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Abstract

This technical report describes the implementation of HP-
Oberon, a new member of the Oberon family running on
Hewlett-Packard Apollo 9000 series 700 workstations.

It describes the HP-UX environment and the integration
of Oberon 1n this environment. A description of the PA-RISC
processor is then given and how the HP-Oberon compiler uses
the new features offered by PA-RISC. After some performance
measurements, the appendices contain implementation details
for those who want to understand the heart of the system.
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1 Introduction

Oberon is both a programming language and an operating system. As successor of
Pascal and Modula-2, the Oberon programming language allows type extension,
providing for an object-oriented programming style. The Oberon system features
single-process multitasking, automatic garbage collection and dynamic loading of
modules. "Make it as simple as possible", this quotation from A. Einstein has been
the guideline during all the development of the Oberon project and the result is an
extensible programming environment that is both compact and efficient.

In 1993 a project was started to port Oberon onto Hewlett-Packard workstations. At
that time Oberon was already available for many architecture including the Apple
Macintosh, IBM PC Compatibles running DOS or Windows, SPARCstations.
DECstations, IBM RS/6000's and the SGI Indigo and the HP Apollo 9000 was an
important UNIX workstation for which Oberon was still not available.

The first step of this project was to implement an Oberon-2 compiler
generating native Precision Architecture (PA-RISC) code. Based on the portable
Oberon-2 compiler [Cre91], this task has been reduced to writing a new back-end
for the PA-RISC. As there are many similarities between the PA-RISC and the
MIPS architecture, the MIPS back-end of DECoberon was taken as a starting point
for the PA-RISC back-end.

After its completion, work on implementation of the Oberon operating system
was started. Again the sources of DECoberon were used as a guideline. A new
interface-module for HP-UX supporting shared libraries was written, and the module
loader and the trap handler were adapted to the new object file format and the new
memory layout. The rest of the system was completely portable and only needed to
be recompiled with the PA-RISC compiler. In October 1993, the implementation of
HP-Oberon was completed and was released on November 1st, 1993 after one
month of intensive testing.

This report describes the implementation of HP-Oberon, focusing on interesting
features of the PA-RISC architecture as well as problems encountered during the
realization of the project.



2 The HP-UX Environment

HP-UX is the Hewlett-Packard implementation of the UNIX operating system. It is
based on UNIX System V.3 with some BSD4.2 and BSD4.3 extensions, but in order
to remain compatible with the System V UNIX standard, HP-Oberon does not use
any of these BSD features. Hewlett-Packard is also a participant in the developing
POSIX standard and intends to make HP-UX support this standard. Likewise,
Hewlett-Packard 1s committed to follow the X/OPEN standard.

HP-UX Shared Libraries

HP-UX, like many modern UNIX implementations, offers the required functionality
to support dynamic linking with shared libraries. A program using these features is
no more a huge executable file into which all used libraries are statically linked. It
1s rather a small executable program calling functions distributed in dynamically
loaded shared libraries. Using shared libraries, programs are much smaller than their
‘archive libraries' equivalent. They need less main memory, less disk space and are
generally loaded faster.

Dynamic loading is also an important feature of the Oberon system and
Oberon object files are similar to HP-UX shared libraries. Though it would have
been possible to implement HP-Oberon object files being compatible with HP-UX
shared libraries, it was much easier to implement them following the model of
DECoberon object files. Thus the module loader could be ported without major
changes.

Even if HP-Oberon object files are not compatible with HP-UX shared
libraries, it still provides the functionality needed to open shared libraries and to
obtain the address of procedures or variables included in them. This feature has been
implemented to allow HP-Oberon programs to call procedures of the standard C
library, the UNIX library, the X11 user interface library, or any other available
shared library.

Listing 1 shows an example of calling a shared library from HP-Oberon. The
exported procedure WriteChar of this Demo module calls the Unix function write
via the Write procedure variable. This variable is initialized by /nit using the
procedure Unix.dlsym.



MODULE Demo;
IMPORT SYSTEM, Unix;
CONST StdOut = 1;
VAR Write: PROCEDURE(fd, adr, n: LONGINT): LONGINT,;

PROCEDURE WriteChar*(ch: CHAR);
VAR res: LONGINT,;
BEGIN
res := Write(StdOut, SYSTEM.ADR(ch), 1);
END WriteChar;

PROCEDURE Init;
VAR handle: LONGINT;
BEGIN
handle := Unix.dlopen("libc.sl", 0);
Unix.dlsym(handle, "write", SYSTEM.VAL(LONGINT, Write));
END Init;

BEGIN
Init;
END Demo.

Listing 1: Example of using shared libraries
Calling Conventions

To live in harmony with HP-UX, HP-Oberon must follow the same calling
conventions as the standard C, Pascal, or Fortran compiler. Concerning parameter
passing, the convention is very similar to the one used by DEC-Oberon and
ULTRIX: If parameters are 32 bits long INTEGERs or REALS, the first four are
passed in registers (R26 to R23 for integer and F4 to F7 for floating-points) and the
other ones are passed on the stack. If some parameters are arrays or records, their
address is given as parameter' and the convention is the same as the one for
LONGINTS. The convention for 64 bits LONGREALS is more complex and can be
found in [HP2]. More details about register usage and the stack frame are given in

" In the case of a value-parameter, a copy of the parameter is done by the
called procedure.



the next chapter. The convention concerning the jump mechanism in HP-UX is
shown in figure 1.

