
Diss. ETH No 11697

Design and Implementation of a
Component Architecture for Oberon

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of
Doctor of Technical Sciences

presented by
Johannes Leon Marais

M.Sc Computer Science, RAU
born July 21, 1967

citizen of Cape Town, South Africa

accepted on the recommendation of
Prof. Dr. J. Gutknecht, examiner
Prof. Dr. N. Wirth, co-examiner

1996

For my dear parents

Contents

Acknowledgments xiii

Abstract xvii

Zusammenfassung xix

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Overview . 3

2 Component Software 5
2.1 Terminology . 5
2.2 Examples . 9

2.2.1 The Andrew Toolkit . 10
2.2.2 OpenDoc . 11
2.2.3 OLE-2 . 12
2.2.4 ET++ . 12
2.2.5 Visual Basic . 14

2.3 Summary . 14

3 The Gadgets User Interface 15
3.1 Introduction . 15
3.2 User Interface Vocabulary . 17
3.3 A Gadget Classification . 24

3.3.1 Model Gadgets . 25
3.3.2 Elementary Gadgets . 27
3.3.3 Container Gadgets . 27

vii

viii

3.3.4 Camera-view Gadgets 30
3.3.5 Document Gadgets . 31

3.4 Interactive Composition . 37
3.4.1 Gadget Interaction . 37
3.4.2 Examples . 40
3.4.3 Commands and Macros 43
3.4.4 Summary . 45

4 Overview of Design Concepts 47
4.1 The Module Hierarchy . 47

4.1.1 Module Interfaces . 48
4.1.2 User Interface and Application Coupling 49
4.1.3 Model-View Coupling 52
4.1.4 Examples . 53

4.2 The Type Hierarchies . 57
4.2.1 Type Extension . 57
4.2.2 Type Safety . 62
4.2.3 Type Definitions . 62

4.3 The Display Hierarchy . 65
4.3.1 Structure . 65
4.3.2 Messages . 65
4.3.3 Examples . 72

4.4 The Persistence Hierarchy . 72
4.4.1 Libraries . 72
4.4.2 Examples . 75

4.5 Summary . 76

5 Objects and Gadgets as System Components 77
5.1 The Principal Types . 77
5.2 The Canonical Component Module 78
5.3 The Object Messages . 81

5.3.1 The Attribute Message. 81
5.3.2 The Link Message . 84
5.3.3 The Copy Message . 84
5.3.4 The Find Message . 86

5.4 The Library Mechanism . 87
5.5 Programming Support . 94
5.6 An Example . 97

ix

5.7 Summary . 99

6 Visual Gadgets 101
6.1 The Principal Types . 101
6.2 Message Broadcasting and Forwarding 103
6.3 The Frame Messages . 107

6.3.1 The Display Message . 108
6.3.2 The Print Message . 109
6.3.3 The Locate Message . 110
6.3.4 The Input Message . 111
6.3.5 The Modify Message . 112
6.3.6 The Consume Message 115
6.3.7 The Select Message . 117
6.3.8 The Update Message . 117
6.3.9 The Control Message . 118
6.3.10 The Priority Message . 119
6.3.11 Other Frame Messages 119

6.4 The Imaging Model . 120
6.4.1 Motivation . 120
6.4.2 Shape Algebra . 122
6.4.3 Display Masks . 128

6.5 Examples . 134
6.5.1 Messages . 134
6.5.2 Elementary Gadgets . 137
6.5.3 Container Gadgets . 140
6.5.4 Camera-views . 144

6.6 Summary . 145

7 Documents as Objects 147
7.1 Documents . 147
7.2 Portable Documents . 154

7.2.1 Motivation . 154
7.2.2 Resources . 156
7.2.3 Module Transport . 158

7.3 System Protection and Security 160
7.3.1 Authentic Portable Documents 163
7.3.2 Perspectives . 169

7.4 Summary . 171

x

8 Summary and Conclusions 173
8.1 Summary . 173
8.2 What has been achieved? . 176
8.3 What should still be done? . 177
8.4 Conclusion . 177

Appendix 179

Curriculum Vitae 191

List of Figures

3.1 The Oberon screen organization 18
3.2 The Inspector . 22
3.3 The library management tool . 23
3.4 The logical gadget classification hierarchy 24
3.5 The model-view framework . 25
3.6 Examples of elementary gadgets 28
3.7 A panel example . 29
3.8 Example of camera-views . 30
3.9 A document in a viewer . 31
3.10 A document embedded in a document 32
3.11 A desktop example . 33
3.12 An HTML document . 35
3.13 A panel embedded in an HTML page 36
3.14 The gadget control areas . 38
3.15 The Gadgets.Panel document . 40
3.16 Constructing a panel . 41
3.17 Inspector inspecting a button . 42
3.18 Assembling a menu . 42
3.19 The alignment popup menu . 43
3.20 A document opening tool . 45

4.1 User interface and application coupling 50
4.2 The extensible MVC module decomposition 53
4.3 The base module hierarchy . 54
4.4 The Gadgets module hierarchy 56
4.5 The type hierarchy embedded in modules 58
4.6 The object type hierarchy . 63
4.7 The message type hierarchy . 64

xi

xii

4.8 The display space structure . 66
4.9 Message paths . 70
4.10 The persistence hierarchy . 74

6.1 The shape structure . 123

7.1 Embedding documents in the display space 148
7.2 Public and private key gadgets 166
7.3 A panel for managing keys . 166

Acknowledgments

Oberon System 3 with Gadgets is the product of so many people that a complete
list of contributors is difficult to compile. Since the design and implementation
of the original Oberon system by N. Wirth and J. Gutknecht, numerous ETH as-
sistants, students, researchers and fans have contributed in extending, perfecting
and propagating Oberon. Nevertheless, I would like to acknowledge the following
people who made important contributions to the subject matter of this thesis:

� Jürg Gutknecht, the visionary and architect of Oberon System 3, for count-
less discussions about the design and implementation of Oberon System 3
and Gadgets. Invariably these design discussions lead to elegant solutions
to difficult problems. Gadgets would not be the success it is today without
his extensive support.

� The early System 3 team, Karl Rege and Ralph Sommerer. Karl introduced
me to the intricacies of Oberon and provided valuable feedback as an al-
pha tester, and Ralph contributed to the text sub-system and also provided
feedback as one of the early users.

� Emil Zeller, who built the most gadgets-based applications. Emil’s software
makes the most advanced use of the Gadgets document model, and includes
the Web browser (Figures 3.12 and 3.13), mail client, news reader, FTP
tool, tutorial system (Figure 3.11), and archiver. Without his contribution
the system would not be as useful as it is today.

� Josef Templ for his contribution in porting Oberon to UNIX, locating a few
design and portability problems, and also many bugs. His criticisms were
an important and welcome feedback.

� André Fischer for his effort in documenting the system in electronic tuto-
rials, and so discovering several inconsistencies in the process. Few would

xiii

xiv

be able to use the system without this substantial contribution.

� Thomas Kistler, who as porter of Oberon System 3 to the Mac, fixed many
problems related to portability and also made important improvements.
Thomas implemented the Oberon systems based on OMI, which is in turn
based on the thesis work of Michael Franz and Régis Crelier.

� All the students that completed projects under my supervision. Many of the
projects contributed to the design and implementation of Gadgets. Notewor-
thy contributions that are now part of the Oberon distribution include Wat-
son from Patrick Saladin and Rembrandt (Figure 3.7) from Daniel Ponti.

� Daniel Bleichenbacher for his advice on cryptographical algorithms and
their performance.

� The people that contributed in one way or another to my Spirit of
Oberon distribution for Windows. Important contributions came from
Matthias Hausner for building the original Windows interfaces on which the
port is based, Niklaus Mannhart for the OP2 compiler port, Emil Zeller for
porting the network sub-system, and Patrick Saladin and Markus Dätwyler
for the required set of computer games. I would like to thank Josef Templ
for the media propaganda and his publication of the Oberon System 3 and
Gadgets CD-ROM in cooperation with Addison-Wesley. I would also like
to thank all the users who sent me a postcard.

� The porters of Oberon System 3 and Gadgets to other architectures:
Pieter Muller for Native Oberon, Andreas Disteli for DOS-Oberon, An-
dreas Würtz for MacOberon, Markus Dätwyler and Marc Sperisen for
Linux Oberon, and Michael Franz and Thomas Kistler for their OMI im-
plementation for MacOS. Invariably a new port was also an opportunity for
improving a part of the system.

� Erich Oswald, for putting up with the many visitors to our office, and also
for interesting discussions about computer graphics and life in general.

� My colleagues at the Institute für Computersysteme for an interesting work
environment and many stimulating discussions over lunch.

� Dominique for proof-reading the manuscript and screening me from the
real world while I was writing my thesis. I would also like to thank

xv

Robert Griesemer for helping with the German translation of the abstract,
and Cynthia Hibbard for helping me improve my writing.

xvi

Abstract

The traditional view of computer software is that of off-the-shelf programs with
little or no possibility of customization. Engineers create this type of software by
combining software components in such a way that the delivered product does not
show how it was constructed. Unfortunately, this construction technique does not
allow the buyer to adapt components, add new components to or remove compo-
nents from the program. So, buyers unhappy with the functionality of a product
have little choice but to wait until the vendor releases an enhanced version of the
program. Consequently, software vendors slowly incorporate new features in suc-
cessive versions of a program, features that are not necessarily useful to all users.
The result is that programs tend to get bigger with each new version, with no
significant improvement in functionality.

The obvious solution to this problem is to give the knowledgeable buyer the
flexibility of composing custom software from prefabricated parts. This approach
has the advantage that only those parts that are actually required need to be bought,
and with a variety of parts readily available, the buyer has much more freedom in
constructing software. The most end-user accessible software that fall in this cat-
egory of configurable systems are document-based user interfaces. A document-
based user interface regards applications and their user interfaces as components
that can be composed and configured interactively as if editing a document. The
distinction between a document-based user interface and a GUI builder is that a
document-based user interface allows the users to modify applications even after
they are installed. In the simplest example, this would even allow a user to modify
a dialog box in an installed application.

The principal technical difficulty in building a document-based interface is
to provide the communication infra-structure that allow independently developed
components to be combined interactively. Without a mutual communication pro-
tocol, components from different vendors cannot “plug” into each other. Without
a dynamic connection mechanism, components would not be able to be added to

xvii

xviii

or removed from a system while it is running.
This thesis describes the design and implementation of a component archi-

tecture and document-based user interface for the Oberon system. The Gadgets
system uses first-class components called gadgets to build documents and connect
the documents with functionality. Gadgets ranging from typical user interface
elements to high-level building blocks are composed interactively in active docu-
ments. An important feature is that independently developed components can be
integrated with existing components without special effort. This gives the com-
poser the ability to compose applications from a large palette of reusable compo-
nents, and thus speeds up the development process.

This thesis addresses several issues, including how components communicate,
inter-component communication protocols, how components are made persistent,
how components can be combined into more complicated components, how cus-
tom behavior can be attached to component instances, and how documents con-
structed in this way are consistently transported. The thesis also discusses is-
sues related to system structuring, dynamic extensibility, component authentica-
tion and system security.

Zusammenfassung

Traditionellerweise wird Computer-Software mit dem Begriff Programm-
Paket (“off-the-shelf” program) verbunden, wobei typischerweise wenig oder
keine Möglichkeit zur kundenspezifischen Anpassung der Software besteht.
Solche Programm-Pakete sind in einer Weise konstruiert, die es nicht of-
fensichtlich macht, aus welchen Komponenten sie zusammengesetzt wurden.
Unglücklicherweise erlaubt diese Konstruktionsweise dem Käufer nicht, einzelne
Komponenten anzupassen, neue Komponenten hinzuzufügen oder Komponenten
zu entfernen. Ist ein Kunde unglücklich mit der Funktionalität eines solchen Pro-
duktes, so bleibt ihm oder ihr nicht viel anderes übrig als auf eine verbesserte
Version des Herstellers zu warten. Konsequenterweise fügen Software-Hersteller
langsam immer mehr Funktionen in neuere Versionen eines Programms hinzu,
Funktionen die nicht notwendigerweise nützlich für alle Benutzer sind. In der
Folge tendieren Programme dazu, mit jeder Version grösser und grösser zu wer-
den, ohne dass dabei die Funktionalität signifikant erhöht wird.

Gibt man dem informierten Kunden die Flexibilität, ein System aus vor-
fabrizierten Teilen zusammenzusetzen, erhält man eine offensichtliche Lösung
zu diesem Problem. Dieser Ansatz hat zusätzlich den Vorteil, dass man nur
diejenigen Teile zu kaufen braucht, die man wirklich benötigt. Auch hat der
Kunde mehr Freiheit, Software aus einer Vielzahl vorfabrizierter Komponenten
zusammenzustellen. Aus der Kategorie solcher konfigurierbarer Systeme sind
dokumentenbasierte Benutzeroberflächen am ehesten zugänglich für den End-
benutzer. Eine dokumentenbasierte Benutzeröberfläche betrachtet Applikatio-
nen und ihre Benutzer-Schnittstelle als individuelle Komponenten die wie Doku-
mente frei zusammengesetzt und konfiguriert werden können. Die Möglichkeit
die Benutzeroberfläche sogar nach der Installation zu verändern unterscheidet eine
dokumenten-basierte Benutzeröberfläche von einem “GUI builder”. Im einfach-
sten Fall erlaubt so eine Benutzeroberfläche sogar das Verändern einer Dialog-Box
in einer installierten Anwendung.

xix

xx

Die Kommunikationsinfrastruktur die es ermöglicht, dass unabhängig
voneinander entwickelte Komponenten frei kombiniert werden können, stellt
die prinzipielle Schwierigkeit in der Konstruktion einer dokumentenbasierten
Benutzeroberfläche dar. Komponenten verschiedener Hersteller können nicht
“zusammengesteckt” werden ohne ein beidseitig eingehaltenes Kommunikations-
Protokoll. Komponenten können auch nicht zur Laufzeit hinzugefügt oder entfernt
werden ohne einen dynamischen Verbindungsmechanismus.

Diese Dissertation beschreibt das Design und die Implementierung einer
Komponenten-Architektur und einer dokumentenbasierten Benutzeroberfläche
für das Oberon-System. Das Gadget-System benutzt sogenannte ”Gadgets”-
Komponenten um Dokumente zu bilden und sie mit Funktionalität zu verse-
hen. Gadgets reichen von einfachen Benutzeröberflächen-Elementen bis hin zu
komplizierten Bausteinen und können interaktiv in aktiven Dokumenten zusam-
mengesetzt werden. Eine wichtige Eigenschaft ist, dass unabhängig voneinan-
der entwickelte Bausteine mit existierenden Komponenten ohne grossen Aufwand
zusammengesetzt werden können. Dies ermöglicht dem Konstrukteur, schnell
Applikationen aus einer Vielzahl wiederverwendbarer Komponenten zusammen-
zusetzen und dadurch den Entwicklungsprozess zu verkürzen.

Diese Arbeit beschreibt unter anderem wie Komponenten kommunizieren,
wie ihre Kommunikationsprotokolle aussehen können, wie man Komponen-
ten persistent macht, wie sie zu komplizierteren Komponenten zusammenge-
setzt werden können, wie man ihr Verhalten kundenspezifisch anpassen kann
und wie man in solcherweise konstruierte Dokumente konsistent transportieren
kann. Daneben werden auch Probleme im Zusammenhang mit System-
Strukturierung, dynamischer Erweiterbarkeit, Komponenten-Authentizierung und
System-Sicherheit diskutiert.

Chapter 1

Introduction

1.1 Motivation

Computer programming becomes an increasingly larger problem as computers get
faster and data storage capacity increases. This is because our expectations from
software grow as fast as hardware improves. The unprecedented improvement
in semi-conductor technology [HH96] and our efforts to exploit these advances,
motivates software getting more integrated, more complicated and larger. It is thus
not surprising that with each generation, software takes longer to create, becomes
more difficult to understand, more tricky to modify and more and more unreliable.
This state of affairs is called the software crisis [NRB69, Gib94].

The root of the software crisis, the inherent complexity of software sys-
tems, cannot be eliminated. Instead, the only weapon of the software engineer
is re-distributing complexity by dividing complicated things into parts—divide et
impera—so as to regard the system on different levels of abstraction. Not only
does gathering complexity in independent parts make a system easier to under-
stand, but it is also a convenient way to divide labor between people. More time
can be spent on developing a single part when the expensive labor is amortized by
the product being used many times in different systems. It is generally believed
that the wide-spread reuse of software parts can increase the reliability of soft-
ware and decrease its time to market. This seems to be a desirable goal when we
observe what the industrialization of physical goods manufacturing has achieved.

The idea of mass-produced software parts or components [McI76] was born
in 1968 at the NATO conferences on software engineering. Since then we saw
the development of “complexity repackaging” techniques like procedure libraries,

1

2

module libraries, object-oriented class libraries, and frameworks (cf. 2.1). With
so much time and money invested in priming the software industrial revolution,
it is surprising that the discipline of software engineering is in such a bad state.
A visionary of software components believes that the reason is that there is little
incentive for manufacturing components when clients are not billed on a “pay-
per-use” basis [Cox90]. Another reason might be the long time it takes for new
technology to be adopted in commerce.

What has crystallized only recently though is that earlier software technolo-
gies concentrated on building components instead of addressing the more impor-
tant problem of composing independently developed components. Composing
requires a communication infra-structure for components to co-operate. As all
communication is based on a common language and mutual understanding, the
essence of composing involves defining the scope of the latter. If we take into
account the rapidly changing requirements of systems today, systems must be
flexible enough to allow independent improvement by exchanging components.

1.2 Contributions

With this introduction as a statement of the problem, the intended message of
this thesis is component composition and the communication protocols that are
required to do it. The discussion is supported by a software artifact developed at
the Institute for Computer Systems, ETH Zurich.

The most visible result of this thesis is a document-based component architec-
ture for the Oberon system called Gadgets. The idea of the Gadgets system is to
simplify the construction of Oberon user interfaces and applications by composing
prefabricated software components, with the goal of making this type of software
construction accessible to a larger audience (possibly including end-users).

An innovation of the Gadgets system is to treat documents and application
user interfaces in a uniform manner. Both consist of software components that
can be composed at run-time, which makes the step from document composing to
user interface construction a simple one.

A further contribution is portable documents that contain, in addition to docu-
ment data, the component code that the document requires. This allows the trans-
parent transportation of documents between Oberon implementations even if the
destination machine does not have all the necessary components pre-installed.

Another contribution is a multi-level architecture for software construction,
with levels ranging from interactive composing, composing by programming, and

3

programming new components. Central to this theme is that application mod-
ules and application user interfaces are separated and can be developed indepen-
dently. By interactively attaching prefabricated or own code to user interfaces,
the documents are more than just attractive mock-ups but fully functional active
documents.

A further contribution is a system architecture based on a set of hierarchies.
The hierarchies separate different concerns and involve issues like code reuse,
component classification, message protocols, run-time organization and persis-
tency. One important hierarchy is a flexible and extensible communication infra-
structure defining a compact set of high-level messages that allow components to
be reused everywhere they are required. The use of open interfaces allows the ex-
tension and exchange of components. To increase the openness and extensibility
of the system, policies are not centralized but distributed throughout the system
into components that manage other components. This reduces the risk that a sys-
tem extension should fail by introducing different sub-systems within the system
itself, each of which adopt local policies.

1.3 Overview

The thesis is organized as follows:

� Chapter 2 introduces commonly used terminology and development tech-
niques. The chapter includes short discussions of popular component sys-
tems.

� Chapter 3 gives an overview of the Gadget system, illustrating the interac-
tive composition of components.

� Chapter 4 presents the design of the Gadget system, concentrating on how
concerns are separated in hierarchies.

� Chapter 5 introduces component principles and their realization.

� Chapter 6 discusses aspects surrounding the programming of visual gad-
gets. It includes a discussion of message protocols and the Gadgets imaging
model.

� Chapter 7 presents the Gadgets document model and discusses security as-
pects surrounding the transportation of portable documents.

4

� Chapter 8 presents conclusions and reflections.

In distilling the essence of the system for this thesis, many interesting aspects
of the system have been left out, for example a description of the standard compo-
nents of the system and the implementation details of the more interesting ones.
The interested reader is referred to the Gadgets user and programmer documenta-
tion for details.

Chapter 2

Component Software

This chapter introduces common software construction techniques and defines
the terminology used in the remainder of the thesis. The chapter includes a short
discussion of related work.

2.1 Terminology

The following definitions introduce both the vocabulary of software construction
techniques and their approximate historical development.

Closed and open systems. A closed software system solves a fixed problem de-
fined by its manufacturer. It can only be used as it is. The flexibility of a closed
system is increased by making it configurable so that a client can tune it within its
design parameters. An open system allows a client to increase the product func-
tionality above which was delivered by its manufacturer. Extending the product
requires a knowledge of its internals and an ability to “plug in” custom code. A
system open on all levels of abstraction that can be extended while running is
called an extensible software system.

Procedure libraries. Procedure libraries—the earliest attempt at reuse—consist
of a set of procedures and functions linked to application code. Procedure li-
braries that form an additional layer between the operating system and the appli-
cation are sometimes referred to as toolboxes. Communication is mostly one-way
from application to toolbox, although callbacks from the toolbox to the applica-
tion sometimes happen. Procedure libraries often consists of a “flat” interface of

5

6

hundreds of procedures that have to be called in the correct sequence. Conse-
quently, they require a large learning effort. Early procedure libraries were weak
on information hiding and encapsulation as they relied on global data for storing
results between procedure invocations. With these, modification of data formats
have unpredictable effects on clients and the library itself.

Module libraries. Modules decompose large systems into more manageable
separately compiled entities. An abstract data structure can be hidden inside a
module with access to it restricted by the module’s public interface. The advan-
tage is that changes to the implementation do not affect clients, an important re-
quirement of independently developed software. An abstract data type (ADT)
combines the ability to generate many instances of a data structure (which is
passed explicitly as parameter to the module) with a means to make the imple-
mentation opaque. Popularized by Modula-2 [Wir83] and Ada [Ich83], module
libraries insulate clients from implementation changes, thus allowing independent
component development.

Class libraries. Class libraries consist of prototypical templates for generating
components or objects. An example class library is the set of classes implement-
ing all sorts of collections in the Smalltalk system [GR93]. Classes allow the
possibility of sharing similar interfaces and code patterns through inheritance of
features by one class from another. When a programming language combines in-
trinsic support for objects, classes and inheritance, it is said to be object-oriented
[Weg90]. Polymorphism allows different objects to be generically manipulated.
The most commonly occurring type of polymorphism is called inclusion poly-
morphism, where objects that belong to related classes are type conformant with
each other [CW85]. The type compatibility of classes is determined by a class
hierarchy that organizes classes according to shared features. Late binding al-
lows objects to behave differently when the same operation is applied to them.
The common vocabulary, in the case of class-driven dispatch, is that of sending a
message to an object which interprets the event using code called a method.

As inheritance distinguishes object-oriented programming from class-based
and object-based programming, the object-oriented technique primarily supports
component construction. This makes it possible for the component constructor to
derive a new component (an extension or derived class) from a similar one (the
base class) by sharing most of the implementation with the latter. This is called
programming by specifying differences or specialization. The component con-

7

structor uses a so-called super-abstraction interface to “patch” an existing class
to create a derived class. In contrast, as the component implementation (including
the use of inheritance) is hidden from a client, the latter sees nothing more than a
collection of ADTs1. The latter is called the client interface.

Making use of the super-abstraction interface for code inheritance is a tech-
nique full of dangers and misunderstandings. Independent developers, one work-
ing on the base and the other on the extension class, often work against each other.
Changing the base class can invalidate the extension because inheritance breaks
the encapsulation of the base class. In addition, the interaction between base and
derived class is often difficult to follow and explain [TGP89].

Scripting languages. Scripting languages differ from conventional program-
ming languages primarily in their objective. They are often interpretive in nature,
of a very high level, and “glue” together large-grained components like applica-
tions. The interface between a scripting language and an application can be as
primitive as reading and writing character streams. Such a simple interface makes
scripting applicable for controlling applications regardless of how they were im-
plemented, and is thus ideally suited for orchestrating independent closed systems.
Scripting systems include UNIX shell scripts [Bac86] and Tcl/Tk [Ous94].

Scripting is a flexible component composition technique popular for quickly
constructing applications. On the other hand, the two-class nature of scripting
languages, namely script and controlled components, limits the integration and
efficiency that can be obtained—as component composition language scripts may
be sufficient, but as component construction language they are lacking.

Frameworks. A framework is a set of abstract classes that provide basic (and
incomplete) functionality for building a system [JF88, CP95]. A framework can
be likened to the wooden frame of a house that needs to be completed by the
owner. The electrical wiring is already installed but the home owner still has to
plug in the appliances and paint the walls. You build something on top of a class
library, whereas you build something inside a framework. This involves making
concrete classes from the abstract classes provided. The task of the framework
is to take control of the communication between components in the system, by

1Languages like CLOS [Kee89] and Dylan [Com94] go so far as to hide sending messages
behind a generic function interface that looks like a conventional procedure call. This allows the
library designer to defer the decision of exploiting late binding or not, or even change his decision
at a later time.

8

calling the component when it needs to know or do something. This is in contrast
with clients of a class library that invoke operations on objects under own régie.
In a way, a component framework provides parts of the communication related to
component composition.

An application framework provides the basic functionality of a typical appli-
cation, like a user interface window, a menu-bar, a print button, and the like. Well-
known application frameworks include MacApp [Com90], Smalltalk [GR93],
Unidraw [VL89] and ET++ [WG94]. A component framework provides the basic
functionality when building certain classes of software components. Examples
include Smalltalk with its Model-Viewer-Controller framework [KP88] and Com-
monPoint [CP95].

Frameworks inherit the problems of class libraries and may add a few more
in the form of fixed user interface guidelines. Frameworks like [CP95, WG94]
require the same features from applications to make users feel “at home”, like for
example a universal undo mechanism and a standard print dialog box. Although
this is a positive feature, a drawback is that unexpected requirements not foreseen
by the framework designers might not fit well into the framework. Generally it
is difficult to predict how a framework will be used in future, which turns into a
problem as the communications infra-structure is wired into the abstract classes
and cannot be adapted.

Compound Documents. The general dissatisfaction with and failure of in-
tegrated systems that combine functionality like word processing, spreadsheet,
database and whatever else users are supposed to have in document processing,
is related to the fact that end-users have diverse needs that a single package can-
not fulfill. Instead of indiscriminately adding features to an integrated package,
compound documents allow the end-user to compose selected components from
different vendors into a single document. The ubiquitous example is that of a
spreadsheet component embedded inside a text document. This approach is called
data centric as end-users stop thinking about applications that manipulate data and
start thinking of editing, copying and pasting data components (that act like “mini
applications” or applets). In this thesis we will often use the term document-based
for systems that adopt compound documents as the primary means of interacting
with the computer.

In comparison with class libraries and frameworks, compound documents em-
phasize document composition at run-time, and thus require a flexible glue to keep
components together, something similar to a software bus. This bus can be com-

9

pared to a hardware bus on a failure tolerant computer where adapter cards can
be plugged in and taken out while everything keeps on working. Most compound
document architectures inherit features from component frameworks, requiring
the overriding of methods to handle events, to display, to print, etc.

There are only a few compound document-based systems in use today. An
early pioneer was the Andrew system based on X-Windows [PHK�88]. The best-
known commercial system is called Object Linking and Embedding (OLE) from
Microsoft [Bro93]. At the time of writing, a first version of OpenDoc [Tea93,
Côt96] has been announced.

Component Architectures. Component architectures or Componentware at-
tempt to address component composition instead of component construction. The
goal is to simplify and unify the communication structure between components
so that prefabricated components from different vendors can easily be combined.
The ultimate goal is easy component interfacing. In this regard, a component
architecture is of a larger scope than that of compound documents, which con-
centrate on the layout of documents only. Component architectures require the
standardization of communication protocols between objects.

Recently there has been a lot of competition between different component ar-
chitectures, with practically all the letters of the alphabet occupied in acronyms
(see [Ude94] for an overview). We distinguish between document architectures,
that correspond to compound documents; object architectures, that define how
objects communicate; and communication architectures, that support communi-
cations across the network. For example, the Common Object Request Broker
Architecture (CORBA) is concerned with inter-object communication on a net-
work.

2.2 Examples

As examples we will discuss three document architectures: Andrew, OpenDoc
and OLE-2. In addition, ET++ is used as an example of a prototypical component
framework, and Visual Basic is introduced as a minimal component system that
has had notable success.

10

2.2.1 The Andrew Toolkit

The Andrew Toolkit [PHK�88] from Carnegie Mellon University is an indepen-
dently extensible object-oriented framework that provides the foundation for con-
structing document-based user interfaces on UNIX systems. The toolkit provides
the usual set of simple components, such as menus and scrollbars, and a number of
higher-level editable components, like formatted text, tables, spreadsheets, draw-
ings etc. Components can be embedded in each other at run-time by an end-user.
A generic editor called EZ can edit any component by loading the appropriate
code when needed.

The Andrew Toolkit (ATK) is written in a C-based language similar to C++.
The Andrew Class System (Class) permits the definition of object methods and
class procedures. Class is based on a preprocessor design. The main reason for
using Class was to support dynamic loading and linking, an unsupported feature
of UNIX systems at the time of the system design.

Components in the ATK are called insets. An inset typically consists of two
parts, namely a view object and a data object, corresponding to the view and
model components of the MVC framework [KP88]. Only data objects may con-
tain persistent data, from which the view objects can be reconstructed on the fly.
To work around this restriction, a third observer object is connected between the
view object and the data object. It conceptually contains persistent data associated
with the view object. The external representation of data objects is a text file with
embedded data enclosed with text mark-up. Data objects may be nested in each
other in the text file. The ability to transport text files easily is exploited by the
Andrew Messaging System, an application that allows the mailing of documents
containing multi-media insets.

View objects are nested in a tree structure which plays an important role in
distributing events. Events, like from the mouse and keyboard, are passed from
the root of the view tree towards its leaves. Parental authority allows a parent to
control the events passed to its children. This important system concept is very
similar to the parental control property of the Gadgets system (cf. 3.2).

There are two ways to attach additional functionality to insets. The Andrew
Development Environment Workbench(ADEW) provides a C code generator for
templates called controllers to access insets in a document [Neu91]. Ness is a
dynamic programming language embedded in source form inside text documents
[Han90]. Ness specifies the actions to be completed when insets are activated
by the user. The security problems of executing a Ness script is only partially
addressed by a static source code scanner that flags “dangerous” Ness statements,

11

assuming that the reader has the ability to verify received scripts.

2.2.2 OpenDoc

OpenDoc [Tea93, Côt96] is a vendor-neutral standard for cross-platform com-
pound documents, that was released just at the time of writing. It was developed
by Component Integration Labs, backed by Apple, IBM, Novell, and several other
companies. Components in OpenDoc are called parts. Parts can be embedded in
each other and contain their own editors. A layout system negotiates screen lay-
out and a dispatcher passes events to parts. An arbitrator controls access to shared
resources. Parts are presented in a shared window in the form of frames. Frames
divide the window into separate regions for each part, and is used by the dis-
patcher to determine which part editor should get an event. New event types can
be added to the dispatcher at run-time, and the arbitrator can be extended with
new resources. In addition, a part editor can monitor the dispatcher and watch
for specific events that pass through it. Parts are divided into part viewers and
part editors. The part viewers are intended to be freely distributable and the part
editors sold at an appropriate price. The object model is based on IBM’s System
Object Model (SOM).

Interestingly, the stated goal of OpenDoc is not to make the construction of
compound documents as simple as possible, but simply to make it possible. Open-
Doc is thus not an object-oriented framework in the traditional sense of the word.
OpenDoc restricts itself to layout handling, event handling, storage, and script-
ing. The storage sub-system is based on Bento [HR93], which supports multiple
formats, versioning, and the ability to insert or delete data in the middle of a data
stream. Bento has a meta-level architecture that, for example, includes the refer-
ences between parts, so that cloning of data portions can be made without actually
loading the parts. The scripting mechanism is called the Open Scripting Architec-
ture, and is based on the high-level Apple Events.

Although the imaging model is sophisticated and contains numerous classes
for windows, layout, frames, canvasses, shapes and transformations, OpenDoc
handles only geometry and not actual imaging. On each hosted platform, parts
use the drawing primitives provided by that platform. A solution that addresses
this portability problem, called the OpenDoc Development Framework (ODF) is
planned in which the GUI controls are called gadgets. The current OpenDoc
implementation sits on top of the hosted operating system. Apple and IBM have
however announced integrating this technology into their operating systems to
take advantage of plug-in components at every level.

12

2.2.3 OLE-2

Object Linking and Embedding, or OLE-2, is the component and compound doc-
ument architecture from Microsoft [Bro93, Lin96]. The user interface compo-
nents of OLE, called OLE controls, are based on the Component Object Model
(COM), also from Microsoft. COM objects have a very simple structure, consist-
ing of a variable number of communication interfaces. Interfaces are collections
of method pointers that an object exports and that can be enumerated at run-time.
COM does not support code or interface inheritance and instance variables. Com-
ponents are extended by wrapping them inside other components—a process Mi-
crosoft calls aggregation. Microsoft is working on a further development called
Network OLE, that will allow objects to communicate across the network based
on remote procedure calls [HS96].

OLE controls are the components of compound documents in OLE-2. An
OLE container component may contain OLE controls. The controls receive in-
structions from the container by a built-in receptor called a sink. A control can
communicate with a container after a hand-shaking process that dynamically sets
up a new sink in the container. The programming of OLE controls is simplified
by the Microsoft Foundation Classes, by managing many events in a default way.
Methods provide the control with basic behavior, and properties control its ap-
pearance.

Even though OLE-2 is difficult to understand and difficult to build applications
with, the wide support for Windows motivates many companies to use it. This is
why OpenDoc also accepts OLE-2 controls as parts. Unfortunately, without a
redesign of the many mammoth Windows applications, embedding one of them in
the other with OLE-2 makes little sense due to exorbitant memory requirements.

2.2.4 ET++

ET++ [WG94] is a class library and application framework integrating user inter-
face building blocks and basic data structures. Implemented in C++, it is portable
between several operating systems and windowingplatforms and consists of about
300 classes rooted mostly in a class Object. The classes are organized in layers,
for example to abstract the host system, toolkits for data structures and user inter-
face, frameworks for a desktop environment, browsers and debuggers. The system
supports dynamic loading and linking of objects at run-time, although the feature
is not extensively used. Run-time type information about the names and types
of instance variables support run-time exploration of the system. No meta-level

13

architecture is used; most of the information is extracted using macros from the
source code. The persistency mechanism is based on methods PrintOn and Read-
From associated with objects to write and read data to and from streams. Streams
can either be files or memory buffers, the latter being used to make deep copies of
arbitrary complex polymorphic data structures.

The view sub-system includes a base class of visual objects—called
VObject—that can draw itself, handle input events and manage their size and posi-
tion. VObjects are very lightweight, having no built-in coordinate transformation
and establishing no clipping boundary. They react to input events by overriding
methods in the base class. VObjects are combined in collections by a class Com-
pVObject. VObjects pass events that they cannot handle to their container, thus
inverting communication in comparison with the Gadgets system (cf. 3.2). The
Clipper class defines an independent coordinate system and clips the graphical
output of a VObject to a rectangular area. Clippers can be nested in each other.
Display update is based on invalidation; all invalidated areas are redrawn when
the system is idle. Change notification is based on dependency lists as in MVC
[KP88].

The ET++ framework contains high-level building blocks like a rich text
building block, a grid view for tabular data, and a tree view for hierarchical data.
The application framework provides support for multiple documents per applica-
tion, data conversion between different formats, and undo-able commands.

A disadvantage of ET++ (as in other class libraries and component frame-
works) is that object composition must be explicitly programmed out. The con-
nection cost of connecting two classes with different interfaces can be high, often
requiring a third class to make the needed conversions. This is especially prob-
lematic when classes are developed independently. To solve the problem of high
connection costs and make prefabricated objects easier to connect with each other,
ET++ has recently been extended with a component architecture consisting of
about 60 classes [Ble95]. This development is loosely based on concepts from the
Gadgets system. In this extension, components are connected to each other with
a component bus. The component bus corresponds approximately to the message
infra-structure that connects children of a container in the Gadgets system. Two
component buses can be connected with each other only over a router component.
Components communicate with each other using synchronous messages, either in
a broadcast or uni-cast manner. A message contains a sender, destination, mes-
sage name and message arguments that can be of any type and number, and are
self-describing with meta-level description. The ability to overload operators in

14

C++ is used to simplify the construction of messages. To allow components to
understand each other, some messages are standardized. One family of messages
allows the exchange of simple data types, and corresponds to the attribute mes-
sage in the Oberon system. In contrast to Gadgets, programming is still required
to attach code to dialogue elements. The current implementation is a prototype
and supports only a single component bus and a few components. Also dialogue
components cannot be nested in each other.

2.2.5 Visual Basic

Visual Basic [Cor93] from Microsoft consists of a Basic interpreter, an interactive
GUI editor, and a programming environment for the development of stand-alone
programs. It includes a large set of prefabricated visual components called con-
trols for static user interfaces. Controls have editable properties and user activated
events that execute Basic procedures. An Inspector is used to modify proper-
ties interactively, and the Basic interpreter allows direct access to properties in
the form of control instance variables. Direct procedural communication between
controls is not possible. This has resulted in a dubious programming style where
changing properties have additional side-effects that approximately correspond to
calling a procedure in a conventional system [Gla95]. Visual Basic does not sup-
port the MVC model [KP88], does not allow the nesting of controls, and is not
object-oriented. The latest version of Visual Basic allows the construction of con-
trols using Microsoft’s component architecture called OLE-2 [Bro93], which can
be reused in other environments too. Visual Basic and a similar product Visual
C++ are popular due to the large number of off-the-shelf controls.

