
Diss. ETH Nr. 11024

Optimizing Compilers for

Structured Programming Languages

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

(ETH Zürich)

for the degree of
Doctor of Technical Sciences

presented by
Marc Michael Brandis

Dipl. Informatik_Ing. ETH
born January 7, 1966
citizen of Germany

accepted on the recommendation of
Prof. Dr. H. Mössenböck, examiner
Prof. Dr. N. Wirth, co_examiner

1995

Für meine Eltern

Acknowledgements

This work would not have been possible without the help and encouragement
of many people. I am most indebted to Prof. H. Mössenböck for his continuous
support and his insistence on clarity and simplicity. Without his constructive
criticism, this project would not have achieved such favorable results. I also
would like to thank Prof. N. Wirth for a liberal supervision of this project and
for acting as my co_examiner. His way of thinking and problem solving had a
significant impact on this work.

It is a pleasure to mention my colleagues of the Institute for Computer
Systems; they established an agreeable and inspiring environment and many of
them contributed to this work. Régis Crelier, Michael Franz, and Josef Templ
participated in our initial effort to port Oberon to stock hardware. Robert
Griesemer was a well_versed discussion partner in compiler_related topics as
well as in programming methodology. Régis Crelier wrote the Oberon_2
front_end which became part of both Oberon_2 compilers I implemented. I also
gratefully acknowledge all the other support I have received over the years from
my colleagues at ETH, which is just too numerous to be mentioned in detail.

Cheryl Lins provided many helpful hints and literature pointers when I got
started in the field of optimizing compilers. My internship with Dr. Peter Oden
and Jonathan Brezin of the IBM T.J. Watson Research Laboratory resolved many
of my questions about optimizing compilers. The chance to study their
compiler was a tremendous help in starting my project. Dr. Martin Reiser of the
IBM Research Laboratory in Rüschlikon supported my work by organizing the
before mentioned internship and by making the right connections into IBM.

Several students contributed to this work in their diploma theses. Jürg
Bolliger developed a Trace Scheduling algorithm for our optimizing compiler.
Jakob Magun constructed a novel register allocator based on cyclic interval
graphs. Thomas Nadig showed that single_pass generation of SSA_form is
feasible for the whole programming language Oberon_2. In his semester project,
David Posva implemented the algorithm to replace unstructured control_flow by
structured code.

I also would like to thank Jürg Bolliger, Stephan Gehring, Martin Gitsels,
Stefan Ludwig, Niklaus Mannhart, and Whitney de Vries for proofreading parts
of this thesis. Their comments greatly helped me in improving the quality.

Contents

Abstract viii
Kurzfassung ix

1 Introduction 1
1.1 Motivation 1
1.2 Contributions 1
1.3 Overview 2

2 What is an Optimizing Compiler? 3
2.1 Structure of an Optimizing Compiler 3
2.2 Optimization Algorithms 4
2.3 Scope of Optimization 5
2.4 Where Does the Improvement Come From? 5
2.5 Anatomy of an Optimization Algorithm 6

3 Advances in Computer Architecture 9
3.1 Pipelining 9
3.2 Superscalar Microarchitecture 11
3.3 Caches 15
3.4 Reduced Instruction Set Computers 17

4 PowerPC Architecture 19
4.1 Design Goals 19
4.2 PowerPC Architecture 19
4.3 PowerPC Microarchitecture 24
4.4 Some Examples of Code Improvements 26

5 Intermediate Program Representations 33
5.1 Abstraction Levels for Operations 33
5.2 Abstraction Levels for Control_Flow 34
5.3 Abstraction Levels for Data_Flow 41
5.4 Combining Control_ and Data_Flow 47
5.5 Discussion 48

vi

6 Guarded Single_Assignment Form 49
6.1 Control Structures 50
6.2 Access to Structured Data 52
6.3 Aliasing 54
6.4 Locations 55
6.5 Procedure Calls 55
6.6 Procedure Prolog and Epilog 56
6.7 Ordering of Instructions 57
6.8 A Numbering Scheme for Fast Dominance Tests 57
6.9 Implementation Issues 59

7 Generating Guarded Single_Assignment Form 63
7.1 Translating Straight_Line Code 63
7.2 Translating If_Statements 64
7.3 Translating While_ and Repeat_Statements 66
7.4 Dealing with Unstructured Control_Flow 68
7.5 Alias Analysis 69

8 Optimizations 71
8.1 General Properties 71
8.2 Copy Propagation 73
8.3 Procedure Inlining 74
8.4 Constant Propagation and Unreachable Code Elimination 77
8.5 Value Numbering 81
8.6 Dead Code Elimination 84
8.7 Strength Reduction, Reassociation,

and Loop Invariant Code Motion 86
8.8 Peephole Optimizations 92
8.9 Other Possible Optimizations 92

9 Machine Code Generation 97
9.1 Instruction Scheduling 97
9.2 Global Instruction Scheduling 103
9.3 Trace Scheduling 103
9.4 Software Pipelining 106
9.5 Register Allocation 115

vii

10 Measurements 125
10.1 Compiler Size 125
10.2 Compilation Time 128
10.3 Code Quality 130

11 Summary and Conclusions 133
11.1 Summary 133
11.2 Implications on Programming Language Design 134
11.3 Future Work 134
11.4 Conclusions 135

References 137

viii

Abstract

Modern processor architectures rely on optimizing compilers to achieve high
performance. Such architectures expose details of their hardware to the
compiler, which has to deal with them in generating machine code. This
development has led to complex and slow compilers, which are difficult to
understand, implement, and maintain.

This thesis reports on methods to simultaneously reduce the complexity
and the compile_time of optimizing compilers by more than a decimal order of
magnitude. It presents a novel intermediate program representation, which
integrates data_ and control_flow into a single data_structure. This provides not
just for simpler and faster optimization algorithms, but also for more powerful
optimization techniques. The thesis also describes single_pass algorithms to
construct this intermediate program representation from structured source
code, as well as single_pass techniques to transform programs with restricted
kinds of unstructured control_flow like in Oberon into structured form. The
integration of these techniques with the parser allows to implement fast and
compact front_ends for structured programming languages, that avoid the many
auxiliary data structures other optimizing compilers require.

A description of several optimization algorithms and how they can be
implemented on this intermediate program representation shows the feasibility
of the approach. Most of these techniques have been implemented in a
prototypical optimizing compiler translating a subset of the programming
language Oberon for the PowerPC architecture. Measurements on this compiler
prove that both the complexity and the compile_time of optimizing compilers
can be reduced by an order of magnitude when translating a structured
programming language and when using this novel intermediate representation
and the associated algorithms. The thesis concludes with some feedback to the
programming language designers, which language constructs cause undue
complications in optimizing compilers and should therefore be omitted.

ix

Kurzfassung

Moderne Prozessorarchitekturen erfordern optimierende Compiler um hohe
Rechenleistung zu erreichen. Details der Hardware_Implementierung wurden für
den Compiler sichtbar gemacht, und letzterer muss diese
Hardwareeigenschaften bei der Codeerzeugung berücksichtigen. Diese
Entwicklung führte zu komplexen und langsamen Compilern, die schwer zu
verstehen, zu implementieren und zu warten sind.

Diese Dissertation beschreibt Methoden, die gleichzeitig die Komplexität
und die Übersetzungszeit optimierender Compiler um mehr als eine dezimale
Grössenordnung reduzieren. Sie präsentiert eine neuartige
Zwischenrepräsentation für Programme, die Daten_ und Kontrollfluss in eine
einzige Datenstruktur zusammenfasst. Dies erlaubt nicht nur einfachere und
schnellere Optimierungsalgorithmen, sondern auch leistungsstärkere
Optimierungsverfahren. Die Dissertation beschreibt auch Ein_Pass_Algorithmen,
um diese Zwischenrepräsentation aus strukturierten Quellprogrammen zu
erzeugen, als auch Ein_Pass_Verfahren um Programme mit eingeschränkten
Formen von unstrukturiertem Kontrollfluss wie in Oberon in strukturierte Form
zu übersetzen. Die Integration dieser Verfahren mit dem Parser erlaubt es,
schnelle und kompakte Front_Ends für strukturierte Programmiersprachen zu
bauen, welche die vielen Hilfsdatenstrukturen anderer optimierender Compiler
vermeiden.

Die Beschreibung einiger Optimierungsalgorithmen und deren
Implementation auf dieser Zwischenrepräsentation belegt die Anwendbarkeit
des Ansatzes. Die meisten dieser Techniken wurden in einem Prototyp_Compiler
realisiert, der eine Untermenge der Sprache Oberon für die PowerPC Architektur
übersetzt. Messungen an diesem Compiler beweisen, dass sowohl die
Komplexität als auch die Übersetzungszeit optimierender Compiler um eine
Grössenordnung reduziert werden können, wenn eine strukturierte
Programmiersprache übersetzt wird, und wenn diese neuartige
Zwischenrepräsentation und die dazugehörigen Algorithmen verwendet werden.
Die Dissertation schliesst mit einigen Hinweisen an die Entwickler von
Programmiersprachen, welche Sprachkonstrukte übermässige Schwierigkeiten
bei Bau optimierender Compiler machen und deshalb vermieden werden
sollten.

1 Introduction

1.1 Motivation

The motivation for the work presented in this thesis stems from the recent shift in the interface between

compiler and processor architecture, that started with the introduction of RISC architectures. Instead of

trying to make complex instructions run fast, these architectures provide simple instructions only, out of

which more complex operations can be assembled. It is the task of the compiler to select fast code

patterns and to customize the patterns for often_encountered special cases. Compilers doing so are called

optimizing compilers.

