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Abstract

Screens and printers have remained the primary output devices of every
computer, which is why the field of 2D graphics still plays a central role in
today’s computer systems. For operating systems, functionality for render-
ing general graphics in two dimensions has been a matter of course for a long
time. Considering innovation, however, it seems that a certain plateau has
been reached. Most graphical programming interfaces have been around
for many years; they were designed at a time when object-oriented pro-
gramming was in its infancy. Thus, they offer a fixed set of definitions and
procedures, which can only be reused as a whole and which cannot be
extended.

In this thesis, we examine the concepts behind common 2D graphics
interfaces. We extract those features that we consider essential and combine
them with the principles of object-oriented and extensible programming to
synthesize a new programming interface. On top of this interface, we
implement an object framework that models structure and behavior of
graphical scenes. To prove the feasibility of our design, we use programming
interface and object framework in two applications, an interactive graphics
editor and a graphical description language.

Our contributions to the field include a novel approach for specifying
general paths made from lines and curves, an innovative pen concept to paint
such paths in various styles, and working implementations that show how
these ideas work out in practice. Due to the abstract nature of the graphical
contexts in our programming interface, components that integrate graphics
within existing environments are light-weight and can be implemented with
little effort. In addition, objects from otherwise independent applications
can be integrated within another if they rely on these graphical contexts to
draw themselves.



Kurzfassung

Bildschirme und Drucker sind die wichtigsten Ausgabegeräte aller Computer
geblieben, weshalb das Gebiet der 2D-Grafik auch in heutigen Computersy-
stemen noch eine zentrale Bedeutung innehat. Für Betriebssysteme ist Funk-
tionalität zur Darstellung von allgemeinen Grafiken seit l̈angerem eine Selbst-
verständlichkeit. Bezüglich Innovation scheint allerdings eine gewisse Ab-
flachung eingetreten zu sein. Die meisten Grafik-Programmierschnittstellen
bestehen seit vielen Jahren, wurden also zu einer Zeit entworfen, als die ob-
jektorientierte Programmierung noch in ihren Kinderschuhen steckte. Aus
diesem Grund bieten sie nur eine beschränkte Menge von Definitionen und
Operationen an, welche nur als Ganzes wiederverwendet und nicht erweitert
werden kann.

In dieser Arbeit untersuchen wir die Konzepte, auf denen gängige 2D-Gra-
fikschnittstellen aufbauen. Wir reduzieren diese auf diejenigen Eigenschaf-
ten, die wir für essentiell halten, und kombinieren sie mit den Prinzipien der
objektorientierten und erweiterbaren Programmierung, um daraus eine neue
Programmierschnittstelle zu schaffen. Aufbauend auf dieser Schnittstelle
implementieren wir ein Objekt-Framework, welches Struktur und Verhalten
von grafischen Szenen modelliert. Um zu zeigen, dass unser Entwurf der
Problemstellung angemessen ist, verwenden wir Programmierschnittstelle
und Framework in zwei Anwendungen, einem interaktiven Grafikeditor und
einer grafischen Beschreibungssprache.

Unser Beitrag zum gewählten Gebiet umfasst einen neuartigen Ansatz,
um aus Linien und Kurven bestehende Pfade zu spezifizieren, ein innovatives
Stift-Konzept, um diese auf verschiedene Arten zu zeichnen, und lauffähige
Programme, welche zeigen, wie sich unsere Ideen in der Praxis bewähren.
Die grafischen Kontextobjekte in unserer Programmierschnittstelle sind von
abstrakter Art; damit werden Komponenten zur Integration von Grafiken in
bestehenden Umgebungen leichtgewichtig und mit wenig Aufwand reali-
sierbar. Ausserdem können Objekte von anderweitig unabhängigen Anwen-
dungen gegenseitig ineinander eingebettet werden, sofern sie sich auf obige
grafischen Kontextobjekte abstützen, um sich selber zu zeichnen.



C H A P T E R 1

Introduction

1.1 Motivation

Most computers today communicate their results to human users by dis-
playing them on a screen or printing them on paper. One of the primary
goals of every operating system is therefore to provide application program-
mers with programming interfaces that allow them to describe graphical
objects and paint those on appropriate output devices.

Every major operating system thus includes capabilities for rendering
graphics in two dimensions, but with different levels of sophistication. They
all offer functionality for rendering basic objects such as lines, rectangles,
text, and bitmap images; some of them also incorporate advanced concepts
such as a general path model, arbitrary clipping regions, or user-defined
coordinate systems.

Most of these systems have been in use for years. As a result, their
graphical capabilities display a high degree of maturity and robustness, but
also signs of stagnation. In order not to break compatibility with existing
applications, further development on these systems is marginal. Besides,
replacing or complementing them with new programming interfaces is not
easy because customers may be reluctant to adapt to new technology. Most
of these interfaces are thus based on a procedural library design and do
not take advantage of the benefits that object-oriented and component-
oriented software technologies offer. In particular, they cannot be extended
by clients, limiting their potential for reuse.

In this thesis, we take advantage of our academic freedom to explore
alternatives to the current status quo. We propose concepts and ideas on
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which future graphics interfaces could be built and back them up with actual
implementations.

1.2 Contributions

With our work, we show how the principles of object-oriented software
engineering -- in particular, modularity, polymorphism, and extensibility --
can be applied to software packages that implement 2D graphics and how
this reflects on applications that rely on them.

On a conceptual level, we deliver a thorough examination of what con-
stitutes a graphics interface. We also present an innovative approach, which
we call early rendering, for specifying general geometric paths that are made
from lines and curves. Early rendering allows an implementation to render
parts of a complex path before it knows the path completely, whereas tradi-
tional approaches require each path to be entirely known before rendering
can actually start.

On the system software level, we present a modular application pro-
gramming interface (API), based on our early rendering model, for drawing
advanced 2D graphics on abstract output devices. Graphics can be directed
to arbitrary concrete output devices, from physical devices (such as screens
and printers) to virtual devices (such as raster images and disk files). We
supplement this general programming interface with an extensible shape
framework that provides its clients with suitable abstractions for modeling
structure, behavior, and graphical appearance of its objects. For the latter,
we introduce the novel concept of abstract pen objects. These decouple
application objects from the potentially limited graphical capabilities of an
underlying programming interface. Pen objects can be arranged in per-
sistent, extensible object hierarchies, thereby providing their clients with
unmatched flexibility for modeling the graphical appearance of geometric
paths.

On the application level, we use our programming interface and our
framework within two distinct applications, an interactive graphics editor
and a graphical description language, thus proving their feasibility in practice.
With these applications, we show that early rendering works well in various
environments; we show how an interactive application that relies on models,
views, and controllers can deal with extensions in its model; and we show
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how abstract graphical contexts let clients integrate graphics as components
within different environments.

1.3 Overview

Chapter 2 introduces concepts, terminology, and features of common
graphics interfaces. A series of well-known graphics libraries and graph-
ics languages are examined and compared to gain deeper insight into the
domain of 2D graphics.

Chapter 3 presents Gfx, a new programming interface for rendering graph-
ics on abstract context objects.

Chapter 4 describes the Leonardo shape framework, which provides ap-
plications with an abstract model for representing structure and behavior
of graphical scenes.

Chapter 5 discusses Leonardo, an application for editing graphical scenes
interactively. Leonardo uses the Gfx API and the Leonardo shape framework
that are introduced in Chapters 3 and 4.

Chapter 6 presents Vinci, a graphical description language. Vinci is a
second application of Gfx and the Leonardo shape framework. Due to the
abstract nature of Gfx contexts, Leonardo objects and Vinci descriptions can
be mutually integrated within another.

Chapter 7 draws conclusions about what has been achieved and discusses
future perspectives.

Appendix A contains a commented example of a non-trivial Vinci shape.

Appendix B describes the complete syntax of Vinci.

Appendix C lists the modules that make up Gfx, Leonardo, and Vinci, along
with their sizes, and analyzes the performance of our software.
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Related work is to a major part discussed in Chapter 2. Later chapters
supplement this with further citations of related work that specifically apply
to the topics that are covered in these chapters.



C H A P T E R 2

Concepts of 2D Graphics

Ever since Sutherland’s ground-breaking Sketchpad system in 1963 [77],
software packages for creating 2D graphics have been relying on a few
basic concepts to describe graphical scenes. We first establish some central
terms, followed by a closer examination of these concepts in Sections 2.1
and 2.2. We use our findings to evaluate several examples of related work
in Section 2.3, including historical landmark systems as well as modern
candidates representing state of the art technology.

Graphics Interfaces consist of procedures and data structures for creating
graphical output. Most graphics interfaces manifest themselves in the form
of application programming interfaces (API). Their executable parts reside in
code libraries and are statically or dynamically linked to those of an applica-
tion. To broaden our perspective on 2D graphics, we extend our definition
of a graphics interface to also include special purpose languages. These
convert textual input to graphical output by interpreting or compiling their
input. The applications and programmers that utilize a graphics interface
are called its clients.

Output Devices. The majority of physical output devices today are based
on the raster paradigm. A raster device comprises an array of individually
addressable adjacent raster cells, each of which covers a rectangular area of
uniform size. These raster cells are called pixels (an abbreviation for ‘‘picture
elements’’) and display a uniform shade of color each. A frame buffer,
which contains the contents of a workstation’s screen, typically assigns a
multiple of eight bits to each pixel, making each pixel start at a byte address.
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In addition to color, per-pixel information such as depth or transparency
may also be stored in the frame buffer. Other examples of raster devices
include fax modems and various kinds of printers, including matrix, ink-jet,
and laser printers. Non-raster devices include vector devices such as pen
plotters or older CRT monitors. These have become rare but are still used in
a few special places.

In addition to physical output devices, many graphics interfaces also
support logical output devices. A logical output device stores a picture of the
produced graphics which the same or another client can later access again.
Examples of logical output devices are raster images (in memory or on disk)
and disk files that contain raster or vector graphics in a standard file format.

Because the majority of output devices are indeed raster devices, to
paint an object usually requires that a graphics interface computes the set
of pixels that best approximate the object’s geometry (in a process called
scan conversion) and assigns a color value to them. The graphics interface
may choose to hide all details concerning resolution and bit-depth of the
underlying hardware from its clients. The same interface can then be used
for writing to many physical and logical devices, irrespective of whether they
rely on raster or vector technology. Clients only need to be assured that
the graphics interface will approximate all graphical objects as exactly as an
output device allows.

Graphical Contexts. Graphics interfaces are usually based on an implicit
or explicit context, where the current output device, visible output area,
coordinate system, and graphical attributes are managed (see Section 2.1).
Within this context, the graphics interface renders graphical objects (see
Section 2.2). Normally, to render an object means to paint an appropriate
representation on an output device. Other forms of rendering affect the
state of the context instead of producing output, for example by restricting
future drawing operations to the rendered object’s interior.

2.1 Graphical Contexts

Independent of the types of graphical objects that it supports, a graphics
interface needs to define and manage a context within which rendering
takes place. Such a context is responsible for defining a rendering model
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(see Section 2.1.1), a coordinate system (see Section 2.1.2), an imaging model
(see Section 2.1.3), and a clip area (see Section 2.1.4).

2.1.1 Rendering Model

The rendering model of a graphics interface defines how graphical objects
are described and how they are processed. It determines how clients specify
objects and how they pass them to the interface.

Immediate Mode. To start with an example, consider a simple scenario in
which a client wants to draw a line from point A to point B. A typical graphics
API will offer an operation called DrawLine or similar which takes the x and
y coordinates of points A and B as arguments and draws a straight line
between these points. As soon as DrawLine returns, its caller can assume
that the line has been completely rendered, which is why this mode of
operation is known as immediate mode.

In immediate mode, no explicit data structures need to be built. Each
graphical object is modeled by calling a procedure and passing it all param-
eters that are necessary to describe the object’s geometry. Despite this low
level of abstraction, immediate mode is the standard rendering model used
in most graphics interfaces, due to its simplicity and efficiency.

To decrease the number of arguments that must be passed to rendering
procedures, various decorative attributes that are common to several kinds
of objects, such as color, line width, and dash pattern, are often maintained
by the graphical context in a so-called graphics state. Clients call procedures
to assign new values to these attributes. These values stay in effect until a
client changes them once more. The graphics interface can thus be viewed as
a state machine on whose internal state all drawing operations depend. As
a consequence, clients have to ensure that state variables have appropriate
values before they can draw an object. Still, this convention is usually
acceptable because most of the time clients use the same attribute values
for rendering multiple graphical objects. Besides, a graphics interface may
enable its clients to revert all values to a well-defined default state or to a
previously stored state to minimize the number of required setup operations.

Internal Data Structures (Display Lists). Some applications may have to
redraw a graphical scene at regular intervals or may want to repeatedly
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draw simple structures at various locations in the scene. Many graphics
interfaces can therefore be put in a special recording mode where procedure
invocations do not produce any output. Instead, an internal data structure is
created to which all graphical objects are added. This internal data structure,
traditionally called display list, can later be instantiated repeatedly whenever
needed. The term originates from the time when the display processor
that controlled the electron beam of a vector display indeed traversed a
display list in memory at regular intervals to refresh the image on the screen.
Display lists enable a graphics interface to preprocess graphical objects
before storing them in the list. Such pre-compilation can improve rendering
performance when the list is later instantiated repeatedly. Examples of
graphics interfaces that feature display lists are GKS (see Section 2.3.1) and
QuickDraw (see Section 2.3.2).

Since several different display lists can exist concurrently, clients use a
reference number or pointer to identify the one which they want redrawn.
This allows clients to treat possibly complex structures in an abstract manner.
Because the same procedural interface as for immediate rendering is used,
output from a complex rendering operation can be redirected to a display
list merely by first putting the interface in recording mode.

To distinguish immediate rendering models from rendering models that
defer actual output to a later, user-defined time, the latter are often said to
work in retained mode, especially in the domain of 3D graphics.

Exported Data Structures (Object Structures). Taking the idea of display
lists even further, a data structure for storing objects may become a public
feature of the graphics interface, which is especially attractive within an
object-oriented system. There, the graphics system can export an abstract
render protocol and an abstract object type, preferably also a few standard
object extensions which implement that protocol. The graphics interface
renders objects by using the render protocol to query them about their
geometry. It decomposes objects into simple standard objects such as lines
and arcs; these are then easy to draw. Clients can either create instances of
standard object types or of custom type extensions that match their specific
needs. An example of such an object framework is Java 2D, to be examined
in more detail in Section 2.3.7.

An object-based approach offers a high level of abstraction and flexibility
and facilitates the construction of complex object hierarchies. However, a
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graphics system that is based on polymorphic object structures alone is
slower than one with a fixed number of object types. The main reason
is that a general rendering protocol cannot take advantage of many small
optimizations that are possible with a fixed set of primitives because details
about client-defined objects are not known inside the graphics interface and
thus cannot be exploited to speed up rendering.

2.1.2 Coordinate Systems

A coordinate system defines how abstract points, specified by their x and y
coordinates, are mapped into geometric locations. While simple graphics
interfaces always work in the coordinate system of their output device,
advanced interfaces provide a device-independent coordinate system or
even let clients define a custom coordinate space.

Device Coordinates. The most basic coordinate system is the device coor-
dinate system, whose points correspond to concrete locations in the output
plane. For a raster device, these locations are its pixels. For example, the
pixel in the bottom left (or top left) corner has coordinates (0, 0), the one to
its right (1, 0), and the one above (below) it (0, 1).

Specifying graphical objects directly in device coordinates is simple and
efficient because integer coordinates can be used. For example, the Oberon
system (see Section 2.3.3) uses device coordinates exclusively. However, the
fact that the whole area of a pixel is represented by a single point introduces
an inconsistency; namely that the exact position of a point within a pixel
is unclear. For drawing thin lines, it seems natural to place its end points
at pixel centers and to paint the pixels in between that are closest to the
line (for example using Bresenham’s famous algorithm [16]), as shown in
Figure 2.1. However, if the same method is used to draw a filled rectangle of
width w and height h, with corners at pixel centers, the resulting rectangle
extends beyond each of its sides by half a pixel, increasing its effective width
to (w + 1) and height to (h + 1) pixels, as displayed in Figure 2.2. The
solution is in this case to place the rectangle’s corners on corners of the pixel
grid. However, this introduces the new problem that filled and outlined
rectangles no longer have the same size. Stamm examines this problem
in more detail in [71] and [72], concluding that all coordinates should be
placed on the grid lines between pixels. Stamm’s approach works well in
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Figure 2.1: Drawing a thin line

the domain of font design, where all graphical objects are part of a closed
contour, but is harder to defend in a more general context.

Figure 2.2: Filled rectangle with corners on pixel centers (left) and on pixel
grid (right)

Sub-pixel Coordinates. Even if the graphics interface identifies integer
coordinates with well-defined and consistent locations in pixel space, there
are still situations that cannot be modeled with integer device coordinates
at all. Consider the scenario that is depicted in Figure 2.3, which shows
a zoomed view of an area where three adjacent polygons meet. Point A
is supposed to lie on the line between points B and C. When the exact
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coordinates of A are rounded to integer coordinates, it is possible that this
condition cannot be met. Depending on the order in which the polygons
are drawn and to which grid point A, B, and C are rounded, the resulting
picture may have a discontinuity in the line from B to C, or parts of the
background may be visible near A. In the displayed scenario, A is rounded
towards A′ in the upper left corner of the corresponding pixel, whereas B
and C are rounded towards B′ and C′ in the lower right corner of the pixels
that contain them. This has the consequence that several pixels along the
shared boundary do not get painted even if all three polygons are filled.

�

�

�

���

���

���

Figure 2.3: Rounding problems due to use of integer coordinates

The only solution for avoiding such artifacts is to introduce sub-pixel
precision for point coordinates, either by addressing fractional pixels or
by switching to floating point numbers for representing coordinates. Both
approaches do not actually solve the problem since even the resolution of
floating point numbers is finite and therefore subject to rounding errors.
Nevertheless the reduction in scale reduces the chances of visible artifacts
significantly. Older graphics interfaces (for example QuickDraw, discussed
in Section 2.3.2) avoid using floating point because floating point arithmetic
used to be several times slower than integer or fixed point arithmetic.
However, with today’s super-scalar and pipelined processor architectures
this difference is disappearing. On many processors, built-in floating point
calculations execute faster than emulated fixed point calculations. This
makes floating point the natural choice for representing point coordinates,
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at least in a general graphics interface that is not bound to a particular
output device.

Normalized Coordinates. If objects are defined in device coordinates, the
size of the resulting pictures depends on the pixel size of the corresponding
device. For example, a hundred pixels measure about three centimeters on
a typical screen, but less than half a centimeter on a standard laser printer.
To overcome such device-dependent behavior, a graphics interface can in-
troduce a normalized coordinate system with arbitrary but fixed unit size.
It can then map graphical objects from normalized to device coordinates
(and vice versa) by scaling and translating them accordingly. The required
scale factor and translation vector still depend on pixel size and printable
area of the output device, but only need to be initialized once and then
become an aspect of the graphics context. As a side effect, the interface is
able to deal with non-square pixels as well since the pixel aspect ratio can
be part of the scale factor that maps normalized to device coordinates. An
example of a graphics interface that provides normalized coordinates is GKS
(see Section 2.3.1).

User Coordinates. Several graphics interfaces allow clients to define arbi-
trary user coordinate systems on top of the normalized coordinate system.
User coordinates are essential to hierarchical modeling since they let clients
render parts of a scene at different locations, with different orientations,
and in different sizes.

The de facto standard for representing user coordinate systems is based
on homogeneous coordinates and transformation matrices. An introduction
to homogeneous coordinates can be found in [27], which in turn refers to
[52, 53, 69, 12]. In homogeneous coordinates, each point (x, y) is augmented
by a third coordinate and becomes (wx, wy, w), one of many points on a line
in 3D. Similarly, division by w projects each point in homogeneous space
back to two dimensions. What makes homogeneous coordinates interesting
is that affine transformations in 2D -- consisting of arbitrary combinations of
translation, rotation, scale, and shear transformations -- can be expressed as
linear transformations in 3D and can therefore be stored in 3×3 matrices. A
matrix-based transformation is applied to a point by multiplying the matrix
with a homogeneous representation of the point (usually with w equal
to one) and projecting the result back to two dimensions. For example,
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translation by (tx, ty) is expressed as follows:

(
x′ y′ 1

)
=
(

x y 1
)
·


1 0 0
0 1 0
tx ty 1

 =
(

x + tx y + ty 1
)
.

Similarly, rotation with angle φ, scale with factors sx and sy, and shear
transformations with factor f are achieved with the following transformation
matrices.

rotation scale shear along x-axis
cosφ −sinφ 0
sinφ cosφ 0

0 0 1




sx 0 0
0 sy 0
0 0 1




1 0 0
f 1 0
0 0 1


With affine transformations, the third column in any matrix is always equal
to (0, 0, 1)T . Unless a graphics interface intends to support perspective trans-
formations as well, it need not store the third column explicitly. Postscript
(see Section 2.3.4), for example, therefore uses vectors with six elements to
store transformation matrices.

Individual transformations can be combined by concatenating the cor-
responding transformation matrices. A single matrix is thus sufficient to
store arbitrary combinations of transformations. This is of special interest
for clients that organize their data as hierarchies of nodes. For those nodes
that change the local coordinate system of their descendants, the local node
matrix is concatenated with the matrix that represents the current coordi-
nate system before any descendants are visited. Thus, descendants are free
to express all their coordinates in local object coordinates. The matrices of
their parent nodes convert local to global coordinates. To streamline hier-
archical modeling even further, some graphics interfaces (e. g. Postscript,
see Section 2.3.4) provide their clients with a matrix stack onto which they
can push the current matrix value before adjusting it and off which they can
later pop it again.

2.1.3 Imaging Model

After a graphical object has been reduced to primitive elements, such as
pixels or pen strokes, these elements are visualized on the output device
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that the graphical context controls. Consider a context that drives a raster
device and thus converts graphical objects to sets of pixels. It must combine
the color values of these pixels with those of the corresponding pixels of
its output device, for example by replacing existing color values with those
of the converted object. In general, a context’s imaging model defines how
color values (and possibly other values) from a source (e. g. scan-converted
pixels) affect the current color values of a destination (e. g. frame buffer
pixels), preferably without explicit reference to the physical representation
of these values.

Overdraw. Taking into account that the information provided by a source
is primarily its color value, the basic method for reproducing the source
consists of copying the source color value to the destination, replacing
whatever value was there before. The corresponding imaging model is that
of painting objects with opaque color in the output plane. The model works
well for a large number of graphical objects and output devices and can
be implemented efficiently. An example of a graphics interface that uses
overdraw exclusively in its imaging model is Postscript (see Section 2.3.4).

Alpha Blending. Things get more complicated if we tolerate that source
and destination need not be fully opaque. Painting an object with partly
transparent color lets part of the previous destination color shine through
from under the object. In computer graphics, opacity is usually called
alpha, and the process of applying a partly transparent source to a partly
transparent destination is called alpha blending or simply blending.

A special case of alpha blending is used for painting bitmap patterns,
where each pixel in the bitmap is either fully transparent or fully opaque.
Such a bitmap mask restricts painting to the area where it is opaque; only
there the corresponding destination pixels are overwritten with new color
values. Bitmap masks are commonly used for rendering text, where individ-
ual character patterns are represented as bitmap masks. Even interfaces that
otherwise only support overdraw mode may allow clients to paint bitmap
masks.

More general applications of alpha blending in 2D graphics, as sup-
ported for example in SVG (see Section 2.3.6) or Java 2D (see Section 2.3.7),
include raster image compositing [66] and smoothing jagged edges: when
for example a filled polygon is painted in a frame buffer with low reso-
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lution, its boundary has a jagged or ‘‘staircase’’ appearance, as displayed
in Figure 2.4. This effect is a manifestation of an aliasing problem. Alias-

Figure 2.4: Jagged edge on low-resolution display

ing problems frequently appear in computer graphics [19, 20]; they arise
because continuous signals (the color value of a horizontal scanline) are
sampled at regular intervals (at the center of each pixel). By assigning each
source pixel an alpha value that is proportional to how much of the pixel
is inside the polygon and blending the resulting pixels with the destination,
the resulting edges appear much smoother, as shown in Figure 2.5. In math-
ematical terms, this corresponds to a convolution of the polygon with a box
filter over each pixel.

Figure 2.5: Smoothing jagged edges with partly transparent pixels

Note that general blending operations are not possible on all output
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devices because not all of them provide read access to destination color
and alpha values. For example, consider printing a page, which usually
requires that a stream of drawing commands is sent to a printer over a
serial or network connection. The graphics interface cannot determine the
destination color and alpha value for every rendering command unless it
simulates the printing process in an off-screen image itself. However, such
a simulation is often not practical because it may consume large amounts
of memory and slow down the graphics system.

Invert Mode. Especially for temporarily drawing objects in a frame buffer,
another imaging model, called xor or invert mode, is in widespread use. Its
principle is to modify the destination in such a way that the modification can
easily be undone again by drawing everything a second time. Its main appli-
cation is an interactive technique called rubber-banding, which simulates
animated objects by quickly drawing and erasing them at different locations.
Rubber-banding is frequently used for giving feedback to a user who moves
or reshapes objects interactively [60, 27]. The traditional implementation of
invert mode replaces all bits in the destination by their unary complement
since complementing all bits a second time restores their original state.

2.1.4 Clipping

The area where output can be produced on a physical device is limited. It
would therefore be useless to spend computing resources for processing
graphical objects that fall completely outside the displayable area. Besides,
when rendering on a shared device such as the display, output must be
restricted to the area that the graphics interface has been assigned by the
window manager of the operating system. Otherwise, an application might
draw over and hence destroy some other program’s screen estate. To avoid
such conflicts, graphics interfaces keep track of the area where output is
permitted to appear. They discard graphical objects that lie completely
outside this area and clip objects that overlap its boundary by cutting off
and not painting the parts outside it.

The problem of clipping lines and polygons against rectangles or poly-
gons parametrically has been studied by many researchers [60, 78, 21, 49, 13].
However, although the visible area of a physical device is in fact often
bounded by a rectangle, clip areas are frequently more complex than simple
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rectangles, especially on systems that use a desktop metaphor with over-
lapping windows in their user interface. If parts of a window are obscured
by other windows, its clip area must be shaped accordingly. To deal with
such situations, a graphics interface needs to provide clip areas that can
either be rectangles or boolean combinations of existing clip areas, possible
combinations being union, intersection, and difference.

Some graphics interfaces allow their clients to further customize clip
areas, for example to restrict output to the interior of a circle, which is tedious
to specify as a combination of rectangles. Therefore, a graphics interface may
offer a special rendering mode which intersects the boundary of rendered
objects with the existing clip area instead of painting them. Successive
output appears only within this user-defined area until the original clip
area is restored again. User-defined clip areas were already available with
QuickDraw (see Section 2.3.2).

To implement such generic clip areas, a general shape algebra that can
apply boolean set operations to all basic shapes, not only rectangles, is
required. This raises the question of how generic clip areas can be stored
efficiently in a data structure. One approach is to use regions [24, 27].
Regions are parametric structures, organized for instance as sets of scanlines,
each scanline in turn consisting of a set of horizontal spans of equal height.
Figure 2.6 illustrates how a region can be approximated with horizontal

Figure 2.6: Horizontal spans approximating a region

spans. While regions are adequate for representing clip areas that result from
combinations of few primitive shapes, they are less efficient for representing
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areas with ‘‘fuzzy’’ contours such as irregular objects that have been extracted
from photographic images. For objects with such detailed boundaries, the
use of stencil buffers, which are bitmap masks that store at least one bit
of alpha information per pixel, may be preferable. The visible area is then
defined by the union of all transparent pixel in the stencil buffer (see
Figure 2.7). Stencil buffers are often supported by the display hardware,

Figure 2.7: Example of a stencil buffer. Only white areas can be painted to

making them faster than purely software-based regions. However, stencil
buffers require large (albeit constant) amounts of memory for high output
resolutions and take more time to initialize than regions when used for
simple areas. Stencil buffers are for example available in SVG descriptions
(see Section 2.3.6).

2.2 Graphical Objects

Most graphics interfaces can render various kinds of primitive objects. In
this section, we describe common kinds of objects and how they are typi-
cally represented. We start with vector graphics primitives in Section 2.2.1;
a discussion of their graphical attributes follows in Section 2.2.2. Paths,
which combine vector graphics primitives to sequences, are the subject of
Section 2.2.3. Finally, we examine raster images in Section 2.2.4 and text
objects in Section 2.2.5.
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2.2.1 Vector Graphics Primitives

An important class of graphical objects consists of lines and curves exclu-
sively. While such objects may share a common style of appearance, their
geometrical shape is highly individual and therefore is their distinctive prop-
erty. Because of their linear structure, the drawings they help create are often
called vector graphics.

Most of these objects have their origin in classical geometry and can be
viewed as infinite sets of infinitely small points. They do not cover any area,
but may enclose one. One way of painting them on a raster device is thus to
light all raster cells within that area. The corresponding paint mode is called
filling. A second paint mode, which traces the lines and curves of an object
with an imaginary pen and lights all raster cells that it thus visits, is called
stroking. Both of these modes are further discussed in Section 2.2.2.

Graphics interfaces that support user-defined clip areas as discussed
in Section 2.1.4 may offer another rendering mode, called clipping, which
intersects the interior of an object with the current clip area instead of
painting it. The result of this intersection then becomes the new clip area.
Clipping is similar to filling because it also interprets objects as contours
that enclose an area.

Depending on the exact specification of the operations in a graphics
interface, clients specify the desired rendering mode by calling separate
procedures (which could for example be named StrokeRect and FillRect)
or by passing an extra parameter that defines the desired mode to each
rendering procedure.

The following paragraphs list several important kinds of vector graphics
objects.

Points and Lines. The most basic object is the point, defined by its Cartesian
coordinates. Points do not play an important role in the final output but
are essential for anchoring objects at specific locations. For example, two
points define a straight line. Lines are essential graphical objects, too, as
most shapes can be expressed or at least approximated with lines.

Circles, Ellipses, and Arcs. A point and a radius define a circle; a point and
a pair of orthogonal radii define an (axis-aligned) ellipse. With an additional
pair of values which indicate start and end angles, circles and ellipses can
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be restricted to circular and elliptical arcs.
A convenient way of defining a general ellipse is to specify its bounding

parallelogram with three points, one at the center of the ellipse and two
others at the end of conjugate diameter pairs [25]. Figure 2.8 displays an
ellipse and its conjugate diameter pairs.

Figure 2.8: A general ellipse and its conjugate diameter pair, displayed as
arrows

Rectangles. Two opposing corner points define an axis-aligned rectangle.
Although rotated and sheared rectangles cannot be specified in this manner,
the definition has the advantage that the resulting shapes are guaranteed to
be rectangular, which might be difficult to enforce with alternative defini-
tions, as for instance by using four lines or four points.

Polylines and Polygons. If successive points in a list of control points are
joined by straight lines, the resulting connected sequence of lines is called
a polyline. If an additional line that connects the last and the first point is
added, the result is a polygon.

Curves. In addition to lines, numerous types of polynomial or piecewise
polynomial curves can be defined on sequences of control points. So far,
only quadratic and cubic Bézier curves [9, 10] have been regularly used in
graphics interfaces, for example in Postscript (see Section 2.3.4) or in SVG
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(see Section 2.3.6), since they are particularly easy to implement. Detailed
discussion of Bézier curves and other polynomial curves is beyond the scope
of this thesis; introductions can be found in [27, 65, 35]. A cubic Bézier curve
is a parametric curve, defined as

C(t) =
3∑

i=0
B3

i (t) · Pi

where Pi is the i-th control point and B3
i are Bernstein polynomials, defined

as

Bn
i (t) =

n

i

ti(1− t)n−i.

A cubic Bézier curve can thus also be written as

C(t) = (1− t)3P0 + 3t(1− t)2P1 + 3t2(1− t)P2 + t3P3.

Cubic Bézier curves pass through their end points P0 and P3, but usually
do not pass through their other control points P1 and P2, as can be seen
in Figure 2.9. The curve is always completely within the convex hull of its
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Figure 2.9: A cubic Bézier curve and its control polygon

control polygon. Cubic Bézier curves are so common in 2D graphics because
they are easy to draw using recursive subdivision (deCasteljau algorithm) or
forward differencing [35].

2.2.2 Object Attributes

Graphical objects based on lines and curves may have a clearly defined
geometry, but additional parameters, their graphical attributes, are needed
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to paint them. We can distinguish two kinds of attributes, geometric and
non-geometric.

Geometric Attributes. These tell the graphics interface to slightly adjust the
geometry of individual objects, for example by giving lines a non-zero width.
Geometrical attributes are not essential and can in principle be emulated
outside the graphics interface. Still, they are useful because they offer clients
a more abstract view of the rendering process.

Non-geometric Attributes. These include color, pattern, and alpha values.
They determine how objects are represented on an output device.

Object Interior

Several graphical objects, for example circles and rectangles, consist of a
closed contour that divides the object’s interior from its exterior. This is
the case for circles, ellipses, polygons, and many others. The following
paragraphs describe aspects that are important when filling or clipping the
interior areas of closed graphical objects.

Fill Functions. To fill the interior of an object, color must be painted on
the corresponding area of the output device. In theory, the color value used
for each point in an enclosed area is the result of an arbitrary function of
the point’s coordinates. In practice, to keep specification and implementa-
tion simple and efficient, most graphics interfaces only provide a restricted
selection of fill functions. Some of the more popular ones are illustrated in
Figure 2.10. The solid color fill on the left fills the whole area with a con-

Figure 2.10: Examples of fill functions: solid fill, pattern fill, and linear
gradient fill



23

stant color value. The pattern fill in the middle repeatedly paints a pattern
(usually a raster image) within the object’s boundaries, all instances of the
pattern being spaced at regular intervals. With the linear gradient fill on the
right, clients assign color values to a few specific points and let the graphics
engine interpolate color values for all other points inside the object. Apart
from linear gradients, radial gradients are also quite common. All three
kinds of fill functions are for example supported by SVG (see Section 2.3.6).

Self-intersecting Contours. The interior of objects whose contour intersects
itself, such as the star-shaped polygon in Figure 2.11, is not clearly defined.
Most graphics interfaces offer two different interpretations of the situation,

Figure 2.11: A self-intersecting polygon, interpreted as by the even-odd rule
on the left and by the non-zero-winding rule on the right

the even-odd rule and the non-zero-winding rule. In both cases, to find
out if a point is inside an object or not, imagine a ray that originates from
the point in question and count how often the ray intersects the object’s
contour. Starting with a sum of zero, add one to the sum each time the
contour crosses the ray from left to right and subtract one each time it
crosses the ray from right to left. With the even-odd rule, the point is inside
the object if the resulting sum is odd; with the non-zero-winding rule, it
is inside if the sum is not zero. Graphics interfaces such as Postscript (see
Section 2.3.4) allow their clients to choose either rule for each object.
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Object Outline

All vector graphics objects can be stroked, meaning that the graphics engine
lights the pixels that their contour touches. As with filled objects, we
examine some aspects of the stroking process in more detail in the following
paragraphs.

Hairlines. Stroking an object is a priori a paradoxical operation; for lines
and curves are one-dimensional and continuous, yet they are to be converted
to a set of two-dimensional discrete raster cells. The simplest approach is to
use the hairline model, which approximates a line or curve by painting only
a minimal set of adjacent pixels in its proximity. The disadvantage of the
hairline model is that the perceived curve thickness depends on the pixel
size of the output device and slightly varies with the direction of a curve.
(Diagonal lines appear either thinner or thicker than horizontal and vertical
lines, depending on how many neighbors each pixel has.)

Thick Lines. Several hairlines must be drawn one pixel apart from each
other to make lines appear thicker. To overcome this weakness of the
hairline model, most graphics interfaces associate a line width or thickness
attribute with all stroked objects. To draw thick lines, each line is converted
to a rectangle of corresponding length whose interior can then be filled [27].
Curves are treated analogously. If the line width is below some threshold,
typically related to pixel size, the interface may still fall back to using hairlines
instead of thick lines.

Some interfaces, for example QuickDraw (see Section 2.3.2), provide
an alternative method for stroking thick lines. Instead of geometrically
converting lines and curves to areas and filling these, they lead a virtual
brush or pen along the contour to stroke. The brush has a fixed shape, which
is often rectangular or circular. Brushes can be implemented efficiently [72],
but do not offer the same flexibility with regard to line caps and line joins
(see below) as geometrically constructed thick lines.