€2 e3
Import Stub
(Millicode) €5 Export Stub
———
Procedure
12 ed
Caller (External) Caller (Local)
el
11

. External calling convention

- o Local calling convention

Figure 1: Calling conventions used in HP-UX

Local calls are simple and efficient; just one branch (11) to call a procedure and a
return (12) to the caller are needed. On the other hand, external calls are rather
expensive in the sense of the number of branches. A first branch (el) is a local call
to the import stub, which then makes an external call (e2) to the export stub of the
called procedure. The export stub finally makes a local branch (e3) to the effective
procedure. Once the procedure is ended, control is returned to the export stub (e4),
which then returns to the caller(e5). Appendix A describes how the import and the
export stub are implemented. The advantage of such a complicated mechanism is
that the code generated for procedures is the same if the procedure is called locally
or externally. The only difference is in calling the procedure directly or calling its
export stub via an import stub. However the five branches needed for external calls
make this scheme unattractive for Oberon where many external calls occur. To
obtain better performance, a faster mechanism had to be implemented in HP-Oberon.
Because all modules of HP-Oberon reside in the Oberon heap, that 1s in one memory
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segment?, the local calling convention could also be used for calls between different
Oberon modules. This simpler convention has been used and is shown in figure 2.

o
Oberon
e? Procedure 12
Oberon external call Oberon local call
el 1
<——

- External calling convention

- o Local calling convention

Figure 2: Calling conventions in HP-Oberon

This works well for direct procedure calls, but if the call is done via a procedure-
variable, Oberon needs a way to find out if the procedure to be called is an Oberon
or a 'foreign' HP-UX procedure. An Oberon procedure can be called using the local
convention whereas a foreign procedure needs to be called via the import/export
stub. This problem has been solved in the following way: As the address of a
procedure 1s always a multiple of four, its last two bits are always zero. Bit 30 has
already a special meaning in HP-UX but bit 31 can be freely used to differentiate
Oberon from foreign HP-UX procedure addresses. An assignment of the form
procVar := Procedure, where procVar is a procedure variable and Procedure an
Oberon procedure, is then patched by the loader to ensure that bit 31 of ProcVar is
set. When a procedure variable call occurs, this last bit is checked and the
appropriate calling convention 1s used. Appendix A describes this mechanism with
an example. The external call via an import stub is shown in figure 3.

* See section Space Registers in the next chapter
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€2 e3
Import Stub
(Millicode) Export Stub
e5
Oberon external call C Procedure
el o

. External calling convention

Figure 3: Oberon calls HP-UX

In the case where Oberon procedures are called by HP-UX — for low level features
such as the trap handler or cleanup-procedures that have to be called by HP-UX
when Oberon terminates — HP-UX makes the call using the standard convention for
external calls, requiring that an export stub must be inserted just before the called
Oberon procedure. Such a procedure is specially marked with a plus sign between
the keyword PROCEDURE and the procedure name. Figure 4 shows this last
situation.

12



€2 e3
Import Stub
(Millicode) Export Stub
eb
HP-UX external call Oberon
Procedure
el o

External calling convention

Figure 4: HP-UX calls HP-Oberon

To summarize, HP-Oberon is able to call any HP-UX procedure contained in a
shared library and conversely, any HP-UX procedure can call an HP-Oberon
procedure. If a new shared library 1s available, Oberon can use i1t without changes
in its kernel. However the HP-UX calling conventions are rather inefficient and
between two Oberon procedures a faster mechanism 1s used.
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3 The PA-RISC Compiler

The Portable Oberon-2 Front-end

A compiler can be seen as two separate parts. The first one, the front-end, reads the
source file, does syntactical and semantical analysis, and then generates an
intermediate structure representing the program. The second part, the back-end,
takes this intermediate representation and generates the object file consisting of the
machine's object code and some additional information needed at run-time. Figure 5

shows these two phases.

Sour ce Intermediate Object
File Structure File

\ \

Code

Y

Front- Back-
End End

Figure 5: Compiler Front-end and Back-end

As shown in the figure, an optional optimization pass can be introduced during the
compilation process. However, to keep the compiler small and fast, only simple
optimizations have been included in the HP-Oberon compiler.

HP-Oberon, like almost all other Oberon implementations is based on the
portable OP2 compiler [Cre91]. The OP2 front-end consists of the scanner, the
parser, and the symbol table management. It generates a syntax-tree and a symbol
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table as intermediate program representation. This part of the compiler is exactly the
same 1n all implementation. The back-end then uses this syntax-tree and produces
native object code. As this code 1s target machine specific, the second part is not
portable and has to be implemented anew for each different architecture.

Like in DEC-Oberon and SGI-Oberon, the Object-Model has been used in the HP-
Oberon compiler to check for module compatibility giving much more flexibility than
the previously used time-stamp method. It i1s beyond the scope of this report to

describe this model, however more information about this topic can be found in the
PhD thesis of Régis Crelier [Cre94].

Nullification

Precision-Architecture is in many points similar to the MIPS architecture. However,
it has some interesting new features not found in MIPS processors like for example
the concept of nullification.

A mullified instruction 1s an instruction that will not be executed. This
instruction will just be skipped, not affecting the machine state. All branch and
computational mstructions can nullify the execution of the following instruction. For
branch instructions, nullification 1s specified explicitly. In computational instructions,
nullification 1s performed conditionally, based on the outcome of a test.

Nullification 1s a very powerful tool and it is used in many places of the
compiler like range checking or long-jumps. The following listings show examples
of nullification.

