
Eidgenössische Departement Informatik
Technische Hochschule Institut für
Zürich Computersysteme

Robert Griesemer On the Linearization of Graphs
and Writing Symbol Files

Cuno Pfister (ed.) Oberon Technical Notes
Beat Heeb
Josef Templ

March 1991

156

Address of the authors:

Computersysteme
ETH–Zentrum
CH–8092 Zurich, Switzerland

e–mail: griesemer@inf.ethz.ch
pfister@inf.ethz.ch

Copyright (c) 1991 Departement Informatik, ETH Zürich

On the Linearization of Graphs and Writing Symbol Files

Robert Griesemer

Abstract

The linearization of general graphs represented by pointer and record data
structures is a problem often arising in computer programs. Whenever a graph
has to be stored on or transmitted over a sequentially organized carrier, a form
of linearization is used. A simple algorithm for this purpose is presented and a
special application – the writing of symbol files as required by modern
language compilers – is described in more detail.

Keywords: Linearization, Graphs, Symbol Files.

1. Linearization of Graphs

General graphs occur in various forms in computer science, sophisticated data
structures may often be interpreted as graphs. Whenever such a data structure has to
be stored on a file or has to be transmitted over a network, the linearization problem
occurs. For special forms of non–linear data structures (e.g. trees) well–known
solutions exist and are comprehensively described in the basic literature. Nevertheless,
for more general data structures the wheel has to be reinvented and literature is difficult
to find [ReMö86]. The problem has a twofold nature: firstly, the graph has to be
linearized by means of a write algorithm, and secondly, it has to be rebuilt out of its
linear description by a read algorithm. In the following, linearization means writing a
graph to a file.

1.1 Preconditions

First of all, we remember that every general (undirected) graph may be represented by
a directed graph, by means of having two directed edges instead of an undirected one.
Hence, we concentrate on directed graphs only. Secondly, we consider only rooted and
connected graphs; i.e. graphs with a special root node and a path from the root to
every other node. Unconnected graphs or graphs with several root nodes are easily
extended such, that they obey the above preconditions. Thirdly, as an (academic)
restriction only finite graphs are considered.

In computer programs, graphs may be represented in various forms, depending on
the available notational support (the programming language) and the way the data
structure is used (the program). Here we consider only graphs described in terms of
pointers and records; i.e. every graph node is represented by a record and every edge
is represented by a pointer. Note that possible information attached to the edges of a

graph (labeled edges) may be interpreted as additional node data.
The nodes of such a graph may not all have the same type; i.e. the amount of data

in every node may be different and the number of directed edges to other nodes may
vary. It depends on the application and available language how different nodes are
specified. For the sake of simplicity we identify each node with a positive tag–number
(> 0), so that every node type is clearly determined by its tag and vice versa. Then,
every node contains a certain amount M(tag) of data and (at most) a certain number
N(tag) of directed edges to other nodes. Hence, a general graph node and its edges
may be described in the following way (written in Oberon [Wi88]):

TYPE
Node = POINTER TO NodeDesc;
NodeDesc = RECORD

tag: INTEGER; (* determines node type; tag > 0 *)
data: ARRAY Mtag OF INTEGER; (* M depends on the node type (tag) *)
link: ARRAY Ntag OF Node (* N depends on the node type (tag) *)

END;

Note that any data structure represented in any way in computer memory may be
written to a file by simply writing out sequentially the corresponding memory area.
Reading requires "only" the data to be read into the same memory area (otherwise
pointers would be incorrect). But normally this is an inappropriate solution for several
reasons: often the data structure is distributed over the entire available memory and
writing would lead to an immense waste of space. For reading, the destination memory
addresses must be specified which is almost never possible and a file created this way
is inherently not portable (to another computer system).

Hence, writing of graphs requires pointers to be transformed into another form of
reference and vice versa for reading. In addition, reading and writing should be as
efficient as possible considering both memory and time; e.g. each node description
should appear once and only once on the file.

1.2 The Write Algorithm

The write algorithm resembles closely a naive recursive mark–algorithm for garbage
collectors, actually it is nearly the same task to be done: all nodes have to be traversed
and marked; marking is necessary to avoid a second traversal and to refer to the
node’s first occurence. While traversing the graph its structure is written to a file.
Hence, the node data structure has to be extended by a mark field, which initially must
be zero:

TYPE
Node = POINTER TO NodeDesc;
NodeDesc = RECORD

mark: INTEGER; (* used for linearization; initially = 0 *)
tag: INTEGER; (* determines node type; tag > 0 *)
data: ARRAY Mtag OF INTEGER; (* N depends on the node type (tag) *)
link: ARRAY Ntag OF Node (* M depends on the node type (tag) *)

END;

We say a node q is marked iff q.mark > 0. The WriteNode procedure (see below)
traverses the graph in pre–order, starting with the root node. Whenever an unmarked
node is encountered, the node is numbered and thus marked (line 4), the node tag and
data are written (lines 4 and 5) and its successor nodes are traversed (line 6). Note that
a node must be numbered before its subtrees are traversed because they may refer to
it. Numbering is done using the counter NofNodes which is one initially and is then
incremented by one with every processed node. Hence, NofNodes is always greater
than zero. Whenever an already marked node is traversed, only its negative node
number is written out as reference number (line 2). If the node doesn’t exist (i.e. q =
NIL) zero is written out (line 1):

VAR
NofNodes: INTEGER;

(* node number; initially = 1 *)

PROCEDURE WriteNode(q: Node);
VAR i: INTEGER;

BEGIN
1 IF q = NIL THEN WriteInt(0)
2 ELSIF q.mark > 0 THEN (* already marked *) WriteInt(–q.mark)
3 ELSE (* first occurence *)
4 WriteInt(q.tag); q.mark := NofNodes; INC(NofNodes);
5 i := 0; WHILE i < Mtag DO WriteInt(q.data[i]); INC(i) END;
6 i := 0; WHILE i < Ntag DO WriteNode(q.link[i]); INC(i) END
7 END

END WriteNode;

During execution of WriteNode with argument root all nodes are numbered in the order
of their first occurence. References to already written nodes are the negative node
numbers. While reading the file this information will be used to reconstruct the graph
(see 1.3 The Read Algorithm). Before WriteNode can be called a second time for the
same graph or parts of it, the preconditions have to be established again, i.e. the nodes
must be unmarked. When using time–stamps, no such unmark pass is necessary (due
to an idea of J. Templ, see [PfiHeTe91]: A Symmetric Solution to the Load/Store
Problem). The WriteNode procedure leads to the following file structure (in EBNF,
terminal symbols are described in double quotes):

Graph = NodeRef | NoNode | NodeDesc.
NodeRef = "negative node number (< 0)".
NoNode = "0".
NodeDesc = "node tag (> 0)" "node data" {Graph}.

It is obvious that the algorithm terminates for all graphs: there is only a finite number of
nodes and every procedure call works on at least one node. The recursion is stopped
when an already marked node and hence a loop is found (line 2) and the algorithm
returns to its predecessor node. In line 4 the assignment q.mark := NofNodes is
executed only if q.mark = 0, i.e. each node is numbered at most once (because
NofNodes > 0). On the other hand, since after numbering of the node q^ (line 4)
WriteNode numbers all subgraphs of q^ (line 6), each node is numbered at least once.

In combination we may conclude that each node is marked exactly once. Finally,
because each node’s data is written iff the node was numbered immediatly before (line
5), it becomes clear that each node is written only once.

Note that WriteNode is a one–pass algorithm and that no additional data structures
except NofArgs and the procedure activation stack are required. The run time
complexity is O(n) where n is the number of edges in the graph. As we mentioned
above, WriteNode resembles closely the mark phase of a mark–and–sweap garbage
collector, therefore it is possible to transform the algorithm into a completely iterative
form (e.g. if stack space is critical). The analoguous transformations for a simple
garbage collector are described in [PfiHeTe91].

1.3 The Read Algorithm

The read algorithm reconstructs a (sub–) tree from its description on a file. Each node
block in the file starts with an identification tag. According to the EBNF file structure
there are three cases to distinguish: the node tag may be zero, negative or positive
(excluding zero).

VAR
NofNodes: INTEGER;

(* node number; initially = 1 *)
NodeTab: ARRAY MaxNodes OF Node; (* node table; NodeTab[0] = NIL *)

PROCEDURE ReadNode(VAR q: Node);
VAR tag, i: INTEGER;

BEGIN
1 ReadInt(tag);
2 IF tag <= 0 THEN (* node reference *) q := NodeTab[–tag]
3 ELSE (* first occurence *)
4 NEW(q, tag); NodeTab[NofNodes] := q; INC(NofNodes);
5 i := 0; WHILE i < Mtag DO ReadInt(q.data[i]); INC(i) END;
6 i := 0; WHILE i < Ntag DO ReadNode(q.link[i]); INC(i) END
7 END

END ReadNode;

The first and second case are handled together by initializing the (otherwise unused)
NodeTab entry zero to NIL. Because an empty subtree is identified by a zero tag, q
then automatically becomes NIL (line 2). A node that occurs for the first time is
identified by a positive number which is also its node tag. Then, such a node is created
using NEW and stored in a global node table NodeTab (line 4). Note again that this
assignment must be done before any subtrees are read (they may potentially refer to
it). After creation of the new node its data and its subtrees are read (line 5 and 6). A
negative node tag refers to an already read node, with the node number –tag. This
node is obtained from the NodeTab array (line 2).

It should be clear that this algorithm rebuilds the original graph, as each line in
ReadNode has its counterpart in WriteNode and each call of WriteNode during writing
implies a corresponding call of ReadNode during reading. Clearly this algorithm is also
O(n) where n is the number of edges in the graph. A temporary node array of size n is
used for reading, this might be a drawback in case of very large graphs. A 2–pass

algorithm which needs temporary storage only for nodes which are referenced more
than once is described in the appendix.

2. Writing Symbol Files

Today’s modular programming languages like Modula–2, Ada, Oberon and others allow
an application to be programmed in several more or less independent parts, so–called
modules (or packages). Such a module typically defines data structures and provides
operations (procedures) on them, these exported objects may be used (imported) by
other modules without knowledge of their implementation.

Therefore, the information about a module’s interface has to be available to the
compiler in an efficient way: in Modula–2 and Oberon the necessary data is recorded
on so–called symbol files. For historical reasons and to avoid confusion we use the
term symbol file for any linear data structure which describes a module’s interface.
Actually, it is not necessary that symbol files are represented by a separate file (see 2.4
Implementation Aspects).

During compilation, the information about a module’s interface is held in the symbol
table of the compiler. The symbol table can be regarded as a graph, hence writing a
symbol file requires linearizing the necessary partial graph of this table. The methods
described in the following have been implemented in a compiler for an experimental
Oberon–like language [Gri90]. The code fragments detail only the principal structure, a
complete implementation may be found in the appendix.

2.1 Structure of Symbol Tables

The symbol table of a compiler for an Oberon–like language describes the compiled
objects, which are constants, types, variables, procedures, or modules. The table itself
is built when processing declarations. These may be nested, so the compiler has to
manage a stack of scopes, i.e. visibility ranges of objects. For our purposes, it is
sufficient to store the objects of a scope in a linear list. More sophisticated
implementations would use structures like binary trees, because objects have to be
searched efficiently during compilation. In Modula–2 and Oberon only global objects
may be exported, i.e. only objects within the global scope of the symbol table have to
be considered for export (Fig. 1). Hence, writing the symbol file means linearizing the
partial graph described by the exported (and therefore in some way marked) objects of
this scope.

marked (exported) objects

objectsscope header

topScope

Fig. 1 Global Scope

Each node represents an object of the compiled program, containing all the necessary
information about it, such as its name, the object kind, possibly an address and its type.
Object types itself may have a very complex structure and are further described using a
Struct data structure, which again may refer to other Struct nodes [Wi85, Cre90].
Hence objects and types are described with two different record structures:

CONST
(* object modes *)

Undef* = 0; Scope = 1; Const* = 2; Type* = 3; Var* = 4; VarPar* = 5; XVar* = 6;
IVar* = 7; Field* = 8; LProc* = 9; XProc* = 10; IProc* = 11; SProc* = 12; Mod* = 13;

(* type forms *)
Char* = 2; Bool* = 3; SInt* = 4; Int* = 5; LInt* = 6; Set* = 7; Real* = 8;
LReal* = 9; Cmplx* = 10; LCmplx* = 11; NilTyp* = 13; NoTyp* = 14;
Proc* = 15; String* = 16; Array* = 17; DynArr* = 18; Record* = 19; Pointer* = 20;

TYPE
Name* = ARRAY 32 OF CHAR;
Object* = POINTER TO ObjectDesc;
Struct* = POINTER TO StructDesc;

ObjectDesc* = RECORD
link*, next*: Object; (* objects are chained using next *)
name*: Name;
typ*: Struct;
marked*: BOOLEAN; (* marked objects are exported *)
mode*: INTEGER;

(* identifies object kind *)
mnolev*: INTEGER; (* module numbers are <= 0 *)
... (* object specific data *)

END;

StructDesc* = RECORD
ref: INTEGER; (* used as mark field *)
form*: INTEGER; (* identifies structure kind *)
obj*: Object; (* points to type object if it exists *)
len*, size*: LONGINT;
base*: Struct; (* result–, element–, base– or pointee type

*)
link*: Object (* record scope *)

END;

Struct nodes describe the type of an object (array, record, pointer, procedure); a few
types are predefined (e.g. Char, Integer, Real). Because types may be recursively
defined, the resulting data structure may contain cycles. Many objects may have the
same type and therefore refer to the same struct node.

