
Diss. ETH No 11592

Integration of Online Documents

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of
Doctor of Technical Sciences

presented by
Ralph Olivier Sommerer
Dipl. Informatik_Ing. ETH
born February 6, 1963

citizen of Niederglatt, Zürich

accepted on the recommendation of
Prof. Dr. J. Gutknecht, examiner
Prof. Dr. N. Wirth, co_examiner

1996

Integration of Online Documents

Ralph Sommerer

Copyright (c) 1996 by Ralph Sommerer

Acknowledgements

I want to thank my advisor Prof. J. Gutknecht for his liberal supervision of this
project, for his numerous contributions, and also for his patience. He
commented thoroughly on earlier drafts of this thesis and provided valuable
criticisms that helped to improve the presentation of this material considerably.

I also wish to thank Prof. N. Wirth for accepting the co_examination of this
thesis. His way of thinking and problem solving had a significant impact on my
work.

My colleagues at the Institute of Computer Systems contributed to a friendly
and intellectually most inspiring working atmosphere that is gratefully
acknowledged. In particular, I wish to thank (in alphabetical order) Andreas
Disteli, Martin Gitsels, Urs Hiestand, Hannes Marais and Karl Rege for the
numerous stimulating discussions during coffee breaks and lunch_hour, and for
providing me with valuable input and support.

There are many other people who have contributed in one or the other way
to the success of this work. The fact that they are not explicitely mentioned
here shall in no way degrade their significance.

Last but not least, my deepest gratitude goes to my mother. I cannot
imagine having successfully completed my studies and research without her
encouragement, motivation and support.

Contents

Abstract/Kurzfassung

Introduction 1

A Universal Document Oriented Interface 5
Introduction 5
System Environment 6
Services and their Representations 11
Online Documents 14
Smart Links 15
A Document Oriented User Interface Model 18
Example Service Integration with Smart Links 23
Related Work 25
Summary 27

Case Study 1: Dynamic Mathbook 29
Introduction 29
The Dynamic Mathbook 30
Integration 32
Implementation Aspects 35
Related Work 45
Summary and Conclusion 46

Case Study 2: Electronic Newspaper 49
Introduction 49
Teletext 50
Teletext Presentation 51
Implementation Aspects 56
Further Applications: The Electronic Investment Bulletin 63
Related Work 64
Summary and Conclusion 65

Case Study 3: Network Information Browser 69
Introduction 69
Smart Web: A World_Wide Web Browser for Oberon 70
Integration 72

Summary and Conclusion 81
Outlook 83

Conclusions and Outlook 85

Bibliography and References 89

Abstract

The present work describes a univeral programming environment and user
interface for the integration of online multimedia services into the Oberon
system. This kind of online services has obtained an immense relevance
especially since the trend towards global telecommunication has become
manifest.

By generalizing the notion of a document, services can be viewed as a
specific type of documents that we have called online documents. In contrast to
documents in the traditional sense, the contents of online documents possibly
must be prepared and collected by services before being presented on the
display screen.

We will show that documents provide a suitable user model for the
interaction with services, especially in connection with so called Smart Links.
Smart links are a special type of links (i.e. references to other documents) that
combine the semantics of Oberon commands with the functionality of service
calls. They are internally modelled as objects which can be included in
documents. Hence, smart links allow to access services directly from online
documents.

By integrating smart links, the document oriented user interface model of
Oberon is extended to a universal document oriented programming and user
environment for the interaction with services. Specifically, this programming
environment allows to integrate new online documents with minimal effort
because only the service_specific functionality of the smart links needs to be
implemented.

The thesis describes the integration of three different online documents. On
the one hand, their integration serves to examine the suitability of the
presented concepts based on real examples. On the other hand, the
implemented online documents prove to be useful tools.

The Dynamic Mathbook integrates an interactive formula editor and a
symbolic algebra system. The application allows formulae to be manipulated
and evaluated directly within a mathematical document. Hence, the user can
interactively experiment with mathematical expressions, or illustrate the shape
of mathematical functions by means of graphical plots.

The electronic newspaper TeleNews is an innovative mapping of a Teletext
data base by means of dynamically generated hypertext. Teletext (in Germany
called Videotext) is a non_interactive digital information service that is
broadcast by television stations. TeleNews modernizes and hence improves

both the representation of the Teletext service on the screen, and its user
interface.

The World_Wide Web browser for Oberon results from an attempt to
integrate an existing Internet information service based on the document
oriented programming environment. The result is a completely integrated,
run_time extensible Internet browser that supports most of the graphical
facilities of the World_Wide Web including in_line images and forms.

Kurzfassung

Die vorliegende Arbeit beschreibt eine universelle Programmier_ und
Benutzerumgebung zur Integration von lokalen und externen Online
Multimedia Services in das Oberon System. Solche Services haben vor allem im
Zuge des Trends hin zu globaler Telekommunikation grosse Bedeutung erlangt.

Eine Verallgemeinerung des Begriffs des Dokumentes erlaubt es, Services als
spezielle Dokumente, sogenannte Online_Dokumente, aufzufassen. Im
Gegensatz zu Dokumenten im herkömmlichen Sinn zeichnen sich
Online_Dokumente dadurch aus, dass ihr Inhalt vor der Darstellung auf dem
Bildschirm möglicherweise erst von einem Service bereitgestellt werden muss.

Es wird gezeigt, dass Dokumente in Verbindung mit sogenannen Smart Links

ein geeignetes Benutzermodell für die Interaktion mit Services darstellen. Smart
Links sind eine spezielle Form von Links (Verweise auf andere Dokumente),
welche die Semantik von Oberon Kommandos mit der Funktion eines
Service_Aufrufs verbinden. Sie sind intern als Objekte modelliert, die in einem
Dokument mitfliessen können. Smart Links erlauben daher, beliebige Services
direkt aus Online_Dokumenten heraus anzusprechen.

Die dokument_orientierte Benutzerschnittstelle von Oberon wird durch die
Verbindung mit Smart Links zu einer universellen dokument_orientierten
Programmier_ und Benutzerumgebung für die Interaktion mit Services. Diese
erlaubt im Speziellen, neue Online_Dokumente mit minimalem Aufwand zu
realisieren, da jeweils lediglich die service_spezifische Funktionalität der Smart
Links implementiert werden muss.

Die Dissertation beschreibt die Integration dreier verschiedener solcher
Online_Dokumente. Deren Integration dient einerseits dazu, die vorgestellten
Konzepte anhand realer Beispiele zu erproben. Anderseits stellen die
Online_Dokumente selbst aber auch praktische Werkzeuge dar.

Das Dynamische Mathematikbuch integriert einen interaktiven Formeleditor
und ein Symbolisches Algebra System. Im Dynamischen Mathematikbuch
können Formeln direkt in einem mathematischen Text editiert und evaluiert
werden, z.B. um mit mathematischen Ausdrücken im Text zu experimentieren
oder um den Verlauf von Funktionen mittels graphischer Plots zu illustrieren.

Die elektronische Zeitung TeleNews ist eine innovative Darstellung einer
Teletext Datenbank mittels dynamisch generierten Hypertexts. Teletext (in
Deutschland Videotext genannt) ist ein nicht_interaktiver digitaler
Informationsdienst, der von Fernsehanstalten ausgestrahlt wird. TeleNews
modernisiert und verbessert damit sowohl die Darstellung als auch die
Benutzerschnittstelle von Teletext.

Der World_Wide Web browser für Oberon ist das Resultat eines Versuchs,
auf der Basis der dokument_orientierten Programmierumgebung, einen
existierenden Internet_Informationsdienst zu implementieren. Das Resultat ist
ein vollständig integrierter, zur Laufzeit erweiterbarer Internet browser, der die
meisten graphischen Möglichkeiten des World_Wide Web (z.B. Bilder und
Formulare) unterstützt.

Introduction

In the field of interactive computing, two of the most important subjects of
current research activities deal with multimedia applications and online
services. The term multimedia, on the one hand, characterizes applications
which integrate and process different media such as images, animation
sequences and sound. Such applications have become very popular, especially
in education. Inspired by the availability of high performance computing
resources and high resolution color monitors, these applications introduced a
new level of interaction which reaches beyond the mere assistance in searching
and browsing through large data bases. This new level of interaction consists of
the activation of the data itself.

On the other hand, we can observe an increasing amount of local and
remote services operating in distributed client/server environments. By services
we mean entities that provide upon request either information (information
service) or the ability to consume and process arbitrary data items (computing
service). These services are characterized by an open interface or a well defined
access protocol by means of which other applications (called clients) can
interact with them.

Both of the above research topics have obtained an immense importance
and relevance especially since they tend to converge. World−wide, a
considerable effort is raised in designing and implementing such online
multimedia applications. Definitely, the ample potential of the integration of
multimedia and online services is the driving force behind activities that are
paraphrased by slogans such as information highway, video on demand etc.

As the influence of these new media on future personal computing cannot
be neglected, prospective research has to explore how the inherent potential of
such applications can be exploited within a given user environment. For that
purpose, a project has been launched that aims at the integration of access to
such services as a prerequisite for all further explorations. The scientific goal of
the project is the modelling of a programming environment and user interface
for a uniform and consistent interaction with services.

One essential requirement of such a programming environment must be
integration. Services that exhibit a similar behaviour should be presented
uniformly and accessed in a similar and consistent way. Another important

2

issue is extensibility. In order not to restrict the range of services to be
integrated and accessed, the design should allow additions of functionality to
the system without invalidating existing parts. Last but not least, simplicity is
an important design principle. Instead of inflating the system with concepts,
the basis should be kept small and simple.

This thesis describes the conceptual and technical aspects of the project and
its functional implications. The notion of online documents will serve as a
common basis for the integration of services. The term denotes documents (i.e.
collections of data items) with two specific properties. First, their content and
structure does not necessarily have a permanent static global state. Second,
their contents may be distributed over several physical locations and therefore
must be collected before their presentation on the screen. Online documents
thus provide an appropriate model for information that is collected and
presented by services.

The result of our explorations is a small document oriented framework that
decouples services' internal aspects from aspects of their user interface, and
from aspects of the information's presentation on the screen. An essential part
of the framework is an internal representation for services whose abstract
interface allows to hide service_specific details of their processing from clients.

The presented concepts have been implemented in order to prove their
suitability for the integration of online documents. In a case study of three
example applications the integration process is studied. Each application
emphasizes a different type, aspect and implication of online documents. The
actual online documents presented in the corresponding chapters include a
dynamic mathbook, an electronic newspaper, and a network information browser

as an example of a "world−wide web" of distributed documents. Due to the
document oriented programming framework, the integration of these online
documents essentially confined to merely internal aspects of the actual services
which handle the corresponding online documents. All other aspects related to
the user interface and the presentation on the screen are handled by the
framework.

The user environment to build upon is the Oberon system. Oberon is a
fully_fledged single_user operating environment that contains all resources for
practically autonomous work. One of its major characteristics is that the
separation of system and user programs has disappeared completely. Instead,
applications are merely extensions of the system's functional basis, dynamically
loaded on demand while the system is operational. Due to Oberon's
object_oriented kernel almost all user activities can be applied to almost all
objects that are available in the system and visible on the screen. Hence,
integration of applications within Oberon is not an option. It is a basic concept.

3

Outline of the Thesis

The next, second chapter motivates and introduces the basic concepts of this
thesis. It introduces the notion of online documents and relates it to that of
traditional documents. A simple programming framework for the integration of
online documents is presented. A document oriented user interface model for
the interaction with services is based on the service call as the unit of
interaction. The resulting Smart Documents integrate the information that is
provided by services and the services' user interface.

The subsequent chapters are dedicated to a case study of the three different
online document types mentioned above. They serve to explore the feasibility
of the concepts introduced in the second chapter and to investigate the
potential and the implications lying within these concrete applications. In order
to keep their description concise, only their most important aspects are
described.

The description of the case studies follows more or less the same order.
Each application is motivated first. After that, the corresponding online
document is presented. Then, implementation aspects are discussed. They deal
with service_specific protocols and the representation of the services' data
items within Oberon. The discussion closes with a note on differences to
similar other existing systems, and a short summary of other's work related to
the subject of the corresponding chapter.

Although the implemented applications prove to be usable and powerful
tools for the mediation of information, they have not been geared towards
outstanding sophistication. We have confined both their implementation and
their discussion to the general ideas and implications of the corresponding
online documents. They basically serve to reason about the integration of
online documents in general, and to outline their abilities and inherent
potential.

A Universal Document Oriented Interface

Introduction

In this chapter, we discuss general aspects of an integrated access to local and
remote services in the Oberon system. Experience with the integration of
services reveals that these aspects can be roughly separated into three groups:
(1) Communication protocols between server and clients, (2) the design of a
stub as a representation of the service on the client's side, and (3) the user
interface model on the client's side. In the following we focus on clients and
shall formulate requirements and introduce suitable abstractions for a seamless
integration of access to services. The objective of such an integration is to
allow uniform and consistent access to various different types of services.

The Oberon system provides a document oriented user interface model
based on customizable documents serving as menus. Typically, these are
ordinary texts that contain prepared collections of commands to be executed
directly from the document. We shall present a generalization and extension of
this interface model that leads to a universal document oriented user interface
for the use of arbitrary (local and remote) services, and thus to an document
interface combining contents and user interface. We shall base this integration
on a data type called smart link that unifies the notions of a (hypertext)
reference link and an abstract service. The latter can be viewed as a client's
stub of the real service.

We will illustrate the general concepts presented in this chapter with three
examples: A Dynamic Mathbook, an electronic newspaper called TeleNews, and
Smart Web, a World_Wide Web browser.

The Dynamic Mathbook is an electronic document that provides access to a
symbolic algebra system. Thereby, mathematical expressions are evaluated
directly within the document.

TeleNews is a presentation of the set of Teletext pages in the form of an
electronic newspaper. Teletext (in Germany called Videotext) is a textual
information service that is broadcast by European TV stations together with the
video signal. Teletext information comprises various topics such as political
news, sports news, television schedules, advertisement and so on.

6

Third, Smart Web integrates access to the very attractive World_Wide Web

information system. This models a distributed multimedia document
consisting of hypertext pages, bitmap images etc.

System Environment

Oberon

Oberon is both the name of an operating system and a programming language.
The coincidence of names is an indication of the integration of programming
language and operating system rather than a symptom for lack of imagination
[WiGu92].

In particular, it is an integrated operating system that allows system
resources to be accessed from any application by the use of abstract data
structures. Oberon differs from other operating systems by the absence of a
traditional notion of the program as the unit of both action and algorithm
description. Instead, the atomic unit of interaction is the procedure (called
command) that is invoked directly by the user. A command is therefore an
activity that operates on the global state of the system, typically represented by
a set of viewers (windows) on the screen. Examples of commands are opening
a document, sending a prepared text mail, reading the directory of a diskette
and so on. The tasks are carried by a single process and may arbitrarily be
sequenced by the user. The Oberon system can therefore be called a single

process multi tasking system.
Other important properties of the Oberon system are the dynamic loading of

program modules, automatic memory management by a garbage collector and
a central event dispatcher. All of these properties are both necessary and
sufficient in order to achieve unlimited extensibility of the system. "Application
packages" such as compilers, editors etc. are merely extensions of functionality
of the basic Oberon system. They are are added to the system while it is
operational.

The evolution to Oberon System 3

Oberon System 3 basically introduces two new concepts to the standard
"classical" Oberon system. These are Object and Library. The new base type
Object is rooted in the system basis. It stands for a class of entities that share a
common message protocol. Objects generalize and unify concepts that are

7

already present in the classical Oberon system, such as character patterns, texts
and display frames.

Libraries are mutually disjoint collections of objects. An object is said to be
bound to a library, if the library "contains it". If so, there is a reference number
such that the pair (reference number, library) uniquely identifies the object
within its library. Objects and Libraries prove to be merely separate aspects of
one and the same integrated concept of persistent objects [Gu93].

Technically, a library is an indexed collection of objects, and serves three
different purposes in connection with persistence: Externalization and
internalization, object grouping, and invariant identification of objects. Object
grouping (i.e. collection) is realized by means of methods to deposit, retrieve
and delete objects into and from libraries, respectively. Object identification is
implemented with a dictionary mechanism that allows an object within a
library to be identified by a name.

Libraries exist in two variants which differ in their accessibility: Public and
private. On the one hand, public or named libraries can be accessed by any
authority in the system. They allow to share objects across document and
library boundaries. Hence, several documents may share a collection of objects.
As a consequence, modifications on objects are immediately available to all
clients. On the other hand, private or anonymous (i.e. unnamed) libraries are
local to some host (e.g. a document) and cannot be accessed from "outside". If
an object is shared across boundaries of private libraries, each library will
eventually have a distinct copy of the object, if its host document is stored.

Public libraries allow a invariant reference scheme for objects of the form
L.O, where L is the name of the library and O the name of the object. This
naming scheme exactly corresponds to that of a unit of execution in the
Oberon system (the Oberon command) which has the form M.P where M is
the name of a module and P the name of a command procedure.

Integration of Objects into Text

The original motivation for the evolution of the Oberon system was the
seemingly harmless question of how to integrate figures and graphics into a
text in a conceptually clean way. In the Oberon system Text is a fundamental
abstract data type and belongs to the outer kernel of the system. It is looked at
as a sequence of attributed characters with attributes type_font, color and vertical

offset. The Ascii code of a character is now interpreted as an index into a data
set of graphical representations (character patterns) that form the look of a
character. A detailed discussion on Oberon's text machinery can be found in
[WiGu92].

8

It was obvious that the integration of generalized objects such as figures and
graphics into a text had to be achieved in a way that allowed objects to flow
freely as elements within a stream of characters. Several different solutions for
the integration have been presented. They mainly differ in the level on that the
integration takes place, i.e. how deeply the new concept is situated in the
system hierarchy. In the Write editor package [Szy91] a special object type
called Element has been introduced. Elements are able to flow within the text
like ordinary characters. For that purpose, the definition of a text has been
conceptually extended to a sequence of either normal characters or elements.
In this model, elements within the text need special treatment by the text
machinery. Therefore, elements have been defined and integrated at the
hierarchy level of Texts. This, of course, implies that elements exist only in
textual environments.