COMCLR,<= rb, rc, ra ra :=0; IF rb <= rc THEN skip
LDO 1(0), ra ELSE ra := 1 END;

Listing 2: Assign the logical expression (rb > r¢) to ra

COMICLR,> len, index, r0 IF index < len THEN skip
HALT 15 ELSE HALT

Listing 3: Index check

COMB,cond target (12-bit Target = jump distance is 8k)

COMCLR, ~cond rO
BL target, rO  (17-bit Target = jump distance is 256k)

Listing 4: Conditional long jumps

15



Instruction-Set

This section gives an overview of mteresting mstructions of the PA-RISC processor
and their use in the Oberon compiler. Some of these instructions are of special
interest because they are not found in other popular RISC architectures. A detailed
description of the complete PA-RISC instruction-set can be found in the
HP-Reference manual [HP1]

Extract/Deposit

Even though they are not new in PA-RISC, the extract and the deposit instruction
are not available on all RISC processors and deserve special attention. The first one,
like its name says, extracts /en bits of a given source register and puts them in the
last bits of a destination register. This instruction comes in two variants, either
signed or unsigned, where the most significant bit of the extracted block is replicated
to the left of the block. The next figure shows the result of the EXTR* r, p, len, t
instruction.

0 p-len+1 p 31

GRr

GRt

0 32-len 31

Figure 6: Extract instruction

The Extract instruction is used by the compiler to implement logical and arithmetical
right shifts, sign extension, range check and bit-test.

The next listing shows how range checks are implemented. This little code segment
finds out if the value in register 7 1s in the INTEGER range (between -32768 and
32767). The idea is that r is in this range if its bits 0 to 17 are the same (all one or
all zeroes). This can be implemented by testing if the value of the register remains
the same after sign extending its last 16 bits.
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EXTRS r, 31, 16, r1 (sign extended extract of the 16 last bits)
COMCLR, = r,rl, r0 (nullify the next instruction if r = r1)
TRAP RangeTrap

Listing 5: INTEGER range check

The Deposit instruction 1s the opposite of Extract. It takes an immediate value or a
register as source and deposits its last /en bits left from position p in a target register.
The other bits of the destinations are either unchanged or cleared according to the
kind of the extract instruction. The semantic of this instruction is better explained by
the following figure.

0 32-len 31

GRr

GRt

0 p-lentl p 31

Figure 7: Deposit instruction

The Oberon compiler uses Deposit to implement left shifts, and to set or clear a bit
n a given register.

SHnADD

Another interesting instruction is Shiff-and-Add, which shifts the first operand » bits
to the left and adds the result to the second operand. The result is then stored in the
destination register. The shift » can be either one, two, or three.

PA-RISC has neither a multiply nor a multiply-step instruction that could be
used to implement the integer multiplication, therefore this operation must be
achieved using a series of shift-and-add istructions. Replacing those two
nstructions by only one performing these two operations simultaneously, will allow
for an efficient implementation of integer multiplication.

17



Multiplication with a Constant

If one of the operands is a constant, the sequence of shifts and adds is known in
advance and the compiler can generate SHnADD instructions. The following listing
shows the MIPS and the PA-RISC pseudo instruction sequence to multiply register x
with the constant /0 putting the result into register z. Register 7 is a temporary

register.
MIPS PA-RISC
Z = 8*x Z = 8*x
t:=2* Z:=272+ 2*X
Z:=z+t

(* SH1ADD x, z, z *)

Listing 6: Constant multiplication

Register Multiplication

More complex is the problem if both operands are variables because in this case the
shift and add sequence is not known in advance. The traditional add-shift algorithm
shown in listing 7 computing R3 := R/ * R2 could be implemented, but its poor

efficiency would not be acceptable.

R3 :=0;

FORi:=0TO 31 DO
CASE R1{0} OF

0:R3:=2*R3+0

| 1: R3:=2*R3 +R2
END:;
R1:=2 *R1;

END

(* R1{0} is the MSB of R1 *)

Listing 7: Add-Shift multiplication

A faster way to implement the multiplication is to shift R1 by more than one bit per
iteration. A shift by two would not be much better but a shift by four or even by
eight as shown 1n listing 8 would make the multiplication much faster. On the other
hand, the price to pay for this speedup is the need for a big case-table. In its standard
system library, HP decided to implement the integer-multiplication with a shift by
eight, needing a 4Kbyte case-table. HP-

multiplication.

18
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R3:=0;
FORI:=0TO 3 DO

CASE R1{0..7} OF (* R1{0..7} are the 8 MSB of R1 *)
0:R3:=256*R3+0

| 1: R3:= 256 * R3 + R2

| 2: R3 := 256 * R3 + 2*R2

| 3: R3:=256 * R3 + 3*R2

| 254: R3 := 256 * R3 + 254*R2
| 255: R3 := 256 * R3 + 255*R2
END;
R1:=256 *R1

END;

Listing 8: More efficient multiplication
Load/Store Operation

Load and Store operations are instructions moving data between main memory and
a register. For an integer-load, there are two possible addressing modes for
accessing memory. In the first one, Based-Long, the effective address is the sum of
a register and a constant between -8192 and +8191. In the second one, Indexed, the
effective address is the sum of a register and another register multiplied by a scaling
constant. Unfortunately the /ndexed mode 1s not available for an integer-store; the
only possible addressing mode is Based-Long. There 1s another irregularity with
floating-point Load/Store operations where both /ndexed and Based addressing
mode are available, but in the Based mode the constant offset must be between -16
and +15. This addressing mode is known as Based-Short. These irregularities are
rather uncomfortable, but despite this, all of the above addressing modes are used
by the Oberon compiler.

Register Usage

To remain compatible with the host operating system, HP-Oberon must follow the
HP-UX conventions regarding register-usage. The PA-RISC 1.1 processor has of 32
general teger registers, 32 floating-point register, 7 space registers, and 25 control
registers.

General and floating-point registers are used to hold local variables, to pass
arguments to procedures, and to hold temporary values during expression evaluation.
Space and control registers contain system state information.

19



General Registers

The 32 general integer registers of PA-RISC are each 32 bits wide. RO is a special
register whose value is always zero. Twenty registers (R3-R22) are general purpose
registers and are used to hold local variables or temporary values, and four registers
(R26-R23) are reserved to pass parameters to procedures. The following table shows

in detail the convention imposed by HP-UX.

