
Diss. ETH No. 16074

Bluebottle : A Thread-safe Multimedia and GUI
Framework for Active Oberon

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

(ETH ZÜRICH)

for the degree of
Doctor of Technical Sciences

presented by
Thomas Martin Frey

Dipl. Informatik-Ing. ETH
born February 01, 1975

citizen of Gontenschwil AG, Switzerland

accepted on the recommendation of
Prof. Dr. Jürg Gutknecht, examiner
Prof. Dr. Moira Norrie, co-examiner

2005

ii

c© Thomas M. Frey, 2005. All rights reserved

Acknowledgments

First of all, I would like to thank Prof. J. Gutknecht for the opportunity to work in his group
and for his liberal supervision of the thesis. Prof. M. Norrie kindly accepted to be co-examiner
and provided much-appreciated feedback.
I would like to thank P. Muller and P. Reali for writing the Aos kernel and Active Oberon
compiler respectively and for their encouragement when I started the Bluebottle framework
five years ago.
I would also like to thank the previous developers and contributors of Oberon. Especially the
work and comments of E. Oswald and E. Zeller had great influence on the project.
I am also very grateful to B. Kirk for reading an early version of this thesis and providing
valuable suggestions which helped to enhance its structure and reduce the number of mistakes.
Special thanks also go to B. Egger, P. Reali, P. Muller, P. Kramer and A. Fischer who read and
commented on various chapters of this thesis and had otherwise great influence on the project.
Too many people of the Oberon/Bluebottle community contributed to the current system as to
mention them all. D. Keller, R. Güntensperger, L. Blaeser, P. Lehmann, F. Nart and M. Szediwy
of the Programming Languages and Runtime Systems Research Group did a lot of work with
the Bluebottle system and provided good feedback and improvements.
I also wish to thank the past and present members of the institute for computer systems for
creating an interesting work environment. E. Ruiz, H. Sommer and R. Hidalgo helped a lot in
avoiding administrative problems and creating a good work environment.
About forty diploma and semester projects have been performed on the Bluebottle system and
have provided feedback relevant to the system and this thesis. I would like to collectively thank
the students who did these projects for their invested time and interest.
I would also like to thank my parents Andreas and Erika for their support and patience during
the many years of study.

iii

Table of Contents

Acknowledgments iii

Table of Contents v

Abstract xi

Kurzfassung xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Overview . 3

2 User Interface Concepts 5
2.1 Introduction . 6
2.2 Command Line Interface . 6
2.3 PUIs - PARC User Interface . 7
2.4 Textual User Interfaces . 8
2.5 Zooming User Interfaces . 9

2.5.1 Related Work . 10
2.5.2 Advantages of ZUIs . 12
2.5.3 Problems of ZUIs . 13
2.5.4 Conclusions About ZUIs . 16

2.6 The Bluebottle User Interface . 16
2.6.1 Zooming Contexts as a Navigation Concept 18
2.6.2 The Instrumented Desktop Metaphor 18
2.6.3 Principles of Interaction . 18

2.7 Summary . 21

3 Text System 23
3.1 Terms . 23
3.2 Integration . 27
3.3 The Bluebottle Text System . 28

3.3.1 Programming Model . 29

v

vi Table of Contents

3.3.2 Model Synchronisation . 30
3.3.3 Text Positions . 31
3.3.4 Readers . 31
3.3.5 Attributes and Styles . 32
3.3.6 Text Writer . 33
3.3.7 Internal representation . 34
3.3.8 External Representation . 35

3.4 Text Editor . 36
3.4.1 Text View . 37
3.4.2 Editor . 39
3.4.3 Input Method Editors . 40
3.4.4 Macros . 41

3.5 Usage Example - Programming Environment 42
3.6 Conclusion . 43

4 Graphics System 45
4.1 Introduction . 45
4.2 Frame Buffer . 46
4.3 Bitmaps . 46

4.3.1 Alpha Blending . 47
4.3.2 Scaling . 48
4.3.3 Loading and Storing . 48

4.4 Canvas . 49
4.4.1 Clipping and Translation . 49
4.4.2 Canvas State . 50
4.4.3 Drawing Primitives . 51

4.5 Fonts . 54
4.5.1 Abstract Font Interface . 54
4.5.2 Font Metric . 54
4.5.3 Oberon Fonts . 55
4.5.4 OpenType Fonts . 56
4.5.5 CCG Fonts . 56

4.6 Evaluation . 57
4.6.1 Conclusions . 61

5 Display Space Manager 63
5.1 Introduction . 63
5.2 Display Space . 63

5.2.1 Display Consistency . 64
5.3 Display Space Objects . 65

5.3.1 Basic Interface . 65
5.3.2 Buffered Display Space Object Interface 68

Table of Contents vii

5.3.3 Double-Buffered Display Space Object Interface 68
5.4 Viewports . 70

5.4.1 Drawing Mechanism . 71
5.5 Message handling . 73

5.5.1 Keyboard Events . 74
5.5.2 Pointer Events . 75

5.6 Styles . 75
5.7 Oberon as a Display Space Object . 78

6 Component System 79
6.1 Related Work . 80

6.1.1 Java Swing . 80
6.1.2 Windows Forms . 81
6.1.3 Gadgets . 82

6.2 Bluebottle GUI Components . 83
6.2.1 Concepts . 83
6.2.2 Alignment . 86
6.2.3 Composition . 89
6.2.4 Synchronisation . 89
6.2.5 Properties . 92
6.2.6 Events and Observers . 97
6.2.7 Observers . 99
6.2.8 Message Handling . 100

6.3 Display Space Manager Integration . 100
6.3.1 Implementation . 101
6.3.2 Available Components . 104

6.4 Conclusions . 104

7 The Bluebottle Sound System 107
7.1 Mode of operation . 107
7.2 Sound Driver Interface . 109

7.2.1 Sound Buffers . 112
7.2.2 Buffer Pool . 113
7.2.3 PCM Channel Interface . 114
7.2.4 Mixer Channel Interface . 114

7.3 AosSound Applications . 115

8 Abstract Encoder and Decoder Framework 117
8.1 Obtaining an Encoder or Decoder . 118
8.2 Audio/Video Demultiplexer . 119

8.2.1 Programming interface . 119
8.3 Streams . 121
8.4 Audio . 122

viii Table of Contents

8.4.1 Decoder . 123
8.4.2 Encoder . 124

8.5 Video . 124
8.5.1 Decoder . 124

8.6 Still Images . 125
8.6.1 Decoder . 125
8.6.2 Encoder . 126

8.7 Text . 127
8.7.1 Decoder . 127
8.7.2 Encoder . 127

8.8 Cryptography . 127
8.8.1 Decoder . 127
8.8.2 Encoders . 128

8.9 Principle of Operation . 128
8.10 Available Codecs . 130

9 Case Studies 131
9.1 GoingPublik . 131

9.1.1 Hardware . 132
9.1.2 Software . 133
9.1.3 Interaction without a Desktop via Pie Menus 133

9.2 Instant Gain in Grace . 135
9.3 Was geschah am 6. Tag? . 137
9.4 Student Projects . 139
9.5 Typical Desktop . 139

10 Conclusions 141
10.1 Summary . 141
10.2 Issues of the Base System and Suggested Improvements 142

10.2.1 Exception Handling . 142
10.2.2 Thread Termination . 142
10.2.3 Namespaces . 143
10.2.4 Garbage Collection . 143
10.2.5 Reflection . 144
10.2.6 Sound System . 144
10.2.7 Codec Framework . 145

A Programming Examples 147
A.1 Display Space Manager Programming - Scribble Application 147
A.2 TextWriter Example . 152
A.3 Sound and Codec Programming - Simple MP3 Player 155

Table of Contents ix

B List of Relevant Modules 159
B.1 Display Space Manager . 159
B.2 Graphic System . 160
B.3 Fonts . 160
B.4 Texts and Strings . 160
B.5 Component System . 161
B.6 Sound System . 161
B.7 Codecs . 162
B.8 Helper Modules . 162

List of Abbrevations 163

Bibliography 169

Curriculum Vitae 177

Abstract

Thirty years after the first introduction of the desktop metaphor as a means of human com-
puter interaction in general purpose computers, this thesis reconsiders and evaluates interaction
methods on a technical and conceptual level in the light of the progress of hardware and soft-
ware technology over the last decades. Notably the increased CPU speed and memory capacity,
specialized processor instruction set extensions, and a clear recent trend to commodity multi-
processor systems and multi-threaded processors lead to new implementation requirements and
decisions. Modern computer systems deliver the computational power for innovative exten-
sions of the traditional desktop metaphor.
We describe the concepts and architecture of a new general purpose graphical user interface and
multimedia framework and their thread-safe implementations in Active Oberon. The proposed
user interface combines in a new way elements taken from the traditional desktop metaphor
with interaction techniques known from zoomable and textual user interfaces. A concurrent
display space manager with support for translucent free-form windows in a conceptually un-
limited zoomable display space was developed and serves as proof of the feasibility of the
proposed interaction concepts as well as for the evaluation and discussion of new implemen-
tation strategies designed for today’s systems. The multimedia framework consists of abstract
APIs for different multimedia formats and a plug-in structure for concrete implementations.
While the discussed framework can take advantage of one or more general purpose CPUs with
possibly specialized instruction set extensions for multimedia or vector calculations, it is de-
signed not to rely on any special purpose hardware for graphics acceleration. The design for
modern general purpose processors offers several advantages over a design for special purpose
hardware. One of the main advantages is the simple system architecture that matches or out-
performs commercial hardware accelerated systems in common situations through structural
advantages. It also allows the system to be easily ported to different hardware platforms, es-
pecially to small devices such as wearable computers. The portability of the framework has
been demonstrated with a port to the QBIC wearable computer that has been developed at ETH
Zürich.
The framework has been developed on top of the multiprocessor implementation of the Active
Object Runtime System for Intel SMP systems and the single processor ports for the ARM and
XSCALE processors.

xi

Kurzfassung

Dreissig Jahre nach der Einführung der Desktop-Metapher als Benutzerschnittstelle für Per-
sonal Computer, überdenkt diese Thesis die Methoden des Zusammenspiels von Mensch und
Maschine auf konzeptueller und technischer Ebene im Licht des Fortschritts in Hard- und Soft-
ware. Der enorme Zuwachs der Prozessorgeschwindigkeit und der Speichergrösse sowie die
Einführung spezialisierter Prozessorerweiterungen und ein deutlicher Trend hin zu Mehrprozes-
sorsystemen und nebenläufigen Prozessoren führen zu neuen Anforderungen und Überlegun-
gen bezüglich der Realisierung eines modernen Systems für grafische Benutzerschnittstellen.
Moderne Computersysteme liefern die nötigen Ressourcen für innovative Erweiterungen der
traditionellen Desktop-Metapher.
Wir beschreiben die Konzepte, Architektur und thread-sichere Realisierung eines generischen
Frameworks für graphische Benutzerschnittstellen und Multimedia in Active Oberon. Die vor-
geschlagene Benutzerschnittstelle verbindet in neuer Weise Elemente der traditionellen Desk-
top-Metapher mit Interaktionselementen von zoombaren und textuellen Benutzerschnittstellen.
Als Machbarkeitsstudie sowie zur Diskussion und Evaluation der vorgeschlagenen Konzepte
wurde ein nebenläufiges GUI system mit Unterstützung für durchscheinende Freiformobjekte
auf einem konzeptuell unbeschränkten zoombaren Darstellungsbereich realisiert. Das Multi-
media-Framework definiert eine Reihe abstrakter APIs für verschiedene Medienformate sowie
eine Plug-in Schnittstelle für konkrete Implementationen.
Während das beschriebene Framework von mehreren Prozessoren mit eventuell vorhandenen
Vektoreinheiten Gebrauch macht, wurde bei der Realisierung darauf geachtet, keine Grafikbe-
schleunigungshardware vorauszusetzen. Die ausschliessliche Verwendung allgemeiner Prozes-
soren bringt gegenüber der Verwendung von Spezialhardware einige Vorteile. Der Hauptvorteil
liegt in der einfacheren Systemarchitektur, die durch strukturelle Vorteile in häufigen Situatio-
nen im Vergelich zu hardwarebeschleunigten kommerziellen Systemen konkurrenzfähige oder
sogar überlegene Geschwindigkeit zeigt. Ausserdem kann das System dadurch einfach auf un-
terschiedliche Hardwareplattformen portiert werden, insbesondere auf kleine Geräte wie sie
zum Beispiel in Kleidung integriert wird. Die Portierbarkeit des Frameworks wurde unter
anderem mit einer Portierung auf den wearable Computer QBIC, der an der ETH Zürich ent-
wickelt wurde, gezeigt.
Das Framework wurde auf der multiprozessor Version des Active Object Runtime System für
Intel SMP Systeme entwickelt und läuft auch auf den einprozessor Variationen für ARM und
XSCALE Prozessoren.

xiii

Table of Contents xv

The real voyage of discovery consists
not in seeking new landscapes,

but in having new eyes.

— Marcel Proust (1871 - 1922)

1
Introduction

Vision is the art of seeing things invisible

— Jonathan Swift (1667 - 1745)

1.1 Motivation

Since the realisation of the first personal computer with a graphical user interface, the Alto
[61] at Xerox PARC in 19731, the available computing power of personal computers has been
significantly improved. Today, even the cheapest general purpose computers offer about 2000
times more RAM and one or more CPUs [111] that is more than 2000 times faster than the
Alto. Even wearable computers integrated into clothes run about three orders of magnitude
faster [2].
At the same time, the displays for general purpose graphical user interfaces evolved from black
and white to true colour and offer about twice the number of pixels on the screen. The GUIs
of most systems still use rectangular windows, icons, menus and pointers much like the PARC
Alto system. Such systems are sometimes referred to as PUIs for PARC User Interface. In the
HCI community the rather disdainful acronym WIMP for Windows, Icons, Menus and Pointers
is often used to refer to PUI like interfaces when pointing out its weaknesses or when compar-
ing it to suggested new systems .
While PUIs have evolved in their thirty year existence, for example with the addition of so
called tool-tip windows that allow additional information to be provided where needed without
taking away the scarce display space, no revolutionary changes comparable to the step from the
command line user interface to graphical windowing systems have occurred. The noticeable
improvements in graphical user interfaces can be considered small compared to the improve-
ments in computer hardware. There is more than one reason for the lack of adoption of radically
different user interface ideas:

1The Alto had 64k 16bit words of memory including the framebuffer, a 606x808 memory bit map. The
processor ran at 400k instructions per second [68].

1

2 Chapter 1: Introduction

• The desktop metaphor 2 used in most current GUIs with objects lying on a desktop works
well in combination with the human spatial memory [23] [14] [98].

• Windowing systems are in accordance with the gestalt laws3 [19] and are well compatible
with human perception.

• The current PUI style GUIs have become a standard. The positive aspect of this stan-
dardisation is that users can easily switch between different systems and versions with-
out having to learn new concepts. On the other hand, standards can easily prevent the
introduction and acceptance of new and better systems that offer measurable advantages
[85].

User interfaces that strongly differ from the PARC user interface can be found in research labs
and computer games. While many research groups all over the world focus on virtual and aug-
mented reality, tactile or other non-graphical user interfaces for special purposes applications,
the research on general purpose GUIs for workstations, personal and wearable computers has
not been completely abandoned. The current general purpose GUI research is mainly focused
on investigating zooming user interfaces and 3d extensions of the PUI. So far, none of the
revolutionary new proposals was successful in main stream computing.

1.2 Contributions

In this thesis we suggest and implement Bluebottle, a new general purpose graphical user inter-
face framework and multimedia controller on the basis of the Active Object System Aos [80].
The proposed user interface combines in a new synergetic way elements taken from traditional
PUI systems with interaction techniques known from zoomable and textual user interfaces re-
sulting in a flexible universal display space. The implementation of the proposed system is
designed to run on systems from wearable devices up to multiprocessor workstations, effi-
ciently using the available general purpose computing resources.
Apart from proposing and implementing a new user interaction metaphor, this thesis also re-
visits and implements under the aspects of thread-safety and internationalisation all important
elements of current GUI systems such as the topics of graphical primitives, GUI components,
skinnability, input method editors, texts and fonts. Extensibility of the primitives is provided
with the consequent use of plug-in structures. For example, the support for TrueType and CCG
fonts has been added by implementing the font object interface and simply registering the re-
spective generator procedures in the system configuration, an XML file. The CCG font plug-in
is especially interesting since it allows more than 80’000 Chinese, Japanese and Korean glyphs
to be stored in a file of only 2MB compared to about 30MB in typical TrueType fonts. The

2Desktop metaphor is quite a far fetched name for current PUI user interfaces. First of all, the desktop space
on the screen is much too small to represent a real desktop, it is rather a table in front of an airline seat in economy
class. Second it is very uncommon to find trashcans, file-cabinets and menu-bars on a real desktop.

3The important ”gestalt” laws are proximity, similarity, closure, good continuation, good form (Prägnanz),
figure/ground and common fate.

1.3. OVERVIEW 3

small font file becomes possible by a recursive compositioned definition of the glyphs out of
other glyphs, based on an analysis of the glyph structures. The small memory footprint allows
complete CJK font support even for small wearable devices.
The system provides a general model for hierarchical data structures as well as a parser for
internalising streams of XML documents and a externalizer that serialises an in-memory data
structure to an XML stream. XML documents are used throughout the system to store config-
uration information, texts as well as composed component structures.
The multimedia framework defines a number of encoding and decoding interfaces for various
media such as audio, video, still images and texts as well as a plug-in mechanism for actual im-
plementations of encoders and decoders that can be used by application programs in a unified
manner.

The main contributions of this work are:

1. Conceptual improvements to the traditional PARC user interface class in combining ele-
ments from zoomable and textual user interfaces with traditional PUI elements.

2. Proposal of implementation strategies to dissolve the borders of different application
programs and achieving a more flexible and efficient user interface while reducing the
overall system complexity.

3. A classification of deadlocks types in user interface processes and the design of a simple
and practical locking scheme based on sequencing objects .

4. A thread-safe and system-wide text system supporting internationalised character sets,
text styles and managed text-position for meta-information on the text.

5. Release of Bluebottle, a flexible and extensible thread-safe user interface and multimedia
framework for the Active Object System (Aos) that is able to run sophisticated applica-
tions, not only on workstations and desktop systems, but also on wearable computers,
measuring up to, and even outperforming, commercial hardware accelerated systems in
common situations through structural advantages.

6. A number of case studies delivering proof of concept.

1.3 Overview

This thesis is structured as follows:

Chapter 2 discusses several different user interface concepts from the human computer inter-
action (HCI) point of view, with emphasis on the advantages and problems of zoomable
and textual user interfaces from which the Bluebottle user interface concept and metaphor
is derived. In section 2.6 the Bluebottle GUI is introduced.

Chapter 3 discusses the need for a strong system-wide integrated text system and presents the
concepts of its implementation in the Bluebottle system.

4 Chapter 1: Introduction

Chapter 4 describes and evaluates the graphics framework that forms the basis for the Blue-
bottle display space manager and component framework.

Chapter 5 introduces the Bluebottle display space manager in concepts and implementation.

Chapter 6 presents the Bluebottle GUI component system and compares it to a number of
related systems with a focus on synchronisation strategies.

Chapter 7 describes the Bluebottle sound system.

Chapter 8 introduces the Bluebottle codec framework that is responsible for internalising and
externalising images, sounds, movies and texts.

Chapter 9 lists a number of case studies using aspects of the user interface and multimedia
framework described in the previous chapters.

Chapter 10 draws conclusions and points to possible future directions.

Appendix A provides a number of commented programming examples relating to the different
topics discussed in the previous chapters.

2
User Interface Concepts

In the struggle for survival, the fittest win
out at the expense of their rivals

because they succeed in adapting themselves
best to their environment.

— Charles Darwin (1809 - 1882)
The Origin of Species, 1859

This chapter discusses user interface concepts mainly from the human computer interaction
HCI point of view. It starts with a general introduction to user interfaces, and then focuses
on textual and graphical user interfaces. Four different user interface concepts are discussed in
more detail: Command Line Interfaces (CLIs), PARC style user interfaces (PUIs), Textual User
Interfaces (TUIs) and Zooming User Interfaces (ZUIs). This discussion leads to the proposition
of a new user interface concept, combining elements of WIMPs, TUIs and ZUIs in a novel way.
As a proof of concept, the proposed interface is implemented as the Bluebottle user interface.
Implementation details can be found in the later chapters of the text.

Overview: Section 2.1 introduces the very basic concept of a user interface. Section 2.2
recalls properties of the Command Line Interface. Section 2.3 gives a short introduction to
PARC user interfaces and compares them to the CLI. Section 2.4 introduces textual user inter-
faces and contrasts them with CLI and PUI interfaces. Because zooming user interfaces are
not very well known, section 2.5 gives a more detailed introduction to the concepts and a short
historical review. 2.5.1 describes recent and important work in the ZUI area. 2.5.2 describes
a number of advantages of ZUIs over PUI systems. Section 2.5.3 lists and discusses a number
of problems that are introduced by ZUIs. Section 2.5.4 presents conclusions drawn from the
ZUI discussion. Finally section 2.6 presents a new conceptual model that synergetically inte-
grates elements from TUIs, PUIs and ZUIs into a new general purpose computer user interface,
alleviating many of the problems introduced in traditional zooming user interfaces.

5

6 Chapter 2: User Interface Concepts

2.1 Introduction

A user interface is the part of a system or tool that is exposed to the user. The first user inter-
faces were developed with the first tools invented by human ancestors. While the user interface
of a hand-axe is, in terms of complexity, not really comparable to user interfaces seen in daily
life of the twenty first century, it can be argued that it much better matches to its intended use
than most of the user interfaces developed in the last few years.
The main reason for the increased complexity of current user interfaces is found in the number
of tasks performed with a single tool. It is the task of a user interface designer to develop, with
the available resources and limiting restrictions, a user interface that lets the user master the
task-given complexity as adequately and efficiently as possible.
A system to play music may serve as an illustrating example: given no further restrictions,
requirements and information, the designer might decide to put each piece of music, together
with the player hardware, into a box in the form of a book. Opening the music-book would
start playing the associated piece. This user interface is simple and may be appropriate in some
contexts, maybe for pre-school education. If the number of pieces in a collection gets too large,
the simple physical selection scheme becomes inefficient or infeasible by its own design that
is limited by the physical access distance. All additional constraints and requirements lead
to more versatile but also more complex systems, unifying the tasks of finding, selecting and
playing of pieces of music into one tool.
When developing a user interface, the designer should be aware of all the requirements and
restrictions of the given task. To get the best interface for a given task, it is normally neces-
sary to integrate the designated users into the development process and to do several iterations
on the fundamental concepts and implementation of the user interface. Detailed information
about usability engineering and user interface development can be found for example in [83]
and [92].
The main task performed with a general purpose user interface is managing task specific pro-
grams, called application programs. This includes starting of and navigation between different
application programs. The general purpose user interface of a system strongly influences the
possible interoperation between different application programs. Good interoperability between
different application programs is desirable for efficient reuse of processed data. The worst pos-
sible integration is if the user has to manually type the output of application A as the input of
application B possibly requiring data to be reformatted and converted. The best integration is
if the user does not even notice the difference between the application programs.

The following sections introduce and discuss several different kinds of general purpose user
interfaces.

2.2 Command Line Interface

Command Line Interfaces (CLIs) are used to send textual commands to the system.
The probably best known representatives of CLIs are the UNIX shells such as Bsh, Csh, Ksh

2.3. PUIS - PARC USER INTERFACE 7

and about a dozen more. The main task of a shell is to offer a line editor where the user can type
and modify the command line that is then interpreted according to the rules of the command
line interpreter when the user presses a special enter key. In the simplest case, the content
of the command line contains a command that is optionally followed by parameters. Many
modern shells also offer chaining or piping of commands and input features such as automatic
completion of file names.

In current shells, most commands operate on text input and output. Operating on text is
very flexible but has two main weaknesses:

• The output of a command needs to be cut and parsed to get the desired pieces of informa-
tion that then have to be formatted as the input for the next command. This transformation
process is arduous, heavily version-dependent and error-prone.

• Text is not type-safe. The compatibility of one command’s output to the next command’s
input cannot be checked by the command shell. It is sometimes, but not always, possible
for a command to recognise bad input. An example of bad input that remained unrecog-
nised by a follow-up process is the diagnostic message of the inertial reference system
of the Ariane 5 rocket that caused an overflow exception. The diagnostic information
was taken by the on board computer as input for flight control calculations resulting in a
rapid change of attitude that caused the rocket to disintegrate and triggered a controlled
destruction [26].

The Microsoft’s Monad shell [73] from Microsoft avoids these two problems with the intro-
duction of object streams that can be piped between commands. Sending typed object streams
between commands becomes possible with the .Net framework and its reflection support.
From a usability point of view, the main drawbacks of the CLI are the Invisibility of Commands
and the limited interactivity. While it is fast to type a well remembered short command, it is
very difficult to find what commands are available or applicable in a given situation. The prob-
lem is especially hard for beginners as they have to learn a new ’shorthand’ before they can do
anything. It is normally aggravated by cryptic, inconsistent and inappropriate command names
and parameters that are chosen to be short instead of meaningful. In CLIs, commands can be
parameterised and started but normally not easily controlled at runtime. What is an advantage
for scripting is a disadvantage for interactive applications. Especially in the graphical domains,
such as CAD systems, interactive editing is useful and efficient.
Command line interfaces are best used for non-interactive automated tasks such as batch proc-
essing of data or for controlling and configuring non-interactive systems such as web servers.

2.3 PUIs - PARC User Interface

So called PARC user interfaces are the most widespread graphical user interfaces, named after
the user interface of the Alto that has been developed at Xerox PARC in 1973 and influenced
the GUI design of most modern systems. The Alto user interface introduced windows, icons,
menus and pointers that are nowadays pervasive in general purpose computer systems. PUIs

8 Chapter 2: User Interface Concepts

are often referenced as Desktop User Interfaces because of the desktop metaphor that is imple-
mented or as WIMPs as an acronym for windows, icons, menus and pointers. The Macintosh
and Windows GUIs are the best known representatives of the PUI interface category. Because
of their pervasiveness, the term GUI is often used as a synonym for PUI in daily usage and
sometimes in the literature, too. In this discussion the term GUI is used to refer to the superset
of all graphical user interfaces.
The main advantage of PUIs over the older command line interfaces is that commands and op-
tions are self-revealing because they are visible in the form of buttons, menus-items and icons.
The user is always reminded of the operations that are possible on a selected object. In CLIs
in contrast, all commands and parameters must be remembered or looked up before use. A
drawback of menu commands is that they are less parameterisable and therefore less flexible
than CLI commands. Scripting in PUIs is, compared to the scripting abilities of CLIs, almost
non-existent.
Most PUI elements are based on a metaphor that maps the interactions with the computer to
interactions with earlier known technologies. In fact it maps the interaction with the computer
to the work in an office of the 1970s. Documents are stored in folders and deleted by putting
them into a trash can. While the desktop metaphor was a great help for the first generation
of computer users in offices, new features that are unknown in the domain of the metaphor
are hard to integrate. For example, in typewriters, there was no feature like selecting a text
and changing the font size or style. The typewriter metaphor is therefore not appropriate for
modern text editors. About thirty years after the first introduction of the PUI the new genera-
tions of users expect personal computers on each office desk which renders the 1970s desktop
metaphor, based on a pre-computer-area office, more and more inappropriate and limiting. In
”The Anti-Mac Interface” [37], D. Gentner and J. Nielsen point out a number of weaknesses
of the traditional desktop metaphor such as for example the ”single-trash-can” metaphor. In a
”desktop system” documents are deleted by putting them into a virtual trash from where they
can be retrieved again until the trash is emptied. If the user empties the trash can to get more
space on one disk, the trashed documents from all other disks are unnecessarily deleted, too
because of the inappropriate metaphor. Some of the improvements suggested in the paper are
starting to find their way into the latest incarnations of Windows and MacOS.
A big problem of GUIs in general and PUIs in particular is the competition for screen space
between visible interaction elements such as GUI widgets and the effective work data such as
a texts or images. The competition for screen space is aggravated in smaller displays as used in
PDAs or head mounted displays.

2.4 Textual User Interfaces

In textual user interfaces, so called TUIs, commands can be placed within any text and be
invoked by pointing with the mouse cursor at it and pressing a special key or mouse button.
This paradigm has several advantages over CLIs:

2.5. ZOOMING USER INTERFACES 9

Visibility The commands and their parameters can be placed into tool texts prepared for a
specific task or set of tasks. The commands are visible in the text and ready to be invoked by
the user.

Readability There is no need for commands in TUIs to be short and cryptic since the com-
mands are normally not typed very often. Normally, commands are typed only once for a
specific task. If there is a chance to need the commands again for the same or a similar task,
the respective text can simply be stored as a tool text for reuse.
In TUIs, scripting and command piping is normally not as sophisticatedly supported as in CLIs
even though there are no conceptual obstacles. TUIs are more flexible than PUIs since the visi-
ble commands can easily be changed and parameterised simply by editing them. Usually TUIs
are less interactive than PUIs.

An example for a TUI is the Oberon System as described in [117] and shortly discussed
from an HCI point of view in [92]. While the original Oberon system uses a tiled display of
texts it is also possible to integrate the essence of a textual user interface into a windowing
system as shown in [120].

2.5 Zooming User Interfaces

A zooming user interface ZUI is a special kind of a GUI where panning and zooming are the
only primitives to navigate between and within documents. ZUIs are sometimes referenced
as Multi-Scale User Interfaces since objects can display different levels of detail in different
scales.
One of the basic ideas behind the zooming user interface is the Spatial Data-Management that
was developed in the 1970s [23] [14]. In spatial data management systems (SDMS), large
data-sets are presented in a graphical form on a screen. The user can pan and zoom on the data
surface. When zooming in, the SDMS can present more and more details about the data items
in view, when zooming out, the data can be abstracted.
Zooming as a concept was in use within specific application domains such as CAD and data
visualisation long before it was discussed as a general user interface concept. In the 1990s the
zooming subject was taken up by K. Perlin [86] and B. Bederson [9] and the idea of a more
general zoomable user interface was discussed and implemented (see 2.5.1 for details).
In PUIs, documents are stored in virtual folders, often represented by icons. To view or edit the
content of a document, the user clicks the icon that represents the document. The document is
then loaded and displayed in an application program. After use, the document is closed again.
In ZUIs on the other hand, all the documents are ”open” all the time, ready to be edited, lying
on top of an unlimited virtual desktop. All the user has to do in order to view a document,
is to find it on the desktop and zoom in until it becomes big enough for the intended use. If
zoomed far out, a document can look like a single dot on the screen that becomes a thumbnail
representation and finally the editable document, while zooming in and in. If the document
is too big to fit on the screen, the user can use the same panning primitive that was used to

10 Chapter 2: User Interface Concepts

locate the document on the desktop. Hence no scrollbars are needed [92]. Figure 2.1 shows
the conceptual difference of navigating in a text between a PUI and a zooming user interface.
Combining inter- and intra-document navigation leads to a number of conceptual and usability
problems that are described in detail in 2.5.3.
Most ZUIs offer an intuitive transition from a global overview to the smallest detail of an
object or document. Zooming user interfaces in the wider sense have existed for a long time
outside the HCI domain. In geographic atlases for example the earth is presented in maps of
different zooming levels, starting with the entire planet over the continents to the countries and
sometimes even provinces, that are distributed over the pages of the atlas.

��

��������������������������

��

���

��

��

��

��

��

��

�������������������

��

��

���

��

��

��

��

��

��

���

��

��

���

��

��

��

��

��

��

��

��

��

��

��

��

��

���

���������	
���

��

��������������������������

��

���

��

��

��

��

��

��

�������������������

��

��

���

��

��

��

��

��

��

���

��

��

���

��

��

��

��

��

��

��

��

��

��

��

��

��

���

���������	
��� ����������������
�����������������	������

Figure 2.1: Navigation in a Text. Left: in a PUI, Right: in a ZUI

2.5.1 Related Work

There are several recent usability studies and example implementations of zoomable user inter-
faces. The following gives a short overview of selected implementations.

Pad K. Perlin and D. Fox from New York University defined and implemented a zoomable
user interface concept called Pad. It was written in C++ and Scheme, running on top of SunOS,
AIX, Linux and MS-DOS. ”Pad, An Alternative Approach to the Computer Interface” was pub-
lished in a SIGGRAPH paper from 1993 [86]. Pad as the first workable implementation of a
zoomable user interface running on commodity hardware had quite a big influence on a number
of follow-up systems.
One of the main problems with Pad was the rough animation and jumpy zooming during navi-
gation [9].

2.5. ZOOMING USER INTERFACES 11

Pad++ B. Bederson and J. Hollan from Bellcore, and later the University of New Mexico,
implemented a new version of Pad called Pad++ in collaboration with J. Meyer and K. Perlin
from New York University. There are many publications about Pad++ [8] [9] [10] give a
good overview of the implementation. Pad++ compared to Pad had a significantly improved
interaction speed. The smoother zooming improved the sense of relationship between the data
in focus and the rest of the data space. The smooth zooming was achieved with an efficient
implementation in C++ on Silicon Graphics computers. The main algorithmic optimisations
compared to Pad can be found in the following:

• spatial indexing: the bounding boxes of objects are grouped into a hierarchy

• spatial level-of-detail (LOD) optimisation: only the visible details are rendered

• clipping: only the visible part of an object is rendered

• refinement: reduce the rendering resolution while navigating, refine when still

• adaptive render scheduling: the zooming rate is kept constant under varying frame rates

Pad++ supported a standard set of widgets to enter text, lines etc. and a set of operators to
perform grouping, deleting, copying and more.

Jazz is a toolkit for developing ZUI applications in Java created by B. Bederson and his team
from the University of Maryland [11]. The toolkit is built around a hierarchical 2d scene graph
that is structurally similar to the better known 3d scene graphs. Analogously to 3d scene graphs,
hierarchical groups of objects are inherently supported and affine transformations (translation,
scale, rotation and shear) can be applied to nodes. The Jazz scene graph also supports layers,
internal cameras, lenses and semantic zooming. The scene graph factors out transformations
and rendering complexity from the ZUI toolkit and therefore makes it easier to write new
widgets. It also facilitates improvements or changes in the rendering system while the rest of
the toolkit remains unchanged. Some of the drawbacks of the scene graph approach are the
memory footprint, the execution efficiency and the inherently imposed restrictions.
The Jazz framework can be integrated into Java Swing so that it can be used as a part of a
conventional Swing application. It is also possible to integrate Java Swing components into the
Jazz framework so that existing widgets can be reused.
Due to its general approach, it grew rather big was therefore superseded by Piccolo.

Piccolo is the latest incarnation of Pad/Pad++/Jazz developed by B Bederson and his team
at the University of Maryland. It is a toolkit that supports the development of structured 2D
graphics with support for zooming. It maintains a hierarchical structure of objects and cameras
that makes it possible for the application programmer to operate on a higher level on the visual
object without worrying too much about low level implementation details. Piccolo has been
implemented in Java and then ported to the .NET-Framework. While Piccolo supports most of
the features that have been found useful in Jazz, it no longer supports the integration of Swing

12 Chapter 2: User Interface Concepts

widgets.
The Piccolo framework is described and compared to the Jazz framework in ”Toolkit Design
for Interactive Structured Graphics” published in IEEE Transactions in Software Engineering
2004 [12].

Zomit is a generic zooming API written in Java that works together with a ZoomMap server
written in C++. Zomit was developed as a framework for applications in bio-informatics. Bi-
ological genome databases have become so large that scientists can no longer interact directly
on the available data with conventional methods. Zooming was introduced as an intuitive way
to browse these large datasets [89]. Due to implementation limitations and slow hardware,
zooming only worked in discrete steps. Portals, magic lenses [106] and semantic zooming are
supported.

THE - Flash ZUI Demo J. Raskin specified a system, called THE, The Human Environment
[92] that is supposed to be as easy or easier to learn than a traditional GUI system and as
fast and flexible as a command line system. The main navigational concepts are zooming
and panning. To promote the proposed concepts, an interactive demo has been developed in
Macromedia Flash. Unfortunately it was not possible to implement the interactions as they are
described in the THE specification [93] because of limitations of the Flash environment. The
implementation lets the user experience navigation in a ZUI, including losing the context, the
orientation and the focus as described in more detail in 2.5.3.

2.5.2 Advantages of ZUIs

This section mentions a number of advantages of ZUIs over more traditional graphical user
interfaces:

Spatial navigation The spatial navigation in ZUIs matches well with the human spatial mem-
ory. Users can find documents again where they have placed them before, especially if
they group related documents locally.

Natural hierarchy Hierarchical data-structures can be naturally mapped to objects containing
other objects.

High information density ZUIs can have a very high information density.

Finding by pattern Documents and objects on the virtual desktop can be visually recognised
and found by their form.

Overview when zoomed out When zoomed out, the user can see the context of a document
or object on the virtual desktop. This requires a reasonable manual or semi-automatic
alignment of the objects on the desktop.

Details when zoomed in When zoomed in, the documents or objects can present more infor-
mation or be displayed bigger so that they become more readable.

2.5. ZOOMING USER INTERFACES 13

Screen space usage The screen space can potentially be more efficiently used.

2.5.3 Problems of ZUIs

There are several major and minor problems with zooming user interfaces that are mentioned
briefly in this section and discussed together with proposed solutions.

Lack of Context The lack of context problem describes the situation where a user has zoomed
into the details of an object and then loses the context of the outer object or higher hierarchy
levels.
When zoomed into details, the relationship between the visible details and the higher hierarchy
levels is not apparent. Therefore the mental position within the information space gets lost
and users have difficulties in locating the required information or objects. In such situations,
a planar tree representation can be much better because tree nodes of higher hierarchy levels
remain visible and give context information.
There are several proposed solutions to the problem. Furnas [35] proposed a fish eye lens which
has a variable zoom factor, so that the context is not completely invisible. Pook [90] proposed a
context layer, hierarchy layer or hierarchy tree that can be implemented as translucent overlay
over the focus. A further possibility, implemented in an early version of the Bluebottle GUI, is a
fast ”motor” zooming function where pressing a key zooms out so the context becomes visible.
When the key is released, the zoom returns to the factor it was before. This functionality has
been replaced with the possibilty to use the scroll-wheel of the mouse to zoom smoothly in and
out, putting the navigation more direct into the hands of the user.
Another solution is an additional navigation window in a different zoom level. This solution can
often be found in CAD systems and also in programs that are not inherently graphics oriented
such as for example music notation systems [104].

Tunnel Vision The problem known as tunnel vision is very similar to the lack of context
problem. It describes the conceptual impossibility of having more than one documents or
information sources visible on the screen at the same time unless they are by chance placed
next to each other and in the same zooming level. Proposed remedies for this problem include:

• sticky documents that virtually stick to the viewport during zooming and panning [11].

• additional viewports, sometimes referenced as cameras or portals, that can show a dif-
ferent region of the workspace in a different zooming level [86].

• links or a map overview that allow fast switching between two different views [90].

Loss of Orientation Due to the combined primitives for navigation between and within doc-
uments, users lose the spatial relationship between different documents while zooming and
panning within a single task related document. Figure 2.2 gives a simple example of this prob-
lem. The user is working on the right text, using the documents to the left as information

14 Chapter 2: User Interface Concepts

sources or notes. While working and editing in the right text, the viewport has to follow the
text cursor where the user is working. Due to these task oriented movements of the viewport
within the document, the perceived spatial relationship between the work and the information
source is broken.
This is a conceptual problem introduced with the combination of the navigation primitives for
inter- and intra- document navigation. It can be reduced but not completely solved without
breaking one of the fundamental concepts of ZUIs.