Supertexts

In Oberon System 3, a more general approach has been chosen. A simple shift
of emphasis in the interpretation of type_fonts led to an elegant and flexible
solution. Instead of looking at the font as an attribute (of a character), it is
interpreted as a collection (of character objects). Such a collection is a special
variant of a Library that is indexed by the character's Ascii code. This
interpretation leads directly to generalized texts, called Supertexts, that are
sequences of objects that can be of various types (e.g. pictures, graphics etc.). Of
course, character objects will very probably be the most frequent ones. They are
specified by pairs of (character code, library). Because objects are located
sufficiently low in the system's hierarchy, objects may occur in texts as well as
in any other environments.

There are two different ways of including an object in a context: Inclusion by

reference and inclusion by integration. An object may appear in several different
texts although it physically exists as a single instance only (e.g. character
patterns of a font). This case is implemented by reference copies where a
reference copy is a reference to an object rather than the object itself. In a text,
the reference copies are represented by pairs (character code, library). Inclusion
by reference allows objects to occur simultaneously at different locations in the
same or other documents. Note an object must be contained in a public library
if it is intended to be referenced from different documents.

A clone is an object that emerges from the creation of an identical but
independent instance of an original object. It has the same initial state as the
original object but any modification of its state will only affect the clone. In
contrast to reference copies, clones are included into a text by integration. They

9

must be stored in the document's private library. It is the responsibility of the
corresponding document to maintain its private library.

Script

Supertexts are displayed and manipulated with the help of a tool called Script

[So94]. Script is a simple editor for formatted text. It does not support a
sophisticated document model but is "wysiwyg", and in particular guarantees
an identical line breaking on the display and printer.

Supertexts are presented on the screen by a special object class called
ScriptFrames. Its main purpose is twofold: (a) Mapping of the sequential text to
a two dimensional display area (formatting) and (b) support for interactive
manipulation of its contents (editing). Editing operations comprise inserting,
deleting and copying of text pieces and text attributes. Graphical objects that
appear in the supertexts can be displayed, sized, moved and edited in_place, i.e.
without having to switch to a dedicated graphics environment. Due to the
object oriented design and implementation of ScriptFrames, object
management basically confines to forwarding all user requests to the
corresponding object.

Alternatively to being displayed, objects that flow in a text stream may be
interpreted, and thus can have an impact on their context. Script supports a
special variant of such objects called style symbols that control the look of a
subsequent text section. While font, offset and color define the look of a
document at character level, style symbols allow to control the look and format
of the document at the level of paragraphs. The notion of flowing format style
symbols has been borrowed from the Write editor package [Szy91]. Attributes
of style symbols include left and right margins, formatting mode (left and right
adjusted, block mode and centered mode), line spacing, tabulator stops and
forced page breaks. Style symbols can be copied to different text locations (an
even to different documents) like any other text piece and therefore may be
used in different text sections (reference copy). Any change of parameters of a
style symbol thus applies to every position where it occurs.

The collection of all style symbols of a document defines its overall look. In
addition (and beyond the possibilities of the Write editor), symbols
representing a certain style may be grouped in a style library. Predefined
ready_made style symbols collected in public style libraries can thus be used to
define a uniform look of a set of different text documents.

This thesis, for example, has been written and printed completely using
Script. Thereby, each chapter is a separate document. However, all chapters

10

share a uniform look defined by a small number of prepared style symbols that
are collected in a common public style library.

Document Oriented Interface Model

In commonly used operating environments, user interfaces are an integral part
of the corresponding applications; that is, they aren't viable outside of the
application's context, and are always loaded together with their application. In
the Oberon system, however, user interfaces are autonomous documents that
can be opened without having to start their applications in advance. This
model can be called document oriented interface (DOI). It is one of the major
characteristics of Oberon's user interface.

As stated earlier, the command is the unit of interaction in Oberon. A
command is activated directly from the user environment by clicking the
mouse at its name. A command name M.P consists of two parts M and P

where M is a module, and P is a procedure in M. Such commands and their
parameters are usually prepared and collected in freely customizable menu text
documents, so called Tools. Tools are opened, edited and stored like any other
textual document in the Oberon system. In addition, commands can be
included in (and executed from) ordinary text documents. For example, it is
common practice in Oberon to include ready_made command lists in
electronic mail messages for a convenient execution by the recipient of the
mail. The set of all text documents containing commands can be looked at
Oberon's textual user interface (TUI).

In addition, Oberon provides a graphical user interface management system
called Gadgets [Gu94]. It again applies a document oriented approach. A user
interface panel is a graphical document that contains a collection of user
interface elements like buttons, text fields and sliders (collectively denoted by
the term gadgets). A panel is interactively opened, composed and stored like
any other document. In principle, panels are autonomous. Their composition
does not assume the presence of any application at all. However, applications
can later be bound to a panel (or a panel can be bound to an application).

Functionality is attached to gadgets (buttons, etc.) again by means of
commands. For that purpose, gadgets are equipped with an attribute that
indicates the command to be executed when the gadget is clicked at. In fact,
the Gadgets user interface can be seen as a graphical clove of ordinary
commands, although it extends the capabilities of the original user interface
significantly (e.g. by automatically collecting parameters from the different user
interface elements).

11

Binding activities to graphical items by means of command attributes is
common practice in the Gadgets graphical user interface and one of its sources
of flexibility. This dynamic way of coupling activities with gadgets allows to
customize every single type of graphical items for several different purposes.
For example, two buttons of the same type initiate different actions if different
commands are attached.

Services and their Representations

We define a service as an authority able to consume, process and deliver on
demand certain well_defined data items. The entity that operates a service is
called server. Users of a service are called clients. The service's environment is
called client/server environment. The interaction between clients and servers
usually happens in the form of request/response pairs (where the response
occasionally may be left out or restricted to an acknowledgement, for example
in the case of a print service). Requests for processing or delivering data items
are always initiated by clients and processed by servers.

The spectrum of possible services ranges from simple file and print services
over static local data bases such as electronic encyclopedias to highly
dynamical broadcast information services like Teletext, or global network
information systems like the World_Wide Web.

Implementing Access to Services

We repeat that the construction of client applications for interacting with
services involves aspects which can be roughly separated into three groups as
listed below:

a) communication protocols between server and clients,
b) the design of a stub as a representation of the service on the client's side,

and
c) the user interface model on the client's side.

Usually, an implementor of a client application is confronted with all of these
aspects in the above order.

Aspects in the first group are related to the interaction with services and
hence with the processing of transactions. Transactions between services and
clients involve an exchange of requests and responses whose structure and
sequence is called protocol. These aspects also include the data representation
(encoding and decoding) of the information to be exchanged.

12

The third group collects aspects of the integration of services into the user
environment. This includes the definition of an appropriate user interface
model. Favorably, the user should not be forced to learn a different user
interface for every different service. Ideally, the user interface model should
provide a single, consistent interaction mechanism that applies equally to any
arbitrary local and remote service. A seamless integration also requires a
representation of the service's data items by facilities and components of the
user environment. In such a case, existing applications may immediately profit
from the new possibilities (i.e. consume and process such items).

Aspects (a) and (c) can be bridged by an abstract representation of the
service on the client's side whose purpose is hiding all service_specific technical
details and providing a uniform interface to the different services. Uniform in
this case means that a similar access mechanism is applied to every service,
irrespective of the internal details.

Representation of Services on the Client's Side

Abstracting from internal details of a service, the interface of a service can be
defined by two intrinsic operations: Sending an item and requesting an item.
Sending an item to a service implies that the service is ready to consume and
evaluate it. Requesting an item from a service implies that the service is ready to
create or retrieve it. Note that the actual communication between the client
and the server (such as connection establishment etc.) are regarded as
implementation details of these basic operations. We assume that these
operations completely encase transactions; i.e. there is no service related state
that survives any of the operations (so called stateless transactions).

Of course, this abstract representation relies on an appropriate individual
implementation of these operations for every service. However, once an
implementation is provided for a desired service, a client needs no longer care
about details of protocol and transport but merely uses the two basic
operations for communication with this service.

A service is thus conceptually split into an abstract interface and
implementation that resides on the client's side and the actual service that
resides on the server's side. The following figure illustrates this situation:

13

Abstract
Interface

Oberon
Data Structures

Service's
Protocol

Client
Application

Client

Service
Application

Service

Server

Figure 1: Client/Server Structure of a Service

Because clients interact with the abstract interface of a possibly non_local
service, rather than with the service itself, internal Oberon data structures can
be passed via the abstract interface. The client representation of the service
("local" from the client's point of view) thus consumes and produces Oberon
objects while encapsulating and hiding all service specific behaviour such as
protocols, encoding and decoding behind its abstract interface. As from the
client's point of view the service's representation stands for the service itself, we
don't distinguish between the two from now on and call the abstract interface
Service. It is modelled by means of the following data type:

TYPE

Service = POINTER TO ServiceDesc;

ServiceDesc = RECORD(Objects.ObjDesc)

Send: PROCEDURE(S: Service; parobj: Objects.Object; par: ARRAY OF CHAR);

Request: PROCEDURE(S: Service; parobj: Objects.Object; par: ARRAY OF CHAR):

Objects.Object;

END;

Type Service is an extension [Wi88] of type Object with two additional
methods for sending and requesting objects. The Send method of the service
allows to deposit an object for being consumed and processed by the service.
The desired operation is specified by a string parameter. The Request method
allows to retrieve an object from the service. The requested object (or
operation) is again specified by a string parameter. If the requested operation
depends on an object (for example on a mathematical formula to be
evaluated) it may be supplied with the request as a parameter. Formally, an
object is requested from a service S in the following generic way:

resultObj := S.Request(S, parObj, par);

14

and sent to a service T like this:

T.Send(T, obj, par);

Remember that different services only differ in the actual implementation of
the corresponding send and request methods.

Generic Naming of Services

For a generic interaction with services, the concept of an abstract interface is a
necessary but not yet sufficient requirement. While abstract interfaces allows to
use services in a generic way, a method is still required to identify a service in a
generic way. For that purpose, a facility has been constructed that allows to
retrieve services by their name. The following GetService procedure implements
the generic naming facility:

PROCEDURE GetService(name: ARRAY OF CHAR): Service;

Services are created like any other object in the system in a generic way by
means of a so called generator method. The naming facility is based on this
technique: The mapping of names to services is done by generator methods
that create instances of services.

As examples, the following lines list accesses to different services, each one
identified by its name (given by generator commands):

Request plot of formula fm from the Symbolic Algebra SystemMaple

maple := Services.GetService("MapleEngine.New");

plot := maple.Request(maple, fm, "plot");

Lookup keyword "Oberon" in Encyclopedia

dict := Services.GetService("Encyclopedia.New");

obj := dict.Request(dict, NIL, "Oberon");

text := obj(Texts.Text);

Online Documents

A document in the traditional sense is a static and self_contained collection of
data (a "model") that represents a certain unit of information. The model can
be a text, a graphic, a spreadsheet, a video sequence etc. or any combination

15

thereof. If a document is being "opened", the model is represented on the
display in a certain way. Although mapping the model onto the screen may
consume significant computing resources (e.g. in the case of on_the_fly
decompression of video data), it does not produce any information that is not
already present in the model.

The notion of online documents generalizes both the model and the mapping
of traditional documents on some display space. The model of online
documents is possibly distributed over several locations (non_locality of the
model). Non_locality implies that the model must be collected before
representation, for example via network connections. Additionally, the model
does not necessarily need to represent a static state of information (dynamic
model). If an online document lacks a well_defined, static global state, (static)
views must be computed "on_the_fly" at the time of the document's mapping
on the display. A specific view of an online document merely represents a
snapshot of its current state or, more general, if the mapping itself depends on
certain parameters, a projection of the current state.

The mapping process of online documents involves either compiling the
model or constructing a static view. Each of these tasks requires a program that
processes the corresponding task. If we interpret as services the programs that
produce the mapping, an online document can be seen as an abstract
representation of information that is managed, updated, mediated and
visualized by means of services. Hence, we can view an online document as an
abstract representation for services.

Examples are the World_Wide Web and TeleNews (for internal details refer to
the corresponding case studies). The model of the World_Wide Web is a
distributed pool of hypertext pages, bitmap images etc. Its mapping involves
the collection of these items via network connections. Both collection and
rendering are performed by applications called browsers.

TeleNews is an advanced and expressive representation of Teletext data in
the form of an electronic newspaper. The teletext data base is perpetually
collected and maintained by a centralized remote server. Static views of the
data base are compiled upon request into hypertext overview lists and news
articles.

Smart Links

Links are a popular means to abstractly relate arbitrary data items and
documents to each other. If a link is activated, the related data item is fetched
and processed in an appropriate way. A picture item, for example, is probably

16

displayed on the screen, whereas a binary data file is downloaded onto the
local disk.

In Oberon, abstract relations are usually established with prepared
commands that are contained in documents. For example, an electronic mail
message that informs the clients about a new release of a software component
may directly include an abstract reference to the component. The
corresponding reference usually consists of ready_made commands that allow
the downloading of the component from a remote file server. Thanks to
Oberon's document oriented interface mentioned earlier, these commands can
be executed directly from the mail text. For the future, it is planned to
physically link (i.e. attach) the component directly to the mail.

In so called hypertexts, links provide a technique to structure large
documents and to build a network of hierarchical and semantical relations.

Hypertext

Hypertext [BeDe91] is a special way of organizing and presenting textual
information that allows the reader to navigate hierarchically or freely through
the text. Hypertext is a simple and powerful concept for both structuring and
activating text. By simply pointing at highlighted keywords, the corresponding
information is fetched and displayed. This behaviour gives the reader the
impression of "zooming" into subjects of interest, which proves to be a very
efficient way of retrieving information. Hypertext facilities have become very
popular. There is hardly any online manual worth mentioning which does not
rely on hypertext mechanisms in order to allow the reader to "browse" through
the contained information.

The basic idea of hypertext is to enhance the pure sequential structure of
text. Instead, references to different text sections, so called hypertext links, allow
the construction of complex reference structures. Besides acting as a
structuring tool for splitting the information into easily readable portions of
text, hypertext links allow for building a network of logical and semantic
relations.

The links of a hypertext document are directed edges of a graph structure
with text sections as nodes. The hypertext graph can be traversed along any of
its directed links. Usually, a "context stack" supports backtracking from
previously traversed links in the reverse direction.

A link consists of a source anchor and a destination anchor, denoting the
origin and the end point of the link, respectively. A source anchor is usually
indicated by highlighting a keyword, or by adding a symbol such as the
reference arrow that is familiar from dictionaries (e.g. .keyword).

17

A hypertext look_up is processed as follows: If a link anchor is activated, e.g.
by clicking at it with the mouse, the hypertext platform (often called hypertext
browser) identifies the type of the hypertext link and uses it to address the
referenced text section. Possible link types are the reference link pointing to a
different text section or, for example, a link yielding a popup note.

Service Links

In [BLCa90] it has already been recognized, that "potentially, hypertext provides a
single user_interface to many large classes of stored information such as reports, notes,

data_bases, computer documentation and on_line systems help". In other words, by
interpreting the link activation as an elementary user interface operation,
hypertext can be seen as a unified and integrated model of a user interface for
a large class of different textual applications. This kind of interpretation of
hypertext in general and the link activation in special has led to network
services and other applications that more and more present themselves as
active hypertext documents.

It is easy to recognize that an ordinary hypertext lookup scheme as
presented above is not general enough as the only basic operation of a user
interface model. The reason is that the knowledge about how to interpret a
specific link type needs to be contained and centralized in the browser.

Conceptually, link anchors serve as tokens defining both the presence as well
as the type of a hypertext link. This property requires that the hypertext system
"knows" all existing types of links in order to interpret them and react
accordingly. Consequently, the actual acquiring and displaying of the
referenced text sections is performed by the browser. Such a hypertext system
is inherently non_extensible. The addition of new link types and thus of new
ways of interpreting links always implies changing the original code. If
extensibility is an indispensable requirement, this model of a general user
interface is therefore inappropriate. Thus, a more general notion of an
elementary operation has to be found. A solution that takes away the burden
of service_specific aspects of the link activation from the browser consists of a
reinterpretation of link activation as a request to a specific service. Such an
extended view is inspired by the similarity of a link activation and an access to
a (such as request_response schemes). In this way, links generalize naturally to
service calls. In other words, service links are active entities that are requested to
deliver the associated data item rather than interpreted by the browser.

In this light, it is natural to represent such a service link internally as an
abstract service. Such internal representations of service links are called Smart

Links. They are formally defined as follows:

18

TYPE

Service = POINTER TO ServiceDesc;

ServiceDesc = RECORD(Objects.ObjDesc)

Send: PROCEDURE(S: Service; parobj: Objects.Object; par: ARRAY OF CHAR);

Request: PROCEDURE(S: Service; parobj: Objects.Object; par: ARRAY OF CHAR):

Objects.Object;

END;

SmartLink = POINTER TO SmartLinkDesc;

SmartLinkDesc = RECORD(ServiceDesc)

Resume: PROCEDURE(link: SmartLink)

END;

A smart link is modelled as a type_extension of a service. It inherits the service's
Request and Send methods and adds a Resume method that is used for the
implementation of a generic context stack that allows traversing links in the
reverse direction. With the help of the context stack, the user can conveniently
return to a previously visited context (page).

A generic context facility for resuming contexts is necessary, because in a
heterogeneous document environment (heterogeneous with respect to
services) activation of a link may result in a switch to a totally different context,
for example, from a World_Wide Web page to an online encyclopedia page.
Usually, a context is indicated with titles etc. which are changed whenever a
new page is presented. The setting and resetting of context dependent
attributes must be handled by the link itself, because the link processor has no
information about contexts. For symmetry reasons, the link thus handles both
the entering as well as the leaving of a context.

A Document Oriented User Interface Model

In Oberon, documents serve as containers for textual user interfaces (tools)
and graphical user interfaces (panels), respectively. In both cases, the user
interface relies on the command as the unit of interaction. In the textual case,
the command name is pointed at directly, whereas in the graphical case, the
command is installed in a graphical element as one of its attributes.

Regarding our experience with documents as a basis for user interfaces in
Oberon, we have designed a similar model for the interaction with arbitrary
services. In fact, by defining the service call as the unit of interaction, Oberon's
document oriented user interface model can be easily adjusted to the desired
generalization.

Our document oriented user interface model for services is based on smart
links as a primitive. The corresponding service call (which is an implicit result

19

of the smart link's activation) may, for example, result in getting and presenting
a new page of a hypertext based service. Because smart links are special
variants of objects, they can be included directly in the new text page. In that
way, the returned text represents the user interface for a subsequent activity.