Register | Name Usage Convention Saved by
RO Zero value register
R1 Scratch register caller
R2 RP Return pointer and scratch register
R3-R18 General purpose callee
R19-R22 General purpose caller
R23 arg3 Argument register 3 caller
R24 arg2 Argument register 2 caller
R25 argl Argument register 1 caller
R26 arg0 Argument register 0 caller
R27 DP Global data pointer stubs
R [0 | T oot
Static link register on entry
R29 SL ‘Millicode fuI}ction return caller
retl Function return register for upper part
function result
R30 SP Stack pointer
R31 Millicode return pointer and scratch register | caller

Floating-Point Registers

PA-RISC processors are very powerful in floating point intensive applications. To
achieve its good performance, the processor includes a big set of 32 floating-point
registers, each of them 64 bits wide. The following table summarizes the HP-UX

conventions regarding floating-point registers.

20




Register | Name Usage Convention Saved by
FO Coprocessor status
F1-F3 Exception registers (cannot be modified)
4 fret ‘ Floatmg-pomt return register caller
farg0 Single-precision argument register O
F5 farg] Slngle-prec1§1pn argument register 1 caller
Double-precision argument register O
F6 farg2 Single-precision argument register 2 caller
7 farg3 Slngle-prec1§1pn argument register 3 caller
Double-precision argument register 1
F8-F11 General purpose caller
F12-F15 General purpose callee
F16-F21 General purpose (only on PA-RISC 1.1) | callee
F22-F31 General purpose (only on PA-RISC 1.1) caller
Space Registers

With 32 bit wide addresses, processors can access 4 GBytes of virtual memory.
Because this seems not to be enough, PA-RISC processors have extended the
memory addressing modes using the concept of spaces. The global virtual memory
1s then organized as a set of linear spaces, each being 4 gigabytes long. Depending
on the level of PA-RISC architecture, there are 2'°, 2** or 2% virtual spaces allowing
48 bit, 56 bit, or 64 bit wide addresses. Their usage convention is shown in the
following table.

Register Usage Convention
SRO Link code space ID
SR1-SR3 General use
SR4 Program Text
SR5 Process private data
SR6 Shared data
SR7 Operating System's public
code, literal, and data

21



Figure 8 shows how the space is specified using the first 2 bits of the address, and
the convention for SR4-SR7.

Base Register
& 31

00 01 10 11

SR4 SR5 SR6 SR7
Space ID a SpacelD b SpacelD ¢ SpacelD d

Program
Text

Data

Shared Library
Text

OS'spublic

Figure 8: Space registers convention

Control Registers

There are 25 control registers labeled CRO and CR8..CR31, which contain system
state information. The only Control Register used by HP-Oberon 1s CR11, the Shift
Amount Register (SAR). This control is readable and writable by code running at
any privilege level and is used to determine the displacement by variable shift,
variable extract, and variable deposit instructions.
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VAR
I INTEGER; (* R22%)
s: SET; (* R21 %)
BEGIN
IFiINsTHEN
END:;
END.
Translates to

MTCTL R22, SAR Move i (R22) to SAR (CR11).

VEXTRU, OD R21, 1, RO Extract 1 bit from s (R21) starting at SAR
and put the result in RO (no effect)
Nullify the next instruction if the rightmost
bit of the result is 1.

BL,n END, RO Branch to the end of the if statement..

Listing 9: Examples of variable extract using the SAR control register

23



Stack Frame

As seen before, the arguments to a procedure are passed by the four registers R26
to R23. However, if there are more than four arguments, some of them have to be
passed on the stack. The same 1s true for local variables; some can be held in
registers and others have to be put on the stack. The next figure shows the structure

of the stack during the execution of a procedure.

T~

frameSize

Variable Arguments parSize
FP-48-i Fixed Arguments 16
Frame Marker 32
FP
FP+i Local Variables localSize
Callee-saved Reg. calleeSize
FP+C+i Dynamic Arrays
Caller-saved Reg. calerSize
o calArea
SP-48-i Variable Arguments argSize
Fixed Arguments 16
Frame Marker 32
SP -
g £
K E
g% 7O

Figure 9: Stack Frame
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The next table gives a more detailed view of the Frame Marker.

Variable arguments |SP-56 arg word 5
SP-52  arg word 4
SP-48 arg word 3
SP-44  arg word 2
Fixed arguments

SP-40 arg word 1
SP-36 arg word O
SP-32  External data/LT Pointer (LPT) |Set before call
SP-28 External-stub RP (RP") Set after call
SP-24  External RP Set after call

Frame marker SP-20 Curl‘rent ‘RP Set after call
SP-16  Static Link Set before call
SP-12  Clean Up Set before call
SP-8  Relocation Stub RP (RP") Set after call
SP-4  Previous SP Set before call

Top of frame SP-0  Stack pointer

A complete example of a procedure call, showing how the stack is mvolved during
the calling process, is given in Appendix A.

Millicodes

A millicode 1s very similar to a local procedure or a local function. The only
difference is that arguments are only passed in registers, no stack frame is needed,
no registers need to be saved, and the result is returned in register 29 instead of
register 28. Register 1 is used as a scratch register and register 31 for the return
address. The advantage of millicode compared to normal functions is that the calling
conventions are simpler and much more efficient.

25



A millicode call with two arguments is done in 5 steps :

Save R26 and R25 in temporary registers if they are live.
Load R26 and R25 with the arguments.

Call the millicode

Relocate the result R29 in another temporary register.
Restore R26 and R25 if they were saved.

