
Flexible Exception Handling in Process

Support Systems �

Technical Report No� ���
ETH Z�urich� Department of Computer Science

Claus Hagen Gustavo Alonso
Institute of Information Systems

Swiss Federal Institute of Technology �ETH�
ETH Zentrum� CH����� Z�urich� Switzerland

fhagen�alonsog	inf
ethz
ch

February �� ����

Exceptions are one of the most pervasive problems in process support systems� In instal�
lations expected to handle a large number of processes� having exceptions is bound to be
a normal occurrence� Any programming tool intended for large� complex applications has
to face this problem� However� current process support systems� despite their orientation
towards complex� distributed� and heterogeneous applications� provide almost no support
for exception handling� This paper shows how �exible mechanisms for failure handling are
incorporated into the OPERA process support system using a combination of programming
language concepts and transaction processing techniques� The resulting mechanisms allow
the construction of fault�tolerant work�ow processes in a transparent and �exible way while
ensuring reusability of work�ow components�

� Introduction

A process can be de�ned as a sequence of program invocations and data exchanges between distributed
and heterogeneous stand�alone systems� Work�ow management systems 	WFMS
 provide support for
business processes �AS��� GHS�
� Hsu�
� Hsu��� JB��� She��� WfM���� while a process support system
	PSS
 generalizes this idea to arbitrary types of processes �AM��� AHST��a� AHST��b�� In this sense�
a process support system appears as a tool for �programming in the large� over heterogeneous and
distributed environments �AM����

Programming tools intended for large� complex applications incorporate exception handling mech�
anisms to separate the failure semantics from the �normal� program logic and thus facilitate the
design of readable� comprehensible programs �Par��� Goo�
� YB�
� vZBC���� Exception handling
mechanisms are also incorporated into frameworks for distributed applications like CORBA and into
operating systems like Windows NT� Despite the similarities between process support systems and
programming environments �AHST��a� AHST��b� there is little support for exception handling in

�Part of this work has been funded by the Swiss National Science Foundation under the project TRAMs �Transactions
and Active Database Mechanisms for Work�ow Management��

�

current process systems� Any possible exception must be encoded in the process� All exceptions that
are not hard�wired into the process result in either aborting the process or require human intervention�
Since processes tend to be long 	days� even months
� involve a considerable number of resources and
personnel� and since there might be a very large number of processes� neither aborting nor human
intervention are satisfactory solutions �AS��� KR��� GHS�
��

Current e�orts towards standardization and modularization of work�ow management systems are
a further motivation for this work� The Work�ow Management Coalition is in the process of stan�
dardizing interfaces for application and subprocess invocation across di�erent work�ow systems� Fur�
thermore� there are ongoing e�orts towards the standardization of business objects� prede�ned sub�
work�ows that can be purchased and integrated into larger business processes� We believe that the
incorporation of exception declarations into these standard interfaces could be an important contribu�
tion since it would allow to develop fault tolerant work�ows out of pre�existing building blocks�

To address these issues� the paper describes the exception handling mechanisms implemented in the
Opera process support system �AHST��a� AHST��b�� Opera aims at generalizing process support
concepts to application domains other than business processes� It is an adaptable kernel for process
support which can be tailored to di�erent environments and purposes� ranging from job control in
distributed� heterogeneous systems to experiment management in scienti�c applications �AH���� The
Opera approach to exception handling borrows its main ideas from a combination of programming
language concepts and transaction processing techniques� adapting them to the special characteristics
of process support systems� To our knowledge Opera is the �rst system to integrate language prim�
itives for exception handling into work�ow management systems� Previous approaches were limited
to achieving atomicity but did not take into account the need to react di�erently to di�erent types
of failures and the need of a tight integration of failure handling and modeling language� A further
contribution of the paper is the integration of programming language concepts and transactional ideas�
We show how the semantics de�ned through the language constructs are enforced through the usage
of an execution model based on advanced transaction models�

The paper is organized as follows� The next section provides an example and motivates the ideas
proposed in the paper� Section � introduces the exception handling concepts in Opera� Section �
discusses the relation between work�ow recovery and transaction models� Section
 describes the inte�
gration of exceptions signaled by external applications� Section � proposes several language primitives
to integrate exception handling and graphical languages� Section � contains an example and discusses
the described approach� Section � brie�y discusses related work and Section � concludes the paper�

� Motivation and Example

CORBA

Reserve

Executing
System

Flight Car Hotel

Check
Availability

CORBA

Invoice
Keeping
Record

Manual DBMS

Check
Availability

Reserve

Legacy system

Legacy system

Reserve

Manual

New Order

DBMS

Task

Figure �� A work�ow process

�

As a running example for the rest of the paper� consider a process incorporating the reservation
of various �ights� rental cars and accommodations as well as the �nal sending of the documents and
invoice to the customer and the storage of the result in the travel agency�s internal database 	Figure �
�
The programs and services incorporated in the process are executed by di�erent autonomous systems�
Flight reservation is done through a CORBA gateway to a booking system� Sending the documents
and invoice as well as reserving a hotel are manual task to be handled by the travel agency�s personnel�
Record keeping in the local database takes place via a TP monitor� and the reservation of a rental
car is done through a legacy system� The possible failures can be classi�ed into several categories�
Program failures� design and communication errors� and semantic failures�

Program failures lead to the unsuccessful abort of an external application� For instance� the �ight
reservation step can fail because no seats 	or no seats in the requested category
 are available any
more� manual tasks like the invoice task usually have an associated time limit which may be violated�
the record keeping task may fail because of a transaction abort� A fault tolerant process has to provide
handling strategies for all of these failures� In the case of unavailable seats the solution may be to
ask the customer to select a di�erent �ight� to accept a di�erent category� or to cancel the whole
reservation process� In the case of unmet temporal constraints the task can either automatically be
dispatched to a di�erent employee or a supervisor can be noti�ed� The transaction failure may be
solvable by simply retrying execution if the reason for the abort was a deadlock� Note that often the
external application provides some level of fault�tolerance� A database application� or the database
system itself� may automatically reschedule an aborted transaction� While this simpli�es the work
to be done by the PSS� it does not solve the problem of more complex failure handling strategies�
For instance� using a train reservation as a contingency plan for the �ight�car reservations needs a
combination of backward and forward recovery 	we assume here that no renatl car is needed if a train
is booked since the railway station is central enough
 � If a car has already been reserved� but no �ight
is available� recovery requires that the reservation be canceled before the train is booked�

Design and system failures� like incorrect parameters for program invocation or impossible program
executions because of con�guration changes� must also be considered� If the process programmer has
erroneously provided an incorrect program name� object id� or host address� or if an application
has been moved from one host to another� the invocation will fail� Such failures must be captured
by the process model in order to allow the speci�cation of �exible reactions� The same is true for
communication failures that may prevent the invocation of a program� The di�erence between the two
is that design errors usually lead to aborting the process� while communication failures may be resolved
by re�trying execution at a later point in time or by choosing a di�erent host� Semantic failures are
the most interesting kind of exceptions� The execution of a program without errors does not always
mean that it was successful� since there may be additional constraints� In the example given� the
checkAvailability service returns successfully even if no available seat has been found� This case is�
however� an exception since without available seats no reservation can be made� It is up to the process
code to detect this and invoke appropriate measures� Thus the process system needs mechanisms to
de�ne what is regarded as semantic exception in order to incorporate them into the general exception
handling scheme� We will discuss these issues in section
�

As a further motivation of the need for structured exception handling� Figure � shows a slightly
simpli�ed implementation of the example using FlowMark �LA���� including recovery mechanisms like
compensation 	the Cancel Flight activities
 and contingency tasks 	Hotel� is a replacement for Hotel��
ReserveTrain replaces BookFlight and RentCar
 as well as partial rollback 	compensation of BookFlight
if no car is available and subsequent booking of train
� Since FlowMark� like most WFMS� provides no
mechanisms for structured exception handling� the interleaving of the original tasks with the recovery
steps makes the fault tolerant version very complex and the original process logic hardly recognizable�
The complexity explosion in this very small example points out the drawbacks of including exception
handling as part of the normal process speci�cation� Mixing business logic and exception handling
logic makes it di�cult to keep track of both� complicating the veri�cation of processes as well as later
modi�cations� Moreover� such an approach makes it almost impossible to reuse components since

�

they will lack meaning once out of the context for which they were originally designed� One of the key
features of process systems is the ability to reuse subprocesses� very much in the same way that libraries
are used in programming languages� This can only be accomplished if there is some form of system
support for exception handling that allows to separate it from the normal code� The main objective of
the Opera approach to exception handling is thus the augmentation of its process modeling languages
in an appropriate way�

Book Flight Rent Car Reserve Hotel

_RC = -1

_RC=-1

_RC=-1

_RC=-1

_RC=-1
BookFlight RentCar

Hotel1

Hotel2

ReserveTrain

CancelFlight_1

CancelTrain

CancelCar

CancelFlight_2

Report Failure

Figure �� Handling exceptions by programming them in the control �ow �FlowMark notation�

In addition to the problem of modeling exception handling strategies in a comprehensible way�
PSS have to capture failure signals returned by external applications� There are several ways in
which these exceptions are signaled� The �rst one uses explicit exceptions� as illustrated in Figure ��
which shows an interface description in CORBA�s interface de�nition language 	IDL
� CORBA services
communicate failures to their callers through exceptions that are returned instead of the de�ned return
values� In our example� two potential exceptions are declared� invalidData and noSeats� The second
approach for communicating failures is the more traditional one of using return codes� usually some
integer representing the failure� In the example� the record keeping activity 	implemented in Encina�
for example
 signals failures this way� A third important signaling method is the use of explicit failure
channels like they are used in persistent queuing systems or queue�oriented TP monitors like Tuxedo�
The process management system must translate these heterogeneous failure signals into an internal
format that allows to treat them uniformly�

� Exception handling in OPERA

��� Basic mechanisms

The exception mechanism used in Opera is based on programming language concepts proposed by
Goodenough �Goo�
� and later adopted in many programming languages� including CommonLisp
�Ste���� Standard ML �Pau���� C�� �Str���� and Java �Fla���� These constructs are also an integral
part of communication standards for distributed systems like CORBA �Obj���� and exception handling
has even been integrated into Windows NT �Cus���� where it is used to handle system and user�de�ned
exceptions in an uniform way�

An exception is an unusual event� erroneous or not� that is detectable either by hardware or software
and that may require special processing �Seb���� The overall goal of exception handling is to give the
programmer means to adapt the behavior of operations� allowing them to �exibly react to exceptions

�

interface flightSystem f
exception invalidData fstring reason�g�
exception noSeats fstring reason�g�

int checkAvailability �in date depDate� in time depTime�

in string depCity� in string destCity�

out string category� out string flightNumber�

out int noOfSeats�

raises �invalidData��

int bookFlight �in string flightNumber� in string category�

in string number� out string code�

raises �invalidData�noSeats��

g�

Figure �� Sample IDL de�nition including exception declarations for �ight reservation tasks in the example process

of various kinds� while preserving information hiding and autonomy� This is achieved by separating
exception detection from exception handling in nested process structures�

As in other process support systems �CD��� CD��� LA���� a work�ow process in OPERA has a
nested structure that can be represented by a tree with di�erent tasks 	processes� blocks� or activities

as its nodes� The set of child nodes of a task Ti is de�ned by the subtasks that are invoked inside
Ti� Each task has a clearly de�ned signature that speci�es its call parameters and return values�
Information hiding demands that only the signature has to be known in order to invoke a task�
Opera�s exception handling mechanism is based on the principle that� in case of failures� a child task
Tik stops execution and returns an exception instead of proper return values� Exceptions are typed
data structures that can contain information about the failure context� A task returning exceptions
is thus polymorphic� If it is executed successfully� it returns data conforming to its signature� but
if it encounters an unusual event� it returns an exception with a di�erent structure� If the parent
has de�ned an exception handler 	an arbitrary subprocess
 for the exception returned by the child
	the signaler
� then when the exception is signaled� control is passed to the handler which contains
the necessary steps for failure handling� If no handler is de�ned by the programmer� then a default
handler is provided by the system that aborts the parent�

The approach allows modular design� since the programmer of a procedure must only be concerned
with exception detection 	performed by the invoked operation
� while exception handling� which may
be context�dependent� is left to the invoker of the procedure� Flexibility is further improved by giving
the exception handler control over whether the signaler can continue� The handler has the possibility
to either abort the signaler or to resume its execution after it has dealt with the exception� Resuming
execution is used in those cases in which the exception was raised because of invalid parameters and
in which exception handling incorporates querying a user for di�erent data� Furthermore� if a handler
cannot deal with a given exception� it propagates the exception up one level in the call hierarchy where
it will be processed by a handler associated with the corresponding invoker�

Figure � shows several examples for the �ow of control in Opera during exception handling�
depending on the decision of the handler� In diagram 	a
� the exception handler resumes execution of
the signaler� In diagram 	b
� the signaler is aborted and control returns to the process that invoked it�
Diagram 	c
 shows a two�level nested execution� where the innermost process 	p�
 raises an exception
which is propagated by the exception handler� enforcing the abort of p� and the invocation of an
exception handler associated with p�� This handler resumes the operation of p��

Start

Resume signaler

Failure
(Raise exception)

Exception

Subprocess

(provided by
Handler

the caller)

(Process)
Caller

t

Exception handling

Regular return

of signaler

(Subprocess)
Signaler

a

Raise exception

Start of

Abort signaler,

Exception

Subprocess

(provided by
Handler

the caller)

(Process)

t

Exception handling

return to caller

Caller

process)
(Sub-

Signaler

b

c

Exception handling

p2

exception
Raise

Invoke p2

Invoke p1

Exception

by p1)