2.2 Export

The graph linearization algorithm in the form described in section 1 actually works for
different node kinds (determined by the tag field) but requires that all nodes are

described using the same record. However, enforcing this precondition would have a
far too strong impact on the structure of a compiler. As we have actually two different
record types for object and type description, the adequate solution is to have two sets
of read and write procedures, one set for objects and one for types. This distinction is
even more justified by the fact that objects are stored in a simple linear list and are
referenced only once (with the exception of type and module objects) while type
descriptors may be referenced several times and potentially belong to cycles.
References from struct nodes to their type objects are handled directly in the
WriteStruct procedure. Modules are never marked for export and written using a
special procedure. As a consequence, the write procedure which traverses the object
scope does not have to take care of objects already traversed and therefore no
marking is necessary. Hence, the write procedure degenerates to a simple list traversal
while for the corresponding read procedure no temporary array is necessary. Using the
above definitions, the WriteObjects procedure can be written as follows (primitive
operations like WriteInt and WriteName may be found in the appendix section):

PROCEDURE WriteObjects(obj: Object);
BEGIN

WHILE obj # NIL DO
IF obj.marked THEN

WriteInt(obj.mode);
IF (obj.mode # Type) OR (obj.typ.obj # obj) THEN (* no–type or alias type *)

WriteName(obj.name)
ELSE (* other type *) Write(0X)
END;
WriteStruct(obj.typ);
IF obj.mode = Const THEN (* write const value *)
ELSIF obj.mode = LProc THEN (* write parameter list *)

...
END

END;
obj := obj.next

END;
WriteInt(Undef) (* termination tag *)

END WriteObjects;

For exported objects, the mode which describes the object kind, the object’s name and
its type are written. As an optimization, the name of types is only written if it concerns
alias types. Otherwise, the name will be written by the WriteStruct procedure (given
below). Then, depending on the object mode, additional information is written (e.g. the
value of constants or the parameter list of procedures).

The WriteStruct procedure closely resembles the Write algorithm described in 1.2 but
is slightly complicated by the fact that named types (i.e. types for which a type object
exists) have to be handled correctly. Remember, that it is not correct to simply call the
WriteObjects procedure, because WriteObjects is not built to handle more than one
reference to an object. In addition, named types (and only these!) may be exported and
imported over many modules and it must always be guaranteed that a type, whether it
was imported via several modules (indirect import) or not, is described by one and only
one struct node. A unique identification is necessary, which is the type name combined

with the description of the module where the type was defined first. An analogous
situation occurs when a type gets an alias name: then, the struct node always points to
the first type object which defined the type.

VAR
nofStructs: INTEGER;

(* structure number; initially = 1 *)

PROCEDURE WriteStruct(typ: Struct);
VAR name: Name;

BEGIN
IF typ = NIL THEN WriteInt(0)
ELSIF typ.ref > 0 THEN (* already marked *) WriteInt(–typ.ref)
ELSE (* first occurence *)

WriteInt(typ.form); typ.ref := nofStructs; INC(nofStructs);
IF typ.obj # NIL THEN (* named type *)

name := typ.obj.name;
IF ~typ.obj.marked THEN (* invisible type *)

name[0] := CHR(ORD(name[0]) – ORD("@"))
END;
WriteName(name); WriteMod(GMod[–typ.obj.mnolev])

ELSE Write(0X)
END;
CASE typ.form OF

| Proc: (* write parameter list and result type *)
| Array: (* write element type and length *)
...

END
END

END WriteStruct;

Note that for exported named types there is a distinction between those with and those
without corresponding exported type objects, where the latter are called invisible types.
Invisible types must not be visible in an importing module, i.e. a programmer is not
allowed to use them by name within a declaration. On the other hand they have to be
visible to the compiler because it must be ensured that all invisible types with the same
name are mapped onto a common struct node. Hence, the same information as for
named types is written, but a simple trick inhibits any use of the type name within a
program: the first letter of its name (which is always greater or equal than "A") is
modified such that the name becomes a syntactically invalid identifier.

For named types the declaring module has to be known. Because several types may
be exported by the same module, the corresponding module object may be referenced
more than once. A special procedure which handles modules correctly is used:

VAR
nofLMods: INTEGER;

(* local module number; initially = 0 *)

PROCEDURE WriteMod(mod: Object);
BEGIN

IF mod.ref < 0 THEN (* first occurence *)

mod.ref := nofLMods; INC(nofLMods);
WriteInt(Mod); WriteKey(mod.key); WriteName(mod.name)

ELSE WriteInt(–mod.ref)
END

END WriteMod;

Like struct nodes, module descriptors are only written at their very first occurence.
Whenever the same module is referenced later, only its reference number is written.
Module pointers are never NIL, so numbering starts with zero and a module is marked
iff mod.ref >= 0. During import the compiler has to check that only one version of a
module is used globally, therefore every module needs a unique key. Remember that
modules are never written out accidentally by the WriteObjects procedure, because
they are never marked for export.

Writing the complete symbol file requires writing out the module descriptor of the
compiled module (by means of WriteMod) followed by writing out all its exported
objects (by means of WriteObjects).

2.3 Import

Like the general ReadNode procedure is mirroring the structure of the WriteNode
procedure, the import procedures are similar to the export procedures. This fact allows
for easy extension, because additionally written data in an export procedure
automatically leads to the corresponding read operations in the import procedure.
Nevertheless, a few difficulties need to be mastered anyway.

In several situations an object may be imported more than once: the trivial case
occurs when the same module is imported twice because of a substitution (or alias)
name. One might expect that this special case should be handled by simply ignoring a
second import; but actually a multiple import of objects has to be handled anyway,
hence double import of entire modules is only a special case of a more general
situation. Multiple import of an object normally occurs for type objects, when beeing
imported indirectly across different modules. Consider the following situation: a module
A exports a type (object) T which is used in a variable V of a module B. Module C
which imports A and B consequentially also imports the type T from A and the variable
V from B and hence once again the type T as type of V (Fig. 2).

object.

export of the defined

an identifier signals

The asterisk following

imported from A.

its struct node are

The type object and

(T is a named type).

imported from A and B

its struct node are

The type object andMODULE C;

IMPORT A, B;

MODULE B;

IMPORT A;

VAR

V*: A.T;

MODULE A;
TYPE

T* = ...

Fig. 2 Double import

However, multiply loading objects or structures, if not detected, could lead to incorrect
incompatibilities during type checking. Therefore, each object which is read from the
symbol file is discarded if it was already present in the symbol table. Hence, each
object is represented by its very first loaded instance which is called primary instance
[Gu85]. In consequence, the ReadObjects procedure reads an object from the symbol
file but the procedure InsertImport inserts it in the corresponding module scope only if
the object (with the same name) has not already been imported. As an optimization,
note that only alias types have to be (additionally) inserted with InsertImport because
their names differ from their type object names. All other types are handled in the
ReadStruct procedure.

PROCEDURE InsertImport(VAR obj: Object; scope: Object);
VAR p, q: Object;

BEGIN
p := scope; q := scope.next;
WHILE q # NIL DO

IF q.name = obj.name THEN obj := q; RETURN END;
p := q; q := q.next

END;
obj.mnolev := scope.mnolev; p.next := obj

END InsertImport;

PROCEDURE ReadObjects(scope: Object);
VAR mode: LONGINT; obj: Object; typ: Struct; name: Name;

BEGIN
LOOP (* read all objects *)

ReadInt(mode);
IF mode = Undef THEN (* no more objects *) EXIT

ELSIF mode = Type THEN
ReadName(name);
IF name # "" THEN (* alias type *)

NewObject(obj, name, Type); ReadStruct(obj.typ);
InsertImport(obj, scope)

ELSE (* other types *) ReadStruct(typ)
END

ELSE
ReadName(name); NewObject(obj, name, SHORT(mode));

ReadStruct(obj.typ);
IF mode = Const THEN (* read const value *)
ELSIF obj.mode = LProc THEN (* read parameter list *)

...
END;
InsertImport(obj, scope)

END
END

END ReadObjects;

The procedure ReadStruct decides upon reading the first number form whether the
structure was already read from the (same) symbol file or not. In the first case, the
structure already built is taken out of a local structure table LStruct which serves as a
translation table for structure references analogous to NodeTab in the ReadNode
procedure. In the second case, the structure is created and inserted in the LStruct
table, then the specific structure information is read. As described in ReadObjects,
named types must also be ignored if occuring a second time: the structure information
is read but then discarded (by means of InsertImport) and the primary instance is used
(and also inserted in the LStruct table).

As a tricky point, notice further: Because each type (named or not) may refer to itself,
it is absolutely necessary that the primary instance is found before any other types are
read (which potentially refer to the same type and therefore would obtain the wrong
structure out of the LStruct table). Hence, no other types must occur between the type
tag of a named type and its identification, i.e. its name and its original module
description. This rule corresponds to postulate 5 in [Gu85].

VAR
nofStructs: INTEGER;

(* structure number; initially = 1 *)
LStruct: ARRAY MaxNofStructs OF Struct;

(* local structure table; LStruct[0] = NIL *)

PROCEDURE ReadStruct(VAR typ: Struct);
VAR form: LONGINT; htyp: Struct; name: Name; obj, mod: Object;

BEGIN
ReadInt(form);
IF form <= 0 THEN (* struct reference or NIL *) typ := LStruct[–form]
ELSE (* first occurence *)

NewStruct(htyp, SHORT(form)); ReadName(name);
IF name # "" THEN (* named type *)

NewObject(obj, name, Type); obj.marked := TRUE; obj.typ := htyp; htyp.obj :=
obj;

ReadMod(mod); InsertImport(obj, mod.link);
typ := obj.typ

ELSE typ := htyp
END;
LStruct[nofStructs] := typ; INC(nofStructs);
CASE form OF

| Proc: (* read parameter list and result type *)
| Array: (* read element type and length *)
...

END
END

END ReadStruct;

At the end, the ReadMod procedure is presented. As expected, a local module table
LMod is used as translation table for module references. In addition, because modules
must always be represented by their primary instances, a global module table GMod is
necessary, which is accessed in the InsertMod procedure.

VAR
nofGMods*: INTEGER; (* global module number; initially = 0 *)
GMod*: ARRAY MaxNofGMods OF Object;

(* global module table *)

PROCEDURE InsertMod*(VAR mod: Object; VAR name: ARRAY OF CHAR; key:
LONGINT);

VAR i: INTEGER;
BEGIN i := 0;

WHILE (i < nofGMods) & (name # GMod[i].name) DO INC(i) END;
IF i < nofGMods THEN (* module already imported *)

mod := GMod[i];
IF mod.key # key THEN err(150) (* key inconsistency *) END

ELSE
NewObject(mod, name, Mod); (* must not be visible in global scope *)
mod.key := key; mod.mnolev := –nofGMods;
OpenScope(mod.link, mod.mnolev); CloseScope; (* allocate own scope *)
GMod[nofGMods] := mod; INC(nofGMods)

END
END InsertMod;

VAR
nofLMods: INTEGER;

(* local module number; initially = 0 *)
LMod: ARRAY MaxNofLMods OF Object; (* local module table *)

PROCEDURE ReadMod(VAR mod: Object);
VAR ref, key: LONGINT; name: Name;

BEGIN
ReadInt(ref);
IF ref > 0 THEN (* first occurence *)

ReadKey(key); ReadName(name);
InsertMod(mod, name, key);
LMod[nofLMods] := mod; INC(nofLMods)

ELSE mod := LMod[–ref]
END

END ReadMod;

Importing a whole module requires reading the module (by means of ReadMod)
followed by reading all exported objects of this module (by means of ReadObjects).
Together there are only a few additional rules to the general graph algorithm to be
observed:

1. For types and modules, which both may be referenced several times within
the same symbol file, a marking scheme and a translation table analogous to
the general graph read/write algorithms is used.

2. For named types and modules, which both may occur in several symbol
files, the primary instance always must be used and inserted into the local
translation tables. If the primary instance already exists, the remaining data
must be read but then discarded. Repeated occurence of the same module is
detected using a global module table, repeated occurence of the same named
type is detected using its module and the corresponding module scope.

3. As a consequence of the second rule, no other types must occur in the
symbol file before name and module of a named type are specified.