DN o= W=

In the current version of HP-Oberon, millicodes are used to implement integer
multiplication, division, modulo, and the export stub (DynCall). However, because
of the difference between the Oberon-2 [Moe91] and the C [Ker88] definition of the
division and modulo, the millicodes provided by HP-UX can not be used. The
following listing shows how to compute the division and the modulo according to the
Oberon definition if the numerator is negative.

PROCEDURE ,..,DIV(a, b: LONGINT): LONGINT
BEGIN
IFa<0THEN
RETURN -((-a-1) DIV b) - 1
ELSE
RETURN a .DIV b
END
END OberonDIV;

PROCEDURE ,.,,,MOD(a, b: LONGINT): LONGINT
BEGIN
IFa<0THEN
RETURN -((-a-1) .MOD b) +b - 1
ELSE
RETURN a .MOD b
END
END OberonMOD;

Listing 10: Oberon DIV and MOD functions using C functions

Because the PA-RISC architecture is in some points similar to the MIPS
architecture, one can think that porting the Oberon compiler for HP was a rather easy
task and actually no big problem occurred during its implementation. However there
are many new features in PA-RISC and, in order to produce efficient code, the
compiler has to use them. On the other hand, there are subtle differences between
MIPS and PA-RISC that were not obvious at the beginning of the project.

26



Most of the time needed for the implementation of the compiler was spent in
these two areas: Using the new features of PA-RISC and solving problems due to
small differences.

27



4 The Bootstrap Process

As already explained before, the HP-Oberon compiler does not generate standard
HP-UX shared libraries, and there i1s no way for HP-UX to directly use these
Oberon-specific object files. So how can Oberon be started from HP-UX? The
solution to this bootstrap problem has been solved by a small C program called the
boot-loader. The task of the boot-loader is to allocate the Oberon-heap with a
standard malloc call, then to install the system modules of Oberon into the heap, and
finally to start Oberon by jumping to the entry-point of the system modules
previously loaded. The system modules consist of the following Oberon modules:
Unix, Console, Kernel, Files, and Modules. To keep the C boot-loader as simple as
possible, these modules are previously linked by the Boot-Linker to form the
Oberon-Boot-file.

As the boot-loader 1s written in C, it can be compiled and linked to make an
executable file that can be then started from HP-UX.

To build the boot-file, the boot-linker loads in a pseudo heap all modules composing
this boot-file. The pseudo heap is then compressed and written to the boot-file,
together with the fixup information needed to relocate this pseudo heap. Figure 10
shows how the pseudo heap looks like when the boot-file is generated.

28



Tag

> Heap
HeapAdr (MOD 32 = 0)

Align
MilliTable

Millicode

Align GCstart (MOD 32 = 0)
Dummy

Tag

Module Descriptor

heapSize Tag

Entries

Tag

Code

Figure 10: Image of the boot file in memory

Some Oberon modules need information from the boot-loader, for example the
Oberon garbage-collector needs to know the start address of the Oberon heap. This
link between Oberon and the boot-loader is made via the Unix.dlsym procedure.
Dlsym 1s the first global variable of Unix, the first loaded module, and during the
boot process, this variable is initialized by the boot-loader to point to the disym C-
procedure of the boot-loader. Oberon can then call the Unix.dlsym procedure to
obtain information from the boot-loader. The next figure shows how this link 1s done.
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MODULE Unix
VAR disymc: PROC;

Image of the
PROCEDURE disym(); Boot File
call dilsymc
END disym; >
\_/

flush_cache ()
diopen ()

[
disym () Module B

Boot Loader Heap

Figure 11: Link between HP-Oberon and HP-UX

The following listing shows an extract of the dlsym procedure of the boot-loader.
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int dlsym(int handle, char *symbol, int *adr)

{

int res;

if (strcmp("dlopen”, symbol) == 0) *adr = (int)dlopen;
else if (strcmp("diclose”, symbol) == 0) *adr = (int)dIclose;

éise if (strcmp("heapAdr”, symbol) == 0) *adr = heapAdr;

éise res = shl_findsym (...) /* search in the shared-library */

}
Listing 11: Extract of the boot-loader

To summarize, the following steps are executed during the loading of Oberon:

—

Parsing of the command line to find out the startup options.

Allocation of the Oberon heap.

Initialization of the file searching path by parsing the OBERON environment
variable.

Loading of the boot-file into the heap.

Relocation of the code of the boot-file.

Initialization of the millicode table.

Flushing of the caches.

Execution of the startup code, usually the body of module Modules.

W N

o001 ON N
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5 Performance

The Dhrystone benchmark has been used to measure the performance of the various
Oberon implementations. Like any other benchmark, dhrystone is not perfect, but it
gives a good image of the CPU and compiler efficiency. On HP Apollo 9000, a C
version of the dhrystone benchmark has also been compiled using the HP C compiler

with and without optimization.

The comparison with other machines has to be considered very critically. Dhrystone
1s not a global performance index, it just gives a value reflecting the efficiency of a

Platform Processor Clock Dhrystoncs/sec
Oberon |C C + opt.

HP 735 PA-RISC 99 MHz |113'636 |93'677|170'940

SGI Indigo-2  [MIPS R4000 |100 MHz [80'645

SPARC Classic |Micro SPARC (50 MHz [50'632

PC-Compatible |i486 DX2 66 MHz |46'986

HP 715 PA-RISC 33 MHz |37'950 |26'316(55'633

IBM RS6000 |RIOS T 25 MHz |34'013

DECstation MIPS R3000 |25 MHz |33'037

PC-Compatible |i486 DX 33 MHz |23'494

Sun Sparc SPARC I 20 MHz |18'400

Macintosh II fx |MC 68030 40 MHz |11'338

Ceres-2 NS 32532 25 MHz |6'677

little part of the compiler and of the CPU.
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Much more interesting is the comparison with C, optimized C, and Oberon.
Figure 16 shows these values graphically, together with the compilation time.