Line Caps and Joins. The introduction of thick lines brings up further
issues. One of them is how line ends should be rendered. Depending on
the desired effect, a round or square cap can be appended to an otherwise
bare-ended line, as shown in Figure 2.12. Although other types of line
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Figure 2.12: From left to right: butt caps, round caps, and square caps

caps, especially arrow heads, often appear in 2D drawings, most interfaces
leave it to their clients to implement them. It seems that the additional
expressiveness does not justify the additional complexity in this case.

Another question concerns the shape of the join between two lines that
meet at a non-zero angle, for example at the corners of a polygon. A natural
solution is to extend the outer contours of the adjacent lines until they
intersect, leading to so-called miter joins. However, as the angle between
the lines becomes more pointed, this intersection moves farther away from
the original corner. In practice, graphics interfaces impose a limit on the
extent of miter joins; if this limit is exceeded, a miter join is replaced by
another type of join. The most common kinds of line joins, as for example
supported by Postscript (see Section 2.3.4), are displayed in Figure 2.13.

Figure 2.13: From left to right: miter joins, round joins, and bevel joins

If a brush model is used, the shape of the brush automatically determines
the shape of line caps and line joins. A consistent look can only be achieved
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with round brushes, resulting in round caps and joins. For other types of
brushes, the shape of caps and joins depends on individual line orientation
and brush shape.

Dash Pattern. Some output devices can only paint objects in black or white.
Applications may therefore need attributes other than color for making lines
and curves discernible from each other. A common method is to draw
dashed and dotted lines instead of continuous ones (see Figure 2.14). Thus,
many graphics interfaces allow clients to associate a dash pattern with lines
and curves. In the simplest case, the number of available patterns is limited
to a fixed set of symbolic constants (for example in GKS, see Section 2.3.1),
whereas advanced models accept arbitrary sequences of distances for visible
and invisible parts (for example Postscript, see Section 2.3.4).

Figure 2.14: Dashed and dotted lines

2.2.3 Paths

A general path model connects primitive objects such as lines and curves
to create inhomogeneous sequences. Because the contour of many shapes
can indeed be described using only sequences of lines and curves, paths
serve well as general representations of graphical objects. In particular,
paths which support lines, elliptical arcs, and cubic polynomial curves are
sufficient for modeling a wide variety of shapes reasonably well. Even
the contours of letters do not require curves of higher degree than cubic
curves; in fact, the popular TrueType font format [7] uses only quadratic
Bézier curves. As a consequence, it is perfectly acceptable for a graphics
interface not to provide any other vector graphics primitives if it supports
a general path model; an example of this is Postscript (see Section 2.3.4).
For an interface that models graphical objects explicitly such as Java 2D
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(see Section 2.3.7), paths are a natural foundation for a general rendering
protocol.

Although paths in principle have the same graphical attributes as other
vector graphics objects, they have some unique aspects as well.

Subpaths. We assume in the following that each path consists of at least
one subpath; subpaths in turn consist of a non-empty sequence of con-
nected lines and curves. This definition allows paths to contain more than
one subpath, which is essential for modeling shapes that consist of multiple
disjoint parts or shapes that contain holes. Figure 2.15 displays two exam-
ples of paths with multiple subpaths. As with self-intersecting polygons,
the interior of a path can be defined according to the even-odd rule or the
non-zero-winding rule.

Figure 2.15: Non-trivial path objects

Path Specification. Assuming that the graphics interface uses an imme-
diate rendering model, a general path model has the drawback that the
specification of a path is more complicated than that of a primitive curve
with a fixed number of parameters such as a line or a circle. Path specifica-
tion typically takes place over several procedure invocations. One procedure
starts a new subpath, others append lines and curves, yet another may close
the current subpath, and one ends the path. Thus, the graphics interface is
put into special ‘‘within path’’ and ‘‘within subpath’’ modes while the spec-
ification of paths and subpaths is in progress. If a client fails to terminate
a path or subpath and thus leaves the graphics interface in path mode, the
next drawing operation might result in inconsistent or erroneous output.

When the specification of a path is thus spread over several procedures,
one of these procedures must allow its caller to decide whether the resulting
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path should be filled, stroked, or otherwise processed. Most graphics inter-
faces delay this decision to the point when a final procedure call completes
the specification of the current path. Since rendering can only start when
the entire path is known, we call this approach late rendering. On the
other hand, if the rendering mode is already known when the specification
of a path begins, we speak of early rendering. Both approaches have their
advantages and disadvantages, which we look at in the following paragraphs.

Late Rendering has the advantage that the geometry of the path is known
to the graphics interface at the time it starts painting the path. This is of
special importance for closed subpaths, which are subpaths where the last
curve leads back to the starting point of the first curve. Because the tangent
vectors of the curves which meet at that point are known, the line join
between the last and the first curve can be properly rendered. Figure 2.16
shows the difference between a properly closed path and a path without
proper line join.

Figure 2.16: Difference between open and closed subpaths

The main drawback of late rendering is that the complete path must
be stored in an internal data structure until its construction is complete.
Such an internal data structure is similar to a display list. Unlike display
lists, however, it only exists until the path has been rendered and cannot be
reused at a later time. Although the immediate rendering mode is internally
replaced by a retained mode, this fact remains hidden from clients. When
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path specification ends, the path structure must be traversed again to render
it. Information that was known at the time the path was specified, e. g. the
kind of curve to draw and how many control points to consume, must be
reconstructed from the data structure. Using late rendering thus inherently
involves a small overhead in both space and time. Nevertheless, the late
rendering approach is used in all known graphics interfaces that use an
immediate rendering model, for example Postscript (see Section 2.3.4) or
the Microsoft Windows GDI [56].

Early Rendering permits a graphics interface to paint path segments al-
ready during path specification. In the common case where clients stroke
hairlines and hairline curves, the graphics interface can immediately paint
primitives at the time the corresponding procedures are called. Yet the sys-
tem is still free to store the complete path in a data structure and to defer
rendering to a later time if a client requests it. Early rendering can thus
emulate late rendering.

The correct treatment of closed subpaths is more difficult with early
rendering than with late rendering because it is not clear whether to paint a
line cap or a line join when a client begins a subpath, even if it is understood
that the path should be stroked. If clients are allowed to close a subpath
whose specification is in progress, output of the area around the first point of
the subpath has to be delayed until enough information is available to decide
between a line cap and a line join at that point. This slightly complicates
the path renderer, which must remember coordinates and tangent vector of
the subpath’s starting point.

Another solution to the same problem is not to allow clients to close
an initially open subpath. An eventual Close operation is replaced by two
new operations, Enter for starting a subpath and Exit for ending it. Both
operations expect a vector argument; Enter expects the final direction of the
last subpath element (called d1 in Figure 2.17) and Exit the initial direction
of the first subpath element (called d0 in Figure 2.17). With the help of these
direction vectors, proper line joins can be rendered when starting or ending
a subpath. Zero length vectors can be used to indicate that a subpath is not
closed and that a line cap should be rendered instead of a join.

The enter/exit model is an interesting generalization since, in addition
to being useful for specifying closed subpaths, it can also be used to specify
partial subpaths. With Enter and Exit, any part of a subpath can be rendered
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Figure 2.17: Relevant direction vectors for Enter and Exit

with correct line joins at its ends. On the other hand, a client’s duty to provide
direction vectors for the first and last curve of a subpath may require it to
perform additional calculations. Surprisingly enough, direction vectors can
easily be deduced for most graphical objects, especially if their geometry is
already captured in a client data structure, as for example in the Leonardo
shape framework that is presented in Chapter 4.

As far as we are aware, the Gfx library that we present in Chapter 3 is
currently the only graphics interface that combines immediate mode with a
path model that is based on early rendering.

2.2.4 Raster Images

A raster image is a rectangular array of pixels, each of which contains a color
or alpha value. Raster images can not only be used as logical output devices
but also as graphical objects. Painting a raster image maps each pixel to
the corresponding area on the output device and paints the area with the
pixel’s color. If the source image is used as a mask and only contains alpha
information, clients must provide a color value with which non-transparent
pixels are painted.

There are several methods for creating raster images. As already men-
tioned, any program can use an image as a logical output device and render
graphical objects on it. Moreover, special paint programs let users create
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images interactively. Last but not least, images can be created using scan-
ners and digital cameras. These are devices that sample a signal (e. g. a
photographic image) at regular intervals and assign the sampled color value
to the corresponding pixel.

Raster images are superior to vector graphics for describing scenes with
lots of small details and many different shades of color, which makes them
the preferred model for storing scanned photographs or pictures. Further-
more, the time that is needed to render them on a raster display is constant
and does not grow with scene complexity. On the other hand, raster images
suffer from their fixed resolution. Rendering a raster image on a raster device
with a different pixel size requires that the image is scaled first. However,
scaling or otherwise transforming an image is a non-trivial operation (see
Section 3.4.5). Simple algorithms are prone to aliasing and other artifacts
whereas sophisticated ones require significant amounts of computation
[88].

Raster images can be considered a counterpart to vector graphics. Which
to use is highly dependent on the application, and both may be necessary at
the same time. Any graphics interface has to support both to be complete.
However, fine-grained manipulations that involve modifications to individ-
ual pixels are often not part of the primary graphics interface and are left to
other instances. An example of such a dedicated image processing library is
ImageMagick [43]. It not only allows reading and writing individual pixels,
but also supports loading and storing images in various file formats, image
filtering, image transformations, and color reduction.

2.2.5 Text

A third essential kind of graphical objects manages text. In European and
American culture, text consists of paragraphs, paragraphs consist of lines,
lines consist of words, and words consist of characters. To make matters
more complicated, the graphical representation of a character is called a
glyph. The distinction between characters and glyphs is necessary because
some languages use different glyphs for the same character (depending on
the position of the character within a word) or combine several characters
into one glyph, which is then called a ligature. For example, typographers
often replace an ‘‘f’’ followed by an ‘‘i’’ with a dedicated ‘‘fi’’ glyph.

Of special interest to a graphics interface is the observation that only a
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small set of glyphs is needed to display any text. Glyphs that are derived
from a consistent design and thus share a common look are collected in a
font. Once the font and the desired font size, which defines the height of a
line of text, are known, the graphics system can map any string of characters
into an appropriate series of glyphs.

Glyphs can be available in the form of raster image masks, outline curves,
or both. For raster displays with low resolution and small font sizes, image
masks are hard to beat in terms of rendering speed, memory requirements,
and output quality. However, as output resolution and font size increase,
the memory requirements of glyph images can no longer be neglected.
It may become more efficient to derive glyph images from a geometrical
description of their outline when needed. Besides, type designers typically
work with outlines when they create a font, making glyph outlines readily
available. However, the conversion of outlines to glyph images is a non-
trivial task which either requires sophisticated hinting mechanisms (to align
points in the glyph outline with the grid lines of the raster image before
scan-conversion, [2, 7, 72]) or manual post-processing to deliver acceptable
results, at least for low resolutions and small font sizes.

Graphics interfaces that support a general path model often allow their
clients to use glyph outlines exactly like other paths, implicating that glyph
outlines can be stroked, filled, and used for clipping. With a path model that
uses early rendering, the rendering mode is already known at the time when
the subpaths of a glyph outline are appended to the current path. Hence,
if the path would later be filled anyway, the path renderer may choose to
immediately paint corresponding glyph bitmaps instead of appending their
outlines to the current path. The graphics interface can thus benefit from the
superior quality and rendering speed of glyph bitmaps. This is not possible
with late rendering because the rendering mode will only be known when
the specification of a path is complete. To nevertheless be able to use glyph
bitmaps, graphics interfaces such as Postscript (see Section 2.3.4) provide
two different operations for rendering text: one for drawing filled glyphs
and another for appending glyph outlines to the current path.

In addition to glyph descriptions, fonts also contain metric information,
which is needed to position individual glyphs in the coordinate system of the
output page. When typesetting text from left to right, an imaginary horizontal
line, called baseline, serves as a reference for aligning glyphs vertically. Each
glyph is positioned relative to a current point on the baseline. Before moving
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on to the next glyph, the current point is moved along the baseline by a
distance which is called the glyph’s advance width (see Figure 2.18). The
spaces to the left and right of a glyph are called its sidebearings. Advanced

Figure 2.18: Glyphs and advance widths in relation to reference points on
the baseline

font models adapt the advance width for specific combinations of adjacent
glyphs, for instance by moving ‘‘A’’ and ‘‘v’’ closer together than the advance
width of ‘‘A’’ would suggest. This process, illustrated in Figure 2.19, is called
kerning.

Figure 2.19: Left: unkerned; right: kerned

2.3 Selected Examples

In this section, we examine several graphics interfaces in more detail. The
selection is not intended to list all existing graphics systems but to give a rep-
resentative overview of related work in the field of 2D graphics programming.
Most examples have been picked either because of historical importance or
because of their unique approach. The examples we have chosen to investi-
gate are GKS (see Section 2.3.1), QuickDraw (see Section 2.3.2), Oberon (see
Section 2.3.3), Postscript (see Section 2.3.4), MetaPost (see Section 2.3.5),
Scalar Vector Graphics (see Section 2.3.6), and Java 2D (see Section 2.3.7).
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Criteria. While we look at the chosen examples of existing graphics inter-
faces, we are especially interested in the following criteria.

-- What output devices are supported? Can clients add new output de-
vices?

-- Which rendering models are supported? What kind of internal state is
maintained?

-- Are user coordinate systems provided? Or at least normalized coordi-
nates? Is there support for affine transformations?

-- What can be said about the imaging model?

-- Are user-defined clip areas available? How are they specified?

-- What kinds of graphical objects are supported? Is there a general path
model? Can glyph outlines be used as paths?

-- What kinds of attributes can be used with vector graphics and text
objects?

A comparison of all chosen examples according to these criteria follows in
Section 2.3.8. From this comparison, we draw our conclusions and motivate
our research in Section 2.3.9.

Categories. Our examples can be roughly divided into three distinct cat-
egories: application programming interfaces (API), graphics languages, and
graphical object frameworks.

API are usually provided as part of or in close connection with an op-
erating system. Their goal is to assist application programs with creating
graphical output.

Graphics languages are often used where portability between platforms
is needed. They decouple the creator of a graphical scene, be it a human
or a machine, from the renderer that turns the program into graphical
output. Although graphics languages are hardly ever used in interactive
environments, they often follow the same basic principles as API.

Similarly, object frameworks also put an intermediate structure between
scene creation and rendering, but in the form of an object graph instead of a
textual description. They lie in the middle between straightforward API and
graphics languages, both in terms of rendering speed and abstraction level.
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Sample Figure. To give a small impression of how these graphics interfaces
are used in practice, we try to create the sample figure that is displayed in
Figure 2.20 with each of them. The sample figure comprises a solid gray circle,
a triangle which is stroked with thick dashed lines, a solid white rectangle
with a black frame, and a caption which is centered over that rectangle.
Some systems may not provide enough functionality to draw the figure, in
which case suitable approximations are used. The resulting programs are
shown in Figures 2.21 up to 2.27. Note that setup code is not displayed in
these examples, only those parts that actually render graphics.

���������
	�������

Figure 2.20: Sample figure

2.3.1 Graphical Kernel System

While it was not the first graphics API ever, the Graphical Kernel System
(GKS), which is based on earlier work on the 3D Core Graphics System (the
Core) in the second half of the seventies [33, 34], was the first to become
an international standard [44, 5]. It addressed the problems of earlier
graphics packages by providing device-independence and multi-platform
portability. In particular, the GKS specification lists the following points as
major differences to earlier graphics interfaces:

-- GKS has no notion of a current point; at the time, its authors regarded
current points as a relict from the time when most output devices were
pen plotters. Ironically enough, more recent interfaces again include a
current point for managing paths and text.

-- It defines a set of logical output devices called workstations, several of
which can be active at any time. Earlier systems were usually bound to
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a single device.

-- Input devices are modeled using six different classes of logical devices,
which are mapped to real devices such as keyboards and light pens.

-- Groups of output commands can be stored in so-called segments for
later use.

-- Applications can inquire state and capabilities of output devices.

Most GKS implementations are available as procedural libraries with lan-
guage bindings for at least Fortran and C.

C coordinate declarations
REAL TX(4), TY(4), RX(5), RY(5)
DATA TX /200.0, 400.0, 500.0, 200.0/
DATA TY /0.0, 0.0, 100.0, 0.0/
DATA RX /100.0, 350.0, 350.0, 100.0, 100.0/
DATA RY /50.0, 50.0, 150.0, 150.0, 50.0/

C
C circle (framed instead of filled)

GUCIR2(100.0, 100.0, 100.0) ! center and radius
C
C triangle

GSLN(GLDASH) ! set line style to dashed
GSLWSF(3.0) ! set line width scale factor
GPL(4, TX, TY) ! triangle polygon

C
C rectangle

GSLN(GLSOLI) ! line style back to solid
GSLWSF(1.0)
GSFAIS(GSOLID) ! fill area style
GSFACI(0) ! use background color for fill area
GFA(5, RX, RY) ! filled rectangle
GPL(5, RX, RY) ! stroked rectangle

C
C caption (not accurately centered)

GSTXFP(1, GLSTRKP) ! choose font 1, stroke precision
GSCHH(20.0) ! character height
GTX(200.0, 90.0, "2D Graphics")

Figure 2.21: Sample figure in GKS
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Workstations. The first operations of a program are to open and activate
a workstation. GKS implementations may offer many different kinds of
workstations, corresponding to existing or new windows in a frame buffer
or to various virtual output devices that write to files. However, users cannot
add custom output devices to the available pool of workstation types.

Graphical Objects. The basic drawing primitives in GKS are polylines, poly-
markers (special marker symbols painted at point locations), text, fill areas
(filled polygons), cell arrays (raster images), and generalized drawing prim-
itives (GDP). The latter are ‘‘a standard way to be non-standard’’ and allow
implementations of the standard to provide additional primitives, such as
circles and ellipses. GDP can (or could) supposedly be registered with
the International Standards Organization (ISO) for further revisions of the
standard.

Attributes and Bundles. The visual appearance of each drawing primitive is
influenced by a matching set of attributes. These attributes are stored in the
graphics state of each workstation. Polylines, for instance, have a line style, a
line width, and a line color associated with them. Fill areas have a fill color,
a fill style (hollow or solid), and a fill pattern. Text output is influenced by
font, character spacing, character expansion, text alignment, and character-
up vector. The latter allows vector-based fonts to be typeset in any direction.
An interesting point is that attributes can not only be set individually, but
also by selecting an attribute bundle. Attribute bundles allow applications to
use abstract styles instead of concrete attribute combinations. Applications
must select for each attribute whether it can be set individually or only in
bundles.

Windows and Viewports. Device independence is a central part of GKS.
GKS relies on two coordinate mappings to provide device independence, one
(the normalization transformation) from world coordinates to normalized
device coordinates in the range from 0 to 1, and another (the workstation
transformation) from normalized device coordinates to device coordinates.
Both transformations map a rectangle in the source coordinate system (the
window) to a rectangle in the target coordinate system (the viewport). Appli-
cations can store a number of different normalization transformations for
every logical output device in one of a predefined set of transformation slots.
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Depending on which transformation is active, partial images can be drawn
at different locations and in different sizes. Both the normalization trans-
formation and the workstation transformation can also be used to restrict
the area where output is produced. Thus, GKS allows clients to customize
the current clip area to an arbitrary rectangle.

Segments. To simplify repeated output of the same graphical object, any
series of output primitives can be stored in a segment and rendered directly
from the segment store later. Segments are thus equivalent to what we called
display lists in Section 2.1.1. Depending on the kind of output device, GKS
may actually store the segments in the local memory of a graphics terminal
instead of the memory where the host application runs. In addition, the
normalization transformation is applied to all primitives before storing them
in a segment. Because of these two aspects, segments can usually not only
be rendered with less programming effort but also faster than by drawing
single output primitives repeatedly.

Conclusion. Because at the time when GKS was introduced it was the first
of its kind and was clearly superior to everything else in the workstation
market, it found widespread use and inspired many further developments.
Although it has in the meantime been replaced by more powerful interfaces,
GKS was the first to include many of the features that are still relevant for
more recent graphics interfaces.

2.3.2 QuickDraw

QuickDraw [6] is the native graphics interface of the Apple Macintosh com-
puter. Although it was developed in the first half of the 1980s, it is still in
use today, almost twenty years later, with relatively few extensions added
since then.

Ports. Rendering in QuickDraw is based on multiple independent drawing
environments, called ports. Ports are data structures that manage a current
graphics state and produce output on an underlying bitmap, either the screen
or an off-screen buffer. Many ports can share a bitmap, each managing a
separate state and coordinate system. Several ports can be open at the same
time, but only one is active.
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PROCEDURE Paint;
VAR r: Rect; w: INTEGER;
BEGIN

(* circle *)
SetRect(r, 0, 200, 200, 0);
FillOval(r, gray);

(* triangle *)
PenSize(3, 3);
PenPat(dkgray); (* pen pattern for lack of dash pattern *)
ShowPen;
MoveTo(200, 0); LineTo(400, 0); LineTo(300, 200); LineTo(200, 0);
HidePen;

(* rectangle *)
SetRect(r, 100, 150, 350, 50);
FillRect(r, white);
PenSize(1, 1); PenPat(black);
PaintRect(r);

(* caption *)
TextSize(20);
w := StringWidth("2D Graphics");
MoveTo(100 + (250-w) DIV 2, 90);
DrawString("2D Graphics");

END Paint;

Figure 2.22: Sample figure in QuickDraw
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Coordinate Grid. In QuickDraw, integer coordinates always denote points
where horizontal and vertical lines of a regular grid intersect. Between
adjacent grid lines, pixels are embedded. To map a grid point into device
coordinates, its coordinates are added to those of the port’s origin. Neither
sub-pixel precision nor user-defined coordinates are supported.

Current Pen. QuickDraw supports a current pen (in the sense of a brush;
see Section 2.2.2), which is a rectangle of user-defined dimensions with a
user-defined fill pattern. The reference point of a pen is at its upper left
corner; when a line between two grid points is drawn, the pen affects the
pixels below and to the right of the line. Width and height of the pen,
together with the direction of the line, define the resulting line width, which
may thus vary considerably, especially for non-square pens. This approach
allows painting thick lines fast; however, it does not lend itself well to
drawing line caps and line joins in a consistent manner. QuickDraw uses
pens to render lines, rectangles (also with rounded corners), ovals (axis-
aligned ellipses), arcs, wedges, and polygons.

Text. QuickDraw uses character bitmaps for rendering text. It lets its clients
select a font family, a style (including outlined and shadowed variants), and
a point size. If a bitmap font is not available in the requested size, the
Macintosh font manager creates it dynamically by scaling bitmaps from an
existing size of the same font.

Pictures, Polygons, and Regions. Render directives in QuickDraw are usu-
ally executed immediately. However, a port can also be put in a special
recording mode. It then either records a picture, which corresponds to a
display list in our terms but can be scaled when it is rendered, a polygon,
which is a connected sequence of lines, or a region, which is an arbitrary area
constructed from boolean combinations of primitive shapes and other re-
gions. One region always defines the current clip area. Besides, a region can
be filled with a pattern, or the current pen can be led along the interior side
of its contour. QuickDraw’s powerful and efficient region implementation
was one of its major achievements at the time of its introduction.

Imaging. In the original implementation of QuickDraw, only monochro-
matic bitmaps were supported. Hence, QuickDraw’s imaging model merely
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consisted of a transfer mode which specified the boolean operation that was
used to combine source and destination pixels. Nevertheless, QuickDraw
could paint bitmap masks with binary or and supported rubber-banding
with binary xor. More recent versions of QuickDraw also deal with colored
images and additional transfer modes.

Customization. Although designed before object-oriented programming
became popular, QuickDraw allows customization of rendering procedures
by exchanging procedure variables in the method table that is associated
with each port. QuickDraw itself uses this mechanism for printing graphics.

Conclusion. Like GKS, QuickDraw is one of the pioneering 2D graphics
interfaces. Many of the concepts it introduced, such as regions or pens,
resurface in later graphics interfaces. More recent versions of QuickDraw
provide additional features, notably support for multiple monitors, color,
and pixmaps (raster images that contain colored pixels instead of black and
white only). An alternative object-based approach (QuickDraw GX [8]) was
not received well by programmers and is discontinued. Other well-known
API such as the GDI of Microsoft Windows [56] or the X-Windows library for
UNIX workstations [61] are comparable to QuickDraw in terms of software
architecture, but offer additional and refined functionality.

2.3.3 Oberon System 3

The main design goal for the Oberon System [85, 86] was to implement a
complete operating system with minimal effort and thus to keep everything
as simple as possible. Its graphical features were indeed limited: it only
rendered pixels, rectangles, and bitmap patterns (especially glyph bitmaps).
Besides, it did not feature a unified interface for rendering on displays and
printers. Printing required that a separate module with similar, but not
equal functionality was imported. Rendering into raster images was not
supported at all.

Oberon System 3 [36, 51] is derived from the original Oberon System, but
extends it with a library concept for building persistent object hierarchies. It
includes a component-based graphical user interface, called Gadgets, which
adds additional primitives for drawing lines, circles, ellipses, and polygons
with attributes such as line width and fill pattern. Oberon System 3 still
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IMPORT Display, Display3, Fonts; (* required modules *)

PROCEDURE Paint (mask: Display3.Mask; x, y: INTEGER);
VAR

col: Display.Color;
px, py: ARRAY 3 OF INTEGER;
font: Fonts.Font;

BEGIN
(* circle *)
col := Display.RGB(128, 128, 128);
Display3.Circle(mask, col,

Display.solid, (* pattern *)
x+100, y+100, 100, 0, (* center, radius, and width *)
{Display3.filled}, (* paint mode *)
Display.replace); (* imaging model *)

(* triangle *)
px[0] := x+200; py[0] := y;
px[1] := x+400; py[1] := y;
px[2] := x+300; py[2] := y+200;
Display3.Poly(mask, Display3.black,

Display.grey0, (* use bitmap pattern for lack of dash pattern *)
px, py, 3, 3, (* pinpoint coordinates, 3 corners, width 3 *)
{}, Display.replace);

(* rectangle *)
Display3.ReplConst(mask, Display3.white,

x+100, y+50, 250, 100, (* lower left corner, width, and height *)
Display.replace);

Display3.Rect(mask, Display3.black, Display.solid,
x+100, y+50, 250, 100, 1, Display.replace);

(* caption *)
font := Fonts.This("Syntax20.Scn.Fnt");
Display3.CenterString(mask, Display3.black,

x+100, y+50, 250, 100,
font, "2D Graphics",
Display.paint);

END Paint;

Figure 2.23: Sample figure in Oberon System 3
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requires a separate interface for printing, but at least provides equivalent
procedures in the printer and the screen interfaces.

Coordinates are always specified in the coordinate system of the cor-
responding output devices. Thus, clients are themselves responsible for
mapping display coordinates to printer coordinates. System 3 supports
overlapping frames on the screen and stores their visibility in mask struc-
tures (which correspond to the regions from Section 2.1.4). Output is clipped
to the interior of these masks.

Unlike other graphics interfaces, Oberon’s display system is stateless and
does not need a graphics context structure or a graphics state; all graphical
attributes are passed as parameters to individual drawing procedures. In
spite of this simplification, Oberon offers a functionality which, apart from
the lack of display lists, is not far from that of the original QuickDraw.
However, such a stateless interface is only practical as long as the number of
parameters per drawing operation stays small. Otherwise, the overhead that
results from having to push parameter values onto the stack and checking
whether parameter values are valid in the callee may negatively affect overall
performance.

2.3.4 Postscript and Display Postscript

Postscript is a page description language developed by Adobe Systems [3].
In a typical setting, applications create a Postscript source file, which they
can later send to a printer with built-in Postscript support. Because of
its high level of abstraction and its device-independence, Postscript has
become the de facto standard for creating professional quality print. Display
Postscript (DPS) is an extension of the standard Postscript language that is
specifically designed to run within a window system. DPS therefore adds a
few additional operators to the language which allow it to manage multiple
graphical contexts in a multi-processing environment.

Input. Postscript is a general programming language. It reads characters
from an input stream and interprets them. Its syntax and its stack-based
evaluation of expressions are simple, but its support for user-defined pro-
cedures and its use of arrays and dictionaries for building complex data
structures make it very powerful. In addition to character streams, DPS
systems also accept input in the form of binarily encoded operations. This
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% circle
100 100 100 0 360 arc
0.5 setgray fill

% triangle
200 0 moveto 400 0 lineto 300 200 lineto closepath
[10 6] 0 setdash 3 setlinewidth 0 setgray stroke

% rectangle
1 setgray 100 50 200 100 rectfill
0 setgray 1 setlinewidth 100 50 200 100 rectstroke

% caption
/Helvetica 20 selectfont
200 (2D Graphics) stringwidth pop sub 2 div
150 add 90 moveto (2D Graphics) show

Figure 2.24: Sample figure in Postscript
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permits them to achieve better performance since the parsing stage of the
interpreter can be skipped. A standard component of a DPS system is there-
fore a pre-processor which replaces Postscript code that is embedded for
example in a C program by direct calls to the DPS interpreter.

Graphics State. Rendering in Postscript is based on a graphics state where
attribute values are stored. The graphics state includes a current user coor-
dinate system in the form of an affine transformation matrix and a current
clipping region. In the case of DPS, multiple graphics states can operate
on the same physical screen. All values of the graphics state, including clip
area and current path, can be pushed on a stack and later restored, enabling
clients to efficiently traverse hierarchical structures in Postscript programs.

Path Model. Postscript features a rich set of built-in operators for creating
graphics. Its vector graphics are based on a general path model, where
arbitrary sequences of lines and cubic Bézier curves are appended to a
current path. Postscript uses late rendering for its path model; when the
path is complete, it can be stroked using the current attribute values, its
interior can be filled using the current color and pattern, or the current clip
area can be intersected with the path’s outline, restricting output to the
resulting new clip area for future operations. The current path can also be
modified before painting it, for example by approximating all its curves with
short line segments or by replacing it with the contour of a thick curve along
the visited path.

User Paths. A special recording mode is not necessary because frequently
used building blocks can be placed in Postscript procedures and invoked
whenever needed. However, to avoid re-interpreting a procedure several
times to draw a path, the current path can be stored in a user path. Like
procedures, user paths can be invoked repeatedly, but need not be processed
by the interpreter. Although user paths are in some ways similar to display
lists, they are less powerful than general display lists because they cannot
accommodate raster image data.

Fonts. Text is usually rendered by filling glyph outlines. To speed up text
output, glyph outlines are scan-converted to raster images the first time a
glyph is rendered. The resulting raster images are stored in an internal cache.
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Whenever cached glyphs are painted again, the corresponding raster image
can be copied from the cache. To improve output quality on low-resolution
devices, Postscript outline font descriptions may contain hints. A rasterizer
may consult these to slightly adjust glyph outlines to the underlying pixel
grid prior to scan-conversion. Glyph outlines can also be appended to the
current path. They can therefore be filled with a pattern or used to clip
other objects. In addition to using outline fonts, Postscript programs can
define their own fonts by associating a custom procedure with each glyph.
In general, a font is thus a vector of graphical objects, indexed by character
code.

Images. Raster images are commonly embedded into Postscript code by
encoding them as character streams. When the interpreter encounters
an image operator, it suspends normal execution and starts consuming
characters from the embedded stream that immediately follows the image
operator. After all characters of the embedded stream have been read, the
interpreter resumes parsing.

Image data can be specified in a variety of formats; its exact layout and
the information that is stored in each pixel are defined by the creator of the
Postscript file. As a special case, an image can be interpreted as a bitmap
mask. To ensure that binary image data can be transmitted over ASCII
channels, image data is usually encoded in hexadecimal ASCII streams.

Conclusion. The complete set of Postscript operators is rather large and
includes support for different kinds of color spaces, control over half-toning
(which is the approximation of a shade of color or gray with a pattern of
dots), device-specific settings, and procedural patterns in addition to the
features described above. This wide range of functionality and the fact that
Postscript descriptions are dynamic (further functionality may be included in
the form of user-defined procedures) make it difficult to import Postscript
files into other applications and have kept Postscript from becoming a
generally accepted format for exchanging graphics. The Portable Document
Format (PDF), also developed by Adobe [4], addresses that weakness. PDF
uses the same model for rendering graphics but does not support Postscript’s
programming language constructs. It has therefore become the format of
choice for distributing page-oriented documents on the Web.
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2.3.5 MetaPost

MetaPost [42, 41] is a programming language for describing 2D graphics. It
processes input files and generates corresponding Postscript files, which are
then embedded within other documents. To a large part, the syntax and
functionality of MetaPost are identical to that of Metafont, Knuth’s glyph
description language [47]. Unlike Postscript, which is a general programming
language with a lot of built-in operators for producing graphics, MetaPost is
a special purpose language that relies on dedicated syntax and specialized
data types, such as paths, transforms, and colors, to describe graphical
scenes.

beginfig(1);
path c, r;
c = fullcircle scaled 200 shifted (100, 100);
fill c withcolor .5white;

pickup pencircle scaled 3;
draw (200, 0)--(400, 0)--(300, 200)--cycle

dashed dashpattern(on 10 off 6);

r = (100, 50)--(350, 50)--(350, 150)--(100, 150)--cycle;
fill r withcolor white;
pickup pencircle scaled 1;
draw r;

label("2D Graphics", (225, 100));
endfig;

Figure 2.25: Sample figure in MetaPost

Language. The MetaPost language supports local scoping, parameterized
macros, if-statements, and for-loops. Furthermore, macro definitions can be
loaded from input files. In fact, many of MetaPost’s predefined operations
are implemented as macros that are themselves implemented in terms
of more primitive operators. (The same is true in the case of Knuth’s TEX
system for typesetting [46].) This scheme allows clients to extend MetaPost’s
functionality by new macros; however, new primitives cannot be added



48

without recompiling the MetaPost source code.

Paths and Pens. As in Postscript, paths in MetaPost consist of lines and
cubic Bézier curves, but specification of Bézier curves in MetaPost is sim-
pler because MetaPost can calculate the position of off-curve control points
automatically. If no additional parameters are given, the control points are
positioned such that the resulting curve has continuous slope and approx-
imately continuous curvature. Alternatively, the curve specification may
contain directives to follow a user-defined direction or curvature at some
point. As with other systems, paths can be stroked, filled, or used for clip-
ping. Stroking leads a virtual pen along the visited path. The shape of this
pen is by default a unit circle that can be scaled to the desired size. However,
the current pen can also be derived from an arbitrary closed path to simplify
the creation of calligraphic effects. Furthermore, paths may be dashed and
can be drawn with one of several line cap and join styles or with arrow heads
at end points.

Labels. Text is integrated in MetaPost descriptions by placing labels relative
to an anchor point. Labels are not restricted to literal string constants;
they may also include TEX formatting instructions for typesetting labels.
However, this requires that the TEX typesetting package is available on the
same machine.

Images. Unlike other interfaces, MetaPost and Metafont do not support
raster images. This is not surprising, considering that Metafont’s goal is to
generate glyph bitmaps from a description of their outlines.

Linear Equation Solver. A distinctive property of the MetaPost language
is its strong support for numerical calculations. It is able to solve linear
equation systems, facilitating for example the placement of objects at points
where two lines intersect. Moreover, it can intersect arbitrary paths and build
new paths from the resulting pieces.

Conclusion. Although MetaPost does not directly render output and merely
translates its input to another graphics language, it is an interesting example
of how graphical functionality can be presented to clients. Its focus on
graphics-specific syntax was a major source of inspiration for Vinci, our own
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graphical description language (see Chapter 6).

2.3.6 Scalable Vector Graphics

Scalable Vector Graphics (SVG, [90]) is the name of a specific extension
to the eXtensible Markup Language (XML, [89]) for structured information
exchange. Thanks to the World Wide Web (WWW), XML is becoming more
and more popular for embedding arbitrary data into distributed documents.
SVG are the most recent of several proposals to include vector graphics in
Web-based documents, but appear to become the solution that is endorsed
by the W3 consortium.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG December 1999//EN"

"http://www.w3.org/Graphics/SVG/SVG-19991203.dtd">
<svg width="405" height="205">

<desc>graphics example</desc>
<circle cx="100" cy="100" r="100"

style="fill:gray" />
<polygon style="fill:none; stroke:black; stroke-width:3"

points="200,0 400,0 300,200" />
<rect x="100" y="50" width="200" height="100"

style="fill:white; stroke:black;
stroke-width:1; stroke-dasharray:10 6" />

<text x="225" y="100" text-anchor="middle"
style="font-family:Verdana; font-size:20pt; fill:black">

2D Graphics
</text>

</svg>

Figure 2.26: Sample figure in SVG

XML. XML is not a programming language and does not support the defi-
nition of macros or procedures. Instead, XML and SVG descriptions contain
a sequence of object definitions. Objects can be named and repeatedly ref-
erenced within a document, or they can be imported from another (remote)
document by specifying a corresponding universal resource locator (URL).
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A SVG description is thus a textual representation of a potentially complex
object graph.