On early RISC processors, the biggest source of improvement in code quality was to allocate

variables in the large register set. The portable Oberon_2 compiler OP2 uses a simple heuristic to allocate

local variables to registers. This technique alone allowed to achieve very competitive code quality on most

RISC processors [BCFT92]. On the IBM RS/6000, however, code produced by the optimizing C_compiler

ran twice as fast as Oberon code. This difference can mostly be attributed to the RS/6000 exploiting

instruction_level parallelism in the form of parallel execution units and in the form of instructions

performing multiple operations at once. The compiler must generate code that makes good use of these

features.

While the optimizing C_compiler on the RS/6000 generates code of very high quality, it does so at a

high cost. The compiler is a large and complex application that compiles about two orders of magnitude

slower than the Oberon_2 compiler. The work presented here is a step towards achieving similar code

quality at much lower cost. Even though the project started on the RS/6000, the results are also relevant

to other RISC architectures, which make use of instruction_level parallelism in their latest incarnations and

which rely on the compiler to generate code of high quality.

1.2 Contributions

At the heart of an optimizing compiler is the intermediate representation of the program, on which all

code_improving algorithms operate. This thesis innovates on the intermediate program representation in

several respects. It presents a novel representation called guarded single_assignment (GSA) form with very

clean semantics, which makes all dependencies explicit. The intermediate representation provides

completely position_independent semantics, and integrates data_ and control_flow information into a

single data_structure. This not only simplifies keeping the data_structure consistent, but also enables more

powerful and simpler optimization algorithms.

Another contribution of this thesis are single_pass algorithms to construct GSA or similar

intermediate representations for programs in structured programming languages. Previously known

methods to generate intermediate representations of similar expressiveness require many passes and

several auxiliary data structures. The thesis also presents a single_pass technique to automatically

transform programs with restricted forms of unstructured control_flow into structured programs. This

technique can be integrated with the algorithms to generate GSA form. It is thus possible to translate

programs in the language Oberon_2 into GSA form in a single pass during parsing of the source code.

2

Using GSA form and these single_pass algorithms, we have built a prototypical optimizing compiler for a

subset of Oberon, which is more than an order of magnitude smaller and faster than industrial

optimizing compilers, but which still achieves competitive code quality.

Finally, this thesis provides some feedback to programming language designers, on which language

features complicate the design of an optimizing compiler, and it presents an overview of the large field of

optimizing compilers.

1.3 Overview

Chapter 2 introduces into the field by discussing what an optimizing compiler is, and what code

improvements one can expect it to perform.

Chapter 3 presents the most important developments in computer architecture that affect compilers. The

corresponding hardware features must be taken into account when generating fast code for modern

machines.

Chapter 4 describes our target architecture, the PowerPC. It also discusses two hardware implementations

in detail, and how they implement the techniques presented in Chapter 3.

Chapter 5 discusses different design options for intermediate program representations, and Chapter 6

describes our intermediate representation GSA form in detail.

Chapter 7 presents our single_pass algorithms to generate GSA form and how to deal with unstructured

source programs. A discussion of alias analysis concludes the part about intermediate representations.

Chapter 8 describes several optimization algorithms on GSA form as we have implemented them in our

prototype compiler. It also outlines several other optimizations, that may be beneficial to add in the

future. Chapter 9 presents how the intermediate program representation can be mapped to the actual

machine, namely by ordering instructions in a so_called instruction scheduler and by assigning registers

to values in the register allocator.

Chapter 10 presents some measurements on our prototypical optimizing compiler OOC2. Chapter 11

concludes the thesis and presents some implications of this work on programming language design.

Instead of describing related work in one place, we have mentioned it wherever appropriate throughout

the thesis. Due to the large variety of different aspects dealt with in this thesis, we consider this to be

more easy to follow.

2 What is an Optimizing Compiler?

First of all, an optimizing compiler is a compiler, i.e. an application translating a program written in a

high_level language into executable machine code for a given machine. Everything that we expect from a

compiler also applies to an optimizing compiler, namely correctness of the translation, detection of

errors, and compilation speed high enough to make it suitable for daily work.

What distinguishes an optimizing compiler from other compilers is that it uses techniques to

improve the quality of the generated code. It is a common misunderstanding that such compilers

generate optimal code. As most code optimization problems are NP_complete, optimizing compilers use

heuristics to improve commonly found code patterns, but cannot guarantee any kind of optimality. Often

they cannot even assure that the modified code is better than the original one. One can expect to get a

measurable improvement on most programs, however.

These techniques necessarily make the compiler more complex and increase the compilation time.

This is acceptable if the reward is higher code quality. The engineering decision is one of cost − increased

compilation time and complexity − versus improvement. In some environments where compilation

speed is important, one may only want to use very simple optimizations, while in other environments

the quality of the generated code may be so important that even optimizations taking hours to complete

and yielding only small improvements may be acceptable.

2.1 Structure of an Optimizing Compiler

An optimizing compiler is a complex software system. In order to ensure correctness and reliability, it is

very important to structure it well, and to decouple the individual parts. Figure 2.1 shows the general

structure of an optimizing compiler.

The front end parses the source text and generates an internal representation of the program. This

internal representation contains all information about the source program that is necessary to generate

correct object code. The back end translates this internal representation into executable machine code

and writes it together with linkage information to an object file. Optionally, a set of optimization

algorithms can be called before the back end is run. Each of these algorithms transforms the internal

representation in a way that the semantics of the original program are preserved. It is advantageous to

design a single internal representation common to all optimization algorithms rather than a set of

representations specific to each optimization. Besides simplifying the design and the maintenance of the

compiler, this allows optimization algorithms to be applied selectively or even iteratively without the

need for additional phases to convert between representations.

4

Source Text

Object File

Internal Program Representation

Front End

Back End

Optimization Algorithms

Figure 2.1: Structure of an optimizing compiler.

2.2 Optimization Algorithms

The goal of an optimization algorithm is to transform a program into another one, which is semantically

equivalent, but according to some criteria better than the original program. Possible criteria are the

execution speed or the size of the generated code.

Nowadays, optimizing compilers for workstations mainly optimize for execution speed. Usually, they

even tolerate a certain amount of code size increase if the execution time can be reduced. However, even

though main memories are large enough to store the code of very large programs, the negative effect of

larger code on instruction cache performance requires to keep the code size within reasonable bounds.

When compiling code for embedded systems, keeping the memory requirements low is usually

more important than pure execution speed. Compilers for such environments optimize for code size and

for data size by packing data. We will not further explore these topics in this thesis.

Before discussing different kinds of optimization algorithms, a definition of semantic_preserving

transformations is required.

Definition: The global state of a system is defined by all values stored in global variables and by the

output found on the output devices.

Definition: Two programs P and Q are semantically equivalent, if executing them on the same global input

state with the same input data will leave the same global output state after the program has terminated,

or if the same set of exceptions have been raised.

This definition of semantically equivalent programs leaves a lot of freedom to reorder operations. It is

only required that a correctly terminating program generates the same output state, but the order in

which individual variables are written is left open. Furthermore, if program P does not terminate correctly

but raises an exception, it is only required that Q does not terminate correctly either, and that it raises any

of the exceptions that P may have raised. Nothing is said about the global state in case the program

causes an exception. This corresponds to an imprecise exception model as found on many modern

processors, e.g. on the DEC Alpha [DEC92] or to some extent on the PowerPC [IBM94a].

5

This definition of equivalence is sufficient but not required from the view of a programming language

designer. Language definitions leave some behavior undefined in order to allow for different

implementations. For example, Oberon [Wirth88] does not specify the order in which actual parameters

of a procedure call are evaluated. However, some order is selected when translating to the intermediate

representation. Enabling the optimizer to make use of the nondeterminism would require to keep more

high_level information in the intermediate representation and probably would not offer significant

benefits.

Definition: A semantics_preserving optimization algorithm is an algorithm, which transforms a program P

into a semantically equivalent program Q.

We do not require Q to be better than P according to some criterion. It could very well be that the

algorithm fails to improve a particular program, or in rare cases that it even degrades a program.

Complicated interactions between different optimizations and the dynamic behavior of programs makes

it very hard to tell whether a transformation yields an improvement in the final machine code in all cases.

For example, some loop transformations may only be beneficial if the loop is executed a large number of

times. Usually, compiler writers use an experimental approach: By running their optimizer over a large

number of source programs, they find heuristics that deliver good results in these cases, and hope that

other programs include similar patterns.

Guiding the optimizer by estimating the impact of a transformation on performance is a recently

defined research topic. The most difficult problem is finding good estimates for execution frequencies

affecting the execution time. Wang uses a symbolic representation of execution cost, avoiding to predict

unknown behavior as long as possible [Wang94]. Wagner et. al define a statistical model over predicted

branch frequencies in order to obtain an execution frequency estimate [WMGH94].

2.3 Scope of Optimization

Optimization algorithms can consider different scopes in which they search for optimizable patterns.

Some compilers only optimize at the instruction level, that is, they only replace single instructions by

others that achieve the same effect. As an example, multiplications by powers of two can be expressed as

shifts. Others optimize at the level of simple statements, basic blocks, extended basic blocks, procedures,

or the whole program. The larger the scope of an optimizing transformation, the better the result

becomes, sometimes at tremendous costs in compile time. Some algorithms used in optimizing

compilers have a complexity of O(N3) or O(N4), where N is the number of instructions in the considered

scope. Using them on anything but a very small scope is impractical when compilation time is an issue.

Whether a less_sophisticated algorithm running on a larger scope yields better results is a matter of

empirical tests.

Historically, algorithms that work on basic blocks are called local optimizers, whereas algorithms

considering whole procedures are called global. There have been attempts at optimizing across procedure

boundaries in so_called interprocedural optimizers, but separate compilation imposes a natural barrier on

this. Either the optimizer has to be run as part of the linking process like with the MIPS compilers at the

highest optimization level, or pessimistic assumptions have to be made for external objects. This, the

high complexity, and the large costs in run_time have so far hindered widespread use of such techniques.

