
Eidgenössische Departement Informatik
Technische Hochschule Institut für
Zürich Computersysteme

Michael Franz Protocol Extension:
A Technique for Structuring
Large Extensible Software-
Systems

December 1994

226



1

Protocol Extension: A Technique for
Structuring Large Extensible Software_Systems

Michael Franz
Institut für Computersysteme, ETH Zürich, CH_8092 Zürich, Switzerland

Abstract
A technique is described by which dynamically_loadable modules may add methods to existing classes at

run_time. This leads to increased flexibility for structuring large extensible software_systems. Through the use

of a doubly_indirect dispatch scheme, efficient method activation can be provided without the need to

enumerate the set of methods applicable to a particular class at compile time. As a consequence,

separately_compiled client modules are not invalidated when methods are added to an imported class. This

reduces the number of recompilations and increases development efficiency. The new mechanism has been

incorporated into a variant of the Oberon System. The paper proposes a set of syntactic extensions to the

Oberon language and discusses implementation options.

Key Words
Software Engineering, Extensible Programming, Programming Language Design, Dynamic Binding, Oberon,

Protocol Extension.

1. Introduction

One of the key concepts of object_oriented programming is dynamic binding. The term refers to the

situation in which the destination address of a procedure call is resolved only at run_time, thereby

concealing the exact identity of the callee from the caller. For example, when a message is sent to

an object in an object_oriented programming language such as Smalltalk [GR83], the specific effect

of the message_send (which is in fact a dynamically_bound procedure call) depends on the type of

the receiver object. Hence, sending the same message to different objects may result in the

activation of different procedures.

In the current euphoria about object_oriented technologies, it is often forgotten that dynamic

binding is not restricted to languages that offer explicit classes and inheritance. The same effect of

indirect procedure activation can also be achieved by way of procedure variables. In fact, there are

many problems that can be solved elegantly in an object_oriented fashion, but without the use of

an object_oriented language.

For example, consider a graphics editor that is able to draw several different kinds of graphical

objects, such as circles, rectangles, triangles, etc. Using the programming language Modula_2

[Wir82], which is not usually considered to be object_oriented, this editor could still be

programmed in an object_oriented manner by modelling objects as variant records and methods as

procedure variables within individual objects. Each object might have a "method_variable" (record

field) Draw for displaying it on the screen, but an object describing a circle would contain a

reference to a different Draw procedure than an object describing a rectangle. To display such



2

objects, one need only call their Draw routines, without having to distinguish between different

object_kinds. In this "manual" approach to object_orientation, it is the programmer's responsibility

to ensure that the "method_variables" are initialized properly.

The programming language Oberon [Wir88a] is a direct descendant of Modula_2, and

"somewhat more object_oriented" than its predecessor, as it provides data polymorphism by way of

type extension [Wir88b]. However, Oberon has no explicit class construct as found in "pure"

object_oriented languages. Hence, just as in Modula_2, dynamic binding in Oberon needs to be

realized "manually" by the programmer through the use of procedure variables. Unlike Modula_2,

Oberon supports extensibility. Whereas objects in Modula_2 need to be modelled by variant

records, in which the number of variants cannot be modified without changing the source

program and recompiling, Oberon's concept of type extension allows further variants to be added

in external modules at some later date. This is useful particularly in conjunction with dynamic

module loading and unloading, an integral feature of the environment [WG89] in which Oberon

evolved.

Dynamic loading allows to add further modules to a running program at any time. It is the key

to the unlimited extensibility of Oberon_based systems. While type extension allows to provide

more powerful variants of existing object_categories in external modules, dynamic loading makes it

possible to put these variants into active use from an existing base_system. Hence, programming in

Oberon leads to a new approach of system design, which might be characterized by the term

stepwise extension.

The aforementioned graphics editor would be programmed in Oberon in such a way that it

could be extended by further object categories at run_time. Wirth and Gutknecht [WG92] describe

such an editor in detail. The structure of their graphics editor is shown in Figure 1. It places the

individual object categories in separate modules that are higher up in the module hierarchy than

the editor itself. The editor doesn't "know" what objects it is displaying, but handles them

abstractly. In this model, further object_handling modules can be programmed without affecting

any of the existing modules, and can then be linked into a running editing session as required by

the user. At any particular moment during such a session, only those modules need to be loaded

that are required for handling the objects currently on the screen.

operating on abstract objects

Graphics Editor

of further modules

arbitrary number

:::::

LinesCirclesRectangles

: :

Figure 1: Structure of an Extensible Graphics Editor.



