must be saved

(pushed on the stack) and restored (popped from the stack). It was felt that the restriction would be too

much of an inconvenience, but also that the push and pop operations would introduce intolerable

overhead hidden from the programmer. The solution from this dilemma is a compromise: We relax the

restriction and allow a single intermediate result in the hope of covering most cases occurring in practice.

Push and pop operations are avoided by introducing replicas of the Add and Multiply procedures in the

run−time support module that expect parameters to be in R1 and R2 instead of R0 and R1, with the

intermediate result in R0 remaining unaffected.

PROCEDURE F(x, y, z: REAL): REAL;

BEGIN z := x − (y + (z + 1.0)); RETURN (x + y) * (x + z)

END F;

2 E51C 0004 LDR R0, [FP−4] z

3 E3A0 15FE MOVI R1, 3F800000H 1.0

4 EB01 0000 BL Add

5 E51C 1008 LDR R1, [FP−8] y

6 EB01 0004 BL Add

7 E51C 100C LDR R1, [FP−12] x

8 E220 0102 XORI R0, R0, 2 ROR 2 invert sign

9 EB01 0006 BL Add

10 E50C 0004 STR R0, [FP−4] z

11 E51C 000C LDR R0, [FP−12] x

12 E51C 1008 LDR R1, [FP−8] y

13 EB01 0009 BL Add

14 E51C 100C LDR R1, [FP−12] x

15 E51C 2004 LDR R2, [FP−4] z

16 EB02 000D BL Add1

17 EB03 0010 BL Multiply

Comparisons, sign inversion, and computation of the absolute value are simple enough to generate inline

code rather than calling an imported procedure. The following example shows the resulting code:

PROCEDURE F(x, y, z: REAL);

BEGIN z := −x; z := ABS(y);

IF x < y THEN z := 1.0 END ;
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IF x = 2.0 THEN z := 1.0 END

END F;

2 E51C 000C LDR R0, [FP−12] x

3 E220 0102 XORI R0, R0, 2 ROR 2 invert sign

4 E50C 0004 STR R0, [FP−4] z

5 E51C 0008 LDR R0, [FP−8] y

6 E3C0 0102 BICI R0, R0, 2 ROR 2 clear sign

7 E50C 0004 STR R0, [FP−4] z

8 E51C 000C LDR R0, [FP−12] x

9 E51C 1008 LDR R1, [FP−8] y

10 E010 2001 ANDR R2, R0, R1

11 41E0 0000 MVNR R0, R0 complement R0, if R0 and R1 negative

12 41E0 1001 MVNR R1, R1 complement R1, if R0 and R1 negative

13 E150 0001 CMPR R0, R1

14 AA00 0001 BGE 1 branch to 17, if x >= y

15 E3A0 05FE MOVI R0, 3F800000H 1.0

16 E50C 0004 STR R0, [FP−4] z

17 E51C 000C LDR R0, [FP−12] x

18 E350 0101 CMPI R0, 1 ROR 4 2.0

19 1A00 0001 BNE 1 branch to 22, if x # 2.0

20 E3A0 05FE MOVI R0, 3F800000H 1.0

21 E50C 0004 STR R0, [FP−4] z

10. Code Generation for BOOLEAN Expressions, IF−, and WHILE statements

Boolean (logical) expressions are implemented using conditional jumps. Consider first the simple case of

the comparison x < y. It is translated into a single compare instruction which places the result into the

three flag bits Z, N, and C of the processor status register, from which all relations (=, <, > etc.) can be

derived. As a consequence, we represent the Boolean result of a comparison by the relation used in the

comparison, that is, by Item mode CC with field r specifying the relation.

IF− and WHILE statements contain Boolean expressions. Their compilation schemata are the following:

IF x < y THEN S END WHILE x > y DO S END

CMP x, y L0: CMP x, y

BGE L (branch if not less) BLE L1 (branch if not greater)

code(S) code(S)

L: ... BR L0

L1: ...

The corresponding parser routine is:

IF sym = OSAS.if THEN

OSAS.Get(sym); expression(x); CheckBool(x); OSAG.CFJump(x); (*conditional forward jump*)

Check(OSAS.then, "no THEN");

StatSequence; L0 := 0;

WHILE sym = OSAS.elsif DO

OSAS.Get(sym); OSAG.FJump(L0); OSAG.Fixup(x); expression(x); CheckBool(x);

OSAG.CFJump(x); Check(OSAS.then, "no THEN"); StatSequence

END ;

IF sym = OSAS.else THEN

OSAS.Get(sym); OSAG.FJump(L0); OSAG.Fixup(x); StatSequence

ELSE OSAG.Fixup(x)

END ;

OSAG.FixLink(L0); Check(OSAS.end, "no END")

ELSIF sym = OSAS.while THEN

OSAS.Get(sym); L0 := OSAG.pc; expression(x); CheckBool(x); OSAG.CFJump(x);

Check(OSAS.do, "no DO"); StatSequence; OSAG.BJump(L0); (*back jump to L0*)

OSAG.Fixup(x); Check(OSAS.end, "no END")

...
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The problem of forward jumps in a single pass compiler is easily solved by retaining the location of the

branch instruction whose address has to be supplied at a later time in a local variable L0. In the case of a

conditional statement with several elsif clauses, many forward branches will occur that lead to the same

location, and whose address will therefore have to be fixed up at the same time. This case is solved by

building a list of those instructions; the links are stored in the instructions themselves in the place of their

eventual addresses. Procedure FixLink traverses this list, replacing the links by the branch offsets.

In the case of a Boolean expression with AND and OR operators, a conditional jump is taken as soon as

the result is known. In Fig. 7, BF denotes a branch to be taken if the preceding expression yields FALSE,

and BT a branch if TRUE.

TF

BT

BT

code x

code y

code z
;

x OR y OR z

;
code z

BF

code y

BF

code x

x & y & z

Fig. 7. Implementation of AND and OR with conditional branches

The Item descriptors of Boolean terms and expressions therefore do not only specify a condition code, but

also (the origins of) chains of branch instructions that have to be completed by inserting branch

destination addresses. This is shown by a short example, where again the variables are allocated to

registers in shorten the code listings.

PROCEDURE* P(x, y, z, w: INTEGER);

VAR a: INTEGER*;

BEGIN

IF x < y THEN a := 1 END ;

IF (x < y) & (z < w) & (a < 0) THEN a := 1 END ;

IF (x < y) OR (z < w) OR (a < 0) THEN a := 2 END

END P;

2 E150 5001 CMPR R0, R1 R0 = x, R1 = y

3 AA00 0000 BGE 0 branch to 5, if not less

4 E3A0 4001 MOVI R4, 1 R4 = a

5 E150 5001 CMPR R0, R1 R0 = x, R1 = y

6 AA00 0004 BGE 4 branch to 12, if not less

7 E152 5003 CMPR R2, R3 R2 = z, R3 = w

8 AA00 0002 BGE 2 branch to 12, if not less

9 E354 5000 CMPI R4, 0 R4 = a

10 AA00 0000 BGE 0 branch to 12, if not less

11 E3A0 4001 MOVI R4, 1

12 E150 5001 CMPR R0, R1

13 BA00 0003 BLT 3 branch to 18, if less

14 E152 5003 CMPR R2, R3

15 BA00 0001 BLT 1 branch to 18, if less

16 E354 5000 CMPI R4, 0

17 AA00 0000 BGE 0 branch to 19, if not less

18 E3A0 4002 MOVI R4, 2

11. Indexed Variables

Access to elements of an array, expressed by indexed variables, requires the computation of an address at

run−time. Consider the array declaration
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a: ARRAY n
2
, n

1
, n

0
OF INTEGER

and the indexed variable a[i, j, k]. Its address is then

base(a) + i*s
2
+ j*s

1
+ k*s

0

s
0
= size(INTEGER) s

1
= n

0
* s

0
s
2
= n

1
* s

1
s
3
= n

2
* s

2
= size(a)

Consider the example

PROCEDURE P; adr size

VAR i, j, x, y: INTEGER; −4, −8, −12, −16 4

a: ARRAY 8 OF INTEGER; −48 32

b: ARRAY 3, 5 OF INTEGER; −108 60

BEGIN x := a[4]; x := a[i]; y := b[i, j]

END P;

3 E51C 0020 LDR R0, [FP−32] a[4]

4 E50C 000C STR R0, [FP−12] x

5 E51C 0004 LDR R0, [FP−4] i

6 E08C 0100 ADDR R0, FP, R0 LSL 2 base + 4*i

7 E510 0030 LDR R0, [R0−48]

8 E50C 000C STR R0, [FP−12] x

9 E51C 0004 LDR R0, [FP−4] i

10 E3A0 1014 MOVI R1, 20 5*4

11 E020 C091 MUL R0, FP, R0, R1 base + i*20

12 E51C 1008 LDR R1, [FP−8] j

13 E080 0101 ADDR R0, R0, R1 LSL 2 + j*4

14 E510 006C LDR R0, [R0−108]

15 E50C 0010 STR R0, [FP−16] y

If the length of a subarray is a power of 2, the multiply/add instruction is replaced by the faster shift/add:

PROCEDURE P; adr size

VAR i, j, x, y: INTEGER; −4, −8, ... 4

b: ARRAY 4, 4 OF INTEGER; −80 64

BEGIN y := b[i, j]

END P;

3 E51C 0004 LDR R0, [FP−4] i

4 E08C 0200 ADDR R0, FP, R0 LSL 4 base + 16*i

5 E51C 1008 LDR R1, [fp−8] j

6 E080 0101 ADDR R0, R0, R1 LSL 2 + j*4

7 E510 0050 LDR R0, [R0−80]

8 E50C 0010 STR R0, [FP−16] y

These examples demonstrate the use of the combinations of multiply and add, and shift and add

operations in a single instruction, leading to rather short instruction sequences for address computations.

If the arrays are formal VAR−parameters, indexing is combined with indirect addressing. This is shown by

the following example:

TYPE Vector = ARRAY 8 OF INTEGER;

Matrix = ARRAY 4, 4 OF INTEGER;

PROCEDURE P(VAR a: Vector; VAR b: Matrix);

VAR i, j, x, y: INTEGER;

BEGIN x := a[0]; x := a[i]; y := b[i, j]

END P;

3 E51C 0008 LDR R0, [FP−8] adr(a)

4 E590 0000 LDR R0, [R0] a[0]

5 E50C 0014 STR R0, [FP−20] x
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6 E51C 0008 LDR R0, [FP−8] adr(a)

7 E51C 100C LDR R1, [FP−12] i

8 E790 0101 LDRR R0, [R0 + R1 LSL 2] adr(a) + 4*i

9 E50C 0014 STR R0, [FP−20] x

10 E51C 0004 LDR R0, [FP−4] adr(b)

11 E51C 100C LDR R1, [FP−12] i

12 E51C 2010 LDR R2, [FP−16] j

13 E080 0102 ADDR R0, R0, R2 LSL 2 adr(b) + 4*j

14 E790 0201 LDRR R0, [R0, R1 LSL 4] + 16*i

15 E50C 0018 STR R0, [FP−24] y

12. Riders

One of the few extensions of Oberon−SA is the rider feature. It is used to traverse an array sequentially

element by element. In the following example, the inner product of the arrays a and b is computed:

PROCEDURE InnerProd(VAR a, b: ARRAY OF REAL; n: INTEGER): REAL;

VAR s: REAL; ra, rb, limit: RIDER REAL;

BEGIN s := 0.0; SET(ra, a, 0); SET(rb, b, 0); SET(limit, a, n);

WHILE ra < limit DO s := ra↑ * rb↑ + s END ;

RETURN s

END InnerProd;

Riders are a particularly attractive feature on processors that offer an addressing mode with implied pre−

or post increment or decrement. The Strong_ARM is such a processor, allowing to implement queues and

stacks very efficiently. The rider represents a pointer (address) to be held in a register. Access via rider

implies indirect access via that register with automatic increment of the rider address. The code for the

preceding function procedure is shown below:

3 E3A0 0000 MOVI R0, 0

4 E50C 0010 STR R0, [FP−16] s := 0

5 E51C B00C LDR R11, [FP−12] SET(ra, a, 0)

6 E51C A008 LDR R10, [FP−8] SET(rb, b, 0)

7 E51C 900C LDR R9, [FP−12]

8 E51C 0004 LDR R0, [FP−4] n

9 E089 9100 ADDR R9, R9, R0 LSL 2 SET(limit, a, n)

10 E15B 0009 CMPR R11, R9 ra < limit

11 AA00 0006 BGE 6 branch to 19

12 E49B 0004 LDR R0, [R11], 4 ra↑, post inc adr

13 E49A 1004 LDR R1, [R10], 4 rb↑, post inc adr

14 EB02 0000 BL Product

15 E51C 1010 LDR R1, [FP−16] s

16 EB01 000E BL Sum

17 E50C 0010 STR R0, [FP−16] s

18 EAFF FFF6 B −10 branch to 10

19 E51C 0010 LDR R0, [FP−16] s

13. FOR statements

Instead of using a WHILE or a REPEAT statement, an iteration can be expressed by a FOR statement, if an

integer value is progressing over a range of values. The following example computes the sum 1 + 2 + ... +

n:

PROCEDURE H(n: INTEGER): INTEGER;

VAR i, sum: INTEGER;

BEGIN sum := 0;

FOR i := 1 TO n DO sum := sum + i END ;

RETURN sum

END H;
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3 E3A0 0000 MOVI R0, 0

4 E50C 000C STR R0, [FP−12] sum := 0

5 E3A0 0001 MOVI R0, 1

6 E51C 1004 LDR R1, [FP−4] n

7 E150 0001 CMPR R0, R1

8 CA00 0007 BGT 7 branch to 17

9 E50C 0008 STR R0, [FP−8] i

10 E51C 000C LDR R0, [FP−12] sum

11 E51C 1008 LDR R1, [FP−8] i

12 E090 0001 ADDR R0, R0, R1

13 E50C 000C STR R0, [FP−12] sum

14 E51C 0008 LDR R0, [FP−8] i

15 E280 0001 ADDI R0, R0, 1 +1

16 EAFF FFF4 B −12 branch to 6

17 E51C 000C LDR R0, [FP−12] RETURN sum

This example also shows the substantial savings gained, if H is marked as a leaf procedure with its

variables and parameters allocated in registers:

PROCEDURE* H(n: INTEGER): INTEGER;

VAR i, sum: INTEGER*;

BEGIN sum := 0;

FOR i := 1 TO n DO sum := sum + i END ;

RETURN sum

END H;

2 E3A0 2000 MOVI R2, 0 sum := 0

3 E3A0 1001 MOVI R1, 1 i := 1

4 E151 1000 CMPR R1, R0 i < n

5 CA00 0002 BGT 2 branch to 9

6 E092 2001 ADDR R2, R2, R1 sum := sum + i

7 E281 1001 ADDI R1, R1, 1 i := i+1

8 EAFF FFFA B −6 branch to 4

9 E1A0 0002 MOVR R0, R2 RETURN sum

14. Device Access and Interrupt Handlers

An essential property of a language for control applications is its ability to express direct access to devices.

In Oberon−SA it is represented by three procedures (which in standard Oberon must be imported from

the pseudo−module SYSTEM):

GET(adr, var) fetch value at address adr, assign it to var

PUT(adr, val) assign value val at address adr

BIT(adr, n) bit n at address adr, a Boolean function

Typically, adr specifies the address of a "memory mapped" location belonging to a device interface. As an

example, the following two (fast leaf) procedures receive and send a byte to a serial line interface at

address UART = 3000020H:

PROCEDURE** receive(): INTEGER;

VAR x: INTEGER*;

BEGIN

REPEAT UNTIL BIT(UART+4, 0); (*ready to receive*)

GET(UART, x); RETURN x MOD 100H

END receive;

4 E59F 1018 LDR R1, [PC+24] R1 := 3000024H

5 E591 2000 LDR R2, [R1]

6 E1B0 20E2 MOVR R2, R2 ROR 1 bit 0 to sign

7 5AFF FFFB BPL −5 branch to 4

8 E59F 100C LDR R1, [PC+12] R1 := 3000020H
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9 E591 0000 LDR R0, [R1] get