2.4 Where Does the Improvement Come From?

According to Hennessy and Patterson [HePa90], the execution time of a program on a computer is

determined by three factors: The number of instructions executed, the average number of cycles an

instruction takes to execute, and the clock cycle time. A programmer or a compiler can influence the first

two factors − the number of instructions executed, and the average number of cycles per instruction, i.e.

the smooth flow of instructions through a processor pipeline. This is what an optimizing compiler tries to

do in order to reduce the execution time.

6

The first factor translates into a simple set of rules: Reduce the number of instructions executed by

computing as much as possible at compile_time, avoid recomputing values that have already been

computed, and eliminate instructions that do not contribute to the final result. This can be implemented

in an optimizing compiler using the following techniques [ASU86].

Constant Folding and Constant Propagation: If the operands of an instruction are all constant, so are the

results of this instruction. Compute these constant results, and replace the instruction by them. We speak

of constant propagation if such newly found constants are used to find further constant expressions.

Copy Propagation: Remove assignments of one object to another, and instead use the original object

whenever possible.

Common Subexpression Elimination: Find groups of instructions that compute the same value, and replace

some of them by the results of others, thus avoiding their recomputation.

Code Motion: Move operations to places where they are less frequently executed. The most useful

optimization of this kind is the motion of loop_invariant code out of a loop.

Peephole Optimizations: Scan the code for patterns of instructions that could be expressed with fewer

instructions on the target machine, and replace them. A prominent example of this are the floating_point

multiply_and_add instructions of the PowerPC which replace a multiplication followed by an addition.

Dead Check Removal: Delete run_time checks which can be shown to never fail. Examples in Oberon could

include index checks, NIL checks, or type guards.

Dead Code Elimination: Delete instructions that are never executed, or that do not contribute to the final

result.

The second factor corresponds to avoiding code patterns that are expensive on a certain machine. The

number of cycles per instruction can be reduced by selecting cheap instructions over expensive ones, by

reordering instructions in order to avoid pipeline interlocks, or by reorganizing the data layout in order to

remove cache misses. Note that all these optimizations are very closely related to a certain processor

implementation and not just its architecture as the previous techniques.

Peephole Optimizations: Find expensive operations, and replace them by cheaper ones achieving the same

effect.

Strength Reduction: Similarly to peephole optimizations, find repeated uses of expensive operations and

replace them by cheaper ones. A typical example of this is to replace an index used to step through an

array by a pointer, thus saving the cost of multiplying the index with the element size in each iteration.

Instruction Scheduling: Reorder instructions in order to reduce the number of pipeline interlocks on

pipelined and superscalar processors.

Cache Optimizations: Reorder data and code in memory and reorder data accesses, so that locality of

reference is improved and the number of cache misses is reduced.

2.5 Anatomy of an Optimization Algorithm

In order to get an idea on how an optimization algorithm works, and what important properties of an

intermediate program representation are, we present an intuitive description of common subexpression

elimination (CSE). Common subexpression elimination is the optimization of finding operations that

compute the same result − so_called common subexpressions − and instead of recomputing the result,

7

keeping the original result available and deleting the second operation. We call instructions computing

the same result equivalent. Equivalence is undecidable in general, so we base our common subexpression

elimination algorithm on the weaker notions of congruence and availability.

Definition: Two computations yield congruent results, iff their opcodes are the same and all their

corresponding operands are congruent. Constant operands are congruent, iff they are identical.

Congruence implies equivalence, that is, if two values are congruent, they are equivalent. However, there

may be computations yielding equivalent results which are not congruent. For example, the expressions

a+b and b+a are equivalent but not congruent.

If the same variable names are found as operands, the operands are not necessarily congruent. A

variable name serves as a placeholder for the result of a computation, and during execution of a program,

the same variable may refer to different computations. An optimizer has to keep track of which

computations correspond to a variable at each point in the program, and only if they are congruent, the

operands are congruent as well. This will be further discussed in the section on data_flow analysis.

Definition: The result of some computation C is available at point P in a program with starting point S, iff

every path from S to P includes computation C.

Intuitively, requiring some result to be available at a point P means making sure that the computation

has been performed, no matter which control_flow path to P has been taken. Note that availability is

computed from control_flow, while congruence is computed from data_flow.

Optimization algorithms are based on transformation rules of the following form: If precondition P is

fulfilled, then perform transformation T. In common subexpression elimination, the preconditions are

congruence and availability.

Transformation rule (CSE): Let C0 and C1 be two computations. If C0 and C1 are congruent and C0 is

available at the point of C1, then replace all uses of C1 by uses of C0.

Note that C1 will not have any use after the transformation. Such operations are called dead code and can

be deleted. The removal is not strictly a part of common subexpression elimination, but can be

performed at the same time.

In the following Oberon program, there are some common subexpressions.

VAR

i, w, x, y, z: INTEGER;

BEGIN

...

IF cond THEN w := i * 4 END;

x := i * 4;

y := i * 4;

i := y + 10;

z := i * 4

There are several computations of i * 4, which we will refer to by the variable name they are assigned to.

The programmer would have been able to avoid the recomputations in this example, but this is not

always possible. Such multiplications may have been generated by the compiler as part of the address

computation for array accesses, and there would have been no way for the programmer to eliminate the

common subexpressions by hand.

Applying the notion of congruence, it may be found that the multiplications of i by 4 in the

computations w, x, and y are congruent. Even though the computation of z is lexically the same, it is not

congruent with the others. The operand i has been changed in between and thus corresponds to a

different value. That is, i at computation y and i at computation z are not congruent, hence y and z are not

congruent either.

8

There is a path avoiding computation w, namely when cond evaluates to FALSE. In this case computation

w will not be executed. Thus, w is not available at x, but x is available at y and later on. The

transformation rule can be applied to x and y, yielding the code below. Note that a temporary variable t0
has been introduced to keep the result, which will not be assigned elsewhere. There might be other

assignments to x, preventing x from replacing uses of y.

IF cond THEN w := i * 4 END;

t0 := i * 4; x := t0;

y := t0;

i := t0 + 10;

z := i * 4

So far, one multiplication has been removed. So_called copy assignments of one variable to another as

for x will be removed later in an optimization called copy propagation. By moving computation t0 in front

of the If_statement, its result would become available at w, and computation w would become

superfluous. The preconditions required to perform this transformation will not be discussed in further

detail here, but obviously they would have to be checked beforehand.

t0 := i * 4;

IF cond THEN w := t0 END;

x := t0;

y := t0;

i := t0 + 10;

z := i * 4

Several important properties of an intermediate program representation can be derived from this

example. As will be seen throughout this thesis, the requirements of common subexpression elimination

are prototypical for a wide class of optimization algorithms.

− It should be simple to inspect operations and operands.

− It must be possible to distinguish between different values a variable may take on during

program execution. More precisely, it should be easy to determine which assignments affect

the value seen at a certain place, and how they affect it.

− It must be possible to find out which operations are executed under which conditions, and

whether their results are available at a certain point.

− It should be simple to traverse all uses of a result, constant, or variable.

We will return to these properties in Chapters 5 and 6, in which different design options for intermediate

representations will be explored.

3 Advances in Computer Architecture

Compilers are the link between the high_level programming language and the actual machine. As such,

they are affected by advances in either programming language design or computer architecture.

Optimizing compilers in particular are heavily affected by computer architecture, as they are expected to

exploit the facilities of the machine. Understanding the common hardware techniques to improve

processor performance allows to design compiler optimizations applicable to a large class of machines.

In this chapter, we will discuss the most prominent techniques used to speed up processors on the

architectural side, namely pipelining, multiple execution units, and caching. Finally, it will be shown why

RISC processors are well_positioned to exploit these methods, and what model they present to the

compiler writer.

3.1 Pipelining

In a typical modern computer, instruction execution can be partitioned into five sequential phases:

instruction fetch, decode, execute, complete, and result write. Pipelining is based on the simple

observation that while an instruction is in some phase of execution, the hardware implementing the

other phases is idle. Trying to use it for other instructions should yield a significant performance increase

at very little additional cost. Ideally, while instruction n writes back its result, instruction n+1 is in the

completion phase, instruction n+2 is in the execute phase, and so on. The hardware can be considered as

t

0 1 2 3 4 5 6 7 8 9 10

i0

i1

i2

i3

i4

i5

fetch decode execute complete write

fetch decode execute complete write

execute

decode

fetch

Figure 3.1: Instruction flow through a pipeline.

10

a pipeline, through which instructions flow and in which some operation is performed on the instruction

at each stage. Figure 3.1 shows the instruction flow through such a pipeline.

Compared to performing the steps on each instruction sequentially, the throughput has been

improved by a factor of five. There are some barriers to achieving this improvement in practice, however.

The work done in each stage must be about the same, as the slowest stage determines the speed of the

whole pipeline. In order not to mix up different instructions and to bridge timing gaps between stages,

buffering has to be introduced between stages, increasing total execution time. Finally, some additional

logic to control the flow of instructions through the pipeline and to detect hazards is required.

A pipeline hazard is a situation in which one or more instructions cannot be advanced to the

subsequent stages. Consider the following code sequence.

(i1) add r1 := r2, r3

(i2) add r4 := r1, r5

Assume that in cycle t, the first instruction is in the execute stage, and the second in the decode stage. For

the second instruction to enter the execute stage in cycle t+1, the source operands r1 and r5 must be

available. However, r1 will not be written by the first instruction till cycle t+2, and thus, the second

instruction must be delayed until cycle t+3 to enter the execute stage. Such delays are also called pipeline

bubbles, as they can be considered as no_operations flowing down the pipeline. In this example, two

bubbles would proceed through the pipeline, drastically reducing performance (Figure 3.2).

t

0 1 2 3 4 5 6 7 8 9 10

i0

i1

i2

i3

i4

add r1 := r2, r3

add r4 := r1, r5

fetch decode execute complete write

fetch decode execute complete write

Figure 3.2: A hazard between i1 and i2 causes two pipeline bubbles.