2.3 Summary

This chapter summarized the software construction techniques of procedure li-
braries, module libraries, class libraries, scripting languages, component frame-
works, compound documents and component architectures. Examples from the
domain of document and component architectures were presented.

Chapter 3

The Gadgets User Interface

3.1 Introduction

The Oberon system is a single-threaded, single-user, co-operative multi-tasking
operating system [Wir88a, WG92] that runs on bare hardware or on top of a hosted
operating system as a single-windowapplication [Fra93, BCFT92]. The latest ver-
sion of Oberon, called Oberon System 3, is an extended Oberon version that has
intrinsic support for persistent objects and for building graphical user interfaces.
The major client of these new features is the Gadgets system, a new compound
document-based user interface [Mar91, Mar94a, Gut94b, Gut94a, Mar94b]. This
chapter introduces the Gadgets system from the perspective of the end-user. It
describes the conceptual model that an end-user has about the system.

The Gadgets system relies on compound documents as the user interface for
both documents and applications (cf. 2.1). To aid in the construction of full ap-
plications, the Gadgets system extends the compound document architecture into
the application domain by adding non-visual components. Correspondingly, ap-
plication user interfaces are regarded as documents with attached functionality,
and any document is a potential application user interface.

The idea of unifying user interfaces and documents in this way is not com-
pletely new. For example, a similar idea was the basis of a system called Embed-
dedButtons [Bie91] developed at Xerox PARC for the Cedar system. The latter
system was limited to end-users creating active documents consisting of arbitrar-
ily shaped buttons with attached functionality written in a scripting language. In
comparison, the Gadget system uses a larger and more diverse set of components
and is a full fledged system.

15

16

The components of the Gadget system are objects called gadgets. Gadgets
range from visual dialog elements like buttons, text editors and documents, to
non-visual components like model gadgets that manage application data.

Before continuing with a more detailed description of the user interface and
the role of gadgets, it is worthwhile to discuss the system’s design goals as a
reference when reading the remainder of the chapter. Succinctly, the design goals
of the system include multiple programming levels, tangibility and composability.

Multiple programming levels. Gadgets emphasizes ease of use, understanding
and implementation. The inherent complexity of the system is abstracted with an
incremental approach to using and programming the system.

� Level-0 programming of Gadgets involves the interactive composition of
documents and user interfaces, and the dynamic connection of functionality
to user interface elements. This step involves interactive layout and com-
position of components, modification of component properties, connecting
data models to the user interface, and the specifications of actions invoked
when a user activates components. An elementary scripting facility allows
combining components in more complicated ways. This level of program-
ming is accessible to the largest audience, including end-users.

� Level-1 programming involves Oberon programming to create glue that
binds components together. This level hides the Oberon messaging scheme
(cf. 4.2.1) from the novice by providing more convenient procedural inter-
faces. To separate the application code from the user interface, Gadgets
uses the Model-Viewer-Controller framework [KP88] to create an interme-
diate layer of model (or data) components between the user interface and
the application. This insulates the application code from changes in the
user interface. At a lower level of abstraction, the message passing tech-
niques are available to the programmer for programming more specialized
features.

� Level-2 programming involves the programming of new components. Dif-
ferent skill levels depending on the classification of the programmed com-
ponent as model, elementary, container, view or document gadget are re-
quired (cf. 3.3). For example, model gadgets are easier to program than
elementary visual gadgets, which is again easier to program than a visual
gadget that contains other gadgets.

17

Tangibility. By tangibility is meant giving components a certain amount of “re-
alness” to the user. Just as a geometric figure in a drawing can be edited in place,
components like buttons, checkboxes, sliders, text editors and other user interface
elements are activatible and editable in-place. We want a user not only to click
on a button to complete an action, but also to grab the button and move it around,
resize it, or delete it, just as intuitively as manipulating a geometric figure in a
drawing editor. We also imagine grabbing parts of a user interface, dropping them
into an e-mail and mailing them to a friend. This requires that components can be
dragged and dropped into containers, that components can be interactively con-
nected to each other and to application code, that existing user interfaces can be
taken apart, and that the properties and actions of components can be inspected
and modified on-the-fly.

Composability. Composing involves reliable ways of combining components
with each other. Composed components communicate by sending messages over
connections that are connected and disconnected at run-time. One way of compos-
ing components is to nest visual gadgets inside each other: a complete integration
principle requires that any visual gadget can be inserted in a container gadget.
This ensures that components break application boundaries and can migrate from
one domain to another. Another way to compose is to link components with com-
munication channels. These channels are used, for example, to connect model
components with view components in the MVC framework [KP88].

3.2 User Interface Vocabulary

Before continuing with a classification of gadgets and with examples of their in-
teractive composition, we introduce definitions and conventions that will simplify
reading further chapters. Note that the Gadgets system adopts many features of
the Oberon system, even though it is intended as a complete user interface re-
placement. For completeness we also review some of these features.

The Display. Figure 3.1 shows a typical display organization, vertically divided
into the user track on the left and the system track on the right. The user track
contains documents undergoing editing and the system track contains tools that
operate in a remote fashion on documents. Each track is further tiled into viewers,
each with a menu bar and content. The menu bar shows the document name and

18

Figure
3.1:

T
he

O
beron

screen
organization

19

buttons that operate on the document. In this snapshot, all viewers contain text—
both program and prose text are displayed and edited in the same manner. The
programmer tool on the right contains gadgets embedded inside the text. Note that
in this, and in all further screen snapshots we will see, all user interface objects on
the screen are gadgets.

Commands. The user controls the Oberon system with commands. A command
is either a mouse event, a keyboard event, or the execution of a procedure. Mouse
and keyboard events are interpreted by the gadget located at the mouse pointer or
having the keyboard focus. A word in the form M.P, where M is a module name
and P is the name of an exported and parameterless procedure, can be invoked
directly by clicking on it in a text document. To speed up working with the sys-
tem, text documents called textual tools are prepared with collections of related
commands.

Commands obtain parameters from the system state, do some processing, and
change the system state. An example is compiling an Oberon module with the
compile command, with the compiler reporting success or failure to the log lo-
cated in the upper right corner of the display. Another example is clicking on a
directory command to show files that match a specified pattern in a new text doc-
ument (which is immediately ready for further editing). A common way to pass
parameters to commands is with a text string that is written immediately following
the command. Often one command can deliver results to the following command.
For example, a compile command can be followed by a list of module names ob-
tained from the directory command. Because of the use of text to pass parameters
and deliver results, the Oberon system and this sub-system of the Gadgets system,
is said to have a textual user interface or TUI.

Gadget principles. Gadgets distinguish themselves from other objects in the
Oberon system by their conformance to a set of shared rules as defined by the
Gadgets architecture. These rules include the principles of complete integration,
parental control, and small world.

The principle of complete integration ensures that a component can be used
wherever it is required without regard to application boundaries. This is also re-
ferred to as gadget components being general, or being first-class citizens. This
principle has the pleasing property that any component, even one written for a spe-
cific application, can potentially be reused in another application. To emphasize
this point, we can imagine taking a figure gadget like an ellipse from a drawing

20

application and use it to annotate our own user interfaces.
The principle of parental control delineates non-atomic components like

nested part-of hierarchies into boundaries that reflect responsibility. A container
component takes complete responsibility for all of its substituent parts. In return,
a part has to accept the authority of its container. The hierarchy of responsibility
so obtained not only reflects the way components are made persistent (cf. 5.4) but
also in the way inter-component communication takes place. A container com-
ponent has the right to monitor the communication with and between its parts,
suppress it or even modify it, thus ensuring that the part components behave in
the way the container requires them to. In return, the container has to provide an
acceptable level of service to its parts. In practice, a “friendly” co-operation be-
tween container and its parts is the norm, where the container takes the initiative
in asking a part for more information about its requirements.

The small-world principle delineates non-atomic components like part-of hi-
erarchies into information hiding boundaries. The internal structure of a com-
ponent is hidden, and communication with a sub-component is done indirectly
through the container’s message interface. Shared message protocols combined
with the parental control principle, allow the internal structure of a component to
vary. Let’s say for example that an engineer wants to create a new bitmap com-
ponent where each pixel of the bitmap is an object itself. The resulting memory
efficiency problem that results when each pixel becomes an object most proba-
bly rules out using the standard gadget types. The small world principle however
makes it possible to optimize the internal data structure for bitmap storage and
pretend to the outside world that all messages sent to the bitmap are handled cor-
rectly. This, in effect, hides the internals of a container object like a bitmap from
the outside world and still allows—with appropriate programming—for existing
components to masquerade as a pixel. As long as the bitmap provides a suitable
“container like” interface to other components, none of those embedded compo-
nents are the wiser.

The principles sketched above have several consequences for programming
components and the system itself. For example, as each component is completely
responsible for its embedded components there is no way of making global state-
ments about the system. The lack of any global assumptions makes the system
more extensible and open to different directions of extension. As a disadvantage,
it can complicate the way in which components are programmed, as they have to
assume much more responsibility.

21

Gadget classes. Each gadget instance belongs to a class that is determined by
a generator. A generator is a procedure that generates an instance of that gadget.
After generation, the class of a gadget is determined by its type and behavior (as
determined by a message handler). (More details about handlers are presented
in section 4.2.1.) Two gadget instances of the same type with different message
handlers belong to a different class. Because of the possibility of exchanging the
message handler in Oberon, the class can change at run-time.

In a side remark, note that our terminology for type and class deviates from the
literature [Weg90, Lun89, Nel91b]. Although many object-oriented programming
languages do not make a distinction between type and class, the terminology is
that types define conformance (what can be assigned to what) and classes define
implementation. A type can have many implementations (classes) and a class
can implement many types. The correspondence between message handlers and
classes is discussed by Szyperski [Szy92b]. Rather than introducing another term
for types that have the same implementation, class is used here in the spirit of
languages that do not distinguish between the two concepts.

Attributes. Attributes are properties of gadget instances that define their state,
representation and behavior. Each attribute has a name and a typed value. Al-
lowed types are string (or ARRAY OF CHAR), LONGINT, REAL, LONGREAL,
CHAR and BOOLEAN, a subset of the Oberon language elementary types. At-
tributes are distinguished from the instance variables of a gadget by being visible
and modifiable at run-time by the end-user using an attribute Inspector (Figure
3.2). The Inspector uses a universal message protocol to enumerate, inspect, and
modify attributes of any gadget instance (cf. 5.3).

Two important attributes of a gadget instance include the specification of its
generator and its user-defined name. The generator attribute is used during exter-
nalization and internalization to keep track of the class (and is read-only). The
name attribute is used to search for gadgets at run-time. Names need not be
unique—a scoping mechanism based on the nesting of containers is used to re-
solve ambiguities (cf. 5.3.4). Each gadget class typically defines further attributes.

Note that the accessibility of attributes by the end-user places a responsibility
on the programmer of the class to “export” only those internal details of a gadget
that can easily be understood and that can be of possible use to the Oberon user.
Attributes thus tend to be limited in number—typically less than half-a-dozen—
and tend to be of a simple nature.

22

Figure 3.2: The Inspector

Links. A link is a named uni-directional reference from one gadget to another. A
gadget instance might have several links to other gadgets. The links are typically
used to remember an “acquaintance” of a gadget. One use for links is to couple
a model and view gadget according to the MVC framework [KP88]. Just like
attributes, links are intended to be accessible by the end-user for constructing
more complicated gadget data structures at run-time. It is important to note that
links are not the only references between gadgets—they are only the ones that are
visible to the user.

The Inspector supports following“Model” links from view to model gadget. A
more advanced tool called Columbus [Sal96] allows the interactive navigating and
construction of links. Both tools use a universal message protocol to enumerate,
retrieve, and set the links between gadgets (cf. 5.3.2).

Documents and libraries. Gadget collections called documents can be saved to
a file and later reloaded from the file in exactly the same state. The persistency
technique is based on libraries (cf. 5.4). A library is a collection of persistent ob-
jects, each object being addressable by a name or a number. By inserting gadgets
into a public library, they become accessible to the system as a whole. Public
libraries play an important role in organizing reusable components. An example
library is a collection of shared gadgets like icons, menu bars and the like. Public
libraries are loaded on demand when an object of the library is referenced by an
application. Most applications either use direct references to the components in a

23

Figure 3.3: The library management tool

public library or make copies of its contents as required. An application for the
end-user management of public libraries is shown in Figure 3.3.

Both public libraries and the components they contain are named. This en-
ables the user (and programmer) to refer to a public object in the form of a string
“L.O”, where L is the library name and O the object name. This syntax is similar
to commands in the form M.P (where M is the module name and P is the procedure
name). Such similarity has caused the adoption of another concept from modules,
namely that of import. A component data structure is said to import a public li-
brary should it contain at least one reference to a component of that library. As
nothing prevents a component that imports a public library from belonging to a
library itself, it is possible to build a library hierarchy similar to that of a module
hierarchy. We accordingly say that one library imports another1.

Cloning. It is often simpler to copy existing gadget configurations instead of
creating new ones. We imagine the user or programmer making copies of a shared

1The similarity is illustrated in [Tem94] where Oberon modules are recast into a public library-
like concept similar to that of Oberon System 3, unifying the module and library hierarchies.

24

Non-visual
gadgets

Model
gadgets

Elementary
gadgets

Gadgets

Container
gadgets

Visual
gadgets

Camera-view
gadgets

Document
gadgets

Figure 3.4: The logical gadget classification hierarchy

“template” component (a gadget in a public library) whenever they are required.
The Gadgets framework does this by sending a clone request (cf. 5.3.3) to a com-
ponent, expecting the component to deliver a copy of itself. The references be-
tween gadgets, for example those in a whole-part data structure, bring up the
question what exactly is the meaning of copying a component. In our implemen-
tation, a shallow copy returns a copy of the receiver component containing the
same parts as the original. A deep copy recursively forwards the copying request
to the parts of the receiver to make a complete copy of a structure from the receiver
onwards. Special precautions are made to make structurally identical copies when
components are connected in a network (cf. 5.3.3).

At first glance, it seems that cloning is an aspect that falls in the domain of
the programmer instead of the end-user. Although largely so, there are situations
that the end-user should be aware of as they affect the way a user interface be-
haves. One such situation is related to the user copying visual gadget in the MVC
relationship with model gadgets (cf. 3.3.1).

3.3 A Gadget Classification

A classification hierarchy organizes gadgets classes according to their purpose
(Figure 3.4) and also reflects the current scope of the Gadgets system.

Two orthogonal properties are implicitly present in the classification: atomic-

25

Controller

Model

View
restores

notifies

modifies

reads

notifies

Figure 3.5: The model-view framework

ity and concreteness. A component is atomic if it does not consist of any further
components. A component is compound when it has component parts. A compo-
nent is concrete if it can be seen on the display; that is, it is of a visual nature. A
component is abstract if it cannot be seen; that is, if it is of a non-visual nature.
Concrete and abstract components can for example be view and model gadgets re-
spectively. Abstract components are often called non-visual gadgets, and concrete
components visual gadgets.

3.3.1 Model Gadgets

Model gadgets are abstract components that enter into the model-view relation-
ship as models. They contain application-dependent data and form the interface
between the user interface and the application code. A model gadget is repre-
sented on the Oberon screen by a visual gadget—called a view—that knows how
to represent the model’s state.

The Model-Viewer-Controller (MVC) framework. The original MVC
scheme (Figure 3.5) is slightly modified in the Gadgets system by merging the
controller and view components. The MVC scheme works as follows. A commu-
nication protocol between model and view keeps the state and its representation
synchronized. Should the state of the model change, the view updates its visual
representation accordingly. Interaction between the user and the model state is

26

through the controller. A mouse or keyboard event is interpreted by the controller
in such a way to change the state of the model, which in turn causes a change noti-
fication to be sent to the view, which then updates itself accordingly. Application
modules can also change the state of the model directly, for example to show the
result of a computation.

The popularity of the MVC framework is related to two facts.
First, many views—perhaps of a different representation—can be linked to

the same model. Change notification then involves sending a message to all views
displaying that model. For example we can link a textfield gadget—used for en-
tering short strings from the keyboard—and a slider—with its value adjustable by
sliding a knob—to a model gadget representing a number. With such a configu-
ration the user is able to pick how a number is input, either by typing or with the
mouse.

Second, if application modules restrict themselves to only manipulating the
state of model gadgets, they are relatively immune to changes in the visual repre-
sentation (both in class and in their number). This gives the user interface designer
more freedom in changing the user interface without having to adapt the applica-
tion code.

Pluggable Models. More possibilities for component reuse are obtained when
general-purpose models like numbers, strings, and text—not coupled directly
with any specific application—are used. The Gadgets system provides a small
set of model components like Integers, Reals, Strings and Booleans. To allow
“plugging-in” these components into arbitrary views, a communications protocol
for the exchange (and necessary type conversion) of elementary data types be-
tween model and view is used. Some views, like text entry fields, restrict the input
possibilities according to the data type of their model.

The MVC composition interface is realized in such a way that a view can reg-
ister interest in a specific (and named) aspect of a model. This is useful when the
model gadget is a mediator between the view and the model’s own parts. This
allows, for example, a text entry field to represent a specific attribute of a model,
as in the case of a model gadget representing a complex number, either the real
or imaginary parts. Another variation is to guarantee consistent radio-buttons by
grouping them together with a model gadget. Each radio-button activates or de-
activates itself according to the value of the model. This requires that the radio-
buttons register interest in a specific model aspect and also watch out for a specific
value occurring.

27

3.3.2 Elementary Gadgets

The most numerous gadgets are the visual and atomic elementary gadgets (a se-
lection is shown in Figure 3.6). Several elementary gadgets can be linked to model
gadgets, including buttons, checkboxes, textfields, sliders, etc., while many others
do not require a model. Attributes configure an elementary gadget’s representa-
tion and behavior. An example is a push button gadget. Its attributes include one
specifying the caption and another an Oberon command to be executed when the
button is pushed. Whereas a command is explicitly visible in a text document, the
elementary gadgets “hide” commands in command attributes.

The adoption of commands as the primary way to invoke actions from user in-
terface components, has several advantages. Once users have grasped the concept
of a command, they can immediately build graphical user interfaces equivalent
to those of a textual user interface. In fact, many older Oberon TUI applications
have been transparently extended with a GUI in this manner. This flexibility il-
lustrates the loose coupling of a user interface and the application code. As all
computation in Oberon is initiated by commands, the user can fall back on a large
collection of commands. Also, using level-2 programming, a programmer can
create new commands. It is imagined that a suitable factoring of commands, such
as, the shell commands of UNIX [Bac86, Tan87], can create greater possibilities
for constructing applications.

3.3.3 Container Gadgets

Containers are visual compound gadgets. The prototypical container is a panel,
a rectangular surface containing other visual gadgets (Figure 3.7). We use the
usual anthropomorphism when describing containers. The gadgets contained in a
container are called children. The container is called the father of the children. A
child has only one father. The parental control principle (cf. 3.2) makes fathers
responsible for their children. Containers can be nested in each other. We refer
to the parent, its parent, and so on, as ancestors, and the children and all their
children as descendants.

The children are organized in a priority order that determines which will over-
lap others. They are clipped visually to each other and to the boundary of the
container. The understanding between the container and the child is that the con-
tainer will try to accommodate the changes in size and location that the child
makes to the container. Depending on the container class it might not allow a
child to behave in certain ways. Containers accept visual gadgets that are dragged

28

Figure 3.6: Examples of elementary gadgets

29

Figure 3.7: A panel example

and dropped into them and allow children to migrate from one father to another.
The event of dropping a visual gadget into another is called a consume event.

In the case of a panel container, the consume event is interpreted as removing the
gadget from the previous container and insert it into the destination container.

Component assembly. Containers like icons, iconizers, notebooks and organiz-
ers construct more complicated components by assembly. In a way similar to the
popular Lego blocks, components are combined in different ways. For example, a
notebook gadget logically orders its children one behind the other and gives you
the chance to page through them—no assumptions are made about the class of its
children. Iconizers are used to construct popup menus by adopting two gadgets,
one used as the representation for the menu, the other as the surface that pops up
(Figure 3.18). Organizers solve a simple constraint system for arranging children
automatically. (The constraint algorithm is based on [Car86].)

Some other variants on the assembly idea have also been experimented with.
In [Brä93] a client generator gadget of a discrete event simulation system is pa-
rameterized with a client arrival distribution by dropping an event distribution

30

Figure 3.8: Example of camera-views

gadget into it. In [Wal92] simple electronic circuits can be built by gadgets and
then simulated by throwing switches and re-wiring chip gadgets on the fly.

3.3.4 Camera-view Gadgets

Camera-view gadgets show another visual gadget from an adjustable perspective.
As an example, Figure 3.8 shows two views of the panel in Figure 3.7. Many
camera-view gadgets can show the same visual gadget, each with a different per-
spective. Camera-views are thus similar to views, except that they have a visual
gadget instead of an abstract gadget as “model”.

There are two important uses for camera-views. First, they are useful when
multiple views of large visual gadgets are needed. This allows copying compo-
nents from one section to another section further away than the size of the viewer.
A second use is to share one and the same object in different containers. For
example, the library mechanism allows the sharing of icon bitmaps between user
interfaces by creating multiple camera-views of the same visual gadget. The effect
of camera-view gadget is twofold. First, the same visual object can be visible—
through camera-views—at different positions on the display. Second, the tree-like
data structure of container gadgets on the display is modified to a directed a-cyclic
graph (DAG). These effects influence the imaging model and the Oberon messag-

31

Figure 3.9: A document in a viewer

ing mechanism (cf. Chapter 6).

3.3.5 Document Gadgets

Document gadgets—the visual representation of documents—are compound vi-
sual gadgets. Documents are either displayed directly in the viewer system (Figure
3.9) or embedded into each other. Figure 3.10 shows a panel document embedded
in a text document. When in the viewer system, documents are attached to a menu
bar. Embedded documents do not have a menu bar.

The classic Oberon system uses a tiling viewer system (as previously shown in
Figure 3.1). The Gadgets framework extends the latter with an overlapping viewer
system integrated into a large container called a desktop that covers a whole track
(Figure 3.11) or a viewer. This allows the use of one or the other windowing
model, or both of them concurrently.

32

Figure 3.10: A document embedded in a document

33

Fi
gu

re
3.

11
:

A
de

sk
to

p
ex

am
pl

e

34

Desktops are documents too—the documents placed inside the desktop are
embedded in the desktop. A desktop enables you to save the current layout to
a file. It is typical to have several desktop documents for different purposes and
different display resolutions.

The most popular documents are the panel documents (that contain a panel)
and the text documents (that contain a text gadget). The document and its contents,
for example the panel document and its panel should not be confused with each
other—they are separate components with different purposes. The relationship
between viewers, documents, and their contents is explained in Chapter 7.

A document has a name shown in the nameplate gadget in the left corner of
the menu bar. The document name identifies the document content (and implicitly
the document class). When provided with a document name, a central document
manager first tries to determine the class of the document involved. Using this
information, an empty document gadget instance is created, followed by a request
to the document gadget to fill in or load its contents. Such a design has two useful
properties. First, all documents are treated uniformly: there is only one command
to open all documents, one command to print a document, and so on. Second,
because the initial empty document is requested to load its contents by message,
it is free to interpret this event in any way it pleases. The standard document
classes delivered with the framework typically interpret the document name as a
filename that contains the document contents. Advanced documents can generate
document contents and user interfaces on the fly as they are opened.

For example, Figure 3.12 shows a World-Wide Web (WWW) hypertext mark-
up language (HTML) document fetched over the Internet. To open this document,
the uniform resource locator (URL) of the HTML page is used as document name.
Many internet services like FTP, News, Gopher, and Finger can be accessed di-
rectly by specifying an URL as a document name.

There are two possibilities of opening a document. The first way is to have
the opened document appear in a new viewer either in the tiling or overlapping
viewer system. A second way is to replace the document from where the open
command has been activated. Thus depending in which viewer the open command
is executed, that viewer contents is replaced by the newly opened document. This
feature is used to implement a typical WWW browser-like functionality in the
HTML and FTP documents.

The same feature is used to organize the documents of the Oberon system
itself. For example, when Gadgets starts, the system track contains a text docu-
ment with hyper-links showing an overview of the installed system components

35

Figure 3.12: An HTML document

36

Figure 3.13: A panel embedded in an HTML page

and applications (Figure 3.9). In a similar way as a WWW browser, the user can
browse locally through the documents of the system. As documents are addressed
in a uniform manner locally and on the Internet, the transition between local and
remote browsing is transparent and not noticed by the Oberon user (except for the
delay of fetching a document from the Internet).

Some further interesting possibilities are exploited by combining the Oberon
HTML browser with the Oberon document model. The HTML browser can also
embed documents as inline objects into a standard HTML page. These pages
are only fully usable by Oberon clients on the Internet. Figure 3.13 shows the
author’s WWW home page that contains an embedded panel (which is only visible
to Oberon-based WWW browsers). The panel contains buttons to page to other
WWW pages—as expected, the panel can be edited and used in place.

37

3.4 Interactive Composition

In comparison with static user interfaces, user interfaces based on gadgets are
both used and edited in place. This section gives an overview of this aspect of a
gadget’s behavior.

3.4.1 Gadget Interaction

During interaction we distinguish between using and editing a gadget. A user uses
a gadget when he or she invokes its primary function. This is for example to click
on a button to activate some action, to adjust the knob of a slider, or to enter text
into a text entry field. The exact behavior is different for each gadget class. To edit
a gadget means to change its layout (position and size), embedded container, at-
tributes and links. As mentioned before, the editing of attributes and links is done
with standard tools. Layout editing is interactive and involves grabbing the gadget
and changing an aspect directly in place. For example, to change the position of
the gadget, you pick it up and move it to its new location. In a similar manner
to drag and drop, the gadget is moved from one container to another (and also
between different user interfaces). To change a gadget in size it is grabbed and re-
sized (with feedback). After the change has been made, the display immediately
reflects the new situation.

The use–edit distinction. The integration of use and edit reduces the
programmer-user distinction and gives users a smooth path enabling them to in-
crementally grow toward programming activities. This issue was first presented
by Randall Smith [SUC91] after his experience with the Alternate Reality Kit
[Smi87], a system that attempts to construct familiar real-world metaphors for
users. He discusses what he calls the use–mention distinction and different ap-
proaches to its implementation.

The possibility of both being able to use and edit a gadget in place at any given
moment has the problem of figuring out what an input event from the mouse or
keyboard means, i.e., is use or edit required. At any given moment both possi-
bilities are valid. Systems like NeXTSTEP [GM93] have a switch that allows the
user interface designer to switch between the use and editing modes. This is called
the modal approach. The mouse and keyboard events are interpreted differently
depending on the mode selected. In use mode, the user interface can be tested. In
edit mode, the dialogue elements can be moved and resized. In delivered software

38

Use Area

Resize Control Area

12345678
12345678
12345678
12345678

12345678
12345678
12345678
12345678

1234567
1234567
1234567
1234567

12345678
12345678
12345678
12345678

1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
12345678901234567890123456

1234567890123456
1234567890123456

1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890

1234567890123456
1234567890123456

123456
123456
123456
123456

123
123 Move Control Area

Displayed area

Invisible control areas

Figure 3.14: The gadget control areas

the edit possibility is not possible, effectively freezing the user interface against
further modification.

To circumvent introducing a mode, user interface designers often sacrifice
screen space for mouse control areas. Windows have a thin border in which the
user can resize or move them, mixing using and editing. Depending on where
in a control area a mouse event is initiated, a different reaction results; typically,
borders are used to move a window around and corners to increase or decrease
the size. Graphic editors use control points inside geometric figures instead. The
term affordance refers to the association of a permanent knob, handle, or other
part with an appropriate function [SUC91].

A third possibility to reduce the use–edit distinction is the tools approach
[SUC91]. Just as tools can be applied in the real-world to change objects, software
tools can modify components. The tool approach is popular in Oberon with tool
texts and panels operating on documents and objects that are located inside other
viewers.

In Gadgets, the way how a gadget is edited depends on the gadget itself (i.e.
do not assume the one or the other possibility). This means having the gadgets
edit themselves. Gadgets have their editors built in, instead of having a special
edit window that knows how to edit all possible gadgets. This is correct when we
want the system to be extensible and not to force a specific way of doing things
to a component. This approach also eliminates much of the editing knowledge
embedded in containers by transferring editing to the child itself.

To prevent component programmers from deviating too much from a pro-

39

posed user interface style and to simply programming, a default edit behavior is
provided for gadgets. This involves control areas around the boundary of a gad-
get for moving and resizing the gadget (Figure 3.14). Control areas are invisible,
thus saving screen estate. A drawback is that it takes novices a few minutes to get
used to them. The decision to leave the editing behavior to the gadgets themselves
turned out valuable for implementing geometric figures based on control points.
In this case, the figures override the default gadget edit behavior and replace it
with mouse sensitive control points located inside the figure.

To make it possible to edit very small gadgets, a function varies the width of
the editing areas depending on the width or height of the gadget. A minimum
width of 1 screen pixel and a variable maximum width is used.

Locking. In-place editing has the disadvantage that careless users can destroy a
document with only a few mouse clicks. To prevent such mishaps from happen-
ing, user interfaces can be locked. This is by setting the Locked attribute of the
container to disable the control areas of its children. A container can be unlocked
at any later time with the Inspector.

Division of Responsibility. With gadgets having editors “built-in”, the edit as-
pect of user interface interaction is distributed through the system. The imple-
mentation can be imagined as follows. As soon as the mouse enters into the area
a gadget occupies on the screen, it starts to receive mouse events. It is completely
up to the gadget to do whatever it pleases with these events. A decision might be
made to change itself in size based on the mouse key pressed and the position of
the mouse pointer. Once the decision is made, the gadget itself takes control of
the mouse by dragging a rubber-band rectangle indicating the selected size. As
soon as the mouse button is released, the gadget sends a request to its parent to
update it according to its new size.

A special mechanism allows the parent to determine if a gadget responded to
mouse events. If not, the parent can take control of the mouse instead. Also, the
parent might prevent the mouse events from arriving at a child at all. An important
question arises out of this, namely who is responsible for handling certain events.
In effect, a division of responsibility is required; an example illustrates why this
is necessary.

It might happen that a gadget does not have enough circumstantial knowledge
to edit itself. For example when the user selects several gadgets in a container and
wants to move them around as a whole. A single child does not know about the

40

Figure 3.15: The Gadgets.Panel document

other selected gadgets due to the encapsulation boundary. In this case, it is clear
that group editing operations are the responsibility of the container and not of the
children. A first approximation would be for the container not to let the selected
child obtain mouse events and directly take control of editing. A more refined
way is to have the child defer mouse operations under certain circumstances to
the parent. This level of co-operation between parent and child gives the child
some additional possibilities for controlling the interaction.

3.4.2 Examples

This section is intended to give a feel for interactive composition—the reader is
encouraged to explore further possibilities using the interactive tutorials contained
in the Oberon distribution.

The primary tool for composition is the Gadgets.Panel (Figure 3.15). The two
lists presented side by side enumerate the standard visual and model components.
The controls on the left let you to align gadgets in different ways, change over-
lapping priorities, make deep copies, open the inspector and recall the last deleted
gadgets. After opening a fresh instance of a container gadget like a panel, you
proceed to insert gadgets into the container by clicking on the gadget you want in
the View list. The insertion point is set with the caret using the left mouse button in
the container. Figure 3.16 shows a partially completed panel containing a caret (a
small black cross). You arrange the gadgets freely using the middle mouse button.
Text captions are entered by setting the caret and typing on the keyboard.

41

Figure 3.16: Constructing a panel

The attributes of a gadget are shown in the Inspector by selecting the gadget
with the right mouse key (making it appear in a selected pattern), and then hitting
the Inspector button. The result—for a button gadget— is shown in Figure 3.17.

By changing the attributes the caption and behavior of the Button can be
changed. The figure shows a button with a caption “Open” having the command
“Desktops.OpenDoc Rembrandt.Panel”. The command “Desktops.OpenDoc” is
the universal command for opening documents. In this case the document man-
ager is requested to open a document called “Rembrandt.Panel”—the name of the
control panel of the bitmap editor. The document name could just as well have
been the URL of an HTML page. Section 3.4.3 shows how to parameterize com-
mands further.

As a further example, Figure 3.18 shows the steps to create a popup menu
from a panel and a text gadget. The panel and the text gadget are picked up and
dropped into an iconizer container that shows the two as the sides of a “flip card”.
The card is flipped from one child to another by pressing the middle mouse button
on the small button located at the top left corner of the iconizer. To move a gadget
from one container to another (in this case from the panel into the iconizer), the
user picks up the panel with the middle mouse button and drops it with a left inter-
click into the iconizer. The iconizer then adjusts its size according to that of the
panel. The contents of the iconizer can be further edited in place. Figure 3.19
shows the alignment popup menu of the Gadgets.Panel that was constructed in
exactly this way.

There are numerous examples of composition and assembly in the Gadgets

42

Figure 3.17: Inspector inspecting a button

Figure 3.18: Assembling a menu

43

Figure 3.19: The alignment popup menu

system. One further example—which will not be sketched in detail—is to cut
out a part of a picture and dropping it into a button to provide it with an iconic
representation. Needless to say, any gadget can be used instead of the picture
gadget.

Adding models. After inserting gadgets into a container, doing the layout, ad-
justing attributes and connecting commands, a further possibility is to link model
gadgets to the user interface. This is done by selecting all the gadgets that should
have the same model and then clicking on a model name in the Model list of the
Gadgets.Panel. If model and view share a common communication protocol, all
selected gadgets will update their state according to the current state of the model.
The Inspector is used to follow the link from model to view as to edit its attributes.

So far all construction steps have been interactive. In preparation of the steps
that will follow and for level-1 programming, it is necessary to give names to the
gadgets that will be referred to by macros or modules. This is done by filling out
the name attribute of a gadget using the Inspector. As a last step, the constructed
user interface is locked and saved in a document.

3.4.3 Commands and Macros

In the Oberon textual user interface (TUI), commands of the form M.P read their
input from the text immediately written following the command. When a gadget
“constructs” similar text parameters as the user manually does in the TUI, the

44

command implementation would not know if it was invoked from the TUI or from
the GUI, making these two ways of activating commands interchangeable. This
idea is the basis for separating the application code and the user interface.

The proposed implementation is based on macro symbols for the construc-
tion of command strings. The idea is that parameters originate either from
the user interface where the command was invoked, or from the global system
state. The command attribute can contain macro letters—followed by macro
parameters—that are substituted with other text pieces before execution. The
command attribute—with all macro symbols expanded—is executed in the con-
ventional TUI fashion.

The predefined macro symbols are as follows:

Attribute substitution. The macro &O.A is replaced by the value of the at-
tribute A of the named gadget O in the context of the gadget executing the com-
mand. We define the context of a gadget as the set of siblings and their descen-
dants (this essentially this means that a sibling or one of its descendants named
O is picked according to some search strategy). Our search strategy proceeds in
a breadth-first manner until the named candidate is found. All other gadgets with
the same name are ignored. A shortcut macro # is also provided for the case when
the gadget executing the command corresponds to A.

Text selection. The � symbol is substituted with the current text selection.

Gadget selection. The �A macro is substituted with the concatenation of the
attribute named A of the set of selected gadgets. The attribute values are separated
with a space character.

Initiator substitution. The �A macro is replaced by the attribute A of the ini-
tiator gadget in a consume operation. The initiator is defined as the gadget that
is dropped into the container. We call the container the recipient. The initiator
macro is used in commands related to drag and drop operations.

The most popular macro symbol is attribute substitution (&). For example, we
can now extend the opening example of the previous section with the substitution
macro. Figure 3.20 shows a modified panel where the document name is written
inside a textfield. The Value attribute of the textfield reflects the text seen in the
textfield. The button parameterization is achieved by naming the textfield Input
and setting the Cmd attribute of the button to “Desktops.OpenDoc &Input.Value”.

45

Figure 3.20: A document opening tool

On pressing the button, “&Input.Value” is expanded to whatever is written inside
the textfield. The expanded text is then executed in the same manner as when
clicked on by the user in a text editor.

The straight-forward mapping of gadget actions into commands might seem
simplistic and limited at first glance. In fact, its usefulness is directly related to
the set of useful commands and not to the mechanism itself. It does not for exam-
ple rule out the use of more complicated actions as the invoked command could
potentially implement a complete scripting language. The current opinion of the
designers is that Oberon is the programming language of choice for programming
more complicated gadget behaviors (as commands). Several commands related
to setting and retrieving attributes, enumerating directories, and managing pub-
lic libraries are part of the Gadgets distribution, and each application developed
with Gadgets adds to the list. In the author’s opinion, the biggest problem with
this approach is that the authors of these applications tend to make commands too
application specific so that they often cannot be reused.

3.4.4 Summary

With the machinery sketched so far in this chapter it is possible to interactively
build graphical user interfaces in restricted domains. The mileage you get vary on
the gadget classes and prefabricated commands available in that application do-
main. To be really useful it for example requires a certain level of factorization of
components and commands so that they can be mixed and matched. In this regard,
the Gadgets system only contains a limited set of commands that are applicable
to gadgets in general. Also, the container classes are of a general nature that can
be applied to numerous problems. Consequently, the system is only an enabling
technology for componentware in more specific domains.

I believe that even if the number of component classes and commands are
dramatically increased, it is not certain that completely interactive application

46

composition is possible. A certain amount of “glue” programming often remains
necessary. This type of programming is currently mainly done in the Oberon
language, which is a too low-level abstraction for end-users. It seems that at user
interface level, efficiency and typing plays a lesser role, thus opening up the possi-
bility for using scripting languages. The current design of the Gadgets framework
does not rule out the use of scripting languages for user interface programming—it
certainly is an interesting area for further system development.

This chapter has mainly concentrated on the interactive aspects of the system.
In the following chapter we start exploring the structure of the system, followed
in the remaining chapters by technical implementation details.