3

The above is by no means an exotic example. In the world of Oberon, most extensible software

packages are structured in a similar manner and rely on a combination of dynamic loading and

dynamic binding. The former allows to add functionality to a basic application at run_time, while

the latter enables the construction of an extensible base_system without having to anticipate all

possible extensions beforehand.

This paper proposes a new language construct that ties dynamic binding even more intimately

to dynamic loading, bringing Oberon closer to programming languages that offer class_based

inheritance [GR83, Str87, CDG89], but with fewer limitations. In analogy to the term type

extension, the new technique has been named protocol extension.

2. Protocols

Oberon supports an instance_centered style of object_oriented programming in which dynamic

binding is achieved under the explicit control of the programmer through the use of procedure

variables that are installed within individual objects. This is in contrast to the "mainstream" of

object_oriented programming languages, in which messages are bound to procedure constants that

apply simultaneously to all objects of a certain class. As Wirth [Wir89] points out, Oberon's

solution can be regarded either as a burden (and a source of mistakes) or as an additional degree

of freedom (and power).

The set of methods provided by objects of a particular class is sometimes called its protocol. In

environments that are based on interpreted execution, such as the one in which the language

Smalltalk evolved [Gol84], programmers are free to change class protocols at will, i.e. add and

remove methods, or alter their signatures. Unfortunately, this is no longer possible when such

languages need to be compiled efficiently. Efficient implementation of class_based inheritance is

usually achieved by way of method tables, into which method numbers serve as indices. This

technique requires a unique numbering of methods within each type hierarchy, and the static

correspondence of method numbers to method names makes changes in class protocols rather

awkward.

For example, adding methods to an existing class K requires the renumbering of methods not

only in K itself, but also in all of its subclasses and wherever any of these methods is invoked,

meaning that all direct and indirect clients of K need to be recompiled. Such recompilations can

cause major disruptions in large systems. In fact, the widespread preference of interpreters over

compilers for prototyping applications may be attributed exactly to the fact that protocol changes

are common during experimentation with a prototype, but recompilations costly [WCW90].

Moreover, such recompilations may not even be immediately possible. For example, assume

that we are working in an object_oriented environment that provides a number of classes for

displaying graphics on the screen. Now imagine that new output devices have just been added to

the system and we would like to experiment with two new methods Print and Plot that might

eventually be added to the existing graphics classes. However, we probably cannot simply add

methods to the root class of the graphics subsystem, because several existing application packages

maintained by others would be invalidated by this step. The traditional solution in these cases is to

create a parallel class hierarchy for the duration of the experiment, starting at the base class in

question and re_implementing all classes derived from it.



4

The remainder of this paper describes a new dynamic_binding mechanism, by which class

protocols can be augmented in external modules without affecting any existing clients. The

additions become active when the module containing them is loaded dynamically, and they can be

undone by unloading the module again, just like other kinds of extensions in the original Oberon

system. During experimentation with a prototype it is therefore possible to dynamically change the

behaviour of a live object configuration. The flexibility thereby gained is similar to that of

interpreted systems, but with the efficiency of compiled code.

3. Protocol Extension

Protocol extension is based on two ideas. The first of these is to separate the method abstraction

from both the class to which it applies (or rather, the data type, since there are no explicit classes in

Oberon, upon which this work is based), and from the procedures that are executed upon method

invocation. In the following, these stand_alone method_designators will be referred to as messages,

indicating that they can be sent to objects even in the absence of a corresponding implementation,

although this may not be very sensible. (Note, however, that in the Oberon System [WG89] it is

very common to send messages to objects that don't understand them, in which case they are

simply ignored.)

The second idea of protocol extension is to utilize dynamic loading and unloading of modules for

changing protocols at run_time, delegating the assignment of method_table slots to the linking

loader. This is a natural evolution of the dynamic_extension mechanism already present in the

Oberon System, which allows to change the set of available Commands under user (or program)

control by loading and unloading modules dynamically.