As the above example is a very common case, and as the result of the first addition would be available at

the end of the execute stage, pipelined computers implement a forwarding path for results (Figure 3.3).

Results from the ends of the execute and completion stages can be fed directly into the execute stage,

avoiding the above delay. For some instructions, e.g. for loads, the result is only available at the end of

the completion stage, and a pipeline bubble cannot be avoided if the next instruction uses the result. We

call the number of cycles between an instruction entering the execute stage and its result becoming

available the latency of the instruction. In the above example, the latency of an add instruction is one,

while for a load it is two.

Furthermore, when a branch is in the execute stage, the two subsequent instructions have already

been fetched before the fetcher can be redirected to the branch target. The fetched instructions have to be

discarded, causing two bubbles to flow down the pipeline. In order to reduce the adverse effect of

branches on performance, branches are usually executed in the decode stage already. This requires the

results of instructions setting condition codes to be forwarded to the decode stage, and still leaves one

11

fetch decode execute complete write

result forwarding paths

Figure 3.3: Forwarding paths.

instruction fetched after the branch, which is not used if the branch is taken. The idea to execute the

fetched instruction anyway led to the concept of delayed branches, where the instruction following a

branch is executed no matter whether the branch is taken or not. It is the compiler's task to place an

instruction after the branch, which does useful work independently of the branch direction or that at least

does not invalidate a required result. In the worst case, a no_operation has to be inserted after the branch.

By reordering instructions, such branch_delay slots can usually be filled with useful instructions, and

other pipeline hazards like the delay between a load and uses of the loaded value can be avoided. This

reordering performed in optimizing compilers is called instruction scheduling and will be discussed in

detail in chapter 9.

We assumed that hardware detects when an instruction needs an operand which is not yet available,

and delays the instruction appropriately. This feature is called hardware interlocking. One of the earliest

RISC processors, the Stanford MIPS processor (Microprocessor without Interlocked Pipeline Stages)

[Kane87] did not include such hardware and relied on the compiler to reorder instructions appropriately

or to insert no_operations. On this processor, instruction scheduling was not just a question of achieving

good performance, but also a matter of correctness of the generated code.

The number of stages in a pipeline does not have to be five, but can be any number. Splitting a

computation into many small stages (superpipelining) allows the clock cycle time to be reduced as every

stage has less work to perform, and thus increases the theoretical throughput. However, the additional

buffering between stages does also increase the total time an instruction takes to execute, and many

instructions may not have a latency of one any more. The latter will cause additional pipeline bubbles

between subsequent dependent instructions and decrease performance, unless the increased latencies

can be hidden by reordering instructions.

3.2 Superscalar Microarchitecture

One idea behind pipelining is to start executing a new instruction every clock cycle, as long as there are

no hazards, and thus achieving a CPI (cycles per instruction) ratio close to one. Superscalar architectures

are the answer to the innocent question of why to stop at a CPI of one, and not to go below that limit.

They can execute more than one instruction each cycle through the use of multiple execution pipelines,

also called execution units.

A superscalar processor fetches and decodes several instructions every clock cycle, and it dispatches

the instructions to the appropriate execution units. Usually, there are different specialized execution units

for different kinds of instructions. For example, the PowerPC 601 (Figure 3.4) contains an integer_unit for

integer operations, a floating_point_unit for floating_point operations, and a branch_unit for branches

[PPC601]. While the distinction between integer_ and floating_point operations may seem natural, the

separation of branches may not. Reconsider that branches were treated differently in the above pipeline,

and that they work on different resources than other operations, namely condition codes and the PC

register controlling the instruction fetcher. These properties call for the introduction of a separate

branch_unit.

Ideally, one instruction is executed in each pipeline in every clock cycle, achieving a CPI of 1/3 for

three units. This is only possible, if for each unit, there are exactly the same number of instructions and

they are ordered appropriately. In practice, this CPI is only achieved for very small sections of code.

Moreover, there can not only be hazards within one pipeline, but also hazards between pipelines. For

12

Branch Unit

Integer Unit

Floating_Point Unit

fetch buffers (8)

decode execute cache write

ALU result

execute

buffers (2) decode multiply add write

Figure 3.4: Pipeline structure of the superscalar PowerPC 601 microprocessor.

example, in the PowerPC 601, conditions are computed within the integer_ and floating_point units, but

conditional branches depending on them are executed in the branch_unit. The latency between an

integer_compare starting execution and its result becoming available in the branch_unit is two cycles, and

it is again the task of an instruction scheduling algorithm to avoid hazards by placing other instructions

in between. The difference to scheduling for a single pipeline is that for each cycle, an instruction for every

execution pipeline should be emitted instead of just for one pipeline.

A scalar processor must only check whether an instruction to be dispatched is dependent on other

instructions currently being executed. A superscalar processor also has to check whether there are

dependencies to other instructions to be dispatched in the same cycle. There are three kinds of

dependencies to consider, as shown in Figure 3.5.

add r0 := r1, r2 add r0 := r1, r2 add r0 := r1, r2

add r1 := r3, r4 add r3 := r0, r4 add r0 := r3, r4

data anti output

Figure 3.5: Types of dependencies.

A data_dependence between two instructions corresponds to the first instruction writing a result that the

second instruction needs. The second instruction must be executed after the first, and only after the result

of the first has become available. There is an anti_dependence between two instructions if the first

instruction reads an operand that the second instruction writes. The first instruction must read its

13

operands before the second writes them. Whether this prohibits the two instructions from being

executed in parallel depends on when these instructions read and write operands, but the second

instruction cannot be executed before the first one. An output_dependence between two instructions

corresponds to both instructions writing the same resources. As for anti_dependencies, this may or may

not prevent the instructions from being executed in parallel. Hardware mechanisms to discard the first

result in case of output_dependencies are usually not worth their cost. Note that in detecting pipeline

hazards above, we have only considered data_dependencies, as the others play a minor role in single

pipelines.

Data_dependencies are also referred to as true dependencies. The other dependencies are an artefact

of allocating the same register to different values, and thus could be removed by using different registers,

as exemplified in Figure 3.6.

add r5 := r1, r2 add r5 := r1, r2

add r3 := r0, r4 add r0 := r3, r4

anti output

Figure 3.6: Removed dependencies through renaming.

Techniques to avoid such dependencies are called renaming techniques, and can be implemented either

in hardware or in software, i.e. by the compiler. Many optimizing compilers include some sort of

renaming.

In hardware implementations, renaming is either used in order to run code compiled for other

implementations well, to hide the problems of small register files, or to simplify the implementation of

speculative execution. Note that register renaming in hardware requires that there are more physical

registers than visible to the programmer.

For example, the POWER_2 [IBM94b] implementation of the POWER architecture uses register

renaming in order to make more instructions executable in parallel through its dual integer_ and dual

floating_point_pipelines, even for code optimized for the earlier POWER_1 implementation which only had

one integer_ and one floating_point_pipeline. The PowerPC 604 [PPC604] uses register renaming for the

same reason, and additionally to provide a write location for speculative operations. When the CPU

executes a conditional branch for which the condition is not yet available, it predicts the branch to be

either taken or not taken, and continues to fetch and execute instructions along that path (see below).

These instructions are called speculative operations, as their execution is based on the speculation that the

branch takes a certain path; if the prediction turns out to be wrong and the branch proceeds along the

other way, the effect of such speculative operations must be cancelled. This is simpler if the results have

been stored in temporary rename registers.

The NexGen Nx586 and the Cyrix M1 [Half94], superscalar implementations of the Intel x86

architecture, use register renaming to overcome some of the problems of the small register set and the

two_address architecture, besides allowing to run old code faster. Even when optimizing specifically for

them, compiler_based register_renaming is heavily restricted by only six general purpose registers being

available, and by the requirement that for two_address operations, one source operand must equal the

destination operand. Besides changing the architecture, hardware register_renaming is the only way to

decrease the dependencies between instructions and to enhance parallel execution.

In order not to stall the pipelines when a branch condition is not resolved, modern processors use

some form of branch prediction, that is, they make a guess at whether the branch will be taken or not, and

then continue execution along the corresponding path. Some use simple static schemes, like predicting

backward_branches to be loop_closing branches and thus being taken, and forward branches being

not_taken. Others allow the compiler to insert a hint on whether the branch is likely to be taken or not.

Both schemes are called static branch prediction. By reordering the code, the compiler can still make use

of static branch prediction, even if there is no special hint bit. According to Ball and Larus [BaLa93],

between 80% and 90% of branches can be predicted correctly using static techniques. Dynamic branch

14

prediction uses a cache to record for branches whether they were taken or not the last time, predicts them

to take the same path, and achieves correct prediction rates well over 90%.

Note that the concept of delayed branches does not work well for superscalar machines. They

require varying amounts of delay slots after a branch in order to fill their multiple pipelines. The number

depends on both the actual machine and the code executed. Supporting variable amounts of branch

delay slots would pose many implementation problems. This is why architectures with superscalar

implementations in mind like the IBM POWER and PowerPC as well as the DEC Alpha architecture do not

include delayed branches.

The drawback of a superscalar architecture is the additional hardware, which determines from a

sequential instruction stream what to execute in parallel. The size of this hardware grows quadratically

with the number of instructions to be dispatched every cycle [John90] and may have a negative impact

on the cycle time of the processor. For relatively small numbers of instructions up to about ten this

seems feasible.