Chapter 4

Overview of Design Concepts

According to Booch, the canonical form of a complex system is a hierarchy
[Boo94]. Most interesting systems embody many hierarchies—Booch identi-
fies two of them, namely the part of or object hierarchy and the is a or class
hierarchy—the understanding of which can vastly simplify a complex system. As
the Oberon language [Wir88b], in which the Gadgets system is implemented, is
modular, we identify at least three hierarchies, namely the module hierarchy, the
type hierarchy, and the object hierarchy. With messages as first-class citizens in
Oberon, a further decomposition of the type hierarchy into the object type and
message type hierarchies is possible. Also, the component model of Oberon di-
vides the object hierarchy into two further hierarchies called the display hierarchy
or display space and the library hierarchy or persistence hierarchy. The goal of
this chapter is to introduce these hierarchies as used in the Oberon and Gadgets
systems.

4.1 The Module Hierarchy

The module hierarchy is the structuring mechanism for code reuse in the Oberon
system. Modules export a public interface to their clients and import other mod-
ules to make use of their features. The explicit dependency relationship between
modules creates a hierarchy in the form of a directed a-cyclic graph. Implicit de-
pendencies between modules exist when modules assume a common feature—for
example the value of a constant or units in a coordinate system—that is not explic-
itly defined by an interface. Modules are used to implement procedure libraries,
abstract data types, and component implementations. In the case of the Gadgets,

47

48

a module typically implements one or more gadgets.
Independently extensible software is modular out of necessity; separate com-

pilation of modules where adding a new compilation unit does not require re-
compilation of other compilation units is a must. A way to dynamically integrate
extension modules at run-time is also required, as for example used in dynamic
link libraries or DLL’s. Separate compilation combined with late-binding enables
previously loaded modules to invoke code that is loaded later.

The module as vehicle for code reuse is not commonly accepted. In languages
like C++ [Str87] and Smalltalk [GR93] the concept of a class is merged with the
concept of a module so that object-orientation comes to play even if no intention
is present to exploit its advantages. The importance of a modular structure has re-
cently been emphasized with the development of name-spaces for C++. Even
the language Beta in which everything is expressed as a pattern has a higher
abstraction mechanism called a fragment that corresponds to a compilation unit
[MMPN93].

4.1.1 Module Interfaces

As the interface of a module (or a component) presents a contract to its clients, a
change made to an interface can invalidate clients of that module. The larger the
number of direct and indirect clients, the greater the disruption. This ripple ef-
fect has serious repercussions in open systems where the system is independently
extended. The simplest solution is to freeze the interface of a module as soon
as it is made available to a larger audience and to restrict further changes to the
implementation only. It is a common approach that has proved its value with com-
mercial DLLs. There are however techniques that leverage additional flexibility
even in the face of interface changes, and so allow the system to evolve. These
techniques were especially helpful during the development of the Gadgets system.

Symbol file technology. A clever module loader and finer-grained finger print-
ing of module interfaces enable interface extensions to be made without invalidat-
ing clients. This is based on the observation that a pure addition cannot be used
by any clients yet. The object model of symbol files increases the capability for
evolution and has been built into some Oberon implementations [Cre94]. It also
allows exported elements to be removed from a module at the risk of invalidating
those clients that depended on them. This is a dangerous operation as eventual
run-time consistency cannot be checked statically without having access to all
components.

49

Narrow Interfaces. The number of possible client dependencies can be de-
creased by reducing the size of a module interface—such an interface is called
narrow. An open message interface is an example of a narrow interface (see sec-
tion 4.2.1 for more details). It is not visible from the interface what messages
a component understands and so objects can be upgraded with additional func-
tionality without the clients noticing. Although it is a practical feature, it is not
recommended as implicit dependencies are often introduced, for example, in the
form of assuming that a component understands a particular message. So without
appropriate documentation or browsing tools that examine implementations, it is
not known if an object understands a message or not.

Bottleneck modules. It is common to factor out mutual dependencies between
two or more modules into a separate bottleneck module. As long as the bot-
tleneck’s interface is not changed, the clients that depend on it can be modified
without invalidating each other. Oberon uses this technique by defining message
protocols in bottleneck modules. In ETHOS [Szy92b] bottleneck modules are
used to define directory objects that generate instances of often used objects.

4.1.2 User Interface and Application Coupling

Decoupling the application code from the user interface separates concerns and
makes independent modification of application and user interface possible. Its
successful application is dependent on the modular decomposition of the applica-
tion.

The connection between user interface components and the application is a bi-
directional channel. During direct manipulation data is transferred to or actions
invoked in the application. In the opposite direction, the results of a computation
are transferred from the application to the user interface elements for presentation.
There are several means to obtain the connection between interface and applica-
tion, which in turn affect their coupling.

First we list common approaches found in literature for connecting user in-
terfaces and code. Callbacks involve the registration of procedures with objects,
specifying under which conditions the object should call the procedure. The MVC
paradigm [KP88] allows the registration of view update procedures at the model.
The X Toolkit registers callbacks at the widgets (user interface objects) which
are called when a specific event occurs [NO90]. Active values registers functions
with variables which are called when the value of the variable changes. Con-
straint systems can be used to ensure that variables maintain certain relations

50

Application
Module

Model
Implementation

View
Implementation

Mode
l

User Interface

execute
commands

read/write
state

Module Structure

View View

Figure 4.1: User interface and application coupling

[MGD�90, Hil92]. All these approaches need a certain level of support from
application objects and create UI and application dependencies.

In the Gadget system, the connection between the user interface and the appli-
cation are the model gadgets (cf. 3.3.1) and Oberon commands. Actions invoked
from the user interface are realized as commands (cf. 3.4.2). To encourage reuse,
views and models in the Gadgets framework are realized as separate modules and
the application dependent code is located third module, as shown in Figure 4.1.

The issue of user interface and application coupling involves the question how
the user interface (both model and view) knows about the application module,
and how the link from the application module to the user interface is maintained.
The idea is as follows. The user interface component that executes a command
sets a global variable to itself. This variable, called the executor, keeps track
which part of the user interface the command originated from. The application
retrieves references to UI components in the latter context by requesting a location
service to locate components by name (cf. 5.3.4). Once located, the state of UI
components (models or views) are read, the calculation performed, and the results
written back to the UI component. If a model’s value has changed, a change
notification mechanism is initiated.

In the remainder of this section we will review how different programming
styles can affect component coupling.

51

User interface dependencies. There are several possibilities for exchanging
data between the application and the UI, each of which illustrating a different
level of application module and UI coupling.

A component dependency is present when the application-specific code is
merged with the user interface component. An example is to make a subclass of
an existing component—like a button—and hard-code its behavior to something
application-specific.

A view dependency is present when the application module makes assump-
tions about the type of a view component in the UI. It is a strong coupling that
leads to failure when either the view is exchanged with a different type, or when
the view interface changes.

A model dependency is present when the application module makes assump-
tions about the type of a model component in the UI. It is a medium-strong cou-
pling that leads to failure when either the model is exchanged with a different type
(for example an INTEGER with a REAL), or when the model interface changes.
In contrast with a view dependency, a model dependency leaves freedom in se-
lecting different views.

A name dependency is present when the application module assumes that a
component with a specific name is present in the user interface, thus leading to
failure when the component is deleted or renamed. A dilemma arises when dif-
ferent commands have to share access to the same component but make different
assumptions about its name. A solution is to pass the names of referred compo-
nents in the command parameters. The application then parses the parameters to
find out the names of components before locating them in the user interface. Name
dependency only becomes a problem when commands are heavily factored.

A protocol dependency is present when the application module makes an as-
sumption about the message protocol a user interface component understands (in
contrast to the model and view dependencies that make assumptions about a type).
A protocol dependency allows the exchange of a component with another as long
as it understands the same protocol. A protocol dependency is preferred when
components are manipulated directly.

A parameter dependency is present when the application module makes as-
sumptions about the syntax of (text) parameters passed to it. Most Oberon com-
mands exhibit this dependency. Typically, a parameter syntax error is detected and
reported. This type of dependency is to be strived for as the application makes
no assumptions about the user interface at all. The drawback is that it reduces
the communications channel between UI and application to a one way channel—

52

results can not be presented directly by UI components. There is however scope
for improvement in this area: it is easy to imagine a piping mechanism as in Unix
[Bac86], where the result of a command (a text) is piped into another component.
This would require a more fine-grained decomposition of many of the existing
TUI commands.

The location service involves a searching mechanism that can be a perfor-
mance bottleneck when many components must be repeatedly located. A single
instance dependency is present when the application optimizes the search opera-
tion by remembering component references across command invocations in global
variables. This style of programming is not compatible with the Oberon design.
The wrong assumption is that each application user interface has a set of separate
modules. This assumption is invalidated when user interfaces—a simple collec-
tion of gadgets—are cloned on the display. The analogue would be to start the
same application more than once on a process-based system. As modules can be
loaded once only, the same application modules have to share many copies of the
same user interface. It is thus imperative that an application search for components
each time a command is executed. It is possible to reduce the search operation to
a single one by creating a named directory component that has references to all
often used components in a user interface instance (a model dependency).

The dependencies introduced in the previous paragraphs are guidelines for de-
coupling user interface and application code. A clean decoupling might cost more
work initially, be less efficient but it allows for easier maintenance, modification
and reuse, whereas a strong coupling does the opposite. We leave it to the designer
which one or mixture of these dependencies are preferred.

4.1.3 Model-View Coupling

A particularly difficult coupling to weaken is that between model and view gad-
gets. It is for example tempting to simplify interfacing by having views “know”
about the model they represent. This design pattern is extensible in the dimension
of the views only. When new models are linked to existing views, the latter have
to be updated also to ”know” about the new model class. This situation appears
surprisingly often as models are good candidates for extension. This is referred
to as the cartesian product problem of composing components, which hints at
the fact that all possible combinations of models and views must conceptually be
supported.

In principle, the composition problem is solved by connecting models and
views through a data-exchange protocol. The definition of an extra protocol mod-

53

Model
Implementation

View
Implementation

Protocol
Specification

Application
Code

Figure 4.2: The extensible MVC module decomposition

ule leads to a decomposition that is extensible (Figure 4.2).
The remaining dependency is on the protocol itself, which should preferably

be extensible too. First, as sketched in section 4.2.1, the protocol messages can
be extended, and the models and views updated to react accordingly on the new
types. Second, new protocols are definable at any time, and also incorporated into
components without invalidating any existing clients.

The result of the MVC decomposition is that several orthogonal possibilities
for extension in the dimension of the model, view, protocol, and application exist.
The rationale for implementing a separate protocol module is the largest when the
protocol is of general use, but it is surprisingly difficult to find and implement
such general protocols. Currently, the attribute message (cf. 5.3.1) forms such a
protocol for the exchange of simple data types.

4.1.4 Examples

The Oberon module hierarchy is split into two parts, namely modules of the
Oberon TUI and the Gadgets GUI. The TUI is a minimal Oberon system with
a compact set of modules geared towards working with text as a user interface
medium. We shall refer to this part as the Oberon base system. The Gadgets GUI
builds a component architecture on top of this basis.

The base system. The module hierarchy of the base system (Figure 4.3) is di-
vided into the inner core, the outer core, and the applications.

The inner core is responsible for memory management and garbage collec-
tion (Kernel), file directories and files management (FileDir and Files), and the

54

Kernel

FileDir

Files

Modules

Objects

DisplayV24 Input PrinterNetsystem

Viewers

Fonts

Texts

Oberon

TextFrames

System Edit

Figure 4.3: The base module hierarchy

55

dynamic loading of modules (Modules).
On top of the inner core we find the outer core. Its most prominent module

Objects defines the root of the object types in the system and provides a library
manager (cf. 5.4). As part of the Objects module we also find the object message
protocol, which is extensively discussed in Chapter 5. Above the Objects module
comes the driver layer. It contains drivers for attached devices like the mouse and
keyboard (Input), display (Display), printer (Printer), network (NetSystem) and
serial ports (V24). As explained in section 3.2, the Oberon display is covered with
viewers; the module Viewers provides their basic functionality. The reliance on
text in the basic system results in a small subsystem for managing fonts (Fonts)
and defining an abstract data type for texts (Texts). The module Oberon brings all
the modules below it together as the distributor of mouse and keyboard events to
the viewers on the display, the passing of textual parameters to commands, and the
handling of the mouse cursor. In the outer core, modules Objects, Display Texts,
and Oberon play important roles as bottleneck modules that define the important
message interfaces of components.

The outer core is essentially completed with the module System that manages
system-wide tasks like copying and deleting files, setting the time, handling ex-
ceptions, etc. It makes use of a module TextFrames (part of the applications) that
provides a rudimentary text editor for editing modules, writing texts, and show-
ing results of commands. A module called Edit provides features for storing and
loading text files, setting fonts, and other editing operations. Not shown in the
module hierarchy are applications like the compiler for compiling modules and a
set of mostly programmer-oriented tool modules like browsers and so on.

Note the base system module hierarchy of System 3 is approximately that
of the original Ceres Oberon implementation [WG92] except for module Objects
that ties up many of the types defined in the system in a type Objects.Object. This
module is the innovation in Oberon System 3 in comparison with earlier versions
that did not have the concept of first class objects. A detailed description of this
module is found in Chapter 5.

The Gadgets system. The Gadgets system module hierarchy is divided into the
Gadgets core, the gadget component collection, and the document collection (Fig-
ure 4.4). The Gadgets core extends the base system with additional functionality
as required by the gadgets. The gadget component collection is a loose collec-
tion of modules that implement the gadget components. The module structure
of the gadget component collection is rather flat as gadgets seldom import each

56

Objects Display Printer

Display3

Printer3Effects

LinksAttributes

Gadgets

Panels

ListsIcons

TextFields
Documents

Desktops

PanelDocs TextDocs

Gadget Collection

Document Collection

Gadget
Core

Figure 4.4: The Gadgets module hierarchy

57

other directly but rather communicate using message protocols defined lower in
the module hierarchy. The document collection provides “application like” func-
tionality that is associated with the different document classes.

The Gadgets core consists of modules that provide arbitrary clipping regions
for the display and printer driver (Display3 and Printer3), handling of attributes
(Attributes) and of links (Links), special effects and non-portable code (Effects),
and definition of gadget types, common message handlers and other functionality
(Gadgets). The gadget component collection is a large set of modules implement-
ing about 40 or so gadgets ranging from simple models like integers and strings
to complicated containers like panels and text gadgets. To prevent a large module
inflation several gadget classes are sometimes collected in a single module. The
module BasicGadgets for example contains the implementations of the commonly
used model gadgets, buttons, sliders and check boxes. Module TextFields contains
the implementation of string entry fields and text captions used for decoration.

The document collection contains implementations of the document classes.
If a component class, say X, is to be elevated to the status of a document, a module
called “XDocs” provides the basic functionality for that document. This includes
a definition of a document class, specification of the document iconic representa-
tion, the look of the document menu bar, how the document stores itself to disk,
and common commands that can be applied to a document of that type.

4.2 The Type Hierarchies

The type hierarchy is the secondary structuring mechanism after the module hier-
archy in the Oberon system. It is formed by a language mechanism called type-
extension, which is the foundation of object-oriented programming in Oberon.

4.2.1 Type Extension

The following program fragment shows how type extension is typically applied:

TYPE
Object = POINTER TO ObjectDesc;
ObjectDesc = RECORD

... object fields ...
END;

SpecialObject = POINTER TO SpecialObjectDesc;
SpecialObjectDesc = RECORD (ObjectDesc)

... additional fields ...
END;

58

Type

Module

Figure 4.5: The type hierarchy embedded in modules

In this example, the type SpecialObjectDesc is a type extension of the type
ObjectDesc. An extended type (or derived type) inherits all the record fields of
the type it extends (the base type) and can add its own fields. Variables of an
extended type are assignment compatible with variables of a base type (i.e. inclu-
sion polymorphism [CW85]). A type can only be derived from a single base type.
There is no distinguished root type in the Oberon system or language from which
all RECORDs must be derived from, hence, the system consists of disjunct type
hierarchies. By defining a pointer type based on a RECORD type, it is possible to
allocate RECORDs of that type dynamically on a heap using the NEW operator.

Types are associated with modules and can be extended across module bound-
aries (Figure 4.5). An important feature is that a derived type can be defined with-
out having the source code of the module implementing the base type.

Late binding. Late binding is obtained by declaring procedure variables in a
RECORD type and assigning them after instantiation of the RECORD to actual
procedures. Sending a message corresponds to calling an assigned procedure.
The message contents is the actual parameters of the procedure, one of which is
often a self parameter. As RECORD instances of the same type can have differ-
ent assigned procedures, this is an instance centered-approach [US87, Lie86] as
opposed to a class-centered approach. An example of a typical type definition is
shown below.

TYPE
Object = POINTER TO ObjectDesc;
ObjectDesc = RECORD

59

... object fields
method0: PROCEDURE (self: Object; ... parameters);
method1: PROCEDURE (self: Object; ... parameters);

END;

Notice that delegation [Lie86, US87] can be simulated by passing a self pa-
rameter different from RECORD where the procedure variable is invoked from.
When using procedure variables to implemented late binding, code inheritance
must be programmed out by hand—there is no direct support for it in the Oberon
language. Code-inheritance is simulated by calling procedures—typically at-
tached to a base type—from an assigned procedure. When many RECORD in-
stances share the same set of assigned procedures, a shared method block of pro-
cedure variables can be attached to each RECORD instance to save memory (cf.
6.5.3).

Open message interfaces. An extensible object interface is obtained when in-
stead of normal parameters, a RECORD is passed as message to an object. This
makes messages explicit and also separates the message protocol from the object
itself. It also has the interesting feature of allowing both object types and message
types to be extended in independent dimensions. As an example, the following
type definitions can form the roots of an object and message type hierarchy:

TYPE
Msg = RECORD END;

Object = POINTER TO ObjectDesc;
ObjectDesc = RECORD

... object fields
handle: PROCEDURE (self: Object; VAR M: Msg);

END;

An example of a concrete message is a request for an object to copy itself. For
the purpose of this illustration, we can define the CopyMsg as a type extension of
the type Msg, and implement a message handler that can be assigned to handle:

TYPE
CopyMsg = RECORD (Msg) copy: Object END

PROCEDURE MessageHandler(self: Object; VAR M: Msg);
BEGIN

IF M IS CopyMsg THEN
WITH M: CopyMsg DO (� open up access to fields �)

... make copy of self

... assign copy to M.copy

60

END
ELSE

... look for other messages
END

END MessageHandler;

The message handler exploits the Oberon type system to discriminate on mes-
sages. A run-time type test of the form M IS T, where M is a RECORD and T a
type, distinguishes between message types passed to an assigned procedure. The
technique of passing messages as RECORDs is called open message interfaces,
and is extensively used in Oberon because of its important advantages. Messages
can be manipulated like any data structure, and as the message handling is ex-
plicitly programmed out, there are few restrictions in the message dispatching
structure. This allows the implementation of broadcasting, message forwarding
and delegation, and value driven message dispatch. The Oberon system makes
extensive use of message extension, message broadcasting and message forward-
ing.

A useful aspect of open message interfaces is that objects can be extended with
additional behavior without changing their types. The change needed for an object
to process additional messages is localized in the message handler of an object and
is not visible in the interface of the object. This gives greater freedom in changing
component implementations without the need to recompile clients. A drawback
is that the knowledge of what message protocols an object understands is not
made explicit in its interface. This requires the programmer to check for message
protocol compatibility at run-time instead of having the compiler do the checks
statically. In principle this must be done to ensure that no implicit dependencies
on functionality are introduced between caller and callee.

Handler variations. The task of message handlers is to discriminate messages
received and execute the appropriate action (or method). In Oberon the discrim-
ination process is explicitly stated, while in languages like Oberon-2 [Mös93],
C++ [Str87], and Objective-C [CN91] it is implemented behind the scenes by the
compiler and the run-time system. Of these languages, Objective-C has the most
dynamic implementation of message passing, while in the others static lookup
method tables are used. Objective-C generates a unique identification for each
method signature in the system—similar to a type tag in Oberon—which is used
to find the appropriate method in a hidden table of (Signature, PROCEDURE)
entries. The searching mechanism is shared by all classes. At first, it seems that
a similar mechanism can be used to hide the messaging mechanism in Oberon

61

and optimize message discrimination at the same time. There are however two
features of the messaging mechanism that cannot be satisfactorily solved in this
way.

First, the message type hierarchy is used to optimize message discrimination.
The following code fragment shows how a handler can first discriminate on the
level of the protocol family followed by discrimination on a finer level. It assumes
that type Family1Msg and Family2Msg are the base types of further message fam-
ily variants.

PROCEDURE Handler(obj: Object; VAR M: Msg);
BEGIN

IF M IS Family1Msg THEN
IF M IS Family1Variant1Msg THEN ...
ELSIF M IS Family1Variant2Msg THEN ...
END

ELSIF M IS Family2Msg THEN
IF M IS Family2Variant1Msg THEN ...
ELSIF M IS Family2Variant2Msg THEN ...
END

END
END Handler;

Second, while languages like Oberon-2 and Objective-C select methods on
the receiver and message type, Oberon can discriminate in a generic way on the
contents of messages (i.e., value discrimination). This is for example possible by
generically handling messages of a certain protocol. In the following section on
the display space, message discrimination is influenced by the message contents.
The following example illustrates the process.

PROCEDURE Handler(obj: Object; VAR M: Msg);
BEGIN

IF M.field = X THEN
IF M IS Type1Msg THEN ...
ELSIF M IS Type2Msg THEN ...
END

ELSE
... do something else

END
END Handler;

More specialized techniques can be devised. A switch can forward messages
to one or the other object depending on its setting. A replicator can broadcast all
messages received—irrespective of message type—to a collection of objects.

62

4.2.2 Type Safety

Systems that are extended by independent parties tend to suffer in robustness as
each additional component is another potential source of error. Major issues are
how errors can be localized and eliminated, and how to prevent components inter-
fering with each other.

The Oberon approach is to do as much checking for problems as is possible at
compile time. The language is designed so that the type system cannot be circum-
vented without explicitly indicating the need to do so. Unsafe and non-portable
implementations are obtained when low-level operations from module SYSTEM
are used. At run-time appropriate type checks and checks for exceptional con-
ditions are also completed. Should an exception occur at run-time, it is detected
immediately and does not have lingering effects. The combination of static and
dynamic checking is called type safety. In the author’s opinion, type safety is one
of the most important requirements for ensuring that an extensible system scales
well.

As an added benefit of type safety and having more type information available
at run-time system, we can use a garbage collector and gain the possibility to do
metaprogramming [Tem94]. In fact, due to the lack of global knowledge in an
extensible system, a garbage collector is the only instance that can reliably free
unreferenced heap objects (and is thus an integral part of the Oberon system).

4.2.3 Type Definitions

The Oberon type hierarchy is divided into two disjunct parts: the type hierarchy of
dynamically allocated objects and the type hierarchy of the stack allocated mes-
sages.

Although the earlier Oberon systems had a hierarchy of message types rooted
in a single type [WG92], these systems were limited by the lack of a shared object
base type to integrate different sub-systems with each other. The Write text editor
for Oberon [Szy92a] partially addressed the problem by introducing a common
root for user interface elements that are embeddable only in text streams. ETHOS
[Szy92b], another operating system based on ideas of the early Oberon system,
and Oberon System 3 tackled the problem at its root by defining a root type for
objects.

Just as common features of objects are factorized in a type hierarchy, the com-
mon features of messages are factorized in the message hierarchy rooted in type
ObjMsg. Different protocol families are extended from this base type. As an ex-

63

Gadgets.Frame

Display.Frame

Gadgets.View

Objects.Object

Visual
Gadgets

Gadgets.Object

Model
Gadgets

Camera-view
gadgets

Figure 4.6: The object type hierarchy

ample, the messages sent to visual gadgets have common fields that are collected
in a message type called FrameMsg. Extensions of the latter type form a family
called the frame messages. Also, the message type UpdateMsg, based on type
FrameMsg, is the base of the change notification messages (cf. 6.3.8).

The ability to group messages in families and the ability for objects to process
messages from different families is similar in concept to that of interfaces in Java
[Mic95] and Objective-C [NeX92]. An interface is a collection of methods that an
object class has to implement if it admits to implement that interface. Objects can
implement several interfaces, making it similar in concept to multiple inheritance
and mixins. Not to overload the concept of an interface in Oberon, these interfaces
are called message protocols.

Now we are in a position to combine the module and two type hierarchies to
illustrate the static system structure. The Oberon object type hierarchy (Figure
4.6) is rooted by a base type Objects.Object. The derived type Display.Frame is
the basis of the visual components. The types Objects.Object and Display.Frame

64

Display.FrameMsg

Display.DisplayMsg

Display.SelectMsg

Display.PrintMsg

Display.ConsumeMsg

Display.ModifyMsg

Oberon.InputMsg

Oberon.ControlMsg

Objects.ObjMsg

Objects.LinkMsg

Objects.AttrMsg

Objects.FileMsg

Objects.BindMsg

Objects.FindMsg

Object Messages

Frame Messages

Figure 4.7: The message type hierarchy

belong to the base system and provide rudimentary support for programming com-
ponents. The Gadgets framework extends these types with Gadgets.Object and
Gadgets.Frame to provide a base type for models and visual gadgets respectively.
In contrast to the types Objects.Object and Display.Frame that do not have stan-
dard implementations, these types provide default handlers to implement common
behavior. The type Gadgets.View forms the base type of the camera-view gadget
class.

The message type hierarchy is rooted in the type Objects.ObjMsg (Figure 4.7).
A family of messages called the object messages is derived from the latter. The
object messages are primarily concerned with features like attributes, links, and
persistency (cf. 5.3). Display.FrameMsg is the base type of messages that are

65

related to frames and their visual aspects. We will be discussing the object and
frame messages in more detail in chapters 5 and 6.

4.3 The Display Hierarchy

4.3.1 Structure

The run-time structure of objects in a system is referred to as the object hierar-
chy [Boo94]. Amongst the object hierarchies of the Oberon system, the display
hierarchy or display space plays a special role as it is visible to the user on the
computer display. It consists of visual objects nested in each other, anchored by
a top-most container called the display root that covers the whole display. The
display root contains the system and user track, which contain the viewers, which
contain the menus and documents, and so on.

The presence of a visual object in the display space is not a-priori; visual
objects that are not located in the display space are said to be off-screen. Once
inserted into the display space, visual objects are connected to other visual objects
by one or more uni-directional references.

References are classified according to the role they play in organizing the dis-
play space. Part-of references are those that collect the children of a container
together. Camera-view references connect camera-view gadgets with the visual
model they display. Model references connect view gadgets with their model gad-
get. Special purpose references connect gadgets across containment boundaries.
A subset of these references are accessible to the user in the form of named links.

Note that model and camera-view references “tie” together parts of the tree-
like display space at models and visual gadgets, turning the display space structure
into a graph (Figure 4.8). An unrestricted graph structure might however lead to
a container having itself as descendant, or a camera-view taking a look at itself,
situations that lead to infinite recursion trying to display them. Consequently,
the part-of and camera-view references must be restricted to an a-cyclic graph (a
DAG). In the following section we will see how we can guarantee this invariant.

4.3.2 Messages

In this section we investigate how messages and the display space interact. The
largest part of the section involves a discussion how messages travel through the
display space.

66

Track

ViewerViewer Viewer Viewer

NamePlate Button

Display Root

Track

Menu Bar Camera-View Camera-View

Panel

Slider Button TextField

Integer

Figure 4.8: The display space structure

67

Message broadcasting. The small world principle enforces the encapsulation
of containers by hiding their children from the outside world and the parental con-
trol principle makes the container responsible for their children (cf. 3.2). We can
only enforce these principles when communication with a child (and its descen-
dants) is only through its parent. As each visual object in the display space has
a parent (except for the display root), we conclude that all communication must
take place indirectly through the display root. The display root passes the message
to its children, which in turn have to pass it along to their children and so on. The
process of passing messages from one gadget to another is called forwarding. For-
warding makes messages seem to “trickle down” through gadgets in the display
space. During forwarding we have to make sure that messages only flow along
the part-of and camera-view references that form the DAG, otherwise we might
encounter cases of infinite forwarding cycles (and thus eventually run out of stack
space).

Each container in the display space receiving a forwarded message has to
make a decision as to what direction the message is to be forwarded. The for-
warding can either be directed to a specific child or to all children. A forwarding
strategy that visits all the descendants of a container is called a broadcast. An
example of a broadcast is the model update change notification that reaches all
visual gadgets in the display space.

The principle advantage of using broadcasts for change notification in the
MVC framework [KP88] is that no explicit dependency lists [Kno89] of views
need to be managed. Dependency lists are sets of view objects that need to be no-
tified when the state of a model has changed. These lists are typically problematic
to maintain and have the unpleasant property of making models “know” some-
thing about their views. Using broadcasting there is a separation between model
and the view, the view knowing about the model (as it should be), but the model
not knowing about its views. Although a simplification is made by the elimina-
tion of dependency lists, the cost of change notification is increased. Even though
broadcasts are relatively cheap in Oberon due to efficient forwarding mechanisms,
they are still not for free (see the following paragraphs).

In addition to broadcasting, it is often necessary to inform a specific gadget
of an event. We run the danger of braking our stated principle of parental control
should we send the event notification directly to that gadget. We solve the problem
by broadcasting these event notices into the display space and including in the
event the destination object for which a broadcasted message is intended. We thus
distinguish between a directed broadcast (to a specific component in the display

68

space) and a true broadcast (that reaches everything in the display space).
Note that according to the small world principle it is not possible for a con-

tainer to know where to send a message if it cannot find the destination amongst
its children. It might be that one of its children is a container that contains the
destination gadget. In such a case, a container forwards the message to all of its
children in the assumption that one of them might be able to handle it. If no special
handling is done by containers, a directed broadcast has a similar forwarding pat-
tern as a true broadcast except for the last hop from the parent to the destination.
This broadcasting is also the default behavior if a container does not understand
the message itself (the forwarding of these are necessary to allow the definition of
new message types).

Improving communications. According to the broadcasting rules specified so
far, all messages to visual objects must be sent indirectly through the display root.
As the cost of a broadcast increases at least linearly with the number of receivers
(camera-views increasing the cost even more by “flooding” sub-sections of the
display space many times), it is well worth to try and tune the process a little
without invalidating our stated principles.

For example, according to the principle of parental control, a container may
suppress forwarding if the descendants are not interested in the message. The de-
tection of what is interesting to an object is in general difficult to specify as gadgets
typically know little about their descendants. An early version experimented with
the idea of visual gadgets showing interest in certain events by setting flags that
can be inspected by parents. The idea was later completely dropped when the
rules for setting the flags became too complicated over multiple container layers.

It is also possible to question if broadcasting is suitable for messages that are
of little or no interest to a container. It is for example doubtful if the requesting
of attributes should be under parental control too. In the current implementation,
all frame messages must be broadcasted and object messages are sent directly to
components. The attribute message (cf. 5.3.1)—used to read and write gadget
attributes—is an example of an object message that need not be monitored by a
parent. This is so because attributes are properties unrelated to the fact if a gadget
has a parent or not. Some gadgets—like models—do not have parents anyway.
This interpretation requires that only those messages that are related to the visual
aspects of a components are broadcasted.

A further reduction in number of broadcasts is obtained if the small world
principle is applied consequently. A special case of parental control applies when

69

a container itself is the initiator of a message sent to one of its children. As a child
can only belong to one parent, and a parent always knows best, there is no need
to broadcast the message—it can simply be forwarded directly to the child. This
interpretation is often exploited in container gadgets like panels.

One case that is not sufficiently solved in the current implementation, is that,
due to the lack of explicit dependency lists, a change notification of a model is
broadcast even when the programmer is sure that no views are interested (when
for example manipulating a model off-screen)1. The gadgets framework separates
changes from change notification, which means when the programmer forgets to
broadcast a change notification after modifying a model, an inconsistent model
and view is the result.

In general, it can be said that broadcasting is a concept that enforces our state
principles of parental control and small worlds. No major efficiency problems
have surfaced in our implementation even though little emphasis was made on
reducing its cost. This is mainly due to the fact that the size of the display space (in
number of objects) tends to be quite modest. Even though visualization systems
requiring real-time display of data are not well-addressed in this framework.

Multiple receives. Messages trickle down the display space following the part-
of and camera-view references. At a specific point in a depth-first traversal of
the display space, a message followed a certain path from the display root to a
specific gadget in the display space. Because the camera-views tie up separate
parts of the display space with a common visual gadget, the same message might
arrive a few times by different routes at the same gadget. For example in Figure
4.9 we identify four paths from gadget A to gadget G namely (B, C, E, and F are
camera-views):

ABDEG
ABDFG
ACDEG
ACDFG

The number of paths through which a message can reach a gadget is exactly
the number of times that the gadget is visible on the display. This makes us ob-
serve that should a broadcast be addressed to only G, instructing itself to display
itself, it would receive the message once for each position where it is visible on

1Oberon System 3 does not allow the exchange of the notifier with an “empty” one as in earlier
Oberon versions [WG92]

70

A

B C

D

E

G

F

Figure 4.9: Message paths

the display. This is called multiple receive and is the basis of the multiple view
framework used in the gadgets imaging model (cf. 6.4).

It turns out that one of the problems with multiple receives is that a gadget
cannot detect when it happens. This is because the gadget obtains control from
the outside and that a certain amount of time might have passed before a following
receive occurs. A typical requirement for knowing about the “receive count” is
when a gadget has to update a data structure on the first receive, but only has
to use the data structure (without modification) on the remainder of the receives.
This problem is addressed by time stamping each message broadcast. The time
stamp is simply a number incremented for each broadcast. By keeping track of
the time stamp of the last message received, a gadget can “count” how many times
it received a message during a broadcast.

Important to note is that a gadget should not assume that messages arrive in
time stamp sequence. It might happen that a gadget triggers another broadcast
while handling a first broadcast and so delays the first broadcast’s completion.
The effect is that of virtual time running backwards.

Message paths. The actual message path during a broadcast has several inter-
esting uses. It sometimes happens that a gadget needs to determine its context, i.e.

71

its location in the display space; for example, it might be interested to know some-
thing about its ancestors. A typical use could for example be to find out in which
viewer or in which document a gadget is embedded. The current implementation
keeps track of the path a message followed to reach a gadget in a message thread.
The thread traces out a route through the display space and can be used by a gad-
get to find out more about its environment. Note that a simple static back-pointer
is not sufficient to keep track of the parent of a visual gadget as the display space
is a DAG.

One interesting possibility is to have a gadget change its behavior according to
ancestors in the message thread. Exploitation of this possibility leads to dynamic
inheritance where a gadget can inherit features and behavior from its ancestors.
Another use of the message thread is to calculate the visibility of a gadget (cf.
6.4).

Message invalidation. A way to terminate a broadcast early is by invalidating
the broadcasted message. This involves setting a flag in a message to indicate
that the message is “invalid” and should be ignored. The flag has a second use in
detecting if a gadget could handle a message or not, with the idea that the receiver
invalidates a message if it could be handled successfully.

Message forwarding cycles. Earlier it was mentioned that message broadcast-
ing can fall prone to forwarding messages in never ending circles. This can for
example happen when a cycle of camera-view gadgets is created and a message
broadcast takes place. This problem is difficult to solve as no global knowledge
about the display space structure is the privy of a central instance that could check
for the condition. A distributed solution is based on the observation that if child
gadget C is inserted into container P, a cycle is present when during broadcasting
to C the message arrives at P. This situation can be detected by broadcasting a
message (essentially any one) to C and checking to see if it arrives at P. This of
course only works if P is clever enough to notice that the test is being performed
and does not forward the message to C by mistake. This can be guaranteed by
only inserting C in P after the message test has been passed.

We can ensure that the display space is cycle-free by doing this test each time
a containment or camera-view reference is inserted. Note possible failure of the
algorithm is possible if C or an ancestor decides not to forward the test message.
An implementation of this cycle test is given in section 6.2.

72

4.3.3 Examples

A procedure Display.Broadcast initiates a directed or true broadcast of a frame
message into the display space (cf. 6.2). The messages that travel through the
display space fall into several categories.

The most obvious use for true broadcasting is that of change notification: mes-
sages that notify that a model has changed travel through the complete display
space. Coded inside the notify message we have an indication of which model has
changed, including sometimes an indication what aspect of the model. Each view
compares the model in the message with the model it displays for equality, and if
necessary, updates its own representation accordingly.

Keyboard and mouse events are broadcast into the display space. A “charac-
ter typed” event travels through the display space until it arrives at a frame that
has the keyboard focus. A convention of only a single frame having the focus
at any specific time ensures that the character is not consumed by two or more
components. The message is invalidated to indicate that the typed character has
been accepted. Mouse events are forwarded in such a way that they only arrive at
frames that are physically located at the mouse position.

Further broadcasts include a request to remove a frame from the display space,
to redisplay a frame, to insert a new frame at a specific position in a container, to
adjust the position of a child in a container, to determine what frame is at a specific
position on the display, and so on. The set of messages is discussed in more detail
in chapter 6.

4.4 The Persistence Hierarchy

The persistence hierarchy is the “memory” of the Oberon system from one session
to another. It collects sub-sets of the run-time configuration of components and
make them persistent. An example is storing a “branch” of the display space on
secondary storage. In a following session we can reconstruct an exact copy of that
part and “paste” it back into the display space. A similar use, not related to the
display space, is to collect template or configuration components that are shared
by Oberon applications.

4.4.1 Libraries

A persistent set of components is called a library (cf. 5.4). A component belongs
to only one library at any moment and components that do not belong to a library

73

are said to be free. A free component is inserted in a library by binding it to
that library. With restrictions spelled out later, components can migrate from one
library to another, that is, they can be rebound. By convention, a clone of a bound
object is free, and binding a composite component causes all of its constituent
parts to be bound to the same library.