Exception
Handler

of p2
(provided

by p0)
(provided

of p1
Handler

propagate exception
Abort signaler,

Resume
operation
of p1

of p1
return
Regular

Activity

Sub-
process

p1
p0

Process

Figure �� Control �ow during exception handling

��� Semantics

The semantics of the Opera exception handling mechanisms are based on the replacement model
�YB�
�� Logically� the exception handler replaces either the signaler 	if the latter is aborted
 or the
statement in the signaler that raised the exception 	if the execution of the signaler is resumed
� This
poses additional requirements on the process execution model� If the exception process aborts and
replaces the signaler� the system has to �undo� possible side e�ects caused by the signaler� This is
achieved in programming languages by cleaning the stack and performing some additional cleanup
work� like calling destructors of purged objects �Str���� In Opera� each step corresponds to one or
more external activities that may cause arbitrary side e�ects in the outside world 	sending a message�
deleting a �le� changing a record
� the engine has no knowledge of these e�ects� In order to be able to
undo any side e�ects� Opera relies on semantic information provided with the failed task �AKA�����
This semantic information is provided in the form of compensating tasks and managed using the
transactional mechanisms discussed in section ��

� Transactional recovery and exceptions

The constructs provided by OPERA allow process designers to describe the failure semantics of a
process in a convenient way but� in order to enforce these failure semantics� additional mechanisms
are necessary� For instance� �aborting a task� needs to be properly de�ned� In practice� aborting a
task and executing an exception handler is equivalent to what is known as partial backward recovery in
advanced transaction models �Elm��� Mos�
� GH��� GHM��� GS��� ELLR���� 	In fact� we integrated
exceptions into our system primarily because we were looking for a way to specify spheres of atomicity
at the modeling language level
�

Opera integrates transaction concepts directly into the system� While the approach is similar
to advanced transaction models in that it provides �exible recovery� it is more general since it can
distinguish between di�erent failure states of a task� Most transaction models can only distinguish
�committed� from �aborted� transactions and hence allow to specify only one recovery strategy for each
task� 	To our knowledge� only �BDS���� has discussed the implications of multiple possible failures on

�

recovery mechanisms�
 Furthermore� transaction models usually assume that tasks are atomic� This
is� however� not true for work�ow environments where activities can be arbitrary program executions
or human activities and may thus not be atomic at all� They may leave �the outside world� in an
inconsistent state if they fail� The recovery mechanism in Opera also copes with such non�atomic
tasks�

The transactional aspects of OPERA are embedded in the notion of spheres which are used as a way
to bracket operations as units with transactional properties� Spheres are basically specialized blocks
and� in the current prototype� there are three possibilities which can be combined� blocks as atomic
units with the standard all or nothing semantics 	sphere of atomicity
� blocks as isolation units 	sphere
of isolation
� or blocks as persistence units 	spheres of persistence
�AHST��b�� For the purposes of
exception handling� the most relevant spheres are spheres of atomicity� hence they are the ones that
will be described here in detail�

Atomicity is a property that can be declared for blocks as well as for processes and activities� The
information on whether an activity is atomic or not has to be provided by the person registering a
program or human activity� This is done as part of the process of selecting a task interface� Currently�
the following tasks interfaces are provided in Opera�

� Basic �non�atomic�� This is the basic task interface that serves as the root of the interface
hierarchy� Activities that conform to this interface are assumed to be non�atomic� The system
cannot guarantee atomicity�

� Semi�atomic� Semi�atomic tasks do not perform automatic rollback in case of a runtime failure�
They do� however� keep enough information to allow an undo after the failure has happened�
Examples are certain CAD systems that perform logging during operation� After a failure� work
can be undone by issuing a special command� Part of the semi�atomic task interface is thus a
rollback method that describes how to undo a partially executed task�

� Atomic� These tasks have no side e�ects if they fail� Transactions issued to a database or to a
distributed environment through a TP monitor fall into this category�

� Restartable� If this sort of task fails� it can be executed again and will eventually succeed�
Examples are many programs 	like word processors
 that may fail due to failures in the program
or operating system �ELLR����

� Compensatable� This task interface applies to applications that can be rolled back after they
have �nished� Compensation is used in the same way it is applied in many transaction models�
The Compensatable task interface contains a method that allows to invoke an activity or task
that semantically undoes the original task�s e�ects �ELLR����

Based on the atomicity declarations for the basic steps� Opera enforces atomicity of composite
tasks� i�e�� processes and blocks� A process is guaranteed to be atomic if it either is declared to
be semi�atomic 	in this case� the process designer has to provide a backout method that performs
rollback
� or if 	a
 every component task is atomic or semi�atomic and 	b
 every component task is
compensatable or the process has a �ex�structure� A �ex structured process conforms to the rules
given for the �ex transaction model in �ZNBB���� It can consist of compensatable� restartable� and
so�called pivot 	i�e� neither compensatable nor restartable
 tasks and is guaranteed to be atomic if
certain rules on its structure hold� The basic principle of recoverability in �exible transactions is that
only one pivot task is allowed and that all compensatable task have to be executed before the pivot�
while all restartable tasks have to be executed after the pivot� Rules become more complicated if
parallel tasks and contingency executions are taken into account� The problems of correctness rules
for �exible transactions are covered in depth in �ELLR��� ZNBB���� Therefore we do not discuss them
further here� Opera uses these rules to determine the recoverability of processes at compile�time�

�

Opera uses the information provided by the process designers in the following way� If a task raises
an exception and is aborted by its exception handler� it stops 	note that this may require recursive
abort of component tasks in the case of a process or block
 and is then undone depending on its
type� If the task was declared atomic� then no further actions are performed� If the task was declared
semi�atomic� then holistic backout is performed by executing its rollback method� If the task was
declared non�atomic� then single�step backout is performed by executing the compensating tasks of the
component activities� Note that for �ex structured processes� an atomic abort is only possible while
only compensatable activities have been executed� Once a pivot or repeatable activity has succeeded�
these processes become semi�atomic in the sense that they can only be aborted through a backout
method� The process designer has the possibility to determine the behavior of �ex structured pro�
cesses in specifying whether holistic or single�step backout is preferred when there are only completed
compensatable tasks�

� Exception detection

Internally� an exception is represented as a triple 	N� O� I� R
� where N is a name� O denotes the allowed
control �ow options 	abort or resume
� I is the input data structure that is used to pass information
about the context where the exception occured� and R is the return data structure used when data has
to be sent back to the source of the exception� The programs that are part of a work�ow do usually
not use this format but rely on proprietary ways of exception signaling� 	We have given examples
for this in section �
� Opera translates these external exceptions into its internal format at run�time
based on mapping information provided when the programs are registered

Program registration ensures that the engine has the necessary information to invoke a program or
notify a user� like IP addresses and command lines in the case of programs or role speci�cations and
desriptive text for human activities� In Opera� exceptions have also to be declared� This includes the
declaration of an exception translation function de�ning which external signals result in which internal
exceptions� The format in which this function is given is dependent on the type of the external
application�

Work�ow�aware applications �SJHB�	
 are applications that have been speci�cally designed to be
used with Opera by incorporating calls to the Opera application programming interface 	API
� The
Opera API is a library of procedure calls like the ones provided by most WFMS� The API provides
calls to directly signal Opera exceptions� hence there is no need for the translation of exceptions in
work�ow�aware applications�

Legacy applications are programs that are not aware of the work�ow system� Being stand�alone ap�
plications invoked through the operating system� they signal failures through special return codes that
are converted to Opera exceptions by the runtime system� The conversion is based on a translation
table registered with the program that maps speci�c return values to appropriate exception types�

Standard environments� Distributed environments like CORBA �Obj��� provide their own excep�
tion mechanisms� Exceptions returned by their applications are directly converted into Opera excep�
tions� The exception declarations for a service are parsed from its IDL �le that has to be provided
when the service is registered� Note that these application do usually not allow signaler resumption�
i�e� programs are always aborted when they send an exception�

Manual activities� Humans communicate with the WFMS through worklists� which are graphical
user interfaces� The signaling of exceptions by human agents is supported through the worklist by a
suitable GUI�

��� Internal exception detection

In Opera� the exception mechanism is also used to detect and signal semantic failures� Opera

provides two options� synchronous exception raising� based on special signal proxies embedded into

�

the control �ow description� and asynchronous exception raising� which is based on predicates over
process�internal data�

Signal proxies can occur anywhere inside a process� A signal proxy is associated with an exception
name� data containers� and an exception category� If the �ow of control in a process reaches a signal
proxy� control is passed to the appropriate exception handler� Figure
 gives an example of explicit
signalisation� If after the execution of Activity�� the value of the parameter R is negative� an exception
is raised� Since the exception type 	cf� Section �
 is Escape� this leads to the termination of the process�

Activity2

Activity1
R <0

R >= 0

(Escape)
E_NEGATIVE

Signal Proxy

Figure 	� Explicit signaling of an exception

For implicit signaling� the work�ow designer has to provide a set of predicates that de�ne under
which circumstances a given exception must be raised� The variables for these predicates are those
in the containers or in the �blackboard�associated with each process �AHST��b�� The designer can
for instance de�ne startup predicates and termination predicates� The former evaluate the parameters
passed to the process upon startup� They allow to check if these values allow the process to execute
correctly� If incorrect values are encountered� a user can be informed through a Notify exception� This
user can then correct the parameters and resume the process execution� Termination predicates check
the return values of the process and raise exceptions if incorrect values are detected�

� Integration of exception handling into modeling languages

Process support systems have a strong focus on process modeling� They usually provide a graphical
modeling language that allows to specify processes in an intuitive way� It is thus important that
an exception handling mechanism integrates well with graphical process languages� In this section
we describe the modeling languages used in Opera and how the exception handling primitives are
incorporated in them�

Opera uses a model hierarchy rather than one single language to describe processes� At the top of
the hierarchy there are domain�speci�c representations of processes such as OGWL �Opera Graphical
Work�ow Language�� a modeling language for business processes� OGWL is a simple graphical process
description language� based on IBM�s FDL �LA���� which closely follows the model proposed by the
Work�ow Management Coalition �Hol���� OGWL speci�cations are only used for interacting with
the user� Internally� OGWL speci�cations are compiled into OCR �Opera Canonical Representation��
which is later translated into the data models of the underlying databases used as Opera repositories�

��� Graphical representation in OGWL

In OGWL� a process is a directed acyclic graph� whose nodes represent tasks� and whose arcs are
control connectors and data connectors� Note that in spite of the graph being acyclic� loops are still
possible using block constructs� Control connectors de�ne the �ow of control in a process� A control
connector is a directed edge that links two activities� regardless of whether they are simple activities�
blocks� or subprocesses�

Each control connector can be marked with a transition condition� a boolean expression over
elements of the source activity�s output data structure� The condition determines a connectors state�
and is used to model conditional branching� if a process is created� all connectors are in the unevaluated
state� Upon completion of a task� the states of its outgoing control connectors are computed by

�

evaluating the transition conditions� which leads to the connectors becoming either true or false� The
execution of a task is then dependent on the states of its incoming control connectors� a special start
condition 	a boolean predicate over the states of the incoming connectors
 determines which connectors
have to be true in order to schedule the task�s execution� Figure � contains an example process� Note
that the two arcs starting at Activity� are equivalent to an if�then�else�construct 	since their conditions
are disjoint
� Parallel execution can be speci�ed by control connectors with predicates that can be
true at the same time�

Subprocess Control Connector

Activity Block

Activity5

Activity4

Activity2

Activity3

Activity1

Process2

R<100

R>100

true

true

true

true

Figure
� Control �ow description

Data containers are used to model the �ow of data into and out of activities� blocks� and processes�
They are the equivalent to OCR�s in� and out�boxes� Data �ow is speci�ed through special data
connectors� A data connector is a directed edge that links two activities and indicates a mapping
between the source�s output container and the target�s input container� Upon completion of a task�
the system copies the data of the task�s output container into those input containers that are linked
by data connectors�

Activity5

Activity4

Activity2

Activity3

Process2

R<100

R>100

true

true

true

true

Source(process’ input)

Sink (process’ output)

Data connector

Activity1

Figure �� Data �ow description

��� OCR process representation

OGWL is suitable for user interaction but not for internal use within Opera� For this purpose� OCR
is used� Thus� when a new process is registered� the OGWL compiler translates it into OCR objects�
Control connectors and their conditions are transformed into guards� OGWL data connectors are
directly translated by storing with each input parameter the task and output parameter it reads data
from�

In OCR� a process is represented as a set of tasks 	activities� blocks� or subprocesses
 and the
so�called blackboard� a set of data items used for the exchange of data between tasks� Activities are
basic processing steps� An activity is associated with a number of attributes� like the program to be
executed and people responsible for execution and supervision� Subprocesses and blocks allow nesting
of processes� with the di�erence that blocks are de�ned only within their parent process 	similar to
blocks in programming languages
� In addition� blocks can be assigned special properties� for instance�
iteration blocks and while blocks allow to implement loops� or atomic spheres� which are used to de�ne
units of rollback� Each task is represented as an object with a well�de�ned interface that allows to
access its state and other information necessary for navigation and execution� The structure of the

��

basic task interface is given in table �� It represents the root of an interface hierarchy that allows to
add new functionality to the system by extending the basic interface�

Name Type Description

Guard Guard Control �ow description

InBox Parameterlist Call parameters

OutBox Parameterlist Allows to access return values

State ExecutionState Allows to access the current state of task execu�
tion�

ExceptionDecl List of Exception declares the exceptions that can possibly be
thrown by the task

EventQueue List of Event Allows to query the list of events signalled by the
task�

Type TaskType Distinguishes between subprocesses� blocks� and
activities�

Reference Object A reference determining how the task is to be ex�
ecuted

Table �� Basic task interface

Control �ow inside a process is determined by the guards associated with its tasks� The paradigm
used is similar to ECA rules in active databases �WC���� The guard consists of an activator that
speci�es when the task has to be considered for execution� and a start condition� The activator is a
predicate on the execution states of other tasks� The start condition can access the blackboard as
well as the output data of sibling tasks� Note that only tasks within the same process are visible to
the guard� This guarantees e�cient evaluation of guards and is an important di�erence with active
database systems� where all events are visible to all rules� The InBox and OutBox components of a task
interface represent its input and output data structures� Data �ow between tasks is possible by copying
data between out� and in�boxes and the blackboard� While the incorporation of exception handling
into a text�based language like OCR is straightforward� the integration into a graphical language like
OGWL is not� We will focus on graphical representations in the remainder of this section�

��� Exceptions

Synchronous exceptions are represented like ordinary activities� They have input and output containers
and a unique name which allows to distinguish di�erent exceptions� Each exception has an associated
exception category� which can be used to restrict the behavior of the exception handler� Three exception
categories are de�ned in Opera�

� Signal� Allows the handler to either abort or resume the signaler after processing the exception�
The decision will depend on the handler�s ability to deal with the exception�

� Escape� Requires to abort the signaler� This will be used for exceptions that do not allow
resuming execution�

� Notify� Disallows an abort� This forces the handler to return control to the signaler� an option
especially useful when humans are involved in the process�

The same data �ow mechanism used for normal activities is used to handle the data �ow during
exception handling� Since an exception has data containers� when the exception occurs� its input
container is used to pass information to the handler� Similarly� the handler has the possibility to
return data to the signaler using the output container of the exception�

Asynchronous exceptions are similar to synchronous exceptions except for the fact that they do
not take part on the normal control �ow� They are only invoked when exceptions occur� Conceptually�
they could be seen as activities to which all other activities are connected through a control connector

��

that gets activated when the exception occurs� The advantage is that now this control �ow towards
the exception is implicit and the work�ow designer does not need to construct it explicitly� Note that
in current systems the only way to achieve similar functionality is to actually treat the exception as
an activity and add control connectors between all activities that could possibly raise the exception
and the exception activity� The same would need to be done with the data connectors� Many actual
implementations actually resort to this very inelegant� very ine�cient solution to be able to provide a
minimal failure handling capability�

��� Exception handlers

Exception handlers can contain arbitrary activities� blocks� or subprocesses� In addition� the language
provides special constructs that are useful for e�ective reaction to failures�

Each possible exception a task may signal has a corresponding default handler� which is either
system�provided or de�ned when the task was registered� The system default handler matches every
exception without speci�ed handler� aborts the signaler and then propagates an exception to the caller�
A process designer can� however� provide user�level default handlers where this is appropriate� For
each task integrated into a process� the designer can provide override handlers for those exceptions
where the default behavior needs to be modi�ed� The advantage of this approach is that it facilitates
modular design� Reusing components becomes easier since they will either cope with any possible
exception themselves or will pass the exception up to the caller� This is a signi�cant advantage over
existing systems in which exception handling is entirely hard�wired and needs to be modi�ed every
time a process is used in a di�erent context� By combining default and override handlers� the designer
can let the system take care of exceptions and specialize the behavior when necessary�

Proxy Activity

Terminator

E_FAILED
P1

Activity2

Activity3

Activity1

P2

RESUME

ABORT

Figure �� An exception handler

An example for the OGWL representation of an exception handler is given in �gure �� The entry
point to a handler process is always a so�called proxy activity that can be seen as a placeholder for
the exception that occurred� The output container of the proxy contains the data that have been
passed by the signaler together with the exception� This makes the case�dependent data accessible
inside the handler� In our example� two predicates� P� and P�� are de�ned on these data� This allows
to take di�erent execution paths depending on the information provided by the signaler� Terminator
proxies de�ne the endpoints of a handler� They determine how the control �ow has to proceed after
termination of the handler� Di�erent types of terminators can be used depending on whether the
signaler has to be aborted or resumed and whether an exception is to be propagated�

In addition to the functionality provided in ordinary processes� Opera provides special constructs
that can only be used in exception handlers� They are syntactical shortcuts that facilitate the conve�
nient speci�cation of recovery�related tasks�

� Retry� If recovery requires to retry the execution of the task that caused an exception� retry
proxies are introduced� They refer to the task that raised the exception currently handled and
can be marked with a time interval to specify a delay before the re�execution is to be scheduled�
Since this mechanism could lead to an inde�nite number of recursive invocations� the following

��

semantics are de�ned for the retry mechanism� If during the retrial of T the same exception
is raised again� the system does not call the exception handler again� Instead� the control �ow
returns to the �rst invocation of the exception handler� Note that repeated invocations of T are
still possible with this rule� but need to be explicitly speci�ed in the exception handler�

� Human interaction� Due to the complexity of work�ow processes and the rules that determine
their behavior� it may not be possible to determine the strategy to follow with exceptions at
the time the process is de�ned� In these cases� human intervention is necessary� We provide
a special noti�cator proxy that allows to transfer control to a user responsible for dealing with
the exception� Most work�ow management systems provide a sta� modeling component that
allows the �exible assignment of users to activities� usually through a role concept �Bus���� The
same mechanism is used to assign humans to exception handling tasks� This means that each
noti�cator has an associated role that determines who has to be noti�ed� Noti�cators have input
and output containers that allow to pass information concerning the failure to the users and are
used to send information back to the handler once the failure has been resolved�

� Discussion

The language extensions in Opera allow the elegant speci�cation of fault�tolerant work�ow processes�
These extensions are not present in other work�ow systems but their functionality� if not their syntax�
will have to be included in future systems if they are to provide enough functionality to allow the
development of distributed applications� The language extensions� along with the corresponding system
support� will result in cleaner process speci�cations and less overhead when designing fault�tolerant
work�ow processes� Regarding the system support� much of the implementation details can be directly
derived from the descriptions above as the new primitives are to be treated as standard constructs
and will not require signi�cant changes to the engine 	for instance� an exception can be treated as an
activity which is triggered when another activity raises an exception� This involves minimal changes
to the control �ow logic
�

To illustrate the advantages of the approach� a speci�cation of the introductory example 	Figure
�
 using the new primitives is given in Figures � and ��� The left hand side of Figure � shows the
graphical representation in OGWL� the right hand side displays the control �ow for the case that the
car rental activity fails� and �gure �� shows the textual representation in OCR� 	Remember that the
OCR representation is compiled from the OGWL speci�cation� hence a process designer does not write
OCR code but uses a graphical design tool that hides much of the OCR syntax�

The process description has been decomposed into a process 	Travel
� shown in the center of the
graphical process representation� and three exception handlers� Note that the process itself contains
only the business logic� plus a sphere 	Transport
 that indicates that �ight booking and car renting
are regarded as atomic with respect to failures� The graphical representation shows the elegance of
the proposed approach� especially if compared with the process in Figure �� which is the only possible
way to cope with exceptions in most current systems� Furthermore� modifying the process becomes
straightforward� Consider the addition of another task in the booking process 	e�g�� reserving theater
tickets
� While in the conventional design this would require embedding several new nodes and arcs
to the graph to avoid violating the failure semantics� in Opera only one new task has to be added
to the process description� since all recovery�related steps are taken care of by the system� Thus the
Opera approach to exception handling guarantees reusability of process descriptions� since existing
speci�cations can easily be used as a basis for new processes� Moreover� reusability of tasks is improved�
since the exception mechanism can be seen as a form of parameterization of activities and processes
allowing to use a once�declared task in a large number of contexts� Consider the BookFlight program
as it is shown in Figure ��� It has the required seat category as a parameter and raises the exception
NO SEAT IN CATEGORY if the �ight has free seats� but none in the requested category� Assume
that the default exception handler for this exception aborts the program and propagates an exception�

��

TASK_FAILED

EH2 (Exception handler associated with the Sphere)

EH1 (Exception handler associated with the Process)

Reserve Train

A4

TASK_FAILED

P1

NO_ROOM Hotel 2

EH3 (Exception handler associated with Activity A3)

P2 Resume

Abort

NOTIFY
Initiator

Book Flight Rent Car Hotel 1

A1 A3A2

Transport (Sphere)
Travel (Process)

EH2

A4

Transport

A2

Travel

A3

A1

Comp(A1)

Signal Exception

Propagate

Invoke Contingency Task

Invoke Compensating
Operation

Abort Sphere

Invoke A3

Start Sphere

Figure
� The travel example modeled with the new primitives and the control �ow when handling a failure of activity
A�

While this is the appropriate behavior in many cases� it is possible to change it by providing an override
exception handler that resumes the execution of the program� allowing it to reserve a seat in another
category than originally requested� Hence the criteria of reusability and �exibility are met by the
approach�

The NO ROOM exception is registered with the system� which ensures that its parameters are
known to all processes and exception handlers� Note that the exception TASK FAILED does not have
to be declared� since it is a system default exception� All activities have associated default exception
handlers that propagate this exception� The sphere has an associated override handler 	EH�
 that
catches the propagated exception� If either A� or A� fail� this handler gains control and calls the train
reservation task 	A�
 while the sphere is aborted� and the backout mechanism cancels reservations
already made 	the sphere�s backout mode is declared as Single Step
� Should the train reservation fail
as well� its exception is propagated automatically to the process itself 	remember that we do not allow
recursive handler calls
� This activates the process�s handler� which noti�es the process�s invocator�
This person has the possibility to either abort the whole process or to perform appropriate actions
	for example� organize a travel by private car
 and resume execution� If the execution is resumed� the
process continues with the hotel reservation� This activity has an associated exception handler 	EH�

that invokes the reservation of another hotel if no rooms are available� If this activity fails� too� an
exception is propagated to the process and its handler gets control again� informing the invoker of the
process�

As an illustration of the forward and backward navigation performed by the system if a failure
occurs� the right hand side of Figure � shows the control �ow if activity A� 	RentCar
 fails� First�
the default handler for A� is invoked� which propagates the standard exception TASK FAILED to
the next higher level� which in this case is the sphere S� This leads to the invocation of EH�� an
exception handler associated with the Transport sphere � which calls activity A� 	ReserveTrain
 in
order to handle the exception� After the completion of A� the sphere is aborted 	because of the single
step backout method the system automatically calls the compensating operation for A�� canceling the
�ight
� and operation continues with P�s next regular operation A�� This example shows how� based
on the failure semantics speci�ed through spheres� exceptions and exception handlers� �exible recovery
is enforced�

In the OCR representation in Figure ��� all exception handling related parts have been marked
through boldface typing� The program declarations in the top region contain the declaration of their
transactional properties� a reference to a compensating process 	if it exists
� and a declaration of the

��

Registration of Exceptions and Exception handlers (Compiled from graphical representation):

 A1: ACTIVITY BookFlight (Begin, ’Zurich’, City, ’Any’);

ACTIVATOR: finished (A1);

 COMPONENTS:

BLOCK Transport

 A2: ACTIVITY RentCar (City, Begin, End);

ACTIVATOR: finished(N);

 OUTPUT: Continue: Boolean;
 ACTIVATOR: TF;
 N: NOTIFY (INITIATOR),

 COMPONENTS:
 INPUT:Start, End, City: String;
EXCEPTION HANDLER EH1

 A4: ACTIVITY ReserveTrain (Destination, Time),

 COMPONENTS:
INPUT: Begin,End,Destination: String;

EXCEPTION HANDLER EH2

 ACTIVATOR: TF;

 CONDITION: (TF.Continue = TRUE);

 CONDITION (TF.Continue = TRUE);

 ACTIVATOR: finished(N),

Program registrations (User provided):

NR.End),

 COMPONENTS:

 A5: ACTIVITY BookHotel (NR.City,’Central’,NR.Begin,

 ACTIVATOR: NR;

EXCEPTION HANDLER EH3

Process representation (Compiled from graphical specification [Fig. 10]):

 PROPERTIES: COMPENSATABLE;

 INPUT: DepTime, DepCity, ArrCity, Category : String;
 OUTPUT: BookingCode: String;

 PROPERTIES: COMPENSATABLE;
 COMPENSATING: CancelHotel (BookingCode);

PROGRAM BookFlight

 PROPERTIES: COMPENSATABLE;

 COMPENSATING: CancelFlight (BookingCode);

 EXCEPTIONS: NO_CAR;

 PROPERTIES: COMPENSATABLE;
 COMPENSATING: CancelTrain (BookingCode);
 EXCEPTIONS: NO_SEAT;

 INPUT: City,Begin,End: String

 EXCEPTIONS: NO_SEAT, NO_SEAT_IN_CATEGORY;

 INVOCATION: ...

EXCEPTION NO_ROOM

 OUTPUT: Success: Boolean;

 COMPONENTS:
 Transport: BLOCK;

 INVOCATION: ...
 SUBSYSTEM: ...

 OUTPUT: BookingCode: String;

 INPUT: Begin, End, City: String;

 INPUT: DepTime, DepCity, ArrCity: String;
PROGRAM ReserveTrain

 A3: ACTIVITY BookHotel (City, ’Hilton’, Begin, End),
ACTIVATOR: finished(Transport),

 BACKOUT: SINGLE;

HANDLERS: EH3 HANDLES NO_ROOM;
HANDLERS: EH1(Begin, End, City)

HANDLES TASK_FAILED;

 PROPERTIES: ATOMIC;
 BACKOUT: SINGLE;

 HANDLERS:
 EH2(Begin,End,City) HANDLES TASK_FAILED;

 NR: PROXY NO_ROOM;

 SUBSYSTEM: ...