Graphical Objects and Attributes. Concerning graphical capabilities, SVG
offer a rich set of basic elements from which complex graphics can be
constructed. In addition to primitive shapes, including lines, rectangles,
ellipses, polylines, and polygons, SVG provide general path objects built
from lines, elliptical arcs, and quadratic and cubic Bézier curves.

As with other graphics interfaces, all graphical objects can be stroked,
filled, or used for clipping. In addition to solid color and raster image
patterns, SVG support color gradients for painting shapes. Moreover, marker
objects can automatically be placed at all control points of a path. Markers
can also be rotated to match the curve direction, making them suitable for
drawing arrow heads.

All painting attributes also apply to text objects; text is thus a special
case of a general path. Furthermore, text can be typeset along an arbitrary
path object. To ensure that the fonts which are used in the description are
available on the system where the SVG are viewed, font outlines may be
embedded directly in the corresponding descriptions.

Coordinates. Coordinates are specified within a current user coordinate
system, which is stored in an affine transformation matrix. The user coor-
dinate system is initially equal to the viewport coordinate system, which is
in turn initialized by the context where the SVG description is embedded.
Both the user coordinate system and the viewport coordinate system can be
changed within the description.

Imaging Model. SVG are strongly oriented towards raster devices. Not
only can raster image objects be included anywhere in a SVG description,
but the complete object graph is itself rendered into a raster image first
and copied to the output device from there. It is even possible to render a
subset of the graph into a raster image by grouping the corresponding set of
objects. SVG allow raster images to include opacity information and support
alpha blending for smoothly integrating raster images with the background.
An image can also be used as a mask. It then restricts output to those areas
where it is opaque. This corresponds to our concept of a stencil buffer (see
Section 2.1.4).
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Special Features. Several features in SVG are specifically targeted at creating
embedded graphics for Web pages. To simplify the simulation of shadow
effects and embossed structures, images can be sent through a pipeline of
effect filters. In this manner, various image processing filters can transform
an image that depicts a (partial) SVG description before it is rendered on
the output device. In addition, SVG include animation capabilities. These
extensions intend to make SVG a vector-based alternative to the widely used
GIF raster image format.

As with other XML extensions, scripted events can be attached to SVG
descriptions. SVG descriptions can thus react if a user moves the mouse
pointer over them or clicks on them. Moreover, each SVG object can contain
a hint which indicates to a SVG renderer whether rendering speed, legibility,
or geometric precision should be strived for.

Conclusion. The main purpose of SVG is the exchange of graphical in-
formation within the framework established by XML. It therefore inherits
syntax, structure, object model, and style sheet support from XML. This en-
sures that embedded SVG can easily be integrated into XML viewers, even if
only to ignore them. On the other hand, their verbose and unwieldy syntax
makes SVG descriptions tedious to write for humans, suggesting that SVG
will primarily be generated by applications. In fact, SVG descriptions can be
regarded as an open file format for storing vector-graphics.

2.3.7 Java 2D

Java 2D [74, 39, 50] is a recent API that substantially extends the graphi-
cal capabilities of the original Java Abstract Windowing Toolkit (AWT). As
many other API for Java, Java 2D is based on an exclusively object-oriented
architecture.

Context Objects. The original Java AWT specification features a Graphics
class for rendering lines, rectangles, ellipses, and text on abstract output
devices. By substituting a corresponding extension of Graphics, graphical
output can be produced on any physical or logical device. However, the
interface of Graphics only offers a limited amount of functionality. Java 2D
therefore introduces Graphics2D, an extension of Graphics which features
additional functionality.
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public void paint (Graphics g) {
Graphics2D g2 = (Graphics2D) g;

// filled circle
g2.setColor(Color.gray);
Ellipse2D e = new Ellipse2D.Float(0, 0, 200, 200);
g2.fill(e);

// dashed triangle
g2.setColor(Color.black);
float[] dash = {10.0f, 6.0f};
BasicStroke s = new BasicStroke(3.0f, BasicStroke.CAP_BUTT,

BasicStroke.JOIN_MITER, 10.0f, dash, 0.0f);
g2.setStroke(s);
GeneralPath p = new GeneralPath(GeneralPath.NON_ZERO);
p.moveTo(200, 0); p.lineTo(400, 0); p.lineTo(300, 200);
p.closePath();
g2.draw(p);

// framed rectangle
g2.setColor(Color.white);
g2.fillRect(100, 50, 250, 100);
g2.setColor(Color.black);
g2.setStroke(new BasicStroke(1.0f));
g2.drawRect(100, 50, 250, 100);

// centered string
Font font = new Font("Arial", Font.PLAIN, 20);
g2.setFont(font);
FontMetrics fm = g2.getFontMetrics();
int w = fm.stringWidth("2D Graphics");
int dy = -fm.getHeight()/2 + fm.getDescent();
g2.drawString("2D Graphics", 100 + (250-w)/2, 100+dy);
}

Figure 2.27: Sample figure in Java 2D
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Rendering Model. Any Java object that implements the Shape interface
is a graphical object that can be rendered on a Graphics2D object. The
Shape interface lets any object (in particular Graphics2D objects) iterate
over the contour of a shape object. Contours are modeled as general paths
that consist of lines, quadratic curves, and cubic curves. Examples of objects
that implement the Shape interface are lines, rectangles, ellipses, and general
paths. Shape contours can be painted (stroked or filled) or combined with
the current clip region. Special Area shapes perform boolean operations,
thereby supporting what Java 2D calls ‘‘constructive area geometry’’ (CAG)
or -- in our terms -- a shape algebra (see Section 2.1.4).

Stroke Objects. When a shape is stroked, the Graphics2D visits the shape’s
contour and asks the current Stroke object of the Graphics2D object to
convert the resulting path into a new path along the outline of the shape
path; this new path is then filled. Any class can in theory implement the
Stroke interface, but Java 2D itself implements it only in the BasicStroke
class, which converts the path to an area using the same attributes as other
graphics interfaces, namely line width, line cap and join styles, and dash
pattern. An interesting point is that a Stroke object must convert each
shape to an area, thereby forfeiting any possibility of stroking objects with
hairlines.

Paint Objects. For filling a shape, the interior of its contour is passed to
the current Paint object. Examples of objects that implement the Paint
interface are Color, GradientPaint, and TexturePaint, filling a shape’s interior
with solid color, a color gradient, or an image pattern, respectively.

Coordinate System. Before shapes are passed to a Paint object, Java 2D
applies the current transformation to them. Transformations are imple-
mented with affine matrices. Java 2D therefore supports the usual set of
affine transformations.

Imaging Model. When two graphical objects overlap, the current Com-
posite object computes the color that should appear in that location. The
most common operation is to paint objects on top of all previously rendered
shapes. When alpha values are involved, however, objects may instead be
blended with previously rendered graphics. The necessary alpha values are
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derived from the current Paint object or from a raster image.

Text. To render text, Java 2D converts a string into a series of glyphs,
automatically substituting ligatures for corresponding glyph sequences. The
series of glyphs is then treated in the same way as all other shapes. Their
contour may be stroked, filled, or added to the clip path. Additional Java 2D
classes can assist clients with the display of insertion marks (carets) and
with text layout.

Rendering Quality. Like SVG, Java 2D gives its clients some control over
the quality of its output with so-called rendering hints. However, these are
indeed just hints, as an implementation is free to ignore them.

Raster Images. Java 2D supports three different models for rendering raster
images. With the push model, an image producer sends image data to a
consumer, possibly over a network connection. With the immediate mode
model, images are stored in and displayed from a memory buffer. With the
pull model, an image consumer asks a producer to deliver image data when
it needs to render them.

For buffered images, several interacting classes manage the pixel buffer
and define what information is stored in each pixel and how it is stored.
Additional classes implement filtering operations, such as color conversions,
affine transformations, or amplitude scaling. A buffered image can be
rendered on any Graphics2D object. Alternatively, a new Graphics2D object
can be created on top of an image, using the image as a virtual output device.

Conclusion. Java 2D is a complex graphical object framework that lets its
clients customize almost every aspect of 2D rendering. However, its many
interacting classes and abstract protocols compromise its efficiency. For
example, because all stroked objects must be converted to an area that can be
filled, efficient algorithms for drawing hairlines cannot be used. Moreover,
since only explicit objects can be rendered, many temporary objects may
have to be allocated; this can unnecessarily strain Java’s garbage collector.
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2.3.8 Comparison

In Table 2.1, we list the criteria from the beginning of Section 2.3 and how
each of our examples implements them. An entry of − means that the
graphics interface does not implement a feature. ++ denotes full support
of a feature, whereas + stands for partially supported features.

Output Devices. While most graphics interfaces can address more than
one device, only QuickDraw and Java 2D allow their clients to dynamically
customize the set of available output devices (and QuickDraw only in an
inelegant manner). There is no technical reason for this restriction since the
additional overhead of indirect procedure calls is neglectable compared to
the overall number of processor cycles that are needed to draw graphical
objects.

Rendering Model. Due to the wide spectrum of our examples, the ren-
dering model is one of the aspects where the differences among graphics
interfaces are the most pronounced.

Traditional API such as GKS, QuickDraw, or Oberon are very efficient
compared to graphics languages and graphical objects structures, but offer
less flexibility. They may also depend on specific output devices, hardware
platforms, and programming languages.

Graphics languages offer a high level of abstraction and are independent
of output devices and hardware platforms. Although DPS systems prove that
it is possible to integrate graphics languages with general purpose program-
ming languages and pre-compile the former to bypass lexical and syntactical
analysis, their interpretation remains a complex task, which degrades the
performance of the resulting solution. We therefore consider dedicated
graphics languages not to be suitable as the primary graphics interface of a
system.

Object structures, as in SVG or Java 2D, lie somewhere between tra-
ditional API and graphics languages. In the case of SVG, their fixed set
of graphical objects and attributes could just as well be mapped onto a
matching procedural interface. The extensible object framework of Java 2D,
however, allows its clients to customize many aspects, particularly how ob-
jects are painted. The price to be paid is performance. Because of its many
abstract interfaces and its distributed functionality, Java 2D simply cannot
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GKS Quick- Obe- Post- Meta- SVG Java
Draw ron script Post 2D

Output devices
multiple ++ + − ++ ++ ++ ++

customizable − + − − − − ++

Rendering
immediate ++ ++ ++ + + − +
display list ++ ++ − + ++ − −

object based − − − − − ++ +

graphics state ++ ++ − ++ ++ − ++

Coordinates
device − − ++ + − − +

normalized ++ + − ++ ++ ++ ++
user + − − ++ − ++ ++

affine − − − ++ ++ ++ ++

Imaging model
overdraw ++ ++ ++ ++ ++ ++ ++

xor/or − ++ ++ − + ++ ++
blend − − − − − ++ ++

Clipping
set operations − ++ + − − − ++

path − − − ++ ++ ++ ++

Path model
late rendering − − − ++ ++ − −

object based − − − − − ++ ++
glyph outlines − − − ++ − ++ ++

Fill attributes
color ++ ++ ++ ++ ++ ++ ++

pattern + ++ ++ ++ − ++ ++
gradient − − − − − ++ ++

Stroke attributes
color ++ ++ ++ ++ ++ ++ ++

pattern − ++ − − − ++ ++
dashed + − − ++ ++ ++ ++

caps and joins − − − ++ ++ ++ ++

Table 2.1: Feature comparison
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render a black filled rectangle as fast as a monolithic API.

Graphics State. As soon as the number of object and context attributes
exceeds about half a dozen, it becomes reasonable to maintain a graphics
state where all these values are stored. The only exceptions are Oberon,
where attribute values are passed as parameters to render procedures, and
SVG, where attribute values are defined per object or inherited from parent
nodes in the object graph.

Coordinates and Transformations. Only Oberon operates in device coor-
dinates, all other systems either use a normalized coordinate system or let
clients choose a custom coordinate system, usually based on combinations
of affine transformations. MetaPost does not permit its coordinate system
to be modified, but can apply affine transformations to point coordinates.

Imaging Model. A simple imaging model where new objects completely
hide previously painted objects sufficiently deals with most situations. To
implement rubber-banding and to paint bitmap masks, API such as Quick-
Draw and Oberon provide additional xor and or modes. Recently developed
graphics interfaces such as SVG and Java 2D also provide alpha blending,
which is especially useful for displaying raster images.

Clipping. Almost all interfaces allow complex clip areas to be specified,
either as boolean combinations of other primitive shapes or by intersecting
the interior of a path with the existing clip area.

Paths. More recent graphics interfaces tend to include a generic path
model, where those that rely on immediate mode always use late rendering
for drawing paths. The primitive segments from which paths are built always
include lines and cubic curves, in some cases (SVG, Java 2D) also quadratic
curves. Moreover, graphics interfaces that support general paths usually
allow glyph outlines to be treated as subpaths.

Attributes. Most interfaces offer at least color and pattern values for
stroking and filling objects. For stroking only, the standard set of attributes
includes dash patterns, cap styles, and join styles. Even Java 2D, which
in principle allows fill and stroke attributes to be customized, only pro-
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vides one default stroke object with exactly those attributes. Java 2D and
SVG are the only interfaces that directly support gradient fills; others (e. g.
Postscript) must emulate gradient fills by restricting the clip area to the
shape in question and drawing the color gradient explicitly.

2.3.9 Conclusions

According to the above comparison, it seems that there is a canonical set of
graphical objects and attributes which is sufficient for generating any graph-
ical output that applications or programmers need to create. Innovation
therefore can hardly be achieved by adding new graphical functionality to
existing interfaces. Instead, we intend to focus on how graphical capabilities
can be accessed and reused.

Depending on the environment where they are used, all of the presented
approaches are potentially useful since different user requirements favor
different solutions. Some applications need an efficient API, whereas others
benefit from being able to specify graphics on an abstract object level for
storing them in a platform independent manner. Our conclusion is that
different kinds of graphics interfaces are indeed necessary.

Since there seems to be a wide agreement on the set of reasonable
features in a graphics interface, we believe that it is possible to choose a few
selected concepts and incorporate them in an efficient API, an extensible
object framework, and a dedicated graphics language. We conclude this
chapter with a list of goals that we seek to achieve in the remainder of this
thesis:

-- Provide clients with an architecture that offers not one but several
graphics interfaces, all of which rely on similar concepts but differ in
their level of abstraction, their performance, and their potential for
customization.

-- Prove the feasibility of a path model that is based on early rendering,
which to our knowledge has so far never been implemented.

-- Strive for extensibility wherever appropriate because the resulting po-
tential for customization makes it easier for clients to reuse and smoothly
integrate existing systems and applications with each other.



C H A P T E R 3

Design and Implementation
of a Graphics Library

At the core of our 2D graphics architecture lies a powerful API, called Gfx,
which offers its clients many of the features that are discussed in Chapter 2.
It is a traditional API in the sense that it uses a fixed interface and an
immediate rendering model. However, unlike other traditional API, it can be
customized to support new physical and logical output devices with little
effort. Although Gfx is based on a comparably simple rendering model, it
provides advanced graphical abstractions such as general paths, custom clip
areas, and user coordinate systems.

Figure 3.1 shows the overall structure of Gfx. The central entity where the
entire Gfx architecture is anchored is the Gfx module. It defines an abstract
graphical context type and the operations that such contexts provide. The
Gfx interface is discussed in detail in Section 3.2.

Gfx is structured in a modular fashion; much of the functionality that it
offers to its clients is implemented in one of several building blocks (subsys-
tems). As illustrated in Figure 3.1, Gfx relies on four different subsystems; the
path subsystem (see Section 3.3), the image subsystem (see Section 3.4), the
font subsystem (see Section 3.5), and the region subsystem (see Section 3.6).
These subsystems are for the most part independent of each other and can
be reused in isolation. This for example allows an application to only import
the image subsystem, but not the entire Gfx library.

Because the Gfx interface is based on an abstract context type, the Gfx
module itself cannot render output on any particular device. Instead, several
concrete context extensions which render on specific physical and logical
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Figure 3.1: Overview of Gfx
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devices are derived from this abstract interface. Those extensions that drive
raster devices are usually derived from another abstract context, which is
defined in module GfxRaster (see Section 3.7). The set of concrete contexts
that Gfx currently offers includes contexts for drawing on the screen, on
printers, into bitmap images, and into Postscript files.

Gfx is built on top of Oberon System 3. Although its concepts are of
a general nature and independent of the underlying operating system, we
shall frequently motivate design decisions and implementation strategies
by referring to equivalent or similar features in Oberon System 3.

3.1 Making a System Extensible

Before delving into the design and implementation aspects of Gfx, a few
general remarks on our notion of extensibility are in order. The ultimate goal
of an extensible system must be that new components can be dynamically
added to an already running system. This requires that the underlying
operating system supports dynamic loading of separately compiled modules.

Another requirement is that objects created by these dynamically loaded
modules can be integrated within existing data structures in a type-safe
manner. Today’s object-oriented programming languages achieve this with
type extension (inclusion polymorphism) and late binding. Type extension
allows programmers to extend a base type with derived types. Instances
of derived types are then accepted wherever instances of the base type are.
Late binding ensures that, for dynamically bound procedures, the code of
the derived type is executed instead of the code of the base type. Szyperski
in [79] calls this combination of object-orientation, separate compilation,
and type safety extensible object-orientation. Gfx uses extensible object-
orientation for integrating new output devices.

3.1.1 Dynamic Loading

If components can be loaded dynamically, we face the question of who is
responsible for loading new components. The Oberon system solves the
problem with user commands. A command is defined as a combination of a
module name and the name of a parameterless procedure that is exported
from that module. Users activate a command by clicking on a command
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name in any displayed text document or by clicking on a graphical control
which represents a command. The system loads the module if necessary
and transfers control to the command procedure. Hence, new components
can be imported into a running system by executing a command of the
corresponding module. Programs can start with a small set of core mod-
ules and load additional functionality on demand, minimizing application
startup time and memory fingerprint.

However, dynamic loading of modules is sometimes desirable or even
necessary in circumstances that are not under user control. For instance,
users can ask Oberon System 3 to open an arbitrary document by merely
supplying the document’s file name. If the module that is responsible for
loading that specific kind of document cannot be derived from the first few
bytes of the file, the document manager extracts the file name extension (the
last part of the file name) from the document name and uses it as a key into
a table that maps key strings to commands. When the command procedure
that is associated with the file name extension is executed, it places a new
document object of the correct type in a global variable; this object is then
requested to load the document. This technique is far more convenient for
users than having to choose different commands for different document
types. The same principle is also used in other situations; several tables that
associate keys with matching commands are stored in a central registry text
file.

Another application of this design pattern [28] can be found in the
Netscape Navigator, a well-known Web browser, which uses it for loading
‘‘plug-ins’’. The key is in that case the so-called MIME type of the component
to display, whereas the command name is replaced by the name of a
separately loadable program library. Gfx uses a similar approach for loading
and storing raster image files (see Section 3.4.4) and for loading fonts (see
Section 3.5).

3.1.2 Enumeration Procedures

A second important design pattern concerns the use of enumeration proce-
dures for iterating over complex data structures. When enumerating data
structures, clients pass a custom procedure to an operation Enumerate,
which in turn calls the supplied procedure for each element of the structure,
as illustrated in the following definitions:
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TYPE Enumerator = PROCEDURE(element parameters);

PROCEDURE Enumerate(this: complex type; enum: Enumerator);

The Oberon system uses enumeration procedures in several places, for ex-
ample for enumerating files in a directory. Our only gripe with the above
scheme is that any additional data that is needed during the traversal must
be stored in global variables because most Oberon compilers do not per-
mit nested procedures to be passed as procedure parameters. The natural
solution of passing the enumeration procedure a local procedure as the enu-
merator and storing additional parameters in the local variable space of the
calling procedure is thus not feasible. We therefore refine the enumeration
principle as follows:

TYPE
Data = RECORD END;
Enumerator = PROCEDURE(parameters; VAR data: Data);

PROCEDURE Enumerate(this: complex type; enum: Enumerator; VAR data: Data);

The advantage of this approach is that clients are free to pass arbitrary
extensions of the Data type to Enumerate, which in turn get passed to
the Enumerator procedure. Additional data can be stored in fields of the
extended Data structure instead of in global variables. The resulting pattern
is a simplified version of the Visitor pattern that is discussed in [28].

Enumeration is not the only way in which a client can iterate over
complex data structures. Other approaches usually rely on explicit iterator
types [28, 73]. Still, enumeration is often easier to implement because the
called enumeration procedure determines the flow of control and because
the visited data structure can be considered immutable during the traversal.
Thus, no state information about which nodes have been visited and where
to proceed are necessary.

3.2 Contexts

Most of Gfx’s functionality is accessible from the Gfx module. Gfx exports an
abstract type Context which defines what Szyperski in [79] calls a bottleneck
interface: a bottleneck interface binds its clients and implementors to a static
interface that cannot be augmented at will. (Implementors of extended types
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are free to add additional functionality, but clients of the abstract interface
will not be able to take advantage of it.) However, it is because of this
restriction to a fixed interface that arbitrary clients (in the role of producers)
can render graphics on arbitrary output devices (in the role of consumers).
We have encountered the same principle in our discussion of Java 2D with
its Graphics2D objects in Section 2.3.7. Later chapters will show that Gfx’s
bottleneck interface is essential for integrating graphical components within
component frameworks and mutually within another.

Different parts of the Gfx context interface are described in the following
Sections: basic object rendering in 3.2.1, context attributes in 3.2.2, path
rendering in 3.2.3, user coordinates in 3.2.4, images in 3.2.5, and temporarily
saving and restoring state in 3.2.6.

Context Type. Each context instance contains

-- graphical attribute values for rendering graphical objects

-- a user coordinate system

-- a clip area

-- a current path, position, and render state

-- a table of procedures

Apart from exporting an abstract interface, Gfx implements a substantial
amount of default functionality. However, it cannot produce graphics on
any output device; this is the responsibility of concrete context extensions.
Gfx thus serves mainly as a facade [28] that conveniently bundles the func-
tionality of several subsystems and concrete output drivers in one place.

Late binding is used to execute procedures of concrete context exten-
sions. For this purpose, each context has a table of procedures associated
with it.

TYPE
Context = POINTER TO RECORD

do: Methods; (* method table *)
...

END;

Methods = POINTER TO RECORD
reset: PROCEDURE (ctxt: Context);
...

END;



65

The method table is explicitly modeled because the original Oberon language
[84, 87] does not support type-bound procedures (also known as methods or
member functions), and Oberon dialects that do [58, 57, 37] are not available
on as many platforms. Besides, how the context’s methods are modeled
is of secondary importance because clients are encouraged to use wrapper
procedures in the Gfx module for invoking context methods. One example
of such a wrapper procedure is the Reset procedure for (re-)initializing a
context object.

(* reset context to default state *)
PROCEDURE Reset(ctxt: Context);
BEGIN ctxt.do.reset(ctxt) (* call context method *)
END Reset;

Wrapper procedures perform general sanity checks. For example, they test
whether attribute values fall within valid ranges or whether a path has
been started when a client attempts to append path elements. While most
wrapper procedures call a single corresponding procedure in the method
table, others have no single matching method and call several methods in
sequence to fulfill their purpose (for example the DrawArc procedure in the
following section).

3.2.1 Standard Objects

The following wrapper procedures render standard objects:

PROCEDURE DrawLine(ctxt: Context; x0, y0, x1, y1: REAL; mode: SET);
PROCEDURE DrawArc(ctxt: Context; x, y, r, start, end: REAL; mode: SET);
PROCEDURE DrawRect(ctxt: Context; x0, y0, x1, y1: REAL; mode: SET);
PROCEDURE DrawCircle(ctxt: Context; x, y, r: REAL; mode: SET);
PROCEDURE DrawEllipse(ctxt: Context; x, y, rx, ry: REAL; mode: SET);
PROCEDURE DrawStringAt(ctxt: Context; x, y: REAL; str: ARRAY OF CHAR);
PROCEDURE DrawString(ctxt: Context; str: ARRAY OF CHAR);

The mode parameter defines the render operation and holds a logical com-
bination of several simple render modes:

CONST Record = 0; Fill = 1; Clip = 2; Stroke = 3;

The elements of the mode parameter are processed in the following order:
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1. If Record is an element of the render mode, Gfx converts the object to
an explicit path structure and stores it in the context’s current path. This
recorded path can further be processed as discussed in Section 3.2.3.

2. If the render mode includes Clip, the context’s clip area is reduced to the
boolean intersection of the previous clip area with the object’s interior.
Further output will only appear inside the new clip area.

3. If Fill is part of the render mode, the object’s interior is filled according
to the current fill attribute values. For DrawString and DrawStringAt,
the render mode is implicitly set to {Fill}.

4. Finally, if the render mode contains Stroke, the object’s outline is stroked
according to the current stroke attribute values.

3.2.2 Attributes

Each context stores several graphical attribute values, as introduced in Sec-
tion 2.2.2, which affect the way objects are painted. Clients may read current
attribute values from exported fields in the context record. To set new values
they invoke corresponding wrapper procedures.

Colors and Patterns. Gfx fills and strokes objects using a combination of
colors and raster image patterns:

TYPE
Color = RECORD r, g, b: INTEGER END; (* red, green, blue in range 0..255 *)

Pattern = POINTER TO RECORD
img: Images.Image; (* raster image *)
px, py: REAL; (* pattern pinpoint *)

END;

VAR Black, White, Red, Green, Blue, Cyan,
Magenta, Yellow, LGrey, MGrey, DGrey: Color; (* standard colors *)

PROCEDURE NewPattern(ctxt: Context; img: Images.Image; px, py: REAL): Pattern;

NewPattern is responsible for converting the supplied image and pinpoint
to a device-specific pattern and returning an appropriate pattern structure.
The coordinates of the pinpoint and the pixel size of the pattern image are
taken to be in the default coordinate system of the context, not in the current
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user coordinate system. A context may scale the pattern image to fit it to
the resolution of its output device.

A separate pair of color and pattern values is maintained for stroking and
filling since both Stroke and Fill can be part of the render mode concurrently.

TYPE
Context = POINTER TO RECORD

...
strokeCol, fillCol: Color; (* default: black *)
strokePat, fillPat: Pattern; (* default: none (solid) *)
...

END;

PROCEDURE SetStrokeColor(ctxt: Context; color: Color);
PROCEDURE SetStrokePattern(ctxt: Context; pat: Pattern);
PROCEDURE SetFillColor(ctxt: Context; color: Color);
PROCEDURE SetFillPattern(ctxt: Context; pat: Pattern);

Stroke Attributes. Stroking is subject to several additional attributes:

CONST
ButtCap = 1; SquareCap = 2; RoundCap = 3;
MiterJoin = 1; BevelJoin = 2; RoundJoin = 3;

TYPE
Context = POINTER TO RECORD

...
lineWidth: REAL; (* default: 1 *)
dashPatLen: INTEGER; (* default: 0 (solid) *)
dashPatOn, dashPatOff: ARRAY MaxDashPatSize OF REAL;
dashPhase: REAL;
capStyle, joinStyle: SHORTINT; (* default: butt caps, miter joins *)
styleLimit: REAL; (* default: 5 (times the line width) *)
...

END;

PROCEDURE SetLineWidth(ctxt: Context; lw: REAL);
PROCEDURE SetDashPattern(ctxt: Context; on, off: ARRAY OF REAL;

len: INTEGER; phase: REAL);
PROCEDURE SetCapStyle(ctxt: Context; style: SHORTINT);
PROCEDURE SetJoinStyle(ctxt: Context; style: SHORTINT);
PROCEDURE SetStyleLimit(ctxt: Context; limit: REAL);

Line width and dash pattern are interpreted in the same coordinate system
in which graphical objects are specified. If a client modifies the current user
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coordinate system (see Section 3.2.4), line width and dash pattern are thus
transformed as well.

Lines and curves are by default one display unit wide, independent of
the context’s output device. If the line width is set to zero, lines are painted
as hairlines, meaning they are as thin as the device allows.

Dashes. Dash patterns consist of up to MaxDashPatSize pairs of lengths.
The first number of each pair (the on length) is the length of the next visible
part, the second (the off length) the distance from the end of the last visible
part to the start of the next. The dash phase serves to offset the starting
point within the dash pattern. For example, a pattern of length one, with on
and off lengths equal to ten and a dash phase of five, first paints a dash of
length five, followed by an indefinite number of dashes of length ten. The
space between each dash is of length ten. This is illustrated in Figure 3.2.
The corresponding code looks as follows:

on[0] := 10.0; off[0] := 10.0;
Gfx.SetDashPattern(ctxt, on, off, 1, 5.0);
Gfx.DrawLine(ctxt, 10, 10, 100, 10);
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Figure 3.2: Example of a dash pattern with dash phase

Cap and Join Styles. As with many other graphics interfaces, available line
cap and line join styles are limited to a fixed set of common styles. As an
experiment, Gfx once modeled cap and join styles in procedure variables
to make them customizable. Although this variant was later abandoned
because the additional complexity did not seem justified, the concept of
a general style limit in place of a dedicated miter limit has been retained
from this earlier version. The style limit restricts the maximal distance of
any part on a style’s outline to the original line to a multiple of the line
width. In contrast, miter limits (see Section 2.2.2) are typically expressed
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as the minimally tolerable angle between two lines with which miter joins
may still be used. Because the maximal distance of any painted pixel to the
original line or curve is the product of the current style limit and line width,
calculating the bounding box of the area that gets painted when a thick
line is rendered is made simple. Besides, the style limit concept is general
enough to accommodate additional cap or join styles should a future Gfx
version support them.

Text Attributes. The main attribute for dealing with text is the current font:

TYPE
Context = POINTER TO RECORD

...
font: GfxFonts.Font;
...

END;

PROCEDURE SetFont(ctxt: Context; font: GfxFonts.Font);
PROCEDURE SetFontName(ctxt: Context; name: ARRAY OF CHAR;

size: INTEGER);
PROCEDURE GetStringWidth(ctxt: Context; str: ARRAY OF CHAR;

VAR dx, dy: REAL);

A typeface is defined by its family and style name (e. g. ‘‘Oberon-Bold’’), and
must be instanced at the desired point size. Gfx’s font subsystem, discussed
in Section 3.5, is responsible for providing bitmaps and outlines to paint
glyphs within the current user coordinate system on the attached output
device.

The procedure GetStringWidth returns the vector by which the current
point would be advanced if the supplied string were drawn in the current
context. Its dy component is usually zero because text is normally typeset
horizontally from left to right. However, when the instance matrix of the
current font includes rotations or shear transforms, the advance vector may
no longer be horizontal.

Flatness. The last graphical attribute of a context is its current flatness
value:

TYPE
Context = POINTER TO RECORD

...
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flatness: REAL; (* default: 1 device pixel *)
...

END;

PROCEDURE SetFlatness(ctxt: Context; flatness: REAL);

Flatness is an error measure that defines the maximally tolerable distance
of any painted pixel from the true outline of a graphical object when the
object is drawn as a hairline. Flatness primarily plays a role when curves
are approximated with lines (see Section 3.3.3). The smaller the flatness, the
smoother approximated curves appear. Unlike other attributes, flatness is
specified in device pixels.

3.2.3 Paths

A feature which distinguishes Gfx from other graphics interfaces is its use of
the early rendering model that we introduced in Section 2.2.3 for drawing
arbitrary paths. With early rendering, clients define how a path will be
painted when they start its specification, whereas with late rendering the
render operation becomes known when the specification of a path ends.
While the numbers that are listed in Appendix C.2 indicate that the gain in
speed that results from using early rendering is marginal in most cases, early
rendering is never slower than late rendering. Besides, late rendering uses a
fixed amount of temporary memory, whereas the memory requirements of
late rendering grow with the length of stored paths.

The internal structure of a path must follow certain rules, which are
summarized in the following EBNF grammar.

Path = Begin Subpath {Subpath} End.
Subpath = (Enter | MoveTo) Segment {Segment} [Close | Exit].
Segment = LineTo | ArcTo | BezierTo.

The following paragraphs explain the semantics of these path elements.

Begin and End. Gfx offers no single wrapper procedure for specifying
general paths. Instead, path definitions start with Begin and end with End:

CONST InPath = 5;

TYPE
Context = POINTER TO RECORD
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...
mode: SET; (* current render mode *)
...

END

PROCEDURE Begin(ctxt: Context; mode: SET);
PROCEDURE End(ctxt: Context);

Calling Begin has two effects. First, the context’s mode field is set according
to the supplied mode parameter. This render mode is a combination of the
simple render operations from Section 3.2.1. Second, the InPath element is
included in the mode field. This allows subpaths to be started, but at the
same time locks the current graphics state and prevents further changes to
the context’s graphical attributes (except for the current font). The wrapper
procedures for changing context attributes will reject any such attempt. This
is necessary because -- due to early rendering -- each context is free to render
path elements whenever it sees fit. If changes to graphical attributes were
permitted within a path, some but not all path elements might already have
been painted using the old values, leading to inconsistent output. While
late rendering does not have this consistency problem and may therefore
allow its clients to modify graphical attributes during path specifications, it
may confuse its clients because only the final attribute values will be used
for the entire path, not the attribute values that are in effect when a path
element is specified.

After rendering all path elements or before switching to a new path
altogether, clients must terminate the current path by calling End. This
resets the render mode and flushes any pending output.

Subpath Construction with MoveTo and Close.

CONST InSubpath = 6;

TYPE
Context = POINTER TO RECORD

...
cpx, cpy: REAL; (* location of current point *)
...

END;

PROCEDURE MoveTo(ctxt: Context; x, y: REAL);
PROCEDURE LineTo(ctxt: Context; x, y: REAL);
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PROCEDURE ArcTo(ctxt: Context; x, y, x0, y0, x1, y1, x2, y2: REAL);
PROCEDURE BezierTo(ctxt: Context; x, y, x1, y1, x2, y2: REAL);
PROCEDURE Close(ctxt: Context);

A new subpath is started by calling MoveTo. This includes the InSubpath
element in the context’s render mode and moves the current point, whose co-
ordinates are stored in the cpx and cpy fields, to the corresponding position.
Lines, elliptical arcs, and cubic Bézier curves are subsequently appended
to the current subpath with LineTo, ArcTo, and BezierTo. Each such path
segment originates at the current point and moves the current point to the
end point of the new path segment.

The current subpath is terminated either by starting a new one with
MoveTo, by ending the current path with End, or with Close. Closing a
subpath means to append a straight line from its current end point back to
its starting point if necessary. Besides, it signals Gfx to render a line join
between the last and first subpath segment instead of line caps at both ends.

Path Segments. For all path segments, the first pair of parameters desig-
nates the coordinates of their end point. Bézier curves are specified with two
additional points that determine their off-curve control points. For elliptical
arcs, a general ellipse must be specified by supplying the coordinates of its
center and two points at the end of its conjugate diameter vectors (as in
Figure 2.8). For example, the first quarter of an ellipse with center (30, 20),
radius 20 in x direction, and radius 15 in y direction is rendered with

cx := 30; cy := 20; rx := 20; ry := 15;
Gfx.MoveTo(ctxt, cx+rx, cy); (* start at end of horizontal diameter *)
Gfx.ArcTo(ctxt,

cx, cy+ry, (* end point of arc *)
cx, cy, (* center of ellipse *)
cx+rx, cy, (* end point of first conjugate diameter vector *)
cx, cy+ry); (* end point of second conjugate diameter vector *)

Depending on the sign of the cross product between the two conjugate
diameter vectors, the arc is rendered clockwise or counter-clockwise. If the
current point is not located on the ellipse, a straight line to the nearest point
on the ellipse is drawn first. Likewise, a straight line segment is appended
after the arc if the target point is not located on the ellipse. The following
example exploits this to outline the intersection of two concentric circles
and a sector, as shown in Figure 3.3:
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Gfx.MoveTo(c, 50, 0);
Gfx.ArcTo(c, 50/sqrt2, 50/sqrt2, 0, 0, 100, 0, 0, 100);
Gfx.ArcTo(c, 50, 0, 0, 0, 50, 0, 0, 50);
Gfx.Close(c);
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Figure 3.3: Output of arc example program (thick path)

The first arc is drawn counter-clockwise and also draws the straight line
segments because neither start nor end point is located on the arc. The
second arc runs clockwise and leads back to the starting point. The final
Close is only necessary to make Gfx draw a line join at that point.

General arcs have many parameters and are inherently complex to spec-
ify. Other graphics interfaces face the same problem. For example, SVG
descriptions (see Section 2.3.6) expect two scalar radii and a rotation an-
gle for drawing general ellipses (not arcs). Postscript only has primitives
for painting circular arcs, relying on transformations of the coordinate sys-
tem to render elliptical arcs. Gfx provides the DrawArc, DrawCircle, and
DrawEllipse wrapper procedures (see Section 3.2.1) to simplify the most
common applications of elliptical arcs.

Example. With the features discussed so far, we are able to show how the
sample figure from Section 2.3 can be rendered with Gfx.

PROCEDURE Paint (c: Context);
VAR on, off: ARRAY 1 OF REAL; dx, dy: REAL;
BEGIN

(* circle *)
Gfx.SetFillColor(c, Gfx.MGrey);
Gfx.DrawCircle(c, 100, 100, 100, {Gfx.Fill});
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(* triangle *)
Gfx.SetLineWidth(c, 3);
on[0] := 10; off[0] := 6;
Gfx.SetDashPattern(c, on, off, 1, 0);
Gfx.Begin(c, {Gfx.Stroke}); (* start path *)
Gfx.MoveTo(c, 200, 0); (* start subpath *)
Gfx.LineTo(c, 400, 0); Gfx.LineTo(c, 300, 200); (* append two triangle sides *)
Gfx.Close(c); (* close and end subpath *)
Gfx.End(c); (* end path and flush output *)

(* rectangle *)
Gfx.SetFillColor(c, Gfx.White);
Gfx.SetLineWidth(c, 1);
Gfx.DrawRect(c, 100, 50, 350, 150, {Gfx.Fill, Gfx.Stroke});

(* caption *)
Gfx.SetFontName(c, "Oberon", 20);
Gfx.SetFillColor(c, Gfx.Black);
Gfx.GetStringWidth(c, "2D Graphics", dx, dy);
Gfx.DrawStringAt(c, 225-dx/2, 90, "2D Graphics");

END Paint;

Enter and Exit. As discussed in Section 2.2.3, closing a previously unclosed
path violates the spirit of a path model with early rendering because the
decision whether to render a line cap or a line join at the start point must be
deferred until the graphics interface knows whether the subpath is closed
or left open. Gfx thus provides procedures Enter and Exit as an alternative
for starting and ending subpaths.

PROCEDURE Enter(ctxt: Context; x, y, dx, dy: REAL);
PROCEDURE Exit(ctxt: Context; dx, dy: REAL);

Enter and Exit require an additional pair of coordinates to define the direction
of the line or curve that logically precedes the path segment after Enter and
of the one that logically succeeds the segment before Exit. For instance, the
triangle from the previous example is alternatively rendered as follows. The
direction used in Enter is the vector from the third to the first point; the one
in Exit is the vector from the first to the second point.

Gfx.Begin(c, {Gfx.Stroke}); (* start path *)
Gfx.Enter(c, 200, 0, -100, -200); (* enter subpath at lower left corner *)
Gfx.LineTo(c, 400, 0); Gfx.LineTo(c, 300, 200); Gfx.LineTo(c, 200, 0);
(* must draw all three sides since we cannot use Close *)
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Gfx.Exit(c, 200, 0); (* exit subpath *)
Gfx.End(c); (* end path and flush output *)

Although Enter and Exit at first glance merely seem to be a more clumsy
version of MoveTo and Close, they not only emphasize the symmetrical
nature of subpath ends, but are also convenient for storing paths explicitly
(see Section 3.3) and for driving pen objects (to be discussed in Section 4.3).
In fact, earlier Gfx versions used the Enter/Exit approach exclusively; only
recently has the slightly more convenient MoveTo/Close combination been
added.

Glyph Outlines. Paths naturally integrate text if text is interpreted as a
series of subpaths that outline glyph objects. While a context is in path
mode (but not in subpath mode), text can be rendered at the current point
or at any given point with one of the following procedures.

PROCEDURE ShowAt(ctxt: Context; x, y: REAL; str: ARRAY OF CHAR);
PROCEDURE Show(ctxt: Context; str: ARRAY OF CHAR);

The difference between Show and ShowAt is that the former places the first
glyph at the position of the current point. Both advance the current point
to the point after the last glyph.

On a conceptual level, the Show and ShowAt operations append glyph
outlines to the current path and leave it to the path engine to render them.
However, because the render mode is known at the time Show and ShowAt
are invoked, Gfx is free to immediately paint glyph raster images instead
of later filling glyph outlines if the current render mode indicates that the
path will later be filled anyway. This is an advantage of early rendering over
late rendering. Gfx can render text efficiently and in high quality without
distinguishing between filled text shapes and explicit outlines as for example
Postscript does. (The figures in Appendix C.2 suggest that rendering glyph
bitmaps is about ten times faster than filling glyph outlines.) The wrapper
procedure DrawStringAt can thus be implemented as follows.

PROCEDURE DrawStringAt(ctxt: Context; x, y: REAL; str: ARRAY OF CHAR);
BEGIN
ASSERT(˜(InPath IN ctxt.mode), 100); (* sanity check *)
ctxt.do.begin(ctxt, {Fill});
ctxt.do.show(ctxt, x, y, str);
ctxt.do.end(ctxt)

END DrawStringAt;
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Other Path Operations. The remaining Gfx procedures deal with explicit
paths. If the context’s render mode includes the Record element, the visited
path is stored in a Path structure (explained in Section 3.3).

TYPE
Context = POINTER TO RECORD

...
path: GfxPaths.Path; (* current path *)
...

END;

PROCEDURE Flatten(ctxt: Context);
PROCEDURE Outline(ctxt: Context);
PROCEDURE Render(ctxt: Context; mode: SET);
PROCEDURE DrawPath(ctxt: Context; path: GfxPaths.Path; mode: SET);

Flatten replaces all arcs and Bézier curves in the recorded path with a series
of straight lines. It relies on the EnumFlattened procedure from module
GfxPaths (see Section 3.3.3) to approximate these curves with lines according
to the current flatness value. Flatten is equivalent to the Postscript operator
flattenpath.

The Outline procedure replaces the current path with the outline of the
shape that would be painted if the path were stroked. The current line width,
dash pattern, cap style, and join style all influence the shape of the resulting
outline. A line width of zero is treated as a special case: the path is then
replaced with a series of dashes according to the current dash pattern but
must still be stroked to paint it. Outline is similar to the Postscript operator
strokepath.

Clients are of course free to apply other modifications to recorded paths.
To render the current path with the render mode of their choice, clients can
call Render. Although DrawPath can also be used to render explicitly stored
path structures, it interprets paths as being specified in user coordinates
and therefore transforms them to device space first. This is not the case
with Render since the context’s current path is always stored in device
coordinates.

3.2.4 Coordinate System

Gfx stores a context’s current user coordinate system as a 3×2 matrix (the
current transformation matrix) in the context’s ctm field.
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TYPE
Context = POINTER TO RECORD

...
ctm: GfxMatrix.Matrix;
...

END;

Once coordinates have been transformed to device space, the grid lines
between pixels are located at integer coordinates. The point (0, 0) is therefore
at the lower left corner of the lower left pixel, which has its center at
coordinates (0.5, 0.5).

The following procedures modify the current user coordinate system.

PROCEDURE Reset(ctxt: Context);

PROCEDURE ResetCTM(ctxt: Context);
PROCEDURE SetCTM(ctxt: Context; VAR mat: GfxMatrix.Matrix);
PROCEDURE Translate(ctxt: Context; dx, dy: REAL);
PROCEDURE Scale(ctxt: Context; sx, sy: REAL);
PROCEDURE ScaleAt(ctxt: Context; sx, sy, x, y: REAL);
PROCEDURE Rotate(ctxt: Context; sin, cos: REAL);
PROCEDURE RotateAt(ctxt: Context; sin, cos, x, y: REAL);
PROCEDURE Concat(ctxt: Context; VAR mat: GfxMatrix.Matrix);

When the ctm is reset with Reset or ResetCTM, Gfx initializes it to a normal-
ized default coordinate system, which has its origin at the lower left corner of
the paintable area of the output device and is scaled such that one unit cor-
responds to 1

91.44 of an inch. This was the display resolution of the machine
on which the first versions of the Oberon system were developed; hence, all
character bitmaps of the Oberon default font were manually tuned to that
resolution. For reasons of convenience, current Oberon implementations
frequently assume the same resolution in their display drivers, even if the
actual resolution is different. Gfx follows this convention to achieve a higher
performance when rendering glyphs. If a different default unit were chosen,
all glyph patterns of the default font would have to be scaled.

SetCTM is often necessary for restoring a previously saved ctm after
temporarily modifying it. Another use is within operations that paint in
device space and thus need to set the ctm to the identity matrix.

The remaining procedures initialize affine transformation matrices and
prepend them to the ctm. The effect is that any future point will be trans-
formed according to the new transformation before being subject to the
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previous ctm. An equivalent interpretation is that the operation transforms
the current coordinate system in which future points will be evaluated.
For example, the following program produces the two squares which are
displayed in Figure 3.4.

Gfx.Translate(c, 100, 50);
Gfx.Rotate(c, sqrt(3)/2, 1/2); (* 30 degrees *)
Gfx.DrawRect(c, 0, 0, 20, 20, Gfx.Stroke);
Gfx.Translate(c, 10, 10);
Gfx.Scale(c, 2, 2);
Gfx.DrawRect(c, 0, 0, 20, 20, Gfx.Stroke);
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Figure 3.4: Coordinate transformations

Rotations and scale transformations have an immutable point of reference,
which is located at the origin of the current coordinate system. To use
another reference point, the coordinate system has to be shifted to make
the reference coincide with the origin. Then the rotation or scale matrix
can be prepended. Finally, the resulting transformation must be shifted
back to its previous origin. To simplify the process, the ScaleAt and RotateAt
procedures accept an arbitrary reference point and include the necessary
translations.
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Current Attribute Matrix. To make path specification as flexible as possible,
operations that affect the ctm are also permitted while a context is processing
a path. However, changes to the ctm not only affect coordinates, but also
graphical attributes such as line width and dash pattern. Since a Gfx context
is free to paint path segments whenever it sees fit, this could have the same
consequences as allowing changes to graphical attributes while inside a
path. Gfx therefore saves the value of the ctm in a second field called cam
(the current attribute matrix) when Begin is invoked to start a path.

TYPE
Context = POINTER TO RECORD

...
cam: GfxMatrix.Matrix;
...

END;

The current attribute matrix is used for mapping attribute values to device
coordinates until the complete path has been painted. Only then is the
current attribute matrix synchronized again with the current transformation
matrix.

To illustrate how transformations can be used while a path is being
specified, the following program draws a star with five arms. It does so by
repeatedly translating the origin to one corner of the star, rotating the whole
coordinate system, and appending a line that leads to the next corner. The
output of this program is displayed in Figure 3.5.

Gfx.Begin(c, {Gfx.Stroke});
Gfx.MoveTo(c, 200, 200);
Gfx.Translate(c, c.cpx, c.cpy);
FOR i := 1 TO 5 DO

Gfx.LineTo(c, 100, 0);
Gfx.Translate(c, c.cpx, c.cpy);
Gfx.Rotate(c, Math.sin(-4*Math.pi/5), Math.cos(-4*Math.pi/5))

END;
Gfx.Close(c);
Gfx.End(c)

3.2.5 Images

Although Gfx is oriented towards arbitrarily scalable vector graphics, it also
renders raster images.
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Figure 3.5: Example of changing the current transformation within a path

PROCEDURE DrawImageAt(ctxt: Context; x, y: REAL; img: Images.Image;
VAR filter: GfxImages.Filter);

Each pixel in the image corresponds to one unit of the current user coor-
dinate system. If the current user space has been transformed or if the
current device has a resolution that differs from the default resolution, the
raster image is accordingly transformed. How the image is blended with
the destination plane and how transformed images are filtered is defined
by the filter parameter. Images and filters are implemented as a separate
subsystem and are further discussed in Section 3.4.

3.2.6 Saving and Restoring State

Complex graphical scenes are likely to be modeled as hierarchies, be it
explicitly in the form of a data structure or implicitly in the form of a
procedure call graph. Often a model establishes the convention that any
node in the hierarchy may change attributes of the graphics state as long
as it restores the previous state before it returns control. Since all graphical
attributes and the current coordinate system are available as public fields
of the Context structure and can be set with a single procedure call, saving
and restoring single attributes merely involves assigning their current values
to temporary variables and later establishing them again, as outlined in the
following example.

VAR col: Gfx.Color;
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...
col := ctxt.strokeCol; (* remember old value *)
Gfx.SetStrokeColor(ctxt, Gfx.Red); (* set new value *)
... (* stroke something *)
Gfx.SetStrokeColor(ctxt, col); (* restore old value *)

Clip Area. The current clip area, although managed by concrete extensions
in a device-dependent manner, can also be saved and later restored.

TYPE
ClipArea = POINTER TO RECORD END;

PROCEDURE GetClip(ctxt: Context): ClipArea;
PROCEDURE SetClip(ctxt: Context; clip: ClipArea);

PROCEDURE GetClipRect(ctxt: Context; VAR llx, lly, urx, ury: REAL);

ClipArea is an abstract type and does not contain any information. Moreover,
there is no corresponding field in the Context structure because the data
structure for storing clip areas is potentially dynamic and more complex than
the scalar values that are used for other attributes. If clients were allowed
to obtain a reference to the clip area structure without the context being
notified, contexts would not be permitted to reuse the existing data structure
when they modify the clip area, which would force them to always allocate
a new structure. To at least get an idea about the extent of the current clip
area, clients can retrieve its bounding rectangle with GetClipRect.

Save and Restore. If child nodes in a graph structure cannot be trusted
to revert the changes they apply to a context, a parent node may need to
store (and later reestablish) the whole graphics state before passing control
to its children. Similarly, if a client needs to change several attributes at
once, it has to assign each of them to a temporary variable and later restore
them. If many attributes need to be saved, this may enlarge the code of the
client disproportionately. To save and restore several attributes as a group,
Gfx provides procedures Save and Restore. These save and later restore an
arbitrary subset of graphical attributes, current transformation matrix, and
current clip area.

CONST
fillColPat = 0; strokeColPat = 1; lineWidth = 2; dashPat = 3;
capStyle = 4; joinStyle = 5; styleLimit = 6;
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flatness = 7; font = 8; ctm = 9; clip = 10;
strokeAttr = {strokeColPat..styleLimit};
attr = {fillColPat..font};
all = attr + {ctm, clip};

TYPE
State = RECORD END;

PROCEDURE Save(ctxt: Context; elems: SET; VAR state: State);
PROCEDURE Restore(ctxt: Context; state: State);

The following code example stores all graphical attributes, including clip
area and current transformation matrix, in a local variable and later restores
them.

VAR state: Gfx.State;
...
Gfx.Save(ctxt, Gfx.all, state);
... (* modify attributes of ctxt at will *)
Gfx.Restore(ctxt, state);

3.3 Path Subsystem

When graphical objects are immediately scan-converted and painted, no
explicit path data structures are needed. However, when the render mode
includes the Record element, the current path is stored in a Path structure,
which is defined in a separate module GfxPaths. Gfx also needs to store the
visited path if the render mode includes Stroke together with either Fill or
Clip, as discussed in Section 3.7.2.

We discuss the path data structure in detail in Section 3.3.1, path con-
struction in Section 3.3.2, path iterators in Section 3.3.3, path queries in
Section 3.3.4, and miscellaneous path operations in Section 3.3.5.

3.3.1 Path Data Structure

Paths are inhomogeneous sequences of primitive path elements. Since
path operations usually require that all path elements are visited in order,
the intuitive way to store paths is as a list of path elements, which in
turn contain information about their control points. There are, however,
two minor points of concern with this approach. First, it allocates many
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small blocks of memory for individual path elements, which may strain
the memory manager of the underlying operating system. Second, one
segment’s end point is the starting point of its successor and should not be
stored twice.

The path representation we have chosen uses two dynamically growing
lists: one for storing path element types and another for storing the corre-
sponding control point coordinates. Each list node contains a fixed number
of element types or coordinates. This results in less separate memory blocks
being allocated, but retains the possibility of dynamic growth.

CONST Stop = 0; Enter = 1; Line = 2; Arc = 3; Bezier = 4; Exit = 5;

TYPE
ElemBlock = POINTER TO RECORD (private)

next: ElemBlock;
elem: ARRAY ElemBlockSize OF SHORTINT;
coords: INTEGER;

END;

CoordBlock = POINTER TO RECORD (private)
next: CoordBlock;
x, y: ARRAY CoordBlockSize OF REAL;

END;

Path = POINTER TO RECORD
elems, coords: INTEGER;
firstEB, lastEB: ElemBlock; (private)
firstCB, lastCB: CoordBlock; (private)

END;

VAR Coords: ARRAY Exit+1 OF SHORTINT; (private)

By keeping a reference to the last element and coordinate blocks, new blocks
can quickly be appended when the path grows. Alternatively, we could have
used two dynamic arrays for storing elements and coordinates, but would
have to reallocate them and copy their old contents to a new block whenever
we run out of space. Note that element blocks and coordinate blocks grow
independent of each other since the number of coordinates per element
depends on individual element types and is not constant, as displayed in
the following table.
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Element Coordinate Pairs Comment

Enter 2 direction, start point
Line 1 end point
Arc 4 center, 2 diameter end points, end point
Bezier 3 2 control points, end point
Exit 1 direction

Element sequences are required to conform to the following EBNF rules.

Sequence = {Enter Segment {Segment} Exit}.
Segment = Line | Arc | Bezier.

3.3.2 Path Construction

Path construction is straightforward and follows the same paradigm as path
specification within Gfx contexts. As soon as a path is initialized with Clear,
subpaths can be added to it. Each subpath must be started with AddEnter,
followed by at least one curve segment, and terminated with AddExit.

PROCEDURE Clear(path: Path);

PROCEDURE AddEnter(path: Path; x, y, dx, dy: REAL);
PROCEDURE AddLine(path: Path; x, y: REAL);
PROCEDURE AddArc(path: Path; x, y, x0, y0, x1, y1, x2, y2: REAL);
PROCEDURE AddBezier(path: Path; x, y, x1, y1, x2, y2: REAL);
PROCEDURE AddExit(path: Path; dx, dy: REAL);
PROCEDURE AddRect(path: Path; llx, lly, urx, ury: REAL);

PROCEDURE Close(path: Path);

PROCEDURE Append(to, from: Path);
PROCEDURE Copy(src, dst: Path);

Note that there is no operation AddMoveTo(p, x, y) that would match the
MoveTo operation in module Gfx (see Section 3.2.3). However, an equivalent
effect is achieved if an Enter element with zero direction is appended, as for
example with AddEnter(p, x, y, 0, 0). Because rectangles are so common,
GfxPaths provides a procedure AddRect, which appends a closed rectangular
subpath to a path. A complete path can also be appended to another with
Append, and path contents can be copied with Copy.
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3.3.3 Iterators

Paths play such an important role in Gfx that GfxPaths provides two different
methods for traversing them: scanners and enumerators. The principle of
enumerating elements of a data structure is discussed in Section 3.1.2. Path
enumeration is for example used when paths are flattened (see page 86).
Scanners, on the other hand, give clients explicit control over how and
when a focus is moved from one element to the next. They are for example
used in Gfx.Outline, which converts the current path of a Gfx context to a
corresponding outline (see Section 3.2.3). The following paragraphs discuss
scanners and enumerators in more detail.

Scanners. A scanner is connected to a path with Open, which places the
scanner’s focus on any path element, zero being the first position and
path.elems− 1 being the last. The path can then be inspected element by
element. The type of the current path element is available from the scanner’s
elem field; its coordinates and direction vectors are stored in various other
Scanner fields. Once a path element has been processed, calling Scan moves
the focus to the next element. elem is set to Stop when no more elements
are available.

TYPE
Scanner = RECORD

path: Path;
pos: INTEGER;
elem: INTEGER;
x, y: REAL;
dx, dy: REAL;
x0, y0, x1, y1, x2, y2: REAL;

END;

PROCEDURE Open(VAR s: Scanner; path: Path; pos: INTEGER);
PROCEDURE Scan(VAR s: Scanner);

Enumerators. When a path is enumerated, path traversal is under the
control of the GfxPaths module. For each path element, Enumerate calls
the passed Enumerator, which is the procedure that a client provides for
handling path elements.

Enumerate stores all information about the current path element in
an EnumData structure. Because clients can pass Enumerate an arbitrary
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type extension of EnumData, they are free to store additional data they
need to access during the traversal there. For example, when enumerating
a (flattened) path to calculate its length, the supplied enumeration data
parameter might contain a field that represents the accumulated length of
all path segments that have already been visited.

TYPE
EnumData = RECORD

elem: INTEGER;
x, y, dx, dy, x0, y0, x1, y1, x2, y2: REAL;

END;
Enumerator = PROCEDURE(VAR data: EnumData);

PROCEDURE Enumerate(path: Path; enum: Enumerator; VAR data: EnumData);
PROCEDURE EnumFlattened(path: Path; flatness: REAL;

enum: Enumerator; VAR data: EnumData);

PROCEDURE EnumArc(x0, y0, x1, y1, x2, y2, x, y, flatness: REAL;
enum: Enumerator; VAR data: EnumData);

PROCEDURE EnumBezier(x1, y1, x2, y2, x, y, flatness: REAL;
enum: Enumerator; VAR data: EnumData);

PROCEDURE EnumSpline(VAR x, y: ARRAY OF REAL; n: LONGINT;
closed: BOOLEAN; enum: Enumerator; VAR data: EnumData);

Although enumeration gives clients less control over the traversal than us-
ing a scanner, it has the advantage that GfxPaths can modify the visited
path on the fly. For instance, calling EnumFlattened instead of Enumerate
automatically approximates arcs and Bézier curves with straight lines by
in turn calling EnumArc and EnumBezier upon encountering arc or Bézier
elements. Furthermore, enumeration allows clients to visit other kinds of
curves by converting them to path segments as they traverse them. This
conversion can be done without explicitly storing the resulting segments in
a path structure, as illustrated by procedure EnumSpline, which enumerates
a natural spline, passed as an array of control points, as a sequence of path
elements by converting it to cubic Bézier curves. (Natural splines are for
example used in Oberon outline font files.) In summary, using scanners for
traversing the elements of a path is often more convenient for clients, but
offers less options than using enumerators.

Details of Flattening. For flattening elliptical arcs, we use a variant of
Fellner and Helmberg’s algorithm [25], which traces circles by developing
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the parametric circle formulation

x(t) = r · cos t
y(t) = r · sin t

into a series of points on the circle. The original algorithm limits the incre-
ment ∆t as a function of the maximal ellipse radius to guarantee that the
distance from one point to the next never exceeds one pixel. To improve the
visual appearance of diagonal steps, a post-processing step replaces pairs
that comprise a horizontal and a vertical step by diagonal steps.

Although path coordinates are not necessarily related to pixels, we can
use the flatness argument, which denotes the maximally permitted distance
between enumerated points and the true ellipse, as a virtual pixel size from
which we can derive a conservative estimate of the required increment ∆t.
To reduce the number of lines that are generated, we add a post-processing
step in which we skip ellipse points until the distance between the ellipse
and its tangent vector at the last accepted point exceeds the flatness distance.

EnumBezier flattens cubic Bézier curves by recursively subdividing them
until the distance between their midpoint (at t = 1

2) and the line between
their end points is smaller than the desired flatness, as illustrated by the
following algorithm.

PROCEDURE subdiv(t, x0, x1, x2, x3: REAL; VAR a1, a2, m, b1, b2: REAL);
VAR s, x12: REAL;

BEGIN
(* recursive subdivision (deCasteljau) *)
s := 1 - t;
a1 := s*x0 + t*x1; b2 := s*x2 + t*x3; x12 := s*x1 + t*x2;
a2 := s*a1 + t*x12; b1 := s*x12 + t*b2;
m := s*a2 + t*b1

END subdiv;

PROCEDURE draw (x0, y0, x1, y1, x2, y2, x, y: REAL);
VAR x01, x11, x12, x22, x23, y01, y11, y12, y22, y23, dx, dy, ex, ey, cp: REAL;

BEGIN
(*

Draws a normalized Bézier curve.
Normalized curves have no points of inflection and no local
extrema in x or y

*)
subdiv(0.5, x0, x1, x2, x, x01, x11, x12, x22, x23);
subdiv(0.5, y0, y1, y2, y, y01, y11, y12, y22, y23);
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dx := x12 - x0; dy := y12 - y0;
ex := x - x0; ey := y - y0;
cp := dx*ey - dy*ex; (* = |d| * |e| * sin(angle(d, e)) *)
IF cp*cp <= (flatness*flatness) * (ex*ex + ey*ey) THEN

(* |d| * sin(angle(d, e)) <= flatness *)
(* => distance from (x12, y12) to line (x0, y0, x, y) not greater than flatness *)
enumerate line from (x0, y0) to (x, y)

ELSE
draw(x0, y0, x01, y01, x11, y11, x12, y12);
draw(x12, y12, x22, y22, x23, y23, x, y)

END
END draw;

Unfortunately, the curve’s control points can be arranged in such a manner
that the resulting curve gets folded onto itself, contains cusps (singularities
in its curvature), or has points of inflection. To treat these cases correctly,
the curve must first be normalized by splitting it at points of inflection
and at interior local extrema in x and y. The corresponding values of the
curve parameter t can be computed by solving a pair of linear and quadratic
equations in x and y. The curve is subdivided if these values are within the
visible range of the curve.

3.3.4 Path Queries

Apart from constructors and iterators, a third class of path procedures helps
clients determine simple path properties, for example the length of a path
or whether a path intersects a rectangle.

PROCEDURE Empty(path: Path): BOOLEAN;

When a path is cleared, Empty is true until the first path element is appended.

PROCEDURE InPath(llx, lly, urx, ury: REAL; path: Path;
evenOdd: BOOLEAN): BOOLEAN;

PROCEDURE OnPath(llx, lly, urx, ury: REAL; path: Path): BOOLEAN;
PROCEDURE GetBox(path: Path; VAR llx, lly, urx, ury: REAL);

InPath returns whether a rectangle is completely inside a path, whereas
OnPath returns if at least one path element passes through a given rectangle.
To find out if a path is completely contained within a rectangle, its bounding
box can be retrieved with GetBox.
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PROCEDURE LineLength(x0, y0, x1, y1: REAL): REAL;
PROCEDURE ArcLength(sx, sy, ex, ey, x0, y0, x1, y1, x2, y2, flatness: REAL): REAL;
PROCEDURE BezierLength(x0, y0, x1, y1, x2, y2, x3, y3, flatness: REAL): REAL;
PROCEDURE Length (path: Path; flatness: REAL): REAL;

These procedures return the length of single path elements or of whole
paths. To gain consistency between length calculation and enumeration, all
elements are first flattened. The same flatness parameter should therefore
be used for computing path lengths as for enumerating them.

3.3.5 Other Path Operations

The remaining operations of GfxPaths deal with a few other frequent needs.

PROCEDURE Reverse(src, dst: Path);
PROCEDURE Apply(path: Path; VAR mat: GfxMatrix.Matrix);
PROCEDURE Split(path: Path; offset: REAL; head, tail: Path);

Reverse stores a reverted copy of a path in another path, Apply applies a
transformation matrix to all path elements, and Split divides a path into a
head and a tail at a given distance from its start.

3.4 Imaging Subsystem

Gfx contexts treat raster images in an abstract manner. Although they allow
their clients to paint images at arbitrary locations in user space, they offer
no operations for allocating images, for reading and modifying pixel values,
or for reading images from file. Moreover, Gfx does not address the needs
of its concrete context extensions, which require additional functionality for
transforming images from client-defined user coordinates to device coordi-
nates. All these responsibilities are delegated to an independently reusable
imaging subsystem.

The ability to scale and rotate raster images poses some particular de-
mands. All but the simplest image transformation algorithms compute the
color of a destination pixel as a combination of multiple source pixel values.
It is therefore mandatory that color values can efficiently be extracted from
source pixels and stored in destination pixels. Furthermore, to smoothly
blend transformed images with a destination device, an intermediate rep-
resentation that includes alpha values is required, for instance to represent
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the partly opaque pixels along the boundary of a rotated image. By permit-
ting pixels to include alpha values, our image model can also accommodate
image masks, i. e. raster images with one bit of binary alpha information per
pixel.

Raster image support in Gfx goes beyond the built-in functionality of the
Oberon System, which only handles one-bit image masks (‘‘patterns’’) and
eight-bit raster images (‘‘pictures’’). Pictures use an indirect color model,
which means that each pixel stores an index into an associated color lookup
table (‘‘palette’’). Unfortunately, inverse color lookup, i. e. to find an appro-
priate index into a table of arbitrary colors for a given color value, is an
operation whose complexity cannot be neglected. Thus, the lack of direct
color and alpha information make Oberon pictures unsuitable for fulfilling
Gfx’s requirements. Besides, we felt that eight-bit images with only 256 dis-
tinct colors per image did not fit our goal of providing an advanced graphics
library, considering that current display hardware supports frame buffers
with depths of up to 24 or 32 bits and that corresponding image files are
widely available (e. g. on the Internet).

When dealing with raster images, the usual trade-off between abstrac-
tion and efficiency is even more pronounced than for other data structures.
Transferring pixel data from one image to another or from an image to
a frame buffer can only be implemented efficiently if the transferrer (for
example a Gfx context that renders on the display) has direct access to
pixel memory and knows the internal pixel format of source and destina-
tion. However, this contradicts the wish for abstract interfaces that treat all
different combinations of source and destination pixel formats alike.

Our solution comprises a general module Images for representing, load-
ing, storing, and modifying raster images in a potentially unlimited number
of formats, along with a module GfxImages for applying affine transforma-
tions to these images. Images offers clients abstract operations as well as
detailed information about internal memory layout. We discuss the internal
representation of image pixels in Section 3.4.1, how images arrange pixels
in memory in Section 3.4.2, image compositing in Section 3.4.3, how the
Images module can be extended by new file import and export routines in
Section 3.4.4, and image transformations in Section 3.4.5.
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3.4.1 Pixel Formats

According to the model that module Images provides, pixels in a raster image
contain a combination of direct color values, alpha values, and indirect color
values. How these values are stored within pixels is determined by a pixel
format record.

CONST
color = 0; alpha = 1; index = 2; (* components *)
b = 0; g = 1; r = 2; a = 3; (* component index within Pixel type *)

TYPE
Format = RECORD

bpp: SHORTINT; (* bits per pixel: 1, 2, 4, 8, 16, 24, or 32 *)
components: SET; (* kind of information stored in pixels *)
pack, unpack: PackProc; (* conversion to and from pixels *)
...

END;

PackProc = PROCEDURE(VAR fmt: Format; adr, bit: LONGINT; VAR pix: Pixel);
Pixel = ARRAY 4 OF CHAR;

Instead of using symbolic constants for all pixel formats that one can possibly
imagine or generic bit fields that describe offsets and lengths of individual
components within pixels, format records contain a pair of procedures to
convert pixel data to general Pixel values and vice versa. General pixels
contain red, green, blue, and alpha values in the range from 0 to 255.
The advantage of this scheme is its simplicity and extensibility, since new
pixel formats are easily added by choosing a valid number of bits per pixel
and implementing a pair of matching pack and unpack procedures. Its
disadvantage is that it hides all information about the internal structure of
pixels and thus makes optimized transfers impossible.

To counter this disadvantage, module Images defines a few common
pixel formats and marks them with symbolic codes.

CONST custom = 0; (* code for generic pixel format *)

TYPE
Format = RECORD

...
code: SHORTINT;
...

END;
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The code field marks a format as having an exactly defined internal format.
Clients can thus bypass the pack and unpack procedures if they know how
to handle the corresponding pixel format. Most built-in formats are directly
available to clients as exported global variables. The different kinds of
built-in pixel formats are listed in the following paragraphs.

Direct Color Formats. Pixel formats which directly store color values within
pixels are called direct color formats. They usually occupy two, three, or four
bytes per pixel and assign each color component a fixed number of bits at
a fixed bit offset within the memory that the pixel occupies. Formats that
occupy 16 bits per pixel are often called hi-color formats; those that occupy
24 or 32 bits per pixel are often called true-color formats.

CONST bgr555 = 5; bgr565 = 6; bgr466 = 7; bgr888 = 8; bgra8888 = 9;

VAR
BGR555, BGR565, BGR466, (* hi-color formats *)
BGR888, BGRA8888: Format; (* true-color formats *)

PROCEDURE SetRGB(VAR pix: Pixel; red, green, blue: INTEGER);
PROCEDURE SetRGBA(VAR pix: Pixel; red, green, blue, alpha: INTEGER);
PROCEDURE GetRGBA(pix: Pixel; VAR red, green, blue, alpha: INTEGER);

For example, the BGR565 format occupies two bytes per pixel and stores
five bits of blue, six bits of green, and five bits of red in each pixel. Similarly,
the BGRA8888 format occupies four bytes per pixel and stores eight bits of
blue, green, red, and alpha in each pixel. It is therefore especially suitable for
storing partly transparent images that are later blended into other images
or frame buffers.

The internal representation of these pixel formats is compatible with that
of common display hardware. This enables efficient block transfer between
image and frame buffer memory.

Alpha values within pixels are pre-multiplied, which means that color
values are stored scaled by α/255. This simplifies compositing (see Sec-
tion 3.4.3) but sacrifices numerical resolution. SetRGB and SetRGBA convert
color and alpha values to pixels with pre-multiplied components; GetRGBA
extracts the original values again from pre-multiplied pixel values.

Indirect Color Formats. Indirect color formats store an index into a color
lookup table in each pixel. They occupy up to eight bits per pixel and can
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thus contain up to 256 distinct colors.

CONST d8 = 3; p8 = 4;

TYPE
Palette = POINTER TO RECORD

col: ARRAY 256 OF Pixel; (* color table *)
used: INTEGER; (* number of valid entries in color table *)

END;

Format = RECORD
...
pal: Palette;
...

END;

VAR D8: Format;

PROCEDURE InitPaletteFormat(VAR fmt: Format; pal: Palette);

PROCEDURE PaletteIndex(pal: Palette; red, green, blue: INTEGER): INTEGER;
PROCEDURE InitPalette(pal: Palette; used, bits: INTEGER);
PROCEDURE ComputePalette(img: Image; pal: Palette;

reserved, max, bits: INTEGER);

The simplest indirect color format is called D8. Its pixels contain eight-
bit indices into the internal color table of the underlying Oberon display
module. The associated palette is implicitly defined by the one that is used
in module Display.

For formats with explicit palettes, there can be no common format vari-
able because different palettes must be stored in different format records.
However, a format with code p8 (signaling the presence of a palette and
eight-bit pixels) for storing up to 256 different colors can be created by
supplying an initialized palette structure to InitPaletteFormat.

Palette structures must be initialized with InitPalette to associate them
with an internal data structure that speeds up inverse color lookup. This
data structure consists of a three-dimensional array that maps RGB-triples
to indices according to [81]. This data structure is necessary for PaletteIndex,
which finds a matching palette index for a given color.

The process of reducing the number of distinct colors in an image is
known as color quantization. As a special case, ComputePalette uses an
octree-based algorithm [29] to choose a matching palette for any given
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image. The computed palette will represent the color distribution in the
source image reasonably well, favoring often used colors and merging similar
colors into one. Another well-known solution to the same problem is
Heckbert’s median cut algorithm [40].

Pure Alpha Formats. Pure alpha formats store alpha values, but no color.
They are therefore exclusively used for image masks.

CONST a1 = 1; a8 = 2;

VAR A1, A8: Format;

With A1, every pixel uses exactly one bit and is either fully transparent or
fully opaque. A8 offers 256 levels of transparency per pixel and is often used
for storing scaled or rotated glyph bitmaps.

Special Formats. Two pixel formats serve special purposes.

VAR PixelFormat, DisplayFormat: Format;

The PixelFormat variable contains the format description of general Pixel
values. In the current implementation, it is equal to BGRA8888. Display-
Format is the pixel format of the system frame buffer. It is primarily used
for off-screen images whose contents are to be copied to the visible display
area. If DisplayFormat is used for such images, their contents can be copied
to the frame buffer with a simple memory block transfer, without further
conversions.

3.4.2 Images

Module Images defines raster images as follows.

TYPE
Format = RECORD

...
align: SHORTINT;
...