If there are different types of units, the logic can be simplified by letting these units operate on

different registers. For example, if there are integer units operating on integer registers, and floating_point

units operating on floating_point registers, there can be no dependencies between integer and

floating_point instructions. Therefore, it is not necessary to check for dependencies between such

instructions.

Superscalar microarchitectures are currently being built for all major instruction set architectures. Like

pipelining, it is an implementation method that can be used in any kind of processor to improve

performance.

As for a single pipeline, dependencies can be either checked for in hardware and operations can then be

delayed appropriately to satisfy constraints, or the hardware can run without interlocks, delegating the

task of satisfying dependencies to the compiler. The former are called superscalar processors, as they still

exhibit a purely sequential (scalar) execution model but achieve better performance. The latter are called

VLIW (Very Long Instruction Word) processors, as they fetch one instruction for each execution unit every

cycle without any kind of dependence checking. This block of instructions can be considered as one long

instruction executed on the machine.

There are several drawbacks to a VLIW architecture. Since the long instruction word contains an

operation for each unit, no_operations have to be filled in if there is nothing to perform in certain units,

dramatically increasing the code size. Details about the number and types of units and the pipeline

structure are reflected in the machine code, so that binary compatible processors with differing numbers

of units or different pipeline structure cannot be implemented. The task of the compiler becomes more

complex than for a superscalar processor, as a bad schedule does not only decrease performance but

may also lead to wrong results. Finally, a VLIW processor can only combine instructions to be executed

in one cycle in a static way, while a superscalar processor can combine them in a dynamic way. Consider

the case of a conditional branch separating some operations. Whether the instructions after the branch

are executed depends on the outcome of the branch, and a VLIW compiler will not be able to combine

operations before and after the branch into one long instruction. If, on the other hand, the condition is

known at run_time, a superscalar processor can execute instructions before and after the branch in the

same cycle. If it is not known, the superscalar processor can still execute the instructions after the branch

speculatively in the same cycle.

Since it is not possible to create binary compatible VLIW implementations with different numbers of

units, the task of tailoring the code to a particular implementation may have to be delayed until the code

is loaded into memory. Portable object files [Franz94] may offer a solution to this, although performing

the very expensive steps of instruction scheduling and register allocation at load_time has a significant

impact on load time. Moreover, some method has to be found to allow for the movement of instructions

across conditional branches. Predicated execution [RYYT89], where each instruction specifies a condition

controlling whether it is executed, would support this, but does have an impact on code size, as each

instruction has to specify an additional condition. Boosting [SmLH90][SmHL92] allows to speculatively

execute instructions into a shadow register file, and to commit speculative results as part of a conditional

branch. This corresponds to an implementation of speculative execution for VLIW architectures.

15

Superscalar processors rely on optimizing compilers to achieve good performance, and compiler

technology has to be improved in order to accommodate processors with many execution units. If at

some point in time, the dependency checking logic for superscalar processors should become too

complicated and the move to VLIW architectures unavoidable in order to further improve performance,

even better compiler technology will be required to exploit these processors, with techniques that are yet

to be discovered. Two early attempts to commercialize VLIW technology in the eighties have failed

[Rau89][Mult93].

3.3 Caches

One of the fundamental rules holding for memory is: The larger the memory, the slower it can be

accessed. Already in the early days of computing, CPU logic tended to be faster than memory. Most of

the improvements in the field of logic have been dedicated to improving the speed, whereas most

improvements in memories were related to increasing their size. This has widened the gap between CPU

and memory speeds − a trend that is likely to continue. The fast SRAMs that exist are not suited to build

large main memories due to their high cost and their low density.

According to Amdahl's law [Amda67], the speed of a computer is always bound by its slowest

component, which has been memory for a long time. The speed of memory can only be improved by

decreasing its size, which is not a viable option for main memories. Improving the speed of the computer

and increasing the size of memory are therefore conflicting goals a hardware designer faces.

Memory is not accessed in a uniform way, however [Knuth71]. Within a certain amount of time, the

same memory cells tend to be accessed over and over, e.g. when executing a loop iterating hundreds of

times the same instructions are fetched repeatedly, or in procedures local variables are used over and

over. This behavior is called temporal locality, as within a certain amount of time, only a certain localized

amount of data is accessed, but this data is accessed many times. There is also the term spatial locality,

which refers to consecutive items having a high chance of being accessed. For example, after an

instruction has been fetched, there is a high probability that the next sequential instruction will be

accessed as well. If some array element is accessed, there is a high chance that a neighboring element is

required as well. The localized data accessed by a certain program over a certain period of time is called

its working set. Note that the working set of a program is much smaller than all the data accessible to the

program, if the program exhibits a certain amount of locality, which seems to be the case for almost all

programs.

The principle of locality of reference can be exploited to improve speed by keeping the working set in

a small and fast memory, and leaving the rest in slower memory. As long as data in the working set is

accessed, the operation is fast. A slowdown is only encountered for accesses to objects outside the

working set.

Such a fast memory for frequently accessed data is called a cache. Since programs should not have to

be changed to exploit a cache, its operation must be transparent to them, that is, the way programs

address memory must not be affected in any way. This is achieved by implementing the cache as

associative memory storing the most recently accessed memory blocks.

The cache is organized as a number of lines of equal size, of which each corresponds to a block in

the address space. Beside the data in that block, the cache stores the address to which this block belongs

in so_called tags. Whenever memory is accessed by the CPU, the address will be compared against the

addresses in the tags. If there is a match, the data is located in the cache. We say there is a cache_hit, and

the access is fast. If on the other hand the data is not in the cache, we call the access a cache_miss. In this

case, the data has to be fetched from slower main memory and must be brought into the cache, replacing

some other data in the cache. Usually, the least recently used line is replaced, assuming that it has the

lowest probability of being needed in the near future according to temporal locality.

16

cmp cmp

select

set

select

byte in line

cache array

address

tag

417

1729 1729

3

Figure 3.7: Access in a 2_way set_associative cache.

For caches with a large number of lines, searching all tags for a match as required by a fully associative

cache, becomes impossible. Because of this, the cache is partitioned into a number of sets, in which the

lookup is performed associatively. Some bits of the address determine which set is to be searched, that is,

if these bits represent the number N, then the data can only reside in set N. The number of lines in a set

is typically small, namely 1, 2, 4, or in rare cases 8. If there are k lines in a set, we call the cache k_way

set_associative. Note that this places some restrictions on the pattern of the working set. If many blocks

have the same set_selecting bits, they will all have to be kept in the same set, which may be too small,

even though the cache as a whole would be large enough. Figure 3.7 shows how different parts of the

address are used in an access to a 2_way set_associative cache.

As long as there are few cache_misses, the performance will be almost as good as if the whole

memory were as fast as the cache. In case of large numbers of misses, performance will drop

dramatically. There are several possible reasons for the latter to happen.

− Capacity: The size of the working set of the program is larger than the cache. One could also

say that the temporal locality of the program is too small.

− Line waste: Memory is accessed in steps larger than the line size, thus a whole line is used for

a single data item, while the neighboring items are brought into the cache and are not

accessed. This can be considered as too little spatial locality.

− Compulsion: Too many items in the working set map onto the same cache set, so that each

access replaces an item in the working set.

Programs can be designed to exhibit a large amount of locality, either temporal or spatial, and to avoid

compulsory misses. This way, the performance on cached computers can be improved significantly.

17

3.4 Reduced Instruction Set Computers

Computer architecture in the late sixties was focused on closing the so_called semantic gap, the large

difference between the level of abstraction that the machine language provided and the level at which

programmers thought. By implementing more and more complex machine instructions, this gap could be

closed to some extent. This direction of development culminated in the introduction of the DEC VAX, one

of the most complex processor architectures ever designed.

At the same time, hardware designers found it more and more complicated to use high_performance

implementation techniques like pipelining with complex instructions, as they exhibited complex pipeline

usage patterns as well. Improvements in compiler technology showed that the semantic gap could also

be closed by compilers instead of hardware. Moreover, some studies showed that compilers were much

better in building complex operations out of simple instructions and in tailoring them to the needed

context, than in using the complex machine instructions. Often, such tailored sequences of simple

instructions ran in shorter time than the corresponding complex instructions.

The last point was largely due to caches becoming commonplace. When a memory access is slow, it

makes perfect sense to try to execute as much as possible per memory access, and thus to create

complex instructions. Such instructions encode more work than simpler ones. Thus it was possible to

reduce the total number of instructions executed and to decrease the number of memory accesses,

avoiding this bottleneck to better performance. Caches made memory accesses a lot faster, and caused

the difficulties of pipelining complex instructions to become the bottleneck in high_performance

computers.

It was John Cocke of the IBM T.J. Watson Research Lab who came to the conclusion that with a

processor featuring simple instructions only, it should be much simpler to pipeline instructions. Together

with a good compiler, it promised to offer better performance than other processors of their time. With

his team he built the 801 computer [Radin82], the first RISC computer, and the optimizing PL.8 compiler

[AuHo82] pioneering compiler optimizations. The 801 processor adhered to the following design

principles.

− No instruction requires a pipeline stage multiple times.

− All computational instructions operate on registers only. Loads and stores are the only

instructions accessing memory.

− Each instruction is 32 bits long, and the formats are simple to decode.

− There is a large register set providing ample room for temporary results, which will reduce the

number of memory accesses.

Technologically, the 801 was a huge success, but it never became a commercial product. In the late

seventies, the principles behind its design had been adopted by the group of Patterson at the University

of California at Berkeley to build the Berkeley RISC_I and RISC_II processors and by Hennessy at Stanford

University to build the Stanford MIPS. Patterson coined the term RISC as reduced instruction set

computer. Shortly thereafter, computer companies became interested in the technology and started

building commercial RISC processors.