Dhrystone benchmark

Measured on an HP 715/33Mhz 5]
Legend 55633

. Dhrystones/sec
u Compilation time in sec

2.2

0.3)

C Oberon C + opt.

Figure 12: Oberon versus C in dhrystone benchmark

To keep Oberon simple and efficient, only few optimizations have been implemented
in the compiler. No common subexpression elimination, no instruction scheduling,
no loop unrolling have been implemented. Clearly the C optimizing compiler, in
which many optimization techniques are used, generates better code than Oberon.

However, with only few simple optimizations, the code generated by the
Oberon compiler is appreciably better than the one generated by the standard C
compiler, even though Oberon requires only a fraction of the time used by the C
compiler.

To give another idea of the compiler's speed, the complete Oberon system,
including the text-editor, graphic-editor, compiler, display-driver, network-manager,
etc..., altogether representing 88 modules, 1.38 MB source code and 1.19 MB object
code, compiles itself in about 14 sec. on a 99MHz HP 735 and in less than 45 sec.
on a 33MHz HP 715. The Oberon compiler compiles itself in 2.1 sec. on a 735 and
in7sec.ona7ls.
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6 Conclusions

In the light of compiler construction the PA-RISC processor is not significantly
different from the other RISC processors. Like all RISC processors it has many
registers and a quite simple instruction format. Like almost all RISC processors, it
transparently deals with register interlocking, freeing the compiler from this
complicated and tedious task. The more interesting feature in respect of compiler
writing is perhaps nullification. Nullification 1s very simple and useful for some fixed
sequences of mstructions like index-check or long jump, but it is difficult to use this
concept more generally n a single pass compiler. The same is true for the shift-and-
add mstructions and generating a good sequence for constant multiplication demands
a lot of reflection.

The main reproaches a compiler designer could direct to Precision
Architecture are certainly the lack of integer multiplication and the irregularities in
the load/store operations. Despite the rather complex conventions dictated by
Hewlett-Packard, the integration of Oberon in HP-UX was not really difficult. The
challenge was rather to allow HP-Oberon making use of the HP-UX mullicode library
and of the standard UNIX/X11 shared libraries in a simple and efficient way.

The simplicity and the portability of Oberon made the implementation of HP-Oberon
in less than one man-year possible. The PA-RISC Oberon compiler has been first
cross-developed on a DECstation running DEC-Oberon. Despite the fact that the
MIPS processor of the DECstation s little-endian and PA-RISC is big-endian, once
the boot-strap was done, the HP-Oberon compiler could be compiled on the PA-
RISC machine without changes.

HP-Oberon 1s now a new member of the Oberon family and contributes to making
even more people discover and use the Oberon system.
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Availability

HP-Oberon as well as all other implementations of Oberon are freely available from
the ftp server of the department of computer science. The name of this server is
neptune.inf.ethz.ch and its I[P number is 129.132.101.33. The directory Oberon is
subdivided as follows:

Oberon/HP700 contains the implementation of Oberon for Hewlett-Packard
Apollo 9000 series 700 workstations.

Oberon/<Machine> contains the implementation of Oberon for <Machine>

Oberon/Docu contains some documentation about the Oberon language and
the Oberon System.
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Appendices

The following appendices give deeper information about some points of the HP-
Oberon implementation. They are intended for people needing to have more details
about the heart of the system. Because HP-Oberon inherited a lot from DEC-Oberon,
some of these appendices can also be useful to DEC-Oberon users.
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Appendix A: Calling Conventions in Oberon

Given the following Oberon module:

MODULE Test;
IMPORT SYSTEM;
TYPE Proc = PROCEDURE(x: INTEGER; VAR y: INTEGER);
VAR p: Proc;

PROCEDURE P(x: INTEGER; VAR y: INTEGER);,
BEGIN

X =Y,
END P;

PROCEDURE+ Q(x: LONGINT);
BEGIN
END Q;

PROCEDURE Do;
VAR a, b: INTEGER;
BEGIN
P(a, b);
p(a, b);
END Do;

BEGIN
p:=P;
END Test.

The Decoder produces this output:

Test

code size: 240

data size: 8

const size: 0
sysCall link: 000CC
data link: 000B4
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imports: (pos 26)

exports: (pos 27)
LinkProc entry=00040 1ink=000A0

commands : (pos 32)
pointers: (pos 33)
constants: (pos 34)
uses: (pos 276)

refs: (pos 277)
$S pc=00000
saved.r=2
saved. f=
frameSize=48 callArea=0
p ProcTyp adr=0
P pc=00040
saved.r=
saved. f=
frameSize=48 callArea=0
x Int adr=r22
VAR y Int adr=r2l
Q pc=00060
saved.r=
saved. f=
frameSize=48 callArea=0
x LInt adr=r22
Do pc=0008C
saved.r=2 17
saved. f=
frameSize=72 callArea=8
a Int adr=rl7
b Int adr=2
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code: (pos 35)

(* BODY *)
00000000H
00000004H
00000008H
0000000CH
00000010H
00000014H

00000018H
0000001CH

00000020H
00000024H
00000028H
0000002CH

00000030H
00000034H
00000038H
0000003CH

E8400020H
0800024 0H
4BC23FD1H
004010A1H
00011820H
E0400002H

6BC23FD9H
B7DEO060H

22DF1FF5H
36D60000H
20200000H
68360000H

B7DEO7A1H
4BC23FDSH
E840C000H
0800024 0H

(* PROCEDURE P *)

00000040H
00000044H
00000048H

0000004CH
00000050H

00000054H
00000058H
0000005CH

B7DEO060H
081A0256H
08190255H

46B60000H
D2D61FFOH

B7DEO7A1H
E840C0O00H
0800024 0H

(* PROCEDURE Q *)

