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Zusammenfassung

Es ist erstrebenswert, Software aus Komponenten zusammenzustellen, die

unabhängig voneinander hergestellt und vermarktet werden. Solche Kompo_

nenten müssen innerhalb eines Frameworks entwickelt werden, um später

kombiniert werden zu können. Dieses Framework hängt vom Anwendungs_

gebiet der Software ab.

Parallel zur komponentenorientierten Softwarearchitektur benötigt man

ein erweiterbares Benutzerinterface. Dokumente sind eine gute Basis dafür.

Einzelne Softwarekomponenten werden als Editoren für Dokumente oder für

Teile davon präsentiert. Solche Software wird als dokumentenzentriert

bezeichnet.

In dieser Dissertation wird ein Framework für mathematische Kompo_

nentensoftware präsentiert und ein dokumentenzentriertes Benutzungsmo_

del entwickelt. Beide sind eine Fallstudie für das Design dokumentenzentrier_

ter Komponentensoftware im allgemeinen, und zugleich ein konkreter

Vorschlag im Bereich mathematischer Software.

Durch die Benutzung einer allgemeinen Programmierumgebung anstelle

eines Systems für mathematische Software, können existierende Doku_

menteneditoren weiter benutzt werden. Die Möglichkeit zur Kombination

mit weiteren Komponenten, z.B. für Hypertext, ist ein wichtiger Schritt in

Richtung interaktiver Lehrbücher.

Die wesentlichen Beiträge der Dissertation sind folgende:

Mathematische Software sollte in drei Richtungen erweiterbar sein: Typen

mathematischer Ausdrücke, Algorithmen und Editoren. In unserer Archi_

tektur werden die mathematischen Ausdrücke zu Verbindungselementen

zwischen berechnender Software und den Editoren. Mathematische

Ausdrücke in Dokumenten dürfen nicht durch Automatismen verändert
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werden. Es darf beispielsweise keine Normalform erzwungen werden, wie

dies viele auf das Rechnen gerichtete Systeme tun. Da gleichzeitig dieselben

Ausdrücke für Berechnungen benutzt werden sollen, müssen sie mathe_

matische Objekte repräsentieren, nicht nur Grafiken. Daher ist eine Ab_

straktion mathematischer Ausdrücke, die beiden Aspekten gerecht wird,

fundamental in dieser Arbeit.

In erweiterbarer mathematischer Komponentensoftware müssen Aus_

drücke als unveränderbare, gerichtete, azyklische Graphen dargestellt

werden. Es wird ein Design Pattern für solche Graphen eingeführt. Dieses

erzwingt die nötigen Restriktionen, ist zugleich aber bequem zu benutzen.

Compound_Documents können als Datenspeicher benutzt werden. Sie

haben einige Vorteile gegenüber solchen, die auf Zuweisungen an Namen

beruhen. Spezielle Dokumenten_Parts repräsentieren mathematische Aus_

drücke. Eine neue Idee ist, solche Dokumenten_Parts auch zu benutzen um

zukünftige Resultate zu repräsentieren, die parallel berechnet werden. Ein

weiteres neues Konzept ist Dokumenten_Parts in ihrem Kontext zu

interpretieren. Damit lässt sich ein einfacher Formeleditor und ein Interpreter

für Skripte herstellen.
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Abstract

The idea of composing software from components, which are created and

marketed independently of each other is appealing. To be composable later,

such components need to be developed within some framework. This

framework depends on the software's domain of application.

In parallel to the component_oriented software architecture an extensible

user interface is needed. Documents are a good basis for this. Individual

software components are presented as editors of documents or parts

thereof. Such software is called document_centered.

In this thesis a framework for mathematical component software is

presented and a document_centered user model is developed. Both are a

case_study in the design of document_centered component software in

general and, at the same time, a concrete suggestion in the domain of

mathematical software.

Using a general purpose programming environment instead of a

mathematical computation system allows us to reuse existing document

editors. Composability with further facilities, like hypertext support, is an

important step towards interactive textbooks.

The main contributions of the thesis are the following:

Mathematical software should be extensible in three directions:

expression types, algorithms, and editors. In our architecture, expressions are

used to link computational software and editors. Expressions within

documents must not be changed automatically. For instance, the software

must not enforce a normal form, like many systems focused on computing

would do. Since at the same time, the same expressions shall be used for

calculating, they must represent mathematical objects, not just graphics.



xii

Therefore, an abstraction of expressions, allowing to deal with both issues, is

fundamental to this work.

With extensible mathematical component software, expressions must be

stored as immutable, directed, acyclic graphs. We introduce a new design

pattern for such graphs. This design pattern enforces the necessary

restrictions, yet clients can use it conveniently.

Compound documents can be used as data repositories, having certain

advantages over such based on name bindings. Special document parts

represent expressions. A new idea is to use such document parts also to

represent upcoming results, being computed concurrently. Another new

concept is to interpret document parts within their context. This is used to

create a simple expression editor and a script interpreter.



1 Introduction

It is vain to do with more what can be done with less.

("Occam's Razor", William of Occam 1285−1347)

1.1 WhyMathematical Component Software?

Mathematical software includes software for symbolic and numeric

computing as well as for expression editing and typesetting. Nowadays,

computing software is mostly presented as application programs, so_called

"systems". Prominent examples of such systems are Maple [CGGLMW−91],

Mathematica [Wolfram−88], Axiom [JeSu−88], and Matlab [Mat−90]. They

can be extended through programming in a proprietary language.

Consequently, each of the systems implements its own user interface,

expression editor, pretty printer, and language interpreter instead of striving

for being composable with external components. According to [Wirth−95],

this software has to be considered as "fat".

Also, to solve a particular problem, one wants to combine the best tools.

With the application program approach either each program has to come

with the best algorithms for every possible problem or the data to operate

on must be transferred between programs. It has already been recognized

that the former approach is not suitable, and steps have been made towards

the latter, e.g. in [Kajler−92a, OM−96]. These attempts focus on reuse of

existing software, thus making the entire systems not leaner but fatter.

This thesis shows that lean mathematical component software is

possible. Small collections of mathematical algorithms can be made

available as individual components. They can be combined by the user as

needed. They also allow for bidirectional integration with other, already

existing software components. Other software within the same component

software environment could use computing components, without being

forced to import a complete computer algebra system.
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Nowadays, the need for such integration becomes more and more

apparent. With today's ideas about interactive textbooks it becomes

important to have access to document organizing tools, like hypertext,

outline editors, etc. As a consequence, fat computer algebra systems

become even fatter with more and more typesetting and hypertext facilities.

An example of this development is Mathematica's user interface, presented

in [Soiffer−95]. The same tools are built for every system, and they will never

cooperate. This situation can be overcome by the component software

approach.

1.2 Why Document_Centered Presentation?

Nobody wants to start up a symbolic computation system. What people

want is the computer to operate on their data. In many cases, this data will

be represented within some kind of document. Such a document can be an

e_mail message received from a colleague, a scientific paper retrieved from

the world_wide web, or even an interactive text book. In this context,

computing is viewed as equivalent to edit these documents, i.e. to change

their contents.

If the user's activity is centered around editing documents, the software is

called document_centered. In contrast, process_centered software organizes the

user's activity as several sequential threads.

[ABMW−88] and [Sydow−92] state that mathematical software should

not be encapsulated in big, process_centered, application programs but be

presented as document editing operations.

Additional support for document_centered software comes from com_

ponent_oriented programming: extensible software needs extensible user

interfaces. With OpenDoc [OD−94] and OLE [Brockschmidt−94],

compound documents are the platform on which software components can

build their user interface.

1.3 What Is The Problem?

The goal is to make mathematical software available in the form of small,

independently developed software components, which can be combined by

the end user. Mathematical software components shall be combinable with

each other, but also with non_mathematical components, like document

processing software.
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This main goal presents two problems. First, an architecture for

mathematical component software has to be found. Today's mathematical

software does not have the required properties, it is not structured into

reusable components. Secondly, a document_centered software presentation

must be developed. This requires to construct a new user model.

An all purpose programming environment must be useds as environment

for mathematical software components. Only this allows to combine the

new mathematical software components with other, possibly already

existing, software. The one and only task of such an environment is to

provide the fundamentals for component_oriented programming. Within this

environment another framework is to be created. It must implement the

fundamental domain_specific abstractions, elsewhere designed into a special

purpose language. Examples for such abstractions are an abstract data type

for mathematical expressions or interfaces of components that provide

certain services, like printing or accessing selections made by the user.

As stated by Deutsch [Deutsch−89] and others, designing these

abstractions and interfaces is difficult. On one hand, these abstractions are

to be used by every extension programmer. Power and ease of use are

important. On the other hand, the abstractions need to be implemented for

every extension. Therefore, they should be as simple as possible. Finally,

these abstractions also serve to protect the extension components from

interference. Hence, their correct design is a major safety issue.

The second difficulty is to model the abstractions found with the tools at

hand. Abstractions are useful only if the invariants they rely on can be

asserted by the environment. In open, extensible systems only interface

specifications can be used to enforce global invariants. Designing interfaces

to assert the required invariants is a major challenge.

Also, some problems are to be solved on the document_based user

interface level. Allowing to insert mathematical expressions into a document

is not enough. Support for scripting and for concurrent computation (e.g. on

a remote server) is a must for an interface to computer algebra. The latter

raises the problem of how concurrent operations, requiring long

computation time, can be reasonably integrated into an interactive

document editor.

The documents shall also form a foundation for interactive textbooks. In

this context, the design of the data structures to represent mathematical

expressions is particularly difficult. The data structure must represent enough

information for presentation of expressions within documents, and it must

be usable by computation software. In contrast to what present computer

algebra systems do, the presentation of an expression must not be changed.
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Mathematically correct simplifications (like removing parentheses) must not

be enforced. Otherwise, the following equation could not be presented

within a document:

a+b + c= a+ b+ c

1.4 What Should Be Reused?

Since the advent of object_oriented programming the term reuse has become

a frequently used buzzword. Unfortunately, sometimes it is understood as

the allowance to use any existing implementation of software ad infinitum.

It is an old observation, stated for instance in [Johnson−88, Deutsch−89,

Magnusson−91], that software is extensible and reusable only when

designed with this purpose in mind. Consequently, the framework for

mathematical component software presented in this thesis is a new design.

It allows for clearly specified extensibility.

During the migration phase existing software could be linked with the

new framework. The client/server model can be used for this. Therefore the

implementation, underlying this thesis, features a link to Maple. Still, the

driving force behind the research is to create lean software, not to minimize

the work necessary to switch to it. "Doing with less" in Occam's razor means

that the resulting software demands less resources, not that the design

phase requires less effort, nor to avoid (systematic) redesign of existing

software.

It must also be said, that using existing extensible abstractions can be a

pleasure. This thesis presents a light weight implementation of a central,

directly manipulatable mathematical object repository based on compound

documents, as an example.

1.5 RoadMap

The rest of this thesis supports the statements and claims made above. To

that end, a framework for mathematical component software is outlined. On

this framework and a compound document framework a particular light

weight extension implements a document_centered user interface. An

implementation is presented, that serves as proof that the entire design can

be implemented and used.



51 Introduction

Chapter 2 introduces the fundamental techniques and terminology used

throughout the thesis. Fundamental properties of interactive application

programs are presented together with their impact on software architecture,

extensibility, composability, and user interfaces. This shows the limits of the

process_centered approach. As a contrast, component_oriented programming

and independently extensible systems are introduced. Their demands are

discussed to derive the main requirements for component framework

design. Also, a brief introduction is given to compound documents as the

base for document_centered software.

Chapter 3 suggests an architecture for mathematical component software.

This architecture is reflected by a component framework. The latter allows

for independent extension with expression types, computing algorithms, and

editing facilities. It offers central services and asserts system_wide invariants.

Chapter 4 elaborates on the document_centered software presentation. In

the overall architecture it assumes the role of an extension implementing the

user interface, including expression editing. First, we show how workspaces

− the user's object stores − can be implemented by compound documents.

A generalized notion for icons is defined. Computational operations are

turned into or viewed as editing operations. Secondly, scripting is addressed.

It is shown how compound documents can be employed here. Thirdly, an

expression editor is described. It is based on compound text documents and

icons, but also allowing for graphical editing. Very flexible palettes with

templates and overlays can be offered. Most importantly, the editor is

generic, i.e. independent of expression types.

Chapter 5 shows that the component framework suggested in Chapter 3

can be implemented, that it can be extended as claimed, and that it imple_

ments sufficient functionality. The essential parts of an existing implemen_

tation of the framework itself and of some extensions are shown as proof.

The environment is the Oberon System [WiGu−89] together with the

programming language Oberon_2 [Mössenböck−91].

Chapter 6 discusses related work. Approaches to improve the software

structure other than independent extensibility are reviewed. Furthermore,

existing user interfaces of mathematical software, existing expression

editors, and typesetting implementations are discussed.

Chapter 7 presents some conclusions.
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This chapter briefly reviews concepts fundamental to this thesis. First, the

impact of presenting software as interactive application programs is

considered. Most of today's mathematical software has this structure. In

particular, the notion of workspaces as a program's data repository is

introduced.

Secondly, as an alternative, component_oriented software is discussed. In

contrast to object_orientation, assembling systems from prefabricated

components can be left to the user. The underlying component frameworks

have to be independently extensible. This is the main goal to be met by the

design of the mathematical component framework, shown in Chapter 3.

Finally, extensible systems require extensible user interfaces. These are

based on compound documents. As a result, the software presentation

becomes document_centered, rather than application program centered.

2.1 Interactive Application Programs

Traditional computer systems are extended with new functionality by

application programs (or programs for short), which can be loaded into the

system and executed. Some programs will terminate and be removed from

the system immediately after having performed their task. Others will

regularly accept input from the user, directing their further execution. These

latter programs are called interactive application programs. Today's systems

allow to run several interactive programs simultaneously, but restrict

interaction between them heavily. This has an impact on the overall

structure of the software and its user interaction model.
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2.1.1 Interactive Application Programs Are Encapsulation Units

Interactive application programs are, in general, a package deal. Apart from

being the mechanism to extend the system's functionality, they encapsulate

functionality, data, and user interface aspects.

Encapsulation Of User Interfaces

Many user interfaces to interactive application programs are built on

sequential streams. The user has to connect a terminal to such a stream and

to conduct a dialog with the program. Such terminals can be windows

within a multi_window environment. Nowadays, the typewriter style of these

interfaces is being replaced by graphical representations, like Maple

Worksheets [CGGLMW−91] or Mathematica Notebooks [Soiffer−95]. Many

programs for mathematics can also display several windows at the same

time, e.g. display plots in separate windows.

Still, each window belongs to exactly one instance of an application

program. When a program terminates, all its windows vanish.

Every program carries its own, individual user interface functionality. Each

user interface follows its own model and conventions, requiring the user to

learn them.

Encapsulation Of Data

While using an interactive application program, the user manipulates data

which needs to be stored and managed within the computer. The data of

different programs is markedly separated. The intention of this storage

protection is to limit accidental data destruction to single programs. This is

necessary only, if the programming environment lacks memory protection

on a finer granularity, e.g. on the basis of individual objects, or information

hiding on component level.

There is no way for programs to share data. Multi_window environments

try to make up for this by supporting copy operations between windows, but

this can be seen only as a tool covering communication between two

separated programs. The data has to be replicated in the memory of the

target program.

Encapsulation Of Functionality

The main purpose of an interactive application program is to add new

functionality to the system. The user can access this functionality through

communication with the program. This communication based interface is

not suitable for software reuse. Without a programming interface, a user
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must be simulated to make use of a program's functionality within another

program.

Also, programming interfaces provided by such interactive systems are

often very restricted. The one offered by Maple, for instance, basically allows

to execute the same kind of operations that are available to the user.

It is due to these encapsulation properties that application programs are

not truly open. They can be combined with each other as monoliths only,

not as components contributing small sets of functionality. Furthermore, to

apply functionality of one program to data stored within another one, the

data needs to be replicated.

Because of this, it is not possible to get a part of a system alone. Finally,

extending programs with new functionality is impossible in principle. The

only exception are programs that implement programming environments on

their own. These extension mechanisms are proprietary and thus do not

support interaction of different programs (see also Section 6.2).

2.1.2 Workspaces

Interactive application programs have to manage the user's data. The data is

represented as part of the system's internal state and the user will change

that state, step by step. This state is called the user's workspace.

This thesis deals with mathematical data (expressions), but the

workspace concept is more general. Data within a workspace can also

represent the result of a data base query, for instance. It is a characteristic of

the workspace implementation through documents (described in Section

4.1) that a single workspace can contain arbitrary types of data objects

simultaneously.

The term workspace has been used several times, for instance with APL

[GiRo−74], Axiom [JeSu−88], and Matlab [Mat−90]. It appears that it has

not yet been defined precisely. (Only in the glossary of [JeSu−88] a

workspace is defined as the record of an interactive session.)

In this thesis a workspace is understood, like with APL, to be the data

repository accessed by both the user and the computing software.

Manipulation of a workspace requires some specific functionality. From this,

the following definition can be derived.

Definition: A workspace is a repository for data objects generated and

manipulated by the user of interactive software. It is to be accessed by both

the user and the software. Its specific features are to allow for
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insertion, replacement, and removal of objects

an overview over the objects currently being in the workspace

reference to objects as input for operations

visualization of objects

externalization and internalization of the state to and from files.

Some computer algebra systems like Maple [CGGLMW−91] or Mathematica

[Wolfram−88] maintain data repositories at two levels. On one hand the

user can store objects within documents maintained by the user interface.

On the other hand the system's kernel maintains an object repository, using

name bindings as references.

The latter is the workspace of the system. Only objects in the system's

repository can be used for computation. Data stored in the user interface

must be transferred to the internal workspace before computing with it. This

transfer may be implicit upon invocation of a computation.

Regardless of what the document maintained by the user interface shows,

the result of a computation depends on the name_bindings made by the

system's kernel. If the computation involves a symbol x, the outcome

depends on whether an object is bound to x, or not. Synchronization

between the user interface's workspace and the system's workspace is a

major problem.

2.1.3 Workspaces Implemented Through Name Bindings

Interactive application programs allow the user to conduct a dialog with the

program while it is active. This dialog is based on a language interpreter. The

language can usually be used for both directing the system and

programming. Inspired by the latter, the workspace management is based

on name bindings.

The concept of names is taken with generality here. A name can also be a

number (in system's numbering all their input and output expressions, e.g.

Mathematica) or a sequence of special characters (like those used by Maple

to denote recent results).

At a certain point in time the workspace contains exactly those objects

which are currently bound to at least one name. Insertion, replacement, and

removal are mapped to the corresponding assignment actions. These can be

explicit (assignment commands issued by the user) or implicit (side effects

of computational commands). Objects can be referred to by their name.

Usually, to provide an overview all names in use at a specific moment can



112 Fundamentals And Terminology

be listed through a command. Other commands allow to store the contents

of the workspace to a file or read it from a file.

The implementation of workspaces using name bindings has one

disadvantage. The name bindings are not visible directly. The user can

inspect this hidden state through special commands only. Such commands

require extra activity of the user and create only snapshots of the state,

whereas the state is transformed permanently during a session. Therefore, to

work effectively with such a system the user must keep a mental picture of

the hidden state. Assignments need to be remembered to make use of

them. The particular danger is that a data object is lost by accidental reuse of

the name it had been bound to or temporarily lost by the user forgetting the

name he/she has used.

In the realm of programming, name bindings present no problems. This is

due to the static scoping allowing for proofs of predicates about variables

during their entire life time. In an interactive program the session creates the

only scope for the bindings. This scope is not static but a temporal instance

(dynamic scoping). No static review or derivation of properties of variables is

possible.

2.1.4 Sessions, History And Hidden State

The entire dialog between the user and the program is called a session. A

session begins when the program is started and lasts until the program's

termination. Usually it is presented to the user by a window or a terminal. In

name binding based implementations of workspaces the session also

creates the scope for the bindings. Note, that in contrast to programming

this scope is not defined by a static construct like a procedure or a module

(lexical scoping), but by a temporal instance (dynamic scoping).

We call the sequence of commands executed during a session up to a

certain point of time the history of this session. It is of particular importance

whenever objects in the workspace are referred to using hidden state. A table

of bindings between names and objects is such a hidden state. Because the

state will be transformed during a session, the history of this transformations

is essential to understand the current state. In other words: the user has to

remember previous assignments (or to review them in a protocol) to be able

to use them.

Starting, stopping, and interrupting of programs and commands is

understood as session control. Most of this is an artifact of the interactive

application program paradigm.
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2.2 Component Software

2.2.1 What Is Component Software?

Component software is a software structuring principle based on com_

bination of software components. Software components, in turn, are units of

extension, encapsulation, and abstraction with a granularity coarser than

objects but finer than programs. Components can be used as prefabricated

units to compose higher order systems, but they can also be made available

independently to be combined by the user.

Components are larger than objects

Normally, components bundle several objects. Therefore, they offer more

powerful abstractions than individual objects. In particular, a component

hides the interaction of various objects. This has two advantages: on one

hand, the client of a component is not left alone with a bag of objects and

classes difficult to survey. Instead, a more powerful abstraction, also covering

relationships between objects, is created. On the other hand, information

hiding can be employed on a higher level: Szyperski [Szyperski−92a] shows

the importance of enforcing invariants that involve more than one object

within a component. This makes components more secure. An example are

the components of the Oberon system implementing Carrier_Rider pairs.

This has been used to implement immutable objects in an efficient way (see

Section 5.1).

Components are smaller than programs

The important property of component software is the possibility to combine

components on demand and to extend even a running system with new

components. Functionality is added to the system, when it is needed for the

first time. Usually, interactive application programs are not extensible, once

they are loaded and launched. (The exception of extensible application

programs is discussed in Section 6.2) Thus, programs try to cover a

maximum of functionality, whereas components try to encapsulate a

minimum, which makes sense as a building block for a larger system.

This principle was already used in the UNIX system. Simple UNIX

commands, that transform byte streams, can easily be combined through

redirecting the input and output streams. However, the fact that the

interfaces between such "components" are limited to byte streams is a

severe limitation. Most importantly, no type checking across interfaces is

possible.



132 Fundamentals And Terminology

The finer granularity of components is feasible only because of expressive

programming interfaces. The security of statically type_checked programming

interfaces is a prerequisite in any open system (see Section 2.2.4).

Simultaneously, structured typed interfaces document themselves implicitly.

When application programs are connected via streams the interface

description is less expressive − it features the sequence of bytes as its only

static type. The semantics of a byte stream depends on its interpretation. It

cannot be asserted that both sender and receiver interpret the bytes

consistently. Also, there is an extra cost in run time and software complexity

to translate between sequential and internal representation of data.

Application programs are usually associated with heavy weight processes,

each having separate protected memory. Components use one common

address space, they share memory. Objects can be passed between

components by reference and need not be replicated. Connecting programs

is more difficult than connecting components. Therefore, with respect to the

suitability as building block, components are smaller than programs.

Component software separates data objects from software components at

the top of the abstraction hierarchy. Data structures are organized com_

pletely independently of the component hierarchy. In fact, many data

structures are inhomogeneous and even generic, allowing new components

to define new object types and have them included in system wide

structures.

Data is shared among components. Memory protection must be done for

individual objects rather than for entire programs or components.

2.2.2 Independently Extensible Systems

To realize the full potential of component software the user must be

enabled to choose and combine components upon individual needs. There

will be multiple suppliers who provide components independent of each

other. The ultimate goal for component software systems therefore is to

support independent extensibility.

Definition: A software system is called independently extensible if it can be

extended with new components at any time, and if those components can

be designed by independent suppliers in complete ignorance of each other.

System integration (composition) is done by the customer at run time.

Programmers have to obey to certain rules to avoid that components

mutually interfere. Exceptions to the latter are components that perform
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mutual exclusive tasks or require global resources that cannot be shared, e.g.

the serial communication port. However, as stated in [Szyperski−96], such

mutual exclusion must be apparent to the user.

Independent extensibility is a prerequisite for lean software as defined by

[WiGu−89, Wirth−95].

From an industrial point of view, the purpose of independent extensibility

is twofold. On one hand, the customer gets exactly the functionality

demanded by combining suitable components. On the other hand, a

component software market allows for more competition. Customers can

buy and combine components from different vendors. Components can be

selected based on their individual ratio of price and performance

(functionality, efficiency, quality). According to Beech [Beech−96], producers

will be able to concentrate on their particular strengths and deliver

specialized components of high quality without being forced to build

complete systems. This concept already works on the hardware market,

where extension mechanisms like SCSI allow to compose hardware

components of independent suppliers. A software component market,

however, will need a wider spectrum of application domain specific interface

standards.