Even though several RISC processors in use today do not provide a reduced set of instructions, they

do provide a set of reduced instructions [Pren92]. That is, the instructions are reduced to operations that

can be implemented in fast hardware. The above design principles still apply, with the exception that

some instructions are allowed to use a pipeline stage several times. Complex instructions were added if it

could be shown that they improved the performance significantly, that they did not complicate the

hardware design too much, and that their impact on the achievable cycle time did not cost more

performance than the instruction bought. As will be shown in the next chapter, the PowerPC architecture

includes several relatively complex instructions that match commonly found program patterns very well.

However, it is up to the compiler to find the code patterns in which they can be exploited.

While caching made RISC processors possible, pipelining made them a requirement, and superscalar

implementation techniques do so even more. Even decoding multiple instructions every cycle becomes

much more complicated if there is not a single instruction length, and dependence checking is almost

impossible when many instructions access memory.

4 PowerPC Architecture

In this chapter, we will discuss the PowerPC architecture, which is the target of our optimizing compiler. It

is a prominent RISC architecture and uses the techniques we discussed in the previous chapter. We will

present unoptimized and optimized code patterns, and discuss their performance on different

implementations.

4.1 Design Goals

After more than a decade of RISC research inside IBM, the IBM RISC System/6000 introduced in 1990

pioneered superscalar execution with its POWER architecture (Performance Optimization With Enhanced

RISC) [IBM90a][IBM90b][IBM90c]. From this architecture, the PowerPC architecture [IBM94] was derived

in 1992 by cleaning up the design, namely by deleting some rarely used instructions and adding a few

others. For a very large fraction of instructions, they are identical. [WeSm94] presents a good overview of

the development of these architectures.

POWER was highly focused on achieving high performance at rather low clock speeds. The

architecture defines three different kinds of execution units, namely branch unit BU, fixed_point unit FXU,

and floating_point unit FPU. There is a minimal amount of shared resources between these units, so that

they can operate largely without synchronization, thus simplifying superscalar execution.

Branch instructions execute in the BU, floating_point instructions in the FPU, and all remaining ones

in the FXU. This is at the architectural level, for an actual implementation can still decide to support

multiple such units with a single pipeline, or provide multiple pipelines for a single unit type. For

example, the embedded controller IBM PPC403GA implements a single pipeline for all instructions,

POWER_1 includes one BU, one FXU, and one FPU, whereas POWER_2 has one BU, two FXUs, and two

FPUs. Besides simplifying superscalar execution, IBM also added a couple of more complex instructions

that perform multiple operations at once, thus reducing the path_length of programs, i.e. the number of

dynamically executed instructions. The decision what to add and what to leave out was based on

program traces and the complexity involved in implementing these instructions.

The PowerPC took over the design goals from POWER and most of the architecture. However, it had

been found that some instructions could cause trouble in superscalar processors with many execution

units or at very high clock rates, and so they were dropped. Also, 64_bit extensions to the architecture

were defined. The following overview only covers the 32_bit subset of the architecture.

4.2 PowerPC Architecture

The PowerPC architecture defines register to register operations for all computational instructions. They

take source operands from registers or immediate_fields within the instruction and write the result into a

register. The typical three_operand instruction format allows the specification of a target register different

from the source registers, thus preserving the values of the source registers. When variables in memory

are to be read or modified, they must be transferred between registers and memory using load or store

instructions.

20

CR

LR

CNT

cr7cr0

GPR
r0

r31

XER

FPR
fpr0

fpr31

Branch Unit

Integer Unit Floating_Point Unit

Figure 4.1: Registers in the PowerPC architecture.

The architecture defines thirty_two 32_bit general purpose registers, and thirty_two 64_bit floating_point

registers. In addition, there is a condition code register CR holding 8 separate 4_bit condition fields, a

link_register LR, a count_register CNT, and an exception register XER.

Each condition register field consists of 4 bits, specifying the conditions less, greater, equal, and

overflow for integer or logical compares, whereas the last bit signals unordered for floating_point

compares, as shown in Figure 4.2.

equalless greater ovfl / unordered

Figure 4.2: Bits in a condition register field.

Table 4.1 explains the abbreviations used in subsequent instruction descriptions. Table 4.2 gives an

overview of the arithmetic and logical operations.

21

cmask 5_bit mask

me mask end; unsigned 5_bit immediate operand

mb mask begin; unsigned 5_bit immediate operand

ub general purpose register or zero_extended 16_bit immediate operand

sc general purpose register or unsigned 5_bit immediate operand

CY carry bit

imm 16_bit immediate operand

sb general purpose register or sign_extended 16_bit immediate operand

crb condition register bit

crf condition register field

frt, fra, frb, frc floating point registers

rt, ra, rb general purpose registers

Table 4.1: Abbreviations.

Some of the instructions support the overflow_option Of − as indicated by an X in the Of_row in Table 4.2.

This option allows to set the overflow bit in the XER_register. The record_option Rc supported by most

instructions allows to set the condition code field cr0 as part of the instruction.

While most of the instructions are self_explanatory, some require special mentioning. rlwnm rotates

a word and then ands the word with a specified mask. This is useful for extracting bit_fields from a word,

or for synthesizing shift_left_immediate and shift_right_immediate instructions.

rlwimi is similar to rlwnm, except for the rotated word not being anded with the mask but rather

being inserted into the target register under control of the mask. That is, the target is computed as

rt := (rt AND ˜mask) OR (ROT(ra, sc) AND mask).

The cmask field used in the trap_instruction tw allows to select any disjunctive combination of the

conditions equal, less_signed, greater_signed, less_unsigned, and greater_unsigned. The operands ra and sb are

compared, and if any of the specified conditions holds, a trap is raised.

For transferring values between memory and registers, load and store operations are provided. Table

4.3 gives an overview.

22

nor rt, ra, rb rt := − (ra + rb) X

oris rt, ra, imm rt := ra + LSH(imm, 16)

orc rt, ra, rb rt := ra + (−rb) X

or rt, ra, ub rt := ra + ub X

nand rt, ra, rb rt := − (ra * rb) X

andis rt, ra, imm rt := ra * LSH(imm, 16) X

andc rt, ra, rb rt := ra − rb X

and rt, ra, ub rt := ra * ub X

tw cmask, ra, sb ASSERT(˜cmask(ra, sb))

cmpl crf, ra, ub crf := compare_unsigned(ra, ub)

cmp crf, ra, sb crf := compare_signed(ra, sb)

cntlzw rt, ra rt := count_leading_zeroes(ra) X

extsh rt, ra rt := sign_extend_halfword(ra) X

extsb rt, ra rt := sign_extend_byte(ra) X

rlwimi rt, ra, sc, mb, me rt := INS(rt, ROT(ra, sc), {mb..me}) X

rlwnm rt, ra, sc, mb, me rt := ROT(ra, sc) AND {mb..me} X

sraw rt, ra, sc rt := ASH(ra, −(sc MOD 64)) X

srw rt, ra, rb rt := LSH(ra, −(rb MOD 64)) X

slw rt, ra, rb rt := LSH(ra, rb MOD 64) X

divwu rt, ra, rb rt := ra / rb (unsigned) X X

divw rt, ra, rb rt := ra / rb (signed) X X

mulhw rt, ra, rb rt := (ra * sb) DIV WordSize X

mullw rt, ra, sb rt := (ra * sb) MOD WordSize X X

neg rt, ra rt := −rb X X

subfe rt, ra, rb rt := rb − ra + CY; set CY X X

subfc rt, ra, sb rt := sb − ra; set CY X X

subf rt, ra, rb rt := rb − ra X X

addis rt, ra, imm rt := ra + LSH(imm, 16)

adde rt, ra, rb rt := ra + rb + CY; set CY X X

addc rt, ra, sb rt := ra + sb; set CY X X

add rt, ra, sb rt := ra + sb X X

mnemonic operation Of Rc

Table 4.2: Arithmetic and logical instructions.

stmw rs, ra, imm Mem[ra+imm] := rs..r31

lmw rt, ra, imm rt..r31 := Mem[ra+imm]

std rs, ra, sb Mem[ra+sb] := rs X

ld rt, ra, sb rt := Mem[ra+sb] X

mnemonic operation Ud

Table 4.3: Load and store instructions.

23

fd double_precision floating_point

fs single_precision floating_point

bz byte zero_extended

hz 16_bit word zero_extended

ha 16_bit word sign_extended

w 32_bit word

d data type

Table 4.4: Data types for loads and stores.

As indicated by d, the instructions support different data types, where d can be any of the types in Table

4.4. The update_option Ud allows to write back the effective address computed into the base register ra.

That is, the instruction

lwu r3, r4, 20

computes

r4 := r4 + 20; r3 := Mem[r4].

The PowerPC architecture allows conditional branching based on any bit in the CR register being set or

cleared and based on the state of the CNT register. Tables 4.5 and 4.6 present an overview. All branch

instructions support the link_option, which causes the address of the instruction following the branch

being written to the LR register. This can be used for subroutine linkage.

bcr code, crf, (LR | CNT) IF cond THEN PC := (LR | CNT) END

bc code, crb, disp16 IF cond THEN PC := PC+disp16 END

b disp26 PC := PC+disp26

mnemonic operation

Table 4.5: Branch instructions.

bfdnz DEC(CNT); cond := (CNT # 0) & ˜crb

btdnz DEC(CNT); cond := (CNT # 0) & crb

bfdz DEC(CNT); cond := (CNT = 0) & ˜crb

btdz DEC(CNT); cond := (CNT = 0) & crb

dnz DEC(CNT); cond := CNT # 0

dz DEC(CNT); cond := CNT = 0

bf cond := ˜crb

bt cond := crb

code condition

Table 4.6 : Conditional branch codes.