00000060H
00000064H
00000068H
0000006CH
00000070H
00000074H

00000078H
0000007CH

E8400020H
0800024 0H
4BC23FD1H
004010A1H
00011820H
E0400002H

B7DEO060H
081A0256H

BL

OR
LDW
LDSID
MTSP
BE,n

STW
ADDT

LDIL
LDO
LDIL
STW

ADDT
LDW
BV
OR

ADDT
OR
OR

LDH
EXTRS

ADDT
BV
OR

BL

OR
LDW
LDSID
MTSP
BE,n

ADDT
OR

00000018H,RP
r0,r0,r0

-24 (s*,SP) ,RP
(s*,RP),rl
rl,s0
0(s0,RP)

RP, -20 (s*, SP)
48,SP,SP

FFA3E800H, r22
0(r22),r22
00000000H, r1
r22,0(s*,rl)

-48,SP,SP
-20(s*,SP) ,RP
r0 (RP)
r0,r0,r0

48,SP,SP
r26,r0,r22
r25,r0,r21

0(s*,r21),xr22
r22,31,16,r22

-48,SP,SP
r0 (RP)
r0,r0,xr0

00000078H,RP
r0,r0,r0

-24 (s*,SP) ,RP
(s*,RP),rl
rl,s0
0(s0,RP)

48,SP,SP
r26,r0,r22
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00000080H B7DEO07A1H ADDI -48,SP,SP
00000084H E840CO000H BV r0 (RP)
00000088H 08000240H OR r0,r0,r0

(* PROCEDURE Do *)

0000008CH 6BC23FD9H STW RP,-20(s*,SP)
00000090H B7DEOO090H ADDI 72,8P,SP
00000094H 6BD13F89H STW rl7,-60(s*,SP)
00000098H 37D93F75H LDO -70(SP) ,xr25
0000009CH 0811025AH OR rl7,r0,r26
000000A0H 205F1EFS5H LDIL F7A3E800H, RP
0O00000A4H E4406000H BLE 0 (s5,RP)
O00000OA8H 081F0242H OR r31,r0,RP
O00000ACH 37D93F75H LDO -70(8SP) ,xr25
0O00000OBOH 0811025AH OR rl7,r0,r26
000000B4H 20200000H LDIL 00000000H, r1
0O00000B8H 48360000H LDW 0(s*,rl),r22
0O00000BCH C7F6CO012H BB, >=,n r22,31,000000CCH
000000COH D6CO1C1EH DEPI 0,31,2,r22
000000C4H E6C06000H BLE 0(s5,r22)
000000C8H B7E20018H ADDI 12,r31,RP
000000CCH 20BF1FF5H LDIL FFA3E800H, r5
000000DOH E7E06000H BLE 0(s5,r31)
000000D4H 081F0242H OR r31,r0,RP
000000D8H 4BD13F89H LDW -60(s*,SP) ,rl7
000000DCH B7DE0771H ADDI -72,SP,SP
O0O0OOOOEOH 4BC23FD9H LDW -20(s*,SP) ,RP
0O00000E4H E840CO00H BV r0 (RP)
O00OOO0OOE8H 08000240H OR rO0,r0,r0
O0OOOOOECH 08000240H OR r0,r0,r0
Comments :

0000-0014 Export stub of the module

0018-001C Entry of the module body

0020-002C Assignation: p =P

0030-003C Exit code of the body

0040-0048 Entry of the P procedure

004C-0050 Body of P

0054-005C Exit of P
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0060-0074 Export stub

0078-007C Entry of Q

0080-0088 Exit of Q

008C-0094 Entry of the Do procedure
0098-00A8 Direct call to P

00AC-00D4 Indirect call to P via p
00D8-00E8 Exit of Do

As can be seen at the address 00B8, the address of the called procedure passed to
the import stub is stored in register R22. The following listing shows the standard
HP-UX import stub also used by HP-Oberon.

BB >=,n R22,30,simple If bit 30 is not set, then simple call
DEPI 0,31,2,R22 Else, address is a shared library label
LDW 4(0,R22),19 Load R19 (linkage table pointer)
LDW 0(0,R22),R22  Load target

simple: LDSID (0,R22), R1 Store space-ID of target...
MTSP  R1,SRO ...into SRO
BE 0(0,R22) Interspace branch
STW 2,-24(0,SP) Save the return pointer on the stack

Listing 12: HP-UX import stub
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Appendix B: Objects Allocated on the Heap.

TDesc of elem

1
SFAM( )

ArrayBlk

=

XXXxx1010

Last elem
to mark

Address
MOD 32=0

Reserved

First elem

innermost |

DimN

Dim N-1

Address
MOD 8=0

DimO

Data

Note 1. S(SubObject), F(Free), A(Array) and M(Marked)
arethe 4 last bits of the Tag.

Note 2: SysBlk is used instead of ArrayBlk if thereisno
pointer in the element.

Figure 13: Array block
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SFAM( )

-4 Xxxx00000
0 td size Address
MOD 32=0
4 -4
8 self
12 extlevel
16 name /
48 mdesc |
(O]
R} .N
methods 1 %
.72 0
16 tags 1
8 0
- XxXx00000
TDesc
0 rec size Address
MOD 16=0
4 0
ptr offs 1
-4* (n+1)
SFAM( )
RecBlk XXXxx1000
Address ®
MOD 32=0 %

Note *: S(SubObject), F(Free), A(Array) and M(Marked)

arethe 4 last bits of the Tag.

Figure 14: Record block and Type Descriptor



sysBlk

SFAM

*)

:

XxXxXx00000

Size

XxXXx00000

Address
MOD 32=0

24

Datas

Address
MOD 16 =8

Size

Note *: S(SubObject), F(Free), A(Array) and M(Marked)
arethe 4 last bits of the Tag.