Components developed by different vendors in complete ignorance of

each other must not interfere. Of course, some components will be mutually

exclusive, like those using a global hardware resource (the serial

communication port of the machine, for instance). Such situations are

typically transparent to the customer and can be resolved at configuration

time.

In many cases cooperation between independently created components

is required. This needs some standardization for information exchange.

2.2.3 Independently Extensible Component Frameworks

Design patterns are solution recipes, applicable to families of problems.

Frameworks are implementations of design patterns as defined by

[GHJV−95]. Both consist of several classes and objects, defining their

relations. Frameworks are extensible, allowing specialization for particular

problems. If the result is a complete application, the framework is called an

application framework.

Component frameworks are extensible with components. They do not

primarily support specialization of solutions, but they offer basic services for

extension components. For instance, they define interfaces for information

exchange and cooperation of components. They also define aspects of the
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architecture of such components. These depend on the classes and

extension mechanisms of the framework. Therefore, component frameworks

implicitly include design patterns for the overall component system.

Safety considerations are of particular importance in extensible systems.

Misbehavior of a single component must not corrupt the system as a whole.

This aspect is usually covered by designing frameworks such that they

protect their own data and resources.

With independent extensibility, one must go a step further. Extension

components must get along with each other but not into each other's way,

even though their respective designers may not know about each other.

Therefore, component designers will have to follow several rules. Such rules

can include system_wide invariants. They depend on the particular purpose,

domain, and architecture of a system.

In the past, this has often been approached by sets of documented

guidelines. Examples are naming conventions to avoid name clashes in

global scopes. It would be preferable, however, if such conventions were not

needed. The alternative are abstractions and assertions made by the

underlying framework.

In [Szyperski−96] it is stated that independently extensible systems do

not allow for any global, static analysis, since they are never complete. The

only tool to enforce system_wide invariants statically is the interface

specification of components. The compiler can assert correct imple_

mentation and correct usage of such a specification. To express system_wide

properties within an interface specification, information hiding and static

typing must be used.

As a consequence, interface design of independently extensible

component frameworks is the ultimate challenge for a contemporary

software engineer. The correct rules for extension providers must be

identified, and they must be modeled with the tools at hand. Still,

restrictions must not hinder extensibility and usage more than necessary.

A typical example, where many of today's programming environments fail

to support safe independent extensibility, is the lack of separated name

scopes for extensions. In a single global scope, the only way to prevent

name clashes is to stick to a convention (and to hope that everybody else

does so) like the one mentioned above. Modular programming languages

like Modula_2 [Wirth−82], Oberon [Wirth−88], or ADA [Ada−83] solve this

problem in a better way separating the name scopes of the modules. Then,

only the module names must be chosen uniquely. Since in most such

environments module names correspond to file names, module name

clashes are likely to be detected statically, before the system is started.
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2.2.4 Requirements To Component Software Environments

Component software environments are component frameworks themselves.

They may be extended by complete components but also by further

component frameworks, specialized for specific domains. Four major

requirements for a component software environment can be identified:

Programming Interface Specification

To allow components to interact with each other it is necessary to agree on

a system wide description of programming interfaces. Such a description

allows for static checks that interfaces are implemented and used correctly,

similar to separate compilation with interface checking as used with

Modula_2 and Oberon (in contrast to independent compilation without

such checking) and described for instance in [Crelier−94].

At a first glance, assertions in an interface seem to contradict the

requirement of extensibility. To solve this dilemma the interface specification

formalism needs to allow to express extensibility. The Oberon programming

language therefore features type extension, which is the most important

difference to its predecessor Modula_2.

Dynamic Loading

Components must be loaded and linked into the system dynamically, i.e. at

run time. This requires a loading linker with a programming interface. The

user should not be required to explicitly load a component, before being

able to use it. Rather, a component is loaded automatically, when a

command is issued that requires it, or when data is loaded which is defined

in it. The later occurs for instance when a compound document is opened.

Linking loaders are available in several industrial operating systems.

Automatic Memory Retrieval

Since data is shared between components using references, no component

has exclusive control over such data. Once a reference has crossed the

barrier between two components none of them can decide how long the

object is accessible and when the memory can be retrieved. Therefore,

automatic storage reclamation (garbage collection) is a necessity.

Open User Interface

It is not sufficient that run time extensions are supported by the software

system. Extensions must also be accessible to the user; an extensible user

interface is required. Traditionally, the environment offers a window system
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as the integration base. Application programs extend the user interface with

new windows. As application programs are markedly separated in memory,

they are in the user interface. Finer grained integration of components needs

finer grained user interface integration. This is offered by the compound

document concept. It allows not only to have different windows on one

screen, but to put individual objects into a variety of documents.

Consequently, from compound document frameworks more is required than

from window systems. The latter abstract bitmaps, but the former need to

abstract entire documents, related resources (like files), and editing means.

2.2.5 Existing Component Software And Open Document Environments

An environment for component software needs to offer more than one for

application programs. Component software requires to express and check

interfaces statically, to manage dynamic loading and binding, to

automatically retrieve free memory, and to define a user interface framework.

Application programs in turn interface each other by primitive byte streams

only, are loaded separate of each other once before launched, manage their

own memory and implement their own user interface. Thus, traditional

operating systems are not usable as component software frameworks.

Current software industry begins migration from traditional application

programs to component software. Right now, two competing standards for

future component software environments exist: OpenDoc [OD−94] and OLE

[Brockschmidt−94]. Independent of these the Oberon system has grown

mature. From the beginning, it had been designed with extensibility in mind.

Visual Basic

Visual Basic is not a true component software framework. It allows to

combine various existing components using scripting, but does not include

support for component programming.

Delphi

Delphi is based on an object_oriented version of Pascal. It can be extended

with self_programmed components. To be a real component framework, it

lacks garbage collection.

SOM/OpenDoc

IBM defined the interface standard SOM (System Object Model). It uses a

new language to express interface properties. This makes interface

definitions independent of the language used for implementation but also
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makes it more difficult to assert correct interface implementation and usage.

For the programmer it makes keeping interface and implementation

consistent more difficult.

Dynamic loading is contributed by the underlying operating system.

Automatic memory retrieval is not supported by SOM. This is probably its

weakest point. OpenDoc is the accompanying standard for compound

documents. It provides integration means for SOM objects.

COM/OLE

The Component Object Model (COM) has been defined by Microsoft. It

competes with SOM to which it is comparable with respect to potential and

general approach. The most important single difference is that a reference

counting scheme to support memory retrieval has been included into COM.

The respective compound document standard is defined in OLE

[Brockschmidt−94].

Oberon

During the last ten years, the Oberon system [WiGu−89, WiGu−92] has

become mature. Inspired by Cedar [Teitelman−84], it had been designed as

an extensible system from the very beginning. Since Oberon has been used

to implement the expression framework discussed in this thesis, a more

detailed description is given in the following.

One of Oberon's most distinctive features is the strong integration of the

environment and the programming language which is also called Oberon

[Wirth−88, Mössenböck−91]. The latter had been derived from Modula_2

[Wirth−82] and enhanced with type extension.

Components are modules. The compiler checks correctness of both usage

and implementation of module interfaces. The symbol files used for this

purpose are generated automatically during compilation of a module.

Modules are loaded and linked into the system dynamically. The common

memory is managed with the help of a mark_and_sweep garbage collector.

At the user interface level extension is possible through new viewers and

commands. Viewers are windows which make coarse grained objects (entire

texts, graphics, pictures, etc.) accessible to the user and allow for their

manipulation through command execution. Commands are procedures

without parameters. They operate on the system's global state. They are

activated either through direct manipulation operations within a viewer, or

by clicking the mouse on a command's name in a text. The latter gives the

user large flexibility, since menu configuration etc. become obsolete. Also,

there is no need for a global menu bar on the screen which is being
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changed, depending on the current focus. The possibility to include

commands and their parameters into documents, makes Oberon a hypertext

environment.

In the meantime various extensions of the core system have been

introduced. Two extensions target at open documents: Oberon System_3

[Gutknecht−94] has a platform for graphical user interfaces. These are

composed from objects which can be bundled in various containers, like

two_dimensional panels or texts. Behind the scene, the introduction of a

global base type from which any object is to be derived and the support of

object libraries are the most remarkable change.

Oberon V4 evolved from the original system with less fundamental

changes: it differs mainly in the text model described in [Szyperski−92],

which was inspired from the Ethos Project [Szyperski−92b]. A text is now

defined as a sequence of objects attributed with font, size, color and vertical

offset. Such objects are mostly plain characters, represented by their ASCII

code. An abstract class, called Text Element (or Elem for short), can be

extended to embed any self designed object into texts. With this

implementation compound documents are restricted to texts. This

restriction is somewhat mitigated by the fact, that text can be embedded in

many other models.

Recently, a framework, called Oberon/F [OF−94], has been developed

from scratch as a commercial environment for component software and

compound documents. Oberon/F features abstract classes View and

Container. Any concrete object of type View can be embedded in any

container. Oberon/F will further integrate both industry standards, OpenDoc

and OLE. It is a development tool making all the achievements of Oberon

available to the software industry.

The expressions framework to be described later has been implemented

in Oberon V4 but the concepts are expected to be portable to System_3 and

Oberon/F. Such a port has not been done, since no gain can be seen

(except for proving the feasibility). The only feature not available in Oberon

V4, which would have been useful, are System_3 Libraries or Oberon/F Stores,

which simplify externalization and internalization of documents with

multiple references into a data graph. A port to Oberon/F would also allow

for interaction with software based on OpenDoc or OLE.

The restricted compound document model of Oberon V4 turned out to

be an important source of inspiration rather than a problem: Text Elements

did not only prove to be sufficient, but they triggered the fundamental idea

to use Text Elements as tokens of a formal language as described in

[Weck−94].
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2.3 Compound Documents

2.3.1 Compound Documents

Documents in general are entities that can be visualized, edited, and stored to

files. Traditional documents feature one model, for instance text, graphics, or

a bitmap. The contents of such a document are homogeneous. Compound

documents generalize this notion of documents. They may contain arbitrary

objects, not only those belonging to one specific model. Such objects within

a compound document are called parts of that document. The document

assumes the role of a container for its parts. Parts themselves may be

containers, too.

A Note On Terminology:

The term part has originally been introduced in [OD−94]. It was changed to

component later. Within this thesis part shall still be used for document

components to distinguish them clearly from software components (see

Section 2.2).

The fact that industry tends towards using the term component for both

software components and document parts is symptomatic of a limited

conception of compound documents. Document parts are seen as user

interfaces of application program_like software units, but parts can be seen

more generally as objects that can be accessed by different software

components. This can be elaborated for enhanced usage of compound

documents (see Section 2.3.2.).

As an option, containers can support intrinsic data, an extra model managed

by the container itself. The parts are inserted in this model. In a text

container for instance, parts are treated like special characters. They have a

position in the text and can be moved by the usual text editing means.

However, parts do not need to recognize in what kind of container they are

included and whether extra intrinsic data is featured.

Previous efforts aiming in the same direction led to object_oriented text

systems and editors like [ABMW−88, Calder−90, Vetterli−91, Szyperski−92].

These tools allow to include objects of different types into documents. In

the beginning, this concept was designed with desktop publishing in mind,

i.e. for creating documents for human perception. [Schär−91] describes the

inclusion of mathematical formulae into such an editor.
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2.3.2 Enhanced Usage Of Compound Documents

The compound document concept allows for extension in two dimensions:

parts and containers. The bare compound document idea draws a

separation line between these dimensions. Parts shall not have any

knowledge about the context their current container may provide, and the

container shall not have any knowledge about the individual part's

functionality.

Although this total separation has its benefits, we find that better use of

the compound document idea can be made if this separation becomes less

strict. In some cases it is useful to see container and part as a comple_

mentary pair. One example is that of paragraph control characters (similar to

rulers) defined in [Szyperski−92]: these parts influence the typesetting in

their surrounding text container. On the other hand, parts can be seen in the

context of interpretable text, as discussed in [Weck−94]. Such parts are used

as tokens of a formal language. Still, when used separately, all those parts

and containers keep their basic functionality like visualization, persistence,

in_place editing (of parts), etc., but lose their particular extra functionality.

The most primitive relationship between containers and parts is that of

inclusion, i.e. the logical predicate whether a specific part is included in a

specific container or not. This relationship does not depend on the

container's and part's types, but it is enough to use compound documents

as workspaces.

We used this approach in the expressions framework discussed in this

thesis to create a simple expression editor (Section 4.3). However, all those

parts can also exist within other, unknown containers. They keep part of

their basic functionality like visualization, persistence, etc., but lose the part

that depends on the particular context.

2.3.3 Compound Documents And User Interfaces

Due to their flexibility and extensibility, compound documents have been

used to interface software in various ways since long ago. An example of

such usage are dialogs, composed with a document editor ("visual

designer"). The parts are input fields, buttons, sliders, etc. Their in_place

editing mechanisms provide a user interface to the values associated with

them. The document editor is used for interface design. Such compound user

interfaces are widely spread. Examples are [Gutknecht−94, OD−94,

Schneider−95].
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A very different example for a user interface based on a compound

document is the Finder program [InsMac−91, OD−94] of the Macintosh

computer. It represents a disk as a structured "compound document"

composed of folders, documents, and applications.

With the industry standards OLE [Brockschmidt−94] and OpenDoc

[OD−94] and their accompanying COM and SOM object model definitions,

compound documents will be used to integrate the user interfaces of

software components. Component_oriented programming leads to inde_

pendent extensible software systems: only the user combines components,

developed by different independent suppliers. An example are MathType_

Parts included in Microsoft Word, using OLE and COM. The formula editor

and the document editor have been developed completely independently by

different vendors.

2.3.4 Document_Centered Software

Nowadays, the user's activity is centered around application programs and

processes: the software is process_centered. Data is to a process, and each

process operates only on the data assigned to it.

Process_centered application programs are a package deal, bundling data

management and computational functionality. Processes structure both the

data space and the space of functionality. Encapsulation makes it

impossible to apply the computational functionality of one program on the

data managed by another program. To combine the computational

functionality of two application programs, the data has to be replicated.

Component software, as seen for instance by OpenDoc, is primarily

structured by data collections. Such data collections are implemented by

documents. A data items belongs to a document. Software to manipulate

the data is bound to documents as needed. Consequently, OpenDoc uses

one process per document, not one (or several) per application program.

Since the dominating structure of such a software system is implemented by

documents, such software is called document_centered.

In this thesis we go one step further. Data management and computation

software are treated as orthogonal. Processes are abolished entirely. The data

is stored within a single address space and can be accessed by all software

components.

This software architecture is used by the Oberon system. The loss of

safety, caused by abolishing separate address spaces, is compensated for by

memory protection at object level. The latter is implemented through a

strongly typed programming language.
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An extensible system is made up by a collection of many small

components, sharing their data. For extensibility it is not feasible that each

component manages its own, separate data repository. Instead, data must

be managed by a central service. Such a central service can use documents

as data repositories. Computational components access documents through

a programming interface. Data can be passed and shared by reference. This

is crucial for efficiency, since in a system built from smaller components

data will be frequently used by different components.

Section 4.1 shows that compound documents are a light weight im_

plementation of data repositories. In fact, most of the functionality needed

can be reused from the document framework. Compound documents are

already a single answer to three separate problems:

typesetting: documents can be edited with the purpose of being

printed for human reading.

persistence: documents can be stored into a file.

user interface: operations can be invoked on document parts to

change them.

With the data repository as a central component, workspaces and

computing actions are decoupled. The user gains new freedom. Commands

can operate on objects in any document and documents can bundle objects

of any type. Several independent command components can be used with

the same workspace. There is no need for data replication. On the other

hand, several workspaces can be used concurrently. With this, data can be

structured according to one's own needs. Data can be transferred between

workspaces by moving icons. This does not lead to data replication, since

only a reference is copied.

Not only integration of various mathematical software components is

possible, but also completely different software can be integrated. All the

existing document processing tools can be applied to workspaces. A

workspace can be sent via e_mail, for instance. Also, workspaces are

integrated into documents. The benefits are, for instance, that comments

can be put close to objects, graphical output (plots) can be directly related

to its mathematical data, etc. Since the data objects can still be used for

computation one can view such a document as being interactive.

Combination with hypertext facilities opens the road towards interactive

textbooks.
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2.3.5 The Editor Is The User Interface

The user interface metaphor for document_centered software is that of a very

powerful editor: the user opens, manipulates, and archives documents. Data

used for computation is represented by document parts. Operating on the

data means changing the workspace, i.e. to edit the document. Editing

operations are carried out in cooperation by the user and the machine: the

latter changes a piece of a document according to a command given by the

former.

From the user's point of view, there is no significant difference between,

say, changing the font attribute of a text stretch or replacing a polynomial by

its factored equivalent. In both cases a selection will be made in a document

and a command will be applied to it.

Editing operations can be implemented by separate components and be

added to the system at any time. There is no limit in principle to their power.

The entire system can be seen as an extensible editor.

With most existing mathematical computing systems, the user has to

wait for completion of a command, before issuing another one. The prin_

cipal interaction with an application program and the use of a compound

document as the user interface are compared in Table 1.

terminate application program (optionally) close the document

copy & edit the input line copy & edit a document part

use variable copy expression from document part

assign the previous result to a variable −

output is written to a log text output is pasted as a new document part

issue command activate command

type input data or copy from elsewhere create document part or select existing one

start an application program (optionally) open a document

process−centered software document−centered software

Table 1: usage of process_centered software vs. document_centered software

It is desirable to leave it to the user whether the result should replace the

input or rather should be inserted without affecting the input. The latter style

is quite often used to produce documents that besides presenting results

also document how the results were computed. More sophisticated

constructions could also be thought of. For instance, an entire equation
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could be produced as output, relating the input and the result. If an
integration command is applied to tan x , the result could be presented as

dtan x x=−ln cos x .

However, the author's experience with various experimental implemen_

tations showed that it is most convenient if just the selected document area

is changed. Commands doing so are editing operations, like those known

from document processing. Removing the original values is not a severe

restriction: the user can copy the parameters and operate at the place where

the result is wanted.





3 Design Of A Framework For

Mathematical Component Software

Generally, mathematical software can be extended in three dimensions:

expression types, algorithms, and user interaction. Only a few relations exist

between the dimensions of extension. Algorithms, for instance, need to have

some knowledge about the objects they operate on, and the editor needs to

be able to typeset expressions of any type. The fundamental abstraction to

be used by all extensions is that of a mathematical expression. Therefore, in

the center of the framework is the definition of abstract expressions (see

Figure 1). Algorithms are implemented as library procedures. These can be

accessed from other components and used to build higher order algorithms

from existing ones.

3.1 Expressions Are Directed, Acyclic Graphs Of Objects

It must be possible to introduce new expression types, as mathematics is a

very large and rapidly expanding discipline and the set of notations and

associated properties will never be complete. Therefore, typical mathematical

software relies on a very open representation of expressions: named

functions with zero or more parameters. The mathematical semantics are

coded into the function name. The function's parameters are the

subexpressions the object's value depends on. To typeset a function a pretty

printer is used. Of course, the latter must know the function name to

perform any displaying other than a default.

Presenting expressions through named functions or similar mechanisms

has two major disadvantages. First, name clashes cannot be excluded. Two

independently created extensions may use the same name for two different

objects. Secondly, as illustrated by the pretty printer example above, the
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Component Software Framework

Expressions Framework

Expression Editors

Algorithms

Expression Types

Figure 1: the structure of mathematical component software

names need to be registered with other components to be recognized. This

results in case analysis instead of generic, object_oriented programs.

Types can be used instead of names: an object has a type (belongs to a

class) which can be distinguished from any other type. This property is

guaranteed by the system. Name clashes are avoided. Registration with other

components is not necessary since behavior can be bound to objects.

Extensibility is granted by subtyping.

Generally, an expression consists not of a single object but of a rooted

graph of objects. The graph's structure is the same as with functional

representation: the root node defines the mathematical properties of the

outermost structure of the expression and refers to subexpressions. The

graph is directed and acyclic. For each node the outgoing vertices are

ordered, since, in general, operators are not commutative.

Each object representing a node is of a type extending (subtyping) a

general, abstract expression type. This allows for extensibility with new

expression types. Expression graphs are generic, inhomogeneous data

structures. The basic type of all expressions is defined in the expressions

framework to be extended by concrete implementations.
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3.2 Expressions Are Immutable

Expression objects, once created, need to be immutable. This drastic

restriction is a requirement of independent extensibility.

Expression objects are used as values, not as variables. References to

expression objects will be shared by different components. Independent

extensibility implies that it is impossible to control which components share

references to an expression object. Consequently, if one component changes

the value of an object, it may affect other components in an uncontrolled

way. In this situation, a component could not rely on expression objects to

have constant values. It needed to generate a private copy, and a huge

overhead would be the result.

To avoid this, a component which changes an expression has to create a

new instance. This could be done by convention or it could be enforced by

the framework. The latter is preferable. The framework has to offer an

abstract data type for immutable expression objects.

All aspects being considered, the immutability restriction has more

advantages than disadvantages. With asserted immutability, data replication

can be reduced to a minimum. If an expression graph is to be copied, only

nodes actually changed need to be replicated. All unchanged subexpressions

can be included by reference.

Representing expressions by immutable DAGs has proven useful already,

for instance in Maple [CGGLMW−91].

Also, abstract data types exist that enforce immutability of objects. An

example are immutable texts implemented as Ropes [BAM−94]. Whenever a

text represented by a Rope is changed, a new Rope is generated to represent

the new text. This shows the disadvantage of Ropes: when a sequence of

changes is applied, many objects are generated unnecessarily. In Section 5.1

a solution is suggested which allows more efficient manipulation.

3.3 The Typical Operation On Expression Graphs

Most operations executed on an expression graph follow a typical pattern.

First, a node is identified which represents the subexpression to be changed.

During this identification process the path leading to the node is recorded.

Next, a new graph is built representing the expression resulting from the

operation. Thereby, every node, on the path recorded before, is cloned and

the new subexpression is included. For further illustration see the complete

example of a generic substitution operation in Section 5.4.
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The above procedure needs to work based on the abstract expression

type only. The abstract expression type is the common interface of

orthogonal extensions: types and algorithms. It allows algorithms to operate

on subexpressions of expressions of unknown type.

Some operations will not change just one node but several within a

graph. Consider for instance a command that can compute with rational

numbers. Such a command will traverse the entire graph and simplify

rational subexpressions as far as possible. Such subexpressions may be

found in multiple places.

7
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2
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, for instance, can be simplified to
5

6
+ d5 t t
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x

.

A consideration on efficiency may be in order: dealing with immutable

expression graphs requires some overhead. Computing algorithms, however,

have to use expression graphs only to interface the framework. Internally,

they may build their own data structures suited for the particular algorithm.

This must be possible anyhow, since the efficiency of an algorithm may

depend heavily on the data structures used. For example for polynomials,

[Stoutmyer−84] lists a wide variety of representations, each of them suitable

for some algorithm.

3.4 Equality, Canonical Forms, And Redundant Representations

3.4.1 Equality

It must be possible to test for equality of two expressions without knowing

their actual type. As an example, consider a substitution algorithm which

replaces all instances of a particular expression in a graph. Such an

algorithm can be implemented generically if a generic equality test is

available (see Section 5.4 for a complete implementation).

Equality must be defined carefully. Mathematical equality may even be

undecidable. Examples of such cases are given in [Richardson−68] and

[Richardson−69]. Only structural equality is always decidable, i.e. two

expressions are known to be equal only if they are represented equally. In

general, it is not possible to test for two arbitrary expressions, whether they

can be transformed to have an identical representation.
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Structural equality can be defined recursively as follows: two expressions

are equal if the two root nodes are equal and if the subexpressions are

pairwise equal. Whereas the latter can be determined generically by recursive

application of the test, the former requires to call a procedure bound to one

of the nodes.

The entire test can be performed in time linear in the number of nodes.

For this, it must be assumed that the lists of subexpressions of the two

candidates are in the same order. Commutativity cannot be tested; a+b is

not equal to b+ a. Even if commutative subexpressions would be marked,

testing all combinations would lead to a non_linear algorithm. The solution

is to generate a canonical normal form prior to comparison. Canonical

normal forms are unique representations. Two expressions which are equal

have identical canonical normal forms. Each expression object must offer a

method creating a canonical normalized representation of itself. This

method must have a way to order commutative subexpressions uniquely.

For this, a global ordering on expressions must be defined.

3.4.2 Ordering Expressions

To define an ordering, an integer value is associated with each object. Two

objects must get the same value if and only if they are equal. This property is

not met by a hashing function: it could assign the same value to two

non_equal objects. A central stamping service based on an incremented

counter does not work either: a new value would be assigned to every

object, regardless of any equality to previous objects.

Consequently, all objects which have a value assigned already must be

registered. If for a given object an equal one has been registered before, the

same value is assigned. Otherwise, the object is registered and receives a

new value. Searching the registry can be sped up by hashing. The integer

value needed is derived from the index into the registry.

To derive a canonical normal form, the above procedure has to be

executed recursively bottom up: first all subexpressions are registered and

converted to canonical normal form, than the expression itself is treated.

3.4.3 Eliminating Redundant Representations

A further application of equality testing is to eliminate redundant expression

objects. Since expression objects are asserted to be immutable, there is no

need to replicate equal data. Eliminating redundant expression objects can

reduce the memory requirements dramatically. Not only entire, large sub_
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expressions need to be stored only once, the same holds also for small but

frequently occurring objects, like symbols.

Canonical normal forms and elimination of redundant expression objects

are independent concepts. Any equality relation can be used for the latter,

for instance equality of representations. This separation becomes important

when the data is not only used for computation but also for presentation

within documents. It must be possible to include equivalent, yet differently

presented expressions into a single document. If a document contains a+b
as well as b+a neither of the two must be changed.

Redundant expression objects can be eliminated with a similar procedure

as to compute canonical normal forms: expression nodes are registered to

define a unique object, representing each equality class. Searching for

possibly equal objects in the registry is sped up by the same hashing

mechanism as used for canonical normal form computation.

It should be noted that the procedure outlined in Section 3.4.2, com_

puting canonical normal forms, also eliminates redundant representations.

3.4.4 Global And Local Scopes

The table used to compute canonical normal forms and/or to eliminate

redundant objects interferes with garbage collection. (Garbage collection has

been identified as a must in any extensible system in Section 2.2.4.) The

marking phase of garbage collection must not follow the references in the

table. Otherwise none of the registered objects would ever be considered as

unused. Furthermore, references to objects being collected must be removed

from the registration table.

One solution is to integrate the registration table into the garbage

collector. Another solution is not to use a global table, but several smaller

ones with limited scope. Usually, a canonical normal form is required in a

specific context and for a specific set of objects. A table can be generated

explicitly for this scope.

Enforcing global elimination of redundant objects has some advantages

though. Maple [CGGLMW−91], for instance, asserts that references are

shared whenever possible. This saves memory, since every value is stored

only once. Furthermore, it allows efficient equality tests. Comparing the

references suffices. The disadvantage is that every expression generated or

entered by the user must be immediately transformed into its canonical

normal form. Also, an expression read in and echoed to the user may look

different from what the user had entered.
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If the same data structure is to be used for computation and represen_

tation within documents, this must not happen. Redundant expressions may

only be eliminated if their representation is equal. This in turn makes it

impossible to base mathematical equality testing on pure reference

comparison. Hence, for our purpose a global registry does not pay of.

3.5 Generic Drawing And Editing

The widely used Model_View_Controller Separation (MVC) [KrPo−88] allows

to extend a system with view and editing components. The components

implementing model, view, and controller of an editor form a hierarchy. The

model component is is not concerned with drawing or editing aspects.

Components implementing drawing or editing commands can be added

later to the system. In particular, different view components can be used to

achieve different presentations of the same model.

To display the state of a model, the view component interprets the

model's data. If the model is an inhomogeneous data structure, the view

component has to perform case analysis. If the model is an extensible data

structure, this can no longer be done.

Expression graphs are an extensible data structure. The MVC model can

be used in a restricted form only: the drawing procedures must be bound to

the individual expression types. However, there is still room for some

extensibility. On one hand, expressions can be drawn within different en_

vironments, for instance in a separate window or in a compound document

part. The definition of these environments can be left to extension com_

ponents, similar to the view components in the MVC model. On the other

hand, abstract draw ports can be used to bind the drawing device lately.

In [Kajler−92] a user interface for symbolic computation is presented that

requires to extend the model and view components in parallel. Case analysis

is possible, but to extend the system, several components must be changed.

3.5.1 Bounding Boxes

Expression graphs are defined recursively. Each node may refer to several

subexpressions. When a node needs to generate a two_dimensional

graphical representation, this representation needs to include the represen_

tations of its subexpressions. The spatial extension of the latter depends on

the type and value of the subexpression. Therefore, a generic mechanism is

required to arrange these objects.



34 3 Design Of A Framework For Mathematical Component Software

A minimal abstraction for an expression in two_dimensional space is its

bounding box. It is computed recursively. The bounding box of an

expression depends on the bounding boxes of its subexpressions, and so on

recursively.

Whereas expression graphs are DAGs the box graph must form a tree.

The appearance of an expression may depend on the nesting depth within

the entire formula. For instance, in deeper nesting levels smaller fonts may

be used. With large expressions their graphical representation may leave out

details to give a better overview about the main structure. Consequently,

subexpressions represented by the same node may have different appear_

ances (see Example 1).

Example 1

x+
1

x+
1

x+
...

...

The time to build a data structure containing all bounding boxes is linear in

the number of boxes and also in the output size. In the worst case the

number of boxes is exponential in the number of nodes in the DAG. Still,

the output will usually be kept within reasonable size, for instance with the

help of elisions.

Building the box data structure instead of drawing the expressions on the

fly is a matter of efficiency: without using additional storage, the algorithm

for drawing an expression would be non_linear. In the first step the

bounding boxes of all subexpressions are computed recursively. Depending

on the result of this computation the subexpressions can be placed. In the

final recursive step all subexpressions are drawn. This involves recursive

computation of all the bounding boxes of their subexpressions once more,

leading to non_linear behavior.

3.5.2 Binding Power

One more issue must be abstracted: the binding power of operators. When

drawing an expression for each subexpression has to be decided whether

parentheses must be put around it or not. To allow for a generic decision,

each expression carries a value specifying its binding power on a global

scale. If this value is lower than or equal to that of the surrounding ex_

pression, parentheses must be drawn.
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As a consequence, some extra parentheses will be drawn, depending on

what had originally been entered by the user. Note that this behavior is

desired for expressions within documents.
For instance, the expression a+ b+c is represented internally by two

objects (two sums). Following the above rule, the parentheses are drawn.

Conversely, the expression a+b+c is represented by a single object and thus

no parentheses are drawn.

The decision whether to put parentheses around a subexpression is

programmed explicitly within the box generation procedure of every

expression type. This allows for different binding power on the left hand side

and the right hand side of an operator. As an example consider ex_

ponentiation, which has higher binding power on the left hand side than on

the right hand side. Therefore, parentheses are required around the basis but

not around the exponent: a b
a b

.

Independent extensibility requires to provide a fixed set of binding power

values. Consider two independently created expression types being

combined in one expression. To determine whether parentheses must be

used, the two binding power values are compared. The result of this

comparison must be anticipated by the creators of the two components,

though they are nor aware of each other. Consequently, the component

creators need a globally fixed set of possible values to guide them.

A small scale of values appeared to be sufficient for the prototype. Five

values are defined (strongest to weakest binding): atomic, exponential,

product, sum, none. Parentheses are never needed around an atomic value,

but always around a value with no binding power. The three other values

correspond to the known arithmetic operations.

3.5.3 Editing

The box tree data structure can be used to create a generic, graphical

expression editor. Such an editor will display the expression to be edited

and also store the box tree generated during this process. This data is

sufficient to implement an expression selection mechanism. For any

coordinates pointed at with the mouse the innermost bounding box can

easily be identified. This box refers to the expression it presents.

After selecting a subexpression it can be replaced by another expression

using the typical operation on expression graphs, specified above. Starting

from a collection of predefined expressions (a palette) arbitrary expressions

can be composed using this copying mechanism. The resulting editing

model is similar to that of templates as defined by [Soiffer−91].
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The editor sketched does not depend on concrete expression types. It is

completely generic, allowing for independent extensions with expression

types.

The interface between expression types and editors is very small. It

consists of the possibility of creating bounding boxes and drawing on an

abstract port. Expressions to be displayed are known to be structurally

complete. This is guaranteed by the abstract data type for expressions.

Incomplete expressions cannot be represented by that data type.

Model_View_Controller Separation [KrPo−88] allows to display and edit

the same model in separate views at the same time. Usually, this requires

synchronization of the different views.

As discussed before, expression objects need to be immutable. Even an

editor will not change the value of objects, but create new ones. Therefore,

synchronization of different views is not necessary. Other views, than the

one edited, keep the reference to the original object. Only if expressions are

embedded into another model, e.g. in a compound document, and if this

higher order model is visible in multiple views, synchronization is required at

that higher level. A wrapper of the expression editor, the document part in

the example, is responsible for this. The expression model itself does not

need to support synchronization.

3.5.4 Textual Editing

The editor described above is purely graphical. It must be operated with a

pointing device. It is not possible to enter expressions by typing on the key_

board. The latter is demanded by experienced users as an alternative.

Presenting expressions as text in an independently extensible system

presents some problems. Names and special characters have to be used to

denote operations, values, and functions. This inevitably reintroduces the

problems of name clashes, successfully avoided so far. Two new expression

types, introduced independently, may happen to use the same name in their

textual representation. However, the problem occurs only at the top level, in

the user interface. It does not affect the security of the system. It must be left

to the user to resolve such name clashes: if the input is not interpreted in

the expected way, it can be corrected by graphical, object_based editing.

Two technical problems have to be resolved, to allow for textual editing.

Text entered must be parsed and transformed into expression graphs.

Conversely, expression graphs must be able to provide a textual presentation

of themselves. These mechanisms must be implemented generically, i.e. for

arbitrary expression types.
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It is relatively difficult to make the parser extensible. One solution is to

base it on interpretation of an abstract grammar, like for instance done for

the Orm System [KLMM−94]. Extending such a grammar to deal with new

extensions requires changing multiple components. This should be avoided.

Instead, new objects should install a procedure to be called by the parser.

Since this procedure is to be implemented by every extender, it should have

a simple interface and should have to perform a simple operation only.

For a simpler approach a basic set of expression types is defined. The

language is closed and allows to represent expressions built from this basic

set. Genericity can be achieved by using named functions to represent

arbitrary expression objects as text. (Such named functions are one type of

the basic set of expression types.) To internalize a textual expression it is

first parsed into an expression graph. In a second step objects can be

replaced by more precisely typed objects. The transformation procedures

installed are simply transformers on expression graphs. They do not have to

deal with text directly, neither with syntax errors, since completion of the

first phase asserts that an expression could be parsed.

Not all function objects need to be replaced. The sin function, for

instance, can be taken as is, whereas an Integration function will be

substituted by the properly typed object.

Conversion of an expression graph to text works in a similar way: with

expression types a method has to be implemented which generates an

equivalent representation using types from the basic set only. In a second

step, this new representation can be transformed to text using case analysis.

Section 4.3.1 discusses the details of a generic text_based expression

editor. The language implemented is based on the following expression

types: arbitrary precision integer numbers, symbols, named functions with

an arbitrary number of arguments, some binary operators (+, −, *, /, ↑),

indices, and sets. The first three types would be sufficient; the latter three

have been included for convenience during text editing and because of their

frequent occurrence.

3.6 The Editor As User Interface To Computational Commands

The generic editor sketched above provides the base for a simple user

interface to computational commands. The computational data is

represented within documents. Operating on the data means to change a

document. Computational commands are presented as editing commands.

From the user's point of view, there is no difference between, say, changing
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the font attribute of a text stretch or replacing a polynomial by its factored

equivalent. In both cases a selection will be made in a document and a

command will be applied to it. User interfaces for mathematical software

based on a similar idea are discussed in [ABMW−88, Sydow−92].

Editors and computational commands are orthogonal extensions. The

framework must define an interface, allowing the editor and the computing

commands to exchange information. This information exchange is either

retrieving the currently selected expression, or replacing an expression with a

computed result.

It must be possible to keep information, only available when retrieving a

selection, for usage during expression replacement. For instance, if more

than one editor is active, the editor which had delivered the selection needs

to be determined. Or, if the computation is done concurrently (maybe on a

remote server), the selection state of the editor might have changed in the

meantime. Therefore, when retrieving a selection, an object of a special,

extensible class is returned. A replace method is bound to this object.



4 Document_Centered Mathematical

Software

4.1 Compound Documents Are Better Workspaces

Compound documents can implement workspaces as defined in Section

2.1.2. Document parts are associated with the objects to be included into

the workspace. Parts whose main purpose is to be a reference to an internal

object will be called icons. Such icons within compound documents do not

only implement all the requirements for workspaces, they can do this better

than name bindings, mainly because of the absence of hidden state, and the

potential of graphical presentation.

4.1.1 Icons

A compound document part always refers to an object. From another point

of view one can say that the object is represented by the document part. It is

because of the document part that the object becomes visible and

accessible for manipulation by the user. Document parts with this use in the

foreground are called icons.

Definition: An icon is a visible entity (here a compound document part)

that refers to an internal object or a data structure. It can be used by the user

as a reference to an otherwise not accessible object. The way the icon

presents itself graphically is called its appearance.

Reference And Appearance AreWell Separated

The above definition focuses on an icon's referencing character, which is

separated from an icon's appearance. Due to this separation the latter is very

flexible: depending on the purpose and the kind of the object to be
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abstracted, the icon's appearance may be some predetermined picture (like

with traditional icons), a graphic indicating the object's type, or a graphic

indicating the actual state of the object. In the case of the latter, the state

may be graphically editable.

The important advantage of icons over representing objects by names is

that the appearance of an icon is not dictated by the reference mechanism.

The appearance of a name is completely determined as a certain sequence

of characters. If a single character is changed, a name will fail to work as a

reference. The appearance of an icon is a property that can be chosen freely

without affecting the reference to the object. The separation of reference and

appearance is discussed in detail in [Weck−94].

Example 2

An icon abstracting the answer to a query in a text data base:

Match (649)
"icon"

In this example the appearance reflects explicitly the type of the object

abstracted (i.e. Match) and part of it's state (query was icon, answer size is

649). The object represented by the icon is a set of text positions in the

database.

Example 3

An icon abstracting a numerical matrix:

100x100

In this example the appearance reflects the object's type (matrix) only

implicitly but gives explicit information about the matrix's dimensions (100

by 100) and its tridiagonal character. The object referred to is a two_

dimensional array of complex numbers (as opposed to a full matrix

represented as

100x100

.)
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Example 4

An icon abstracting a data structure representing a mathematical expression:

d
sin x

cos x
x

0

p

In this example the appearance is reflecting the complete state of the

abstracted object, i.e. the exact expression represented by that object.

Depending on the space needed for the complete presentation of the object,

the icon may display a reduced or collapsed version (like in the matrix

example above). This is an important issue: on one hand the icon should

present as much information as possible. On the other hand the user wants

to be able to see as many icons within a document. Therefore individual

icons must not consume too much space. Choosing the right amount of

data to be represented by an icon is a major design decision. It may even be

reasonable to allow the user to influence the granularity of representation. In

any case, if the icon does not reflect the entire state of an object, additional

commands should be provided to zoom into the data or to display it in a

separate window.

Example 5

In sums with many terms or in matrices elision is used to reduce the

number of objects displayed:

x
10

+x
9
+x

8
+x

7
+ ...6 +1

s 1 ... 0

1 s ... 0

... ... ... ...

0 0 ... s

The following expression exhibits elision of subexpressions because of their

depth:

1

1+
1

1+
...

...
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It should be noted, that in our implementation elision only affects the

graphical presentation.

An icon is not an expression. It is a document part referring to an

expression. Because of that it can carry more information than the

expression it refers to. In particular, additional information about the

graphical presentation within the icon can be stored with it. The granularity

of the presentation is an example of such information.

Since icons carry direct references to objects they can retain more

information than pure graphical presentations would. This is important

when results of earlier computations are used as input to further computing.

The full mathematical information of the computed result is retained. This

may include type information and others which would be lost if the

intermediate representation would have to be purely graphical. Furthermore,

the graphical representation of an icon can use elision or other mechanisms

to reduce the amount of space needed without actually loosing the

information. These advantages are a direct consequence of the separation of

reference and appearance.

4.1.2 Compound Documents With Icons FormWorkspaces

Icons as compound document parts can be selected as input for

commands, and they can be generated as output by commands. Such

output may either be pasted to a global insertion focus or replace the input

data. Thus, compound documents can serve as user interfaces for

computational commands. From the compound document point of view

such commands are equivalent to any editing operation (see Section 2.3.5).

Compound documents together with icons can be used as workspaces. To

prove this statement, it has to be shown that all the requirements for a

workspace stated in Section 2.1.2 are met:

The workspace is the compound document itself. The objects in the

workspace are those being represented through icons within the

document.

Insertion, replacement, or removal of an object is done by pasting,

replacing, or deleting the corresponding icon, using the normal

editing operations of the document editor.

To get the overview of all objects within the workspace scrolling

through the document is sufficient, since all references are visible as

icons. No hidden state is involved.
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To refer to an object in the workspace the corresponding icon is

selected using the selection mechanism of the compound document

editor. Operations use this selection to retrieve their input data. If an

operation depends on more than one object, multiple selections can

be used or the objects can be composed to form a contiguous

document section (see Section 4.1.4).

Icons display the objects they represent directly and in_place. No

action of the user is required to make an object visible.

The objects in the workspace are externalized and internalized by the

normal store and load operations for the compound document,

since they are part of it.

4.1.3 Advantages

Implementing workspaces with compound documents and icons has

several advantages over using name bindings. These result mainly from icons

being visible references not involving hidden state. Workspaces can be

manipulated directly. This is an improvement over manipulation through

programming languages, as already stated in [Shneiderman−83].

There are three main advantages of icons in documents:

direct representation and manipulation of the workspace's state

more direct information about the individual objects

the possibility of changing objects directly

True Document_Centered Representation

Implementing workspaces with documents independently of computing

programs leads to the freedom and openness of document_centered

software (see Section 2.3).

Higher Transparency Of Workspaces

Icons refer directly to the objects they stand for. There is no internal table of

name bindings to be kept consistent with the user's knowledge. The user

does not need to memorize previous assignments and cannot accidentally

overwrite a name binding and lose information in this way. This

distinguishes our approach from many others (e.g. Maple's Worksheets

[CGGLMW−91] or Mathematica's Notebooks [Soiffer−95]) which use

documents only as editors, allowing to manipulate workspaces,

implemented elsewhere (see also Section 6.2.).
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Mnemonically chosen names can also present information to the user.

Such information has to be presented in a different way, when using icons.

For instance, names can express further attributes of an object or relations

between several objects. As an example consider a function named f and its

derivative, which can be called df, or fprime. Another example is a set of

expressions, being called exp1, exp2, exp3,... to indicate their relation.

Workspaces implemented as documents offer other possibilities to present

such information. The placement of icons within the document can be used

to express relations between objects. Related icons can be collected in a

separate paragraph or within a graphical box. Arbitrary extra information can

be presented as text or as picture close to an icon.

Objects are stored and loaded together with the document holding

references to them. This gives a very light_weight implementation and a

simple user model. Storing only part of the workspace's contents can be

done by copying the objects in question to a separate document and storing

that.

Icons present a user interface to a system's garbage collection, where

such a mechanism exists. Since objects still accessible consume a visible

resource (space within the document), the user will naturally clean up on a

regular basis and remove icons no longer needed, allowing the corre_

sponding object's storage and possibly other bound resources to be re_

leased. The document metaphor gives a clear feedback about what is part of

the workspace. Membership within workspaces can be manipulated directly.

More Information About Objects

The visual appearance of an icon is not restricted to primitive pictures but

can give more or less detailed information about the object in question. A

mathematical formula e.g. can be typeset within an icon. Such a graphical

appearance can present much more information to the user than a simple

name can.

As discussed in Section 4.1.1, the graphical presentation needs not to

show the exact data. For instance, elision as defined by Soiffer [Soiffer−91]

may be used to reduce the space needed for drawing.

Icons are references to structured expression objects instead of pure

graphics. This results in a constrained editor: only well defined expressions

can be created. Drawing as well as computation can rely on this, simplifying

their task. Furthermore, expression objects can carry more information than

pure graphics can. This is of particular importance whenever a result of a

previous computation is to be used and for instance type information needs

to be retained and passed.
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Icons Can Be Reactive

As a further option, the visual objects can be made reactive and consume

user input. A mathematical expression, for instance, can be represented by a

document part implementing a complete expression editor. Such a part

assumes two roles at the same time: that of an icon in the sense of our

definition and that of an editor. Some expression editors are already avail_

able as document parts (see Section 6.4).

Mathematical expressions are defined with a recursive structure. In the

graphical presentation of an expression a subexpression can be selected

with a pointing device. Such a selection can be used as input for computing

commands on the same basis as an entire icon.

Sessions Are Not Needed

Together with the management of hidden state the concepts of history,

sessions, and therefore also session control can be given up. Sessions are

needed as scopes for name bindings and to steer a program's start and

termination. In our model name bindings do not exist. Loading and unload

ing of programs is completely decoupled and organized by the environ_

ment. Typically, the code necessary to execute a specific command will be

loaded into the system when its execution is requested for the first time,

and it remains there until unloaded either by the system to free resources or

by the user, e.g. to force loading of a new version. The only aspect of session

control still needed is a possibility to interrupt an ongoing computation.

From the user's perspective, the protocol of a session may be of interest.

It describes a sequence of steps to reproduce the results. Such a protocol

can be presented within a document, too. (Some of the examples given

within this thesis can be seen as such protocols.) Since documents can be

edited arbitrarily, a special mechanism to enforce the correctness of such a

protocol is needed. This can either be implemented by an explicit command

to recalculate the individual steps, or by a construction similar to spread

sheets. Both such mechanisms are discussed as scripting mechanisms in

Section 4.2.3 and 4.2.4.

4.1.4 Composing Parameters − Using Icons In Context

To execute a computational operation as an editor command requires the

parameters to be selected beforehand. Commands operating on several

objects require multiple selections. These selections need to be ordered,

since many commands will not be commutative on their input objects. To
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give the user feedback on the ordering, selections need to be marked

differently.

An alternative can be developed if icons are seen within their context, as

has been suggested in Section 2.3.2. Without loss of generality and for the

sake of simplicity we will restrict ourselves to icons in textual context. These

can be interpreted as tokens of a language. Icons can denote subexpressions

within a text that represents an expression. A text relating all the parameters

of a command can be composed using drag & drop. The operation's results

can replace the input parameter text, which is only a copy. This fits well into

the editing metaphor discussed before (see Examples 6 and 7).

Example 6

Assume that the integral df x x

c

b

is to be subtracted from df x x

a

b

. Instead

of selecting the two operands in a specific order (subtraction does not

commute!) before activating a subtraction command, the following ex_

pression is generated at the place, where the result is wanted:

df x x

a

b

− df x x

c

b

The minus between the two expressions can be typed on the keyboard,

whereas the two integrals are copied using drag & drop. Selecting this

expression and executing an evaluation command (Maple.Combine)

replaces the text stretch with the expected result:

df x x

a

c

.

Example 7

Not only operators but also other objects, like numbers, can be included

into the input in textual form.

The following is an example for a weighted sum of two matrices:

3.385 *

10x10

+ 7.834 *

10x10
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Generalization

Formulae can be represented in various ways. It can be a single icon, plain

text, or any mixture of these. It is up to the user which representation to use.

The user can compose formulae in the most convenient way. The parser

component has a key role. It separates the concern of representation from

the rest of the software. All the possible representations are analyzed by the

parser. Regardless in which form the input is, a single expression object will

be returned.

4.1.5 Operating On Subexpressions

An icon allows selection of a subexpression within the expression it

represents. Such a selection can be used as input to computational

commands, see Example 8.

Our experience has shown that it is the most natural way to let every

command replace the input with its output. This works well for both

operating on a text stretch interpreted as an expression sequence and

operating on a subexpression selected within an icon. (Alternatives to

presenting commands as editing operations are discussed in section 2.3.5.)

The interface abstracting the different selections and the corresponding

replacement actions is a central service to be used by all commands. The

scripting facilities discussed in Sections 4.2.3 and 4.2.4 create a virtual

selection. Therefore, all commands can be used in scripts, too.

Example 8

Given the following expression:

f x
3
−4 x

2
−3 x+18 +a g x+4 x−3 x+5

3
+b

Consider we want to factor the parameter of function f and to expand the

parameter of function g, leaving the rest of the expression unchanged. The

subexpressions to be expanded can be selected individually to apply, for

instance, Maple's factorization and expansion commands, leading to the

following result:

f x+2 x−3
2

+a g x
5
+16 x

4
+78 x

3
+20 x

2
−775 x−1500 +b
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If we had applied the expansion command to the entire expression, the

result would not be as desired. The outermost product would be expanded,

but the function parameters would be left untouched:

f x
3
−4 x

2
−3 x+18 g x+4 x−3 x+5

3
+

f x
3
−4 x

2
−3 x+18 b + a g x+4 x−3 x+5

3
+ a b

4.1.6 Concurrency, The Client Server Model, Icons To Represent

Upcoming Results

The client/server architecture is a general abstraction to present concurrency

of computation to the user. It can be used to model computation on a

remote server or by a parallel process, and allows for integration of legacy

software.

The document_centered user interface presents software as editing

operations. The user interface turns into a multi_document editor. Editors in

general are single threaded programs. This is to avoid inconsistency of the

data caused by interference of parallel threads, which otherwise would lead

to non_negligible investments into synchronization and mutual exclusion.

This works well only, as long as the user executes single editing operations

and waits for their completion before issuing the next command.

As long as only simple editing operations are considered, it can be

assumed that the operations terminate quickly. A sequential programming

paradigm, blocking the interface during computation, is suitable in these

cases. Symbolical or numerical computations can take up to several minutes

or even hours. Generally, their duration cannot be estimated in advance.

Therefore, the user interface must not be blocked.

When a result from a server becomes available, it needs to be represented

by a document part. Three possibilities exist to make a new part available to

the user:

the part can be pasted into a new document which is opened at the

same time.

the part can be pasted into the document the user currently deals

with (e.g. at the current input focus).

the part can be appended to a specific document, e.g. a log text.
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Following good user interface conventions the first two possibilities are

ruled out: it should be considered bad design if a document changes (or a

new window appears) unexpectedly, i.e. not as an immediate consequence

of a user action. Using a log has the advantage of automatic documentation

of the actions taken, but it requires to explicitly copy every result to its final

place.

It is better to change the document upon launch of a command to

represent the upcoming result as a part of it. This gives the user feedback

with less surprises: the object that will represent the result appears

immediately when the command is issued. A visual cue can identify it as the

representation of an upcoming result.

In [LiSh−88] mechanisms of this kind received the name promise, which

we want to adopt here.

Icons can be pasted into a document immediately when the command is

issued. Already before they get their final value assigned they represent a

handle to the upcoming result. This can be used to compose new

expressions and to schedule further commands for later execution.

In contrast to promises in [LiSh−88], which are just names, the icon's

appearance can inform the user about the computation state. In [Weck−94]

a user interface using this idea is described: an interface to a text searching

engine, giving access to the Oxford English Dictionary [Fawcett−89, OED].

Icons used as promises can even be used to control the server's

operation: if the user removes the last instance of a promise (by deleting the

icon from the document), the corresponding (future) result becomes

inaccessible. Hence, the server might as well stop its computation

immediately.

In a garbage_collected environment, proper implementation of such a

mechanism requires that the object, which represents the upcoming result,

performs an action before it is removed. For this, the garbage collector needs

to call a method, which can stop the server. This mechanism, that allows a

special method to become active before removal of an object, is commonly

known as finalization.

4.2 Scripting

With the user interface model discussed so far only step by step

manipulation of data is possible. Scientific computing usually requires an

easy to use mechanism, allowing the composition of several commands to

be executed as a script. Scripting is a form of programming. Its distin_
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guishing features are:

scripting focuses on the combination of existing operations rather

than on efficient implementation of algorithms.

script creation must be quick and easy.

Due to the former property fast execution of scripts is not an important

issue. Scripts can be executed by a language interpreter and need not be

compiled. This in turn simplifies script creation. Most scripts are ad hoc

programs performing a particular task on a collection of input data.

Apart from improving execution speed, the purpose of compilation is to

detect programming errors as early as possible. In the case of scripting this

early detection may be less important. On one hand, scripts are supposed to

be very simple and easy to check manually. For instance, most scripts will

not use control structures at all. On the other hand, scripts usually have a

short life time.

Scripting can be implemented in four different ways within a user

interface based on document editing. Two of them are based on preexisting

external mechanisms: the system's extensibility with new commands, and

existing scripting components of the editor or its environment. Two further

approaches use the compound document concept. All four approaches are

introduced below. Section 4.2.6 discusses their advantages and disad_

vantages.

4.2.1 Approach 1: Command Programming

The natural way of programming within a component software environment

is implementing new components. An editor_based user interface is most

naturally programmed by extending it with new editing commands. A script

can be implemented as such a new command.

As the programming mechanism of a component software environment

has to be powerful enough for general programming tasks, the remaining

question is whether it is easy enough to use. Unfortunately, this is a very

subjective, almost a religious issue. The Oberon System, for instance, has

been designed with ease of programming in mind. This is reflected by the

easy_to_master programming language and by the fast compiling and linking

mechanisms.
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On the other hand, creating a command still requires some overhead. A

new module has to be written, exporting a procedure implementing the

command. This is sometimes considered a burden, too heavy for the user.

Furthermore, managing module loading and unloading requires some basic

knowledge about the system.

Using the same language and environment for programming and scripting

allows for a seamless transition between scripting and general programming.

Scripts can use all of the programming environment's power. A script can

easily be converted into a regular program, allowing for rapid prototyping.

The later can also be achieved, if the scripting language is a subset of the

programming language.

The Oberon System, for instance, could be extended with an interpreter

executing Oberon statement sequences, but not allowing for type or

procedure definition.

While the previous discussion suggests to use a general purpose program_

ming language for scripting, today's mathematical computing environments

seem to have chosen the opposite approach. The languages defined for their

programming exhibit some features of a scripting language. Programs are

interpreted. Programming focuses on combining operations, predefined in

the language. The languages are rather specialized for the problem domain

but not for general programming.

The main consequence of emphasizing simple, mathematics_related

programming is that scripting is restricted to the mathematical area. Using a

general purpose programming system allows scripts, like any other program,

to bridge the gap between different components, where appropriate.

4.2.2 Approach 2: Editor Scripting

Many editors for compound documents feature a proprietary scripting

component. With OpenDoc, for instance, OSA (Open Scripting Architecture)

has been defined. Also, some software environments feature a scripting

facility, like AppleScript of Apple's System 7. Unix shell programs fall into a

similar category. Depending on their particular capabilities, these scripting

facilities can be used with a document_based user interface.

This kind of scripting focuses on editing operations rather than on data

manipulation. In general, the instructions in a script are operations similar to

those invoked directly by the user. Many editor scripting components feature

a recording facility to automatically generate a script from an editing

sequence.
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At one extreme, editor scripting can be regarded as an attempt to

overcome a bad overall software architecture: the individual software

components lack a programming interface. Therefore, the only way to use

them in a programmed, non_interactive way is to simulate a (human) user.

4.2.3 Approach 3: Interpreting A Document Section

Both methods described so far require the use of tools external to the user

interface and workspace implementation. It is preferable to write scripts in

the same way as documents. This makes scripting easier, since the same

mechanisms are used as in the user interface. Also, such scripts can be used

in interactive text books to show a sequence of computation steps. Such

scripts require that icons can be included into scripts.

A script is a structure on a higher level than singular objects. It expresses

relations between objects. Therefore, the environment of the objects needs

to be considered. The environment of an icon is its container. As a

consequence, scripts are expressed within containers.

Most naturally, scripts are represented in a container that supports

intrinsic data (see Section 2.3.1). Containers supporting text or graphics are

particularly well suited. Without loss of generality, we will concentrate on

text. Text is much easier to handle than graphics, and textual scripting is

better understood than graphical scripting, but the main considerations

apply to both.

In a text container a script can be represented using a programming

language. This language will have one particularity: icons can be used as

identifiers.

Interchangeability between scripts and programs like with command

programming can be achieved by using a subset of the environment's

programming language, with the exception of the icons. The scripting

mechanism would not support definition of procedures or types. If such is

required, the programming environment's language has to be used. The

extra overhead for creating a module is relatively small if types or procedures

are being defined.

Example 9

In one of our projects a document_centered front end for a matrix

computation library has been created. This prototype featured a script

interpreter. The language used was derived from Matlab [Mat−90]. A script

consists of a sequence of statements. Each statement is either an expression

or an assignment of an expression to a variable. Assignment statements
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result in a name binding. Statements not containing an assignment produce

an icon as reference to the expression's value. In the particular implemen_

tation these icons were pasted to the system's global insertion focus, i.e. the

same place where characters typed on the keyboard would occur.

A sample script is given below. First, a matrix and a vector are assigned to

the names A and b. This "input" is stated by two icons. The function

MatLib.QR(A) computes two matrices, assigned to Q and R. The fourth line

and the seventh line do not contain an assignment, these statements

produce an output icon instead.

A :=

5 x 2

b :=

5 x 1

Q, R := MatLib.QR(A)

R \ (Q' * b)

c := (Q' * b)

c := c[2:4, 0]

c' * c

Interpretation of the above script leads to two icons representing the script's

results. The icons are listed in the order in which they are produced. The first

icon is produced by the fourth statement, the second icon by the seventh

statements of the above script:

2 x 1 1 x 1

This approach has one major disadvantage. A contiguous section of a

document to be interpreted as a program must not contain any other text.

Consider for instance an interactive text book, in which sequences of

operations are explained. If these operations should be interpretable as a

script, they must be clearly separated from the explaining text. To achieve

that, text must either be written within the syntactical corset of comments,

or statements must be marked specially. The latter can be done with icons.

An alternative provides the fourth approach, explained below.
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4.2.4 Approach 4: Interpreting Special Icons

Each statement of the script is represented by an icon. This style of scripting

can be seen as a statement oriented form of Literate Programming as defined

by [Knuth−84a]. The interpreter extracts the executable statements from a

document. When creating such a document the needs of readability can be

emphasized. The script can be scattered over the document, not affecting its

structure. As a result, the document can be more readable than with the

previous approach.

Example 10

This example illustrates how an interactive text book could look like. The

actual computational commands are hidden in the corresponding script

parts. The script combines local computing with a remote Maple server.

In the text below, all formulae including an assignment (denoted by ":=")

are represented by a special icon. (These are not marked further in the paper

version.) The script interpreter ignores everything, except for these icons.

During interpretation, for each icon a specific action is executed and the

result is displayed by the icon. The actions to be executed are not displayed

by the icon. To review or edit them, the icon has to be opened through a

mouse click. This allows to create better readable texts. (Otherwise the

action descriptions would have to be integrated into the text.)

The following text is shown as it results after evaluating the script.

Let f y := d4 x+2 x
3
+3 x

2
+5+x

4
x

0

y

.

Using Maple to integrate we obtain f y := 2 y
2
+
y
5

5
+
y
4

2
+y

3
+5 y.

Substituting 4711 for y we get: f 4711 := 2 4711
2
+
4711

5

5
+
4711

4

2
+4711

3
+5 4711.

This can be simplified to f 4711 :=
4643.....87

10
,

which Maple can factor into f 4711 :=
3 7 13 23 53 61 673 339871517

2 5
.
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The script statement associated with the last icon in the script above

(performing the factorization), may look as follows:

f 4711 := ExprMaple.Eval ifactor(?)

applied to f 4711

4.2.5 A Note On Name Bindings Within Scripts

We have stated that name bindings have several shortcomings when used in

a dynamic, interactive situation. These shortcomings result from the absence

of static scoping. For scripts, static scopes can be defined: each script has its

own, completely encapsulated scope. Total encapsulation is then feasible,

since the script can communicate with its environment through icons.

From the user's perspective execution of the script interpreter is an atomic

action. Name bindings can be used exactly within the scope of a single

command invocation, but after the command's termination all name

bindings are released.

4.2.6 Discussion

The four implementations of scripting discussed have different strengths and

weaknesses. Command programming is best suited for programming

algorithms and using libraries. Editor scripting is useful to automize

sequences of editing operations. Because of its flexibility, interpretation of

document sections is the choice for experimenting with simple sequences of

mathematical operations. Interpretation of icons finally has its strength in

presenting tutoring texts that should be checked for consistency

automatically or allow the reader to experiment. It should be noted, that the

former two approaches involve mechanisms outside the workspace

implementation. The latter two use the same reference mechanism to

objects as the user interface.

One common point of strength is the independence from the

computational tools used for the computation. This independence results

from abstracting all computations by non_interactive commands. Com_

mands using different remote services and commands computing locally

can be arbitrarily interleaved. A single script can involve computation of all

these kinds. Special consideration has to be given to the fact that remote

computations are asynchronous activities (see also Section 4.1.6).
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The last approach, interpretation of scripts scattered into several icons,

could easily be augmented with an automatic evaluation mechanism. This

would implement a constrained editor, since the results visible in the various

icons would always satisfy some specified relations. The resulting user

interface would be similar to that of Mathcad [MC−93], which resembles a

kind of spreadsheet. Unnecessary work (redoing calculations on unchanged

data) could be avoided either by using some heuristics or by leaving the

decision to the user, when to make the entire document consistent. The

latter is exactly what is offered by the implementation discussed above: a

command is offered which computes all the script statements on demand.

4.3 A Simple, Generic, Expression Editor

Mathematical expressions need to be entered and edited by the user. The

original compound document concepts suggest that parts representing

expressions also encapsulate a complete expression editor. For this, existing

graphical expression editors can be transformed into document parts.

Workspaces and scripting can be implemented using such parts. From

another point of view one could say that any functionality of an expression

editor can be incorporated into an icon. A comprehensive discussion of

various techniques for expression editing can be found in [Soiffer−91].

This section describes an implementation of an expression editor based

on the interaction of containers and parts in compound documents. It is not

the main goal to introduce a new user model, neither to create a particularly

"powerful" or "comfortable" expression editor. Instead, we focus on extensi_

bility and light_weightness. Much functionality can be gained with little effort

by using the material introduced for generic drawing (Section 3.5) and icons

in context (Section 4.1.4). The point to be demonstrated is how much can

be achieved with small software when the design is good. The editor may

not fulfill everybody's wishes, but it is probably extensible towards them.

An important design goal is extensibility with respect to new expression

types. Too many mathematical notations exist to include all of them in a

closed editor. The complexity of the editor and its extensibility are related

directly: the fewer concepts are used, the fewer an extension programmer

must understand and implement. Defining a small interface between the

component framework and expression types is the crucial software

engineering task. Also, from the user's perspective it is advantageous if the

editor is built on a few generic principles. This makes editing uniformly,

independent of the type of the expression being edited.



574 Document_Centered Mathematical Software

Sections 4.3.1 shows how interpretation of expression icons within text

can be used for editing. The resulting text_based editor is very simple and

easy to grasp by the user. In a second step (Sections 4.3.2 to 4.3.4) this

editor is turned into a light_weight graphical expression editor, featuring

standard editing mechanisms.

4.3.1 Editing Expressions By Partial Conversion To Text

A compound document container featuring text as intrinsic data allows the

combination of textual and graphical presentations of expressions. Whereas

text is easier to edit, graphics are easier to understand. To combine these

advantages icons are used to achieve an appealing two_dimensional

appearance, and text is used for expression editing and entering.

The key is the ability to easily transform expressions between the various

representations (pure text, text containing icons, single icon). Most

important, this conversion can be done gradually, since an expression can

be represented by a mixture of text and icons. This gives access to sub_

expressions for editing, in contrast to tools allowing for textual repre_

sentation only of complete expressions. With the latter, the user may loose

orientation if the expression is too large.

An in_place editor would depend on the type of the expression repre_

sented by it. Editing text in turn is generic. Text has no further semantics,

meaning is associated by an interpreting parser.

Roughly, the interface of an expression type abstracts:

displaying expressions on a two_dimensional plane

conversion to text

conversion from text.

Expression drawing and conversion from text are already implemented for

workspaces and scripting (see Section 4.1.4.). The collapse (or iconize)

command retrieves the current selection and replaces it with a single icon.

Gradual transformation to text can be done along the structure of the

generic data graph representing the expression. The root node is converted

to text and its subexpressions are represented by individual icons. The result

of this operation will be called the first_level decomposition of the original

expression. The first_level decomposition of an expression representing a

polynomial for instance would be a text consisting of several icons (one for

each monomial) with plus/minus signs in between.
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These two mechanisms are sufficient for expression editing. The part of

an expression to be edited is transformed to text by iterative first_level

decomposition. Once arrived at the desired subexpression, the text can be

changed through text editing operations. Finally, the entire text is converted

back to an icon, using the command described above. (See Example 11)

This procedure is independently of expression types. Decomposition

follows the generic graph structure. Only conversion of the individual

information of a node to text depends on the node's type. For this, a

procedure must be bound to the node's type.

Obviously, decomposing an icon is a frequent operation. It should be

associated with a mouse click on the icon.

Note that the this example intends to show how the transformation is

done manually. Alternatively, a simplification command may be used to

perform the same transformation.

The procedure shown involves a minimal number of concepts to be

understood by the user. No knowledge is needed apart from how to use the

text editor and the conversion mechanisms. However, other possibilities

exist and will be explained next. A first improvement is to make selected

subexpressions directly accessible.

Example 11

To replace the fraction by the corresponding tan within

d
sin

x

2 p

cos
x

2 p

x

0

p

the expression can be decomposed on its first level by clicking on it with the

mouse:

int(
sin

x

2 p

cos
x

2 p

, x, 0, p )

One further mouse click on the fraction leads to:

int((sin
x

2 p

/ cos
x

2 p

), x, 0, p )
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The numerator (sin(...)) and the slash (indicating the fraction) can be be

deleted from the text now:

int((cos
x

2 p

), x, 0, p )

After a third decomposition (of cos(...)), the expression has been expanded

enough to change the function name cos to tan by plain text editing:

int((tan(
x

2 p

)), x, 0, p )

Selecting this text and applying the collapse_command leads directly to the

desired two_dimensional representation:

dtan
x

2 p

x

0

p

4.3.2 Selecting Subexpressions

Editing expressions graphically involves two different mechanisms: pure

graphical manipulation using a pointing device and parsing input from the

keyboard, providing immediate two_dimensional feedback. Graphical

manipulation means to copy and/or replace selected subexpressions. New

expressions can be input by composing them from predefined patterns. A

particularly flexible, configurable, and light_weight implementation of this

uses copy and paste. All these operations are based on selections of

subexpressions within icons.

Generic drawing of expressions relies on bounding boxes to abstract the

properties common to all expression types (see Section 3.5.).

In detail, a bounding box carries the following information:

the spatial extension (width, height, horizontal baseline, optionally a

vertical baseline)

a reference to the expression object

references to the boxes of the immediate subexpressions and their

relative locations

a method to draw the expression onto a (scalable) bitmap.



60 4 Document_Centered Mathematical Software

Bounding boxes allow to select a subexpression with a pointing device.

Every point in the X_Y_plane can be associated with the innermost

expression visible at this point. Tracking such selections is independent of

expression types and can be controlled by the event handler of expression

icons.

Expression selections can be integrated with text selections. An

expression can be put into any text by generating an icon for it. If a selected

text stretch can be interpreted as an expression, such a selection can be

pasted as a subexpression. (An attempt to paste text not being valid as an

expression will lead to an error message and leave the destination

unchanged.) Expression selections and text selections become interchange_

able. The copy feature of the text system can be extended onto selections

within icons.

Subexpression selections can improve the text_based expression editing

discussed in Section 4.3.1. Instead of converting the surrounding expression

to text, the subexpression can be copied out for editing. Icons may

recognize a special mouse command as a shortcut for such operations. This

command opens a view presenting the selected subexpression for editing.

This view serves as a scratchpad. An update command allows to replace the

originally selected subexpression. Alternatively, every editing operation may

invoke the parser leading to an automatic update whenever possible.

Example 12 shows how Example 11 can be done with this.

It should be noted, that this approach fits well into the user model of the

Oberon System (which has been used for the implementation presented in

Chapter 5). Data within a Text Element can usually be edited in a similar

way: clicking the mouse on the Text Element opens a separate view

presenting a special purpose editor. In the case of expressions this editor is

the text editor itself. Furthermore, in the Oberon System views are very

light_weight objects. For instance, no separate process is created for them.

Therefore, opening an extra view is fast. It is perfectly feasible to base the

editor on this.

Example 12

With the mouse the fraction can be selected within

d
sin

x

2 p

cos
x

2 p

x

0

p

.
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The selection can be opened in a new text view

sin
x

2 p

/ cos
x

2 p

.

This representation can be changed to tan
x

2 p

as shown in Example 11.

An update command (or automatic update) substitutes this expression for

the original fraction.

Example 13

Consider that the leading coefficient of the following polynomial shall be

changed to 17.

3 x
5
+25 x

4
+94 x

3
+210 x

2
+271 x+165

This can be done by selecting the number 3 with the mouse, opening the

selection within a separate view which will contain the text "3", changing

this text to "17", and updating the expression icon.

4.3.3 Well_Formed Expressions

Definition: A mathematical expression, represented in any way, is called

well_formed if all required subexpressions are present and well_formed and

are of the correct type (if any requirements are imposed).

Examples

A fraction is well_formed if both the numerator and denominator

exist and are both well_formed.

A well_formed integral has either no bounds specified or both upper

and lower bound are given and well_formed. The subexpression

specifying the integration variable may be required to be of type

symbol.

Mathematical correctness of an expression is not required. An

expression containing a division by zero or an illegal limit can still be

well_formed.

With typed expression graphs as introduced in Section 3.1, ill_formed

expressions can be excluded. Explicit assertions may be required (and

enforced) when converting from text or generating new objects.
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Generally, an editor serves the user better if expressions are guaranteed to

be well_formed. Mistakes can be detected earlier. Also, computing com_

mands can rely on well_formed input parameters. This helps to improve effi_

ciency and, more importantly, ease of extension. If it is guaranteed that ex_

pressions are always well_formed many explicit checks and assertions can be

avoided. Also, the type_dependent part of expression drawing can be kept

simpler.

Operations OnWell_Defined Expressions

Insertion or deletion operations are not allowed when editing well_formed

expressions (in contrast to editing text or graphics). In general, deleting a

part from an expression or adding a new one can lead to an ill_formed

expression. To cope with this, special treatment depending on the involved

expression's types would be needed. If possible, such special treatment

should be avoided to keep the editor as simple and easily extensible.

Consequently, only a single editing operation must be supported on

expressions: replacement of a subexpression. This editing operation corre_

sponds to the typical operation on expression graphs described in Section

3.3. As a further consequence, the insertion focus within an expression is

always a subexpression selection. This is a rather drastic approach, but it

simplifies the editor considerably.

Incomplete expressions must be represented and edited in text form.

However, such incomplete expressions can be avoided by using pattern_

based input.

4.3.4 Patterns, Templates, Overlays, And Palettes

Expressions can be input graphically using patterns. Such patterns are

presented to the user within palettes. Depending on the way they are used,

patterns can be divided into templates and overlays.

A template is a pattern to be embedded into the target expression. It is

picked from the palette and copied as is. An overlay contains a special,

unfilled slot to be filled by the expression to be replaced, i.e. the overlay is

"wrapped around" the selected expression (see Example 14).

The conceptual issues of templates and overlays are discussed in depth in

[Soiffer−91]. The differences between templates and overlays become

apparent when we seek a natural way to input expressions. With templates,

an expression is input in prefix style, whereas overlays lead to infix and
postfix styles. To enter a+f x , the following sequence of templates has to be

applied: ?+?, a, f ? , x. The same expression is generated by applying the
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following sequence of overlays: a, ?+?, x, f ? . The most natural sequence

requires to use both templates and overlays. If ?+? is applied as an overlay
and f ? is applied as a template, the sample expression can be entered as it

would be read: a, ?+?, f ? , x.

It can be concluded that an extensible editor should feature both

mechanisms. The choice of which to apply should be left to the user as it

may depend on the type of the concrete expression.

To pick a template from a palette is the same as copying a selected

expression. Hence, templates do not require a specific implementation. The

copy mechanism can be used, and any document containing expressions

can serve as a palette. The resulting advantage is the same flexibility as

introduced into the Oberon System by Tool Texts, replacing traditional

menus: instead of configuring palettes through a separate mechanism, they

are generated, changed, and stored like any document.

Ease of use of this template implementation depends heavily on how

copying is presented to the user. Oberon's copy_over mechanism is

particularly handy for this purpose. It allows to select source and target in

either order and to issue the copy command simply by an additional mouse

click while tracking the second selection. Therefore, copying a template

requires a single extra (inter_) click, compared to a specialized palette

implementation.

With other models for copying, like copy & paste which uses two separate

operations to copy to and from a clipboard, the lean template

implementation would be too cumbersome to use. It has not yet been

investigated, how good drag & drop would suit the purpose.

To allow entering an expression of a new type, the software component

defining this type needs to be loaded. This happens automatically when a

document (maybe a palette) containing an expression of the type in

question is opened, since it is the task of the document editor to load the

code required by the parts within a document. Hence, the pattern_based

extensible expression editor is being configured by opening palettes.

Alternatively, a component can be loaded explicitly through a command.

Overlays can be implemented with the help of a small extension: a special

expression type placeholder. Upon replacing a subexpression, every

placeholder is substituted by the originally selected target expression, which

otherwise would have been discarded. Thus, the pattern copied is being

wrapped around the selected expression. Obviously, a pattern containing no

placeholder is simply replacing the target, i.e. it is treated as template.

Hence, overlays and templates are distinguished by the occurrence of

placeholders within them.
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Also in Kaava [Rimey−92] placeholders are used to distinguish templates

from overlays.

[Soiffer−91] suggests that both templates and overlays could also be

entered through the keyboard as an alternative. This requires assignment of

patterns to function keys or special key macros. In an extensible envi_

ronment such assignments have to be created as configurations. Whereas

palettes are visible, assignments to sequences of key strokes are invisible

and must be memorized by the user. This is an advantage for expert users,

but a disadvantage for others.

On the other hand, it is easy to implement such an extension. For

configuration, a special document could be introduced, containing icons

representing the patterns and the corresponding key_codes. However, this

functionality does neither present a conceptual invention nor is it particularly

difficult to realize. Thus, it has not been implemented in the prototype.

Many expression editors include undefined symbols into their templates.

These are to be filled with concrete subexpressions later. Here, undefined

symbols are a superfluous addition, since every subexpression can be

selected for replacement. Still, undefined symbols could be used to identify

positions where further input is required. With this information selections

could be made automatically, allowing the user to enter subexpressions

continuously without selecting the input focus each time. This concept

could be added to expression icons without affecting the overall design.

Therefore, it has been omited from the prototype implementation.

Example 14, Templates and Overlays

Patterns like the following can be used as templates:

n Y Y lim Y
x 0

lim df t t

−%

x

x 0

Patterns like the following act as overlays when copied to a selection within

an expression icon:

n ? ? lim ?
x 0

lim d? t
−%

x

x 0

If the template n Y is copied to the integral within

lim df x x

0

a

a %
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the result is

lim n Y
a %

If the overlay n ? is copied to the same place, the result is

lim n df x x

0

a

a %

4.3.5 Parsing

A typed text can be parsed and translated into an expression, as an

alternative to graphical input. Because the set of expressions should be

extensible, the parser needs to be extensible, too. Hence, syntax_driven

editors are often used for this purpose. To extend the editor the language

syntax must be extended. Examples of syntax directed editors for extensible

languages can be found in the realm of program editors (e.g. Orm

[KLMM−94]). Unfortunately, requiring maintenance of a separate syntax

description contradicts the design philosophy which has been followed so

far in this thesis. This philosophy is that only a single module needs to be

programmed and loaded to extend the system with a new expression type.

With a syntax driven editor the syntax would have to be changed in addition

to programming the module.

While expressions are entered through the keyboard, intermediate states

occur where the input is incomplete. Incomplete input can be syntactically

incorrect, or represent an ill_formed expression. Two approaches exist to

cope with such situations: either parsing and feedback can be delayed until

the input represents a well_formed expression or the input can be completed

automatically after each change. Automatic completion of ill_formed

expressions with some default objects seems to be favored by the present

designers of expression editors. Unfortunately, it presents various problems

when a light_weight, extensible system is the goal. How to complete an

expression depends heavily on the expression's type. In a non extensible

editor all the knowledge about how to complete each individual expression

can be built in. An extensible editor requires these properties to be specified

for each extension.

The easiest way to solve this problem is to give up automatic completion.

Expressions can be edited in textual representation using the functionality

presented in Section 4.3.1. The text is entirely visible and editable with the
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well_known and general text editing commands. When the user finishes

editing a single mouse click will parse the input.

If this suggestion is considered too primitive, an extension can be offered:

when a scratchpad viewer is used as described in Section 4.3.2, the

corresponding expression icon can be treated like a second view. Any

change in the scratchpad's text leads to an attempt to parse it as an

expression. If this attempt is successful, the icon is updated otherwise it is

left unchanged. This creates a maximum of feedback to the user: the icon

gives two_dimensional, up_to_date feedback whenever possible and the text

gives exact information about what has been typed. Unfortunately, after a

parenthesis is opened the two_dimensional feedback will not be updated

until the corresponding closing parenthesis is entered. This might be a

problem with large expressions within parentheses. To resolve this, the

parser could try to add the missing parenthesis.

As an additional extension, such a scratchpad viewer can be opened

immediately when a character is typed while an icon holding a selection is

the input focus. The text in the scratchpad is then initialized to hold only the

character typed, and the scratchpad receives input focus. Later, when the

Return_key is pressed, the scratchpad viewer can be closed. This allows to

"type into an expression icon" directly. The change done in Example 13

above, can be done by the following sequence of key strokes, after selecting

the 3 within the icon: 1, 7, Return.

A further alternative may be to omit the extra viewer and keep the text

hidden. Though this would avoid the user's distraction from the graphically

presented expression (to the extra viewer), it gives no feedback about the

actual typed sequence of characters. Furthermore, editing this sequence is

less direct. It is not possible to position the insertion mark at any point,

selections cannot be used, etc. Overall, introducing this hidden state is not

justified by avoiding the additional viewer.

4.3.6 Discussion

Two different approaches to expression editing have been made available:

conversion of relevant parts to text and direct graphical manipulation. Both

are implemented generically, allowing for extension with new expression

types. Extensions are provided by new software components, presented as

single modules including everything needed. No separate configuration files

need to be extended, as for instance with CAS/PI [Kajler−92] where the

graphical appearance needs to be specified in separate files using a different

language (called PPML).
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Most of the functionality needed for editing must already be

implemented for workspaces and scripting. The interfaces of the expression

objects need not be further extended. Also, bounding boxes are needed as

generic abstractions of expressions for drawing. These are a sufficient basis

for graphical operations. Because of this, and because much of the

functionality can be taken from the underlying compound text document

framework, the editor is very light_weight.

It should be easy to learn how to use the text_based editor: only primitive

operations for conversion between text and icons have to be learned in

addition to the already known text operations. Also, the copy_over concept is

well known to users of the text system. Thus, templates and overlays appear

as natural ways to use the editor.

Using the copy mechanism of the underlying framework leads to an

extremely flexible implementation of palettes with templates and overlays.

Any expression visible anywhere on screen can serve as a pattern for a

template or an overlay. Palettes with such patterns are normal documents

and can be handled as such: they can be stored in files, edited, printed, etc.

Palettes are easy to modify. They can be tailored for individual users or even

for individual projects. Generation of specialized patterns of arbitrary

complexity is affordable. There is no strict limit between such palettes and a

scratchpad. In general, this flexibility corresponds to that of the Tool Texts

within the Oberon System [Reiser−91].

Templates can also be used in combination with text editing: one can

copy a template and modify it in its textual representation. This is useful,

since in some cases it can be faster than mouse driven, graphical editing.

The textual template is a pattern for the user's input. Seen together with its

graphical appearance it is also self_documenting: equally named subex_

pression can be identified and their meaning can be derived from the graph_

ical appearance.

To enter an integral, for instance, the following template can be used:

df x x

a

b

For editing it can be converted to textual form:

int(f x , x, a, b)

The meaning of the parameters f x , x, a, and b are obvious from comparison

with the graphical representation.
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It is considered a particular strength of the editor that all the editing

techniques available can be combined by the user on a very fine grain level.

This allows the creative user to invent editing methods that have not been

anticipated by the designer of the software.

The editor lacks some functionality which may be wanted by particular

users (e.g. automatic selection or entering templates through the keyboard).

In principle, this functionality could be implemented within icons. Due to

the modularity of the component_oriented implementation such changes

require to replace the icon component only. They do not affect the rest of

the framework. However, in the author's experience the implemented editor

turned out to be very practical. Apart from occasional computations with

Maple it has been used to write this thesis.
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This section describes an implementation of the concepts presented in

Chapters 3 and 4. A complete framework for mathematical software has

been implemented. It includes abstract expression graphs, expression

displaying within icons, a text parser, and an expression editor. To prove its

extensibility the framework has been extended with a set of expression

types, a rational number simplification command, and a connection to a

Maple server. The latter uses a communication link.

The environment used for the implementation is the Oberon System

[Reiser−91, WiGu−89, WiGu−92]. It is programmed using the programming

language Oberon_2 [Mössenböck−91], an extension of the language Oberon

[Wirth−88]. The latter is a successor of Modula_2 [Wirth−82] and hence of

Pascal and Algol. The extensible text system described in [Szyperski−92] has

been used as a compound document framework. Icons are implemented as

Text Elements. Components are Oberon Modules.

The implementation serves as a proof of concept, but also has value in its

own. It presents a working extension of the Oberon System allowing to edit

expressions, include them into documents (like this thesis), and perform

mathematical operations on them. It gets most of its mathematical power

from a link to Maple. The latter proves that the editor_based user interface

works also in a client/server architecture.

The framework has been divided into several components, i.e. modules.

The basic module (Module Expressions) implements immutable expression

graphs as an abstract and generic data structure. According to the

Model_View_Controller Separation (MVC) the visual presentation is ab_

stracted within a separate module (Module ExprViews). These two modules

are used by a third one that implements expression icons as Text Elements

and allows to embed expressions into texts (Module ExprIcons).
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Texts

Expressions

ExprViews

ExprIcons ExprStd

ExprLib0ExprTools

ExpMatr.

ExprLang

ExprMaple

Files

Computing Extensions Type Extensions

Expression Framework

Oberon System

Icons Integers

Figure 2: the modules of the expressions framework in Oberon

Another, independent module (Module ExprStd) defines basic expression

types (integers, symbols, binary operators, functions, collections, indices).

These are used to define a primitive language for textual presentation of

expressions. Conversions between the standard expression types and text

are done by a module, implementing the parser (Module ExprLang). Figure 2

shows the modularization of the framework and Table 2 lists all modules

and their size in statements.

A variety of sample extensions has been implemented, too. We must

distinguish between modules contributing new expression types and

modules implementing computational algorithms. Examples of new

expression types are special constants (p , %, greek symbols, etc.), roots,

integrals, binomial coefficients, and others. A general substitution command

has been implemented as an example for the typical substitution operation

on expression graphs (see Section 3.3). A simplifier for rational numbers has

also been implemented. The Maple link is a further extension.
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Total 6720

ExprMaple link to Maple 272

ExprEvalIcons evaluatable icons for scripting 582

ExprSubstituter example substitution command 50

ExprRatCalc rational number simplifier 268

ExprTools general command toolbox 305

ExprLang generic parser 363

ExprIcons expression icons 663

ExprBessel expression type for Bessel functions 103

ExprMatrices expression type for matrices 199

ExprLib0 more expression types 1185

ExprStd standard expression types 639

ExprViews basis for expression drawing 448

Expressions generic expression graphs 422

Icons general icons within text 518

Integers arbitrary precision integers 703

Module Purpose Statements

Table 2: number of statements per module

In the following (i.e. in Sections 5.1 to 5.3) several abstractions defined by

the framework are described. To illustrate their usage the relevant parts of

the implementation of the expression type Power are shown.

5.1 Immutable Directed Graphs

5.1.1 A Design Pattern Based On Carrier_Rider_Separation

Chapter 3 states that expressions shall be represented by immutable

directed graphs. It is challenging to design and implement an extensible

abstract data type that enforces immutability. Part of the challenge is not to

hinder ease of graph creation too much. The interface shall provide an easy

to understand and easy to use abstraction. The typical substitution operation

stated in Section 3.3 should be kept in mind.

Symbolic computation systems like Maple [CGGLMW−91] use

immutable DAG structures, too. For protection, a higher level is introduced,

the Maple language. The language interpreter hides critical parts of the lower

level. Immutability is not guaranteed for programs that are at the same

programming level as the data structure is implemented in.
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The problem of implementing immutable graphs can be reduced to

implementing immutable lists. Each node in the graph refers (immutably) to

such a list. The list contains the ordered successors of that node.

From the user's point of view it would be ideal to allow arbitrary list

manipulations. This is possible, as long as one restriction is obeyed:

whenever a list can be referred to by a component extending the basic

system, the list must be frozen. Attempts to change such a list must

generate a copy which can be manipulated freely as long as no further

reference to it exists. Hence, the key is to control when a reference is passed

outside the basic component for the first time.

How can an extension component manipulate a list without holding a

reference to it? A solution is provided by Carrier_Rider separation. It originates

in the Oberon system [WiGu−92] where it has been invented as an access

mechanism to sequential structures, like files and texts. Its purpose has

been to separate the access_related information (Rider) from the data

structure (Carrier). For instance, the current reading position is stored in the

Rider. This allows for multiple objects to access the same Carrier at different

positions simultaneously. Each object simply uses a separate Rider

connected to the common Carrier. Later, Carrier_Rider separation has been

generalized in [Szyperski−92b] to allow for independent extensions in the

domains of Carriers and Riders.

To implement immutable lists, the Rider is used to hide a reference to a

list. A direct reference to the list can be obtained through a method of the

Rider only. This method marks the list as frozen. To change a frozen list it

must be copied first. The copy can be changed freely, until it is frozen, too.

Copying is done on demand by the Rider's change methods. To the user of

this interface, copy on demand and freezing is entirely invisible.

Immutable graphs implemented with immutable lists of successors can

easily be guaranteed to be DAGs. Cycles can be excluded by a single, easy to

assert requirement: each node to be inserted into a list needs to be

complete, i.e. a list of successors must have already been assigned to it.

Consequently, a completed node can only refer to other already completed

nodes. This applies transitively. Hence, it is not possible to build a cycle. This

guarantee is an advantage in our context.

The above design pattern, has been derived from the general Carrier_Rider

pattern described in [Szyperski−92b]. It additionally employs information

hiding to guarantee immutability of the Carrier.

This design pattern relies on information hiding at a level different than

single objects. Modules as discussed in [Szyperski−92a] serve the purpose

in an excellent way. The base module of the expression framework asserts
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the necessary invariants between Riders and Carriers, both defined within it.

Only such variables are exported, whose change cannot affect the invariants.

5.1.2 Excerpt From The Interface Of Module Expressions

TYPE
Message = RECORD END; (* base type for messages *)

List = POINTER TO ListDesc; (* immutable lists of objects *)

Expression = POINTER TO ExpressionDesc;
ExpressionDesc = RECORD (* abstract expression type *)

successors−: List (* list of subexpressions *)
END;

Rider = RECORD (* Rider for List access *)
pos−: LONGINT; (* current Position *)
exp−: Expression; (* current Expression *)
eol−: BOOLEAN (* End Of List *)

END;

VAR
emptyList−: List;

PROCEDURE LengthOf(l: List): LONGINT; (* length of list l *)
PROCEDURE Excerpt(of: List; beg, end: LONGINT): List; (* copy of [beg ... end[ *)

PROCEDURE OpenRider(VAR r: Rider; l: List); (* open r on l; position at 0 *)
PROCEDURE Set(VAR r: Rider; pos: LONGINT); (* reposition open Rider *)
PROCEDURE Forward(VAR r: Rider); (* forward r by 1 *)
PROCEDURE Change(VAR r: Rider; exp: Expression); (* change expression at r.pos *)
PROCEDURE Insert(VAR r: Rider; exp: Expression); (* insert entry at r.pos; forward r *)
PROCEDURE Delete(VAR r: Rider; len: LONGINT); (* remove [r.pos ... r.pos + len[ *)
PROCEDURE ThisList(VAR r: Rider): List; (* freeze list, do not change r *)

PROCEDURE Init(e: Expression; successors: List); (* initialization, call only once *)

Three types are involved so far: Expression, List of successors (i.e.

subexpressions), and Rider on such a list. Only the type Expression will be

extended within other components. With every object of type Expression a

list of successors is stored. This must be assigned using the procedure Init,

which must be called exactly once for every expression. An expression is

initialized properly only if its list of successors does not have the value NIL.

An expression not referring to any subexpression must have the empty list

assigned. This property can be used by Procedure Init to prohibit an object

from being initialized twice.

Types List and Rider are implemented entirely within Module Expressions

and are not meant to be extended. According to the design pattern, lists can
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be manipulated through Riders only. Therefore, the implementation details

of Type List are not exported. It is only allowed to determine the length of a

list (Procedure LengthOf) and to copy out a sublist (Procedure Excerpt).

Riders can be opened and positioned on lists. They allow to change,

insert, or delete elements. A reference to an immutable list can be obtained

from a Rider (Procedure ThisList).

A global, read_only exported variable makes an empty list available. It is

used as the starting point to create new lists.

An important part of the implementation is hidden within the module.

Objects of type List refer to linked lists. Additionally, a boolean variable

specifies whether the list is frozen, i.e. whether a reference to the list has

been passed outside the module yet. This information is changed by a Rider.

Riders refer to the list they operate on, their current position on that list, and

the corresponding entry.

5.1.3 Excerpt From The Implementation Of Module Expressions

TYPE
Link = POINTER TO LinkDesc;
LinkDesc = RECORD

next: Link;
exp: Expression

END;

Rider = RECORD
pos−: LONGINT; (* current Position *)
exp−: Expression; (* current Expression *)
eol−: BOOLEAN; (* End Of List *)
link: Link; (* current link in list, holding exp *)
list: List (* head of current list *)

END;

ListDesc = RECORD
links: Link; (* first entry *)
len: LONGINT; (* number of entries *)
frozen: BOOLEAN (* = list must not be changed *)

END;

PROCEDURE OpenRider(VAR r: Rider; l: List); (* open r on l; position at 0 *)
BEGIN

r.list := l; r.pos := 0; r.link := l.links;
IF l.len # 0 THEN r.exp := r.link.exp; r.eol := FALSE
ELSE r.exp := NIL; r.eol := TRUE
END

END OpenRider;
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PROCEDURE ThisList(VAR r: Rider): List; (* freeze list, do not change r *)
BEGIN

r.list.frozen := TRUE; RETURN r.list
END ThisList;

PROCEDURE Change(VAR r: Rider; exp: Expression); (* change expression at r.pos *)
BEGIN

ASSERT((r.pos < r.list.len) & (exp # NIL));
IF r.list.frozen THEN CopyList(r) END; (* copy on demand *)
r.link.exp := exp; r.exp := exp (* change entrie's value *)

END Change;

PROCEDURE Init(e: Expression; successors: List);
BEGIN

ASSERT(e.successors = NIL); (* e is not yet been initialized *)
ASSERT(successors # NIL); (* parameters are valid *)
e.successors := successors (* set values *)

END Init;

5.1.4 Generating An Expression (Example)

The following example shows how to generate a node of an expression

graph using the interface defined above. Section 5.4 describes a substitution

command as a more elaborate example of expression manipulation,

involving data changing and replicating graph parts.

The expression type Power is defined below. It is an extension of the

abstract type Expressions.Expression. It contains two additional fields to

provide direct access to the two subexpressions (base and exponent).

Allowing to access subexpressions directly via record fields is a pure

optimization. Algorithms being aware of the type Power can use these record

fields instead of setting up a Rider as required for generic programming. The

implementation of Type Power has to assert the consistency of the record

fields with the successors list.

TYPE
Power* = POINTER TO RECORD(Expressions.ExpressionDesc)

base−, exponent−: Expressions.Expression (* for direct subexpression access *)
END;

PROCEDURE NewPower*(base, exponent: Expressions.Expression): Power;
VAR p: Power; r: Expressions.Rider;

BEGIN
ASSERT((base # NIL) & (exponent # NIL));
Expressions.OpenRider(r, Expressions.emptyList); (* generate successors list *)
Expressions.Insert(r, base); Expressions.Insert(r, exponent);
NEW(p); Expressions.Init(p, Expressions.ThisList(r));
p.base := base; p.exponent := exponent; (* set fields for direct access *)
RETURN p

END NewPower;
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Procedure NewPower allocates and initializes a new object. The two

subexpressions are passed as parameters. Execution of the procedure will

generate a new successor list: a Rider is set on the empty list and the new

items are inserted. The new list is assigned to the new expression object

through Procedure Expressions.Init.

5.2 Properties Of Expressions And Operations On Expressions

Additional services and definitions for all expression types need to be

provided by the base module. This section discusses what has been omited

in Section 5.1.

Binding Power

Section 3.5.2 states that each expression object needs to provide

information allowing to decide whether parentheses have to be put around

it. This information is called the expression's binding power. We use the

term binding power instead of operator precedence since the concept applies

not only to operators but to expressions in general.

The binding power is a constant value for each object. Therefore, it is

stored in a record field exported for reading only. The value must be

assigned through Procedure Init. (The parameter list of Procedure Init is

extended accordingly.) In accordance with Section 3.5.2, predefined values

for binding power are exported as constants. Procedure Init asserts that no

other values are used.

Attributes

In some cases expressions need to associate additional attributes with their

subexpressions. As an example consider associative, commutative, binary

operators which also have an inverse (like +). Such operations and operands

can be arbitrarily reordered. Thus, a single object shall represent any number

of such operations. For instance, a−b+c should be represented as one

expression referring to three successors.

This unified structure is a prerequisite for effective computation on the

data, e.g. for generic canonical normal form computation. The successors of

a single expressions can easily be reordered. Changing the topology of the

graph is more difficult.

Furthermore, expression graphs are not only used as a basis for

computation but also for expression representation. Therefore, their

structure must be able to reflect what the user actually entered. Expressions
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within documents should not be forced to a normal form. For example, it
must be possible to represent both a−b+c and a−b +c.

For each subexpression, it must be stored which operation to apply, plain

or inverse. In the example that is whether an operand should be added or

should be subtracted. This information cannot be stored in the operand's

object itself since the latter may also be used in another expression. The

information must be stored with the higher level node, i.e. with the operator.

Such information needs to be organized in a list of the same length as the

successors list. To avoid duplication of the list organization, the successors

list allows to store a single attribute (an integer number) with each entry.

The semantics of that attribute depends on the expression the list is

assigned to. (The binary operation for adding and subtracting, for instance,

defines two values indicating the plain operation or the inverse operation.)

Attributes are read, set, and changed together with the subexpressions

they belong to. Types Rider and Link mentioned in Section 5.1 are extended

accordingly and so are the signatures of Procedures Change and Insert (see

below).

Canonical Normal Form And Redundant Object Elimination

According to Section 3.4, generating canonical normal forms involves

assignment of a hash key to every expression object. Since objects are never

changed, this hash key can be assigned when the object is created.

An effective key must be based on three entities: the list of

subexpressions, the expression type, and the extra data of the expression

object. Hash keys on the former two can be computed generically, only the

third value must be provided by the object. A key must reflect the

representation of the expression, since the representation of an expression

included in a document must not be changed. Hence, no provision for

commutative subexpressions is needed.

These observations lead to the following implementation: the key is

computed by Procedure Init and assigned to a read_only exported record

field of Expression. The type's name and the expressions and attributes

stored in the successors list are hashed by Procedure Init. The result is

combined with a modifying key, specified as a parameter. This modifier is to

be computed by the expression object from its individual data. (Objects

without such data can use any constant value, e.g. 0.)

In Section 3.4.4 two possibilities are discussed to deal with the extra state

needed to compute canonical normal forms or to eliminate redundant

objects. Either a global table can be used, or a table is allocated on demand

for a particular computation. As Section 3.4.4 states, a global table must be
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treated specially by the system's garbage collection. Otherwise, the

references in the table would prevent any registered object from being

collected. The implementation discussed here uses temporary tables. One

reason behind this is that the Oberon System does not allow extension of

the garbage collector as necessary. (Some individual implementations of

Oberon provide extension hooks for this purpose, but using them leads to

non_portable software.)

The abstract data type UnificationScope is exported by Module Expressions.

Such a new table, or scope, can be allocated through the function procedure

NewUnificationScope. The table must be specified as a parameter when

calling one of the normalization_related operations: Normalize, Unify,

OrderedList. Normalize generates a canonical normal form. Unify eliminates

references to equal objects from a graph. For the latter, expressions are

considered equal if they have the same representation. (See Section 3.4 for a

description of the algorithms used.) OrderedList is a library procedure to be

used by the individual objects, when generating a normalized representation

of themselves. It generates a list ordered according to the key and table

values.

Messages AndMessage Handler

Functionality is bound to expression objects in the form of a message handler

procedure. Every object refers to such a procedure through a variable of type

Handler. Messages are records whose type extends a basic type Message.

When a "message is sent to an object", the respective handler is called with

the message as a parameter. The handler's activity depends on the

message's type. A handler may ignore messages of unknown type.

This programming methodology based on message handlers is one of the

fundamental concepts used in the Oberon system library. For a further

discussion of this see [WiGu−92].

Some concrete message types are already defined within Module

Expressions: The CloneMsg is used to retrieve a cloned object with a modified

successor list, e.g. for the typical substitution operation on expression graphs

described in Section 3.3. The TestMsg is used to determine the equality of an

object with another one. The IdentifyMsg and the FileMsg are used for

internalization and externalization from and to files.

Internalization And Externalization

To externalize a DAG into a file it must be linearized. Linearization must take

care of multiple references to nodes. Transforming the expression simply to

a textual representation (or an abstract syntax tree) would be inefficient. The
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DAG would be treated as a tree and data would be replicated in the file.

A DAG can be linearized using an auxiliary table. Every node written to

the file is registered in that table. The table is searched for every node prior

to writing it. If the node has been written before, it is sufficient to write the

index of the table entry. Note that the table itself does not need to be stored

with the data. It can be rebuild during internalization. Nodes can be

compared by their references. The table stores these references only.

So far, the graph's edges were treated. Let us now consider the graph's

nodes. There are two concerns: the nodes type and the type_dependent

information stored with it.

The second concern is easy to handle: a message (FileMsg) is sent to the

node requesting to store or load its data. To refer to the file, the message

contains a file Rider. One could either use two different message types to

request storing/loading, or a single message type with a boolean field, as

done in the current implementation.

Prior to requesting an object to load data from a file, the object must be

allocated and the handler procedure must be instantiated appropriately. Two

approaches are possible: a meta programming facility can be used, or the

name of a generator is stored with the data.

Apart from others, meta programming allows to determine the name of

an object's type, and to allocate a new object of a type that is specified by its

name at run_time. Meta programming for Oberon is described in

[Templ−94]. It is not being used in the current implementation due to its

limited availability.

The implementation is based on the same concept which has already

been used for the extensible text system. It is described in [Szyperski−92].

Generators are implemented as commands. During externalization the

command's name is retrieved from the object by sending it an identification

request message (IdentifyMsg). The object's message handler assigns values

to the module and procedure name fields of that message. These names are

externalized with the data.

During internalization the command's name is read from the file and the

command is activated. It is expected to allocate an object of the proper type

and to deposit it in the base module together with the appropriate message

handler procedure (by calling Expressions.Deposit). The latter also initializes

the object. Expressions.Init must not be called for objects initialized through

Expressions.Deposit. The data otherwise computed and assigned by

Expressions.Init is retrieved from the file in this case.
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Procedure Init

The values of the read_only variables associated with expressions (handler,

binding, and key modifier) are being assigned through Procedure Init

together with the list of successors. The parameter list of Init is extended

accordingly. Init asserts that only the predefined values are used for the

binding power.

5.2.1 The Complete Interface Of Module Expressions

DEFINITION Expressions;

IMPORT Files;

CONST (* binding power values *)
AtomBind = 4; PowerBind = 3; ProdBind = 2; SumBind = 1; NoBind = 0;

TYPE
Message = RECORD END; (* base type for messages *)

List = POINTER TO ListDesc; (* immutable lists of objects *)

Expression = POINTER TO ExpressionDesc;

Handler = PROCEDURE(e: Expression; VAR msg: Message);

ExpressionDesc = RECORD (* abstract expression type *)
handle−: Handler; (* message handler *)
binding−: SHORTINT; (* binding power *)
key−: LONGINT; (* hash key *)
successors−: List (* list of subexpressions *)

END;

Rider = RECORD (* Rider for List access *)
pos−: LONGINT; (* current Position *)
exp−: Expression; (* current Expression *)
attr−: LONGINT; (* attribute of current expression *)
eol−: BOOLEAN (* End Of List *)

END;

UnificationScope = POINTER TO RECORD END; (* table for normalization *)

FileMsg = RECORD(Message) (* message for loading/storing *)
store: BOOLEAN;
r: Files.Rider

END;

IdentifyMsg = RECORD(Message) (* retrieve allocation command *)
mod, proc: ARRAY 32 OF CHAR

END;
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CloneMsg = RECORD(Message) (* get node with new successors *)
clone: Expression;
successors: List;
scope: UnificationScope;
normalize: BOOLEAN

END;

TestMsg = RECORD(Message) (* to perform an equality test *)
with: Expression;
equal: BOOLEAN

END;

VAR
emptyList−: List;

PROCEDURE LengthOf(l: List): LONGINT; (* length of list l *)
PROCEDURE Excerpt(of: List; beg, end: LONGINT): List; (* copy of [beg ... end[ *)

PROCEDURE OpenRider(VAR r: Rider; l: List); (* open r on l; position at 0 *)
PROCEDURE Set(VAR r: Rider; pos: LONGINT); (* reposition open Rider *)
PROCEDURE Forward(VAR r: Rider); (* forward r by 1 *)
PROCEDURE Change(VAR r: Rider; exp: Expression; attr: LONGINT);

(* change expression at r.pos *)

PROCEDURE Insert(VAR r: Rider; exp: Expression; attr: LONGINT);
(* insert at r.pos; forward r by 1 *)

PROCEDURE Delete(VAR r: Rider; len: LONGINT); (* remove [r.pos ... r.pos + len[ *)
PROCEDURE ThisList(VAR r: Rider): List; (* freeze list, do not change r *)

PROCEDURE CloneOf(e: Expression; successors: List): Expression;
(* node with new successors *)

PROCEDURE NewUnificationScope(): UnificationScope; (* new table for normalization *)
PROCEDURE Unify(VAR exp: Expression; s: UnificationScope);
PROCEDURE Normalize(VAR exp: Expression; s: UnificationScope);

PROCEDURE Equal(x, y: Expression): BOOLEAN; (* test for equality *)
PROCEDURE EqualLists(l1, l2: List): BOOLEAN; (* compare two lists *)
PROCEDURE OrderedList(l: List; s: UnificationScope): List;

(* canonical form of list *)

PROCEDURE Store(VAR r: Files.Rider; e: Expression); (* store expression graph *)
PROCEDURE Load(VAR r: Files.Rider; VAR e: Expression); (* load expression graph *)
PROCEDURE Deposit(e: Expression; h: Handler); (* to be called by allocators *)

PROCEDURE Init(e: Expression; h: Handler; bind: SHORTINT; keyMod: INTEGER; succ: List);

END Expressions.
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5.2.2 Complete Implementation Of The Expression Type Power

In the following the complete implementation of the expression type Power

(introduced in Section 5.1) is given.

TYPE
Power* = POINTER TO RECORD(Expressions.ExpressionDesc)

base−, exponent−: Expressions.Expression (* for direct subexpression access *)
END;

PROCEDURE PowerHandler(e: Expressions.Expression; VAR m: Expressions.Message);
VAR self, copy: Power; r: Expressions.Rider;

BEGIN
self := e(Power);
WITH m: Expressions.IdentifyMsg DO (* specify allocation procedure *)

m.mod := "ExprStd"; m.proc := "AllocPower"
| m: Expressions.FileMsg DO

IF m.store THEN (* no proprietary data needs to be written in this example *)
ELSE

(* no proprietary data needs to be read in this example *)
Expressions.OpenRider(r, self.successors); (* set fields for direct access *)
self.base := r.exp; Expressions.Forward(r); self.exponent := r.exp

END
| m: Expressions.CloneMsg DO (* new object with m.successors *)

NEW(copy); Expressions.Init(copy, self.handle, self.binding, 0, m.successors);
Expressions.OpenRider(r, m.successors); (* set fields for direct access *)
copy.base := r.exp; Expressions.Forward(r); copy.exponent := r.exp;
(* no proprietary data needs to be copied in this example *)
m.clone := copy

| m: Expressions.TestMsg DO (* equality test: m.with = self? *)
m.equal :=

(m.with IS Power) & Expressions.EqualLists(m.with.successors, self.successors)
ELSE (* ignore *)
END

END PowerHandler;

PROCEDURE AllocPower*; (* allocator for loading *)
VAR p: Power;

BEGIN
NEW(p); Expressions.Deposit(p, PowerHandler)

END AllocPower;

PROCEDURE NewPower*(base, exponent: Expressions.Expression): Power;
VAR p: Power; r: Expressions.Rider;

BEGIN
ASSERT((base # NIL) & (exponent # NIL));
Expressions.OpenRider(r, Expressions.emptyList); (* generate successors list *)
Expressions.Insert(r, base, 0); Expressions.Insert(r, exponent, 0);
NEW(p);
Expressions.Init(p, PowerHandler, Expressions.PowerBind, 0, Expressions.ThisList(r));
p.base := base; p.exponent := exponent; (* set fields for direct access *)
RETURN p

END NewPower;
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Before loading an object of type Power from a file the command

ExprStd.AllocPower must be called to allocate a new object. (The expression

type Power is implemented within Module ExprStd.) The message handler

returns the command's name upon receipt of an IdentifyMsg.

Canonical normalization requires no activity, since the representation of

an exponentiation is unique. As the only options, the expression could be

simplified to its basis if the exponent is known to be 1, or it could be

replaced by a 1 if the exponent is known to be 0. We have generally not

included such simplifications into canonical normal from computation.

5.3 Expression Drawing

Section 3.5 showed how to extend the framework towards expression

drawing and editing. The main results were that the program drawing an

expression must be bound to that expression object and that bounding

boxes are needed to abstract from concrete graphical presentations. Drawing

ports are abstractions of graphic devices. They are used to make the

individual drawing programs device independent.

5.3.1 Drawing Ports

Drawing ports are a commonly used abstraction for graphic devices. Many

operating systems feature such an abstraction as a basic service. Oberon

does not.

In the expressions framework, the draw ports are needed because of the

extensibility requirements. The framework should be independently

extensible in different dimensions: any new expression type should be

composable with any new device type at run time. Hence, a common

interface is needed for all drawing devices.

Even if the set of devices is assumed to be fixed, an abstraction is needed

in order to allow for new expression types to be programmed with

reasonably small effort. In most practical settings the system will use two

devices for output: a screen and a printer. Without an abstraction of these

devices, every expression type would need to contain two drawing

programs: one for the screen and one for the printer.

This duality can be found elsewhere in the Oberon System. Text Elements,

for instance, need to deal with two different messages and access the two

devices directly. This has one advantage: the graphical appearance may

depend on the device used. On the other hand, both devices are bitmaps.
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These differ in their resolution only. The differences are not significant

enough to justify a completely different treatment. The port's resolution can

be made accessible to the port's user, thus allowing for resolution

dependent algorithms.

When trading the possibility of special device treatment against the

simplicity of extension with expression types, we have decided in favor of

the second. The framework offers the abstraction of drawing ports to be

used for drawing.

The next design decision to make is how the abstraction should look like.

A port is an object. It abstracts a bitmap of a particular size with a

particular resolution. These parameters must be made available to the port's

user.

Secondly, a set of operations to draw on a port must be defined. Defining

this set is the critical part. If too few operations are included, using the port

is too cumbersome. If too many operations are included, implementing a

port requires too much effort.

For the implementation in Oberon the set of operations has been kept

very small. It has been chosen by considering the operations implemented

by the actual device drivers (i.e. by Modules Display and Printer).

Interestingly, when programming concrete expressions, no need arose to

extend the set of primitive operations. More complex operations, like

drawing parentheses, have been introduced as library routines at a higher

abstraction level (see Section 5.3.2).

Only two kinds of drawing operations have been defined. The graphic

primitive ReplConst fills a rectangular area with a color, specified as a

parameter. This primitive can also be used directly to efficiently draw single

dots, and vertical or horizontal lines. The latter are what is mostly needed to

display mathematical expressions. For easy drawing of curved objects, like

integral signs or parenthesis, splines could be helpful. Currently, these

algorithms rely on drawing individual dots.

The second kind of operations draws characters, using Oberon's font

module. For the sake of efficiency, an operation to draw an entire string has

been included. (DrawChar is only needed to cope with the incompatibility of

single characters and arrays of characters.)

When calculating the size of graphical objects the size of characters and

strings must be known. Access to the actual font data is hidden by the port

abstraction. Therefore, ports offer functions to retrieve the width of

characters or strings. Height information is considered to be an attribute of

the font, independent of the actual characters. Apart from the overall height,

the position of the base line must be available. In analogy to Oberon's
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Module Fonts, font metric information consists of three items: entire height

of the font, maximal extension below the base line, and maximal extension

above the base line. Such font metric information can be retrieved from the

port.

Two heuristic services are also available from ports. The first one tries to

find a font of the same family but smaller than a given one. If no such font

can be found, the same font is suggested. Such a service is frequently used

when typesetting expressions. Parts to be typeset in a font smaller than their

environment are for instance, numerator and denominator of a fraction,

exponents, indices, bounds of integrals and limits.

The second heuristic service suggests a width for lines to go well with a

given font. This line width is used, for instance, to draw the line in a fraction.

The following shows the Types Ports and FontMetric as they appear in the

interface of Module ExprViews:

IMPORT
Fonts;

TYPE
FontMetric = RECORD

minY, maxY, height: LONGINT
END;

Port = POINTER TO PortDesc;
PortDesc = RECORD

unit, w, h: LONGINT;
PROCEDURE (p: Port) ReplConst(x, y, w, h: LONGINT; col: INTEGER);
PROCEDURE (p: Port) DrawChar

(ch: CHAR; x0, y0: LONGINT; fnt: Fonts.Font; col: INTEGER);
PROCEDURE (p: Port) DrawString

(s: ARRAY OF CHAR; x, y: LONGINT; fnt: Fonts.Font; col: INTEGER);
PROCEDURE (p: Port) CharWidth(ch: CHAR; fnt: Fonts.Font): LONGINT;
PROCEDURE (p: Port) StringWidth(s: ARRAY OF CHAR; fnt: Fonts.Font): LONGINT;
PROCEDURE (p: Port) GetFontMetric(fnt: Fonts.Font; VAR metric: FontMetric);
PROCEDURE (p: Port) SmallerFont(fnt: Fonts.Font): Fonts.Font;
PROCEDURE (p: Port) LineWidth(fnt: Fonts.Font): LONGINT

END;

5.3.2 Boxes

According to Section 3.5, drawing an expression is done in two steps. First, a

tree structure of bounding boxes is build. Secondly, a graphics can be

generated according to this data structure.
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To reflect this order of operations, the drawing procedures are not bound

to the expression objects, but to the box objects, generated by them. To give

access to the respective expression's data, a reference to the expression

object is included into the box object.

To allow for replacing expressions selected graphically (as demanded by

Section 3.6) further information must be stored with each box. The

replacement algorithm needs to be able to construct a path from an

expression graph's root to the selected node (see also the substitution

operation described in Section 3.3). For each node on that path, the entry in

the successor's list must be identified, which contains the reference to the

next node on the path. To allow for a bottom up construction of this path,

two extra information items must be available with each box: the

surrounding box (its ancestor in the box tree), and the entry number in the

successor's list of the ancestor expression (called refNo in the

implementation).

A box does not need to represent an entire (sub_) expression. It can also

represent a single, graphical object, like a left or right parenthesis, or a line.

This simplifies the drawing process, since all the layout is done while

generating the box structure. To include parentheses, for instance, two extra

boxes are included into the data structure. These will draw the parentheses

automatically during the second step. Storing extra information with the

expression's box, whether to draw parentheses and where to place them, is

not needed.

The module ExprViews introduces Type Box as an extensible base type.

Objects of type Box are never changed. However, for the sake of simplicity

we resisted the temptation of making boxes immutable like expressions.

Two reasons shall be given for this. On one hand, there is no reason to

change an existing box object. On the other hand, boxes are derived from

expressions on demand. Damaging the box structure would be much less

harmful, than damaging the original data.

The following excerpt from the interface of Module ExprViews shows the

definition of Type Box. To have a box structure constructed by an expression

object, a message (GetBoxMsg) must be sent to it. This is done by the library

procedure ExprBox. When calling ExprBox, an expression, the surrounding

box (if any), the reference number in the higher level expression's

successor's list, the draw port, and the font to be used must be specified.

Further library procedures offer services, to create special boxes of general

importance. These are boxes to display strings (StringBox), brackets,

parentheses, or curly braces (BracketBox), and a symbol for an ellipsis used

for elisions as discussed in Section 4.1.3 (EllipsisBox).
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IMPORT
Fonts, Expressions;

Box = POINTER TO BoxDesc;
BoxDesc = RECORD

next, desc, asc: Box;
refNo: LONGINT;
exp: Expression;
x, y, w, bot, top: LONGINT;
fnt: Fonts.Font;
draw: PROCEDURE(box: Box; port: Port; x, y: LONGINT; col: INTEGER)

END;

GetBoxMsg = RECORD(Expressions.Message)
port: Port;
depth: LONGINT;
fnt: Fonts.Font;
box: Box

END;

PROCEDURE ExprBox(e: Expression;
asc: Box; refNo: LONGINT;
p: Port; depth: LONGINT; fnt: Fonts.Font

): Box;

PROCEDURE StringBox(s: ARRAY OF CHAR; asc: Box; p: Port; fnt: Fonts.Font): Box;
PROCEDURE BracketBox(kind: CHAR; desc: Box; p: Port; fnt: Fonts.Font): Box;
PROCEDURE EllipsisBox(asc: Box; p: Port; fnt: Fonts.Font): Box;

5.3.3 Selections

Section 3.6 described how to extend the framework towards a user interface

for computational commands. The programming interface to be used by

such commands has to offer two mechanisms: one to retrieve the current

selection and one to update the selected expression. For identification of the

originally selected expression, a special object is used to represent the

selection.

It is a fundamental design goal of this framework to allow for indepen_

dent extensions with computing commands and with displaying and editing

components. An abstract type for selections is the interface between these

two groups. Each editor implements objects of this type and each

computing command uses one.

Using Selections

The active selection can be retrieved through a function, LatestSelection. Its

result is an object of type Selection. If no selection exists, NIL is returned.
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The selection object refers to the selected expression. It further contains a

time stamp, indicating when the expression had been selected.

To replace the selected expression, the computation's result must be

assigned to the expression field. Afterwards a notifier procedure must be

called, also provided by the selection object. This will cause the update of

the editor. At the same time, a new selection object is returned, which may

be used for further computation on the same value.

Implementing Selections

Every editor implements a notification procedure. This is the replace

mechanism. The type Selection can be extended to keep additional

information which is available with the selection and has to be used for

replacing. Examples of such information are a reference to the icon holding

a selection and the selected bounding box.

Generating selection objects and making them available to the generic

selection retrieval mechanism has a problem. If several editors are used at

the same time, all of them must be considered when searching for the

current selection. If more than one selection is found, the time fields of the

selection objects are used to determine the current selection.

It would break independent extensibility if the selection consumers, i.e.

the computing commands, have to poll all selection producers, i.e. the

editors. Selections must be retrieved from a central service. Editors have to

register themselves with that service once.

Usually, such registrations are not necessary at all within the Oberon

System. As a rule, editors are implemented as display frames. Selections are

retrieved by broadcasting a request message to all visible display frames. The

frames, which hold a selection, change the data in the message record

accordingly.

This rule of Oberon is violated if text is used to compose parameters for a

computation, as discussed in Section 4.1.4. In this case, text selections must

be recognized, too. Consequently, the selection retrieval mechanism would

need to request text selections as well as expression selections. This would

require to plan ahead for using text when designing the general, editor

independent selection mechanism. Instead, the text_based expression editor

shall be seen as an extension component, which is introduced later.

The part of the interface of Module ExprViews, that deals with selections, is

given below.
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IMPORT Expressions;

TYPE
Selection = POINTER TO SelectionDesc;
Notifier = PROCEDURE(this: Selection; VAR newSel: Selection);
SelectionDesc = RECORD

exp: Expressions.Expression;
time: LONGINT;
promise: BOOLEAN;
notify: Notifier

END;

Selector = POINTER TO RECORD
selTime: PROCEDURE(): LONGINT;
thisSelection: PROCEDURE(): Selection

END;

PROCEDURE LatestSelection(): Selection;

PROCEDURE RegisterSelector(s: Selector);
PROCEDURE RemoveSelector(s: Selector);

An example how to use selections is the substitution command presented

in Section 5.4.

Implementing Scripting

The selection mechanism is also used to implement the scripting facility

discussed in Section 4.2.4. As a result, any command, that can be used

interactively, can also be used within a script.

Script execution involves passing the operands to the commands. This is

easily done by registering a special selector, that feeds the data into the

selection retrieval mechanism.

The flow of control of the script is steered by the notification procedure. It

gets control, when a computation is finished and it can issue the call of the

next command.

5.3.4 Drawing Expressions Of Type Power

The following shows what is to be added to the implementation of Type

Power, already discussed in Sections 5.1.4 and 5.2.2. The program constructs

the box trees for the power's base and exponent. These two are combined

within a new box, representing the power expression itself. The base is put

into parenthesis if its binding power is lower or equal to that of an

exponentiation. For the exponent a smaller font is used.
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It is noteworthy, that the box representing the expression itself does not

carry any further information. To draw an expression of type Power requires

simply to draw all its successors.

The procedure's parameter depth is used to implement a simple elision

mechanism: every expression is only displayed up to a certain depth in

structure. An ellipsis is shown instead of a subexpressions if this is nested

deeper than that depth.

PROCEDURE PowerBox(
pow: Power; port: ExprViews.Port; depth: LONGINT; fnt: Fonts.Font

): ExprViews.Box;
VAR box, base, exponent: ExprViews.Box;

BEGIN
IF depth > 0 THEN

NEW(box);
(* generate box for base *)

base := ExprViews.ExprBox(pow.base, box, 0, port, depth − 1, fnt);
IF pow.base.binding <= Expressions.PowerBind THEN

(* parentheses around base? *)
base := ExprViews.BracketBox("(", base, port, fnt)

END;
base.x := 0; base.y := 0;

(* generate box for exponent *)
exponent :=

ExprViews.ExprBox(pow.exponent, box, 1, port, depth − 1, port.SmallerFont(fnt));
exponent.x := base.w;
IF exponent.top − exponent.bot < base.top THEN (* vertical offset of exponent *)

exponent.y := base.top − (exponent.top − exponent.bot) DIV 2 − exponent.bot
ELSE exponent.y := base.top DIV 2 − exponent.bot
END;

(* set up power box *)
box.desc := base; base.next := exponent;
box.w := base.w + exponent.w;
box.bot := base.bot; box.top := exponent.y + exponent.top;
box.fnt := fnt; box.draw := ExprViews.DrawDesc

ELSE box := ExprViews.EllipsisBox(NIL, port, fnt)
END;
RETURN box

END PowerBox;

A single line is to be added to the WITH statement of the message handler

procedure, to dispatch the GetBoxMsg to a call of Procedure PowerBox:

| m: ExprViews.GetBoxMsg DO m.box := PowerBox(self, m.port, m.depth, m.fnt)
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5.4 The Substitute Command As A Sample Algorithm

5.4.1 The Algorithm

A general command to substitute every occurrence of a certain expression

with another one will serve as a complete implementation example for the

typical operation discussed in Section 3.3. The substitute command retrieves

the current selection and applies the substitution operation recursively to it.

To deal with commutative operators the pattern is converted to canonical

form. Before comparing the pattern with an actual subexpression, the latter

is also converted to canonical form (using the same unification scope). The

command can be used, for instance, to manually eliminate common sub_

expressions or to substitute symbols by numbers.