��

��������������������������

��

���

��

��

��

��

��

��

�������������������

��

��

���

��

��

��

��

��

��

���

��

��

���

��

��

��

��

��

��

��

��

��

��

��

��

��

���

��

��

���

��

��

��

��

��

��

��

��

��

��

��

��

��

���

��

��

��

��

��

��

�������

���������������������

���������������������

���������������������

���������������������

��������

���������������������

���������������������

���������������������

���������������������

��

����������������������������������

���

���

���

�������������������������������

���

���

��������������������������������

���������������������

���������������������

������

���������������������

���������������������

���������������������

���������������������

���������������������

�����������������

Figure 2.2: Example of the Loss of Orientation Problem

Desktop Consistency An important concept of ZUIs is that navigation within a document is
the same as between documents. This requires that the entire document is visible within a range
of the virtual desktop. This has a number of undesirable consequences when the content of a
document is extended. Figure 2.3 A shows a section of a desktop of a ZUI. It contains three text
documents, a pie-chart and a notice, possibly of a collaborator, to have a look at the pie-chart.
When the text highlighted with the bold border is extended, a space conflict happens. Apart
from not accepting the text extension or overlapping, the system has mainly three possibilities
to resolve the conflict. In figure B, the system resolves the conflict, extending the text length
on the desktop, moving conflicting documents down. This solution has the drawback that the
document arrangement on desktop is changed by the system which is bad for the user’s spatial
memory that then conflicts with the changed reality of the system. In the sample picture, the
rearrangement destroys an important spatial relationship between the note and the pie-chart. To
avoid this new problem, unbreakable spatial links could be added as a feature of the system,

2.5. ZOOMING USER INTERFACES 15

which of course adds to the overall user interface complexity. Multiple spatial links could
also lead to pathological situations involving cycles of links. In figures C and D the font size
of the document is adapted so that the text fits again into the same space. In figure D, the
document width is also adjusted to the new font size so that lines do not have to be broken
at new places due to the new font size. The resizing solutions are OK for the spatial memory
and also avoid realignment conflicts. The drawback is that the document is moved into another
level of magnification. Different magnification levels of related documents are not desirable
since the navigation between them then not only requires panning but also zooming.

�������	��

�
�
������	�

���
������

�������

��

����������������������������������

���

���

���

�������������������������������

���

���

��������������������������������

���
���	���

�	�
���
���
�

���������
���

��
�����
��

�	�
�����

�������	���
�
������	�

���
�����������������

	�
��	����
�

��	�����
��

���

�

�
��������� �

��

����������������������������������

���

���

���

�������������������������������

���

���

��������������������������������

�������	��

�
�
������	�

���
������

�����������

	�
��	����
�

��	�����
��

���

�

�
��������� �

���
���	���

�	�
���
���
�

���������
���

��
�����
��

�	�
�����

���

���������������������������������

���

���

���

�������������������������������

���

���

��������������������������������

���
���	���

�	�
���
���
�

���������
���

��
�����
��

�	�
�����

�������	��

�
�
������	�

���
������

�����������	�
�

�	����
�

��	�����
��

���

�

�
��������� �

��

����������������������������������

���

���

���

�������������������������������

���

���

��������������������������������

���
���	���

�	�
���
���
�

���������
���

��
�����
��

�	�
�����

� �

� �

Figure 2.3: Conceptual Desktop Consistency Problem in ZUI

Lost in the Blue On January 1, 2003, the ETH Bluebottle system with the prototype of a
zooming user interface was first released to a broader audience.1 Three days after the publica-
tion, a member of the Oberon/Bluebottle community sent the following message to the Oberon
mailing list : ”I love this new system. But I have a question. Is there a solution, now or later, to
find windows again when, after some zoomings, we are lost in the blue.” [69].
With this message he pointed out a typical but easily solvable problem with zoomable user
interfaces, where the user navigates to a point where nothing but a homogeneous colour, the
”blue space”, is visible and it is not clear where to zoom or pan to. The problem can easily be

1Before this 2003 prototype, the Bluebottle GUI was implemented more like a regular PUI system that sup-
ported panning on a desktop twice as large as the screen.

16 Chapter 2: User Interface Concepts

fixed by providing a home key that moves the viewport either to a predefined position or zooms
to an overview.

Implementation The implementation of a ZUI system that can handle thousands2 of virtually
open documents on the desktop requires complex level-of-detail (LOD) optimisations.

2.5.4 Conclusions About ZUIs

Zooming is a natural method to combine overviews with detail views. Using smooth visual
transitions while zooming from an overview into the details helps users get a sense of relation-
ship between the focus and its context.
It could for example be used in a area surveillance system where a guard needs to be informed
about the location of a problem such as a fire alarm. The system can display the entire area with
all the separate buildings using a mark on the building with the problem. The guard can then
smoothly zoom in to get more details such as the floor and location without losing the context.
Zooming can also be efficient in locating documents or objects in hierarchically ordered sys-
tems as long as the user knows the exact hierarchy. Many users could for example find their
home on a zoomable world map because they know the spatial hierarchy of continent, country,
district, city, quarter. Searching a place without this hierarchical knowledge becomes arduous.

Considering the problems of tunnel vision, lack of context, loss of orientation and the in-
teraction overhead, zooming should not be applied as a magic bullet but only if it matches the
problem space.

Especially when considering the use of zooming as the main navigation technique for a
general purpose user interface, the tunnel vision and lack of context problems become critical
since general purpose systems need to provide quick access to a number of different task spe-
cific contexts. Adding additional portals, overlays or hierarchy trees to the system as described
in the literature, only complicates and dilutes the zooming concept.

2.6 The Bluebottle User Interface

This section introduces the Bluebottle user interface in the consequence of the discussion of
general purpose user interface concepts in sections 2.2, 2.3, 2.4 and especially the conclusions
about ZUIs in 2.5.4.
For the discussion the following terms are important:

Display Space The display space is the entire GUI coordinate space that is managed by the
Bluebottle display space manager. The display space is populated by arbitrarily shaped
display space objects. The display space is observed through viewports as defined below.

2Millions in case of library systems.

2.6. THE BLUEBOTTLE USER INTERFACE 17

Figure 2.4 shows a display space with four rectangular objects and two specially shaped
objects, as well as two viewports observing the display space. One of the observers is a
local graphics adaptor, the other is a remote VNC display.

Display Space Objects a display space object is any object that is visible in the display space.
While display space objects in general can be arbitrarily shaped and also translucent, an
important subset is rectangular. In the following, the class of rectangular display space
objects is called windows. Windows are mainly useful to present and manipulate texts,
tables and graphics.

Viewports A viewport observes a certain region of the display space. It displays the display
space objects in the observed region on an associated display such as a computer screen,
a remote network frame buffer or a screen shot utility.

Display spaces, display space objects and viewports are discussed in technical detail in chapter
5.
In the following, section 2.6.1 introduces a task oriented zooming and navigation strategy that

�������

��	�
����

������	�����	����	�

����		��

���	��	�

�	���	���������

����	����	�

�����

���
����
��	

Figure 2.4: Display Space with Display Space Objects and Observing Viewports

avoids the problems of tunnel vision and lack of context on the system level. Section 2.6.2
packs the proposed zooming and navigation strategy into a metaphor.
Section 2.6.3 gives a short overview of the user interaction with the system.
Finally section 2.7 summarises the differences of the Bluebottle GUI compared with other
systems.

18 Chapter 2: User Interface Concepts

2.6.1 Zooming Contexts as a Navigation Concept

We suggest using zooming, where appropriate, in a specialised task-oriented way, limited to
a specific task-related display space object or task-window. Each task-window forms a nat-
ural zooming context that can be zoomed and panned independently of the rest of the virtual
desktop. This means that zooming as well as panning within any zooming context does not
affect any of the outer zooming contexts, whereas zooming and panning within an outer context
affects all inner contexts. A zooming context acts like a microscope on a desktop. Whatever
magnification the microscope is set to, it does not affect the distance of the observer to the
desktop. The individual task-windows can be distributed in an unlimited display space forming
the outer-most zooming context.
This approach has the main advantage that the spatial task-to-task relation on the desktop re-
mains constant, unless intentionally changed by the user, and it is independent of the current
task’s context and task’s magnification level.
Switching between different task-windows is an important feature of any general purpose
graphical user interface. In traditional GUI systems, this is normally done with a task bar
or hidden shortcut keys for task switching. In the proposed model, zooming and panning in the
outer-most zooming context naturally models this operation.

2.6.2 The Instrumented Desktop Metaphor

This proposed model can be visualised with the following metaphor:
The display-space represents a large desktop. On the virtual desktop there are domain specific
viewers. One viewer’s domain can for example be texts. The text viewer can work like a book
on the desktop or like an antique scroll which matches better with many page-less text viewers
that use scrollbars to navigate within the text.
One artefact of real-world books or scrolls is that you can only zoom into it until it hits your
nose3 and it will not reveal much more information by doing so, and this is OK since all it
needs to provide is readable characters. Another domain specific viewer could be a zoomable
microscope. The ideal microscope allows the user to zoom into the observed object without
limits, revealing more and more details. Zooming within the microscope neither changes the
microscope’s size nor does it change the size of the book lying next to it on the desktop. Also
moving the object holder below the lens does not move the microscope or worse the entire
desktop as it is the case in traditional ZUIs.

2.6.3 Principles of Interaction

This section describes the user interaction with the Bluebottle system, going into more details
where it deviates from commonly known systems. The Bluebottle implementation on a stan-
dard personal computer uses the keyboard and mouse as the promary control device.
Following the proposed metaphor, the system offers a large virtual desktop for task specific
display space objects. One of the most important activities of interaction is navigation.

3For hyperopic persons the useful zoom-in stops much earlier.

2.6. THE BLUEBOTTLE USER INTERFACE 19

For moving or resizing of the viewport, the meta key on the keyboard is used.
When the meta key is pressed, the viewport follows the mouse cursor if it touches the edge of
the screen (Fig. 2.5 A). To resize the visible area of the desktop, the user can simply turn the
scroll wheel of the mouse (Fig. 2.5 B).

--
--

--
--
--
--
--
--
--

������
��

������������	
�����

����������	
����
�����������������
�����������������
��	��	
�����
��������

!�����
���"�#$%��$	&	$	�"%���"��$	'�%���"���#&�"%��
��"�&#�	
"%�����("�)*������("%�
��""���"�)*�����""���"%�����+,	�"�)*�
�����+,	�"%���"$��%����$�
�&�"�)*�
�����$�
�&�"�

������
��

--
--

--
--
--
--
--
--
--

������������	
�����

����������	
����
�����������������
�����������������
��	��	
�����
��������

!�����
���"�#$%��$	&	$	�"%���"��$	'�%���"���#&�"%��
��"�&#�	
"%�����("�)*������("%�
��""���"�)*�����""���"%�����+,	�"�)*�
�����+,	�"%���"$��%����$�
�&�"�)*�
�����$�
�&�"�

� �

Figure 2.5: Panning and Zooming with the Mouse

Another possibility for this basic type of navigation is to use the keyboard. Pressing the
direction keys on the keyboard while the meta key is held down moves the viewport by one
screen size along the pressed direction. Figure 2.6 A shows the movement of the viewport
when meta-right then meta-down keys are pressed. Pressing the page-down or page-up keys
on the keyboard while the meta key is held down zooms in respectively out by factor of two,
keeping the screen centre in position (Fig. 2.6 B).

������������	
�����

����������	
����
�����������������
�����������������
��	��	
�����
��������

!�����
���"�#$%��$	&	$	�"%���"��$	'�%���"���#&�"%��
��"�&#�	
"%�����("�)*������("%�
��""���"�)*�����""���"%�����+,	�"�)*�
�����+,	�"%���"$��%����$�
�&�"�)*�
�����$�
�&�"�

--
--

--
--
--
--
--
--
--

������
��

� �

�������
�������

--
--

--
--
--
--
--
--
--

������
��

������������	
�����

����������	
����
�����������������
�����������������
��	��	
�����
��������

!�����
���"�#$%��$	&	$	�"%���"��$	'�%���"���#&�"%��
��"�&#�	
"%�����("�)*������("%�
��""���"�)*�����""���"%�����+,	�"�)*�
�����+,	�"%���"$��%����$�
�&�"�)*�
�����$�
�&�"�

�������

Figure 2.6: Panning and Zooming with the Keyboard

A more advanced navigation operation is to get an overview of the entire desktop. This can
be done with the meta-home key combination. The viewport moves and zooms so that the used
portion of the desktop becomes visible (Fig. 2.7). The user can now select the desktop object
of interest by clicking it while holding the meta key pressed. The viewport moves so that the
clicked object is visible top left. If the display object fits to the screen, the zoom factor is set

20 Chapter 2: User Interface Concepts

to 1 so that the selected display object is visible without scaling. Otherwise the zoom factor
is adjusted so that the entire display object is visible. Pressing the meta-end key combination
zooms to factor 1.

--
--

--
--
--
--
--
--
--

������
��

��������
�������

���������.��+�
�
$"��������������������
���������.��+�
�
$��/"$������

!�����
���"�#$%��$	&	$	�"%���"��$	'�%���"���#&�"%��
��"�&#�	
"%�������("%������""���"%��
���'�
$"%������+��$	�"%������+,	�"%�
�����$�
�&�"�

�������

--
--

--
--
--

--
--

�
����
��������������	
�����

����������	
����
�����������������
�����������������
��	��	
�����
��������

!�����
���"�#$%��$	&	$	�"%���"��$	'�%���"���#&�"%��
��"�&#�	
"%�����("�)*������("%�
��""���"�)*�����""���"%�����+,	�"�)*�
�����+,	�"%���"$��%����$�
�&�"�)*�
�����$�
�&�"�

��

���
�
0--------���------��----
0--------���------��----
0--------���------��----
0--------���------��----
0--------���------��----
0--------���------��----
0--------���------��----
0--------���------��----
0--------���------��----
0--------���------��----
0--------���------��----
0--------���------��----

���

���

���

1��(#+

��$�

�	�$#��"

��	'�$�

�
���
�
0--------���------��----
0--------���------��----
0--------���------��----
0--------���------��----
0--------���------��----
0--------���------��----
0--------���------��----
0--------���------��----
0--------���------��----
0--------���------��----
0--------���------��----
0--------���------��----

21��3

�	&&

.&���

�	
�

��&/��

���!����

���&�!����

Figure 2.7: Zooming to an Overview

Windows as the rectangular subclass of the generic display space objects have a decorative
frame that also serves as a handle for operations on the display object. The frame can be used
to move and scale windows similar to well known PUIs. When being resized, windows either
adjust their content to the new size or they are automatically scaled by the display space man-
ager.
Even though the Bluebottle metaphor with its large desktop suggests to spread application
windows instead of virtually stacking them on top of each other, it is still important for the
work-flow to support overlapping. Overlapping is needed so that the user can move windows
containing information to the place where the information is needed. The management of over-
lapping from the user perspective differs from other well known window managers. When
clicking into the content of a window, it is activated but not moved to the front. This pre-
vents hiding an information window that was possibly placed on top of the clicked window. To
change the overlapping hierarchy the window’s meta area, its border, needs to be used. When
clicking into the border of an inactive window, the window is activated and moved to the front.
To make it possible to move an active window without changing its overlapping, active win-
dows require two clicks to be moved to the front.
At all positions on the virtual desktop it is possible for the user to summon the Bluebottle main
menu that offers system-wide commands and tools. The main menu is called with the meta-esc

2.7. SUMMARY 21

key combination.
The Bluebottle GUI offers many of the well known PUI widgets such as buttons and scroll-bars.
Its text system allows commands and macros to be started from all text fields as in powerful
TUI systems such as for example Oberon [117]. Commands written in any text can be started
using a context sensitive menu that can be called with the right mouse button, or simply by
clicking the command name in the text with the middle mouse button. All texts in the system
are usable for copy and paste operations and are compatible with special text tools such as
macro processors or style editors.
For better visual orientation and organisation it is possible to place different backdrops on the
desktop that can serve to group tasks or projects. Apart from serving as decoration and visual
clues, the backdrop images can be navigated to with a simple click, whenever they are visible.
The entire setup of the desktop with all the task-windows and backdrops can be saved persis-
tently on demand, so that the user can continue work with the same desktop after restarting
the computer. Saving the desktop differs from hibernation as known from other systems in
that application programs are explicitly asked by the display space manager to store their rele-
vant persistent data. This is much more flexible and robust than loading back an entire system
memory image. It is for example possible to update the entire system or even change the hard-
ware setup of the computer and still continue working with a desktop that was saved before the
changes.

2.7 Summary

The Bluebottle user interface is not a zooming user interface in the classic sense as described
in related literature (see 2.5.1). It extends the traditional PUI desktop with a microscope-like,
smart zooming and panning functionality and a certain level of persistence. The use of task
oriented zooming contexts avoids a number of problems of traditional ZUIs:

Lack of Context Zooming context containers such as task-windows in the outer-most zoom-
ing context naturally provide context information. The lack of context problem is thereby
solved on the task level. For intra-task zooming, domain specific context providing con-
tainers can be introduced by the task specific application program.

Lost in the Blue Since the navigation within a zooming context does not affect the relative
position of any outer or outside zooming contexts, the likelihood of getting lost because
of navigation is greatly reduced. A special key combination can be used in the unlikely
case of being lost, to smoothly ”motor” zoom into an overview display.

Tunnel vision The tunnel vision problem is tackled on the task level. Each task-window is
on the same zooming level with the possibility of overlapping between the different
task-windows. Callable translucent tool objects such as the main menu help avoiding
unnecessary navigation operations.

22 Chapter 2: User Interface Concepts

The system-wide text system allows calling commands in context wherever they can be writ-
ten. All texts are compatible and allow the use of macros and tools in a unified fashion.
Traditional PUI elements such as menus and buttons support situations where a pure textual
user interface would be too limited.

3
Text System

Words are, of course,
the most powerful drug

used by mankind.

— Rudyard Kipling (1865 - 1936)

Despite all graphical symbols, animations and sound elements that can be found in modern
general purpose user interfaces, texts play a fundamental role in most tasks users perform in
such systems. There is no way or reason to change this; after all, texts are the most versatile
way to represent stored information in a given human readable language. The most obvious
examples for the use of texts are reading and writing emails, taking notes, reading web-pages,
documentations, books and news. Writing computer programs and designing computer chips
are other less obvious text oriented tasks, even if these texts represent highly structured artifi-
cial languages.
Therefore, Bluebottle takes particular care of the textsystem and implements an unusually
generic text model as a system data structure that is potentially able to handle text in any
language of the world. The tight integration of the textsystem as a system data structure has
proven its worth in the Oberon [117] system and was hence absorbed into Bluebottle.
The following section 3.1 introduces and defines important terms for the discussion of the text
system. Section 3.2 discusses the integration of text systems in general purpose computer sys-
tems. In later sections the design of the Bluebottle text system is described first in concepts
then in technical details. Then a section introduces the concepts of the Bluebottle text editor
components, followed by technical details and the conclusion.

3.1 Terms

When talking about texts, there are several terms that must be defined clearly and distinguished.
This section gives concise definitions and short introductions to the most important terms used
in the following discussion.

23

24 Chapter 3: Text System

Character A character is the smallest unit of a written language. Examples of characters are
letters, symbols, digits and ideographs. A visual representation of a character is called a glyph,
it depends on the context consisting of font, style, size and surrounding characters in a text.
The concepts of character and glyph should be strictly separated.

Glyph A glyph is a visual representation of a character. It is not part of a character set. For
each character, there are different visual representations (glyphs) depending on font, size, style,
text layout and surrounding characters. While font, style and size obviously influence the visual
representation of a character, the influence of text layout and surrounding characters may be
less clear. An example for the influence of the text layout to the character representation is the
punctuation in Chinese, Japanese and Korean (CJK) that is different for horizontal or vertical
layouts. Examples for the influence of surrounding characters are Arabic characters or ligations
like the diphthong AE that is often written as Æ.

Font A font is a collection of glyphs that usually match in size and style. It is a mapping of
characters to glyphs, optionally taking into account the surrounding characters and text layout.
A font should not be confused with a character set, even though most fonts are tuned for one
character set in implementing glyphs for all its characters and often internally storing glyphs in
the order of the corresponding codepoints.

Character Set A character set is a mapping from numbers (integer values) to characters.
Each integer value is called a codepoint. Codepoints can be unassigned, meaning the respec-
tive integer value does not map to a character. There are many different character sets that are
more or less commonly used. ASCII is probably the best known character set. It is defined
over the range of 7 bit unsigned integers. The integer value 65 as an example corresponds to
the character latin capital A. Another character set widely used in Europe is the ISO-8859-1
(Latin1)[53] character set, that is defined over the range of 8 bit unsigned integers and extends
the ASCII character set with a number of accentuated characters used in west European lan-
guages1. The character set does not define visual representations of the contained characters.
The visual representations of characters are defined in fonts.

Character Encoding Schemes A character encoding scheme is a mapping between charac-
ters and sequences of bytes. With a given character set, each character of a text is mapped to
its codepoint. The number of the codepoint is then stored as a sequence of one or more bytes.
A fixed size encoding scheme uses a fixed number of bytes to store each character. This has the
advantage that indexed access to the single encoded characters is easily possible. The drawback
is that all the characters take up the space needed to represent the codepoint with the highest
number. ASCII, UCS-2 and UTF-32 are examples of fixed size encoding schemes. A variable

1The Latin1 extension of the ASCII set covers the following languages: Albanian, Basque, Catalan, Dan-
ish(missing IJ), Dutch, English, Faroese, Finnish, French(missing Œ), German(missing typographic quotation
marks), Icelandic, Irish, Italian, Norwegian, Portuguese, Rhaeto-Romanic, Scottish, Spanish, Swedish.
By a happy coincidence, it also fits for Afrikaans and Swahili.

3.1. TERMS 25

size encoding scheme stores the codepoint numbers in a variable number of bytes. This has the
advantage of saving bytes if shorter encodings can be assigned to the more frequent characters.
The obvious drawback is that no direct indexed access to the single encoded characters is pos-
sible. UTF-7, UTF-8 and UTF-16 are examples of variable sized encodings.
UTF-8 is used to encode characters of the character set specified by Unicode and ISO/IEC
10646. The UTF-8 variable size encoding has been cleverly engineered so that all ASCII code-
points are represented with the same single bytes as defined in the ASCII standard. All other
characters of the significantly larger Unicode/ISO 10646 character set are encoded in more than
one byte. A big advantage of UTF-8 over UCS-2 or UTF-32 is its byte order independence.

Text A text is an ordered list of characters. An abstract text is conceptually independent of
character set and encoding. It only deals with characters. A text that does not contain additional
information is called a plain text. If the text contains additional information about its visual
structure, for example line-breaks, colours, styles or the fonts to be used for display, it is called
a rich text.

Editor A text editor is a tool that allows the controlled manipulation of text. There are several
different kinds of text-editors:

• line editors, where the text is manipulated on a per line basis. Line editors are simple
programs that can be useful in special situations where either the device that is running
the editor is limited in display or memory, or when the text to edit has a special line
oriented structure, like some configuration files that are not based on XML.

• full screen editors, where the text manipulation is not restricted to a selected line. Full
screen editors are useful for most applications that do not require rich text or complex
layouts. The implementation of a full text editor is slightly more complicated than the
implementation of a line editor.

• rich text editors, where the text manipulation supports colours, fonts, vertical offsets or
similar attributes. Rich text editors are useful for applications where the document should
be able to adapt to different screen layouts such as web pages. The implementation
of a rich text editor is much more demanding than the implementation of a full text
editor. The system requirements are also massively higher because of the more complex
layouting process and the mapping between screen positions and text positions that needs
to take formatting into account. The text model needs to support and store formatting
informations, too.

• WYSIWYG (What You See Is What You Get) editors show the manipulated text and often
graphical elements exactly like they will look in the end result, for example on a screen
for an on-line presentation or a page of paper. WYSIWYG editors are mainly used to
create documents for publishing and presentation where a specific layout is needed. In
the view of on-line publications for a large number of different screen sizes and resolu-
tions, strongly defined layouts are a disadvantage because they cannot be adapted to the

26 Chapter 3: Text System

pecularities of a specific screen. For example a portrait layouted document does not fit
well on a landscape orinted screen. For artistic and sometimes legal reasons, completely
preformatted pages are sometimes preferred.

Input Methods Input methods are tools that map input, usually from a keyboard, to charac-
ters that are inserted into a text. Input methods are often referred to as Input Method Editors
(IMEs) or front-end processors (FEPs)[64]. They are mainly used for writing character in lan-
guages where the different characters cannot be mapped directly to the keys on an ordinary key-
board. IMEs usually combine multiple key-strokes, special key combinations and sometimes
GUI widgets for the user to select the desired characters. IMEs can be used to input complex
characters and symbols for example for writing in Chinese, Japanese or Korean (CJK). A large
number of different input methods exist for inputing CJK characters2. The CJK IMEs can be
grouped into several categories:

• Input by structure. Chinese characters (Chinese Hanzi, Japanese Kanji and Korean
Hanja) are composed of radical or radical-like elements. In dictionaries, the charac-
ters are normally categorised by the initial-radical3 and inside the categories ordered by
the total stroke count. Other structural selection criteria are stroke shapes or three or four
of the corners of a character. Some structural input methods allow the combination of
more than one of these selection criteria.
The input method editor normally presents the characters that match the given criteria
and the user selects with the mouse, number or cursor keys.
Relying on the structure rather than the pronunciations of a character makes it possi-
ble to input characters where the pronunciations is not known to the user. Another big
advantage of structural input methods over methods based on transliteration is their in-
dependence of dialects.
Wubi (short for Wubizixing) is a fast structural input method that is popular in mainland
China. All characters can be written with five or less keystrokes. Expert writers can write
up to 160 characters per minute.
Cangjie is another structural input method, that is used mainly in Taiwan.

• Input by encoding. Input by encoding is only used in very rare occasions, if all other
input methods fail. Modern encoding input methods present the entire list of characters
in a huge table where the user can select the character. In older systems, the characters
had to be searched in a printed table and the respective code typed.

• Input by association. Some input methods uniquely map (an important subset of) the
characters to pairs of keystrokes. Two keystrokes result in a defined character. No can-

2Windows XP for example is shipped with 8 IMEs for simplified Chinese, 10 IMEs for traditional Chinese,
an IME for Japanese with support for Hiragana, Katakana and Kanji a Korean IME with support for Hangul and
Hanja. Many of the IMEs in Window XP support different input modes, so they could be counted as more than
one IME.

3Depending on the dictionary there are about 186 categories for simplified respectively 214 categories for
traditional Chinese

3.2. INTEGRATION 27

didate selection is needed. This kind of input requires a lot of training but it can be very
fast.

• Input by transliteration. Transliteration based input methods are the easiest to learn since
they work with the pronunciations of characters. No special tables need to be learned.
The most popular input method in mainland China is the pinyin input method that relies
on the standard romanisation of Mandarin Chinese.
A big problem with transliteration based methods is the ambiguity. In Chinese, a large
number of characters have the same pronunciations. Tones can be used for disambiguat-
ing but the remaining number of candidate characters can still be very large. Sorting the
characters according to usage frequency helps finding the intended characters. While
simple systems operate with single characters, modern IMEs look at character com-
pounds or even phrases and use statistical and linguistic methods to present candidate
characters in a better sortation [118] [20]. The best matching character is often automat-
ically inserted into the text. If the user disagrees with the automatic choice and changes
a character, some systems can update their data bases so that the new character usage is
considered in similar situations.

IMEs are also used for the input of Russian or Greek characters. In these cases, the IME works
similar to a keyboard driver, directly mapping keystrokes to characters. Enabling and disabling
the IME makes it possible to quickly change between input methods for different character
sets. For example, disabling the IME is used to type email addresses, URLs or CLI commands.
Experienced writers often enable, disable and change IMEs in rapid succession to write words
in different languages or scripts.

3.2 Integration

A unified system-wide text subsystem like it was implemented in Oberon [117] offers many
advantages over specialised per application solutions:

Compatibility With a unified text system, all texts in the system are inherently compatible,
meaning texts can be shared between different tools, commands and procedures without the
danger of loss of information due to different internal representations of text and attributes.
Text exchange between different character sets as it happens between applications with differ-
ent text representations can in general not be done without loss of information. This information
loss is obvious in the cases where the different character sets involved are targeted at different
languages with different characters. It is less obvious in cases where both encodings are de-
signed for the same language. In the case of Chinese for example, there are several different
character-set encodings that do not contain the same set of characters. Because of the huge
number of characters, not all the character set defining committees came to the same conclu-
sions about which characters to include and which to leave out. In some cases there is also a
dispute between linguists about what should be considered a character on its own and what just
as a differently written form of another character.

28 Chapter 3: Text System

Tools A system-wide text system allows each application program to take advantage of tools
written for the text system. Importer and exporter procedures that are used for the text exchange
between different computer systems can be written once and then be used throughout the sys-
tem. This of course requires a system managed plug-in structure for importer and exporter
procedures. Apart from the import and export, other system-wide text manipulation tools can
be of great use. Such a text manipulation tool could be as simple as a procedure that changes
all the letters in a selected text to lower case. More compelling ideas are translation aids, spell
checkers, macros, thesauri and acoustic text readers that can help physically disabled persons.

Code Reuse A unified system-wide text system allows the reuse of the sometimes quite com-
plex implementation of an efficient text system. The reuse of the code reduces the complexity
of application programs and therefore helps reducing the total numbers of errors in the system.

In current operating systems, the integration of text gets better and better but it is still far
from perfect. Problems occur for example with application programs that assume the system
to use special character sets or code-pages. Microsoft Windows XP for example uses a system
wide clipboard mechanism that allows text access in different encodings to deal with legacy
applications [74] . One application may put an 8 bit text in the OEM character set into the
clipboard, another may read the text as Unicode. This workaround usually works reasonably
well if the legacy applications clearly specify the codepage they use.
Common problems in non-internationalised and legacy applications are fonts that are hard-
coded and do not support all characters used in a text to be displayed or the wrongful assump-
tion of a certain code-page.

3.3 The Bluebottle Text System

The core of the Bluebottle text system has a model-view-controller (MVC) structure with a
thread-safe text model. An EventSource as introduced in 6.2.6 is used for the administration
and invocation of observers.
The text model has the following properties:

• support for rich text with styles and attributes

• characters are stored in UTF-32 encoding

• support for embedded objects

• support for position markers that automatically float with the text

On a higher level of abstraction, the text system contains:

• a centralised text clipboard

• notions of a single system wide selected text and a single text selection

• a generic rich text viewer and editor with support for in-text command activations

3.3. THE BLUEBOTTLE TEXT SYSTEM 29

• a powerful macro system

• support for input mode editors

On the system level it has the following properties:

• supports one or more registered observers that are efficiently informed about all changes
in the text model

• thread-safe locking mechanism

• support for multiple simultaneous readers

The text utility module AosTextUtilities contains a loading and storing mechanism that uses
AosCodecs for encoding and decoding a variety of text formats.

3.3.1 Programming Model

In the Bluebottle system many active objects (threads) can run at the same time and potentially
simultaneously access a shared text model. The text model must therefore be protected by a
common lock. Because most operations on the text model are non-atomic transactions, the lock
has to be taken and released explicitly. An example of a non-atomic operation that needs to be
carried out as a single transaction consists of reading the length of the existing text and adding
the new characters at the last position.
The following object procedures implement the synchronisation mechanism:

• AcquireWrite and ReleaseWrite acquire respectively release the write lock

• AcquireRead and ReleaseRead acquire respectively release the read lock

• GetTimestamp returns a number that is increased whenever the text model is changed

Text model synchronisation is described in more detail in section 3.3.2. The text is modified
using the following methods:

• InsertPiece inserts a piece into a text. The piece can be either a piece of characters or an
embedded object.

• InsertUCS32 inserts an array of 32 bit characters.

• Delete deletes a stretch of characters and objects.

• SetAttributes defines the attributes over a stretch of characters and objects.

• UpdateAttributes calls a delegate for each text-piece over a stretch of characters and ob-
jects. The delegate procedure can then, for each piece individually, change the attributes.
This functionality is used, for example, when a single attribute such as the font size needs
to be changed while leaving others such as the colour untouched.

30 Chapter 3: Text System

• CopyToText Copies a stretch of characters into another text. This is for example used to
copy selected text from an editor into the system wide text clipboard.

For all modification operations, the modifying thread needs to hold a write lock on the text. On
top of the text modification interface of AosTexts, AosTextUtilities offers a TextWriter object
that can be used to easily create rich texts. The TextWriter programming interface is described
in more detail in section 3.3.6.

The object procedure GetLength returns the length of a text as the number of characters.
Embedded objects count as one character each, so they can be addressed within the text for
example for deletion. The method RegisterPositionObject registers text position objects within
a text. Both procedures require the calling thread to hold at least a read lock on the text model.

3.3.2 Model Synchronisation

The abstract text model is protected by an optimised recursive reader/writer lock that is defined
in the module WMLocks. Before any thread can change the text it must first acquire the write
lock on the text model. Each access procedure that can lead to the modification of the text
asserts the write lock is held by the calling thread. If the lock is not held, an exception is raised
and the calling thread is aborted.
A thread can recursively take the reader/writer lock of a text. The read-lock is shared so that
more than one observer can read on the text at one time. The following locking restriction
is introduced and enforced with an inexpensive runtime check to prevent a notorious case of
deadlock: If a thread needs to modify a text, it must acquire a write lock before taking any read
locks4. This restriction orders the reader and writer part of the lock and hence prevents lock
circularity and deadlock on a single text. If more than one text is shared between a number of
threads and at certain times more than one text needs to be locked by a thread, an ordering of
the texts must be enforced on a higher level to avoid deadlock.
While the model of a text is locked, it collects information about all modifications until the
last write lock is released. It then informs all its observers about the place and kind of the
modifications. Observers can be installed using the onTextChanged event source of the text
model. Section 6.2.6 discusses the event mechanism in detail. Modification operations are
insertion, deletion and attribute or style changes. If the modifications are not limited to a single
continuous range of the text, the model informs observers about multiple changes, omitting the
details. In most applications that involve a text with observers, for example an interactive text
editor or a log viewer, the operations are insertions and deletions of single characters or words,
not resulting in multiple changes notifications.
Before taking advantage of detailed change notifications, the observers must make sure that
no other modification occurred between the time the mutator thread released its last write lock
and the time where the observer acquired its (first) read lock. This is done by a comparison of
a timestamp, set by the model into the change notification message, right before the lock was

4If a read-lock is still held on a text, after all write-locks are released, the thread may not take up a new
write-lock before also releasing all the read-locks on the text.

3.3. THE BLUEBOTTLE TEXT SYSTEM 31

released, with the timestamp read from the text, after taking the read-lock. The timestamp is
incremented by the text model after each change of the text.

3.3.3 Text Positions

TextPosition objects are used for the text caret, selections, specially marked positions such as
compilation errors and also for internal layout information such as the positions of line or para-
graph starts.
They are a special kind of model observers that are, unlike normal observers, immediately in-
formed about every single text modification, while the write lock is still held. They keep an
internal position value that is adjusted on all text changes, so that they move with the surround-
ing text if it is changed. An insert operation in front of the internal position will increase the
internal position by the number of inserted characters. Delete operations on the other hand
decrease the internal position. If a delete operation on the text includes the internal position
of a TextPosition object, the respective TextPosition is moved to the start of the deletion. A
text position object that is set to the beginning of a word, for example, will always point to the
beginning of this word, even if the text in front of it is changed.
TextPositions can be registered with a text model using its RegisterPositionObject procedure.
The TextPosition objects are automatically collected and unregistered by the system-wide gar-
bage collector when they are no longer used. There is no manual un-register functionality.

3.3.4 Readers

A thread that wants to read from a text, must first acquire the read lock of the text. It can then
open a TextReader on the text and set it to the desired start position. The reader object re-
turns character by character and automatically advances its position on each call to the ReadCh
method until the end of the text is reached. The style and attributes of the last read character
are available in the attributes and style fields of the reader object. The concept of text readers
has been taken from Oberon [117] and was extended to support styles, Unicode characters and
thread-safety.
The reader can read forwards or backwards. Reading backwards is needed for operations such
as finding previous line-breaks or word boundaries used to create the text layout and also for
word-wise editing operations.
The TextReader is implemented as an extension of a TextPosition object as introduced in 3.3.3.
If the reading thread gives up its last read-lock and the text is changed, the reader floats on the
text.
The TextReader object takes an AosTexts.Text as a parameter in the constructor. Its position is
changed with the SetPosition procedure that is inherited from the TextPosition object class. The
direction of the reader can be set with the SetDirection procedure.

32 Chapter 3: Text System

3.3.5 Attributes and Styles

For any range of characters, a style can be defined. If no explicit style is set, the editor uses a
system wide default style. Styles can either be named or ad-hoc. Named styles can be defined
per document or for classes of documents. If the user wants to set a style that is not defined for
the document-class, an ad-hoc style is created that stores the relevant attributes.
The following text attributes can be defined in a style:

• vertical line offset

• font colour

• background colour

• font name

• font size

• font style

• explicit kerning

This set of text attributes is supported by the system-wide standard text editor (3.4) and is
therefore available throughout the system.
Specialised layout or desktop publishing programs can add customised style extensions [63].
The style for a document class is stored as an XML file [112] containing a number of named
character-style elements that specify the text attributes. Listing 3.1 gives an example of a text
style file.

<styles>
<character-style name="Normal" font-family="Oberon" font-style="0" font-size="10.0000"
leading="12.0000" baseline-shift="0.0000" color="000000FF" bgcolor="00000000"
tracking="0.0000" kerning="0.0000" h-scale="100.0000" v-scale="100.0000"/>

<character-style name="Assertion" font-family="Oberon" font-style="1" font-size="10.0000"
leading="12.0000" baseline-shift="0.0000" color="0000FFFF" bgcolor="00000000"
tracking="0.0000" kerning="0.0000" h-scale="100.0000" v-scale="100.0000"/>

<character-style name="Debug" font-family="Oberon" font-style="0" font-size="10.0000"
leading="12.0000" baseline-shift="0.0000" color="0000FFFF" bgcolor="00000000"
tracking="0.0000" kerning="0.0000" h-scale="100.0000" v-scale="100.0000"/>

<character-style name="Lock" font-family="Oberon" font-style="0" font-size="10.0000"
leading="12.0000" baseline-shift="0.0000" color="FF00FFFF" bgcolor="00000000"
tracking="0.0000" kerning="0.0000" h-scale="100.0000" v-scale="100.0000"/>

</styles>

Listing 3.1: Excerpt of the Default Active Oberon Program Text-Style

The text style is normally generated by a text style definition tool that creates and manages
the different styles for a document class.

3.3. THE BLUEBOTTLE TEXT SYSTEM 33

3.3.6 Text Writer

The TextWriter is a wrapper on a text object that facilitates the creation of plain and rich texts. It
is opened on a text and offers a streaming interface for text creation. The writer has an interface
to select attributes such as font name, style, size, colour, background colour and vertical offset
that are applied to all characters that are written via the Add procedure of the writer after
setting the new attribute. The Add procedure implements the AosIO.Sender micro interface5. It
interprets the content of the added buffers as UTF-8 encoded characters.
The TextWriter.GetWriter procedure returns an AosIO.Writer object instance w that is opened
on the Add procedure of the TextWriter. Successive calls to the GetWriter procedure return the
same writer instance w. The TextWriter automatically calls the AosIO.Writer.Update procedure
of the AosIO.Writer w before the font attributes are changed so that buffered but not yet added
characters are added with the correct attributes. If another instance of an AosIO.Writer is
opened on the Add procedure, the application programmer needs to explicitly call the Update
procedure on the writer before calling any attribute change procedures to make sure the stream
is flushed before the new attributes are set.
A TextWriter object should not be shared between threads. If more than one thread needs to
write on a single text, each one should bring its own TextWriter object. Note that opening more
than one TextWriter on a text is safe.
The following lists and documents the procedures in the TextWriter object:

• PROCEDURE &Init(text : AosTexts.Text); The constructor Init takes a text as a parameter
to which the writer is bound to.

• PROCEDURE Add(VAR buf: ARRAY OF CHAR; ofs, len: LONGINT; propagate: BOO-
LEAN; VAR res: LONGINT); The add procedure adds len UTF-8 encoded bytes from the
buffer buf to the text, starting at offset ofs. The parameter propagate indicates whether
the buffer should immediately be written to the text or if the TextWriter can delay the
writing to accumulate more characters. The propagate parameter is a requirement of the
AosIO.Sender micro interface that is used to connect AosIO.Writer objects. The current
implementation of TextWriter ignores the parameter. The return parameter res is set to
AosIO.Ok if the operation was successful.

• PROCEDURE GetWriter() : AosIO.Writer; returns an AosIO.Writer instance w that is
opened on the Add procedure. The procedure always returns the same instance w. To
flush the buffer of the AosIO.Writer instance w, its Update procedure is automatically
called before applying any attribute or style changes to ensure the queued characters are
written in the style or with the attributes that were set when the characters were added to
the writer.