Figure 15: System block

*)

SFAM
FreeBlk
Xxxx00100 |
Size
Size next

SFAM( )

Xxxx00100 |

)

Size

Address
MOD 32=0

next

)

NIL

(SizeMOD 32) +4=0

Note *: S(SubObject), F(Free), A(Array) and M(Marked) are the 4 last bits of the Tag.

Figure 16: Free block
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Appendix C:

HP Object File Format

ObjFile

OFtag

HeaderBlk

ImpBIlk
ExpBlk
EConst
EType
EVar
EProc
ECProc
EStruct
TDesc
LinkProc
CmdBIlk
PtrBlk
ConstBlk
CodeBlk
UseBlk
UConst
UType

UVar
UProc

Régis Crelier, Jacques Supcik, 5-May-93

OFtag HeaderBlk ImpBlk ExpBlk CmdBlk PtrBlk ConstBlk
CodeBlk UseBlk RefBlk.

O0F9X 37X.

refsize:4 nofexp:2 noftdesc:2 nofcom:2 nofptr:2 nofimp
syscalllink datalink datasize consize codesize modname.

81X {name}.

82X {EConst | EType | EVar | EProc | ECProc | EStruct | TDesc |
LinkProc} 0X.

= 1X name fprint.

2X name fprint.

3X name fprint offset.

4X name fprint entry.

5X name fprint.

6X name pbfprint pvfprint.

= 8X (name | 0X pviprint) link recsize

( -1 | basemod (name | 0X pvfprint))

nofmth nofinhmth nofnewmth nofptr {mthno entry} {ptroft}.
9X entry link.

83X {name entry}.

84X {off}.

87X {conl}.

88X {instr:4}.

89X {{UConst | UType | UVar | UProc | UCProc | UpbStr |
UpvStr | LinkTD} 0X3}.

= 1X name fprint.

2X name fprint.
3X name fprint link.

= 4X name fprint link.
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UCProc
UpbStr
UpvStr
LinkTD

RefBlk

Mode

Var
VarPar

Form

Byte
Bool
Char
SInt
Int
Lint
Real
LReal
Set
String
Pointer

= 5X name fprint.

6X name pbfprint.
7X name pviprint.

= 8X (name | 0X pviprint) link.

8AX {0F8X procend savedr savedf frame callarea name {Mode
Form adr name}}.

Var | VarPar.

= 1X
= 3X.

Byte | Bool | Char | SInt | Int | LInt | Real | LReal | Set | Pointer |
String.

= 1X

2X.
3X.
4X.
5X.
6X.
7X.
8X.
9X.
0AX.

= 0DX.

Names are sequences of characters terminated by 0X. Lower case identifiers denote
numbers. A digit appended to an identifier indicates the length of the number in bytes
(LSByte first). Otherwise, the number is compressed into a variable number of bytes
(LSByte first, base 128, cleared MSBit is stop bit). Sets (savedr and savedf) are
coded like integers. Floating point numbers are in IEEE format (LSByte first).
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Appendix D:

Symbol File Format

SymFile =
Module =

Constant =

Object =

Field =
Method =

Struct =

Signature =

Régis Crelier, 29-May-92

OFBX Module {Object}.
0 | negmno | MNAME name.

CHAR value:1

IBOOL (FALSE | TRUE)

|((SINT | INT | LINT | SET) value
IREAL value:4

ILREAL value:8

ISTRING name

INIL.

Constant name

ITYPE Struct

|ALIAS Struct name

|((RVAR | VAR) Struct name
|((XPRO | IPRO) Signature name
|CPRO Signature len {code:1} name.

((RFLD | FLD) Struct name | (HDPTR | HDPRO)) offset.

(TPRO Signature name | HDTPRO) methno.

negref

ISTRUCT Module name [SYS value]

(PTR Struct

|ARR Struct nofElem

IDARR Struct

IREC Struct size align nofMeth {Field} {Method} END
IPRO Signature).

Struct {(VALPAR | VARPAR) Struct offset name} END.
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MNAME = 16. XPRO = 31. predefined refs:

not used 17. IPRO = 32.

END = 18. CPRO = 33. BYTE 1

TYPE = 19. STRUCT = 34. BOOL = 2

ALIAS = 20. SYS = 35. CHAR =3

VAR = 21. PIR = 36. SINT 4.
RVAR = 22.  ARR = 37. INT = 5.
VALPAR = 23. DARR = 38. LINT 6

VARPAR = 24. REC = 39. REAL =7

FLD = 25. PRO = 40. LREAL = 8.
RFLD = 26. SET = 9.
HDPTR = 27. STRING = 10.
HDPRO = 28. Dboolean constants: NIL = 11.
TPRO = 29. FALSE = 0X. NOTYP = 12.
HDTPRO = 30. TRUE = 1X. POINTER = 13.

Names are sequences of characters terminated by 0X. Lower case identifiers denote
numbers. A digit appended to an identifier indicates the length of the number in bytes
(LSByte first). Otherwise, the number is compressed into a variable number of bytes
(LSByte first, base 128, cleared MSBit is stop bit). Sets are coded like integers.
Floating point numbers are in IEEE format (LSByte first).
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Appendix E: Boot-file Format

All module names must be listed and topologically sorted. If the optional heap
address 1s present, no relocation information is generated.

Boot File Format:

heapAdrd

heapSized

GCstart4

{adr4 len4 {int4}}(* len4/4 times mnt4 *)
entryAdr4 0X 0X 0X 0X

nofPtr {adr}(* nofPtr times adr, etc... *)
nofWord {adr}

nofProc {adr}

nofBl {adr}

nofMilli {adr}

dlsymAdr

All numbers in the relocation information part are in compact format. adr*4 is an

offset from heapAdr4.
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