Below, the individual elements of the protocol extension mechanism are introduced, and,

informally by way of examples, a corresponding notation for the programming language Oberon

that extends the present language definition [Wir88a] without affecting any existing syntax.

3.1. Messages

A message is a named entity that abstractly describes the behaviour of an object and the minimal

type requirements that an object must fulfil so that the message is applicable to it. It is represented

by a triplet consisting of the message name, the message base type and a list of message parameters. A

message is said to be based on its message base type, which must be a record (or pointer to record),

and may only be applied to objects of this type or extensions thereof. A compiler can determine

whether these requirements are met.

Messages belong to the scope of the declaring module and may be exported by it. If a message

is exported, then all conforming implementations (see section 3.2) should be exported by their

respective modules as well. This facilitates the static detection, solely from interface definitions, of

implementation inconsistencies that might occur when a message is implemented more than once

for the same type in any desired module configuration.



5

Example: The following module

MODULE DisplayOps;
IMPORT Display;
MESSAGE Display.Object!Draw(scale: INTEGER);

END DisplayOps.

introduces a message DisplayOps.Draw based on the type Object imported from module Display.

Note that it is entirely possible to declare further messages based on Display.Object in other

modules, and that these may also be called Draw.

3.2. Message Implementations

A message implementation describes the actions that are performed when the associated message is

received by an object of a certain type. Unlike methods in traditional class_centered models,

however, message implementations are not required to lie in the same scope as the message

definition. The dynamic binding of messages to appropriate message implementations is not

governed by scoping rules that statically link a receiver's type with a specific method

implementation, but is controlled by the run_time presence of modules that contain message

implementations for selected types.

Message implementations are discriminated by type qualifiers that describe the data type for

which each particular implementation of a message is valid. They need to conform to the message

they implement. A message implementation is said to conform to a message if its name and

parameter list (i.e., its signature) are identical to that of the message, and if its type qualifier is equal

to or an extension of the message base type. A message that has no conforming implementation

for type T is called weak in T. The opposite is called strong.

Example: In a module that imports both Display and DisplayOps, the declaration

PROCEDURE (self: Display.Object)!DisplayOps.Draw(scale: INTEGER);
BEGIN ...
END Draw;

defines a procedure that implements the message Draw defined in module DisplayOps for objects of

type Display.Object. The type qualifier directly following the PROCEDURE reserved word

distinguishes a message implementation syntactically from an ordinary procedure declaration. It

also defines a local name for the self_parameter that is passed implicitly to the procedure upon

activation.

3.3. Message Designators

Messages are activated by the use of a message designator. Activating a message implies the dynamic

binding of the abstract message to a concrete implementation based on the run_time type of the



6

distinguished receiver argument. Activating a message for a receiver of type T in which the message

is weak leads to the execution of the implementation that belongs to the largest base type of T in

which the message is strong (i.e. the implementation is inherited from the corresponding base

type). If the message has not been implemented for any base type of T, a run_time error is

generated (this corresponds to the call of an abstract method in other programming languages).

A message M that is weak in a type T can be made strong by dynamically loading a module that

implements M for T. Loading a module containing a message implementation that is already

strong in the system is considered a load error, analogous to a module key mismatch in systems that

support dynamic module loading. Unloading a module weakens all message implementations

originating in that module.

Example: Sending the message DisplayOps.Draw(100) to a variable grafobj of static type

Display.Object (or an extension thereof) is expressed by

grafobj!DisplayOps.Draw(100)

Message designators are distinguished by an exclamation mark following a record or

pointer_to_record designator. The variable designator in front of the exclamation mark fulfills a dual

role. It is used to select the actual procedure that implements the message for the dynamic type of

the designated variable, and it also designates the self_parameter that is passed to that procedure.

(The use of exclamation marks in the notation was inspired by Hoare [Hoa78].)

3.4. Reflection

Message designators may also be used in relational expressions. Two message designators may be

compared with each other, implying a test whether the corresponding messages are implemented

by the same procedure at that moment. They may also be compared to NIL, which represents an

abstract message for which no implementation exists at all in the system.

Example: Suppose that the run_time type of grafobj is unknown and that the message

DisplayOps.Draw has no default implementation (a default implementation denotes an

implementation that is guaranteed to be strong for the message base type, for example because it

is implemented in the module containing the message declaration). By the test

grafobj!DisplayOps.Draw # NIL

one can determine at run_time whether an implementation of DisplayOps.Draw is currently defined

for the run_time type of grafobj.