 OUTPUT: BookingCode: String;

PROGRAM RentCar

 INPUT: City, Hotel, Begin, End: String

 INPUT: City, Begin, End: String;

TF: PROXY TASK_FAILED;

 INVOCATION: ...
 SUBSYSTEM: ...

 OUTPUT: BookingCode: String;

PROGRAM BookHotel

 INVOCATION: ...

 OUTPUT: Void

 SUBSYSTEM: ...

PROCESS Travel

 EXCEPTIONS: NO_SEAT

 COMPENSATING: CancelCar (BookingCode);

 TF: PROXY TASK_FAILED;

 T1: TERMINATOR ABORT,

 T2: TERMINATOR RESUME,

Figure ��� OCR representation of example work�ow

�

exceptions they may raise� Exceptions themselves and their exception handlers are declared in the
middle region� Note that the structure of an exception handler is similar to the structure of an ordinary
process 	e�g� the Travel process in the bottom region
� with the di�erence that the handler contains a
proxy activity that represents the exception to be handled� Due to space limitations� the descriptions
of the compensating tasks 	they are programs in this example� but they could be processes of arbitrary
complexity
 as well as the speci�cations of subsystems and external references are not included in the
�gure�

To summarize� the extensions presented meet important criteria for a �exible process exception
mechanism�

� Support for �exible recovery strategies� Processes and spheres provide natural boundaries for
partial backward recovery� Semantic recovery mechanisms like compensation and holistic back�
out ensure the necessary �exibility of backward navigation� while exception handlers guarantee
forward progress�

� Reusability� It has been shown in the example that the proposed primitives improve the reusabil�
ity of process descriptions 	because of the separation of business logic and failure handling se�
mantics
 as well as the reusability of tasks in di�erent contexts 	because of the parameterization
realized through override handlers
� This is a signi�cant advantage over what is possible in cur�
rent systems� Furthermore� failure handling strategies can be re�used since exception handlers
are registered with the system and can thus be applied in various processes� As a result� it
is possible to reuse de�ned processes and activities without further modi�cation and without
having to redo the exception handling procedures entirely�

� Openness� The mapping mechanisms we have described in Section
 allow the incorporation of
arbitrary applications� ranging from legacy applications over CORBA�like services to work�ow�
aware programs that can utilize the Opera API� Hence it is possible to achieve a seamless inte�
gration of external applications and environments with the fault tolerance mechanisms present
in the system�

Finally� our model requires only minimal modi�cations to the representation of the business logic�
The above shows that it is only necessary to add spheres in order to specify atomicity� Since all other
recovery related information is described separately in the exception handlers� the process description
remains comprehensible�

� Related work

From a research point of view� the problem of work�ow recovery has recently been considered in
a number of projects� �Ley�
� introduces spheres of joint compensation in FlowMark� which are
sets activities that are to be jointly aborted if one component fails� Rollback is performed either
by compensating each step that succeeded so far or by executing a special higher�level compensating
activity� As initially proposed� spheres of joint compensation lead to very complex semantics� The most
interesting ideas from spheres of compensation are incorporated in the proposed concept in the from
of backout modes 	section �
� �EL��� give a general classi�cation of exceptions and describe recovery
facilities in WAMO� a research prototype� There� processes are treated as work�ow transactions� their
components as subtransactions that can either fail or succeed� If a vital subtask fails� its supertask
is aborted and compensated� This similar to the �exible transaction model �ELLR���� An advanced
approach for exception detection is used in the WIDE prototype�CGP����� Here ECA rules are
used for the speci�cation of exception conditions and their handling� This approach is similar to the
asynchronous exceptions provided in Opera� While it is very powerful� it does not take into account
nested process hierarchies and exceptions that are signaled by external applications�

��

Several research projects have focussed on the integration of databases and non�databases into
distributed computing environments� including work on extended transaction models 	ETM
 in dis�
tributed object management 	DOM
 �BOH���� GH��� GHM���� where a framework for �exible trans�
action structures in work�ows were developed� and the ConTracts project �WR���� which focussed
on long�running applications and provided relaxed atomicity based on compensation and forward re�
covery� Recently� the work on recovery in transactional work�ows has been extended in �CD��� and
�CD���� where recovery mechanisms have been developed for transactional work�ows that consist of
transaction hierarchies with arbitrary deep nesting�

In addition� a considerable amount of work towards �exible recovery has been done in the context of
advanced transaction models �BDS���� ELLR��� Elm��� GHM��� GS��� WS��� WR���� In particular�
�AKA���� describe mappings of advanced transaction models to work�ow description languages and
show how some of the concepts used in transaction management can be used in work�ow environments�
Our approach di�ers from this work mainly because of its strong focus on modeling language aspects
and because we do not assume a transactional environment�

Finally� the work on exception handling in programming languages �Par��� Goo�
� YB�
� vZBC���
Seb��� has provided the basics for our approach� While it provides constructs for the seamless inte�
gration of exception handling into work�ow descriptions� it lacks the consideration of practical aspects
that become important in work�ow systems such as the participation of autonomous� heterogeneous
legacy systems and the strong impact of human intervention�

� Conclusions

We have presented an extension for work�ow speci�cation languages that allows the �exible handling of
exceptional situations that occur during the execution of processes� While the concepts were presented
in the context of a speci�c system� they are generic enough to be applied to arbitrary process models�

The solution is based on exception handling concepts developed for programming languages coupled
with some ideas from the advanced transaction model domain such as atomicity and partial rollback�
The paper shows how these language extensions can be used to better describe work�ow processes
and exception handling logic as well as the support they provide in terms of forward and backward
navigation� transparency� reusability� �exibility and openness�

Process support systems are certainly gaining importance for mission�critical applications� In these
environments� �exible exception handling is a key aspect unfortunately not well supported by current
systems� The proposed primitives allow the transparent modeling of fault�tolerant processes and could
be a fundamental building block in future systems�

References

�AH��� G� Alonso and C� Hagen� Geo�opera� Work�ow concepts for spatial processes� In SSD �
�
�����

�AHST��a� G� Alonso� C� Hagen� H��J� Schek� and M� Tresch� Distributed processing over stand�alone
systems and applications� In ��rd International Conference on Very Large Databases
�VLDB ��
�� Athens� Greece� �����

�AHST��b� G� Alonso� C� Hagen� H��J� Schek� and M� Tresch� Towards a platform for distributed
application development� In A� Dogac� L� Kalinichenko� T� Ozsu� and A� Sheth� editors�
���
 NATO Advance Studies Institute �ASI�� Istanbul� Turkey�� August �����

�AKA���� G� Alonso� M� Kamath� D� Agrawal� A� El Abbadi� R� G�unth�or� and C� Mohan� Advanced
transaction models in work�ow contexts� In Proc� Intl� Conf� on Data Engineering� New
Orleans� February �����

��

�AM��� G� Alonso and C� Mohan� Work�ow management� the next generation of distributed
processing tools� In Sushil Jajodia and Larry Kerschberg� editors� Advanced Transaction
Models and Architectures� Kluwer Academic Publishers� �����

�AS��� G� Alonso and H��J� Schek� Research issues in large work�ow management systems� In
Sheth �She���� pages ��������

�BDS���� Y� Breitbart� A� Deacon� H��J� Schek� A� Sheth� and G� Weikum� Merging application�
centric and data�centric approaches to support transaction�oriented multi�system work�
�ows� ACM SIGMOD Record� ��	�
� September �����

�BOH���� A� Buchmann� M� Oszu� M� Hornick� D� Georgakopoulos� and F�A� Manola� A trans�
action model for active distributed object systems� In A� Elmagarmid� editor� Database
Transaction Models for Advanced Applications� pages �����
�� Morgan�Kaufmann� �����

�Bus��� C� Bussler� Policy resolution in Work�ow Management Systems� Digital Technical Journal�
�	�
������� �����

�CD��� Q� Chen and U� Dayal� A transactional nested process management system� In Proc� of
the ��th International Conference on Data Engineering �ICDE ��	�� �����

�CD��� Q� Chen and U� Dayal� Failure handling for transaction hierarchies� In Proc� of ��th
International Conference on Data Engineering �ICDE ��
�� �����

�CGP���� F� Casati� P� Grefen� B� Pernici� G� Pozzi� and G� Sanchez� WIDE work�ow model and
architecture� Technical report� University of Twente� �����

�Cus��� H� Custer� Inside Windows NT� Microsoft Press� �����

�EL��� J� Eder and W� Liebhart� Work�ow recovery� In First IFCIS Intl� Conf� on Cooperative
Information Systems �CoopIS��	�� IEEE Computer Society Press� June �����

�ELLR��� A�K� Elmagarmid� Y� Leu� W� Litwin� and M� Rusinkiewicz� A multidatabase transaction
model for interbase� In Proc� of the Intl� Conf� on Very Large Data Bases� pages
���
���
Brisbane� Australia� �����

�Elm��� A� Elmagarmid� Transaction Models for Advanced Database Applications� Morgan�
Kaufmann� �����

�Fla��� D� Flanagan� Java in a Nutshell� O�Reilly � Associates� �����

�GH��� D� Georgakopoulos and M�F� Hornick� A framework for enforcable speci�cation of ex�
tended transaction models and transactional work�ows� Intl� Journal of Intelligent and
Cooperative Information Systems� September �����

�GHM��� D� Georgakopoulos� M�F� Hornick� and F� Manola� Customizing transaction models and
mechanisms in a programmable environment supporting reliable work�ow automation�
IEEE Transactions on Knowledge and Data Engineering� �����

�GHS�
� D� Georgakopoulos� M� Hornick� and A� Sheth� An Overview of Work�ow Management�
From Process Modeling to Work�ow Automation Infrastructure� Distributed and Parallel
Databases� �	�
������
�� ���
�

�Goo�
� J�B� Goodenough� Exception handling� Issues and a proposed notation� Communications
of the ACM� ��	��
�������
� December ���
�

�GS��� H� Garcia�Molina and K� Salem� Sagas� In Proc� ACM SIGMOD� �����

��

�Hol��� D� Hollinsworth� The work�ow reference model� Technical Report TC���
����� Work�ow Management Coalition� December ����� Accessible via�
http���www�aiai�ed�ac�uk�WfMC��

�Hsu��� M� Hsu� editor� Bulletin of the IEEE Technical Committee on Data Engineering� Special
Issue on Work�ow and Extended Transaction Systems� IEEE Computing Society� June
�����

�Hsu�
� M� Hsu� editor� Bulletin of the IEEE Technical Comittee on Data Engineering� Special
Issue on Work�ow Systems� IEEE Computer Society� March ���
�

�JB��� S� Jablonski and C� Bussler� Work�ow Management� International Thomson Computer
Press� �����

�KR��� M� Kamath and K� Ramamritham� Bridging the gap between transaction management
and work�ow management� In Sheth �She����

�LA��� F� Leymann and W� Altenhuber� Managing business processes as an information resource�
IBM Systems Journal� ��	�
��������� �����

�Ley�
� F� Leymann� Supporting Business Transactions via Partial Backward Recovery in Work�
�ow Management Systems� In Datenbanksysteme in B�uro� Technik und Wissenschaft�
pages
����� ���
�

�Mos�
� J�B�E� Moss� Nested Transactions� An Approach to Reliable Distributed Computing� MIT
Press� Cambridge� Mass�� ���
�

�Obj��� Object Management Group� The Common Object Request Broker� Architecture and Spec�
i�cation �CORBA�� John Wiley and Sons� �����

�Par��� D�L� Parnas� Response to detected errors in well�structured programs� Technical report�
Computer Science Dept� Carnegie�Mellon Univ�� �����

�Pau��� L� C� Paulson� ML for the Working Programmer� Cambridge University Press� �����

�Seb��� R�W� Sebesta� Concepts of Programming Languages� Addison�Wesley� �rd edition� �����

�She��� A� Sheth� editor� Proceedings of the NSF Workshop on Work�ow and Process Automation
in Information Systems� Athens� Georgia� USA� May �����

�SJHB��� H� Schuster� S� Jablonski� P� Heinl� and C� Bussler� A general framework for the execu�
tion of heterogenous programs in work�ow management systems� In CoopIS Conference�
Brussels� Belgium� �����

�Ste��� G�L� Steele� Common Lisp� The Language� Digital Press� � edition� �����

�Str��� B� Stroustrup� The C�� Programming Language� Addison Wesley� � edition� �����

�vZBC��� P� van Zee� M� Burnett� and M� Chesire� Retire superman� Handling exceptions seamlessly
in a declarative visual programming language� In Proceedings of the IEEE Symposium on
Visual Languages� Boulder� Colorado� USA� September �����

�WC��� J� Widom and S� Ceri� Active Database Systems� Morgan Kaufmann Publishers� �����

�WfM��� Work�ow Management Coalition � Terminology and Glossary� Version ���� Available at
http���www�aiai�ed�ac�uk�WfMC� June �����

��

�WR��� H� Waechter and A� Reuter� The ConTract model� In A� Elmagarmid� editor� Transaction
Models for Advanced Database Applications� chapter �� pages �������� Morgan�Kaufmann
Publ�� �����

�WS��� G� Weikum and H�J� Schek� Concepts and applications of multilevel transactions and
open nested transactions� In A�K� Elmagarmid� editor� Database Transaction Models for
Advanced Applications� chapter ��� Morgan Kau�man� San Mateo� CA� �����

�YB�
� S� Yemini and D�M� Berry� A modular veri�able exception�handling mechanism� ACM
Transactions on Programming Languages and Systems� �	�
��������� April ���
�

�ZNBB��� A� Zhang� M� Nodine� B� Bhargava� and O� Bukhres� Ensuring relaxed atomicity for
�exible transactions in multidatabase systems� In Proc� ACM SIGMOD� pages ������
�����

��

