ETH

Eidgendssische Departement Informatik

Technische Hochschule Institut fur

Zirich Computersysteme

Régis Crelier OP2: A Portable Oberon
Compiler

February 1990

125

Computersysteme
ETH-Zentrum
CH-8092 Zurich, Switzerland

e-mail: crelier@inf.ethz.ch

© 1990 Departement Informatik, ETH Zirich

Abstract

This report describes a portable compiler for the language Oberon [Wirth 89]. The compiler
consists of two parts: the so-called front-end and back-end. The front-end builds a machine-
independent structure representing the program. This structure is made up of a symbol table
and a syntax tree, rather than a tinear sequence of pseudo-instructions coded in an
“intermediate language”. Whereas the front-end can remain unchanged, the back-end has to
be reprogrammed, when the compiler is retargeted. The chosen structure allows the insertion
of an optional phase, doing different grades of optimization. This technical report provides a
detailed description of the intermediate program representation and is first of all directed to the
designer of a back-end.

Contents
1. Introduction
2. Modularization

3. Part One: Description of the Front-End
3.1 Symbol Table
3.2 Syntax Tree
3.3 Simple Optimizations
3.4 Moduie SYSTEM

4. Part Two: How to Write a Back-End
4.1 Porting the Compiler
4.2 Host Interface
4.3 Parametrization of the Front-End
4.4 Obiject File Format
4.5 Storage Allocation and Code Generation
4.6 Interfacing with an Existing Operating System
4.7 Debugging

References and Further Reading

Appendix: Syntax Tree Definition

1. Introduction

Nowadays, portability has become a very important criterion for program quality. Considering the
increasing complexity of software products, we cannot imagine rewriting a program each time it has
to be implemented on a different computer. If the program is coded in a higher level programming
language, it makes the job easier. Indeed, a programming language is (or should be) machine-
independent, so that programs can be moved from one machine to another without any changes.
Programming difficulties resulting from machine-dependencies (like processor instruction set or
input-output devices e.g.) are made invisible to the programmer and are handled by the compiler or
the operating system.

A compiler is a program as weil, and it may be ported. If it can continue to produce the same code as
before, but on a different machine (cross compiler), it is not more difficult to port it than any other
program also written in a higher level programming language. But if the produced code must run on
the new machine, the compiler has to be rewritten and it is not the same program anymore. By the
term portable compiler, we aclually understand a compiler that needs minimal effort to be adapted
to a new machine and/or to be modified to produce new code.

Most related works attempt to reduce this adaptation cost to a minimum, without considering in the
tirst place the influence on the compilation speed and on the code quality. A classification of such
automated retargetable code generation techniques and a survey of the works on those
techniques is presented in [Ganapathi 82). The basic idea is to produce code for a virtual machine.
This code is then expanded into real machine instructions. The expansion can be done by
handwrillen translators {Amman 74] or by a machine-independent code generation algorithm, in
which case each intermediate language instruction [Tanenbaum 89] or each recognized pattern of
these [Glanville 78] is expanded into a fixed pattern of target machine instructions recorded in
lables. Trees may replace linear code to feed the pattern matching algorithm [Aho 89, Cattell 79,
Fraser 86], but the code quality seldom satisfies, so that a peephole oplimization phase is added,
which still increase the compilation time.

Portability, code quality, and compilation speed are given the same importance in our approach.
Thus, a paltern matching or table-driven code generation has been directly discarded. An elegant
way lo write a compiler today is to design it as single-pass compiler. This implies that all compilation
phases are executed in the same time, and that no intermediate representation of the source text
is needed between the dilferent phases, making therefore the compiler very compact and
elficient. But this technique has disadvantages 10o: since machine-independent and machine-
dependent phases are mixed up, it is very difficult to modity the compiler for a new machine. If the
programmer doesn't understand the whole program very well, he doesn't stand a chance to port it
in due time. And if he slill succeeds, the danger is very high that the compiler doesn't work correctly
anymore.

One solution to the problem is to clearly separate the compilation phases into two groups: the

5

machine-independent ones making up the front-end (lexical and syntaxical analysis, including
type checking) and the machine-dependent ones making up the back-end (storage allocation,

.. code generation). Only the back-end must be modified when the compiler is ported. The front-end
“is responsible for constructing an intermediate representation of the program and a symbol table

which is used to check context-sensitive syntax, such as type compatibility or scope rules for
example, If no errors were found, the front-end then passes control to the back-end, which
generates code from this intermediate representation. A noteworthy advantage consists in the fact
that the back-end receives a structure which is free of errors. Thus, it doesn't need to deal with type
checking and error recovery. It must only guarantee that implementation specific restrictions are
respecled (e.g. maximal code length or maximal jump distance). Furthermore, it is now possible to
program the front-end and the back-end separately. Each is implemented as one (or several)
independent module(s). An interesting point has to be noticed: this structure makes it possible to
add exira passes which may be required to improve the code. This optimization phase cannot
easily be embedded in a conventional single-pass compiler.

The intermediate representation could be a stream of instructions for a virtual machine; we have
preferred an internal abstract syntax tree. The tree has some non-negligible advantages in
comparison with a linear code: no linearization of the program is needed, because the tree is a
natural mapping of the Oberon syntax, and it is therefore easy to embed its recursive construction
algorithm in the recursive-descent parser. The structure of the program is kept intact, so that a
control-flow analysis needed for optimization is already done. The reordering of program pieces is
easier to perform in a tree than in an instruction stream. A disadvantage resides in the fact that the
free uses a quite large heap space, but this should not be a real problem nowadays.

In the compiler for the Ceres workstation [Eberle 87], the symbol table and the syntax tree take up
32 times more memory space than the produced code (or about 8 times the source text), one third
being occupied by the symbol table only. The garbage collector is called after the compilation of
each module. This version of the compiler (6200 program lines, 10 modules, 58 KB code)
recompiles itself within 30 seconds.

2. Modularization

The basic version of the portable Oberon compiler consists of nine modules (see Fig.1) written in
Oberon. Module names have all the same form: OPx. "O" stands for Oberon, "P" for portable, the
third letter specifies the function of the module . :

oP2
IT_—|
OPV
-
OPP
i I
— OPC
OPB
T__zn
OPL
1 “Ir
OPT
= I__T
OPS
44 4 4 ? 4 4 4
OPM
front-end back-end

Fig.1 Module impor graph (an arrow from A to B means B imports A)

The topmost module (OP2) doesn't do anything but call the front-end with the source text to be
compiled as parameter. It no error has been detected, it then calis the back-end with the root of the
tree that was returned by the tront-end as parameter.

The lowest module of the whole hierarchy is OPM, where "M" stands for machine. This module
defines and exports several conslants used to parametrize the front-end, so that some

7

implementation restrictions can already be checked in the front-end modules. Some of these
constants reflect target machine characteristics, like basic type sizes (these maximal values are
used in the front-end to check the evaluation of constant expressions). Other constants define
restrictions, like maximal number of exit statements in a loop statement, or of labels in a case
statement.

OPM has a second function. It works as interface between the compiler and the host machine, i.e.
the machine on which the compiler is running. This interface includes for example procedures to
write messages and errors o the host screen and procedures to create and read symbol files. it
would be possible to split OPM into two distinct modules, the first for the target, and the second for
the host machine. But it is not worth while, because the module is short enough so that it is no
problem to distinguish what is target-specitic from what is host-specitic. Furthermore we must take
care that the number of modules doesn't grow unduly large.

Between the highest and the lowest module, we find the front-end and back-end, which consist of
four modules each. There is no interaction during compilation between these two sets of modules.
The definition in the front-end of the symbol table and of the syntax tree is known in the back-end
too (which explains the presence of arrows from OPT to back-end modules), but there is no
transfer of control, such as procedure calls.

The tront-end is controlled by the module OPP, a syntax directed top-down recursive-descent
parser. Its main task is to check syntax and to call appropriate procedures to construct the symbol
table and the syntax tree. The parser requests terminal symbols from the scanner (OPS) and calls
procedures of module OPT, the symbol table handler, and of OPB, the syntax tree builder, which
also checks type compatibility.

The back-end is controlled by the module OPV, the tree traverser. It first traverses the symbol table
to enter machine-dependent data in the table elements (using OPM constants), such as the size of
types, the address of variables and the oftset of record fields. It then traverses the syntax tree and
calls for each node or recognized pattern of nodes, a corresponding procedure of OPC (code
emitter), which in turn synthesizes machine instructions using procedures of OPL, the lower level
code generator. The module OPC may be split into several parallel modules, in order to maintain a
reasonable module size.

3. Part One: Description of the Front-End
31 Symboi Table

The symbol table represents all declarations, i.e. constants with their value, types with their
structure, variables with their type and procedures with their parameters and local declarations. it is
used in the front-end to check whether context-sensitive rules of the language are respected. But
the back-end utilizes it too; it stores the addresses of variables in it and uses the type information
contained in it.

The symbol table is a dynamically aliocated data structure with three ditferent types of elements:

TYPE
Const = POINTER TO ConstDesc;
Object = POINTER TO ObjDesc;
Struct = POINTER TO StrDesc;

An Objectis a record {or, more exactly, a pointer to a record), which represents a declared, named
object. The name of an object, which is limited to 23 characters plus a terminating mark, is stored in
the record itself, and is used as key to retrieve the object in its scope. Each scope is represented
by a sorted binary tree of objects, which is anchored to the owner procedure, which in turn belongs
as object to the enclosing scope.

The object declaration is the following:

ObjDesc = RECORD
left, right, link, scope: Object;
name: OPS.Name;
marked, leaf: BOOLEAN;
mode, mnolev: SHORTINT;
typ: Struct;
conval: Conslt;
adr, linkadr: LONGINT

END;

In module OPS:

Name = ARRAY 24 OF CHAR;

The lag field mode specities the class of the object. The table below gives a survey of existing
modes and the meaning of the fields for each mode (the fields left, right, name, marked,
mnolev, typ and linkadr have always the same meaning independently on the mode and are
hence not listed in the table):

mode adr copval link scope Jeat

Undef Resulting from an erroneous decl
Var vadr next regopt Glob or loc var, value parameter
VarPar vadr next regopt Var parameter

Con val Constant

Fid off next Record field

Typ Named type

LProc sizes firstpar scope leaf Local procedure

XProc pno sizes firstpar scope leaf External procedure

SProc fno sizes Standard procedure

CProc code firstpar scope Code procedure
IProc pno sizes scope leaf Interrupt procedure
Mod key scope Module

Head Ixtpos owner firstvar Scope anchor

The fields left and right are part of the binary tree structure and are used to sort the objects in their
scope. Parameters of the same procedure, as well as tields of the same record, and variables ot the
same scope are additionally linked together to maintain the declaration order using field link.
These chains of objects are traversed in the back-end during storage allocation. The field scope of
a procedure object points 1o the anchor of its local scope of objects. Such an anchor (mode =
Head) is anonymous; its left field points 1o the anchor of the enclosing scope and its right field
points to the first object of the actual scope.

For an external ohject, mnolev indicates the module number from which module the object is
imported?. For a local object, mnolev equals the procedure nesting level of the object
declaration2. If marked is true, the object is exported. The field adr is initialized in the back-end
module OPV: it gives the address of a variable or of a parameter, the offset of a record field or the
enlry number of an external procedure. conval is a pointer to a constant descriptor, which contains
the value of the constant object or, in case of a procedure object, the total sizes of ils parameters
and of its local variables. These sizes are computed in OPV module and are not involved in front-
end modules. The field linkadr can be freely used by the back-end, too. The field Jeaf indicates

_.whether a procedure is a leaf procedure or whether a variable is a candidate to be allocated
i, permanently in a register (see Simple Optimizations).

Ymnolev < 0, module number = -mnolev
2mnolev > 0, level = mnolev, 0 means global

10

The field typ reflects the object type, which type is represented by a pointer to a record called
StrDesc:

StrDesc = RECORD
form, comp, mno: SHORTINT;
ref, sysflag: INTEGER;
n, size, adr, txtpos: LONGINT;
BaseTyp: Struct;
link, strobj: Object

END ;

The fields form and comp dilferentiate kinds of types, e.g. basic types like boolean, long integer
or set, and composite types like array or record, as shown in the following table:

foom comp B BaseTyp [lnk mno sysflag

Undef Undef
Byte Basic
Bool Basic
Char Basic

Sint Basic
int Basic
Lint Basic

Real Basic
LReal Basic
Set Basic
String Basic
NilTyp Basic

NoTyp Basic .

Pointer Basic PBaseTyp mno sysiiag
ProcTyp Basic ResTyp params mno

Comp Array nofel ElemTyp mno sysflag
Comp DynArr dim ElemTyp mno

Comp Record exlev RBaseTyp fields mno sysflag

Instead of two fields form and comp, only one could suffice. But as there are more than 16 kinds
of form, it wouldn't be possible to use sels on 16-bit machines to make the distinction etficiently,
and the compiler wouldn't be portable anymore. We emphasize on the fact that this partition
doesn't cost any execution time, because normally only one field (form or comp) is involved in a
test.

The field nis a general-purpose variable, which represents the extension level of a record (0 if not

11

an extended record), or it denotes the number of elements of an array, or the number of
dimensions of the element type of a not imported dynamic array. Dynamic arrays are also called
open arrays. BaseTyp is a pointer to another structure, which can be the type that a pointer type is
pointing to, the result type of a procedure type3, the element type of an array or open array, or
the base record type from which a record has been extended. The field link is the anchor of an
object list, which can be the parameter list of the procedure type or the field list of the record type.
mno is the module number, from which module the type is imported. The field ixtpos denotes the
text position of the type declaration for possible later error reporting. The field adr is set to 0 for
predefined types and to an OPM constant for other types; it can be freely used in the back-end.
size is the required memory space expressed in bytes for an element of this type. This field is
initialized by the front-end to the correct value with OPM constants for basic types and set to a
dummy value {-1) for composite types. The back-end has to correct this value during storage
allocation. Each exported structure is given a reference number, which is stored in ref and in the
symbol file, this field ref is reserved until the symbol file has been written. sysflag is a special field
containing a number copied from the source textd, whose interpretation is left to the back-end
(see Interfacing with an Existing Operating System). A named type has a pointer strobj to the
corresponding object containing the name.

The third record type used in the symbol table is Const:

ConstDesc = RECORD
ext: ConstExt; (* string or code for code proc *)
intval: LONGINT; (* constant val or adr, proc par size, text position or lower case label *)
intval2: LONGINT; (* string length, proc var size or higher case label °)

setval: SET; (* set constant val, "ELSE" present in case or proc body present °)
realval: LONGREAL {(* real or longreal constant val *)
END ;

ConstExt = POINTER TO OPS.String;

In module OPS:
String = ARRAY 256 OF BYTE;

Const is used to store the values of declared constants or some attributes of procedure objects
{such as parameter and local variable space, which are computed later in the back-end), or the value
of an anonymous constant appearing in expressions. In the latter case, the record is not anchored
to an object but to a node of the syntax tree (see next paragraph).

3notyp with form NoTyp if the procedure is not a function
4sysflag = 0 if not explicilly specified in the source text

12

3.2 Syntax Tree

On the one hzind, the front-end constructs a symbol table representing all declarations as
explained above, and on the other hand, it builds a syntax tree representing all statements of the
program. The Oberon syntax is mapped into a binary tree of elements called Nodes, all having the
same form:

NodeDesc = RECORD
left, right, link: Node;
class, subcl: SHORTINT;
typ: Struct;
obj: Object;
conval: Const

END ;

A binary tree has been chosen because each Oberon construct can be easily decomposed into a
rool element identifying the construct and two subtrees representing its components: an operator
has a left and a right operand, an assignment has a left and a right side, a while statement has a
condition and a sequence of statements, and so on... Some Oberon constructs are organized
sequentially: we find lists of parameters in procedure calls and sequences of statements in
structured statements. It would be expensive to insert dummy nodes to link the subtrees
representing these constructs; an additional link field in the node is much cheaper.

Each node has a class, as specified by the tag field class, and possibly a subclass according to the
field subcl. Each node is given a type, represented by the field typ, which is a pointer to a
StrDesc of the symbol table. Similarly, a leat node representing a declared object has its field obj
pointing 1o the corresponding ObjDesc of the symbol table. The field conval points to a
ConsltDesc containing the value of an anonymous or named constant. Such a ConstDesc
denoting the position in the source text is anchored to the root node of each statement. This

[P
AluYWS 1Iuva

cating compilation errors reporied by the back-end, like impiemenialion resirictions or
machine specific limitations.

While generating code for a node, we typically have to recursively evaluate left and right subtrees,
then the node itself, and finally the linked successor if any. A traversal of the tree may look like this:

Traverse(node: Node):

WHILE node # NIL DO
Traverse(node” left)
Traverse(node*.right)
Do something with node
node := node”.link

END

13

A detailed description of the syntax tree is given in the appendix. Some examples of Oberon
statements with their corresponding syntax tree follow:

CONST ¢ = 2; Picture for a NodeDesc:
VAR X, y:SHORTINT; o link
. class
X 1= x*y + c; subcl
typ_§
INC(y): O{f} -
e con_t s
left right
_____ u Nassign| . -
assign CTTTT— .
Nassign
incfn
Nvar Ndop
plus
shortint shortint
X Nvar
shortint
y
Nconst
shortint
NIL
1
Ndop Nconst
times
shortint shortint
[+
2
Nvar Nvar
shortint shortint
X y

Fig. 2 Assignments

Fig. 2 shows the tree representing an assignment of an expression to a variable followed by a
standard procedure call. Note that although there is a reference to the constant ¢ in the symbol
table, the constant descriptor is nevertheless copied and directly anchored to the node Nconst.
Thus the copy can be modified (e.g. by constant expression evaluation al compile-time) without
altering the symbol table structure. In this case the object reference is reset to NIL. This reference
is used for constants like strings, which need to be allocated; each use of the constant refers to the
same address stored in the symbo! table, so that the constant be allocated only once.

14

CONST ¢ = 1;
VAR x: INTEGER;

y: SHORTINT:

z: REAL;

z = x*y + c;

Flg. 3 Conversion nodes in arithmetic expressions

The rules of numeric type compalibility are very fiexible in Oberon; it is possible to add for example
short integers (SHORTINT) to long integers (LONGINT). Fig. 3, 4 and 5 show how conversion
operators are inserted in the syntax tree. The interpretation of these operators is left to the back-

end.

Note that the type of the constant is automatically changed from shortint to integer (doing this, the
reference 1o cis resel to NIL) and that no conversion operator is inserted between the assignment
node and its right operand, because some target machines (like NS32000) can convert and move
data in one instruction. A conversion operator would always decompose this instruction into two
much more expensive steps: conversion and assignment. Thus, the back-end is responsible for
checking the type of the left and the right side of an assignment, and performing a conversion, i

necessary.

Nassign
assign

Nvar Ndop
plus
real integer
z
Ndop
times
integer Nconst
integer
NIC
1
Nmop
conv
Nvar integer
integer
X
Nvar
shortint
y

VAR x: LONGINT;
y: INTEGER;
ch: CHAR;

)-/. = SHORT (x) +ORD (ch) ;

Nassign
assign

e

Nvar

integer
Y

Ndop
plus
integer

i

Nmop
conv
integer

il

Nvar

longint
X

Nmop
conv
integer

Nvar

char
ch

Fig. 4 Conversion nodes for standard tunctions

15

16

CONST ¢ = {0..2, 4};
VAR st SET;
X, y: INTEGER;

s 1= c*(2..61+{x..3}+{y}:
EXCL(s, Xx):

Nassign
assign

Nassign
exclfn

Nv'ar/ Ndop /

plus Nvar
set set
s set
s
Ndop Nmop
plus conv
set set
/ Nvar
Nconst
integer
set Nupto y
NIL
{2.4} set
Nvar Nconst
integer shortint
x NIL
3

Fig. 5 Conversion nodes and sets

Note that the set intersection operation has been executed and that only one node has been

created, because the operands were constants.

Nvar

integer
X

Examples of structured statements like if or case are found in Fig. 6 and 7.

IF exprl THEN statl
ELSIF expr2 THEN stat2
ELSIF expr3 THEN stat3

Nilelse

ELSE stat4
END
statd
Nif
Nif
i » NIL
/ Nif
expri stat!
LS
expr2 stat2
expr3 stat3

Fig. 6 IF statement

17

18

CASE expr OF

1 : statl Ncase .
| 2..4, 6: stat2
ELSE stat3
END

expr Ncasel
1,6
/ stat3
Ncasedd
» NIL
Ncasedd
o o NIL
Nconst stat!
Nconst stat2
1.1
» NIL
Nconst
2.4
6..6

Flg. 7 CASE statement

The lower bound of a range is stored in conval®.intval and the upper bound in conval.intval2 ot

the Nconst node.

conval®.intval of the Ncaselse node denotes the least label of the whole statement, while
conval“.intval2 the largest one (1 and respectively 6 in the example above).

conval’.setval of the Ncaselse node is not empty if the keyword "ELSE" appeared in the source
text. If it is emply, then the back-end has to generate a trap.

18

Fig. 8 shows the syntax tree for a module with its procedures and their statement sequences.
Ninittd nodes initialize type descriptors of declared records or arrays.

MODULE M; ~NIL
Nenter

TYPE

Rec = RECORD NIL

END;

PROCEDURE P;
BEGIN A
ttd
statp Nini
END P; Rec

» StatM

PROCEDURE Q:

Nenter
PROCEDURE R;
BEGIN __.»NiL

statR P Nenter
END R;

Q
BEGIN
statQ NIL statP

END Q;

__.NiL
Nenter g statQ

BEGIN
statM
END M. R

g

NiL stalR

Fig. 8 Module and procedures

Ninittd nodes corresponding to locally declared records or arrays do not appear in the procedure
body but in the module initialization part, similarly to global ones (lype descriptors need to be
initialized only once).

The whole syntax tree representing the module (all local procedures included) and the symbol
table (all local scopes included) remain stored in memory during the compilation of a module.

20

3.3 Simple Optimizations
The front-end performs some simple optimizations:

« gvaluation of constant expressions (constant folding)
Every expression or subexpression exclusively containing constant operands is evaluated and
replaced by the result.

» boolean expression with one constant operand
if the left operand of a boolean operator {OR/&) is a constant, the expression is replaced by
the result, i.e. by the constant operand or by the right operand. If the right operand is constant,
folding is only performed in the following cases:
x & TRUE is replaced by x
x OR FALSE is replaced by x

« transformation of IF statements containing constant conditions
Unreachable code due to a constant condition in an IF-ELSIF-ELSE statement is removed.

» convert nodes
A convert node (class = Nmop, subcl = conv) is never applied to a constant, but the constant is
immediately converted. An application of a convert node to another convert node may be
optimized in some cases, examples:
VAR si: SHORTINT; i: INTEGER,; li: LONGINT;

li := LONG(LONG(si)) only one convert node is needed

si == SHORT(SHORT(li)) only one convert node is needed

i == SHORT(LONG(i)) no convert node is needed

i := LONG(SHORT(i))} two convert nodes are needed (to enable range check)

- integer multiplication by a power of two
Aninteger multiplication (class = Ndop, subc! = times) by 27 is replaced by an arithmetic shift of
n places (subcl = ash).

» integer division by a power of two

An integer division (class = Ndop, subc! = div) by 2" is replaced by an arithmetic shift of -n
places (subcl = ash}.

= modulus by a power of two
A modulus (class = Ndop, subc! = mod) by 2 is replaced by a bit mask operation with m (subcl =
msk), where m is a longint constant with all bit set to one, excepted the n least significant set to
zero.

21

- standard function LEN
LEN(a[exprq, expr2, ..., exprm], n) is replaced by LEN(a, m+n)
(Possible side effects in exprj are ignored).

« leaf procedures and register variables
The field leaf of a procedure object (mode = LProc, XProc or IProc) indicates whether the
procedure is a leaf of the procedure hierarchy tree, i.e. whether it doesn't call any other
procedure; this information may be used to generate more efficient procedure calling code. In
the case of a variable object (mode = Var or VarPar), leaf is true if the variable is a candidate to
be allocated permanently in a register.

A variable or value-parameter (mode = Var} is not candidate if its address is used somewhere in
the program.or if it is accessed from an intermediate level (or exported). The address of a
variable is needed when the variable is passed as actual parameter to a procedure with formal
var-parameter or to the standard procedures SYSTEM.ADR, NEW, SYSTEM.NEW or
SYSTEM.MOVE.

A var-parameter (mode = VarPar) is not candidate if accessed from an intermediate level (the
address of a var-parameter descriptor is never used).

Some implementations of NEW and SYSTEM.NEW might not be able to use the address of the
pointer variable to directly write the returned value in the variable. These procedures might
instead return the value in a register. In this case, the pointer variable remains a candidate (see
Parametrization of the Front-End).

22
3.4 Module SYSTEM

The module SYSTEM contains low-level procedures and functions that are specific to a given
target machine. The following table gives a survey of the operations already implemented in the
front-end. It some of them are useless in a given implementation, they can be removed, or new
ones can be inserted (see Parametrization of the Front-End). v stands for a variable, a, nand x
for expressions, and T for a type.

Function procedures:

Name Argumentlypes Besulttype Function

ADR{v) any LONGINT address of variable v
BIT{(a, n) a: LONGINT BOOLEAN Mem{aj{n}
n: integer type
CC(n) integer constant BOOLEAN Condition n
LSH(x, n) x, n:integer type LONGINT logical shift
ROT(x,n) x: integer type, type of x rotation
BYTE, CHAR

n: integer type

VAL(T,x) T, x:anylype T x interpreted as of type T

Proper procedures:

Name Argument types Eunction

GET(a, v) a: LONGINT v = Memj{a]
v: any basic type

GETREG(n, v) n: integer type assign content of register specilied
v: any basic type byntov

PUT(a, x) a: LONGINT Mem(a] := x
x: any basic type

PUTREG(n, x) n: integer type assign x to register specified by n

X: any basic type

MOVE(v0, v1, n) v0, vi: any type

NEW(v,)

n: integer type

v: any pointer type
n: integer type

assign first n bytes of v0 to v1

allocate storage block of n bytes
assign its addressto v

23

4. Part Two: How to Write a Back-End

We will now explain how to proceed to write a back-end for a specific machine. Although an
extensive experience in writing compilers is not needed, knowledge of the subject is nevertheless
an advantage.

4.1 Porting the Compiler

Considering the starting situation, we have at our disposal the OP2 Compiler written in Oberon
consisting of a machine-independent front-end and an empty back-end that we must complete.
This programming work being done, we are in possession of an Oberon source program, that has
to be compiled by an Oberon compiler to be executed. The problem is that we haven't yet an
executable version of the compiler.

it would be unreasonable to start from scratch, i.e. to iteratively bootstrap the compiler, the initial
version being hand coded in assembler. Therefore we need an already working compiler. It may be
a Modula-2 compiler {a Modula-2 version of the tront-end is available) or, much better, an Oberon

compiler running on a different machine as the new compiler will do.

In any case, we have to bootstrap the compiler to obtain an executable version of it. Some possible
bootstrap sequences are illustrated with the help of T-diagrams:

A compiler compiling language L into code C and running on machine T:
The source text of the compiler written in L

Example of a cross-compilation executed on machine T:

input = source text output = on machine C executable code

k4 executed program = cross compiler

used machine

For more details about T-diagrams, please refer to [Wirth 86].

24

Figure 9 shows how we can obtain an executable version of OP2 it we have at our disposal on the
one hand a machine T and a Modula-2 compiler (0) producing T code and running on T, on the
other hand a version of OP2 (1) written in Modula-2 producing T code:

O: Oberon
M: Modula-2
T: Target machine (or code)

Fig. 9 Bootstrap step using a Moduta-2 compiler

The result is an Oberon compiler (2) producing code for and running on T. The goal is already
reached, but the code qualily is that of the Modula-2 compiler and not of OP2. Furthermore, it is
preferable to have a source version of the compiler written in Oberon to facilitate the maintenance
of the compiter. For these reasons, we also write OP2 (3) in Oberon (its better to do this first and
then transiate it to Modula-2), and we add a compilation step as follows:

Fig. 10 Self-compilation step

If the Modula-2 version of the Oberon compiler (1) produces exactly the same code as the Oberon
version (3), and it is usually the case, because (1) is the translation of (3) in Modula-2, then we must
obtain a rigorously identical copy of the used compiler after a further self-compilation step ((5) = (4)
infig. 11). In any case, even if (1) and (3) dont produce the same code , i.e. (5) # (4), a fixpoint must
be reached alter an additional similar bootstrap step ((6) = (5)), if not, then we have to look for a
bug in the Modula-2 or Oberon version (the original Modula-2 compiler (0} is supposed to be error-
free(?)).

After testing, we can leave aside the Modula-2 version of the Oberon compiler, and work
exclusively with the new bootstrapped compiler ((5) or (6)).

25

Fig. 11 Fixpoint test

Remark:
It we already have an Oberon compiler (other than OP2) for the machine T and we want to port
OP2, the procedure to follow is the same as described above. We only need to replace the
Modula-2 version source text (1) with the OP2 Oberon source text (3) and to compile it using
the existing Oberon compiler instead of using the Modula-2 compiler (0). The next bootstrap
steps are identical and a fixpoint must be already reached after the third compilation ((5) = (4)).

Let's now consider another starting configuration: we haven't yet a working compiler on the target
machine T or we prefer not to use it for some reason. But we have at our disposal another machine
H (for host) and a Modula-2 compiler (0) running on it and producing H code. Our goal is to obtain
an Oberon compiler running on T and producing T code. We have at hand the source text of OP2
written in Oberon (3) and in Modula-2 (1), both producing code for the target machine T. Note that
(1) is no more a one-to-one Modula-2 translation of (3), because the compiled version of (1) is
running on H, but the compiled version of (3) is running on T. Modules OP2 and OPM have 1o be
tuned differently in each version (see Host Interface). The compilation steps are iliustrated in fig.
12.

@ (@)
o[o>1 |@ 0

0T |o] 01 |71 |

MrM-->H H :

H (O)i .
:
:

I

host machine

target machine

Fig. 12 Bootstrap with two machines

26

The same test procedure as explained above can be applied. If a further bootstrap step is
necessary o reach the fixpoint, that means that (1) doesn't produce the same code as (3).

If an Oberon compiler (maybe OP2) exists on H, the Modula-2 translation is superfluous, and only
one compilation of (3) by this compiler is needed before the obtained executable version can be
transmitted to the target machine, on which the bootstrap process remains unchanged.

We must warn that the bootstrapping sequence might be more difficult to perform than it may seem
at the first look, because of the following possible complications:

« The host machine has not necessarily the same byte ordering as the target machine (little-endian
versus big-endian). In this case, the output to files has to be treated diferently in versions (1)
and (3).

+ The target machine may have a larger data path width than the host machine (32-bit versus 16-
bit). In that case, some target dependent constants may not be representable in the host
machine, like basic type sizes for example. A solution to this problem is to temporarily set the
maximum values of basic types {in module OPM) to the maximum common value. The bootstrap
being done, the constants can be reset to their correct value. The host machine compiler should
allow at least 16-bit SETs (or BITSETs in the Modula-2 transiation) to produce the first executable
version of the compiler (IN-tests are used with up to 16 elements). I it is not foreseen to compile
the compiler on the target machine, but to keep a cross-compiler on the less powerful host
machine, this temporary reduction of basic type size cannot be applied. We must modify the
front-end, so that it can store and manipulate larger target constants. For example, the constant
descriptor OPT.ConstDesc may contain several sets to represent one constant set on the
target machine, and constant arithmetic routines of module OP8 must be adapted.

= If the host machine has farger basic types than the target machine, there is no problem: all
constants are representable in the host machine. But in any case, the host compiler must write
constants in the object file using the target format, e.g. it must extend 16-bit set constants to 32-
bit by padding with zeros, or truncate 32-bit ones to 16-bit.

27
4.2 Host Interface

Like in the preceding paragraph, we must here distinguish between the host machine on which the
OP2 compiler is running, and the target machine for which the compiler is generating code.
Perhaps the iwo machine are the same, but this doesn’t change anything in the following
considerations. We will concentrate here on the compiler dependencies on the host machine. The
reader who doesn't want to write a back-end can skip this paragraph, which deals primarily with
implementation details.

The compiler has to communicate with its environment, i.e. it takes a text to be compiled as input
and it produces code as output. These input and output streams are normally files {sequences of
bytes). Furthermore, it must be possible to specify the text lo be compiled, using its file name or
taking it directly from an already displayed viewer on the screen [Wirth 88]. During the compilation,
errors (it any) have to be displayed or listed into a file. All this input and output operations are
strongly dependent on the operating system, so that the compiler has to be tuned to the host
machine.

The front-end modules (OPS, OPT, OPB and OPP) are host machine-independent, only the
topmost module (OP2) and the bottommost one (OPM) have to be modified. The back-end is
almost host independent, only the output of the object file (combined with the reference file, see
Debugging) rely on the file system. It would be possible to implement these host dependent parts
in module OPM, but a farge number of new procedures would be necessary, whereas they are now
all grouped in only one procedure of module OPL (OPL.OutCode). Furthermore, the procedure is
highly target dependent, so that it has always 10 be replaced, when the compiler is ported. In any
way it should be no problem for the back-end programmer to adapt this procedure, because he has
written it himself.

Here follows a description of each constant or procedure of the modules OPM and OP2 that must
be tuned to a new host machine. Module OPM, the lowest in the hierarchy, is both target and host
dependent. Here we discuss only host dependent parts (which can be also target dependent):

- target machine bound values of basic types expressed in host machine format
Minimum and maximum values of integer types and maximum value of set type are exported as
constants. Real types bounds are exported in the form of variables, so that the exact value can
be initialized using binary pattern and low-level operations. If these bounds are not
representable in the host format, see Porting the Compiler.

« procedure Init
This procedure is called by OP2 with some parameters such as a specifier of the text to be
compiled, maybe an open file descriplor or a text Reader [Wirth 88]. All necessary initializations
have to be done, so that later calls to the procedure Get and 1o the log output procedures (see
below) do the right thing as expected.

28

« procedure Get
Each call of Get must return the next character of the source text. If no more character is
available, a special character Eot is returned. This Eot characler is the one returned by the
text system of the host machine (normally 0X); it has to be exported, so that the scanner can
recognize it, when returned by the procedure Get.

* function NewKey

This function has to return a different long integer each time it is called, i.e. once during the
compilation of one module. The current date and time read from the computer clock can be
used for example.

* procedure MakeFileName
This procedure receives a module name, an extension and possibly a path specifier as
parameters and it returns a concatenation of these paramelters that represents a legal tile name
according to the file name synitax of the host machine. The parameter list can be moditied it
necessary. The procedure is only called in OP2.CompilationUnit and OPL.OutCode, and
these two procedures are host dependent too.

* log output procedures

This is a set of little procedures, that write characters, strings, line breaks or integers on the
terminal or log viewer. They are used lo give some feedback during the compilation process.
When a compiling error is found by the front-end or the back-end, the procedure Mark is called
and this one displays the error in the log viewer or writes it into a file previously opened by Init.
Mark takes the error number and the text position as parameter. The procedure errtakes only
the error number and calis Mark with the current text position, which must be initialized by the
procedure /nit and incremented by Get.

* procedures to read symbol files
The procedure OldSym opens for reading the existing symbol file of the module whose name
modName is given as parameter. But this is not the file name, which has instead to be built
concalenating a global path, the module name modName and a standard extension specilying
symbol tiles, by the procedure MakeFileName. If the file is not found, (in this case done
parameter must be set to FALSE) an error must be reported, but only if it is not the symbol file
of the module being currently compiled {self parameter is TRUE). The state of the opened file
has to be known globally, so that procedures that implicitly read items from this symbol file can

refer to it. CloseOldSym is called to close a symbol file. The function eofSF returns TRUE if
the end of the opened file is reached.

* procedures to write symbol files
NewSym creates a new temporary symbol file for writing. The file name has to be built from the
module name in the same way as OldSymdoes. I a file with same name already exists, this one
must not be removed, it will be compared later with the new one. RegisterNewSym makes this
temporary file permanent and possibly destroys the already existing one with the same name.

29

DeleteNewSym deletes the temporary file. EqualSym compares an already existing file
opened using OldSym with the new created one. The key of the old file is different in any way
and must not be compared but returned as VAR-parameter. If the files are identical, except the
key, EqualSym returns TRUE.

The module OP2 is at the top of the module hierarchy, it controls the front-end and the back-end. It
is responsible for reading the user input, i.e. the name of a file to be compiled and the desired
options, for checking whether the file exists, for initializing all modules and starting compilation.

4.3 Parametrization of the Front-End

As written before, the front-end is machine-independent so that modules OPS, OPT, OPB and
OPP don't need any modifications (excepted if new procedures have to be inserted in the module
SYSTEM, or useless ones to be removed), when the compiler has to generate code for a different
target machine. Only some implementation dependent parameters must be changed in module
OPM:

« basic type sizes
These constants give the number of bytes required to store an element of the basic type.

- target machine bound values of basic type expressed in host machine format
see Host Interface.

= value of constant NIL
nilvalis zero on most machines.

« maximal number of elements per dimension in the declaration of an array
Maxindex is an integer constant.

= parametrization of the numeric scanner
These values are used while scanning numbers to report errors when limits are exceeded.
MaxExp is the maximal real number exponent. MaxDig is the maximal length of a real number
fractjonal part. The provided values are usually those of the IEEE Standard. MaxHexDig is the
maximal number of digits in an hexadecimal integer number.

+ inclusive range of parameter of standard procedure HALT
If the halt number doesn't lie between MinHaltNr and MaxHaltNr, the front-end reports an

error.

« inclusive range of register number used as parameter in the procedure SYSTEM.GETREG and

30

SYSTEM.PUTREG

The interpretation of the number is left to the back-end, but the front-end reports an error if this
number doesn't lie between MinRegNr and MaxRegNr.

» maximal value of the parameter of the procedure SYSTEM.CC
If the integer constant parameter doesn't lie between 0 and MaxCC, the front-end reports an

error. The interpretation of the number (mapping to a condition of the condition code register)
is feft to the back-end.

» maximal value of the structure system fiag

The flag used to mark interface structures (see Interfacing with an Existing Operating System)
must lie between 0 and MaxSysFlag.

+ initialization of linkadr tield in ObjDesc

The linkadr object field of imporied procedures is initialized with LANotAlioc. This integer
constant must be different from any valid link address, so that the back-end can recognize the
already linked procedures.

« initialization of constant allocation address
Strings or real constants may be allocated in a constant frame (the "load immediate” instruction
for real constants may be unavailable or more expensive than a "load memory" instruction on
RISC processors). The object field adr of sirings or real constants is initialized with
ConstNotAlloc, which is a integer constant that must be different from any valid address.

« initialization of adr field in StrDesc
The adr field of each structure representing a user defined type is initialized with
TypAdrUndef. In case of a predefined basic type, adris always set to 0.

- maximal number of cases

MaxCases limits the number of "Caselabels” in a case statement (a "CaseLabel" is a pair of
values defining a range or a unique value).

= maximal range of a case statement

MaxCaseRange limits the interval between the least and largest label in a case statement (this
corresponds to the maximal length of the jump table).

» maximal number of exit statements

MaxExit limits the number of exit statements in a loop statement, including all exits of nested
loops.

+ hidden pointer field export
The ofiset of a not exported (opaque) field of an exported record type is generally not present
in the symbol file. But the offset of an opaque pointer field may be nevertheless written in the

31

symbol file, according to the boolean constant ExpHdPtrFid. This information is required to
build a correct type descriptor of an extension of this type at compile-time (the garbage
collector must trace this opaque pointer field). But if the type descriptors are constructed at
load-time, this information is not necessary.

» hidden procedure field export
The offset of an opaque procedure variable field of an exported record type may be
nevegheless written in the symbol tile, according to the boolean constant ExpHdProcFld. This
allows a safe implementation of a command for module unloading (e.g. System.Free [Wirth

88]). As a matter of fact, a module can only be safely unloaded, if no procedure of this module is
installed in an other module remaining loaded.

« reset of field leaf if NEW procedure used
The boolean constant NEWusingAdr indicates whether the field leaf of a pointer variable p
(mode = Var) has to be set to FALSE, when NEW(p) or SYSTEM.NEW(p, n) is called (see
Simple Optimizations).

Because of its very nature, the module SYSTEM, which is handled in a special way by the compiler,
cannot be portable. It is however possible to parametrize some of its procedures (GETREG,
PUTREG) like shown here above, without modifying front-end modules. The implementation of
these SYSTEM procedures being done in the back-end, their interpretation can be changed
without affecting the syntax and hence the front-end. However, it some of these procedures
become meaningless for a specific target machine (e.g. function CC on a machine without
condition code), they should be removed, or if new ones are needed, the front-end must be
modified. Due to the well defined structure of the compiler, this correction is easy to do and we will
now briefiy explain how to proceed.

The SYSTEM procedures are predefined in the symbol table and coded in the syntax tree. The
function procedures and proper procedures of module SYSTEM are handled exactly in the same
way as standard procedures and functions of the language: to each procedure or function to be
defined corresponds a call to the procedure EnterProc(name, fn) in the initialization part of the
module OPT, where name is a string representing the procedure name (e.g. "LSH") and where fn
is a number identifying this procedure in the compiler. In the syntax tree, three kinds of nodes are
involved: Nmop and Ndop to represent functions and Nassign for procedures. The subclass of
the Nassign node is the function number iiself, but subclasses of Nmop and Ndop nodes are
operator numbers, that identily the operation to perform (addition, type conversion, absolute
value, address, rotation, ...).

To insert a new procedure, we must first choose a new function number, which must be greater
than all existing ones and make a call to the procedure OPT.EnterProc with the new name and this
new number. Additional code to check the parameter types and number, and build the nodes must

32

be inserted in the procedures OPB.StPar0, OPB.StPar1, OPB.StParN and OPB.StFct. Then,
in case of a function procedure, a new operator number has to be chosen and code must be
inserted in OPB.MOp and OPB.Op.

The module OPV must be modified to be able to recognize these new node subclasses
corresponding to the new SYSTEM procedures and to make the appropriate calls to new OPC
procedures to implement them.

If a SYSTEM procedure has to be removed, the corresponding call to EnterProc must be
suppressed in module OPT, as well as superfiuous code in modules OPB, OPV and OPC.