• PROCEDURE SetPosition(pos : LONGINT); repositions the TextWriter within the text.
If SetPosition is not called, the new text is appended at the end of the text.

5A delegate procedure variable comprising a method pointer and object reference

34 Chapter 3: Text System

• PROCEDURE SetFontName(name : ARRAY OF CHAR); changes the font.

• PROCEDURE SetFontSize(size : LONGINT); changes the font size.

• PROCEDURE SetFontStyle(style : SET); change the font style. The style set can be
empty or contain WMGraphics.FontBold and/or WMGraphics.FontItalic.

• PROCEDURE SetFontColor(color : LONGINT); changes the font colour.

• PROCEDURE SetBgColor(bgColor : LONGINT); changes the background colour that is
drawn behind the inserted text.

• PROCEDURE SetVerticalOffset(voff : LONGINT); changes the vertical offset for the
inserted text. This can for example be used to generate a superscripts or subscripts.

• PROCEDURE SetStyle(style : ARRAY OF CHAR); applies a certain style for the inserted
text. If a style is present, it overrides previously set attributes. It is recommended to
use styles instead of setting individual attributes to achieve more flexibility and a unified
look.

Appendix A.2 shows a commented example program using the TextWriter interface to create a
rich text.

3.3.7 Internal representation

The internal representation of the text model is completely encapsulated by the text model
interface and can be transparently replaced. The default implementation stores the text in a
doubly linked list of piece-descriptors containing pointers to arrays of UTF-32 encoded char-
acters. The fixed-size UTF-32 encoding was chosen for the internal representation because
it offers direct access to each character while at the same time offering enough codepoints to
store any character specified in Unicode 4. An internal UCS-16 6 representation as used in
some commercial systems cannot store all characters defined in Unicode 4.0 because the high-
est codepoint (U+10ffff) is far above the highest codepoint that can be encoded with 16 bits.
Table 3.1 compares several important encoding formats with respect to the range of characters
that can be stored, possible access methods and byte order dependence.
When inserting new characters into a text, the piece at the respective insertion position is split
and a new piece is inserted. When deleting, the pieces at the start- and end-position of the dele-
tion are split and the outer pieces linked together. To reduce the number of small pieces and
internal fragmentation in a text, neighbouring piece-descriptors can be merged, if their styles
and attributes are the same. The merging works by copying the referenced characters into a
single character array and replacing the two piece-descriptors with a new one, referencing the
copied characters. To avoid long copy operations when merging, the merge is only performed
if the resulting combined size of both pieces is smaller than a threshold value.

6Systems like Windows NT that are based on an internal 16 bit character representation can, for some applica-
tions, be retrofitted by interpreting the 16 bits as UTF-16 variable sized character codes.

3.3. THE BLUEBOTTLE TEXT SYSTEM 35

While the linked list is very efficient for linear reading of the text, directly accessing a character
can result in a lengthy linear traversal. To speed up random positioning, the text maintains a
lazy updated sorted array that contains references to the single pieces. Bisection search is used
on the array to position on the text in O(log(textsize)). Figure 3.1 shows the internal structure
of the default text model implementation.

������	
��

����� �����

������

�����

�����
�	� ���

�����
�	� ���

�����
�	� ���

�����
�	� ���

������ ������ ������

����������

Figure 3.1: AosTexts Internal Structure

3.3.8 External Representation

In the Bluebottle text system, the loading and storing of texts is implemented as external op-
erations on the text model. This has the advantage that the internal representation of the text
model and the different external representations can be maintained independently. The load-
ing and storing of texts is handled by text encoders and decoders as defined in the AosCodecs
framework that is discussed in detail in chapter 8. In the 2004 version of Bluebottle, the system
by default supports the following plain and rich-text formats:

• UTF-8 (plain text)

• ISO-8859-1 (plain text)

• ASCII (plain text)

• UCS-16 (fixed size 16 bit, plain text in little endian format)

• Bluebottle (Rich text, XML-structure in UTF-8 encoding)

36 Chapter 3: Text System

• Oberon (Rich text, 8-bit Oberon character set, without embedded gadgets)

The Bluebottle Text Format

The Bluebottle text file format is able to store the full character set, style and attribute informa-
tion of the Bluebottle text model. Storing files in other formats can result in missing characters
or loss of style information. The Bluebottle text file format is an XML document stored in
UTF-8 encoding. The style information is stored per span as a reference to a style or as a di-
rectly specified ad-hoc style. The text data is stored in a "<![CDATA[" [112] section. The
CDATA sections have the advantage over normal tags that spaces, line-breaks and tabulators can
be used without escaping. The text within a span can therefore be read and modified within any
UTF-8 capable editor if there is no Bluebottle system available. Listing 3.2 gives an example
of a text using predefined and ad-hoc styles.

<?xml version="1.0" encoding="UTF-8"?>
<?bluebottle format version="0.1" ?>
<Text>
<![CDATA[This is in Normal style.]]>
<![CDATA[This is Bold style.]]>
<![CDATA[This is an AdHoc style.
It is using Oberon font 20, bold, no vertical offset
in a dark gray colour on white ground.]]>
</Text>

Listing 3.2: Example of the Bluebottle Text Format

ASCII UTF-8 UCS-16 UTF-16 UTF-32

Encode all Unicode characters no yes noa yes yes
Indexed character access yes no yes no yes
Byte order independent yes yes no no no

Table 3.1: Encoding Characteristics
ayes up to Unicode 2.0

3.4 Text Editor

The Bluebottle standard text editor follows a strict model-view-controller architecture. The
layout mechanism, rendering, selection and navigation is implemented in the module WM-
TextView. The controller is implemented in the module WMEditors. An arbitrary number of
text views or text editors can be opened on the same text model.
The text viewer is implemented in the component TextView as an extension of VisualComponent
that is described in chapter 6. The editor component is itself an extension of a VisualCompo-
nent, containing two optional scrollbars and a TextView component.

3.4. TEXT EDITOR 37

3.4.1 Text View

Text Layout The TextView always keeps a rough text layout of the entire text up to date. The
rough layout mainly consists of a list of the text positions of all line starts and the height, as-
cent, descent, active tabulator positions and alignment for each line. The tabulator positions
are shared by reference over the range of lines that have the same settings. This rough lay-
out information is used for an efficient mapping of view positions to text positions and vice
versa. To reduce the computational overhead needed to create this rough layout, the TextView
registers as a text model observer on the text and uses the detailed change messages to perform
differential updates on the layout, where possible. Most text editing operations, are single in-
sertions or deletions of a number of consecutive characters that can be handled in a differential
layout update, if the timestamp of the text (see 3.3.2) and the timestamp of the modification
notification are equal. In these cases, the detailed line layout algorithm only needs to operate
on the lines that are either affected directly by the deletion or insertion or by possibly changed
word-wrappings or character-wrappings. The first line that is not affected by wrapping effects,
can easily be detected by comparing the newly calculated line-start position with the stored
line-start position. If the difference equals the character delta from the change notification
message, the line is not affected. With word-wrapping enabled, the detailed calculation of the
layout can normally be limited to a single or a few lines.
In the rare case that multiple editing operations are combined or the timestamp of the text has
changed, the layout of the entire text needs to be rebuilt.

Line Layout The detailed layout of a line is always created on demand to avoid the memory
and computation overhead of keeping the detailed structure up to date in memory. It is used to
create or update the layout of the text and to map horizontal screen positions to text positions
and vice versa. The layout algorithm is in principle the same as the algorithm that draws a
text line. It starts with the character or object in the text at the position stored in the respective
line start information of the text layout and calculates the bounding boxes of all characters or
objects in the line. If the algorithm is used for a position mapping, it can stop early if the
position is found. If it is used to calculate the new line layout, it continues until the end of the
line is reached. In the word wrapping case, the algorithm sometimes needs to step back several
positions in the text so that a word can be moved to the next line. If the word is longer than the
line width, character wrapping is performed. The word wrapping problems and special cases
can be ignored in the position mapping cases because the mapping can rely on the text layout.

Markers Text view supports several kinds of special position markers. The most prominent
markers are the caret and text selections. The text view supports two kinds of point position
markers:

• Caret markers that adapt to the height of the line can be drawn in an arbitrary translucent
colour. The standard text caret is using such a caret marker.

• Translucent images that can be positioned with an offset relative to the text position at

38 Chapter 3: Text System

the base line. This can for example be used to mark compile errors in a program text.

The point position marker object class can be extended by a programmer to generate specialised
markers. Snapshot 3.2 A shows an example of point position markers highlighting errors in a
program text that were caught by the compiler. The caret is also visible. The text view also

Figure 3.2: Snapshots of Different Text Markers

supports two kinds of text range markers:

• Overlay selections in arbitrary translucent colours can be used as highlights. The selected
text is an example use for this kind of marker.

• Straight or undulated underlinings in arbitrary colours are used for example to highlight
commands, hyperlinks or to mark errors or problems.

Snapshot 3.2 B shows a selection as a range marker. A caret and a mouse pointer are also
visible.
All the markers can be used at any position and in any number in the text. Snapshot 3.2 C shows
an example with two point markers and two range markers. The markers are implemented in
the TextView and are not stored in the text. Several views that watch the same text can display
different markers.
Point position markers are implemented with a single AosTexts.TextPosition object, that au-
tomatically floats with the text. The range markers use two separate AosTexts.TextPosition
objects.
The text caret and a marker for the selected text are always present in each text view but can be
switched to invisible.

Navigation and Command Invocation The navigation in the text as well as the selection
and in-text command invocation is the responsibility of the text view. The rationale for this lies
in the wish to give the user as much flexibility as possible to work with texts. It is therefore
necessary that the user can select text even if the text is not editable. The selected text can
then for example be copied or interpreted. The argumentation therefore also applies to the
invocation of commands or the opening of hyperlinks.
For the navigation in the text, the TextView supports the cursor and other special keys, the mouse
pointer and the mouse scroll wheel. Selection of text can be either performed with the mouse or

3.4. TEXT EDITOR 39

with key combinations. The support of both selection methods is dictated by the time overhead
of moving the hands from the keyboard to the mouse and back.
When selecting with the mouse, first the mouse cursor is moved to the starting position of
the desired selection and the left mouse button is pressed. Then the mouse cursor is moved
to the end of the desired selection and the mouse button is released. The text view updates
the selection marker during the operation for visual feedback. The scroll wheel can be used
during the operation to navigate in the text. When the left mouse button is pressed twice at the
same position, an entire word is selected. If the button is kept down the second time, selection
continues on word level.
To select text using the keyboard, the text cursor is first positioned to the desired start of the
selection. The shift key is then pressed and held down while the cursor is moved to the end of
the desired selection, where the shift key is released.
Commands in the document can be invoked with the start command in the context menu that can
be opened with the right mouse button. Alternatively, commands can be invoked by clicking
them with the middle mouse button.
The exact functionality and a list of all navigation, selection and invocation options can be
found in the Bluebottle Tutorial [33].

3.4.2 Editor

The text editor is implemented as a VisualComponent that contains a TextView component and
two optionally visible scroll bar components. The text editor component intercepts all keyboard
events that are directed to its TextView sub-component. Navigation key-events are directly for-
warded to the text view. All other key-events that result in a modification of the text are handled
by the editor component. If an input method editor is installed for the editor component, modi-
fication key events are forwarded to the respective IME. The IME is then responsible to modify
the text model according to its rules. If no IME is installed, the editor itself inserts or deletes
characters at the relative cursor position. Key-event messages that are sent to the text view
component are intercepted by the editor which analyses it. If the key-event message stems
from

• a navigation-key, it is passed on to the TextView and the editor returns from the key-event
handler.

• a special edition key combination like copy, cut, paste or similar it is handled by the
respective editor method.

• a modification key, it is either handled by the editor or forwarded to an installed IME.
If an IME is installed, the editor returns from the key-event handler after forwarding the
message. Otherwise, the key message is sent to all installed text macro processors. If
none of the macro processors handles the event, the text editor first locks the text model,
reads the caret and selection position of its view and performs the respective insertion
or deletion operation. After releasing the writer lock on the text model, all views are
automatically updated. Since the caret is implemented as an AosTexts.TextPosition, it

40 Chapter 3: Text System

automatically floats to its new position after the modification operation. Hence the editor
does not need to directly operate on the caret’s position.

3.4.3 Input Method Editors

WMInputMethods provides input method support for the Bluebottle system. It defines an ab-
stract input method editor and a plug-in mechanism for specific implementations. The text
editor can install an instance of an input method editor as a layer between its keyboard mes-
sage handler and its character insertion routine. Figure 3.3 shows the way travelled by a key-
board event in the text editor. First, the editor discerns between navigation-key-events and
modification-key-events. In case of a modification-key-event, it checks if an IME is active on
the editor. If yes, it forwards the key-message to the active IME. Otherwise the character repre-
sented by the key is directly inserted into the text model. If a key event is forwarded to an IME,

����������	�
	�

���

��

��������������������������������������

��

�������������������������������������

��

��

�������������������������������

���������������������������������������

���

���

����������������

������	
��

������	�

Figure 3.3: Data-Flow of a Keyboard-Event to the Text Model

it can be processed in different ways. Simple IMEs can just re-map the key to another Unicode
character. In this simple one-to-one mapping case, the IME acts similar to a keyboard driver.
Examples for this simple mapping are input method editors for Cyrillic or Greek character in-
put.
In Bluebottle, WMCyrillicIME implements an input method for Cyrillic characters. It mainly
consists of a mapping table. For more complicated input methods, the IME needs to take over
the complete keyboard control from the main editor. WMPinyinIME implements a complex
IME for Bluebottle. When the input method editor gets the first key-event from the editor, it
opens a small window next to the cursor position in the main editor and tells the display space
manager to forward keyboard events to the new window. Inside the IME window, key strokes
are sent to an embedded editor7. While typing into the IME, it displays all possible characters
or character compounds that match the pronunciations typed so far. The candidate list is sorted
by their usage frequency as taken from the Unihan database. As soon as the typed text no
longer matches any characters or character compounds from the IME’s dictionary, it inserts the

7To avoid recursion, the editor inside the IME window may not enable another IME.

3.4. TEXT EDITOR 41

last recognised best match into the text and uses the new input as a new character or start of
a character compound. The user can at each time select from the presented candidate list and
force the insertion of the selected character. Selection and insertion is possible via keyboard or
mouse. WMPinyinIME optionally supports tones to reduce the number of matches and a first
character match strategy for inserting common character compounds or short phrases by the
syllables’ first characters. To support students learning Chinese, it displays the tones for the
recognised characters and phrases and optionally a translation to English.
The simple selection strategies of WMPinyinIME and its limited dictionary of characters and
phrases leaves room for improvement. To match the usability level of the best commercial
pinyin IMEs, support for automatic learning of new character usages, a better prediction method
as well as support for a certain pronunciations tolerance should be added to WMPinyinIME.

Figure 3.4: Bluebottle Pinyin IME in Action

3.4.4 Macros

The Bluebottle text editor supports macro plug-ins. Text macros plug-ins are procedures that
operate on the text and cursor position of a text editor. The macro procedure is invoked by a
special key or key combination. Although the system is open to support other key combinations,
all the system defined macros are invoked by the insert key. In many systems, the insert key
toggles between a character insertion and character overwriting mode. The system-wide text
editor in Bluebottle does not offer these two modes, it is always in the insertion mode. The
insert key is used more intuitively as a key that really inserts something, namely the result of a
macro procedure evaluation.
When the default macro plug-in recognises the insert key it reads the text on the cursor position
backwards to either a white-space character like a space or a line-break or a colon. The text
between this white-space or colon character and the cursor position is interpreted as the name

42 Chapter 3: Text System

of the macro procedure. Hence, the number of different macros that can be invoked by the
insert key is not limited.
The macro names and macro functions are specified in Macros.XML. They replace the macro
name in the text with a larger piece of text. The larger text can either be a fixed string or it can
be a parameterised text. The macro parameters are searched in front of the macro name, each
separated by a colon. The macro parameters can be inserted between fixed string elements in
any order and repetition. Table 3.2 gives examples of some macros. The left column specifies
the unprocessed macro string with optional parameters. The right column shows text that results
when the macro in the left is invoked with the insert key.

Macro Evaluation

tf frey@inf.ethz.ch
Test:P PROCEDURE Test;

BEGIN
END Test;

IME:WMInputMethods.IME:o TYPE
IME = OBJECT(WMInputMethods.IME)
VAR

END IME;

Table 3.2: Examples of Macros and their Evaluations

3.5 Usage Example - Programming Environment

Since the second half of 2003, the Bluebottle system has been developed mainly with its own
tools. Before, the system was cross-developed with tools of the traditional Oberon system
running as an application on top of the Bluebottle system (see 5.7). The central element of
program development on Bluebottle is a text editor that is specialized for programming and
debugging in Active Oberon. The Programmer’s Editing Tool consists of a number of standard
GUI components and some glue code to integrate the compiler. Figure 3.5 shows a snapshot of
the programmer’s editing tool.

GUI widgets on top from left to right

Filename input field specifies the filename of the program text that is to be loaded or stored

Load button loads the text in the file specified in the filename input field

Store button stores the text in the file specified in the filename input field. The Store button is
marked with an exclamation mark if the text has been changed since it was last stored.

Format menu selects the text format for loading or storing.

Search opens a search panel to search strings within the loaded text.

3.6. CONCLUSION 43

Compile compiles the currently loaded text using the compile options in the compile options
input field.

FindPC searches for a selected program counter position in the source text. The program
counter value is taken from the last selection, normally in a trap window. If no number is
selected, the program opens a query input dialog.

Split opens an additional view on the text model that can display a different position of the
source text.

Compiler options input field contains the compilation options like the target processor.

GUI widgets in the left panel from top to bottom

Program structure displays the structure of a loaded Active Oberon source code. Clicking
into the structural overview positions the text cursor at the respective position in the
source code. If an XML document is loaded instead of an Active Oberon program, the
XML document’s structure is represented and a tool offers support for checking the syn-
tactical correctness of the XML text.

Scratch text is a tool area that is synchronized between all instances of the programmer’s
editing tool. It is used to note frequently used commands. It is a good example of the
model view architecture of the text system. A single text model is displayed by a possibly
large number of text views.

GUI widgets in the bottom In the bottom of the window a grid component displays the
result of the last compilation, either the size of the resulting object file or a list of compilation
errors. Clicking at an error message positions the text carret to the respective error position.
The compilation errors are also highlighted in the program text.

3.6 Conclusion

An efficient and versatile system-wide text subsystem is an important part of any modern
(graphical) user interface. In current systems, many application programs bring their own text
system, that is only more or less compatible to the text-systems of other applications. The re-
sult of this inhomogeneity is a number of conversion problems that lead to loss of formatting,
style and sometimes even characters when text is exchanged, even if the text remains in the
memory of a single machine. The lack of a centralised text system hinders the innovation of
system-wide text support tools such as dictionaries, macros, acoustic readers and more.
In the Bluebottle system, according to the Oberon tradition, a system-wide text system is one
of the central features of the user interface. It significantly differs from and extends the stan-
dard Oberon text system [117] mainly in respect of its thread-safety, support internationalised
character sets, styles and text positions.

44 Chapter 3: Text System

Figure 3.5: A Snapshot of the Programmer’s Editing Tool

4
Graphics System

Idealism is what precedes experience;
cynicism is what follows.

— David T. Wolf (1943 -)

4.1 Introduction

This chapter describes the graphics system that has primarily been developed for the Bluebottle
graphical user interface. Figure 4.1 shows a rough overview of the graphics system. It forms
the basis for the display space manager and component system and comprises the Hardware
Framebuffer, Bitmap Abstraction and Canvas Abstraction. The higher Application layers are
the topic of chapters 5 and 6. Some Applications on an even higher level are described in
chapter 9. The prefix WM in module names indicates that the module belongs to the window
manager. It is also used to differentiate new modules from existing Oberon modules with the
same name. The problem of name clashes is discussed in more detail in 10.2.

���������	�
������������������

������������������
������

�������������

������������������ ������ ���

�������������!

�����������������
�����������!��

�����������������������	����

�
��
�

��
��
�
	
��
��

�
�
�
��
��
��
�
�
�

Figure 4.1: Graphics System Overview

45

46 Chapter 4: Graphics System

4.2 Frame Buffer

The frame buffer driver, whose interface is defined in AosDisplays, is the lowest level of the
Bluebottle graphics system. It mainly offers a transfer routine that moves a bitmap stored in
main memory in the framebuffer’s native colour format to the hardware framebuffer. Since no
clipping, conversion or blending operations are performed on this level, the implementation
is simple and can easily be ported to different hardware/software platforms. Until today the
Bluebottle system including the graphics system has been ported to the following platforms :

• DNARD an ARM based network computer of DEC [25]

• WinAos an implementation of the Bluebottle runtime system on IA32 Windows [34]

• QBIC a wearable XSCALE based belt integrated computer built in the department for
electrical engineering at ETH Zürich [2]

On the IA-32 implementation, the default framebuffer driver in AosDisplayLinear sets the
processor’s cache properties for the frame buffer memory area to write combining which sig-
nificantly increases the memory throughput to the frame buffer. When writing to memory areas
that have write combining enabled, the processor does not immediately forward the written
data to the caches or main memory but stores it in one or more separate buffers until a number
of bytes1 have consecutively been written. It then transfers the whole buffer in an optimised
way, possibly one burst, significantly reducing the bus transaction overhead [46]. Incompletely
filled buffers are transferred by the processor on many software and hardware events, such as
interrupts, uncached loads or stores, INPUT/OUTPUT/IRET instruction and many more. In the
Bluebottle system, such events occur several times every millisecond. The frame buffer driver
therefore does not need to flush the buffers explicitly.
More than one local frame buffer can be registered in AosDisplays as well as in the display
space manager as described in 5.4. The support of multiple frame buffers allows the installa-
tion of more than one screen to a single computer.

4.3 Bitmaps

Bitmaps are two dimensional arrays of pixels, characterised by width, height and colour format.
The colour format characterises the colour space and colour depth of the pixels in the bitmap.
The Bluebottle bitmap module Raster supports a large number of different RGB colour formats
and offers methods to convert between each format. Some of the colour formats also include an
alpha channel that allows translucent colours. Raster is derived from module Images by Erich
Oswald [84]. It differs from Images in being thread-safe, supporting additional specialised and
optimised transfer modes and additional blending modes.
The thread safety of the module was achieved by removing all global module states. Images
can be shared between activities as long as their characteristics (width, height, and colour for-
mat) are not changed while they are accessed by more than one thread. Instances of drawing

132 bytes in the Pentium II case

4.3. BITMAPS 47

mode objects may not be shared between activities since they contain status information about
drawing operations in progress.
Upon calling a bitmap operation such as a Copy or Fill, the respective pixel transfer method
from the source to the destination image with respect to the selected blending operation is
chosen in the method Bind and stored in a procedure variable in the respective drawing mode
object. To improve the speed when operating on common bitmap formats, a number of spe-
cialised transfer routines have been added. One specialised transfer procedure is described in
more detail in section 4.3.1.
An additional blending mode that inverts the pixels of the destination bitmap has been added for
the efficient implementation of an ETH Native Oberon [79] compatible virtual display adaptor
on top of a bitmap. The virtual display adaptor is used to integrate the ETH Native Oberon
system as a subsystem on top of Bluebottle.
The bitmap access procedures do not support clipping. Providing parameters that operate out-
side a bitmap leads to an assertion violation and the calling activity is trapped. On top of the
bitmap layer, higher level graphic interfaces can be implemented. AosGfx and WMGraphics
are two examples. AosGfx is an extension of the Gfx-Framework [84] by Erich Oswald. It
mainly extends Gfx by adding thread-safety and support for translucency. While it is possible
to implement AosGfx windows on top of the display space manager as described in 5, the com-
ponent system and display space manager itself use the high level canvas abstraction provided
by WMGraphics which is described in detail in section 4.4.

4.3.1 Alpha Blending

Translucent colours are stored as RGBA values (red, green, blue and alpha components). The
additional alpha channel value determines to what level a colour is solid or semi-transparent.
In Bluebottle, an alpha channel value of 0 is interpreted as completely transparent. This means,
whatever values the RGB components have, they do not affect the target bitmap, if the colour
is painted to it. An alpha channel value of 255 is interpreted as completely solid. A solid
colour completely covers existing colours on a bitmap where it is painted to. Alpha values
0 < α < 255 result in interpolated colours.
Alpha blending operations between translucent bitmaps are quite expensive in terms of process-
ing time since they involve a per pixel reading and decoding of the source and destination
colours, per component (red, green and blue) interpolation between the source and target
colours, encoding of the resulting colour value into the target colour format and writing it
back. The special cases of the alpha values 0 and 255 can be optimised so that no read-out of
the target pixel is required.

To make translucency fast enough for interactive use, some transfer routines have been im-
proved by taking advantage of the Intel MMX2 vector operations that allow working on all the
three colour components in parallel (fig. 4.2) [50] [47]. In these optimised cases, the MMX
code has been measured to be about 50 times faster than the generic Oberon implementation,
five times faster than a specialised Oberon implementation and about twice as fast as a hand op-

2Multimedia Extensions

48 Chapter 4: Graphics System

�
�

� �
�

� �
�

��
�
� �

�
� �

�
� �

����������	�
���
��������	�
��
����������	�
���

	
���

���

���

�
�

� �
�

� �
�

�

��	�� �����
����

�����
����

Figure 4.2: Parallelised Alpha Blending

timised assembler code without taking advantage of MMX instructions. If the processor does
not support MMX, a fall-back routine is used.

4.3.2 Scaling

Apart from alpha blending, scaling of bitmaps is another important feature of the graphics
system. The scaling routines are implemented in the module WMRasterScale. Similar to the
format conversion routines, there is a generic scaling routine, that can handle all the formats
with or without alpha blending. The zooming routines support a quality parameter that decides
the filter function to be applied. In the current implementation an unfiltered mode and a bilinear
interpolation mode are supported. The unfiltered mode is significantly faster than the filtered
variation since it only reads as many pixels from the source bitmap as there are present in
the destination area. The filtered variation in its current implementation considers four source
pixels for each destination pixel for the bilinear interpolation. For efficiency reasons, the most
frequently used source/destination combinations have been modestly optimised in assembler.

4.3.3 Loading and Storing

The graphic support module WMGraphics offers procedures for loading and storing images
in various formats. The load and store procedures determine the format of an image file by
the suffix of its name and use the appropriate image encoder or decoder from the AosCodecs
framework that is described in detail in chapter 8.
The loader procedure WMGraphics.LoadImage takes the filename as a parameter and a boolean
flag that specifies whether or not the loaded image can be shared:

loadedImage := WMGraphics.LoadImage("flash.png", TRUE);

The procedure returns NIL if the image could not be loaded for some reason. All shared
images are stored in a list and are reused if they are loaded again in shareable mode. An image
that is loaded as shareable may not be modified. All decoration images used in the display

4.4. CANVAS 49

space manager (5.6) and GUI component system (6) are loaded shareable, so that only one
copy of each decoration image exists in the system memory. A shareable image that is no
longer referenced is collected by the system wide garbage collector.
Images that are stored in streamable graphics formats such as GIF, PNG, BMP or JPEG2000
can be directly loaded from archive files such as zip or tar files by specifying the archive file
followed by ”://” and the file name within the archive file. This makes it possible to compactly
store all images that are used for a complete GUI style or an application program within a single
archive file.

4.4 Canvas

The canvas abstraction offers a higher level of drawing primitives that support clipping and
relative positioning of coordinates. In the display space manager (Chapter 5), the canvas ab-
straction is used for drawing display objects to viewports. The GUI component system (Chapter
6) uses it for drawing components into the buffers of display space objects.
In the display space manager and component system the BufferCanvas is the most commonly
used implementation of the abstract Canvas object. It can be created as a wrapper on any
Raster.Image.

The canvas abstraction can also be implemented on graphical primitives other than images.

������� ���

�������������������

Figure 4.3: Canvas Abstraction

As a proof of concept, a special canvas has been implemented that allows applications to draw
into a page of the popular PDF [39] [1] file-format. Figure 4.3 shows an abstract canvas as an
interface to different targets for graphical content.

4.4.1 Clipping and Translation

The canvas abstraction supports rectangular clipping that is used in the display space manager
and component system to ensure that no window or component can draw outside the assigned
bounding box. The canvas supports two clipping rectangles that limit the drawing operations.
One is a soft limit, the other is a hard limit. The soft clipping rectangle can be freely defined

50 Chapter 4: Graphics System

with the SetClipRect method but is clipped at the the bounds of the hard limit. This ensures that
the soft clipping rectangle always remains within the bounds of the hard clipping rectangle.
All graphic operations are clipped at the soft clipping rectangle. The hard limit can only be
narrowed but never extended. The distinction between hard limit and soft limit is used to allow
sharing a canvas between different methods and objects. A method can set the hard clipping
rectangle before calling another method and be sure the called method cannot draw outside
the hard limit. The called method can still use the soft limit for special drawing effects like
clipping bitmaps or glyphs. Both limits are stored with the CanvasState (4.4.2). By storing the
canvas state before narrowing the hard clipping rectangle, it can be reset to the previous size by
restoring the canvas state.
When a GUI component in Bluebottle needs to draw a sub-component, it first stores the canvas
state, then sets the clipping rectangle to the bounds of the sub-component and changes it to
a hard limit with a translation according to the top left position of the sub-component. Then
the draw method of the sub-component is called. The translation is transparent to the sub-
component and its drawing area starts at the (0, 0) coordinate. When the drawing procedure of
the sub-component returns, the canvas state is restored. The soft clipping rectangle is changed
to a hard limit with the ClipRectAsNewLimits(dx, dy : LONGINT) method. It takes two para-
meters that specify a coordinate translation to be applied to the drawing primitives. dx and dy
are normally set to the coordinates of the top left corner of the clipping rectangle so that the
accessible drawing area always starts at (0, 0).

4.4.2 Canvas State

The canvas state contains all the state information of a canvas object. It can be stored with
the SaveState(VAR cs : CanvasState) method that returns an instance of a CanvasState object.
If the CanvasState variable cs is NIL, a new object instance is created, otherwise the existing
instance is reused for efficiency reasons. Because concrete implementations of a Canvas object
may need to store specialised state information, the returned CanvasState instance may be an
extension of the abstract CanvasState object.
The canvas state is restored by the RestoreState method. A state can only be restored to the
Canvas object that saved it. A saved state can be restored more than once so that it is possible
to use the RestoreState method to repeatedly reset a Canvas object to a known state.
The canvas state contains the soft and hard clipping rectangles (see 4.4.1), the current coordi-
nate offset, selected font and font colour.
The canvas state is normally stored before setting a hard clipping rectangle and calling a draw
method that may under no circumstances draw outside the given clipping boundaries. When
the draw method returns, the stored canvas state is restored. This not only restores the hard
clipping rectangle but also ensures the caller procedure can continue drawing with unchanged
clipping, colour and font settings.
Saving and restoring the canvas state are fast operations if the CanvasState object is reused.

4.4. CANVAS 51

4.4.3 Drawing Primitives

The interface of the canvas object offers a small set of primitive drawing operations that is
introduced in the following sections. All colour parameters that are used in the drawing opera-
tions can optionally be translucent.
All drawing operations offer a drawing mode parameter mode that specifies if the operation
copies the source colour, depending on the operation either taken from the color parameter or
from an image, or if the source colour should be blended with the existing content of the image.
Possible mode parameters are WMGraphics.ModeCopy or WMGraphics.ModeSrcOverDst. The
alpha blending mode WMGraphics.ModeSrcOverDst is for all operations significantly slower
than the copy mode because the target pixels need to be read and blended with the source pix-
els. Section 4.3.1 gives more details on alpha blending.
While the drawing mode has no effect for solid colours it is important for translucent colours.
The copying mode for translucent colours only makes sense if the target drawing buffer sup-
ports translucency, too. If a translucent colour is painted with the ModeSrcOverDst drawing
mode on top of a translucency supporting bitmap that is filled with a solid colour, the result is
again a solid colour. If the ModeCopy drawing mode is used, the destination bitmap becomes
translucent.
For bitmaps, the alpha blending drawing mode WMGraphics.ModeSrcOverDst only makes
sense if the image itself also contains an alpha channel. On the other hand, the WMGraph-
ics.ModeCopy drawing mode for images with alpha channel only makes sense if the canvas
itself operates on a buffer with an alpha channel.

Rectangular Filling

Filling a rectangular area is a common operation in GUIs. It is for example used to clear
translucent bitmaps before drawing arbitrary shapes into them, or to draw background colours
in panels or text editors. The Fill method takes a rectangle, a colour and a drawing mode
parameter.
Example:

(* blend a translucent red rectangle on top of the existing image *)
canvas.Fill(WMRectangles.MakeRect(10, 10, 20, 20), WMGraphics.RGBAToColor(255, 0, 0, 128),

WMGraphics.ModeSrcOverDst);
(* replace a rectangle of the existing image with a translucent green colour*)
canvas.Fill(WMRectangles.MakeRect(15, 15, 25, 25), WMGraphics.RGBAToColor(0, 255, 0, 128),

WMGraphics.ModeCopy);

Images

Bitmaps are a very important design element in current GUI systems. Almost all visible el-
ements of modern graphical user interfaces such as window frames, buttons, icons, scrollbar
and so on are normally realised with bitmaps. They allow the look of the user interface to be
changed without the need to change program code.
The canvas abstraction offers two different drawing procedures for bitmaps.

52 Chapter 4: Graphics System

DrawImage The DrawImage method takes the position, the source image and the drawing
mode as parameters. Images cannot be scaled.
Example:

(* Draw an image without alpha channel at position (10, 10) *)
canvas.DrawImage(10, 10, myImage, WMGraphics.ModeCopy);

ScaleImage The ScaleImage procedure is much more flexible than the DrawImage procedure
but is also more complicated to use. Apart from the image, it takes a rectangular source region
in the image that is drawn into a rectangular destination region of the canvas. If the rectangles
are of unequal size, a scale operation is performed. When scaling the colours of the destina-
tion pixels need to be interpolated from the pixel colours of the source image. WMGraphics
offers a simple box filter that takes the nearest pixel in the source image and a bilinear inter-
polation filter. The filter to be used is specified by the scaleMode parameter that can be either
WMGraphics.ScaleBox or WMGraphics.ScaleBilinear. Bilinear filtering is significantly slower
than the box filter because of additional memory and CPU overhead but results in a better re-
sult image quality. ScaleImage also supports alpha blending like all drawing primitives. For
speed reasons, the combination of alpha blending and bilinear interpolation should be avoided
in interactive scenarios. As a compromise of speed and quality, it is often useful to apply alpha
blending with a box filter during interaction and switching to alpha blending with bilinear inter-
polation for refinement when the interaction is finished. This approach is taken in the display
space manager (Chapter 5) to achieve smooth interaction.
Example:

(* Draw myImage at position 50, 50 reduced by 50% with a bilinear filter *)
canvas.ScaleImage(myImage,

WMRectangles.MakeRect(0, 0, myImage.width, myImage.height),
WMRectangles.MakeRect(50, 50,

50 + myImage.width DIV 2, 50 + myImage.height DIV 2),
WMGraphics.ModeCopy, WMGraphics.ScaleBilinear);

Text

The DrawString method draws a UTF-8 string at a given position. The y position specifies the
base line (see 4.5.2). The font to be used can be specified with the SetFont method. The font
colour is defined with the SetColor method. If no font was explicitly set, the system’s default
font is used.
For drawing text and rich text in interactive applications, the use of a TextView (see 3.4.1 for
details) (sub-)component should be considered. In contrast to a string drawn with DrawString,
a TextView component allows the user to copy the text, to execute commands and to apply tools,
making the interface more flexible (See 2.4 and 3.2 for details).
Example:

(* Draw a string at position (100, 100) *)
canvas.DrawString(100, 100, "Hello World");

4.4. CANVAS 53

Lines

Lines in general are relatively rare elements in current graphical user interfaces. The special
cases of horizontal and vertical lines can be found in menus and panels as horizontal or vertical
separator elements or as the borders of rectangles. Arbitrary lines are used in CAD systems or
diagram displays.
The Line method draws a line between two points on the canvas in a given colour that can
optionally be translucent.
Example:

(* Draw a red line from (100, 100) to (200, 200) *)
canvas.Line(100, 100, 200, 200, WMGraphics.Red, WMGraphics.ModeCopy);

Polygons

WMCanvas offers two methods for drawing polygons. Both procedures take an array of 2d
points as the first parameter to specify the polygon. The second parameter defines the number
of points in the array that are to be used. This allows arrays of points to be reused with different
numbers of points actually belonging to the polygon.
Both methods use the same rasterisation procedure. To disburden the garbage collector, the
implementation of the rasterisation algorithm uses a self managed heap of memory that is
associated with each canvas for storing rendering information.

FillPolygonFlat The FillPolygonFlat method fills a polygon with a single colour that can
optionally be translucent.
Example:

(* Draw a red triangle *)
VAR points : ARRAY 3 OF WMGraphics.Point2d;
BEGIN
points[0].x := 200; points[0].y := 20;
points[1].x := 20; points[1].y := 380;
points[2].x := 380; points[2].y := 380;
canvas.FillPolygonFlat(points, 3, WMGraphics.Red, WMGraphics.ModeCopy);

FillPolygonCB The FillPolygonCB method, uses a call-back procedure for each horizontal
line segment that needs to be filled. The FillLineCallBack is a delegate procedure that takes a
canvas as the first parameter, the y position and the start and end position of the horizontal line
segment that needs to be filled.
The following example fills a triangle with the content of an image:

VAR pict : WMGraphics.Image;

(* The filler procedure fills a segment on a scan line with the
respective content of the image, using the ScaleImage method *)
PROCEDURE Filler(canvas : WMGraphics.Canvas; y, x0, x1 : LONGINT);
BEGIN
canvas.ScaleImage(pict,

WMRectangles.MakeRect(x0, y, x1 + 1, y + 1),
WMRectangles.MakeRect(x0, y, x1 + 1, y + 1),

54 Chapter 4: Graphics System

WMGraphics.ModeCopy, WMGraphics.ScaleBox)
END Filler;

PROCEDURE Triangle;
VAR points : ARRAY 3 OF WMGraphics.Point2d;
BEGIN
points[0].x := 200; points[0].y := 20;
points[1].x := 20; points[1].y := 380;
points[2].x := 380; points[2].y := 380;
canvas.FillPolygonCB(points, 3, Filler)

END Triangle;

The FillPolygonCB method offers a simple way to fill complex regions with complex con-
tents.

4.5 Fonts

Fonts are an important and amazingly complex topic for a GUI framework. The task of the font
system is to provide and render glyphs and glyph-metrices [1] as well as kerning information
for characters of a defined font, style and size. Finding the correct glyph and kerning for a
character depends on neighbouring characters and text layout.
Rendering glyphs for vector fonts is a difficult topic, that involves mathematical functions, fill-
ing algorithms, pixel alignment, hinting and even physical features of the output device [88]
[13]. Since the rendering of a given glyph for a specific size, style and output device is compu-
tationally quite expensive, the system needs to apply caching strategies on this level.
Supporting international fonts with more than 82’000 glyphs, such as the CCG fonts by eForth
Technology Taiwan [18], requires on-demand loading and caching of partial fonts. The inter-
nal font structure must also efficiently support access to non-continuous codepoint-ranges of
glyphs.
For international text support, the font system needs to be able to efficiently and reasonably
handle missing characters in fonts. One strategy is to search the missing character of one font
in preferably similar looking other fonts that are available in the system.
All the, sometimes complex, activities of the font system need to be performed in real-time at
lightning speed so as not to become the GUI’s bottleneck.
The following sections describe the Bluebottle font system in more detail.

4.5.1 Abstract Font Interface

The Bluebottle graphics system defines an abstract font object class that is implemented by
a number of specialised font implementations. The abstract font interface offers methods to
query font and glyph metrics and to render a glyph as a bitmap.

4.5.2 Font Metric

Figure 4.4 shows the different font and glyph metrics that are provided by the Bluebottle font
system. Other font systems use different font metrics and terminologies.
Vertical measures:

4.5. FONTS 55

Baseline The baseline is the vertical reference point of a character. In normal writing, the
baseline of all glyphs in a line of text are aligned.

Ascent The ascent defines the maximal amount a glyph without accent marks will ascend over
the baseline. The value is contained in the GlyphSpacings.ascent record field.