When two objects, belonging to different libraries, are connected by reference,
we say that one object is using or importing the library of the other object. It is this
import relationship between libraries that form the Oberon persistence hierarchy
(Figure 4.10). With an exception sketched later, libraries can mutually import
each other.

Libraries are divided into public and anonymous libraries. Public libraries
have names whereas anonymous libraries have none. A system-wide cache of
private libraries is maintained in module Objects which forms the repository for
shared components in Oberon. A lookup service in this module provides a map-
ping from a public library name to library. If not already internalized, the lookup
service will load a public library from disk (the library name corresponds to the
library filename). This means that when an application user interface imports a
component from a public library, the act of opening that document will automat-
ically cause the public library to be loaded (and all libraries that it imports). The
garbage collector frees a library from memory as soon as it detects that the library
has no more clients.

Anonymous libraries are lighter weight than public libraries. They are used
internally in applications to store components and are not cached. Consequently
the same anonymous library can be loaded many times from disk, and also cannot
be imported by other libraries (due to them having no name).

Public objects. Components bound to public libraries are called public com-
ponents or public objects, as they are shared by Oberon applications. For easy
retrieval, some public objects are named. A dictionary associates names with ob-
jects in a public library (the public names of objects should not be confused with
the object’s intrinsic name determined by the Name attribute—the public name
might differ from the latter). By combining the library name L with the object
name O we can refer to a public object as L.O. A lookup service allows us to
resolve L.O into a component reference.

The Libraries.Panel manages the contents of public libraries (Figure 3.3). It
enables the user to inspect, insert into and delete components from public libraries.
An especially useful feature allows the user to link a public model to a view in a

74

H N

Anonymous
Library

Public
Library

Object

Library
Import

A

B

C

A

B

E

O

S

S
A

M

L

E

I

C

Figure 4.10: The persistence hierarchy

75

document. This causes the import link from the document to the public library to
be automatically established when the document is opened.

Anonymous libraries. Most documents are made persistent with anonymous
libraries. This involves binding all (non-public) components in a document to
the same anonymous library. If different anonymous libraries were used for the
same document, as for example could be imagined for implementing local storage
of children in a container, references across container boundaries would not be
possible (remember that we cannot import anonymous libraries).

Rather than attempting to keep the document contents consistent with its li-
brary during user editing, the binding process is completed just before storage
with an empty fresh anonymous library. Also, just after loading or storing, the
anonymous library is discarded. The short life of anonymous libraries restricts
their role in the persistence hierarchy—they are second class to public libraries
that have a longer lifetime.

Note that we have to disallow re-binding of public objects as it would cause
objects that might be in use to suddenly disappear. It does however have the
disadvantage that a periodic garbage collection of public libraries need to take
place. This is done by inserting deep copies of all the named objects in a public
library into a new public library, discarding the old library, and renaming the new
library.

4.4.2 Examples

Except for older document classes that store their contents in own formats, most
documents use anonymous libraries to store their contents. In some cases, like
for example text, a component might use an additional anonymous library to store
its constituent parts. Libraries are also used to serialize complex data structures
to send them across the network. As the library mechanism requires positionable
output streams to function (cf. 5.4), this involves a rather inefficient detour to a
file buffer before transmission.

Public libraries are used for shared components like bitmaps and configuration
data. The document menu bars are also stored in public libraries; this allows
end-users to customize their work environment. The library hierarchy is often
quite flat, with anonymous libraries importing public libraries, and public libraries
seldom importing each other.

The library mechanism is extensible with new classes of libraries. One of
these extensions is font libraries, consisting of light-weight character glyph ob-

76

jects. In the same theme, the TrueType font libraries generate character patterns
on demand as they are retrieved from the font. An experimental object store has
also been realized as a library [Mei93]. This library distinguishes itself from the
standard component libraries in that loading and storing of the library contents is
dynamic and incremental. Only the subset of components that are required at a
specific point in time is cached in memory. Seldom used components are swapped
back to disk after a period of inactivity to make space for other components in
memory.

4.5 Summary

This chapter has given a broad overview over the design concepts of Oberon Sys-
tem 3 and Gadgets by presenting the module hierarchy, the object and message
type hierarchy, the display hierarchy, and the library or persistence hierarchy. In
the following two chapters we will give concrete details about the implementa-
tions of these hierarchies.

Chapter 5

Objects and Gadgets as System
Components

The purpose of this chapter is to introduce the Oberon component model. This
model defines the operations common to all components in Oberon System 3 and
in the Gadgets system, like for example the generation, storage, cloning, linking,
configuration, and location of objects.

5.1 The Principal Types

We start off the object and message type hierarchies by defining Objects.Object
as the root type of component objects and Objects.ObjMsg as the root of the mes-
sages types (cf. 4.2):

Object = POINTER TO ObjDesc;
ObjDesc = RECORD

stamp: LONGINT;
dlink, slink: Object;
lib: Library; ref: INTEGER;
handle: Handler

END;

ObjMsg = RECORD
stamp: LONGINT;
dlink: Object

END;

Handler = PROCEDURE (obj: Object; VAR M: ObjMsg);

77

78

The most important feature of the Object definition is the message handler
that interprets the messages sent to an object instance. This is the open message
interface as sketched in the previous chapter. The fields lib and ref indicate to
which library the object is bound (cf. 5.4). The remainder of the fields are mainly
influenced by the design of the Gadgets system. The dlink and slink fields are used
to connect objects with each other in lists.

The slink field builds a list of objects that is passed around in the system. One
use of the slink list is to specify the gadgets that are inserted into a container. Note
that the drawback of not using an auxiliary structure to collect objects is that an
object can be in one list only. Accordingly we define the lifetime of the slink list
to be at most a single message broadcast.

The dlink field builds the message thread (cf. 4.3.2). The thread is extended
a gadget at a time during message forwarding by prepending the objects that the
message pass through. The head of the thread is the dlink field of the received
message and the thread runs “backward” from receiver through the dlink field of
type Object.

The stamp field of the message indicates the time at which the message was
created and broadcasted. The stamp remains the same during the lifetime of the
message and is not modified during message forwarding. The stamp field of the
Object type is used to keep track of the time-stamp of the last message an object
received. The time-stamp is used to detect multiple receives (cf. 4.3.2).

5.2 The Canonical Component Module

The canonical module structure speeds up component development and ensures
that components can be extended. A component consists of a type definition, mes-
sage definitions, procedures to copy and initialize an object, and the ubiquitous
message handler. Here is an outline of the typical module structure:

MODULE Example;
IMPORT Objects;

TYPE
MyObject� = POINTER TO MyObjectDesc;
MyObjectDesc� = RECORD (Objects.ObjDesc)

(� extended fields �)
END;

MyMsg� = RECORD (Objects.ObjMsg)
(� message arguments �)

END;

79

PROCEDURE Copy�(VAR M: Objects.CopyMsg; from, to: MyObject);
(� Copy fields of from to to �)

PROCEDURE Handle�(obj: Objects.Object; VAR M: Objects.ObjMsg);
(� Message handler �)

PROCEDURE Init�(obj: MyObject);
BEGIN

obj.handle := Handle; (� install message handler �)
(� initialize own fields �)

END Init;

PROCEDURE New�; (� Component generator �)
VAR obj: MyObject;
BEGIN NEW(obj); Init(obj); Objects.NewObj := obj
END New;

END Example.

In the Oberon language, the items marked “�” are exported from the module
and are visible to clients that import this module. Due to a lack of expressiveness
in the Oberon language it is necessary to export practically everything from the
module even though the user of a component and the extender of a component are
interested in different aspects of the module, namely the external and the internal
view.

External view. The component client is interested in the component type defi-
nition, the messages that it understands, the procedures that can be applied to it,
and how to generate one. Of these external aspects, generating a new component
has some interesting problems.

Calling procedure New generates a new instance of the component and assigns
it to the global variable Objects.NewObj. The caller is picks up the object from
there. This round-about way of generating objects is necessary because instanti-
ation of objects from secondary storage and by an end-user request involves an
up-call to a module that might not have been loaded yet. Executing an up-call like
this can only be done by executing a command procedure, which is restricted to
be parameterless and result-less by the run-time system. (The module Modules
provide an interface to the dynamic module loader for exactly this operation.)

There have been attempts to create a more elegant component generation tech-
nique for Oberon. One approach involves using a module called Types that can
allocate an object dynamically by specifying its type name [fC]. Unfortunately no
component code is executed and hence we cannot initialize the object correctly.

80

In Oberon-2 type-bound procedures are bound automatically [Mös93], but con-
structors (as in C++ [Str87]) were left out. An approach that extends Oberon
with metaprogramming facilities [Tem94] has promise in that procedure activa-
tion frames can be build and executed at run-time, and thus lifting the restrictions
on formal and return parameters.

The approaches with module Types and type-bound procedures have the dis-
advantage that a dependency on a specific component type is created. This does
not allow the type of a component to vary over its lifetime. This occurs for exam-
ple when we would like to replace out-dated components with new components
of a different type. The generator procedures have the advantage that they create
a level of indirection between the generator name and the actual type, allowing
us to vary the object type independent from its generator. In fact, this feature has
been used numerous times over the lifetime of the system to update components
transparently with more modern versions.

The approach using meta-programming was ruled out as these features are
not standard in all Oberon distributions, which leaves us with the current im-
plementation using a global variable. Eventually when Oberon is extended with
multi-threaded ability, this decision would have to be revised.

A further important aspect is how clients know how to make use of a com-
ponent, as a component is only as good as its documentation. In this regard, the
elimination of definition modules from the Oberon language is unfortunate. In
Oberon System 3, programmers are expected to add exported comments to their
modules, which are then extracted and formatted into hyper-text by a tool called
Watson [Sal95] to form the component documentation. By keeping the documen-
tation in the module itself, we have a larger possibility of it being consistent with
the actual implementation. A similar approach is followed in Java [Mic95], where
the position of exported comments is part of the language syntax.

Internal view. Two internal views of objects are possible, namely that of the
implementer of the component and of the person that wants to extend the mod-
ule. The primary task of the implementer is the implementation of the message
handler. Depending on the class of object, different message types are to be han-
dled. The simplest objects only respond to the object messages whereas the visual
objects respond to both the object messages and the frame messages. The typical
handling of object messages is sketched in the following section.

To extend a component, at least the object type, message handler, Copy, and
Init procedure need to be exported. The object extension must watch out that call-

81

Type Message variants

Objects.AttrMsg get, set, enum
Objects.LinkMsg get, set, enum
Objects.CopyMsg deep, shallow
Objects.BindMsg
Objects.FileMsg load, store
Objects.FindMsg

Table 5.1: Object message summary

ing the Init procedure of the base object is done before initializing the extension
and that the correct message handler is written over that of the base object class.
This “hidden” knowledge is not always available to the extender who typically
does not have the source code of the base object. The situation is aggravated when
subtle sequence dependencies between base class and subclass are introduced by
objects sending messages to themselves [TGP89].

5.3 The Object Messages

The object messages are concerned with object attributes, links between objects,
copying objects, persistency, and locating objects in the display space. The object
messages are all defined in module Objects. A summary of the object messages
and their variants is shown in Table 5.1. Message variants determine the exact
interpretation, like an operation code, of a specific message type. Note that by
convention, all message types names end in “Msg”.

5.3.1 The Attribute Message.

The attribute message retrieves, sets or enumerates the attributes of an object. An
important client of the attribute message is the attribute Inspector which uses it to
inspect and modify a gadget. Single attribute are named and have typed values.
Only few basic types, called attribute classes, are supported.

82

CONST
(� Attribute class �)
Inval = 0; String = 2; Int = 3; Real = 4; LongReal = 5; Char = 6; Bool = 7;

(� Operation type �)
enum = 0; get = 1; set = 2;

TYPE
AttrMsg = RECORD (Objects.ObjMsg)

id: INTEGER; (� get, set or enum �)
Enum: PROCEDURE (name: ARRAY OF CHAR);
name: ARRAY 32 OF CHAR;
res: INTEGER;
class: INTEGER; (� Inval, String, Int, Real, LongReal, Char or Bool �)
i: LONGINT;
x: REAL;
y: LONGREAL;
c: CHAR;
b: BOOLEAN;
s: ARRAY 64 OF CHAR

END;

The id field indicates the operation performed by the object, namely to set
or get an attribute called name, or to enumerate all attribute names. Note that a
message that contains an id field is said to come in variants, with value of the
field specifying which variant. The res field returns a code to indicate if the op-
eration was successful. A zero or positive value indicates that an attribute was
successfully set or retrieved. A negative value indicates a failure.

Attributes types are identified by numbered constants. The class field is used
as an in-parameter to indicate what the attribute type is during a set operation. A
get operation uses class as an out-parameter to indicate the type of the attribute
returned. Depending on the value of class the attribute value set or retrieved is lo-
cated in the corresponding field i, x, y, c, b or s. Enumerating the attributes names
of an object involves passing an Enum procedure that is called by the receiver for
each attribute name belonging to the object.

As the use of messages with variants and res fields is common, we will present
a first detailed example of how the message is applied by clients:

VAR
obj: Objects.Object;
M: Objects.AttrMsg;

(� Set the “Value” attribute of obj to 42. �)
M.id := Objects.set; M.name := “Value”;
M.class := Objects.Int; M.i := 42; M.res := -1;
obj.handle(obj, M);
IF M.res � 0 THEN (� failure, wrong attribute type? �) END

83

(� Get the “Value” attribute of obj. �)
M.id := Objects.get; M.name := “Value”;
M.class := Objects.Inval; M.res := -1;
obj.handle(obj, M);
IF M.res �= 0 THEN

(� M.class indicates type and where to locate the value �)
ELSE (� failure, attribute does not exist? �)
END

Enumerating attributes is implemented using the following code skeleton:

PROCEDURE Enum(name: ARRAY OF CHAR);
BEGIN (� called for each attribute of obj �)
END Enum;

VAR
obj: Objects.Object;
M: Objects.AttrMsg;

M.id := Objects.enum; M.Enum := Enum;
obj.handle(obj, M);

We now present an example of how the attribute message is handled by an
object by showing an extract of the message handler. This example assumes that
the object has an integer attribute called Value. Internally, this attribute is stored
in a RECORD field called val. The only special situation we have to take care of
is the attribute Gen, which must return the object generator (cf. 3.2). Note that
the attribute handling mechanism is quite regular and is often copied as standard
“code pattern”.

PROCEDURE HandleAttributes(obj: Objects.Object; VAR M: Objects.AttrMsg);
BEGIN

IF M.id = Objects.get THEN
IF M.name = “Gen” THEN

M.class := Objects.String; COPY(“Example.New”, M.s);
M.res := 0

ELSIF M.name = “Value” THEN
M.class := Objects.Int; M.i := obj.val;
M.res := 0

END
ELSIF M.id = Objects.set THEN

IF M.name = “Value” THEN
IF M.class = Objects.Int THEN

obj.val := SHORT(M.i);
M.res := 0

ELSE (� wrong type ! �)
M.res := -1

END
END

84

ELSIF M.id = Objects.enum THEN
M.Enum(“Value”);

END
END HandleAttributes;

PROCEDURE Handle(obj: Objects.Object; VAR M: Objects.ObjMsg);
BEGIN

WITH obj: MyObject DO
IF M IS Objects.AttrMsg THEN

WITH M: Objects.AttrMsg DO HandleAttributes(obj, M) END
ELSE (� message not handled �)
END

END
END Handle;

The careful reader will notice that attribute Gen is not enumerated—this is a
historical oversight.

5.3.2 The Link Message

The link message is used to set, retrieve, and enumerate links between objects.
The message has a similar structure and use to AttrMsg except that it has only one
class, namely of type Objects.Object. The object to be set or retrieved as a link is
passed in the field obj. We will not repeat an example for using the link message
due to its similarity with the attribute message.

CONST
(� Operation type �)
enum = 0; get = 1; set = 2;

TYPE
LinkMsg = RECORD (Objects.ObjMsg)

id: INTEGER; (� get, set or enum. �)
Enum: PROCEDURE (name: ARRAY OF CHAR);
name: ARRAY 32 OF CHAR;
res: INTEGER;
obj: Object.Object;

END;

5.3.3 The Copy Message

Copying an object involves sending a CopyMsg to the object to make a copy of
itself. The id field indicates if a deep or shallow copy should be made (cf. 3.2).

85

CONST
shallow = 0; deep = 1; (� CopyMsg id �)

TYPE
CopyMsg = RECORD (ObjMsg)

id: INTEGER; (� deep or shallow �)
obj: Object (� result �)

END;

If the object is a root of a data structure and a shallow copy is made, the
receiver only needs to copy references to other objects. In the case of a deep
copy, the receiver forwards the message to all referenced objects to make copies
of themselves. The process continues in a recursive manner until the whole data
structure has been copied. In a graph of objects where many message paths lead
to the same object X, this naive strategy will copy object X exactly the number
of times a forwarding path to that object exist. A structure preserving deep copy
is obtained if an object only copies itself the first time the copy message arrives
and returns that copy for each further time the message arrives. The message time
stamp is used to detect when the message arrives again by assigning it to the stamp
field in the type Objects.Object when the message arrives the first time. The actual
copy is cached in the dlink field of the object.

The following code fragment shows the process for an object that contains a
reference to another object.

TYPE
MyObject = POINTER TO MyObjectDesc;
MyObjectDesc = RECORD (Objects.ObjDesc)

val: INTEGER;
ref: Objects.Object;

END;

PROCEDURE Copy(VAR M: Objects.CopyMsg; from, to: MyObject);
BEGIN

to.val := from.val;

(� copy ref �)
IF from.ref = NIL THEN to.ref = NIL
ELSE

IF M.id = Objects.deep THEN
from.ref.handle(from.ref, M); (� forward message �)
to.ref := M.obj

ELSE to.ref := from.ref (� just return the reference �)
END

END
END Copy;

PROCEDURE Handle(obj: Objects.Object; VAR M: Objects.ObjMsg);

86

VAR obj1: MyObject;
BEGIN

IF M IS Objects.CopyMsg THEN
WITH M: Objects.CopyMsg DO

IF M.stamp = obj.stamp THEN (� second arrive �)
M.obj := obj.dlink

ELSE (� first arrive �)
NEW(obj1); obj.stamp := obj.stamp; obj.dlink := obj1;
Copy(M, obj, obj1); M.obj := obj1

END
END

ELSE
END

END Handle;

There are a few points to observe regarding copying objects. The message
time stamp should remain the same for the complete copy operation and should
have a different value from the previous copy operation. The use of dlink to re-
member the copy—not the true purpose of this field—disallows making structure
copies that depend on the context as determined by the message path (remember
that the message path is built using a chain of objects connected by the dlink field).

5.3.4 The Find Message

The find message locates objects having a specific name in a data structure of
objects. The typical use is locating objects in the display space.

TYPE
FindMsg = RECORD (ObjMsg)

name: Name;
obj: Object (� result �)

END;

On receiving this message, an object should check if its own name matches
that of the message. If the same, the object should assign itself to the message
obj field. If not, the object should forward the message for further processing
to its children. Both a depth-first and breadth-first search strategies are allowed,
although the breadth-first strategy seems to make the most sense as it locates ob-
jects nearest to the starting point of the search. Note that the nesting of containers
automatically creates a scoping mechanism for reducing ambiguities during the
search.

The FindMsg is often sent to the container of the visual gadget that has just
executed an attribute as a command. By convention, the executor gadget assigns
its parent (found in the message thread) to a global variable called Gadgets.context

87

before executing such a command. This forms the starting point of the search with
the find message. We can combine the FindMsg and AttrMsg to locate an object
called “XYZ” in the context and read the value of one of its attributes.

The following example makes use of the procedural level-1 interface to mes-
sages. A standard procedure Gadgets.FindObj hides the searching process, and
procedure Attributes.GetInt reads the value of the attribute.

MODULE Example;

IMPORT Attributes, Gadgets;

PROCEDURE Test�;
VAR obj: Objects.Object; x: LONGINT;
BEGIN

obj := Gadgets.FindObj(Gadgets.context, “XYZ”);
Attributes.GetInt(obj, “Value”, x);
(� do something with x ... �)

END Test;

END Example.

5.4 The Library Mechanism

Libraries. The library persistency mechanism forms the bulk of the implemen-
tation of module Objects. A library is an abstract data type for managing the
objects bound to the library and for the object names in the dictionary associated
with a library.

TYPE
Dictionary = RECORD END;

Library = POINTER TO LibDesc;
LibDesc = RECORD

name: ARRAY 32 OF CHAR;
dict: Dictionary;
maxref: INTEGER;

GenRef: PROCEDURE (L: Library; VAR ref: INTEGER);
GetObj: PROCEDURE (L: Library; ref: INTEGER; VAR obj: Object);
PutObj: PROCEDURE (L: Library; ref: INTEGER; obj: Object);
FreeObj: PROCEDURE (L: Library; ref: INTEGER);
Load: PROCEDURE (L: Library);
Store: PROCEDURE (L: Library)

END;

EnumProc = PROCEDURE (L: Library);

88

PROCEDURE ThisLibrary (name: ARRAY OF CHAR): Library;
PROCEDURE FreeLibrary (name: ARRAY OF CHAR);
PROCEDURE Enumerate (P: EnumProc);
PROCEDURE OpenLibrary (L: Library);

The name field is either an empty string when the library is anonymous or the
library name when it is public. The library name in the case of a public library
corresponds to the disk file the library was loaded from. Libraries have methods
associated to insert, retrieve, and delete objects, and to store and load the library.
Module Objects provide standard implementations for the methods; a library is
initialized by these with procedure OpenLibrary.

Loaded public libraries are cached internally to module Objects and are ac-
cessed (and, if required, loaded) by ThisLibrary. A public library is unloaded
with FreeLibrary and the library cache is enumerated with Enumerate.

Reference numbers. Bound objects are assigned reference numbers in a library.
A library can be imagined as a potentially infinite ARRAY of objects where the
reference number is the index. A bound object’s library and reference number are
assigned to the variables lib and ref in type Objects.Object. The library method
GenRef returns an unoccupied index in the library, GetObj retrieves an object from
a specific index, PutObj inserts an object at a specific index, and FreeObj removes
an object from a specific index. The field maxref indicates the highest occupied
index. Internally, objects are stored in a multi-level sparse tree with index and leaf
nodes of references to leaf nodes and objects respectively.

Binding an object is the process by which it obtains a reference number in
a library. The bind message indicates the library in which an object must insert
itself.

TYPE
BindMsg = RECORD (ObjMsg)

lib: Library
END;

According to the rules outlined in section 4.4, an object should only bind itself
if it is either free or belongs to an anonymous library different from its current
library. The rules are summarized in the following code fragment.

89

PROCEDURE BindObj(obj: Objects.Object; lib: Objects.Library);
VAR ref: INTEGER;
BEGIN

IF lib # NIL THEN
IF (obj.lib = NIL) OR (obj.lib.name[0] = 0X) & (obj.lib # lib) THEN

lib.GenRef(lib, ref);
IF ref �= 0 THEN lib.PutObj(lib, ref, obj) END

END
END

END BindObj;

Dictionaries. The primary function of dictionaries is to associate names with
reference numbers (and thus indirectly with objects having those reference num-
bers). A secondary function of dictionaries is to store often used strings. This is
useful when objects have to write the same string many times in a library file—in
this case writing the dictionary entry number is much shorter. We thus enter in the
dictionary (key, string) pairs. Key values are split into two ranges: negative key
values are used for strings, and zero or positive key values for names associated
with reference numbers.

PROCEDURE GetKey (VAR D: Dictionary; name: ARRAY OF CHAR; VAR key: INTEGER);
PROCEDURE GetName (VAR D: Dictionary; key: INTEGER; VAR name: ARRAY OF CHAR);
PROCEDURE PutName (VAR D: Dictionary; key: INTEGER; name: ARRAY OF CHAR);

Procedures PutName and GetName retrieve and set the name corresponding
to a key. Procedure GetKey associates a key (key � �) with a name—if not done
so already—and returns its value. A second call to GetKey with the same name
returns the same key.

Storing and loading libraries. The following procedures of module Objects
load and store a library from and to a file. The library is positioned at pos in file
f and has a length len. The bound objects and dictionary are packaged inside the
extent [pos, pos+len) of the file.

PROCEDURE LoadLibrary (L: Library; f: Files.File; pos: LONGINT; VAR len: LONGINT);
PROCEDURE StoreLibrary (L: Library; f: Files.File; pos: LONGINT; VAR len: LONGINT);

During a store operation, the procedure StoreLibrary will request each of the
bound objects to write their contents to the file. Correspondingly, during a load
operation, the procedure LoadLibrary will request each object to read its contents
from the file. The two requests are combined in the file message with variants
load and store.

90

CONST
load = 0; store = 1; (� FileMsg id �)

TYPE
FileMsg = RECORD (ObjMsg)

id: INTEGER; (� load or store �)
R: Files.Rider

END;

External library format. The library image is divided into four sections on
disk. The header section identifies the library with a special tag and contains the
offsets to the other three sections in the file. The generator section comprises a
sequence of generator strings (attribute “Gen”), one for each bound object. The
data section contains the contents of objects written to the file. The dictionary
section holds the contents of the libraries’ dictionary.

The following pseudo-code illustrates the StoreLibrary implementation.

PROCEDURE StoreLibrary (L: Library; f: Files.File; pos: LONGINT; VAR len: LONGINT);

Write the library tag

(� Generator section �)
FOR each bound object DO

Retrieve generator attribute
Write generator as string to file

END

(� Data section �)
FOR each bound object DO

Request object to write its data to file
END

(� Dictionary section �)
FOR each dictionary entry DO

Write reference number to file
Write object name to file

END

The generator section is written separate from the data section as all objects
need to be instantiated during loading, before requesting any object to load its
contents. Also, the dictionary must be written last as objects extend the dictionary
with additional entries when storing themselves. Both requirements are related to
the way how references are made persistent (see the paragraph titled “Persistent
references” for details).

The following pseudo-code illustrates the load operation. To save disk space,
we assign numbers to generator strings instead of unnecessarily writing the same

91

generator multiple times to the file. Also consecutively used reference numbers
are collected in runs in a form or run-length encoding.

PROCEDURE LoadLibrary (L: Library; f: Files.File; pos: LONGINT; VAR len: LONGINT);

Read the library tag

Position to dictionary section
FOR each dictionary entry DO

Read reference number from file
Read object name from file
Insert entry in dictionary

END

Position to generator section
FOR each object DO

Read generator string from file
Execute generator string as command
Assign generated object to current index

END

Position to data section
FOR each object DO

Request object to read data from file
END

Persistent references. Objects are instantiated before the object contents are
loaded. On receiving a load message, an object can access—with GetObj—an
object that follows physically after it in the file. This makes reference numbers a
natural mechanism for persistent references.

The binding process allocates a reference number for each object. Conversion
between object reference and reference number is called swizzling. To swizzle
a reference to a reference number we only need to retrieve the ref field of the
referenced object. To swizzle a reference number to an object reference, we use
the GetObj method of a library. When requested to store its contents, an object
swizzles references to other objects and writes the reference numbers in the library
file. The opposite process reconstructs data structures when loading an object.

Swizzling is only slightlymore complicated when we have references between
different libraries. A reference to an object in another library requires that we use
both the reference number and imported library name as an object identification.
This shows why anonymous libraries cannot be imported—they have no names
and cannot be located with Objects.ThisLibrary.

The following two procedures from module Gadgets hide most of the com-
plication of swizzling from the programmer. Procedure WriteRef writes a pointer

92

value and procedure ReadRef reads it back. Note that the programmer has to pass
in lib the library of the object that is writing or reading the reference—this is so
that the dictionary can be extended when necessary.

PROCEDURE WriteRef(VAR r: Files.Rider; lib: Objects.Library; obj: Objects.Object);
VAR ref: INTEGER;
BEGIN

IF obj = NIL THEN Files.WriteInt(r, -1)
ELSE

IF obj.lib # NIL THEN
IF obj.lib # lib THEN

IF obj.lib.name = “” THEN (� private library �)
(� error: object belonging to private library is referenced �)

ELSE
Files.WriteInt(r, obj.ref);
Objects.GetKey(lib.dict, obj.lib.name, ref);
Files.WriteInt(r, ref);

END;
ELSE (� belongs to the same library �)

Files.WriteInt(r, obj.ref);
Objects.GetKey(lib.dict, “”, ref);
Files.WriteInt(r, ref)

END;
ELSE (� error: object without library is referenced �)
END;

END;
END WriteRef;

PROCEDURE ReadRef(VAR r: Files.Rider; lib: Objects.Library; VAR obj: Objects.Object);
VAR ref, entry: INTEGER; F: Objects.Library; name: ARRAY 32 OF CHAR;
BEGIN

Files.ReadInt(r, ref);
IF ref = -1 THEN obj := NIL
ELSE

Files.ReadInt(r, entry);
Objects.GetName(lib.dict, entry, name);
IF name = “” THEN (� own library �)

F := lib
ELSE F := Objects.ThisLibrary(name)
END;
IF F # NIL THEN

F.GetObj(F, ref, obj);
IF obj = NIL THEN (� error: imported object does not exist any more �)
END

ELSE (� error: imported library not found �)
END

END
END ReadRef;

Several error conditions may occur during loading and storing of libraries,
including missing libraries and objects, referencing freed objects or importing
ones from anonymous libraries. All situations can be detected but it is not always

93

sure what to do when they occur. The current implementation is forgiveful at
the risk of losing information. This involves writing NIL pointers for incorrectly
referenced objects inside WriteRef and returning a NIL pointer on error conditions
in ReadRef. As error conditions often occur due to programmer negligence (for
example forgetting to bind objects), we also write warning messages in the log.

Note that the call to Objects.ThisLibrary in procedure ReadRef can lead to a
large number of side-effects. It might for example be that the referenced public
library still has to be loaded. If that library imports another, it would have to be
loaded too, and so on recursively. To prevent an infinite cycle of one library trying
to load the other, which in turn tries to load the first, Objects.ThisLibrary has to
insert a newly created public library in the library cache before any of its objects
is requested to load itself.

Robustness. Library loading can either fail completely or partially. A complete
failure occurs when a public library does not exist. A partial failure occurs when
objects are not present in public libraries where they are expected or when a mod-
ule implementing an object cannot be found or loaded. Such condition occurs as
users might edit public libraries or even delete modules. A graceful degradation
strategy for library loading implies that programmers have to reckon with failures
instead of terminating the execution.

The simpler types of failure involve missing object and libraries. An object
that is aware that ReadRef might return NIL can attempt to correct the situation or
try to restrict its own functionality.

A more disruptive failure is when a module that implements an object cannot
be loaded. This situation is reported to LoadLibrary by the module loader when
executing the object generator. The problem is partially addressed in LoadLi-
brary by creating a substitute or dummy object instead of the original object. The
dummy assumes responsibility for the original object data. The exact data length
is known in advance when we insert a length tag in front of each object’s data. At
first thought, it seems that the dummy can read an image of the data into memory,
which is then later stored in the same format. This is however only possible if
the object data is relocatable and does not contain references. References might
change without the dummy being aware of it, making the library inconsistent on
storage. Without type information, the dummy cannot interpret the data to detect
which references must be corrected. And by ignoring the data, a part of the data
structure reference is lost (namely the outgoing references from the dummy). The
current implementation does exactly the latter.

94

Successfully loaded objects now might suddenly find that they own a reference
to a dummy (by type testing the result of ReadRef). It is now up to the object to
decide what to do with the dummy. Most objects simply cut away the dummy by
setting the reference to NIL and then reporting the situation to the log. Storing
a document that reports such a failure during loading ultimately involves losing
data but gaining self-consistency.

Interestingly, the non-recursive nature of the library storage mechanism has
an advantage in robustness over recursive solutions. A recursive storage solution
nests referenced objects inside an object on disk (see [Gri91] for implementa-
tions). When the outer object’s loading fails, the nested objects are lost as well,
even though they could potentially be loadable. As the library storage mechanism
is non-recursive, only those objects with inconsistent or missing modules fail on
loading and no others.

A further failure possibility is related to components undergoing continual re-
finement and modification of external data formats. Objects typically write a data
format version code as a header to their contents on disk. An object always writes
the latest data format and can read all previous data formats. The ability to read
all older data formats is preferred to supplying converters to convert older com-
ponents (experience shows that users cannot be relied on to do such conversions
correctly).

The version code approach only works reliably if all independent users have
exactly the same version of a component. As soon as one Oberon installation for-
gets to upgrade older modules, the system has to contend with versions that are
in advance of what it expects. A possible solution is to ignore advanced versions
and create a default component configuration. However, the distribution problem
is so problematic in network-aware component-based systems that such an igno-
rant solution seems to be unacceptable. The component distribution problem is
addressed in the Gadgets framework on a higher level of documents (Chapter 7).

5.5 Programming Support

The Oberon base system only provides the object message definitions and an im-
plementation of the library mechanism. These provisions are sufficient but spar-
tanic and often require a lot of programming for even simple operations. The
Gadgets system adds more behavior and conveniences on top of the base system,
some of which the following paragraphs introduce.

95

Level-1 programming support. The attribute message mechanism tends to be
tedious when lots of attributes are used or when conversions between attribute
types have to be made. As a concession to level 1 programmers (cf. 3.1) a more
convenient procedural interface in module Attributes hides the messaging mecha-
nism. Module Links provides a procedural interface for setting and getting links.
Module Gadgets contains several more procedures ranging from reading/writing
object names, generating objects by name, creating model-view pairs and locat-
ing named and public objects. Level-1 programmers are referred to the Gadgets
programmers guide for more details.

PROCEDURE GetBool(obj: Objects.Object; name: ARRAY OF CHAR; VAR b: BOOLEAN);
PROCEDURE GetInt(obj: Objects.Object; name: ARRAY OF CHAR; VAR i: LONGINT);
PROCEDURE GetReal(obj: Objects.Object; name: ARRAY OF CHAR; VAR x: REAL);
PROCEDURE GetLongReal(obj: Objects.Object; name: ARRAY OF CHAR; VAR y: LONGREAL);
PROCEDURE GetString(obj: Objects.Object; name: ARRAY OF CHAR;

VAR s: ARRAY OF CHAR);

PROCEDURE SetBool(obj: Objects.Object; name: ARRAY OF CHAR; b: BOOLEAN);
PROCEDURE SetInt(obj: Objects.Object; name: ARRAY OF CHAR; i: LONGINT);
PROCEDURE SetReal(obj: Objects.Object; name: ARRAY OF CHAR; x: REAL);
PROCEDURE SetLongReal(obj: Objects.Object; name: ARRAY OF CHAR; y: LONGREAL);
PROCEDURE SetString(obj: Objects.Object; name, s: ARRAY OF CHAR);

PROCEDURE GetLink(obj: Objects.Object; name: ARRAY OF CHAR; VAR ob1: Objects.Object);
PROCEDURE SetLink(obj: Objects.Object; name: ARRAY OF CHAR; ob1: Objects.Object);

Decorations. Experience shows that it is often useful to “attach” new attributes
to objects that the objects did not originally define. The attached attributes live
with the predefined attributes and are typically ignored by the object itself (as it
would not know what to do with them). Examples of attached attributes include
a reference to a tutorial that explains something about the object or constraint
information that is used for visual layout. These attributes are of use to tools
that operate on those objects and not to the objects themselves. This means of
attaching information to objects is called the decorator design pattern [GHJV95],
and the Gadgets framework explicitly supports it.

The types Gadgets.Object and Gadgets.Frame, declare an additional
RECORD field attr that references an abstract data structure that keeps track of
these attributes. We will only introduce the type Gadgets.Object here, as the type
Gadgets.Frame is discussed in more detail in the following chapter.

96

TYPE
Object = POINTER TO ObjDesc;
ObjDesc = RECORD (Objects.ObjDesc)

attr: Attributes.Attr;
link: Links.Link;

END;

A similar facility as attached attributes is provided for links by the Gadgets
framework. It enables the user or programmer to connect components to each
other or to “decorate” a component with another. Just as for attributes, the com-
ponent is not aware of links that have been attached to it. An additional RECORD
field link in types Gadgets.Object and Gadgets.Frame manages the link abstract
data structure.

Default Message Handlers. Even though module Objects defines the AttrMsg,
LinkMsg, CopyMsg, BindMsg, FileMsg and FindMsg, it does not provide any sup-
port for handling these messages. In a similar manner module Display defines the
set of frame messages but does not provide further support for handling them.
Some aspects of these messages can be handled in a generic way for all objects
and have consequently been factored out into default message handlers. Han-
dlers for extensions of Gadgets.Object and Gadgets.Frameare provided in module
Gadgets. The handlers are called Gadgets.objecthandle and Gadgets.framehandle
respectively. The implementation of an own message handler must pass control to
the default handlers in a similar manner as a super-call in other object-oriented lan-
guages. Messages that are not understood by a message handler should be passed
to the default message handler for interpretation. The following paragraphs state
the default handling of the object messages by the default message handlers.

AttrMsg. The default handling of the attribute messages includes the universal
“Name” attribute of a gadget and the management of the attached attributes. The
field attr of types Gadgets.Object and Gadgets.Frame refers to a data structure in
module Attributes that contains the list of attached attributes.

LinkMsg. The default handling of the link message involves the handling of
links that have been attached to a gadget. The field link of types Gadgets.Object
and Gadgets.Frame refers to a data structure in module Links that contains the list
of attached links. The type Gadgets.Frame contains a field obj that refers to the
model of the gadget and is seen as a link called “Model” by clients.

CopyMsg. The default handling of the copy message is to copy the fields
belonging to the types Gadgets.Object and Gadgets.Frame.

97

BindMsg. The default handling of the bind message is to bind the object and
all the objects that the attached links reference.

FileMsg. The default handling of the file message is to store or load the fields
of the types Gadgets.Object and Gadgets.Frame.

FindMsg. The default handling of the find message is to check if the searched
for object matches self and returning itself, should this be the case.