END;

Image = POINTER TO RECORD (Objects.ObjDesc)
width, height: INTEGER; (* image dimensions *)
fmt: Format; (* pixel format *)
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bpr: LONGINT; (* number of bytes per row (may be negative) *)
adr: LONGINT; (* address of lower left pixel *)
mem: POINTER TO ARRAY OF CHAR; (* pixel storage *)

END;

PROCEDURE Create(img: Image; w, h: INTEGER; VAR fmt: Format);
PROCEDURE InitBuf(img: Image; w, h: INTEGER; VAR fmt: Format;

bpr, offset: LONGINT; VAR buf: ARRAY OF CHAR);
PROCEDURE InitRect(img, base: Image; x, y, w, h: INTEGER);

An image is basically a combination of a pixel format and a block of memory
where pixels are stored. The pixel width of an image is multiplied by the
number of bits that its format associates with each pixel and rounded up to
the next byte boundary, which is in turn rounded up to the next multiple
of the format’s align field. This value is the number of bytes per image row
and is stored in the bpr field. The product of bpr and the image height in
pixels determines the actual amount of memory that is needed to store the
image.

The adr field holds the address of the pixel in the lower left corner of
the image. If images are initialized with Create, a heap block of suitable size
is allocated in mem and the address of its first element is stored in adr. To
export an address in a type-safe system is rather uncommon. We justify its
inclusion in the image interface by observing that some applications benefit
from being able to use memory that resides in locations other than the heap
(e. g. on the stack) for storing images. Therefore, an image can be initialized
on an arbitrary array of bytes with InitBuf. Furthermore, a client can reuse a
rectangular part of an existing base image in a new image with InitRect, in
which case the address of the sub-image is correspondingly offset from that
of the base image. As a third benefit, arbitrary application data that resides
somewhere in memory can be interpreted as image data if a corresponding
pixel format can be defined, i. e. if the data can be addressed with a base
address (adr) and a row stride (bpr). If pixel rows are stored upside down,
the bpr field is negative.

We would like to point out that exported addresses are not unsafe per
se since clients still need to import the inherently unsafe SYSTEM module
to read and write memory at an address. (A module that imports SYSTEM
clearly signals that it may violate type-safety.) Rather, exported addresses
are unsafe because any client can change their value, which to forbid the
standard Oberon language is not expressive enough. An elegant way to solve
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this problem would be a read-only export mark as provided by the Oberon-2
language [58].

3.4.3 Compositing

The presence of alpha values in raster images entails the need for a method
to combine source and destination images. The Blend procedure combines
two pixels according to one of the twelve different compositing operations
that are defined in [27].

CONST
clear = 0; srcCopy = 1; dstCopy = 2; srcOverDst = 3; dstOverSrc = 4;
srcInDst = 5; dstInSrc = 6; srcWithoutDst = 7; dstWithoutSrc = 8;
srcAtopDst = 9; dstAtopSrc = 10; srcXorDst = 11;

PROCEDURE Blend(op: INTEGER; VAR src, dst: Pixel);

The following table lists all compositing operations and defines their effect
with two factors FS and FD. When Blend is called with a source pixel S and a
destination pixel D, it places the result FS · S + FD ·D in the destination pixel.

Operation FS FD Operation FS FD

srcCopy 1 0 dstCopy 0 1
srcOverDst 1 1− αS dstOverSrc 1− αD 1
srcInDst αD 0 dstInSrc 0 αS

srcWithoutDst 1− αD 0 dstWithoutSrc 0 1− αS

srcAtopDst αD 1− αS dstAtopSrc 1− αD αS

clear 0 0 srcXorDst 1− αD 1− αS

Unfortunately, to compose images by first unpacking them pixel by pixel,
calling Blend for each pair of source and destination pixels, and packing
the result again in destination pixel format is too inefficient for frequently
used operations such as srcCopy (replacing destination by source) and
srcOverDst (replacing destination according to source alpha). The reason
is that the room for optimization that many combinations of pixel formats
offer is not taken into account.

The Images module solves this problem with what it calls transfer modes.

TYPE
TransferProc =

PROCEDURE(VAR mode: Mode; sadr, sbit, dadr, dbit, len: LONGINT);
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Mode = RECORD
src, dst: Format; (* source and destination format *)
op: INTEGER; (* compositing operation *)
col: Pixel; (* substitute color for pure alpha sources *)
transfer: TransferProc;

END;

VAR SrcCopy, SrcOverDst: Mode;

PROCEDURE InitMode(VAR mode: Mode; op: INTEGER);
PROCEDURE InitModeColor(VAR mode: Mode; op, red, green, blue: INTEGER);
PROCEDURE Bind(VAR mode: Mode; VAR src, dst: Format);

Transfer modes are initialized with one of the available compositing oper-
ations. For pure alpha sources, transfer modes must also be assigned a
color value which determines the color that will be associated with source
alpha values. Whenever Bind is called, it chooses an appropriate transfer
procedure, based on compositing operation, source format, and destina-
tion format. It stores this procedure in the mode’s transfer field. As of
this writing, module Images implements almost 70 different procedures for
optimized transfers among its built-in pixel formats, especially for clear, src-
Copy, and srcOverDst operations. Modes that are initialized with srcCopy
and srcOverDst are even exported as global variables for convenience.

The following primitive procedures for reading and writing pixel values
and for copying rectangular blocks from one image to another utilize transfer
modes. These procedures bind the supplied transfer mode to the specific
combination of source and destination formats with Bind and then use the
correspondingly optimized transfer procedure to move pixels from source
to destination.

PROCEDURE Get(img: Image; x, y: INTEGER; VAR pix: Pixel; VAR mode: Mode);
PROCEDURE Put(img: Image; x, y: INTEGER; pix: Pixel; VAR mode: Mode);

PROCEDURE Fill(img: Image; llx, lly, urx, ury: INTEGER;
pix: Pixel; VAR mode: Mode);

PROCEDURE Clear(img: Image);

PROCEDURE GetPixels(img: Image; x, y, w: INTEGER; VAR fmt: Format;
VAR buf: ARRAY OF CHAR; VAR mode: Mode);

PROCEDURE PutPixels(img: Image; x, y, w: INTEGER; VAR fmt: Format;
VAR buf: ARRAY OF CHAR; VAR mode: Mode);
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PROCEDURE Copy(src, dst: Image; llx, lly, urx, ury, dx, dy: INTEGER;
VAR mode: Mode);

PROCEDURE FillPattern(pat, dst: Image; llx, lly, urx, ury, px, py: INTEGER;
VAR mode: Mode);

PROCEDURE Dither(src, dst: Image);

It should now be clear why clients are advised to use built-in formats
whenever possible. Although all image operations correctly deal with custom
formats, optimized transfers are only possible for built-in formats. For
custom formats, Bind will always fall back to a generic transfer procedure
that is based on pack and unpack procedures and cannot read and write
pixel memory directly. The additional overhead of invoking pack and unpack
procedures and of converting pixel values to and from generic Pixel variables
seriously lessens overall performance. A small evaluation shows that custom
formats operate from about ten to sixty times slower than equivalent built-in
formats (see Appendix C.2).

3.4.4 File Formats

Most applications use only raster images that they import from files. Mod-
ule Images offers its clients procedures for loading and storing images in
arbitrary file formats using the plug-in mechanism that was described in
Section 3.1.1.

VAR
LoadProc, StoreProc:

PROCEDURE(img: Image; VAR fname: ARRAY OF CHAR; VAR done: BOOLEAN);

PROCEDURE Load(img: Image; name: ARRAY OF CHAR; VAR done: BOOLEAN);
PROCEDURE Store(img: Image; name: ARRAY OF CHAR; VAR done: BOOLEAN);

For loading and storing, Images searches a matching command procedure
by interpreting the file name extension as a key into a table of commands.
A matching command procedure, when executed, is expected to initialize
the global LoadProc and StoreProc variables with references to procedures
for loading and storing images in the corresponding format. The number of
supported image file formats can thus be augmented without recompiling or
even reloading the Images module itself. In its current implementation, the
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Images package includes extensions for loading and storing Oberon pictures
and for loading BMP, GIF, and JPEG files.

3.4.5 Transformations

Section 2.2.4 briefly touched the problem of applying affine transformations
to raster images, which we discuss in more detail here. More thorough
introductions to the field of image reconstruction, resampling, and image
transformations can be found in [30] and [88].

Image Reconstruction. A raster image can be regarded as a representation
of a two-dimensional analog signal of which only the values at regularly
spaced samples, located at pixel centers, are known. When a pixel center
in the destination image of an image transformation is mapped back to the
source image (using the inverse of the transformation), it will rarely coincide
with the center of a source pixel. Hence, the correct signal amplitude at that
location in the source image must be reconstructed from nearby samples.
The reconstructed signal is then resampled at the same location to find the
correct value for the destination pixel.

The visual quality of a transformed image primarily depends on the
quality of the source image, which must be sampled at a frequency that
is high enough not to miss high-frequent details, and the quality of the
reconstruction. Reconstruction can be expressed as a convolution of the
sampled signal with a reconstruction filter. According to the sampling
theorem, a signal whose spectrum is limited to a maximal frequency can
be perfectly reconstructed from its samples by convoluting it with a sinc
function, which is the inverse Fourier transform of a perfect low-pass filter
(a box function) in the frequency domain. However, the sinc function, which
is defined as

sinc(x) =
sin(πx)

πx

has infinite extent in the signal domain and therefore cannot be used in
practice. The filter functions that are applied instead are always prone
to introduce reconstruction artifacts because they are not limited in the
frequency domain and thus introduce other frequencies of the sampled
signal in the reconstructed signal.
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Filter Interface. Higher quality reconstruction filters are computationally
more expensive than those of lower quality. Since Gfx cannot a priori
know the needs of its clients, it lets them decide on the balance between
performance and aesthetics by relying on an extensible filter structure:

TYPE
ShiftProc = PROCEDURE(VAR filter: Images.Mode; src, dst: Image;

sadr, sbit, dadr, dbit, len: LONGINT; t: REAL);
ScaleProc = PROCEDURE(VAR filter: Images.Mode; src, dst: Image;

sadr, sbit, dadr, dbit, len: LONGINT; xy, dxy: REAL);

Filter = RECORD (Images.Mode)
hshift, vshift: ShiftProc;
hscale, vscale: ScaleProc;

END;

VAR NoFilter, LinearFilter: Filter;

PROCEDURE InitFilter(VAR filter: Filter; op: SHORTINT; hsh, vsh: ShiftProc;
hsc, vsc: ScaleProc);

A Filter is derived from Images.Mode, inheriting the transfer mode’s com-
positing operation and transfer procedure. It augments the transfer mode
by procedures for shifting and scaling rows and columns of pixels. This re-
stricts possible filter functions to separable filters, which are combinations
of independent one-dimensional filters in the horizontal and vertical axis.

GfxImages exports two built-in filters, NoFilter and LinearFilter. NoFilter
implements a simple box filter, which returns the sampled value of the
nearest pixel center. It is called NoFilter because it achieves the same
result as a naive algorithm that does not take filtering into account at all.
LinearFilter implements a tent filter function, which reconstructs the analog
signal as a linear combination of the two nearest sample values. Although
by no means an advanced filter, LinearFilter is already noticeably slower than
NoFilter.

Transformation Procedures. With these filters, transformation procedures
can apply simple and compound transformations to a source image and
store the result in a destination image.

PROCEDURE Translate(src, dst: Image; tx, ty: REAL; VAR filter: Filter);
PROCEDURE Scale(src, dst: Image; sx, sy, tx, ty: REAL; VAR filter: Filter);
PROCEDURE Rotate(src, dst: Image; sin, cos, tx, ty: REAL; VAR filter: Filter);
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PROCEDURE ShearRows(src, dst: Image; sx, tx: REAL; VAR filter: Filter);
PROCEDURE ShearCols(src, dst: Image; sy, ty: REAL; VAR filter: Filter);
PROCEDURE Transform(src, dst: Image; m: GfxMatrix.Matrix; VAR filter: Filter);

Because filters only implement shifting and scaling for rows and columns, all
transformations have to be decomposed into a series of shifting and scaling
transformations. An affine 3×3 matrix is split into a rotate-scale-shear and
a translation part as


a b 0
c d 0
e f 1

 =


a b 0
c d 0
0 0 1

 ·


1 0 0
0 1 0
e f 1


The first matrix on the right side of the equation can be further decomposed
according to the following identity a b

c d

 =

 a 0
0 ad−bc

a

 ·
 1 0

ca
ad−bc 1

 ·
 1 b

a
0 1


In this decomposition, the first matrix is a scaling transformation, whereas
the latter two are shearing transformations along the x and y axes, which
are implemented as a series of shifts with variable displacements. Since
the translation part can be incorporated into the last call of the filter’s shift
or scale procedures, any transformation can be performed in at most three
steps. However, an additional pre-processing step, in which the whole image
is possibly rotated by multiples of 90 degrees or mirrored along a coordinate
axis, is necessary to avoid the bottleneck problem that is discussed in [88].
Otherwise, information could be lost in intermediate stages because many
pixels could be combined into one. This pre-processing step at the same
time keeps the denominators of the fractions in the above decomposition
from assuming values in the vicinity of zero and thus avoids problems with
numeric overflow.

While clients are responsible for supplying a destination image that
provides enough space for the transformed image, filter procedures are
responsible for not accessing pixels outside the boundaries of their source
images. Depending on the extent of the implemented filter, filter procedures
must replace non-existent source pixels beyond the boundary of the source
image with reasonable estimates, for example by duplicating boundary pixels
or by adapting the corresponding filter functions.
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3.5 Font Subsystem

While the Oberon system is able to efficiently display the glyphs of its
bitmap fonts, it only provides a fixed set of point sizes and resolutions. Gfx,
however, supports a user coordinate system that can be arbitrarily scaled
and rotated and thus has to provide glyph images for non-existent font sizes
and orientations as well.

Oberon bitmap font files have been scan-converted from outline de-
scriptions and -- since the outline format does not contain any hinting
information -- manually tuned to improve visual appearance and legibility.
The outlines of these fonts, however, are not available to Oberon applica-
tions unless they decode the corresponding font files themselves. One goal
of the font subsystem is therefore to make these outlines available as path
structures.

To craft a well-designed font is not only a work of love and labor but also
an art [18]. The creators of the Oberon System were lucky enough to gain the
support of professional type designer Hans Ed. Meier, who used their tools
to create a digital adaptation of his well-known Syntax family of typefaces,
which have since been used in all variants of the system. To provide its
clients with a broader choice of quality fonts, the Gfx font subsystem is
extensible and can load fonts in other formats, too.

3.5.1 Font Interface

The GfxFonts module lets its client demand image masks, outlines, and
metrics for each glyph.

PROCEDURE GetWidth(font: Font; ch: CHAR; VAR dx, dy: REAL);
PROCEDURE GetMap(font: Font; ch: CHAR; VAR x, y, dx, dy: REAL;

VAR map: Images.Image);
PROCEDURE GetOutline(font: Font; ch: CHAR; x, y: REAL; path: GfxPaths.Path);

PROCEDURE GetStringWidth(font: Font; str: ARRAY OF CHAR; VAR dx, dy: REAL);

For each character, GetWidth returns its advance width, GetMap addition-
ally returns a matching image mask, and GetOutline stores the character’s
contour in the supplied path. GetStringWidth computes the advance width
of an entire string. Advance width vectors contain dx and dy components
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because fonts can be rotated, requiring that text is set in other directions
than from left to right.

The above procedures for getting width, image, and outline of a glyph
are again wrapper procedures which invoke corresponding entries in the
font method table.

TYPE
Font = POINTER TO RECORD

class: Methods;
...

END;

Methods = POINTER TO RECORD
...
getwidth: PROCEDURE(font: Font; ch: CHAR; VAR dx, dy: REAL);
getmap: PROCEDURE(font: Font; ch: CHAR; VAR x, y, dx, dy: REAL;

VAR map: Images.Image);
getoutline: PROCEDURE(font: Font; ch: CHAR; x, y: REAL; path: GfxPaths.Path);

END;

Depending on the class of a font, the corresponding getwidth and getmap
procedures load glyph metrics and bitmaps from a file or create them
dynamically by converting font outlines or by transforming existing glyph
metrics and bitmaps. To avoid reconstructing the same bitmap over and
over again, the resulting image masks are stored in an internal glyph cache
and returned directly from the cache the next time they are requested.

3.5.2 Finding Fonts

A font is defined by its name, its point size, and a matrix that incorporates
the device scaling factor and other transformations.

TYPE
Font = POINTER TO RECORD

class: Methods;
name: FontName;
ptsize: INTEGER;
mat: GfxMatrix.Matrix;
xmin, ymin, xmax, ymax: INTEGER; (* union of glyph bounding boxes *)
rfont: Fonts.Font; (* corresponding system font, if appropriate *)
niceMaps: BOOLEAN; (* true if bitmaps are tuned or grid-fitted *)

END;
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Methods = POINTER TO RECORD
derive: PROCEDURE(font: Font; size: INTEGER; VAR mat: GfxMatrix.Matrix): Font;
...

END;

VAR
Default: Font;
OpenProc: PROCEDURE (VAR family, style: ARRAY OF CHAR;

size: INTEGER; VAR mat: GfxMatrix.Matrix): Font;

PROCEDURE Open (name: ARRAY OF CHAR; ptsize: INTEGER;
mat: GfxMatrix.Matrix): Font;

PROCEDURE OpenSize (name: ARRAY OF CHAR; ptsize: INTEGER): Font;

Upon receiving a request to open a font, the following steps are tried in
order until a matching font can be returned or all of them have failed.

1. Search a matching font in the internal font cache of module GfxFonts.

2. If a font from the same family, but with different point size or instance
matrix is found in the cache, call the derive method of that instance.
For outline-based fonts, derive can return a font instance which shares
outline data with other fonts of the same family.

3. Try to open a matching Oberon bitmap or outline font file.

4. Search a registered command, using the name of the font family in
question as a key into a dictionary (see Section 3.1.1). The command
procedure, when called, is expected to initialize the global OpenProc
variable. That procedure is then called with all necessary parameters
and may return a reference to an extension of type Font.

Due to the dynamic loading scheme, new font file formats can be added
whenever necessary without any change in GfxFonts. Special wildcard keys
that match all font families are supported as well. Thus, fonts can even
be loaded when they have not been registered. However, this results in
all registered extensions being loaded at once instead of only the one that
would actually be required. At the moment, TrueType fonts [7] are fully
supported, including grid-fitted raster images and outlines. Metafont [47]
fonts are supported as well, but only in the form of pre-rendered bitmaps.

When a font is requested for which Oberon bitmap or outline font
files exist, the following heuristic is used. If a bitmap with matching point
size and resolution is available, GfxFonts opens it as a standard Oberon
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font with the system call Fonts.This and keeps a reference of this system
font in rfont. Because clients can check and access this reference, they can
take advantage of the efficient font rendering code that Oberon’s low-level
Fonts and Display modules provide. If no exactly matching bitmap font is
available, but one which is similar in scale is, GfxFonts loads the latter and
transforms its bitmaps when an image mask is requested. If no bitmap font
at all can be found, but a corresponding outline font is available, image
masks are generated by scan-converting these outlines.

The niceMaps field is a hint to clients of GfxFonts that indicates whether
the image masks that GfxFonts provides will generally look better than filled
outlines, as is for example the case with fonts whose bitmaps were manually
tuned or whose outlines contain hints. For instance, the Gfx context exten-
sion that module GfxPS provides uses this information to decide on whether
to include fonts in the generated Postscript file as arbitrarily scalable Type-1
(outline) fonts or as Type-3 fonts (with embedded bitmaps) [3].

3.6 Region Subsystem

The module GfxRegions manages regions, i. e. coherent areas in two dimen-
sions. Gfx uses regions in its font subsystem (see Section 3.5) for scan-
converting glyph outlines and in its raster device contexts (see Section 3.7)
for storing the current clip area and for scan-converting closed paths to fill or
clip them. Figure 3.6 shows a simple example of a region. This region could
either have been constructed as a boolean combination of three rectangles,
for example to compute the initial clip area for a partially obscured window
in a windowed display, or as the interior of the path along its outline, which
is a concave polygon with ten sides. To meet the requirements of Gfx, regions
must be structured in a way that supports either approach.

Region representation and type are discussed in Section 3.6.1; boolean
operations with region arguments are the topic of Section 3.6.2, and region
construction from contour points follows in Section 3.6.3.

3.6.1 Region Representation

A proven method for representing regions is to decompose them into hori-
zontal slices [27]. By intersecting a region with a set of equidistant scanlines,
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Figure 3.6: Example of a simple region

we get a set of horizontal intervals, as displayed in Figure 3.7. These scan-
lines typically correspond to rows of pixels, which is why regions are usually
stored in device coordinates.

Masks. We can see in Figure 3.7 that the two bottommost scanlines of the
displayed region are identical. Instead of storing such redundant scanlines
in the region structure, we can merge them into one. This requires that
we give each scanline a height. Oberon System 3 implements such a data
structure, which it calls mask, in its Gadgets component framework [51].
Masks allow Gadgets to efficiently store the visible areas of overlapping
rectangular frames (windows). However, since masks place each scanline
interval in a separate block of heap memory, complex regions with curved
boundaries are spread over many small memory blocks. This strains memory
management and increases the likelihood of cache misses during region
traversals. Another reason why masks do not suit the needs of Gfx is that
regions can only be constructed with boolean operations, but not from
region outlines.

Point Vectors. In the Gfx region representation, scanlines and intervals are
not stored explicitly. Instead, a region consists of a sequence of points. Each
interval contributes two points to the structure, one at its left end and one
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Figure 3.7: Region decomposed into horizontal intervals

at its right end. The region that is displayed in Figure 3.7 thus consists of the
following points, ordered from bottom left to top right:

(1, 4) (2, 4) (3, 4) (5, 4)
(1, 3) (5, 3)
(1, 2) (4, 2)
(1, 1) (4, 1)

To construct a region from its outline, a client traverses the corresponding
path and appends all intersections of the path with any scanline to the
region. The resulting sequence lists points in the order they appear on the
path, which is not suitable for traversing the interior of the path as a region.
However, these points can be brought into a suitable order by sorting the
entire point sequence according to point coordinates. A point P comes
before a point Q in the sorted order if Py < Qy or Py = Qy ∧ Px < Qx.

When region outlines intersect themselves, intervals on a scanline may
overlap each other. Such situations can be resolved according to the even-
odd rule or to the non-zero-winding rule if we associate a direction (up or
down) with each point. The points on a scanline then correspond exactly
to the intersections of a virtual ray with the region outline that we used to
define these rules on page 23 in Section 2.2.2.
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Fillers. As with masks, redundant scanlines in a point vector can be merged.
When points (1, 2) and (4, 2) are removed from the above list, the intervals in
the scanline just below are automatically assumed to apply to all scanlines
above up to the next listed scanline (which in our example starts with point
(1, 3)). However, when regions consist of several disconnected parts, as
illustrated in Figure 3.8, we can no longer distinguish between scanlines
that are empty and scanlines that have been removed because they were
redundant. To overcome this problem, we introduce fillers, which are special

� � � � �

�

�

�

�

�

�

Figure 3.8: Example of disconnected region

intervals that start and end at x =∞. An embedded filler interval implicitly
limits the height of the scanline below it. Besides, by adding special fillers at
the bottom and at the top of the region, we ensure that each scanline has a
valid scanline below and above itself. This simplifies several algorithms that
operate on regions because boundary problems are eliminated. The final
set of points for the region from Figure 3.8 is thus as follows.

(∞,∞, +) (∞,∞,−)
(1, 4, +) (3, 4, −)

(∞, 3, +) (∞, 3, −)
(1, 1, +) (3, 1, −)

(∞, −∞, +) (∞, −∞, −)

The third component of each tuple is the direction of the corresponding
scanline intersection. It defines whether an interval starts (+) or ends (−)
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at that point.

Interface. The region data structure is defined as follows:

CONST
Winding = 0; EvenOdd = 1; (* region modes *)

TYPE
RegionData = POINTER TO ARRAY OF LONGINT; (private)

Region = POINTER TO RECORD
llx, lly, urx, ury: INTEGER; (* bounding box *)
mode: INTEGER; (* rule defining path interior *)

private fields:
valid: BOOLEAN; (* set if points in data array are sorted and compacted *)
data: RegionData; (* encoded points defining scanline intervals *)
points: LONGINT; (* number of data points actually used *)

END;

To speed up the sorting step that is required to convert point sequences to
proper regions, point coordinates are stored in encoded form. Each element
in a RegionData array contains coordinates and direction of one point. The
encoding is such that integer comparisons of data elements lead to the
desired sorting order.

When an encoded point is added to an already full block, the block’s
contents are copied to a larger block, which then replaces the old one.

As an optimization, points may be zero. This indicates that the region is
rectangular and that the bounding box alone defines the entire region.

3.6.2 Region Algebra

Two regions can be combined with each other to form a new region. When
two regions are joined, the result encloses all areas that were part of at least
one region. When two regions are intersected, the result encloses all areas
that were part of both regions. When one region is subtracted from another,
the result encloses all areas that were part of the original region, but not of
the one that was subtracted.

Generic Algorithm. More technically, a boolean operation must combine
the point vectors from both regions. Depending on the operation, existing
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points must be removed or new points must be added. An outline of the
generic algorithm that is used for these operations looks as follows.

1. Validate both regions, i. e. sort and compact their point vectors if nec-
essary.

2. Traverse both point vectors simultaneously and build a new sequence
of points. Because the result will be stored in the first region, only those
points that are not already present in that region are appended to the
new sequence. To remove existing points, append new points at the
same coordinates, but with opposite direction. This creates an empty
interval at that point.

3. Merge old and new point sequences. A generic sorting step is not
necessary because both sequences are already in the required order.

4. Compact the resulting point sequence by eliminating empty intervals
(from removed points) and redundant scanlines.

Example. To illustrate the generic algorithm, we present how a rectangle
with corners (2, 2) and (4, 4) is subtracted from a rectangle with corners (0,
0) and (4, 4) (see Figure 3.9). The initial point sequences of both rectangles
look as follows:

Destination Argument
(∞,∞, +) (∞,∞, −) (∞,∞, +) (∞,∞, −)
(∞, 4, +) (∞, 4, −) (∞, 4, +) (∞, 4, −)
(0, 0, +) (4, 0, −) (2, 2, +) (4, 2, −)
(∞, −∞, +) (∞, −∞, −) (∞, −∞, +) (∞, −∞, −)

To subtract the argument from the destination region, its non-filler points are
appended with inverted directions to a new point sequence. In addition,
the original intervals of the destination region that are in effect on the
corresponding scanlines must be duplicated.

Destination New Points
(∞,∞, +) (∞,∞, −)
(∞, 4, +) (∞, 4, −)
(0, 0, +) (4, 0, −) (0, 2, +) (2, 2, −) (4, 2, +) (4, 2, −)
(∞, −∞, +) (∞, −∞, −)

When these two point sequences are merged and compacted, the final
region contains the following points:
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Figure 3.9: Subtract one region from another

(∞,∞, +) (∞,∞, −)
(∞, 4, +) (∞, 4, −)

(0, 2, +) (2, 2, −)
(0, 0, +) (4, 0, −)

(∞, −∞, +) (∞, −∞, −)

3.6.3 Construction from Outlines

As mentioned in Section 3.6.1, clients convert closed paths to regions by
intersecting them with scanlines and appending the resulting points to the
point vector of a region. However, these intersections with scanlines include
some special cases that must be properly handled.

1. Paths may contain horizontal lines. Since horizontal lines cannot be
intersected with scanlines, they do not contribute points to the region.
However, all other conditions must still be met.

2. The path may have corners that fall exactly on a scanline. If such a corner
is a local vertical extremum, care must be taken to ensure that either
two points or no points are appended to the region, corresponding to
a proper interval or no interval at all. Similarly, if the path continues in
the same direction as it arrived at the scanline, exactly one point must
be appended, but not two.

3. Closed paths return to their starting point. Nevertheless, this starting
point must only be entered once into the region.
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To cope with these conditions, we slightly shift our focus. Instead of append-
ing points to the region, we append (vertical) transitions. Thus, horizontal
lines are ignored because they include no vertical transition. Points on scan-
lines either result in a up-down or down-up transition for local extrema or
in two successive up or down transitions for non-extremal points. Last but
not least, shared points of a closed path pose no problem because only the
first and last transitions count.

AddPoint Procedure. The following procedure appends transitions to a
region.

PROCEDURE AddPoint(reg: Region; x, y, dy: INTEGER);
BEGIN

IF (dy # 0) & (y >= -∞) & (y <=∞) THEN
IF x < -∞ THEN x := -∞
ELSIF x >∞ THEN x :=∞
END;

(* convert rectangular region to point sequence *)
MakeData(reg);

(* update bounding box *)
IncludePoint(reg.llx, reg.lly, reg.urx, reg.ury, x, y);

Append(reg, x, y + (-dy) DIV 2, dy); (* dy=-1 => y, dy=1 => y-1 *)
reg.valid := FALSE

END
END AddPoint;

When clients add a transition to a region, they supply the new end point
in x and y. The current vertical direction is captured in dy. To ensure that
each horizontal interval has proper lower and upper bounds, new points
are always positioned on the scanline with the lower y coordinate. The valid
flag is cleared to indicate that the data points of the region must be sorted
before the next region operation can be performed.

Alternative Approaches. Instead of a single AddPoint procedure, we could
have chosen to provide two procedures Start and Step. Vertical direction
could then be calculated internally and would not have to be specified by
clients. However, some algorithms for constructing regions benefit from
the current approach because they can add points in any order, not just in
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the sequence they appear during the traversal of a path. For example, the
symmetry in a circle allows an algorithm for drawing circles to only compute
the first octant and draw the remaining octants by mirroring computed
points. With AddPoint, such an algorithm can add several points at once
with each step.

A standard method for filling concave polygons places all edges of the
polygon into an edge table and advances from scanline to scanline, from
the bottom of the polygon to the top. Those edges that intersect the current
scanline are called active and are therefore part of the active edge table
(AET). For each scanline, its intersections with the edges in the AET are
sorted according to x coordinate and used to determine the set of visible
intervals on that scanline. Because the members of the AET and their relative
horizontal order are likely to be the same on the next scanline as on the
current scanline (a property that is called edge coherence), the algorithm can
advance from scanline to scanline with little effort. The complete algorithm
is for example explained in detail in [35] or [27].

Scanline algorithms that are based on edge tables can at the same
time solve the hidden-surface problem in 3D (e. g. [38]). They only need
to keep the edges of all active polygons (including depth information for
each edge) in the AET to determine visible intervals of each polygon on the
current scanline. For our purposes, however, such an algorithm would not
be satisfactory. Even if we ignore that curved path segments have to be
approximated with many small line segments, we still need to know the
complete set of edges before we can build a sorted edge table. This would
defeat our intention of rendering path segments without first recording the
entire path in a path data structure. Edge tables might be a viable solution
for scan-converting paths in a context that uses late rendering, but are not
as attractive when early rendering is used.

3.7 Implementation on Raster Devices

Raster based pixel grids are the most important class of physical and logical
output devices. This section gives an overview of a Gfx context extension
that targets abstract raster devices. It is in turn the foundation for concrete
contexts that render on the display and into raster images in memory.

CONST In = 0; Out = 1; InOut = 2; (* clip states *)
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TYPE
Context = POINTER TO RECORD (Gfx.Context)

clipReg: GfxRegions.Region; (* region inside clip path *)
clipState: SHORTINT; (* current clip state *)
dot: PROCEDURE(rc: Context; x, y: LONGINT);
rect: PROCEDURE(rc: Context; lx, ly, rx, uy: LONGINT);
setColPat: PROCEDURE(rc: Context; col: Gfx.Color; pat: Gfx.Pattern);
col: Gfx.Color; (* current color *)
pat: Gfx.Pattern; (* current pattern *)
...

END

The module GfxRaster extends the basic context structure that module Gfx
exports by a clip region, a current color and pattern, and procedures for
setting current color and pattern, for painting single pixels, and for painting
rectangles. The current color and pattern are equal to either the correspond-
ing stroke or fill attributes, depending on the current render mode.

Raster contexts do not algorithmically clip path elements. They keep
track of whether the current path element is completely visible or completely
invisible in the clipState field, but leave it up to the dot and rect procedures
to correctly handle partially visible elements.

3.7.1 Filling and Clipping

When the current rendering mode includes Gfx.Fill or Gfx.Clip, the visited
path is converted to a region, which is then intersected with the current clip
region or enumerated and filled with the current fill color and pattern using
the rect procedure. When a path is started with Begin, a current path region
is initialized. Dedicated algorithms based on the classic work by Bresenham
[16, 17] are used to scan-convert lines, circles, and axis-aligned ellipses.
These algorithms add the resulting points to the current path region. Arcs
and Bézier curves are first approximated with lines using the enumeration
procedures from GfxPaths (see Section 3.3.3) before they are added to the
path region. When the region is finally combined with the current clip
region or enumerated for filling, GfxRegions automatically compacts the set
of added points and converts it to a valid region, as discussed in Section 3.6.
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3.7.2 Stroking

Stroking a path is slightly more complicated. When the render mode com-
bines stroking with either filling or clipping, the whole path is stored in a
separate path structure and stroked in a second pass after all other opera-
tions have been executed. Otherwise the rules from Section 3.2.1 that define
rendering order might be violated. Since a path can only be filled when its
specification is complete, pixels that were affected by stroking operations
during the traversal of the path may be overdrawn. Similarly, clipping would
wrongfully not affect the stroke operation.

Hairlines. To prepare the context for stroking when a path is started, the
current color and pattern are set to the corresponding stroke attributes, and
the current line width is transformed to device space. If the line width
is less than 11

2 pixels, path elements are stroked as hairlines. The same
algorithms are used as for filling and clipping, but the calculated points are
now painted with the context’s dot procedure. Horizontal or vertical lines
are stroked with a single invocation of rect instead of multiple dot calls.

Thick Lines. When starting to stroke with a line width greater than 11
2 pix-

els, path elements are first flattened. The resulting thick lines are converted
to rectangles; the rectangles’ sides are then scan-converted and appended
to the current path region. To correctly paint line joins, output for a line is
always delayed until the next line segment is appended because only then
the geometry of the join is fully specified. Likewise, line caps can only be
rendered when a subpath is complete because a client can close the current
subpath anytime. Raster contexts therefore contain additional fields for
storing the starting point and the initial direction of the subpath plus the
start and end points of the previous line. Finally, the path region is filled
with the current stroke color and pattern.

Line Joins. The geometry of a thick path’s outline can become rather com-
plex, especially when a short line segment meets another line at a sharp
angle. Lines that are shorter than the line width itself are difficult to handle
and may confuse GfxRaster. To minimize artifacts, it trims line joins by not
drawing them beyond the midpoints of involved line segments. A more
sophisticated algorithm would delay painting joins until more information
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about the geometry of nearby line segments is available. Unfortunately,
this would also require that an indefinite number of path elements are
temporarily stored. Such an algorithm would therefore lose some of the
simplicity that early rendering provides.

Dashes. Dashed subpaths are stroked by first flattening arcs and Bézier
curves. The length of every traversed line segment is added to the current
offset into the subpath, which in turn determines whether the subpath is
currently visible or not. Depending on the current line width, single dashes
are drawn as hairlines or as thick lines with line caps at their ends.

3.7.3 Text and Images

When text is rendered on a raster context, GfxRaster concatenates the current
transformation matrix with the instance matrix of the current font. This new
matrix is the instance matrix of the current font in the device coordinate
system. If the current render mode only demands that the current path
is filled, the corresponding font is requested to provide matching image
masks, which are then output in the current fill color using the context’s
image method. For all other render modes, outlines are requested and
appended to the current path. Concrete context extensions are encouraged
to supersede this generic text rendering method and take advantage of the
built-in Oberon mechanisms for rendering glyph bitmaps if applicable. The
GfxDisplay module for generating Gfx output on the Oberon display does
so, improving performance when rendering text for which a corresponding
Oberon bitmap font is available.

Raster contexts do not render images at all, forcing their concrete exten-
sions to do so. In theory, a raster image could be painted by painting a filled
rectangle for every image pixel. In practice, however, this approach would
be much too inefficient.

3.8 Summary

This chapter presented Gfx, an API for rendering vector and bitmap graphics
on a variety of physical and logical output devices. Its rich functionality is
comparable to that of Postscript; however, unlike Postscript and traditional
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API (e. g. QuickDraw or GDI), Gfx fulfills the goals that were formulated at
the end of Chapter 2. It has a modular structure and consists of several inde-
pendently reusable subsystems which manage raster images, paths, regions,
and fonts. Furthermore, although many of its interfaces are bottleneck inter-
faces that are not intended to be augmented by new functionality, support
for new output devices, new image file formats, and new font formats can be
added without having to recompile existing modules. Examples of existing
extensions are

-- a context type for creating Postscript and encapsulated Postscript files

-- image loaders for importing images in BMP, GIF, and JPEG format

-- font loaders for importing TrueType fonts and Metafont bitmaps

Last but not least, Gfx successfully implements a path model based on the
idea of rendering path elements as early as possible. It can paint arbitrary
paths in a number of render modes without first having to store visited paths
explicitly, which is not the case for other graphics interfaces that support
general path models.