2.4 Implementation Aspects

Symbol File Representation

As mentioned in the beginning, symbol files need not to be represented by a separate
file. Actually, a symbol file independent of the corresponding object file mirrors the fact
that in Modula–2 and other languages the definition and the implementation of a
module were compiled separately: the definition module was compiled into a symbol
file and the implementation module into an object file. If exported objects are marked in
some way within the implementation module (as in Oberon), a definition module and
hence a separate symbol file is not necessary. It is more adequate to produce only a
single file during compilation, which contains all the necessary information about the
module including its interface description. For example, the (conventional) symbol file
may be appended to the object file. The advantages are obvious: only a single file has
to be distributed, this file is always self–contained and therefore consistent and it is
possible to directly generate the interface specification out of an object file with a
Browser tool. Should it be necessary to inhibit public use of a module (e.g. because it
supports low–level features), it is easy to remove the symbol file from the object file and
distribute the interface–less object file only.

Canonical Form for Symbol Files

When a module has to be recompiled for some reason without a change in its
interface, the old module key should be used again in the symbol file. Otherwise all

depending modules would also be invalidated and would have to be recompiled. A
simple method to check whether a module’s interface has changed or not is to bytewise
compare the new symbol file against the old one. If it has not changed, the old key can
be reused. This comparison method requires very stable symbol files: e.g. the ordering
of the exported objects should have no effect on the symbol file. This is clearly not
fulfilled in the implementation described above (which we’ve chosen for simplicity),
because objects are ordered in the linear list according to their occurence in the
module. Desired is a kind of canonical form for symbol files.

As we mentioned earlier, access to a special object in the symbol table should be as
efficient as possible, so one could implement the table using binary trees instead of
(unsorted) linear lists. Then, the objects could be written in alphabetical order to the
symbol file using an in–order traversal of the tree. Symbol files in this canonical form
are invariant to any changes in the ordering of a module’s objects. Unfortunately this
implies an undesired side effect which destroys the efficiency of binary trees: Importing
a symbol file means inserting the imported objects in binary trees. Because the objects
are alphabetically sorted, the symbol table tree degenerates to a linear list. Further,
most of the objects in typical modules are known by import. In consequence, searching
in the symbol table means actually searching in linear lists. Hence, the additional
implementation effort for simple binary trees may be no longer justified.

The situation may be improved by modifing the proposed canonical form. Instead of
writing all objects in alphabetical order, groups of objects of the same kind (with the
same mode) are written alphabetically: first all constants, then the variables, then
types, and so on. Within each group the objects are ordered and the group ordering is
also specified. This is another canonical form which is also invariant against any
permutations of exported objects. When imported, the trees will not completely
degenerate but are decomposed into several partial lists. The result is at least a better
balanced tree. Note that the addional effort of traversing the tree in several passes (for
each object group) is only necessary during export; the more time critical import
procedure is not at all affected.

Predefined Types

In several languages there exist predefined types which are known to the compiler.
Such types are always exported using a fixed reference number. Before any object is
imported, they are inserted into the local structure table by the import procedure (see
Appendix B).

Increased Import Speed

As measurements show (see below), when reading is bytewise, the import speed highly
depends on the symbol file length. Besides strings, most of the data on a symbol file
are integers. Hence, a principal goal should be to reduce the space used to write a
single integer number. Integers occur frequently as tag or reference numbers and most
of them are very small (with an absolute value less than 64). Nevertheless also bigger
integers should be managed easily. The ReadInt and WriteInt procedures described in
[Te90] allow integers to be written in a machine–independent format which uses only

one byte per number in most cases.

2.5 Measurements

The following measurements show lengths and reading times of symbol files. The basic
modules of the Oberon System are choosen as a typical "module mix". The method
described here (used in module CCT) is compared to the method used in the existing
portable Oberon compilers (module OPT, see [Cre90]) which is essentially the same
method as described in [Gu85]. To be fair, the CCT method was adjusted such that
about the same information per object was written out as with OPT (e.g. the address of
each parameter of a procedure) but using a compactifying WriteInt procedure. The
measurements were made on a Ceres–2 computer [He88] with a NS32532 CPU
running at 25 Mhz clock speed.

In the left table the lengths of the symbol files in bytes are shown (OPT lengths are
100%). On average, the CCT symbol files are about 25% shorter than the
corresponding OPT files. When the same symbol files are written using a
non–compactifying WriteInt procedure in CCT (for addresses only), the files are about
8 % shorter (measurements not shown here). The right table shows the reading times
in ms for each symbol file (OPT times are 100%). For this, each file was imported 100
times and only the pure file reading time without directory operations was measured
and the average taken. The actual time spent in the import procedures is much higher
because of directory accesses and may vary even for the same file.

in comparison to OPT 75 in comparison to OPT 84

Viewers 653 445 68

V24 170 151 89

Texts 1747 1237 71

TextFrames 2126 1470 69

SCC 265 206 78

Printer 720 466 65

Oberon 2157 1403 65

MenuViewers 450 258 57

Math 115 103 90

Input 113 102 90

Fonts 242 161 64

Files 519 391 75

Display 1137 915 80

Diskette 497 411 83

Module length OPT length CCT in %

17.9 13.1 73

5.6 5.0 89

48.9 38.8 79

57.2 44.6 78

6.9 5.6 81

18.9 13.7 72

56.7 46.4 82

11.1 7.7 69

4.0 3.9 98

3.4 3.3 97

5.7 4.9 86

14.7 12.8 87

30.3 29.1 96

13.7 11.6 85

time OPT time CCT in %

Tab. 1a and 1b

lines of code for export 163 125

lines of code for import 196 176

regression coefficient r 0.9990 0.9980 0.9999

average reading time per byte (ms) 0.0268 0.0317 0.0090

OPT CCT pure file

Tab. 2

Further analysis of the measurements shows what was presumed, namely a practically
linear dependency between the file lengths and their reading times (Tab. 2); the linear
regression coefficient r is nearly 1.0 for both methods. Although the average reading
time per byte in CCT is larger than in OPT, the shorter file lengths made up for this
difference. For comparison, the values for pure file reading are also shown (the reading
time per byte is the average measured time for this file mix and is only valid for short
files in general). In every case the file length completely dominates other factors, so to
improve importing speed shorter symbol files have to be achieved. But nevertheless,
such an effort is only justified if the file system offers some kind of caching strategy for
files already open. Otherwise the reading time for such short files is negligible
compared to the directory access time. The import and export procedures in CCT are
about 20 % shorter in source code size than the OPT procedures (Tab. 2).

3. Summary

As we have seen, the linearization algorithm for general graphs is very simple and
easily adjusted to similar problems. In the example of symbol files it leads to a clean
and understandable solution. The simplicity of the algorithm and the fact that only local
invariants have to be considered, allows symbol files to be easily extended. The main
difference between the algorithm described here and the one described in [Gu85] is
that here a pre–order traversal instead of a post–order traversal is used. Using a
post–order traversal, several postulates have to be guaranteed all the time, which
complicate the algorithm. Nevertheless, cyclic references within types are a problem
which has to be handled in a special way. Although the post–order algorithm requires
no recursion for reading, the presented algorithm is faster in the average because
symbol files are shorter and time used for reading in todays computers is determined
mostly by the length of the files which are to be processed.

Acknowledgements

I would like to thank Josef Templ, Cuno Pfister, Clemens Szyperski and H.
Mössenböck. Josef answered tricky questions about symbol files; he and Cuno worked
as proof readers. H. Mössenböck added valuable comments to the modified algorithm
in Appendix A. Not to forget, the entire paper was written using the excellent Write text
editor of Clemens.

References

[Cre90] R. Crelier.
OP2: A Portable Oberon Compiler.
Computersysteme ETH Zürich, Technical Report No. 125, February 1990.

[Gri90] R. Griesemer.
Seneca – A Language for Numerical Computations on Vectorcomputers.
Conpar 90 Proceedings, Volume on special technical contributions,
Zürich, September 1990.

[Gu85] J. Gutknecht.
Compilation of Data Structures: A New Approach to Efficient Modula–2
Symbol Files.
Computersysteme ETH Zürich, Technical Report No. 64, July 1985.

[PfiHeTe91] C. Pfister, B. Heeb, J. Templ.
Oberon Technical Notes.
Companion paper.

[ReMö86] P. Rechenberg, H. Mössenböck.
An Algorithm for the Linear Storage of Dynamic Data Structures.
Internal Paper, University of Linz, Austria, 1986.

[Te90] J. Templ.
SPARC–Oberon. User’s Guide and Implementation.
Computersysteme ETH Zürich, Technical Report No. 133, June 1990.

[Wi85] N. Wirth.
A Fast and Compact Compiler for Modula–2.
Computersysteme ETH Zürich, Technical Report No. 64, July 1985.

[Wi88] N. Wirth.
The Programming Language Oberon.
Software – Practice and Experience, 18, 7, July 1988 and
Computersysteme ETH Zürich, Technical Report No. 143, November

1990.

Appendix A: A modified Linearization Algorithm

When working with rather large graphs consisting of several thousands or even millions
of nodes, it might be impractical to use a translation table NodeTab of about the same
size as the graph for reading. If only multiple referenced nodes had to be stored in the
NodeTab array, this translation table could be much smaller. This can be achieved by a
split of the write phase into two subphases. As a desirable side effect, after writing, all
preconditions for writing are established again, i.e. no unmarking is necessary. The
modifications are described shortly:

Writing: In the first pass all nodes are traversed and the mark field is used as
reference counter (procedure Mark). For the mark field of every (reachable) node the
following holds:

((mark < 0) (node not visited yet)) ((mark > 0) (mark = no. of node references))

In the second pass, every node that is referenced more than once (i.e. mark > 1) is
written using a special tag and its negative node number is stored in its mark field
(which now again fulfills the preconditions for writing).

Reading: A negative node tag designates an already read node. A positive node tag
specifies a node which occurs only once (tag is even) or a node which will be
referenced again (tag is odd) and therefore must be stored in the NodeTab array.

TYPE
Node = POINTER TO NodeDesc;
NodeDesc = RECORD

mark: INTEGER; (* used for linearization; initially < 0 *)
tag: INTEGER;

(* determines node type; tag > 0 *)
data: ARRAY Mtag OF INTEGER; (* N depends on the node type (tag) *)
link: ARRAY Ntag OF Node (* M depends on the node type (tag) *)

END;

VAR
NofNodes: INTEGER;

(* node number; initially = 1 *)
NodeTab: ARRAY MaxRefs OF Node; (* node table; contains each node referenced more than once

*)

PROCEDURE Mark(q: Node); (* Pass 1 *) (* precondition: q: q.mark < 0 *)
VAR i: INTEGER;

BEGIN
IF q # NIL THEN

IF q.mark < 0 THEN (* first occurence *) q.mark := 1;
i := 0; WHILE i < Ntag DO Mark(q.link[i]); INC(i) END

ELSE INC(q.mark)
END

END
END Mark; (* postcondition: q: q is marked *)

PROCEDURE WriteNode(q: Node); (* Pass 2 *) (* precondition: (q: q is marked) (NofNodes = 1) *)
VAR i: INTEGER;

BEGIN
IF q = NIL THEN WriteInt(0)

ELSIF q.mark < 0 THEN (* already marked *) WriteInt(q.mark)
ELSE (* first occurence *)

IF q.mark = 1 THEN (* node occurs only once *) WriteInt(q.tag*2); q.mark := –1
ELSE (* node is referenced several times *) WriteInt(q.tag*2 + 1); q.mark := –NofNode; INC(NofNodes)
END;
i := 0; WHILE i < Mtag DO WriteInt(q.data[i]); INC(i) END;
i := 0; WHILE i < Ntag DO WriteNode(q.link[i]); INC(i) END

END
END WriteNode; (* postcondition: q: q.mark < 0 *)

PROCEDURE ReadNode(VAR q: Node); (* precondition: (NodeTab[0] = NIL) (NofNodes = 1) *)
VAR tag, i: INTEGER;

BEGIN
ReadInt(tag);
IF tag <= 0 THEN (* node reference *) q := NodeTab[–tag]
ELSE (* first occurence *)

NEW(q, tag DIV 2);
IF ODD(tag) THEN (* node is referenced several times *) NodeTab[NofNodes] := q; INC(NofNodes) END;
i := 0; WHILE i < Mtag DO ReadInt(q.data[i]); INC(i) END;
i := 0; WHILE i < Ntag DO ReadNode(q.link[i]); INC(i) END

END
END ReadNode;

Appendix B: Import / Export in Detail

In the following an extract of a table handler with the complete import / export
procedures is shown. A few points are specific to this implementation and hence
commented accordingly.