7

3.5. Superclass Delegation

The implementation of a message M for a type T may delegate control to the implementation of

the same message for T's direct base type BT. The self_object passed to the base type's message

implementation retains its type identity and is not reduced to BT. This mechanism may be used

only within the implementation of a message, and only for activating the implementation of the

identical message for the direct base type. The restriction is necessary so that invariants guaranteed

by objects in "closed" modules cannot be circumvented.

Example: The following implementation of Init for type T activates another procedure that

currently implements Init for T's direct base type BT.

PROCEDURE (obj: T)!Init;
BEGIN obj!(BT)Init; ...
END Draw;

Syntactically, superclass calls are denoted by inserting the name of the supertype in parentheses

before the message name (this is the same syntax as for Oberon's type guards). Although the

compiler allows only the name of the receiving object's direct base type between the parentheses,

this syntax is useful as it reminds the programmer of the specific message implementation that is

called.

4. Implementation

This section presents a set of data structures and algorithms that can be used for implementing the

language constructs introduced above. A first implementation exists that is based on a version

[Fra93] of the Oberon system [WG89] for the Apple Macintosh [App85]. The algorithms used in

the existing prototype are more complex and less elegant than the one shown here, but have the

advantage of avoiding the use of recursion when message implementations are propagated

through a type hierarchy.

Before going any further, however, some additional terms need to be defined. In the following,

the term root type will denote any type that is not an extension of another type. A root type along

with all of its extensions (i.e., also the extensions of its direct extensions, etc.) is called a type family.

Note that each message affects exactly one type family, although not necessarily at its root type.

Moreover, the depth of a type hierarchy is measured by saying that the root type has extension level 0,

its direct extensions have extension level 1, and so on.

Now to the implementation. In the implemented system, objects contain an invisible type tag,

which is a pointer to a type descriptor characterizing the object's data type. Type descriptors have

the following basic internal structure:



8

TYPE
TypeTag = POINTER TO TypeDescr;
TypeDescr = RECORD

nofMsg: INTEGER; number of messages (used only in root types)
exts: TypeTag; list of types that are extensions of this one
link: TypeTag; siblings on the same extension level
base: ARRAY MaxLev OF TypeTag; table of base_type relationships
impl: ARRAY MaxMsg OF PROCEDURE table of procedures that implement messages

END;

The individual fields of this type descriptor have the following functions:

− The nofMsg field counts the number of messages that are currently in use in a type family.

One counter is used per type family and located in the descriptor of the family's root type.

− In the field exts, the descriptor for each type maintains a pointer to a linear list of type

descriptors relating to the type's extensions. The elements of this list are linked together (in

an undetermined order) via the link field.

− The table base describes base_type relationships, which are used for implementing type tests

in constant time as suggested by Cohen [Coh91]. The table contains references to the

ancestors of the described type T at different levels of the type extension hierarchy, i.e.

base[0] contains the tag of T's root type, base[1] contains the tag of the root type's direct

extension along the path to T, and base[extension level of T] contains the tag of T itself. All

other entries are set to NIL.

− The table impl stores the addresses of message_implementation procedures for the type in

question. Some of these implementations may be specific to this type and its descendants

(i.e., strong), others may have been inherited (weak inherited message), and some messages

may not have been implemented at all, in which case the table entry is equal to NIL (weak

abstract message).

Associated with each message in the module of its declaration is an invisible variable initialized by

the loader that identifies the message slot of the affected type family in which the addresses of the

corresponding message implementations are stored.

TYPE
Message = INTEGER;

Possible implementations of the functions that have to be performed in order to support protocol

extension are described below. No distinction is made between types and their associated type

descriptors, since the latter at run_time correspond to the former at the language level. Moreover,

the following abbreviations will be used to denote values that can be calculated statically for any

type T:



9

T.LEV the extension level of T (0 = root type, 1 = direct extension of root type, ...)