Documents containing smart are called Smart Documents. They unify and
integrate both the information that is delivered and presented by the services,
and their user interface. Smart documents thus provide a consistent and
extensible user interface model.

Consistency

Smart documents incorporate a consistent representation of an online
document and its user interface. Any mismatch between the presented
information and the expected behaviour of a document is impossible because
the behaviour is concentrated in the links. Consider the following example: An
excerpt of an encyclopedia or a dictionary that contains references to further
keywords. For any human reader it is obvious that the keywords refer to further
encyclopedia entries. Consequently, the browser application must remember
the context of the displayed page in order to be able to direct further activities
to the appropriate service (in this case an electronic encyclopedia).

In a heterogenous online document environment of online documents
(heterogenous with respect to (possibly unknown) links) it is possible that an
activity (e.g. the activation of a link) results in a switch of context so that the
following user activities make use of a different service. In our document
oriented user interface no provisions have to be taken in such a situation: The
services that process the (different) activities are contained as links within a
page of the corresponding context.

Extensibility

The activation of a smart link implicitely has the side effect of a generic service
call that allows access to new and yet unknown services. Smart links therefore
constitute the basis of a potentially unlimited extensibility of the document
oriented interface model. A smart link be seen as a combination of an Oberon
command and an abstract service.

Generic Link Processor

Extensibility of the document oriented interface for services relies on a generic
link processor. Processing activities within an ordinary hypertext system

20

requires a specific interpreter that is able to recognize different kinds of
hypertext links. In contrast, smart links are services which can be invoked in a
generic way. In other words, the interpretation of links is replaced by (generic)
service calls. Hence, we can outline the implementation of the universal link
processor of the document oriented user interface as follows:

ProcessLink = {
get text and position of the user activity within online document;
if keyword at position is highlighted then

find first link object after position within text;
request new item from link;
if returned item # NIL then

if item is a text then
push current text context on context stack;
replace current text by text section received from link

end
end

else
execute keyword as Oberon command

end
}

The core of the above link processor is requesting a data item from the smart
link. It is implemented as a service call. In principle, the smart link is fully
autonomous in the handling of the item returned by the service. Typically, it
can return a data item to its interpreter. For example, if the service returns a
text, the interpreter replaces the currently visible text page by the returned text
in a hypertext_like style. A link may also decide to open a view of the returned
data item by itself and not to return any object to the interpreter. For example,
links to the symbolic algebra system never return a data item. Instead, the
result of an evaluation is directly appended by the smart link to some specific
text view that acts as a "sketch paper".

Similarly, the link type handling World_Wide Web requests opens a separate
picture view, if the requested item is an image. If the returned item is a text, the
smart link still returns it to the interpreter.

The above described special processing of text items by the link processor
offers a hypertext_like functionality that can be seen as a special support for a
frequently occurring case.

Furthermore, it is noteworty that the conventional processing of
unhighlighted keyword as Oberon commands is preserved by the interpreter.

21

Visual Representation

Up to now, we have not yet fully discussed the visual representation of smart
documents. This was intentional, because service related issues should not
affect the visual representation of smart documents at all. In fact we shall
decouple all the aspects of the smart document's representation on the screen
from the link processor. This is comparable to the decoupling of service related
aspects (protocol etc.) by encapsulating them in the implementation.

In summary we have the following aspects in connection with smart
documents: Invoking links, calling services, and rendering documents (on the
display). This leads to the control flow as sketched in the following Figure:

Link
Processor

View/
Controller

Smart Link

call link processor (2)

request object (3)

return object (4)

install result (5)

User points at keyword (1)

Figure 2: control flow of generic link processing (the sequence of activities is given in parentheses)

Note that the entity that is responsible for the display smart documents
(denoted with View/Controller in the figure) is involved in two activities: (a)
Calling the link processor (step 2), and (b) (possibly) receiving the result of the
link activation. Both activities can be performed in a generic way, so that a
simple adjustment of ordinary Gadgets text views readily meets our
requirements:
Invocation of the link processor. Smart document views differ from ordinary

text views by a specific behaviour upon user activities: They invoke the generic
link processor for calling the service that is attached to the link. In a graphical
user environment that is based on the Model/View/Controller ("model" = data,
"view" = representation of model, "controller" = handler of interaction)
separation, a different behaviour can be represented by a different controller.
The Gadgets system allows to parameterize the controller action by a
command attribute. Therefore we are done with simply setting the command
attribute of a Gadgets text view to the generic link processor.
Display result of the link activation. A message interface is used for the

communication between the link processor and the document's view. The
following attach message notifies the view manager of the text that is to be
displayed:

22

AttachMsg = RECORD(Objects.LinkMsg)

pos: LONGINT

END;

The attach message is a type_extension of a standard link message. The latter is
used to retrieve or set the model that is "linked" to a view.

LinkMsg = RECORD (Objects.ObjMsg)

id: INTEGER;

name: Objects.Name;

obj: Objects.Object;

END;

The link message contains fields id, name and obj which specify the desired
operation (set or get), the model's name and the actual model, respectively.

The attach message extends the link message by a position that indicates the
origin of the text view (i.e. the position of the first character (or object) that is
displayed).

Note that a text view which handles the standard link message but not the
extending attach message is still able to display and process smart documents.
However, it will only a reduced functionality offer (no automatic positionning
of the text).

Generic Context Stack

The bove introduced attach message allows it to build a general mechanism
for the maintenance of a context stack. Because text pages that result from a
smart link are installed indirectly at the smart document's view via the attach
message, the context stack's data structure cannot be anchored at the view. It
is therefore anchored directly at the text page to be installed. Hence, by
definition, a new text page always represents the head of a chain of previously
displayed pages (the context stack).

23

obj obj objlink link link

context

slink slink slink NIL

current context

text view

text

text context context

text text

Figure 3: data structure of the context chain

The context stack is a linear list of elements each representing a context, i.e. a
text page that lies on the traversed path to the currently visible page. A context
consists of the text page and the link which produced the page. If the previous
context is resumed, the resume method of the corresponding link is executed
in order to allow context titles and other context specific information to be
restored.

Example Service Integration with Smart Links

The link activation scheme based on smart links allows the integration of
arbitrary textual services into one and the same document oriented interface. In
the next chapters, the emphasis lies on concrete implications and on
service_specific aspects of such an integration. To illustrate the application of
links in the case of a concrete class of online documents, we subsequently
describe the integration of an electronic encyclopedia.

The electronic encyclopedia is based on a commercially available low_cost
encyclopedia (Knaur's Lexikon) containing explanations about 40'000
keywords by about 100'000 lines of text. In connection with its integration, we
are interested in the raw data only. The browser application supplied with the
encyclopedia package is therefore not required. (In fact, the low_cost solution
has been chosen mainly for a mere practical reason: It was assumed, that a
"cheap" encyclopedia lacks a sophisticated data file encoding scheme that is
hard to crack).

Interaction with the online encyclopedia is based on the keyword lookup as
an elementary operation. It happens in one of two ways: Either a keyword is
selected anywhere on the screen, or a reference to a keyword within a page
returned by the encyclopedia is activated. In either case, the result of a link
activation is an encyclopedia page that contains the explanation of the keyword.

24

The implementation of the actual request method is listed below. It is
assumed that the encyclopedia lookup and the generation of the resulting page
are performed by the procedures Lookup and WritePage, respectively. Their
detailed implementations are irrelevant in this context and therefore are not
explained any further. It suffices to note that the WritePage procedure parses
the text lines that are returned from the encyclopedia data base, and
substitutes all "arrowed" keyword references by smart links. These are then
integrated into the text.

PROCEDURE RequestPage(enc, obj: Objects.Object; par: ARRAY OF CHAR): Objects.Object;

VAR entno: EntryNumber;

BEGIN

Lookup(par, entno); WritePage(W, entno); (*keyword lookup & page construction*)

NEW(text); Texts.Open(text, ""); Texts.Append(text, W.buf);

RETURN text

END RequestPage;

Note that the Lookup procedure is parameterized by the string parameter
supplied with the method. This parameter is the keyword at the link anchor
which has been clicked at. Because the keyword supplied as a parameter is
sufficient to specify the lookup, the encyclopedia link does not need to store
any further private data. It can be defined as follows:

Link = SmartLinks.Link;

Links are generated by the following generator method:

PROCEDURE New*;

VAR obj: Link;

BEGIN

NEW(obj); obj.handle := SmartLinks.Handle; (*create encyclopedia link*)

obj.Request := RequestPage; (*install request method*)

Objects.NewObj := obj

END New;

All text based services that are integrated and accessed by means of smart links
are implemented in a way similar to that of the encyclopedia service. In fact,
they mainly differ in the methods of requesting and processing the information
returned from the service, i.e. in the implementations of the Lookup and
WritePage procedures in the example above. Therefore, a new service's
integration in principle confines to the implementation of these
(service_specific) procedures.

25

RelatedWork

Acme [Pi94] is a document oriented interface designed as a User Interface for

Programmers. It is a windowed user environment especially suited for text
based applications. Acme presents itself on a display in a hierarchically tiled
form with tracks and windows that are organized in a way similar to Oberon.
Acme adopted a command activation method comparable to Oberon, i.e. using
clickable text captions that represent activities (built_in Acme commands or
programs).

One of Acme's major characteristics is a generic interaction method for
services that is based on a file system interface. On one hand, arbitrary clients
can access the offered facilities and abstractions by reading or modifying the
contents of abstract files. On the other hand, services can be integrated into
Acme's user environment and accessed with its tools, if they offer their facilities
in the form of abstract files. Note that files need not necessarily be associated
with disk space. Instead, a file can be viewed as an abstract service with a
well_defined set of intrinsic operations including reading from and writing to a
file. This generalized concept of files is frequently used in UNIX_like systems
[ThRi74] e.g. for representing devices.

Acme's state and behaviour, for example the content of its windows, are
controlled and represented by such generalized files. These can be manipulated
(read and written) by clients in order to modify the window's contents, for
example.

The integration of a mail reader into the Acme environment is accomplished
by specifying a mail file directory. The mailbox entries are represented by mail
files. The mail program simply monitors the user's mailbox and updates the
mail directory accordingly. There is no need for a special mail browser,
because, from Acme's point of view, reading mail is equivalent to reading an
ordinary file. As a benefit, all applications operating on files can as well operate
on mailbox entries.

In Oberon, the file is not an adequate abstraction for the modelling of a
service. This on one hand is due to merely technical reasons (type File is not
extensible). On the other hand, using files as a basis for arbitrary services
would leave unexploited one of Oberon's sources of power, namely its ability
to operate directly on global data structures.

In Acme, a centralized representation of services on a per_document base is
used. The window's current directory identifies the service to which all activities
within a window are directed. In contrast to Acme, we have a decentralized

representation of services in our interface model. Services are represented by

26

means of smart links that are distributed in the document. Therefore, a smart
document may contain links of very different kinds.

In [Ze88], a document oriented interface is presented that relies on a concept
named script to construct so called Active Paths Trough Multimedia Documents.
Multimedia documents are documents that integrate text, images, sound and
animations.

A script associates an arbitrary timed action to a location within the
document (for example the origin of an active path). The content of the script
is usually interpreted without intervention of a user. This allows for example
the annotation of links with sound patterns (such as a welcome text) or to play
back parts of the multimedia document. Scripts activate themselves, i.e. there is
no (global) media recorder that replays the multimedia document.

Active paths are the implicit result of the interpretation of scripts that
connect two locations. These paths are more general than ordinary hypertext
links. In fact a hypertext link can be expressed by a script that connects origin
and destination without associating any action.

The destination of an active path does not need to be a physical location in
a static document. Instead, the execution of a script may redirect the path to a
new location, or even to a document that is computed during the execution of
a script. For example, a path in a multimedia document may depend upon
earlier activities in the sense that further explanations are abbreviated, if
enough information has already be seen (history dependent scripts).

In contrast to our smart links, active paths may spontaneously perform
activities after some predefined time, or immediately when they are displayed.
Whereas smart links combine the behaviour of abstract services with the
semantics of Oberon commands, active paths build on the semantics of
Oberon background tasks (i.e. commands that are executed by the system
when it runs idle). However, although active paths serve a different purpose
(namely to activate documents), they can serve as a basis for the integration of
links to services in multimedia documents. Such links are implemented by
scripts that call the corresponding services and construct the document the
active path leads to.

Conversely, the implementation of active paths by means of smart links
would allow the integration with our document oriented interface of the two
most interesting aspects of multimedia documents, namely history dependent
link processing and automatic link activation.

History dependent link processing would require the maintainance of a list
of visited documents. If a smart link is invoked, it could inspect the "history
list" to decide which activity to perform (e.g. which document to return). Timed

27

activation of smart links could be implemented by a timer that is attached to
the link. As soon as the link is displayed, the timer would be started. After
expiration of a predefined time, the link would be activated by the link
processor as if it had been activated by the user. Timers could easily be
implemented with the kind of tasks mentioned above, as tasks already have a
timer value associated with them.

Summary

In this chapter we have presented a universal document oriented interface for a
unified and consistent model of interaction with arbitrary local and remote
services. An Oberon object type that we have named Service serves as a
unifying concept for the representation of arbitrary services on the client's side.
This concept offers an abstract and generic accessing scheme for arbitrary
services, and allows passing abstract data structures to the service. All involved
tasks such as encoding, sequentializing etc. are hidden behind a uniform
message interface.

We have introduced the notion of online documents and related it with
traditional (static) documents. Online documents provide an powerful model
for all kinds of information that is collected or produced by services.

A new interpretation and generalization of a hypertext links led to the
concept of Smart Links. These are an object_oriented and internal representation
of service links, i.e. of links whose interface represents an abstract service.

By integrating smart links in (online) documents, we have constituted a
universal document oriented interface for services. It is universal with respect to
its potentially unlimited extensibility. Smart documents integrate both the
information that is provided by services and their user interface. Based on the
document oriented interface model, services are naturally integrated into the
Oberon system. They supply the user with an interface that he is familiar with.
In the latest implementation, for example, one and the same opening
command applies for local documents as well as for online documents.

Case Study 1: Dynamic Mathbook

In the first case study we present the integration of an interactive formula
editor and a symbolic algebra system as a Dynamic Mathbook. The integration
results in an interactive mathematical platform allowing to modify and evaluate
mathematical expressions directly within a document containing formulae.
Applicable operations include mathematical transformations and the
generation of graphical function plots. Activation of mathematical documents
introduced by such an integration aims at a new class of interactive
applications called electronic textbooks. These are textual information
environments that allow the contained information not only to be consumed
but interactively processed and experimented with directly within the document.

Introduction

If we take a look at the evolution of information media from printed matter to
multimedia applications, we can observe several steps of (inter−) activation of
the transported information. The concept of multimedia currently forms the
last and at the same time farthest reaching step. Printed material allows almost
no interaction at all, besides the possibility to manually turn over the leaves.
The support of fast keyword indexing facilities within an "electronic book"
provide support for interactive searching in large data bases. The concept of
multimedia even activates the data itself by allowing play_back video
sequences, sound patterns and animated slide shows.

Multimedia as well as hypertext (whose unification is occasionally denoted
by the term hypermedia) are very effective concepts for activating static
information. However, there is a level of interaction which has not yet been
developed extensively in the fields of interactive computing in general and
hypermedia applications in special. We allude to the ability to process the
information presented in the text itself.

Essentially, the only operation applicable to multimedia documents is replay.
Hence, the flexibility that lies inherently within the concept of software is not
exploited. What we really want is an interactive extension of multimedia

30

platforms allowing to interpret and manipulate the information they mediate.
In particular, this is true for mathematical expressions within a text.

It is a usual feature of sophisticated text document editors that graphical
objects like figures and pictures can be integrated into the text. Sometimes
they can also be manipulated in place, i.e. without having to switch to a
different application. The set of such objects often includes mathematical
formulae with their typical two dimensional rendering. The different formula
preparation systems mainly differ in the way formulae can be constructed and
manipulated. The mathematical meaning of a formula is normally irrelevant in
such systems.

Conversely, today's symbolic algebra systems have reached a state, where
they cope with almost every mathematical problem of whatsoever complexity.
However, their formula manipulating and rendering facilities has not always
reached a satisfactory state ("For the most part, it is still true that programs that

format mathematics can't do mathematics and programs that do mathematics can't

do good math editing." [Leong90]). The integration of a formula manipulating
system and a symbolic algebra system can close the gap between
manipulation and rendering of formulae on the one hand, and their evaluation
on the other. But their integration aims beyond that by opening the door to a
new class of interactive applications which allow their contents to be
processed, rather than only to be consumed. Such an integration, by the way,
manifests itself as a new level of interaction in particular in the fields of
formula processing. The levels under discussion are (ordered by increasing
interactive power): Formula creation by means of markup sequences (no
interaction at all, e.g. TEX [Knuth84]), direct manipulation (cf. [Schär91]) and
finally direct evaluation of formulae within the document.

The Dynamic Mathbook

The Dynamic Mathbook is an online document that is linked to a symbolic
algebra system. Mathematical formulae that appear in the document can be
interactively edited in place, i.e. without having to switch to a dedicated formula
editor. Furthermore, formulae can be evaluated directly within the document.
Evaluation results in a formula again, which can immediately be modified and
processed further for interactive experimentation with the expression.

The Dynamic Mathbook's functionality essentially consists of two
operations that can be performed on formulae. They correspond to the two
possible resulting object types: Evaluating a formula results in a formula that
represents the mathematical value of the expression, whereas plotting a

31

function results in a graphical figure which displays its geometrical shape. If
such an activity is initiated, a text view is opened that acts as an electronic
"sketch paper" where the results are displayed.

The user initiates activities within the Dynamic Mathbook by selecting an
expression and executing one of the Dynamic Mathbook's commands. The
user may either evaluate the formula or compute a graphic plot of it. The
formula is then passed to the symbolic algebra system for evaluation. The
returned object is appended to the sketch text.

Evaluation of a formula means that the given expression is simplified.
Simplification usually includes evaluation of complex expressions such as
integrals etc. It is performed by selecting a formula somewhere within a
document and executing the Evaluate command of the electronic math book. A
special Apply command allows computing an arbitrary function with the
selected expression as an argument.

sin(x)+x
2

2
x
−x

formula

x+ 2−ln 2()()*x2+ −
1

6
−
1

2
*ln 2()

2
+ −2+ln 2()()* ln 2()−1()()*x3+O x

4
() taylor series of formula

cos x()+2*x

2
x
−x

−
sin x()+x2()* 2

x
*ln 2()−1()

2
x
−x()

2
differentiation of formula

−
−cos x()*2x+cos x()*x−21+x*x+x2+sin x()*2x*ln 2()−sin x()+x2*2x*ln 2()

2
2*x

−2
1+x

*x+x
2

simplification of above

0 2.25 4.5−2.25−3 6
0

0.834

1.67

2.5

−0.348

2.99

x

graphic plot of formula

Figure 1: Sample session with comments

This is useful, for example to compute a Taylor series of an expression that
cannot be simplified by the Evaluate command.

32

A graphic plot of an expression is computed within the Dynamic Mathbook
by selecting a formula and executing the Plot command. A plotting range may
be specified with the command.

The graphical figure which results from the Plot command is appended to
the sketch paper like any other result of the math book. The figure can be
manipulated (e.g. copied to a different document) like any other graphical
object in Oberon.

In the case of three_dimensional graphical plots, a specific viewer object is
returned which visualizes polygonal descriptions of geometrical shapes.

Figure 2: Polygon viewer showing two ring_shaped objects

With the help of this viewer, the user can interactively move around in the
visualized "scene" and inspect the three_dimensional graphic plot from different
distances and angles without having to recompute the shape of the object.

Integration

The symbolic algebra system is a service that consumes formulae and produces
either formulae, or graphical objects (if a plot is computed). To integrate a
formula editor and a symbolic algebra system, a data representation is required
that allows exchanging objects between the two applications. Each symbolic
algebra system provides a specific (private) access protocol and data
representation. To transparently interact with arbitrary symbolic algebra
systems, an abstract interface is required that shields clients from the
mathematical services' internal access methods. How this abstract interface
looks like, depends on the architecture of the mathematical service.

33

Local Service Architecture

An interface that acts as an evaluation engine for formulae is inserted between
the formula editor and the symbolic algebra system. It transparently accepts
and produces formulae. However, instead of evaluating formulae, it merely
translates them into the internal representation of the symbolic algebra system
which in turn processes the actual computation. Hence, the evaluation engine
shields the formula editor from internals of the symbolic algebra system in use.

Formula Editor

Evaluation Engine

Symbolic Algebra
System

Formulae

internal Representation

local service

Figure 3: Architecture of a local mathematical service

With this architecture, it is possible to exchange the symbolic algebra system
by adjusting the corresponding evaluation engine only. Furthermore, the
evaluation engine can directly access the symbolic algebra system's facilities for
translating formulae into its internal representation.

Remote Service Architecture

If the symbolic algebra system is residing on a remote computer, the
architecture of the mathematical service splits into two parts which are
connected by a network. Because the evaluation engine shields the formula
editor from the internals of the underlying symbolic algebra system, it is
reasonable to split the evaluation engine into parts which reside on different
computers. Note that this architecture matches exactly the specification of the
abstract interface as discussed in the previous chapter. The properties which
the evaluation engine hides from clients hence include the non_locality of the
service. The following figure shows the resulting structure of the mathematical
service.

34

Symbolic Algebra
System

abstract
Syntax

Network

remote service

Formula Editor

Evaluation Engine
(Client)

Formulae

internal Representation

Evaluation Engine
(Server)

Figure 4: Architecture of a remote mathematical service

In order to let the two parts of the translator interact with each other through
the network connection, a serialization scheme for mathematical expressions is
required. Serialization methods for mathematical expressions are usually based
on an abstract syntax.

Internal Representation of the Evaluation Engine

As we have seen, the evaluation engine forms the abstract "link" between the
formula editor and the symbolic algebra system. From the formula system's
point of view, the engine unifies both the local and the remote service's
architecture by hiding their differences behind an abstract interface. Through
the interface, the engine consumes and produces only formulae, irrespective of
which internal format is used for processing or transmission to a remote
service. Therefore it is natural to represent an evaluation engine as a smart link.
Interaction with the evaluation engine thus happens by means of the link's
abstract interface.

PROCEDURE Request(S: Services.Service; fm: Objects.Object; op: ARRAY OF CHAR):

Objects.Object;

VAR argument, result: InternalRepresentation;

BEGIN

argument := ParseFormula(fm);

result := Evaluate(op, argument);

fm := BuildFormula(result);

RETURN fm

END Request;

35

The above Request method illustrates the principle of a formula's evaluation.
First, the formula is transformed into an internal representation that is suitable
for the specific architecture or implementation of the symbolic algebra service
(for example, an abstract syntax for a remote service). Then, the requested
operation is applied to the transformed expression. If no specific operation is
specified, most symbolic algebra systems simplify the given expression. Finally,
the result of the evaluation is transformed back into a formula (or figure,
respectively, if a plot has been computed).

Implementation Aspects

Formulae

Formulae are typical examples of recursively defined objects. A formula
consists of a formula symbol (e.g. a root or an integral sign) and several
subexpressions, which are formulae themselves. Because of their recursive
structure, an infinite multitude of different formulae may be constructed by
means of only a small set of elementary formula types such as fractions, roots,
integrals, powers and so on.

3

x
2
+

x − x
2
− 2

x+

3

2*x − x
2

Within the text flow, a formula may appear as a separate paragraph or simply
within a text line. If it appears within a text line, like x+1, it is treated as a
(complex) character, i.e. line breaks don't take place within formulae and in
block adjusted formatting mode there is no distribution of blank space into the
formula.

Adding Meaning to Formulae

The connection with a symbolic algebra system has implications on the
formula system because of the necessity to interpret the formula's value. If the
graphical shape of a formula is relevant only, its structure does not need to
match its mathematical value. However, if formulae are to be actually
evaluated, the meaning of formulae becomes essential. Any structural
discrepancy of look and meaning must be strictly avoided to prevent evaluation
errors.

36

Consider the following expression:

a+b*c.

An appropriate internal representation that reflects the different binding
strengths of the involved operators might be:

a

b c

+
*

If we substitute the factor b in the formula by the expression "x+y", the formula
reads

a+x+y*c

and has the following internal representation:

a
+

c
*

x
+

y

The tree, however, does not match the visual appearence of the expression
without the addition of parentheses. The expression a+x+y*c reads as a+x+(y*c)
while the formula tree implies a+(x+y)*c. The formula system must either
automatically insert parentheses in the visual representation, or adjust the
internal formula tree to match the mathematical precedence rules. Both
solutions have advantages and disadvantages. Automatic modifications on the
formula image may be very disturbing for the user. Adjusting the formula tree
can be a very complex task (try to imagine the necessary modifications on the
tree, if someone deletes the operator between the two identifiers a and x to get
"ax").

Some formula editors avoid any discrepancy of look and meaning by
allowing only predefined formula patterns to be expanded, guaranteeing thus
the formula to be structurally correct at any time. The imposed lost of flexibility
during the formula construction is significant (and might be considered
obstructive).

We chose to avoid ambiguous interpretation of formula structures by
avoiding ambiguous formula structures at all. Infix operators such as "+" or "*"
in expressions don't impose ambiguities due to their implied structure
(mathematical binding strenght). Formulae with a two dimensional placing of
operands don't impose ambiguities, either. For example, the numerator and the

37

denominator of a fraction need not to be put in parentheses even if their
precedence is lower than that of the fraction.

x + 1
x − 1

instead of
(x + 1)
(x − 1)

Formulae, however, which are placed on the parent formula's base line may
result in ambiguities, if parentheses are missing. A composed base of a power,
for example, almost always has to be put in parentheses.

A simple and safe solution that prevents ambiguities is to rely on the
structure that is implied by infix operators. Formulae are nested only if
necessary because of the two dimensional placing of operands. A string formula

type is used to represent such a sequence of text (i.e. identifiers, numbers,
mathematical operators) and formulae that are placed on a common base line.
The string formula may contain arbitrary text. Therefore, within its contents no
specific explicit structure is assumed. Only the binding strenghts of
mathematical operators − if present − introduce a structure within the string
formula. It is in the responsibility of a parser to derive this structure.

The mentioned exponential formula thus behaves like an infix operator
which connects the base and the exponent.

x ↑ a

Because the exponent is placed above the base line, it needs not to be put in
parentheses. The exponentiation applies to the immediately preceding operand.

x*y
a
= x*y ↑ a = x* y

a()

Other formulae are handled in a similar way. The usual precedence rules of the
parser prevent ambiguities. This solution puts more responsibility to the
formula translator, but imposes less restrictions to the usage of the formula
editor.

Maple

Maple is a powerful symbolic algebra system which has been designed and
implemented by the Symbolic Computation Group at the University of
Waterloo in Canada and which is now commercially distributed.

Maple provides a large number of facilities for mathematical calculations
including simplification, factorization, symbolic differentiation and integration
of mathematical expressions, exact solution of linear and polynomial systems

38

of equations, and so forth. Maple's mathematical libraries contain functions to
solve problems within the fields of linear algebra, linear optimization, number
theory, group theory, statistics, financial calculus etc. Two and three
dimensional graphic plots can be computed and the latter displayed from
different points of view.

From the architectural point of view, the Maple symbolic algebra system is
split into a so called kernel and a library. The kernel implements the basic
operations of the system such as data management, input/output, language
interpreter etc. The library covers Maple's computer algebra part. The library
code is loaded selectively on demand. Because the mathematical functionality
of Maple is decoupled from the pure computing aspects, the kernel can be
kept small. In contrast, the amount of library code has grown tremedously.

Maple offers an interactive shell for input and manipulation of mathematical
expressions in an efficient way comparable to advanced scientific calculators.
Additionally, it supports a programming notation that allows the definition and
implementation of algorithms. In fact, the library code is mainly formulated in
this notation.

Maple supports different kinds of user interfaces depending on the facilities
offered by the underlying operating system. They range from simple shells in a
terminal style up to sophisticated interactive user environments with different
windows. Within these, previously processed input lines can be modified and
re_evaluated.

If Maple runs in a graphical environment, output is displayed by means of
two dimensional graphical formula figures. On a terminal oriented platform the
results are printed with several appropriately formatted text lines. In both cases
the resulting formula image can neither be edited nor evaluated further.

Maple for Oberon is an implementation of the Maple system especially
designed to be ported to different operating systems. It is based on an
interpreted Maple kernel that is executed by a software emulator, called the
Maple Machine [Vorkoetter89]. The Maple Machine emulates a stack oriented
"computer" with its private memory and a UNIX_like [ThRi74] operating system
base for memory management, file I/O etc. It is designed essentially to run a

single program − namely the Maple kernel − and is formulated in the
programming language Oberon.

Local Service

Maple for Oberon is running under control and within the memory space of
the Oberon system. Considering this, an obvious and straight solution to
implement an evaluation engine is to directly build and manipulate data

39

structures within Maple's private memory, i.e. the fraction of Oberon's memory
space that is managed by Maple.

In addition to its interactive terminal shell, Maple for Oberon has been
extended with a procedural interface that allows an Oberon program to create,
manipulate and evaluate Maple expressions within Maple's private memory.
These expressions are recursive data structures which Maple uses to represent
numeric values, expressions, functions, algorithms (i.e. lists of statements),
function plots etc. All internal data structures are built with nodes of the same
format. The nodes consist of a header encoding their types and lengths (plus
some internal details) and a certain number of fields that are usually references
(pointers) to further nodes. We will refer to them as Maple nodes.

Header ...

PROD

NAME 0 x

INTPOS 3

RATIONAL

INTPOS 1

INTNEG

−2

3
x
3

2

factor factorexponent exponent

Figure 5: General structure of Maple node and full expansion of a mathematical expression.

Note, that the PROD (product) structure contains pairs of factors with their numeric exponents.

To manipulate the Maple data structures, the following procedures have been
implemented:

PROCEDURE CreateNode (id,len: LONGINT): LONGINT;

PROCEDURE WriteNode (addr,n,value: LONGINT): LONGINT;

PROCEDURE ReadNode (addr,n: LONGINT): LONGINT;

PROCEDURE Formula (addr: LONGINT): LONGINT;

PROCEDURE CreateName (name: ARRAY OF CHAR): LONGINT;

CreateNode creates a node with type id and len entries. It corresponds to the
standard Procedure NEW under Oberon. WriteNode and ReadNode allow for
reading and writing of values from and into the slot n of the node referred to
by addr. CreateName returns a reference to a node for storing identifiers. The
name is registered in an internal name table which Maple maintains to store

40

and retrieve identifiers. Formula evaluates a given expression tree, i.e. performs
basic simplification or function evaluations.

Remote Service

If Maple is running as a remote service, a single installation can serve a
multitude of clients. However, if Maple is running remotely, interaction cannot
be based on direct manipulation of data structures. A serialization scheme
(protocol) for mathematical expressions is required instead.

The Open Math Proposal

In a distributed mathematical computing environment we can distinguish
different classes of applications which perform, use or handle mathematics.
Such applications are formula editors on one side and symbolic algebra
systems or typesetting engines on the other. The integration of such facilities
requires a standardized data representation and communication scheme.
Usually, mathematical expressions are represented by means of an abstract
syntax.

Approaches for the integration of different mathematical facilities based on
an abstract syntax have been around for a long time already (cf. for example
[Ar87]). A new syntax proposed by the developers of the Maple system is
called Open Math [Vorkoetter94a].

Open Math defines a serialization method for nested mathematical
expressions in LISP−style. Its specification merely defines the lexical grammar
and the syntactical structure of mathematical expressions, and identifies the
most important operations and functions. Because the set of allowed symbols
is is left open, Open Math is an extensible communication scheme. Thanks to
its generic structure, Open Math does not anticipate any specific symbolic
algebra system or typesetter. The actual communication between Open Math
clients and servers happens by means of Ascii strings.

The Open Math specification described in the Open Math Proposal consists
of a lexical syntax definition of the Open Math language and a set of semantic
rules for the interpretation of Open Math expressions. The lexical syntax as
derived from the specification is listed below ("−−" in the symbol definition
below means "not containing"):

Expression = integer | basedInt | real | float | string | symbol |

backRef | "(" ExpressionSequence ")".

ExpressionSequence = [label] Expression {[label] Expression}.

integer = [−] digit {digit}.

41

basedInt = "$" digit [digit] "," hexDigit {hexDigit}.

float = "%" {hexDigit}*16.

string = """ {char | "\" ("\" | """)} """.

backRef = "#" digit {digit}.

label = backRef ":".

symbol = "−" | (char −− ("%", "$", "(", ")", """, "#", "−", ".", digit)) {char −− ")"}.

The language supports several data formats: Integers, based integers (whose
bases are different from 10), reals, floating point numbers (with a hexadecimal
representation), character strings and symbols (operators and identifiers). It
allows the labelling of subexpressions so that labels may be used to refer to
subexpressions that occur several times.

Unfortunately, the Open Math proposal suffers from several ambiguities and
design shortcomings. These render the implementation of an Open Math
parser more difficult. For example, the first item in a sequence of expressions
in the syntax above is an expression although the specified semantics cogently
require it to be a symbol. The parser thus has to recognize and discard invalid
Open Math expressions although they are syntactically correct.

The Open Math proposal is currently subject to a substantial redesign
[Vo94b]. Therefore, the following discussion mainly refers to the integration of
Maple as a local service. However, results of an experimental implementation
of the Open Math proposal are mentioned in the corresponding contexts.

Transforming Formulae to the Service's Internal Representation

(Forth Transformation)

The recursive (nested) structure of both representations of mathematical
expressions (formulae on one hand and Maple's data structures on the other)
implies that the transformation of any of them into the other is again a
recursive process.

In principle, the conversion of any formula results in an appropriate Maple
node whichs contains the results of the conversions of the formula's children.
A fraction, for example, is translated into a product node containing two
factors, one with a positive and the other with a negative exponent of absolute
value 1. Because Maple performs trivial simplifications on expressions
automatically, a costly optimization of the resulting structure may be omitted.

To translate string formulae, a parser for a subset of the Maple language has
been provided. Expressions and terms within the string formula are represented
by sum and product nodes. Although in Maple these nodes can have arbitrary
lengths, a binary representation is used. This dispenses us from counting the
number of expressions and terms in the formula.

42

Special formulae like the integral or the summation are represented in
Maple as functions with corresponding names ("int" and "sum"). If bounds are
omitted, Maple computes the undefined integral and sum, respectively.

Properties within a formula that cannot be deduced safely are defined
explicitely. The determination of the integration variable is an example of such
a property. While integration bounds have their fixed location within a formula
(above and below the integral symbol), the integration variable is defined
implicitly in the form of a factor prefixed by a "d" (e.g. dx). This factor can be
located anywhere within an integration term (e.g. on top of a fraction). As there
exists no general method to locate the integration variable within an
integration term, a syntax has to fix its location explicitly. The following syntax
defines the location of the integration variable within the term to be integrated.
Restrictions like this are the price to be paid for the formula to be evaluatable.

integrand = term intident.
intident = "d" identifier.

Serialization of Formulae (Open Math). The general processing scheme of the
formula transcription into Open Math is based on the basic structure of its
expressions

"(" symbol expr0 expr1 ... ")".

The symbol depends on the formula's type or the current arithmetic operator
within a string formula. The expressions expri are the recursively resolved
operands. Note that the prefix notation of the Open Math language requires
operands to be known before subexpressions can be processed.

Transforming the Service's Internal Representation to Formulae

(Back Transformation)

The construction of formulae is done by parsing the data structure resulting
from an evaluation process, and simultaneously building formulae. To
reconstruct formulae of a high level of abstraction, for example to return roots
instead of powers with rational exponents, "patterns" must be isolated of the
low level description that Maple uses to represent mathematical expressions.

The construction process is highly context dependent. A given Maple node
thus is not necessarily treated the same way if it appears in two different
contexts.

43

Trivial conversions can be found for terminal tokens like integers, names,
and for rationals and all Maple functions for which there does not exist a
specific formula (sin, cos, exp, ...). These are simply included in the "current"
string formula, i.e. they are appended without changing the nesting level of
formulae. Special care has to be taken for the correct setting of parentheses, or
− even more important − their omission if parentheses are not required. This is
necessary to avoid an inflation.