CONST
(* implementation restrictions *)

MaxNofGMods = 32; MaxNofLMods = 24; MaxNofStructs = 256;

(* object modes *)
Undef* = 0; Scope = 1; Const* = 2; Type* = 3; Var* = 4; VarPar* = 5; XVar* = 6; IVar* = 7; Field* = 8;
LProc* = 9; XProc* = 10; IProc* = 11; SProc* = 12; Mod* = 13;

(* type forms *)
Char* = 2; Bool* = 3; SInt* = 4; Int* = 5; LInt* = 6; Set* = 7; Real* = 8;
LReal* = 9; Cmplx* = 10; LCmplx* = 11; NilTyp* = 13; NoTyp* = 14;
Proc* = 15; String* = 16; Array* = 17; DynArr* = 18; Record* = 19; Pointer* = 20;

TYPE
Name* = ARRAY 32 OF CHAR;
Object* = POINTER TO ObjectDesc;
Struct* = POINTER TO StructDesc;

ObjectDesc* = RECORD
link*, next*: Object; (* objects are chained using next *)
name*: Name;
typ*: Struct;
marked*: BOOLEAN; (* marked objects are exported *)
leave*: BOOLEAN;
mode*: INTEGER; (* identifies object kind *)
mnolev*: INTEGER; (* module numbers are <= 0 *)
a0*, a1*: LONGINT; (* object specific data *)
b0*, b1*: LONGINT (* object specific data *)

END;

StructDesc* = RECORD
ref: INTEGER;

(* used as mark field *)
form*: INTEGER; (* identifies structure kind *)
obj*: Object; (* points to type object if it exists *)
len*, size*: LONGINT;
base*: Struct; (* result–, element–, base– or pointee type *)
link*: Object (* record scope *)

END;

VAR
system, universe: Object; (* predefined scopes *)
topScope*, undefObj*: Object; (* current topScope, error object *)
firstStructRef: INTEGER;
nofGMods*: INTEGER;
GMod*: ARRAY MaxNofGMods OF Object; (* global module table *)

(* predefined types *)
undefTyp*, noTyp*, stringTyp*, boolTyp*, charTyp*, sIntTyp*, intTyp*, lIntTyp*, setTyp*,
realTyp*, lRealTyp*, cmplxTyp*, lCmplxTyp*: Struct;

PROCEDURE err(no: INTEGER);

(* Displays an error message *)

(* general table handling *)

PROCEDURE NewObject*(VAR obj: Object; VAR name: ARRAY OF CHAR; mode: INTEGER);
(* Creates a new object and initializes its fields *)

PROCEDURE NewStruct*(VAR str: Struct; form: INTEGER);
(* Creates a new structure and initializes its fields *)

PROCEDURE OpenScope*(VAR scope: Object; mnolev: INTEGER);
(* Opens a new scope if scope is NIL; otherwise the old scope is reopened *)

PROCEDURE CloseScope*;
(* Closes topScope *)

PROCEDURE Insert*(VAR obj: Object; name: ARRAY OF CHAR; mode: INTEGER);
VAR p, q: Object;

BEGIN
p := topScope; q := topScope.next;
WHILE q # NIL DO

IF q.name = name THEN err(1) END;
p := q; q := q.next

END;
NewObject(obj, name, mode); obj.mnolev := topScope.mnolev; p.next := obj

END Insert;

(* import table handling *)

PROCEDURE InsertMod*(VAR mod: Object; VAR name: ARRAY OF CHAR; key: LONGINT);
VAR i: INTEGER;

BEGIN i := 0;
WHILE (i < nofGMods) & (name # GMod[i].name) DO INC(i) END;
IF i < nofGMods THEN (* module already imported *)

mod := GMod[i];
IF mod.b0 # key THEN err(150) (* key inconsistency *) END

ELSE
NewObject(mod, name, Mod); (* must not be visible in global scope *)
mod.b0 := key; mod.mnolev := –nofGMods;
OpenScope(mod.link, mod.mnolev); CloseScope; (* allocate own scope *)
IF nofGMods < MaxNofGMods THEN GMod[nofGMods] := mod; INC(nofGMods)
ELSE err(227) (* to many imported modules *)
END

END
END InsertMod;

PROCEDURE InsertImport(VAR obj: Object; scope: Object);
VAR p, q: Object;

BEGIN
p := scope; q := scope.next;
WHILE q # NIL DO

IF q.name = obj.name THEN obj := q; RETURN END;
p := q; q := q.next

END;
obj.mnolev := scope.mnolev; p.next := obj

END InsertImport;

(* import *)

PROCEDURE OpenRider(VAR R: Files.Rider; name: ARRAY OF CHAR; VAR res: INTEGER);
(* Sets a rider to the beginning of the symbol file *)

PROCEDURE Import*(VAR substName, impName, selfName: ARRAY OF CHAR);
VAR

R: Files.Rider;
mod0, mod: Object;
res, nofLMods, nofStructs: INTEGER;
LMod: ARRAY MaxNofLMods OF Object;
LStruct: ARRAY MaxNofStructs OF Struct;

PROCEDURE^ ReadStruct(VAR typ: Struct);

PROCEDURE ReadInt(VAR i: LONGINT); (* Reads integers written in a compacted form [Te90] *)
VAR n: LONGINT; s: INTEGER; x: CHAR;

BEGIN
s := 0; n := 0; Files.Read(R, x);
WHILE ORD(x) >= 128 DO INC(n, ASH(ORD(x) – 128, s)); INC(s, 7); Files.Read(R, x) END;
i := n + ASH(ORD(x) MOD 64 – ORD(x) DIV 64 * 64, s)

END ReadInt;

PROCEDURE ReadName(VAR name: ARRAY OF CHAR);
(* Reads a name terminated with 0X *)

PROCEDURE ReadString(VAR pos, len: LONGINT);
(* Reads a string terminated with 0X into the scanner string buffer *)

PROCEDURE ReadKey(VAR x: LONGINT);
(* Reads an integer in uncompacted form *)

PROCEDURE ReadMod(VAR mod: Object);
VAR ref, key: LONGINT; name: Name;

BEGIN
ReadInt(ref);
IF ref > 0 THEN (* first occurence *)

ReadKey(key); ReadName(name);
IF name = selfName THEN err(49) END;
InsertMod(mod, name, key);
IF nofLMods < MaxNofLMods THEN LMod[nofLMods] := mod; INC(nofLMods)
ELSE err(227) (* to many imported modules *)
END

ELSE mod := LMod[–ref]
END

END ReadMod;

PROCEDURE ReadFields(VAR field: Object);
VAR obj, last: Object; name: Name;

BEGIN
field := NIL;
LOOP

ReadName(name);
IF name = "" THEN EXIT END;
NewObject(obj, name, Field); ReadStruct(obj.typ); ReadInt(obj.a0);
IF field = NIL THEN field := obj ELSE last.next := obj END;
last := obj

END
END ReadFields;

PROCEDURE ReadFP(VAR par: Object; VAR nofArgs: LONGINT);
VAR obj, last: Object; typ: Struct; n, a0, a1: LONGINT; name: Name;

BEGIN
par := NIL; ReadInt(nofArgs); n := nofArgs;
WHILE n > 0 DO

ReadName(name); ReadStruct(typ); ReadInt(a0); ReadInt(a1);
IF ODD(a1) THEN NewObject(obj, name, VarPar)
ELSE NewObject(obj, name, Var)
END;
obj.typ := typ; obj.a0 := a0; obj.a1 := a1 DIV 2;
IF par = NIL THEN par := obj ELSE last.next := obj END;
last := obj; DEC(n)

END
END ReadFP;

PROCEDURE ReadStruct(VAR typ: Struct);
VAR form: LONGINT; htyp: Struct; name: Name; obj, mod: Object;

BEGIN
ReadInt(form);
IF form <= 0 THEN (* struct reference or NIL *) typ := LStruct[–form]
ELSE (* first occurence *)

NewStruct(htyp, SHORT(form)); ReadName(name);
IF name # "" THEN (* named type *)

NewObject(obj, name, Type); obj.marked := TRUE; obj.typ := htyp; htyp.obj := obj;
ReadMod(mod); InsertImport(obj, mod.link);
typ := obj.typ

ELSE typ := htyp
END;
IF nofStructs < MaxNofStructs THEN LStruct[nofStructs] := typ; INC(nofStructs)
ELSE err(228) (* to many imported types *)
END;
ReadStruct(htyp.base);
CASE form OF

| Proc: OpenScope(htyp.link, 0); ReadFP(htyp.link.next, htyp.len); CloseScope; htyp.size := 1
| Array: ReadInt(htyp.len); ReadInt(htyp.size)
| DynArr: ReadInt(htyp.size)
| Record:

OpenScope(htyp.link, 0); ReadFields(htyp.link.next); CloseScope; ReadInt(htyp.size);
IF htyp.base # NIL THEN htyp.len := htyp.base.len+1; htyp.link.link := htyp.base.link
ELSE htyp.len := 0
END

| Pointer: typ.size := 1
END

END
END ReadStruct;

PROCEDURE ReadObjects(scope: Object);
VAR mode: LONGINT; obj: Object; typ: Struct; name: Name;

BEGIN
LOOP (* read all objects *)

ReadInt(mode);
IF mode = Undef THEN EXIT
ELSIF mode = Type THEN ReadName(name);

IF name # "" THEN (* alias type *)
NewObject(obj, name, Type); ReadStruct(obj.typ);
InsertImport(obj, scope)

ELSE (* other types *) ReadStruct(typ)
END

ELSE
ReadName(name); NewObject(obj, name, SHORT(mode)); ReadStruct(obj.typ);
IF mode = Const THEN

IF obj.typ.form = String THEN ReadString(obj.b0, obj.b1)
ELSIF obj.typ.form = LReal THEN ReadInt(obj.b0); ReadInt(obj.b1)
ELSE ReadInt(obj.b0)
END

ELSIF obj.mode = Var THEN ReadInt(obj.a0); obj.mode := XVar
ELSIF obj.mode = LProc THEN

OpenScope(obj.link, 0); ReadFP(obj.link.next, obj.b0); CloseScope; obj.mode := XProc
ELSIF obj.mode = IProc THEN

OpenScope(obj.link, 0); ReadFP(obj.link.next, obj.b0); CloseScope
END;
InsertImport(obj, scope)

END
END

END ReadObjects;

PROCEDURE EnterStruct(typ: Struct);

(* Enters a predefined type into the LStruct table *)

BEGIN
IF impName = "SYSTEM" THEN Insert(mod, impName, Mod); mod.link := system
ELSE OpenRider(R, impName, res);

IF res < 0 THEN (* no error occured *)
LStruct[0] := NIL; EnterStruct(stringTyp);
EnterStruct(undefTyp); EnterStruct(noTyp); EnterStruct(boolTyp); EnterStruct(charTyp);
EnterStruct(sIntTyp); EnterStruct(intTyp); EnterStruct(lIntTyp); EnterStruct(setTyp);
EnterStruct(realTyp); EnterStruct(lRealTyp); EnterStruct(cmplxTyp); EnterStruct(lCmplxTyp);
nofLMods := 0; nofStructs := firstStructRef;
ReadMod(mod0); ReadObjects(mod0.link);
Insert(mod, substName, Mod);
mod.b0 := mod0.b0; mod.mnolev := mod0.mnolev; mod.link := mod0.link

ELSE err(res)
END

END
END Import;

(* export *)

PROCEDURE Export*(mod: Object; VAR buf: ARRAY OF CHAR; VAR len: LONGINT; VAR new: BOOLEAN);
VAR pos: LONGINT; nofLMods, nofStructs: INTEGER;

PROCEDURE^ WriteStruct(typ: Struct);

PROCEDURE Write(ch: CHAR);
BEGIN buf[pos] := ch; INC(pos)
END Write;

PROCEDURE WriteInt(i: LONGINT); (* Writes integers in a compacted form [Te90] *)
BEGIN

WHILE (i < –64) OR (i > 63) DO Write(CHR(i MOD 128 + 128)); i := i DIV 128 END;
Write(CHR(i MOD 128))

END WriteInt;

PROCEDURE WriteName(VAR name: ARRAY OF CHAR);
(* Writes a name terminated with 0X *)

PROCEDURE WriteString(pos: LONGINT);
(* Writes the string terminated with 0X at position pos of the scanner string buffer *)

PROCEDURE WriteKey(x: LONGINT);
(* Writes an integer in uncompacted form *)

PROCEDURE WriteMod(mod: Object);
BEGIN

IF mod.b1 < 0 THEN (* first occurence *)
mod.b1 := nofLMods; INC(nofLMods);
WriteInt(Mod); WriteKey(mod.b0); WriteName(mod.name)

ELSE WriteInt(–mod.b1)
END

END WriteMod;

PROCEDURE WriteFields(field: Object);
BEGIN

WHILE field # NIL DO
IF field.marked THEN WriteName(field.name); WriteStruct(field.typ); WriteInt(field.a0) END;
field := field.next

END;
Write(0X)

END WriteFields;

PROCEDURE WriteFP(par: Object; nofArgs: LONGINT);

BEGIN
WriteInt(nofArgs);
WHILE nofArgs > 0 DO

WriteName(par.name); WriteStruct(par.typ); WriteInt(par.a0);
IF par.mode = VarPar THEN WriteInt(par.a1*2 + 1) ELSE WriteInt(par.a1*2) END;
par := par.next; DEC(nofArgs)

END
END WriteFP;

PROCEDURE WriteStruct(typ: Struct);
VAR name: Name;

BEGIN
IF typ = NIL THEN WriteInt(0)
ELSIF typ.ref > 0 THEN (* already marked *) WriteInt(–typ.ref)
ELSE (* first occurence *)