T.BASE the direct base type of T (corresponding to T.base[T.LEV−1] in the type descriptor)

T.ROOT the root type of T's type family (corresponding to T.base[0])

4.1. Finding a Message Implementation

Recall that a message represents an index into the slot table of the type family it is associated with,

and that every object obj contains an invisible tag that is a pointer to its type descriptor. The

message designator

obj!Mod.Msg

represents the address of the implementation of Mod.Msg that currently applies to the (run_time)

type of obj. Hence, it can be computed by evaluating

obj.tag↑.impl[Mod.Msg]

In comparison to message activation in traditional compiled class_based languages, the proposed

mechanism requires one further indirection, since the index of the applicable message slot cannot

be determined at compile time. However, due to cache effects, on modern processors, the cost of

this extra memory lookup should be negligible.

4.2. Initializing a Type Descriptor

Type descriptors are initialized when the module defining the corresponding types is loaded. Since

type_extension hierarchies contain no cycles, the compiler can prepare the list of type descriptors to

be initialized in such an order that base types appear always before their extensions. The

initialization procedure can then be described as follows:

PROCEDURE InitTypeDescr(T: TypeTag)
BEGIN

IF T.LEV = 0 THEN is it a root type?
T.link := NIL; root types have no siblings
T.base[1..MaxLev] := NIL; initialize base_type table
T.impl[0..MaxMsg] := NIL; invalidate all implementation slots
T.nofMsg := 0 set message counter of this family to zero

ELSE (* T.BASE has been inited already *)
T.link := T.BASE.exts; T.BASE.exts := T; insert at head of base_type's extension list
T.base := T.BASE.base; copy base_type table from direct base_type
T.impl := T.BASE.impl inherit all implementations from direct base_type

END;
T.exts := NIL; new types have no extensions yet
T.base[T.LEV] := T append own tag to copied base_type table

END InitTypeDescr;



10

4.3. Adding a Message by Dynamically Loading its Module

Messages are added to the system when a module Mod is loaded dynamically that contains

MESSAGE declarations. For each message Msg based on a type T, the loader has to perform the

following actions:

INC(T.ROOT.nofMsg); new message for this type family
Mod.Msg := T.ROOT.nofMsg assign slot number to message variable

Note that this assignment of message slots in strictly ascending order leads to "holes" in the

implementation table when modules containing messages are unloaded. When experimenting

with changing message protocols during prototyping, this may eventually lead to a state in which

no more messages can be added to the system although there are many unused message slots. In

practice, one therefore replaces the simple nofMsg counter by a message allocation map that keeps

track of the slots in use within each type family. A slot can then be re_used as soon as the message

previously associated with it is unloaded.

4.4. Adding and Removing Message Implementations

A module Mod may contain several implementations of messages Msg0, Msg1, ..., MsgN for types

T0, T1, ..., TM (M <= N). When such a module is loaded, the corresponding messages are

strengthened in their respective types. Consider the following auxiliary procedure:

PROCEDURE Bequeath(t: TypeTag; msg: Message; old, new: PROCEDURE);
VAR subt: TypeTag;

BEGIN
IF t.impl[msg] = old THEN

t.impl[msg] := new; change behaviour of message
subt := t.exts;
WHILE subt # NIL DO

Bequeath(subt, msg, old, new); propagate to all subtypes
subt := subt.link

END
END

END Bequeath;

The procedure Bequeath propagates an implementation change to a certain type and all of its

affected descendants. Descendants are affected only when their implementation of the message in

question is weak, i.e., identical to that of the direct base type. With the aid of Bequeath, the

following steps need to be taken for each newly added implementation proc of message msg based

on type t:



11

PROCEDURE AddMsgImpl(t: TypeTag; msg: Message; proc: PROCEDURE);
BEGIN

IF (t.impl[msg] = NIL) message currently not implemented
OR (t.impl[msg] = t.BASE.impl[msg]) message currently weak (inherited)

THEN Bequeath(t, msg, t.impl[msg], proc) propagate new implementation
ELSE LoadError() message already strong in this type
END

END AddMsgImpl;

If a module contains several implementations of the same message for different types, then the

order in which these are added is irrelevant. However, a clever compiler can reduce the workload

required for inheritance propagation at loading time by ordering the implementations by type in

descending order, largest type first.

When a module is unloaded, all message implementations originating in it must be weakened.

This is done by propagating the message implementation applying to the base type, or NIL if

dealing with the root type.