Descent The descent defines the maximal amount a glyph of the font will descend below the
baseline. The value is contained in the GlyphSpacings.descent record field.

Height The maximal glyph height is calculated by height = ascent + descent. The value is
contained in the GlyphSpacings.height record field.

Top-Side-Bearing The top-side bearing (tsb) defines the empty space above the maximal as-
cent of a glyph. In Figure 4.4 it is denoted with the character e. The value is contained
in the GlyphSpacings.bearing.t record field.

Bottom-Side-Bearing The bottom-side bearing (bsb) defines the empty space below the max-
imal descent of a glyph. In Figure 4.4 it is denoted with the character f. The value is
contained in the GlyphSpacings.bearing.b record field.

Vertical Advance The vertical advance v defines the top to top distance of text lines. It is
calculated by v = tsb + ascent + descent + bsb = tsb + height + bsb.

Horizontal measures:

Left-Side-Bearing The left-side bearing (a) defines the empty space left of the glyph. The
value is contained in the GlyphSpacings.bearing.l record field. The value can be negative
in cases of overhang or underhang.

Right-Side-Bearing The right-side bearing (c) defines the empty space right of the glyph.
The value is contained in the GlyphSpacings.bearing.r record field. The value can be
negative in cases of overhang or underhang.

Glyph Width The glyph width (b) contains the width of the visible character without overhang
or underhang.

Horizontal Advance The horizontal advance (d) defines the horizontal distance that should
be added before drawing the next character. It can be calculated by d = a + b + c.

4.5.3 Oberon Fonts

The fonts used in the Oberon System are stored in a relatively simple font format. Because
of the large number of documents in Native Oberon and Bluebottle that use these fonts, an
Oberon font implementation of the abstract Bluebottle font interface has been realised. The
Oberon font support can load existing Oberon font files and use them in the Bluebottle GUI
system outside of the Oberon environment. For compatibility reasons, the Oberon font file

56 Chapter 4: Graphics System

� � �

�

������

�������

	�
�	�

���
���
�������

�����������

�

Figure 4.4: Bluebottle Font Metric

format was not changed. In contrast to the Oberon font system, the Bluebottle graphics system
cannot use a one-to-one mapping of character codes to positions in the font, since the graphics
system is based on Unicode and not on the Oberon character set.
While loading an Oberon font file, the contained metric data is converted to the Bluebottle
glyph metric. To find an Oberon font, the font manager converts the given font name, size and
style into the canonical font file name according the Oberon font naming convention.

4.5.4 OpenType Fonts

OpenType is a font format defined by Microsoft and Adobe that can contain glyph outlines in
the TrueType or Type 1 format. In contrast to TrueType or Postscript Type 1 fonts that require
a font for every language, OpenType fonts support Unicode and can contain information for
more than 65’000 characters. In 2004 many thousand different OpenType fonts are available
which made the integration of the format into the Bluebottle system as an additional font plug-
in attractive. The implementation is based on the offline TTF to Oberon font converter by E.
Oswald [84]. It has been extended to support Unicode characters and dynamic loading of partial
fonts. Partial on-demand loading of fonts is important in interactive applications because large
Unicode fonts generally contain several thousands of glyphs and more than 10MB of font data
that take several seconds to be loaded completely.

4.5.5 CCG Fonts

Traditional OpenType fonts are not very well suited to store glyphs of the group of Chinese,
Japanese and Korean (CJK) languages in a space efficient way. The 60’000 most commonly
used CJK glyphs require about 40MB of storage. While this size is acceptable for current desk-

4.6. EVALUATION 57

top computers, it is by far too large for smaller devices such as PDAs or wearable computers.
Making use of the highly structured composition of Chinese characters [60] [55], it is possible
to store the same number of glyphs in a file as small as about one megabyte.
Each Chinese character is either a radical or contains one or more radical like elements. There
are 214 unique radicals in traditional writing, 189 in the simplified form. Most parts of a glyph
of a Chinese character can be drawn reusing radicals in different sizes and positions. Complex
glyphs can be constructed by repeated re-use of radical elements or by the recursive use of
other complex glyphs. To produce aesthetic complex glyphs, several different variations of the
radical elements are needed.
Figure 4.5 shows the composition of the word ming (bright) out of the radicals ri (sun) and

����

�� ��	

�
��

���

��� ��

������

���������������
������������

��������

Figure 4.5: Character Composition

yue (moon). The word meng (ally) is stored as a combination of the word ming and the radical
min.
The Taiwan based company eForth developed a font format and database, called CCG font,
based on recursive composition of radicals and radical like elements. The font format can store
the glyphs of more than 82’000 CJK characters in a file of about 2MB. This is a sufficiently
small size for PDA like computer systems. eForth donated a single line stroke font with about
82’000 glyphs and an outline font with about 27’000 glyphs to the Bluebottle project based on
a free license.

4.6 Evaluation

The Bluebottle graphics system does not take advantage of special graphic hardware accelera-
tion for drawing. The main reason is the lack of documentation of current graphics hardware.

58 Chapter 4: Graphics System

Given proper documentation it would still not be possible for a small computer systems re-
search group to keep up with the fast pace of development in this area.
Having no hardware acceleration leads to the question of whether the GUI system can pro-
vide sufficiently fast graphics for the 2d desktop. In the following we measure and compare
in Bluebottle and Windows XP the speed of a number of graphics operations that are impor-
tant for current graphical user interfaces. Due to the large conceptual differences between the
Bluebottle display space manager and graphics system and the Windows XP GDI [75] (Graph-
ical Device Interface) (see 5), the measured numbers cannot be directly used to quantitatively
compare the speed that is apparent to the user. The numbers should only serve for a rough
qualitative comparison.
The main obstacle for a quantitative analysis lies in the buffering mechanism that is used in the
Bluebottle display space manager that allows asynchronous reading and display of a window
while it is being modified by an application process. This buffering mechanism allows the dis-
play space manager to skip frames in a consistent way that would have to be rendered to the
display in a system without a similar mechanism. In Windows XP as well as in Bluebottle,
the time is measured as the time the application process is waiting until the graphics system
returns from the drawing operation. In both cases this is not necessarily the time it takes until
the drawing finally appears on the screen.

For the measurement we use graphical operations that are typically used in today’s desktop
application software. The compared operations are:

• Rectangular filling as used in panels or for clearing the background in a text editor

• Drawing of bitmap images (non-resized, non-blended) as used for symbols, buttons and
decorations

• Horizontal lines

Writing of text has not been compared. It is assumed that the font system uses glyph caches
resulting in a speed proportional to drawing bitmaps.

The drawing operations are performed and measured with different parameters, varying the
numbers of pixels that have to be changed. In one test run, the drawing operation is performed
106 times with the same parameters and measured in milliseconds by the system timer. Per test
parameter, five runs are performed, dropping the highest value and averaging the remaining
times. In the Windows XP system, colours, pens, brushes and images are created outside the
measurement loop to avoid counting setup overhead that could be related to the more feature
rich Windows GDI. Changing colours in the Bluebottle system does not influence the timing
of the measured operations. In the Windows system, all other application programs are closed
before performing the measurement and the network is disabled. In both systems, the measured
application program runs with normal priority. In the following we measure and compare the
speed of graphical operations for four different setups:

4.6. EVALUATION 59

1. Bluebottle, 16 bit VESA 2.0 mode.

2. Microsoft Windows XP with full hardware acceleration enabled, 16 bit colour mode.

3. Microsoft Windows XP with hardware acceleration disabled, 16 bit colour mode.

4. Microsoft Windows XP with full hardware acceleration enabled, 32 bit colour mode.

In all setups write combining as described in 4.2 is enabled. All the measurements have been
repeated in all four setups on different machines with similar results. The numbers used in
the following are generated on a NV34 GeForce FX 5200 AGP 8x graphics card in a Shuttle
SB61G2 board with 1GB 2xDDR RAM and a 3.0GHz Pentium 4 HT processor. Windows XP
was running with Service Pack 2.

Diagram 4.6 shows the time needed to draw homogeneously filled rectangles of different
size. The rectangle in this measurement is always 64 pixels in height and grows in the width.
The x-axis of the diagram shows the total number of pixels in the image. In the filling test a
2d hardware accelerator can be most efficient since a large number of pixels have to be filled
without the need to get additional data from the main memory. The relatively high constant
overhead of 3.7ms in the Bluebottle filling algorithm results from the search for the appropriate
filling strategy and the procedure call overhead per horizontal line.

�! !�'� (�'� ���((�� (! ��!(� �!&)� �(�)� �)�(�(�! !�'�� !&�&� !'�&� & �!(&) !! ��!!�

�

&

��

�&

��

�&

 �

 &

!�

!&

&�

&&

��

��
-.
��
"��/0

��
-��
"��/
 ���	0

��
-��
"��/0

�����		��

"���
��
��%���

+
�

Figure 4.6: Diagram : Filling Rectangles

Diagram 4.7 shows the time needed to draw horizontal lines. While the measurements
without hardware acceleration show a clear linear relationship between the line size and the
drawing time, no such relationship is visible with the hardware accelerator. It seems to complete
the task in constant time although with a high setup overhead. The measured times in Bluebottle
stay below the setup time of the hardware accelerated system for the measured line sizes.

Diagram 4.8 shows the time needed to draw a bitmap image in the video card’s colour
mode, so that no colour conversion is needed. The image in this measurement is always 64
pixels in height and growing in the width. The x-axis of the diagram shows the total number of
pixels in the image. It is interesting to note that in Bluebottle the time for drawing images in

60 Chapter 4: Graphics System

���

� �! ��(�'� �&� �� (! !!(&�� &)� �!�)�!)�((� ('� '��

�

�

�

!

&

�

)

(

'

��

��

��
-.
��
"��/0

��
-��
"��/
 ���	0

��
-��
"��/0

�����		��

"���
��
��%���

+
�

Figure 4.7: Diagram : Drawing Horizontal Lines

the range of 64 to 4096 pixels always stays well below the time it takes the graphics accelerator
with Windows XP. Most icon images in current GUI systems are below 64x64 pixels. Diagram
4.9 shows the measurements for small images in more detail.

�! !�'� (�'� ���((�� (! ��!(� �!&)� �(�)� �)�(�(�! !�'�� !&�&� !'�&� & �!(&) !! ��!!�

�

��

��

 �

!�

&�

��

)�

(�

'�

���

��
-.
��
"��/0

��
-��
"��/
 ���	0

��
-��
"��/0

�����		��

"���
��
��%���

+
�

"���
��
��%���

Figure 4.8: Diagram : Drawing Images

The diagram shows a constant overhead for initialisation of the graphics system i.e. the
hardware graphics accelerator. Once initialised it can draw an image of up to about 16k bytes
without taking more time. While the unaccelerated setup results in a linear graph from the
beginning. To get a better understanding, the same experiment was repeated with a 32bit video
mode, resulting in the same setup overhead but as expected only half the number of pixels that
can be drawn without needing additional time. The per pixel time in the 32bit mode is twice
as big as in the 16bit mode, again no surprise since the limiting factor for drawing the image is
the memory bandwidth.

4.6. EVALUATION 61

�! &�� �& � �&�� &(! !��(&� � ��&�)�(� ()�! ')�(��)&� ��))�

�

�/&

&

)/&

��

��/&

�&

�)/&

��

��/&

�&

�)/&

 �

��
-.
��
"��/0

��
-��
"��/
 ���	0

��
-��
"��/0

�����		��

"���
��
��%���

+
�

Figure 4.9: Diagram : Drawing Small Images

4.6.1 Conclusions

The measured timings for graphic operations that are relevant to the efficiency of PARC style
graphical user interfaces show the competitiveness of the Bluebottle graphics system in this
respect.
Even though the measured timings for Bluebottle represent the time of drawing into an in-
memory buffer, we can still conclude the overall graphic system performance for GUI applica-
tions is sufficient, because :

• Drawing into a window buffer is as efficient or better than the compared system for small
and medium areas that are typical for many GUI components.

• In application programs, the window buffer normally only needs to be updated to the
hardware framebuffer after a series of several consecutive drawing operations such as
clearing, drawing lines, glyphs and images so that the asynchronous time overhead that
was not included in the measurement does not carry too much weight.

• The Bluebottle display model makes it possible for the display space manager to skip
updates to the hardware framebuffer if there is not enough time available to render all
states, without resulting in inconsistent displays. Sections 5.2.1 and 5.3.3 discuss the
display consistency and in-memory buffer mechanism in detail.

5
Display Space Manager

Imagination is more important than knowledge

— Albert Einstein (1879 - 1955)

5.1 Introduction

The display space manager is responsible for managing display space objects and viewports on
a virtual desktop, called the display space as introduced in section 2.6. This includes establish-
ing and maintaining consistency between the individual windows and their representations in
the different viewports, dispatching messages to individual objects in the display space as well
as managing insertion, removal, moves, resizes and changes in overlapping of these objects.
Display space objects can be arbitrarily shaped and optionally translucent. Rectangular display
space objects are referred to as windows.
A viewport is a program that observes all or parts of the virtual desktop. The most obvious ap-
plication for a viewport is to copy (parts of) the desktop to a physical screen. Other viewports
are remote network framebuffers for example VNC [96] [97] or screen capture utilities.
The display space manager operates asynchronously to the drawing into individual display
space objects. From the programmer’s point of view, each regular display space object appears
as a separate framebuffer with its own keyboard and pointing device.
The following sections explain the model and implementation of the display space manager in
more detail.
Section 5.2 introduces the display space. Section 5.3 introduces display space objects. Section
5.4 discusses viewports.

5.2 Display Space

The bluebottle display space is a conceptually unlimited two dimensional coordinate space
(Fig. 5.1 and also Fig. 2.4) in which an arbitrary number of windows and other desktop objects
can be situated. In the practical implementation, the display space is limited to the range of 32

63

64 Chapter 5: Display Space Manager

bit signed integers.
Orthogonal to the display space objects, a number of viewports can be installed that are observ-
ing ranges of the display space. The display space manager informs all the registered viewports
about all the changes that occur in the regions they are subscribed to. Section 5.2.1 gives details
on the mechanism that establishes display consistency.

�������

��	�
����

Figure 5.1: Display Space

5.2.1 Display Consistency

The display space manager offers the methods AddDirty and AddVisibleDirty for reporting
invalidated rectangular display space areas. The reported areas are queued in a dirty-queue that
buffers the invalidation messages. Arriving update requests are compared to all the previously
queued invalidated areas that have not yet been refreshed. If possible, the new invalid region
is merged with overlapping or adjacent regions in the queue, waiting to be updated. Repeated
invalidation messages for the same region are dropped if the previous invalidation message
has not yet been handled. Clipping against previous update requests in the queue reduces the
impact of an application flooding the display space manager with redraw requests.
The AddVisibleDirty procedure checks if the reported area is visible in the reporting display
space object. If the area is completely or partially covered by one or more solid display objects,
the regions of the solid display objects are subtracted. This is achieved by recursively breaking
up the area along the bounding boxes of the covering solid objects, into rectangular pieces, that
are only added to the dirty-queue if they are visible.
Should the dirty-queue ever overflow, the entire display space is invalidated and the queue
cleared.
The display space manager itself uses the AddDirty and AddVisibleDirty methods when objects
or views are added, removed, resized or moved.
As long as the dirty-queue contains invalidated areas, the display is said to be inconsistent.
A special display space manager activity is responsible for re-establishing consistency. To do

5.3. DISPLAY SPACE OBJECTS 65

this it takes invalidated rectangular areas from the queue and asks the observing viewports to
redraw the area in question.

5.3 Display Space Objects

Display space objects are arbitrarily shaped objects that can be inserted into the display space.
The position and extents in the display space are managed by the display space manager. The
display space manager uses the bounding box of an object to perform early clipping of position-
dependent messages and drawing operations. The visible shape of the object is determined by
its Draw procedure. The display space manager ensures that no object can draw outside its
official bounding box. The shape of the clickable region of the object is dynamically determined
by calling its IsHit procedure.
Each display space object has its own coordinate system relative to its bounding box’s top left
position (Fig. 5.2). The orientation of the coordinate system is chosen for compatibility with
existing hardware framebuffers and protocols.

��

������

��

����	
��
���
	�

������
	�
������	��

Figure 5.2: Local Display Space Object Coordinates

5.3.1 Basic Interface

This section describes the most important methods in the generic display space object interface
that has to be implemented by all desktop objects. The abstract interface is defined in the Win-
dow object class. Predefined and specialised implementations of the Window interface exist
that free the programmer from arduous details for most common applications. The predefined
implementations BufferWindow (5.3.2), DoubleBufferWindow (5.3.3) and FormWindow (6.3)
are described in later sections. The raw interface only needs to be implemented for very spe-
cialised applications1. In the standard Bluebottle system there are only three types of display
space objects that are not either a BufferWindow, a DoubleBufferWindow or a FormWindow:

• The object that fills the entire display space with a uniform background colour.
1Programmers should avoid directly implementing window and rather use a predefined extension.

66 Chapter 5: Display Space Manager

• The decorative frames that form the borders of rectangular standard windows.

• The backdrop images.

The reason for the special implementation of these common objects is to save resources. All
other display space objects, including the mouse pointer, are implemented as regular Buffer-
Windows or extensions thereof.

IsHit The method IsHit is used for fine grained determination of the object’s shape. It is
called by the display space manager to determine the recipient of pointer messages. The imple-
mentation of the method returns true if it wants to own the position (x, y) relative to the object’s
local coordinate system. It then receives pointer messages when the mouse cursor is on top of
this position given it is not hidden by another desk space object. The method is only called by
the display space manager if the pointer lies in the rectangular bounding box of the object. See
5.5.2 for more details.
The predefined implementations of BufferWindow, DoubleBufferWindow and FormWindow au-
tomatically handle the IsHit request and reply with true if the respective position is visible. For
translucent objects, the visibility is determined by comparing the α-channel value of the re-
spective buffer position to an α-threshold stored in the pointerThreshold variable of the Buffer-
Window. In the solid case, the method always returns true.
In the current implementation, the IsHit method is directly called from the display space man-
ager process to avoid slowing down user response. It must therefore be carefully implemented
so as not to block or trap the display space manager. Section 10.2 describes the conceptual
problem in more detail and gives a possible remedy.

Invalidate The Invalidate method invalidates a rectangular region rect given in local display
space object coordinates. The method transforms the rectangle into global display space coor-
dinates and calls the AddVisibleDirty method in the display space manager. The display space
manager then clips the area into zero, one or more rectangular pieces that are potentially visi-
ble, and queues them for restoring the display consistency.
The default implementation of the Invalidate method generally does not need to be replaced.

Draw The method Draw must be implemented by the object and repaint itself upon asyn-
chronous request with the new scaled width w and height h. The parameter q is a quality hint
that is set to 0 if quality does not matter and speed is of most importance. It is mainly used to set
lower filter qualities when zooming or moving large areas of the display to ensure interactive
speed.
The region of the area that has to be redrawn is set as the clipping rectangle of the canvas. The
drawing routine can possibly save computations by not drawing elements outside the clipping
rectangle. Atomic canvas operations are efficiently clipped in the graphics systems (see 4.4.1)
so that the application programmer does not need to adjust their sizes to the clipping region in
order to save time.

5.3. DISPLAY SPACE OBJECTS 67

The predefined implementations of BufferWindow, DoubleBufferWindow and FormWindow au-
tomatically handle the call to Draw and paint a buffered image of the requested area.

Handle The Handle method handles messages from its associated sequencer thread. Handle
decodes the messages and forwards them to predefined local handler methods. This is done
for the convenience of the programmer. For example the close message is automatically for-
warded to the Close method that by default removes the respective object from the display space
manager. It is always possible for implementations of Window to handle messages directly by
overriding the Handle method.
The following methods are predefined and called from the message handler for the convenience
of the programmer:

• PointerDown(x, y : LONGINT; keys : SET) (x, y) is the position in display space object
coordinates, keys is the set of pointer keys that are pressed.

• PointerMove(x, y : LONGINT; keys : SET) (x, y) is the position in display space object
coordinates, keys is the set of pointer keys that are pressed.

• PointerUp(x, y : LONGINT; keys : SET) (x, y) is the position in display space object
coordinates, keys is the set of pointer keys that are pressed.

• PointerLeave is called if the pointer leaves the display space object without pressed
pointer keys.

• WheelMove(dz : LONGINT) is called when a scroll wheel is moved while the pointer
is on top of the display space object. The parameter dz contains a signed value that
represents the number of ticks the wheel was moved up or down.

• DragOver(x, y : LONGINT; dragInfo : DragInfo) is called when the pointer of an explicit
drag operation is over the object.

• DragDropped(x, y : LONGINT; dragInfo : DragInfo) is called when an explicit drag
operation ends over the display space object.

• KeyEvent(ucs : LONGINT; flags : SET; keysym : LONGINT) is called if a key is pressed
while the object has the keyboard focus.

• FocusGot is called when the display space object receives the keyboard focus.

• FocusLost is called when the object loses the keyboard focus.

• StyleChanged is called if the system wide style settings have been changed.

• Resized(width, height : LONGINT) is called after the display space manager assigned a
new size to the display space object.

• Close is called when the standard close button of a rectangular window is pressed.

68 Chapter 5: Display Space Manager

Application programs can extend the set of supported messages by using the ext extension field
of the generic message record. The set of predefined messages does not use the extension
mechanism so as not to allocate dynamic memory in common situations like mouse pointer
movements.

Resizing The Resizing method is called directly from the display space manager before the
object size is changed. Variable parameters width and height contain the suggested new extents
of the bounding box. The object can change the parameters to values that are better suited for
the application. The last word lies with the display space manager that will notify the display
space object of its new size with the Resized message.

SetTitle The SetTitle method is used to set the title of the object. In the case of standard
windows with a decorative border, the name is displayed in the title frame.

SetPointerInfo The SetPointerInfo method is used to set the cursor shape that should be used
when the pointer is on top of the object. The display space manager defines a number of style
dependent standard cursors that can be used by application programs. If needed, additional
special cursor shapes can be defined by the application program.

5.3.2 Buffered Display Space Object Interface

The buffered display space object completes the abstraction of a virtual screen in offering a
local frame buffer. The respective programming interface is called BufferWindow. The extents
of the buffer are given in the constructor. The parameter useAlpha in the constructor, defines
whether the local frame buffer contains an alpha channel or not. In the case of an alpha frame
buffer, the bitmap format RGBA8888 (red, green, blue and alpha channel consist of eight bits
each) is chosen, otherwise the system chooses a non transparent RGB format. The preferred
bitmap format equals the native format of the hardware framebuffer thus avoiding the need of
colour format transformations when transferring images to the hardware.
Requests from the display space manager to resize a buffered display space object are handled
by the BufferWindow implementation in scaling the buffer in the draw method. The program
using the BufferWindow does not notice the change of the object’s size, and its internal resolu-
tion remains unchanged. All position dependent pointer messages to and invalidation messages
from the application are automatically transformed to the respective coordinate spaces.
The visible shape of the display space object is defined by the alpha channel of the local frame-
buffer. The clickable shape of an object is defined by a threshold value that is compared to the
alpha channel value at the given position. The alpha channel values of 0 and 255 are specially
optimised and act as a stencil buffer in the Draw procedure.

5.3.3 Double-Buffered Display Space Object Interface

A single frame buffer can successfully hide modification artifacts such as flickering in a situa-
tion where only solid display space objects are involved and the objects are not asynchronously

5.3. DISPLAY SPACE OBJECTS 69

moved or resized since the display space manager only needs to read the buffer when it is de-
clared as invalid by the application. The application has to wait until the updates have been
performed by the display space manager before changing the content again.
Allowing translucent objects and more than one process in the display space requires asynchro-
nous read-outs of buffers, even of solid display space objects, that have not been declared as
invalid. The asynchronous read-outs occur in cases where an object is covered by a translucent
object that has modified its content or that is moved or resized, or vice versa if an object below
a translucent object is changed. Without strictly synchronising all the viewports and display
space object updates, flickering occurs if a frame buffer is in a state of modification. Synchro-
nising all viewports and objects is not a viable solution because it severely reduces the possible
concurrency.
An improved solution uses two off-screen copies for each display space object, one to be used
by the drawing client process and the other by the display space manager. The buffers are
swapped when a consistent state is reached. Figure 5.3 shows an object with two buffers A
and B. Each of the buffers is only used by either the display space manager or the applica-
tion program. When a consistent state is reached, the references to the buffers are swapped
atomically. This mechanism can successfully hide all updating artifacts. It can however not

������������������

��������������

�
�����

�
������

Figure 5.3: Double Buffer Mechanism

completely avoid artifacts of time, where one part of a buffer is used in the process of restoring
the consistency of another object, before its own invalidation message could be handled. This
could be avoided by tightly coupling the dirty-queue(5.2.1) of the display space manager to the
buffer swapping mechanism in the display space object. In the current implementation, this is
not done for mainly two reasons:

1. The time artifacts are very rare and barely noticeable unless the system is under too
heavy load. The artifacts are normally corrected in less than 20 milliseconds until the
next frame refresh.

70 Chapter 5: Display Space Manager

2. To keep the dirty-queue implementation clean and understandable.

There are two significantly different ways as to how a display space object updates its contents
and, correspondingly, two different buffer update strategies are required:

• The content is always completely replaced. This is for example the case in movie players,
slide shows or in 3d applications where a changing camera position changes the perspec-
tive and invalidates the entire scene.
Whenever a consistent drawing state is reached, the roles of the buffers are exchanged
by simply switching pointers. The entire area of the object is then declared invalid in the
display space manager.

• Only small parts of the content are updated. This is the normal behaviour of many GUI
components.
Whenever a consistent drawing state is reached, pointers are switched and the updated
region is copied to the second bitmap, to make it consistent for the next update operation.
Only the small updated area is invalidated.

Both double-buffering strategies are implemented in the DoubleBufferWindow. The first case
is handled by the Swap method, the second by the Update method which takes the rectangle to
be updated in display space object coordinates as a parameter.

5.4 Viewports

A viewport is an observer of an axis-aligned rectangular area in the global display space. It
usually represents a physical display but can also represent a screen shot utility or a remote
frame buffer such as VNC.
Viewports implement the methods Update and Refresh that are called by the display space man-
ager when it detects an inconsistency in the observed area. The detection of inconsistencies is
described in more detail in 5.2.1.
Calls to Update and Refresh are synchronised with changes in the display space structure, such
as display space object positions, sizes and overlapping, so as to ensure fixed positions of all
display space objects involved while updating. This synchronisation does not include the con-
tents of the different objects. Viewports should handle updates efficiently so as not to lock the
display space structure for too long. Viewports with inherently high update latencies should
therefore use a buffering technique that allows updates to be processed asynchronously. The
VNC viewport, for example, needs to do image processing, encoding and network transport
and thus inherently has a high latency. Buffering of update requests allows uninterrupted local
work on a machine that is serving a VNC viewport around the world with network delays of
more than 350 milliseconds.
Whenever the viewport is notified about an inconsistency, it redraws the respective area. The
most efficient way to display a region of the coordinate space in an observing view is an iden-
tical pixel to pixel mapping, including colour depth conversions where needed. However, the
speed of current hardware allows more challenging mappings, including zooming and filtering.

5.4. VIEWPORTS 71

The default implementation of a viewport for physical displays can observe an arbitrary axis-
aligned rectangular region of the display space, resulting in a zoomed, possibly even distorted,
representation of the display space.
Viewports can also act as message generators for the display space manager. When a mouse or
keyboard that is associated with a viewport generates an event, the viewport forwards it to the
display space manager’s asynchronous message queue as described in 5.5. Messages originat-
ing from a viewport have the viewport noted in the message’s originator variable.
Viewports are added to the display space by registering them to the display space manager with
the AddView method.

5.4.1 Drawing Mechanism

When a region r of the display space needs to be redrawn, the Update method of the viewport
is called by the display space manager process that is responsible for restoring display consis-
tency.
Within the region r in the display space, there can be many display objects that can overlap
each other and even be translucent. When drawing a translucent display object, all the visible
underlying objects need to be drawn first and the result mixed with the image of the covering
translucent object. If translucent objects are stacked on top of each other, the drawing must
start with the lowest object. Solid display objects block the view further down in the z-order,
and therefore anything below a solid object does not need to be drawn.
The simplest correct solution to restore the area is to set the clipping region of the viewport
canvas to r and to draw all the objects from the bottom to the top. While obviously correct, this
solution is not efficient because it does not take advantage of solid objects hiding objects below
them. An efficient solution never draws a solid object over an area drawn before in the same
update operation; each pixel is written only once with a solid colour.

To optimise the drawing, the Update method therefore first splits the region r into smaller
sub regions that can be drawn in a uniform way in terms of overlapping translucent objects.
This is done by recursively checking the region r for intersecting objects on the display space
starting from top to bottom along the z-order. If an intersection is found, the region is split
into two up to five smaller regions that are then recursively processed. The recursive process
stops as soon as the considered subregion is completely blocked in the z-order by a solid object
as, for example, the background. Before going back one level in the recursion, the respective
object is drawn. This algorithm efficiently makes use of solid objects that hide other objects, to
reduce the number of pixels that are drawn. The individual steps of the recursive break-down
algorithm are visualised with an example situation in figure 5.4. In the first step, the solid top
top is cut out of the update area and is directly drawn. The second object is cut out of the
four remaining regions in the second step. Because the second object is translucent, all eleven
remaining elements need to be clipped against the third object. When the algorithm terminates
it has split the beginning region r into 23 segments and drawn them individually.

72 Chapter 5: Display Space Manager

�����������	
���
	��������

����	
���
	����

����	
���
	������

�������	���
�	������

�����������	����

����	���������

������������	�����

�� �� ��

Figure 5.4: Recursive break-down of the redraw area

5.5. MESSAGE HANDLING 73

5.5 Message handling

Asynchronous external events such as mouse or keyboard events and messages that originate
from other activities are put into the message queue of a sequencer object as described in 6.2.4
that is associated with the display space manager. The sequencer object provides synchroni-
sation and thread-safety and delivers the messages sequentially to the Handle method of the
display space manager.
The display space manager supports directed and broadcast messages. Directed messages are
sent to a single dedicated recipient object in the display space. Broadcast messages are sent
to all objects in the display space. Pointer or keyboard messages are directed whereas style
change notifications or desktop store requests are examples for broadcast messages.
Figure 5.5 gives an overview of the message flow from the input devices to message consuming
application programs.

������

������

�

	�
�����
����

�

�

	�
���

	�
���

����������
���������
�

�

�����	�
���

��������	
	����
������������
��		����������

�

�

���������

	�
��� �����

�	
��������	�������
	�����	

������

Figure 5.5: Message Flow Overview

Before forwarding any messages to one or all objects, the display space manager calls pos-
sibly installed message filter methods that can modify or discard the messages. The message

74 Chapter 5: Display Space Manager

filters can be used for example to create system wide keyboard shortcuts. For example the
system menu installs a message filter to check for the keyboard shortcut meta-esc on which
it moves itself to the front of all display space objects and into the range of the display space
that is observed by the viewport that generated the meta-esc keyboard message. Message filter
methods are called synchronously by the display space manager and therefore should never
raise an exception or delay the message for too long.
If no message filter discards the message, the display space manager adds it to the message
queue(s) of the recipient object(s). The message queue of an object is again implemented with
a sequencer object. With the exception of some special purpose system objects such as the
mouse pointer, all display space objects have an associated sequencer. The sequencer acts as
a message dispatcher process that decouples the display space objects from the display space
manager through a message queue. The decoupling is needed to prevent an object from block-
ing the display space manager in its message handler method. Apart from preventing blocking,
the decoupling also acts as a way of exception handling. A faulty message handler that raises an
exception does not affect the display space manager but only terminates the object’s sequencer.

5.5.1 Keyboard Events

Keyboard messages are directed to a single object that owns the keyboard focus. If no object
has the keyboard focus, the message is discarded.
The keyboard focus is either transferred explicitly by a call to the display space manager, or
implicitly by the rules of the display space manager. The default implementation of the display
space manager implicitly transfers the keyboard focus to the object that was last clicked at
with the mouse, so the object that owns the focus is not necessarily the same as the object that
contains the mouse pointer.
The keyboard message contains:

• a key code identifying the key that generated the message

• the state of the grey keys such as ctrl, shift, alt and meta

• a flag that informs whether the key was pressed or released

• a translation of the key code to a Unicode codepoint, if applicable. Note: although simple
input mode editors could in theory operate on the level of keyboard messages this is not
possible for more sophisticated implementations because of the lack of context on this
level. Section 3.4.3 describes the implementation of input mode editors at the appropriate
level of the text system.

• a reference to the viewport that generated the message

5.6. STYLES 75

5.5.2 Pointer Events

Pointer messages originating from a mouse or other pointing device are sent to the object that is
responsible for the pointer handling. Determining the responsible object is a more complicated
topic than finding the recipient of a keyboard message. It requires a set of state dependent rules
and also locating objects in the display space.
The simple strategy of always taking the topmost object at a given display space position is
insufficient because it loses the pointer ownership too early in drag operations between differ-
ent objects. Examples of drag operations that need a longer pointer ownership are handwriting
recognition, gesture detection and obviously drag and drop copy or move operations. These op-
erations characteristically start at a certain position, continue over a period of time and end at
a position that is unknown at the beginning of the operation. The end position in drag and drop
operations is usually important and therefore exactly chosen by the user, it may or may not lie
in the same display space object. In gesture input operations, the end point is less important and
the operations are supposed to happen within the same object. Expecting the user to keep the
pointer within the limits of the display space object when inputting a gesture is not practicable
since it requires the user to carefully pay attention to the pointer, exactly the opposite of what
gesture input wants to achieve. The problem is aggravated if the object’s shape is non-regular.
Defining the drag operations more precisely, directly leads to a solution : ”a drag operation
is a pointer movement that is started with a certain button being pressed in the beginning and
released in the end”. The display space manager can easily recognise this general scheme and
forward all messages of one drag operation to the object in which the operation was started.
To determine the object that contains the pointer, the display space manager traverses the list
of display space objects from top to bottom in z-order and checks if the pointer position lies
within the object’s bounding box. If yes, it calls the object’s IsHit(x,y) method that then reports
at runtime whether it wants to be responsible for the position or not.
If the pointer leaves an object with no pressed buttons, the display space manager sends a Point-
erLeave message to the object that lost the pointer. A PointerEnter message is not needed since
the entrance of the pointer into the object generates a PointerMove message.
The pointer positions reported to the objects are in display space object coordinates but may lie
outside of the object’s bounding box if the pointer left the object with a pressed button.
To implement efficient menus, where the user action of opening the menu can directly be ex-
tended to selecting a menu item, objects can give up the pointer ownership by calling the
TransferPointer method of the display space manager that then explicitly transfers the pointer
ownership to another display space object.

5.6 Styles

The display space manager defines the look of frames that decorate standard windows. The
frames around windows serve several purposes:

• Most importantly frames offer a meta area that allows the user to manipulate the window
in the display space. Moving, resizing and changing the z-order are examples of such

76 Chapter 5: Display Space Manager

meta manipulations. See section 2.6.3 for details.

• The frame groups the content according to the gestalt law of organisation closure.

The display space manager decorates a standard window with 4 special frame objects, one
for the title, two for the sides and one for the bottom. The decoration objects are docked to
the master window. All moves of the master window are propagated to the frame objects.
Figure 5.6 shows the frames docked to the master window. The look of the frame can be

���������		
���������������

�������		
���������������

������	��������������

Figure 5.6: Window border

configured either by programming new decoration objects or with an XML description that
can be loaded by the standard frame objects. The style description typically specifies several
images, positions and colours that are used to draw the frame. While most of the images
are optional, the horizontally or vertically repeated images are required. They are used to
determine the width respectively the height of the frame objects. Two different sets of images
can be specified: one to be used for the active focus window, the other for the windows that
do not have the keyboard focus. Figure 5.7 shows a number of snapshots of different window
border styles. The top left example is programmatically generated. All others are constructed
from a set of images.
The style description also contains images and hot-spot data for a set of predefined mouse
cursors that are used by the display space manager and by application windows.
Changing the style at runtime generates a StyleChanged message that is understood by the
frame objects that then change their visual representation.
The window style is supplemented by a component style that can change the visual properties
of GUI components. Section 6.2.5 gives details about the GUI component style support. In a
diploma thesis by F. Nart an editor was developed that facilitates the creation of new window
and component styles [82].

5.7. OBERON AS A DISPLAY SPACE OBJECT 77

Figure 5.7: Window Style Examples

78 Chapter 5: Display Space Manager

Figure 5.8: A Snapshot of Oberon as a Display Space Object

5.7 Oberon as a Display Space Object

The complete Oberon system can run as one active object within a window in the Bluebottle
display space manager. A special window simulates an Oberon-compatible display driver and
forwards mouse events and keyboard events to the Oberon loop. This allows continued use
of a wealth of application programs that have been developed for Native Oberon and Plugin
Oberon. In the early days of the Bluebottle system, Oberon was used as a cross-development
environment for Bluebottle applications. Figure 5.8 shows a screenshot of Oberon on Bluebot-
tle.

6
Component System

Nothing is particularly hard
if you divide it

into small jobs.

— Henry Ford (1863 - 1947)

Software components in general encapsulate a functionality that can be used in contexts
different from the context they were developed. They are normally not tailored to fit into a
specific application but to solve a problem more generally. A component system or compo-
nent framework is a combination of interfaces, conventions and runtime support that defines
how components are generated, combined, linked and accessed. Software components can be
implemented with or without using techniques of object oriented programming. Most object
oriented component frameworks are implemented for use with a single programming language
because the object extension mechanism requires the same calling and storage conventions for
all object definitions, object extensions and object uses. The well known programming lan-
guage independent Component Object Model (COM) [71] from Microsoft, also known under
the name ActiveX, is therefore implemented with a purely procedural interface. By adhering
to a defined procedure calling convention, a compiler of any programming language can sup-
port creating or using COM components. Microsoft’s new .NET framework on the other hand
allows a tighter integration of object oriented components that can be written in many differ-
ent programming languages. This becomes possible thanks to the Common Language Runtime
(CLR) [40] that standardises and unifies common calling and storage conventions suitable for
most programming languages1. The CLR also defines a common address space and memory
management for different processes which improves the inter process usage of components.
The following introduction and discussion focuses on visual GUI components. Examples for
visual components are panels, buttons, editors or scrollbars. Non-visual or model components
can be substituted unless the topic is about alignment, drawing or direct user input. A timer is
an example for an invisible component.

1Functional programming and multiple inheritance are not natively supported by the CLR.

79

80 Chapter 6: Component System

The design goals for the Bluebottle component framework were as follows:

• Thread-safety

• Simplicity

• Flexibility

• Internalizable from XML data

• Support for translucency

• Support for styles

• Ease of use

• Introspection

In the following, section 6.1 gives a short overview of related GUI component systems
focusing on the aspect of thread-safety. Section 6.2.1 introduces the principles chosen that lead
to the implementation of the Bluebottle GUI component framework with the desired properties.

6.1 Related Work

This section introduces three related frameworks for GUI components. The three component
systems are quickly introduced, followed by a description of their strategies for multi-threading.

6.1.1 Java Swing

The Java Swing[107] GUI component framework is the successor of the Java AWT[121] frame-
work. It provides a rich set of GUI widgets such as buttons, panels, editors and tables, allowing
Java programmers to create GUI application programs. The Swing API was introduced in the
Java 2 platform and consists of 17 public packages from which normally only a small subset is
used.
A Swing component can in general be accessed by only one thread at a time. Normally this
thread is the associated event-dispatching thread that draws the components and dispatches
messages. There are some exceptional methods that are thread-safe on their own: These are
methods to invalidate and redraw a component and methods to register or unregister observers.
All other manipulations on the state of GUI components need to be done in the event-dispatch-
ing thread. To run application program code in the event-dispatching thread, it has to be placed
in the run method of a Runnable object. This can look like this:

Runnable guiManipulator = new Runnable() {
public void run() { doSomething(); }

};
SwingUtilities.invokeLater(guiManipulator);

6.1. RELATED WORK 81

The invokeLater method schedules the invocation of the run method of the local object and
immediately returns. The run method is subsequently called by the event-dispatching thread
asynchronous to the thread that called the invokeLater method. Swing also offers a blocking
variant of invokeLater, namely the invokeAndWait method. When using the blocking method,
the calling thread may not hold any locks that might possibly be acquired by the invoked method
otherwise the system may end in a state of deadlock.
An application program that wants, for example, to read the content of a text field from an
external thread can use the following code pattern:

[...]
final String text;
[...]