WriteInt(typ.form); typ.ref := nofStructs; INC(nofStructs);
IF typ.obj # NIL THEN (* named type *)

name := typ.obj.name;
IF ~typ.obj.marked THEN (* invisible type *)

name[0] := CHR(ORD(name[0]) – ORD("@"))
END;
WriteName(name); WriteMod(GMod[–typ.obj.mnolev])

ELSE Write(0X)
END;
WriteStruct(typ.base);
CASE typ.form OF

| Proc: WriteFP(typ.link.next, typ.len)
| Array: WriteInt(typ.len); WriteInt(typ.size)
| DynArr: WriteInt(typ.size)
| Record: WriteFields(typ.link.next); WriteInt(typ.size)
| Pointer:

END
END

END WriteStruct;

PROCEDURE WriteObjects(obj: Object);
BEGIN

WHILE obj # NIL DO
IF obj.marked THEN

WriteInt(obj.mode);
IF (obj.mode # Type) OR (obj.typ.obj # obj) THEN (* no–type or alias type *)

WriteName(obj.name)
ELSE (* other type *) Write(0X)
END;
WriteStruct(obj.typ);
IF obj.mode = Const THEN

IF obj.typ.form = String THEN WriteString(obj.b0)
ELSIF obj.typ.form = LReal THEN WriteInt(obj.b0); WriteInt(obj.b1)
ELSE WriteInt(obj.b0)
END

ELSIF obj.mode = Var THEN WriteInt(obj.a0)
ELSIF obj.mode IN {LProc, IProc} THEN WriteFP(obj.link.next, obj.b0)
END

END;
obj := obj.next

END;
WriteInt(Undef) (* termination tag *)

END WriteObjects;

PROCEDURE Compare(VAR buf: ARRAY OF CHAR; len: LONGINT; VAR new: BOOLEAN);
VAR res: INTEGER; i: LONGINT; R: Files.Rider; ch: CHAR; prefix: ARRAY 5 OF CHAR;

BEGIN
OpenRider(R, mod.name, res); new := TRUE;
IF res < 0 THEN

Files.ReadBytes(R, prefix, LEN(prefix)); Files.Read(R, ch); i := LEN(prefix);

WHILE (i < len) & (buf[i] = ch) DO Files.Read(R, ch); INC(i) END;
IF i = len THEN (* same symbol table => use old key *) i := 0;

WHILE i < LEN(prefix) DO buf[i] := prefix[i]; INC(i) END;
new := FALSE

END
END

END Compare;

BEGIN
pos := 0; nofLMods := 0; nofStructs := firstStructRef;
WriteMod(mod); WriteObjects(mod.link.next);
Compare(buf, pos, new)

END Export;

Oberon Technical Notes

Cuno Pfister (ed.)

The purpose of the Oberon technical notes is to provide the implementor of an
Oberon system with the experience gained during the implementation efforts
undertaken at the Institut für Computersysteme at ETH. Furthermore they give
an overview over work already done or under way. This report contains the first
five technical notes.

Table of Contents

1. Oberon Implementations page 28
2. An Integrated Heap Allocator/Garbage Collector page 30
3. Type Guards and Type Tests page 40
4. A Symmetric Solution to the Load/Store Problem page 42
5. Garbage Collection on Open Arrays page 48

1. Oberon Implementations

Cuno Pfister

The original Oberon implementation [1] has been realized by N. Wirth and J.
Gutknecht for the Ceres workstation [2]. Several ports of the system to other
machines have been completed since then. We will give a short description of each of
those projects. Differences to the original implementations are described.

Ceres (National Semiconductor NS32x32)

The original implementation. Oberon is the basic operating system. Module Display is
written in assembly language. The garbage collector is a mark–and–sweep garbage
collector which runs only between commands, i.e. it does not need to handle pointers
on the stack. An access to a freed module results in a trap on the Ceres–1 and
Ceres–2, but goes undetected on the Ceres–3. The heap allocator/garbage collector
is written in assembly language and linked together with the inner core modules.

Sun SPARCstation (Sun SPARC)

This implementation [3] runs on top of SunOS as a Unix process. Oberon takes over
the whole screen. The display operations are based on the SUN Pixrect routines.
Oberon files are mapped to Unix files. A variant of the buddy system strategy is used
for heap allocation. The garbage collector is a mark–and–sweep garbage collector
which usually runs between commands, but when NEW fails due to a memory
shortage, the garbage collector is started also. This collector also takes pointers on
the stack into account. This is done by treating each memory location on the stack as
a possible pointer value. To find out whether a memory word is a pointer, it is
subjected to some plausibility tests, such as testing whether the value points to a
possible block address in the heap and whether a possibly valid type tag is found
there. If the plausibility tests succeed, the heap is traversed sequentially to find the
corresponding block. If the block is found, the tested memory location is treated as a
root for the garbage collector. Modules are never freed but merely removed from the
module list, i.e. an access to a freed module cannot be detected and aborted. The
loader and heap allocator/garbage collector are written in Modula–2 and linked as a
Unix application.

Apple Macintosh II (Motorola MC68020)

This implementation [4, 5] runs on top of the MacOS as a (MultiFinder friendly)
application. Oberon runs in one Macintosh window. The display operations are largely
based on the Apple QuickDraw routines. Oberon files are mapped to Macintosh files.
An integrated allocator/collector is used (see technical note # 2). Modules are never
freed but merely removed from the module list, i.e. an access to a freed module
cannot be detected and aborted. The type descriptors contain information about

procedure variables in records, such that a checked version of the System.Free
command could be implemented in the future. The loader, heap allocator/garbage
collector and some raster operations are written in assembly language and linked as a
Macintosh application.

DEC DECstation (MIPS R2000)

This implementation runs on top of Ultrix as a process. Oberon runs in an X–window.
The display operations are based on X–windows. Oberon files are mapped to Ultrix
files. An integrated allocator/collector is used (see technical note # 2). Modules are
never freed but merely removed from the module list, i.e. an access to a freed module
cannot be detected and aborted. The loader is written in C and linked as a Unix
application.

IBM S/6000 (IBM S/6000)

This project has recently been started.

IBM PS/2 (Intel 80386)

This project has recently been started.

Others

Other Oberon compiler back–ends have been written by students, but the system was
not ported. The compiler back–ends available produce code for the following
processors:

– a virtual stack machine (similar to P–Code or M–Code)
– Intel 8086
– Intel 80386
– INMOS T800 Transputer
– C language (Oberon subset to C translator, for bootstrapping a compiler)

References

1. Wirth N, Gutknecht J (1989), The Oberon System,
Software–Practice and Experience, 19 (9), 857–893

2. Eberle H (1987), Development and Analysis of a Workstation Computer,
Ph. D. thesis no. 8431, ETH Zürich

3. Templ J (1990), SPARC–Oberon, User’s Guide and Implementation,
Report 133, ETH Zürich

4. Franz M (1990), The Implementation of MacOberon,

Report 141, ETH Zürich
5. Franz M (1990), MacOberon Reference Manual,

Report 142, ETH Zürich
2. An Integrated Heap Allocator/Garbage Collector

Beat Heeb, Cuno Pfister

Abstract

Heap Allocation and Garbage Collection are fundamental services of an Oberon
implementation. It is shown how a simple and efficient implementation of these
services can be attained.

Introduction

Programs for personal computers become increasingly loaded with features, most of
them rarely needed. The reason for that is, apart from the marketing pressure to
advertise more features than the competition, the desire to provide all the features that
anyone might ever need or want. The result is that programs become ever larger,
more complex, buggier, more expensive and sometimes delivered years after their
announcements. Even then they often fail to provide features useful for a particular
task.

A solution to this problem lies in the development of extensible programs.
Extensibility here means that a program can provide the customer with only the
features needed most of the time and with some means to extend it. If the customer
needs some special service, he (or usually a third party) can implement this service
himself, without having access to the original program’s source code.

For example, imagine an extensible page layout program which supports text
boxes, draw boxes and bitmap boxes as standard box types, and commands to
operate upon them. A user may have special needs concerning the available
commands, like e.g. a command which aligns the selected objects in a document in a
special way. It should be possible for him to write such a command, which operates on
the exported document data structure. This poses a subtle problem, though. The
command implementor may generate references, i.e. pointers, to an exported data
structure, and these references are not known to the basic layout program. This
means in particular that when the layout program disposes of the storage used by a
document, there may still be pointers around which reference this storage. Such
pointers are called dangling pointers. Dangling pointers are one of the most frequent
and most dangerous sources of program malfunctions. Their use often results in the
destruction of data not belonging to the erroneous module, and the destruction may
not be detected for a long time. Such an error is difficult to track down, consequently it
is difficult to determine who is responsible for an accident caused by the error. So
extensibility leads to a loss of control over references and thereby to an increased
probability for dangling pointers. We will come back to that shortly.

The user of a program like the one described above should also be able to write an
extension that supports special table boxes, for instance. Such an extension consists
of a module which implements the data type Table, together with the particular

behaviour of an instance of this type, like displaying, storing and reading itself. A
document might then contain text boxes together with table boxes at the same time.
This example is typical in that a new data type, which is similar to existing types, is
introduced, and that variables of similar data types are integrated in the same data
structure (the document).

The object–oriented programming style is well suited for the implementation of such
a program, since it allows the definition of similar, i.e. compatible types (e.g. Table is a
subtype of Box) and since control can be delegated to the subtype by means of the
overriding facility (e.g. Table implements its own Draw method). For our discussion
the terms record and object can be used interchangeably.

Our example has shown the integration of different objects types, potentially
implemented by different programmers, in the same data structure. Close integration
is obviously useful. On the other hand, it magnifies the problems associated with
malfunctioning objects by making the integrity of a data structure dependant on a
potentially large number of object implementations. Especially errors which have
non–local effects are dangerous. This leads us to the conclusion that while
extensibility makes dangling pointers more probable, integration of extensions makes
the effects of dangling pointers graver.

It is possible to prevent this type of errors going undetected by using a type–safe
language. To prevent dangling pointers, the implementation of a type–safe language
must guarantee that every pointer variable is initialized correctly and that a heap
record is only released when there are no pointers referencing it anymore. The latter
task is performed by a garbage collector. When a garbage collector can prove that a
heap record is not referenced anymore, it reclaims the corresponding heap area for
the storage allocator.

Automatic garbage collection is known for a long time, but has not found its way into
production languages like Pascal or C, not even into their object–oriented
descendants. A garbage collector may reduce the response time and the performance
of a program dramatically, or may require memory sizes several times as large as
would be the case without a garbage collector. Additional reasons why garbage
collectors are not popular are the problems caused by the lack of type–safety in the
mentioned languages, e.g. posed by untagged variant records, and the complexity
involved in handling arbitrary record types.

We want to show how a simple and efficient garbage collector for Oberon [1] can be
written. Oberon is a type–safe language derived from Modula–2 which allows for an
object–oriented programming style. Oberon is also the name of an operating system
and window system [2]. The kernel of an Oberon system provides, among other
things, a storage allocator and a garbage collector. Oberon has first been
implemented on the Ceres workstation [3]. Our approach is not a radical departure
from the Ceres implementation, but rather a refinement which improves upon memory
utilization and implementation complexity.

Heap Allocation

A simple storage allocation algorithm is presented.

Small Blocks

Storage is allocated in blocks. Block sizes are multiples of a minimal size B. The size s
of an allocated block is at least the size of variables of the record type bound to the
pointer type of p. This size is known during compilation. For the allocation it is rounded
up to the next multiple of B.

There is a free list for all supported block sizes, i.e. free blocks of the same size are
linked by a simple linear list. The free lists are anchored in a global array A (which
could be declared as ARRAY 1..N OF ADDRESS) with element number i
corresponding to the free list for size i * B.

Allocation of a block of size s consists in removing a block from free list A[k] where

(k s / B) (i: s / B i < k: A[i] = NIL) (A[k] NIL).

If k = s / B then the address of the block is returned. If k > s / B then the block is split
into two blocks, the first of size s and the second of size r = k * B – s. The second
block is inserted in the free list A[r / B] and the address of the first block is returned.

The Ceres implementation is different in that it uses blocks with sizes restricted to
powers of two. This leads to an increased internal fragmentation of the memory. In our
scheme, each heap variable wastes less than half of the minimal block size. This in
contrast to a waste of less than half of the particular block size. The most notable
other difference is that our scheme is simpler to implement.

Large Blocks

It is reasonable to restrict the size of array A such that it supports only small blocks
(e.g. less than about 100 bytes). Almost all allocations are done with small block sizes,
thus a less efficient allocation strategy can be used for large blocks. A very simple
solution is to use A[N] as a free list for blocks of variable size (i.e. size‡(N + j) * B) and
performing a first fit allocation [4] whenever this list must be used. Note that the
support for this special case fits naturally into the allocation procedure, it merely adds
one line of code.