(x+y)a+b instead of (x+y)(a+b)

2*x*y instead of 2*(x*y)

Nodes of a sum type that are returned from Maple consist of pairs of terms
and numeric factors and are translated into a string formula. The sign of the
factor (integer, float or rational) determines the sign of the term and therefore
must be interpreted. Real factors of absolute value 1 are suppressed.

Nodes of a product type consist of pairs of factors and numeric exponents
and are translated into a string formula, if there are no negative exponents,
otherwise into a fraction. Factors with rational exponents are translated into
roots. Otherwise, and if the absolute value of the exponent is not equal to 1, a
formula of an exponential type is built.

Functions of special types are transformed into a formula of the
corresponding type if such a definition exists (e.g. integral or summation).
Summation or integration bounds are extracted out of the RANGE clause, if
they are supplied. The integration variable is prefixed by a "d" and placed
behind the integration term (cf. Forth Transformation of formulae). All other
functions including transcendental or unknown functions are transformed into
the form f(arguments), with f being the name of the function, and its arguments
being set in parentheses.

De−serialization of Open Math expressions. String formulae are represented as
straight forward expansions of corresponding Open Math terms. The operator
prefixing the sequence of expressions in the Open Math language is to be
distributed between pairs of expressions within the (sequential representation
of) string formula. If the "current" operator has lower precedence than the
"outer" operator, the whole expression must be enclosed in parentheses.

The construction of formulae may involve pattern isolation as in the case of
Maple nodes. Because of the sequential structure of the input stream (and
some ambiguities of the Open Math definition) it is possible that the "role" of

44

an expression cannot be identified unless the full expression has been parsed.
The following example illustrates the problem:

(+ a (− b c)) results in a + b − c
(+ a (− b) c) results in a − b + c

Note that the sign of b can be identified only after b has been parsed
completely, and either a closing parenthesis or a new expression has been
found. A similar problem occurs in the case of the unary division (inversion). A
single pass conversion of such an expression is only possible, if a scratch buffer
is used. After the expression has been parsed completely, and the operator
identified successfully, the scratch buffer is copied into the formula under
construction.

Construction of Graphic Plots

Besides the pure mathematical functions, Maple's libraries contain functions
for two and three dimensional graphic plots of arbitrary expressions. Such
graphic plots are computed by applying a plotting function like plot() or
plot3d() to an arbitrary expression (the former computes a two_dimensional,
and the latter a three_dimensional graphic plot). The result of a plotting
function is a data structure which contains information about the graphical
shape of the function instead of its expression or value. The graphical shape is
defined by means of pseudo functions like CURVE or MESH that are applied to
nested lists of spline curve sections. These either define the shape of the
function or the surface of a three_dimensional object, respectively. Instead of
transforming the data structure into a formula which only reflects the kind of

coding a graphic plot, it is obviously preferable to transform the plot data
structure into a graphical object. Hence, if a function with the name PLOT or
PLOT3D is parsed, it is not represented as a formula but interpreted as a
graphic plot.

In the two dimensional case a plot data structure contains information
about the graphical shape of the function, about axis, ranges, labelling and so
on. With this information a graphical figure is constructed that consists of
horizontal and vertical lines for the axis, spline curve sections for the shape of
the function and text captions for the lettering. All these graphical elements are
borrowed from the integrated and extensible graphics package Illustrate

available under Oberon System 3. This reduces the programming effort needed
to implement the plot facility, because a suitable composition of existing parts

45

is sufficient. Additionally, the graphic plot can be manipulated by the graphics
package, and by any other application that is able to consume such objects.

In the three dimensional case, a slightly different approach has been chosen.
The graphic plot should have a three_dimensional, plastic shape to be
interactively inspected from different points of view. To achieve this, a polygon
renderer is used which evolved from a diploma thesis project [Os93]. The
polygon viewer allows polygonal descriptions of shapes to be visualized, and
geometrical viewing transformation interactively to be applied. The graphical
structure used in the polygon viewer (whose details are irrelevant in our scope)
allows a very fast rendering of the three dimensional shape.

RelatedWork

There is a lot of work relevant to interactive WYSIWYG mathematical systems
in their different aspects such as mathematical editors (e.g. Theorist,
Formulator, MacEqn, MathWriter to name just a few), symbolic algebra
(Eureka, PowerMath, Mathematica etc.), numeric mathematics (MathCAD,
Mathlab) and so on. We therefore confine the discussion on related work and
applications which are most relevant to the subject of this chapter.

CaminoReal. CaminoReal is a system for direct manipulation of mathematical
expressions. It has been developed at the Xerox Palo Alto Research Center
[ArBe*88]. Its goal was to integrate several categories of mathematical software
such as mathematical typesetting and symbolic computation into a single
package with the objective of an interactive mathematical notebook (as states
the subtitle of the paper).

The CaminoReal package consists of a formula editor that allows interactive
(but not in_place) construction of formulae by successive combination of
formula templates. The evaluation part of the system consists of a collection of
symbolic algebra packages that are accessible over the network. With these
computational facilities, the user can interactively explore mathematical
expressions from a document that contains formulae.

An interesting component of the CaminoReal system functions like a
mathematical spreadsheet. Based on this facility, so called computed documents

can be constructed. Such documents may contain sequences of dependent
expressions whose values are automatically updated if an expression within
such a sequence is modified. Mathematical expressions within technical or
mathematical papers can thus be computed "on_the_fly", e.g. when the

46

document is printed. This facility helps for example to avoid typing errors
within mathematical documents.

In contrary to our project, interactive aspects have not been fully developed
in CaminoReal. Formulae, for example, are created with the help of a
menu_driven external application, i.e. they cannot be edited in_place. While the
menu_driven construction guarantees structural correctness of formulae at any
time, the imposed restrictions during the formula construction might be
considered obstructive. CaminoReal is also a tool for interactive
experimentation with mathematical expressions. However, in our project we
have put slightly more emphasis on interactivity. For instance, formulae can be
manipulated directly in the text. Furthermore, interactive exploration of
mathematical expressions extends to the visualization of their graphical shape
(plotting facility).

Maple User Interface. The Maple system also tends to extend its interactive
facilities. The possibility to return nicely rendered formulae (in bitmap form,
though), and the inclusion of versatile 2D/3D plotting packages that allow
visualizing complex mathematical properties are obvious steps in this direction.
In particular, in Maple's online documentation the contained expressions and
statements can be evaluated directly in place. Both steps, however, have only
be done halfway so far: The formula bitmaps, on the one hand, can neither be
manipulated nor evaluated any further. The graphic plots, on the other hand,
are internal Maple data structures whose graphical shape has to be
recomputed each time one of the viewing attributes (color scheme, viewing
angle etc.) is modified, rather than autonomous graphical objects. It is easily
foreseeable, however, that future releases of Maple will extend their interactive
facilities comparable to those presented in this chapter.

Summary and Conclusion

A formula editor and a symbolic algebra system have been integrated in order
to form a Dynamic Mathbook. This type of dynamic online documents extends
the notion of interaction to direct manipulation and evaluation of its contents,
and it opens up the possibility of integrated computing within a textual
document. In contrast to pure multimedia applications, the result of such a
computation can be new or derived information that was not contained in the
original data.

47

By providing an interactive choice of representations of the result − either as
a mathematical expression or a graphic plot − the presented system extends
the functionality of comparable existing systems.

The presented evaluation engine provides an interface to the underlying
symbolic algebra system. It performs all necessary transformations and shields
the algebra system's internals from the formula editor.

Typographical Quality of the Result

The typographic formatting rules that are applied by the interactive formula
formatter have not been discussed because they are of minor relevance in our
context. One problem, however, needs a further discussion as it normally does
not appear in interactive formula editors. Formulae that are created by human
users not only respect the correct mathematical meaning but also show a
well−balanced image. In contrast, formulae which are constructed by a
machine (including those created by our evaluation engine) tend to be large
and intricate. They may easily exceed the width of a text line.

There are mainly two possible solutions to the problem of rendering large
formulae. The first is to break such formulae into appropriate pieces each of
which fitting on one text line. The second is to substitute suitable
subexpressions by place holders, and to add the sequence of subexpression
declarations to the output.

The first solution follows from the associative property of sum and product.
To break a sum or a product type of expression into pieces is trivial, because
both products and sums can obviously be split up between any two operands.
In principle, this holds for a fraction type expressions as well. In this case both
the numerator and denominator have to be split appropriately into a product of
two (or more) shorter fractions.

The second solution is compatible with structural properties of Maple's
handling of internal data structures because Maple stores multiple occurrences
of the same simplified expression as multiple references to a single and unique
representative. As a consequence, common subexpressions can always be
identified by simply comparing their references. Hence, subexpressions referred
from multiple locations within an expression are suitable candidates to be
represented by a place holder. Replacement of multiple occurrences of an
expression makes the resulting formula simpler and smaller. This specific
property, by the way, has been exported in the Open Math Proposal through
the possibility of labelling an expression and afterwards referring to it again.

48

Unfortunately, experiments revealed that the effect of the corresponding size
reduction is not quite as significant as expected. Further research needs to be
done in this field.

Case Study 2: Electronic Newspaper

In this chapter we discuss the integration of a central Teletext service into the
Oberon environment. Teletext is a non_interactive textual information service
that is broadcast together with the television video signal. Teletext information
comprises various topics such as political news, sports news, television guides,
advertisement and so on. By integrating the service into Oberon, current online
information can be accessed by everyone over the local area network. A Teletext

gadget displays the information with the service's typical look and functionality.
Furthermore, the online document TeleNews is presented. It is a different and
novel way of presenting and organizing (text based) Teletext information as an
online document. With TeleNews, Teletext information can be accessed and
represented in hypertext form. It is based on the model of an electronic

newspaper.

Introduction

Printed information on topics that are subject to continuous change almost
always has a serious shortcoming: It is not up_to_date anymore when a
subscriber eventually gets his copy. This kind of printed information is
inherently out_dated because of the delay between the acquisition of the
information and its eventual delivery during which the information may change.

In order to keep the information as up_to_date as possible, this delay has to
be minimized, in the extreme case by acquiring and collecting the information
immediately before delivery. Such immediate delivery cogently requires that the
information is requested from the information supplier only at the time of its
consumption, e.g. via an online connection. In practice, parts of the
information that don't become obsolete too quickly can probably be delivered
as some kind of static information framework. The volatile parts of the
information, on the contrary, are gathered and compiled only at the time the
user consumes the information.

In the following, an online document called TeleNews is presented which
simulates an electronic newspaper. It is based on information that is collected
by a Teletext server which has recently been installed in our institute, and which

50

takes the role of an online news data base. TeleNews eliminates the cited
drawbacks of printed information carriers, because information acquisition and
presentation happen at the same time. Information is acquired by means of
smart links.

Teletext

Teletext is a page oriented, non_interactive information service that is broadcast
by television stations together with the video signal. Teletext pages contain
alphanumeric text and raw graphics assembled with block graphic characters.
They are displayed on the television screen. Teletext has originally been
developed by the research department of the British Broadcasting Corporation
(BBC) in order to supply subtitles and captions for television programs. Since
that time, it has become an attractive information medium of its own. It is now
supported by almost all European television companies. Information presented
via the Teletext service covers political, sportive and economic news, weather
forecasts, television programs, entertainment, advertisement and so forth.

Technical Background

Teletext is a digital information system whose data is transmitted during the
vertical blanking period between the transmission of subsequent video
half_images. To receive and decode Teletext, the television set must be
equipped with special decoding circuits. Usually, these circuits are integrated in
a specific Teletext processor which also controls the visual representation of
the data on the screen.

A Teletext page consists of 24 lines containing 40 character cells each. A
character cell is occupied by either an alphanumeric letter, a block graphic
symbol, or a control code. These control codes are used to specify display
attributes and visual effects including different colors, double height printing,
flashing and so on.

Teletext pages are identified by three_digit page numbers that range from
100 to 899. All pages are repeatedly broadcast one after the other in a non_stop
broadcast loop. Although the transmission of pages may happen in arbitrary
order, they are normally enumerated from 100 up to the highest available page
number. A sequence of several related pages can be assigned to the same page
number. These pages are called rolling pages. In the transmission slot of the
corresponding page number always the next page of the rolling page sequence
is transmitted.

51

A specific page is displayed on the television screen by specifying its page
number on the television's remote controller. As soon as the corresponding
page (or any of its rolling pages) is passing by, it is extracted from the video
signal and displayed on the screen. If the page with the corresponding number
passes the next time, the display is not updated unless the page's contents
have changed, or it is the next sub page out of a rolling page sequence.

Teletext Presentation

It is not necessary to care about a fancy presentation of Teletext on a computer
display, if one is interested in consuming the information only. Instead, a
simple text terminal that displays the alphanumeric contents of a Teletext page
is obviously sufficient. However, the integration of an external online medium
cannot be said to be complete if its typical look is not adopted reasonably well.
Colors and graphics, for example, are not just gimmicks on an otherwise dull
information service. Color is used to structure the text on a cramped text area.
With Teletext's block graphics facility, simple graphical illustrations like
company logos on advertising pages can be represented.

Teletext Panel

In Oberon System 3, the Teletext service is displayed in a so called functional

unit. These are self_contained operating panels that collect a visual display and
all necessary user interface elements in a panel document [Gu94a].

Figure 1: Teletext gadget in an operating panel

52

The Teletext panel contains a Teletext gadget, and is equipped with buttons and
text fields that serve to control the Teletext display.

The Teletext gadget produces an image of the service comparable to that on
a television screen. It supports all visual effects like different colors, double
height display, and flashing. In contrast to the service on a television receiver,
however, the Teletext gadget is much more convenient to use. In particular, the
two major deficiencies of the original service's user interface have been
circumvented: Page selection, and the waiting times for rolling pages. First, the
user can point directly at three_digit numbers in the Teletext gadget to obtain
the corresponding page. Page numbers thus have to be typed only rarely.

Second, all pages of a rolling page sequence are always fetched from the
service together at once. Hence, the reader can browse forward and backward,
and read the pages in any order and pace. Furthermore, a short history list
allows returning to a previously visited page by pressing a button only. On a
television receiver, the reader has to retype the (remembered!) page number.

TeleNews

Having a Teletext terminal on one's computer display ready to display Teletext
information with its familiar look is doubtlessly very impressive. However,
experience revealed that the presentation of the Teletext terminal on the screen
does not really satisfy the frequent reader. There are two reasons for that: First,
the very small amount of information presented at once (less than 1000
characters), and second, the small terminal display. Although the possibility to
recognize the service on the computer display should not be disregarded,
imitating a Teletext terminal and hence all its limitations and drawbacks is
unsatisfactory. Taking into account the capabilities of modern high resolution
computer displays, we may conclude that the mere enhancement of the
Teletext presentation may impose a progress over the old fashioned terminal
look.

To avoid the mentioned drawbacks of the Teletext service we have invented
a different and novel way of presenting and organizing (text based) Teletext
information. Hence we have achieved, that the origin of the information does
not need to be noticeable any more by the end_user.

TeleNews is an online document that maps the Teletext data base to the
form of an "electronic newspaper". With TeleNews, news articles from the
Teletext service can be interactively accessed and obtained in hypertext form.

TeleNews consists of an operating panel which contains two tracks: The
headline track and the article track. Above the headline track there is a menu of
buttons. Each refers to a different news rubric such as national, foreign or

53

economic news. By pressing one of the buttons the corresponding news
section is acquired from the Teletext server, and its contents displayed in the
headline track. The headline track can be viewed as a menu that lists the
currently available news articles in a compact form.

Figure 2: TeleNews panel

Headlines are anchors of smart hypertext links that reference the associated
news articles. Pointing at the highlighted part of the headline initiates the
request for the corresponding news articles which in turn are displayed in the
article track. If the article consists of several pages or chapters, they are all
delivered at once simulating thus a grouping of articles or paragraphs familiar
from ordinary newspapers.

Electronic TV Guide

The electronic newspaper provides selective access to the dynamic information
base: Only those parts of the information that the reader is interested in is
fetched and presented. The Electronic TV Guide extends this kind of selective
access by accepting requests for selective projections of the data base; that is, a
collection of data items matching certain parameters can be requested.

54

This application is inspired by the very probable availability of more than
100 satellite television programs in the near future. A printed program guide
would have the size of a telephone book with the unpleasant consequence
that the desired information ("is there a feature film tonight ?") is almost
undiscoverable. An electronic version of a TV guide can include searching and
browsing facilities and different ways of organizing the information. Depending
on the query, TV schedules selected by broadcast time, subject of the program
or television channel can be provided. Additional information about the
programs including short trailers can be supplied as well. With online
connections to an information provider also short_term changes can be
considered and even current information be supplied.

The electronic TV guide is an online document that implements the basic
functionality of such a package. It processes the program overview pages of the
Swiss Teletext service. As a special feature, the Swiss Teletext service
additionally includes television program schedules of the most important
television companies of the German speaking part of Europe. Although these
television program pages originate from different Teletext suppliers, they have
an identical structure.

Information on program schedule pages consists of the starting time and
length, the program's title, and some technical attributes such as the presence
of subtitles and the sound quality (stereo or multilingual). Additionally,
program items may contain references to further Teletext pages with detailed
information about a television feature.

Based on this collected information, the electronic TV guide computes
excerpts (or projections) of the TV schedules that match certain parameters.
The electronic TV guide can thus be seen as an example of on_the_fly
computed hypertext. Currently, four different projections of the TV guide's data
base can be requested.

TV channel. The current TV schedule for the day can be listed for each of the TV
channels whose information is available.
Broadcast time. All program items of the current day of all available TV channels
falling in a range of time are listed (i.e. whose broadcast times intersect with
the range).
Program type. Feature films and news programs of the current day of all
available TV channels can be listed.
Program attribute. It is possible to list all program items of the current day
which are broadcast either with subtitles or with stereo sound or in
multilingual mode. For people who are hard of hearing, for example, a TV

55

schedule might be helpful that lists program items which are supplied with
subtitles.

The electronic TV guide implements the television program rubric of an
electronic newspaper. Consequently, its user interface is integrated into the
TeleNews panel.

Figure 3: Electronic TV Guide

A popup menu within the panel collects all the functional elements of the
electronic TV guide. For each type of request a different user interface element
is provided in the panel. Depending on the type of the request, projections of
the information can be constructed and listed in the headline track of the
TeleNews panel. Within the list, the program item currently on air is
highlighted. If additional information is associated to a program item, a smart
hypertext link is added to the corresponding entry. If the link is activated, the
information is displayed in the panel's article track.