5.6 An Example

The following module is an implementation of a component called “Complex”, a
model gadget having two attributes specifying the real and imaginary parts of a
complex number.

MODULE Complex;
IMPORT Files, Objects, Attributes, Gadgets;

TYPE
Complex� = POINTER TO ComplexDesc;
ComplexDesc� = RECORD (Gadgets.ObjDesc)

real�, imag�: REAL
END;

PROCEDURE HandleAttributes(obj: Complex; VAR M: Objects.AttrMsg);
BEGIN

IF M.id = Objects.get THEN (� retrieve attribute �)
IF M.name = ”Gen” THEN

M.class := Objects.String; COPY(”Complex.New”, M.s);
M.res := 0

ELSIF M.name = ”Real” THEN
M.class := Objects.Real; M.x := obj.real; M.res := 0

ELSIF M.name = ”Imag” THEN
M.class := Objects.Real; M.x := obj.imag; M.res := 0

ELSE Gadgets.objecthandle(obj, M)
END

ELSIF M.id = Objects.set THEN (� set attribute �)
IF (M.name = ”Real”) & (M.class = Objects.Real) THEN

obj.real := M.x; M.res := 0
ELSIF (M.name = ”Imag”) & (M.class = Objects.Real) THEN

obj.imag := M.x; M.res := 0
ELSE Gadgets.objecthandle(obj, M)
END

ELSIF M.id = Objects.enum THEN (� enumerate attributes �)
M.Enum(”Real”); M.Enum(”Imag”);
Gadgets.objecthandle(obj, M)

END
END HandleAttributes;

PROCEDURE Handler�(obj: Objects.Object; VAR M: Objects.ObjMsg);

98

VAR obj0: Complex;
BEGIN

WITH obj: Complex DO
IF M IS Objects.AttrMsg THEN

WITH M: Objects.AttrMsg DO
HandleAttributes(obj, M);

END
ELSIF M IS Objects.CopyMsg THEN

WITH M: Objects.CopyMsg DO
IF M.stamp = obj.stamp THEN M.obj := obj.dlink
ELSE (� first time copy message arrives �)

NEW(obj0); obj.stamp := M.stamp; obj.dlink := obj0;
(� copy object �)
obj0.handle := obj.handle;
obj0.real := obj.real; obj0.imag := obj.imag;
M.obj := obj0

END
END

ELSIF M IS Objects.FileMsg THEN
WITH M: Objects.FileMsg DO

IF M.id = Objects.store THEN
Files.WriteReal(M.R, obj.real);
Files.WriteReal(M.R, obj.imag);
Gadgets.objecthandle(obj, M)

ELSIF M.id = Objects.load THEN
Files.ReadReal(M.R, obj.real);
Files.ReadReal(M.R, obj.imag);
Gadgets.objecthandle(obj, M)

END
END

ELSE Gadgets.objecthandle(obj, M)
END

END
END Handler;

PROCEDURE New�;
VAR obj: Complex;
BEGIN

NEW(obj); obj.handle := Handler;
obj.real := 0.0; obj.imag := 0.0;
Objects.NewObj := obj;

END New;

END Complex.

The Complex gadget is derived from Gadgets.Object to make use of the de-
fault message handlers. This reduces the message handler to the handling of the
Objects.AttrMsg, Objects.CopyMsg and Objects.FileMsg—the remainder of the
object messages are handled by Gadgets.objecthandle.

The implementation is derived from a standard model gadget pattern. The
statements and identifiers written in bold face show the changes required in this

99

pattern. This involves declaring the gadget type, handling the two new attributes,
copying the two RECORD fields, storing and loading the RECORD fields, and
initializing the RECORD fields. The remainder of the code was copied.

Note that reusing code in this case involves copying it and not sharing it. This
illustrates that the message handler approach often results in larger grained mes-
sages than what is typically found in object-oriented languages. A proficient pro-
grammer would factorize out the common code by introducing separate messages
for initializing, reading and writing contents, copying the RECORD fields, etc. At
the same time the exact behavior of an object is made more opaque by hiding the
factorized code in the base class. It is thus not unexpected news that programmers
who equate reuse with code sharing make extensive use of late binding, even if it
has a high cost with complicated message interfaces.

5.7 Summary

This chapter introduced the Oberon component model by discussing the object
and message type definitions, the set of object messages, how objects are made
persistent, and how the Gadget systems extends this model for more convenient
programming. In conclusion an example implementation of a model gadget was
given.

100

Chapter 6

Visual Gadgets

Visual gadgets’ most tangible properties are that they display themselves and in-
teract with the user. Other properties include being able to print, communicate,
and integrate in any container. The sum of a gadget’s properties is defined by
the message protocols it understands. These message protocols are defined along
the lines the end-user expects from gadgets—an advantageous approach when the
user migrates from level-0 to level-1, and ultimately level-2 programming (cf.
3.1). This strategy results in a compact set of messages, including a display mes-
sage, a print message, a size adjustment message, a selection message, a drag and
drop message, a control message for removing gadgets, and an input message for
handling mouse and keyboard events.

The largest part of this chapter is concerned with the essence of the Gadgets
system, namely the use of the common message protocols. The remainder of the
chapter discusses the Gadgets imaging model.

6.1 The Principal Types

The type Display.Frame, derived from Objects.Object, is the base type of all visual
components in the Oberon system. Messages related to frames are derived from
the type Display.FrameMsg and are called frame messages.

TYPE
Frame = POINTER TO FrameDesc;
FrameDesc = RECORD (Objects.ObjDesc)

next, dsc: Frame;
X, Y, W, H: INTEGER

END;

101

102

FrameMsg = RECORD (Objects.ObjMsg)
F: Frame;
x, y: INTEGER;
res: INTEGER

END;

The type Display.Frame assumes a specific part-of and coordinate system or-
ganization. The field dsc contains the head of the list of child frames connected
by their next field. These pointers are the part-of references mentioned in sec-
tion 4.3.1. Their presence in the frame type has several drawbacks. First, we
assume that all frames have children, which not only forces a specific child or-
ganization, but also breaks container encapsulation when programmers directly
access the next and dsc fields. In addition, this restricts a child to belong to a
single parent. A further problem of having the organization fixed so low in the
type hierarchy is that many type guards are required in container implementations
with children consisting of only derived frame type (like gadgets). On the other
hand, the presence of the two fields has made it possible to remain compatible
with older Oberon applications and simplifies their portation to Oberon System
3. Besides, their absence would require an additional data structure for the man-
agement of children, which would ultimately cost memory. A contrasting view is
used in ETHOS [Szy92b], another development of the Oberon system, where the
child organization is strictly left to a container.

The fields X, Y, W and H are the display coordinates of the frame. The exact
interpretation of these fields are left open to the parent frame. The Gadget system
interprets the coordinates as relative to the parent frame, whereas many appli-
cations belonging to the TUI genre interpret the coordinates as absolute screen
coordinates.

The F field specifies the message destination; a NIL indicates a broadcast to all
frames. The res field is negative when the message is valid, otherwise it is inval-
idated. The x and y fields of Display.FrameMsg specify the display origin of the
message receiver, and are used to calculate the absolute display coordinates of the
message receiver by adding the relative X, Y coordinates (of type Display.Frame)
to the message origin.

The Gadgets Frame Type. The visual gadget hierarchy is anchored by the type
Gadgets.Frame. It is derived from type Display.Frame and extends the latter with
common fields shared by all visual gadgets. The use of this base type has the
advantage of a matching default message handler Gadgets.framehandle that can

103

handle many messages in default manner.

TYPE
Frame = POINTER TO FrameDesc;
FrameDesc = RECORD (Display.FrameDesc)

attr: Attributes.Attr;
link: Links.Link;
state: SET;
mask: Display3.Mask;
obj: Objects.Object;

END;

The attr field refers to a data structure of attached attributes and the link field
to a data structure with attached links. The mask field specifies the clipping mask
used for displaying a gadget (cf. 6.4.3). The obj field contains a reference to the
model gadget linked to the frame (if one exists).

The state field contains four boolean flags with information about the gadget
state. The selected flag indicates if the gadget is selected, the lockedsize flag in-
dicates if the width and height of the gadget is constant, the lockedcontents flag
locks all the children of the gadget against further editing, and the transparent
flag indicates if the gadget has a transparent background. The selection flag is
controlled by the user by clicking with the right mouse button on a visual gad-
get. Once selected, the gadget shows itself in a white semi-translucent selection
pattern. The lockedcontents flag is set with the “Locked” attribute of a container.
The lockedsize and transparent flags are under programmer control and enable or
disable behaviors related to displaying and interacting with a gadget.

6.2 Message Broadcasting and Forwarding

Message broadcasting is the term used for forwarding messages through the dis-
play space. It is initiated by a procedure called Display.Broadcast, which has
approximately the following implementation:

PROCEDURE Broadcast(VAR M: Display.FrameMsg);
VAR f: Display.Frame;
BEGIN

(� Initialize message fields �)
Objects.Stamp(M); (� assign a unique time-stamp to M.stamp �)
M.res := MIN(INTEGER); (� validate message �)
M.x := 0; M.y := 0; (� set screen origin �)
f := root.dsc; (� start at display root �)
WHILE (f # NIL) & (f.res � 0) DO (� while not invalidated �)

f.handle(f, M); f := f.next
END

END Broadcast;

104

We now show in a general way how visual gadgets handle the frame messages
(which are introduced in the following section). The handling of frame messages
by an atomic gadget has the following pattern:

PROCEDURE Handle (F: Objects.Object; VAR M: Objects.ObjMsg);
VAR x, y, w, h: INTEGER;
BEGIN

WITH F: Frame DO
IF M IS Display.FrameMsg THEN

WITH M: Display.FrameMsg DO
IF (M.F = NIL) OR (M.F = F) THEN

x := M.x + F.X; y := M.y + F.Y; w := F.W; h := F.H;

(� handle the frame messages here �)

ELSE (� message not for me �)
END

END
ELSE (� handle object messages �)
END

END
END Handle;

We save unnecessary work by testing the destination frame F as soon as pos-
sible for a true broadcast or a directed send to this gadget. The local variables x,
y, w and h are set to the absolute display coordinates of the visual gadget for later
use in the message handler.

Only a slight modification of the handler is necessary in the case of a container
gadget. This involves changing the origin of the message before it is forwarded,
and also forwarding all “unknown” messages. Note that a minor variation of the
scheme below would also allow the monitoring of forwarded messages.

PROCEDURE Handle (F: Objects.Object; VAR M: Objects.ObjMsg);
VAR x, y, w, h: INTEGER;
BEGIN

WITH F: Frame DO
IF M IS Display.FrameMsg THEN

WITH M: Display.FrameMsg DO
u := M.x; v := M.y;
x := M.x + F.X; y := M.y + F.Y; w := F.W; h := F.H;
IF (M.F = NIL) OR (M.F = F) THEN

(� handle the frame messages here �)
ELSE

M.x := x; M.y := y + h - 1; (� adapt origin �)
ToChildren(F, M)

END;
(� restore origin �)
M.x := u; M.y := v;

END

105

ELSE (� handle object messages �)
END

END
END Handle;

Message origin. The origin is modified as a frame message travels through the
display space. In the example above, this happens before the call to ToChildren, a
procedure implemented similar to Display.Broadcast to forward a message to all
children. Child coordinates are relative to the top-left corner of the parent, hence
the addition of the frame height to the current frame position.

Note that as the origin of display operations in the Oberon system is the
bottom-left display corner, it means that the Y coordinate of a gadget must be
negative for it to be visible in a container. Unfortunately the choice of a cartesian
plane as a display coordinate system turns out counter-intuitive when frames are
nested in each other. For example, with a left-bottom coordinate origin for the
screen and nested gadgets, increasing the height of a container moves the children
downward relative to the top edge instead of staying put where they are. Until
the coordinate system is flipped in Oberon, an amount of coordinate paranoia will
always be present, as Y coordinates must be corrected (in Gadgets we favor M.x
+ F.X, M.y + F.Y instead of M.x + F.X, M.y - F.Y which “flips” the direction of the
Y axis).

Message thread. The message thread is the path the message followed through
the display space to a certain frame. Its use includes gadgets behaving differ-
ently depending on their context and visibility calculations (cf. 6.4.3). Context
dependent behavior must be explicitly programmed into gadgets by traversing the
message thread; the system does not provide further support. If needed, a gadget
can inherit behavior dynamically, for example, to react differently depending on
the class of camera-view they are viewed with. This leads to the interesting effect
of one and the same gadget, behaving differently at different viewed positions.

The thread is realized as a linked list of visited objects connected by the dlink
field. The head of the list is the dlink field of the received FrameMsg. We illustrate
this with the following code fragment that “visits” the frames on the message
thread.

106

PROCEDURE FollowThread(VAR M: Display.FrameMsg);
VAR obj: Objects.Object;
BEGIN

obj := M.dlink;
WHILE obj # NIL DO

...
obj := obj.dlink

END
END FollowThread;

One use for such a loop is to detect if an ancestor gadget is locked (i.e. its
lockedcontents flag is set), and accordingly deactivate part of a gadget’s editing
capabilities.

The construction of the message thread is simple. Before forwarding a mes-
sage M to a child, we append the container F into the linked list. Note that this can
only work when no recursive broadcasts occur (i.e. one broadcast that initiates an-
other): the dlink field of objects is a global state that is overwritten by successive
broadcasts. The solution is to save the previous value of dlink on the stack before
forwarding the message. Combining this approach with the saving and restoring
of the message dlink results in the following implementation of ToChildren. Note
that a direct send from parent to a child has the overhead of at least six pointer
assignments. Also, the global state of the message thread still rules out concurrent
broadcasting in the display space, as one process would overwrite the message
thread of another process.

PROCEDURE ToChildren(F: Frame; VAR M: Display.FrameMsg);
VAR f: Display.Frame; a, b: Objects.Object;
BEGIN

a := F.dlink; b := M.dlink; (� save �)
F.dlink := M.dlink; M.dlink := F; (� append self �)
f := F.dsc;
WHILE (f # NIL) & (M.res � 0) DO

f.handle(f, M); f := f.next
END;
F.dlink := a; M.dlink := b (� restore �)

END ToChildren;

Message cycles. An inherent danger of message broadcasting is that of an end-
less forwarding cycle occuring. The technique for detecting cycles sketched in
section 4.3.2 can be implemented in several ways, the most interesting being the
exchange of the message handler of the parent gadget P for the short duration of
the test.

107

TYPE
RecursiveMsg = RECORD (Display.FrameMsg)

flag: BOOLEAN
END;

PROCEDURE RHandler(obj: Objects.Object; VAR M: Objects.ObjMsg);
BEGIN IF M IS RecursiveMsg THEN M(RecursiveMsg).flag := TRUE END;
END RHandler;

(� Does inserting the child f into the container F build a message cycle? �)
PROCEDURE Recursive(F, f: Objects.Object): BOOLEAN;
VAR old: Objects.Handler; M: RecursiveMsg;
BEGIN

old := F.handle; F.handle := RHandler;

M.flag := FALSE; f.handle(f, M);

F.handle := old;
RETURN M.flag;

END Recursive;

6.3 The Frame Messages

The frame messages and their interpretation form the heart of the Gadgets system.
By convention, all frame messages are broadcasted through the whole or part of
the display space. On receiving a frame message, a visual gadget knows its abso-
lute display coordinates and the message path from the display root. As objects in
Oberon are passive (compared to active ones that have an own thread of control),
visual gadgets only obtain the latter information through a broadcast. This means
that gadgets do not know where they are located on the display or in what context
they appear, except when receiving a frame message.

On the one hand, this is an advantage as visual gadgets cannot obtain a global
view of their state except in co-operation with their parents. By feeding a visual
gadget with frame messages, the parent creates a “shell” around it which allows
the gadget to operate correctly. As long as the shell works correctly, a gadget
can be integrated into any environment, or even in more than one environment.
On the other hand, the “hiding” of information from a gadget by its parent does
not support applications that require continuous and fast access to coordinates
and context, like for example, a video player gadget (or other examples of active
objects)

The following sections present the definitions and semantics of an important
sub-set of the frame messages. We will restrict our discussion to those frame
messages applicable to the largest number of visual gadgets.

108

6.3.1 The Display Message
TYPE

DisplayMsg = RECORD (Display.FrameMsg)
id: INTEGER; (� frame, area �)
u, v, w, h: INTEGER

END;

The display message is a request to a visual gadget to display itself either
completely (variant frame), or to display a rectangular area of itself (variant area).
The latter message variant specifies the area in u, v, w, and h. The destination
frame F is either set to a gadget or to NIL, which acts as a wild-card meaning all
visual gadgets. This allows updating hierarchies of containers without modifying
F during message forwarding.

Broadcasting a display message results in all visible instances of the destina-
tion frame being displayed (remember that the gadget may be visible through two
or more camera-views). We accordingly say that the gadget receives the message
once for each of its display instances.

The handling of the display message is illustrated by the following code frag-
ment that is a part of many elementary gadgets.

PROCEDURE Restore (F: Frame; Q: Display3.Mask; x, y, w, h: INTEGER);
BEGIN

(� bounding box of gadget is x, y, w, h �)
(� draw gadget contents through mask Q here �)
IF Gadgets.selected IN F.state THEN (� gadget selected ? �)

Display3.FillPattern(Q, Display3.white, Display3.selectpat,
x, y, x, y, w, h, Display.paint)

END
END Restore;

PROCEDURE Handle(F: Objects.Object; VAR M: Objects.ObjMsg);
VAR Q: Display3.Mask;
BEGIN

...
IF M IS Display.DisplayMsg THEN

WITH M: Display.DisplayMsg DO
IF (M.id = Display.frame) OR (M.F = NIL) THEN

Gadgets.MakeMask(F, x, y, M.dlink, Q);
Restore(F, Q, x, y, w, h)

ELSIF M.id = Display.area THEN
Gadgets.MakeMask(F, x, y, M.dlink, Q);
Display3.AdjustMask(Q, x + M.u, y + h - 1 + M.v, M.w, M.h);
Restore(F, Q, x, y, w, h)

END
END

END
...

END Handler;

109

The procedure Gadgets.MakeMask hides the calculation of the display mask
through which a gadget must draw itself. Note that MakeMask is passed the ab-
solute coordinates and the message thread, hence visual gadgets can request this
calculation on receiving any frame message.

The area variant of the display message requires the reduction of the display
mask to the area to be displayed (Display3.AdjustMask). The Restore procedure
displays the contents of the gadget using the display primitives of module Dis-
play3. As explained in section 6.4.3, a pre-calculation of invariant parts of a gad-
get’s display mask makes the implementation of MakeMask efficient, in the order
of O(n) operations, where n is the number of camera-views in the message thread.
The calculation of AdjustMask is efficient as it only involves setting a rectangular
clipping port in the mask.

An opportunity for optimizing display is not issuing drawing primitives when
they draw outside an update area, especially when many objects must be drawn.
On the other hand, the Display3 clipping routines are efficient enough to allow
to do many display operations even if most pixels are clipped away. This can
save coding at the cost of more clipping operations at run-time. This leads to the
strategy of optimizing redraws in panels and text gadgets, and no optimizations in
simpler elementary gadgets.

6.3.2 The Print Message
TYPE

PrintMsg = RECORD (Display.FrameMsg)
id: INTEGER; (� contents, view �)
pageno: INTEGER; (� current page number �)

END;

The print message variant view requests a gadget to print a display approx-
imation or snapshot of itself on the printer. The print message variant contents
requests a gadget to print its data contents. This can be a multi-page document, as
for example in the case of a text document.

A module called Printer3, modeled along the lines of Display3, pro-
vides printing primitives that print clipped to a mask. A procedure Gad-
gets.MakePrinterMask calculates a printer mask for a gadget in a similar way
as Gadgets.MakeMask. Visual gadgets are expected to make conversions from
display coordinates to printer coordinates themselves. The only deviation from
the display message handling is that the message origin is in printer coordinates
and that frame coordinates have to be converted to printer coordinates from pixel
coordinates.

110

Note that it is possible to introduce abstract output devices for display and
printer, and so replace the display and print messages with a single “draw on de-
vice” message. Unfortunately, the display and printer drivers of Oberon are quite
low-level and do not, for example, allow the arbitrary scaling of fonts. Hence, it
was decided to work in either display or printer coordinates and to optimize the
look of gadgets depending on the output device. This gives the best visual results
as scaling from lower resolution display coordinates to higher resolution printer
coordinates, and vice-versa, is not linear.

The approach has a drawback, due to the fact that the display and printer sub-
systems are not independent in the case of WYSIWYG documents. As display
fonts are not a linearly scaled-down versions of printers fonts, different number of
characters fit on the same line of a text document on the printer and on the display.
A choice if a text document should look good on the display or on the printer must
thus be made; the resulting documents often have different line breaks depending
on the choice.

To reduce this problem, the text gadgets use a line breaking algorithm inspired
by the Script text editor [Som94] that calculates the line lengths on display and
printer concurrently, and inserts a line break at the position where the first over-
flow of either of these occur. The inter-word spacing is then adjusted differently
according to the output device. Hence line breaks are correct but the inter-word
spacings are different. This can lead to larger than normal inter-word spaces on
the display when the printer font is much wider than the display font. The only
way to correct such a document is not using the block-adjust formatting style and
keep with left flush formatting. Note that the problem is also present for shorter
text strings, like those used for text captions, and the caption lines of icons. This
can lead to unexpected overlapping of printed captions with other elements in a
diagram, even though no overlapping is seen on the display.

6.3.3 The Locate Message
TYPE

LocateMsg = RECORD (Display.FrameMsg)
loc: Frame;
X, Y: INTEGER;
u, v: INTEGER

END;

The locate message determines what frame is located at absolute position X,
Y on the display. The message is forwarded according to the X, Y coordinates.
First the receiver checks if X, Y is located inside itself. If so, the message is

111

forwarded to a child located at this position. If the latter does not respond, the
receiver returns itself in the loc field. The fields u and v return the relative position
of X, Y in frame loc. Note that a gadget might refuse to answer truthfully even
though X, Y is located inside its bounding box. This will switch off the flow of
input messages to the gadget, instead passing it to other gadgets that responded at
the same position.

The locate message is handled in the following way by Gadgets.framehandle:

IF M IS Display.LocateMsg THEN
WITH M: Display.LocateMsg DO

IF (M.loc = NIL) & Effects.Inside(M.X, M.Y, x, y, w, h) THEN
M.loc := F;
M.u := M.X - x; M.v := M.Y - (y + h - 1);
M.res := 0

END
END

6.3.4 The Input Message
TYPE

InputMsg = RECORD (Display.FrameMsg)
id: INTEGER; (� consume, track �)
keys: SET;
X, Y: INTEGER;
ch: CHAR;
fnt: Fonts.Font;
col, voff: SHORTINT

END

The input message delivers mouse (variant track) and keyboard events (variant
consume) to the display space. The keys, X and Y fields specify the mouse buttons
pressed and current mouse position. The fields ch, fnt, col and voff give details
about the keyboard event.

The input message is a true broadcast terminated when the event is handled.
The mouse events are forwarded by containers according to the mouse coordinates
and in combination with responses to the locate message. Containers typically
only forward the message if the child responds positively on the locate message.
A parent may take control of the mouse when a child does not respond on the
event.

The keyboard event travels through the display space until the focused frame
consumes it. To prevent fighting over the keyboard input, only a single frame must
have the focus. To obtain the focus, a gadget broadcasts an Oberon.ControlMsg
to indicate that all other gadgets must relinquish the focus; afterwards the frame
assumes that it owns the focus.

112

The default mouse behavior is conveniently handled by Gadgets.framehandle,
which takes care of moving and resizing the gadget. The following procedure
summarizes the possibilities.

PROCEDURE TrackFrame(F: Gadgets.Frame; VAR M: Oberon.InputMsg);
VAR x, y, w, h: INTEGER;
BEGIN

IF (middle IN M.keys) & �(selected IN F.state) & �Locked(M.dlink) THEN
x := M.x + F.X; y := M.y + F.Y; w := F.W; h := F.H;
IF Effects.InBorder(M.X, M.Y, x, y, w, h) THEN

IF Effects.InCorner(M.X, M.Y, x, y, w, h) & �(lockedsize IN F.state) THEN
SizeFrame(F, M)

ELSE
MoveFrame(F, M)

END
END

END
END TrackFrame;

Only the middle mouse button is handled by the default handler. Once se-
lected, a gadget does not respond to mouse events; the parent takes control of
these events. Furthermore, the parent must not be locked (procedure Locked in-
spects the lockedcontents flag of its argument). Nothing happens when the mouse
is located inside the editing area. In the control area around the gadget (InBorder),
the gadget is resized when the mouse is located in a corner, otherwise it is moved.
Notice how the lockedsize flag allows the gadget programmer to switch off the
resizing behavior. To complete the example, the procedures MoveFrame and Size-
Frame are discussed later with the consume message and modify message. The
handling is only slightly more complicated than the example in the actual imple-
mentation, where clicking inside the editing area can execute a Cmd attribute, and
the movement of the mouse cursor must be done.

6.3.5 The Modify Message
TYPE

ModifyMsg = RECORD (Display.FrameMsg)
id: INTEGER; (� reduce, extend, move �)
mode: INTEGER; (� display, state �)
dX, dY, dW, dH: INTEGER;
X, Y, W, H: INTEGER

END;

The modify message informs the destination frame that it is to be translated or
resized in its container. As visual gadgets edit themselves, it is often the case that
the destination frame is also the one that broadcasted the modify message in the

113

first place. According to the principle of parental control, the modify messages
addressed to children are monitored by their containers. A container can refuse
the modification (for example when the position is outside the container) or adjust
the parameters (as in the case of a constraint solver). In addition, the parent has to
take the responsibility of updating the previous location, and if necessary, adjust
the visibility of other children.

The message fields of the modify message have the following meaning. The
id field gives information about what type of modification is taking place: height
increase, height decrease , or translation. The exact meaning of the id field is
tied to the tiled viewer system, in which frames are only translated vertically. The
gadgets have a loose interpretationof the field: reduce or extend means a change in
width or height, perhaps coupled with a translation, and move means a translation
without a size change.

The fields X, Y, W, H specify the new gadget location (in relative coordinates).
The fields dX, dY, dW and dH indicate the change in coordinates from the original
gadget location. The fields are required so that a gadget can determine both its old
and new location. The mode field is used for optimizing the modification involving
many gadgets, as for example when many gadgets are moved together. When
mode is set to display, the destination frame will display itself immediately after
adjusting its coordinates. When mode is set to state, the latter step is omitted. The
idea of using this mode is that redrawing a container once is faster than drawing
each of the children immediately, especially in the case of many children being
modified. Note that by setting mode to state, the sender implicitly assumes the
responsibility for redrawing the destination frame.

The default Gadgets.framehandle handles the modify message in the follow-
ing way:

PROCEDURE Adjust(F: Display.Frame; VAR M: Display.ModifyMsg);
VAR D: Display.DisplayMsg;
BEGIN

IF (F.X # M.X) OR (F.Y # M.Y) OR (F.W # M.W) OR (F.H # M.H) THEN
(� first adjust �)
F.X := M.X; F.Y := M.Y; F.W := M.W; F.H := M.H;
(� invalidate F’s mask here �)

END;
IF (M.mode = Display.display) & (F.H � 0) & (F.W � 0) THEN

D.F := F; D.x := M.x; D.y := M.y;
D.id := Display.frame; D.dlink := M.dlink;
D.res := -1; Objects.Stamp(D);
F.handle(F, D)

END
END Adjust;

114

The imaging model requires that the display mask of the destination be invali-
dated when the gadget changes it size. This only needs to be done once (remember
that the modify message can arrive multiple times at its destination). Eventually
during the processing of the display message, a call to MakeMask causes the dis-
play mask to be recalculated. Interesting in the handling of the modify message is
that each display instance receives the modify message and updates its represen-
tation itself.

Clearly, the default handling of the modify message is not efficient as every-
thing is redrawn instead of parts being copied in the frame buffer. There are how-
ever two possibilities for optimization. Either we can defer optimization to the
parent, which typically knows more about the layout of the child and its relation-
ship to its environment, or we can let the gadget itself attempt the optimization.
The latter is (partially) possible because the destination gadget can request its dis-
play mask both at the old and the new position, make an intersection of the area,
and copy only the resulting visible areas from the old to the new position. The
difference of the former mask and the new mask determines the ‘missing” areas
that still have to be redrawn. The technique is however not used in the Gadgets
framework: it only works well with a single display instance, as a second display
instance would have to invalidate the mask at the new location to (again) obtain
the mask at the old location. A more serious obstacle is that, in the current im-
plementation, masks do not completely specify what area of a gadget is visible.
This is related to the handling of transparent gadgets (for more details see section
6.4.3).

The default handling of resizing a gadget illustrates how a client can make
use of the modify message. In the example below, Effects.SizeRect does the vi-
sual feedback of spanning the resizing rectangle, and Input.Mouse determines the
pressed mouse buttons and the pointer location.

115

PROCEDURE SizeFrame(F: Display.Frame; VAR M: Oberon.InputMsg);
VAR x, y, w, h, X, Y: INTEGER; keys: SET; A: Display.ModifyMsg;
BEGIN

x := M.x + F.X; y := M.y + F.Y; w := F.W; h := F.H;
Input.Mouse(keys, X, Y);
Effects.SizeRect(NIL, keys, X, Y, x, y, w, h, NIL);
IF keys # cancel THEN

A.id := Display.extend; A.mode := Display.display;
A.X := x - M.x; A.Y := y - M.y; A.W := w; A.H := h;
A.F := F; A.dX := A.X - F.X; A.dY := A.Y - F.Y;
A.dW := A.W - F.W; A.dH := A.H - F.H;
Display.Broadcast(A);
M.res := 0

ELSE M.res := 1
END

END SizeFrame;

6.3.6 The Consume Message
TYPE

ConsumeMsg = RECORD (Display.FrameMsg)
id: INTEGER; (� drop, integrate �)
u, v: INTEGER;
obj: Objects.Object

END;

The purpose of the consume message is to make structural changes in the dis-
play space. A drag and drop operation is translated into a consume message with
variant drop, which requests the destination container to insert or consume gad-
gets. The integrate variant of the consume message inserts one or more gadgets
into the focus frame (the frame that owns the keyboard focus).

The list of gadgets to be consumed is passed in the obj field; they are linked
with each other with the slink field of Objects.Object. In the case of the drop
variant, the insertion point in the destination frame is specified by u, v. In the
case of the integrate variant, no destination frame is specified. Acceptance by a
container of consumed gadgets is signified by invalidating the consume message.
We also require that the destination container remove the consumed gadgets from
any previous container they might have been in (cf. 6.3.9).

It is now possible to present the implementation of MoveFrame, as used by
Gadgets.framehandle, which compactly illustrates the use the copy, modify, and
consume message.

PROCEDURE MoveFrame(F: Display.Frame; VAR M: Oberon.InputMsg);
VAR

x, y, w, h: INTEGER;
keys: SET; X, Y: INTEGER;

116

A: Display.ModifyMsg; C: Display.ConsumeMsg; CM: Objects.CopyMsg;
f: Display.Frame; u, v: INTEGER; old: Objects.Handler;

BEGIN M.res := 0;
x := M.x + F.X; y := M.y + F.Y; w := F.W; h := F.H;
Input.Mouse(keys, X, Y);
Effects.MoveRect(NIL, keys, X, Y, x, y, w, h);
old := F.handle; F.handle := EmptyHandler;
ThisFrame(X, Y, f, u, v);
F.handle := old;
IF keys = fmiddle, rightg THEN (� copy frame �)

IF f # NIL THEN
CM.id := Objects.shallow; Objects.Stamp(CM);
F.handle(F, CM);
C.id := Display.drop; C.obj := CM.obj; C.F := f;
C.u := u + (x - X); C.v := v + (y - Y);
Display.Broadcast(C)

END
ELSIF keys = fmiddle, leftg THEN (� consume frame �)

IF f # NIL THEN
C.id := Display.drop; C.obj := F; C.F := f;
C.u := u + (x - X); C.v := v + (y - Y);
Display.Broadcast(C)

END
ELSIF keys = fmiddleg THEN (� move frame �)

A.F := F; A.id := Display.move; A.mode := Display.display;
A.X := x - M.x; A.Y := y - M.y; A.W := w; A.H := h;
A.dX := A.X - F.X; A.dY := A.Y - F.Y;
A.dW := A.W - F.W; A.dH := A.H - F.H;
Display.Broadcast(A)

END
END MoveFrame;

Procedure Effects.MoveRect provides the visual feedback for moving a rectan-
gular outline x, y, w, h (as in-out parameters). Procedure ThisFrame uses the locate
message to determine what is located at the position X, Y where the mouse buttons
are released. As frame F is being moved, and it is still embedded in its container,
we do not want it to answer itself on the locate message. This is the reason why
its message handler is temporarily exchanged with an empty implementation. The
case of a move operation translates directly into a modify message. In the case
of a drag and drop operation, we have to broadcast a consume message to the
destination gadget. The statements x�X , respectively y � Y , make a correction
depending on the position of the mouse inside the box x, y, w, h. The middle-right
inter-click mouse combination is a request to consume a copy of the frame—a
shallow copy is then made.

117

6.3.7 The Select Message
TYPE

SelectMsg = RECORD (FrameMsg)
id: INTEGER; (� get, set, reset �)
time: LONGINT;
sel: Frame;
obj: Objects.Object

END;

The select message comes in three variants: the set variant informs the des-
tination gadget that it is being selected, the reset variant informs the destination
gadget that it is being unselected, and the get variant returns the latest selection.
The current gadget setting is remembered with the flag selected in the state field
of Gadgets.Frame. The get variant is used in a true broadcast to return the latest
gadget selection. As the message travels though the display space, the time field
is updated to contain the time of the selection, the obj field the selected list of
gadgets, and the sel field the container containing the selection. Each container
compares its time of selection against time in the message, and updates time, sel,
and obj should its own selection be newer.

The default handling of the select message by Gadgets.framehandle is the
following. Note that containers typically interpret pressing the right mouse button
as selecting a gadget.

IF M IS Display.SelectMsg THEN
WITH M: Display.SelectMsg DO

IF (M.id = Display.set) & (M.F = F) THEN
INCL(F.state, selected); M.res := 0

ELSIF (M.id = Display.reset) & (M.F = F) THEN
EXCL(F.state, selected); M.res := 0

END
END

6.3.8 The Update Message
TYPE

UpdateMsg = RECORD (Display.FrameMsg)
obj: Objects.Object;

END;

The update message forms the base type of change notification messages in
the Gadgets framework. The field obj is the object whose state has changed. On
receiving the update message, a view determines if its model is involved, and
updates itself accordingly.

118

A further use of the update message is to display a set of visual gadgets headed
by obj and linked together with the slink field. Such an operation is required as
the semantics of the display message does not allow a list of destination frames to
be specified—a “group update” of visual gadgets is required when the inspector
changes attributes of the selection. Instead of having the default handler check if
the gadget is in the update list, we expect containers to check if their children are
found in the list. List searching is minimized with the invariant that the update list
only contains children that have the same parent.

The level-1 programmer is the principal client of the update message. He or
she must broadcast the update message by hand each time the state of a model
is changed (if not integrated as part of the model update already). The update of
gadgets is simplified by the utility procedure Gadgets.Update that, depending on
the type of its argument, broadcasts either a display or an update message.

PROCEDURE Update(obj: Objects.Object);
VAR M: UpdateMsg; D: Display.DisplayMsg;
BEGIN

IF obj IS Display.Frame THEN
D.id := Display.frame;
D.F := obj(Display.Frame);
Display.Broadcast(D)

ELSE
M.obj := obj; M.F := NIL;
Display.Broadcast(M)

END
END Update;

6.3.9 The Control Message
TYPE

ControlMsg = RECORD (FrameMsg)
id: INTEGER; (� remove, suspend, restore �)

END;

The control message unifies two unrelated functions in a single message. The
remove variant removes the destination gadget from the display space. The restore
and suspend variants are of an informational nature, as sketched below.

To remove many gadgets from the display space, the destination frame F is
interpreted as the head of the list of slink connected frames to be removed. Notice
that this is a break of style as the destination frame is interpreted as a list. Again,
the invariant of the list of gadgets belonging to the same container can save the
containers from unnecessary list searching. After removing the necessary children
from its dsc-next list, the container updates its display representation.

119

The restore and suspend variants of the control message inform gadgets when
they enter or leave the broadcasting area of the display space. As soon as a gad-
get leaves, it stops receiving message broadcasts. As containers can temporarily
“hide” children away when they are not visible, and then later make them reach-
able by broadcast again, a gadget might have “missed” some important broadcasts.
The suspend variant warns a gadget that it will not receive messages for a certain
period of time. The restore variant informs the gadget that it is about to be reached
by broadcast again, allowing it to re-synchronize with its model.

6.3.10 The Priority Message
TYPE

PriorityMsg = RECORD (Display.FrameMsg)
id: INTEGER; (� top, bottom, visible �)
passon: BOOLEAN;

END;

The priority message is a request to the destination frame to adjust its overlap-
ping priority amongst its siblings in a container. Although addressed to the child
itself, the message is only of interest to the destination frame’s container, who
monitors the message. The priority message variants indicate if the destination
frame should be given the highest priority (top), the lowest priority (bottom), or if
it should be adjusted to highest priority when it is partially overlapped by another
child (visible).

The passon flag indicates if the priority adjustment should be applied to the
container itself, and so on recursively, for all ancestors of the destination gadget.
As containers do not know about their remote descendants, such an adjustment
cannot be made when the message travels down through the display space. The
destination’s container is thus required to broadcast a recursive priority message
for itself, again so for its parent, and so on. As can be expected, this is an expensive
operation that should be avoided whenever possible.

6.3.11 Other Frame Messages

The previous sections introduced the most important frame messages as used in
the standard Oberon distribution. Many applications add their own set of frame
messages. There are however some additional messages that belong to the Oberon
distribution whose semantics do not significantly contribute to our discussion,
which we leave out from this discussion. For completeness sake, and to illustrate
the idea of message families, they are only shortly mentioned.