4.4 Object Flle Format

Compiled Oberon modules have the form of an object file and are not stand-alone applications.
They can only be executed in an Oberon specific environment [Wirth 88]. This run-time
infrastructure consists among other things of a command interpreter, a module loader/linker, a
memory allocation system, a garbage collector, and a trap handler. Before presenting a possible
object file format, we must first pay attention to some run-time requirements specific to the
language Oberon.

Dynamic memory is allocated in the heap by the procedure NEW, but no explicit deallocation
procedure is provided in Oberon for safety and convenience. A garbage collector must be
therefore programmed and embedded in the run-time system. The conventional mark-scan
principle is used in the Ceres implementation. The garbage collector operates only between
commands. At these moments, the stack is guaranteed to be void, since no local variables exist. In
the mark phase, the entire dynamically allocated structure must be traversed and marked, without
requiring further storage space.

The rools of this structure are anchored in global variables in form of pointers, whose offsets must
be present in the object file, so that the garbage collector knows where to start its mark phase. But
more information is needed in order 1o traverse the structure, namely, the offsets of pointer fields
of each traced block (record or array). During the scan phase, the size of each block must be known
as well. For this purpose, each block receives a tag, which is a hidden pointer (offset -4) that points
to a type descriptor containing these pieces of needed information.

Each declared type gets, in addition to such a descriptor, a tag allocated in constant frame that is
pointing to the type descriptor. This tag serves as anchor to retrieve the descriptor of a given type;
at compile-time, only the relative address of the tag in the constant frame is known but not the
address of the descriplor itself.

Instead of reserving space in each block for a counter that remembers during the mark phase which
pointer comes next to be traversed (in this case, the counter length limits the number of pointers in

33

a record), it is also possible to shift the tag over the pointer offsels in the type descriptor, the last
offset being a negative one resetting the tag to its initial value.

Type descriplors are also used for another purpose: run-time type-lests and type-guards. In
addition to the block size and to a list of pointer offsets, the descriptors contains the whole
ancestry” of the described type, i.e. a pointer table, where the i-th pointer points 1o the type
descriptor of the i-th generation type. This table allows type checks to perform in constant time and
its fix length makes an index check unnecessary: in the test v IS T or guard v(T), only the i-th
pointer in the type descriplor of variable v will be compared with the tag of type T, where iis the
generation level of T, which is known at compile-time. The pointer to the “generation zero™ type,
which is not an extension of any other type, is not stored in the type descriptor because no run-
time type checks reterring to this generation will be emitted by the compiler. Hence a table length
of n suffices for an extension hierarchy of height n+1 (n equals 7 in the Ceres implementation).

BlockSize

BaseTypel
BaseType2 | ™

BaseType7 | ™
P1rOffset0
PtrOffsetl

PtrOfiset(k-1)
- (k+8)°4

Fig. 13 Possible implementation of a type descriptor
Type descriptors have to be listed in the object file. At load-time, they are allocated in the heap (or
in the constant frame) and their "ancestry” table is initialized, normally by explicit code inserted by
the compiler in the module initialization part (if descriptors are allocated in the constant frame, this
initialization can be done by the absolute linker, if any).

A possible object file format is presented here. A file consists of ten logical blocks:

« The header block contains the module name and key, the different sizes of the following blocks,
and the total size of global variables.

= The entry block is a list of offsets denwoling procedure entry points in the code.

34

« The command block gives the name and entry point offset of command procedures.

* The pointer block lists the offsets of global pointers allowing the garbage coliector to star its
mark phase.

» The import block lists the name and key of imported modules.

+ The link block contains a list of pairs consisting of a module number and of an entry number that
are used to build the link table. If an absolute linker is used, an offset denoting the beginning of a
fix-up chain is provided with each pair. In this case, no link table is used at run-time but the code
is patched along the fix-up chain by the linker.

- The data block contains all constant data like strings, case jump tables, or type descriptor
anchors (these last ones have to be patched, when allocating the type descriptors).

« The code block contains the actual executable code.
+ The type block lists all type descriptors, which must be allocated and initialized.

= The reference block contains debugging information (see Debugging).

4.5 Storage Allocation and Code Generation

The first compilation phase, including syntax analysis, type checking and construction of the
intermediate representation, is controlled by the parser module OPP. OP2 gives control to the
module OPV in the second phase, i.e. storage allocation and code generation.

This module first traverses the symbol table and distributes addresses to variables, offsets to
record fields, sizes to types, entry numbers to external procedures, calculates procedure frame
sizes (parameters and local variables), and allocates type descriptors and/or constant type tags. All
this is done in three steps by the procedure AdrAndSize, which is exported from OPV; the first
step treats only exporied types and procedures in alphabetical order, as well as their parameters
and whose types. Then, in a second step, the global variables are treated in the declaration order.
Lastly, the third step handles remaining types and procedures, i.e. those who are not exported, as
well as local variables, types and procedures of local scopes. This handling in three steps
guarantees that no new symbol file will be created if not necessary, even if new (not exported, of
course) procedures or types are inserted or if the declaration order of existing ones (maybe
exported) is changed.

The programmer must only take care that exported variables be declared before local ones, so that
a modification of not exported variables doesn't imply the creation of a new symbol file.

35

The procedure AdrAndSize and its satellite procedures can be freely modified, if a different
storage allocation scheme is desired. One of these satellite procedures, called TypSize,
calculates the size of the type, whose representing structure node is given as parameter. This
procedure is exported and installed by OP2 in the module OPB, so that the front-end can call it to
immediately evaluate the standard function SIZE(T).

Alter storage allocation, code generation takes place. The procedure CompilationUnit, another
exported procedure of OPV, recursively traverses the syntax lree and calls procedures of
underlying modules, that take and/or return “items™ as parameters, and that produce code as side
effect. Anitem is a record representing an operand of an operation. It indicates where the operand
can be found. ltems make it possible to delay emission of code, so that processor addressing
modes can be optimally used. The addressing mode is specified by an item tag field; other
attributes like type, address, value of constant are stored in item fields as well. Some of these fields
are common for every processor architecture and can already be initialized in OPV.

The predetined fields and predefined modes as listed below:

TYPE
ltemBase = RECORD
mode, mnolev: SHORTINT;
typ: OPT.Struct

END ;

CONST
(* item base modes (=object modes) *)
Var = 1; VarPar = 2; Con = 3; LProc = 6; XProc = 7; CProc = 9; IProc = 10;

But it is necessary to extend this base record by extra fields and modes according to the specific
target machine architecture. It is possible to do this using the Oberon type extension construct and
creating a new record type named /tem that extends /temBase, but new fields may be directly
inserted in the base item as well. In the latter case, the ltemBase record has to be renamed to
Item. New modes simply correspond to new declared constants.

The initialization of mandatory fields are done in OPV, when an item is newly created, i.e. when a
leal node of class Nvar, Nvarpar, Nconst or Nproc is encountered while traversing the tree.
Module OPV then calls the procedure OPC.Completeltem with the incomplete item and the leaf
node as parameter, so that extra fields can be initialized too (for efficiency reasons, this procedure
can be “dissolved” into OPV).

if structured statements such as if, while, repeat, loop or case have to be translated using
conventional schemes, OPV.CompilationUnit and its satellite procedures don't need any
modification. One doesn't even need to know how the syntax tree looks like; OPV traverses it and
calls the appropriate procedures of OPC and OPL modules. But this is perhaps not always
possible, and sometimes, OPV procedures must be modified; for example, if the branch instruction

36

detay slot of a RISC processor must be optimally used.

While module OPV is almost machine-independent, module OPC is not. Most procedures of this
module have to be rewritten, but the interface to OPV, i.e. procedures signatures, usually remains
unchanged. These procedures select target machine instructions to be emitted and then call
procedures of module OPL to synthesize them. Thus the interface of OPL to OPC is machine-
dependent. While addressing modes are mirrored in item modes, instruction formats are reflected
by procedure signatures of OPL. The back-end programmer is free to organize module OPL (e.g.
constant frame, code frame, register allocation, ...) and to write these procedures and name them
as he likes.

Generally, he will declare two global arrays of bytes, one for the code frame and one for the
constant frame. The index in the code frame must be named pc and be exported, because it is
used in OPV. An other mandatory variable is level, which is incremented by OPV when entering a
procedure and decreased when leaving it. This variable is needed by OPL to follow the static link,
when generating code for accessing intermediate level variables. Two further variables must be
declared in OPL: entno (number of entries, maximum is MaxEntry) and dsize (lotal size ot global

variables). They are set by OPV during storage allocation and their value will be written in the object
fite.