Runnable getTextFieldContent =
new Runnable() {

public void run() {
// this is non-overhead code:

text = textField.getText();
}

};
SwingUtilities.invokeAndWait(getTextFieldContent);

// now the text can be used:
System.out.println(text);

[...]

In this program the relevant information is the return value of textField.getText(). To get
access to this information from an external thread, a temporary variable needs to be created,
an object needs to be defined and instantiated and the object instance needs to be explicitly
scheduled. In the end the value can be read from the temporary variable.
The Java Swing on-line reference [78] comments on the topic: “If you can get away with
it, avoid using threads. Threads can be difficult to use, and they make programs harder to
debug. In general, they just aren’t necessary for strictly GUI work, such as updating component
properties.”

6.1.2 Windows Forms

Windows Forms is part of the .NET framework and provides widgets to create GUI applications.
Windows Forms are often referenced as WinForms. The components are - like the Swing (see
6.1.1) components - not thread-safe on their own. Exceptions are the methods BeginInvoke,
EndInvoke, Invoke, InvokeRequired, and CreateGraphics. Manipulations of GUI component’s
state needs to be done in the event-dispatching thread. The application program code is placed
in a method that is then scheduled for execution on the event-dispatching thread with the In-
voke method of the respective component. The Invoke method waits until the invoked method
returns. It is hence similar to the SwingUtilities.invokeAndWait method of Java Swing. The Be-
ginInvoke method is a non-blocking variant that works similar to the SwingUtilities.invokeLater
method in Swing. In essence the model used in this case is that of an asynchronous method call.
Invocation code in C# can look like this:

[...]
private void DoSomething() {

82 Chapter 6: Component System

//operate on the component...
component.Hide();
}
[...]
component.BeginInvoke(new MethodInvoker(this.DoSomething));
[...]

Compared to Java, the delegate concept that is available in the .NET framework slightly
simplifies the required invocation code since no explicit local wrapper class is needed.
A delegate2 can be seen as a micro interface that can be implemented by any method of an
object with the matching signature. It is implemented as a procedure variable that not only
stores the address of the procedure but also the this pointer of the associated object.
Unfortunately, the delegate concept introduced in .NET is overly complicated due to its combi-
nation of object-procedure variable and a list there of. When more than one method is assigned
to a .NET delegate, resulting in a so-called multicast delegate all assigned methods are called
when the delegate is invoked. This is for many cases not only an unnecessary overhead but also
results in confusion when the delegate’s signature supports a return value. By definition only
the last return value is kept.
Windows Forms components possess a property named InvokeRequired that indicates if the ac-
tive thread can directly call the component’s methods or if a special invocation is required. The
InvokeRequired property uses a Win32 API call to get the process and thread IDs of the calling
process and compares this with the thread ID associated with the window handle. If the thread
is the same, Invoke is not required. The application programmer can take advantage of this
property to avoid explicitly scheduling method calls in case it is not required.

private void DoSomething() {
//operate on the component...
component.Hide();
}
[...]
if (component.InvokeRequired) {
component.BeginInvoke(new MethodInvoker(this.DoSomething));
} else {
DoSomething();
};
[...]

6.1.3 Gadgets

Oberon Gadgets [67] is a powerful framework for component composition. It contains a rich
set of predefined visual and non visual components ,so-called gadgets, that can be composed
either interactively or descriptively. Gadgets can be used in all ETH Oberon Systems. Since
the ETH Oberon System is a single-threaded co-operative multi-tasking system the gadgets
framework does not support mechanisms for thread-safety. Together with the ETH Oberon
System the gadgets framework has been ported among others to Windows [120] and Bluebottle
[80] (see 5.7) that support multiple threads. To avoid concurrency problems on these systems,

2Delegates are called procedure of object variables in Object Pascal and Delphi.

6.2. BLUEBOTTLE GUI COMPONENTS 83

threads other than the Oberon thread need to synchronise with Oberon before calling any pro-
cedures or modifying the state of the gadgets framework or the Oberon System3. In Bluebottle
the synchronisation of external threads with the Oberon thread is done with a rendezvous in
the Oberon loop where the Oberon thread stack is empty apart from the loop local variables
ensuring no Oberon application program is running.

6.2 Bluebottle GUI Components

6.2.1 Concepts

This section introduces the principles and strategies that are used to achieve the different design
goals for the user interface component system. For some of the topics, the introduction contains
references to sections that go into more detail.

Thread-Safety In the component systems discussed in section 6.1, the thread-safety of the
component framework has to be established by the application programmer using locks on a
common object or by invoking methods on behalf of dedicated framework threads. This ap-
proach works quite well with conventional programming models, where separate threads have
to be created and instantiated explicitly and the synchronisation primitives are rudimentary. In
these systems, the usage of multiple threads is rather complicated so that the additional locking
issues when using the GUI component framework are taken as is by the programmers.
In the Active Oberon [94] programming model in contrast, threads are first class citizens that
are used throughout the system. The thread-safety aspects of the component framework there-
fore come to the fore. Instead of expecting the component-using application program explicitly
acquiring locks or invoking methods on behalf of a dedicated thread, the Bluebottle compo-
nents take over a great part of this task. The component author is hence responsible for the
thread-safety of a component. Some methods might be non-critical and do not need protection,
others may only be called if the entire composite of components that belong to the application
program is locked. Instead of explicitly locking the composite, the component method can re-
schedule a method call on the message sequencer thread of the composite.
Of course the application programmer is not completely freed from thinking about multi-
threading issues. Although components guarantee that reading/writing of properties, installing
and uninstalling observers as well as method calls are thread-safe on their own, higher level
synchronisation problems including deadlock can occur and need to be handled by the applica-
tion programmer. Section 6.2.4 gives more technical details about the synchronisation strategy.

Simplicity and Flexibility To keep the user interface components simple and flexible, object
containment is preferred over object inheritance [36]. In other words, the has-a relation is
preferred over the is-a relation. The Editor component for example is implemented as a direct
extension of the basic VisualComponent containing a TextView and two ScrollBars instead of

3Calling into the Oberon System - even into utility modules - from an external thread should be strictly avoided
and, if unavoidable, needs synchronisation.

84 Chapter 6: Component System

somehow extending the TextView component.
The main advantages of containment are:

• Reduction of the problem of the fragile base class

• Avoidance of complex inheritance graphs

• Contained objects can be created or replaced dynamically at runtime which increases the
flexibility

Internalisable from XML An entire composite can be internalised from an XML document.
To achieve a simple system design, the XML documents are directly transformed into compos-
ites, without the need for an intermediate structure. To make this possible, the basic component
is a type extension of the generic XML.Element.
When internalising an XML document, the generic XML parser [113] calls an object genera-
tor procedure for each XML tag it encounters. The generator method returns an instance of a
possibly specialised XML.Element object that is then appropriately linked into the in-memory
document structure corresponding to a DOM tree. The application program can configure an
XML parser instance with an element library that maps XML tags to application specific gen-
erator procedures. If the parser cannot find a specific generator procedure for a certain tag, it
instantiates a generic XML.Element object that can store all attributes and sub-elements spec-
ified in the XML document for later use. The generic XML.Element also offers a basic query
mechanism for introspecting the component, that is, retrieving the stored sub-elements and at-
tributes.
When loading a composite from an XML document, the WMComponents.Load procedure in-
stantiates a parser object and configures it with an element library containing the generator
procedures of the installed GUI components. The parser therefore directly creates and links a
hierarchical composition of components in the system memory.
The properties of the individual components are specified in specialised Properties sub-tags.
The Component extension of the XML.Element overrides the AddContent method to recognise
and handle the Properties element. The content of the Properties element is used to set the
property values of the component. Property values that are not explicitly set in the XML doc-
ument are set to the respective default values as defined in the component style. The property
mechanism is described in more detail in section 6.2.5. Figure 6.1 shows the component load-
ing process.
After an entire XML document is loaded, the observers are registered with event sources using
a path mechanism that allows locating components by path or by UID.

Listing 6.1 gives an example of a composite defined in XML. The <Properties> tags
contain the property values of the components. The composition consists of a left aligned panel
with an embedded top aligned button with the title Files. Inside the button component there is
an invisible SystemCommand component that is informed when the button is pressed and that
will then call a specified command.

6.2. BLUEBOTTLE GUI COMPONENTS 85

��������	�

����	��
�	�������

���
���	

����	��

���������

����	��
����	

����	��
���	���	�

���	����
�	����������	�

��������	

���	���
����	�

����	��
������������

Figure 6.1: Loading Components from an XML Document

<Panel>
<Properties>
<Alignment>1</Alignment>
<Bounds>
<Width>92</Width>

</Bounds>
</Properties>

<Button>
<Properties>
<Caption>Files</Caption>
<Alignment>2</Alignment>
<OnClickHandler>X Run</OnClickHandler>

</Properties>

<SystemCommand>
<Properties>

<ID>X</ID>
<CommandString>WMSystemComponents.Open</CommandString>

</Properties>
</SystemCommand>

</Button>
<\Panel>

Listing 6.1: Example of an XML Definition of a Component Composition

86 Chapter 6: Component System

Supporting Translucency The support for translucency in the component system basically
relies on the translucency support in the graphic system as described in detail in chapter 4. The
translucency support requires drawing of underlying components strictly from bottom to top in
the case of an update request.

Supporting Styles Component styles that make it possible to change the look of the system
rely on default values of properties as described in detail in 6.2.5. Components are notified
about system wide style changes by a StyleChanged message that is broadcast to all display
space manager objects (see 5.5). FormWindows that can contain composites (see 6.3) send a
RecacheProperties message to all contained components upon receiving a StyleChanged mes-
sage. The components then redraw themselves, using the new default values. Style changes
only apply to properties that have not been explicitly set by the application program.

Introspection Since the AOS runtime reflection support is limited, the component framework
explicitly implements a reflection mechanism. Each component contains lists containing ref-
erences to all of its published features such as properties (see 6.2.5), event-sources (see 6.2.6)
and observers (see 6.2.7). Applications such as component composer tools can query the lists
to get access to the desired features.

6.2.2 Alignment

An important aspect of a GUI component system is how the layout of components can be
organised. There are two conceptually different mechanisms to position visual components.
Both are supported by the Bluebottle GUI component system:

Unmanaged Positioning Unmanaged positioning of visual components allows the designer
to exactly specify where a component should be placed. The position is specified by the bound-
ing box in coordinates relative to the bounding box of the direct parent component in the hier-
archy. A component or parts of a component that are positioned outside the bounding box of
the parent component are clipped away by the clipping mechanism of the graphics system as
described in 4.4.1.
While the explicit specification of coordinates allows components to be arbitrarily positioned,
it makes dynamic and also static changes difficult. Whenever a component needs to be inserted,
deleted or resized, all other components must be explicitly adapted, too. For most applications,
a less explicit positioning mechanism is better suited.
Visual components whose positioning is unmanaged have the alignment property set to WM-
Components.AlignNone.

Managed Positioning Using an automatic alignment and positioning mechanism for visual
components normally results in more adaptive user interfaces, both from the programmer’s and
user’s perspective. Components with automatic alignment can dynamically adapt to chang-
ing screen, window or parent component sizes without the need for additional program code.

6.2. BLUEBOTTLE GUI COMPONENTS 87

Adding, removing, resizing or moving components is simple since all the other components are
automatically adapted.
There are many different strategies how components can be positioned. The Bluebottle GUI
component system allows the installation of a layout manager per container component that
implements a specific alignment strategy. This is similar to the Java AWT and Swing frame-
works [28].
The default layout manager that is hard-coded in the standard visual component offers a very
simple, but powerful, positioning mechanism4. It supports aligning a component inside the
available space of its parent component. Each aligned component reduces the space that is
available in its parent component. Components can either use the top, bottom, left, right or
complete rest of the available space. A component that is left or right aligned only needs to
specify its width; the height is automatically determined by the available space in the parent
component. A component that is top or bottom aligned respectively only needs to specify its
height; the width is automatically calculated. A component that takes the rest of the available
space does not need to specify either extent. Only one visible component within a common
parent component can reasonably take the rest of the available space.
The components take the space in the order they are inserted into the parent component. Figure
6.2 gives four simple examples of the alignment strategy. The following description of the four
examples shows the alignments and insertion order of the sub-components:

A top, top, top, top, top

B left, left, left, left

C top, bottom, left, left

D top, bottom, left, left, bottom, bottom, right

� �
 �

Figure 6.2: Simple Alignment Examples

Using the alignment mechanism recursively allows the creation of complex, but not overly
specified, layouts that can within limits automatically adapt to size changes. Figure 6.3 A

4Up to the time of writing, the default layout mechanism was found flexible enough for all cases, no alternative
layout mechanism has been necessary.

88 Chapter 6: Component System

shows an example of a recursively composed layout. The thick lines indicate a component con-
taining sub-components for recursive alignment. The grey bars are used as spacings. Figure
6.3 B shows the same layout in a resized window.
Panel components that have their colour set to a completely transparent black (the RGBA colour
value 0) are optimised so that their use becomes inexpensive in terms of computing-time re-
quired for the drawing. This allows the extensive use of transparent panels for layout purposes.

�����

�

�����

�

Figure 6.3: Complex Alignment of GUI Components

����

���

����

����

Figure 6.4: Gap between Components

To achieve visual grouping of related components, empty placeholder panels can be added
between components. This method can require a great number of functionally useless panels.
To avoid this programming or designing overhead, the visual components can define a gap of

6.2. BLUEBOTTLE GUI COMPONENTS 89

empty space that is added by the layout mechanism (Fig. 6.4). The spacing can be inserted
left, top, bottom and right of the component with the SetLeft, SetTop, SetRight and SetBottom
methods of the gap property that is available for all VisualComponents. Negative gap values
are possible, but they can lead to overlapping components.

6.2.3 Composition

Individual components can be composed to form larger interacting compounds that solve a
certain problem. A typical example of such a composed component is a visual sound volume
controller that can consist of a panel component containing a scrollbar and a label component
as well as an invisible volume control model component. The composed component can be
instantiated multiple times to form a mixer panel.
Whilst a component can have more than one contained sub-component, a component can only
be contained in one super-component. Therefore, the containment relations between compo-
nents form a tree and thus can be naturally mapped to an XML structure where sub-components
map to sub-tags as described in 6.2.1.

Other inter-component relationships within a composite are less structured. One compo-
nent may be interested in properties or events of components other than its super- or sub-
components. To express these more complex interoperability in a textual form, paths or UIDs
can be used.

6.2.4 Synchronisation

Single-threaded software components are generally substantially easier to write and use than
multi-threaded implementations, because the latter requires locking mechanisms to achieve
thread-safety. This section describes in more technical detail the synchronisation strategy used
in the Bluebottle GUI component framework.
There are several different synchronisation problems that need to be solved by the synchroni-
sation mechanism of the component framework:

Low-Level Data Races A software component can only be called thread-safe if all its acces-
sible methods and properties are protected from reaching invalid or inconsistent states
when they are accessed at the same time by more than one process or thread. For ex-
ample it may happen that two threads access a shared variable and one of them changes
the variable’s value without preventing the other access from being simultaneous. Soft-
ware components that export variables accessible to different threads are in general not
thread-safe. Hence a component programmer should not directly export variables but
rather offer synchronised accessor methods to non-exported variables. This simple mea-
sure solves the problem of low-level data races but introduces the possible problem of
self-deadlock. A concise definition of low-level data races can be found in [101].

Self-Deadlock Self-deadlock is a special case of deadlock that happens on a single object
instance if a synchronised method calls another synchronised method using the same
non-recursive lock. Two common ways to avoid self-deadlock are the use of recursive

90 Chapter 6: Component System

locks or a strict separation of synchronised interface methods from unprotected internal
implementation methods [103].

High-Level Data Races There are several high levels of data races that can occur in multi-
threaded situations even if a component is protected against low-level data races. High-
level data races are based on the interdependence of separately meaningful properties
of a component. A comparison of high-level data races and low-level data races can be
found in [5]. A simple example of such a high-level data race is a rectangle that might
be specified by the (left, top) and (right, bottom) coordinates. There might be separate
synchronised accessor methods for both (left, top) and (right, bottom) because each of
them is meaningful on its own. To calculate the width or height of the rectangle in a
thread-safe way, these two synchronised methods are not sufficient; the rectangle might
have been changed in the time between safely reading each of the two coordinate pairs.
The higher level equation width = right − left holds only in a fully synchronised
context. There are mainly two approaches to prevent these high level data races:

• by offering synchronised methods for all meaningful access combinations to com-
plex data

• by offering a lock instance that must be held before accessing any of the state vari-
ables (transaction model).

Detecting high-level data races is a current research topic of several research groups [4].

Deadlock Generic deadlock in contrast to self-deadlock can involve several different locks.
Protecting each component’s state with an individual lock substantially increases the
danger of deadlock, in particular in combination with cyclic component structures.

Composite Data Races A composition of several different components is an even higher level
of possible data races. For example, drawing or passing messages between components
cannot be done in parallel with manipulations on the component hierarchy since this
might lead to invalid clipping regions and misdirected or lost messages. To protect the
entire composition from getting into aninconsistent state, a common hierarchy or com-
position lock must be held before operating on the composite. Without taking great care
of the locking order, this can be a further source of deadlock.

In systems that feature extensible components, great care must be exercised that all exten-
sions of a component adhere to the same locking scheme. Depending on the programming
language used, the compiler can help with ensuring the locking discipline. Some research is
currently being done in the area of extended static [91] or dynamic [101] checking of code with
respect to correctness in terms of a given locking scheme.

Similar to most single-threaded graphical component systems, the Bluebottle GUI com-
ponent framework uses a thread and a queue for the handling of asynchronous events and a

6.2. BLUEBOTTLE GUI COMPONENTS 91

����������	
�	���	�
�

�������	

������
�	�

Figure 6.5: Hierarchy Lock

hierarchy lock that ensures a consistent view on inter-component relations. Figure 6.5 shows a
composite that is protected with a lock.
The hierarchy lock, the message queue and the message handler thread are combined into an
active message sequencer object that can be reused in synchronisation contexts within and out-
side of the component system. The sequencer is for example used in the display space manager
(5.5). Its task is to provide

• serialisation of asynchronous messages and events (see 6.2.6 for details about events)

• decoupling of processes

• a recursive locking mechanism

The serialisation of messages and events is provided with the help of synchronised methods for
adding messages and events to a single queue.
The decoupling of processes is achieved with an activity (thread) in the sequencer object that
takes messages and events from the queue. Messages are forwarded to an installed handler
method, and events are sent to the respective observers.
The locking mechanism is realised with a recursive lock that is implemented in WMLocks. The
activity in the sequencer object synchronises with the recursive lock before calling the message
handler or event handler methods. This ensures that the installed message handler method is
only called with the recursive lock held by the sequencers activity.
Figure 6.6 shows the detailed composition and function of a sequencer object. The A in the
image symbolises the activity of the object.
The lock that protects the component hierarchy (Fig. 6.5) is the same as the lock of the message
sequencer object that is associated with the composite (Fig. 6.6).

In the Bluebottle GUI, the following strategy for synchronisation is applied:

1. Instead of exporting the state of a component with object variables, it is exported as a list
of special property object instances that encapsulate the values and offer synchronised

92 Chapter 6: Component System

�

�������

��	
�����
�������

����

�	�����������������

���

������������

�����

���������

Figure 6.6: Detailed Description of a Sequencer

access methods. Properties can encapsulate basic types such as LONGINT or BOO-
LEAN but also complex types such as Rectangles. The accesses to the properties of a
single component can be grouped into transactions. In a transaction all accesses to the
properties of a component happen without interference of other threads. When one or
more properties are changed in a transaction, the component is informed with a Prop-
ertyChanged event, upon which the component internalises the changed values of the
exported properties. The property mechanism is described in more detail in section 6.2.5.

2. Calls to event methods from activities other than the message sequencer are queued to
be invoked on the message sequencer thread. The event re-scheduling mechanism is
described in more detail in section 6.2.6.

3. Other special methods enforce their locking strategy by efficient runtime assertions.

As a fine point we note that checking if the current method call emanates from the associated
sequencer object can be done very efficiently without involving locks. It is done by storing the
sequencer’s thread object reference in a private field when it is created and comparing this
field to the current thread object. The current thread object can be accessed efficiently via the
thread’s stack [80].

6.2.5 Properties

For flexibility and versatility, most software components can be parameterised in one or an-
other way. The parameterisation of a component instance can happen at construction time but
usually also at runtime. To guarantee controlled access, especially in multi-process situations,

6.2. BLUEBOTTLE GUI COMPONENTS 93

it is common practice to store the values in variables that are local and private to the respec-
tive objects and offer exported, sometimes synchronised, accessor methods. The concept of
an exported state value of a component is often referred to as a property. Some programming
languages such as Delphi or C# offer special support and notations for the definition and use
of properties. In both, Delphi and C# , a named and typed property can be defined specifying
the respective read and/or write access methods. If only either the getter or the setter method
is given, a property is read- or write-only respectively. The properties can syntactically be ac-
cessed like variables. Behind the scene, the compiler generates a call to the respective accessor
method.
Other programming languages such as Java or C do not have a special language construct to
denote properties. This does not mean the concept of properties cannot be used in these lan-
guages. The Java-Beans framework as an example introduces the property concept based on
the naming convention that all methods starting with getP and setP are read and write accessor
methods for the property P respectively.

Before implementing a property support system for Bluebottle, we need to specify its re-
quirements:

Access detection When a property value is changed it should be able to inform interested
observers, that is, other objects that have subscribed to the property.

Serialisation It should be possible to load and store property values from and to data streams

Synchronisation The access to a single property should be atomic. It should be possible to
group several accesses to one or more properties into a transaction to guarantee consis-
tency across all of them.

Reflection It should be possible to get meta information about a property such as its name and
type

Default values Properties of GUI components should support default values that can be used
to implement skins. A skin defines the look of visual components, such as the colour of
buttons or the shape of window frames. Since the look of components is defined by their
properties, a skin defines default values for the properties of the different classes of visual
components. Application programs need to be able to explicitly override the default look
of any component. To allow changing skins at runtime the properties need to explicitly
distinguish between default setting and non-default setting, even if both values are by
coincidence the same, so that a skin change cannot override the settings of an application
program.

Since Active Oberon - similarly to Java - does not offer a language construct for properties,
the concept has to be expressed differently.
The main difficulty in adopting the Java-Beans approach lies in the less advanced reflection

94 Chapter 6: Component System

mechanism of the Bluebottle system. However any centralized reflection support can be substi-
tuted by implementing the generic introspection functionality in the code of the basic compo-
nent class. The reflection support that is integrated into the component code must at least offer
methods to enumerate the properties of the component and to query meta information and offer
ways to read and write the values of properties. This is essentially the mechanism used by the
Gadgets framework or COM.
The following small code snippets show the implementation of such an explicit reflection mech-
anism. The mechanism is robust against changes of the number of properties in super classes
because the property indices are normalised by subtracting the number of properties defined in
the super class.

Procedure GetNofProperties returns the number of properties that are available in the com-
ponent. This is the number of properties in the super class plus its newly defined additional
properties.

PROCEDURE GetNofProperties() : LONGINT;
BEGIN
RETURN GetNofProperties()ˆ + NofNewProperties
END GetNofProperties;

Procedure GetPropertyName returns the name of the property with index propertyNr. To
make the index independent of changes in the properties of the super class, the number of
properties in the super classes is subtracted from propertyNr. This example defines the two
new properties Color and Size. If the property index propertyNr lies outside the defined range,
the super class implementation of GetPropertyName is called.

PROCEDURE GetPropertyName(propertyNr : LONGINT) : String;
BEGIN
CASE propertyNr - GetNofPropertiesˆ() OF
| 0 : RETURN "Color"
| 1 : RETURN "Size"
ELSE RETURN GetPropertyNameˆ(propertyNr)
END
END GetPropertyName;

The method GetPropertyAccessors returns two method variables that point to methods im-
plementing the access to the respective property values.

PROCEDURE GetPropertyAccessors(propertyNr : LONGINT;
VAR set : PropertySetter; VAR get : PropertyGetter);

BEGIN
CASE propertyNr - GetNofPropertiesˆ() OF
| 0 : set := SetColor; get := GetColor
| 1 : [...]
ELSE RETURN GetPropertyAccessorsˆ(propertyNr, set, get)
END
END GetPropertyAccessors;

The following methods implement the effective access to the value of the colour property.
The access methods could be synchronised.

6.2. BLUEBOTTLE GUI COMPONENTS 95

PROCEDURE SetColor(color : String);
[...]

PROCEDURE GetColor() : String;
[...]

A problem that occurs with this approach is the loss of static type checking. In the program-
ming example above, the GetPropertyAccessors method can only return delegates to methods
that access a given type, in this case of the type String. To make more than one basic property
type possible, the accessor methods must either operate on a generic type or there must be dif-
ferent methods to acquire the property accessors for each respective type.
Generic accessor methods can, for example, operate on objects that can in different subclasses
encapsulate a field of the effective property type. This encapsulation that is sometimes called
boxing requires dynamic memory and is very unnatural for the programmer if there is no sup-
port in the programming language. The encapsulation also prevents static type checking. Pass-
ing property values as strings as in this example is another possibility that offers no automatic
type checking at all.
A solution that offers a different method to acquire the accessor methods for each different type
requires a prohibitive amount of administrative code in the component.

Property-Objects Approach Even with the solution of a generic string accessor type, the
amount of administration code required is large. An alternative solution models the exported
properties as objects. These objects contain the respective property values as well as accessor
methods. All properties of a component instance are stored in a property list. The representa-
tion of properties through object instances is a natural mapping to an object oriented language
without specialised language support for properties. This mapping allows the property system
to be equipped with all the desirable features.
The property object instances can be added as exported5 field variables of a component, in ad-
dition to publishing them in the property list, so that the property access can be hard-coded into
a program. This avoids searching at runtime, allows taking advantage of static type checking
and gives natural access to the property values similar, but not equal, to the access of variables.
Also, the additional overhead that might hide behind the property access is not completely in-
visible to the programmer.
An advantage of property object instances over properties that are deeply integrated into the
language is the support for complex properties with several different access methods. A rec-
tangle property can for example offer access to its width and height as well as to the rectangle
as a whole.
One drawback of the solution is the additional memory overhead. Each property instance typ-
ically uses significantly more memory than the encapsulated value type alone. This is because

5The read only export of Active Oberon protects the property object instances from being replaced while still
allowing read and write access to the encapsulated values

96 Chapter 6: Component System

of heap management overhead resulting from type information and more importantly internal
fragmentation due to heap block alignment.

Property Interface

This section introduces the conceptually important parts of the generic property interface:

• PROCEDURE &New (prototype: Property; name, info: String); the constructor of the
property object takes a prototype property that defines the default value and meta infor-
mation. The prototype parameter can be set to NIL to omit the prototype, for example if
the created object instance is itself acting as a prototype for other properties. The para-
meter name defines the identifying name of the property. The info parameter contains an
info string that describes the property function. It is only used as an information for the
programmer.

• PROCEDURE GetName(): String; returns the identifying name of the respective prop-
erty. It is used for finding the property in the property list of a component.

• PROCEDURE Reset; resets the property to the default value.

• PROCEDURE FromXML (xml: XML.Element); internalizes the property value from a
given XML element. This is used when loading a component from an XML document.

The methods Get and Set are not defined in the generic interface since they are type de-
pendent. Each concrete property implementation defines Get and Set methods of the respective
type.

Default Values

As long as no Set method was called on a property instance, it returns the value of its prototype.
The values of the prototype properties are used to specify all property values of a component
that are not explicitly set by a program or XML specification of the component. This mecha-
nism implements the skinning ability of the Bluebottle GUI component system. Whenever the
property value is changed the first time, the component is no longer in the default state, even if
the value written to it is the same as the default value. It will then no longer be influenced by
changes of its prototype. The property can only be reset to represent the default value by a call
to its Reset method.

Property List

The property list stores all the properties of one component. It is instantiated in the constructor
of the basic Component object which also fills it with the generic properties that are defined for
all components, for example the id property. Each constructor of an extension of the Compo-
nent object adds its additional properties to the list. After the creation of the object, when all
constructors have been called, the property list contains all the properties of the component.

6.2. BLUEBOTTLE GUI COMPONENTS 97

Apart from storing the property object-instances of a component, the property list also main-
tains a recursive reader/writer lock that is shared by all properties of a component and informs
interested observers about any changes. The notification about changes takes place whenever
the last write-lock is removed. For the notification mechanism, an EventSource object as de-
fined in 6.2.6 is used. In the case that no changes occurred between the acquisition of the first
write-lock and the release of the last, no notification is sent. In the case of one single change,
the notification data contains the reference to the changed property object-instance. If more
than one property was changed, the notification data contains the reference to the property list
itself. The change notification mechanism is conceptually similar to the mechanism used to
notify text model changes as described in 3.3.2.
The recursive reader/writer lock can be used as another means of avoiding high-level data races.
The property list can be used to enumerate all properties of a component, for example for re-
flection or serialisation.

6.2.6 Events and Observers

The observer pattern [36] that is often used in component frameworks defines a one-to-many
dependency from one object that is being observed by many observers. Whenever the observed
object changes its state, it has to notify all its registered observers. In other words, the model
creates an event for which all registered observers are listening. The model/view/controller
concept is probably the best known application of this pattern.
To simplify and standardise the implementation of the observer pattern in the Bluebottle sys-

*$	�������	�	�

*$	�������	�	�

*$	�������	�	�

���

���

�	����	�	"�

� �	�$	��

����

��������	
��

Figure 6.7: Observer : Event Source and Observers

tem, the module WMEvents specifies a reusable EventSource object and an EventListener micro
interface in the form of a delegate procedure type. Figure 6.7 shows an EventSource object with
three registered EventListeners. An object that wants to be observable, instantiates and exports
an EventSource object variable. Whenever the observable object changes its state, it calls the
Call method of the EventSource variable. The EventSource object then automatically invokes
all registered observer methods. The registration and unregistration of EventListener methods
is handled by the EventSource object so that the observed object does not need to implement

98 Chapter 6: Component System

additional management code.

The EventListener signature takes a sender and a data object reference as parameters:

TYPE
EventListener = PROCEDURE {DELEGATE} (sender, data : ANY);

Event Sources

The EventSource offers the following synchronised programming interface:

Constructor

PROCEDURE &New(owner : ANY; name, info : String;
finder : CompCommandFinder);

• owner, contains the object-instance that offers itself to be observed. An object that creates
an EventSource object usually sets this parameter to SELF. The owner parameter is stored
in the EventSource object and used as the sender parameter when calling a registered
observer.

• name, contains a reference to a string that is used as a name to identify the respective
event source. The name is used to find a specific event source out of an EventSourceList.

• info, contains a reference to a descriptive string that is used for reflection. This is only
used as meta-information for the programmer. It can be used in builder tools.

• finder, contains a delegate to a method that can find an EventListener by string. This is
used for wiring component structures defined in an XML document.

All of the constructor’s parameters can be set to NIL if no relevant information is available.

Add, Remove Add/Remove registers/removes an observer method that matches to the Event-
Listener signature. Whenever the event is fired, each observer method is called as many times
as it has been registered. The methods have the following signatures:

PROCEDURE Add(observer : EventListener);
PROCEDURE Remove(observer : EventListener);

Call The Call method invokes all the registered observers. It uses its owner field, set in the
constructor as the sender parameter of the observer and takes one additional data parameter
that can be any object reference for the observer’s data parameter. The observer methods need
to be thread-safe since they can be called at any time. To make the observer method thread
safe, the efficient strategy described in 6.2.4 and [32] can be used. No invocation order for the
observer method may be assumed, the invocation might even be in parallel6.

6Although the current implementation sequentially calls the observers in inverse order of registration, any
future implementation may change this

6.2. BLUEBOTTLE GUI COMPONENTS 99

HasListeners The HasListeners method can be used by the observed object to check if at
least one observer is registered with the event source. If no observerss are registered, the
observed object can avoid the potentially expensive creation of the data object used in the Call
method.

PROCEDURE HasListeners() : BOOLEAN;

The additional methods AddByString and RemoveByString use the finder delegate to find
the observers to be added or removed. The name resolution is performed lazily on use of the
Call method. If the delegate could be resolved, it is cached. If it is not found, the resolution is
tried again on the next call.

6.2.7 Observers

An observer is implemented as a method with a signature that matches the EventListener micro
interface. It is either registered with an EventSource object or can also be called directly from
a program.
If an observer method of an object is called, it first checks if the call originates (directly or
indirectly) from the sequencer thread. In this case the observer method simply does whatever
it needs to do to handle the event. Otherwise, if the method call originates from any other
thread, the observer simply re-schedules the event in its associated sequencer object and returns,
knowing that it will be called again with the same parameters but this time from the sequencer
thread. The sequencer thread always acquires the hierarchy lock before calling a component
method. Thanks to this strategy, an event handler method can always safely operate on the state
of its object, no matter from which thread it was originally called. The following code sequence
shows a generic event handler:

PROCEDURE EventHandler*(sender, data : ANY);
BEGIN
IF ˜sequencer.IsCallFromSequencer() THEN (* sync needed ? *)

sequencer.ScheduleEvent(SELF.EventHandler, sender, data)
ELSE (* actual business logic *)
END

END EventHandler;

Listing 6.2: Synchronizing Event Handler

The observer code shows some similarities with the synchronisation in the .NET GUI com-
ponent framework (section 6.1.2). The IsCallFromSequencer method has the same function as
the InvokeRequired property in .NET. ScheduleEvent matches the BeginInvoke method. The
main difference between these solutions is the place where the decision happens whether or not
to re-schedule the call. In .NET the decision is left to the application program that must know
if it is running in the message handler thread. In Bluebottle the component is responsible for
this decision.

100 Chapter 6: Component System

6.2.8 Message Handling

Strict parental control is used as a strategy for the drawing and passing messages such as key-
board messages, mouse messages and broadcasts. Other inter-component event-handling can
bypass parental control if event sources are directly wired to event handlers. The direct wiring
is implemented by delegate procedures, a combination of a method pointer and object refer-
ence that allows direct component-to-component calls, without the need of sending a message
up and down an entire hierarchy. The delegate procedures allow simple component wiring by
registering observers with event sources without the need for an object to implement a special
interface. In a graphical component system, an inter-component message can, for example, be
sent by a button that is pressed or a string in an editor that is changed.

6.3 Display Space Manager Integration

Visual components expect their parent components to be a visual component again. To make
use of the GUI components they need to be integrated into the display space of the display
space manager. This integration is done with a special visual component called the Form and
a special window called the FormWindow. The FormWindow is a specialisation of the Double-
BufferWindow that is described in section 5.3.3. When the FormWindow is created it internally
creates a Form component and links the Form component’s FormWindow reference to itself.
The FormWindow forwards all messages from the display space manager to the Form compo-
nent that then handles them according to the VisualComponent message handler. When the
FormWindow is resized by the display space manager, it can either ignore the resize resulting in
an automatic zooming by the display space manager as described in 5.3.2 or it can create new
buffer images and send a resized message to its Form component. The behaviour is determined
by the application program that creates the FormWindow.
The Form component differs from a VisualComponent in not expecting to be integrated into
another VisualComponent. All messages that a normal VisualComponent would forward to its
parent component are either handled by the Form component or forwarded to the FormWin-
dow. The most obvious messages that are handled by parent visual components are requests
to invalidate regions of a component. On an invalidation request of a child component, a nor-
mal VisualComponent transforms the request into its own coordinate system by adding the left
top coordinates of the bounding box and forwards it to its own parent component. In contrast,
the Form component has no parent component and therefore handles the request itself. It first
prepares the FormWindow’s canvas by setting the requested invalidation rectangle as a hard
clipping rectangle as discussed in 4.4.1. Then it issues a draw request to its child components
that intersect with the clipping rectangle. When the draw request is handled, it swaps the re-
spective area as described in 5.3.3 and invalidates it in the display space manager so that the
update becomes visible.

6.3. DISPLAY SPACE MANAGER INTEGRATION 101

6.3.1 Implementation

The Bluebottle component framework has an object oriented design. All components extend
the basic component object defined in WMComponents.Component that is itself an extension
of the generic XML.Element. The basic component offers the following interface7:

Object variables:

• sequencer : MsgSequencer; contains a reference to the message sequencer associated
with the containing composite. The synchronisation is described in more detail in section
6.2.4.

• properties : WMProperties.PropertyList; contains all the properties that are exported by
a component. It can be enumerated by a builder or reflection tool to locate a property
or get a list of all the available properties of a component. See section 6.2.5 for more
information about properties.

• events : WMEvents.EventSourceList; contains all the events that are generated by a com-
ponent. It can be enumerated similarly to the property list for getting meta information.
(See 6.2.6)

• eventListeners : WMEvents.EventListenerList; contains a list of public observers that can
be added to event sources of other components. (See 6.2.7)

• id, uid : WMProperties.StringProperty id and uid are directly exported properties that
contain strings that identify the property. id contains a string by which the component
can be identified by its direct super component. The id value is used to identify a com-
ponent by path, it must be unique within the containing component. The uid must be
unique within an entire component hierarchy. It is normally used to link a program to a
component that is loaded from a textual XML description. Both values can be ignored if
the component does not need to be located via its name.

• enabled : WMProperties.BooleanProperty describes if a component is active or not. A
button component might for example be not clickable if it is disabled. All components
are enabled by default.

Methods:

• PROCEDURE &Init; the constructor of the component initialises the properties, events
and eventListener lists. It also creates and adds the id, uid and enabled properties. The
Component constructor also calls its inherited constructor. All extensions of Component
must call their inherited constructor as the first thing in their own constructor to ensure
the component is created correctly.

7Some internal bookkeeping methods and fields are omitted

102 Chapter 6: Component System

• PROCEDURE Initialize; The method Initialize is called after an entire composite is com-
pleted or has been rearranged. Extending components can override the implementation
of this method to internalise data that is depending on property values. An example for
this is an image that needs to be loaded according to a property value. Property values
are only reliable after Initialize was called the first time. If the method is overridden, the
inherited Initialize method must be called to ensure the proper initialisation. Initialize is
called by the Reset method. It should not be called directly.

• PROCEDURE Finalize; The method Finalize is called when a composite is being ter-
minated. The method is not intended to be called by application programs. It is called
by the component framework while holding the hierarchy lock. Extending components
that override this method must call the inherited method. Extended components should
stop possible activities that they are controlling, and close and release all their external
resources. Examples for such resources are TCP connections, UDP ports or protocols
that require a controlled finalisation.

• PROCEDURE AddContent(c:XML.Content); The AddContent method is inherited from
XML.Element and is responsible for adding content objects. The added objects can be
XML contents or other components. The XML tag Properties is forwarded directly to
the component’s property list object properties which then fills the properties with the
values extracted from the XML Properties element.
AddContent is normally not overridden by extending components. Additional access
control is a possible reason for overriding.

• PROCEDURE GetComponentRoot(): Component; returns the topmost element in the
hierarchy as seen from the called component, that is still a component. This is not nec-
essarily the root object of a hierarchy since a component hierarchy could be stored in an
XML hierarchy. GetComponentRoot should be regarded as final and not be overridden
by extending components.

• PROCEDURE FindByUID(uid:String) :Component; The method FindByUID recursively
searches a component and its sub-components for a given uid. If found it returns the cor-
responding component, otherwise NIL. The method is final and should not be overridden.
It is mainly used by programs to locate a specific component within a composite that was
loaded from a file. The method is normally not called directly but is used indirectly via
the StringToComponent method.

• PROCEDURE FindByPath(VAR path:ARRAY OF CHAR;
pos:LONGINT):Component; The method FindByPath searches a component following
a given path relative to the called component. If the path is valid and the component
found, it returns the component, otherwise it returns NIL. The method is final and should
not be overridden. It is mainly used to locate components in a loaded composite by
relative paths. The method is normally not called directly but is used indirectly via the
StringToComponent method.

6.3. DISPLAY SPACE MANAGER INTEGRATION 103

• PROCEDURE StringToComponent(str:String):Component; Uses a uid or a id-path to
localise a component within the composite.

• PROCEDURE StringToCompCommand(eventstr:String):EventListener; Uses a uid or a
id-path to find an observer of a component within the composite.