120

The Oberon.ControlMsg controls the handling of the focus frame, marking
frames with the star marker, and removing all marks like the selection, caret and
marked frame. The family of messages related to text handling is distributed over
modules Oberon and Texts. The Texts.UpdateMsg is the change notification mes-
sage of the abstract data type text. The Oberon.CaretMsg and Oberon.SelectMsg
control the setting and retrieving of the caret and the text selection in and from text
editors. The Oberon.ConsumeMsg controls the copying over of text stretches be-
tween text editors. The Oberon.RecallMsgcontrols the recalling of the last deleted
text stretch. Important regarding the family of text related messages is that they
are not bound to any specific text editor. This allows the integration of cut, copy,
and paste over different text editors.

A summary of the collection of frame messages belonging to the standard
Oberon distribution is presented in Table 6.1. The table includes the messages
from module Display3, which are discussed in the following section.

6.4 The Imaging Model

6.4.1 Motivation

Important criteria when picking an imaging model for an interactive system is the
quality and efficiency of the displayed images. As the pixel sizes of raster output
devices like the screen are relatively coarse grained, the presentation of images
and figures often result in a loss of fidelity. The efficiency of an imaging model
is determined by how fast images can be presented and how much memory is
required in the process.

The quality and efficiency issue is addressed in the Gadgets system by using
device coordinates and arbitrary clipping regions for all imaging primitives. De-
vice coordinates, although often tedious to work with, have the advantage that a
hand-tuned presentation of low resolution user interface components is possible.
The use of arbitrary clipping regions for display primitives is motivated by the
unwritten rules in the Oberon system to be both memory efficient and to avoid the
first sin of the user interface programmer, namely display flicker.

Display flicker occurs when overlapping graphical components are displayed
one after the other in quick succession during display update, as for example
occurs when graphics are painted on the screen using the painter’s algorithm
[FvDFH91]. For example, drawing the background of a panel followed by draw-
ing the children of the panel on top of it, results in many pixels being written
twice: humans notice this as an irritating flash of the “wrong” color. When lots

121

Type Variants

Display.ControlMsg remove, suspend, restore
Display.ModifyMsg reduce, extend, move
Display.DisplayMsg frame, area
Display.PrintMsg contents, view
Display.LocateMsg
Display.SelectMsg get, set, reset
Display.ConsumeMsg drop, integrate

Texts.UpdateMsg

Oberon.ControlMsg defocus, neutralize, mark
Oberon.InputMsg consume, track
Oberon.CaretMsg get, set, reset
Oberon.SelectMsg get, set, reset
Oberon.ConsumeMsg drop, integrate
Oberon.RecallMsg

Display3.OverlapMsg
Display3.MakeMaskMsg

Gadgets.PriorityMsg top, bottom, visible
Gadgets.UpdateMsg

Table 6.1: Frame message summary

122

of memory is available, the problem of display flicker is solved by drawing to an
off-screen bitmap (which nobody sees) and then copying the result to the display.
This is called double buffering, and it is both expensive in the number of pixels
written in the off-screen bitmap and display, and the amount of additional memory
required for the off-screen bitmap. As Oberon was designed to operate with very
limited resources, the use of off-screen bitmaps was ruled out, and we were forced
to adapt clipping regions, or as we refer to them, clipping masks or display masks.

A clipping mask is an abstract data-structure that indicates to the device driver
where it may or may not write pixels. The simplest clipping mask is a rectangu-
lar area—it is like a rectangular stencil that passes through selected paint of the
image. Rectangular clipping of primitives like rectangular block fills and block
copies are easy and only involve a preprocessing of coordinates with a few tests
and assignments; often the overhead is negligible in comparison to the amount of
work done for the actual drawing.

Clipping can be much more efficient than double buffering, as each pixel
clipped away (not drawn) saves at least one device memory access (and clipping
away a small block of 10 by 10 pixels is already a huge saving). This assumes
that many pixels can be clipped away, which is not always the case. For example,
when displaying text on a colored background, using a clipping mask for drawing
the background can be at least or even more inefficient than an off-screen bitmap.
A trade-off is to use clipping masks for larger areas and double buffering for com-
plicated smaller figures. If we take into account that the eye is more sensitive
to flicker of larger areas than smaller ones, we might be willing to accept a little
flicker, and thus get rid of double buffering completely. This is the motivation
for picking a device-dependent imaging model based on clipping in the Gadgets
system.

6.4.2 Shape Algebra

The progression from rectangular clipping to arbitrary region clipping is not so
difficult as it might seem at first. What is required is a shape algebra for arbitrary
regions or shapes [FvDFH91]. The module Display3 provides operations to create
a new shape, add or remove a rectangular area to or from a shape, intersect shapes
with each other, subtract one shape from another, and to enumerate the form of
a shape. Complicated figures like lines and splines are approximated by many
smaller rectangles. The following paragraphs discuss the implementation of these
operations.

A shape consists of a set of rectangles whose union determines the shape’s

123

1

2 4

5 6 7 8 9

10

Mask

3

"Filled" run

Empty run

Scan

Shape

Data structure

1

2 3 4

5 6 7 8 9

10

Figure 6.1: The shape structure

124

outline. For efficiency, rectangles are organized in such a way that they do not
overlap. To quickly access a specific coordinate in the shape, the rectangles are
collected in lists called scans. Rectangles in a scan are called runs, and are ordered
by X coordinate. The runs of a scan have the same height but different widths. An
open area between two rectangles in a scan is filled by an empty run, thus each
run requires a flag specifying if it belongs to the shape or not. Scans are logically
stacked upon each other and ordered according to their Y coordinate. The resulting
scan and run structure of a simple shape is illustrated in Figure 6.1.

A straightforward translation of the scan and run structure results in the fol-
lowing data structure. We add an additional type Mask to make the structure
opaque.

TYPE
Run = POINTER TO RunDesc;
RunDesc = RECORD

next: Run;
x, w, right: INTEGER;
visible: BOOLEAN;

END;

Scan = POINTER TO ScanDesc;
ScanDesc = RECORD

next: Scan;
y, h, top: INTEGER;
run: Run;

END;

Mask = POINTER TO MaskDesc;
MaskDesc = RECORD

scan: Scan;
END;

The scans are connected vertically with next in increasing y coordinate. The
runs are connected horizontally with next in increasing x coordinate. The w and
h fields specify the width of a run and the height of the scan. The right and top
fields are present for convenience; they specify the right and top coordinates of a
run and a scan.

We initialize the data structure in such a way that a single scan and run covers
a very large surface, larger than any shape, so as to act as a sentinel.

125

PROCEDURE Init(M: Mask);
VAR s: Scan; r: Run;
BEGIN

NEW(s); NEW(r);
M.scan := s; s.run := r;
s.y := -MAX; s.h := MAX � 2 + 1; s.top := MAX;
r.x := -MAX; r.w := MAX � 2 + 1; r.right := MAX;
r.visible := FALSE;

END Init;

Most shape operations are based on an algorithm to intersect a rectangle with a
shape. This algorithm has the effect of cutting up the rectangle into smaller pieces
according to the intersection with the shape boundary. As a block fill primitive
has a rectangular area on the display, this intersecting algorithm is exactly what
we need to draw a rectangular block clipped to a shape. Its implementation is as
follows:

PROCEDURE Intersect(M: Mask; X, Y, W, H: INTEGER);
VAR s: Scan; r: Run; x, y, w, h, height, width: INTEGER;
BEGIN

y := Y; s := M.scan;
WHILE s.top � y DO s := s.next END;

h := H;
WHILE h � 0 DO

height := Min(h, s.top - y + 1);
x := X; r := s.run;
WHILE r.right � x DO r := r.next END;

w := W;
WHILE w � 0 DO

width := Min(w, r.right - x + 1);
(� Output x, y, width, height �)
DEC(w, width); INC(x, width);
r := r.next

END;

DEC(h, height); INC(y, height);
s := s.next

END
END Intersect;

The algorithm delivers in the inner loop one sub-rectangle after another of the
rectangle X, Y, W, H intersected with the shape. The flag r.visible indicates at this
point if the rectangle is part of the shape or not. The algorithm consists of similar
code for traversing the scans and the runs, except that they operate in different
directions of the plane. First we have to locate the scan in which Y lies. The
calculation then has to proceed for h until the whole rectangle is processed. We

126

can calculate how much further to continue with the current scan by determining
the distance to the top of the rectangle, and to the top of the scan. The minimum of
both is called height, and is used to advance through the scans. A similar process
takes place with the runs.

Profiling of the above code shows that most time is spent locating the scan
and run in which X, Y lies. As long as the data structure does not change, we can
imagine keeping a cache of this run between different invocations, which brings a
speedup when consecutive accesses are in the same vicinity.

We will now extend the algorithm to insert or remove a rectangle from a shape.
We require a procedure to split a scan horizontally at a specific y coordinate, and
a procedure to split a run vertically at a specific x coordinate. Splitting a scan
involves making an exact duplicate of its run structure and inserting the duplicate
scan after the current scan. The exact implementations are left to the reader’s
imagination.

PROCEDURE SplitS(s: Scan; y: INTEGER);
PROCEDURE SplitR(r: Run; x: INTEGER);

The procedure Flip that follows toggles the visibility flag of rectangle X, Y,
W, H to state. For each scan visited, we calculate if we might need to split the
scan at the bottom of the rectangle (y � s�y) and at the top of the rectangle
(y � height �� s�top). Note that if the rectangle lies completely inside a scan,
we might have to split it twice.

PROCEDURE Flip(M: Mask; X, Y, W, H: INTEGER; state: BOOLEAN);
VAR s: Scan; r: Run; x, y, w, h, height, width: INTEGER;

splitT, splitB: BOOLEAN;
BEGIN

y := Y; s := M.scan;
WHILE s.top � y DO s := s.next END;
h := H;
WHILE h � 0 DO

height := Min(h, s.top - y + 1);
splitB := y � s.y; splitT := y + height �= s.top;
x := X; r := s.run;
WHILE r.right � x DO r := r.next END;
w := W;
WHILE w � 0 DO

width := Min(w, r.right - x + 1);
IF r.visible # state THEN

IF splitT THEN
SplitS(s, y + h); splitT := FALSE

END;
IF splitB THEN

SplitS(s, y); splitB := FALSE;

127

x := X; s := s.next; r := s.run;
WHILE r.right � x DO r := r.next END;

END;
IF x � r.x THEN (� split left �)

SplitR(r, x);
width := 0

ELSIF x + width �= r.right THEN (� split right �)
SplitR(r, x + width);
r.visible := state

ELSE r.visible := state
END

END;
DEC(w, width); INC(x, width);
r := r.next

END;
DEC(h, height); INC(y, height);
s := s.next

END
END Flip;

The modification of our previous intersection algorithm involves the case
when the span is not in the state we require—only then we need to split the scan.
To prevent splitting for each run visited, we reset the split flags after the first split.
Note that after splitting at the bottom, we have to advance to the next scan, and
thus repeat the search for the correct run. Once the scan has been split, we might
have to split the run on the left or on the right. Also note that when x � r�x, the
following pass through the loop will modify the state of the following (and new)
run.

The drawback of this implementation is that we keep on splitting scans and
runs, which eventually results in a deterioration of the structure when many adds
and subtracts are made. One possibility is to make a pass over the data structure
and merge neigboring runs that have the same state, and neighboring scan lines
that have the same runs. Such a compact operator can be called periodically to
improve the structure. Another possibility is to attempt to optimize the structure
as it is being modified. The opportunities for optimization occur when the state of
r.visible is changed. We imagine replacing the assignments to r.visible above by a
procedure FlipRun that changes the state and does some optimizations:

PROCEDURE FlipRun(VAR r: Run; state: BOOLEAN);

The run is declared as VAR parameter as the run might be optimized “away”.
One implementation of FlipRun involves introducing a previous pointer in the
run structure, connecting runs in the opposite direction too. This makes it easier
to determine if the previous run can be merged with the current one. The next

128

pointer is used to check if we can merge with the following run. As r is changed
during the optimization, we adapt the advancement of the pointer at the end of the
loop to:

IF x � r.right THEN r := r.next END

A further low-cost improvement is to merge the runs of the new scan in SplitS.
Simple optimizations like these keep the runs in good shape but do not merge
identical scans, so a second pass to merge scans is still required. The Display3
module also optimizes the case when the shape is a single rectangle, as this case
appears so often. There are several other opportunities for optimization, includ-
ing dropping one of the x or right fields, and a more efficient packing of runs in
memory.

Based on similar algorithms, it is for example possible to derive an intersec-
tion with a rectangle operator. Union and difference of shapes are easy by incre-
mentally adding or removing areas. Enthusiasm for the approach should however
be kept in bounds; the performance deteriorates with a multitude of scans a single
pixel high, like when geometric figures like lines and circles are defined as shapes.

6.4.3 Display Masks

Display masks are the clipping regions through which a visual gadget draws itself.
Each and every visual gadget has its own display mask cached in its mask field. It
consists of a shape that specifies which parts of the gadget are visible. The module
Display3 provides a collection of drawing primitives that operate with masks, just
as module Printer3 provides a similar collection for printing.

As the calculation of a display mask can be an expensive process, the Gadgets
framework adopts a demand-driven approach for generating masks. At any one
instance, a gadget either has a valid display mask, or it has no mask at all. When
a modification is applied to a gadgets shape, its mask is dropped by a process
called invalidating. Only when a visual gadget wants to draw itself, it requests a
new display mask by calling a procedure Gadgets.MakeMask to activate the mask
generation process. This strategy means that a gadget can operate for long periods
of times without a valid mask, at least until it wants to draw something on the
display.

To simplify our initial discussion, we can assume that we would like to cal-
culate the masks for a sub-section of the display space that does not contain any
camera-view gadgets. The situation can be imagined as overlaying the whole dis-
play with a large container gadget. This root container is completely visible, hence

129

its display mask is a single rectangle. From its own display mask, the container is
expected to generate masks for its children. The following procedure shows that
generating masks for children involves intersecting the container’s mask with the
bounding box of the child, and clipping away all the overlapping parts of higher
priority children.

PROCEDURE BuildMasks(F: Display.Frame);
VAR f, g: Display.Frame; R: Display3.Mask;
BEGIN

f := F.dsc;
WHILE f # NIL DO

Display3.Copy(F.mask, R); (� copy the mask �)
Display3.Intersect(R, f.X, f.Y, f.W, f.H);
g := f.next;
WHILE g # NIL DO

IF Effects.Intersect(f.X, f.Y, f.W, f.H, g.X, g.Y, g.W, g.H) THEN
Display3.Subtract(R, g.X, g.Y, g.W, g.H)

END;
o := o.next;

END;
(� Set mask of f to R here �)
f := f.next

END
END BuildMasks;

For n children, this algorithm requires

n�n� ��

�

bounding box comparisons, which is a run-time complexity of O�n��. Luckily
the average situation is not so bad as children do not always overlap each other
and thus the expensive Display3.Subtract is not always invoked. Note that we are
working in relative coordinates; all masks are specified in the relative coordinates
of the gadget itself, and thus save us from recalculating masks when moving a
container around. Also note that setting the mask of f involves a coordinate trans-
lation of the mask from parent to child coordinates (which is not shown here).

We can now complete the mask implementation by adding a translationvector
and a clipping port.

Using relative mask coordinates requires a way to position a mask at any lo-
cation of the display. For this purpose, a translation vector x, y is added to the
type Display.Mask. The efficient translation is possible by modifying our shape
algebra with coordinate accumulation during scan and run traversal. A mask is
automatically translated to the current gadget position when Gadgets.MakeMask
is called (cf. 6.3.1).

130

The handling of the display message dictates that we sometimes only redisplay
a rectangular sub-part of a gadget (cf. 6.3.1). To keep this a light-weight operation
that does not modify the shape of the display mask, each display mask has a
clipping port. The clipping port is a rectangular clipping area in addition to the
shape itself. Display primitives are first clipped to the clipping port and then to the
shape. As the final definition of the type Display3.Mask shows below, the clipping
port is specified by four INTEGERs that can be easily changed without modifying
the mask shape1. We can also indirectly modify the clipping port using a call to a
utility procedure Display3.AdjustMask, as was shown earlier in the handler of the
display message (cf. 6.3.1).

TYPE
Mask = POINTER TO MaskDesc;
MaskDesc = RECORD

x, y: INTEGER;
X, Y, W, H: INTEGER;

END;

The mask protocol. Mask calculation is a service a container provides for its
children. A child can request its parent to quickly manufacture a mask for it,
should it discover on displaying that it has no valid mask. The module Display3
defines the messages OverlapMsg and UpdateMaskMsg for this purpose.

OverlapMsg = RECORD (Display.FrameMsg)
M: Mask;

END;

UpdateMaskMsg = RECORD (Display.FrameMsg)
END;

The OverlapMsg is sent directly from parent to child, informing the latter that
its new mask is M. A NIL value of M indicates that the child’s existing mask is
invalid. The default handling of the OverlapMsg in Gadgets.framehandle involves
setting the mask field of the visual gadget to M. In the case of container gadgets,
the Overlap message activates the mask generation for its children, as sketched
earlier.

A call to Gadgets.MakeMask sometimes finds a gadget without a valid mask.
Then the UpdateMaskMsg, with destination set to the gadget, is broadcast into
the display space. All containers monitor the UpdateMaskMsg, checking if it

1The porting of Gadgets to the Macintosh identified a design oversight regarding these fields.
As the fields are not procedurally encapsulated, a field modification is not directly detectable, which
makes it slightly more difficult to map the shapes into the MacOS region primitives.

131

is addressed to one of their children. Should one of their own children be in-
volved, its mask is calculated and updated with the OverlapMsg. In the case of
Gadgets.MakeMask finding a gadget with a valid mask, nothing needs to be done
except to return the cached mask to the caller.

To prevent numerous UpdateMaskMsg’s from being broadcast when many
children have invalid masks, a container automatically recalculates all invalid
masks of its children when the first UpdateMaskMsg arrives. This is under the
assumption that if one child requires a mask, the others will do as well in the near
future.

Masks and camera-views. The mask protocol, as sketched in its simplistic
form above, only works correctly when no camera-view gadgets are in the dis-
play space. An interesting complication is when a gadget is viewed by two or
more camera-views, with potentially different parts visible. Let’s trace how the
display is redrawn to illustrate the solution to the problem. Drawing a container
involves drawing the container itself, followed by sending a display message to
each of its children, and so on recursively. The situation with camera-views is
the same except that the display message is forwarded to the visual model in-
stead. As many camera-views might have the same model, the latter will receive
the message once from each of its camera-views. It is clear that the visibility of
the gadget is determined by the path that the message followed to reach it. The
procedure Gadgets.MakeMask provides a means to efficiently calculate a clipping
mask from the latter, through which a gadget can then display itself.

First, we define that a camera-view creates a clipping mask for its (visual)
model without regard to its own clipping mask, i.e., that the model has a clip-
ping mask as if it was completely visible. The actual clipping mask is then the
combination of a gadget’s cached mask, intersected with the masks of all the
camera-views found on the message path. Conceptually, the procedure Gad-
gets.MakeMask would need to make a copy of the cached mask and intersect it
with the masks of all the camera-views on the message thread.

The intersection operation requires the absolute screen position of the camera-
views in the message thread (remember that the camera-view mask is relative
too). For this purpose, a base type for camera-view gadgets called Gadgets.View
is defined. The fields absX, absY of camera-view instances are set to the camera-
view display coordinates each time a frame message is forwarded to its model.

132

View = POINTER TO ViewDesc;
ViewDesc = RECORD (FrameDesc)

absX, absY: INTEGER;
ClipMask: PROCEDURE (v: View; M: Display3.Mask);

END;

As the intersection operation is more expensive than the adjustment of the
clipping port, the implementation of Gadgets.MakeMask attempts to reuse the
cached mask instead of creating a new mask for each intersection. The following
procedure sketches the approximate implementation:

PROCEDURE MakeMask(F: Frame; X, Y: INTEGER; dlink: Objects.Object;
VAR M: Display3.Mask);

VAR
U: Display3.UpdateMaskMsg; f: Objects.Object;
x, y, w, h: INTEGER;
R: Display3.Mask;

BEGIN
IF F.mask = NIL THEN (� invalid mask �)

U.F := F; Display.Broadcast(U);
ASSERT(F.mask # NIL)

END;

M := F.mask; (� cached mask �)

(� translate mask to display coordinates �)
M.x := X; M.y := Y + F.H -1;

(� default clipping port �)
M.X := X; M.Y := Y; M.W := F.W; M.H := F.H;

v := dlink; (� visit camera-views �)
WHILE v # NIL DO

IF v IS View THEN
WITH v: View DO

(� position camera-view mask �)
v.mask.x := v.absX; v.mask.y := v.absY + v.H + 1;

IF Display3.Rectangular(v.mask, x, y, w, h) THEN
Display3.AdjustMask(M, x, y, w, h)

ELSE
Display3.IntersectMasks(M, v.mask, R);

(� copy clipping port �)
R.X := M.X; R.Y := M.Y; R.W := M.W; R.H := M.H;
M := R

END
END

END;
v := v.dlink

END
END MakeMask;

133

Note how the fields absX, absY are used to position the mask of the camera-
view before the intersection. The procedure Display3.Rectangular returns TRUE
if a mask is a single rectangular shape, returning its form in x, y, w, h. The
procedure Display3.IntersectMasks intersects two masks and delivers a third mask
as a result.

The implementation of Gadgets.MakeMask illustrates that the mask calcula-
tion process is optimized for the case when camera-views are completely visible
(in which case their mask is rectangular). When partially overlapped, a perfor-
mance penalty is paid as the cached mask has to be copied and then modified. The
latter case occurs more often in the overlapping viewer model of desktops.

The only situation that we have not covered so far is when the camera-view
itself clips away parts of its visual model. For this case, the procedure variable
ClipMask is provided, which is filled-in by the camera-view implementation with
a procedure that intersects the mask with the visible area. We only require an
additional call v.ClipMask(v, M) in the loop to handle the situation (not shown
above).

Transparent visual gadgets. The procedure BuildMasks presented earlier as-
sumes that all children are rectangular in shape, i.e. each visual gadget completely
fills its bounding box. It is however useful to have irregular shaped visual gadgets
too (like for example the icon gadgets on the desktop in Figure 3.11). These irreg-
ularly shaped visual gadgets are called transparent gadgets because sub-sections
of their bounding box are transparent and show what lies below them (i.e. parts
that are below “shine through”).

On the one hand, transparent gadgets are useful for making geometric fig-
ures first-class citizens, but on the other hand they complicate the imaging model.
Conceptually, a transparent gadget must cut out its shape from the masks of the
gadgets that lie below it. In cases like the icons, their rectangular nature makes this
not too problematic. In the extreme though, a transparent text caption might have
to cut out its character form from the masks below. If we are willing to pay for
this exact implementation of the imaging model, we can imagine a third message
in the mask protocol that requests a gadget for a mask specifying its exact form.
The latter can then be used in the subtract operation in procedure BuildMasks.

As we had our doubts that this implementation would be efficient enough and
also implementable in the current Oberon system, a simpler approach was selected
for handling transparent gadgets. It is based on the observation that parents can
monitor the display messages broadcasted to their children. In the case of trans-

134

parent gadgets, the parent can apply the painters’ algorithm in the area of the child.
First the parent draws its own background, followed by the gadget itself, followed
by all transparent gadgets that lie on top of it. To aid in the process, the containers
identify transparent gadgets by the Gadgets.transparent flag in the state field. It
is the task of the programmer to set this flag correctly. Furthermore, the build
mask procedure is modified in such a way that only non-transparent gadgets are
subtracted from a gadget’s mask. This means that an opaque gadget can influence
the mask of any other lower priority gadget (transparent or opaque), whereas a
transparent gadget cannot.

The advantage of this approach is that transparent gadgets are first-class cit-
izens. The disadvantage is that containers must be programmed specially to
handle this case. Also, because transparent gadgets do not affect the masks of
other gadgets, a gadget cannot be 100% sure that the mask it obtains with Gad-
gets.MakeMask is its true visible area. This hampers optimizations involving
copying pixel blocks on the display.

As the author sees it, the only clean solutions to this problem are either to ban
transparent gadgets, or to pay the penalty of calculating the exact shape of each
and every gadget. The latter option seems the best, but requires, amongst others,
a way to turn a font into a collection of shapes, an operation that was not foreseen
in the design of the Oberon system.

6.5 Examples

The following sections present a selection of examples related to messages and
gadget programming.

6.5.1 Messages

Although messages seem simple by themselves, their combination can be arbitrar-
ily complicated and revealing at the same time. A good example of how messages
are combined with each other is tracing the message flow during a drag and drop
operation. In the following example, we assume that visual gadget G located in
panel P is picked up with the mouse, and moved to panel Q.

The major steps are the following:

1. The Oberon loop notices that the mouse pointer has moved or that a mouse
button has been pressed or released, and broadcasts into the display space
the input message (cf. 6.3.4), variant track, with the current mouse position.

135

2. The input message is forwarded from container to children depending on the
mouse coordinates. The locate message (cf. 6.3.3) determines if a gadget is
interested in the message or not (it is sent from parent to child before the
input message is forwarded). The first notice of the impending arrival of an
input message at G is thus the arrival of a locate message.

3. The input message arrives at G. G detects that the middle mouse button
is pressed inside the move control area. The default handler provides the
visual feedback of a rectangle moving across the display until all the mouse
buttons are released.

4. G determines the position where the mouse was released by broadcasting a
locate message.

5. Panel Q receives the locate message and returns itself.

6. Having determined the destination Q, gadget G broadcasts a consume mes-
sage (cf. 6.3.6) with Q as destination and itself as object to be consumed.

7. Q receives the consume message and decides that it is willing to accept the
new gadget G. Before G can be accepted, it must be made an orphan for
a short period of time. This is done by broadcasting a control message,
variant remove, addressed to G.

8. P receives the control message and notices that its child G is to be removed.
It removes G from its dsc-next list. Furthermore, all the children lying below
G are sent a Display3.OverlapMsg to invalidate their masks. P broadcasts a
display message to redraw its modified parts.

9. When updating parts of P, some of the underlying children notice that they
have no valid mask. These children broadcast an UpdateMaskMsg to their
parent, which calculates the new masks and forward them to the children
using the Display3.OverlapMsg. The children send a DisplayMsg directrly
to themselves.

10. Q inserts G into its own dsc-next list as a new child. Then G’s mask is
invalidated with a Display3.OverlapMsg. The children’s masks below G
are invalidated.

11. Q broadcasts a display message to update the area that the child G now
occupies.

136

12. G receives the display message and requests that its mask be calculated. As
it has an invalid mask, a Display3.UpdateMaskMsg is broadcast.

13. Q receives the Display3.UpdateMaskMsg and realizes that G requires a new
mask. Procedure BuildMask (cf. 6.4.3) is invoked to do the mask calcula-
tion, and the Display3.OverlapMsg informs G of its new mask.

14. Gadget G, now with valid mask, displays itself.

15. Control returns to Q that invalidates the consume message.

16. Control returns to G that invalidates the input message.

Another interesting example is how to separate model and view using a mes-
sage protocol as data exchange mechanism. Lets look at the simplified situation
of a textfield gadget T displaying the value of an integer model gadget I:

1. The user clicks with the left mouse button to set the focus in the textfield
gadget. The Oberon event loop broadcasts an input message of variant track
specifying the left mouse button. It arrives (in the manner sketched before)
at T.

2. T discovers that it does not have the keyboard input focus yet, and broad-
casts an Oberon.ControlMsg to force other gadgets to relinquish it. T, as-
suming that it has obtained the keyboard focus, sets an internal flag saying
that it has the caret, and broadcasts a message to display itself. On receiving
the display message, it draws the newly set caret.

3. The user types something on the keyboard. The Oberon event loop broad-
casts an input message with variant consume into the display space. It ar-
rives at T, who consumes the message and inserts the character in an internal
buffer of typed characters. T broadcasts a display message to itself, and so
displays the contents of the buffer on the screen.

4. The user presses RETURN to signify that the model and view need to be
updated. The event arrives at T as yet another input message. T takes its
internal character buffer and packs it into an attribute message. The attribute
message in variant set is sent directly from T to I.

5. I receives the attribute message, does a conversion from string format to
integer, and updates its own state.

137

6. T, who has just changed the state of I, broadcasts an update message to say
that the value of I has changed.

7. T receives the update message and notices that its model has changed. T
sends an attribute message, variant get, to I to retrieve the current state of I.
As I returns an integer, T does the necessary conversion to string, copies it
into its internal buffer, and redisplays itself immediately.

Note that in this protocol both the model and view have representations of
the same data in different formats, namely integer and string respectively, which
they synchronize using the attribute message. Consequently, T and I make now
assumptions about each other except that they understand the update and attribute
message. This is an important criteria for truely pluggable components.

6.5.2 Elementary Gadgets

Programming an elementary gadget is a matter of combining the code fragments
presented in this and in the previous chapter. As most of the message handling is
taken over by the default message handler, there is little left to do but to specify
how the gadget should display itself and how it interacts with the user. The fol-
lowing example code implements a colored block that can be moved and resized.
Clicking on the block executes a command. The block has a Color and Cmd at-
tribute. As with the component example in section 5.6, the differences from a
predefined code skeleton are shown in bold.

MODULE Blocks;
IMPORT Files, Display, Display3, Printer, Printer3, Effects, Objects, Gadgets, Oberon;

TYPE
Frame� = POINTER TO FrameDesc;
FrameDesc� = RECORD (Gadgets.FrameDesc)

col�: INTEGER;
cmd�: ARRAY 64 OF CHAR;

END;

PROCEDURE Attributes (F: Frame; VAR M: Objects.AttrMsg);
BEGIN

IF M.id = Objects.get THEN
IF M.name = ”Gen” THEN

M.class := Objects.String; COPY(”Blocks.New”, M.s);
M.res := 0

ELSIF M.name = ”Color” THEN
M.class := Objects.Int; M.i := F.col;
M.res := 0

ELSIF M.name = ”Cmd” THEN

138

M.class := Objects.String; COPY(F.cmd, M.s);
M.res := 0;

ELSE Gadgets.framehandle(F, M)
END

ELSIF M.id = Objects.set THEN
IF M.name = ”Color” THEN

IF M.class = Objects.Int THEN
F.col := SHORT(M.i);
M.res := 0

END
ELSIF M.name = ”Cmd” THEN

IF M.class = Objects.String THEN
COPY(M.s, F.cmd);
M.res := 0

END
ELSE Gadgets.framehandle(F, M);
END

ELSIF M.id = Objects.enum THEN
M.Enum(”Color”); M.Enum(”Cmd”);
Gadgets.framehandle(F, M)

END
END Attributes;

PROCEDURE Restore (F: Frame; Q: Display3.Mask; x, y, w, h: INTEGER);
BEGIN

Display3.ReplConst(Q, F.col, x, y, w, h, Display.replace);

IF Gadgets.selected IN F.state THEN
Display3.FillPattern(Q, Display3.white, Display3.selectpat,

x, y, x, y, w, h, Display.paint)
END

END Restore;

PROCEDURE Copy(VAR M: Objects.CopyMsg; from, to: Frame);
BEGIN to.col := from.col; Gadgets.CopyFrame(M, from, to)
END Copy;

PROCEDURE Handle� (F: Objects.Object; VAR M: Objects.ObjMsg);
VAR x, y, w, h: INTEGER; F1: Frame; Q: Display3.Mask;

BEGIN
WITH F: Frame DO

IF M IS Display.FrameMsg THEN
WITH M: Display.FrameMsg DO

IF (M.F = NIL) OR (M.F = F) THEN
x := M.x + F.X; y := M.y + F.Y; w := F.W; h := F.H;
IF M IS Display.DisplayMsg THEN

WITH M: Display.DisplayMsg DO
IF (M.id = Display.frame) OR (M.F = NIL) THEN

Gadgets.MakeMask(F, x, y, M.dlink, Q);
Restore(F, Q, x, y, w, h)

ELSIF M.id = Display.area THEN
Gadgets.MakeMask(F, x, y, M.dlink, Q);
Display3.AdjustMask(Q, x+M.u, y+h-1+M.v, M.w, M.h);

139

Restore(F, Q, x, y, w, h)
END

END
ELSIF M IS Oberon.InputMsg THEN

WITH M: Oberon.InputMsg DO
IF (M.id = Oberon.track) & Gadgets.InActiveArea(F, M) THEN

REPEAT
Effects.TrackMouse(M.keys, M.X, M.Y, Effects.PointHand);

UNTIL M.keys = fg;
Gadgets.Execute(F.cmd, F, M.dlink, NIL, NIL)
M.res := 0

ELSE Gadgets.framehandle(F, M)
END

END
ELSE Gadgets.framehandle(F, M)
END

END
END

ELSIF M IS Objects.AttrMsg THEN
WITH M: Objects.AttrMSG DO

Attributes(F, M)
END

ELSIF M IS Objects.FileMsg THEN
WITH M: Objects.FileMsg DO

IF M.id = Objects.store THEN
Files.WriteInt(M.R, F.col); Gadgets.framehandle(F, M)

ELSIF M.id = Objects.load THEN
Files.ReadInt(M.R, F.col); Gadgets.framehandle(F, M)

END
END

ELSIF M IS Objects.CopyMsg THEN
WITH M: Objects.CopyMsg DO

IF M.stamp = F.stamp THEN M.obj := F.dlink
ELSE

NEW(F1); F.stamp := M.stamp; F.dlink := F1;
Copy(M, F, F1); M.obj := F1

END
END

ELSE Gadgets.framehandle(F, M)
END

END
END Handle;

PROCEDURE Init� (F: Frame);
BEGIN F.W := 50; F.H := 50; F.col := 1; F.handle := Handle
END Init;

PROCEDURE New�;
VAR F: Frame;
BEGIN NEW(F); Init(F); Objects.NewObj := F
END New;

END Blocks.

140

The only aspect of the code that has not been discussed in one form or
another before, is that of handling the input message. The procedure Gad-
gets.InActiveArea returns true if the mouse is located inside the gadget area re-
served for use (cf. 3.4.1). The repeated calls to Effects.TrackMouse are to draw
the mouse pointer. Procedure Gadgets.Execute executes a command. The other
parameters passed include the object executing the command and the current con-
text, both of which are used by the callee. Note that mouse tracking is not event-
oriented—gadgets take direct control of the mouse after receiving the input event.

6.5.3 Container Gadgets

The duties of containers include displaying children, calculating masks, consum-
ing and removing children, handling child modification, and forwarding of mes-
sages. Most of these duties are simple to program and will not be repeated here.
There are however some aspects of containers that are of interest. In the following
discussions, examples from a panel-like container are used.

Perhaps the most interesting aspect of panels is the way in which the modify
message (cf. 6.3.5) is implemented. To repeat shortly, each display instance of a
panel receives a Display.ModifyMsg for a child that is being adjusted. The default
handling of the modify message (by the gadget itself) is to invalidate the gadget’s
mask, change its coordinates, and send a display message to itself. As the modified
gadget displays itself, the only duty of the panels is to redisplay the area where
the gadget used to be before.

We require the following procedures, the implementation of which is left to
the imagination.

PROCEDURE InvalidateMasks(F, f: Display.Frame; x, y, w, h: INTEGER);
PROCEDURE ToChild(F, f: Display.Frame; VAR M: Display.FrameMsg);
PROCEDURE RestoreRegion(F: Display.Frame; x, y: INTEGER;

dlink: Objects.Object; R: Display3.Mask);

Procedure InvalidateMasks invalidates the masks of F’s children that intersect
with the area x, y, w, h, except for the specific child f. Procedure ToChild forwards
the message M from F to f. Procedure RestoreRegion restores the area R of the
panel F.

The panel handler is programmed in a way to call the following procedure
each time it receives a modify message for one of its children. For the purpose of
illustration, I simplified the implementation to only handling the modify message
with mode set to display, without handling of transparent gadgets, and without
optimizations.

141

PROCEDURE AdjustChild(F: Display.Frame; VAR M: Display.ModifyMsg);
VAR

x, y: INTEGER;
nx, ny, nw, nh, ox, oy, ow, oh: INTEGER;
R: Display3.Mask;

BEGIN
x := M.x + F.X; y := M.y + F.Y;
nx := M.X; ny := M.Y; nw := M.W; nh := M.H;
ox := M.X - M.dX; oy := M.Y - M.dY;
ow := M.W - M.dW; oh := M.H - M.dH;

IF M.stamp = F.stamp THEN
InvalidateMasks(F, M.F, ox, oy, ow, oh);
InvalidateMasks(F, M.F, nx, ny, nw, nh)

END;
F.stamp := M.stamp;

ToChild(F, M.F, M);

NEW(R);
Display3.Open(R);
Display3.Add(R, ox, oy, ow, oh);
Display3.Subtract(R, nx, ny, nw, nh);
RestoreRegion(F, x, y, M.dlink, R)

END AdjustChild;

The local variables nx, ny, nw, nh and ox, oy, ow, oh are initialized to the new
and old relative position of the gadget. Note that we have to use the delta values
of the message to calculate the old position of the gadget, as the child would have
already adjusted its own coordinates when the message is received the second or
more time around.

The first arrival of the modify message requires that we invalidate the masks
of the gadgets that intersect the old and the new position of the child. There is no
need to invalidate the mask of the child itself; it does so itself. The next step is
to forward the message to the child. This results in its coordinates being updated
and mask invalidated the first time around, followed by the child displaying itself
(often left to the default handler). Afterwards, we have to build the difference of
the old and the new location to determine the area that must be redisplayed. Note
that RestoreRegion directly draws the correct area, once for each modify message
received at each display instance. The handling of the modify message thus re-
quires at least the broadcast of the modify message, and another broadcast by the
child to update its mask (Display3.UpdateMaskMsg, cf. 6.4.3). As the panels re-
calculate all invalidated masks in one pass on receiving the latter message, at most
two broadcasts are involved.