In addition to items, OPL must define and export two other opaque types: first AegSet, which
reflects the occupancy of the register set (RegSet is normally a record type; a variable of this type
is returned from the procedure OPL.SaveRegisters to OPV and passed later to the procedure
OPL.RestoreRegister), and then Label, which designates an address in the code frame (Label is
normally an INTEGER or LONGINT; a variable of this type is returned by branch procedures when
the target address is not yet known and must be patched later; the variable is given as parameter to
a fix-up procedure.

Some special procedures that are not synthesizing code are mandatory, because there are called
from OPV or OP2. Such a procedure is OPL.QutCode, which must write out an object file
containing the code frame, constant frame and all needed pieces of information to load, link and
execute lthe module (see Object File Format). For example, this procedure has to collect all
commands and global pointer offsets. It can do that by traversing the global scope. The type
descriptors have 1o be also listed, if they are not already allocated in the constant frame. Basically, it
would be necessary to traverse all local scopes to also collect the local declared types. But this can

be avoided, if the procedure OPL.AllocTypDesc, which is called for each record or array type,
stores the type anchors in a global table.

Conlrary to the module OPL, the module OPC has no global state (i.e. no global variables, except
the compiler options) and consists only of a collection of procedures. This module usually

becomes very large; in our back-end for the Ceres workstation, we have split it into two modules
(OPC and OPCa).

37

In addition to exported procedures, whose signatures are known in OPV, the back-end
programmer may write some auxiliary procedures called at many locations in the module, e.g. @
procedure to load an item or its effective address into a register.

Some procedures are not easy to implement. OPC.TypTest must generate code for three
different type-test forms according 1o the boolean parameters guard and equal. In the "IS-test”
(guard = FALSE), the i-th base type tag (see Object File Format) in the type descriptor of the item
must be compared with the 1ag of the given type testlyp, which has extension level i. The test is
always emitted and the result is described by the item var-parameter. Another form is the "guard-
lest” (guard = TRUE, equal = FALSE); the same test as before is generated (only if the type
check compiler option was chosen), but code for checking the result is also emitted, so that a trap is
called, if the type doesn't match. The item remains unchanged. The last form is the "implied guard-
test” (guard = TRUE, equal = TRUE), which is only generated if the compiler option allows it.
Here, the type tag of the item must be equal to the tag of the type testtyp, else a trap is called. The
item remains unchanged. This last form of type-lest is not visible in the source text, but is explicitly
perormed at the time of each record assignment. it make sure that the dynamic and static types of
the destination record are equal. Note that for each form, if testtyp is a pointer type, it must be first
dereferenced.

Oberon supports multidimensional open arrays as procedure formal parameters. Since the size of
the corresponding actual parameter is not known at compile-time, but only the number of
dimensions is, it is not possible to reserve space in the procedure parameter frame. We can instead
reserve space for an open array descriptor consisting of the effective address of the array and a
dimension length vector. Each element of that vector indicates (at run-time) the number of
elements in the considered dimension. When an array is passed as parameter, a corresponding
descriptor is built and pushed onto the stack. If the formal parameter is a value-parameter, the array
has 1o be copied onto the stack in the calied procedure and the new address is written in the
descriptor (procedure OPC.CopyDynArr).

Special care must be taken, while records are passed as actual paramelters lo formal var-parameters.
In addition to the effective address of the actual parameter, a type lag pointing to the type
descriptor of the actual parameter type must be passed too, so thal type-tests can be
implemented. Three different cases must be treated separately; first, if the actual parameter is a var-
parameter, then its tag is copied ; if the actual parameter is a dereferenced pointer (parameter
deref of OPC.Param is TRUE in this case), then the type tag of the dynamically allocated block is
copied; lastly, it the record is a local or global variable, then the type tag of its type (known at
compile-time) is passed.

38
4.6 Interfacing with an Existing Operating System

We will not explain here the interface between the Oberon run-time system and the underlying
operating system, but the possibilities offered to the Oberon programmer of writing modules that
are able to communicate directly with the operating system, in so far as these possibilities have
been implemented in the compiler. We emphasize that these facilities are not part of the language
Oberon, but are local extensions specific to this compiler.

First of all, a mechanism for supervisor calls or traps to the operating system routines must be
provided. The chosen approach is very flexible; the programmer can define “code procedures”
using the following syntax (io be inserted in Oberon syntax [Wirth 89}):

CodeProcedureDeclaration = PROCEDURE *-" identdef [FormalParametersjn {"," n} ";".

n is an integer constant (0 < n < 256) and this procedure has no body.
When a code procedure is called, actual parameters are first pushed onto the stack fike parameters
of normal procedures, and the constants are then directly copied as in-line code in place of the
usual subroutine call instruction. These constants represent normally code for a supervisor call. But
this scheme may be freely moditied by the back-end programmer, so that actual parameters are
pushed using a different alignment for example, or/and so that constant code is always emitted and
so that these numbers consequently becomes only parameters (e.g. irap number) of a fix code
sequence that must not be always repeated in the number list anymore.

The module SYSTEM provides some low-level procedures to read/write from/to registers
(parameters of operating system routines) or absolute memory locations (memory-mapped
hardware controllers) or to directly write in-line code. Another low-level facility is offered by interrupt
procedures: a "+" preceding the name of a (normally parameterless) procedure specifies it to be an
interrupt procedure (mode = IProc), that can be installed as device handler. The back-end
programmer can foresee special entry code {e.g. registers saving) and exit code (e.g. registers
restoring and "return from interrupt” op-codes).

Some declared types used for parameters of operating system routines need perhaps a different
alignment, or must not be traced during garbage collection, or needs double dereferencing, or ...
For these reasons and other, the record, array or pointer types may be marked by the programmer
at the time of their declaration by inserting a "sysflag" immediately after the keywords RECORD,
ARRAY or POINTER. The syntax is:

sysflag="1"n"]"

where n is an integer constant between 0 and OPM.MaxSysFlag.
This number is copied in the lield sysflag of the Struct record; if sysfiag is absent in a record
declaration, the sysflag value of the base record type (if any, else 0) is copied in the extended
record type; if sysilag is absent in an array or pointer declaration, the field sysflagis set 1o 0. The
interpretation of this flag is left to the back-end.

39

4.7 Debugging

Experience has shown that efficient programming work can be also performed without a powerful
and hence expensive run-time or post-mortem debugger, let alone a symbolic tracer. A simple trap-
handler displaying the state of the procedure stack suffices in most cases (else the programmer
should insert halt statements and run again the program to find the bug).

We will explain here how necessary information has to be generated by the compiler, so that the
trap-handler can decode and write the contents of the procedure stack in a readable form for the
programmer. These pieces of information are normally written in a special file called "reference file”,
that may be appended to the object file.

When a trap occurs, the handler must first recognize the procedure in which the trap has been
called. It knows only the program counter value at the location of the trap call. Thus, the compiler
must generate a list of pairs consisting of procedure name and pc value. This value is always relative
to the beginning of the code frame.

Using this list, the handier can find the name of the procedure in which the trap occurred. It can
then follow the dynamic link in the procedure stack, read each time the return address and write the
corresponding procedure name of the caller.

If the compiler also generates information to describe local variables, i.e. their name, ofiset, type
and whether value or var-parameter, then, their value can be read from the stack and be displayed
with their name.

Three procedures of OPL write the needed information in the (lemporary) reference file, that can
be previously opened in OPL.Init. These procedures are calied from OPV after each generated
procedure code block. OPL.OutRefPoint writes the pc value, OPL.OutRefName writes the name
given as parameter and OPL.OutRels traverses the procedure scope given as parameter and
writes all local variable names {using OPL.OutRefName), offset, object mode and type form (only if
basic).

it a more powerlul debugger is nevertheless desired, then the compiler can generate more
information using the same principle, so that dynamically allocated structures can be traced and
displayed too.

40

References and Further Reading

[Aho 86}
Aho A. V., Sethi R., Uliman J. D.
Compilers: Principles, Techniques, and Tools.
Addison-Wesley

[Aho 89]
Aho A. V., Ganapathi M., Tjiang S. W. K.
Code Generation Using Tree Matching and Dynamic Programming.
ACM Transactions on Programming Languages and Systems 11:4, 431-516

[Amman 74]
Amman U., Jensen K., Nageli H., Nori K.
The Pascal 'P' Compiler: implementation Notes.
Departement informatik, ETH Zurich

[Cattell 79}
Cattell R. G. G., Newcomer J. M,, Leverett B. W.
Code Generation in a Machine-Independent Compiler.
ACM SIGPLAN Notices 14:8, 65-75

[Eberle 87]
Eberle H.