• PROCEDURE Reset(sender, data:ANY); recursively calls the RecacheProperties and Ini-
tialize methods of all components. It is used when components are rearranged or new
components are added at runtime.

• PROCEDURE HandleInternal(VAR msg:Message); The HandleInternal method is the
synchronised message handler of the component. It must not be called directly. Clients
that want to send a message to a component should always use the Handle method that
ensures proper synchronisation. Extensions of Component can override this method to
install a synchronised message handler. Calling the inherited HandleInternal method is
optional and can be used as a message filter or to implement parental control.

• PROCEDURE Handle(VAR msg:Message); The Handle method acts as a synchroniser
for the HandleInternal method. A message that is sent to the Handle method from a
process other than the sequencer process is re-scheduled and put into the message queue,
that is, asynchronous calls to Handle return after the message is queued while synchro-
nous calls return after the message is handled.

• PROCEDURE PropertyChanged(sender, property:ANY); The PropertyChanged method
is called by the component framework whenever a registered property of the component
has been changed. The property parameter identifies the property that was changed. If
more than one property were changed in a transaction, then the property parameter is set
to the property list properties of the component. In the case of a transactional change of
more than one property, the RecacheProperties method is called by the framework. See
section 6.2.5 for more information about properties.

• PROCEDURE RecacheProperties; The RecacheProperties method is called by the in-
ternal property change handler via the sequencer, either if multiple properties have been
changed or the Reset method has been called. In the case of a transactional change of
more than one property, the PropertyChanged method is called too. Components that
override the method should call the inherited RecacheProperties method. See section
6.2.5 for more information about properties.

• PROCEDURE IsCallFromSequencer() : BOOLEAN; The IsCallFromSequencer method
checks if a call originates from the sequencer process that is associated with the compos-
ite. The method is used in the event re-scheduling pattern described in section 6.2.4.

• PROCEDURE Acquire; acquires the hierarchy lock that is associated with the composite.

• PROCEDURE Release; releases the hierarchy lock that is associated with the composite.

104 Chapter 6: Component System

6.3.2 Available Components

The following list shows a selection of the available components:

Timer is an invisible component that generates periodic events.

Panel is a visual component that is often used as a container for groups of components.

Label draws a UTF-8 string into its bounding box.

Button generates an event whenever it is clicked with the mouse. It supports styles and images
for decoration.

Scrollbar displays, in the form of a slider, an integer value between a given minimum and
maximum value. On each change it generates a change event.

TextView displays a rich text. It offers selection and copying to the clipboard but not editing
of the text.

Editor wraps a TextView component and acts as a controller on the text model.

GenericGrid displays and organizes a generic grid or table structure.

StringGrid is an extension of GenericGrid that can display the content of a string grid model.

Clock is an active component that displays the current time.

A large number of additional components are available in the standard Bluebottle system re-
lease.

6.4 Conclusions

Both the Java Swing and WinForms frameworks share a similar synchronisation strategy. Meth-
ods of a GUI component should only be called by a single message-dispatching thread. When-
ever an external thread needs to modify the state of a GUI component, it has to encapsulate the
mutator code into an object or method that is then scheduled for invocation by the message-
dispatching thread. The encapsulation into a method is only possible in the .NET framework
because of the support for delegates. Another difference of the WinForms to the Java Swing
framework is the additional InvokeNeeded property that can be used to determine whether or
not the code is running in the message-dispatching thread. In both cases the client application
programmer is burdened with explicitly re-scheduling code-flow that leads to the modification
of the state of GUI components. While the Bluebottle GUI component framework also uses
a specialised thread for synchronisation that is associated with a composite, it differs from
Swing/Winforms in the point where the synchronisation takes place. It centralises the thread-
safety aspects and moves the decision whether or not a method call must be scheduled on the
message-dispatching thread into the components. This disburdens the user of components but
requires more thought of the component programmer. Figure 6.8 compares the synchronisation

6.4. CONCLUSIONS 105

strategies of Java Swing and WinForms to the Bluebottle GUI component system.
While comparing the thread ID in the InvokeNeeded property is rather expensive, even involv-
ing kernel calls, the equivalent method in the Bluebottle system is extremely efficient, so that
checks on all interface methods of a component are possible without losing too much efficiency.
The centralization of the synchronization code is especially beneficial in situations where many
different threads are cooperating in a single system.
The proposed design pattern of an active sequencer object in combination with an event syn-
chronisation strategy is a versatile and efficient means for managing synchronisation and lock-
ing concerns in a multi-threaded graphical component system. In Bluebottle it is not only used
in the XML oriented graphical component framework mentioned in this section, but also in
the display space manager as described in section 5. The use of delegate procedure variables
combined with the protection of observer methods (see listing 6.2) considerably simplifies the
wiring of components.

106 Chapter 6: Component System

������!	�

�!�	�"
�

���������
����	��

#�$�%	�	&���	"

�

�����	�!���

����'��#�$�%	�	&���	"(

���#�$�%	'�����	�!���(

#�$�%	

�	��	

������	�!���

������!	�

�!�	�"
�

���������
����	��

�

�����	�!���

������	�!���

���	�!���

�#�#�$�%	�	&���	"'(��)*+

���	�!���

�������	�!���

���!"	��	����	�!���

�*��*

�������	�!���

�

�

,�$�-�+	�������!

���	 ����	������!

Figure 6.8: Comparison of Synchronisation Strategies

7
The Bluebottle Sound System

Let there be sound, there was sound

— AC/DC 1977

AosSound is the Bluebottle sound input and output system. It offers a plug-in mechanism
for physical sound device drivers and specifies a generic software interface that is implemented
by the actual sound drivers. The generic sound driver interface offers access to the hardware
mixer settings and to input and output channels of sampled digital audio.
The following sections describe the AosSound interface as well as the intended mode of opera-
tion. Section 7.1 gives a conceptual description how an application program can play or record
sound. The technical details are explained in the sections 7.2 which introduces and describes
the driver interface - 7.2.1 explaining the content and use of sound buffers that are used in the
input and output channels and 7.2.3 introducing the Channel interface. Section 7.2.4 gives de-
tails on the mixer channel interface that is used to control the hardware mixer settings. Finally,
section 7.3 lists a number of sound drivers and applications that use the AosSound interface.

7.1 Mode of operation

This section introduces the intended mode of operation of an application program that uses Aos-
Sound. First, the program needs to get the reference to the sound driver of the hardware it wants
to use. All drivers are registered in the AosSound.devices plug-in registry. The registry can be
enumerated, or a device can be searched for by name. Usually, the application programs will
use the default sound device, which can be found by calling the AosSound.GetDefaultDevice
method. If no sound driver is installed, AosSound.GetDefaultDevice blocks until a driver is
loaded.

Playing sound To play sound, the application program needs to open a player channel with
the OpenPlayChannel method of the sound driver. The exact use of the OpenPlayChannel
method is described in the explanation of the driver interface in section 7.2. Given the player
channel, the application program installs a BufferListener delegate method with the Regis-
terBufferListener method of the player channel as described in detail in section 7.2.3. The

107

108 Chapter 7: The Bluebottle Sound System

BufferListener method delegate is called by the driver activity whenever a buffer has been
processed completely, so that the application can recycle the buffer. After setting up the
BufferListener, the application can begin filling sound buffers with sound data. The sound
buffer structure is explained in detail in section 7.2.1. The filled buffers are queued for playing
in the play channel via the QueueBuffer method of the sound channel. The application program
should at least queue two buffers of sound data so that the driver can swap between the buffers
without delay. Whenever there is no buffer in the play channel, the channel stalls until there are
new buffers available. After queueing some filled sound buffers, the application program can
start the sound output via the Start method. The channel can be paused with the Pause method.
If paused, sound output is stopped and all the queued buffers remain in the system until Start
is called again. If the channel is stopped with the Stop method, all buffers are returned via the
BufferListener. If the application program no longer needs the channel, it can be closed with
the Close method giving the driver the opportunity to release its reserved resources before the
channel is collected by the system garbage collection.
Buffering is best done using a bounded buffer pool. The application software uses a dedicated

�

�����
����

��
��	
�
�����

��
�����	�
�����
��	�

��
����
�����

��
�����
�����

�����

�����

�!�
!������

�����

"�#�

������

$���%&��

�'���

��

(�
���)��

�����

�����

$�*��	���

�����+��	���

�����
,&&��'�	���
��*�%

�����+��	���

�

Figure 7.1: Buffer Life-cycle in a Player Application

activity to take buffers from the pool, fill them and queue them in the sound device. When-
ever the pool is empty, the activity blocks. This strategy avoids unnecessary memory system
overhead and implicitly adapts the application activity to the rate at which the data is needed.
Support for pausing the player automatically comes from the buffer that blocks when the chan-
nel is paused. AosSound offers a bounded buffer pool that is described in section 7.2.2. Figure
7.1 shows the buffer life-cycle in a player application.

7.2. SOUND DRIVER INTERFACE 109

Appendix A.3 contains a sample program that implements a sound player using a sound device,
play channel and buffer pool.

Recording sound To record sound, the application program needs to open a recorder chan-
nel with the OpenRecordChannel method of the sound driver. Buffering, starting, pausing and
stopping is handled similarly as in the case of playing sound, with the difference that empty
buffers are queued in the QueueBuffer method of the sound channel and filled buffers are re-
turned to the BufferListener. Figure 7.2 shows the buffer life-cycle in a recorder application.

�

�����
����

��
��	
�����

��
��'���
�����
��	�

��
�����
�����

�����

�!�
!������

�����

"�#�

������

-�&�	
��%

���)��

$���%&��

�'���

�����

$�*��	���

�����+��	���

�����
,&&��'�	���
��*�%

�����+��	���

�

�����

�����

Figure 7.2: Buffer Life-cycle in a Recorder Application

7.2 Sound Driver Interface

The sound driver interface offers a number of methods that can be grouped into several cate-
gories:

Device Capability Detection The methods in this category are used to determine the capabil-
ities of the hardware. Programs can use this functionality to adapt themselves to the available
hardware. A sound player program could for example check if the selected driver supports 5.1
channel surround sound and, if so, to make use of surround sound information in the sound data
or to convert the sound to stereo otherwise. Application programs that do not want to adapt to
different sound hardware features can ignore the capability detection methods and directly try

110 Chapter 7: The Bluebottle Sound System

to open the required channel. If the required channel cannot be provided by the driver, the
application can quit or renounce from using sound. The capability detection interface is listed
below:

• PROCEDURE NofNativeFrequencies():LONGINT; returns the number of different fre-
quencies that can be played natively by the hardware D/A converter without up- or down-
sampling either in hardware or in software. Today, most commodity hardware internally
works with 48kHz D/A converters and use digital signal processing to re-sample the in-
put data in any other sampling rate. In cheap audio hardware, this results in audible
re-sampling artifacts. The effective frequencies can be queried with the GetNativeFre-
quency method.

• PROCEDURE GetNativeFrequency(nr : LONGINT):LONGINT; returns the natively sup-
ported frequency number nr.

• PROCEDURE NofSamplingResolutions():LONGINT; returns the number of supported
sampling resolutions. The sampling resolution defines the number of bits per sample. In
commodity hardware the sampling resolutions are usually 8 or 16. The effective sample
resolutions can be queried with the GetSamplingResolution method.

• PROCEDURE GetSamplingResolution(nr : LONGINT):LONGINT; returns the number
of bits per sample for the sampling resolution number nr.

• PROCEDURE NofSubChannelSettings():LONGINT; returns the number of supported
sub-channel settings that are possible. A sub-channel setting specifies the number of
physical sound output channels that can be individually addressed within one software
sound channel. Applications can expect the hardware to always support mono and stereo
sound or a software emulation thereof.

• PROCEDURE GetSubChannelSetting(nr : LONGINT):LONGINT; returns the sub-chan-
nel setting number nr. For example 1 represents monophonic sound, 2 stands for stereo-
phonic sound.

• PROCEDURE NofWaveFormats():LONGINT; returns the number of supported sound
formats. Currently only PCM is supported.

• PROCEDURE GetWaveFormat(nr : LONGINT):LONGINT; returns the supported wave
format number nr. So far only FormatPCM is supported.

Opening Sound Channels The methods in this category are used to create either an input or
an output sound channel.

• PROCEDURE OpenPlayChannel(VAR channel : Channel; samplingRate, samplingRes-
olution, nofSubChannels, format : LONGINT; VAR res : LONGINT); opens a new chan-
nel for sound output. More than one play channel may be opened on one sound device.

7.2. SOUND DRIVER INTERFACE 111

This is used for example to play an alarm sound while listening to internet radio or watch-
ing a movie. If more than one channel are open, the sound driver mixes the different audio
channels in hardware or software. The sound driver also applies the corresponding vol-
ume settings of the channels involved by scaling the amplitudes in the sound data. A
sound driver usually supports 8 or more playback channels. If the driver cannot open an
additional channel, it returns ResNoMoreChannels in the res parameter. The audio driver
also mixes channels with different sampling rates. If the hardware does not provide bet-
ter support, current software implementations use simple linear interpolation on the wave
forms to emulate the re-sampling. The driver returns ResReducedQuality in the res pa-
rameter in cases where the playback quality is reduced by re-sampling. If the playback
quality is not too important for the application program, for example if it is just playing
an alarm sound rather than high fidelity music, it can ignore the detailed res return value
and simply rely on the channel return value, which is NIL if the desired play channel
cannot be created.
The samplingRate parameter specifies the desired sampling rate of the PCM data. Most
sound drivers can play any sampling rate with software re-sampling.
The samplingResolution defines the number of bits per sample per sub-channel in the
PCM data buffer. The resolutions 8, 16, 24 and 32 are possible, with 8 and 16 bit reso-
lution supported with all current drivers. The PCM data buffer is described in detail in
section 7.2.1.
The nofSubChannels parameter defines the number of separate sound channels in the
PCM data, 1 for mono, 2 for stereo, 4 for quadro and so on. All current drivers support
at least mono and stereo.
The format parameter describes the encoding format. Currently, only PCM is supported.

• PROCEDURE OpenRecordChannel(VAR channel : Channel; samplingRate, samplin-
gResolution, nofSubChannels, format : LONGINT; VAR res : LONGINT); Opens a new
channel for recording. If more than one channel is opened, the sound driver copies the
recorded data to all the recording channels, applying the respective volume scaling and
sampling rate conversions. Support for more than one recording channel is desirable to
give several application programs access to the sound input data. This can be useful for
example for running an acoustic environment analyzer, a speech recognition system and
a generic sound recorder in parallel. If the driver cannot open an additional channel, it
returns ResNoMoreChannels in the res parameter.
The return value channel contains the recorder channel object. It is NIL if the desired
channel could not be opened.
The samplingRate defines the desired sampling rate of the PCM data.
The samplingResolution defines the number of bits per sample per sub-channel in the
PCM data buffer. The resolutions 8, 16, 24 and 32 are possible, with 8 and 16 bit sup-
ported with all current drivers.
The nofSubChannels parameter defines the number of separate sound channels in the
PCM data, 1 for mono, 2 for stereo, 4 for quadro and so on. All current drivers support

112 Chapter 7: The Bluebottle Sound System

at least mono and stereo.
The format parameter describes the encoding format. Currently only PCM is supported.

Hardware Mixer Channels The hardware mixer takes various sound sources and combines
them to a resulting output sound. Each of the sound sources can be scaled by a volume value
or muted. Figure 7.3 gives a schematic overview of a hardware sound mixer.

���

�������

	
������������

��������������

���

��� ����

��� ����

��� ����

��� ����

��� ����

Figure 7.3: Hardware Sound Mixer

The following methods are used to control the hardware mixer:

• PROCEDURE RegisterMixerChangeListener(mixChangedProc : MixerChangedProc);
registers a mixer change listener that is called if a mixer channel setting is changed.

• PROCEDURE UnregisterMixerChangeListener(mixChangedProc : MixerChangedProc);
unregisters a previously installed mixer change listener.

• PROCEDURE GetNofMixerChannels() : LONGINT; returns the number of available
mixer channels.

• PROCEDURE GetMixerChannel(channelNr: LONGINT; VAR channel: MixerChannel);
returns a channel instance corresponding to channel number channelNr. The mixer chan-
nel interface is defined in details in section 7.2.4. The channels number 0 and 1 are prede-
fined. Channel 0 represents the master output and channel 1 is the master input volume.
Numbers above 1 are hardware dependent mixer channels that can be identified by a
channel name (see GetName in 7.2.4) assigned by the driver.

7.2.1 Sound Buffers

The sound Buffer object contains the fields len and data, where data is a pointer to a character
array containing the PCM data to be played. The sample data for the channels is interleaved
within the buffer data. The len field specifies how many bytes are valid data within the buffer.
The buffer data must start with the first sample data byte of the first channel and end with the
last sample data byte of the last channel. Fig. 7.4 shows the interleaving pattern in several cases

7.2. SOUND DRIVER INTERFACE 113

of 8 and 16 bit buffers with one, two and four sub-channels.
To guarantee seamless playback or recording, the sound driver should always have at least

������������

�
��

������������

����	
�	���

�
��

�
��

�
��

�
��

�
��

� �������	
����� ���

�����	

����

� ���

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�����	
�	���� ���

�
��

�
��

�
��

�
��

�
��

�
��

����	
����� ���

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�����	
����� ���

������ ���� ��

Figure 7.4: Examples of PCM Buffer Interleaving Patterns

one spare buffer available in its queue for switching. The buffer and queue sizes depend on
the application. Interactive applications should use small buffers with a relatively small buffer
queue to be able to quickly change the output as a reaction to interaction events. Less interactive
applications such as radio or music players can use larger buffers and queues thus making buffer
queueing less time-critical.

7.2.2 Buffer Pool

Because all sound playing or recording applications need sound buffer management, AosSound
offers an implementation of a bounded buffer pool. The constructor of the buffer pool takes a
parameter that specifies the capacity of the buffer pool, that is the number of sound buffers that
can be queued. The buffer pool should be initialised with at least two buffers since this is the
minimum number that allows smooth sound playback. After the BufferPool object is created,
the playing or recording application creates a number of sound buffers and adds them into the
buffer pool with the Add method. The number of buffers that is added to the buffer pool must
be smaller or equal to the maximum capacity of the buffer pool, otherwise the buffer pool is
blocked. The sound playing or recording process removes the sound buffers from the buffer
pool with the Remove method that blocks when no buffer is left in the pool. The sound channel
returns the buffers to the buffer pool either directly or indirectly via the sound application. In
the recording case the buffer is normally added via the sound recording application since the
returned sound buffer needs to be processed. The BufferPool interface looks like this:

• PROCEDURE &Init(n: LONGINT); The constructor Init takes the capacity of the bounded
buffer as a parameter.

• PROCEDURE Add(x: Buffer); adds the buffer x to the buffer pool. The method blocks if
the buffer pool is full.

• PROCEDURE Remove(): Buffer; removes a buffer from the buffer pool and blocks if the
pool is empty.

114 Chapter 7: The Bluebottle Sound System

Appendix A.3 contains a program example that uses a buffer pool to create a sound player.

7.2.3 PCM Channel Interface

The PCM channels offer the following interface for input and sound output:

• PROCEDURE GetChannelKind() : LONGINT; returns the kind of the channel. Possible
return values are ChannelPlay or ChannelRecord.

• PROCEDURE SetVolume(volume : LONGINT); sets the relative volume of a sound chan-
nel. The volume parameter is interpreted as an 8.8 fixed point value that is used as a
scaling factor when mixing the content of different PCM buffers before output.

• PROCEDURE GetVolume() : LONGINT; returns the current volume of the sound chan-
nel.

• PROCEDURE GetPosition() : LONGINT; returns the position in samples that have been
recorded or played through the channel.

• PROCEDURE RegisterBufferListener(bufferListener : BufferListener); registers a buffer
listener method that is called whenever a buffer has been processed. In the case of a
playing channel, BufferListener can recycle the buffer to fill in more data to be played.
For a recording channel, the data contained in the buffer needs to be stored or processed
otherwise.

• PROCEDURE Start starts the channel.

• PROCEDURE QueueBuffer(x : Buffer); queues a sound buffer for either playing or
recording. More than one buffer should be queued for a seamless switch to the next
buffer. Whenever a buffer is processed (either played completely or filled completely
with recorded data) a registered BufferListener is called by the sound driver, returning
the buffer to the application code.

• PROCEDURE Pause; pauses the channel. If paused, no buffers are returned and the
playing or recording continues at the same buffer position when Start is called again.

• PROCEDURE Stop; stops the channel. All buffers are returned to the BufferListener.

• PROCEDURE Close; closes the channel and allows the driver to release all resources
that have been reserved for the channel. A closed channel cannot be re-opened.

7.2.4 Mixer Channel Interface

Mixer channel objects can be acquired from the sound device driver for each mixer channel it
implements. The mixer channel offers the following access methods:

7.3. AOSSOUND APPLICATIONS 115

• PROCEDURE GetName(VAR name:ARRAY OF CHAR); returns the name of the mixer
channel as an UTF-8 string. The name is used for identifying the channel.

• PROCEDURE GetDesc(VAR desc:ARRAY OF CHAR); returns a description of the chan-
nel as a UTF-8 string.

• PROCEDURE SetVolume(volume : LONGINT); sets the volume of the channel. 0 is
silent 255 is the maximum value.

• PROCEDURE GetVolume() : LONGINT; returns the volume of the channel.

• PROCEDURE SetMute(mute : BOOLEAN); sets the mute state of the channel. If mute is
true, the channel is silent but retains the previous volume.

• PROCEDURE GetIsMute() : BOOLEAN; tests if a channel is muted.

7.3 AosSound Applications

A fair amount of work has been carried out as a proof of concepts on the basis of the AosSound
framework:

Drivers The following sound drivers have been implemented as an extension of the Aos-
Sound.Driver object. In the text they are referred to as current drivers:

• Yamaha YMF754 sound chip driver by M. v. Tessin [110].

• ENSONIQ 137x sound chip driver by C. Heinzer [45].

• Intel AC’97 compatible sound driver by K. Jonsson [56]. AC’97 compatible sound cards
are widely-used in on-board sound systems of current mainstream computers.

Sound Applications The following sound players and recorders have been implemented as
student projects:

• An MP3 player has been written by C. Dornbierer [24]. MP3 is the de facto standard for
lossy storage of digitised music.

• An OGG Vorbis player has been written by Ch. Wassmer [114]. OGG Vorbis is an open
and patent-free standard for lossy storage of digitised music. Its compression efficiency
and quality is competitive with MP3.

• A wav-file player and recorder has been written by M.v.Tessin [110]. Wave files are
normally used for the lossless stored representation of digitised sounds and music.

• A Speex decoder and encoder has been written by F. Röthenbacher [99]. Speex is a
compression format that is sometimes used in ”voice over IP”.

• Sound support has been added to the Bluebottle DivX player [109] by U. Müller [77].

8
Abstract Encoder and Decoder

Framework

Je n’ai fait celle-ci plus longue que parce que je n’ai pas eu le loisir de la faire plus courte.
I have made this longer, because I have not had the time to make it shorter.

— Blaise Pascal (1623 - 1662) (4.12.1656)

The abbreviation Codec stands for coder/decoder. Codecs in general transform data streams
mainly for compression, transmission or encryption. AosCodecs is the Bluebottle codec frame-
work. It offers abstract interfaces and repositories for specialised classes of encoders and de-
coders in the areas of video, audio, still images, texts and cryptography.
AosCodecs, together with the graphics (chapter 4) and the sound system (chapter 7), forms the
Bluebottle multimedia framework. It decodes multimedia data that is then visualised with the
graphics system and made audible through the sound system. Figure 8.1 shows the position of
the AosCodecs framework between the AosIO system and a multimedia application program
that uses the graphics and sound frameworks.
Many multimedia data formats such as AVI[72] or OGG[119] are containers that specify how

the encoded audio and video data is organised and stored but do not specify how the data has
to be encoded. One and the same encoder or decoder can thus be used with different container
formats. To ensure the interoperability of the specific encoders and decoders with different
container formats, AosCodecs defines an abstract interface and repository for audio/video de-
multiplexer objects.
In the following, section 8.1 discusses how an application program can obtain an encoder or
decoder, and how the system finds the respective objects. Later sections describe the program-
ming interfaces of the different encoder and decoder classes that are currently supported in
Bluebottle.
A complete programming example that implements an MP3 player using the AosCodecs frame-
work can be found in appendix A.3.

117

118 Chapter 8: Abstract Encoder and Decoder Framework

�$'�,���-�.��/��0-�+++1

�$��*���
��������

������������ ������������

����
���	��	���

�����������
��	�����������

Figure 8.1: AosCodecs within the System

8.1 Obtaining an Encoder or Decoder

Application programs that need to encode or decode a data stream can obtain the required codec
through a generic generator procedure for the respective codec class. Each different encoder
or decoder class has its own generic generator procedure that takes the name of the respective
codec as the only parameter and returns a codec object instance or NIL if the codec cannot be
found. Each codec class has its own task specific programming interface that is described in
later sections.
While codec object instances cannot be shared between threads it is possible that several threads
use different instances of the same codec at the same time.
The following lists the names of the generic generator procedures for each codec class:

Audio GetAudioEncoder/GetAudioDecoder

Video (GetVideoEncoder)/GetVideoDecoder

Image GetImageEncoder/GetImageDecoder

Text GetTextEncoder/GetTextDecoder

Cryptography GetCryptoEncoder/GetCryptoDecoder

Multiplexer (GetAVMultiplexer)/GetAVDemultiplexer

Currently there is no video encoder or multiplexer implemented for Bluebottle. The generic
generator procedures for each of the codec classes uses the Codecs section in the system con-
figuration (AosConfig.XML) to translate the name of the requested codec into the name of the
respective specific generator procedure. Listing 8.1 shows an excerpt of AosConfig.XML, giv-
ing one example of an available encoder or decoder per section. At the time of writing, there is

8.2. AUDIO/VIDEO DEMULTIPLEXER 119

no video encoder available for Bluebottle. The respective programming interfaces is therefore
not discussed in the following. If the name of the generator procedure is found, the containing
module is dynamically loaded and the respective generator procedure is called. The specific
generator procedure’s return value is then passed via the generic generator procedure to the
calling application program if it contains an object of the required codec class.

The application program can then open the returned object on an input or output stream and
use it according to its programming interface to decode or encode data.

8.2 Audio/Video Demultiplexer

In multimedia container formats, the audio and video streams are normally multiplexed, in-
terleaving video frames with audio samples. For efficiency reasons and also for streaming, the
interleaving video and audio streams are often arranged in a way that time matching frames and
samples are stored near each other within the container stream. Since there is no worldwide-
agreed-on single movie container format, AosCodecs defines abstract interfaces for generic
multiplexers and demultiplexers that are implemented by concrete movie container format im-
plementations. This abstraction makes it possible to use one encoder or decoder for all con-
tainer formats. Unfortunately some demultiplexers cannot be used on input streams but only
work with direct access files because the respective formats are designed to require random
access to data within gigabytes.
An application program that needs to demultiplex input data can obtain a suitable demulti-
plexer object by calling the AosCodecs.GetAVDemultiplexer procedure with the registered for-
mat name. If the format name is found in the Codecs.AVDemultiplexer section in the system
configuration, the respective AosCodecs.AVDemultiplexer object instance is created and re-
turned. Otherwise, the generator procedure returns NIL. If a demultiplexer object is returned, it
can be opened on an AosIO stream or on a file. As mentioned above, some demultiplexers such
as the AVI demultiplexer can only be opened on files since they require seeking in large amounts
of data. After opening the demultiplexer, the application program can query the demultiplexer
object for contained content-streams. The content-streams can be opened as streams and be
decoded with the appropriate AosCodecs.AudioDecoder or AosCodecs.VideoDecoder.

8.2.1 Programming interface

This section describes the programming interface of the AosCodecs.AVDemultiplexer object
class.

• PROCEDURE Open(in : AosIO.Reader; VAR res : LONGINT); opens a demultiplexer
on the input stream in. The return value res contains the error code of the operation,
where res = AosIO.Ok indicates success. For many AVDemultiplexers, such as the AVI
demultiplexer, the in reader needs to be an AosCodecs.FileInputStream.

120 Chapter 8: Abstract Encoder and Decoder Framework

<!-- Codecs -->
<Section name="Codecs">
<!-- Multiplexer -->
<Section name="Multiplexer">
</Section>

<!-- Demultiplexer -->
<Section name="Demultiplexer">
<Setting name="AVI" value="AVIDecoder.AVIDemuxFactory" />

</Section>

<!-- Encoders -->
<Section name="Encoder">
<Section name="Text">

<Setting name="UTF-8" value="AosTextUtilities.UTF8EncoderFactory" />
</Section>
<Section name="Image">

<Setting name="BMP" value="AosBMPCodec.EncoderFactory" />
</Section>
<Section name="Video">
</Section>
<Section name="Audio">

<Setting name="WAV" value="AosWAVCodec.EncoderFactory" />
</Section>
<Section name="Crypto">

<Setting name="AES" value="AosAES.EncoderFactory" />
</Section>

</Section>

<!-- Decoders -->
<Section name="Decoder">
<Section name="Text">

<Setting name="Oberon" value="AosTextUtilities.OberonDecoderFactory" />
</Section>
<Section name="Image">

<Setting name="PNG" value="AosPNGDecoder.Factory" />
</Section>
<Section name="Video">

<Setting name="DivX" value="DivXDecoder.DivXDecoderFactory" />
</Section>
<Section name="Audio">

<Setting name="MP3" value="MP3Decoder.MP3DecoderFactory" />
</Section>
<Section name="Crypto">

<Setting name="AES" value="AosAES.DecoderFactory" />
</Section>

</Section>
</Section>

Listing 8.1: Codec Configuration in XML

8.3. STREAMS 121

• PROCEDURE GetNumberOfStreams() : LONGINT; returns the number of streams that
are contained in the container.

• PROCEDURE GetStreamType(streamNr : LONGINT) : LONGINT; returns the type of
the content stream specified with the streamNr parameter. The result can be AosCodecs.-
STError, if the stream selected stream does not exist, AosCodecs.STUnknown, if the type
of the content stream is not known, AosCodecs.STAudio, if the stream contains audio data
or AosCodecs.STVideo if the stream contains video data.

• PROCEDURE GetStreamInfo(streamNr : LONGINT) : StreamInfo; returns an informa-
tion object about the stream number streamNr. The StreamInfo record contains informa-
tion about the content stream, such as for example, content type, seekabiliy and length.

• PROCEDURE GetData(streamNr : LONGINT; VAR buf: ARRAY OF CHAR; ofs, size,
min: LONGINT; VAR len, res: LONGINT); reads a maximum of size bytes from content
stream number streamNr and stores it in the buffer buf starting from offset ofs. The pro-
cedure blocks until at least min bytes are read or an error occurs. It returns the number
of bytes that have actually been read in the return parameter len and the result of the
operation in res. A result value res of AosIO.Ok means the operation was successful.
Otherwise the value contains an error code.
The rather complicated looking interface is not intended for direct use by an appli-
cation program but rather to open an AosCodecs.DemuxStream on top of it, that in
turn offers a standard AosIO.Reader interface. The GetStream method returns such an
AosCodecs.DemuxStream.

• PROCEDURE GetStream(streamNr : LONGINT) : DemuxStream; returns an AosCodecs.-
DemuxStream on stream number streamNr, that implements the AosIO.Reader interface.

• PROCEDURE SetStreamPos(streamNr : LONGINT; seekType : LONGINT; pos : LONG-
INT; VAR itemSize : LONGINT; res : LONGINT); sets the position of the stream number
streamNr to position pos with the seek granularity seekType. The semantics of seekType
and pos is discussed in 8.3. The procedure returns the size in bytes of the item, the
stream was positioned to, if available or -1 otherwise. The item size can for example
contain the size of a frame. The result value res returns AosIO.Ok if the seek operation
was successful.

8.3 Streams

The stream abstraction is used as an intermediate layer between n data-sources and m data-
consumers. It allows n∗m different combinations while requiring only n+m implementations.
Figure 8.2 shows a selection of possible data-source to data-consumer connections. Figure 8.3
shows the use of streams in the context of two different player configurations .
Data streams in general offer access to sequential data. Unlike files it is normally not possible
to randomly access data. Examples of streamable but non-seekable data sources are:

122 Chapter 8: Abstract Encoder and Decoder Framework

����	

���
���

����������
#��$�	�
�����!�

%�������
&��'��

�()*���� �������
����
���*

�����
����'+&�	���
����������"	��

�
	 �*
�������

�����*
�������

����*
�������

�����*
�������

Figure 8.2: InputStream as Connection between Data-Sources and Data-Consumer

• Live data streams from physical sensors.

• Data streams without a separate control connection. For example a pure TCP connection.

• Demultiplexers if opened on non-seekable data sources.

• Archives if compressed and the compression does not allow seeking.

If random access to this kind of data is required, it has to be copied to a file beforehand.
Examples of streamable and seekable data sources are:

• Files

• Specialised seekable multimedia streams

• Demultiplexers that are themselves opened on seekable data sources

• Archive files if they are uncompressed or the compression method allows for seeking

To unify seekable and non-seekable data sources the AosIO interface has been extended by
the procedures CanSetPos, SetPos and Reset.

While positionable AosIO.Readers can only be seeked on byte-level, the object extension
AosCodecs.InputStream offers the possibility to be seeked on the level of higher structures like
frames.

8.4 Audio

An audio decoder takes a stream of compressed digital audio and decodes it into a number of
PCM encoded buffers of sampled digital audio. The audio encoder takes PCM encodec buffers
and generates a stream of encodec audio.

8.4. AUDIO 123

8.4.1 Decoder

This section gives programming details about the AosCodecs.AudioDecoder. Section 8.9 and
figure 8.3 show the use of AosCodecs.AudioDecoder in context.
An AudioDecoder is created with the module procedure GetAudioDecoder which takes the
name of the decoder as input and returns an instance of the desired AudioDecoder object class.
The mapping of an AudioDecoder name to its generator procedure is done by a lookup in the
Codecs.Decoder.Audio section in AosConfig.XML.
AosCodecs.AudioDecoder offers the following interface (some administrative methods are omit-
ted):

• PROCEDURE Open(stream : InputStream; VAR res : LONGINT); opens the decoder
on an input stream. Open must be called before any other procedure of the decoder is
called. res contains the error code of the operation, with res = AosIO.ResOk to indicating
success.

• PROCEDURE GetAudioInfo(VAR nofChannels, samplesPerSec, bitsPerSample : LONG-
INT); queries information about the audio content. The return parameter nofChannels
contains the number of audio channels, for example 1 for mono, 2 for stereo and so on.
samplesPerSec returns the number of samples per second per channel that are stored in
the sound data. The bitsPerSample return parameter contains the resolution. For com-
patibility with the sound system, values should be divisible by 8 with no remainder, i.e.
modulo 8 = 0.

• PROCEDURE CanSeek() : BOOLEAN; specifies if the decoder can seek on the audio
stream. If the decoder replies with true, it can seek by sample or by millisecond.

• PROCEDURE GetCurrentSample() : LONGINT; returns the ordinal number of the next
sample to be filled into the buffer when FillBuffer is called.

• PROCEDURE GetCurrentTime() : LONGINT; returns the time in milliseconds of the
next sample to be filled into the buffer when FillBuffer is called.

• PROCEDURE SeekSample(sampleNr : LONGINT; goKeySample : BOOLEAN; VAR res
: LONGINT); seeks the sample that is next to be filled into the sound-buffer.

• PROCEDURE SeekMillisecond(millisecond : LONGINT; goKeySample : BOOLEAN;
VAR res : LONGINT); seeks the time in milliseconds of the sample that is next to be
filled into the sound-buffer.

• PROCEDURE FillBuffer(buffer : AosSound.Buffer); fills the AosSound.Buffer with the
next samples from the current position and increases the position. The number of sample
bytes that are filled in the buffer is less than or equal to the size of the AosSound.Buffer.

• PROCEDURE HasMoreDate() : BOOLEAN; returns true until the end of the input
stream has been reached.

124 Chapter 8: Abstract Encoder and Decoder Framework

8.4.2 Encoder

This section describes the AosCodecs.AudioEncoder interface. Because the current audio en-
coder interface only supports best quality encoding, its interface is relatively simple:

• PROCEDURE Open(out : AosIO.Writer; sRate, sRes, nofCh: LONGINT; VAR res :
LONGINT); opens an audio encoder. It takes the stream where the encoded audio is writ-
ten to as the parameter out. The parameters sRate, sRes and nofCh define the sampling
rate, sampling resolution and number of channels of the audio data.

• PROCEDURE Write(buffer : AosSound.Buffer; VAR res : LONGINT); adds an AosSound
buffer to the audio stream. Note: the Write procedure is time-independent, it can be called
independent from the audio-time.

• PROCEDURE Close(VAR res : LONGINT); defines the end of the audio data. The en-
coder can finish the encoding and flushes the out stream.

8.5 Video

A video decoder takes a stream of typically compressed video frames and offers an interface
for extracting single video frames. Because there is currently no video encoder implementation
for Bluebottle, the VideoEncoder class is not discussed here.

8.5.1 Decoder

This section gives programming details for AosCodecs.VideoDecoder. Section 8.9 and figure
8.3 show the use of AosCodecs.VideoDecoder in context.
The task of a video decoder is giving access to the individual frames that make up the video
stream. Depending on the method of encoding, the decoding of a single frame can take a
significant amount of computation time. In most video encoding formats the decoding of an
individual frame depends on preceding and following frames, so that random access to images
is extremely inefficient. Most encodings therefore regularly insert frames of a special class that
can be decoded independently. These special frames are called key-frames and can be used to
seek within the video stream.
A VideoDecoder is created with the module procedure GetVideoDecoder that takes the name of
the decoder as an input parameter and returns an instance of the desired VideoDecoder object
class.
An AosCodecs.VideoDecoder offers the following programming interface:

• PROCEDURE Open(s : InputStream; VAR res : LONGINT); opens the decoder on an
input stream. Open must be called before any other method in the decoder is called. res
contains the error code of the operation, with res = AosIO.ResOk indicating success.

• PROCEDURE GetVideoInfo(VAR microsecondsPerFrame, width, height : LONGINT);
returns the number of microseconds per frame and the width and height of the full video

8.6. STILL IMAGES 125

frames.

• PROCEDURE CanSeek() : BOOLEAN; specifies if the decoder can seek on the video
stream. If the decoder replies affirmatively, it can be seeked by frame or by millisecond.

• PROCEDURE GetCurrentFrame() : LONGINT; returns the ordinal number of the next
frame to be rendered in the Render method.

• PROCEDURE GetCurrentTime() : LONGINT; returns the point of time in milliseconds
of the next frame to be rendered in the Render method.

• PROCEDURE SeekFrame(frameNr : LONGINT; goKeyFrame : BOOLEAN; VAR res :
LONGINT); seeks the frame to be rendered next. If goKeyFrame is set, it is acceptable for
the decoder to jump to the key-frame that is nearest to frameNr. This is used in interactive
settings where reaction time rather than frame accuracy is important. The frame finally
chosen can be found with the GetCurrentFrame method.

• PROCEDURE SeekMillisecond(millisecond : LONGINT; goKeyFrame : BOOLEAN;
VAR res : LONGINT); seeks the frame to be rendered next. If goKeyFrame is set, it
is acceptable for the decoder to jump to the key-frame that is nearest to millisecond. This
is used in interactive settings where reaction time rather than millisecond accuracy is
important. The time finally chosen can be found with the GetCurrentTime method.

• PROCEDURE Next; Progresses by one frame. The rendering is delayed until the Render
method is called but the internal state is advanced. The Next and Render methods are
separated so that a multimedia player can catch up on lost time by skipping one or more
frames. Next is also implemented if the decoder or stream is not seek-able.

• PROCEDURE Render(img : Raster.Image); Renders the current frame into the image
img.

• PROCEDURE HasMoreDate() : BOOLEAN; returns true until the end of the input
stream has been reached.

8.6 Still Images

The still image codecs encode and decode still images.

8.6.1 Decoder

ImageDecoders are created with the module procedure GetImageDecoder which takes the
name of the decoder as input and returns an instance of the desired ImageDecoder object class.
The mapping of ImageDecoder names to the respective generator procedures is defined in the

126 Chapter 8: Abstract Encoder and Decoder Framework

Codecs.Decoder.Image section in AosConfig.XML.