The actual implementation is complicated by the handling of the modify mes-

142

sages with mode set to state. This setting suppresses the automatic redisplay of a
gadget after a modification. It thus becomes the duty of the container to keep track
of areas that have to be redrawn. The simplest approach is that on noting the dirty
rectangle, which is the smallest enclosing rectangle that includes all the areas that
must be redrawn. The special handling of transparent gadgets is another compli-
cation, that involves sending a display message (variant area) to all transparent
gadgets located above the new location of the child gadget. Also, one optimiza-
tion not shown above, is to separate the case when the gadget’s previous and new
locations overlap or not; in the latter case, we can save building the restore region
as it is rectangular.

Panels extensions. Although programming a container class is not extraordinar-
ily difficult with a solid background in message semantics, most programmers shy
away from the extra work, preferring to extend an existing container. It turns out
that the most interesting extensions are based on panels, and either involve chang-
ing their controllers, or adding additional semantics that involve the children. For
example, preventing a panel from accepting certain children, or defining some
constraint between children falls in these categories. The remainder of the panel
implementation is often left untouched. Unfortunately, as Oberon messages are
often on a higher level of abstraction than those found in typical object-oriented
languages, this is often difficult to do. Let’s say the derived class would like to
change the way the drag-and-drop operation is programmed, for example, to al-
ways make a copy of the gadget instead of moving the original. The only hook that
the extender has is over-riding the handling of the input message, which means du-
plicating all procedures called in the process, as most of them are statically bound.

As defining more messages would increase the message discrimination time,
it is preferable to provide a special client interface for extenders that is more effi-
cient. Panels use a method block, a similar technique as used in the Draw system
[WG92], that looks approximately as follows:

TYPE
Panel = POINTER TO PanelDesc;
Methods = POINTER TO MethodsDesc;

PanelDesc� = RECORD (Gadgets.FrameDesc)
...
do: Methods;

END;

MethodsDesc = RECORD
RestoreBackGround: PROCEDURE (F: Panel; x, y: INTEGER; R: Display3.Mask);

143

RestoreCaret: PROCEDURE (F: Panel; x, y: INTEGER; R: Display3.Mask);
(� ... and so on for other methods. �)

END;

Defining a suitable interface for extending panels was only possible in the
second iteration. The calling dependencies between methods are so complicated
that the author has his doubts if a complicated extension can be made without the
source code of the panel class. This is also the experience of [TGP89], where
highly object-oriented code that makes extensive use of late binding is difficult to
explain or to extend. Code inheritance, one of the primary advantages of object-
oriented languages, is thus also the major problem.

If code inheritance is left to the expert, then extension of functionality leaves
the casual programmer behind, except if a way can be found to redistribute tasks
between container and child. The latter option is especially interesting when the
extra functionality involves dependencies between children. Concretely, it in-
volves redistributing tasks that are usually part of the container to the children.
For example, a schematic editor gadget is a container that has to ensure that the
chips remain wired together when the chips are moved by the user.

It is here that the broadcasting technique shows an interesting possibility. If
a child, like say a “wire gadget”, could monitor the message traffic between its
parents and its brothers, it might obtain enough information to adapt itself accord-
ingly. This involves the wire gadget adjusting its own position according to the
modify message sent to the chip it is connected to. A simple, but inefficient imple-
mentation, involves forwarding the modify message after the standard handling of
the event to all other children except for the child that was modified (which already
received the message).

PROCEDURE AdjustChild((F: Display.Frame; VAR M: Display.ModifyMsg);
BEGIN

(� normal message handling �)

SelectiveForward(F, f, M)
END AdjustChild;

As we see, brothers can “listen along” for modifications, and thus broadcast
recursively a modify message regarding themselves. This approach is interesting
because the gadgets that change need not be aware of the gadgets that monitor
them. It would thus be possible to wire existing gadgets together even without
them being aware of the wires in the first place.

This approach would show some promise if it was not for the inefficient dis-
play update that results when a long chain of dependencies is present (which can

144

be endless too if cyclic dependencies are created). As panels already manage a
dirty rectangle for keeping track of the redraw area resulting from display mes-
sages with a state mode, a modification of the adjust procedure to detect recursive
broadcasts of the ModifyMsg, and update the dirty rectangle accordingly, can solve
the inefficiency problem. This modification is currently included in the panel im-
plementation, and involves setting a flag in the container just before forwarding
the modify message. Should another modify message arrive while the flag is set,
we update the dirty rectangle and change the mode to state before forwarding the
second modify message. Just before resetting the flag, we check if the dirty rect-
angle must be redrawn, and broadcast an update message to all panel instances.

Although the display update efficiency problem is solved, another source of
potential inefficiency is the broadcast of a recursive modify message initiated by
dependent gadgets. If complicated inter-depencies are present, many broadcasts
have to be made to update the dirty rectangle. In this case, it is worthwhile asking
if broadcasting does a good job. This is because a direct message send from child
to parent—“upward” in the display space—also works in this specific case. The
modify message, mode state is an example of a message that need not strictly
be broadcasted, as the message sender assumes responsibility for updating of the
destination. Not to invalidate our stated belief in broadcasting, we refrained from
implementing this optimization.

6.5.4 Camera-views

Camera-view gadgets are type extensions of type Gadgets.View. The most noted
gadget belonging to this class, the camera-view, allows the user to adjust the view-
point by dragging the visual gadget being viewed. There are only two interesting
aspects regarding programming camera-views (the remaining bulk of the imple-
mentation consisting of similar code as that of the container gadgets and also the
implementation of several optimization for reducing screen flicker).

First, the display position of the viewed gadget is varied by adding a transla-
tion vector to the origin M.x, M.y passed in each frame message forwarded to the
viewed gadget. As the display position of the gadget is the sum of the message
origin and the frame’s coordinates, this fools the gadget in believing that it has
a new frame position. Each camera-view gadget thus keeps track of the current
translation vector applied to its viewed gadget. In the current implementation of
camera-views, the translation vector is relative to the top left corner of the camera-
view, thus requiring the actual viewed gadget’s coordinates to be “subtracted out”
from the origin for the gadget to appear at the correct position.

145

Second, the camera-view has to store its absolute display coordinates in the
fields provided in the type Gadgets.View before passing a frame message down to
the viewed gadget. This is required for the imaging model, as discussed earlier in
section 6.4.3.

6.6 Summary

This chapter introduced the visual gadgets, the message protocols they implement,
and the imaging model based on display masks. The chapter concluded with
examples of how messages cooperate, and discussed interesting aspects related
to programming elementary, container, and camera-view gadgets.

146

Chapter 7

Documents as Objects

7.1 Documents

In the Gadgets system, application user interfaces and application documents are
unified with the concept of documents. The consequent application of this idea—
common in document-based user interfaces— blurs the distinction between appli-
cations and documents that are edited with applications.

A document consists of a run-time part with its visual representation, and a
data part with its contents. The run-time part of a document is called a document
gadget, a visual gadget that displays the documents contents. The data part of a
document is an entity identified by a document name. Loading a document maps
the document name into a document gadget, and storing a document writes the
contents to the entity identified by the document name. The exact interpretation
of load and store is a matter of the document class, and often involve more than
just reading or writing data from and to a file.

In the following discussions we will refer to both document gadgets and doc-
ument data as documents, making clear in the context which is meant. Further-
more, to simplify the discussion, we initially assume that document data is stored
on secondary storage as a file.

Documents as containers. Documents are container gadgets with a single vi-
sual gadget as child. For example, in the case of panel documents, the document
contains a panel, and in the case of text documents, the document contains a text
gadget. The child fills the complete surface of the document gadget, making it
optically impossible to distinguish between a document and its contents. This is

147

148

Document
Gadget

Document
Contents

Document
Gadget

Container
Gadget

Document
Contents

Document
Viewer

Document
Gadget

Document
Contents

Camera-view
Gadget

Document
Viewer

Document
Viewer

Camera-view
Gadget

Figure 7.1: Embedding documents in the display space

an advantage when documents are embedded transparently inside each other.
The tight coupling of document gadget and its contents might make the reader

believe that, for example, a panel should be a document. This is however false
when we take into account that this unification means that nested panels would
always be stored in different files. Instead, we distinguish between the orthogonal
dimensions of nesting and persistency. Document gadgets collect their contents
into persistent entities by addition of features, for example a document name, a
way to print, load and store to a file. These features are not part of containers.

Let’s investigate what happens when we insert a document gadget inside a
panel, where storing the panel in a library requires that we store the embedded
document gadget too. As the embedded document physically belongs to a differ-
ent file, we only need to store the document name instead of copying the document
contents into the library. On reloading the panel from the library, the document
gadget loads its contents by mapping the retrieved document name into the docu-
ment contents (found in the file with that name), and inserting it into the document
gadget. The effect is that opening one document causes nested documents to “fill
in” their contents too.

The other way to add a document to the display space—in addition to direct
embedding in a container—is to insert it into a viewer. The viewer menu bar shows
the document name and push buttons applicable to the document, and the viewer
contents is the document gadget itself. But where does the menu bar come from?
The viewer manager requests the document gadget to generate a menu bar, which

149

the viewer assumes the responsibility for showing. The menu bar and document
gadget are thus two separate but related entities, by way of the document gadget
generating a menu for itself when so requested.

Viewers have two options for integrating the document gadget. One way is
to embed the document gadget directly as the main frame of the viewer. The
other way is to add a camera-view between the viewer and the document gadget.
The latter feature is useful when the document gadget has a rigid size that cannot
adapt to the outline of the viewer. Document gadgets that can adjust their size
according to the viewer size are called adaptive documents, and belong to the
class of gadgets that can be directly embedded in a viewer. From left to right in
the Figure 7.1, we have a document embedded in a container gadget, directly in a
viewer, and with a camera-view between the document gadget and the viewer.

The choice of how document gadgets are embedded in viewers is also depen-
dent on the required copying behavior of a document. By convention, viewers
make shallow copies of their menu bar and contents when the user presses the
Copy button in the menu bar. Hence, when a viewer with a camera-view is copied,
we have two views of the same visual gadget. Otherwise, we have separate copies
of the viewer contents. In practice, we integrate text gadgets directly into viewers,
and rigid objects like panels with camera-views.

The document type.

TYPE
Document = POINTER TO DocumentDesc;
DocumentDesc = RECORD (Gadgets.FrameDesc)

name: ARRAY 128 OF CHAR;
Load: PROCEDURE (D: Document);
Store: PROCEDURE (D: Document);

END;

The module Documents provides the base type of document gadgets and their
default message handler. The type Documents.Document exports fields for the
document name and methods to Load or Store the document. Calling the Load
method loads the document contents from the entity identified by the document
name into the dsc field; calling the Store method writes the contents to the entity
identified by the document name.

The load and store methods must not be confused with the file message in-
troduced earlier (cf. 5.4). The only situation where a document receives the file
message is when it is embedded in a container gadget, which is about to be loaded
or stored. The handling of file message involves loading or storing the size, po-
sition and name of the document gadget. Consequently, loading an embedded

150

document happens in two phases. First, the latter data is read, followed by the
document gadget invoking its own load method to fill in its contents.

The links and attributes of a document provide information to the document
manager and the viewers documents are integrated in. For example, a viewer can
request a document to return its menu bar with the link message. Documents are
expected to generate three menu types: a menu for the system track, the user track,
and for the desktop. These distinguish themselves mainly in the size and number
of their push buttons. Documents have freedom in how menu bars are created.
They can either generate menus on the fly, or use copies of prefabricated ones.
The latter option is quite popular, as menus archived in public libraries can also
be customized by end-users.

Other interesting attributes of a document include the document icon, speci-
fied by a string attribute that names a public object, and an attribute that specifies
if the document is adaptive or not. The document icon is used by the desktop sys-
tem to create a pictorial representation of the document, which the user can click
on to open the document. The adaptive attribute is used internally by the viewer
manager to make a decision if a camera-view gadget must be inserted between the
document gadget and the viewer.

In all other regards, the documents behave as conventional containers. A dis-
play message displays the document, a print message prints the document, and so
on. These features make it possible to integrate a document anywhere a visual
gadget can be integrated.

Document classes. Before we can invoke the load method of a document, we
need a document instance of the correct class. Hence on opening a document, we
require a mapping of the document name to the document class, an operation that
is not so harmless as it might seem. Ideally, we want a loose connection between
the document name and the document class, so that users are able to name their
documents anyway they see fit. There are several solutions to this problem, as the
following paragraphs show.

With the exception mentioned in the following paragraph, a standard file for-
mat is used for all file-based documents (in EBNF):

Document = Header [MetaData] f DataBytes g.
Header = Tag Generator X:2 Y:2 W:2 H:2.
Tag = 0F7X 7X.
Generator = f CHAR g 0X.

The information we require to create an initial document instance, the docu-
ment generator procedure, is part of a standard document header. The fields X,

151

Y, W, H encode the document’s display position, and act as a placement hint for
opening the document. The document header is followed by optional meta-data
and the document contents itself. The contents of the meta-data section is dis-
cussed later.

Loading from a file is implemented by reading the document generator from
the header, creating a new instance of this document class by calling the generator
using the module loader, copying the filename to the name field of the document
instance, and invoking the Load method. The method re-opens the document file
name, skips over the document header, and reads and internalizes the document
data. The latter is often, but not necessarily, an anonymous library. Storing re-
quires that the document writes its own document header, meta-data, and data
contents.

A disadvantage is that the document header must be read at least twice; an
improvement that involves passing a file Rider as parameter to the Load method
was rejected on the observation that documents need not necessarily be stored in
files (see the following paragraph titled network documents for details).

Compatibility. The standard document format works well for documents that
actually have it, but does not allow the opening of old file formats with the univer-
sal document opening command. As an intermediate solution until all documents
are converted to the new format, we maintain a small table of filename extensions
and associated document classes in module Documents. On detecting an invalid
document header in the document file, the database is consulted with the filename
extension to generate an associated document gadget. If needed, storing the doc-
ument again will provide the document with a valid document header. Of course,
the limitation of this approach is that it only works if users stick to the Oberon
conventions for file name extensions. In the case of a deviation from these guide-
lines, the document type casting possibility, as sketched in a following paragraph,
can be applied to associate a document class with a data file.

Fortunately only a few file formats were in active use in the older Oberon sys-
tem, so that the extension database has only half-a-dozen “compatibility” entries.
Today, most documents are converted to the new document format.

Network documents. Documents need not necessarily be restricted to (local)
files. With today’s high level of workstation connectivity we can imagine ac-
cessing documents that are located on remote machines or are published on the
Internet. Fortunately the problem of associating a document class with a docu-

152

ment name is already addressed by the Uniform Resource Locator or URL syntax,
the way in which services and documents are identified on the Internet. A URL
name consists of a known number of prefixes, that specifies the service (for ex-
ample “http”, “ftp”, or “gopher”), followed by the document location and name.
Internet documents can thus be transparently included in our document framework
by maintaining an additional database of service prefixes and associated document
classes. The document manager is modified to detect the URL notation, and create
the corresponding document class to fetch the document across the network.

In this model end-users have a unified model of local and remote documents.
The same commands are used to open, store, print and manipulate any of these
documents. Combined with the capability of the document manager to exchange
documents in the viewer system in place with another, a hyper-text like browsing
ability is a further intrinsic property of Oberon documents. We imagine the user
clicking on a button or hyper link in a document, which is then replaced by another
document fetched from the network.

A further interesting possibility is combining Internet services and Oberon
documents. This involves publishing Oberon documents with Internet services
like WWW and FTP. For example, a panel document on a WWW server is opened
with the following command:

Desktops.OpenDoc “http://machine/Gadgets.Panel”

As the document class (panel document, in this case) is not known until af-
ter the document has been fetched across the network and the document header is
read, the HTTP document class has temporarily to assume responsibility for trans-
ferring the data across the network, and then “transforming” or “replacing” itself
with a panel document type. In our case, an embedded HTTP document must
change to a panel document after the data was fetched from the network. This
is problematic, as in concept, all references to the original HTTP document must
be replaced by references to the panel document. The transformation of one type
into another type is a feature not supported by statically checked programming
languages like Oberon.

Here message handlers show welcome additional flexibility. The exchange
of a document class is possible by exchanging the message handler and load and
store methods (from those of the HTTP document to those of the panel document
handler). Note that the exchange is associated with a drawback: we must not make
type extensions of Documents.Document. This is because we cannot change the
type of a gadget already referenced, as for example when it is embedded in a

153

container. A solution might be to return another document with the load method;
this is unfortunately too late, as the original document is already embedded inside
a container when the load method is invoked. There is no way out of the dilemma
for embedded document, hence our current approach to live with the restriction.
The problem does however point to the fact that a means of type evolution at
run-time can be useful, and should be investigated further.

Document casting. Once a document is provided with a document header, its
default document class is “burned-in”. In the case of a text document this means
that the document can only be edited with a text gadget. Should another type of
text editor be developed we might want to convert our text documents to this new
format, and thus require a way to change the generator in the document header
and also convert the document data format. This is foreseen by the system with
a feature called document casting. To cast a document from one class to another,
the end-user specifies the generator of the destination class M.P when opening a
document:

Desktops.OpenDoc filename(M.P)

Instead of generating a document gadget belonging to the old class, we gen-
erate a document of the destination class and “point” it to the data file in the old
format. The destination document will detect on loading that an unexpected doc-
ument format has been encountered. The well-programmed ones might know this
new format and convert it on the fly to the destination format. Should the format
be unknown, the document reports an error and terminates the loading process.
Storing a casted document converts it permanently to a new format.

Meta-data. In addition to their standard attributes and links, documents can be
decorated with additional information just as any other gadget (cf. 5.5). As the
number of Oberon documents are continually growing, these decorations can play
an important role in organizing and locating documents. The idea is to attach
information to documents, like author, keywords, objects that act as annotations,
keep track of usage and statistics. As this information is attached to documents,
in addition to the normal attributes and links, the information is managed by the
default message handler for gadgets that store the information in the attr and link
fields of the type Gadgets.Frame.

A drawback of document decorations is that they are intimately attached to the
document gadget, so that accessing the information requires loading the document

154

first. In the case of a search machine or document indexer, such an approach would
lead to unnecessary inefficiency as documents that do not match the search criteria
would immediately be discarded after opening. A more viable approach is to keep
the decorations separate from the document data itself, by regarding them as meta-
descriptions of the document. The section MetaData in the document file format
is used for this purpose, and has the following file format.

MetaData = Tag len:4 Attributes Library.
Tag = 0F7X 08X.

The Attributes section contains the attribute list of field Gadgets.attr and the
Library section the objects of Gadgets.link. The format of the sections Attributes
and Library are not shown above; service procedures in module Documents access
these sections. The len field indicates the length of the following data so that, if
necessary, external readers can jump over the data.

Unfortunately, document meta data is not extensively used in the Oberon sys-
tem yet. The only interesting implementations at the time of writing include a
decoration for document annotations, and a way to attach resources to a document
(sketched in the following section).

7.2 Portable Documents

7.2.1 Motivation

The decomposition of large systems into modules and the separation of user inter-
face and application modules create the problem insuring consistency of installed
applications and documents. For example, when transporting documents to other
machines we cannot always assume that all the necessary components to view that
document are already installed. It might also be the case that some critical com-
ponent of a large system is inconsistent with other components. This is a major
problem as the detection of the inconsistency is often delayed until the system is
used. An error condition only occurs once a missing or inconsistent component
is required, which might only be when a seldom used operation is activated. The
detection of a problem is made difficult by the fact that it is not possible to de-
tect statically what the scope of an Oberon application is. This is an unfortunate
side-effect of run-time module loading and the separation of user interface and ap-
plication modules (remember that commands form a “hidden” link between user
interface and application modules).

155

Although inconsistency is difficult to detect and thus to solve generally, an
attempt can be made to solve the problem of consistent distribution. Consistent
distribution means that when a user obtains a document, he or she can open and
view it, even if it contains components not installed on that computer. Note that
this is different from consistency detection, which attempts to determine if all the
components an application requires are available and consistent with each other.
First, we must assume that the creator of a document knows all the resources
that this document requires as we cannot detect it by program. Resources might
include auxiliary data files, libraries, documents, and modules.

A consistent distribution is made by attaching all the required resources to a
document so that the document is internally consistent (with of course the previous
assumption). Conceptually, a truly consistent document would require all parts of
the Oberon system, even including the lowest modules in the module hierarchy.
As we do not want a copy of the Oberon distribution in each document, we must
assume that an Oberon installation at least consists of the parts required to open
the document in the first place, which correspond at least to the most used parts of
the Oberon system. For the purposes of our discussion, we assume that document
developers are aware what components are part of a standard Oberon distribution;
these shared components are available to everybody. Note that when source and
destination machines are connected by network we can verify that the destination
actually has all the components required, and if not, transmit them before sending
the document itself, like in [Bah92]. In our implementation, we assume that no
such network connection is available, and that documents are truly self-contained.
This has the advantage that more conventional means of document distribution is
applicable.

If we want self-contained documents to be usable on all Oberon platforms,
effectively making them portable documents, we have the following problems to
keep in mind:

� In addition to data resources, we have to include the platform independent
implementations of components.

� Portable documents must be as compact as possible.

� Installing resources should be done only once, and not each time the docu-
ment is used.

� We require a way to find out which resources are the newest and when new
resources must be installed from the document.

156

� The inclusion of executable code in documents opens up the can of worms
related to security and viruses. This is especially problematic in the Gad-
gets document model which allows access to remote documents in the same
way as local documents. We must investigate ways to protect an Oberon
installation from these unwelcome intrusions.

7.2.2 Resources

In our implementation document resources are restricted to Oberon modules and
data files. Compressed versions of resources are attached to a document with a
document linker. Each attached resource is given a name corresponding to the
module of filename and a programmer-definable version number to distinguish
between successive versions of the same resource. Resources and version numbers
are packed into an object of type Resources.Obj, which is linked to a document as
a decoration named “Resources”.

TYPE
Resource = POINTER TO ResourceDesc;
ResourceDesc = RECORD

next: Resource;
name: ARRAY 64 OF CHAR;
version: LONGINT;
F: Files.File;
pos, len: LONGINT;

END;

Obj = POINTER TO ObjDesc;
ObjDesc = RECORD (Gadgets.ObjDesc)

res: Resource;
signature: Crypt.RegisterPtr;
key: Crypt.Key

END;

As other document decorations, the resource object is stored in the meta-data
section of the document file. On opening the document, the resource object is
loaded and reconstructs its resource list. The resource fields F, pos, and len iden-
tify the resource inside the meta-data section of the document file. Note we are
exploiting an interesting feature of the Oberon file system: should the file refer-
enced by F be deleted, the file handle F still points to a copy of the original file
which is made anonymous. The fields signature and key are part of the authenti-
cation mechanism for portable documents (cf. 7.3.1).

After the resource object has been loaded, but before the document is opened,
we extract the required resources so that they become available before they are

157

used by the document. In principle, the resource object could immediately install
the resources just after the resource object is loaded. Instead of this approach we
picked a mechanism where the document gadget sends a signal to all attached ob-
jects that they must prepare themselves for the imminent opening of the document,
at which time the installation process takes place. This places the installation pro-
cess under the control of the document and not the resource object.

Installation of a resource is dependent on its presence on the destination ma-
chine and its version number. A table of already installed resources and their
version numbers is maintained in a file. Installation occurs according to the fol-
lowing pseudo code, executed each time the portable document is opened:

FOREACH document resource
IF (not installed) OR (document resource newer than installed resource)

Install resource

In the case of data resources, installing involves uncompressing the resource
from the document file and writing it to a file corresponding to the resource name.
We use the same compression mechanism as the Oberon archiver, namely LZSS
[Zel93, Nel91c]. Module resources are installed with the mechanism described in
section 7.2.3. Note that the resources remain in the document file until they are
explicitly removed by the user. As portable documents always remain consistent,
no problems occur should the user decide to delete the installed resources, for
example to free up disk space. For exactly this purpose, resources are installed
in a user-specified directory which can be purged any time. This also reduces the
risk of resources over-writing system components.

Caveats. Independently developed resources sharing the same name is a major
problem in open modular systems. For example, in Oberon, modules (with the
same name) can only be loaded once, restricting only one of many modules with
the same name being active in the system.

There are two solutions to this problem: a name conflict can be removed by
renaming resources at the destination or source. If renaming resources occurs
only when a conflict occurs (at the destination), we might have to modify parts
of an application. In Gadgets, the connection from user interface to application
module must also be guaranteed under command renaming. As a solution based
on renaming just defers the naming process from the developer to the module
loader, we can achieve the same effect by naming modules uniquely in the first
place (at the source). This can be as easy as prefixing a developer name to module
names and other resources (like in Java [Mic95]). In the long run, the enlargement

158

of the module name space in Oberon has thus to be foreseen, and is essentially a
question of a minor system modification to reduce the restriction on a module
name length.

A more serious problem with the portable documents, as sketched above, is
that new document classes cannot be distributed inside resources packed in docu-
ments having that class. This is because the document generator is called to create
a document instance, which in turn must unpack the resources. If the document
generator is not available yet, we cannot create the document to unpack its own
module. This hen-and-egg problem is solved by modifying the document loader.
The modification involves the document loader reading the meta-data and send-
ing the prepare signal to the resource object itself, instead of the document as is
usually the case. The result is that control over meta-data is removed from the
document’s responsibilities.

In the author’s opinion, the preferred solution is based on a matter of taste.
The current implementation keeps control with the documents themselves, which
is more in the spirit of object-orientation, but has this restriction. A compromise
is possible by having the document loader usurp control from documents only in
the case where the document generator is unavailable, as detected when reported
by the module loader on executing the document generator.

7.2.3 Module Transport

In principle, module resources of portable documents can be transported as source
code installed by invocation of the compiler. Its disadvantages include the lack
of investment protection and required compilation time. As advantages, optimal
run-time efficiency is obtained in comparison with interpretive approaches based
on distributing byte-codes, as in Java [Mic95], and the document is completely
portable. As re-engineering systems from low level abstractions like machine
code and byte-codes is just a matter of time and money, protecting the develop-
ment investment was not an overriding concern in our implementation of portable
documents for Oberon; a simple but not trivial module representation instead of
pure source is deemed to be sufficient.

The number of ways modules can be transported, counting out source code
and machine dependent object code, depends on how many ways we can cut up
the Oberon compiler and still obtain a platform-independent module representa-
tion. The natural choices include a token stream or a parse tree representation
(for a two-pass compiler). These involve splitting the compiler between the token
scanner and the parser, and the intermediate parse tree representation and the code

159

Storage Technique Relative Size

Source Code (bytes) 100%
PowerPC Object File 88%
Intel Object File 76%
MC680x0 Object File 70%
Compressed Source 33%
OMI Object File 26%
Compressed Tokens 25%

Table 7.1: A size comparison of module representations

generator [Cre90, Wir96]. The further the selected presentation is in the compi-
lation process, the less work has to be done to install the module resource, and
the faster it takes place. Currently, both token stream and parse tree represen-
tations are used for transporting modules in portable documents. The reason is
more pragmatic than anything else. A parse tree representation of modules, based
on the Oberon Module Interchange (OMI) [Fra94b, Fra94a], requires an adapted
Oberon system, which was not available for all Oberon platforms at the time of
writing. A token stream representation of modules is simpler to implement, as
it only involves inserting an interface between the scanner and parser for reading
and writing tokens.

The token stream representation of a module is created by scanning the tokens
of a module, and numbering identifiers as they are encountered. The resulting to-
ken stream, consisting of the token numbers, identifier numbers and the identifier
table, is further compressed using the common LZSS compression algorithm. The
decompression of the token stream representation can be imagined as a pipeline
that reads the resource data, decompresses it, and reconstructs the original scanner
token stream for feeding into the compiler’s parser.

There are even further possibilities for compacting the token stream repre-
sentation. In [Zel], unexported identifiers—which cannot influence the module
symbol file—are omitted and substituted with numbers. This transformation in-
creases the difficulty in re-engineering the module contents. This improvement
has not been incorporated in our implementation. A comparison of file sizes of
modules using a few selected representations is given in Table 7.1. The Oberon
Internet tools (including source comments) consisting of 19 modules are the basis
of these measurements. For comparison, the size of native object files on a few

160

platforms are also listed.
What is interesting is that the compressed token representation and OMI ob-

ject files are approximately of the same size. This is because OMI object files
use a similar predictive way of encoding symbols as LZSS. The distinguishing
factor is the installation speed; OMI-based modules can be unpacked unmodified
and loaded immediately, whereas the token stream representation must first be
unpacked and then compiled. Once the token stream is compiled, the cost of load-
ing a natively compiled module is lower than loading an OMI module; the latter
does the decompressing and compilation of the parse tree each time the mod-
ule is loaded. A speed comparison of OMI and the token stream representation
is highly dependent on the platform, hosted operating system, disk transfer rate,
and Oberon compiler back-end for that platform. The current implementation of
OMI for Intel processors, with a two pass compiler back-end, cannot be directly
compared with a PowerPC and MC680x0 implementation, that uses a one pass
compiler back-end. Also the relatively slow disk sub-system of MacOS in com-
parison to Intel-based PCs skews numbers across platform comparison. Objective
benchmarks show that the two pass Intel back-end is currently the bottleneck for
OMI on Intel: in comparison to PowerPC implementations where OMI is not
significantly slower than native object files, OMI object files on Intel have 4 to
8 times longer loading time than native Intel object files, depending on machine
characteristics. Subjectively, the loading times involved are so small that one or
the other technique makes little difference. For example, the complete Internet
tool suite of 19 modules loads with OMI in approximately 4 seconds on an Intel
120 MHZ processor.

7.3 System Protection and Security

Single user operating systems are especially sensitive to badly written, virus and
Trojan horse infected software, which can crash the system, access sensitive data,
destroy software or even the whole installation, and bar further access. In Oberon,
the situation is not different. Any software obtained can exploit the security and
protection deficiencies of the system. In document-based systems like Oberon,
the perceived problem seems to be larger than usual, because even supposedly
and traditional harmless entities like documents can harbour unwanted executable
content, and simply the act of opening a document has unknown side-effects. The
problem is aggravated by high connectivity of the Oberon system, which allows
remote documents to be accessed as if they were local. In fact, the problem is only

161

perceived to be larger: it is an inherent problem of all software, that is unrelated
to documents or the network.

These issues and the protection of software systems are traditionally the do-
main of the military, who want to restrict the flow of information, and multi-user
systems [AGS83], which are interesting targets as so many people are both de-
pendent on the system and so much “interesting” information is collected in one
place. Information security, as practiced by the military, has three separate but
interrelated objectives [San93]:

1. confidentiality, related to the disclosure of information,

2. integrity, related to the modification of information and software,

3. availability, related to denial of access to information and software.

Unfortunately, the military have specific interests related to security classi-
fications of people and not programs. This is an important point. The security
mechanisms incorporated in multi-user systems like UNIX build independent user
spaces restricting the influence, access, information flow of one user over and to
another, are of little use in a single-user environment. A single user of a UNIX
operating system is just as unhappy when the program that he or she just down-
loaded over the net wrote over private files. The security mechanism designed for
this environment is to protect the system, and not its clients.

This example illustrates that a security level determined by the user identity
is too coarse-grained; security attributes are to be associated with single applica-
tions. In the case of Oberon, the “identity” of modules and documents need to be
determined, which in turn determines what they can or cannot do. For effective
system protection in a single-user environment, two problems must be solved. The
first problem is that of authentication. Applications are not resistant to tampering,
as the large number of viruses can attest. A trusted application can be turned into
a havoc creating one by the adjustment of a few minor bytes. A digital signature
testifying its authenticity is required. A second and much more difficult problem
is to decide how and where to restrict access for authenticated applications.

Various approaches are possible. An incomplete list of (non mutual exclusive)
approaches, sorted according to decreasing user paranoia, might be the following:

� Prevention, which restricts all untrusted applications as much as possible,
but with enough freedom so that at least something useful can be done. This
approach assumes that all programs are bad. It is for example the approach

162

followed in Java. Java restricts access of untrusted applications to resources
in a single file directory. This approach is an anti-thesis to an open system—
why bother when no clients are trusted to use these features. Prevention is
expensive to implement and involves a game of wits between attackers and
defenders.

� Confirmation, which verifies each potentially “dangerous” operation and
asks the user if it can be completed or not [Dät96, Han90]. This approach
assumes that there might be bad programs, and is deficient because the user
quickly looses his or her patience answering questions that might be above
the user’s level of understanding.

� Authenticated trust, which involves only using application software that has
been digitally signed by its manufacturer. This approach assumes that no-
body wants to be identified as the culprit. It is dependent on trusting some-
body who your lawyer can call if your machine is dead after installing the
software (as long as you can prove it). This is often enough motivation
except when in a state of war.

� Trust in your fellow man or woman. The current state of affairs in the
software world.

The island approach. The principal difficulty in introducing strong security and
protection mechanisms in Oberon is the high cost. The system was not designed
with these features in mind and has numerous unsafe module interfaces. As a
redesign of the system is out of the scope of this thesis, we investigated cheaper
alternatives, like authenticated trust which only involves verification of digital
signatures of modules.

Two alternatives come to mind. A reasonably expensive approach is to verify
digital signatures each time a module is loaded and thus protecting the module
against tampering. A cheaper approach is to verify digital signatures at the time
of installation. We assume (perhaps mistakenly) that installed (and thus trusted)
applications do not modify modules of other applications. This measure alone
cannot protect an Oberon system; once a module has passed the immigration gate
of the “island” it has full access (even when later modified).

The island approach was selected as a means to protect an Oberon system
against unwelcome portable documents. It is an open question if the island ap-
proach is sufficient for protecting the Oberon system. It is clearly a minimal ap-
proach that, according to the author is sufficient for low security applications. It

163

can also form the basis of a more refined and selective model should the Oberon
module interfaces be adapted. In the latter regard, Oberon has a large potential
because it has a strong foundation in type safety (cf. 7.3.2).

7.3.1 Authentic Portable Documents

Public key cryptography. Digital signatures, authentication and public key
cryptography are dependent on mathematical one-way functions. One-way func-
tions are easy to compute in one direction but difficult to compute in the other
direction. A trap-door one-way function is a special type of one-way function
that is invertible with the help of some secret information. They are used to trans-
mit coded messages. The message sender (often referred to as Alice) uses the
one-way function to create an encrypted version of a message, which the receiver
(often referred to as Bob) can decrypt by inverting the function using the secret
information. If only the receiver knows the secret information, then he or she is
the only person that can decipher it. The trap-door one way function can be shared
by many communicating parties by parameterizing it with public and secret infor-
mation. The public key of Bob is the information he publishes for somebody to
send a message to him. He uses his secret key to read the messages encrypted with
his public key. The security lies in the fact that the private key cannot easily be
deduced from the public key—the “interesting” functions from the cryptographers
viewpoint are those that can be made arbitrarily difficult to invert. The advantage
of a-symmetrical public key cryptography is communicating parties need not agree
on a shared key to communicate (as in conventional symmetric cryptography).

A digital signature is based on the above technique, except that it is applied in
reverse. For Alice to sign a message, she encrypts it with her private key to form
the signature. To verify that the message comes from Alice, Bob uses her public
key to decrypt the message; if it is readable, he is sure that it must come from
Alice. The protocol has the following characteristics [Sch94a]:

1. The signature is unforgeable; only Alice knows her private key.

2. The signature is authentic; when Bob verifies the message with Alice’s pub-
lic key, he knows that she signed it.

3. The signature is not reusable; the signature is a function of the message and
cannot be transferred to any other document.

4. The signed document is unalterable; if there is any alteration to the message,
it can no longer be verified with Alice’s public key.

164

5. The signature cannot be repudiated; Bob does not need Alice’s help to verify
her signature. Anybody that knows Alice’s public key can verify that the
message came from her.

RSA digital signatures. The digital signature mechanism used for portable doc-
uments is called RSA [RSA78], one of the easiest to implement and secure proto-
cols. The signing of a document with the RSA algorithm requires a large number
of computations, which makes it unfeasible for signing the whole text with the
one-way function. Instead, Alice only signs a one-way hash of the document. A
one-way hash function creates a characteristic number from the document con-
tents that is much shorter, typically 128 bits, which is called a message digest. As
the chance of two documents hashing to the same value is only one in ����, we
can safely equate a signature of the hash with a signature of the document. The
one-way hash function used for portable documents is called MD5 [Riv92].

The RSA algorithm will now be sketched; its theoretical underpinnings and
a general description of its use are found in [RSA78, Sch94a]. Alice generates a
private and public key pair by picking two large prime numbers p and q (typically
256 or more bits long each). Compute the product:

n � p� q

Pick an encryption key, e, so that

GCD�e� �p� ��� �q � ��� � �

Use the extended Euclid algorithm to compute the decryption key, d, so that

e� d � � �mod �p� ��� �q � ���

The numbers e and n are Alice’s public key. The number d is the private key.
The two primes p and q are no longer needed and should be destroyed or never
revealed.
To sign a message digest m, where m is a numeric representation of the message
digest and m � n, compute

s � md �mod n�

To verify the signature compute

165

m � se �mod n�

and compare it with the message digest of the received message. A match indi-
cates that the document was signed by the corresponding private key.

It is conjectured that the security of RSA depends on the factoring of large
numbers. The larger n, the more difficult the problem becomes. With current
factoring mechanisms it is agreed that a modulus of 1024 bits (308 decimal digits)
is sufficient for long-term secrets for the next ten years. Assuming one computer
can form a million factoring steps per second and a million computers can work
on the task, then it will take ���� years to factor a 1024 bit modulus.

Key distribution and key rings. Although years of investigation have increased
the confidence in the RSA algorithm itself, the signature protocol can be com-
prised in a very simple way. The protocol assumes that the public key of Alice
really belongs to her. An imposter, Mallet, can generate an own public and private
key pair, and publish the public key as if it belonged to Alice. The signature pro-
tocol is thus highly reliant on the public keys being authentic. There are several
approaches to ensure this:

� Alice and Bob can meet face to face, verify each other’s identity, and ex-
change public keys.