56

Implementation Aspects

To provide access to the Teletext service within a computing environment, a
Teletext processor has to be connected to a computer. Such devices designed
for their integration in television receivers contain all necessary circuits for the
separation, acquisition and decoding of the teletext signal. We will refrain from
stressing the reader's patience with the details of the corresponding hardware
implementation. Hence, we will leave the subject by mentioning that the
hardware implementation is based on a simple Teletext board whose
blueprints can be found in [Ba92]. The teletext processor that we use is
equipped with four independent receiver channels [Ph90]. Therefore, it can
simultaneously scan for 4 different pages. The board is connected to the
computer via the modem lines of a serial RS−232 connector.

Centralized Teletext Server

A centralized server for Teletext is not only an issue of economy − only a single
Teletext decoding device is needed for a group of clients. Several of its
properties make it not only desirable but necessary to centralize it on a server
and access it remotely. The most influencing property is the cyclic transmission
scheme of Teletext.

Due to this cyclic transmission scheme, scanning for a given page on a
heavily loaded service may take several seconds. The Swiss Teletext service, for
example, consists of about 1200 pages including sub_pages. About 250 of
those are single pages which are broadcast once every cycle. A full enumeration
cycle takes about 14 seconds. Rolling pages are often rolled forward only once
in two cycles. In addition to that, a user accessing a rolling page will very
probably step somewhere in the middle of the subpage sequence having thus
to wait for the first page of the sequence to reappear the next time.

Connecting a user directly with a Teletext decoder is thus inappropriate.
While the waiting time for a single page is just barely acceptable, the waiting
time for a sequence of rolling pages is prohibitive. This is especially true
because the reader usually wishes to receive all parts of a rolling page anyway,
which multiplies the waiting time by the number of subpages.

For these reasons, the Teletext service has been centralized on a dedicated
computer and made accessible over a local area network. All transmitted pages
from the Teletext service are downloaded and cached on a local disk. Hence,
page requests can be immediately served. Therefore, the Teletext server's first
task consists of supervising the Teletext broadcast loop to update the data

57

base on the disk, if pages or page constellations change. Its second task is
twofold: To handle and serve requests, and to deliver (sequences of) pages.

Downloading Strategies

The teletext service is a unidirectional (one_way) information service that
applies the (passive) operation model familiar from ordinary radio and
television broadcast; that is, the teletext decoder is "tuned in" to a certain page
number just as the television receiver is to a certain TV channel. If the page
passes by, it is extracted. A certain teletext page is thus downloaded by "tuning
in" the teletext decoder to the corresponding page's number and waiting for
the page to appear the next time.

The time needed to download a collection of pages (or even the whole
teletext data base) is basically the total of the waiting times for each of the
individual pages. An efficient downloading strategy thus aims at the limitation
of the sum of all waiting times. This can be achieved by extracting as many
pages as possible pages in one enumeration cycle, and by avoiding subpage
misses in rolling page sequences. Note that missing a subpage within a rolling
page sequence delays the complete downloading time of the corresponding
page by the duration of a total rolling page transmission cycle (i.e. until the
missed subpage arrives again). If we favor one of the goals (multiple pages vs.
avoiding subpage misses) to the debit of the other, respectively, we can
distinguish two strategies:

Defensive strategy. In the defensive strategy, completeness has priority over
efficiency; that is, a subpage miss is avoided at all circumstances. In order to
guarantee not to miss a subpage of a rolling page sequence, the receiver
channel (of which four are available in the Teletext device we use, as
mentioned earlier) is immediately restarted with the same page number (and
thus the next subpage of the rolling page sequence). In other words, the
receiver channel is assigned to the corresponding rolling page until all
subpages have been extracted. Hence, a subpage is never missed. However, by
assigning a receiver channel exclusively to a rolling page number, the page
arrival rate for one receiver channel is one page in two enumeration cycles or
one page every about 30 seconds!

Aggressive strategy. With the aggressive strategy, efficiency has highest priority.
The downloading algorithm is designed to download as many pages as
possible within a certain period of time. It thus catches every page that passes
by. Its efficiency arises from the fact, that no receiver channel is monopolized

58

for a single page number but immediately reused for the next available page
being transmitted. If a page does not arrive within a certain time, it is assumed
to be a rolling page that does not appear in this round. In that case, a new
page number is searched for. The page arrival rate for a receiver channel is
about 10 pages per cycle.

However, if the receiver channel is released after the arrival of a subpage, it is
not necessarily at hand again before the next subpage of this sequence arrives.
Subpage misses thus become the normal case. If a page miss happens in a
rolling page with only a few subpages, there is a good chance that the missing
page will be caught during one of the next cycles. However, rolling pages that
consist of 60 pages (leading to a full transmission time of 30 minutes and
more) are very probable never to be completely downloaded at all!

Implemented approach − weakened completeness. Whereas the defensive strategy
leads to prohibitive downloading times, the efficient strategy (efficiency
measured in terms of page arrival rate) leads to an unacceptable state with
pages to be occasionally outdated for days. Some measures have to be taken,
either of the two drawbacks to be avoided.

The downloading strategy that has been implemented in the course of a
term project [Do93] is a relaxed defensive strategy. The longest possible
downloading time is needed only when the algorithm starts from scratch, i.e.
with an empty data base. As rolling pages normally change more rarely than
single pages, and as normally all subpages change, if any of it does, it suffices
to inspect one subpage out of a sequence, to find out, if the whole rolling page
has to be downloaded. If the page has not changed, no further subpage with
its page number is inspected until every other page has had its turn. This
strategy drastically reduces the downloading time. By preserving the defensive
strategy only for those rolling pages which have to be downloaded completely

(e.g. due to a change) and using the efficient (offensive) scanning algorithm for
fast inspection, the downloading time may be reduced further. The mean
update rate varies between 12 and 20 minutes (depending on the update
load), which is acceptable.

TeleNews

A newspaper is structured in different rubrics by (geographical) region or
subject. News articles are usually organized by geography into global, regional
and local news, and/or by subject into political news, business news, sports
news etc. Within this raw structure, news articles about the same subject are
grouped together, and are otherwise arranged arbitrarily on the page.

59

A typical news article consists of a headline, and a short summary, followed
by the detailed news text itself. The main purpose of a headline is to catch the
reader's interest in reading the whole news article. These structural properties
imply the usual way of reading newspapers that consists of first browsing
through the headlines and selecting articles depending on one's interests (very
few people read a newspaper sequentially from the first page to the last).

This typical way of reading newspapers hierarchically suggests a possible
structure of an electronic version of a newspaper. It is based on a first_level
hypertext document that allows "zooming in" from the headlines to the text.
The reader is first presented headlines and summaries. The actual news texts
can then be obtained by pointing at the corresponding headline.

The hypertext structure introduces interactivity of a finer granularity into the
electronic version of a newspaper compared to ordinary (printed) ones. In
ordinary newspapers, interaction essentially restricts to the action of turning
over the pages. By adding hypertext facilities, interaction is refined to navigating
through the newspaper. If headlines are presented in a compact list, they can
be overviewed very easily. Selecting articles is thus very efficient.

Using smart links as a basis for the hypertext structure adds two more
advantages. If the actual news articles are called from the information server
only at link resolution time, information that is not required needs not to be
transported. Furthermore, with such delayed compilation of the actual news
texts, latest updates of their contents can still be considered. The delay
between the information's acquisition and delivery can thus be minimized. This
keeps the electronic newspaper up_to_date at any moment.

Automatic Hypertext Construction

TeleNews is based on the news section of the Swiss Teletext service. The news
section consist of overview pages and the text pages which contain the actual
news texts in full length, respectively. The construction of the hypertext
structure, i.e. the links from the headlines to the corresponding articles, is done
by analyzing overview pages. Analysis is based on some heuristically
determined properties of the involved pages.

An overview page in the Teletext contains a list of briefly paraphrased news
topics, each ending with the number of the page that contains the news text.
The relation between different pages is derivable only from these page
numbers, i.e. there is no auxiliary structure explicitly linking pages to others. For
a human reader it is obvious that a three_digit number associated to a news
topic is a Teletext page number. The automatic determination of the reference
structure is more intricate. As the Teletext service mixes content and structure,

60

it is not always obvious if a number indicates a Teletext page or an arbitrary
numeric value. To distinguish between numeric content and numeric structure

indication, the numbers' contexts have to be considered.
In the mentioned Teletext gadget with built_in pointing facility, page

numbers are not distinguished from arbitrary three_digit values. Therefore, users
often intentionally click at arbitrary three_digit values (for example a price
within a list of stock rates) to "random walk" through the service.

Whereas this property is a rather harmless artefact of the Teletext gadget, it
leads to wrong references of an automatically generated hypertext document. If
the hypertext reference structure is based on Teletext data, heuristics are
required to correctly identify page numbers.

Page Analysis Algorithm

On an overview page of the news section of Teletext, each news article is
represented by a particular entry that we have called overview topic. Sometimes,
the news about a certain subject splits into several articles each represented by
an own topic.

Using conventional terminology of newspapers, one may call an overview
topic a headline. Its associated text page contains the article.

When the hypertext structure of the news service is constructed, the
headlines must be linked to their corresponding articles. To construct this
reference structure, overview pages are parsed to construct headlines from
topics, and to separate groups of headlines of different (news) subjects.

The extraction of the properties of an overview page, i.e. the identification of
its elements (topics), is the most important and at the same time the most
critical task of the heuristic parser. It uses the following heuristics based on the
structure of an overview page, to identify the different types of items (headlines
etc.).

Headline: A headline typically starts with a yellow title (usually in capital letters),
continues with a sequence of characters (possibly extending over more than a
single line) and ends, if the foreground color changes. If such a sequence of
characters terminates with a three_digit number in the range of 100 to 899, it is
assumed to be a headline.

Example:

SELTENER FUND: Skelett eines Ty−

rannosaurus Rex in Kanada entdeckt..130

61

Subsequent items of the above type are assumed to belong to the same (i.e
current) headline as long as they do not start with a yellow (capital) title and
are not printed with one of the colors that identify colored items as specified
below. The whole headline refers to the whole set of pages referred to by its
items.

Example:

ZUGUNGLÜCK IN LAUSANNE:

−Drei Gründe führten zum Unfall /

Probleme bei der Bergung des Giftes105

−Zugverkehr stoppt vor Lausanne /

Erste Massnahmen der SBB...........106

−Chemische Industrie

gegen Transportstop................107

The identification of groups of related items is one of the conceptual
advantages of the TeleNews application compared to the terminal display of
the Teletext gadget. It relieves the user from getting the corresponding pages
one by one. Furthermore, it organizes the related news articles in a way similar
to that of an ordinary newspaper.

Colored Items: Overview items printed in either green, magenta or yellow that
extend over a single line and end with a three_digit number in the range of 100
to 899 are assumed to be colored headlines. These items are sometimes used
to indicate background information about a subject or to identify pages that
contain news flashes etc.

Kurzmeldungen...................115/116

Page references may cover a range of pages, which is indicated either by a slash
or a dash character. The headline then refers to the whole range of pages.

If a headline has been successfully identified to be of one of the above
types, a smart link is assigned to its title. Headlines that don't end in a
three_digit number are assumed to be news flashes. These are short articles that
consist of a few lines of text and completely cover a subject. Therefore, they
don't refer to a further news article.

Text pages, i.e. pages holding the news article, are terminal nodes of the
hypertext structure and thus don't contain further links. Their processing
essentially confines to reformatting the fixed 40 characters_per_line format. The
hypertext viewer is expected to perform implicit line breakings.

62

Words that have been separated by means of hyphens to fit on the 40
character teletext lines are connected again, if the next line starts with a small
letter. This admittedly very simple heuristic almost always results in correctly
connected words. Only one (!) frequent special case needs to be handled
specially. The same procedure is also applied to headlines.

On a teletext page, different paragraphs are separated from each other by a
different text color or by a blank line. If such a paragraph separation is
detected, an explicit line break is inserted into the text. Using different fonts for
titles and flow text supplies the text with yet more structure.

Smart Links

Headline pages contain smart links that refer to the associated news articles
and that allow to access them in a hypertext_like fashion. The specific smart
link descriptor of the TeleNews application is listed below.

Link = POINTER TO LinkDesc;

LinkDesc = RECORD(SmartLinks.LinkDesc)

pn0, pn1: INTEGER (*range of teletext page numbers*)

END;

The TeleNews link descriptor contains the range of Teletext page numbers that
are covered by the smart link.

PROCEDURE Request*(S: Services.Service; obj: Objects.Object; par: ARRAY OF CHAR):

Objects.Object;

VAR link: Link; text: Texts.Text; pno: INTEGER; c: PageClass;

BEGIN link := S(Link);

pno := link.pn0;

WHILE pno <= link.pn1 DO

c := Class(pno); (*identify type of teletext page*)

c.Process(c, W, pno); (*get page from teletext server and process depending on type*)

INC(pno)

END;

NEW(text); Texts.Open(text, ""); Texts.Append(text, W.buf);

RETURN text

END Request;

The link's Request method listed above iterates through all teletext pages that
are covered by the smart link. The actual processing of a page depends on its
type (called page class) which is identified via the page number. Page classes
and their attributes are listed in a configuration text.

63

PageClass = POINTER TO PageClassDesc;

PageClassDesc = RECORD

...

Process: PROCEDURE (C: PageClass; VAR W: Texts.Writer; pno: INTEGER)

END;

Besides the fields that hold technical attributes of the corresponding page
class, the descriptor contains a Process method which is invoked for each page.
Processing consists of two steps: First, the teletext page is requested from the
server and, second, the class specific page analysis discussed above is applied.

Further Applications: The Electronic Investment Bulletin

Information bulletins on financial investment are other examples of printed
information carriers that suffer from the drawbacks mentioned in the
introduction. Such bulletins are sometimes offered by banks and investment
companies on subscription. The electronic investment bulletin is an application
aiming at this topic. It simulates an electronic version of an edition of the
investment bulletin available at subscription from the Zürcher Kantonalbank

(state bank of Zurich).

Figure 4: Electronic Investment Bulletin

64

The electronic investment bulletin is a hypertext application which mixes static
parts such as the global market analysis (which is usually not as volatile as
stock market data) with dynamic parts such as economic news and stock
exchange rates. The latter is downloaded from an online provider (simulated by
the Teletext server). The electronic investment bulletin is an ordinary (static)
hypertext document that contains smart links to access dynamic online data.
The interactive functionality of the electronic investment bulletin can even be
extended by integrating a stock data base service (a corresponding online service
has been prepared as a diploma thesis [Su95]). By storing the stock rates
successively over a certain period of time in a data base, also the course of a
stock can be visualized (in addition to the current state).

RelatedWork

Electronic Newspaper. A "real" electronic newspaper is the goal of a project
called Newsbox of the Evening Standard in London [Di93]. It will be an
electronically available edition of a newspaper which continues to appear also
in printed form. Besides text, it is intended to include images and graphics
transmitted as Postscript files. The idea is both to preserve the traditional
newspaper "look and feel" as well as to extend the functionality by menu
driven searching and browsing including hypertext facilities. The newspaper is
downloaded as a whole on the user's private interactive newspaper terminal
(the actual Newsbox). Besides still images, future versions are intended to
contain short video sequences.

The Newsbox project aims at an electronic newspaper with "electronic"
subsuming paper_less, dynamic and interactive. This is obviously an advantage
over classical printed newspapers. The downloading of the newspaper
immediately before reading, for example, allows to include aspects of actuality,
because the electronic newspaper can continuously be edited and updated
throughout the day. This is in strict contrary to printed newspapers where
sometimes around midnight the editorial process is stopped to print and
deliver the newspapers.

If the electronic newspaper is not intended to be "just" a daily renewed
multimedia data set, it is necessary additionally to provide online connections
for selective access to newspaper items. Such a personalized information
acquisition may, for example, allow the interested reader to access additional
information that is not contained in the ordinary newspaper release.

65

Visual Appearance of an Electronic Newspaper. Aspects of the overall presentation
of TeleNews such as a sophisticated placing of articles on a page have not
been investigated in detail. Such a layout of articles would probably be more
desirable to achieve a typical newspaper look. In [HüHa93], for example, such
a tool for an automated placing of articles on a page in a newspaper_like
fashion is presented. Its placing algorithm is based on structure and properties
of the documents involved. These properties are derived from their formatting
and translated into an abstract document description.

The Teletext service does not include enough meta_information such as the
relevance or the mere kind of the news information (feature, leading article,
etc.) to decide how to present an article on a page. The only features of an
article are the ones derivable from the Teletext overview page. These restrict to
information such as the number of Teletext pages the article consists of or the
color of the headline item referring to it (color sometimes indicates
background information). However, these features are not occurring frequently
and consistently enough to justify their using as heuristics for a page layout
formatter. The lack of features would almost always result in either exactly the
same page layout (for example n by m articles on a page) or − even worse −
yield a misunderstandable grouping and highlighting of articles introduced by a
wrong assignment of relevance and importance.

Summary and Conclusion

We have discussed the integration of a Teletext information service into the
Oberon environment. A centralized Teletext server collects and stores all
available pages on the local disk to provide efficient access. The Teletext client
consists of a special gadget which represents the data by mimicing a TV
screen, however, with extended usability. Additionally, an experimental online
document modelling an electronic newspaper has been realized which
presents Teletext information in hypertext form. The hypertext structure is
constructed on_the_fly based on heuristically derived properties of Teletext
overview pages.

The integration of Teletext into the Oberon environment provides an attractive
source of always up_to_date information. By means of the centralized server,
some of the service's inherent deficiencies such as the annoying waiting times
could be mitigated at the cost of a slightly reduced actuality (the time for a
complete update of the data base).

66

The first approach for the visualization of the service consists of a Teletext
gadget. Its implementation effort essentially confines to aspects of rendering.
All other user interface aspects can be solved with interactive composition of
predefined items (buttons, text fields and the more). The Gadgets user
interface toolkit thus proves to be an adequate basis for the implementation of
such service displays.

The TeleNews application provides full integration of Teletext information
into Oberon because it is based on Oberon's fundamental data structure Text.
TeleNews information thus becomes reusable by arbitrary other applications in
Oberon: All commands which operate on text can also process TeleNews
information. By using smart links for its hypertext structure, all activities related
to acquisition, compilation and delivery of the actual news text can be deferred
until the customer reads the newspaper. Hence, latest updates can be
considered as well and thus the newspaper content be kept current at any time.