The following pseudo–code listing shows the complete allocation routine:

procedure Allocate(var a: address; size: longint);
var i: integer; r, l: address;

begin
i := min(size / B, N); (* calculate index and restrict it to a maximal value *)
while (i < N) & (A[i] = NIL) do INC(i) end; (* search smallest non–empty free list *)
l := adr(A[i]); a := l^; (* address and value of pointer to first free block *)
while (a # NIL) & (a^.size < size) do l := ADR(a^.next); a := l^ end; (* first fit if i = N *)
if a # nil then

l^ := a^.next; (* remove block from free list *)
if a^.size > size then (* block must be split *)

i := min((a^.size – size) / B, N); r := a + size;
r^.size := a^.size – size; (* adjust size of residual block *)
r^.next := A[i]; A[i] := r (* insert residual block in free list *)

end
end

end Allocate;

This algorithm doesn’t support fast arbitrary block deallocation, because a freed block
cannot efficiently be merged with its lower–address neighbour and because only
simple linear lists are used for the free lists, which prohibits fast removal of a block
from its free list. In the next chapter we will show how a garbage collector circumvents
the need for fast arbitrary block deallocation.

Garbage Collection

The Ceres implementation of Oberon uses a mark–and–sweep garbage collector [5]
for heap storage reclamation. In Oberon, most temporary variables are local and
therefore allocated and deallocated on the stack. Thus relatively little garbage is
produced compared to typical Lisp or Smalltalk systems. This explains why the Ceres
garbage collector proved adequate in practice, contradicting the statement that
"Mark–and–sweep automatic storage reclamation does not seem to be practical on
contemporary (1988) computers" [6].

A mark–and–sweep collector works in two phases. In the mark phase, all objects
which still can be referenced are marked. In the sweep phase, all heap blocks are
traversed sequentially. The ones which have not been marked are reclaimed.

Mark Phase

Let us first consider a simple recursive procedure, which marks all objects reachable
from a given pointer:

procedure Mark(q: address);
var off: address;

begin
if (q # NIL) & (Unmarked(q)) then

SetMark(q); off := FirstPointerOffset(q);
while off >= 0 do

Mark(mem[q + off]); off := NextPointerOffset(q, off)
end

end
end Mark;

This pseudo–code procedure uses four auxiliary procedures. The procedure
FirstPointerOffset determines the record field which contains the first pointer. The
procedure NextPointerOffset repeatedly yields the next record field containing a
pointer. A negative offset is used as a terminating sentinel.

To implement FirstPointerOffset and NextPointerOffset it must be possible to
efficiently find out the offsets of a record’s pointer fields. These offsets are the same
for all variables of this record’s type. Thus it is reasonable to provide a so–called type

descriptor containing a table with all these offset values. Every heap record now
needs a pointer to this type descriptor. This pointer is a hidden record field called a
type tag and is usually located at offset –PtrSize in the record. The allocation
procedure is extended such that it also initializes this tag. (For every record type, the
compiler reserves a global variable anchoring the type descriptor. The contents of the
appropriate variable is passed to the allocation routine as an additional parameter.)

type descriptor

record

p

24

12

4

off1

off0

tag

p0

p1

size

sentinel

ptable

–12

Figure 1: Example of a record variable and its type descriptor

Figure 1 shows the descriptor of a type T. It contains the fields size and ptable. ptable
is a table of pointer offsets describing where in a variable of type T a pointer can be
found. This table, which varies from type to type, is terminated by a negative valued
sentinel.

The procedure Unmarked tests whether an object has already been marked, the
procedure SetMark marks an object under the assumption that it is unmarked (i.e.
Unmarked(q) is a precondition of SetMark(q)). We won’t go into details about how
marking is realized. It should be sufficient to say that one bit of the type tag can be
used for marking, usually either the sign bit or the least significant bit.

The following version of the above procedure replaces FirstPointerOffset and
NextPointerOffset by an increment of the type tag by the size of a pointer:

procedure Mark(q: address);
begin

if (q # NIL) & (Unmarked(q)) then
SetMark(q); Increment(Tag(q));
while mem[Tag(q)] >= 0 do

Mark(mem[q + mem[Tag(q)]]); Increment(Tag(q))
end;
RestoreTag(q)

end
end Mark;

This means that the type tag of a record changes during the mark phase such that it
always points to the offset to be processed and after the offsets already processed
(see Figure 2).

type descriptor

record

already marked

being marked

p

24

12

4

tag

p0

p1

–12

Figure 2. Type Tag during a Mark Phase

The loop over the offsets terminates when a negative offset is found. The value of this
offset can be initialized such that RestoreTag simply becomes

Tag(q) := Tag(q) + mem[Tag(q)].

We now transform this procedure such that the guard (q # NIL) & (Unmarked(q)) is
moved outside of the mark procedure.

procedure Mark(q: address);
var r: address;

begin (* (q # NIL) & JustMarked(q) *)
loop

Increment(Tag(q));
if mem[Tag(q)] >= 0 then

r := mem[q + mem[Tag(q)]];
if (r # NIL) & (Unmarked(r) then SetMark(r); Mark(r) end

else RestoreTag(q); return
end

end
end Mark;

JustMarked means that the object is marked, but none of its descendants. To
eliminate recursion, we introduce an explicit stack. The recursive call is replaced by
Push(q); q := r and the RETURN is replaced by Pop(q):

procedure Mark(q: address);
var r: address;

begin
Stack := Empty;
loop

Increment(Tag(q));
if mem[Tag(q)] >= 0 then

r := mem[q + mem[Tag(q)]];
if (r # NIL) & Unmarked(r) then SetMark(r); Push(q); q := r end

else

RestoreTag(q);
if Stack = Empty then exit else Pop(q) end

end
end

end Mark;

The drawback of this procedure is the use of an additional stack, i.e. of additional
memory. In the algorithm of Deutsch/Schorr/Waite [7], the stack is distributed to the
individual pointer locations which are being traversed. We use a variable p as stack
pointer, i.e. as pointer to the object containing the predecessor. The predecessor is
contained in one of the pointer fields, namely the one currently being processed. The
old value of this pointer field is either held in the auxiliary variable r or on the stack
also. This leads to the following replacements:

Stack = Empty –> p = NIL
Push(q) –> mem[q + mem[Tag(q)]] := p; p := q
Pop(q) –> a := p + mem[Tag[p]]; r := mem[a]; mem[a] := q; q := p; p := r

procedure Mark(q: address);
var p, r, a: address;

begin
p := NIL;
loop

Increment(Tag(q));
if mem[Tag(q)] >= 0 then

r := mem[q + mem[Tag(q)]];
if (r # NIL) & Unmarked(r) then

SetMark(r); mem[q + mem[Tag(q)]] := p; p := q; q := r
end

else
RestoreTag(q);
if p = NIL then exit
else a := p + mem[Tag[p]]; r := mem[a]; mem[a] := q; q := p; p := r
end

end
end

end Mark;

In the appendix there is a listing of an actual implementation of the mark procedure
written in MC68000 assembly language. This implementation also takes into
consideration that additional data (which is not important for our discussion) must be
stored in the type descriptor, between the size field and ptable.

Concerning the type descriptors we should add that they may be treated just as any
other records. Thus they need their own type descriptors. These meta type descriptors
differ only in their size fields. They in turn can share a common meta meta type
descriptor, whose tag points back to itself, i.e. it is its own type descriptor. It may be
more practical though to mark type descriptors in some way and to treat them as
special cases.

Sweep Phase

In the sweep phase the heap is traversed sequentially, block by block. To do that, the
size of all blocks must be known. The sum of a block’s address and its size yields the
address of the next block. Since there is a type tag at the beginning of each allocated
block, such a block’s size can be found by inspecting the type descriptor to which the
tag points. A free block can be treated the same way, with the difference that it is its
own "type descriptor". How this can be done is shown in Figure 3.

size

free list

t
x
e
n

e
z
i
st

a
g

Figure 3: Structure of a free block

At the beginning of the sweep phase, the free lists are all cleared. The sweep
constructs completely new free lists by treating consecutive unmarked blocks as
single large blocks and inserting them in the appropriate free lists. All marks are
cleared.

procedure Scan;
var p: address;

begin
A[1..N] := NIL;
q := HeapStart;
repeat

while (q # MemSize) & Marked(q) do
ResetMark(q); q := q + mem[mem[q]]

end;
if q # MemSize then

p := q;
repeat

q := q + mem[mem[q]]
until (q = MemSize) or Marked(q);
Insert(p, q – p)

end
until q = MemSize

end Scan;

The procedure Insert(p, s) inserts a free block at address p in the free list for size s.
The invariant over this "merge–sweep" is that all free blocks that have been traversed
already are of maximal size, i.e. merged. Only the block visited most recently might
have to be merged with the next one. This invariant is a principal difference between
the merge–sweep deallocation and the deallocation of arbitrary blocks.

Acknowledgements

We would like to thank H. Mössenböck, N. Wirth, R. Griesemer and W. Weck.

References

1. Wirth N (1988) The Programming Language Oberon.
Software–Practice and Experience, 18 (7), 661–670

2. Wirth N, Gutknecht J (1989) The Oberon System.
Software–Practice and Experience, 19 (9), 857–893

3. Eberle H (1987) Development and Analysis of a Workstation Computer,
Ph. D. thesis no. 8431, ETH Zürich

4. Knuth D (1973) The Art of Computer Programming, Addison–Wesley
5. McCarthy J (1960) Recursive Functions of Symbolic Expressions and Their

Computation by Machine, I, Comm. ACM, 3, 184–195
6. Ungar D, Jackson F (1988), Tenuring Policies for Generation–Based Storage

Reclamation, OOPSLA ‘88 Proceedings, 107–118
7. Schorr H, and Waite W (1967), An efficient machine–independent procedure for

garbage collection in various list structures, Comm. ACM, 10 (8), 501–505

Appendix

The following listing shows an implementation of the mark phase for one root pointer
in MC68000 assembly language. A complete implementation would additionally have
to iterate over all global (and possibly all local) pointer variables as roots.

Note that the mark bit in the type tag is set during the whole traversal of a record,
thus it can be statically compensated for by using an offset of –1 when addressing
relative to the type tag.

* 68000 mark phase for garbage collector
* A0: pointer to father
* A1: pointer to node
* A2: temporary, for pointer rotation
* A3: tag or pointer to current pointer offset
* pointer offsets are usually accessed via A3 with an offset of Offset(ptable) – 4 – 1.
* The pointer is incremented before it is accessed, thus the subtraction of PtrSize.
* The subtraction of 1 comes from the set mark bit (bit # 0).
* D0: offset
* D1: temporary

PtrSize EQU 4 size of pointers and offsets
Tag EQU –4 offset of type tag
TagL EQU Tag+3 low byte of type tag
Mark EQU 0 mark bit (in TagL)
PTab EQU 36 ptable offset
Offset EQU PTab–PtrSize–1

Start MOVE.L A1,D1 NIL test
BEQ End NIL
BSET.B #Mark,TagL(A1) test and set mark bit
BNE End marked
MOVE.L #0,A0 father := NIL
MOVE.L Tag(A1),A3 load first tag
BRA Loop

Up ADD.L D0,A3 adjust tag
MOVE.L A3,Tag(A1) save tag
MOVE.L A0,D1 NIL test
BEQ End father = NIL (sentinel)
MOVE.L Tag(A0),A3 load father.tag
MOVE.L Offset(A3),D0 load offset
MOVE.L (A0,D0),A2 rotate pointers, step 1
MOVE.L A1,(A0,D0) rotate pointers, step 2
MOVE.L A0,A1 rotate pointers, step 3
MOVE.L A2,A0 rotate pointers, step 4

Loop ADDQ.L #PtrSize,A3 address of next offset
MOVE.L Offset(A3),D0 load next offset
BMI Up negative sentinel reached, i.e. end of list
MOVE.L (A1,D0),A2 load son (and rotate pointers, step 1)
MOVE.L A2,D1 NIL test
BEQ Loop NIL
BSET.B #Mark,TagL(A2) test and set mark bit
BNE Loop marked

Down MOVE.L A3,Tag(A1) save tag
MOVE.L A0,(A1,D0) rotate pointers, step 2
MOVE.L A1,A0 rotate pointers, step 3
MOVE.L A2,A1 rotate pointers, step 4
MOVE.L Tag(A1),A3 load new tag
BRA Loop

End

3. Type Guards and Type Tests

Cuno Pfister

In Oberon, indirectly referenced record variables (i.e. referenced by pointer or passed
as VAR parameter) may have a different type at run–time than the one which is
declared statically. An Oberon implementation must guarantee that the actual type of
a record is an extension of the record’s declared type. This is done with the aid of type
guards [1]: A type guard tests whether the type of an indirectly referenced record
variable is an extension of some statically declared type. If not, the program is
aborted. A type test is similar to a type guard, but instead of aborting a program it
returns the value FALSE, otherwise TRUE. We present a scheme which allows a very
efficient implementation of type guards and type tests.