C H A P T E R 4

The Leonardo Shape Framework

Chapter 3 showed that the set of graphical object types and object attributes
that Gfx handles is limited and cannot be extended. Individual objects are
rendered in isolation, independent of the objects that were rendered earlier.
Besides, Gfx has no memory of what objects it has rendered and cannot be
requested to paint a set of objects a second time. Briefly, although all the
tools for producing graphical output are present, there is no abstract model
giving structure or persistence to a set of related graphical objects.

This lack of structure and persistence is not necessarily a flaw since many
applications already implement a model of their own and may appreciate
the direct access to abstract rendering devices that Gfx offers them with
its immediate rendering model. However, other applications (especially
interactive editors for creating and modifying graphical documents) would
benefit from an additional software layer if it provided them with a more
abstract view of a graphical scene. This additional layer should allow its
clients to organize their objects in an appropriate data structure. Further-
more, it should allow them to store objects in a persistent store and to
retrieve stored objects. To be useful to as many applications as possible,
this structural layer should be organized as a framework [23, 45]. A frame-
work primarily defines abstract objects and the interactions between them.
Clients of the framework then extend these abstract objects with domain
specific objects to customize the framework to their needs.

In this chapter, we present such a graphical object framework. It models
graphical objects, called shapes, in a hierarchical, extensible, and persistent
data structure. It includes protocols for constructing, rendering, and ma-
nipulating scenes (called figures) that are built from such objects. Several
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of these protocols (e. g. for locating, selecting, or moving shapes) concern
tasks that serve interactive editor applications. Thus, the framework’s figure
objects can directly be used as document models in the Leonardo graphics
editor, which is described in Chapter 5. Nevertheless, at least the core part,
which defines graphical objects, their appearance, and their structure, could
also be reused within other environments. The figures of the shape frame-
work correspond to scene graphs in 3D, as for example provided by PHIGS
[64], OpenInventor [83], or Java 3D [75].

An annotated example of a figure is shown in Figure 4.1. Other examples
include the figures in this thesis, all of which have either been constructed
interactively with Leonardo (see Chapter 5) or descriptively with Vinci (see
Chapter 6).
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Figure 4.1: Annotated example of a figure

Whereas Gfx on occasion limits extensibility in favor of efficiency and
simplicity, the shape framework focuses on extensibility and generalization.
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To achieve the necessary flexibility, the shape framework exports several
independent type hierarchies. From Oberon System 3’s standard Object and
ObjMsg types, whose properties are summarized in Section 4.1, two of these
hierarchies are derived; the shape type hierarchy (see Section 4.2) and the
shape message hierarchy (see Section 4.4). Their versatility is illustrated by
an explanation of how the framework implements geometrical constraints
in Section 4.5. A third type hierarchy, which allows clients to customize
the visual appearance of existing shapes by delegating render requests to
so-called pen objects, is discussed in Section 4.3.

4.1 Foundations: Oberon Objects and Libraries

The main difference between Oberon System 3 [36] and earlier versions of
the Oberon System was the addition of a module Objects which defines root
types Object for arbitrary objects and ObjMsg for arbitrary object messages:

TYPE
ObjMsg = RECORD (* base type of all messages sent to objects *)

stamp: LONGINT; (* message time stamp *)
dlink: Object; (* sender of the message *)

END;

Handler = PROCEDURE (obj: Object; VAR M: ObjMsg);

Object = POINTER TO RECORD (* base type of all objects *)
handle: Handler (* message handler *)
stamp: LONGINT; (* time stamp of last message processed by object *)
dlink: Object; (* next object in the message thread *)
slink: Object; (* next object in a list of objects *)
lib: Library; ref: INTEGER; (* library and reference number of object *)

END;

Handler. An object’s most important field is its handler procedure, which
dynamically dispatches all message records that it receives. Any derivation
of the general ObjMsg root type is accepted by the handler procedure of any
derivation of Object; Marais in [51] calls this an open message interface. The
open message interface allows messages to be broadcast within a complex
object graph even if not all objects in the graph know how to handle the
message. If an object that receives an unknown message contains other
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objects, it will forward the message to them in the hope that they know
how to handle it. Otherwise, unknown messages are simply ignored. When
the object graph contains a large number of objects, the resulting overhead
may become significant, in which case suitable strategies for pruning the
broadcast tree must be considered.

For all message types, message handling can also be delegated to the
handler of an object’s base type, inheriting the corresponding default behav-
ior if appropriate. Because handlers are standard record fields, they can be
exchanged at run-time (see Section 5.4). Furthermore, because each object
has its own handler, behavior is not bound to type, but rather to each in-
stance of a type. Even if two objects have the same type, they may still handle
messages differently. Consequently, polymorphism is instance-based rather
than class-based as in C++ or Java. We can also make an explicit distinction
between types and classes and say that the handler of an object defines its
class. Thus, many different classes can implement the same type [79].

Message Families. Dynamic message dispatch has the slight disadvantage
that -- within a handler procedure -- the exact type of a given message
record must first be evaluated using run-time type information, which is
not as efficient as statically dispatching method procedures. However, by
gathering related messages into a message family and deriving them from
a common family base type instead of the general ObjMsg, the number of
type tests at run-time can greatly be reduced.

One such family of messages, based on Display.FrameMsg, serves to
broadcast events within the display space, which includes all currently visible
frames in a running Oberon system. Frames may be nested, even within
more than one parent frame, which results in a directed acyclic graph (DAG)
that represents the entire display hierarchy. An example of an event that
needs to be broadcast is a change to a model object of which the frames
displaying the model must be notified. Thus, the display space simplifies
implementing the Model-View-Controller (MVC) strategy that is used in
applications with graphical user interfaces [48] because no explicit list of
views and controllers must be maintained for each model. The role of
frames in Oberon’s compound document architecture is further expanded
on in Section 5.2.
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Message Variants. Similar actions usually require similar kinds of informa-
tion to be exchanged between senders and receivers of messages. Related
actions are therefore often merged into a single message type. An additional
field, typically called id, determines the exact variant of the message. For
example, the standard AttrMsg has variants for retrieving attribute values
from objects, for storing new values, and for enumerating all an object’s
attributes.

Object Messages. Some concrete messages that each object is expected
to handle are already defined in module Objects. They include the AttrMsg
and LinkMsg for querying, getting, and setting named attribute values and
references to other objects. The CopyMsg requests an object to return an
identical copy of itself. The BindMsg and FileMsg provide an efficient and
simple solution for making arbitrary object graphs persistent by binding all
objects to a library and storing the library as a whole.

Object Libraries. A library manages the mapping from pointer-based object
references to serializable reference numbers and vice versa. To be able to
recreate objects upon loading, each object has a unique generator attribute,
which contains the name of a command procedure (see Chapter 3) that,
when called, stores a new object of the correct type and with the proper
handler procedure in a global variable Objects.NewObj.

Libraries appear in two variants: private and public. Private libraries are
typically used for storing object graphs in the manner described above. The
connection between an object and a private library is temporary; it often
only stays in effect until the library has been stored. A public library, on the
other hand, stores publicly shared objects and is stored in a separate file. It
retains its objects until they are explicitly removed or until the library file is
deleted. When objects are bound to libraries, references to public objects
remain in the public library; when such a reference is stored, the name of
the public library is stored in addition to the object’s reference number.
When a reference to a public object is loaded, the corresponding library is
automatically loaded from file if it is not already in memory.
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4.2 Shape Type Hierarchy

Module Leonardo exports the necessary types for structuring graphical ob-
jects into hierarchies of shapes. The shape type hierarchy is visualized in
Figure 4.2. The corresponding types are discussed in the remainder of this
section.
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Figure 4.2: The shape type hierarchy (UML style notation)

4.2.1 Abstract Shape Base Type

All graphical objects in the Leonardo shape framework are derived from an
abstract type Shape.

TYPE
Shape = POINTER TO RECORD (Objects.Object)

llx, lly, urx, ury: REAL; (* bounding box in global coordinates *)
bw: REAL; (* border width *)
sel: BOOLEAN; (* set if shape or one of its components is selected *)
marked: BOOLEAN; (* set if shape is temporarily marked *)
...

END;



124

Because Shape is in turn derived from Objects.Object, all shapes automat-
ically gain the capability to be bound to libraries and thus to be made
persistent. They also inherit the open message interface of general objects,
which is used to implement shape behavior.

Except from a couple of state flags, the only information an abstract
shape conveys is its bounding box, which is an axis-aligned rectangle that
tightly encloses the shape’s geometry. If rendering a shape affects areas
outside its bounding box, for example because it is rendered with non-zero
line width, the corresponding extra space is stored in bw, the shape’s border
width.

4.2.2 Container Shapes

Shapes that contain other shapes are called containers:

TYPE
Shape = POINTER TO RECORD (Objects.Object)

...
cont: Shape; (* shape containing this shape *)
up, down: Shape; (* predecessor and successor within containing shape *)
...

END;

Container = POINTER TO RECORD (Shape)
bottom, top: Shape; (* components *)
subsel: BOOLEAN; (* set if at least one component is selected *)

END;

Each container references both ends of a doubly linked shape list, with
shapes’ up and down fields leading from one shape to the next in both
directions. Because shapes refer back to the shape that contains them with
cont, each shape can only be part of exactly one containing shape, resulting
in a tree structure. Figure 4.3 illustrates how shapes and containers interact.
Gamma et al. call this structural design pattern a Composite [28].

By organizing shapes in trees, containers add structure to a set of related
shapes. Besides, they speed up message broadcasts by not forwarding mes-
sages to their components when it is obvious that the message cannot affect
them. In addition, containers influence shape behavior by exerting parental
control (see [51]) when messages are broadcast within shape graphs. Based
on information in the message record, in its own fields, and in its compo-
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Figure 4.3: Links between containers and shapes

nents, a container may decide to handle a message itself or forward it to
its components, possibly also modifying it beforehand. For example, the
Group shapes from module LeoBasic do not allow their components to be
selected or located individually. Thus, they hide their container nature and
appear like regular leaf shapes.

4.2.3 Layers as Top-Level Containers

Layers are special containers at the top of the shape hierarchy:

TYPE
Layer = POINTER TO RECORD (Container)

fig: Figure; (* figure that layer is part of *)
name: ARRAY 16 OF CHAR; (* layer name *)
display, print, align: BOOLEAN; (* filter flags *)

END;

A layer has no containing shape; instead, it refers to the containing figure.
Layers can be configured to filter out specific messages depending on a set
of flags. Display on the screen or on the printer can be suppressed, as can
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requests to align a point with a shape be. For example, guiding lines that
aid interactive users in aligning shapes do not need to be printed and may
belong to a layer that only appears on the screen. On the other hand, a
watermark image in the background is likely to belong to a layer that only
appears when printing.

4.2.4 Figures as Graphical Models

A figure is a single object which represents all shapes in a graphical scene.
It manages a set of layers, serves as a model object for clients dealing
with shape graphs, updates its clients about invalidated areas, and gathers
modifications in undoable commands.

TYPE
Figure = POINTER TO RECORD (Objects.Object)

bottom, top: Layer; (* layers containing shapes *)
active: Layer; (* currently editable layer *)
...

END;

Each figure has exactly one active layer. Only the active layer integrates new
shapes and receives messages that allow a client to select and manipulate
existing shapes.

Figure Updates. When a shape is modified, all clients of a figure must be
notified of the change, which is achieved by calling UpdateRect or Update-
Shape, which in turn broadcast a corresponding update message within the
Oberon display space.

TYPE
UpdateMsg = RECORD (Display.FrameMsg)

fig: Figure; (* affected figure *)
reg: GfxRegions.Region; (* affected area *)
bw: REAL; (* border around affected area *)

END;

PROCEDURE DisableUpdate(fig: Figure);
PROCEDURE EnableUpdate(fig: Figure);
PROCEDURE UpdateRect(fig: Figure; llx, lly, urx, ury, bw: REAL);
PROCEDURE UpdateShape(fig: Figure; shape: Shape);
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To limit the number of update events, multiple updates can be merged into
one by temporarily disabling updates with DisableUpdate. While updates
are disabled, a figure accumulates individual rectangles that need to be
redrawn in a damage region. Later, when updates are re-enabled with
EnableUpdate, the figure broadcasts a single update message and resets its
damage region. Because figures keep track of how often updates have been
disabled, disabling calls can be nested.

Undoable Actions and Commands. Figures also maintain a list of undoable
commands. The corresponding design pattern is known as a Command [28].

TYPE
Command = POINTER TO RECORD (private)

next, prev: Command; (* links to next and previous command *)
actions, done, last: Action; (* list of actions *)

END;

ActionProc = PROCEDURE(fig: Figure; action: Action);

Action = POINTER TO RECORD
do, undo: ActionProc;

END;

PROCEDURE BeginCommand(fig: Figure);
PROCEDURE AddAction(fig: Figure; action: Action);
PROCEDURE CancelCommand(fig: Figure);
PROCEDURE EndCommand(fig: Figure);

PROCEDURE Undo(fig: Figure);
PROCEDURE Redo(fig: Figure);

Most operations that modify shapes call BeginCommand to create a current
command before they send messages to affected shapes. Affected shapes
handle these messages by adding undoable actions to the current command
with AddAction instead of applying the resulting changes directly. Later,
when the current command is committed with EndCommand, these actions
are executed by calling their do procedure; the command itself is appended
to a list of undoable commands in the figure. Clients can return to a previous
state by calling Undo, which invokes the undo procedure of all actions in
reverse order, and can execute an undone command again with Redo.
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Commands are comparable to transactions in a database system. The
actions in a command can only be executed together or not at all. Com-
mands can be canceled with CancelCommand instead of committed with
EndCommand. Besides, they can be nested, with each EndCommand or Can-
celCommand only affecting actions that were added since the most recent
BeginCommand.

Figures vs. Display Space. Each figure forms a message broadcast space of
its own, similar to the display space in Oberon. However, figures are models,
i. e. they can only be viewed on a screen by visualizing them in a frame (see
Section 5.3). Moreover, figures’ undoable commands and accumulated
updates have no equivalent in the display space. Thus, while many shape
messages directly correspond to similar display messages, others are unique
to figures.

4.3 Implementing Abstract Styles with Pen Objects

Gfx and other graphics interfaces render graphical objects with regard to
a fixed set of graphical attributes. Instead of keeping a value for each
attribute in each graphical object, applications usually manage a set of
unique attribute combinations, typically called styles, and let each shape
refer to such a style. The advantages are clear: memory requirements per
shape are reduced to a single reference, and several shapes can share the
same style. However, these style objects are not extensible as long as they
only manage a fixed set of attributes. In this section, we describe how style
objects can be given a more active role and become truly extensible.

4.3.1 Pen Interface

In [62], we showed how simple style objects can be converted to powerful
pen objects by augmenting them with painting functionality. Pens are
abstract objects that clients connect with a Gfx context and whose imaginary
tip they lead along a path.

TYPE
Pen = POINTER TO RECORD (Objects.Object)

do: Methods; (* pen methods *)
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ctxt: Gfx.Context; (* graphic context the pen is connected to *)
END;

Each pen decides on its own what graphical attributes it must maintain to
achieve its desired output. For example, a pen for solid filling only needs
a color value with which it fills the interior of its input path. Other pens
may need to store more attribute values. Because pens are derived from
Objects.Object, their properties can be inspected and manipulated with the
standard AttrMsg and LinkMsg protocols of module Objects. Similarly, a
BindMsg binds them to a library to persistently store them. New pen types
can be implemented whenever needed, leading to an extensible pen type
hierarchy.

The pen method interface is fixed, binding both implementors and
clients to a well-defined interface.

Methods = POINTER TO RECORD
connect: PROCEDURE(pen: Pen; ctxt: Gfx.Context);
disconnect: PROCEDURE(pen: Pen);
enter: PROCEDURE(pen: Pen; x, y, dxi, dyi, bdist: REAL);
exit: PROCEDURE(pen: Pen; dxo, dyo, edist: REAL);
line: PROCEDURE(pen: Pen; x, y: REAL);
arc: PROCEDURE(pen: Pen; x, y, x0, y0, x1, y1, x2, y2: REAL);
bezier: PROCEDURE(pen: Pen; x, y, x1, y1, x2, y2: REAL);
render: PROCEDURE(pen: Pen; ctxt: Gfx.Context;

VAR bdist, edist: ARRAY OF REAL; n: LONGINT);
END;

Comparing the choice of pen methods to the path methods of the Gfx
context interface reveals that they are almost identical. Still, a few crucial
differences exist.

Beginning and Ending Paths. When a new path is started with connect,
the render mode is implicitly defined by the pen itself; each pen decides on
its own whether to stroke, fill, or clip the resulting path. Instead of a mode
parameter, a ctxt parameter tells the pen on which context it must produce
output.

Subpath Offsets. Unlike Gfx contexts, pens cannot automatically close a
subpath whose specification is already in progress. This forces its clients
to use the enter/exit model for drawing closed subpaths (see Sections 2.2.3
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and 3.2.3). The additional parameters bdist in enter and edist in exit (and
their vector versions in render) are called subpath offsets. Their applications
are discussed in Section 4.3.3.

4.3.2 Pen Chains

Some pens do not directly generate output. Instead, they modify their input
path and forward the new path to another pen, using the same abstract pen
interface that they implement themselves. An example is the Dasher pen
from module LeoPens. It decomposes its input path into dashes according
to its dash pattern and forwards these dashes to a second pen, which may
in turn modify and forward its input path again. The last pen in such a
chain finally renders its input path on a Gfx context. The dashing pen in this
situation is the master pen that drives a slave or base pen. The corresponding
design pattern is well-known and often used for filtering events [28] or for
processing data streams [3]. However, it has to our knowledge never before
been used for processing path specifications. Another example is the Forker
pen, which forwards its input path to two slave pens at once, turning the
pen chain into a tree.

4.3.3 Subpath Offsets

When a subpath is entered with enter, its bdist parameter contains the
accumulated length of all segments between the logical starting point of
the subpath and the current entry point. To further clarify this principle,
Figure 4.4 displays two paths, one in the upper half and one in the lower
half. Both paths consist of two connected lines that are rendered as separate

Figure 4.4: Effect of subpath offset in enter
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subpaths from left to right. In the top half, both lines have been rendered
with a bdist of zero. Because the dasher pen that was used to render them
calculates the appropriate dash phase from the supplied bdist value, there
is a discontinuity in the dash pattern at the point where the two lines meet.
In the lower half, the second line has been given a bdist value equal to the
length of the first line. This allows the dasher pen to compute the correct
dash phase and results in a continuous dash pattern.

The applications of subpath offsets are not restricted to dash patterns.
Arrow pens, for example, outline their input path and modulate its width in
the vicinity of subpath ends to make them appear like arrow heads. When
an arrow pen enters or exits a subpath, it uses the subpath offset value to
calculate the proper width. If a dasher pen forwards its dashes to an arrow
pen and uses continuous subpath offsets for its dashes (instead of giving
each dash subpath offsets of zero), effects like the one in Figure 4.5 can be
achieved.

Figure 4.5: Subpath offsets influencing arrow width

4.4 The Shape Message Hierarchy

The Leonardo shape framework heavily relies on the open message inter-
face that it inherits from Oberon’s standard objects to implement shape
behavior. The main attraction of an open message interface is its poten-
tial for extensibility. By introducing new message types, new behavior
can be added whenever needed without any changes in an existing code
base, circumventing the syntactic fragile base class problem that approaches
which rely on method procedures exhibit [80]. This section presents sev-
eral important kinds of messages and discusses their role within the shape
framework. The inheritance structure of shape messages is illustrated in
Figure 4.6. Objects.ObjMsg and Display.FrameMsg are standard messages
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Figure 4.6: The abstract shape message hierarchy

of the the Oberon system, whereas ShapeMsg, LocalizedMsg, and Broad-
castMsg are abstract messages of the shape framework, which are discussed
in the following subsections.

4.4.1 The Shape Message Family

Shapes are requested to perform an operation by sending a message record
of the appropriate type to their handler. To allow recipients to discern
quickly between messages that are specifically targeted at shapes and other
kinds of messages, shape messages form their own message family and are
derived from a common root type ShapeMsg.

TYPE
ShapeMsg = RECORD (Objects.ObjMsg)

fig: Figure; (* containing figure *)
END;

Containers by default forward unknown shape messages to their compo-
nents. This ensures that future extensions to the family of shape messages
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always reach their destination shapes.
Only few messages are immediately derived from ShapeMsg. They

mainly include messages that deal with shape state and the structure of
the shape graph, but not with shape geometry. The following paragraphs
describe examples of such messages.

Controlling the Shape Hierarchy. The two primary operations for modi-
fying the hierarchical structure of a figure are integration of new shapes
and deletion of existing shapes, both of which are achieved with the Con-
trolMsg. Similarly, the OrderMsg allows existing shapes to be moved up or
down within their containers.

When integrating new shapes, the message’s fields exactly specify which
container should consume the list of new shapes and between which of
its components they should be inserted. When the container at which an
integrate message is targeted receives the message, it adds an undoable
action to the figure’s current command.

Deleting or reordering shapes requires that the set of shapes that is
affected by these operations can quickly be identified. Therefore, each
shape possesses a field (marked) that may indicate whether the current
operation affects it. When all actions of a command have been executed,
shapes are automatically unmarked in the accompanying validation step
(see Section 4.4.2).

Current Selection. A figure’s current selection is a special subset of all
its shapes, which is usually determined by interactive users and subject
to frequent change. Selected shapes paint additional hints when they are
rendered to visually distinguish them from their unselected counterparts.
The current selection is managed with the SelectMsg. It includes variants
that allow clients to build an ad hoc list of all selected shapes or to deselect
all shapes in a figure at once.

Since the current selection is a volatile matter that is only of interest to
interactive applications, our design would be cleaner if all issues regarding
selection were delegated to these interactive applications themselves. How-
ever, because shapes are responsible for drawing their graphical appearance,
we argue that they should also be responsible for drawing their selection
marks. Consequently, if shapes must know about selection marks, they may
as well maintain their own selection state to simplify selection management.
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Still, selection management has a special status in the shape framework. For
example, selection state is not persistently stored, and changes in selection
state cannot be undone.

4.4.2 Localized Messages

An important aspect of hierarchical shape trees is that any container in
the tree can change the coordinate system within which its components
reside. Thus, messages that include geometrical information must carry
along the description of a local coordinate system that is subject to change
as a message is propagated through the shape tree. The base of all such
messages is called LocalizedMsg:

TYPE
LocalizedMsg = RECORD (ShapeMsg)

lgm: GfxMatrix.Matrix; (* conversion from local to global coordinates *)
END;

A localized message’s lgm field holds a matrix value that maps coordinates
in the current local coordinate space into the global coordinate space of
the containing figure. Providing a distinguished base type for all localized
messages is crucial for achieving extensibility because it allows containers
to recognize the localized nature of new messages and to properly adapt the
lgm field even if they do not know the specific message type. The following
example illustrates how a container that stores a local coordinate system in
its lcs field forwards unknown localized messages to its components:

PROCEDURE Handle(obj: Objects.Object; VAR msg: Objects.ObjMsg);
BEGIN

cont := obj(LocalizedContainer);
IF msg IS ShapeMsg THEN

...
ELSIF msg IS LocalizedMsg THEN

WITH msg: LocalizedMsg DO
lgm := msg.lgm;
GfxMatrix.Concat(cont.lcs, lgm, msg.lgm);
s := cont.bottom;
WHILE s # NIL DO

s.handle(s, msg); s := s.up
END;
msg.lgm := lgm

END
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ELSE
...

END Handle;

In the remainder of this section, we discuss additional aspects of localized
coordinates and examples of localized messages.

Shape Bounding Box. Although shapes store their geometry in the local
coordinate system that is defined by their containers, their bounding box (see
Section 4.2.1) is always specified in global figure coordinates to allow quick
comparisons involving shape bounds. This for example permits containers
to ignore and thus not forward messages that only affect a limited rectangular
area if the message rectangle (in global coordinates) does not overlap the
container’s bounds.

Validation. A ValidateMsg is broadcast within a figure after all actions of
an undoable command have been executed (or undone). Marked shapes
which receive the message unmark themselves, recalculate their bounding
boxes, update the figure at their old and new positions, and in turn mark
their containers. The message has to be localized because bounding boxes
are stored in global coordinates.

Rendering. The RenderMsg requests receiving shapes to paint themselves
on a Gfx context. Depending on the exact variant of the message, selec-
tion marks are also painted or only marked shapes render themselves. In
addition, the message contains a bounding rectangle of the Gfx context’s
clipping area to allow shapes that are completely outside this area to skip
rendering altogether. Besides, a matrix which maps global figure coordi-
nates to the default Gfx coordinate system allows shapes to paint graphical
features (especially selection marks) with uniform size, irrespective of the
current zoom level.

Locating. The LocateMsg defines a rectangle and requests receiving shapes
to append themselves to an ad hoc shape list if they overlap the rectangle
(overlap variant) or lie completely inside it (inside variant), thus supporting
point queries as well as range queries. The LocateMsg can also be used to
project a point to a nearby shape, which aids interactive users in aligning
shapes. The projected point is expected to lie inside the rectangle that the
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message defines. Thus, the distance over which projection is performed can
be limited.

4.4.3 Broadcast Messages

Messages that are derived from ShapeMsg can be broadcast within a single
figure because containers are required to forward shape messages to their
components. However, events that have to be propagated to all existing
figures have to be broadcast in the entire display space and must be derived
from Display.FrameMsg. The Leonardo shape framework therefore defines
a second message family based on BroadcastMsg:

TYPE
BroadcastMsg = RECORD (Display.FrameMsg)
END;

As with messages which are derived from ShapeMsg, containers by default
forward even unknown broadcast messages to their components to ensure
that they reach all shapes. Unlike regular shape messages, however, broad-
cast messages can be propagated to every component of the display space.
Unfortunately, visual components by default do not forward messages that
are based on Display.FrameMsg to their non-visual model objects. Thus,
visual components that display figures must recognize and explicitly forward
all messages that are derived from BroadcastMsg to their model.

A concrete extension of a BroadcastMsg is implemented by the LeoPens
module to broadcast pen updates to all figures. Unlike shapes, which belong
to at most one figure, pens can be referred to from shapes in different figures.
Thus, when a pen is modified, all figures in the display space must be notified.

4.4.4 Using Optional Messages for Implementing Protocols

The grouping mechanism that container shapes implement is often suffi-
cient for combining simple graphical objects, such as lines, arcs, rectangles,
and circles, into complex shapes and complete graphical scenes. There are,
however, situations that cannot be modeled accurately without introducing
further dependencies between shapes. For example, sometimes two points
from different containers should be kept aligned. Where such additional
relationships between shapes are necessary, new shape messages are intro-
duced. Shapes handle these messages if they are interested in and capable
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of entering the corresponding relationships. However, they are not required
to do so. If a shape handles such a message, we say that it conforms to or
implements the corresponding protocol.

With our open message interface, such optional protocols are easy
to define. Apart from an additional message type definition, there is no
overhead whatsoever on shapes that do not conform to the protocol. Only
shapes that do implement the protocol need to handle the message in their
handler procedure. With a traditional object-oriented design that relies on
method procedures, a similar solution can be achieved if the implementation
language supports run-time type information and either multiple inheritance
(like C++) or an interface mechanism (like Java). Programs can then check
with a run-time test if a candidate object is derived from a protocol type or
implements a protocol interface and appropriately type-cast it. Otherwise,
corresponding methods have to be defined in the abstract base type, bloating
its interface with methods that by default do nothing.

Contour Protocol. An example of an optional protocol is the contour pro-
tocol, which queries shapes whether they can render themselves with an
abstract pen (see Section 4.3).

TYPE
ContourMsg = RECORD (Leonardo.ShapeMsg)

done: BOOLEAN; (* set by receiver if it can render itself with a pen *)
END;

RenderMsg = RECORD (Leonardo.ShapeMsg)
pen: LeoPens.Pen; (* pen to use *)

END;

If upon receiving a ContourMsg a shape sets the done field of the message, it
is expected to also handle the RenderMsg and paint itself with the supplied
pen object.

Leonardo’s LeoPaths.Path shapes use the contour protocol to determine
if they should integrate other shapes as components. When path shapes
are requested to render themselves, they send all their components a Ren-
derMsg with the path’s pen object.

Vector graphics shapes (e. g. lines, arcs, rectangles, etc.) obviously tend
to conform to the contour protocol. However, the same applies for example
to shapes that display text captions. When they receive a RenderMsg, they
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draw the outlines of all characters in the caption with the supplied pen.
Thus, the contour protocol is a valuable tool for treating arbitrary shapes
as paths. Another immediate benefit is that any shape that conforms to
the contour protocol can be converted to a series of line, arc, and Bézier
segments which can then be manipulated individually. Figure 4.7 shows an
example of such a ‘‘pathified’’ caption after further editing.

Figure 4.7: Edited caption outlines

4.5 Transformations and Constraints

Depending on how individual shapes maintain their geometry, to transform
a shape may imply that an affine transformation matrix is applied to one or
several pairs of coordinates (e. g. the control points of a line or curve) or that
it is concatenated with an existing matrix which describes a local coordinate
system within which a shapes renders itself (e. g. for rectangles, ellipses, and
captions). A corresponding shape message needs to hold a matrix value that
describes the transformation and must be localized in order to be correctly
handled within nested coordinate systems.

However, when there are additional relationships between shapes, the
transformation of one shape may require that another is transformed as
well. For example, when one end point of a line has been attached to the
outline of a rectangle, it should move together with the rectangle when the
rectangle is moved. In this section, we describe how the Leonardo shape
framework implements geometric constraints and give examples of their
application.
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4.5.1 Geometric Constraints

Ever since interactive graphics editing has become possible with Sketch-
pad [77], corresponding programs have attempted to give users additional
control over position and orientation of graphical objects by relating them
to other objects. A number of different approaches have been devised for
specifying and resolving the resulting geometric constraints. We present
some of these approaches and their origins in the following paragraphs.

Gravity. The simplest method to assist users with positioning objects relies
on an alignment grid. Such a grid restricts valid point coordinates to
regularly spaced grid points. To a user it appears as if these points had
immense gravity and attracted points to grid positions. Gravity can also be
used to attract point coordinates to ‘‘interesting’’ areas of existing shapes,
for example the corners of a rectangle. Indeed, the project variant of the
LocateMsg can be used for exactly that purpose. However, such alignment
relations between shapes are not persistent. If for example a line end point
is moved to the outline of a circle, artificial gravity may perfectly align the
point to the circle, but does not drag it along if the circle is later moved.

Snap Dragging. A logical extension to alignment grids is the snap-dragging
technique (implemented in Gargoyle [11]), which adds temporary alignment
shapes, such as oriented lines and circles with fixed radii, to a figure while a
user is moving a shape. These temporary shapes guide shape alignment and
make it easy to construct parallels and points with fixed distances to other
points. However, snap-dragging does not keep shapes persistently aligned
either.

Algebraic Solvers. Approaches that keep shapes constrained at all times
are usually based on algebraic solvers. With these approaches, shapes are
manually drawn, and constraints between shapes are gradually added, for
example by telling the system that two lines should be parallel or that
the distance between two points should be constant. These constraints
are established by numerically solving a corresponding system of nonlinear
equations. Because the constraints are part of the drawing, they can be
reestablished whenever shapes are moved. Systems that use this approach
(Sketchpad [77]; Thinglab [14]; Juno [59]) suffer from the problem that
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nonlinear equation systems are hard to solve in the general case [67] and
that the resulting solutions may not correspond to what a user had in mind,
especially when the resulting system of equations is over-constrained or
under-constrained. Better results have been achieved by restricting con-
straint categories to those that result in linear equation systems (Metafont
[47]) or by differentially constraining initially legal shape configurations
(Briar [31, 32]).

Kepler. Our inspiration has been a much simpler scheme that was imple-
mented in the Kepler graphics editor for Oberon V4. Kepler is based on
stars, constellations, and planets. Constellations connect stars with lines
and other curves, but only stars can be dragged with the mouse. Planets
depend on stars or other planets; their position is reevaluated when stars
are moved. The asymmetry of stars and planets makes constraint solving
trivial, but excludes constellations where points mutually depend on each
other. By not fixing the roles of constrained and constraining shape, we
overcome this restriction.

4.5.2 Constraint Propagation

We add a simple constraint mechanism to the Leonardo shape framework
by handling transformations in multiple phases. In the apply phase, a
transformation matrix to be applied to all marked shapes is broadcast within
the figure. Because all shapes get to see the message, they are able to notice
when a shape they observe is transformed. If a constraint is violated,
but could be reestablished by transforming additional shapes, the receiver
of the transformation request notifies its originator of this by setting a
corresponding flag in the message.

The apply phase is then followed by an indefinite number of notify
phases, in each of which a transformation notification is broadcast. Notified
shapes are allowed to transform unmarked shapes to reestablish constraints
on the premise that they mark them and again set the message’s notification
flag. This forces another notification round and gives further shapes a chance
to react to the new situation. In this manner, transformations may result in
more and more shapes being constrained and marked until a stable state is
reached.
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Example. Figure 4.8 illustrates how constraints can be used in practice. Its
upper half displays two rectangles that are connected with a curve. Its lower
half depicts the same three shapes after one rectangle has been moved.
The end point of the curve retains its relative position on one side of the
rectangle.

Figure 4.8: Constrained movement

Comparison. Compared to approaches that rely on numerical constraint
solvers, our scheme is simple. Nevertheless, it is powerful enough to sup-
port several common usages of constraints, for example collinear Bézier
control points that remain aligned when one of them is moved to achieve
continuous slope between adjacent Bézier curves. However, it cannot deal
with situations where multiple constraints affect a shape concurrently, even
if a valid solution exists. For example, a line may constrain a point to lie on
its trajectory. If a second line similarly constrains the same point, the point
is not automatically moved to the point where both lines intersect, and at
least one constraint will be violated.

4.5.3 Example: Points and the Link Protocol

Points are elementary shapes that anchor their containers at specific loca-
tions. The corresponding link protocol keeps geometrical locations aligned.
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TYPE
Point = POINTER TO RECORD (Leonardo.Shape)

x, y: REAL; (* point coordinates *)
link: Leonardo.Shape; (* shape controlled by point *)

END;

LinkMsg = RECORD (Leonardo.LocalizedMsg)
id: SHORTINT; (* get/set *)
done: BOOLEAN; (* to be set by receiver *)
x, y: REAL; (* coordinates in global space (in/out) *)

END;

Each point is able to control at most one linked shape. The link is often
another point, but can in principle be any shape that conforms to the
protocol that the link message defines. The link message asks its receiver to
return its own coordinates or to set them to the values that are delivered in
the message.

The following procedures illustrate how transformations and linking are
implemented for point shapes.

PROCEDURE TransformPoint(p: Point; VAR msg: Leonardo.TransformMsg);
VAR x, y: REAL; lm: LinkMsg;

BEGIN
IF msg.id = Leonardo.apply THEN (* apply phase *)

IF ˜p.marked THEN
IF (p.link # NIL) & p.link.marked THEN

(* adapt point later when link’s coordinates have been committed *)
msg.notify := TRUE

END
ELSIF msg.stamp # p.stamp THEN (* not yet handled *)

p.stamp := msg.stamp;

(* convert transformation matrix to local coordinate system *)
GfxMatrix.Apply(msg.lgm, p.x, p.y, x, y);
GfxMatrix.Apply(msg.mat, x, y, x, y);
GfxMatrix.Solve(msg.lgm, x, y, x, y);

(* use undoable actions to set new values *)
Leonardo.SetReal(msg.fig, p, "X", x);
Leonardo.SetReal(msg.fig, p, "Y", y);
IF p.link # NIL THEN

msg.notify := TRUE (* adapt link in notify phase *)
END

END
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ELSIF (msg.id = Leonardo.notify) & (p.link # NIL) THEN (* notify phase *)
IF p.marked & ˜p.link.marked THEN

(* link must follow point *)
lm.stamp := msg.stamp; lm.fig := msg.fig; lm.id := set; lm.done := FALSE;
Leonardo.GetCoordSystem(p.link, lm.lgm);
GfxMatrix.Apply(msg.lgm, p.x, p.y, lm.x, lm.y);
p.link.handle(p.link, lm);
IF lm.done THEN p.link.marked := TRUE; msg.notify := TRUE
ELSE Unlink(msg.fig, p) (* break link relationship if not fulfilled *)
END

ELSIF ˜p.marked & p.link.marked THEN
(* point must follow link *)
lm.stamp := msg.stamp; lm.fig := msg.fig; lm.id := get; lm.done := FALSE;
Leonardo.GetCoordSystem(p.link, lm.lgm);
p.link.handle(p.link, lm);
IF lm.done THEN

GfxMatrix.Solve(msg.lgm, lm.x, lm.y, x, y);
Leonardo.SetReal(msg.fig, p, "X", x);
Leonardo.SetReal(msg.fig, p, "Y", y);
p.marked := TRUE; msg.notify := TRUE

ELSE
Unlink(msg.fig, p)

END
END

END
END TransformPoint;

PROCEDURE LinkPoint(p: Point; VAR msg: LinkMsg);
VAR x, y: REAL;

BEGIN
IF msg.id = get THEN

(* convert point coordinates from local to global space *)
GfxMatrix.Apply(msg.lgm, p.x, p.y, msg.x, msg.y);
msg.done := TRUE (* signal that message was handled *)

ELSIF msg.id = set THEN
GfxMatrix.Solve(msg.lgm, msg.x, msg.y, x, y);
Leonardo.SetReal(msg.fig, p, "X", x);
Leonardo.SetReal(msg.fig, p, "Y", y);
msg.done := TRUE

END
END LinkPoint;

With the link protocol, points (and other shapes that implement it) can
for example be attached to rectangles and ellipses and retain their relative
position when these shapes are transformed. A similar protocol exists for
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establishing relationships between path segments. This connect protocol
allows adjacent path segments to retain continuous slope at the points
where they meet.

4.6 Summary

The Leonardo shape framework provides its clients with the foundations
for modeling graphical scenes in a hierarchical, persistent, and extensible
manner. Persistence and extensibility result from deriving all relevant object
types from the standard Oberon Objects.Object and inheriting its open
message interface; shape hierarchies are created with the help of container
shapes, which manage a set of shape components.

Instead of only one extensible type hierarchy, the framework exports four
different type hierarchies, all of which add another dimension to its potential
for extensibility. Extending the Shape hierarchy integrates new graphical
objects, extending the ShapeMsg hierarchy enables new shape behavior,
extending the Action hierarchy makes new editing operations undoable, and
extending the Pen hierarchy gives existing shapes new graphical capabilities.

Unlike object-based graphics interfaces such as Java 2D, the Leonardo
framework is not limited to the display of graphical objects. Shape structure
and standard shape behavior are also part of the framework; the resulting
scenes are dynamic and can be modified using well-defined message proto-
cols. This focus on dynamically manipulated scenes makes the framework
less general than an object-based graphics interface. However, the latter
is in turn less general than an API such as Gfx, which uses an immediate
rendering model and does not require its clients to model graphical objects
explicitly.

The framework distinguishes itself from other editor frameworks by its
extensible hierarchy of abstract pen objects. We have not been able to find
a similarly powerful concept in any other existing commercial or academic
graphics software. Also, due to its use of an open message interface and
its extensible actions, the framework can be adapted to domain specific
applications (a declared goal of Unidraw [82]) by adding domain specific
shape behavior.



C H A P T E R 5

Application I
The Leonardo Figure Editor

The Leonardo figure editor [63] is the first of two applications that use the Gfx
graphics API and the Leonardo shape framework, validating the feasibility of
their design by using them in practice. The second application, a graphical
description language called Vinci, is covered in Chapter 6.

Leonardo’s intended usage patterns are manifold: on one hand, it should
enable users to edit graphical documents that can be printed, stored, mi-
grated, and loaded again. On the other hand, it should provide a wrapper
around figure objects to integrate them within other documents, for exam-
ple as embedded figures in a text document (such as the figures in this
thesis) or as graphical decorations in a user interface. Thus, Leonardo not
only provides a builder tool for creating figures, but also elevates abstract
figure models to universally reusable graphical components.

Leonardo’s design follows the Model-View-Controller (MVC) paradigm
that the Smalltalk system introduced [48]. Its model components are the
Leonardo shape framework’s figure objects that were described in Chapter 4.
The current chapter focuses on view and controller aspects. Our first goal
is to allow editing functionality to grow when new objects are added to
the model without re-compilation of existing code being necessary. Our
second goal is to integrate graphics as light-weight components in an existing
visual component framework. These goals can only be achieved if code is
dynamically loaded when needed, not as part of a monolithic application.

After an overview of Leonardo’s overall architecture in Section 5.1 and a
short summary of the the relevant aspects of the Gadgets component frame-
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work in Section 5.2, we describe Leonardo’s main subsystems in Sections 5.3
(Views), 5.4 (Controllers), 5.5 (Documents), and 5.6 (Editor Panels).

5.1 Architecture

As displayed in Figure 5.1, Leonardo consists of several architectural software
layers. At the bottom is the model layer with the Leonardo shape framework,
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Figure 5.1: Overview of Leonardo’s architecture

above which the view and controller layers reside. The two topmost layers
are the document layer and the dialog layer. Each layer depends on the
layers below it, but can be loaded without loading those above it. This
vertical decomposition is complemented by a horizontal division into core
and extension modules. The core contains modules that implement the basic
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functionality of each layer. An arbitrary number of extension modules adds
specific functionality to that core. With only few exceptions, extensions are
mutually independent and can be loaded in arbitrary order (or not at all).

To separate mere viewing from editing functionality, extensions are usu-
ally split into a model part, which implements a shape type, a controller
part, which allows users to interactively integrate new instances of that type
in a figure, and a dialog part for inspecting and manipulating the properties
of such instances. As is hinted in Figure 5.1, shape specific controller and
dialog extensions are often merged within a single module because they
are typically used in conjunction. However, they are kept separate from
the module that implements the corresponding shape model. Thus, merely
viewing a shape only requires its model to be loaded, whereas instancing or
inspecting it also requires its controller or dialog module to be loaded.

5.2 The Gadgets Component Framework

Leonardo utilizes the Gadgets component framework for Oberon System 3
[51]. Gadgets itself is built on and extends the classic textual user interface
known from previous Oberon implementations. The Gadgets framework
comprises a multitude of visual and non-visual components, called gadgets,
from which graphical user interfaces (GUI) can be constructed. The standard
set of gadget types includes -- among others -- standard control elements
such as buttons, check boxes, text fields, and sliders, but also complex
controls such as text boxes and hierarchical lists.

Gadgets. Module Gadgets extends the standard Objects.Object for non-
visual and Display.Frame types for visual components.

TYPE
(* model components *)
Object = POINTER TO RECORD (Objects.Object) (* non-visual *)

attr: Attributes.Attr; (* dynamic attribute list *)
link: Links.Link; (* dynamic link list *)

END;

(* visual components *)
Frame = POINTER TO RECORD (Display.Frame) (* visual *)

attr: Attributes.Attr; (* dynamic attribute list *)
link: Links.Link; (* dynamic link list *)
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state: SET; (* e. g. transparent *)
mask: Display3.Mask; (* visible area *)
obj: Objects.Object; (* model object, if any *)

END;

Both types contain dynamic lists of named attribute and link values. Frames
also contain references to a model object and to a mask structure that
manages the area where they are visible, i. e. not occluded by other frames.
Gadgets implement the message protocols that are defined in modules
Objects, Display, and Gadgets. This allows them to be integrated within
arbitrary container gadgets and therefore to serve as visual components.

Documents. Although all objects which are derived from Objects.Object
can be made persistent by binding them to a library and storing the library
in a file, there has to be some instance at the top of an object hierarchy
which manages this process. In the Gadgets framework, this controlling
instance is often a document. A document embeds gadgets in a wrapper
frame and enhances its contents with a menu bar and a document file
name. The menu bar contains a gadget displaying the document’s name
and buttons for storing and closing it. Documents are thus also responsible
for embedding gadgets in Oberon’s display structure, either in a tiled viewer
system or in a desktop viewer which hosts overlapping frames.

The document type is defined in module Documents:

TYPE
Document = POINTER TO RECORD (Gadgets.Frame)

name: ARRAY 128 OF CHAR; (* document name *)
Load: PROCEDURE(D: Document); (* load document contents from disk *)
Store: PROCEDURE(D: Document); (* store document contents to disk *)

END;

All documents are instances of Documents.Document. They only differ
in their handle, Load, and Store procedures, which are initialized by the
document’s generator procedure. The name of the generator procedure for
creating a document is either stored in the document file or is derived from
its file name extension. Attempting to load a document with the name of a
non-existing file creates a new empty document.
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5.3 Generic Views

The Leonardo view layer is responsible for visualizing and integrating figures
and the shapes they contain within a graphical user interface, as visual
components within compound documents. Because shapes know how to
render themselves on abstract graphical contexts, Leonardo’s views can be
kept remarkably simple.

5.3.1 Extensible Models

Most model objects in the Gadgets framework manage simple scalar values,
such as booleans, numbers, or strings. Even the few models that have
moderate complexity, most notably text objects, are hardly ever extended.
However, the figure models that Leonardo manages are designed to be
enhanced by new shape and pen types all the time, leading to the central
question of how to design a viewer component for visualizing an ever-
growing model.

Unidraw, a framework for building domain specific graphical editors
[82], is similar in scope to the Leonardo framework. It solves the above
problem by splitting graphical objects into subjects, which are abstract rep-
resentations of domain specific objects, and views, which display a graphical
representation of a subject. While this approach allows attaching seman-
tical information to subjects and having multiple view types per subject,
it has the disadvantage that it doubles the structure of the shape graph.
When subjects are added or removed, the resulting structural changes to
the subject graph must be reflected in the view graph to retain a consistent
state. For each graphical object, two distinct instances must therefore be
maintained, one in the model, and one in the view domain.

By exploiting the ability of shapes to render themselves on abstract
graphical contexts, Leonardo avoids such parallel type and object hierarchies.
Due to shapes’ generic rendering capabilities, a single view component
suffices to visualize any figure model, irrespective of the complexity of the
underlying model.

5.3.2 Leonardo Frames

Leonardo extends Gadgets.Frame in module LeoFrames.
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TYPE
Frame = POINTER TO RECORD (Gadgets.Frame)

ox, oy: INTEGER; (* vector to figure origin in screen space *)
scale: REAL; (* viewport scale factor *)
col: Display.Color; (* background color (unless transparent) *)
framed: BOOLEAN; (* whether to draw a 3D border around the frame *)

END;

Each Leonardo frame refers to a figure model in its obj field. It renders this
figure at its current location whenever it is requested to redraw itself with a
Display.DisplayMsg. The ox, oy, and scale fields allow the definition of an
arbitrary window into the figure. By default, the figure origin is aligned with
the top left corner of the frame, and the scale factor is equal to one. Other
fields influence whether and how a solid background and a border around
the frame are painted.

Restore. To restore a frame on the screen, a Gfx context must be initialized
with the frame’s display mask and its local coordinate system. Almost
everything else can be delegated to the frame’s figure and its shapes.

PROCEDURE Restore(frame: Frame; x, y, w, h, fx, fy: INTEGER; mask: Display3.Mask);
VAR clip: GfxRegions.Region; ctxt: Gfx.Context;
BEGIN

Oberon.RemoveMarks(fx+x, fy+y, w, h); (* remove system markers *)
IF ˜(Gadgets.transparent IN frame.state) THEN (* restore background *)

Display3.ReplConst(mask, Color(frame), fx+x, fy+y, w, h, Display.replace)
END;
clip := RegionFromMask(mask);
ctxt := DisplayContext(frame, fx, fy, fx+frame.W, fy+frame.H, clip);

(* render on shapes on context *)
Leonardo.Render(frame.obj(Leonardo.Figure), Leonardo.passive, ctxt);

IF frame.framed THEN (* restore border *)
Display3.Rect3D(mask, Display3.topC, Display3.bottomC,

fx, fy, frame.W, frame.H, 1, Display.replace)
END;
IF Gadgets.selected IN frame.state THEN

Display3.FillPattern(mask, Display3.white, Display3.selectpat,
fx, fy, fx+x, fy+y, w, h, Display.paint)

END
END Restore;
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Implications of generic views. Delegating rendering requests to individual
shapes actually leads to a conflict with the MVC paradigm since MVC pos-
tulates that a model is completely decoupled from its views. For a graphical
model, however, the visual appearance of individual shapes is indeed a prop-
erty of the underlying model. By using abstract rendering contexts whose
interface is not coupled with any concrete output device, figure models
retain their independence from the environment within which their views
are embedded. We thus argue that the MVC principle, although technically
violated, is still followed in spirit. Another effect of a generic view compo-
nent is that viewing functionality makes for a continuously smaller fraction
of the total amount of program code as the number of shape extensions
grows, almost reducing the MVC to an MC architecture.

5.4 Controllers

The difference between a passive frame that only displays a figure and
an active frame that allows modifications to its model is that an active
frame processes mouse and keyboard events and maps them to appropriate
shape messages that it sends to its figure model. An active frame is also
likely to display additional feedback, such as selection marks, exact mouse
coordinates, or alignment hints.

An intuitive solution for adding active frames to Leonardo would be to
derive a new frame type from LeoFrames.Frame, adding fields for storing new
properties and including editing functionality in its handler. However, since
the type of an embedded frame cannot be changed, this would complicate
‘‘in place’’ editing of already visible figures. Instead, Leonardo activates em-
bedded passive frames by replacing their handler with one that implements
editing capabilities. Moreover, it appends additional frame properties as
dynamic object attributes. Thus, Leonardo frames can appear in two differ-
ent roles -- active and passive -- between which they can arbitrarily switch
at run-time.

The code which implements a frame’s active role does not have to reside
in the same module as the code for its passive role. Thus, the module that
contains the code of active frames only needs to be loaded when the first
active frame is opened or when an existing passive frame becomes active.
This reduces the amount of code that has to be loaded when a document
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with embedded figures is opened.

Tools. The principle of switching handlers to exchange appearance and be-
havior can be further generalized. Most graphics editors, including Leonardo,
follow the notion of a current tool which defines what action is taken when
a user presses a key or a mouse button inside an editor frame. Depending
on the current tool, existing shapes under the mouse cursor are selected
or transformed, or new shapes are integrated into the frame’s figure. By
identifying each such tool with a matching frame handler, new tools can be
added by implementing a new handler procedure which incorporates the
corresponding behavior. Again, tool code is only loaded the first time a user
activates a tool. Thus, editor code is loaded in a fine-grained manner the first
time it is needed. In principle, Leonardo can be extended at run-time, since
new tool handlers can be written, compiled, and activated while figures are
already being viewed or edited.

5.4.1 Tool Structure

Although tool handlers are free to handle all messages individually, most
of them rely on the standard tool handler that module LeoTools exports for
handling most messages and only adjust its behavior to handle mouse input
events.

When a frame becomes active, additional data, stored in a tool object, is
attached to it using a dynamic object link.

TYPE
Tool = POINTER TO RECORD (Gadgets.Object)

frame: LeoFrames.Frame; (* frame that the tool object is linked to *)
unit: REAL; (* current unit of measurement (in figure coords) *)
zx, zy: REAL; (* vector from figure to ruler origin (in figure coords) *)
grid: RECORD

information about spacing and visibility of grid
END;
hints: RECORD

information about alignment hints
END

END;
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(* return frame’s tool; create one if necessary *)
PROCEDURE Current(frame: LeoFrames.Frame): Tool;
VAR obj: Objects.Object; tool: Tool;
BEGIN

Links.GetLink(frame, "Tool", obj);
IF (obj # NIL) & (obj IS Tool) THEN tool := obj(Tool)
ELSE NEW(tool); Init(tool); Links.SetLink(frame, "Tool", tool)
END;
tool.frame := frame;
RETURN tool

END Current;

To activate a different tool, a ToolMsg is broadcast, asking all receiving tool
frames to switch to the handler that is specified in the message.

TYPE
ToolMsg = RECORD (Display.FrameMsg)

handle: Objects.Handler; (* new handler *)
END;

VAR ToolHandler: Objects.Handler; (* current tool handler *)

PROCEDURE Activate(handle: Objects.Handler);
VAR tm: ToolMsg;
BEGIN

ToolHandler := handle;
tm.F := NIL; tm.handle := handle;
Display.Broadcast(tm)

END Activate;

Only frames that are already active handle ToolMsg, whereas passive frames
ignore it. To activate a passive frame, its handler must be set to the current
tool handler explicitly.

5.4.2 Rulers and Alignment

When a frame is active, part of its area is occupied by additional control
areas that do not belong to the displayed figure, as shown in Figure 5.2.
Horizontal and vertical rulers display a user coordinate system, defined by
unit, zx, and zy in the Tool structure. In addition to providing users with
an independent coordinate space, the ruler areas react to mouse clicks by
scrolling the visible figure area. The top-left corner is used to shift or reset
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Figure 5.2: Active frame features

the origin of the ruler coordinate system, and the bottom-left corner zooms
into or out of the displayed figure.

Along the bottom border of the frame, a status line displays the current
mouse coordinates in ruler space and what action will be taken when a
mouse button is pressed, notifying users about which tool is active.

The default tool handler in LeoTools implements grid alignment and
shape specific gravity, as described in section 4.5, to assist users with posi-
tioning shapes accurately. By holding the CTRL modifier key on the keyboard
during mouse movements, users can horizontally and vertically align the cur-
rent position of the mouse pointer with the nearest shape specific alignment
points.

To give users feedback on shape alignment, horizontal and vertical guid-
ing lines are drawn while CTRL remains pressed. These guiding lines (called
alignment hints) allow users to determine with which gravity source of
which shape a dragged point is being aligned. For example in Figure 5.2,
the CTRL key is being pressed. As a result, the guiding lines show that the
point that is being moved is horizontally aligned with the right edge of the



155

rectangle above it and vertically with the bottom tangent of the pie shape
to its right.

5.4.3 Mouse Tracking

The Oberon user interface is traditionally controlled with a three-button
mouse, all three buttons being associated with a standard action: the left
mouse button places insertion marks, the middle button activates com-
mands and moves or reshapes gadgets, and the right button selects objects.
Leonardo tries to match these standard assignments as closely as possible.
It uses the right mouse button to select shapes and the middle button for
transforming them. The action associated with the left button is specific to
the current tool and usually integrates new shapes in a figure.

Drag Contexts. While the middle mouse button is kept pressed to trans-
form selected shapes, affected shapes are drawn at intermediate positions
to provide users with precise feedback of where they are moving them. As
soon as the user moves the mouse, the frame’s contents must be adjusted
to reflect the new situation. Thus, dragged shapes are potentially painted
at dozens of intermediate positions. Also, before painting them at a new
location, the previous frame contents must be restored.

To efficiently deal with this situation, LeoTools implements a drag con-
text, which extends the GfxRaster.Context type that was introduced in sec-
tion 3.7. Drag contexts paint everything in invert mode. Hence, when the
same output is rendered a second time, all changes are automatically can-
celed. Another feature of drag contexts is that they only approximate many
painting operations. For example, they ignore dash patterns and line widths
and always stroke paths, even if the actual render mode would request them
to be filled.

Handle Transformations. By default, shapes are transformed by translating
them according to mouse movements. However, if the shape located at
the initial mouse position responds to a special shape message, called
Leonardo.MatrixMsg, it can itself determine the transformation that should
be applied. For example, when a user clicks on the corner of a rectangle, the
rectangle returns a scaling matrix relative to the opposite corner of the corner
that was clicked. To the user this appears as a resizing operation. Most
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shapes that support such context-sensitive transformations paint special
selection marks, called handles, at points where transformation behavior is
customized.

Transformation Focus. Other transformations require the focus tool to be
active. Users can then place focus points by clicking in a frame with the left
mouse button. With every additional mouse click at the same location, the
transformation type changes, going from translation to scale with the first
click, from scale to rotation with the second, from rotation to reflection with
the third, and from reflection to translation again with the fourth. The focus
point is used as the origin of the appropriate transformation, except in the
case of translation, which needs no origin.

If the mouse is moved while placing the focus point, the focus point
becomes a focus axis and the type of the transformation changes to an
appropriate directional transformation. Uniform scaling is thus replaced by
directional scaling, rotation by a shear transformation, point reflection by
directional reflection, and undirected translation by directional translation.
The effects of these transformations and the corresponding focus point
symbols are illustrated in Figure 5.3.

5.5 Documents

Although Leonardo frames can be integrated in arbitrary gadget contain-
ers and handler switching allows embedded figures to be activated and
passivated at will, it is often preferable to treat figures as stand-alone docu-
ments. By surrounding figure frames with a document wrapper, figures can
be stored in files and imported from files. Furthermore, document frames
can be arbitrarily resized without disturbing the layout of an embedding
container gadget.

The LeoDocs module implements a simple document wrapper for Leo-
nardo frames. In addition to opening new documents or loading existing
documents from file, LeoDocs.Open is also capable of opening any figure
that is currently part of the display space in a document. The content frame
of the new document is always active and shares its model with the already
visible frame; subsequent modifications will thus affect both.
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Figure 5.3: Affine transformations using focus points
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5.6 Editor Dialogs

In this section, we describe how Leonardo’s dialog structure is organized.
Furthermore, we address the question of how customized dialogs for in-
specting and modifying the properties of new shape extensions and new
tool handlers are integrated with existing dialogs.

5.6.1 Application User Interfaces

All manipulations described so far were instances of direct manipulation
[70], where the movements of a pointing device, such as a mouse, are
directly translated to geometric actions. However, direct manipulation is
not effective for modifying non-geometrical properties. Changing the font
of a caption, for example, involves selecting the caption, choosing a font
name and size, and invoking the appropriate command for assigning the
new font to the caption. One of the main tasks of a GUI framework is
thus to let application developers create and arrange interactive controls
that allow users to choose options, quantify values, and invoke operations.
Corresponding GUI elements are usually gathered within dialog windows.
These may only temporarily be visible and be dismissed after the task they
help accomplish has been achieved.

In the Oberon system, the traditional concept of a monolithic applica-
tion where code and user interface components are stored together in a big
executable file has been replaced with command procedures, dynamically
loaded modules, and a document-based user interface. Application docu-
ments and application user interfaces are unified with a single document
concept.

In practice this means that while a figure is displayed in a Leonardo
document, the GUI elements that are necessary to open new Leonardo
documents and edit the shapes they contain are part of a separate panel
document. (Panels are container gadgets that allow their components to be
arbitrarily placed.) Instead of ‘‘starting up’’ Leonardo, an Oberon user opens
the panel document that contains the GUI elements with which Leonardo’s
functionality is invoked. With each activated command, additional modules
that implement the requested operation are potentially loaded. Thus, code
is only loaded when it is actually needed.
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5.6.2 Leonardo Panel Hierarchy

Many Oberon applications are small enough to have all gadgets that are
needed to control them fit within a single panel document. When the
number of gadgets reaches a certain limit, however, a single panel does not
provide enough space anymore. Consequently, subsets of related gadgets
must either be managed more economically (e. g. by putting them in a
special gadget that allows its contents to be scrolled or one that hides them
until activated) or distributed to multiple panels.

Leonardo favors the second approach and distributes user interface
components over a hierarchy of small panel documents. From an initial
application panel, users open additional panels that contain exactly the GUI
elements that they need for a specific task. To maximize the visible area of
nested panels, Leonardo places them right below the title bar of their parent,
as shown in Figure 5.4. When they are dismissed again, the previously visible

Figure 5.4: Leonardo stacking nested panels

panel reappears. While this automatic placement is usually adequate and
reflects users’ intentions, Leonardo panels are regular gadgets and can be
moved around and resized like any other.

When new functionality is added, the normal action is to create a new
panel document with the necessary GUI elements. To grant users immediate
access to this new panel, a button for making it visible should be added to
one of the existing application panels. The required manual intervention



160

may not be fully satisfactory, but seems unavoidable. Fortunately, dialog
panels are regular documents. Oberon users are accustomed to the fact
that they are allowed and even encouraged to edit existing user interfaces to
adapt them to their own needs. The only scenario where there are potential
conflicts is when independently developed extensions are merged.

To facilitate the integration of new dialog panels and to maintain a
common look among Leonardo’s panels, the GUI layout language LayLa
[22] has been used to generate all Leonardo panels rather than designing
them interactively. LayLa takes a textual description of visual and non-visual
objects, including their dimensions, attributes, and links, and arranges them
in rows, columns, and tables according to its built-in layout rules. To avoid
cluttering the flat name space of Oberon’s file system with dozens of different
panel documents, Leonardo panels are gathered in a public object library
and copied from there when needed.

5.6.3 Generic Object Inspection

Users are often interested in viewing and editing the properties of an object
that they have selected. An application should then be able to make a
matching dialog window appear. The Gadgets framework offers generic
inspector panels for that purpose. Inspectors display an object’s attribute
and link values and let users change them. They rely on the basic AttrMsg and
LinkMsg object messages from module Objects to determine name, type,
and value of an object’s attributes and links. An attribute’s type determines
the kind of gadget that is used for visualizing its value. For example, a string
attribute is visualized with a text field gadget, or a boolean attribute with a
check box gadget.

However, the number of distinct attribute types that AttrMsg is able to
express is limited. For example, color values and line cap styles are both
modeled as integer attributes. A generic inspector therefore models both
as integer text fields although the color value would best be represented
by a color chooser gadget and the line cap style by a set of radio buttons.
Other approaches achieve this kind of customization by utilizing a generic
mechanism for finding customized editor dialogs. For example with ActiveX
controls [55], inspected objects are asked to return a list of class ids (which
correspond to generators in Oberon) with instances of which their prop-
erties can be inspected. This closely binds components to their property
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inspectors, which has the disadvantage that components must be recom-
piled to associate new inspectors with them. The JavaBeans API [76] that was
introduced with Java 1.1 solves the problem of inspecting arbitrary compo-
nents (‘‘beans’’) with a dedicated naming scheme. For a class Abc, the class
AbcBeanInfo, if it exists, is expected to contain additional information about
the properties of Abc objects. Moreover, a custom dialog window for editing
Abc components may be requested from a class AbcPropertyEditor if such
a class file exists. Thus, property editors for Java beans are not as tightly
coupled to the corresponding components as property pages for ActiveX
controls are.

Leonardo uses a similar approach, but does not rely on a naming scheme
to determine custom editor panels. Instead, it again uses the central Oberon
registry for associating an object’s unique Gen attribute with the name of
a generator command that creates a matching custom panel. For example,
the registry contains an entry that associates LeoBasic.NewRect, which is
the generator command of rectangle shapes, with LeoBasicEditors.NewRect,
which is the generator of a new panel for inspecting rectangle shapes. As
with JavaBeans, objects and their editor panels are completely separated,
but the explicit mapping between them is more flexible than a rigid naming
scheme.

With the above mapping scheme, a single command can bring up a
matching inspector panel for any selected shape. Similarly, Leonardo allows
users to inspect the properties of the current tool. Tool inspectors display
default attributes of the new shape objects that the tool integrates in a
figure. The current tool is expected to return a matching inspector panel
when asked for its Editor link.

5.6.4 Editor Objects

When inspecting objects and modifying their values, it is convenient if
modifications are not immediately applied to the inspected object, but
only when a user commits them explicitly. Most custom inspector panels
therefore have a special editor model attached. Editor objects buffer the
inspected object’s properties. A generic editor object type is defined in
module LeoPanels.

TYPE
Editor = POINTER TO RECORD (Gadgets.Object)
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apply, revert: PROCEDURE(editor: Editor);
fig: Leonardo.Figure; (* associated figure *)
frame: Gadgets.Frame; (* associated frame *)

END;

Concrete custom inspectors usually do not extend the generic editor type.
Instead, they use the editor’s dynamic attributes and links (as provided by
Gadgets.Object) for storing the inspected object’s properties. For example,
most editor objects refer to the object that they represent with a dynamic
Model link. In the revert procedure, the inspected object’s properties are
copied to the editor object, whereas in the apply procedure edited values are
copied back to the inspected object, usually by adding undoable commands
with corresponding actions to the figure to which the inspected object
belongs.

Menu Bar. To allow users to revert to the original values of the inspected
object or commit their changes, Revert and Apply buttons (invoking the cor-
responding Editor procedures) must be placed on custom inspector panels.
Because these buttons are used in so many Leonardo panels, the Leonardo
public library includes a prefabricated menu bar object that already con-
tains those buttons. Panels are displayed with this menu bar if they attach
a corresponding Menu link to their editor objects. When Leonardo opens a
panel, it embeds it within a custom document class that retrieves its menu
from the panel’s editor object. It also retrieves the document name that
is displayed in the menu bar from the editor’s Title attribute. In a LayLa
description, this is implemented as follows.

LayLa.AddToLibrary Leonardo.FillerPanel
(CONFIG

(DEF editor (NEW LeoPanels.NewEditor
(ATTR Title="Filler") (LINKS Menu=Leonardo.EditorMenu)))

(VLIST Panel (border=8 w=384 vdist=4) (ATTR Locked=TRUE) (LINKS Model=editor)
description of panel components

)
)

Referrer Links. Editor objects are also used to connect nested panels to
the panel that opened them. For example, when a user clicks on a gadget
that displays a color value, a new panel with controls for editing that value
is opened. This situation is depicted in Figure 5.5. The editor object of the
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Figure 5.5: Editor object with Referrer link



164

new panel gets a Referrer link that points to the editor object of the original
panel; the corresponding attribute name is stored in an attribute named
Field. When a new color value is later confirmed by the user, the color
editor follows the Referrer link and changes the referrer’s Field attribute
accordingly.

5.7 Summary

The Leonardo graphics editor exemplifies how the MVC paradigm can suc-
cessfully be applied to complex, extensible model components. Due to
the special characteristics of the underlying model, in which objects know
how to render themselves, a single generic view component is sufficient for
integrating graphics within arbitrary documents. Views can be propagated
to full controller components at run-time by replacing their handler with a
tool handler. Because functionality is spread over several layers and divided
between mandatory core modules and optional extensions, code is loaded
in small units and only when it is first needed. In addition to various editing
tools for directly manipulating objects, Leonardo offers a hierarchy of edi-
tor panels and support for generic object inspection. Its design facilitates
integration of new shape and pen types into its user interface with minimal
effort.



C H A P T E R 6

Application II
The Vinci Graphical Description Language

Vinci is a programming language for describing graphics, based on the
graphics contexts of the Gfx API. Describing a shape or figure in textual form is
often less intuitive than interactively constructing it with a graphics editor.
In some situations, however, textual descriptions are so far superior to
interactive construction that the cost of learning the corresponding language
is well justified. Whenever coordinates must algorithmically be placed,
describing their positions with exact numbers and precise calculations is
essential. As the name suggests, we do not regard Vinci as a strict alternative
to Leonardo, but rather as a complement. Together, they are more powerful
and expressive than either of them on their own.

Like Leonardo figures, Vinci descriptions not only describe stand-alone
documents, but can also be embedded as graphical components in other
documents. In addition, Leonardo shapes and pens can be used within Vinci
programs, and Vinci programs can be imported as shapes within Leonardo
figures. This mutual integration of interactive and descriptive objects (see
Section 6.2) is what makes the combination of Leonardo and Vinci unique.

Goals. From the intended usage of Vinci descriptions, we derive the fol-
lowing goals:

-- Vinci programs are to be written and read by humans. The syntax of
Vinci should therefore seem natural to both authors and readers. If no
existing syntax can be reused, the syntax of Vinci should at least be easy
to acquire.
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-- To support repeating structures, complex computations, and algorith-
mically generated graphics, Vinci should support general programming
language constructs such as loops, alternatives, and recursive procedure
definitions.

-- Like Leonardo, Vinci should be highly extensible. This can on the one
hand be achieved by allowing Vinci descriptions to import Vinci defini-
tions from other files, on the other by letting programmers extend the
set of built-in Vinci operators.

-- Vinci should make full use of the features that Gfx and Leonardo pen
objects offer, especially the early rendering model that both provide.

-- Users should be able to mutually integrate interactive and descriptive
graphics.

We have refrained from using one of the languages the we presented in
Section 2.3 because they fail to fully satisfy the above goals. For example,
SVG (as any other XML extension) only describe static object structures
and do not have executable parts. Besides, their syntax is too verbose to
be considered easy to read and write. Postscript and MetaPost would be
acceptable in these respects and also allow programmers to import custom
procedures. However, their set of built-in operators (for tasks that cannot be
achieved with custom procedures) cannot be extended, nor do they support
early rendering or facilitate integration with interactive graphics. For these
reasons, we chose to design a new language, which we describe in the
following section.

6.1 Language

Vinci programs are expected to primarily consist of operations that generate
graphical output. These graphical operations are often complex and amount
for the majority of the overall processing time. Thus, it is only of secondary
importance how fast language constructs are executed, justifying the use of
an interpreted language in favor of a compiled one.

The focus of Vinci descriptions lies not on maintaining internal data
structures, but rather on invoking a series of graphical functions that, as
a side effect, result in external changes that fall outside the scope of the
language itself. Language constructs that enable general programming are
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available, but only to make the task of describing graphical scenes easier.
The descriptive nature of Vinci programs encourages a functional pro-

gramming style. We therefore decided to base Vinci on the semantics of an
existing functional programming language that we augment with a custom
syntax. In the current implementation, Vinci programs are parsed according
to that custom syntax and then translated to corresponding Scheme pro-
grams. Scheme [68, 1] is itself a dialect of Lisp [54]. While Vinci uses Scheme
mainly because of its clean semantics and flexibility and does not require
Vinci programmers to know about Scheme, it does not artificially prevent
them from using Scheme features either.

The complete Vinci syntax can be found in Appendix B. In this chapter,
only those parts that are essential for illustrating the concepts behind the
language are presented.

6.1.1 Program Representation

Vinci accesses its input files as standard Oberon texts. It converts the
stream of input characters into a series of lexical tokens, which it analyzes
in a recursive descent parser. The set of lexical tokens includes numeric
constants (e. g. 23, 0.125), string literals (e. g. "Hello, world!"), identifiers
(e. g. abc, positive?), and operators (e. g. +, =). Except within string constants,
uppercase and lowercase characters are considered equivalent. Comments
start with a double minus character (--) and include all remaining characters
on the same input line.

Unlike other languages, Vinci has no dedicated keywords. Instead, its
parser interprets normal identifiers as keywords at points where it has to
determine how it should proceed. While this can make legal statements
confusing (consider if repeat=if then const repeat=else end), it simplifies
the parser. Individual statements in a statement sequence are separated by
semicolons.

6.1.2 Data Types

Vinci uses dynamic typing, which means that the type of the values that a
variable may contain are not fixed and do not have to be declared. Vinci
inherits the Scheme type system, including pairs for building lists, vectors
(arrays), and input/output ports. However, while list and vector literals can
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be specified in a Scheme program, Vinci only accepts numeric and string
constants in its input. Other types become available through functions that
return corresponding values (e. g. the built-in Scheme function vector) and
predefined constants (e. g. true and false).

In addition to the types mentioned in the Scheme report [68] (booleans,
numbers, characters, strings, symbols, procedures, pairs, vectors, and ports),
our Scheme implementation for Oberon includes an object type for embed-
ding Oberon objects within Scheme programs. In particular, Vinci uses this
object type to access shape, pen, and image objects.

6.1.3 Expressions

Unlike Scheme, which uses fully parenthesized prefix notation (e. g. (+ 3 x))
for expressing all operations, Vinci uses infix operators for building expres-
sions. Its expression syntax is thus closer to that of imperative programming
languages like Oberon or C. Indeed, Vinci’s expression syntax is almost iden-
tical to that of Oberon. The only differences are that it has no relational
operators IN and IS and that it supplies an additional addition operator ++
for concatenating strings.

6.1.4 Control Structures

In spite of being targeted at describing graphics, Vinci supports a minimal
amount of control structures.

Conditions. The Vinci if statement evaluates a condition to decide among
a set of alternative control paths. It is equivalent in form and semantics
to the corresponding Oberon statement and thus comparable to the cond
statement in Scheme.

if a < b then ...
elsif a > b then ...
else ...
end

Vinci merely transforms if statements to expressions involving the matching
Scheme function (or rather special form) if. This function can also be called
directly when the Vinci parser is not expecting an if statement and thus turns
it into a normal function call:
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const min = if(a < b, a, b) -- in Scheme: (define min (if (< a b) a b))

Loops. Looping constructs in Scheme are modeled with anonymous func-
tions (also calledλ or lambda functions). Because Scheme implementations
are required to support tail recursion, even loops with many iterations can
be processed without running out of stack space. Vinci defines two looping
constructs that are implemented in this manner with lambda functions,
called repeat and for. Both run through a fixed number of iterations, but for
defines an index variable within its body that contains the current loop in-
dex. More general looping constructs, corresponding to the WHILE, REPEAT,
and LOOP statements in Oberon, have no place in a description language
since a description is supposed to be self-contained and not to rely on exter-
nal input. Therefore, the number of iterations of each loop can be calculated
in advance.

6.1.5 Definitions

Each name in a Vinci program must be defined before it can be used. When
a name is defined, a new binding, which associates the name with a value, is
inserted in the current environment. Each function has its own environment,
including ‘‘hidden’’ functions such as loop bodies. Since function definitions
can be nested, so can environments be. When a function returns, its
environment and with it all its bindings disappear. Bindings are only visible
within their defining environment and in all environments nested therein.
Because function bindings are inserted in the environment where they are
defined (not where they are invoked), Vinci follows lexical scoping rules.

Vinci supports three binding constructs, called const, define, and let.
The purpose of const is to define values that are frequently used in the
corresponding environment.

const pi=3.1415, lblue=colors.rgb(0.8, 0.8, 1);
const avg=(min+max)/2;

Vinci cannot guarantee that names that are defined with const indeed remain
constant because any program can call the built-in Scheme function set!
to assign it a new value. A second const in the same environment also
redefines the existing binding. However, the intended use of identifiers that
are defined with const is indeed as constants.
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Because Vinci does not support lambda functions, user functions cannot
be defined with const. Function definitions must instead be made with
define.

define length(dx, dy) as
sqrt(dx*dx + dy*dy)

end length;

The function can later be called by writing its name followed by its arguments
in parentheses.

const c=length(a, b);

All functions return the value of their last statement or expression, but callers
are allowed to ignore function values.

Vinci allows its programs to take advantage of the definitions in the
standard Scheme library. It therefore accepts several letters within identifiers
that are regularly used in standard Scheme names. For example, set! and
vector? are legal Vinci identifiers. However, some letters that are legal
in Scheme names cannot be tolerated in Vinci names because they would
break its expression syntax. This affects all conversion functions, for example
number->string, and most string and vector functions. To deal with these
names, the Vinci scanner accepts the otherwise unused backquote character
(‘) as an escape character for quoting identifiers. Thus, number->string must
be written as ‘number->string‘ and make-vector as ‘make-vector‘.

Like Scheme, Vinci includes a let statement for creating temporary bind-
ings.

let x=(x0+x1)/2, y=(y0+y1)/2 in
stroke from (x-5, y-5) to (x+5, y+5) end

end

The new variables x and y are only defined within the let body, but make
an explicit definition unnecessary. Within each variable definition in a
let clause, the definitions to its left are already instantiated. Thus, the let
statement in Vinci corresponds to let* in Scheme.

6.1.6 Graphics

Considering that Vinci aims to take advantage of Gfx and pen objects, it is
no surprise that its graphical operations use the Gfx path model. Although
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these operations could all be modeled with regular functions, Vinci offers
syntactical constructs for specifying paths and text labels.

Path statements start with fill, stroke, clip, or draw (where draw instructs
Vinci to render with the current pen), followed by a path body and end-
ing with end. The body of a path primarily contains a series of subpath
statements, but may contain control structures and function calls as well.

Subpaths in turn start with from or enter..at, followed by a sequence of
subpath elements. If they are not explicitly terminated with close or exit,
they end with the start of the next subpath or at the end of the entire path.
Point coordinates are specified as pairs of numeric expressions, separated
with a comma and embedded in parentheses. Using enter and exit is
mandatory when drawing paths with draw since pens only support the
enter/exit subpath model (see Section 4.3).

Line and curve elements end with to. Unless an arc or curve directive
precedes it, each to appends a line to the current subpath. In addition, to
make path specification look more natural, the semicolon between state-
ments is optional between subpath elements. A line can thus be stroked
with

stroke from (x0, y0) to (x1, y1) end

and a rectangle be filled with either

fill from (0, 0) to (w, 0) to (w, h) to (0, h) close end

or

fill
enter(0, -h) at (0, 0);
to (w, 0) to (w, h) to (0, h) to (0, 0);
exit(w, 0)

end

or simply using the predefined rect function

fill rect(0, 0, w, h) end

By inserting curve or arc and additional coordinate pairs, Bézier curves and
arcs can be drawn instead of lines. A special corner element that draws a
rounded corner with a given radius is also available.

Within a path body, character outlines can be drawn with text. In most
situations, however, the label statement is more convenient. label always
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fills its label text with the current fill color, but offers more options for
placing its text relative to an anchor point. The following example draws
one label to the upper left of a reference point and another centered inside
a rectangle (x, y, w, h).

label "first" to upper left of (rx, ry);
label "second" over (x+w/2, y+h/2);

The with statement allows changing the current stroke and fill attributes
or setting a new current pen. These changes apply to all statements in the
with statement’s body and are undone when end is reached. For example,
the following line is drawn in blue, with a width of three units, and with a
simple dash pattern with on and off lengths equal to five units:

with color=colors.blue, width=3, dash=vector(5, 5) do
stroke from (0, 0) to (100, 0) end

end

To be consistent with the Gfx model, attribute changes are not allowed
within path bodies. However, transformations to the current coordinate
system are perfectly feasible. The corresponding functions are called trans-
late, scale, rotate, and concat. They are implemented as standard functions
and do not need extra syntax. However, to restore the current transforma-
tion matrix after a series of transformations, a statement sequence can be
embedded between savectm and restore. Similarly, the current clip area can
be saved and later restored by placing clip directives between saveclip and
restore. Graphical attributes are already saved automatically when they are
changed using with and need no additional save/restore pair.

6.1.7 Packages

It is easy to extend the set of built-in procedures: it suffices to add a binding
that associates a symbol with a new primitive procedure to the environment
where all global definitions are stored. However, when these new primitives
are implemented in a separate Oberon module, a Vinci program that relies
on them must be able to request the Vinci interpreter to load that module.
Similarly, useful functions may be implemented in Vinci instead of natively
in Oberon. Unless Vinci allows programs to import other Vinci source files,
the corresponding function definitions must be repeated in each input file.



173

To deal with both issues, a Vinci program may contain an import directive
as its first statement, listing the names of all packages that it requires. For
each imported package, Vinci first tries to open a file whose name is taken to
be the package name followed by ‘.Pack’. If it finds such a file, it parses the
definitions it finds therein and makes them accessible as P.N, where P stands
for the package name and N for the name of the defined identifier. It is an
error for the imported file to contain any statements except import, const,
define, and module, where module asks Vinci to load an Oberon module.
If no package file is found, Vinci consults the Oberon registry and searches
a module name for the given package name. If this fails too, it prepends
‘‘Vinci’’ to the package name and attempts to load the module with the
corresponding name. Dynamically loaded modules can add new packages
to Vinci’s package pool or augment existing ones with new functions.

Although Vinci’s import mechanism allows extending the set of known
Vinci definitions with little effort, it is far from being as sophisticated as for
example the import mechanism of an Oberon compiler. For instance, there
is no version control whatsoever. Furthermore, there is no check whether
an input file only accesses the packages it has imported. If packages have
been defined by previously executed programs, a program can access these
packages without listing them in its import directive. For example, the Vinci
interpreter itself already defines a few basic packages that any program
can access without explicitly importing them. Still, Vinci’s package scheme
achieves its goal of providing Vinci with a generic extension mechanism.

6.2 Integration Aspects

To be of practical use, Vinci descriptions must be displayed as components
within an existing environment (unless we restrict its use to pure page de-
scriptions, similar to Postscript programs). Examples of such environments
are the Oberon display space or Leonardo figures. On the other hand, in-
tegration of other graphical components within Vinci programs should be
possible as well. What we desire is the ability to mutually integrate Vinci
descriptions and Leonardo shapes.

When Vinci descriptions are integrated within Leonardo figures, they
should appear to a user like any other shape. This means that users must
be able to select them, inspect their attributes, and transform them using
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the standard tools of the Leonardo editor. In fact, our solution goes beyond
simple embedding and supports script parameterization and fine-grained
manipulation of script geometry (see Section 6.2.3).

6.2.1 Shapes inside Vinci Descriptions

Leonardo shapes are seamlessly integrated within Vinci because they are
standard Oberon objects. We have augmented the standard Scheme library
by functions for creating objects from a generator string, for accessing and
copying public objects, and for reading and writing attribute and link values.
The following example creates an ellipse shape and changes its dimensions
by setting the corresponding fields of its local coordinate matrix. Following
that, it allocates a new dasher pen and installs it as the ellipse shape’s pen.
Finally, the shape is rendered on the graphics context onto which the script
should be rendered by passing that context to the library function shape.

const s = new("LeoBasic.NewEllipse"); -- create shape
‘set-attr!‘(s, "M00", 100.0, "M11", 80.0); -- set ellipse radii
const pen = new("LeoPens.NewDasher"); -- create dasher pen
‘set-link!‘(s, "Pen", pen); -- attach pen to shape
shape(s); -- render shape

The disadvantage of this example is that it allocates a new shape each
time it is executed. Often used shape objects should thus be stored in public
libraries and retrieved from there, as illustrated in the following example.

translate(x, y); -- move coordinate origin to desired location
shape(pubobj("MyShapeLibrary", "MyShape")) -- render public object

In this manner, any graphical component that can be rendered on a Gfx
context and that is available as an Oberon object can be integrated within
Vinci. All that is needed is a new package function like shape that renders
such objects.

6.2.2 Vinci Gadgets

Gadgets for displaying Vinci descriptions have the same purpose as Leonardo
gadgets have for figures, which is to integrate graphics within the Gadgets
framework. The VinciGadgets module exports a gadget frame type which
accepts a text object that contains Vinci source code as its model.
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A corresponding document type is implemented in module VinciDocs.
Although Vinci descriptions are rarely used in this stand-alone form, Vinci
documents provide a suitable testbed for experimenting with the language
and for debugging Vinci programs. To simplify the edit/test cycle, Vinci
documents have a button in their menu bar for quickly switching between
graphical and textual representation of a program.

6.2.3 Vinci Shapes

Integrating Vinci descriptions within Leonardo at least in principle is easy:
as Vinci gadgets integrate them in the Gadgets framework, Vinci shapes
integrate them within a figure. A basic Vinci shape merely needs to manage a
rectangular box within which its description is embedded. The box provides
both a coordinate system and a bounding box for its description, and users
may interactively transform the box like any other shape. However, this
simple scheme does not allow users to customize embedded scripts. If some
part of the Vinci program paints a blue line, the only way to have it draw
a green line is to edit the program’s source code. This is not only tedious
when several variants of the same description are needed, it also keeps
users who do not know Vinci sufficiently well from reusing a description
that somebody else has written.

Our approach for integrating Vinci descriptions within Leonardo there-
fore follows a slightly different path. A shape description consists of a series
of definitions, similar to a package file. When the handler of a Vinci shape
receives a standard RenderMsg, it delegates rendering to a Vinci function
with the special name render if such a function has been defined in the
corresponding Vinci source code. Similar functions are used for locating
shapes (locate), for calculating their bounding box (bbox), and for calculat-
ing the local coordinate system within which render and locate are executed
(matrix). In addition, a description may include directives that declare de-
fined values to be freely customizable parameters. The following example
contains a minimal shape description to draw a colored rectangle.

import colors, rectangles, shapes;

const x = 100, y = 100, w = 300, h = 200; -- default position and dimensions
const col = colors.blue; -- default color
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-- render function
define render as

with color=col do
fill rect(x, y, x+w, y+h) end

end
end render;

-- bounding box function
define bbox as

rectangles.init(x, y, x+w, y+h)
end bbox;

-- locate function
define locate (llx, lly, urx, ury) as

rectangles.overlap(bbox(), rectangles.init(llx, lly, urx, ury))
end locate;

-- exported shape parameters
shapes.real("x", "X Position");
shapes.real("y", "Y Position");
shapes.real("w", "Width", 10.0);
shapes.real("h", "Height", 10.0);
shapes.color("col", "Color");

Of special interest are the last five statements. These declare that the
defined names x, y, w, and h hold real numbers as their values and that
col holds a color value. Besides, they associate each parameter with a
descriptive name. Width and height parameters w and h are declared to
have a minimal value of 10. Although these declarations are not meaningful
to the Vinci shapes themselves (they are more interested in the render, bbox,
and locate functions), they allow Leonardo to build a customized inspector
panel when a selected script shape is inspected. The Oberon procedure that
is registered with Leonardo for creating a custom editor panel for a Vinci
shape can determine which definitions are considered parameters and what
types they have. Figure 6.1 shows a Leonardo frame that displays the above
sample description and the corresponding editor panel.

Coordinate System. A distinctive lack of the above example is that the
shape cannot be transformed using direct manipulation; it can only be
moved and resized by adjusting its parameters from an inspector panel.
One solution would be to add other special functions for handling transform



177

Figure 6.1: Vinci shape and corresponding editor panel
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requests and for returning location specific transformation matrices. Such
a transform function would have to apply the matrix that it receives to the
geometric parameters of the description and assign the resulting values to
them with undoable actions. Although feasible, this approach could only
transform the shape as a whole.

In the approach we have chosen, shape descriptions can define links to
other shape objects and declare them to be components of the description.
These shape links become components of the Vinci shape, which is therefore
derived from Leonardo.Container. The scenario that we described earlier in
this section, where a description is embedded within a rectangular frame,
is achieved by replacing x, y, w, and h in our example with a reference to a
Vinci frame, as shown in the following program.

import colors, rectangles, shapes;

const w = 300, h = 200; -- dimensions of the rectangle
const frame = shapes.frame(w, h); -- component frame
const col = colors.color("blue");

define render as
with color=col do

fill rect(0, 0, w, h) end -- frame defines coordinate origin
end

end render;

define matrix as
shapes.matrix(frame) -- frame defines local coordinate system

end matrix;

shapes.component("frame");
shapes.color("col", "Color");

We observe that x and y have been completely discarded. w and h are
still present, but are no longer declared to be parameters. Instead, they
are reduced to symbolic constants. However, a frame component with the
same dimensions as the painted rectangle has been introduced, along with
a matrix function that returns the frame’s local coordinate system, which
is retrieved with shapes.matrix. locate and bbox are no longer necessary
because the shape by default delegates these tasks to its components if no
matching functions are found. When a user drags the component frame
around or otherwise transforms it, the frame adjusts its local coordinate
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system within which the shape’s render function is evaluated. The behavior
of the integrated Vinci description is thus very close to that of a natively
implemented shape extension.

Feasible components of shape descriptions are not restricted to a single
frame shape. If a description is based on a set of point links, each point can be
transformed independently of all others, allowing fine-grained modifications
to the shape’s geometry. Furthermore, these points can be consumed
within other shapes, subjecting the corresponding Vinci shape to Leonardo’s
constraint mechanism. An example of this is a description that draws a line
between two points and centers a caption over the line which displays the
current line length. When either point is moved, the displayed line length
is automatically adjusted. Figure 6.2 displays several such lines. Appendix A
contains the commented source code for this particular Vinci shape.
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Figure 6.2: Vinci line shapes which measure their own length

6.3 Summary

As a second application for Gfx and the Leonardo shape framework, we
have presented Vinci, a graphical description language. Vinci is an inter-
preted functional language that couples custom syntax with an underlying
Scheme engine. Vinci offers syntactical support for specifying paths, placing
labels, and modifying graphical attributes. Besides, it implements a package
concept that lets it accommodate future extensions.

Because the underlying Scheme interpreter includes a data type whose
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instances represent Oberon objects, Oberon objects are ordinary expression
values that can be passed to and returned from functions. As a result,
arbitrary objects that a library function is able to render on a Gfx context can
be rendered by Vinci programs. Pen and image objects are thus available
within Vinci as well.

By conforming to a few simple conventions, Vinci descriptions can be
integrated as shapes in Leonardo. Vinci shapes delegate tasks such as
rendering or locating themselves to correspondingly named Vinci functions.
Furthermore, Vinci values can be exported as parameters; users are able to
inspect and modify these within Leonardo like the properties of any other
shape. Besides, Vinci shapes may rely on component shapes to define a
local coordinate system for them. To interactive users, these shapes look
like ordinary components and allow them to reshape the geometry of a Vinci
shape in a fine-grained manner.



C H A P T E R 7

Conclusions

7.1 Evaluation

As we draw conclusions of what we have achieved, we do not wish to merely
recapitulate individual contributions here since each previous chapter al-
ready includes a summary of relevant points. Instead, we would rather
attempt to view them in a bigger context.

7.1.1 Graphics API

Gfx, our graphics programming interface, is evolutionary rather than revo-
lutionary. Like many older API it uses an immediate rendering model and
a large interface that cannot be extended. For the following reasons, we
nevertheless regard it as a successful combination of graphical functionality
and the principles of extensible object-oriented software design:

-- It is modular and consists of several subsystems that can be reused on
their own. In fact, the imaging subsystem, although originally devel-
oped as a part of Gfx, is available as a separate package and no longer
part of the regular Gfx distribution. Moreover, concrete context imple-
mentations are independent of each other; an application only needs
to import those that it actually needs.

-- Its interface is general and complete. Gfx integrates many advanced
concepts in a natural way; consider its seamless integration of charac-
ter outlines with general paths or its support for early and late path
rendering.

-- It can be customized. Not only can support for new image and font file



182

formats be added; the potential number of available context types is
unlimited.

-- Its abstract context interface and the exchangeability of concrete context
implementations allow graphical content to be integrated in various en-
vironments. For example, Leonardo figures and Vinci descriptions can
be embedded within a graphical user interface such as the Gadgets com-
ponent framework. Furthermore, Vinci descriptions can draw Leonardo
shapes and Leonardo can integrate Vinci descriptions although Leonardo
and Vinci are otherwise independent applications.

Gfx has also proved itself in practice. In addition to Leonardo and Vinci,
the applications we have described in Chapters 5 and 6, a couple of student
projects have used it to implement an experimental PDF viewer [15] and a
viewer for TEX-generated DVI files [26]. Besides, Gfx has been used as a tool
in in undergraduate student courses at ETH Zürich and in Belgium.

7.1.2 Shape Framework

As a model for the Leonardo editor, our shape framework is a success,
currently including about a dozen shape types and more than half a dozen
pen types. However, it has not been used within other environments, which
makes an evaluation of its qualities as a reusable framework difficult. Still,
we feel confident that -- due to its use of an open message interface -- its
potential for customization within other applications is considerable.

By introducing abstract pens, we have been able to decouple paths and
similar shapes from the fixed set of graphical attributes that Gfx (and other
graphics interfaces) provide. New pen variations can either be created by
specialization, meaning that new concrete extensions of the abstract pen
type are implemented, or by aggregation, meaning that instances of existing
pens are connected in new master and slave constellations.

7.1.3 Leonardo

Leonardo is an application that uses the MVC paradigm to display and edit
an extensible graphical model. This model has the unique property that its
shapes represent graphical information and know how to render themselves
on abstract graphical contexts. Therefore, a single generic view type can
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display arbitrary figures. This is generally not possible with other kinds of
applications where view components have to be adapted or extended when
new kinds of objects are added to their model.

Leonardo is also an application that adapts to a user’s demands. On
the lower end of the scale, to load a single module suffices for viewing
arbitrary figures and embedding them as (passive) graphical components
within arbitrary documents. On the upper end of the scale, several graph-
ical documents can be edited at once with a potentially unlimited set of
interactive tools and operations. Important aspects are that components
can arbitrarily switch between passive and active roles, that additional code
is only loaded the first time it is needed, and that new shapes, tools, and
editor panels can easily be integrated within Leonardo, even at run-time.

7.1.4 Vinci

By interpreting textual descriptions, Vinci provides users with an alternative
method for creating graphics. Because these descriptions may include pre-
cise numeric values, arbitrary calculations, and repetitive structures, figures
that would be difficult to construct interactively are easily expressed in Vinci.

Although Vinci descriptions can be treated as stand-alone documents,
they are of particular interest when they are integrated as shapes within
Leonardo figures. Users can manipulate these Vinci shapes by inspecting
them inside customized editor panels or by interactively transforming their
component shapes. Thus, even users that would not write or edit a Vinci
program themselves are able to use Vinci shapes in their drawings. Experi-
enced programmers may find Vinci descriptions beneficial for implementing
simple shapes that are used repeatedly but do not justify the effort that is
needed to implement them as a proper shape type.

Because Vinci is a true programming language which allows functions
to be defined and built-in names to be hidden within local scopes, inter-
preting a Vinci description is more complex than parsing purely structural
descriptions such as SVG or PDF files, which can directly be translated to
an object structure. For example, executing a Vinci description may result
in an endless recursion or in a run-time exception (e. g. a division by zero).
Vinci may therefore be less suitable than those other formats for distributing
graphical content (for example in browsable documents on the Internet).
However, with Microsoft’s active scripting technology [55] it is possible to
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embed Vinci descriptions within a HTML page and have an ActiveX control
in the same page interpret and display this description [91].

7.2 Future Perspectives

The following paragraphs discuss aspects that we consider worthy of further
exploration.

7.2.1 Transparency

We have deliberately restricted Gfx to only support opaque color for paint-
ing graphical objects, except for images, where transparency is essential for
representing character bitmaps. The reason for this limitation is that some
output devices, especially printers, cannot correctly handle partly transpar-
ent objects.

Nevertheless, the current trend to move content to the Internet in pref-
erence to publishing it in printed form will probably increase the number of
documents that are primarily designed for online viewing. Web designers
are accustomed to having transparency effects at their disposal with bitmap
graphics. They thus demand them for vector graphics as well, which is why
Web-oriented approaches such as SVG support transparency.

It would not be difficult to extend the Gfx context interface by fields and
procedures to manage transparency and blend functions. However, since
not all intended output devices support them, we would also have to include
procedures which let clients inquire about whether a context supports this
particular feature and to choose an alternative drawing method if not.

As an additional advantage of having transparency support available,
Gfx could be augmented by procedures for rendering anti-aliased primitives.
Thus, the rendering quality of Gfx could be further improved.

7.2.2 Context Extensions

So far, Gfx contexts have almost exclusively been used to implement device-
specific output drivers. However, the abstract context interface could also
be used for other purposes.
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If the current GfxDisplay context, which uses the generic Oberon display
driver for output, were replaced by a hardware-specific context extension,
Gfx could utilize hardware-accelerated raster operations. Hardware acceler-
ation could be used for drawing hairlines, for clipping, for painting bitmaps,
and for drawing transformed images as texture maps. Thus, performance
for specific operations could drastically be improved.

Another class of concrete context extensions could convert graphical
input to equivalent Leonardo figures or to standard file formats (such as
PDF or SVG). An existing example of such a context is GfxPS.Context, which
converts its input to a corresponding Postscript file.

7.2.3 Animation

Apart from the addition of new shape and pen types, an interesting extension
of the shape framework would be to augment it by animation capabilities,
similar to those found in SVG. If animation could be added by merely
introducing some kind of animator shapes and new shape messages for
synchronizing them with a global timer, the validity of our design could be
further confirmed.



A P P E N D I X A

Sample Vinci Script

The following program implements a Vinci shape that integrates lines within
a figure which measure and display their own length. The shape definition
declares two points as its components. These points not only define the
end points of the corresponding line, but also a rotated coordinate system
within which the text label that displays the length of the line is drawn.

-- import required packages
import colors, matrix, rectangles, shapes;

-- name to be displayed in inspector panels
shapes.name("Distance Line");

-- unit scale factor (default unit is 1/91.44 inch)
const unit = 91.44/25.4, unitname = "mm";
shapes.real("unit", "Unit", 0.001);
shapes.string("unitname", "Unit Name");

-- line end points
const p1 = shapes.point(0, 0), p2 = shapes.point(100*unit, 0);
shapes.component("p1");
shapes.component("p2");

-- graphical parameters
const offset = 5; -- length of ‘‘ticks’’ at line ends
shapes.real("offset", "Offset");

const fontname = "Oberon-Italic", fontsize = 12; -- label font
shapes.string("fontname", "Font Name");
shapes.integer("fontsize", "Font Size");
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const col = colors.black; -- color with which to paint
shapes.color("col", "Color");

const digits = 0; -- number of digits after decimal point
shapes.integer("digits", "Digits", 0, 5);

-- return shape bounding box
define bbox as

let
x1 = attr(p1, "X"), y1 = attr(p1, "Y"),
dx = attr(p2, "X") - x1, dy = attr(p2, "Y") - y1,
mat = matrix.rotate(matrix.init(1, 0, 0, 1, x1, y1), atan(dy, dx)),
box = rectangles.init(0, 0, sqrt(dx*dx + dy*dy), offset + 1.5*fontsize)

in
rectangles.apply(box, mat)

end
end bbox;

-- draw only line when shape is being interactively dragged
define drag as

stroke
from (attr(p1, "X"), attr(p1, "Y")) to (attr(p2, "X"), attr(p2, "Y"))

end
end drag;

-- draw shape including label
define render as

let
x1 = attr(p1, "X"), y1 = attr(p1, "Y"),
dx = attr(p2, "X") - x1, dy = attr(p2, "Y") - y1,
len = sqrt(dx*dx + dy*dy)

in
-- establish local coordinate system
translate(x1, y1);
rotate(atan(dy, dx));
translate(0, offset);
with font = fontname, size = fontsize, color = col do

stroke
from (0, 0) to (len, 0); -- line between points
from (0, -offset) to (0, offset); -- tick marks at end points
from (len, -offset) to (len, offset)

end;
label realtostrfix(len/unit, digits) ++ unitname above (len/2, 0)

end
end



188

end render;

-- return if supplied rectangle intersects shape
define locate (llx, lly, urx, ury) as

let
x1 = attr(p1, "X"), y1 = attr(p1, "Y"),
dx = attr(p2, "X") - x1, dy = attr(p2, "Y") - y1,
mat = matrix.rotate(matrix.init(1, 0, 0, 1, 0, 0), -atan(dy,
dx)),
r = rectangles.apply(

rectangles.init(llx - x1, lly - y1, urx - x1, ury - y1), mat
);

in
rectangles.overlap?(r,

rectangles.init(0, 0, sqrt(dx*dx + dy*dy), offset + 1.5*fontsize)
)

end
end locate;

-- various functions for converting reals to strings
-- with a fixed number of digits after the decimal point
-- (could be made into a library function)
define roundtostr (x) as

‘number->string‘(‘inexact->exact‘(round(x)))
end roundtostr;

define realtostrfix (x, d) as
if d = 0 then roundtostr(x)
else

let t = tento(d), x = round(t * x)/t in
roundtostr(x) ++ "." ++

fractostr(‘make-string‘(d), x - truncate(x), 0, d - 1)
end

end
end realtostrfix;

define fractostr (str, x, pos, d) as
-- recursively add next digit to string
if pos = d then

string-set!‘(str, pos, tochar(round(10*x)));
str -- return value is str

else
let y = 10*x, i = truncate(y) in

‘string-set!‘(str, pos, tochar(i));
fractostr(str, y - i, pos + 1, d)



189

end
end

end fractostr;

define tochar (x) as
‘integer->char‘(48 + ‘inexact->exact‘(x))

end tochar;

define tento (n) as
if n = 0 then 1
else 10*tento(n - 1)
end

end tento;



A P P E N D I X B

Vinci Syntax

Program = ["import" ident {"," ident} ";"] Seq.

Seq = Stat {";" Stat}.
Stat = [Const|Define|With|Save|Draw|Label|DrawStat].

Const = "const" Assign.
Define = "define" ident ["(" [ident {"," ident}] ")"] "as" Seq "end" ident.
Let = "let" Assign "in" Seq "end".
If = "if" Expr "then" Seq {"elsif" Expr "then" Seq} ["else" Seq] "end".
Repeat = "repeat" Expr "times" Seq "end".
For = "for" ident "=" Expr "to" Expr ["by" Expr] "do" Seq "end".
With = "with" Assign "do" Seq "end".
Save = ("saveclip"|"savectm") Seq "restore".
Draw = ("stroke"|"fill"|"clip"|"record"|"draw") DrawSeq "end".
Label = "label" Expr Locator ["rotated" Expr].
Assign = ident "=" Expr {"," ident "=" Expr}.

Locator = ("at"|"over"|"above"|"below"|
["to" ["lower"|"upper"]] ("left"|"right") "of") Coord.

DrawSeq = DrawStat {";" DrawStat}.
DrawStat = [If|Repeat|For|Let|Elements|Expr].
Elements = {"from" Coord|Enter|Line|Arc|Curve|Corner|"close"|Exit|Text}.
Enter = "enter" Coord "at" Coord.
Line = "to" Coord.
Arc = "arc" Coord ["," Coord ["," Coord]] "to" Coord.
Curve = "curve" Coord ["," Coord] "to" Coord.
Corner = "corner" Coord "," Expr "to" Coord.
Exit = "exit" Coord.
Coord = "(" Expr "," Expr ")".
Text = "text" Expr ["at" Coord].
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Expr = SimpleExpr [relop SimpleExpr].
SimpleExpr = ["+"|"-"] Term {addop Term}.
Term = Factor {mulop Factor}.
Factor = number|string|"(" Expr ")"|Qualident|Call|"˜" Factor.
Call = Qualident "(" [Expr "," Expr] ")".
Qualident = [ident "."] ident.
relop = "="|"#"|"<"|"<="|">"|">=".
addop = "+"|"-"|"++"|"or".
mulop = "*"|"/"|"&"|"div"|"mod".



A P P E N D I X C

Module and Performance Statistics

C.1 Module Sizes

To give an impression of the size of the various software packages that are
described in this thesis, tables C.1 up to C.8 list the sizes of involved Oberon
modules. For each module, its name, its function, its size in number of
statements, and its size in number of lines of source code are given. The
number of statements is calculated by the Analyzer tool that is part of
Oberon System 3. Few statements per lines of code are typical for modules
that contain many definitions.

For some packages, we separate essential core modules from optional
extensions. Note that at least one extension module is usually necessary to
use the generic core modules in practice.

Module Function Statements Lines

Colors Color model and inverse
lookup

552 575

ColorGadgets Gadgets for displaying and
choosing color

1022 1186

Images Image type and image process-
ing

1819 2478

ImageGadgets Image viewer gadgets 333 405
ImageDocs Image documents 70 111

Total 3796 4755

Table C.1: Core modules of the Colors and Images packages
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Module Function Statements Lines

PictImages Oberon picture images 316 406
BMPImages Windows bitmap image loader 358 331
JPEGImages JPEG image loader 2517 3931
GIFImages GIF image loader 216 254

Total 3407 4922

Table C.2: Extension modules implementing various image formats

Module Function Statements Lines

GfxMatrix Affine matrices 217 345
GfxImages Affine image transformations,

filters
792 781

GfxPaths Path structure and operations 1090 1399
GfxRegions Region structure and shape al-

gebra
769 1245

GfxFonts0 Platform specific font file di-
rectories

56 77

GfxFonts Oberon bitmap and outline
fonts

919 1117

Gfx Context interface and default
methods

629 1349

GfxRaster Abstract raster contexts 1226 1343

Total 5698 7656

Table C.3: Gfx core modules
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Module Function Statements Lines

GfxBuffer Raster contexts rendering to
image buffers

150 206

GfxDisplay Raster contexts rendering to
screen

470 646

GfxPrinter Oberon printer contexts 307 351
GfxPS Contexts writing to Postscript

files
2030 2036

GfxOType Bridge between Gfx and Open-
Type fonts

143 198

GfxPKFonts PK (TEX) font loader 404 477

Total 3504 3914

Table C.4: Gfx context and font extensions

Module Function Statements Lines

Leonardo Shape framework with shapes
and figures

1322 1884

LeoFrames View frames (passive) 339 460
LeoTools Controller frames (active) and

tools
1849 2188

LeoDocs Figure documents 203 307
LeoPanels Editor panels and standard

commands
1212 1560

LeoLists Shape list gadgets 589 682

Total 5514 7081

Table C.5: Leonardo core modules
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Module Function Statements Lines

LeoPens Stroker, filler, dasher, and
forker pens

908 1216

LeoOutliners Outliner and arrow pens 584 719
LeoPaths Paths, points, lines, arcs, and

Bézier curves
2465 2929

LeoSplines Natural splines 299 430
LeoCaptions Text labels 462 574
LeoBasic Rectangles, ellipses, and

groups
624 799

LeoImages Image shapes 231 281

Total 5573 6948

Table C.6: Leonardo model extensions

Module Function Statements Lines

LeoPenEditors Pen inspectors 951 1263
LeoPathEditors Paths, points, and segment

tools and inspectors
611 755

LeoSplineEditors Natural spline tool 101 134
LeoCaptionEditors Text tool and inspectors 323 438
LeoBasicEditors Basic shape tools and inspec-

tors
343 472

LeoImageEditors Image tool and inspectors 119 184

Total 2448 3246

Table C.7: Leonardo editor extensions
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Module Function Statements Lines

Scheme Scheme engine 2302 2603
SchemeOps Scheme library primitives 745 788
Vinci Vinci parser and primitives 1848 1732
VinciGadgets Gadgets for displaying scripts 251 339
VinciDocs Script documents 245 314
VinciPens Pen package primitives 234 188
VinciShapes Shapes package, Vinci and

frame shapes
991 1047

VinciEditors Vinci shape tool and inspectors 286 322

Total 6902 7333

Table C.8: Vinci modules



197

C.2 Performance Evaluation

Since Gfx is currently the only high-level graphics API that runs on top of the
Oberon system, a comparison with other graphics interfaces is not practical.
We thus restrict our evaluation to the following comparisons: early rendering
versus late rendering, Gfx versus the standard Oberon library, and built-in
pixel formats versus custom pixel formats. All tests were performed with
Native Oberon running on an Intel-compatible processor at 300MHz and
were repeated at least five times.

Early Rendering vs. Late Rendering. We compare early and late rendering
with four small benchmarks. These draw a set of 1000 random lines (lines
benchmark), a line sequence with 1000 corners (polyline benchmark), a set
of 1000 random rectangles (rectangles benchmark), and a set of text labels
in different font sizes from 8 to 24 (glyphs benchmark). The results of these
tests are listed in Table C.9.

Benchmark Late Early Relative

lines 137ms 132ms - 3.92%
polyline 125ms 124ms - 0.48%
rectangles 924ms 301ms -67.42%
glyphs 13ms 1ms -89.39%

Table C.9: Early rendering vs. late rendering

The first two benchmarks show that -- for thin lines -- early rendering
and late rendering are about equal. Only when rendering filled rectangles
or when filling glyphs does early rendering have a significant advantage. In
the rectangle benchmark, early rendering profits from an optimized method
that renders axis-aligned rectangles, whereas late rendering must reconstruct
rectangles from their edges. The glyph benchmark validates our assertion
that glyphs can be rendered faster if corresponding bitmaps are painted than
if their outlines are filled. (With early rendering, glyphs are filled instantly,
whereas with late rendering, their outlines are appended to the current
path.)
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Gfx vs. Oberon. To compare Gfx to the standard module Display3 of
Oberon System 3, we repeat the lines, rectangles, and glyphs benchmarks
from above. This time, we compare the performance of early rendering with
that of the corresponding Display3 procedures. In the first group of tests,
the whole area where rendering takes place is visible. In the second group,
only about four percent of the whole area is visible. This lets us compare
Gfx and Display3 when clipping comes into play. Table C.10 shows the
corresponding results.

Benchmark Display3 Gfx Relative

lines 76ms 135ms +77.75%
rectangles 294ms 297ms + 0.95%
glyphs <1ms 1ms +45.37%

lines (clipped) 87ms 100ms +14.42%
rectangles (clipped) 8ms 10ms +13.64%
glyphs (clipped) < 1ms <1ms -19.55%

Table C.10: Gfx vs. Oberon

As expected, the overheads of the Gfx interface -- primarily due to
wrapper procedures and application of the current transformation -- make
it fall behind the standard Display3 module, especially when rendering
lines. At least Gfx seems to implement clipping better than Display3, which
is slower in the clipped lines benchmark than in the unclipped case although
it only has to draw a small percentage of all pixels. Similarly, Gfx can even
overtake Display3 in the clipped glyphs benchmark. (Although absolute
execution times are small, the speedup of about 19 percent was consistent
in several runs.)

Built-in Pixel Formats vs. Custom Pixel Formats. For the last group of
benchmarks, we filled a set of random rectangles in an image with arbitrary
pixel values. The format of these images was either one of the built-in pixel
formats D8, BGR565, BGR888, and BGRA8888 or a corresponding custom
format that relied solely on pack and unpack procedures. The results of
the corresponding tests are shown in Table C.11. Obviously, speed-critical
imaging applications should never rely on custom pixel formats and convert
their images to one of the built-in formats whenever possible.
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Format Built-in Custom Relative

D8 16ms 965ms +5733%
BGR565 26ms 490ms +1750%
BGR888 40ms 592ms +1348%
BGRA8888 61ms 578ms +844%

Table C.11: Built-in vs. custom pixel formats
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