Development and Analysis of a Workstation Computer.
Ph.D. Thesis, ETH Zirich

[Fraser 86)]
Fraser C. W., Wendt A.
Integrating Code Generation and Optimization.
ACM SIGPLAN Nolices 21:6, 242-248

[Ganapathi 82}
Ganapathi M., Fischer C. N, Hennessy J. L.
Retargetable Compiler Code Generation.
Computing Surveys 14:4, 573-592

[Glanville 78]
Glanville R. S, Graham S. L.
A New Method for Compiler Code Generation.
Fifth ACM Symposium on Principles of Programming Languages, 231-240

[Gutknecht 89]
Gutknecht J.
The Oberon Guide.
Report 119, Departement Informatik, ETH Ziirich

41 1
|
|

[Heiz 88]
Heiz W.
Modula-2 aut einem RISC: Realisierung und Vergleich.
Ph.D. Thesis, ETH Zurich

[Powell 84]
Powell M. L.
A Portable Optimizing Compiler for Modula-2
ACM SIGPLAN Notices 19:6, 310-314

[Tanenbaum 89]
Tanenbaum A. S., Kaashoek M. F., Langendoen K. G., Jacobs C. J. H.
The Design of Very Fast Portable Compilers.
ACM SIGPLAN Notices 24:11, 125-131

[Wirth 86]
Wirth N.
Compilerbau, Eine EinfGhrung.
B. G. Teubner Stuttgan

[Wirth 88}
Wirth N., Gutknecht J.
The Oberon System.
Report 88, Departement informatik, ETH Zirich

[Wirth 89]
Wirth N.
The Programming Language Oberon (Revised Report).
Report 111, Departement Informatik, ETH Zirich

42
Appendix: Syntax Tree Definition

The syntax tree generated by the front-end conforms to a syntax described in this appendix. The
back-end refies on this syntax when traversing the tree.

Each node of the syntax tree is identified by its field class which is a short integer constant whose
name begins with a "N". Nodes of the classes Nmop (unary operator), Ndop (binary operator) and
Nassign (assignment) have also a subclass denoted by the field subcl. There are different class
groups, each one consisting of one or more classes.

Every syntactically correct Oberon construct is mapped into a sublree. We say that a subtree
belongs to a group if the class of the root node of this sublree belongs to this group. Subtrees
representing Oberon constructs of the same nature belongs to the same group. For example, the
group stat consists of the classes that may appear in the root node of a subtree representing an

Oberon statement. There are three major groups: design for designators, expr for expressions
and stat for statements.

NIL stands for the empty node (not allocated). The foliowing productions show how classes
belong to groups (bold face) and how groups are nested:

design = Nvar | Nvarpar | Nfield | Nderef | Nindex { Nguard | Neguard | Ntype | Nproc.
expr = design | Nconst | Nupto | Nmop | Ndop § Ncall.

nextexpr = NiL|expr.

ifstat = NIL | Nit.

casestat = Ncaselse.

sglcase = NIl|Ncasedo.

stat = NIL| Ninittd | Nenter | Nassign | Ncall | Nifelse | Ncase | Nwhile | Nrepeat |

Noop | Nexit | Nreturn | Nwith | Ntrap.

According to its class, a node can have a left and a right subtree and possibly a linked successor.

But the subtrees of a given node must belong to one group as defined in the table on the next
page.

The field typ is not listed in the table, but is nevertheless always valid. The field convalis only valid
il specitied by a comment between parenthesis. If nothing appears for a given field in a table line,
then this field is not detined and should not be read.

group class subcl obi

design

expr

Nvar

Nvarpar

Nfield

Nderef

Nindex

Nguard

Neguard

Ntype

Nproc

design

Nconst

Nupto

Nmop not
minus
is
conv
abs
cap
odd
adr
cc

Ndop times
div
mod
and
plus
minus
or
eql
neq
Iss
leq
grt
geq
in
ash
msk
len
bit
Ish
rot

Ncall

nextexpr NIL

expr

var
varpar
field

gdtype
gdtype
type
proc

const

tsttype

fpar

lett

design
design
design
design
design

expr
expr
expr
expr
expr
expr
expr
expr
expr
Nconst
expr
expr
expr
expr
expr
expr
expr
expr
expr
expr
expr
expr
expr
expr
expr
expr
design
expr
expr
expr
design

right

expr

expr

expr
expr
expr
expr
expr
expr
expr
expr
expr
expr
expr
expr
expr
expr
expr
Nconst
Nconst
expr
expr
expr
nextexpr

link

nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr

nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr
nextexpr

(conval=value)

SYSTEM.ADR
SYSTEM.CC

SYSTEM.BIT
SYSTEM.LSH
SYSTEM.ROT

43

44

group glass subel obj left right link (continued)
ifstat NIL
Nif expr stat ifstat
casestat Ncaselse sglcase stat (conval=min,max}

sglcase NIL

Ncasedo Nconst stat sglcase
stat NIL
Ninittd stat (typ=descr)
Nenter proc stat stat stat (obj=NIL if module)
Nassign assign design expr stat
newfn design stat
incin design expr stat
decin design expr stat
incifn design expr stat
exclfn design expr stat
copyin design expr stat
getin design expr stat SYSTEM.GET
putfn expr expr stat SYSTEM.PUT
gelrin design Nconst stat SYSTEM.GETREG
putrfn Nconst expr stat SYSTEM.PUTREG
sysnewin design expr stat SYSTEM.NEW
movefn design expr stat SYSTEM.MOVE
Neall fpar design nextexpr stat
Nifelse ifstat stat stat
Ncase expr casestat stat
Nwhile expr stat stat
Nrepeat stat expr stat
Nloop stat stat
Nexit stat
Nreturn proc nextexpr stat (obj=NIL if module)
Nwith Nguard stat stat
Ntrap Nconst stat

The field conval®.intval of each node belonging to the stat group gives the end position of the
statement in the source text.

The tree is traversed and evaluated {evaluation means here code generation) by the module OPV.
To each group corresponds a procedure having the same name as the group itself. This procedure
takes a Node as parameter (the root node of the subtree to be traversed and evaluated) and
possibly returns an /tem (denoting the evaluation result of this subtree). First, the procedure calls
procedures to traverse (and evaluate) the left and right subtrees according lo the class of the
Node parameter and then evaluate the Node parameter itself.

45

An excerpt of the module OPV is listed below:

PROCEDURE* expr(n: OPT.Node; VAR x: OPL.ltem); (* forward declaration *)

PROCEDURE design(n: OPT.Node; VAR x: OPL.ltem};
VAR y: OPL.Item;

BEGIN
CASE n*.class OF

| Nderef:

| Nindex: design{n*.left, x); expr(n*.right, y); OPC.Index(x,y) (" x:=x[y] "}
| Nguard:

END;
xtyp = nAlyp
END design;

PROCEDURE expr(n: OPT.Node; VAR x: OPL.ltem);
VAR y: OPL.Item;

B8EGIN
CASE n* class OF

| Ndop: expr(n*.left, x); ... expr(n”.right, y);
CASE n*.subcl OF

| mod: OPC.Mod{x,y) ('x:=xMODy")
END

END
END expr;

PROCEDURE stat(n: OPT.Node);
VAR x: OPL ltem;
L0, L1: OPL.Label,
BEGIN
WHILEn# NILDO ...
CASE n*.class OF

| Nwhile: L0 := OPL.pc; expr(n”*.left, x);
OPC.CFJ(x, L1); (" if not x then jump to L1°)
stat(n*.right}; OPC.BJ(LO); (* backwards jump to LO*)

OPL.FixLink{L1) (* fix-up L1 with current pc *)
END ;
n = N~ link
END

END stat;

Gelbe Berichte

114

115

116

117

118

119
120
121
122
123

124

125

M. Mdaller

W. Gander
G.H. Golub
D. Gruntz

B. Sanders

N. Wirth

H.-J. Schek
H.-B Paul
M.H. Scholl
G. Weikum
J. Gutknecht
D. Mey

H.P. Frei

P. Schéuble
M.F. Wyle

P. Lauchli

B. Withrich

C. Pfister

R. Crelier

des Departements Informatik

CeNet: AppleTalk - kompatible Kommunikations-
Software fur CERES

Solving Linear Equations by Extrapolation

Stepwise Refinement of Mixed Specifications of
Concurrent Programs

Modula-2 and Object-Oriented Programming.
Drawing Lines, Circles, and Ellipsis in a Raster.
Flintstone.

The DASDBS Project: Objectives, Experiences,
and Future Prospects

The Oberon Guide

A Predicate Calculus with Control of Derivations
The Assessment of Information Retrieval Algo-
rithms

An Elementary Theory for Planar Graphs
Detecting Inconsistencies in Deductive Data-
bases

The Graphics Editor Condor
The Layout System Pedro

OP2: A Portable Oberon Compiler