A record type is represented at run–time by a type descriptor (see Figure). In this
type descriptor there is a table of pointers (ttable), at a fixed offset and with a fixed
size. The pointer in entry 0 points to the type descriptor of the original base type of the

extension hierarchy (level 0 type). Entry 1 points to the first extension (level 1 type),
entry 2 to the extension of the first extension, and so on. If the type descriptor denotes
a level n type, the first n + 1 entries are used. The entries for higher level types are set
to NIL. The level 0 entry may even be omitted, since a type guard on a base type is
never executed at run–time. Nevertheless it is recommended to include it, for an
example of where it can be useful see technical note # 4.

Obviously the depth of the extension hierarchy is limited by such an arrangement.
We recommend a table size of about 8 entries. This is thought to be large enough for
all practical purposes.

ttable

type descriptor

record

p

tag size

ptable

The generated code can be described as follows:

the type guard v(T) becomes

p := Tag(v);
IF p^.ttable[L] # Tadr THEN HALT(18) END

and the type test v IS T becomes

p := Tag(v);
RETURN p^.ttable[L] = Tadr

where L is the extension’s level, and Tadr the address of T’s type descriptor. T is a
hidden global variable in the module which declares type T.

Tag(v) is different for a record referenced via pointer and for a VAR parameter. The
former contains the tag in the record itself, while the latter’s tag is passed as an
implicit parameter, together with the address of the record.

A guard applied to a NIL valued pointer aborts the program.

The WITH statement produces the same code as a type guard, the difference is only
relevant for the compiler.

A similar scheme has been presented in [1].

Hidden type guards are generated for the assignment of one record to another,
indirectly referenced record variable. In this case the implementation must enforce
strict equality of the record types on both sides of the assignment. This leads to a
simpler type guard, namely:

p := Tag(v);
IF p # Tadr THEN HALT(19) ENDß

References

1. Cohen N H (1989),
Type–Extension Type Tests Can Be Performed in Constant Time,
IBM Research Report

2. Wirth N (1988),
Type Extensions,
ACM Trans. on Programming Languages and Systems, Vol. 10, No. 2, 204–214

4. A Symmetric Solution to the Load/Store Problem

J. Templ 1.3.91

The problem of loading and storing polymorphic data structures from or to files using
load and store messages is usually considered to be asymmetric because an object
existing in memory can receive a store message but an object existing on a file cannot
receive a load message. Nevertheless a symmetric solution for the problem is
proposed. It is argued that a symmetric solution is both, more beautiful and more
flexible.

The key to a symmetric solution is in the separation of the information associated with
an object into a header and a contents part. The header contains the type information
and the contents part contains the data associated with the object. As the type
information is not maintained by the object itself but by the class the object belongs to,
it is straight forward to use class methods (ordinary procedures) to handle the type
information and to use instance methods (type bound procedures or message
handlers) to handle the contents of an object. In the proposed solution all classes
handle the type information the same way, therefore one can think of the type handling
methods as meta class methods. When dealing with extended types, the problem of
loading and storing inherited state (possibly invisible to the extended type) arises.
Using inherited load and store methods (super–calls) solves the problem but there is a
subtle point to observe. When the type information is handled by the object itself
instead of by the (meta) class, each overriding method is forced to use super calls. Also
super calls must be done before any other data is stored onto the file. The more flexible
symmetric solution follows postulate 1:

"An object never stores its own type information as response to a store message"

Loading an object o using a Rider R may be done by a procedure ReadObj(R, o) that
generates an object according to the header information. Then the object’s data can be
loaded by sending a load message, e.g. o.Load(R).

$ object = header contents.

Storing an object o using a Rider R may be done by a procedure WriteObj(R, o).
Storing the contents of the object may be done by sending a store message o.Store(R).

Let T be a subtype of Object and T1 a subtype of T. Let Load and Store be procedures
bound to T and Load’ and Store’ procedures bound to T1 overriding and invoking the
inherited procedures. Storing of an object v with dynamic type T1 to a file is then done
by the following steps:

1. WriteObj(R, v);
2. v.Store(R) invokes Store’
 2.1. v.Store^(R) in Store’ invokes Store
 2.1.1. data associated with type T is stored
 2.2. additional data associated with type T1 is stored

Loading of an object of type T1 from a file into a variable v is done in symmetric steps:

1. ReadObj(R, v);
2. v.Load(R) invokes Load’
 2.1. v.Load^(R) in Load’ invokes Load
 2.1.1. data associated with type T is loaded
 2.2. additional data associated with type T1 is loaded

ReadObj and WriteObj are responsible for internalizing and externalizing the object’s
type information. For internalized objects this information consists of a type tag, i.e. a
pointer to a type descriptor node unique for a type. For externalized objects the type
tags are mapped to reference numbers that refer to the type of the object. The first
occurence of a type reference is followed by the externalized type descriptor consisting
of the name of the module defining the type and the type’s name.

$ header = ref [module type].
$ ref = integer.
$ module = char {char} 0X.
$ type = char {char} 0X.

For easy maintenance of the reference numbers of types, a ref field in the type
descriptor is assumed. To avoid resetting this field before each "store session", a global
virtual clock (store counter) is introduced and instead of the reference number in the
type descriptors a time stamp is actually used. This time stamp contains the clock value
of the type’s last externalization. The reference number written to the file is the
difference between the time stamp and the start time (clock0) of the stores which is
defined by calling a Reset procedure. For "load sessions" a type table and a type
counter has to be maintained which are also initialized by the same Reset procedure.
For more details see the prototype implementation below. The use of the Reset
procedure is restricted by postulate 2:

"The initialization of the generic load/store mechanism must be symmetric"

More accuratly, each Reset call preceding a store sequence must correspond to a
Reset call preceding a load sequence and vice versa. Normally, the resets are done on
the level of user activated commands.

A module Files1 is assumed to support persistent data portable across different
Oberon implementations. Files1 contains procedures for loading and storing basic
types (integers, reals, ...) in a portable way and it contains procedures to load and store
the empty object, i.e. it handles the dynamic type information associated with an object
derived from Files1.Object.

Properties of the proposed solution:

– no install mechanism required
– efficient externalization and internalization

– no additional storage in internalized objects
– compact external representation
– easy to implement
– low space overhead in type descriptors (time stamp plus type name)
– flexible in the use of super–calls
– pure Oberon (language)

A prototype of module Files1 has been implemented under SPARC–Oberon:

MODULE Files1; (* J.Templ, 24.2.91 *)
IMPORT SYSTEM, Files, Kernel, Modules;

TYPE
Object* = POINTER TO ObjectDesc;
ObjectDesc* = RECORD END ;

TDesc = POINTER TO RECORD
m: Kernel.Module;
name: ARRAY 24 OF CHAR;
time: LONGINT (* < clock *)

END ;

VAR
module*, type*: ARRAY 24 OF CHAR; (* most recent internalized type *)
clock, noftypes: LONGINT; (* clock0 = clock – noftypes *)
typTab: ARRAY 256 OF LONGINT;

...

PROCEDURE New(typetag: LONGINT): Object;
...
END New;

PROCEDURE ThisType(m: Kernel.Module; VAR type: ARRAY OF CHAR):
LONGINT;

...
END ThisType;

PROCEDURE Reset*;
BEGIN noftypes := 0
END Reset;

PROCEDURE ReadObj* (VAR R: Files.Rider; VAR o: Object);
VAR ref, tag: LONGINT; m: Kernel.Module;

BEGIN
Read(R, ref);
IF ref = noftypes THEN

ReadString(R, module);

ReadString(R, type);
m := Modules.ThisMod(module);
IF m # NIL THEN tag := ThisType(m, type);

IF tag # 0 THEN typTab[ref] := tag; INC(noftypes);
o := New(typTab[ref])

ELSE R.res := 1
END

ELSE R.res := 2
END

ELSIF ref # –1 THEN o := New(typTab[ref])
ELSE o := NIL
END

END ReadObj;

PROCEDURE WriteObj* (VAR R: Files.Rider; o: Object);
VAR tag: TDesc; t: LONGINT;

BEGIN
IF o # NIL THEN

SYSTEM.GET(SYSTEM.VAL(LONGINT, o)–4, t);
tag := SYSTEM.VAL(TDesc, t – 36);
IF tag.time < clock – noftypes THEN

Write(R, noftypes);
Files1.Write(R, noftypes);
tag.time := clock;
INC(noftypes); INC(clock);
Files1.WriteString(R, tag.m.name);
Files1.WriteString(R, tag.name)
ELSE Write(R, tag.ref)

ELSE Files1.Write(R, tag.time – (clock – noftypes))
END

ELSE Write(R, –1)
END

END WriteObj;

BEGIN clock := 1; noftypes := 0
END Files1.

Example: loading and storing a binary tree using type bound procedures.

TYPE
Tree = POINTER TO TreeDesc;
TreeDesc = RECORD

(Files1.ObjectDesc)
left, right: Tree

END

PROCEDURE (t: Tree) Load (VAR R: Files.Rider);

BEGIN
Files1.ReadObj(R, t.left);
IF t.left # NIL THEN t.left.Load(R) END ;
Files1.ReadObj(R, t.right);
IF t.right # NIL THEN t.right.Load(R) END ;

END Load;

PROCEDURE (t: Tree) Store (VAR R: Files.Rider);
BEGIN

Files1.WriteObj(R, t.left);
IF t.left # NIL THEN t.left.Store(R) END ;
Files1.WriteObj(R, t.right);
IF t.right # NIL THEN t.right.Store(R) END ;

END Store;

PROCEDURE StoreCmd*;
...
Files1.Reset;
Files1.WriteObj(R, t);
IF t # NIL THEN t.Store(R) END

END StoreCmd;

PROCEDURE LoadCmd*;
...
Files1.Reset;
Files1.ReadObj(R, t);
IF t # NIL THEN t.Load(R) END

END LoadCmd;

Note that an asymmetric solution which stores the type information of an object as
response to the store message is not significantly shorter because NIL pointers have to
be handled explicitly. It also has the disadvantage that the external representation of
NIL has to be known (unless a special procedure that stores the value NIL has been
introduced).

PROCEDURE StoreCmd*; (* the asymetric solution *)
...
Files1.Reset;
IF t # NIL THEN t.Store(R)
ELSE Files1.Write(R, 0)
END

END StoreCmd;

The following presents the complete interface of module Files1 together with a short
description of the external data representation.

DEFINITION Files1; (*J.Templ 31.1.91*)

(* module to support portable persistent data.
ReadInt, WriteInt: 2 Byte integers, little endian byte ordering
ReadLInt, WriteLInt: 4 Byte integers, little endian byte ordering
ReadSet, WriteSet: 4 byte sets, little endian byte ordering, ORD({0}) = 1
ReadReal, WriteReal: 4 byte IEEE reals, little endian byte ordering
ReadLReal, WriteLReal: 8 byte IEEE reals, little endian byte ordering
ReadString, WriteString: arbitrary length, null terminated
Read, Write: compact integers, 1 to 5 byte, cf. ETH Report 133, 1990 *)

IMPORT Files;

TYPE
Object = POINTER TO ObjectDesc;
ObjectDesc = RECORD END ;

VAR module, type: ARRAY 24 OF CHAR;

PROCEDURE Read (VAR R: Files.Rider; VAR i: LONGINT);
PROCEDURE ReadInt (VAR R: Files.Rider; VAR i: INTEGER);
PROCEDURE ReadLInt (VAR R: Files.Rider; VAR i: LONGINT);
PROCEDURE ReadLReal (VAR R: Files.Rider; VAR r: LONGREAL);
PROCEDURE ReadReal (VAR R: Files.Rider; VAR r: REAL);
PROCEDURE ReadSet (VAR R: Files.Rider; VAR s: SET);
PROCEDURE ReadString (VAR R: Files.Rider; VAR s: ARRAY OF CHAR);
PROCEDURE ReadObj (VAR R: Files.Rider; VAR o: Object);

PROCEDURE Write (VAR R: Files.Rider; i: LONGINT);
PROCEDURE WriteInt (VAR R: Files.Rider; i: INTEGER);
PROCEDURE WriteLInt (VAR R: Files.Rider; i: LONGINT);
PROCEDURE WriteLReal (VAR R: Files.Rider; r: LONGREAL);
PROCEDURE WriteReal (VAR R: Files.Rider; r: REAL);
PROCEDURE WriteSet (VAR R: Files.Rider; s: SET);
PROCEDURE WriteString (VAR R: Files.Rider; VAR s: ARRAY OF CHAR);
PROCEDURE WriteObj (VAR R: Files.Rider; o: Object);

PROCEDURE Reset;

END Files1.

5. Garbage Collection on Open Arrays

J. Templ 3.3.91

Traditional garbage collectors for Oberon ignore the problem of traversing array
structures on the heap by assuming that the compiler forbids such constructs
(implementation restriction). However, there are good reasons for supporting pointers
to arrays (fixed size and open arrays) with arbitrary element types and at the same time
eliminating the implementation restriction. This paper proposes a solution for traversing
array data structures that affects the inner loop of the garbage collector’s mark phase
in the common case of traditional record nodes only by two simple assignments when
following a pointer (two register moves on most processors). The outer loop needs two
additional bit tests (within registers). Although the mark phase can be formulated
without nested loops, one can think of the highly time critical operations performed on
each pointer of a node (skipping nil pointers, skipping pointers that point to marked
blocks, and following a pointer) as the "inner loop". The "outer loop" contains all
operations performed on each block, i.e. the inner loop and some operations when
leaving the node. In other words, the inner loop is executed O(N) times, where N is the
number of reachable pointers, and the outer loop is executed O(M) times, where M is
the number of reachable blocks. It is obvious that N >= M and in some cases N >> M.