Common subexpression elimination

2
1+n

− s+ s
2
−4

−n−1

+ s− −4+s
2

−n−1

s
2
−4

can be simplified by replacing all

instances of s
2
−4 with w:

ExprSubstituter.Substitute s
2
−4 => w leads to

2
1+n

− s +w
−n−1

+ s −w
−n−1

w
.

Computing the value of a polynomial

Applying ExprSubstituter.Substitute x => 3,to x
3
y+7 x

2
y
2
+
2 x y

3

5

results in 3
3
y+7 3

2
y
2
+
2 3 y

3

5
, applying to this the command

ExprSubstituter.Substitute y =>
25

5
leads to 3

3 25

5
+7 3

2 25

5

2

+
2 3

25

5

3

5
.
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The substitution operation itself is programmed as a recursion on the

subexpression graph structure. The recursion terminates if either the entire

expression is to be replaced or if it does not have further subexpressions.

The expression to be operated on is passed as a variable parameter. If it is

equal to the pattern searched for, the substitute expression is simply

assigned to the variable parameter. Otherwise, the same procedure is

performed on every subexpression of the current expression. If and only if a

subexpression is being changed, the list of subexpressions is modified

accordingly. Only in this case a new object is generated to replace the

original expression. The new object is a replication of the old one but based

on the modified subexpression list.

The structure of the substitute algorithm is characteristic for many

operations on expression graphs: it does recursive depth_first traversal,

changes the value of a variable_parameter if necessary, and generates new

nodes only when necessary. The algorithm produces a new expression graph

with a minimal number of new nodes.

5.4.2 The Complete Implementation Of A Substitution Command

MODULE ExprSubstituter;

IMPORT
Expressions, ExprViews;

PROCEDURE Subst(VAR exp: Expressions.Expression;
from, to: Expressions.Expression; s: Expressions.UnificationScope

);
VAR l: Expressions.List; e: Expressions.Expression; r: Expressions.Rider;

BEGIN
e := exp; Expressions.Normalize(e, s);
IF Expressions.Equal(e, from) THEN exp := to (* substitute exp, if appropriate *)
ELSE (* apply recursively *)

Expressions.OpenRider(r, exp.successors);
WHILE ˜r.eol DO

e := r.exp; Subst(e, from, to, s);
IF e # r.exp THEN Expressions.Change(r, e, r.attr) END;

(* update if necessary *)
Expressions.Forward(r)

END;
l := Expressions.ThisList(r); (* build new expression if needed *)
IF l # exp.successors THEN exp := Expressions.CloneOf(exp, l) END

END
END Subst;

PROCEDURE ReadPar(VAR from, to: Expressions.Expression);
.... (* parse command's parameter text *)

END ReadPar;
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PROCEDURE Substitute*;
VAR sel: ExprViews.Selection;

from, to: Expressions.Expression; s: Expressions.UnificationScope;
BEGIN

ReadPar(from, to);
sel := ExprViews.LatestSelection();
IF (to # NIL) & (sel # NIL) & ˜sel.promise THEN

s := Expressions.NewUnificationScope(); (* normal form of pattern *)
Expressions.Normalize(from, s);
Subst(sel.exp, from, to, s); (* substitute recursively *)
sel.notify(sel, sel) (* update selection *)

END
END Substitute;

END ExprSubstituter.

5.5 Textual Expression Presentation

Sections 4.1.4 and 4.3.1 discussed operator composition and editing. These

rely on an alternative, textual representation of expressions. The following

describes how the framework can be extended to implement conversion to

and from text. The basic design has already been outlined in Section 3.5.4.

The main consequence from Section 3.5.4 was not to use an extensible

language and an extensible parser. Instead, a closed language is used, which

can represent a closed set of standard expression types. Expressions of

further types have to be described, using these standard types. After an

expression is parsed successfully, registered transformers are activated. The

latter can change parts of the expression.

Doing the transformation in two steps separates concerns: text handling

and the language parser are independent of the extension mechanism, and

vice versa.

5.5.1 Standard Types And The Expression Language

Consequently, the implementation consists of two modules. Module ExprStd

implements all the standard expression types needed to translate an

expression stated in the language. Module ExprLang imports Module ExprStd

and implements a recursive descent parser and a writing procedure. The

output of the writing procedure must be valid input to the parser.

The parser is able to deal with a specific type of Text Elements, namely

expression icons. These are implemented in the separate Module ExprIcons.

It implements for such icons: expression representation (including concrete

draw ports), selection tracking, and copy over of selections.
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An expression icon can refer to an expression of any type. Whenever the

parser reads such a text element, the reference carried by it is included into

the expression graph under construction. Similarly, when writing an

expression to text, expressions of unknown type are represented through

icons. (All expression types not defined within Module ExprStd are

considered unknown here.)

The following expression types are defined by Module ExprStd: integers

(of arbitrary precision), symbols, named functions, collections (to represent

bags and sets), and indices. Some standard infix operators are supported

also: addition, subtraction, multiplication, division, and exponentiation.

This is reflected by the following excerpt of the interface of Module

ExprStd defining all the standard expression types and generators for them.

For binary and monadic operators more general types are defined. The text

parser, however, can generate only sums and products. Special generators

are provided for these important cases.

IMPORT Integers, Expressions;

CONST PlainOpAttr = 1; InvOpAttr = 2; (* attribute definitions *)

TYPE
Name = ARRAY 48 OF CHAR; (* various expression types *)

Integer = POINTER TO RECORD(Expressions.ExpressionDesc)
val−: Integers.Integer

END;

Symbol = POINTER TO RECORD(Expressions.ExpressionDesc)
name−: Name

END;

MonOp = POINTER TO RECORD(Expressions.ExpressionDesc)
name−: Name;
operand−: Expressions.Expression

END;

BinaryOp = POINTER TO RECORD(Expressions.ExpressionDesc)
plainName−, invName−: Name;
nofTerms−: LONGINT

END;

Power = POINTER TO RECORD(Expressions.ExpressionDesc)
base−, exponent−: Expressions.Expression

END;

Function = POINTER TO RECORD(Expressions.ExpressionDesc)
name−: Name;
nofPar−: LONGINT

END;
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Indexed = POINTER TO RECORD(Expressions.ExpressionDesc)
expression−: Expressions.Expression;
indices−: Expressions.List;
nofIndices−: LONGINT

END;

Collection = POINTER TO RECORD(Expressions.ExpressionDesc)
size−: LONGINT

END;

(* generators for standard Types *)

PROCEDURE NewInteger(val: Integers.Integer): Integer;
PROCEDURE NewSymbol(name: ARRAY OF CHAR): Symbol;
PROCEDURE NewMonOp

(name: ARRAY OF CHAR; binding: SHORTINT; op: Expressions.Expression): MonOp;
PROCEDURE NewBinaryOp

(plain, inv: ARRAY OF CHAR; binding: SHORTINT; terms: Expressions.List): BinaryOp;
PROCEDURE NewPower(base, exponent: Expressions.Expression): Expressions.Expression;
PROCEDURE NewFunction(name: ARRAY OF CHAR; par: Expressions.List): Function;
PROCEDURE NewIndexed(exp: Expressions.Expression; indices: Expressions.List): Indexed;
PROCEDURE NewCollection(elements: Expressions.List): Collection;

(* generators for some specific types *)

PROCEDURE NewNegation(op: Expressions.Expression): Expressions.Expression;
PROCEDURE NewSum(terms: Expressions.List): Expressions.Expression;
PROCEDURE NewProduct(factors: Expressions.List): Expressions.Expression;

The parser is a simple recursive descent parser for the expression grammar

defined below. An entity has to be an expression, to be correctly parsable.

expression := ["−"] term {addop term}.
term := factor {mulop factor}.
factor := {atom "↑"} atom.
atom := ("(" expression ")" | subexpression | function | collection | symbol | integer) [index].
function := name "(" [sequence] ")".
collection := "{" [sequence] "}".
index := "[" sequence "]".
sequence := expression {"," expression}.
symbol := name.
name := letter {letter | digit}.
integer := digit {digit}.
addop := "+" | "−".
mulop := "*" | "/".
subexpression := icon.
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5.5.2 Extending The Text Converter

To extend the conversion mechanisms to deal with a new expression type, a

representation of the latter must be defined using the types from Module

ExprStd. Most of the time, named functions will be used to represent such

new expression types. Integrals, for instance, are represented by a function

named int. Other possibilities exist, too. Type Root, for instance, is translated

to and from a power with a fraction as the exponent:

x↑(1 / n) <−> x

1

n <−> n x

Transformer procedures must be registered with Module ExprStd to be called

after a text has been parsed. Therefore, an appropriate procedure type plus

registration and removal procedures are exported.

To retrieve an equivalent representation of an expression, but based on

standard types only, an ExpansionMsg is sent. The object's message handler

must store the expanded representation in that message record. The

function procedure ExpansionOf retrieves an expanded representation of an

expression (by sending an ExpansionMsg). Subexpressions must be

converted recursively.

IMPORT Expressions;

TYPE
Substitution = PROCEDURE(VAR exp: Expressions.Expression);

ExpansionMsg = RECORD(Expressions.Message) (* to retrieve std. representation *)
exp: Expressions.Expression

END;

PROCEDURE Register(s: Substitution); (* transformer registration *)
PROCEDURE Remove(s: Substitution);

PROCEDURE DoSubstitutions(VAR exp: Expressions.Expression);

PROCEDURE ExpansionOf(e: Expressions.Expression): Expressions.Expression;

The following shows the respective part of the message handler procedure

for integral types.
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PROCEDURE IntegralHandler(e: Expressions.Expression; VAR m: Expressions.Message);
VAR self: Integral;

BEGIN
self := e(Integral);
WITH m: Expressions.IdentifyMsg DO

...
| m: ExprStd.ExpansionMsg DO

m.exp := ExprStd.NewFunction("int", self.successors)
ELSE (* ignore *)
END

END IntegralHandler;

The following is the example for an installable transformer in the opposite

direction. It replaces functions with the name int and 2 arguments by an

indefinite integral. Functions with the name int and 4 arguments are

replaced by a definite integral.

PROCEDURE InitIntegral(int: Integral);
VAR n: LONGINT; r: Expressions.Rider;

BEGIN
n := Expressions.LengthOf(int.successors);
ASSERT((n = 2) OR (n = 4));
Expressions.OpenRider(r, int.successors);
int.integrand := r.exp; Expressions.Forward(r); int.var := r.exp;
ASSERT(ExprStd.ExpansionOf(int.var) IS ExprStd.Symbol);
IF n = 4 THEN

Expressions.Forward(r); int.low := r.exp;
Expressions.Forward(r); int.high := r.exp

ELSE e.low := NIL; e.high := NIL
END

END InitIntegral;

PROCEDURE SubstituteIntegrals(VAR exp: Expressions.Expression);
VAR n: LONGINT; int: Integral; l: Expressions.List;

BEGIN
IF (exp IS ExprStd.Function) & (exp(ExprStd.Function).name = "int") THEN

n := exp(ExprStd.Function).nofPar;
IF (n = 2) OR (n = 4) THEN

NEW(int);
Expressions.Init(int, IntegralHandler, Expressions.ProdBind, 0, exp.successors);
InitIntegral(int); (* set direct access fields *)
exp := int

END
END

END SubstituteIntegrals;
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5.6 Binomial Coefficients As A Sample Expression Type

The following module implements a complete expression type: binomial

coefficients. They are presented as

n

k

Computing software can access the subexpressions of a Binomial directly

through read_only exported record fields. Setting a Rider on the list of

successors is needed only for generic algorithms.

The concepts have been presented already for the Type Power in Section

5.1 to 5.3. Therefore, a detailed discussion is omitted here.

MODULE Binomials;

IMPORT Fonts, Expressions, ExprViews, ExprStd;

TYPE
Binomial* = POINTER TO RECORD(Expressions.ExpressionDesc)

n−, k−: Expressions.Expression (* direct access to subexpressions *)
END;

PROCEDURE BinomialBox(bin: Binomial;
port: ExprViews.Port; depth: LONGINT; fnt: Fonts.Font

): ExprViews.Box;
VAR u, w, d, h: LONGINT; fnt1: Fonts.Font;

box, n, k: ExprViews.Box; m: ExprViews.FontMetric;
BEGIN u := port.unit;

IF depth > 0 THEN
NEW(box); fnt1 := port.SmallerFont(fnt);
n := ExprViews.ExprBox(bin.n, box, 0, port, depth − 1, fnt1);
k := ExprViews.ExprBox(bin.k, box, 1, port, depth − 1, fnt1);

(* horizontal placements *)
IF n.w > k.w THEN

w := n.w + port.CharWidth(" ", fnt1) ELSE w := k.w + port.CharWidth(" ", fnt1)
END;
n.x := (w − n.w) DIV u DIV 2 * u; k.x := (w − k.w) DIV u DIV 2 * u;

(* vertical placements *)
port.GetFontMetric(fnt, m); d := m.maxY DIV 3 DIV port.unit * port.unit;
h := port.LineWidth(fnt);
n.y := d + 2 * h − n.bot; k.y := d − 2 * h − k.top;

(* set up binomial box *)
box.desc := n; n.next := k;
box.w := w; box.bot := k.y + k.bot; box.top := n.y + n.top;
box.fnt := fnt; box.draw := ExprViews.DrawDesc;
box := ExprViews.BracketBox("(", box, port, fnt) (* parentheses around binomial *)

ELSE box := ExprViews.EllipsisBox(NIL, port, fnt)
END;
RETURN box

END BinomialBox;
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PROCEDURE InitBinomial(b: Binomial); (* set n and k fields *)
VAR r: Expressions.Rider;

BEGIN
ASSERT(Expressions.LengthOf(b.successors) = 2);
Expressions.OpenRider(r, b.successors); b.n := r.exp;
Expressions.Forward(r); b.k := r.exp

END InitBinomial;

PROCEDURE BinomialHandler(e: Expressions.Expression; VAR m: Expressions.Message);
VAR self, copy: Binomial;

BEGIN self := e(Binomial);
WITH m: Expressions.IdentifyMsg DO

m.mod := "ExprBinomials"; m.proc := "AllocBinomial"
| m: Expressions.FileMsg DO

IF ˜m.store THEN InitBinomial(self) END
| m: Expressions.CloneMsg DO

NEW(copy); Expressions.Init(copy, self.handle, self.binding, 0, m.successors);
InitBinomial(copy); m.clone := copy

| m: Expressions.TestMsg DO
m.equal :=

(m.with IS Binomial) & Expressions.EqualLists(m.with.successors, self.successors)
| m: ExprViews.GetBoxMsg DO

m.box := BinomialBox(self, m.port, m.depth, m.fnt)
| m: ExprStd.ExpansionMsg DO

m.exp := ExprStd.NewFunction("binomial", self.successors)
ELSE (* ignore *)
END

END BinomialHandler;

PROCEDURE AllocBinomial*; (* allocator for load *)
VAR b: Binomial;

BEGIN NEW(b); Expressions.Deposit(b, BinomialHandler)
END AllocBinomial;

PROCEDURE NewBinomial*(n, k: Expressions.Expression): Binomial;
VAR b: Binomial; r: Expressions.Rider;

BEGIN
Expressions.OpenRider(r, Expressions.emptyList);
Expressions.Insert(r, n, 0); Expressions.Insert(r, k, 0);
NEW(b); b.n := n; b.k := k;
Expressions.Init(b, BinomialHandler, Expressions.AtomBind, 0, Expressions.ThisList(r));
RETURN b

END NewBinomial;
(* substitute, installed in ExprStd *)

PROCEDURE SubstituteBinomials(VAR exp: Expressions.Expression);
VAR b: Binomial;

BEGIN
IF (exp IS ExprStd.Function)

& (exp(ExprStd.Function).name = "binomial") & (exp(ExprStd.Function).nofPar = 2)
THEN

NEW(b);
Expressions.Init(b, BinomialHandler, Expressions.AtomBind, 0, exp.successors);
InitBinomial(b); exp := b

END
END SubstituteBinomials;
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PROCEDURE InstallBinomials*;
BEGIN

ExprStd.Register(SubstituteBinomials)
END InstallBinomials;

PROCEDURE RemoveBinomials*;
BEGIN

ExprStd.Remove(SubstituteBinomials)
END RemoveBinomials;

BEGIN InstallBinomials
END Binomials.

5.7 CommunicatingWithMaple

A communication link to Maple has been implemented as an example for a

component, that communicates with a computation server. This presents a

proof of concept for integration of concurrency into the editor_based user

interface as introduced in Section 4.1.6.

The Maple link component implements a single command to be

activated by the user (or by the script interpreter). The command retrieves

the current selection through the selection retrieval and replacement

mechanism explained in Section 5.3.3. It immediately replaces the selection

by an icon to represent the future result and queues the request for

transmission to Maple.

The text sent to Maple is more than the selected expression. This gives

the user more flexibility when communicating with Maple. The command

parses the text following its name according to the Oberon System's

conventions. This text is what is sent to Maple. The text may contain icons

representing placeholders. (These are the same as used for the overlay

implementation described in Section 4.3.3). For these placeholders the

selected expression is substituted.

The main task of the link component is the conversion of expressions. A

selected expression must be transformed into text for transmission through

the communication channel. This text is being interpreted by Maple.

Similarly, the result sent by Maple has to be converted to expression objects.

A communication standard like OpenMath [OM−96] would help as a

platform for independent extension in the two dimensions of expression

types and server programs. OpenMath was not ready for use at the time the

prototype was built. Therefore, a very rudimentary approach has been taken.

The same converters are used as for the textual user interface. Maple was

changed to deal with the framework's language.
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Independent extensibility reaches a fundamental limit here. As long as

client and server are not both based on the same extensible framework,

extensions must be done on both sides. Each expression type introduced

into the server must also be introduced into the client (and vice versa). This

problem can only be avoided by either fixing the set of expression types or

by using the same extension components on both sides (client and server).

The latter is not possible when existing computer algebra systems are used

as servers.
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Many other projects are related with this thesis. The concepts discussed so

far embrace two aspects − component software and document_centered

software. The first subsection of this section deals with alternative

approaches to improve the architecture of mathematical software. The

second subsection focuses on user interfaces for mathematical software, in

particular on those related to document_centered software.

6.1 Alternatives To Component Software

Components separate concerns. They must be composable at run time and

must cooperate where required. Their interfaces must be specified using

some standard. Safety requirements have an impact on the abstractions to

be used. (See Section 2.2.4 for an introduction to component software.)

Currently, most existing software is not structured by components. It is

hard to restructure existing software that does not meet the above

requirements. As a consequence, algorithms need to be reimplemented.

It is often claimed that the cost to reimplement mathematical algorithms

is too high. Therefore, attempts have been made to improve the software

structure without requiring algorithms to be reimplemented. These ap_

proaches can be divided into two classes. The first class turns a monolithic

application program into an extensible system. The second class uses exist_

ing application programs as components of even bigger systems.

All these approaches do not lead to independently extensible component

software. In general, application programs are not suited to be broken up

into components. On the other hand, using them as components includes a

lot of unused and redundant functionality into the overall system. Also,
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extensibility of monolithic programs is restricted: external software cannot

be integrated.

As stated in [Wirth−95], in a mature engineering discipline such a

situation should lead to redesign of the software rather than to growth of

the overall complexity. Abusing interactive application programs as servers,

however, may be acceptable and necessary during the migration to com_

ponent software and during prototyping. The link to Maple implemented for

this thesis, is an example of the latter.

Below, two approaches are discussed in detail which improve existing

software towards component software.

6.1.1 Turning Interactive Application Programs Into

Programming Environments

The traditional approach to make an interactive application program

extensible is to add programming facilities to it. These are usually centered

around a language interpreter. Typically, this interpreter serves for scripting

and extension programming at the same time.

Program execution is slower with an interpreted language than with a

compiled language. To compensate, critical algorithms are implemented

within the interpreter. As a consequence, both the language and the

programming environment become very specialized for a particular type of

application.

The most prominent examples of mathematical software systems of this

kind are Maple [CGGLMW−91], Mathematica [Wolfram−88], and Matlab

[Mat−90].

MuPAD

A recent version of MuPAD uses the above design principle in an extensible

way. [MoOe−95] describes how so_called Modules can be added to the

kernel. Modules can be loaded on demand and are accessed like the

kernel's built_in functionality from MuPAD's interpreted language.

Modules are programmed in the C programming language. They can

access any functionality of the underlying operating system and of the

MuPAD kernel. The kernel's internal data is unprotected. A macro library is

offered to simplify access to the kernel's functionality.

Modules can extend the kernel with fast implementations of

mathematical algorithms and with system_related functionality. The kernel

itself is not implemented in the form of Modules.
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Discussion

Mathematical interactive application programs are not well suited as general

component software environments. On one hand they are too heavy_weight

for a general component software shell. The kernels are burdened with too

much mathematical functionality which would better be extracted into

separate components. On the other hand, essential prerequisites for

independent extensibility are missing (e.g. encapsulation and information

hiding mechanisms, or an open user interface to integrate components).

As a rule of thumb, to judge whether a software system may be used as a

component software environment, one should ask oneself whether it is

possible to implement an independently extensible document editor within

it. With the systems mentioned above such an editor would be slow. More

importantly, independent extensions are not possible because of the lack of

the necessary encapsulation and scoping mechanisms.

A programming environment needs more than a language interpreter, e.g.

a program editor and a dynamic loader. As the result, the special purpose

application programs are extended by extra functionality, which should

better be reused from a lower level.

The individual programming environments cannot be used from within

other programs. The approach is ego_centric: everybody declares his/her own

environment as the base for extensions. Every extension has to be

reimplemented for each such environment.

A Note On Oberon

The implementation described in this thesis extends the Oberon System. At

a first glance, Oberon may be mistaken as an environment of the above

kind: it can be extended through its own programming language and it can

appear as an application program (extending operating systems like Sun OS,

Mac OS, Windows, etc.).

Still, there is an important difference between Oberon and the above

environments. Oberon is designed as a component software environment. It

is not specialized towards any kind of application. The extension

mechanism is based on compilation, making execution of any component

as efficient as the kernel. Thus, the inner core can be lean and functionality

can be added as needed by extension components. Many such components

exist already within Oberon. These can be reused and combined with new

ones. This is one of the main advantages of integrating mathematical

software into an existing component software environment over creating a

special environment for mathematical component software.
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6.1.2 Software Buses

Attempts have been made to connect existing application programs by

communication means. These attempts use the application programs as

coarse grained components. This concept and the communication software

layer in particular are called software bus. For mathematical software, the

most prominent example is CAS/PI [Kajler−92, Kajler−92a].

When reusing application programs, the data to be manipulated is stored

in the workspaces of the individual application programs. Data to be

manipulated by more than one program is replicated. Since names are used

as references within each workspace, the individual name bindings must be

synchronized. This is particularly difficult if servers can be added to the

running system at any time. CAS/PI lacks this synchronization.

Using interactive application programs as servers generalizes the concept

of pipes in the UNIX operating system, which allows to combine programs

by redirecting their input and output streams. This mechanism is suitable for

combination of non_interactive programs, which transform sequences of

bytes, but it is doubtful whether it is the right tool to accomplish interaction

of already existing, self_contained, interactive application programs.

Interactive application programs have not been designed as computation

servers but to conduct a dialog with a human user. This makes it hard to

analyze the output of a program automatically.

Implementing a connection to Maple for this thesis showed that even

small issues create big problems. For instance, it is difficult to identify the

end of the output stream or to deal with error conditions. The solution is to

modify the interface part of the application program to use a commu_

nication protocol instead of the command language. Such protocols for

mathematical software are being defined for Mathematica [Wolfram−93]

and by the OpenMath group [OM−96].

As an alternative, some application programs are available as linkable

libraries with a programming interface. Typically, the library allows the same

type of interaction as the interactive application program. To use such a

library within a software bus system requires to program stubs that connect

the library to the communication_based software bus.

Serializing the data, sending it over a sequential channel, and replicating it

in another program's workspace is much less efficient than sharing memory.

It requires both time to transform the data and space to replicate it.

Finally, the stream interface is too restricted. It does not allow for static

type checking. At best, dynamic type checking can be supported.
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Component software should use a common data repository, accessed

directly by all components. For the design presented in this thesis,

workspace management was separated from computation software.

Workspaces can be shared, no serialization or replication of data is

necessary, and no synchronization of workspaces is needed.