AosCodecs.ImageDecoder implements the following interface:

• PROCEDURE Open(s : InputStream; VAR res : LONGINT); opens the decoder on an
input stream. Open must be called before any other method of the decoder is called. res
contains the error code of the operation. A res value of AosIO.Ok indicates success.

• PROCEDURE GetImageInfo(VAR width, height, format, maxProgressionLevel : LONG-
INT); returns information about the image that is being decoded. If the decoder is able
to decode the image partially to improve the rendering speed, a maxProgressionLevel
greater than zero is returned. It is then possible for the application program to select the
desired decoding level with the SetProgressionLevel method. The fastest decoding mode
is on progression level zero. The progression level maxProgressionLevel denotes the best
available decoding quality.

• PROCEDURE SetProgressionLevel(progressionLevel: LONGINT); specifies the maxi-
mum progressionLevel to be used by the decoder. If SetProgressionLevel is not called,
the default progressionLevel is set to the maximal value of progressionLevel so that the
image is decoded completely. If the progressionLevel is reset to a lower level than a
previously rendered image, the new level will be ignored by the decoder.

• PROCEDURE GetNativeImage(VAR img : Raster.Image); returns the image in the best
fitting Raster.Format rendered at the given progressionLevel.

• PROCEDURE Render(img : Raster.Image); renders the image into the given Raster.Image
at the given progressionLevel.

8.6.2 Encoder

ImageEncoders are created with the module procedure GetImageEncoder which takes the name
of the encoder as an input and returns an instance of the desired ImageEncoder object class.
The mapping of ImageEncoder names to the respective generator procedures is defined in the
Codecs.Encoder.Image section in AosConfig.XML.

AosCodecs.ImageEncoder offers the following programming interface:

• PROCEDURE Open(s : AosIO.Writer); opens the encoder on an output stream.

• PROCEDURE SetQuality(q : LONGINT); sets the desired encoding quality as a com-
pression ratio. Lossless encoders for still image formats ignore the quality setting.

• PROCEDURE WriteImage(img : Raster.Image); encodes the image img and writes the
result to the output stream.

8.7. TEXT 127

8.7 Text

The text codecs are responsible for reading and writing texts from and to streams. The standard
text codecs of the Bluebottle system are implemented in the module AosTextUtilities.

8.7.1 Decoder

The text decoder decodes a text from a stream. Its programming interface only consists of
two procedures Open and GetText. TextDecoder instances are obtained by the module proce-
dure GetTextDecoder which takes the name of the decoder as input and returns an instance of
the desired TextDecoder object class. The mapping of TextDecoder names to the respective
generator procedures is defined in the Codecs.Decoders.Text section in AosConfig.XML.

• PROCEDURE Open(in : AosIO.Reader; VAR res : LONGINT); opens a text from a
stream. A result value res of AosIO.Ok indicates success. If the text format was not
recognised, the result value contains an error code.

• PROCEDURE GetText() : AosTexts.Text; returns a new AosTexts.Text instance containing
the text that has been decoded from the input stream.

8.7.2 Encoder

The text encoder takes an AosTexts.Texts and encodes it to an AosIO stream. TextEncoder in-
stances are obtained by the module procedure GetTextEncoder which takes the name of the en-
coder as input and returns an instance of the desired TextEncoder object class. The mapping of
TextEncoder names to the respective generator procedures is defined in the Codecs.Encoders.-
Text section in AosConfig.XML.

• PROCEDURE Open(out : AosIO.Writer); opens the encoder instance on the AosIO.Writer
out.

• PROCEDURE WriteText(text : AosTexts.Text; VAR res : LONGINT); does the actual
work of encoding a text. A result value res of AosIO.Ok indicates success.

8.8 Cryptography

Cryptography codecs are responsible for encoding and decoding encrypted AosIO data-streams.
Working as simple codecs on unstructured data streams, their interface is relatively simple.

8.8.1 Decoder

The AosCodecs.CryptoDecoder has the following programming interface:

• PROCEDURE Open(in: AosIO.Reader; VAR res: LONGINT); opens a decoder on the
AosIO.Reader in.

128 Chapter 8: Abstract Encoder and Decoder Framework

• PROCEDURE SetKey(VAR src: ARRAY OF CHAR; pos, keybits: LONGINT); sets the
decryption key that is stored in array src, starting from position pos and using keybits
bits.

• PROCEDURE GetReader(): AosIO.Reader; returns an AosIO.Reader from which the
decoded data is read.

8.8.2 Encoders

The AosCodecs.CryptoEncoder has the following programming interface:

• PROCEDURE Open(out: AosIO.Writer); opens an encoder that writes on the AosIO.-
Writer out.

• PROCEDURE SetKey(VAR src: ARRAY OF CHAR; pos, keybits: LONGINT); sets the
encryption key that is stored in array src, starting from position pos and using keybits
bits.

• PROCEDURE GetWriter(): AosIO.Writer; returns an AosIO.Writer to which the data to
be encoded is writen to. If the writer is flushed with the Update method, the out stream
will be fushed, too. This is especially important to keep in mind when using block ciphers
that in this situation need to pad the data to reach a full block.

8.9 Principle of Operation

To ”play” multimedia streams or files, multimedia player programs need to know the type of
the contents of the source data. In the case of simple streams, this can either be hard-coded or
deduced from file extension or mime-type. If the source data is a container format, the content
types of the contained streams can be queried from the appropriate demultiplexer object.
In the case of playing a container format, the player application opens the respective demulti-
plexer on the source data-stream and a new AosCodecs.InputStream on all of the multiplexed
content-streams it is interested in.
The player then figures out what codec is needed to decode the data and generates the respec-
tive decoder instance that it then connects to the input stream.
If the source stream directly contains encoded audio or video data, the demultiplexer step is
skipped, and the appropriate decoder is opened directly on the source stream.
If the underlying data source, the optional demultiplexer and the decoder all support seeking,
the player application can offer seeking through its user interface.
Through the decoder(s), the multimedia player accesses the audio samples and/or video frames
and presents them on the screen and/or audio hardware. The multimedia player is responsible
for playing the video frames and audio samples synchronised and in the correct speed. It is the
only part of the multimedia player setup that relies on the real-time clock. The decoders are
real-time independent, their task is to deliver the required video frames or audio samples as fast
as possible.

8.9. PRINCIPLE OF OPERATION 129

Figure 8.3 shows two sample setups of a multimedia player interacting with the AosCodecs
framework. The first setup (left) shows a multimedia player playing a movie from a file. Since
the movie file contains audio as well as video, a demultiplexer is used. The second setup (right)
shows the simpler case of a multimedia player playing an audio stream from a TCP connection.
A documented example of a simple media player can be found in appendix A.3.

���������	

���

��
��������

���������	
 ���������	

������������ ������������

����
���	��	���

����������������

��������		
�

�����������
��	�����������

���

�

���

���������	

������������

����
���	��	���

����������������

��������		
�

�����������

�

��	
�����	��� �	���!���"��
�	���� ��	
����	��� �������"��
�	����������������

Figure 8.3: Interactions of Multimedia Player, Decoder, Demultiplexer and InputStreams

130 Chapter 8: Abstract Encoder and Decoder Framework

8.10 Available Codecs

The following list shows the codecs that are currently available for the Bluebottle system:

Video Codecs

DivX The DivX decoder for Bluebottle was originally written by T. Trachsel [109] and adapted
to the AosCodecs framework by U. Müller [77].

MPEG-2 A decoder for MEPG-1 and MPEG-2 has been implemented by Y. Weber [115].

Audio Codecs

MP3 The MP3 decoder for Bluebottle was originally written by C. Dornbierer [24] and adapted
to AosCodecs framework by U. Müller [77].

WAV An encoder and decoder for the WAV audio file format.

PCM A simple decoder for pure PCM streams.

Image Codecs

PNG a decoder for the Portable Network Graphics format [16].

JP2 a Jpeg2000 image decoder written by Z. Franjcic [31].

GIF a GIF image encoder and decoder.

BMP a BMP image encoder and decoder.

Text Codecs

BBT an encoder and decoder for the XML based Bluebottle text format that is described in
section 3.3.8.

Oberon an encoder and decoder for the Oberon text format ignoring embedded Gadgets.

UTF-8 an encoder and decoder for UTF-8 encoded plain texts.

ISO-8859-1 an encoder and decoder for the ISO-8859-1 encoded plain texts.

UCS-16 an encoder and decoder for the UCS-16 encoded plain texts.

ASCII an encoder and decoder for ASCII encoded plain texts.

HEX a somewhat special decoder that converts an arbitrary stream into a text that displays the
bytes of the stream in the hexadecimal system. The encoder encodes a text of hexadeci-
mal characters into a byte stream, ignoring whitespace characters.

9
Case Studies

The proof of the pudding is in the eating.

— Saying

The Bluebottle user interface and multimedia framework is in daily use at various institu-
tions around the world. A wide variety of applications have been developed using the frame-
work in and outside ETH. This chapter introduces some of these applications, discussing them
briefly to demonstrate the flexibility and generality of the framework.

9.1 GoingPublik

I have nothing to say
and I am saying it
and that is poetry

as I needed it

— John Cage (1912-1992)

GoingPublik is a sound art project for a distributed ensemble of trombones conceived by
Art Clay [41] and realised at the ETH. Sound art, in contrast to traditional music does not rely
on psychological relationship between sounds, but on their independence from one another.
Pursuant to John Cage1 an American composer, sounds are let to come into being for them-
selves. The sound art composition is not bound and limited by harmonic constraints but is
more based on functions of time and rhythmic contrasts.
The core idea of the GoingPublik project is the mobility of the performers that are guided by
an electronic scoring system, called MatrixWindow, running on a wearable computer system.
The scoring system presents to the performer a compositional structure which permits impro-

1John Cage (1912 - 1992) had a great influence of the music of the 20th century. His most famous work 4’33”
(”four minutes, thirty-three seconds”) consists of only silence, several recordings are available.

131

132 Chapter 9: Case Studies

visational elements. The electronic score is created in real time based on electronic monitoring
of the performer’s physical behaviour during the performance. The monitoring system uses an
absolute reference system consisting of geographical position and orientation for all perform-
ers. The geographic position is determined by a GPS system and the orientation is determined
with a 3d compass which relies on the earth’s magnetic field. Since all performers share the
same reference system, they are virtually linked together. Physical proximity and orientation
of the performers result in a shared compositional palette.
The Going Publik project shows the portability and adaptability of the Bluebottle framework in
a real application. Going Publik was performed in Monthey, Switzerland and Canada. It will
also be performed at the ETH 150 year anniversary celebration in Zürich.

9.1.1 Hardware

For the performance, a number of musicians are equipped with wearable computers, GPS re-
ceivers, three dimensional digital compasses, finger mouse control input devices and head-
mounted displays. The wearable computer is the central point of the setup. It analyses the
input from the GPS receiver and compass sensor to calculate and render the realtime score that
is presented in a head-mounted display for interpretation by the musician.
The wearable computer is a belt-integrated computer system named QBIC [2], that is be-
ing collaboratively developed at the Wearable Computing Lab at ETH Zürich and Art-Of-
Technology (AoT). It contains a 400Mhz XScale processor integrated into the belt’s buckle,
256MB SDRAM, USB-Host controller, RS-232, VGA and Bluetooth. The interface connec-
tors and the battery are integrated into the belt.
Figure 9.1 shows the hardware configuration. The GPS receiver is connected via RS-232, the
3d compass uses Bluetooth on the L2CAP protocol level. The head-mounted display is con-
nected via a VGA analog video stream, (unfortunately) requiring an external analog to digital
converter unit. The control input device that is used to control the performance parameters can
either be a finger mouse connected via USB or a Smartphone connected via Bluetooth on the
RFCOMM protocol layer.

���

����

�	
�
���

���

����
�
���

�����
����	

	�

����

���

���

�����
���
 ����	

	�

�����

Figure 9.1: Hardware Setup of the GoingPublik Project

9.1. GOINGPUBLIK 133

9.1.2 Software

The project uses the XScale-implementation [7] of Bluebottle as its runtime and graphics sys-
tem. Since the user interface framework has exactly the same API on the XScale and on IA32,
it was possible to develop and test the electronic scoring system on an available IA32 system
before the wearable hardware became available.
The GoingPublik software collects and analyses the input from all sensor devices. The results
are then used to control the MatrixWindow. Figure 9.2 shows an overview of the GoingPublik
software.

GPS Data The GPS data is sent to a GPS analyser that returns normalised coordinates, an
averaged speed-level and information about waiting times. The normalised coordinates are sent
to the matrix transformer that calculates the geometric structure of the GoingPublik matrix that
defines the rhythmic structure and the pitch range of the performance. The matrix structure
only depends on the position of the performer. The normalised position coordinates are also
visualised to the performer. The speed-level and waiting time information are sent to a state
machine that controls a number of icons that suggest or demand actions of the performer and
influence the speed of the conduction time line. The speed level is also sent to an image
transformer that resizes the image depending on the speed level.

Compass Data The compass data is sent to a compass analyser that notes changes of heading
over time. This information is sent as another parameter to the state engine that controls the
icons. The heading directly influences the choice of the image out of a library that is interpreted
by the performer. Pitch and roll data of the compass are sent to the image transformer as further
parameters that stretch the selected image accordingly.
Figure 9.3 shows a snapshot of the MatrixWindow as it is seen by the musician during the
performance, in the head-mounted display.

9.1.3 Interaction without a Desktop via Pie Menus

To control the GoingPublik software at the beginning of and during the performance, a spe-
cial interaction technique was implemented that works outside a traditional office environment.
The control-input device is either a finger-mouse or a ”Smartphone” device that is connected
via Bluetooth. During a performance it is impossible to freehandedly control a pointer with
a mouse on a desktop. Therefore a new kind of pie-menu [17] has been implemented that al-
lows the desired actions to be selected with rough gestures via finger-mouse or joystick on the
Smartphone.
To activate the menu, the performer presses a button on the finger-mouse or Smartphone. Mov-
ing the mouse-pointer or the joystick on the Smartphone into one of four directions selects one
of the four options that can be presented by the menu. Menu options can then open new sub-
menus for more options. A sequence of selections through a number of sub-menus results in
a gesture-like movement. Snapshot 9.5 shows the pie menu controlled via Smartphone. When
the menu is called with the finger-mouse, a mouse-pointer is visible in its center.

134 Chapter 9: Case Studies

���

�	
�
���

���
������
�

������
������
�

������
 ����!��
�

��	�"���
�
�
����

���
����
#$����

�"�

 ��
�

�"�
����
#$����

����

%�&����

������

'�
(
�

�"�
'�
(
�

��!#
'�
(
�

����

 ����!��
�

Figure 9.2: GoingPublik Software Schematic

Figure 9.3: A Snapshot of the MatrixWindow as seen by the Performer in the HMD

9.2. INSTANT GAIN IN GRACE 135

The pie-menu opens at the position of the mouse cursor, or in the centre of the screen in the
case of Smartphone joystick input. Figure 9.4 (A) shows a pie-menu being opened. Select-
ing an option from a pie-menu with four entries requires the user to move the finger mouse or
joystick approximately into the direction of the entry with a tolerance of ±45◦. Figure 9.4 (B)
shows a number of possible movements that can chose the target entry. Figure 9.4 (C) shows a
sub-pie-menu being opened when the target in (B) is chosen.

������������ ������

� � �
Figure 9.4: Selecting an Options with a Pie Menu

An advantage of pie menus is the same Fitt-distance for all menu items [17]. The Fitt-
distance classifies the difficulty of exactly pressing (or in this case clicking at) an object with a
fiven size and shape in a given distance [27] [65]. Selecting items in pie menus can be remem-
bered as gestures. The readability of pie menus is normally sub-optimal if they contain a large
number of items. They also use more screenspace than linear menus.
The pie menus were integrated into the GUI component framework as translucent FormWin-
dows (see 6.3). When a pie menu is opened by an application program, the pointer ownership
is transferred to the menu object as decribed in section 5.5.2.

9.2 Instant Gain in Grace

The project ”Instant Gain in Grace”, a diploma thesis [57] at the Hyperwerk - Interaction De-
sign Univ. of Applied Arts & Sciences - FHBB, visually enhances a Butoh dance performance
with multimedia. Butoh is a contemporary avant-garde dance which originated in Japan. It
combines dance, theatre and improvisation under the influence of traditional Japanese per-
forming arts.
For the visual enhancement of the performance, the project uses a number of body-worn accel-
eration sensors whose data is collected by a wearable computer that sends the combined sensor
data via a wireless Bluetooth connection to an analyzing computer. The result of the analysis is
then used to control an animation software. The setup is shown in figure 9.6. 64 different emo-
tional categories of motion patterns are recognized and the result of the classification is sent to
the animation engine. The animation is on two levels influenced by the dancer’s movements,

136 Chapter 9: Case Studies

Figure 9.5: A Snapshot of an open Pie Menu

Figure 9.6: Hardware Setup of the Instant Gain in Grace Project

9.3. WAS GESCHAH AM 6. TAG? 137

the scenery selection and its parametrisation. The scenery selection depends on the detected
emotional category, while the parametrisation of the scene is based more directly on features
like the root mean square of the acceleration components. For example, the scene parametri-
sation determines the size or colour of actor objects in a scene. The motion classification is
described in detail in [6].
The visualisation system was developed as a semester project at ETH [38] and makes heavy
use of several system components that have been discussed in previous chapters:

• The XML support is used for the declaration of the scenery and the scripting of anima-
tions

• The graphics framework is used to create full screen animations in realtime

• The CCG fonts are used as a source of vector graphics that appear as actor objects in the
scenes. The outlines of Chinese glyphs are filled with solid or translucent colours or with
images or even movies.

Live performances of the project were shown in autumn 2003 in Basel, Switzerland and in the
”Disappearing Computer Jamboree” at the institute of media design in Ivrea, Italy.
The Instant Gain in Grace project makes use of the Bluebottle graphics framework for real-time
full-screen animation, optionally including life-video feeds.

9.3 Was geschah am 6. Tag?

”Was geschah am 6. Tag” [62] (What happened on the 6th day) is an interactive story-telling
video project. Different movie segments are projected onto four screens in the performance
room. Based on the analysis of the audience’s behaviour the selection of the movie segments
changes continiously, where the transitions between movie segments are computed in realtime
on four different computers that are controlled and synchronised via network broadcasts. Figure
9.7 gives an overview of the system setup. Each of the four multimedia computers is connected
to a video projector, two loudspeakers and a network switch. A dedicated computer monitors
and analyses the behaviour of the audience, especially its interest in individual screens. The
analysis is based on the data provided by RFID sensors hidden in the performance room and
tracking the position of RFID tags that are handed out to the audience before the performance.

The implementation of the project makes use of several system components that have been
discussed in previous chapters:

• It uses the abstract decoder framework to get fine-grained access to the video frames and
audio samples.

• It uses the graphics system to transform and display the video frames on the projectors.

• It uses the sound system to control the audio output on eight independent loudspeakers.

Up to the time of writing there was no public performance of ”Was geschah am 6. Tag?”. It
will be demonstrated at the ETH 150 year anniversary celebration.

138 Chapter 9: Case Studies

������
	��
��#$���

��	�
�"

������
�

���

������
	��
��#����

������
	��
��#/
��

������
	��
��#0���

���

���

���

0
�(�6
�(��"�

� �

� �

Figure 9.7: Setup of ”Was geschah am 6. Tag?”

9.4. STUDENT PROJECTS 139

9.4 Student Projects

A large number of student projects have made use of the user interface and multimedia frame-
work. Some of the developed applications have become part of the Bluebottle system release.
The following lists a small selection:

Flash Player A player for Macromedia Flash has been written by L. Häner [42]. It supports
a subset of Macromedia Flash 4, excluding bitmaps, sound and interaction elements.

Filemanager A Filemanager application has been developed by B. Fluri [29].

Teletext A teletext viewer application using the AosText system and a standard text editor to
display the highly attributed text has been implemented by O. Jeger [54]. The teletext content
can also be accessed through a web interface running as a plugin in the Bluebottle dynamic
HTTP server.

DivX Player T. Trachsel developed a DivX movie decoder and player for the Bluebottle
system [109].

Composer Language An experimental composer language for the Bluebottle component
system has been written by M. Sala [100].

Desktop Publishing System An interactive desktop publishing system was developed by P.
Lehmann [63].

Web browser A web browser for Bluebottle is being developed as a masters thesis by S.
Keel.

Realtime Video Effects A system for event based realtime video effects is being developed
by R. Ghioldi.

Partition Visualiser A graphical tool for disk partition management has been developed by
S. Stauber [105].

Skin Editor An editor for the development of system wide graphical skins has been written
by F. Nart [82].

9.5 Typical Desktop

Figure 9.8 shows a cutout of a typical Bluebottle desktop.

140 Chapter 9: Case Studies

Figure 9.8: A Cutout of a Typical Bluebottle Desktop

10
Conclusions

Perfection is achieved,
not when there is nothing more to add,

but when there is nothing left to take away.

— Antoine de Saint-Exupery (1900 - 1944)

This chapter summarises what has been achieved and points out problems and possible
future works.

10.1 Summary

Our pragmatic goal was to explore and develop a practical and versatile user interface model
that is suitable for a wide range of applications and simple to program. One of the main con-
cerns was the flexibility of the system and the efficient support for multiple application activities
that access the GUI system simultaneously.
The efforts resulted in a new user interface concept that combines in an innovative way ele-
ments from traditional PARC user interfaces with elements from zoomable and textual user
interfaces. The resulting user interface extends the traditional PUI desktop with a pervasive
zooming and panning functionality and a certain level of persistence. The use of task oriented
zooming contexts avoids a number of problems of traditional zooming user interfaces such as
the lack of context or tunnel vision problems.
A flexible system-wide text system allows the activation of parameterised commands and
macros wherever they can be written and allows the use of text tools in a unified fashion.
It significantly differs from and extends the standard Oberon text system mainly in respect of
its thread-safety, text positions, support for styles and internationalised character sets.
The new user interface concept leads to a number of strategies that result in a more homoge-
neous and efficient user interface while reducing the overall system complexity.
The consideration of thread-safety in the GUI framework leads to a classification of scenarios
of programming deadlocks and the design of a scheme of locks and sequencing objects which
is simple, practical and effective to avoid these deadlocks.
The work also includes the design and implementation of a flexible and extensible graphics and

141

142 Chapter 10: Conclusions

multimedia framework for the Bluebottle system that is able to run real applications not only on
workstation and desktop systems but on wearable computers as well. The graphics framework
takes advantage of one or more general purpose CPUs with possibly specialized instruction set
extensions for vector calculations but avoids the complexity of supporting special purpose hard-
ware for graphics acceleration. This leads to a simple graphics system architecture that matches
and even outperforms commercial hardware accelerated systems in common situations through
structural advantages. It also allows the system to be easily ported to different hardware plat-
forms, especially to small devices like wearable computers which has been demonstrated with
a port of the system to the QBIC wearable computer that has been developed at ETH Zürich.
An extensive number of application programs that have been developed inside and outside ETH
running on Bluebottle testify to its efficiency and flexibility.

10.2 Issues of the Base System and Suggested Improvements

During the development of the Bluebottle system a number of problems in various areas of the
system have been detected and resolved. This section lists a number of remaining issues and
suggests possible improvements.

10.2.1 Exception Handling

There is no fine grained support for exception handling in the Active Oberon language or the
Bluebottle kernel. The only available mechanism to catch exceptions without losing the falli-
ble activity is in the active body that can be declared as SAFE making it restart on a failure.
This coarse exception handling makes it hard to cleanly release recursive locks on shared data
structures in the case that an exception occurs.
To make the display space manager more resistant to faulty application programs it uses a flag
in its SAFE active body to detect if it has been restarted. A restart means that an exception
occurred, most probably in an up-call to an application program. To prevent the GUI from
freezing, it breaks and resets all the display space manager locks. This sledgehammer method
is suboptimal.
A simple fine grained exception handling strategy has been suggested where the system en-
sures that a finalisation part of a program block is executed even if an exception happened in
the corresponding code block. A current diploma thesis is implementing and evaluating this
strategy.

10.2.2 Thread Termination

In the current kernel a thread cannot be terminated externally by means other than removing its
containing module. In certain situations with up-calls from a system-wide shared module into
application programs, it is desirable to be able to limit the duration of an up-call to prevent an
endless loop from blocking the entire system.
A mechanism that is able to raise an exception in a separate thread is being investigated in

10.2. ISSUES OF THE BASE SYSTEM AND SUGGESTED IMPROVEMENTS 143

a diploma thesis in connection with the implementation of a fine grained exception handling
scheme.

10.2.3 Namespaces

During the development of Bluebottle, a number of naming conflicts between existing Oberon
modules and new modules turned up. Since module names need to be unique, new Bluebottle
modules had to be named differently from all existing Oberon modules. The generally good
naming scheme of Oberon modules resulted in a lot of name clashes with new modules. These
were resolved by adding a prefix to the names of Bluebottle modules. The system-wide text
system of Oberon for example is called Texts. The prefixed Bluebottle version is calles Aos-
Texts. The naming situation could be improved by the introduction of namespaces for different
projects. Oberon modules could be contained in the Oberon namespace while the same concise
module names could be used in the Bluebottle namespace.

10.2.4 Garbage Collection

The stop and go garbage collector of the Bluebottle system is a problem for multimedia appli-
cations and every other realtime application if the system is running background threads that
use dynamic memory. Even if a multimedia thread itself does not dynamically allocate mem-
ory after its initialisation, it can still suffer from the system-wide disruption. A generational
collector or a collector on partitioned memory that does not block all processes for too long
could improve the multimedia abilities of the system.
A collector that does not change pointers during the heap traversal could allow system-managed
and self-managed memory regions to coexist in the same address space, even with the possi-
bility of a limited exchange of pointers between threads. A step in this direction has recently
been made by L. Bläser who replaced the Deutsch-Schorr-Waite pointer rotating mark phase of
the garbage collector with a fixed-size stack-based marking algorithm with overflow handling.
Because pointers no longer need to be modified during the mark phase it is now possible to run
a restricted set of programs during garbage collection.
Such programs

• may never hide pointers to objects in use i.e. they may only operate on objects and
references to objects that are anchored in a list that is immutable during the garbage
collection.

• may never directly or indirectly access the type tag of the object.

The second restriction is needed because the current Bluebottle heap management stores the
mark flag in the type tag during the mark phase of the garbage collection. Only during the
sweep phase, are the type tags restored. This restriction is very limiting because the compiler
implicitly uses the type tags without knowledge of the programmer. The type tag can, for
example, be used when working with arrays.
It is possible to remove the second restriction by adding an additional heap management data

144 Chapter 10: Conclusions

word to each heap block. This change would require rewriting a significant part of the basic
heap management code, which is an error-prone task and would also require changes in the
compiler. On the bright side it could easily result in a significantly simpler heap structure.

10.2.5 Reflection

Although a lot of meta information about modules and objects is available in the system, there
is no unified reflection API to access it. To get the desired information it is often necessary to
parse cryptic and badly documented data structures that are directly loaded from the object file
to the main memory.
To make the system extensible and more flexible, a reflection API could be added to AosMod-
ules. All programs that currently use meta information about the loaded modules should then
be changed to use the new API. These changes would reduce the overall system complexity and
pave the way for a new and simplified object file format with a richer set of meta information.

10.2.6 Sound System

HD Audio Standard Currently the Bluebottle system (Chapter 7) offers three sound drivers.
In the near future, the AC’97 [51] sound standard will be replaced by the new HD Audio
standard [52] that delivers significant improvements. HD Audio defines up to eight channels
at 192 kHz with 32-bit quality, while the AC’97 specification only supports up to six channels
at 48 kHz with 20-bit quality. Writing drivers for the new standard and, where necessary,
extending the AosSound interface to better support the additional features of HD Audio should
be considered in the future.

Mixing & Resampling Layer In the current AosSound system, the mixing of audio channels
as well as the re-sampling of audio data is the responsibility of the sound driver. This works
well for hardware that supports these features. If the hardware does not support mixing and
re-sampling, the driver code becomes more complicated because the missing hardware support
has to be emulated in software. Inserting an abstraction layer between the AosSound system
and the sound driver that handles re-sampling and mixing could be considered to achieve an
overall simplification.

Synchronisation Support The current sound drivers have no way of telling an application
program what sample is currently being played. If available, this information could improve
the synchronisation of audio and video output. The current sound drivers can only inform the
application programs what sample is being mixed but not what sample is being played. For
sound hardware that cannot provide this information, the driver should estimate the delay from
mixing a sample until it finally becomes audible in the speaker.

10.2. ISSUES OF THE BASE SYSTEM AND SUGGESTED IMPROVEMENTS 145

10.2.7 Codec Framework

The number of implemented codecs in all codec classes is relatively small and could be in-
creased with additional student projects to make the system more compatible with the outside
world.
The codec framework (Chapter 8) is specified to be as simple as possible. With the implemen-
tation and integration of additional codecs it might become desirable to extend the basic codec
interfaces to offer new features.
The Bluebottle compression libraries are not yet integrated into the AosIO and AosCodecs
frameworks. The integration could unify the currently heterogeneous interfaces of the libraries
and hence simplify the use of compression in application programs.

A
Programming Examples

Appendix A gives a number of programming examples about different topics covered in pre-
ceding chapters.

A.1 Display Space Manager Programming - Scribble Application

This section gives a programming example of how to use the display space manager and graph-
ics framework. The example program opens a window and catches the events of the mouse
pointer for drawing lines and keyboard events to store the artwork. Snapshot A.1 shows the
scribble window.

Figure A.1: Snapshot of the Scribble Window

In the following, the entire program is discussed in detail, traversing the program text from
top to bottom, explaining the functions and giving references to relevant chapters. The program
execution starts with a call to its Open method that creates a new window object.
The new program is called WMScribble

147

148 Chapter A: Programming Examples

MODULE WMScribble; (** AUTHOR "TF"; PURPOSE "Example program"; *)

A : IMPORT WMWindowManager, Utilities, WMGraphics, WMRectangles,
WMDialogs, AosModules;

B : CONST
LeftButton = 0;
RightButton = 2;

C : TYPE
ScribbleWindow = OBJECT (WMWindowManager.BufferWindow)
VAR lx, ly : LONGINT;

D : PROCEDURE &New();
BEGIN
Init(400, 400, FALSE);

E : WMWindowManager.ExtAddWindow(SELF, 200, 200, {WMWindowManager.FlagFrame});
F : SetTitle(Utilities.NewString("Scribble Example"));
G : canvas.Fill(WMRectangles.MakeRect(0, 0, GetWidth(), GetHeight()),

WMGraphics.White, WMGraphics.ModeCopy);
H : Invalidate(WMRectangles.MakeRect(0, 0, GetWidth(), GetHeight()));
I : SetPointerInfo(manager.pointerCrosshair)

END New;

J: PROCEDURE PointerMove(x, y : LONGINT; keys : SET);
BEGIN

K: IF LeftButton IN keys THEN
canvas.Line(lx, ly, x, y, WMGraphics.Blue, WMGraphics.ModeSrcOverDst);

L : Invalidate(
WMRectangles.MakeRect(
Utilities.Min(lx, x), Utilities.Min(ly, y),
Utilities.Max(lx, x) + 1, Utilities.Max(ly, y) + 1)

)
END;

M : lx := x; ly := y
END PointerMove;

N : PROCEDURE PointerDown(x, y : LONGINT; keys : SET);
BEGIN

O : lx := x; ly := y;
P : IF RightButton IN keys THEN

canvas.Fill(WMRectangles.MakeRect(0, 0, GetWidth(), GetHeight()),
WMGraphics.White, WMGraphics.ModeCopy);
Invalidate(WMRectangles.MakeRect(0, 0, GetWidth(), GetHeight()))

END
END PointerDown;

Q : PROCEDURE KeyEvent(ucs : LONGINT; flags : SET; keySym : LONGINT);
VAR res: LONGINT; filename : ARRAY 128 OF CHAR;
BEGIN

R : IF ucs = ORD("s") THEN
S : filename := "scribble.bmp";
T : IF WMDialogs.QueryString("Save as :", filename) = WMDialogs.ResOk THEN

WMGraphics.StoreImage(img, filename, res);
U : IF res # 0 THEN

res := WMDialogs.Message("Sorry",
"The image could not be stored. Try another file name.", {WMDialogs.ResOk})

END
END

END
END KeyEvent;

END ScribbleWindow;

A.1. DISPLAY SPACE MANAGER PROGRAMMING - SCRIBBLE APPLICATION 149

V : VAR sw : ScribbleWindow;

W : PROCEDURE Open*(par : ANY): ANY;
BEGIN {EXCLUSIVE}
IF sw # NIL THEN sw.Close END; NEW(sw);
RETURN NIL

END Open;

X : PROCEDURE Cleanup;
BEGIN
IF sw # NIL THEN sw.Close END

END Cleanup;

Y : BEGIN
AosModules.InstallTermHandler(Cleanup)

END WMScribble.

A The program imports WMWindowManager (see chapter 5) to open a window. WMGraphics
(see chapter 4) contains the graphics system. WMRectangles is used to create and operate
on rectangles. WMDialogs is imported to open a query dialogue where the user can enter
a filename to save the artwork. Finally AosModules is imported to install a handler that
can close the Scribble Window if the WMScribble module is unloaded.

B With a typical mouse, the buttons are enumerated from left to right. The left button is
number zero, the middle number one and the right is number two. If a mouse has no
middle button it still returns number two for the right button. We define named constants
for better readability in the program code.

C A new type ScribbleWindow is defined that extends a WMWindowManager.BufferWindow
as introduced in 5.3.2. The new object has two fields lx, ly to store the position where the
last line segment ended respectively where the left mouse button was pressed down the
last time.

D The procedure &New is the constructor of the window instances. It first calls the inherited
constructor procedure defining the intended window size to be 400 by 400 pixels. The
boolean parameter FALSE defines the window to be non-transparent. While the inher-
ited constructor procedure should be called first, most of the following operations in the
constructor are order-independent1.

E The WMWindowManager.ExtAddWindow procedure adds a window into the default display
space of the system, at a position relative to the upper left corner of the default viewport
that observes the display space (see section 5.2). The procedure takes the new window
(SELF) as the first parameter, followed by the x, y position relative to the default view-
port’s position and a SET parameter specifying details of the behaviour and look of the
window. In this case the window is just a regular window with a frame, so it can be
moved around and closed.

1The only exception for avoiding artefacts is that the drawing to the buffer should happen before the window
is invalidated

150 Chapter A: Programming Examples

As soon as this procedure is called, the window is known to the display space manager,
and it will appear on the screen.

F The SetTitle method is a basic window functionality available to all Windows. It gives the
window a name that can be used by the display space manager when it needs to label the
window. It takes a pointer to an ARRAY OF CHAR as a parameter. The dynamic array
is created with the Utilities.NewString procedure. The new window is called Scribble
Example.

G The canvas is an object that is available to all BufferWindows. It allows access to the win-
dow’s display buffer. The canvas.Fill procedure fills a rectangular area of the display
buffer with a colour, in this case white. The filled rectangle has the size of the window,
so the entire window will turn white. The parameter WMGraphics.ModeCopy tells the
canvas not to apply any blending operations when painting the new colour but to simply
copy it to the background. Un-blended drawing operations are significantly faster than
blended painting. Section 4.3.1 gives details.

H The Invalidate procedure is a basic window functionality. It declares a rectangular region
of a window as dirty or invalid. The display space manager will require all viewports
that display the respective regions to re-establish the display consistency (see section
5.2.1). The detailed process is described in chapter 5. Here, the entire window is declared
invalid. This tells the display space manager to make the result of the antecedent Fill
operation visible.

I Now the scribble application is almost ready. As a last thing, the constructor sets a specially
shaped mouse pointer for the window that is better suited for drawing than an ordinary
arrow-like pointer.

J The PointerMove procedure is a basic Window procedure that is called via the window’s
message sequencer object whenever the mouse pointer belongs to the window and is
being moved. The parameters x, y return the pointer position relative to the window’s
coordinate system (fig. 5.2). The parameter keys is the set of mouse buttons that are held
down.

K If the left mouse button is pressed, a line from the last mouse position that is stored in (lx,
ly) to the new position (x, y) will be drawn:

L Now the changed region must be invalidated, so that the display space manager will make the
new line visible. The update area is calculated as the rectangle around the line segment.

M Store the current mouse pointer position in (lx, ly).

N The PointerDown procedure is a basic Window procedure that is called via the window’s
message sequencer object whenever the mouse pointer belongs to the window and a
mouse button is being pressed. The parameters x, y return the pointer position relative to

A.1. DISPLAY SPACE MANAGER PROGRAMMING - SCRIBBLE APPLICATION 151

the window coordinate system (fig. 5.2). The parameter keys is the set of mouse buttons
that are being held down.

O Store the current mouse pointer position in (lx, ly).

P If the right mouse button is pressed, the entire window will be cleared with a white colour
and its region will be invalidated so that the display space manager updates the display.

Q The KeyEvent procedure is a basic Window procedure that is called via the window’s mes-
sage sequencer object whenever a key event happens and the window has the keyboard
focus. The ucs parameter contains the Unicode value of the key that is being pressed
down, if available. flags contains the state of modifier keys such as shift, control or meta.
keySym contains the X11 keyboard code [102] of the key that was pressed.

R To check if the pressed key was the ”s”-key:

S If yes, now set a default file name into the filename variable and open a string input dialogue
box with the title ”Save as :” that allows the user to change the filename.

T If the string input dialogue box was closed by pressing the Ok button or the enter key, it
returns WMDialogs.ResOk. Only in this case, the image will be stored with the user de-
fined filename. The following line of code stores img, the buffer image associated with
the BufferWindow, to the a file with the name in the local variable filename. WMGraph-
ics.StoreImage automatically searches in the system codec library for an image encoder
that matches the given filename extension. The result of the operation is stored in res.

U In the unlikely case of a problem, for example if no codec matching the file name extension
was found, the user will be informed about the problem. The WMDialogs.Message opens
an information box containing the title ”Sorry” and the hint ”The image could not be
stored. Try another file name.”. The last parameter contains a set of buttons that should
be added to the information box. Here we add an Ok button only.

V The module variable sw stores the reference to the ScribbleWindow. It is used to close the
window if the WMScribble module is unloaded.

W The exported procedure Open creates a new ScribbleWindow.

X The Cleanup procedure checks if the module variable sw is assigned to a ScribbleWindow
instance. If yes, it closes the respective window.

Y The module body that is automatically started when the module is loaded, installs the termi-
nation handler procedure Cleanup that will close the potentially open WMScribbleWin-
dow if the module is unloaded.

152 Chapter A: Programming Examples

A.2 TextWriter Example

This section gives a programming example of using the AosTextUtilities.TextWriter. The ex-
ample program opens a form window (see section 6.3) and adds a text editor component (see
section 3.4). On the text model associated with the text editor it opens a TextWriter object and
writes a number of example strings. Screenshot A.2 shows the output of the program.
In the following, the entire program is discussed in detail, traversing the program text from top
to bottom, explaining its function and giving references to the relevant chapters. The program
execution starts with a call to its Open method that creates a new window object.

Figure A.2: Snapshot of the TextWriter Example Program

MODULE TextWriterExample; (** AUTHOR "TF"; PURPOSE "TextWriter Example"; *)

A : IMPORT
Utilities, WMGraphics, WMComponents, WMWindowManager,
WMEditors, AosTextUtilities, AosIO, Math;

B : TYPE
Window* = OBJECT (WMComponents.FormWindow)
VAR editor : WMEditors.Editor;

C : PROCEDURE &New();
BEGIN

D : NEW(editor);
editor.bounds.SetExtents(400, 300);
editor.fillColor.Set(WMGraphics.White);

E : Init(editor.bounds.GetWidth(), editor.bounds.GetHeight(), FALSE);
F : SetContent(editor);
G : WMWindowManager.DefaultAddWindow(SELF);

SetTitle(Utilities.NewString("TextWriter Example"));
H : WriteToEditor;

END New;

A.2. TEXTWRITER EXAMPLE 153

I : PROCEDURE WriteToEditor;
VAR
tw : AosTextUtilities.TextWriter;
w : AosIO.Writer;
i : LONGINT;
buffer : ARRAY 256 OF CHAR;

BEGIN
J : NEW(tw, editor.text);
K : w := tw.GetWriter();
L : tw.SetFontSize(20);

w.String("This is a simple text. Count from 0 to 10 : "); w.Ln;
FOR i := 0 TO 10 DO w.Int(i, 5) END; w.Ln;

M : tw.SetFontStyle({WMGraphics.FontBold});
w.String("This is bold. ");

N : tw.SetFontStyle({WMGraphics.FontItalic});
w.String("This is italic.");

O : tw.SetFontStyle({WMGraphics.FontBold});
tw.SetFontColor(WMGraphics.Red);
w.String("This is bold red."); w.Ln;

P : tw.SetBgColor(WMGraphics.Black);
tw.SetFontColor(WMGraphics.White);
w.String("This is bold white on black");
w.Ln;

Q : tw.SetBgColor(WMGraphics.White);
R : buffer := "This is a bit fancy! It modulates the vertical offset with

a cosine function and fades out.";
i := 0;
WHILE buffer[i] # 0X DO
tw.SetFontColor(WMGraphics.RGBAToColor(i * 2, i * 2, i * 2, 0FFH));
tw.SetVerticalOffset(ENTIER(15 * Math.cos(i/4)));
w.Char(buffer[i]);
INC(i)

END
END WriteToEditor;

END Window;

S : PROCEDURE Open*(par : ANY) : ANY;
VAR inst : Window;
BEGIN
NEW(inst);
RETURN NIL

END Open;

END TextWriterExample.