Finally, TeleNews presents Teletext information in a more expressive manner
compared to the Teletext terminal. Thanks to the hypertext structure, related
articles can be delivered together, relieving thus the reader from fetching
associated pages one by one. Using different type fonts for titles and text helps
to add even more structure to the text. All these properties thus enhance the
readability of the Teletext information. Only the absence of the conventional
newspaper look based on a multi_column arrangement of articles on a page
might perhaps be considered a drawback.

Although TeleNews is the most innovative step in the whole teletext
integration process, it has also revealed the limits of the integration. Teletext
proved more than once to be indeed a medium rather for humans than for
computers (of course, this does not hold for computer data that is broadcast
via Teletext, e.g. stock rates). Even non_editorial tasks such as the assignment
of page numbers are still done by hand. Typing errors in page numbers (e.g.
the letter l instead of the digit 1) and inconsequent grouping of information
impose several serious problems for automated processing of teletext. Because
Teletext is a non_formally defined data base, automated processing can only
rely on heuristics.

A professional realization of an electronic newspaper that is still based on
teletext requires more reliability. To avoid the weakness of heuristics, the
structure of teletext items such as tables, titles, overviews or flow text must be
identifyable explicitly. This can be done with interspersed (invisible) markup
codes, or by adding special teletext pages which carry such structural
information.

Sophisticated online information services such as an electronic newspaper
with integrated images and video sequences will certainly consume a

67

significant amount of network resources (i.e. bandwidth). As long as broad
access to high speed networks is not available, a solution has to be found that
avoids the need to transport large amounts of data over the network. The
electronic investment bulletin shows a possible approach. By separating the
information into static and dynamic parts, a reasonable compromise can be
found in order to simulate online media. Locally stored static information on
mass storage is combined with small amounts of volatile online data accessed
through dialup connections. Initially, the static information base can be
transported by yellow mail e.g. on CD_ROM. Later it is selectively updated via
online connections. The information is thus organized as a distributed pool of
data that is principally stored at the customers' sites and synchronized with the
central service via the network. The new graphical information service of the
German telecommunication provider Telekom is based exactly on that
operation model [DT94].

Case Study 3: Network Information Browser

In the last case study of our series we discuss the integration of Internet services
into the Oberon system. We present the Smart Web browser which provides
access to the World_Wide Web service. The browser constitutes both an
interesting extension of the set of services accessible in Oberon as well as an
illustration of distributed online documents in a global extent.

Introduction

Currently, the Internet offers most probably the widest range of publicly
accessible sources of online information to the network community [Krol92].
By means of application protocols such as the file transfer protocol ftp

[PoRe85] or the terminal protocol telnet [PoRe83], the corresponding
information services can be connected and the information be read and/or
downloaded. The mere number of information servers and the amount of data
that is available renders an efficient use of the offered network facilities more
and more difficult. Therefore, to help accessing and structuring or merely
finding the information available over the Internet, several kinds of so called
information browsers have been developed. Archive servers such as Archie

[Krol92] assist in finding both the desired data file and the nearest possible
host server holding a copy of it. A few years ago, information services have
been developed which help structuring and accessing textual rather than binary
information. Thanks to their power and simplicity, some of these text based
information services have become very popular. Currently among the most
popular is the World_Wide Web [HTTP0].

Network information services will rapidly become more and more important in
the near future. In order to explore the potential of these network tools it is
obviously desirable to access such services from within Oberon. With the
successful implementation of the Internet protocol suite TCP/IP [Co95] the
technical basis has been laid which makes such an access possible.

From our point of view, the integration of a network information system is
interesting for several reasons: First, the suitability of the generic hypertext

70

facility based on smart links can be explored for a "real" application. Using an
existing network service, of course, is both the most challenging and the most
convincing test. Second, by successfully integrating access to network
information services we lay the foundation for a new class of applications for
the Oberon system, namely as an advanced client platform for the mediation
and integration of online information.

As the concepts of the World_Wide Web as a globally distributed hypertext
document and its accessing scheme match very closely the abstract model of
online documents presented earlier, we decided to implement access to this
service.

World_Wide Web

The World_Wide Web (WWW or Web for short) is an information service based
on the model of a globally distributed hypertext document. Its development
started at the European Particle Physics Laboratory (CERN, Centre Européenne de
la Recherche Nucléaire) in Geneva, Switzerland. The original goal of the WWW
project was to supply high energy physicists with a unified information utility
for consistent access to a multitude of textual information services. Since the
beginning of 1994 the Web has become very popular, and the number of Web
users and information providers is currently growing exponentially.

WWW hypertext documents contain reference links which allow switching to
logically related items (further hypertext documents, but also images, video
sequences and sound patterns). These items may be physically residing at very
different locations in the world. If a link is activated, the corresponding
referenced document is requested and downloaded via the network. The
document is subsequently displayed by a WWW client application (called
WWW browser).

Smart Web: AWorld_WideWeb Browser for Oberon

Smart Web is a fully integrated network browser that supports all important
graphical facilities of the World_Wide Web service like in_line images, text
styles, fill_out forms etc. It can be operated in a way similar to that of WWW
browsers for other operating systems, i.e. by pointing at highlighted captions in
order to download and view the linked documents.

The browser is represented in a panel document that contains a hypertext
view for World_Wide Web pages and user interface elements for initiating

71

activities such as the requesting of documents and items. The panel document
is opened like any other graphical document.

Figure 1: Operating Panel with text view displaying a WWW page

The Smart Web browser provides unlimited extensibility at runtime, both with
respect to new network protocols and new document types accessible via the
WWW. The WWW browser delegates activities like the requesting of network
items, or the mapping of these items to data types of Oberon to specialized
objects which process these activities in a generic way.

Because the implementation of the Smart Web browser is based on our
document oriented user interface framework, it integrates completely with
other online documents available in Oberon. For example, if a corresponding
link is activated, the browser will allow to navigate in place also in TeleNews
pages, or pages of the mentioned electronic encyclopedia.

72

Integration

To provide access to a network information service, first its application protocol
has to be implemented. Additionally, appropriate mappings of the service's
data formats to those of the operating environment have to be provided.

The data model of the World_Wide Web − namely hypertext − is suitable for
representing information from several already existing network information
services. These services frequently use lists, for example directories or menus,
to organize their information. Because such lists can easily be mapped onto a
hypertext structure, WWW browsers provide an integrated user interface for all
these information services.

The Gopher service [AnMC*93], for instance, is usually supported in WWW
browsers. It is a simple network service based on the model of a global file
directory. Items accessed with the Gopher service are either directory lists or
(textual, graphical or binary) documents. Gopher documents, however, do not
contain further references, in contrast to Web documents. Therefore, they can
be viewed as terminal nodes of the world_wide Gopher directory graph.

Besides integrating different network services, the Web also integrates
different media, i.e. data formats of the information. We have already
mentioned the hypertext format of textual information. In graphical browsers,
at least the so called Graphics Interchange Format (GIF) for bitmap images has
to be supported as well. The following table shows common network
information systems which are usually supported by WWW browsers and
some of their possible data formats.

ftp * * *

news * *

gopher * (*) (*) (*) * *

http * * * *

Protocols\Formats plain text hypertext bitmap sound menu list binary file

Various additional formats for photographic images, sound files, video
sequences, and even three_dimensional sceneries can potentially be integrated
into the Web, too. Hence, the World_Wide Web is extensible in two
dimensions: New services (i.e. new protocols) may be added as well as new
media types (i.e. new types of documents).

Technical Background

The specification of the Web consists of three parts that form its technical
basis: (a) a network protocol for the exchange of requests and responses, i.e.

73

the hypertext transfer protocol (HTTP) [BL93], (b) a specification of hypertext
documents by means of markups called hypertext markup language (HTML)
[BLCo93] and (c) a naming scheme for data items that are accessible via the
internet called universal resource locator (URL).

The hypertext transfer protocol is an application protocol that controls
activities on the World_Wide Web such as the request of items. It is a stateless

protocol in the sense that there is no relation of a HTTP activity to any previous
operation. Requests and responses are encoded as Ascii strings i.e. in a human
readable form. A (minimal) transaction for obtaining an object has the
following structure (C stands for the client's requests, S for the server's
responses):

C: GET object identification HTTP/1.0 <CRLF>

C: Accept: type <CRLF>

C: <CRLF>

S: HTTP/1.0 200 OK <CRLF>

S: Content−type: type <CRLF>

S: Content−length: length <CRLF>

S: <CRLF>

S: data

The GET command is used to request the delivery of an item. The acceptable
representation (data format) of the item (hypertext, bitmap graphic etc.) can be
specified by a corresponding Accept entry in the request. The data format is
specified by means of a so called Internet Media Type [Po94]. Some HTTP
servers even respect such media requests and kindly avoid sending data the
client is not able or not willing to process.

The response consists of a result line, a header that includes (among others)
information about the actual representation of the item, and the length of the
data. The header is followed by the data itself.

Textual data is transmitted by means of Ascii strings delimited by line feed
characters. Depending on the media type of the data announced in the header,
the browser interprets and processes the data as a text document, a raster
image, a sound file, an animation sequence etc.

The hypertext markup language is used to express reference links to other
hypertext documents. Additionally, it allows to specify the formatting of the
document and hence the look of the resulting hypertext page in a device
independent way. There are markups which structure the document by
defining paragraphs, headings, enumeration lists etc. Other markups don't
break the text flow but specify the rendering of the text with physical styles like
"bold" or "italic", or with logical styles such as "emphasized". It depends on the

74

graphical abilities of the used browser if such formatting styles are applied or
ignored. With a corresponding markup tag, inline images can be integrated
into a hypertext page for representing icons and logos.

New versions of the markup language include support for fill_out forms.
These extend the suitability of the WWW for interactive applications for which
the ordinary hypertext interface is not adequate anymore. The following
overview lists some of the most frequent markup tags.

HTML Tag Overview
Format Item HTML Coding

Anchor ...

List ...

List item

Glossary <DL> ... </DL>

Term <DT>

Definition <DD>

Paragraph <P>

Explicit Linebreak

Horizontal Ruler <HR>

Styles

Heading (levels) <H1> ... </H1>, <H2> ... </H2>, ... , <H6> ... </H6>

bold ...

italic <I> ... </I>

emphasized ...

strongly emphasized ...

Inline Image

Fill_out Form <FORM ACTION=action−url> ... </FORM>

Submit Button <INPUT TYPE=submit>

Checkbox <INPUT TYPE=checkbox>

Radio Button <INPUT TYPE=radio>

Textfield <INPUT TYPE=text>

The universal resource locator specifies the referenced item including the
coresponding protocol in order to acquire it in a generic way. By using the
resource locator, also items from already existing network information services
can be specified and thus be referenced from WWW documents. Note, that in

75

this sense HTTP is just one of several possible protocol types. It is the
minimum a Web browser has to support. The URL uses the following format:

URL = method ":" ["//" host [":" port]] item.

Method specifies the method (i.e. the protocol) applicable in order to obtain
the item. Host is the internet address of the server holding a copy of the item

which in turn is identified in a protocol_dependent way. HTTP items, for
example, are identified by a UNIX−like file path. The port number is to be
supplied only if it is not equal to the dedicated standard port of the service.

Examples of URLs:

http://www.ethz.ch/swiss/Switzerland−Info.html hypertext document

http://www.cs.indiana.edu/cstr/search?oberon keyword query

gopher://gopher.ethz.ch/ gopher item

news:comp.lang.oberon news group list

telnet://rereth@orion.inf.ethz.ch/ telnet terminal session

ftp://ftp.inf.ethz.ch/Oberon/System3/DOS/system.exe item accessible with ftp

In order to supply arguments to interactive WWW services, HTTP items may
additionally contain an argument list, separated from the item specifier by a
question mark (see second example above).

Processing different Document Types

We start the discussion on the integration of the WWW with the presentation
of the different data formats of HTTP items. The data format of a requested
document is specified in the Content−Type field of the response header. The
corresponding media specification corresponds uniquely to a method of
processing the data. In our implementation, items are requested only, if and
only if their file extensions indicate one of the currently supported media types.
This behaviour prevents the browser from requesting items that it cannot
process anyway, e.g. because its media type is not supported yet (Actually, the
browser exposes all media types that it can handle in the Accept field of the
request. However, some of the servers simply ignore the field).

Deriving (or better guessing) the document's type from its file extension is
common practice in WWW browsers. However, the conclusive determination

of the document's type is favourably done with the Content−Type field of the
response header (if present).

In order to allow independently the sets of protocols and supported media
types to be extended, the protocol dependent item request has to be decoupled

76

from the media type specific item processing. Such decoupling can be achieved
by downloading the item into a file and subsequently process the content of
the file. Some WWW browsers for other platforms apply this scheme and even
delegate the actual processing of the item to an external program.

A more elegant, more efficient, and more integrated solution is applied in
the WWW browser for Oberon. The solution is based on an installable parser
method which is determined as soon as the type of the document is
recognized during its downloading. Parser methods have the following
structure:

PROCEDURE ContentType (C: NetSystem.Connection; VAR obj: Objects.Object;

inline: BOOLEAN);

The parser method is called after the desired item has been requested and the
response header completely processed. The corresponding item's data can
therefore immediately be downloaded and parsed directly "from the wire". For
that purpose, the method is supplied with an network connection C as
parameter. If the inline flag is true, the parser method returns in the obj

reference parameter a ready_made object for being inserted into a text.
Otherwise (i.e. inline equals false), the parser method is expected to generate
an appropriate view of the object by itself and return NIL instead.

All media types for which there exists a parser method are enumerated in a
configuration text. An entry in the configuration text lists the data item's file
suffixes and an Oberon command which assigns the type_specific parser
method to the global procedure variable parse:

parse: PROCEDURE (C: NetSystem.Connection; VAR obj: Objects.Object; inline: BOOLEAN);

The text file contains an entry for each of the currently supported document
types with the following structure:

entry = media_type command file_suffix {file_suffix} CR.

"text/plain" WebHtml.Text "*.text" "*.txt" "*.c" "*.h" "*.conf"

"text/html" WebHtml.Html "*.html" "*.htm" "*"

"image/gif" WebImage.Gif "*.gif"

"image/x−xbitmap" WebImage.Xbm "*.xbm"

The following LoadDoc procedure passes control to the parser method that is
associated to the media type specified as parameter.

77

PROCEDURE LoadDoc (C: NetSystem.Connection; media: ARRAY OF CHAR;

VAR obj: Objects.Object; inline: BOOLEAN);

VAR res: INTEGER;

BEGIN

parse := NIL; (*reset parser method*)

searchmedia in list of currently known document types;

IF found THEN (*deposit parser method*)

Oberon.Call(installer belonging to media, Oberon.Par, FALSE, res);

IF parse # NIL THEN parse(C, obj, inline) (*forward processing to parser method*)

ELSE obj := NIL (*error: no parser method installed*)

END

ELSE obj := NIL;

Out.String("cannot handle "); Out.String(type); Out.Ln

END

END LoadDoc;

The most important document type is the one which actually constitutes the
World_Wide Web, namely structured text encoded with the hypertext markup
language.

HTML Documents

The parser method which processes HTML encoded data has to map the
properties specified in the HTML document to abstractions present in the
Oberon system. The following table lists properties, their HTML markups and
the corresponding abstraction in the Oberon system that is used to represent it.

Form Elements <INPUT TYPE= ...> Gadgets

Lists , <DL> </DL>, ... Style Symbols

Inline Images Pictures

Headings <H1> </H1> Fonts

Text Looks , , ... Fonts

Anchors Smart Links

Property Markup Representation in Oberon

The HTML parser is based on a lexical scanner that turns markup sequences
and character entities (character encoding by means of a literal paraphrase,
such as Ä for Ä) into single characters.

The deficiency of discipline in the markup language's usage forces the paser
to be extremely tolerant. Therefore, we have implemented it as a state machine
where arriving markup tags either set or reset graphical states and modes. A
state machine is easily reset to a reasonable state if illegal use of markups is
discovered. For properties which may be nested such as lists and character
styles (fonts) an attribute stack is maintained which collects the current

78

attribute state up to a certain nesting level. The whole processing of a HTML
document and its conversion into a hypertext page happens in a single pass.

Mapping of Data Formats

As mentioned, textual data is transmitted by means of Ascii strings terminated
by line feed characters. The line structure used for transmission is totally
unrelated to the resulting hypertext presentation (except for so called
preformatted text, where the line structure has to be preserved). Instead, the
browser is assumed to support implicit line breaking as soon as a text line
exceeds a certain width. Line breaks are therefore converted to space characters.

If an anchor markup tag is found, the corresponding document's address
(specified with a universal resource locator) is extracted and a smart link is
constructed to be inserted later into the text. All subsequent characters up to
the ending anchor markup are printed in a highlighted fashion with a special
color. After the ending markup has been found, the prepared smart link is
inserted into the text flow and the text color reset.

Headings and the various different text looks are represented with different
fonts. Indentation and nesting of lists and glossaries is done by means of
appropriately attributed style symbols that are inserted into the text.

Inline images are immediately processed as soon as they are discovered;
that is, processing of the containing document is suspended until the
processing of an inline image has completed. The actual processing of the
image data is performed by a media_specific parser method. It results in an
Oberon picture object which is inserted into the text. Image data is cached
locally to avoid unnecessary network traffic (decorative images are often
referenced several times within a single page).

All other graphical items within a WWW page are mapped to standard
components of Oberon System 3's graphical user interface toolkit Gadgets.
These items include horizontal rulers, bullets in front of enumeration lists, and
the fill_out forms elements like text fields and buttons. Their customization to
the browser's needs confines to appropriate settings of attributes (sizes,
commands etc.).

Processing different Network Services

Different network services imply different access protocols for requesting their
items. Our concept of Smart Links suggests a simple solution for the integration
of a potentially infinite number of different network services. In principle, the

79

integration of a new network service confines to the definition of a new type of
smart links.

However, this general rule leads to the problem that the HTML parser must
be able to generate smart links for all network services of which items are
referenced in the current page. Remember that, while processing the current
HTML page (cf. previous paragraph), hypertext links referring to further items
are represented by smart links. These are inserted directly into the text of the
page under construction. If the type of a smart link depends on the network
service, the HTML parser has to know all currently supported network services
in order to choose the appropriate smart link.