Remote machines may be used as computation servers, but the servers

should be designed with this purpose in mind. (The client/server

architecture can be seen as a reduction of the software bus concept.) All

state should be kept at the client's site. The servers should be stateless like

with CaminoReal [ABMW−88]. (Still, caching may be used to improve the

performance.)

The same holds for programming: only when programming is centered at

the client's site, it becomes possible to bundle the computational power of

different servers in one script or program. Furthermore, the user needs to

master only one programming language instead of one per server.

6.1.3 Shared Object Libraries

Current operating systems offer a unit of extension that is smaller than

programs. Examples are Shared Object Libraries in the Sun OS or Dynamical

Link Libraries (DLL) in Windows. They offer dynamic loading and are a

prerequisite for component software, but they are not a full alternative. They

support neither interface checking, nor shared memory management, nor a

foundation to integrate user interfaces. (See 2.2.4 for a discussion of the

requirements for component software.)

6.2 User Interfaces And Document Editors

The idea to combine document editing and user interfaces is not new. Early

and general examples are the Macintosh Finder program [InsMac−91] or

hypertext systems. Modern examples are graphical user interface builders

like Delphi, Visual Basic [Schneider−95], the Gadgets system of Oberon

System 3 [Gutknecht−94], or the form subsystem of Oberon/F [OF−94].

In the realm of mathematical software, Maple's Worksheets

[CGGLMW−91] and Mathematica's Notebooks [Soiffer−95] are user

interfaces which are based on documents. Examples of document editors

that incorporate a link to a symbolic computation system are CaminoReal

[ABMW−88] and the Euromath system [Sydow−92].
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A complete and comprehensive overview of mathematical user interfaces

can be found in [Soiffer−91] and in [KaSo−94]. Therefore, only projects

closely related to this thesis will be mentioned in the following.

6.2.1 Expressions Within Documents

When turning documents into interfaces to mathematical software,

expressions must be incorporated into documents. This has value in itself

since it can be used for document processing.

Expression editing can be built into a closed document editor. An

example are the extensions of the editor Lara described in [Schär−91]: a

fixed set of templates for various mathematical expressions is made

available. To introduce a new expression type, configuration files and the

program itself have to be changed. The latter involves recompilation. A

globally unique number has to be assigned to the new type. This inhibits

independent extensibility.

An alternative to modifying a closed document editor is to extend an

extensible editor like OPUS [Vetterli−91], Framemaker [Framemaker−89], or

the editor Tioga of the Cedar System. CaminoReal [ABMW−88] is an

extension of Tioga, which also can be connected to Maple (see Section

6.2.2).

With the upcoming industry standards for compound documents (like

OpenDoc and OLE) more and more expression editors are made available as

document parts. The most prominent example is MathType [MT−87], which

is delivered together with Microsoft Word [MW−93]. The integration is

based on OLE.

Such document parts aim at editing and document processing. To

implement workspaces as suggested by this thesis, a programming interface

to containers and parts is needed. No user interface software has yet been

based on such building blocks.

Much document preparation is currently done by batch_oriented type_

setting software, like TeX [Knuth−84] or LaTeX [Lamport−94]. Documents

are described in a special language. This description is translated to a

two_dimensional representation by a non_interactive program. Batch_oriented

systems cannot be used as a base for user interfaces, because they are not

interactive.

The advantage of batch_oriented typesetters is the excellent typographical

quality of their output. The optimal solution may be to use a batch_oriented

typesetting system as an intelligent printer driver. In such a setting the

interactive compound document editor is used for editing and as a user



1096 Related Work

interface. For printing, a document description suitable for a batch_oriented

typesetter would be generated. Of course, the WYSIWYG property would be

lost, but compared to describing a document using TeX or LaTeX the

feedback is still better.

6.2.2 User Interfaces of Computer Algebra Systems

Traditional user interfaces to mathematical software are based on sequential

dialogs, command lines, and text. They can be used through primitive,

character_based terminals. Such user interfaces are no longer state of the art.

This section lists some more modern examples.

Mathematica, Maple

The benefit of putting together document processing and mathematical

software has been recognized by the most important computer algebra

system vendors. Maple [CGGLMW−91] for instance, uses Worksheets. These

are documents within a proprietary document processing environment. They

can contain mathematical expressions (apart from text and plots), which

can be parsed to be input into Maple's name_based workspace.

Mathematica's Notebooks [Soiffer−95] implement a conceptually similar

idea. As an early example of such specialized, interactive document editors

also Mathcad [MC−93] should be mentioned.

These examples show that it is appealing to use documents as user

interfaces. In the case of Maple and Mathematica, document processing was

added to the user interface of symbolic computation programs. These

programs cannot be combined with each other nor with other document

processing software.

The project underlying this thesis takes the opposite approach. The user

interface is built on an existing document processing environment.

Documents are used as the universal integration platform for a variety of

user interfaces. Furthermore, the user interface for mathematical software is

not bound to an individual computation program. On the contrary: the user

interface becomes the master who delegates to computation slaves. Several

of such slaves can be used from a single interface concurrently.

Mathematica's Notebooks and Maple's Worksheets are only front ends for

input and output. They are not the data repositories accessed directly by the

computation engines. Both Mathematica and Maple use hidden state (e.g.

name bindings) to implement workspaces. The documents within the user

interface are only used as a special kind of terminal.
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This thesis suggests to use documents as workspaces directly. The hidden

name bindings are avoided entirely. Much of the functionality needed for

workspaces can be reused from the document processing software, leading

to a lean system.

CaminoReal, Euromath

The projects most similar to the one underlying this thesis are CaminoReal

[ABMW−88] and the Euromath system [Sydow−92]. Both extend a general

document editor with mathematical expressions and both allow access to

computation software.

CaminoReal is based on the extensible editor Tioga of the Cedar system.

An abstract syntax is used to represent expressions internally. A local library

as well as remote servers can be used for computation. The problem of

representing concurrent computation within an interactive document editor

is stated but not resolved. Evaluation of a contiguous document section is

suggested for scripting, but no local scopes are created. On the contrary, a

global name binding table reintroduces all the problems of hidden state and

the dependences on session history.

For the Euromath project an entire extensible structure editor has been

developed. Expressions are a special type of document structure. The

client/server scheme is suggested to integrate existing application programs

as computing servers. This raises many of the problems discussed for

software buses in Section 6.1.2. Neither composed parameters, nor

concurrent computations, nor scripting are addressed.

Mathcad

For the user interface of Mathcad [MC−93] a special document editor has

been implemented. Documents are composed from text, pictures, express_

ions, plots, etc. Computation commands can be applied to expressions.

Expressions and plots can be related as with cells of a spread sheet.

Mathcad features its own library of numerical algorithms and a link to

Maple for symbolic computation.

Theorist

Theorist [BoWa−89] also uses a document model as front end to its

computation engine. Computing with Theorist means to edit a document.

The latter presents one or several Theories. Each Theory represents one

branch in a tree of manipulations. Whenever case_analysis leads to more

than one possible result, The tree branches.
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The user interface of Theorist is a constrained direct manipulation editor

for equations. Equations can be manipulated directly. It is possible, for

instance, to select a term within a sum on one side of an equal sign and to

drag it to the other side of the equal sign. This is interpreted as the

command to subtract that term on both sides of the equation.

This interface is very intuitive for simple operations. More complicated

operations are available through menu commands.

With workspaces implemented through compound documents such a

direct manipulation constrained editor could be wrapped into a document

part.

6.2.3 Plotting And Help Texts

[KaSo−94] states that user interfaces for symbolic computation software

must feature more than expressions. In particular, interfaces to display plots

of mathematical objects and the integration of help texts is demanded.

This thesis treats these issues as separated concerns. A software

component generating plots will have to use a special document part to

display its plots. Such document parts can be inserted into the same

documents as expressions can. Apart from this, plotting is orthogonal to the

material discussed in this thesis.

The same holds for help texts. These can be provided as documents,

independent of the rest of the software. Existing hypertext facilities can be

used to organize them. A help text may contain parts to represent

expressions. This is advantageous, as the user can work with examples

within the help document or extract data from it. Again: the help system is

integrated into the document processor instead of rebuilding a document

processor as help system.

6.2.4 General Object_Oriented User Interfaces

There exists a tremendous number of tools for the interactive design of

object_oriented user interfaces. Just a few such environments are [LVC−89,

Calder−90, Gutknecht−94, OF−94, Schneider−95]. All these tools have a

different target than this thesis. They allow to combine small editors for

single objects (widgets, controls, etc.) on a dialog panel. In this thesis the

focus is different: documents are used as (persistent) object stores allowing

direct manipulation.



112 6 Related Work

6.2.5 Expression Editors

Part of the framework described in this thesis is an extensible expression

editor. It was not the goal to introduce a new editing model for users. The

text_based editing model resulted from the overall structure of the

framework.

Soiffer presents a guideline for expression editor implementation in

[Soiffer−91]. He further offers a very complete review of such editors and

describes the editor MathScribe. According to [Soiffer−91] two different

mechanisms for entering and editing expressions are to be distinguished:

incremental parsing and patterns (templates, overlays).

With incremental parsing, formulae can be entered as text. This text is

analyzed after each key stroke and a graphical representation of the

expression currently being entered is reformatted if needed.

The second entering mechanism relies on patterns which are applied as

templates or overlays. Such patterns can either be selected from a graphical

palette, or they can be bound to keys.

Most existing expression editors are based on these concepts, or on a

combination of them. Section 4.3 shows how these basic technologies were

incorporated into the framework of this thesis.

CAS/PI

Kajler already observed in [Kajler−92] that a user interface must be

extensible with mathematical objects, in particular if it is to be independent

of computation programs. Whenever a new type of expressions is

introduced into a computation program or by a new program, it must also

be introduced into the user interface.

CAS/PI is an implementation allowing for such extensions. To introduce a

new object into CAS/PI its various aspects must be described using several

ad_hoc languages. This makes extending CAS/PI a bit cumbersome: many

changes at many unrelated locations are needed. The various configuration

files of the user interface and the computation software all have to be

changed in parallel and consistently.

Kaava

For Kaava [Rimey−92] template_based formula entering was studied in

detail. Kaava does not support any (incremental) parsing. Instead, templates

can be bound to keys on the keyboard. Such templates may contain

placeholders in which cases they are used as overlays.
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Kaava's editor goes much further than the one implemented for this

thesis. It supports insertion points between two expressions. These are

automatically extended to selections according to a complicated algorithm.

Since Kaava's editing technology is built upon expression trees and

bounding boxes, it could be implemented to be used within expression

icons.





7 Conclusions

Several conclusions can be drawn from the design, implementation, and

description of a framework for document_centered mathematical component

software. Some of them are related to mathematical software, some of them

are related to component software and document_centered software.

7.1 Mathematical Software Systems Can Be Lean

The overall conclusions from the presented work is that document_centered

mathematical component software is feasible and that it can be lean

software yet providing significant functionality. Design and implementation

of a prototype have been presented. The implementation in Oberon serves

as a proof of concept. It demonstrates that a small core framework is

sufficient. It has been successfully used to accomplish small computation

tasks during the author's every day's life and for document preparation. This

text is an example of the latter.

The implementation includes the abstract and generic expression data

type, the drawing framework, integration into text documents, a scripting

facility, a generic editor, a link to Maple, some simple computation

commands, and a variety of expression types. All this has been implemented

with 6720 program statements (see Table 2 in Chapter 5).

Most of the implementation's simplicity is due to the regular and generic

design. One might suspect that using small, simple, generic interfaces may

cause a significant loss of efficiency. Experience with the implementation

shows that this is not the case. No significant delays can be observed by the

user. The main reason behind this is probably that only one address space is
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used, avoiding unnecessary data replication and transmission through

byte_oriented channels.

Leanness not only shows in small program size and moderate hardware

requirements. More importantly, lean software is easier to understand than

fat software. Such understanding is essential for the software scientist and

teacher: the scientist needs to extract principles for generalization and the

teacher needs to present the essentials to the students. This thesis proves

that the framework for document_centered mathematical component

software can be described comprehensively.

It may be argued that the prototype is lean, only because it is

over_simplified. The response to this is two_fold. On one hand, the prototype

is functional, i.e. it contains the features needed. There will always be

additional features wanted. Obviously, there is a trade off between software

leanness and user comfort. Finding a reasonable compromise is one of the

largest difficulties in software design. On the other hand, addition of some

single features to the prototype should not be too costly, i.e. it should not

add an order of magnitude to the prototype's size. The claim that the

software is lean should hold, even after several additions.

The main tradeoff is between genericity and special treatment of

particular expression types. Genericity is the key to leanness. Special

treatment of properties is demanded in particular for a few special operands

like the standard arithmetic operators. Generalizing these special demands

complicates the generic abstractions. It is doubtful whether this price should

be paid. It can be concluded that mathematical software is indeed hard to

treat generically as long as no concessions are made.

7.2 Computation Servers Should Be Stateless

The client/server architecture allows a client to use several computation

servers. The client implements the user interface and manages the

workspace. Programs that are used as servers should not have additional,

separate workspaces.

Before going into detail, it should be noted that these considerations do

not apply to systems that are created entirely on the basis of distributed

objects. Such systems are equivalent to conventional systems with single

address spaces. The considerations do apply to systems with several

separated address spaces. Such systems result from reusing existing

computer algebra systems or when computing services are offered to a

wider range of clients, for instance via the World_Wide_Web.
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If computing servers do not share objects, they should be stateless. All the

state should be handled by the client site that implements the user interface.

The client has to compensate for the loss of functionality caused by making

the servers stateless. This lost functionality includes the possibility to bind

properties to objects or to use name bindings. Document_centered software

should offer alternatives to these. These mechanisms need to be extended

to remote computing.

For efficiency reasons, internal state of a server may still be used for

caching to reduce communication needs or to keep libraries loaded. It

would be the system's (i.e. client's) task to detect inconsistencies and to

invalidate the caches as needed. To the user, however, a single workspace

must be presented.

The main advantage of stateless servers is that they allow the user to

combine computation servers freely. With servers keeping separate state, the

user would have to keep the workspaces of the different servers consistent

or to cope with inconsistent results.

The same argument holds for programming. Combining operations of

several servers within one program becomes cumbersome if the individual

server's programming facilities are used. For instance, all communication

between servers must be programmed explicitly. Furthermore, if different

programs are used as servers, different programming languages must be

used and understood.

If programs are executed at the client's site, the user has to manage one

programming environment only. Single operations can be delegated to

stateless servers, for instance by remote procedure calls. The services

themselves should be programmed on the server's site directly, i.e. without

involving the client program.

7.3 Extensibility Is Better Than Reuse

The most important guideline during the framework's design was to strive

for independent extensibility. This contrasts traditional object_oriented

programming, which focuses on reusing existing objects.

Traditional object_oriented frameworks implement partial solutions (i.e.

functionality). They are specialized later to solve a particular problem. Doing

so is seen as reusing the functionality implemented in the framework.

Independent extensible component frameworks are different. They

materialize the design rules for components extending it. An example for

such a rule is that expression graphs must not be changed. This rule is
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materialized by an abstract data type for immutable expression graphs. The

system's functionality is implemented within the components that extend

the framework, not in the framework itself.

In general, extensibility is more important than reusability. With an

extensible system the user combines components on demand. These

components need not to use each other directly, but they use common

abstractions. They can be composed at run time, and still cooperate.

Expression graphs, for instance, can contain expression types coming from

several components, though these components are not aware of each other.

Extensibility allows for reuse on a higher level, i.e. on the user's level.

There is no static relation between components that extend a framework in

parallel. The developers of the individual components do not need to know

about each other. Only the user decides which of the existing components

to use to accomplish a specific task.

7.4 Workspaces Can Be Implemented By Compound
Documents

Compound documents can be workspaces for users. The workspace is

implemented by the document container. The objects within the workspace

are represented by document parts. The document editor allows direct

manipulation of workspaces. Objects can be inserted and removed from the

workspace by inserting and removing the corresponding document parts.

The documents are the object repository − in contrast to existing front

ends that use documents only as sophisticated terminals to manipulate

traditional workspaces based on hidden state.

The traditional way to implement workspaces is to use name bindings.

Using compound document parts instead of names has several advantages:

it can be seen directly, which objects are in the workspace.

no internal table of name bindings must be memorized by the user.

(The extra information possibly provided through a name can be

represented in other ways within a document.)

document parts can carry more information than names, e.g. they

can typeset formulae.

document parts can react on user input, allowing e.g. for selection of

subexpressions.

document parts can represent upcoming results computed by a

server.
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Name bindings are still needed for scripting. In contrast to workspace

implementations, these name bindings must not be global. Instead, each

script should generate its own scope.

Computational component software is centered around a repository for

objects. Doing so, separates data management and user interface issues

from computational components. Such a repository has a very light weight

implementation using a compound document framework. The document

editor allows for direct manipulation of the workspace. Computing

operations are just particularly powerful editing operations.

Compound documents allow for better integration with various software

components. On one hand, arbitrary computational programs can share a

workspace. On the other hand, arbitrary objects can be bundled in one

workspace. This allows for commenting, inclusion of plots, etc. Finally, other

document processing software (e.g. for layouting or hypertext linking) can

be used with such workspaces. This separates the concerns of plotting and

online help among others. The latter, for instance, can be presented as a

hypertext document including expressions. A special online help system is

no longer required.

7.5 Document Parts Should Be Seen In Their Context

The concept of compound documents should be enhanced beyond

separation of containers and parts. Parts can be interpreted in the context

provided by their current container. Within a text container they can be used

as tokens of a formal language.

This has three major applications in the presented framework:

ad hoc composition of multiple parameters for commands as text.

scripts as an interpretable document section.

a simple text_based expression editor can be created with almost no

extra implementation effort.

Operands of commands can be stated in one of several forms. The

framework presented deals with expressions represented as text, as mixture

of text and document parts, as single document parts, or as subexpressions

selected within document parts.
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7.6 ExperienceWith Oberon

The framework has been implemented as an extension of the Oberon

System using the Oberon Programming Language. Technically, this

environment proved to be very adequate. In the following, some experience

is discussed with both the Oberon Language and the Oberon System. Part of

the discussion is on specific details. For these, the reader is assumed to be

familiar with Oberon.

7.6.1 ExperienceWith The Programming Language

The Oberon Programming Language served well to express the abstractions

needed for the component framework. Encapsulation of components was

provided through modules. The type_checked interfaces allowed to

guarantee crucial invariants.

Strong static typing was an important practical aid when implementing

the framework. The type_checking compiler was of big help during several

major redesigns that involved changes in the interfaces, even of low level

components. The compiler could be used to statically identify all the

program parts needing adaptation. Such changes become necessary during

the design and prototyping of any component framework.

The language Oberon exists in two versions, Oberon and Oberon_2, the

latter being a superset of the former. The most important additions intro_

duced by Oberon_2 are three concepts: type_bound procedures, read_only ex_

port, and dynamic arrays.

In the mathematical component framework type_bound procedures have

been used very rarely. They could easily have been avoided entirely. Instead,

the message record handler approach of the original Oberon system has

been followed. In some cases (like the draw method for bounding boxes) a

procedure variable was used to bind a method. The reason for not using

type_bound procedures was that binding methods to objects is often not

paralleled by type extension. Type_bound procedures often require a type

extension only to allow overriding of a method.

Read_only export has been used frequently to protect abstractions. It is an

important tool if variables are used in interfaces. The only safe alternative is

not to export the variables (or record fields) at all, but to offer access

procedures instead. The latter are less efficient, but they give more freedom

when implementing an interface.
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Dynamic arrays were rarely used. Only the library module implementing

arbitrary precision integer arithmetic relies entirely on dynamic arrays. In

some cases, usage of dynamic arrays was not possible because of the

implementation restriction that disallows dynamic arrays to hold pointers.

7.6.2 ExperienceWith The System Library

The Oberon System was a major source of inspiration and a useful

environment for the framework. In particular, the uniform address space

made the integration of components (new ones and existing ones) very

easy. Memory protection on object level through the programming language

proved to be a reasonable substitute for separate address spaces. In its

light_weightness this model is preferable to that of OpenDoc, for instance.

OpenDoc uses a separate address space for every document. Such border

lines hinder reuse of computational components which need not to be

assigned to particular documents.

For the expression editor the lightweightness of viewers is essential. In

Oberon viewers are simple objects, avoiding the overhead of creating a new

process or even of loading and starting a new application. This has direct

impact on the performance. Viewers can be opened and closed fast enough

to use a separate viewer when editing an expression. No recognizable delays

are imposed on the user.

Using Text Elements

Text Elements were used extensively and in a way not entirely foreseen by

their designer. It turned out that the subfocus mechanism is difficult to

understand entirely. To some extent this is also true from the user's

perspective. A Text Element's frame can hold a subfocus within its container,

though the latter is not focused. Such a Text Element's frame looks like

being the current input focus, but it is not.

Furthermore, the concerns of input focus and mouse command

interpretation are not well separated. It is necessary to switch between

different mouse command interpreters since it must be distinguished

between mouse commands to the text editor and such to the Text Element.

In Oberon, that switch is tied to the input focus. Therefore, only one Text

Element per viewer can interpret special commands. That Text Element is

the input focus at the same time. This causes some problems with copy_over

of subexpressions within the same document.
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To use the existing text model as a base for workspaces, i.e. as data

repository, one more facility is missing. When a text is to be stored the

DAGs referred to by document parts must be stored with it. In general, these

DAGs will be not completely disjoint. Several document parts will refer to

nodes in the same DAG. These relationships should be taken into account

when storing the document. Otherwise a high extra cost in memory would

result, and it would be rather expensive to reconstruct the original graphs

when internalizing the document again.

To store such data graphs as a whole, the storing operation must be

preceded by an extra step. During this step the entire document can be

analyzed. The result of this analysis can be used to store a single graph.

References to nodes within that graph are stored with the individual

document parts. This requires that the store message sent to the Text

Element carries some context. With the current Oberon System, neither

preprocessing nor that context are supported. The extension hooks needed

are missing.

Draw Ports Should Be Provided By The System

It has turned out that the Model_View_Controller Separation (MVC) reaches

its limits as soon as the Model becomes extensible. This observation can

already be made with Text Elements, which allow to extend the text model.

Expressions are another example. In all such cases the drawing programs

have to be provided together with the model extensions. They cannot be

factored out into a separate view component.

Drawing programs should not depend on the graphic devices to be used.

If they do, the system is no longer extensible in the dimension of such

devices; at least, such extensions are no longer independent from the model

extensions. For Text Elements the problem has been circumvented by fixing

the set of devices. It may be argued that this restriction may be acceptable

because of typical hardware settings. However, the need to program drawing

twice can already be cumbersome if drawing is difficult, like for

mathematical expressions.

The solution is to provide an abstraction of drawing devices, typically

called draw ports. Such an abstraction should be part of the system's core.

Present day, extension packages (like Callas [Pfister−93] and Kepler

[Templ−94]) define their own draw ports. The expressions framework adds

a further port type. This suggests the conclusion that ports are indeed

important enough to be generalized for the entire system. This would also

simplify cooperation between different packages. Expressions, for instance,

could be used within Kepler, too.
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7.7 Generalizations

Some concepts developed in this thesis have been proven useful beyond

mathematical software. For instance, a document_centered user interface

client has been implemented for text searching. It communicates with a

UNIX_based text searching engine operating on the Oxford English

Dictionary. The answer to a query is a set of matches which − in case of a

very general query − can have millions of elements. It is necessary to

represent such sets as objects to the user. These objects will be used to state

query refinements. With similar ideas a user interface to a music data

analysis system has been implemented [Eberhardt−91].

Independently extensible systems are a current research topic. This thesis

is a case_study in creating independently extensible component frameworks.

7.8 Summary

Apart from showing that lean document_centered mathematical component

software can be done, the thesis offers the following contributions, which to

the best of my knowledge are new and original in this form and

combination:

the concrete design of a component framework for mathematical

component software (Chapter 3)

the suggestion to use compound documents in an integral way, i.e

to view parts in the context provided by their container (Chapter 4)

a document_centered user model for mathematical component

software (Chapter 4) including:

− documents as data repositories, not just as mirrors of internal state

kept separately (Section 4.1.2)

− scripting within documents (Section 4.2)

− document parts to represent upcoming results of concurrent

computing operations within interactive editors (Section 4.1.6)

a design pattern for immutable, generic graphs (Section 5.1).
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