A The program imports WMGraphics for colour and font-style constants, WMComponents for
the form window and component support. WMWindowManager is used to add the form
window to the display space. WMEditors contains the default editor component that is
used to display the text. AosTextUtilities offers the TextWriter object that is described
in section 3.3.6. AosIO contains the support for streams through which the text will be
written. Finally the module Math is used for evaluating trigonometric functions.

B A new component container window that will contain the text editor is created.

C The constructor New initialises the window and adds it to the display space.

154 Chapter A: Programming Examples

D The following creates a new editor component and sets its size to 400 by 300. It also sets
the background colour of the editor to non-transparent white. The default colour for the
text editor component is transparent.

E The following calls the inherited constructor Init with the size of the editor.

F Then the editor component is installed in the form window.

G The following lines add the window to the display space and set the window title to ”Text-
Writer Example”.

H The constructor of the window then calls the WriteToEditor procedure that writes the rich
text to be displayed.

I The following defines the WriteToEditor procedure with its local variables. The variable tw
is the TextWriter.

J First the procedure opens a TextWriter on the text that is associated with the editor of the
window.

K An AosIO.Writer is then opened on the TextWriter object so that the standard methods of
writing to a stream can be used to write the text.

L The font size of the TextWriter is set to 20 and a string is written to the AosIO.Writer stream,
followed by the integer numbers from 0 to 10.

M The font style is changed to bold and the string ”This is bold.” is written.

N The font style is changed to italic and the string ”This is italic.” is written.

O As an other example for creating rich text, the font is set to bold and its colour to red. The
string ”This is bold red.” is written with these attributes.

P The text background is changed to black and the text colour is set to white. The string ”This
is bold white on black” is written.

Q The text background is reset to white.

R The following code prints a string character by character varying the font colour and vertical
offset. Multi-byte UTF-8 characters are ignored in this example. They would be written
with the attributes that are set at the time the last byte of the multi-byte character is added.

S The Open procedure opens the window and starts the program.

A.3. SOUND AND CODEC PROGRAMMING - SIMPLE MP3 PLAYER 155

A.3 Sound and Codec Programming - Simple MP3 Player

The following programming example uses AosCodecs and AosSound to implement a simple
MP3 player. For the sake of clarity, the program plays a hard-coded file and does not offer
interaction or error handling.

MODULE TestPlayer;

A : IMPORT
AosSound, AosCodecs, AosIO;

B : TYPE
Player= OBJECT
VAR

C : decoder : AosCodecs.AudioDecoder;
D : soundDevice : AosSound.Driver;
E : playChannel : AosSound.Channel;
F : bufferPool : AosSound.BufferPool;
G : buffer : AosSound.Buffer;

H : PROCEDURE &Init(fileName : ARRAY OF CHAR);
I : VAR i : LONGINT;

res : LONGINT;
in : AosIO.Reader;
channels, rate, bits : LONGINT;

BEGIN
J : decoder := AosCodecs.GetAudioDecoder("MP3");
K : soundDevice := AosSound.GetDefaultDevice();
L : in := AosCodecs.OpenInputStream(fileName);
M : decoder.Open(in, res);
N : decoder.GetAudioInfo(channels, rate, bits);
O : soundDevice.OpenPlayChannel(playChannel, rate, bits, channels,

AosSound.FormatPCM, res);
P : NEW(bufferPool, 10);
Q : FOR i := 0 TO 9 DO
R : NEW(buffer); NEW(buffer.data, 4096);

bufferPool.Add(buffer)
END;

S : playChannel.RegisterBufferListener(bufferPool.Add);
END Init;

T : BEGIN {ACTIVE}
U : playChannel.Start;
V : WHILE decoder.HasMoreData() DO
W : buffer := bufferPool.Remove();
X : decoder.FillBuffer(buffer);
Y : playChannel.QueueBuffer(buffer)

END
END Player;

Z : PROCEDURE Play*(par : ANY) : ANY;
VAR player : Player;
BEGIN
NEW(player, "test.mp3");
RETURN NIL

END Play;

END TestPlayer.

A The TestPlayer program imports AosSound for sound output, AosCodecs for the MP3 de-
coder and AosIO for stream support.

156 Chapter A: Programming Examples

B The player is implemented as an active object. So more than one instance could run at the
same time.

C The variable decoder is a generic AosCodec.AudioDecoder as described in section 8.4.1. It
will later be assigned an MP3 decoder in the program but it is not specialised for the MP3
case.

D The soundDevice variable is a generic AosSound.Driver object as described in detail in
section 7.2. It will later be assigned the system’s default sound device driver.

E The playChannel variable is an AosSound.Channel as described in section 7.2.3.

F The bufferPool variable will be used to manage the AosSound.Buffers as described in section
7.2.2.

G The buffer variable contains an AosSound.Buffer as described in section 7.2.1. It will be
used first to fill the bufferPool and then to transport the sound data from the decoder to
the playChannel.

H The constructor Init of the Player object takes as a parameter the filename of the MP3 file
to play.

I The local variable i will be used as a counter, res takes the result value of different opera-
tions. The variable in is the AosIO.Reader that is opened on the MP3 file. The variables
channels, rate and bits contain information that is needed to to create a suitable player
channel.

J Now an instance of an AudioDecoder with the name MP3 is requested. The AosCodecs.Get-
AudioDecoder searches in the system configuration for a matching codec factory and
returns a respective decoder object instance if the factory was found, NIL otherwise.

K At this position the program should check if the decoder variable is NIL and exit with a
adequate error message. To keep our sample program restricted to the absolute minimum,
this check is ignored here.
Optimistically the program goes on and acquires a reference to the default sound driver.
The AosSound.GetDefaultDevice procedure blocks if no driver is installed and waits for
a driver to be loaded. Therefore, the return value always is a valid sound driver instance.

L After acquiring the soundDevice and the decoder the program needs to acquire the audio
data. It does this using the AosCodecs.OpenInputStream procedure that returns an Aos-
IO.Reader instance if the stream could be opened and NIL otherwise. The program opti-
mistically assumes that the needed file exists and that the in return value is valid.

M With the valid InputStream the decoder can now be opened. The Open procedure returns
AosIO.ResOk in res if the input stream header contains valid data.

A.3. SOUND AND CODEC PROGRAMMING - SIMPLE MP3 PLAYER 157

N When the decoder is open, the GetAudioInfo can be used to obtain the essential audio data
that is required to open a player channel.

O Now a player channel with the information obtained from GetAudioInfo must be opened.
OpenPlayChannel returns a non-NIL playChannel if the operation was completed suc-
cessfully. If the res value is different from AosSound.ResOk then the playback quality
might be affected by artefacts of the internal sound format transformations of the sound
driver that could not natively fulfil the audio requirements. The TestPlayer program
ignores the res value and assumes the playChannel to be non-NIL.

P The next step initialises a buffer pool with 10 entries that can be used to synchronise the
producer (the decoder) with the consumer (the playChannel).

Q Now the bufferPool needs to be filled with a maximum of 10 sound buffers objects.

R The following creates a new sound buffer buffer and in the buffer creates space for 4096
bytes of data.

S To make it possible for the playing channel to return played buffers, register the buffer pool’s
Add procedure as the buffer return handler.

T After the constructor terminates, the system starts the ACTIVE body of the active player
object.

U Now the playChannel will be started. It was by default on pause since it has been created.

V As long as there is more data in the encoded audio stream...

W ... a buffer is taken from the buffer pool. This will block the player activity if the pool is
empty. This can only happen if all buffers are queued in the playChannel.

X Now the decoder that fills the buffer with audio data will be called...

Y ... and the filled buffer will be enqueued in the playChannel for playing.

Z The Play procedure finally creates an instance of the active player object.

B
List of Relevant Modules

Appendix B lists, sorted by topic, the important modules that implement the Bluebottle GUI
and multimedia system. The list is intended to serve as an overview for programmers who
need to extend or use the system. Some of the modules fit into two or more categories. These
are classified by concept rather than implementation. The text editor for example fits into the
component system class by implementation but conceptually it fits into the Text and Strings
topic since it manipulates texts. It can therefore be found in the Text and Strings section.

B.1 Display Space Manager

WMWindowManager.Mod defines the basic WindowManager and ViewPort interfaces.

WMDefaultWindows.Mod implements the default windows that are used to implement the
window borders (title, left, right and bottom).

WindowManager.Mod implements the WindowManager interface and a ViewPort based on a
display adaptor defined in AosDisplays.

WMVNCView.Mod implements a ViewPort for a VNC remote framebuffer.

WMScreenShot.Mod implements a ViewPort that stores the observed area of the display
space to a file.

WMBackdrop.Mod implements backdrop images.

WMDropTarget.Mod implements drag and drop support on the display space manager level.
It is also used indirectly in the component system.

WMRestorable.Mod implements the possibility to store and restore display space objects.

WMPopups.Mod implements pop-up elements such as menus or element pickers.

WMDialogs.Mod implements a set of system dialogue elements based on GUI components

159

160 Chapter B: List of Relevant Modules

B.2 Graphic System

Raster.Mod implements basic bitmap raster operations

WMRasterScale.Mod implements scaling on bitmaps

WMGraphics.Mod defines the abstract Canvas and Font objects and a font manager plug-in
interface. Implements the BufferCanvas as a specialisation of Canvas.

WMGraphicUtilities.Mod offers a number of higher level drawing routines based on WM-
Graphics. For example, shaded rectangles, glass effects etc.

PDF.Mod implements PDFCanvas as specialisation of WMGraphics.Canvas.

B.3 Fonts

WMFontManager.Mod implements a simple font manager that tries to find the best matching
font given a triplet of font name, font size and font style. When loaded, it registers itself
in WMGraphics as the font manager.

WMOberonFonts.Mod implements the Oberon font file format.

WMCCGFonts.Mod implements support for CCG fonts.

WMBitmapFonts.Mod implements support for a proprietary Unicode bitmap font format.

WMDefaultFont.Mod contains a hardcoded version of the Oberon font. It is used as the last
fall-back. Since the font is embedded in a module it can be linked into the system’s boot
image so that it is possible to write debug information even when there is no file system
available to load a font file.

AFM.Mod implements minimal support for the Adobe Font Metrics. The module is needed
to calculate the font widths when writing to PDF files.

B.4 Texts and Strings

Utilities.Mod defines the basic UTF-8 string type as a POINTER TO ARRAY OF CHAR and
offers string manipulation routines.

UTF8Strings.Mod offers conversion and manipulation routines for UTF-8 encoded strings.

AosTexts.Mod Implements the text model, maintains a text clipboard and keeps track of the
last selection in the system.

AosTextUtilities.Mod offers the TextWriter object and implements a number of text encoders
and decoders that are compatible with the AosCodecs framework.

B.5. COMPONENT SYSTEM 161

WMInputMethods.Mod defines the interface for input method editors.

WMPinyinIME.Mod implements a pinyin input method editor for Chinese characters.

WMCyrillicIME.Mod implements a Cyrillic input method editor.

WMMacros.Mod implements a text macro plug-in for the editor components

WMTextView.Mod implements a text viewer component that visualises a text model.

WMEditors.Mod extends a VisualComponent and aggregates a TextView and a text model.
Key events are intercepted and interpreted as editing command on the text model.

B.5 Component System

WMComponents.Mod implements the basic Component and VisualComponent object types.

WMStandardComponents.Mod defines a number of frequently used GUI components such
as Panel, Button, Checkbox, Scrollbar, Resizer and more. It also implements several
non-visual components such as a Timer.

WMGrids.Mod defines a general visual grid component with support for variable-sized rows
and columns, fixed rows and columns and also merged cells.

WMStringGrids.Mod implements a thread-safe model for a grid of strings and extends the
generic grid component with a drawing routine that displays the model.

WMTrees.Mod defines a thread-safe model of a generic tree structure and a component that
can visualize this model.

WMDiagramComponents.Mod implements a model and view for value-by-time diagrams.

WMTabComponents.Mod implements a bar with named tags from which one can be selected
by pressing.

WMSystemComponents.Mod implements components that visualise the file system. For ex-
ample a list of files or a tree of folders.

MixerComponents.Mod visualises and manipulates the sound mixer values

B.6 Sound System

AosSound.Mod defines the generic sound system and keeps a registry of sound devices.

EnsoniqSound.Mod driver for the Ensoniq sound chip. This chip is also emulated in VMWare.

AosYMF754.Mod driver for the Yamaha 754 sound chip.

162 Chapter B: List of Relevant Modules

Aosi810Sound.Mod driver for the common Intel 810 sound chip.

OGGVorbisPlayer.Mod a sound player that plays OGG Vorbis files. The decoder has not yet
been adapted to the AosCodecs framework.

PlayRecWave.Mod a wave file player and recorder. The codec has not yet been adapted to the
AosCodecs framework.

B.7 Codecs

AosCodecs.Mod defines interfaces and generic generator procedures for encoder and decoder
objects for different types of encoded data. It includes codecs for still images, video,
audio and text.

AosPNGDecoder.Mod implements an AosCodecs.ImageDecoder for PNG images.

AosBMPCodec.Mod implements an AosCodecs.ImageEncoder and AosCodecs.ImageDecoder
for BMP images.

AosGIFCodec.Mod implements an AosCodecs.ImageEncoder and AosCodecs.ImageDecoder
for the GIF format.

AosMP3Decoder.Mod implements an AosCodecs.AudioDecoder for the MP3 format.

AosDivXDecoder.Mod implements an AosCodecs.VideoDecoder for the DivX format.

B.8 Helper Modules

WMRectangles.Mod defines a rectangle and offers procedures to work with rectangles for
example, moving, resizing, intersecting, combining rectangles.

WMLocks.Mod implements optimised recursive reader writer locks that are used in the dis-
play space manager, text- and component system.

WMMessages.Mod defines messages and the message sequencer object that is used in the
display space manager and component system.

WMEvents.Mod offers event sources and event listeners.

WMProperties.Mod defines properties and property lists used in the component system.

List of Abbrevations

AGP Advanced Graphics Port

API Application Programming Interface

CHI Computer Human Interaction

CJK Chinese, Japanese , Korean

CLI Command Line Interface

CLR Common Language Runtime

Codec Coder Decoder

COM Component Object Model

FEP Front-End Processor, see IM and IME

GDI Graphical Device Interface

GPS Global Positioning System

GUI Graphical User Interface

HCI Human Computer Interaction

HMD Head Mounted Display

IM Input Method, see IME and FEP

IME Input Method Editor, see IM or FEP

LOD Level Of Detail

MVC Model View Controller

PCM Pulse Code Modulation

PDA Personal Digital Assistant

PDF Portable Document Format

163

164 Chapter B: List of Relevant Modules

PNG Portable Network Graphics

PUI PARC User Interface, a WIMP user interface following

RFID Radio Frequency Identification

RSI Repetitive Strain Injury

SDMS Spacial Data Management Systems

TCP Transmission Control Protocol

TUI Textual User Interface

UCS Universal Character Set (specified in ISO/IEC 10646)

UDP User Datagram Protocol

UTF UCS Transformation Format

VNC Virtual Network Computing

WIMP Windows Icons Menus Pointers, an acronym often used in the HCI community to
reference traditional GUIs

WYSYWIG What You See Is What You Get

ZUI Zoomable User Interface, a special kind of a GUI

List of Figures

2.1 Navigation in a Text. Left: in a PUI, Right: in a ZUI 10
2.2 Example of the Loss of Orientation Problem 14
2.3 Conceptual Desktop Consistency Problem in ZUI 15
2.4 Display Space with Display Space Objects and Observing Viewports 17
2.5 Panning and Zooming with the Mouse . 19
2.6 Panning and Zooming with the Keyboard . 19
2.7 Zooming to an Overview . 20

3.1 AosTexts Internal Structure . 35
3.2 Snapshots of Different Text Markers . 38
3.3 Data-Flow of a Keyboard-Event to the Text Model 40
3.4 Bluebottle Pinyin IME in Action . 41
3.5 A Snapshot of the Programmer’s Editing Tool 44

4.1 Graphics System Overview . 45
4.2 Parallelised Alpha Blending . 48
4.3 Canvas Abstraction . 49
4.4 Bluebottle Font Metric . 56
4.5 Character Composition . 57
4.6 Diagram : Filling Rectangles . 59
4.7 Diagram : Drawing Horizontal Lines . 60
4.8 Diagram : Drawing Images . 60
4.9 Diagram : Drawing Small Images . 61

5.1 Display Space . 64
5.2 Local Display Space Object Coordinates . 65
5.3 Double Buffer Mechanism . 69
5.4 Recursive break-down of the redraw area . 72
5.5 Message Flow Overview . 73
5.6 Window border . 76
5.7 Window Style Examples . 77
5.8 A Snapshot of Oberon as a Display Space Object 78

6.1 Loading Components from an XML Document 85
6.2 Simple Alignment Examples . 87

165

166 List of Figures

6.3 Complex Alignment of GUI Components . 88
6.4 Gap between Components . 88
6.5 Hierarchy Lock . 91
6.6 Detailed Description of a Sequencer . 92
6.7 Observer : Event Source and Observers . 97
6.8 Comparison of Synchronisation Strategies . 106

7.1 Buffer Life-cycle in a Player Application . 108
7.2 Buffer Life-cycle in a Recorder Application 109
7.3 Hardware Sound Mixer . 112
7.4 Examples of PCM Buffer Interleaving Patterns 113

8.1 AosCodecs within the System . 118
8.2 InputStream as Connection between Data-Sources and Data-Consumer 122
8.3 Interactions of Multimedia Player, Decoder, Demultiplexer and InputStreams . 129

9.1 Hardware Setup of the GoingPublik Project 132
9.2 GoingPublik Software Schematic . 134
9.3 A Snapshot of the MatrixWindow as seen by the Performer in the HMD 134
9.4 Selecting an Options with a Pie Menu . 135
9.5 A Snapshot of an open Pie Menu . 136
9.6 Hardware Setup of the Instant Gain in Grace Project 136
9.7 Setup of ”Was geschah am 6. Tag?” . 138
9.8 A Cutout of a Typical Bluebottle Desktop . 140

A.1 Snapshot of the Scribble Window . 147
A.2 Snapshot of the TextWriter Example Program 152

List of Tables

3.1 Encoding Characteristics . 36
3.2 Examples of Macros and their Evaluations . 42

167

Bibliography

[1] Adobe. Font Metrics File Format Specification Version 4.1, 1998
http://partners.adobe.com/asn/developer/pdfs/tn/5004.AFM Spec.pdf

[2] O. Amft, M. Lauffer, S. Ossevoort, F. Macaluso, P. Lukowicz, G. Tröster. Design of the
QBIC wearable computing platform. Proceedings of the 15th IEEE International Confer-
ence on Application-specific Systems, Architectures and Processors, 2004.

[3] U. Anliker, P. Lukowicz, G. Tröster, S. J. Schwartz, R. W. DeVaul The WearARM: Mod-
ular, High Performance, Low Power Computer Platform Designed for Integration into
Everyday Clothing. ISWC 2001: Proceedings of the 5th International Symposium on Wear-
able Computers, 8.-9. October 2001, pages 167-168.

[4] C. Artho, K. Havelund, A. Biere. High-Level Data Races, VVEIS’03: The First Interna-
tional Workshop on Verification and Validation of Enterprise Information Systems, April
2003.

[5] C. Artho, K. Havelund and A. Biere. Using block-local atomicity to detect stale-value
concurrency errors. Proceedings of the ATVA ’04, Taipei, Taiwan, 2004.

[6] M. Barry, J. Gutknecht, I. Kulka, P. Lukowicz, T. Stricker. Multimedial Enhancement of a
Butoh Dance Performance - Mapping Motion to Emotion with a Wearable Computer Sys-
tem. Second International Conference on Advances in Mobile Multimedia (MoMM2004),
Bali, Indonesia, 2004.

[7] M. Baumgartner. Intel 80200 / XScale Aos. Semester project, Department of Computer
Science, ETH Zürich, 2003.

[8] B. B. Bederson, J. D. Hollan Pad++: A Zooming Graphical Interface for Exploring Alter-
nate Interface Physics. ACM UIST ’94, 1994

[9] B. B. Bederson and J. D. Hollan. Pad++: A Zoomable Graphical Interface. CHI’94, short
paper.

[10] B. B. Bederson, L. Stead and J. D. Hollan. Pad++: Advances in Multiscale Interfaces,
Proceedings of 1994 ACM SIGCHI Conference.

[11] B. B. Bederson, J. Meyer, L. Good Jazz: An Extensible Zoomable User Interface Graphics
Toolkit in Java In ACM UIST 2000, pp. 171-180.

[12] B. B. Bederson, J. Grosjean, J. Meyer. Toolkit Design for Interactive Structured Graphics.

169

170 Bibliography

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST
2004.

[13] C. Betrisey, J. F. Blinn, B. Dresevic, B. Hill, G. Hitchcock, B. Keely, D. P. Mitchell, J. C.
Platt, T. Whitted. Displaced Filtering for Patterned Displays, Proc. Society for Information
Display Symposium, pp. 296-299, (2000)

[14] R. A. Bolt. Spatial Data-Management. Cambridge, Massachusetts, MIT Press, 1979.

[15] J. Borchers. A Pattern Approach to Interaction Design. John Wiley & Sons, LTD, 2001.

[16] T. Boutell, et. al. PNG (Portable Network Graphics) Specification Version 1.0, RFC 2083,
1997.

[17] J. Callahan, D. Hopkins, M. Weiser, B. Shneiderman. An Empirical Comparison of Pie
versus Linear Menus. In Proceedings of ACM CHI’88 Conference on Human Factors in
Computing Systems, 1988

[18] CCG-Font Specification. Personal communication with Cheah Shen Yap and online doc-
umentation. 2003
http://www.eforth.com.tw/efeditor/

[19] D. Chang, L. Dooley, J. E. Tuovinen. Gestalt Theory in Visual Screen Design - A New
Look at an Old Subject. In Proc. WCCE2001 Australian Topics: Selected Papers from the
Seventh World Conference on Computers in Education, Copenhagen, Denmark. Confer-
ences in Research and Practice in Information Technology, 8. McDougall, A., Murnane, J.
and Chambers, D., Eds., ACS. 5-12, 2002.

[20] Z. Chen, K. Lee. A New Statistical Approach To Chinese Pinyin Input. Proceedings of
the 38th Annual Meeting of the Association for Computational Linguistics, ACL 2000.

[21] D. A. Cox, J. S. Chugh, C. Gutwin and S. Greenberg. The Usability of Transparent
Overview Layers. CHI’98 Summary Proceedings of the Conference on Human Factors
in Computing Systems, p301-302, Late-breaking short paper. ACM Press, 1998.

[22] Digital Research. CP/M Operating System Manual. Digital Research, California, 1976.

[23] W. C. Donelson. Spatial Management of Information. Proceedings of 1978 ACM SIG-
GRAPH Conference, 203-209.

[24] C. Dornbierer. MP3 Player für Aos. Semester project, Department of Computer Science,
ETH Zürich, 2002.

[25] B. Egger. Development of an Aos Operating System for the DNARD Network Coputer.
Diploma thesis, Department of Computer Science, ETH Zürich, 2001.

[26] Ariane 501 Inquiry Board. Ariane 5 - Flight 501 Failure. Paris, 1996.
http://ravel.esrin.esa.it/docs/esa-x-1819eng.pdf

[27] P. M. Fitts, The information capacity of the human motor system in controlling the am-
plitude of movement. Journal of Experimental Psychology, 47, 381-391, 1954.

[28] D. Flanagan. Java in a Nutshell - A Desktop Quick Reference. O’Reilly, 1997.

Bibliography 171

[29] B. Fluri. Filemanager für Bluebottle. Semester project, Department of Computer Science,
ETH Zürich, 2003.

[30] B. Francis, A. Fedorov, R. Harrison, A. Homer, S. Murphy, D. Sussman, R. Smith and S.
Wood. Professional Active Server Pages 2.0, Brian Francis. Wrox Press Ltd, 1998.

[31] Z. Franjcic. JPEG2000 für Aos. Semester project, Department of Computer Science, ETH
Zürich, 2004.

[32] T. Frey. Architectural Aspects of a Thread-Safe Graphical Component System Based on
Aos, Lecture Notes in Computer Science 2789, Springer, 2003.

[33] T. Frey. Bluebottle Tutorial. Tutorial.Text in Bluebottle releases. ETH Zürich.
http://www.bluebottle.ethz.ch

[34] F. Friedrich. ETH Win Aos Oberon. http://www.bluebottle.ethz.ch/WinAos, 2003.

[35] G. W. Furnas. Generalized fisheye views. In CHI 86, pages 16-23, Boston MA, USA,
ACM Press, April 1986.

[36] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, Mass., 1994.

[37] D. Gentner, J. Nielson. The Anti-Mac Interface. Communications of the ACM, Vol.39,
No.8, August 1996.

[38] M. Gernss. Animations, Ein Animationssystem für Bluebottle. Semester project, Depart-
ment of Computer Science, ETH Zürich, 2003.

[39] C. Geschke, J. Warnock.
PDF Specification, fourth edition, Adobe Systems Incorporated, May 2001.

[40] J. Gough. Compiling for the .NET Common Language Runtime (CLR). .NET Series,
Prentice Hall, 2002

[41] J. Gutknecht, A. Clay, T. Frey, . GoingPublik: Testing System Design Outside of the Ivory
Tower. Creativity & Cognition, London, 2005.

[42] L. Häner. Flash Player für Bluebottle. Semester project, Department of Computer Science,
ETH Zürich, 2003.

[43] B. L. Harrison, H. Ishii, K. J. Vicente, W. A. S. Buxton. Transparent Layered User Inter-
faces: An Evaluation of a Display Design to Enhance Focused and Divided Attention. In
Proceedings of CHI ’95. (May 07-1), Denver. pp. 317-324.

[44] B. L. Harrison, G. Kurtenbach, K. J. Vicente. An Experimental Evaluation of Transparent
User Interface Tools and Information Content. UIST 95, Pittsburgh PA USA, 1995.

[45] C. Heinzer. ENSONIQ 137x Audio Trieber für Aos. Semester project, Department of
Computer Science, ETH Zürich, 2002.

[46] Intel Corp. Write Combining Memory Implementation Guidelines, 1998. Order Number
244422, http://developer.intel.com/.

172 Bibliography

[47] Intel Corporation. IA-32 Intel Architecture Optimization Reference Manual, 2004 Order
Number 248966-011, http://developer.intel.com/.

[48] Intel Corporation. IA-32 Intel Architecture Software Developers Manual Volume 3: Basic
Architecture, Order Number 253665, http://developer.intel.com/.

[49] Intel Corporation. IA-32 Intel Architecture Software Developers Manual Volume 3: Sys-
tem Programming Guide. Order Number 253668, http://developer.intel.com/.

[50] Intel Corporation. IA-32 Intel Architecture Software Developers Manual Volume 3: In-
struction Set Reference A-M, Order Number 253666. & Intel Corporation. IA-32 Intel Ar-
chitecture Software Developers Manual Volume 3: Instruction Set Reference N-Z, Order
Number 253667.

[51] Intel Corporation. Audio Codec ’97. Revision 2.3, 2002.
http://www.intel.com/labs/media/audio/

[52] Intel Corporation. I/O Controller Hub 6 (ICH6) High Definition Audio / AC 97 - Pro-
grammer’s Reference Manual (PRM), Document Number: 302349-002, July 2004.
http://www.intel.com/design/chipsets/hdaudio.htm

[53] ISO/IEC JTC 1 ISO/IEC Joint Technical Commitee for Information Technology, Infor-
mation technology - 8-bit single-byte coded graphic character sets - Part 1: Latin alphabet
No. 1, ISO International Organization for Standardization, 1988.

[54] O. Jeger. Teletext für Aos. Semester project, Department of Computer Science, ETH
Zürich, 2003.

[55] J. H. Jenkins. New Ideographs in Unicode 3.0 and Beyond. 15th International Unicode
Conference, San Jose, CA, 1999.

[56] K. Jonsson. Intel AC’97 Sound driver. Semester project, Department of Computer Sci-
ence, ETH Zürich, 2003.

[57] I. Kulka. Instant Gain in Grace. Diploma project, Hyperwerk Basel, 2003.
http://web.archive.org/web/20031206072930/http://www.hyperwerk.ch/curriculum
/exams/diplom03/index.htm

[58] G. Kurtenbach, W. Buxton. User Learning and Performance with Marking Menus. In
Proceedings of ACM CHI’94 Conference on Human Factors in Computing Systems. 258-
264, 1994.

[59] G. Kurtenbach, G. Fitzmaurice, T. Baudel, W. Buxton. The Design of a GUI Paradigm
based on Tablets, Two-hands, and Transparency. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. 35 - 42, 1997.

[60] P. K. Lai, D. Y. Yeung, M. C. Pong. A Heuristic Search Approach to Chinese Glyph
Generation Using Hierarchical Character Composition. COMPUTER PROCESSING OF
ORIENTAL LANGUAGES VOL.10, NO.3. 1996.

[61] B. W. Lampson, E. Taft.
Alto Users Handbook, Xerox Palo Alto Research Center, 1979.

Bibliography 173

[62] T. Lang. Was geschah am 6. Tag? - ein interaktives, multimodales Environment. Unpub-
lished project documentation.

[63] P. Lehmann. Desktop Publishing System für Bluebottle. Diploma thesis, Department of
Computer Science, ETH Zürich, 2004.

[64] K. Lunde. CJKV Information Processing, O’Reilly, 1999.

[65] I. S. MacKenzie, W. Buxton. Extending Fitts’ law to two-dimensional tasks. Proceedings
of the CHI ’92 Conference on Human Factors in Computing Systems. ACM, 219-226,
1992.

[66] I. S. MacKenzie. Movement Time Prediction in Human-Computer Interface. Readings in
human-computer interaction (2nd ed.) (pp. 483-493), Los Altos, CA: Kaufmann, 1995.

[67] J. L. Marais. Design and Implementation of a Component Architecture for Oberon. PhD
thesis, Institut für Computersysteme, ETH Zürich, 1996.

[68] E. McCreight et.al.
Alto Hardware Manual, Xerox Palo Alto Research Center, 1978.

[69] G. Meunier.
Lost in the Blue, Message in the Oberon Mailinglist January 3, 2003
https://www.mail.inf.ethz.ch/archive/oberon/2003/000623.html.

[70] J. Meyer, K. Perlin B. Bederson, J. Hollan. Two Document Visualization Techniques for
Zoomable Interfaces. Unpublished, 1995.

[71] Microsoft Corporation. COM: Component Object Model Technologies. 2004.
http://www.microsoft.com/com/default.mspx

[72] Microsoft Corporation. AVI File Format. Microsoft DirectX 9.0 SDK, Summer 2004
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/directshow/htm/avifileformat.asp.

[73] Microsoft Corporation. Longhorn Developer FAQ. 2004.
http://msdn.microsoft.com/longhorn/support/lhdevfaq/default.aspx

[74] Microsoft Corporation. MSDN Library.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winui/winui/windowsuserinterface/dataexchange/clipboard/clipboardformats.asp,
2004.

[75] Microsoft Corporation. Platform SDK: Windows API - Graphics Device Interface.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winprog/winprog/graphics device interface.asp, 2004.

[76] R. B. Miller. Response time in man-computer conversational transactions. Proc. AFIPS
Fall Joint Computer Conference Vol. 33, (pp. 267-277), 1968.

[77] U. Müller. DivX Player Erweiterung für Bluebottle. Semester project, Department of
Computer Science, ETH Zürich, 2004.

174 Bibliography

[78] H. Muller, K. Walrath. Threads and Swing. The Swing Connection, Reference, Technical
Articles and Tips, September 2000
http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html

[79] P. J. Muller. Native Oberon Operating System.
http://www.oberon.ethz.ch/native/

[80] P. J. Muller. The Active Object System - Design and Multiprocessor Implementation. PhD
thesis, Institut für Computersysteme, ETH Zürich, 2002.

[81] B. A. Myers. The importance of percent-done progress indicators for computer-human
interfaces. Proc. ACM CHI’85 Conf. (San Francisco, CA, 14-18 April), 11-17, 1985.

[82] F. Nart. Style Layer für Bluebottle. Diploma thesis, Department of Computer Science,
ETH Zürich, 2004.

[83] D. A. Norman. The Design of Everyday Things., Basic Books, New York, 1988.

[84] E. Oswald. A Generic 2D Graphics API with Objects Framework and Applications. PhD
thesis, Institut für Computersysteme, ETH Zürich, 2000.

[85] R. Parkinson. The Dvorak Simplified Keyboard: Forty Years of Frustration, Computers
and Automation magazine, November, 1972, pp. 18-25.

[86] K. Perlin, D. Fox. Pad: An Alternative Approach to the Computer Interface, Proceedings
of 1993 ACM SIGGRAPH Conference, pp. 57-64.

[87] K. Perlin and J. Meyer. Nested user interface components. Proc. of 12th annual ACM
symposium on Userinterface software and technology(pp 11-18), Asheville, North Car-
olina, USA, 1999.

[88] J. C. Platt. Optimal Filtering for Patterned Displays. IEEE Signal Processing Letters, 7, 7,
pp. 179-180, 2000.

[89] S. Pook, G. Vaysseix and E. Barillot. Zomit: biological data visualization and browsing.
Bioinformatics, 14(9):807-814, Nov. 1998.

[90] S. Pook, E. Lecolinet, G. Vaysseix, E. Barillot. Context and Interaction in Zoomable User
Interfaces. AVI 2000 Conference Proceedings (ACM Press), 2000.

[91] C. v. Praun, T. Gross. Static Conflict Analysis for Multi-Threaded Object-Oriented Pro-
grams Proc. Conf. Programming Language Design and Implementation (PLDI’03), 2003.

[92] J. Raskin. The Humane Interface: New Directions for Designing Interactive Systems.
Reading Massachusetts: Addison-Wesley, 2000.

[93] J. Raskin. The Humane Environment (THE) External Technical Specification
http://humane.sourceforge.net/the/spec.html, 2004.

[94] P. Reali. Using Oberon’s Active Objects for Language Interoperability and Compilation.
PhD thesis, Institut für Computersysteme, ETH Zürich, 2003.

[95] T. Richardson, Q. Stafford-Fraser, K. R. Wood and A. Hopper. Virtual Network Comput-
ing, IEEE Internet Computing, Vol.2 No.1, Jan/Feb 1998 pp33-38.

Bibliography 175

[96] T. Richardson, K. R. Wood.
The RFB Protocol
www.uk.research.att.com/vnc/rfbproto.pdf Olivetti Research Ltd, Cambridge, 1998.

[97] T. Richardson, K. R. Wood.
The RFB Protocol (Revised 11 July 2002)
http://www.realvnc.com/docs/rfbproto.pdf Formerly of Olivetti Research Ltd / AT&T Labs
Cambridge, 2002.

[98] G. Robertson, M. Czerwinski, K. Larson, D. C. Robbins, D. Thiel, and M. van Dantzich.
Data Mountain:Using Spatial Memory for Document Management. UIST 98. San Fran-
cisco, CA.

[99] F. Röthenbacher. IP-Phone for Bluebottle. Semester project, Department of Computer
Science, ETH Zürich, 2003.

[100] M. Sala. Composition Language für Bluebottle. Semester project, Department of Com-
puter Science, ETH Zürich, 2004.

[101] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, T. Anderson. Eraser: A Dynamic Data
Race Detector for Multithreaded Programs ACM Transactions on Computer Systems, vol.
15, pages 391–411, 1997.

[102] R. Scheifler. X Window System Protocol. X Consortium Standard, X Version 11, Release
6, March 1994.

[103] D. C. Schmidt. Strategized Locking, Thread-safe Interface, and Scoped Locking: Pat-
terns and Idioms for Simplifying Multi-threaded C++ Components, C++ Report, vol. 11,
Sept. 1999.

[104] Sibelius. The world of Sibelius - Complete range of music software. Sibelius Website,
2004.
http://www.sibelius.com/download/brochure/World of Sibelius(UK).pdf

[105] S. Stauber. Partition Viewer for Bluebottle. Semester project, Department of Computer
Science, ETH Zürich, 2004.

[106] M. C. Stone, K. Fishkin, E. A. Bier. The movable filter as a user interface tool. In CHI94
Human factors in computing systems, pp. 306312, Boston MA, USA. ACM Press.

[107] Sun Corporation. Desktop Java - Java Foundation Classes (JFC/Swing). 2004.
http://java.sun.com/products/jfc/index.jsp

[108] C. Szyperski. Component Software : Beyond Object-Oriented Programming. Addison-
Wesley / ACM Press, 1998.

[109] T. Trachsel. DivX Player für Bluebottle. Semester project, Department of Computer Sci-
ence, ETH Zürich, 2003.

[110] M.von Tessin. Yamaha Audio Trieber für Aos. Semester project, Department of Com-
puter Science, ETH Zürich, 2002.

176 Bibliography

[111] T. Ungerer and B. Robič; and J.Šilc. A survey of processors with explicit multithreading.
ACM Computing Surveys, 35:29-63, 2003.

[112] W3C. Extensible Markup Language (XML) 1.1 Recommendation, 2004.
http://www.w3.org/TR/xml11

[113] S. Walthert. Entwicklung eines Style Layers und Renderers für die XML-basierte GUI-
Shell des Aos Systems. Diploma thesis, Department of Computer Science, ETH Zürich,
2001.

[114] C. Wassmer. OGG Radio for Bluebottle. Semester project, Department of Computer
Science, ETH Zürich, 2004.

[115] Y. Weber. MPEG-1/2 Decoder für Bluebottle. Semester project, Department of Com-
puter Science, ETH Zürich, 2005.

[116] M. Wille. Overview: Entwurf und Realisierung eines Fenstersystems für Arbeit-
splatzrechner PhD thesis, Institut für Computersysteme, ETH Zürich, 1989.

[117] N. Wirth and J. Gutknecht. Project Oberon - The Design of an Operating System and
Compiler. Addison-Wesley, 1992.

[118] R. Wu, A. Kenji, T. Koji A Method for Intelligent Association of Chinese Input Us-
ing Inductive Learning. Proceedings of the First International Conference on Information
Technology and Applications (ICITA), 2002.

[119] Xiph.org Foundation. Ogg logical and physical bitstream overview. Xiph.org Founda-
tion, July, 2002.
http://www.xiph.org/ogg/vorbis/doc/oggstream.html.

[120] E. J. Zeller. Fine-grained Integration of Oberon into Windows using Pluggable Objects.
PhD thesis, Institut für Computersysteme, ETH Zürich, 2002.

[121] J. Zukowski. Java AWT Reference, O’Reilly. 1997.

Curriculum Vitae

Thomas Martin Frey

February 01, 1975 Born in Bern, Switzerland
Son of Erika and Andreas Frey-Bigler

1982-1986 Primary school in Münchenbuchsee
1986-1991 Secondary school in Münchenbuchsee
1991-1995 Gymnasium Bern Neufeld
1995 Matura Typus C
1995-1999 Studies in Computer Science

Swiss Federal Institute of Technology, Zürich
2000 Dipl. Informatik-Ing. ETH
2000-2005 Research and teaching assistant at the

Institute for Computer Systems, ETH Zürich

177