Let T, Elem and P be types as defined below and v be a variable of type P.

TYPE
T = ARRAY n0, n1 .. ni–1 OF Elem;
Elem = RECORD ... END ;
P = POINTER TO T;

The proposed algorithm assumes a storage block pointed to by v to look like this:

v–4 tag points to Elem type descriptor
v ––> data points to the first array element

size n0 * n1 * .. * ni–1 * SIZE(Elem)
arrpos reseved for the garbage collector

The type descriptor of an array block is the type descriptor of the element type which
must be a record. Multi–dimensional arrays are "flattened", i.e. they are treated like big
one–dimensional arrays. Arrays within records are not affected, i.e. they are still
expanded in the type descriptor of the record. In addition to the existing block kinds
SysBlk (a block allocated with SYSTEM.NEW) and RecordBlk (a block allocated with
NEW), a new kind ArrayBlk is defined, i.e. now there are three different kinds of heap
blocks. The mark phase of a garbage collector supporting only SysBlk and RecordBlk
looks like the following procedure Mark that traverses all nodes reachable from the
node pointed to by q. Mark expects the parameter q to point to a marked record block.

PROCEDURE Mark(q: Pointer);
VAR n: Pointer;

BEGIN

q.cnt := 0;
LOOP

IF Traversed(q) THEN Reset(q);
IF StackEmpty THEN EXIT END ;
Pop(q)

ELSE
Pointer(q, n);
IF (n # NIL) & Unmarked(n) THEN SetMark(n);

IF RecordBlk(n) THEN Push(q); q := n; q.cnt := –1 END
END

END ;
INC(q.cnt)

END
END Mark;

The meaning of the macros is as follows (some of them will be used later):

RecordBlk(q), ArrayBlk(q), SysBlk(q), Unmarked(q)
check a particular bit combination usually encoded in the type tag of q

SetMark(q)
set a bit combination in the type tag of q to signal that q is reachable

Traversed(q)
true iff all nodes reachable from q are marked.
offset := Offset(q, q.cnt);
RETURN offset < 0

Reset(q)
 resets some information temporarily encoded in the type tag of q

StackEmpty
true if stack of partially traversed nodes is empty

Pointer(q, n)
set n to the next son of q to be traversed.
offset := q.tag.PtrTab[q.cnt];
n := mem[q+offset]

Push(q)
Push q onto the stack of partially traversed nodes.
offset := Offset(q, q.cnt);
mem[q+offset] := tos; tos := q

Pop(q)
Pop q from the stack of partially traversed nodes.
offset := Offset(tos, tos.cnt);
n := mem[tos+offset]; mem[tos+offset] := q; q := tos; tos := n

Offset(q, n)
the offset of the n–th pointer in block q

Elemsize(q)
the size of one array element.
Elemsize(q) should be expandable to q.tag.size, i.e. the size of the element type
should be available in the type descriptor. Most Oberon implementations

currently round the record size available in the type descriptor to the next power of
two or to the next number divisible by 16 or the like. In this case, the element
size must be included in the array block needing some additional space.

q.cnt
the number of sons of q that are already traversed

To include array blocks, we apply the mark algorithm iteratively to all array elements in
the same way as it is done for records. For array blocks q.arrpos is used to hold the
offset of the current array element, i.e. q.arrpos DIV Elemsize(q) holds the number of
fully traversed array elements. q.cnt gives the number of sons of the element pointed to
by q.arrpos that are already traversed. Mark now expects the parameter q to point to a
marked record or array block.

PROCEDURE Mark(q: Pointer);
VAR n: Pointer;

BEGIN
IF ArrayBlk(q) THEN q.arrpos := 0 END ;
q.cnt := 0;
LOOP

IF Traversed(q) THEN Reset(q);
IF ArrayBlk(q) & (q.arrpos + Elemsize(q) # q.size) THEN

INC(q.arrpos, Elemsize(q)); q.cnt := –1
ELSIF StackEmpty THEN EXIT
ELSE Pop(q)
END

ELSE
Pointer(q, n);
IF (n# NIL) & Unmarked(n) THEN SetMark(n);

IF RecordBlk(n) OR ~SysBlk(n) THEN Push(q); q := n; q.cnt := –1 END
END

END ;
INC(q.cnt)

END
END Mark;

Unfortunately every macro that accesses a pointer in q needs to distinguish between
Record and Array blocks now. For the Pointer macro the situation is like this:

Pointer(q, n) =
offset := Offset(q, q.cnt);
IF ArrayBlk(q) THEN n := mem[q.data + q.arrpos + offset]
ELSE n := mem[q + offset]
END

To avoid this distinction, we introduce an auxiliary variable t and an auxiliary invariant:
H(t, q): <=> (RecordBlk(q) & t = q) OR (ArrayBlk(q) & t = q.data + q.arrpos)

Pointer(q, t, n) =

offset := Offset(q, q.cnt);
n := mem[t + offset]

Push(q, t) =
offset := Offset(q, q.cnt);
mem[t + offset] := tos; tos := q

Pop(q, t) =
offset := Offset(tos, tos.cnt);
IF ArrayBlk(tos) THEN t := tos.data + tos.arrpos ELSE t := tos END ;
n := mem[t + offset]; mem[t + offset] := q; q := tos; tos := n

t must be set appropriately when entering a node, but it remains unchanged while
looping over nil pointers, marked pointers, or sysblks within a node. The overhead
when pushing a record node is only a single assignment (shown in italics), the
overhead for pushing an array node is one additional test and two assignments. The
overhead for returning from a record node is two bit–tests and one assignment (shown
in italics), for finishing array elements, another test for detecting the end of the array is
needed.

PROCEDURE Mark(q: Pointer);
VAR n, t: Pointer;

BEGIN
IF ArrayBlk(q) THEN q.arrpos := 0; t := q.data ELSE t := q END ;
q.cnt := 0;
LOOP {H}

IF Traversed(q) THEN Reset(q);
IF ArrayBlk(q) & (q.arrpos + Elemsize(q) # q.size) THEN

INC(q.arrpos, Elemsize(q)); q.cnt := –1; INC(t, Elemsize(q))
ELSIF StackEmpty THEN EXIT
ELSE Pop(q, t)
END

ELSE
Pointer(q, t, n);
IF (n # NIL) & Unmarked(n) THEN SetMark(n);

IF RecordBlk(n) THEN Push(q, t); q := n; t := q; q.cnt := –1
ELSIF ~SysBlk(n) THEN Push(q, t); q := n; q.arrpos := 0; t := q.data; q.cnt :=

–1
END

END
END ;
INC(q.cnt)

END
END Mark;

The modest additional complexity of the solution and the small runtime overhead for
record blocks (shown in italics) seem to be justified by the additional functionality.

In practice it turns out that a sophisticated encoding of the predicates ArrayBlk(q),
SysBlk(q), RecordBlk(q), and Unmarked(q) has to be used to get a fast collector. The

encoding used in a prototype implementation in SPARC–Oberon is explained below
using an Oberon–like notation with relaxed typing rules, e.g. q.tag is sometimes used
as a set, sometimes as a pointer, and sometimes as an integer. To avoid confusion, set
operators are indexed with s. It is assumed that sets, pointers and integers have 4
bytes, and that bit i corresponds to value 2^i.

Predicate Encoding Invariant

Unmarked(q) ~(0 IN q.tag)
RecordBlk(q) ~(1 IN q.tag) RecordBlk(q) => ~SysBlk(q)
ArrayBlk(q) 1 IN q.tag
SysBlk(q) 2 IN q.tag SysBlk(q) => ArrayBlk(q)
free(q) 3 IN q.tag

These encodings follow the rule that an allocated unmarked record block should not
have any auxiliary bits set in the type tag, i.e. it should have a valid type tag without
masking some bits first. This is important for fast type guards and type tests during
program execution. For counting the number of sons already visited, the technique
proposed by B. Heeb is used. Therefore the type tag is used as a pointer into the offset
table, too. The pointer offsets are 4 byte integers, i.e. only the low order two bits of the
tag can be used for Unmarked and RecordBlk. Fortunately, SysBlk is never used when
traversing a node, as system blocks are supposed to have no pointers at all. free(q) is
used by the scan phase of the collector. Using 4 bits in the type tag forces type
descriptors to a 16 byte alignment. Note that the type tag can only be used as a pointer
after masking the low order bits. In the following mem[p] means the 4 byte word at
memory location p.

PROCEDURE Mark(q: Pointer);
VAR n, t, tos: Pointer; offset: LONGINT;

BEGIN
IF ArrayBlk(q) THEN q.arrpos := 0; t := q.data ELSE t := q END ;
INC(q.tag, PtrTabOffset); tos := NIL;
LOOP {H}

offset := mem[q.tag –s {0, 1}];
IF offset < 0 THEN INC(q.tag, offset);

IF ArrayBlk(q) & (q.arrpos + Elemsize(q) # q.size) THEN
INC(q.arrpos, Elemsize(q)); INC(q.tag, PtrTabOffset – 4); INC(t, Elemsize(q))

ELSIF tos = NIL THEN EXIT
ELSE Pop(q, t)
END

ELSE
n := mem[t + offset];
IF (n # NIL) & Unmarked(n) THEN INCL(n.tag, 0);

IF RecordBlk(n) THEN Push(q, t); q := n; t := q; INC(q.tag, PtrTabOffset – 4)
ELSIF ~SysBlk(n) THEN Push(q, t); q := n; q.arrpos := 0;

t := q.data; INC(q.tag, PtrTabOffset – 4)
END

END

END ;
INC(q.tag, 4)

END
END Mark;

The macros Push and Pop are now defined as:

Push(q, t) =
mem[t + offset] := tos; tos := q

Pop(q, t) =
offset := mem[tos.tag –s {0, 1}];
IF ArrayBlk(tos) THEN t := tos.data + tos.arrpos ELSE t := tos END ;
r := mem[t + offset]; mem[t + offset] := q; q := tos; tos := r

This procedure may be implemented using assembly language or "pseudo Oberon"
(Oberon + module SYSTEM). However, there are still some improvements possible.
The repeated access to mem[q.tag – {0, 1}] in the inner loop can be accelerated by
introducing an auxiliary variable tag initialized with q.tag – {0, 1}. In this case, q.tag has
to be updated whenever a node is left. This update operation and the bit tests before
Pop may be optimized by introducing another variable qtag with qtag = q.tag * {0,1}.
There are also some common subexpressions that could be eliminated (by a compiler).

PROCEDURE Mark(q: Pointer);
VAR n, t, tos: Pointer; offset, tag: LONGINT; qmask, ntag: SET;

BEGIN
IF 1 IN q.tag THEN q.arrpos := 0; t := q.data; qmask := {0, 1} ELSE t := q; qmask := {0}
tag := q.tag –s {0, 1} + PtrTabOffset; tos := NIL;
LOOP {H}

offset := mem[tag];
IF offset < 0 THEN q.tag := tag + offset +s qmask;

IF 1 IN qmask & (q.arrpos + Elemsize(q) # q.size) THEN
INC(q.arrpos, Elemsize(q)); INC(tag, offset + PtrTabOffset – 4); INC(t, Elemsize(q

ELSIF tos = NIL THEN EXIT
ELSE qmask := tos.tag; tag := qmask –s {0, 1}; qmask := qmask *s {0, 1};

IF 1 IN qmask THEN t := tos.data + tos.arrpos ELSE t := tos END ;
offset := mem[tag]; n := mem[t + offset]; mem[t + offset] := q; q := tos; tos := n

END
ELSE

n := mem[t + offset];
IF (n # NIL) THEN ntag := n.tag;

IF ~(0 IN ntag) THEN q.tag := tag +s qmask; n.tag := ntag + {0};
IF ~(1 IN ntag) THEN mem[t + offset] := tos; tos := q;

q := n; t := q; tag := ntag + PtrTabOffset – 4; qmask := {0}
ELSIF ~(2 IN ntag) THEN mem[t + offset] := tos; tos := q; q := n;

 q.arrpos := 0; t := q.data; tag := ntag –s {1} + PtrTabOffset – 4; qmask := {0,
END

END

END
END ;
INC(tag, 4)

END
END Mark;

The overhead for record nodes is shown in italics. On modern processors it consists of
about two machine cycles when following a pointer to a record node and six cycles
when leaving a record node. Switching from one array element to the next needs one
additional compare, two storage reads, one storage write, and three additions (15 – 20
cycles).

(A4 and US letter friendly) Write.Print none Report.91.156.Text\p n\m b 200 200 1650 2400