Hence, there is justification in this case to refine the rule stated above and to
decouple the aspects of the smart link (which references an item) from the
actual service (which processes the network access to retrieve the item). This
decoupling leads to a two_level structure of the smart link activation: A single
unified variant of a smart link is used to reference network items (irrespective of
their access methods), whereas a service_specific service object is used to
process the requests (parameterized smart links). The following figure illustrates
the two_level structure of the smart link activation and compares it with the
direct solution (on the left):

HTTP
Link

URL
Link

HTTP
Service

FTP
Service

HTTP
Item

FTP
Link

FTP
Item

XXX
Link

XXX
Item

XXX
Service

loads loads

HTTP
Item

FTP
Item

XXX
Item

requests
to load

Smart Link
known by
Browser

Smart Links
known by
Browser

Figure 2: Decoupling of Smart Links and Services

As a consequence, only a single type of smart links has to be known to the
browser even for different (and yet unknown) network services.

The smart link known to the parser thus represents a (general) universal

resource locator instead of a (specific) network service. Its data type is listed
below.

80

Link* = POINTER TO LinkDesc;

LinkDesc* = RECORD(SmartLinks.LinkDesc)

method*: ARRAY 8 OF CHAR;

host*: ARRAY 64 OF CHAR;

port*: INTEGER;

path*: ARRAY 256 OF CHAR

END;

The data type contains the different sections of the resource locator. The
method field in the smart link descriptor specifies the service which actually
loads the item. In the data type, the service which loads the item is thus
represented only with its name. By means of the generic naming facility, the
name is mapped to the actual service.

The decoupling of smart links and service implementations introduces a
new level of indirection. This indirection allows to delay the identification of a
specific network service up to the first resolution of a smart link referring to
one of its items. It additionally allows to delay the loading of the corresponding
service's modules into memory up to that moment.

The indirection leads to a two phase process of requesting an item. The
following Request method of the smart link implements this process.

PROCEDURE Request(S: Services.Service; obj: Objects.Object; par: ARRAY OF CHAR):

Objects.Object;

VAR s: Services.Service;

BEGIN

s := Services.GetService(S(Link).method); (*find appropriate service*)

IF s # NIL THEN

RETURN s.Request(s, S, par) (*download item*)

ELSE

Out.String(S(Link).method); Out.String(" not supported"); Out.Ln;

RETURN NIL

END

END Request;

If the smart link is requested to deliver the referenced item, it orders an
appropriate service from the central service manager (which implements the
naming of services). The corresponding service is identified by the name of the
access method (which is very probably registered as an alias name for the
service's generator command). The service manager returns the corresponding
service which, in turn, is requested to load the item.

81

Summary and Conclusion

We have made accessible information of the World_Wide Web network service
to users of the Oberon environment. The WWW browser tool that evolved
from the project allows to bring textual and graphical information from
anywhere in the world directly on the Oberon desktop.

For the implementation of the browser, we had to care only about the mere
protocol oriented aspects of the World_Wide Web and the appropriate
representation of WWW items with Oberon's basic data types. The latter could
be achieved by customizing existing items of Oberon System 3's graphical user
interface toolkit to the needs of the browser application. User interface aspects
are handled completely by the document oriented application framework.
Finally, the generic hypertext machinery introduced earlier in this thesis covered
those parts of the browser tool which are not supported by the basic Oberon
system already. As a consequence, the implementation of the World_Wide
Web browser for Oberon confined to a module for WWW's transfer protocol
and a module for the HTML parser. It is obvious, that the integration of further
network information systems into the Oberon environment can be achieved
with a similar implementation effort.

Differences to existing Web browsers

Although the functionality of the Web browser for Oberon is far from being
complete and therefore cannot compete with existing Web browsers for other
operating platforms (e.g. Netscape [HTTP2]), the presented browser is unique
for several reasons.

In contrast to World_Wide Web browsers for other platforms, Web for Oberon
is fully integrated; that is, the Web browser is not a separate application but a
collection of customized system components. It presents itself as a document
that can be opened like any document in the system. User activities within the
Web document (e.g. the requesting of Web items) have identical semantics as
user activities in arbitrary other documents (e.g. the invoking of commands). In
fact, there is no Web "browser" in Oberon at all. There is only a type of smart
links and collection of services that are embedded in an ordinary text which, in
turn, is displayed in an arbitrary document viewer.

Web for Oberon is fully integrating with arbitrary other online documents,
because links to any other local and remote services (e.g. an online
encyclopedia) may be embedded as well. For example, if the user invokes the

82

online encyclopedia on a selected keyword in the currently visible text, the
result is displayed as if it resulted from a Web request. As long as the user
remains within the encyclopedia context, further activities are directed to the
online encyclopedia. After returning to the Web context (e.g. by means of the
context stack) the user can continue navigating in the Web document space.

Web for Oberon is arbitrarily extensible at runtime with respect to new network
services as well as to new document types (i.e. data representations of network
items). The Web platform provides only the basic functionality such as
connection establishment etc. The actual (service_ and media_specific)
functionality, however, is located in the different components that handle
either different network services or different data representations. These
components can be freely added at runtime without the necessity to reboot the
application, i.e. while the Web environment is loaded and operational.

Whereas almost all available WWW browsers allow to extend the set of
supported document types in a similar way, typically, browsers for other
platforms only fetch the corresponding data and store it in a temporary file. The
actual interpretation of the data is delegated to an external program which is
associated with the corresponding document type in an initialization file. In the
Web for Oberon, a slightly more integrated solution is provided by means of a
parser method that is installed within the scope of the Web engine. This results
in a more elegant and more efficient processing of different media types.

Extensibility with respect to network services is usually not possible in
browsers for other platforms. Instead, such Web browsers are equipped with a
certain number of currently supported network services that are "burnt in". In
the Web for Oberon new network services (represented as new service types)
can be added freely. These services are not loaded into memory until one of its
items is requested. Instead, they are loaded one by one during navigating
through the WWW space. The mere reference to an item within the visible
page therefore does not require the presence of the corresponding service's
program module!

The concept of autonomous smart links allows customizable World_Wide Web

"tool" texts (in the sense of Oberon Tools) to be constructed. Because its smart
links are objects freely flowing in the text, such a "tool" can be constructed by
simply copying the highlighted hypertext anchors with their links into a local
text document. The latter can be stored as usual. Within a hypertext view (i.e. a
text view equipped with the mentioned activation command), the tool text can
immediately become active.

83

Outlook

The World−Wide Web seems to become a standard platform for all kinds of
network information systems accessible over the Internet. Its extensibility of
protocols as well as document types due to a generic identification scheme
allows also to integrate new and yet unrecognized possibilities and features.

A vision of the future of the Web is that of world_wide distributed
multimedia books extended with interactive facilities such as the manipulation
of visual data over the network. In fact, due to the accessing scheme of the
World_Wide Web, the presented data needs not to be permanently present for
ready_made access but can be immediately constructed at the occasion of an
incoming request [So95]. This opens a completely new interactive potential
which still has to be explored.

Recently, a development group in the UK offered the possibility to inspect
the current level in the coffee pot of their video supervised coffee machine
through the World_Wide Web [HTTP4]. This interactive application of the
"internet coffee pot" can only be considered a caricature of this potential.

Conclusions and Outlook

Conclusions

The project presented in this thesis aimed at the integration of access to local
and remote services into the Oberon system. The goal was to obtain a unified
programming model and user environment for the interaction with these
services. Such an environment constitutes a prerequisite and starting point for
successfully exploring the inherent potential of interactive online multimedia
applications.

The integrated user environment and programming model is essentially
based upon two concepts: First, the online document as a model for
information that is processed and displayed by services and, second, smart links

as user interface elements that represent abstract services.
An important design principle was the strict separation of the three aspects

(and phases) of the smart link's activation. These include the link's initiation,
its processing (i.e. the service call), and the rendering of the result on the
screen. The actual service call very often proves to be the only phase that
involves a service_specific processing; that is, the other phases of the link
resolution can be handled identically for all services. Therefore, the
implementation of a new service is basically confined to these service_specific
issues such as the service's protocol and its data representation. The separation
of the three aspects thus allows to integrate new services very efficiently and
hence to add new functionality into the environment. A rough integration of a
simple service (for example the gopher service mentioned in the previous
chapter) can thus be achieved in only about an afternoon.

The integration of different online media and sources of information
requires a consistent user interface and presentation model. We believe that
documents provide a suitable abstraction for both the information that is
delivered by services as well as their user interface. The smart document as the
integration of an online document (as the model of the information) and the
document oriented user interface offers the user a familiar presentation and
behaviour. For example, a smart document is opened like any other document
in the system, and service calls are initiated like ordinary commands.

86

Experience with the integration of several online documents allows to draw
the conclusion that Oberon is not only a suitable but an ideal platform for
accessing information services. Oberon especially supports and simplifies such
functional extensions due to the following properties and characteristics:

Oberon's document oriented interface model extends naturally to a universal user
interface for services. Accessing a service can be interpreted as opening a
document (an online document, respectively). Furthermore, Oberon's textual
user interface and hypertext have very similar (stateless) semantics. The most
conspicious difference is that the hypertext link arbitrarily paraphrases an
activity that is invoked while the command name exactly and explicitely
identifies the activity.

Oberon consists of powerful system components that restrict the effort of the
implementation of service access essentially to aspects related to the actual
interaction with the service. These components include attributed text and
graphical objects which can be used to build user interface platforms with.
Furthermore, these components can be easily customized for example to be
used as mappings of the service's abstractions.

Oberon is a powerful programming platform that allows an efficient
realization of a service integration project. For example, the mentioned system
components can be customized also with respect to their programmed
functionality, e.g. by installing a command. Most of the user interfaces can
even be built by interactive composition, i.e. without any programming.

Outlook

Objects that are delivered by services are constructed locally by the (local)
representative of the (possibly remote) service. Remote services thus only
provide the data that the local objects consist of, but not the objects
themselves. For example, the (remote) service delivers a binary image file that
is used to construct a local picture object.

To extend the range of deliverable items in a generic way, objects themselves

must be delivered, instead of only their data. The inclusion of such portable
objects with autonomous functionality is therefore obviously the next step.
However, this raises the question of how to transmit the necessary executable
code with the object.
In a homogeneous computing environment with compatible processing

facilities, the object's machine_code can be transmitted directly. In an
environment with different and incompatible computing platforms, a portable

87

representation of the functionality is required (so called portable or virtual
object code).

There are two interesting proposals for such portable object code. The Java

project [Ja95] aims at small portable applications, so called applets. These can
be transported over network connections, for example, to equip World_Wide
Web pages with autonomous functionality. Java applets are executed on a
runtime system that emulates a virtual machine. The Oberon Module Exchange

(OMEGA) proposal [Fr94] is based on a code generating loader. It compiles an
intermediate representation of an Oberon module at loading time to the target
machine's native object code. Both the Java project and also the Oberon Module

Exchange proposal provide a promising foundation for such portable objects.

Future research will be doubtlessly directed towards even higher integration.
Information that is provided by one service can be combined with information
that originates from another source. For example, the data base of the
electronic encyclopedia might be extended with links to the teletext service. If
the user requests information from the encyclopedia service, additional
information that is currently found in the teletext data base can be delivered as
well.

Also possible is an integration of other online documents like the electronic
encyclopedia or TeleNews with World_Wide Web. Looking at the World_Wide
Web as a broadly accepted transport media for online services, such an
integration has two important advantages: On the one hand, the programmer
needs not to care about the definition of the transport protocol. On the other
hand, the online document is immediately accessible by anyone who has
access to the WWW. However, integration of online resources into the WWW
requires a server software that handles and processes the corresponding
requests. In [So95] a very simple server framework is suggested that allows to
install such resources with minimal effort.

Bibliography and References

[Ar87] D. Arnon, Report of the Workshop on Environments for

Computational Mathematics, RFC 1019

[ArBe*88] D. Arnon, R. Beach, K. McIsaac, C. Waldspurger,
Caminoreal: An Interactive Mathematical Notebook,
Proc. on Electronic Publishing, Document Manipulation and
Typography (EP88), Cambridge University Press 1988

[AnMC*93] F. Anklesaria, M. McCahill, P. Lindner, D. Johnson, D. John,
D. Torrey, B. Alberti, The Internet Gopher Protocol (a distributed
document search and retrieval protocol), RFC 1436, 1993

[BLCa90] T. Berners−Lee, R. Cailliau,WorldWideWeb:

Proposal for a HyperText Project,
http://info.cern.ch/hypertext/WWW/Proposal.html, 1990

[BL93] T. Berners−Lee, Hypertext Transfer Protocol, Internet Draft, 1993

[BLCo93] T. Berners−Lee, D. Conolly, Hypertext Markup Language,
Internet Draft, 1993

[Ba92] L. Bauer, Videotext für alle, c't 7/92, pp 176−182

[BeDe91] E. Berk, J. Devlin, (ed.), Hypertext/hypermedia handbook,
McGraw Hill, 1991

[ChGe*88] B. W. Char, K. O. Geddes, G. H. Gonnet, M. B. Monagan,
S. M. Watt,Maple(TM) Reference Manual 5th Edition,
Watcom, 1988

[Co95] D. E. Comer, Internetworking with TCP/IP,
Prentice−Hall, 1988, 1991, 1995

90

[Di93] S. Dickman, Die Zeitung der Zukunft steht auf Chips,
Tages Anzeiger, 21. 10. 1993

[Do93] H. Domjan, Ceres_TXT, term project ICS−ETHZ, 1993

[DoWi85] J. Donahue, J. Widom,
Whiteboards: A Graphical Database Tool,
CSL−85−4, PARC, 1985

[DT94] Deutsche Telekom AG, KIT: Window_based Kernel for Intelligent

Communication Terminals, Technical Specification, 1994

[EBU92] European Broadcasting Union, Teletext Specification,
Interim Technical Document, SPB 492

[ElGi89] C. A. Ellis, S. J. Gibbs, Active Objects: Realities and Possibilities, in:
Object−Oriented Concepts, Databases and Applications,
Won Kim ed., ACM Press, 1989

[GoRo83] A. Goldberg, D. Robson, Smalltalk−80: The Language and its

Implementation, Addison−Wesley, 1983

[Gu93] J. Gutknecht, Oberon System 3 − A Realm of Persistent Objects,
Internal Draft, 1993

[Gu94a] J. Gutknecht, Oberon System 3: Vision of a Future Software

Technology, Software Concepts & Tools 15:1, 1994

[Gu94b] J. Gutknecht, Oberon−Perspectives of Evolution,
Proc. on Joint Modular Languages Conference (JMLC), 1994

[HüHa93] Ch. Hüser, A. Haake, The Hypermedia Presentation Composer:

A Tool for Automatic Hyperdocument Delivery,
Proc. Hypermedia '93, Springer, 1993

[ISO86] ISO 8879:1986, Information Processing Text and Office Systems

Standard Generalized Markup Language (SGML), 1986

91

[Kr92] E. Krol, The Whole Internet. User's Guide and Catalog,
O' Reilly & Associates Inc., 1992

[Kn84] D. E. Knuth, The TEXbook, Addison Wesley, 1984

[LRG76] Xerox Parc Learning Research Group, Personal Dynamic Media,
SSL−76−1, PARC 1976

[Le90] B. L. Leong, (indirect) Electronic communication, 1990

[Me86] N. Meyrowitz, Intermedia: The Architecture and Construction of an

Object−Oriented Hypermedia System and Applications Framework,
Sigplan Notices 21:11, 1986

[Os93] E. Oswald, Polyworlds, Diploma Thesis ETHZ, 1993

[Ph90] SAA5246 Integrated VIP and teletext (IVT), Datasheet, Philips, 1990

[Pi94] R. Pike, Acme: A User Interface for Programmers,
AT&T Bell Laboratories, 1994

[PoRe83] J. Postel, J. Reynolds, Telnet Protocol specification, RFC 854, 1983

[PoRe85] J. Postel, J. Reynolds, File Transfer Protocol, RFC 0959, 1985

[Po94] J. Postel, Media Type Registration Procedure, RFC 1590, 1994

[Re91] M. Reiser, The Oberon System, Addison Wesley, 1991

[ReWi92] M. Reiser, N. Wirth, Programming In Oberon, Addison Wesley, 1992

[Schä91] H. R. Schär, Integrierte interaktive Bearbeitung mathematischer

Formeln im Dokumenteneditor Lara, Diss. ETH, 1991

[So94] R. Sommerer, Script User Guide, User Guide as part of the official
Oberon System 3 Release, 1994

[So95] R. Sommerer, Integrating Oberon Resources into the

World_Wide Web, Proc. GISI'95, Springer, 1995

92

[Su95] A. Suter, Online Monitor für Börsenkurse basierend auf Teletext,

diploma thesis ETHZ, 1995

[Szy91] C. A. Szyperski, Write − An Extensible Text Editor for the

Oberon System, Tech. Report 151, Institut für Computersysteme,
ETH Zürich, 1991

[ThRi74] K. Thompson, D. A. Ritchie, The UNIX Time_Sharing System,
Comm. ACM, 17:2, 1974

[Vo89] S. Vorkoetter, Software Portability by Virtual Machine Emulation,
Diss. Thesis, University of Waterloo, 1989

[Vo94a] S. Vorkoetter, Open Math Proposal, Draft, 1994

[Vo94b] S. Vorkoetter, private communication

[WeGa*89] A. Weinand, E. Gamma, R. Marty, Design and Implementation of

ET++, a Seamless Object−Oriented Application Framework,
Structured Programming 10:2, 1989

[Wi88] N. Wirth, Type Extensions,
ACM Trans. on Programming Languages and Systems, 10:2, 1988

[WiGu92] N. Wirth, J. Gutknecht, Project Oberon, Addison Wesley, 1992

[Ze88] P. T. Zellweger, Active Paths Trough Multimedia Documents,
Proc. on Electronic Publishing, Document Manipulation and
Typography (EP88), Cambridge University Press, 1988

Electronic References (without explicit autorship)

[HTTP0] http://info.cern.ch/hypertext/WWW/TheProject.html

[HTTP1] http://info.cern.ch/hypertext/WWW/History.html

[HTTP2] http://home.netscape.com/

[HTTP3] http://info.cern.ch/hypertext/WWW/MarkUp/HTMLPlus/htmlplus_1.html

[HTTP4] http://www.cl.cam.ac.uk/coffee/coffee.html