� Alice can publish her public key in a database or newspaper. As long as her
public key is easily accessible, the chances of Mallet introducing a fake key
is reduced.

� If no direct verification of Alice’s public key is possible, a central authority
can sign her public key, which can be verified using the authorities’ public
key. A digital signature on a public key is called a key certificate.

Public key certificates have the advantage that communicating parties only
need to know the public key of the authority, which is highly published, perhaps
even burned into the operating system ROM. In the case of portable documents,
each developer would have his or her public key signed at the authority, and so
obtain a valid identity. Portable documents signed by a key without a certificate
from the authority might have been compromised and must be rejected.

In our implementation of digital signatures for portable documents, the pub-
lic and private keys are visual key gadgets (Figure 7.2). As gadgets, keys can be

166

Figure 7.2: Public and private key gadgets

Figure 7.3: A panel for managing keys

transported inside documents and electronically mailed from one user to another.
Keys are collected on key rings. We define key rings containing the public keys
of acquaintances (the public ring), a key ring for the user’s secret keys (the pri-
vate ring), and a key ring identifying developers whose portable documents have
access to the machine (the access ring). A panel allows the user to drag and drop
keys among rings, generate new key pairs, certify keys, and verify certificates
(Figure 7.3). As the security of the protocol is compromised when a private key is
stolen, we encrypt private keys with a personal identification phrase, which must
be entered before the private key is unlocked for use. The encryption algorithm
we use is for private keys is IDEA [LM91], with the cipher key the MD5 hash of
the identification phrase.

To reduce the number of keys on the access ring, we also allow access to
documents that are signed by a person whose key is certified by one of the keys
on the access ring. The idea is that when allowing access to an institution like

167

a software house, we automatically allow access to all developers belonging to
that institution. As authentication only provides traceability, and not defense or
protection, we keep track in a session log of resources installed through portable
documents and of the keys that were involved.

The current implementation is incomplete in the sense that the log is not pro-
tected from tampering and no standard revoking mechanism is foreseen for revok-
ing compromised private keys. The latter would not be too difficult to add to the
implementation. The first involves the resource manager signing the log after a
modification with a private key embedded in the software. This however has the
danger of Trojan horses fishing for the key if they can circumvent the system’s
type safety.

A cryptographic toolbox. A cryptographic toolbox comprising about 1200
Oberon statements was implemented for the authentication protocol. Its scope
includes mathematical operations on arbitrary precision integers, the IDEA sym-
metric cryptographic algorithm, the MD5 message digest algorithm, the fast gen-
eration of large prime numbers, public and private key calculations based on RSA,
key certificates, signing of message digests, key ring management, and password
prompting. This toolbox covers many algorithms used in public key cryptography.

An extract of the Crypt module is presented below. The definitions are re-
stricted to multi-precision registers, keys, certificates, key rings and a few selected
operations.

DEFINITION Crypt;

TYPE
RegisterPtr = POINTER TO Register; (� Multi-precision Integers �)
Register = ARRAY OF LONGINT;

Certificate = POINTER TO CertificateDesc;
CertificateDesc = RECORD

authority: ARRAY 128 OF CHAR; (� Certifying authority. �)
signature: RegisterPtr; (� Signature of key. �)
next: Certificate;

END;

Key = POINTER TO KeyDesc;
KeyDesc = RECORD

name: ARRAY 128 OF CHAR; (� Owner. �)
private: BOOLEAN; (� Is this a private key? Then exponent is encrypted. �)
size: INTEGER; (� Size in bits of the modulus �)
exponent, modulus: RegisterPtr;
check: LONGINT; (� Least significant LONGINT of un-encrypted exponent. �)
time, date: LONGINT;

168

certificates: Certificate;
END;

Enumerator = PROCEDURE(K: Key);

Keyring = POINTER TO KeyringDesc;
KeyringDesc = RECORD

name: ARRAY 64 OF CHAR;
END;

(� Key generation, encryption and decryption �)
PROCEDURE MakeKeys(VAR primep, primeq: Register; name, password: ARRAY OF CHAR;

public, private: Key);
PROCEDURE RSAEncrypt(publickey: Key; VAR msg, result: Register);
PROCEDURE RSADecrypt(privatekey: Key; password: ARRAY OF CHAR;

VAR msg, result: Register; VAR res: INTEGER);

(� Key ring management �)
PROCEDURE OpenKeyring(name: ARRAY OF CHAR): Keyring;
PROCEDURE EnumKeys(R: Keyring; enum: Enumerator);
PROCEDURE InsertKey(R: Keyring; K: Key);
PROCEDURE DeleteKey(R: Keyring; K: Key);
PROCEDURE FindKey(R: Keyring; name: ARRAY OF CHAR; VAR K: Key);
PROCEDURE CloseKeyring(R: Keyring);

END Crypt.

A complete description of the algorithms used is beyond the scope of this
thesis; the interested reader is referred to [Sch94a] for an overview. Instead, I will
present a few general comments about the difficulty of implementing this module
in Oberon.

Open arrays were invaluable for operations on multi-precision integers. The
user selects the security level for digital signatures by varying the size of the mod-
ulus, which determines the size of the multi-precision integers. Open arrays are
the only Oberon-2 feature used in the Gadgets system (and only in this module).

We regard the LONGINTs of the multi-precision registers as unsigned inte-
gers, and so require code procedures for unsigned compares and long multiplica-
tion with a 64 bit result. Although unsigned compare and long multiplication can
be coded in Oberon, their portable implementation is too slow for cryptographic
applications. The low-level features of module SYSTEM, especially the bit ma-
nipulation operations based on SETs, are heavily used in the IDEA and MD5
implementations. Until bit manipulations are directly allowed on integers, this
code remains unportable.

Some time was spent tuning the algorithms. This often involves eliminating
unnecessary procedure calls, which is tedious and error prone for algorithms like
MD5 that make lots of bit manipulation; the wish for inline expansion of proce-

169

Operation 512 bit 1024 bit

Signature 109 605
Verification 7 45

Table 7.2: Digital signature speed (ms)

dures was ever present. A first implementation of RSA was disappointingly slow.
In contrast to RSA encryption, which typically involves modular exponentiation
with a small exponent, RSA decryption involves modular exponentiation with a
very large exponent. The effect is that signing a document is much slower than
signature verification. Investigation showed that the bottleneck was a slow divide
routine. Two further algorithms boosted the performance. The Chinese remainder
theorem reduces the calculations for the modular exponentiation by exploiting the
primes p and q, which now become part of the encrypted private key. A further
speedup involves a special internal representation for numbers that avoids division
by n [Mon85].

Table 7.2 compares signing and verification of a MD5 message digest on a 120
MHZ Intel Pentium-based PC. The signature operation includes the verification
of the user identification phrase that protects the private key. In comparison with
highly tuned Intel assembly code the Oberon RSA algorithm is about 7 times
slower [Dai]. We did not improve the implementation any further as signature
verification is done adequately fast for our purposes.

7.3.2 Perspectives

With the growing popularity of open operating systems and Internet connectivity,
the distribution and verification of software components and network aware ap-
plets becomes an increasingly larger problem. As the island approach as applied
to portable documents only provides enough protection for low security applica-
tions, we still have to investigate further mechanisms for protecting single user
operating systems.

In this regard, Oberon’s type safety is a second level of defence. A third
level of defence involves the modification of the system itself to take protection
mechanisms into account. Although these approaches are not addressed in this
thesis, a short overview of the situation is interesting.

170

Type Safety. In principle, Oberon’s type safety can protect sensitive parts of
system against tampering, as it prevents modules from accessing things they are
not allowed to access. The verification of a module’s type safety is with the com-
piler, which is trusted to detect unsafe operations on data. By disallowing the
import of module SYSTEM, which circumvents the type system, we can ensure
that a module can only access the features that other modules provide to it (this
restriction is also enforced for portable documents).

In practice, even though Oberon is type-safe for general programming prac-
tises, it still has a few typing holes that provide a convenient backdoor for hackers:

� Oberon modules can be freed regardless of PROCEDURE variables still
pointing to procedures in the module. Calling a “dangling” PROCEDURE
variable often results in a run-time exception; it can however be exploited
to access restricted areas of the system. A poor man’s solution prevents
unloading of modules; a more refined strategy is to tag PROCEDURE vari-
ables to detect to which module they point.

� The Oberon WITH statement applied to POINTERs can be used to circum-
vent the type system, according to the following scheme:

TYPE
T = POINTER TO TDesc;
TDesc = RECORD END;
T1 = POINTER TO T1Desc;
T1Desc = RECORD (TDesc)

a: INTEGER;
END;

VAR t: T;

PROCEDURE P;
BEGIN NEW(t);
END P;

PROCEDURE Do�;
BEGIN

WITH t: T1 DO
P;
t.a := 0; (� Boom ! �)

END
END Do;

� As all types are compatible with procedure parameters of SYSTEM.BYTE,
we can misuse variable parameters of this type to generate fake pointers.

171

This is especially problematic with Files.ReadBytes, which allows the cre-
ation of fake POINTERs from any data written in a file. In this case we
have an unsafe interface to module Files that can be used without importing
module SYSTEM.

Protected interfaces. A larger drawback than the type holes in the Oberon lan-
guage (which can be fixed by adding more restrictions and checks) is that the
Oberon module interfaces have no concept of access rights or security; it was a
design decision to keep the system as simple as possible. A type safe module in-
terface does not necessarily guarantee that the module’s operations are safe—an
explicit or implicit security token must be passed to the callee procedure to verify
if the caller has the right to access a resource or perform an operation.

An explicit security token approach can be supported by type safety. The token
is a pointer to an opaque type implemented by the system kernel, which is passed
as an extra parameter to the callee. The combination of type safety and security
tokens can provide a very efficient protection mechanism, as illustrated by its use
in the SPIN operating system [BSP�95] based on type safe Modula-3 [Nel91a].

An implicit security token approach determines the momentary access rights
from the call trace from procedure to procedure; should an untrusted procedure
be found on the execution stack, the operation is disallowed. A similar approach
is implemented in [Dät96] in an extended portable document implementation for
Oberon System 3.

Sometimes the modularization of the Oberon system requires the export of
“private” objects from low level modules for the exclusive use of a select few
high level modules. This is often the solution to a bootstrapping problem or a
convenient decomposition of large sub-systems. Prime examples include mod-
ules Kernel and Modules, which are a combination of safe procedures and low
level access routines. Restricting untrusted modules to only importing a sub-set
of “safe” modules is thus of little value until the Oberon system interfaces are
clearly divided into safe and unsafe sub-sets.

7.4 Summary

The current interest in Internet-based applications, as popularized by Java,
prompts the question if portable documents can be embedded in HTML pages
too—the answer is yes. In an experiment we extended the Oberon HTML browser
with our own markup tags to include portable documents. The implementation

172

turned out to be quite simple. The new tag just needs to contain the name of the
portable document to be included, and the current document version number. The
latter number is stored in a local database that keeps track when to re-fetch an
already fetched portable document over the net. Portable documents embedded
in this way in an HTML page are called gadlets. The major disadvantage of this
approach is that gadlets can only be used inside the Oberon system and not with
other HTML browsers, which makes them of little interest to the larger world.

Chapter 8

Summary and Conclusions

8.1 Summary

Modern software engineering involves the complementary processes of decom-
posing complex systems into constituent parts, and composing a software product
from those parts. The reasoning behind this approach is threefold: making the
software system easier to comprehend, independent construction of system com-
ponents, and the possibility of reusing constructed components to amortize their
development cost. Until recently, buildingcomponents using object-oriented tech-
niques received the most attention, whereas the composition process was viewed
as a side-effect that follows from the application of those techniques. Unfor-
tunately, it has been observed [JF88] that component composition and software
reuse do not happen by accident, even with object-oriented languages.

The problem is that reuse is dependent on components being designed for
composition. System-wide programming conventions and communications pro-
tocols are required before any composition can take place. These conventions and
protocols, manifested in the component interfaces, have a tremendous impact on
the stability and usability of a software system. Interface adaptions, corrections
and improvements necessarily lead to the invalidation of clients of that interface,
which in turn requires adjusting client code or writing “adapters”. This is referred
to as high “plumbing cost”. In systems with well-defined scope it is often possible
to define in advance interfaces with a high degree of stability, whereas, in systems
that can be independently extended, it is difficult to impossible to define generally
applicable interfaces.

With this as background, the author’s premise is that if we require components

173

174

to be as easily composable as Lego building blocks, we have to investigate more
flexible and extensible ways of inter-component communication. Thus we set
about building a system where:

� components are first class citizens,

� components can be composed interactively,

� and the set of components is independently extensible at run-time.

These features are a good exercise for pluggable component. We expect first
class components to be reusable across application boundaries. Interactive com-
position requires a very flexible “glue” for connecting components at run-time.
Independent extension means that we cannot force a mutually consistent view of
components and their interfaces—we expect independent parties to define or ex-
tend communication protocols and components for specialized purposes, without
invalidating existing clients. This thesis describes the design and implementa-
tion of the Gadgets system, a system designed to experiment with the goals stated
above. The following paragraphs give a short synopsis of the main features and
design of this system.

Components in the Gadgets system are called gadgets. A classification hier-
archy divides gadgets, amongst others, into classes of visual components for the
construction of graphical user interfaces, and non-visual components for connect-
ing user interfaces and applications. Visual components are used and edited in
place both during system development and in the delivered product. This makes it
possible for the end-user to customize and reorganize applications at any time, as
if editing a document. Drag-and-drop allows the movement of gadgets between
container gadgets, and the construction of complicated components from simpler
ones. As an important part of the thesis, a large set of typical user interface dialog
elements were realized as gadgets.

Gadgets composition is an interactive process involving nesting visual gadgets
in each other, and connecting components with each other using communication
links. A generic attribute editor allows the inspection and configuration of gad-
gets on the fly. Actions are associated with gadgets by specifying the Oberon
commands executed when activated. A scripting facility allows the reuse of pre-
fabricated commands, and the Oberon language is used for constructing the latter.

In-place editing blurs the distinction between applications and documents, al-
lowing us to unify these two concepts in documents. A document might be a

175

prefabricated panel for controlling an application, or a graphic document consist-
ing of numerous embedded gadgets. If required, documents can be embedded
in other documents. Documents are identified using URL notation and remote
documents can be accessed as if they were local. Documents classes for Internet-
based documents like Web pages and anonymous FTP are tightly integrated into
the document model. Gadgets can be transparently integrated into Web pages.

The Gadgets system addresses consistent document distribution by providing
a means of attaching resources like component code and data files to documents.
This ensures that a recipient of a document can view it without installing addi-
tional software in a separate step. The embedding of active content in documents
is a high security risk as untrusted code can easily make improper use of the
system where the document is viewed. To soften the problem and to introduce
accountability, document authentication with digital signatures based on public
key cryptography is used.

The design of the Gadget system is based on a set of hierarchies. The mod-
ule hierarchy is the principle structure of the system; its purpose is code reuse.
The object type hierarchy defines the internal structure of components, and cor-
responds closely to the traditional class hierarchy. The message type hierarchy
defines the message protocols components understand: in comparison to other
systems, this is the most unique hierarchy in the system. The display hierarchy
forms the run-time organization of components, for example what appears on the
display. The persistence hierarchy determines how components persist from one
Oberon session to another.

Of these hierarchies, the message type hierarchy plays a very important role in
glueing components together. Component connections are realized through open
message interfaces that provide a universal message interface for components. An
open message interface can accept any message, even if it is defined after the ini-
tial design of a component. The possibility of manipulating messages in a generic
way allows the construction of sophisticated message handling mechanisms. An
additional advantage is that components can be upgraded with additional func-
tionality without invalidating their interfaces and thus clients. An important part
of the thesis work involves the definition of compact message protocols for the
use and construction of document-based user interfaces, and the realization that a
set of well-thought out protocols can create very complicated behaviors.

176

8.2 What has been achieved?

The ultimate test of a component-based system is how it stands up in practice
regarding the number of components, the application classes that can be built
with it, the level of reuse achieved, and the speed in which new applications can
be constructed.

In this regard, the Gadgets system is in a fortunate position in respect to other
research prototypes. Approximately forty gadgets are distributed with the stan-
dard distribution, and several applications add a dozen more. Many gadgets are
based on standard dialogue components found in typical user interfaces, although
more complicated gadgets for editing and viewing diagrams, bitmaps, and three
dimensional worlds have been constructed. The gadget palette is a representative
mix of generally usable components.

Regarding the application classes that can be constructed with the Gadgets
system, many interesting applications ranging from graphics, databases, to simu-
lations have been experimented with. There are however application classes that
are not suitable for the Gadgets system, like high speed animations. The main lim-
itation is the performance of the message broadcasting system when using many
fine-grained gadgets.

The level of component reuse is quite high amongst Oberon applications.
Most applications use the set of prefabricated user interface elements provided
by the system. Components are seldom extended; most new gadgets are com-
pletely new instead of being based on an existing gadget. A notable exception are
the panels, which are often extended with new features.

The speed in which new applications are build is highly dependent on the pro-
grammer itself, as is typical for complicated systems. Our experience from student
projects however shows that most students grasp the main concepts within the first
few days of a project, and often produce a first new gadget soon after. This has
resulted in a large number of successful student projects with highly visual user
interfaces. The quick results is a major motivation for the students. Also, course
work about Oberon System 3 and Gadgets has shown that it is possible to teach a
person knowledgeable in the Pascal family of programming language in approx-
imately a week’s time the basic principles of the Oberon language, the Oberon
message mechanism, the persistency model, and all the levels of Gadgets pro-
gramming, except for a cursory overview of the last level (programming an own
container gadget). This corresponds approximately to a single semester course.

177

8.3 What should still be done?

In retrospect, I am satisfied with the current design and scope of Oberon System
3 and Gadgets. There are however some further aspects of the system that needs
investigation.

Although open message interfaces provided the muscle for building compo-
nents, they are unsatisfactory from a software engineering viewpoint as the mes-
sage protocols a component understands is not explicitly known. The current
suggestion is to send a request to a component to confirm that it speaks a cer-
tain protocol. Language extensions could make supporting this operation more
convenient, and could potentially check if a component completely implements
a desired protocol. I believe that the lack of such facilities tends to introduce
implicit assumptions about components that do not necessarily hold.

Currently the set of model gadgets is rather small. It would be challenging
to enlarge them to more general purpose components. We already have more
specific model gadgets, like for examples ones that continuously update statistics
about the system state and can be connected to oscilloscope and histogram gad-
gets. With the recent development of Columbus [Sal96], a tool that can compose
non-visual gadgets “off-screen”, there are potentially many more possibilities for
development in this area.

Another area that I perceive as a problem is the abrupt transition from user
interface composition to programming commands. The current scripting facility
based on macro substitution is simple and easy to understand, but assumes that a
large set of useful commands can be created. As scripts are so highly application
dependent, it is often difficult to think of general command sets. Thoughts about a
general command set eventually lead to the need for control structures, variables,
procedures and so on. It is however unlikely that on this high level of abstrac-
tion the full power of the Oberon language is required or even necessary, and thus
we have to think seriously about adding an “intermediary” scripting language be-
tween the current macro scripts and the Oberon programming language. This
intermediate level could additionally ease the transition from end-user to interface
builder.

8.4 Conclusion

The Gadgets system illustrates that it is possible to build fine-grained document-
based user interfaces when we rethink how components are integrated with each

178

other. Although interfaces and message protocols have traditionally played an
important role in software development, the applications of these techniques to
independently developed software components create a new challenge of trying
to reconcile several different views of how components should look and behave.
This necessitates a re-evaluation of component interconnects, for example, how
to make interface more open, flexible and extensible. These issues are becoming
increasingly important with the increasing industrialisation of software construc-
tion.

Appendix

To give an impression of the size of Oberon System 3 and Gadgets, the following
tables list the size of the most often used modules of the Spirit of Oberon distribu-
tion hosted on Microsoft Windows. The size is the number of source statements
as measured by the Oberon code Analyzer. Remember that in a native implemen-
tation of Oberon the driver modules of the base system are much larger due to
the fact that Windows functions like display primitives need to be implemented in
Oberon too.

Table 8.2 does not contain all the modules belonging to the Gadgets system,
but only those modules that implement gadgets. These modules are the standard
components delivered with a Gadgets distribution. Several applications tightly in-
tegrated with the system are left out, notably the modules related to authentication
and portable documents.

179

180

Module Implements # Statements

Bitmaps Windows bitmap interface 44
Display Display driver 297
Fonts Font sub-system 560
Input Mouse and keyboard input 15
Math Mathematical functions 24
MathL Mathematical functions 18
Oberon Event dispatcher 285
Objects Object manager 413
System System manager 786
Win32 Interface to Windows 887
WinPrinter Windows printer driver 942
Configuration Startup configuration control 138
Console Debug output 166
FileDir Directory support 670
Files File system 620
Kernel Memory manager 608
Modules Module loader 646
Reals Real number conversion 145
Registry System configuration 77
Texts Text abstract data type 1113
Viewers Viewer manager 246
Total 8700

Table 8.1: Module size of the Oberon base system

181

Module Implements # Statements

Attributes Attribute and macro handling 757
BasicFigures Line, Circle, Rectangle and Spline gad-

gets
1055

BasicGadgets Boolean, Integer, String, Real, Button,
Checkbox and Slider gadgets

1159

ColorTools ColorPicker gadget 329
Complex Complex number gadget 58
Desktops Desktop manager 1748
Display3 Display driver with clipping 1250
Documents Document manager 561
Effects Special effects and unportable code 493
Gadgets Default handlers 1336
Icons Icon and Iconizer gadgets 1361
Inspectors Inspector gadget 767
Links Link handling 144
Lists List gadgets 1076
NamePlates Document nameplate gadgets 512
Navigators Desktop navigator gadget 196
NoteBooks NoteBook gadgets 528
Organizers Constraint-based panel organizer 200
PanelDocs PanelDoc gadgets 201
Panels Panel gadgets 1600
Printer3 Printer driver with clipping 820
TextDocs TextDoc gadgets and text commands 687
TextFields TextField and Caption gadgets 1083
TextGadgets Text editor gadget 1509
TextGadgets0 Text editor utilities 2124
Views Camera-view gadget 650
Total 22204

Table 8.2: Module size of the Gadget system

182

Bibliography

[AGS83] S. R. Ames, M. Gasser, and R. G. Schell. Security Kernel Design
and Implementation: An Introduction. Computer, pages 14–22, July
1983.

[Bac86] Maurice J. Bach. The Design of the UNIX Operating System.
Prentice-Hall, 1986.

[Bah92] Hicham Bahi. Archives: Eine E-Mail System für Aktive Objekte.
Master’s thesis, Institut für Computersysteme, ETH Zürich, October
1992.

[BCFT92] M. Brandis, R. Crelier, M. Franz, and J. Templ. The Oberon Sys-
tem Family. Technical Report 174, Departement Informatik, ETH
Zürich, April 1992.

[Bie91] E.A. Bier. EmbeddedButtons: Documents as User Interfaces. In
Proceedings of the ACM SIGGRAPH Symposium on User Interface
Software and Technology, pages 45–53. ACM, 1991.

[Ble95] M. Bleichenbacher. Design & Implementierung eines Komponen-
tensystems für eine Klassenbibliothek. Master’s thesis, Institut für
Informationssysteme, ETH Zürich, March 1995.

[Boo94] Grady Booch. Object-oriented analysis and design with applica-
tions. Benjamin/Cummings, 1994.

[Brä93] Marcus A. Brädle. Grafische Programmierung. Master’s thesis, In-
stitut für Computersysteme, ETH Zürich, September 1993.

[Bro93] K. Brockschmidt. Inside OLE 2. Microsoft Press, 1993.

183

184

[BSP�95] N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M.E. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers. Extensibility, Safety and
Performance in the SPIN Operating System. In Fifteenth ACM Sym-
posium on Operating System Principles. ACM, 1995.

[Car86] Luca Cardelli. Building User Interfaces by Direct Manipulation. In
Proceedings of the ACM SIGGRAPH Symposium on User Interface
Software, volume 20, pages 233–240. ACM, 1986.

[CN91] Brad J. Cox and Andrew J. Novobilski. Object-Oriented Program-
ming: An Evolutionary Approach. Addison-Wesley, 1991.

[Com90] Apple Computer. Speed your software development with MacApp.
Develop—The Apple Technical Journal, pages 155–171, April 1990.

[Com94] Apple Computer. Dylan Interim Reference Manual. Apple Com-
puter, Inc., June 1994.

[Cor93] Microsoft Corporation. Visual Basic 3.0: Programmer’s Guide. Mi-
crosoft Corporation, 1993.

[Côt96] Raymond Ga Côté. OpenDoc: Small is Beautiful. BYTE, pages
167–168, February 1996.

[Cox90] Brad J. Cox. Planning the Software Industrial Revolution. IEEE
Software, November 1990.

[CP95] Sean Cotter and Mike Potel. Inside Taligent Technology. Addison-
Wesley, 1995.

[Cre90] Régis Crelier. OP2: A Portable Oberon Compiler. Technical Report
125, Departement Informatik, ETH Zürich, February 1990.

[Cre94] R.B.J. Crelier. Separate Compilation and Module Extension. PhD
thesis, ETH Zürich, 1994.

[CW85] Luca Cardelli and Peter Wegner. On Understanding Types, Data Ab-
straction, and Polymorphism. Computing Surveys, 17(4), December
1985.

[Dai] Wei Dai. Crypto++ 2.0 class library. http://www.eskimo.com/ wei-
dai/Crypto.html.

185

[Dät96] Markus Dätwyler. Executable Content in Compound Documents.
Master’s thesis, Institut für Computersysteme, ETH Zürich, March
1996.

[fC] ETH Institut für Computersysteme. Module types. Part of the Oberon
V4 distribution.

[Fra93] M. Franz. Emulating an Operating System on Top of Another.
Software—Practice and Experience, 23(6), June 1993.

[Fra94a] M. Franz. Code-Generation On-the-Fly: A Key to Portable Software.
PhD thesis, ETH Zürich, 1994. ISBN 3 7281 2115 0.

[Fra94b] M. Franz. Technological Steps toward a Software Component In-
dustry. In Springer Lecture Notes in Computer Science, volume 782,
pages 259–281. Springer Verlag, March 1994.

[FvDFH91] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes. Computer
Graphics—Principles and Practice. Addison-Wesley, 1991.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reuseable Object-Oriented Software. Addison-Wesley,
1995.

[Gib94] W.W. Gibbs. Software’s Chronic Crisis. Scientific American,
September 1994.

[Gla95] Brett Glass. How to Build an Internet App. BYTE, pages 211–212,
December 1995.

[GM93] Simon L. Garfinkel and Michael K. Mahoney. NeXTSTEP Program-
ming. Springer-Verlag, 1993.

[GR93] Adele Goldberg and David Robson. Smalltalk-80: The languageand
its implementation. Addison-Wesley, 1993.

[Gri91] Robert Griesemer. On the Linearization of Graphs and Writing
Symbol Files. Technical Report 156, Departement Informatik, ETH
Zürich, March 1991.

[Gut94a] Jürg Gutknecht. Oberon — Perspectives of Evolution. In Schulthess
[Sch94b], pages 395–406.

186

[Gut94b] Jürg Gutknecht. Oberon System 3: Vision of a Future Software Tech-
nology. Software — Concepts and Tools, 15:26–33, 1994.

[Han90] W. J. Hansen. Enhancing documents with embedded programs:
How Ness extends insets in the Andrew ToolKit. In Proceedings
of the IEEE Computer Society 1990 International Conference on
Computer Languages, pages 23–32. IEEE Computer Society Press,
March 1990.

[HH96] G. Dan Huthcheson and Jerry D. Hutcheson. Technology and Eco-
nomics in the Semiconductor Industry. Scientific American, pages
54–62, January 1996.

[Hil92] R. D. Hill. The Abstraction-Link-View Paradigm: Using Constraints
to Connect User Interfaces to Applications. In Proceedings of the
CHI Conference, pages 335–342. ACM, 1992.

[HR93] J. Harris and I. Ruben. Bento Specification, Revision 1.0d5. Apple
Computer, Inc., July 1993.

[HS96] T. R. Halfhill and S. Salamone. Components Everywhere. BYTE,
pages 97–106, January 1996.

[Ich83] J.D. Ichbiah. Reference Manual for the Ada ProgrammingLanguage.
United States Department of Defense, 1983. ANSI/MIL-STD-1815
A.

[JF88] R. E. Johnson and B. Foote. Designing Reusable Classes. Journal of
Object-Oriented Programming, 1(2):22–35, June/July 1988.

[Kee89] S. E. Keene. Design Considerations for CLOS. Journal of Object-
Oriented Programming, pages 68–70, September/October 1989.

[Kno89] Nancy T. Knolle. Variations of Model-View-Controller. Journal
of Object-Oriented Programming, pages 42–46, September/October
1989.

[KP88] G.E. Krasner and S.T. Pope. A Cookbook for using the Model-
Viewer-Controller user interface paradigm in Smalltalk-80. Journal
of Object-Oriented Programming, 1(3):26–49, August 1988.

187

[Lie86] H. Lieberman. Using prototypical objects to implement shared be-
havior in object-oriented systems. Proceedings of OOPSLA 1986,
pages 214–223, September 1986.

[Lin96] D. S. Linthicum. Integration, Not Perspiration. BYTE, pages 83–96,
January 1996.

[LM91] X. Lai and J. L. Massey. A Proposal for a New Block Encryption
Standard. In Lecture Notes in Computer Science 473, pages 389–
404. Springer-Verlag, 1991.

[Lun89] C. P. Lunau. Separation of Hierarchies in Duo-talk. Journal of
Object-Oriented Programming, pages 20–25, July/August 1989.

[Mar91] Johannes L. Marais. The GADGETS User Interface Management
System. Structured Programming, 12:75–89, 1991.

[Mar94a] Johannes L. Marais. Oberon System 3. Dr. Dobb’s Journal, pages
42–50, October 1994.

[Mar94b] Johannes L. Marais. Towards End-User Objects: The Gadgets User
Interface System. In Schulthess [Sch94b], pages 407–420.

[McI76] M.D. McIlroy. Mass Produced Software Components. In P. Naur,
B. Randall, and J.N. Buxton, editors, Software Engineering—
Concepts and Techniques, pages 88–95. Petrocelli/Charter, 1976.

[Mei93] M. Meier. ObjectBase: Objekorientierte Datenbank für Oberon V3.
Master’s thesis, Institut für Computersysteme, ETH Zürich, May
1993.

[MGD�90] B. A. Myers, D. Giuse, R.B. Dannenberg, B. Vander Zanden, B. Kos-
bie, D.Pervin, E. Mickish, and P. Marchal. Garnet: Comprehen-
sive Support for Graphical, Highly Interactive User Interfaces. IEEE
Computer, pages 71–85, November 1990.

[Mic95] Sun Microsystems. The Java Language Specification, May 1995.

[MMPN93] O.L. Madsen, B. Møller-Pedersen, and K. Nygaard. Object-oriented
Programming in the Beta ProgrammingLanguage. Addison-Wesley,
1993.

188

[Mon85] Peter L. Montgomery. Modular Multiplication Without Trial Divi-
sion. Mathematics of Computation, 44(170):519–521, April 1985.

[Mös93] Hanspeter Mössenböck. Object-Oriented Programming in Oberon-
2. Springer-Verlag, 1993.

[Nel91a] Greg Nelson. Systems Programming with Modula-3. Prentice-Hall,
1991.

[Nel91b] M. L. Nelson. An Object-Oriented Tower of Babel. OOPS Messen-
ger, 2(3), July 1991.

[Nel91c] Mark Nelson. The Data Compression Book. Prentice Hall, 1991.

[Neu91] T. Neuendorffer. ADEW: A Multimedia Interface Builder for An-
drew. In Proceedings of the Multi-Media Communications, Applica-
tions and Technology Workshop, Sydney, July 1991.

[NeX92] NeXT Computer. The Objective C Language, Release 3.0, 1992.

[NO90] A. Nye and O’Reilly. X Toolkut Intrinsics Programming Manual, 2
Ed. O’Reilly and Associates, 1990.

[NRB69] P. Naur, B. Rendel, and J.N. Buxton. Software Engineering—
Proceedings of the NATO Conferences. Petrocelli/Charter, 1969.

[Ous94] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[PHK�88] A. Palay, W. Hansen, M. Kazar, M. Sherman, and M. Wadlow. The
Andrew Toolkit: an Overview. In Proceedings of the USENIX Tech-
nical Conference, Dallas, February 1988.

[Riv92] R. Rivest. The MD5 Message Digest Algorithm. RFC 1321, April
1992.

[RSA78] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems. Communications
of the ACM, 21(2):120–126, February 1978.

[Sal95] Patrick Saladin. Watson—A Smart Browsing Tool. Semesterarbeit,
Institut für Computersysteme, ETH Zürich, 1995.

189

[Sal96] Patrick Saladin. Columbus—Die Entwicklung eines neuen Object-
Inspectors für Oberon System 3 und Gadgets. Master’s thesis, Insti-
tut für Computersysteme, ETH Zürich, March 1996.

[San93] Ravi S. Sandhu. Lattice-Based Access Control Models. Computer,
pages 9–19, November 1993.

[Sch94a] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and
Source Code in C. John Wiley and Sons, Inc., 1994.

[Sch94b] Peter Schulthess, editor. Advances in Modular Languages, vol-
ume 1 of Technology transfer series, Benzstrasse 12, Postfach 4204,
D-89032 Ulm/Donau, September 1994. Universität Ulm, Univer-
sitätsverlag Ulm.

[Smi87] Randall B. Smith. Experiences With The Alternate Reality Kit, An
Example of the Tension Between Literalism and Magic. In Proceed-
ings of the CHI + GI Conference, pages 61–67. ACM, 1987.

[Som94] Ralph Sommerer. Script. Online Documentation ScriptGuide.Text in
the Oberon System 3 distribution, May 1994.

[Str87] Bjarne Stroustrup. The C++ Programming Language. Addison-
Wesley, 1987.

[SUC91] R.B. Smith, D. Ungar, and B. Chang. The Use-Mention Perspective
on Programming for the Interface. In Languages for Developing
User Interfaces, pages 79–89. Jones and Bartlett Publishers, 1991.

[Szy92a] C.A. Szyperski. Write-ing Applications: Designing an Extensible
Text Editor as an Application Framework. Proceedings TOOLS’92,
Dortmund, March 1992.

[Szy92b] Clemens A. Szyperski. Insight ETHOS: On Object-Orientation in
Operating Systems. PhD thesis, ETH Zürich, 1992.

[Tan87] Andrew S. Tanenbaum. Operating Systems: Design and Implemen-
tation. Prentice-Hall, 1987.

[Tea93] The OpenDoc Design Team. OpenDoc Technical Summary. Apple
Computer, Inc., October 1993.

190

[Tem94] J. Templ. Metaprogramming in Oberon. PhD thesis, ETH Zürich,
1994.

[TGP89] D. Taenzer, M. Ganti, and S. Podar. Object-Oriented Software
Reuse: The Yoyo Problem. Journal of Object-Oriented Program-
ming, September/October 1989.

[Ude94] Jon Udell. ComponentWare. BYTE, pages 46–56, May 1994.

[US87] D. Ungar and R.B. Smith. Self: the power of simplicity. Proceedings
of OOPSLA 1987, pages 227–242, October 1987.

[VL89] J. M. Vlissides and M. A. Linton. A Framework for Building Do-
main Specific Graphic Editors. Technical Report CSL-TR-89-380,
Computer Systems Laboratory, Stanford University, July 1989.

[Wal92] Roger Waldner. Digitale Simulation unter dem Gadgets UIMS.
Semesterarbeit, Institut für Computersysteme, ETH Zürich, 1992.

[Weg90] Peter Wegner. Concepts and Paradigms of Object-Oriented Program-
ming. OOPS Messenger, 1(1), August 1990.

[WG92] Niklaus Wirth and Jürg Gutknecht. Project Oberon: The Design of
an Operating System and Compiler. Addison-Wesley, 1992.

[WG94] Andre Weinand and Erich Gamma. ET++ – a Portable, Homoge-
nous Class Library and Application Framework. Proceedings of the
UBILAB 1994 Conference, Zürich, pages 66–92, 1994.

[Wir83] N. Wirth. Programming in MODULA-2. Springer-Verlag, 1983.

[Wir88a] N. Wirth. The Oberon System. Software—Practice and Experience,
19(9), September 1988.

[Wir88b] N. Wirth. The Programming Language Oberon. Software—Practice
and Experience, 18(7):671–690, July 1988.

[Wir96] Niklaus Wirth. Grundlagen und Techniken des Compilerbaus.
Addison-Wesley, 1996.

[Zel] E.J. Zeller. SourceCoder. Private communication.

[Zel93] Emil Zeller. Data Compression Techniques. Semesterarbeit, Institut
für Computersysteme, ETH Zürich, January 1993.

Curriculum Vitae

Johannes Leon Marais

July 21, 1967 born in Cape Town, citizen of the Republic of South Africa,
son of Marius and Tharina Marais

1985 Matriculated Linden High School, Johannesburg

1986–1988 B.Sc Mathematical Sciences
Randse Afrikaanse Universiteit, Johannesburg

1989 B.Sc Honors Informatics
Randse Afrikaanse Universiteit, Johannesburg

1990 M.Sc Computer Science
Randse Afrikaanse Universiteit, Johannesburg

1991–1995 research and teaching assistant at the Institute for Computer Systems,
Swiss Federal Institute of Technology (ETH), Zurich, in the research group
of Prof. Dr. J. Gutknecht

1996– Member of the research staff,
Systems Research Center, Digital Equipment Corporation, Palo Alto,
California

191