PROCEDURE RemoveMsgImpl(t: TypeTag; msg: Message);
BEGIN

IF t.LEV = 0 THEN
Bequeath(t, msg, t.impl[msg], NIL) make message abstract

ELSE
Bequeath(t, msg, t.impl[msg], t.BASE.impl[msg])

END
END RemoveMsgImpl;

Note that unloading a module creates the same dynamic message implementation context that

would have existed if that module had never been loaded at all.

5. Discussion

Protocol extension opens up novel ways of structuring large software_systems. Recall the example

of the graphics editor from the introduction. This had been partitioned in such a way that each

object category was implemented in a separate module. What if, however, these object_handling

modules themselves got unwieldily large? Protocol extension makes it possible to organize such

applications in a two_dimensional matrix, subdividing functionality not only by object category, but

also splitting up message protocols into several modules that can be loaded dynamically as

required.

As an illustration, study the module organization depicted in Figure 2. Now consider what

modules are required for printing a document containing only circles. Only four modules need to

be loaded for this task, namely the core of the graphics editor, and three extension modules: Circles

(defining the circle object_type), Printing (defining the printing_related message protocol), and

Printing Circles (implementing the messages of the latter for the former). Note that the

object_category modules (along the vertical axis in the diagram) and the message_category modules

(along the horizontal axis) are mutually disjoint, while each message_implementation module



12

imports one object_category module (the one to its left) and one message_category module (the

one below it).

Rectangles

:

>

Circles

Graphics

Editor
GUI Printing

object
categories

message
categories

Rectangles

Circles

Printing

Printing

Rectangles

Circles

GUI for

GUI for

...

...

additional

additional

Figure 2: Two_Dimensional Extensibility of a Graphics Editor.

Protocol extension enables the construction of conceptually very large systems that require a much

smaller memory space. But even for smaller systems, it might be sensible to place seldom_used

messages and their implementations in separate modules that are loaded dynamically on demand.

The module organization illustrated above also makes it easier to divide implementation work

among several programmers. A further advantage is the possibility to change the behaviour of

objects on_the_fly, specifically the facility to attach methods to a live data structure for debugging

purposes.

Protocol extension also overcomes an unnatural restriction of compilers for class_oriented

programming languages that penalizes the addition of functionality to existing classes. When they

are implemented using static compilation and table_based message dispatch, current languages

effectively force the designers of class hierarchies to anticipate all future uses of a class and create

abstract methods that may be overwritten by actual implementations later. This is a grave

constraint, considering that the process of software development is characterized by

experimentation. Systems that offer dynamic compilation [DS84, CUL89] have no such limitations,

but suffer from recompilation delays when class protocols are changed and provide less efficient

message invocation. The use of protocol extension with explicit messages eliminates both the need

for recompilations and the need for abstract methods, as messages may be added externally when

the need arises. Nevertheless, it is still possible to determine the protocol accepted by a certain

class in a specific module context by the help of appropriate browsing tools.

Lastly but just as importantly, protocol extension can be applied to static objects on the stack as

well as to dynamic objects in the heap, allowing to use the object metaphor even for transient

objects without sacrificing efficiency.



13

6. RelatedWork

In most object_oriented programming languages, classes are the primary construct while methods

are secondary and subordinate to them. A markedly different approach has been taken in the

Common Lisp Object System (CLOS) [DG87]. In CLOS, methods are grouped together not by the

classes to which they apply, but by the operations they perform. A group of methods that

implement a certain behaviour for different types of receiver is called a generic function. In order to

activate a desired behaviour, one invokes the corresponding generic function, which chooses one of

its constituent methods based on the types of the specified arguments.

The concept of protocol extension is able to partly duplicate the generic function metaphor, in

that it allows the construction of a module that adds a new method across an existing type

hierarchy, grouping all of the message implementations together. The generic functions of CLOS

are more general than that, as they support multiple inheritance and a type_dispatch mechanism

taking into account more than just one of the message's arguments. However, this generality also

implies that they cannot be implemented as efficiently as protocol extension.

The work of Harrison and Ossher [HO90] on subdivided procedures is also related to protocol

extension. Their system provides functional extension by the addition of alternate procedure bodies to

a procedure, which are selected based on criteria specified by the programmer. Protocol extension

can be viewed as a specialization of the subdivided procedure mechanism with regard to the

subdivision criterion (dispatch on type only), which can, however, be implemented more efficiently

and allows not only the addition of alternatives, but also their dynamic removal.