10 E200 00FF ANDI R0, R0, 0FFH MOD 100H

11 E1A0 F00E MOVR PC := R14 return

12 0300 0024

13 0300 0020

PROCEDURE** send(x: INTEGER);

BEGIN

REPEAT UNTIL ˜BIT(UART+4, 1); (*ready to send*)

PUT(UART, x)

END send;

14 E59F 1014 LDR R1, [PC+20] R1 := 3000024H

15 E591 2000 LDR R2, [R1]

16 E1B0 2162 MOVR R2, R2 ROR 2 bit 1 to sign

17 4AFF FFFB BMI −5 branch to 14

18 E59F 1008 LDR R1, [PC+8] R1 := 3000020H

19 E581 0000 STR R0, [R1] put x

20 E1A0 F00E MOVR PC := R14 return

21 0300 0024

22 0300 0020

An interrupt handler is a parameterless procedure that is called when the processor receives an interrupt

signal (or performs a trap). Its entry address is stored in a fixed location as specified by the processor. In

Oberon−SA, a procedure is specified to be an interrupt handler by a mark in its heading. The mark must

specifiy a return offset as specified by the processor for every interrupt source. In the following example,

we assume the presence of a global variable x which is incremented by each interrupt:

PROCEDURE [4] IRQ;

BEGIN x := x+1

END IRQ;

0 E92D 5FFF STM PC, [R0 .. R12, R14] push registers onto stack

1 E28D C030 ADDI FP, SP, 48 FP := SP+48

2 E51F 0014 LDR R0, [PC−20] R0 := x

3 E290 0001 ADDI R0, R0, 1 +1

4 E50F 001C STR R0, [PC−28] x := R0

5 E24C D030 SUBI SP, FP, 48 SP := FP−48

6 E8BD 5FFF LDM SP, [R0 .. R12, R14] pop registers from stack

7 E25E F004 SUBS PC, R14, 4 return, restore PC and PSR

A special case is the fast interrupt request, indicated by the mark value 20. In the fast interrupt mode,

entered after receiving such a request, the processor features a new set of registers R8 − R14. The

compiler automatically allocates local variables in registers R8, R9, R10, and R11. This makes it

unnecessary to save and restore registers, and lets the interrupt latency drop to nearly zero.

PROCEDURE [20] FIQ;

BEGIN x := x+1

END FIQ;

8 E51F 802C LDR R8, [PC−44] x, no registers saved

9 E298 8001 ADDI R8, R8, 1 +1

10 E50F 8034 STR R8, [PC−52] x

11 E25E F004 SUBS PC, R14, 4 return, restore PC and PSR

Access to special processor registers is made possible by a set of additional predeclared procedures which

generate inline code, typically a single instruction. These procedures are:

PROCEDURE LDPSR(s, x) load processor status register s = code, x = value

PROCEDURE STPSR(s, v) store processor status register s = code, v = variable

PROCEDURE LDCFG(n, x) load configuration n = register no.

PROCEDURE STCFG(n, v) store configuration
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PROCEDURE FLUSH flush caches and write buffer

15. Implementation of Floating−Point Operations

As mentioned in Section 8, due to lack of floating−point instructons, arithmetic operations on data of

type REAL are performed by a set of procedures contained in module SPL (Standard Program Library). It

goes without saying that in this case utmost efficiency is mandatory. SPL in fact gave rise to the

Oberon−SA facility of fast leaf procedures, and is intended to remain reserved for this particular

application. In conjunction with a very small number of special inline procedures, it made it possible to

satisfy our ambition to program this module in Oberon instead of taking resort to assembler code.

Subsequently we wish to exhibit the module SPL and thereby show that indeed very efficient and

compact implementation of floating−point is possible entirely within Oberon−SA. The following 6

procedures compile into 248 instructions only. All parameters and variables are held in registers.

x = (−1)s * 2e−127 * 1.m

2381

mes

Fig. 8. Floating−point format

The mentioned special inline procedures are:

ADDC(x, y, z) x := y + z + carry x, y, z must be register variables

MULD(x, y, z) <x, x'> := y * z x + Rn, x' = R[n+1]

XOR(x, y) x XOR y used for sign bits

NULL(x) x = 0 with sign bit cleared

MODULE SPL; (*NW 25.11.98 / 28.2.99, Flt. Pt. for SA*)
CONST B = 127; C = 800000H; E = 100H; S = 80000000H;

PROCEDURE** Sum*(x, y: INTEGER); (*1*)
VAR xe, ye, s: INTEGER*;

BEGIN
IF NULL(x) THEN x := y
ELSIF ˜NULL(y) THEN

xe := x DIV C MOD E − B; (*extract exponent xe and mantissa x*)
IF x >= 0 THEN x := (x MOD C + C)*2 ELSE x := −(x MOD C + C)*2 END ;
ye := y DIV C MOD E − B; (*extract exponent ye and mantissa y*)
IF y >= 0 THEN y := (y MOD C + C)*2 ELSE y := −(y MOD C + C)*2 END ;
IF xe < ye THEN

ye := ye − xe; xe := xe + ye; (*denormalize x*)
IF ye <= 25 THEN x := ASR(x, ye) ELSE x := 0 END

ELSIF ye < xe THEN
ye := xe − ye; (*denormalize y*)
IF ye <= 25 THEN y := ASR(y, ye) ELSE y := 0 END

END ;
s := x + y; x := ABS(s);
IF x # 0 THEN (*normalize x*)

IF x >= 4*C THEN x := (x+2) DIV 4; INC(xe)
ELSIF x >= 2*C THEN x := (x+1) DIV 2
ELSE xe := xe−1;

WHILE x < C DO x := 2*x; xe := xe−1 END
END ;
IF xe < −B THEN x := 0 (*underflow*)
ELSIF xe > B THEN x := 7FFFFFFFH (*overflow*)
ELSE x := (xe + B)*C − C + x
END ;
IF s < 0 THEN INC(x, S) END

END
END

END Sum;
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PROCEDURE** Product*(x, y: INTEGER); (*3*)
VAR xe, ye, zh, s: INTEGER*;

BEGIN
IF NULL(y) THEN x := 0
ELSIF ˜NULL(x) THEN

s := XOR(x, y);
xe := x DIV C MOD E − B; x := (x MOD C + C) * 20H;
ye := y DIV C MOD E − B; y := (y MOD C + C) * 20H;
xe := xe + ye; MULD(ye, x, y); (*ye is lower part of z*)
IF zh >= 4*C THEN x := (zh+2) DIV 4; xe := xe+1 ELSE x := (zh+1) DIV 2 END ;
IF xe > B THEN x := 7FFFFFFFH (*overflow*)
ELSIF xe < −B THEN x := 0 (*underflow*)
ELSE x := (xe + B)*C − C + x
END ;
IF s < 0 THEN INC(x, S) END

END
END Product;

PROCEDURE** Quotient*(x, y: INTEGER); (*5*)
VAR xe, ye, q, s: INTEGER*;

BEGIN
IF ˜NULL(x) THEN s := XOR(x, y);

IF NULL(y) THEN x := 7FFFFFFFH
ELSE

xe := x DIV C MOD E − B; x := x MOD C + C;
ye := y DIV C MOD E − B; y := y MOD C + C;
xe := xe − ye;
IF x < y THEN x := x*2; xe := xe − 1 END ;
(*ye is counter*) ye := 25; q := 0;
REPEAT q := 2*q;

IF x >= y THEN x := x − y; INC(q) END ;
x := 2*x; ye := ye − 1

UNTIL ye = 0;
q := (q+1) DIV 2; (*round*)
IF xe > B THEN x := 7FFFFFFFH (*overflow*)
ELSIF xe < −B THEN x := 0 (*underflow*)
ELSE x := (xe + B)*C − C + q
END

END ;
IF s < 0 THEN INC(x, S) END

END
END Quotient;

PROCEDURE** Floor*(x: INTEGER); (*7*)
VAR e, n: INTEGER*;

BEGIN
IF ˜NULL(x) THEN

e := x DIV C MOD E − (B+23); n := x MOD C + C;
IF x < 0 THEN n := −n END ;
IF e < −31 THEN x := 0
ELSIF e < 0 THEN x := ASR(n, −e) (*denormalize*)
ELSE x := LSL(n, e)
END

END
END Floor;

PROCEDURE** Float*(x: INTEGER); (*8*)
VAR xe, s: INTEGER*;

BEGIN s := x;
IF x # 0 THEN

x := ABS(x); xe := 23;
IF x >= 2*C THEN (*normalize*)

REPEAT x := x DIV 2; INC(xe) UNTIL x < 2*C
ELSIF x < C THEN

REPEAT x := 2*x; DEC(xe) UNTIL x >= C
END ;
x := (xe + B)*C − C + x;
IF s < 0 THEN INC(x, S) END

END
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END Float;
END SPL.

16. Object− and Symbol−Files

Object files consist of the sequence of compiled instructions preceded by a header. Their syntax is given

by:

CodeFile = modname key:4

{name key:4 fix:2} 0

{name entry:4} 0

nofent:2 {entry:2}

len:2 {codeword:4}.

The header starts with the module name (ASCII string terminated by a zero byte) and associated key (4

bytes). They are followed by a number of name/key/fix triples of the imported modules. This list is

terminated by a zero byte. Then follows the sequence of command names and their entry addresses, also

terminated by a zero byte. The last part of the header is the list of entry points (of exported procedures).

The linker/loader, after allocating memory and loading the instruction sequence, computes the addresses

of calls to imported procedures. For each imported module, there exists a list of instructions referring to

procedures of that module. The links of this list are in the address fields of the instructions themselves,

and the address of the first instruction of the list is given by the fix value in the object file's list of imports.

The actual offset is obtained from the number of the procedure to be called, used as index to the table of

entry points of the respective module. To this value we add the difference between the origins of the

present and the called module.

offset

opcode linkproc no.

1688

opcode

instruction before fixup

instruction after fixup

Fig. 9. Calls to external procedures

Because only procedures (and types), but not variables can be imported, this is the only fixup operation to

be performed by the linking loader. The decision to exclude variable import was influenced by the

consideration that variable export is contrary to the concept of abstract data types, but not less by the

unavoidable inefficiency of external access caused by the short offset fields of load/and store instructions.

Symbol files are condensed and liearized forms of the compiler's symbol table. They contain the

descriptions of the externally visible properties of all exported constants (including procedures) and data

types. Their syntax is given by:

SymFile = len:4 key:4 modname {object} 0.

object = (CONST form value | TYP type) name.

param = (VAR | PAR) chk type.

type = ref [POINTER type

| ARRAY type size

| RECORD size {FLD type offset name} 0

| PROC type {param} 0

| TYP key modname typname].

The symbol file is generated by scanning the symbol table of the global scope. Only objects marked as

exported are considered. An object's type is output before any other attribute of the object. Type

descriptors are marked and numbered as soon as the descriptor is output to the symbol file. When the

same type is referenced again, only its reference number is output, avoiding the writing of copies of the

same data. Note that procedures are considered to be constants of a procedure type, the latter being

characterized by the list of parameters and (type of) the result of the procedure. When reading a symbol

file, the compiler collects the read types in an array. Reference numbers then act as indexes to this array.
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Reflecting the recursiveness of the syntax, both input and output procedures are recursive too.

17. Conclusions

We argue that it is worthwhile to construct a compiler from scratch, if one strives for good, but possibly

not optimal code. In designing an Oberon compiler for the ARM architecture, we have demonstrated that

with the relatively little effort of 3 − 4 man months it is possible to construct a small and highly efficient

compiler generating good code. The compiler program consists of 2350 lines of Oberon source text, or

32K bytes of code and 12K bytes of static data.

This degree of economy is achieved through straight−forward schemes of parsing and code generation,

resulting in a single pass process. An important aid is the introduction of compiling hints in the source

language, such as marking procedures as leaf procedures which leave parameters and local variables in

registers. This information could be gathered by a more sophisticated compiler by a pre−pass over the

source text. Another facility, with the purpose of accelerating sequential array access, is the rider.

An important advantage of designing one's own compiler is that specific, perhaps machine−dependent

facilities can easily be incorporated. Such facilities are required if, for example, specific resources must be

accessible, such as processor status register, memory management registers, or device interfaces. This is

typically the case for embedded applications, which also require a predictable performance for real−time

sensing and control.
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