In the context of Oberon, the programming language Oberon_2 [MW91] needs to be

mentioned also. Oberon_2 is an extension of Oberon that offers type_bound procedures and a

type_dispatch mechanism resembling that of class_based programming languages. Hence,

Oberon_2 has the same static correspondence of method numbers to method names as

class_based languages, ruling out protocol_changes without the invalidation of clients.

Acknowledgement

The author is indebted to Ch. Denzler for his collaboration in implementing the prototype

described here. Many thanks also go to M. Brandis, R. Crelier, Th. Gross, J. Gutknecht, H. Mössen_

böck, M. Reiser, J. Templ, and N. Wirth for commenting on earlier drafts of this manuscript.

References

[App85] Apple Computer, Inc.; Inside Macintosh; Addison_Wesley; 1985ff.

[CDG89] L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow and G. Nelson. Modula_3

Report; Report #52, Systems Research Center, Digital Equipment Corporation, Palo

Alto; 1989.

[Coh91] N. H. Cohen; Type_Extension Type Tests Can Be Performed In Constant Time; ACM

TOPLAS, 13:4, 626−629; 1991.



14

[CUL89] C. Chambers, D. Ungar and E. Lee; An Efficient Implementation of SELF, a

Dynamically_Typed Object_Oriented Language Based on Prototypes; OOPSLA '89

Conference Proceedings, published as Sigplan Notices, 24:10, 49−70; 1989.

[DG87] L. G. DeMichiel and R. P. Gabriel; The Common Lisp Object System: An Overview; Proc.

ECOOP '87, published as Springer LNCS, 276, 151−170; 1987.

[DS84] L. P. Deutsch and A. M. Schiffmann; Efficient Implementation of the Smalltalk_80

System; Conf. Record 11th Annual ACM Symposium on Principles of Programming

Languages, Salt Lake City, Utah, 297−302; 1984.

[Fra93] M. Franz; Emulating an Operating System on Top of Another; Software−Practice and

Experience, 23:6, 677−692; 1993.

[Gol84] A. Goldberg; Smalltalk_80: The Interactive Programming Environment; Addison_Wesley;

1984.

[GR83] A. Goldberg and D. Robson; Smalltalk_80: The Language and its Implementation;

Addison_Wesley; 1983.

[HO90] W. Harrison and H. Ossher; Subdivided Procedures: A Language Extension Supporting

Extensible Programming; Proc. 1990 International Conf. on Computer Languages, IEEE

Computer Society Press, 190−197; 1990.

[Hoa78] C. A. R. Hoare; Communicating Sequential Processes; Communications of the ACM, 21:8,

666−677; 1978.

[Mey88] B. Meyer; Object_Oriented Software Construction; Prentice_Hall; 1988.

[MW91] H. Mössenböck and N. Wirth; The Programming Language Oberon_2; Structured

Programming, 12:4, 179−195; 1991.

[Str87] B. Stroustrup; The C++ Programming Language; Addison_Wesley; 1987.

[WCW90] J. C. Wileden, L. A. Clarke and A. L. Wolf; A Comparative Evaluation of Object

Definition Techniques for Large Prototype Systems; ACM TOPLAS, 12:4, 670−699; 1990.

[WG89] N. Wirth and J. Gutknecht; The Oberon System; Software−Practice and Experience, 19:9,

857−893; 1989.

[WG92] N. Wirth and J. Gutknecht; Project Oberon: The Design of an Operating System and

Compiler; Addison_Wesley; 1992.

[Wir82] N. Wirth; Programming in Modula_2; Springer; 1982.

[Wir88a] N. Wirth; The Programming Language Oberon; Software−Practice and Experience, 18:7,

671−690; 1988.

[Wir88b] N. Wirth; Type Extensions; ACM TOPLAS, 10:2, 204−214; 1988.

[Wir89] N. Wirth; Modula_2 and Object_Oriented Programming; Proceedings of the First

International Modula_2 Conference, Bled, Yugoslavia, 7−13; also published as Report No.

117, Departement Informatik, ETH Zurich; 1989.