24

The PowerPC architecture supports static branch prediction. Backward_branches are predicted to be taken,

and forward_branches to be not_taken. This prediction can be negated by a hint bit in conditional branch

instructions.

All floating_point instructions are available both for single_precision and double_precision operands.

Table 4.7 lists the floating_point instructions.

fctiw frt, fra frt := INTEGER(fra)

fnmsub frt, fra, frb, frc frt := −fra*frb − frc

fnmadd frt, fra, frb, frc frt := −fra*frb + frc

fmsub frt, fra, frb, frc frt := fra*frb − frc

fmadd frt, fra, frb, frc frt := fra*frb + frc

fcmpo crf, fra, frb crf := compare(fra, frb)

fneg frt, fra frt := −fra

fmr frt, fra frt := fra

fdiv frt, fra, frb frt := fra / frb

fmul frt, fra, frb frt := fra * frb

fsub frt, fra, frb frt := fra − frb

fadd frt, fra, frb frt := fra + frb

fnabs frt, fra frt := −ABS(fra)

fabs frt, fra frt := ABS(fra)

mnemonic operation

Table 4.7: Floating_point instructions.

4.3 PowerPC Microarchitecture

In order to optimize code for a certain processor, knowing about the instruction set is not enough. The

compiler also has to consider details of the pipeline structure, cache architecture and other features

affecting performance. Since the introduction of the POWER architecture in 1990, IBM has delivered three

largely different implementations of POWER and four implementations of PowerPC. Tables 4.8 and 4.9

present an overview. The issue width is the number of instructions that can be issued in one cycle.

branch prediction none none none

cache associativity 2/8 2 2/4

cache size kB (I/D) 8/32* 8 64/256*

branch units 1 − 1

FP units 1 1 2

integer units 1 1 2

issue width 4 2 6

POWER_1 RSC POWER_2

Table 4.8: Overview of POWER implementations. Cache sizes marked with an asterisk indicate initial cache sizes,

which were changed in later implementations.

25

The processors vary largely in the number of execution units provided, their cache architecture, and also

largely in the performance they offer. In the following, we will discuss two designs in somewhat more

detail, namely the PowerPC 601 and the POWER_2 implementation. Both are relatively recent

implementations, are available in actual machines, and represent different price/performance_points.

branch prediction static static dynamic dynamic

cache associativity 8 2/2 4/4 n/a

cache size kB (I/D) 32 8/8 16/16 32/32

branch units 1 1 1 1

FP units 1 1 1 1

load/store units − 1 1 1

integer units 1 1 3 3

issue width 3 2+br 4 4

PPC 601 PPC 603 PPC 604 PPC 620

Table 4.9: Overview of PowerPC implementations.

PowerPC 601

The PowerPC 601 [PPC601] is the first implementation of the PowerPC architecture, and was introduced in

1993. There is an integer_unit which also performs loads and stores, a floating_point unit, and a branch

unit. The processor can fetch up to eight instructions per clock cycle, and issue one instruction to each

unit each cycle. The main pipeline hazards found in the PowerPC 601 are as follows.

− Load_use: A load has a latency of two, so its result cannot be used until two cycles after the

load.

− Floating_point operations: Single_precision FP operations have a latency of two, and double

precision operations a latency of three cycles. Double_precision operations occupy the

multiply_stage for two cycles, and therefore a new double_precision instruction can only be

issued every other cycle.

− Compare_branch: An integer compare has a latency of two cycles until its result is available in

the branch unit. If the condition code is not available at the time the branch is issued, the

branch unit will predict the outcome of the branch and continue execution along the

predicted path. While a predicted branch is awaiting resolution, no other branch can be

predicted.

− Branches: Even though the branch unit can execute a branch every cycle, two taken branches

cannot be executed in subsequent cycles.

There are several other hazards related to the single cache port or to special purpose registers.

Throughout this thesis, we will only consider those mentioned above.

The 601 implements the static branch prediction method of the PowerPC architecture.

26

POWER_2

POWER_2 [IBM94b] is the second major implementation of the POWER architecture, and was introduced

in 1993 in high_end computers in the RS/6000 line. Compared to its predecessor POWER_1 (and the

somewhat similar PowerPC 601), it basically doubled all features. It includes two integer_units, two

floating_point units, and a branch_unit, which in some cases can perform two branches in one cycle. The

instruction fetcher can fetch eight instructions and issue 2 integer, 2 FPU, and 2 branch instructions each

cycle.

Two instructions can only be executed in the dual integer_ or FP_units if they are independent of

each other. There is one important exception supported by special hardware, however [MaEV92]. If there

are two dependent additions, they can be executed in parallel by rewriting them as in Figure 4.10.

add r5 := r3, r4 add r5 := r3, r4

add r7 := r6, r5 add3 r7 := r6, r3, r4

Figure 4.10: Dependent additions being rewritten.

add3 is an operation implemented by the second integer unit that adds three operands together. Note

that the add3 is not a machine instruction available to the programmer. The decode logic recognizes the

case of two dependent additions and rewrites the second accordingly. This feature was added in order to

get good performance out of code not optimized for dual integer pipelines.

This feature had an interesting impact on compilers. While compilers for the POWER architecture

used ori_instructions to perform register_register_moves, this was changed with the introduction of

POWER_2. From then on, they used addi_instructions, which could be executed in parallel with dependent

additions.

Besides requiring subsequent instructions to be independent or of the above form in order to make

use of the dual execution units, POWER_2 has pipeline hazards similar to those found in the PowerPC

601.

− Load_use: A load has a latency of two cycles.

− Floating_point operations: POWER_2 does not implement single_precision FP operations.

Double_precision operations have a latency of two cycles.

− Compare_branch: An integer compare has a latency of two cycles until its result is available in

the branch unit. If the condition code is not available at the time the branch is issued, the

processor will speculatively execute along the sequential path.

− Branches: Even though the branch unit can execute up to two branches every cycle, two taken

branches cannot be executed in parallel or in subsequent cycles.

POWER_2 does not implement branch prediction, but speculatively executes along the sequential

(not_taken) path. The compiler has to rearrange the code so that the sequential path is the predicted path,

as described by Bernstein and Rodeh [BeRo91].

4.4 Some Examples of Code Improvements

As discussed in Chapter 2, the compiler can reduce the execution time of a program by reducing the

number of instructions executed, by selecting cheaper instructions over more expensive ones, and by

ordering them so that pipeline stalls are rare. In the following section, we will look at some code samples

and the PowerPC code produced by non_optimizing compilers. We will discuss possible improvements to

this code and their performance impact on the PowerPC 601 and on POWER_2.

27

Initializing an Array

Array initialization code has the following typical form.

VAR

a: ARRAY N OF LONGINT;

PROCEDURE InitArray;

VAR i: LONGINT;

BEGIN

i := 0;

WHILE i < N DO a[i] := 0; INC(i) END

END InitArray;

Omitting procedure entry and exit code, this translates to the following PowerPC code with the

non_optimizing Oberon_2 compiler.

(1, 1) li Ri := 0 ; i := 0

loop:

(1, 1) cmpi CF1 := Ri, N ; i < N

(0/2, 0/2) bc ˜CF1.LT, end

(1, 0) twi >=u, Ri, N ; index check

(1, 1) rlwinm R3 := Ri, 2, 0, 29 ; i*4

(1, 1) add R4 := SB, R3 ; SB+i*4

(1, 0) li R5 := 0

(1, 1) stw offset_a(R4) := R5 ; a[i] := 0

(1, 0) addi Ri, Ri, 1 ; INC(i)

(0, 0) b loop

end:

This loop executes 9 instructions for each array element initialized. Numbers in parentheses on the left

indicate the predicted execution time for the PowerPC 601 and POWER_2, respectively. An execution time

of zero cycles corresponds to the instruction being executed in parallel with the previous one. Conditional

branches carry two numbers, the first one indicating the non_taken case, while the second one is for the

branch_taken case.

Since the loop will execute N times, the execution time on the PowerPC 601 is 1+7*N+3 = 7*N+4

cycles, while for POWER_2, it is 1+4*N+3 = 4*N+4 cycles.

The code could be improved as follows. First of all, the repeated loading of the value 0 inside the

loop could be moved out of the loop. Since the index i can be shown to be always within the bounds of

the array, the index check can be dropped. Instead of running an index over the array, one could set a

pointer to the array, and increment that pointer on each iteration, making use of the PowerPC

store_and_update instruction. Finally, since the number of iterations of the loop is known, the PowerPC

branch_and_count instruction can be used. This yields the following code.

(1, 1) li R3 := N

(1, 1) mtspr CTR := R3

(1, 1) li R5 := 0

(1, 0) addi R4 := SB, offset_a−4

loop:

(1, 1) stwu 4(R4) := R5

(1, 1) bdn loop

28

This improved loop will execute in 2*N+4 cycles on the PowerPC 601 and 2*N+3 cycles on POWER_2. The

loop body does not yet make good use of the parallel execution units, in particular, the branch_unit

cannot keep up branching every cycle, and on POWER_2, no use is made of the dual fixed_point units

executing stores. By executing four stores on each iteration, and reducing the number of iterations by a

factor of four, the loop can be improved further for both implementations. The case where N is not a

multiple of four has to be handled outside the loop, and has been omitted.

(1, 1) li R3 := N / 4

(1, 1) mtspr CTR := R3

(1, 1) li R5 := 0

(1, 0) addi R4 := SB, offset_a−4

loop:

(1, 1) stw 4(R4) := R5

(1, 0) stw 8(R4) := R5

(1, 1) stw 12(R4) := R5

(1, 0) stwu 16(R4) := R5

(0, 0) bdn loop

The theoretical execution time will be reduced to N+4 cycles for the PowerPC 601 and N/2+3 cycles for

POWER_2, for an overall improvement by a factor of 7 and 8, respectively.

The PowerPC 601 uses a unified cache, i.e. a single cache for both instructions and data. Conflicts

between instruction fetches and stores on that cache keep the PowerPC 601 from achieving the above

number, however. The slightly different code pattern achieving 7/6*N+4 cycles is not discussed as the

occurring interlocks are complicated.

Linear Search on an Array

The following loop is taken from the Quick_Sort algorithm as published in [Wirth86a].

VAR

a: ARRAY N OF LONGINT;

PROCEDURE sort (L, R: LONGINT);

VAR i, x: LONGINT;

BEGIN

...

WHILE a[i] < x DO i := i+1 END

...

END sort;

The non_optimizing Oberon_2 compiler generates the following PowerPC code for this loop.

loop:

(1, 1) twi >=u, Ri, N ; index check

(1, 0) rlwinm R3 := Ri, 2, 0, 29 ; i*4

(1, 1) add R4 := SB, R3 ; SB+i*4

(1, 0) lwz R5 := offset_a(R4) ; a[i]

(2, 2) cmp CF1 := R5, Rx ; a[i] < x

(0/2, 0/2) bc ˜CF1.LT, end

(1, 0) addi Ri := Ri, 1 ; i := i+1

(1, 2) b loop

end:

29

The execution time is 8*(M−1)+8 = 8*M cycles for the PowerPC 601, if a matching element is found after

M iterations. For POWER_2, the corresponding time is 6*(M−1)+6 = 6*M cycles. Note that there are

pipeline interlocks between the load and the compare. Furthermore, the conditional branch requires

speculation and the loop_closing branch at the end incurs a pipeline interlock until the conditional branch

is resolved.

This loop can be improved in a similar way as the array initialization above. Instead of using an

index to access the array, a pointer can be used. The value of the index can be derived from the pointer.

The index check cannot be completely removed, but it can be propagated out of the loop by rewriting the

loop into the following form.

ASSERT(i >= 0, index_check);

WHILE (i < N) & (a[i] < x) DO i := i+1 END ;

ASSERT(i < N, index_check)

Since the maximum number of iterations due to the limit of N can be precomputed, branch_and_count

instructions with zero overhead can be used. The optimized loop looks as follows.

(1, 1) subfi R0 := Ri, N ; N−i

(1, 0) twi <s, Ri, 0 ; ASSERT(i >= 0)

(1, 1) rlwinm R3 := Ri, 2, 0, 29 ; i*4

(1, 0) add R3 := SB, R3 ; SB+i*4

(1, 1) addi R3 := R3, offset_a−4

(1, 0) mtspr CTR := R0

loop:

(1, 1) lwzu R4 := 4(R3)

(2, 2) cmp CF0 := R4, Rx

(0/2, 2/0) bcdn ˜CF0.LT, loop

end:

(1, 0) subf R3 := SB, R3

(1, 1) addi R3 := R3, −offset_a

(1, 1) rlwinm Ri := R3, 29, 2, 31 ; ptr −> i

(1, 1) twi >=s, Ri, N ; ASSERT(i < N)

This improved loop executes in 3*(M−1)+15 = 3*M+12 cycles on the PowerPC 601, and 5*(M−1)+9 =

5*M+4 cycles on POWER_2. On both implementations, pipeline interlocks prevent better performance, in

particular POWER_2 loses a lot on the mispredicted loop_closing branch. By putting the branch at the top

of the loop, and using an unconditional branch to close the loop, the execution time on POWER_2 could

be reduced to 3*(M−1)+11 = 3*M+8 cycles. Each iteration would then take 4 cycles on the PowerPC 601.

(1, 1) crxor CF0.LT, CF0.LT, CF0.LT ; clear CF0.LT

loop:

(1/2, 0/2) bcdz CF0.LT, end

(1, 1) lwzu R4 := 4(R3)

(2, 2) cmp CF0 := R4, Rx

(0, 0) b loop

end:

Instead of pursuing this possibility further, we will discuss how overlapping of multiple iterations in

so_called software pipelining can improve the execution time even more. The idea is to start a new

iteration before the previous one has finished. Further elements of the array are loaded and compared

against x before the conditional branch is executed. Note that array elements may be accessed that the

original program did not access. We call such operations speculative operations, as their execution is

based on the speculation that the result will be needed. It must be made sure that such speculative

30

operations do not affect the final state of the program, since this would change the semantics. This

prevents stores and operations that can raise exceptions from being executed speculatively.

(1, 1) lwzu R4 := 4(R3)

(1, 0) lwzu R5 := 4(R3)

(1, 1) lwzu R6 := 4(R3)

(1, 1) cmp CF0 := R4, Rx

(1, 0) lwzu R4 := 4(R3)

(1, 1) cmp CF1 := R5, Rx

loop:

(1, 1) lwzu R5 := 4(R3)

(1, 0) cmp CF2 := R6, Rx

(0/0, 0/0) bcdz CF0.LT, end

(1, 1) lwzu R6 := 4(R3)

(1, 0) cmp CF0 := R4, Rx

(0/0, 0/0) bcdz CF1.LT, end

(1, 1) lwzu R4 := 4(R3)

(1, 0) cmp CF1 := R5, Rx

(0/0, 0/0) bcdn ˜CF2.LT, loop

end:

(1, 1) addi R3 := R3, −16

At the end, the pointer to the array has to be reduced by 16, as 4 additional array elements have been

already loaded. The improved loop takes M*2+7 cycles on the PowerPC 601, and M+5 cycles on

POWER_2, approaching a speedup of 4 and 6, respectively, when M is large.

Traversing a Linked List

A linked list may be traversed as follows searching for an element with a particular key.

p := root;

WHILE (p # NIL) & (p.key # key) DO p := p.next END

Using the non_optimizing Oberon_2 compiler, this translates into the following PowerPC code.

(1, 1) lwz Rp, offset_root(SB) ; p := root

loop:

(1, 1) cmpi CF1 := Rp, NIL ; p # NIL

(0/2, 0/2) bc CF1.EQ, end

(1, 0) lwz R3 := 4(Rp) ; p.key

(2, 2) cmp CF6 := R3, Rkey ; p.key # key

(0/2, 0/2) bc CF6.EQ, end

(1, 0) lwz Rp := 0(Rp) ; p := p.next

(1, 2) b loop

end:

The execution time of this loop is 6*(M−1)+1+6 = 6*M+1 cycles on the PowerPC 601 if a match is found

in the M'th element, and 5*(M−1)+1+5 = 5*M+1 cycles on POWER_2. No special instructions can be used

to decrease the amount of code in the loop, but the pipeline interlocks can be removed by software

pipelining. However, loading the pointer to the next element is the last operation in the loop body, and a

new iteration cannot be started before that pointer is available. Moving that load instruction higher up in

the body requires to move it above conditional branches. Since a load through a NIL_pointer does not

31

raise an exception on current PowerPC operating systems, this can be done safely. The improved code

after software pipelining looks as follows.

(1, 1) cmpi CR0 := Rp1, NIL

(1, 0) lwz Rp2 := 0(Rp1)

(1, 1) lwz R8 := 4(Rp1)

(1, 0) cmpi CR1 := Rp2, NIL

(0/0, 0/1) bc CR0.EQ, end

(1, 1) lwz Rp3 := 0(Rp2)

(1, 0) lwz R9 := 4(Rp2)

(1, 1) cmp CR6 := R8, Rkey

loop:

(1, 1) cmpi CR0 := Rp3, NIL

(0/0, 0/0) bc CR1.EQ, exit_p2

(1, 0) lwz Rp4 := 0(Rp3)

(1, 1) lwz R8 := 4(Rp3)

(1, 0) cmp CR7 := R9, Rkey

(0/0, 0/0) bc CR6.EQ, end

(1, 1) cmpi CR1 := Rp4, NIL

(0/0, 0/0) bc CR0.EQ, exit_p3

(1, 0) lwz Rp1 := 0(Rp4)

(1, 1) lwz R9 := 4(Rp4)

(1, 0) cmp CR6 := R8, Rkey

(0/0, 0/0) bc CR7.EQ, exit_p2

(1, 1) cmpi CR0 := Rp1, NIL

(0/0, 0/0) bc CR1.EQ, exit_p4

(1, 0) lwz Rp2 := 0(Rp1)

(1, 1) lwz R8 := 4(Rp1)

(1, 0) cmp CR7 := R9, Rkey

(0/0, 0/0) bc CR6.EQ, exit_p3

(1, 1) cmpi CR1 := Rp2, NIL

(0/0, 0/0) bc CR0.EQ, end

(1, 0) lwz Rp3 := 0(Rp2)

(1, 1) lwz R9 := 4(Rp2)

(1, 0) cmp CR6 := R8, Rkey

(0/0, 0/0) bc ˜CR7.EQ, loop

exit_p4:

(1, 1) lr Rp1 := Rp4

(0, 0) b end

exit_p3:

(1, 1) lr Rp1 := Rp3

(0, 0) b end

exit_p2:

(1, 1) lr Rp1 := Rp2

end:

This code takes roughly 4*M cycles on the PowerPC 601 and 2*M cycles on POWER_2. Despite the loop

being hard to optimize, this still presents a remarkable speedup of 1.5 and 2.5, respectively.

What Improvements Can Be Expected?

The above examples indicate that large improvements can be achieved with compiler optimizations, but

also that they vary widely with the kind of code compiled. Large applications contain pieces of code that

32

are improved a lot, and others that are not sped up at all. Comparing optimizing compilers with the code

generation techniques used in the non_optimizing Oberon_2 compiler, overall performance gains for

whole applications have been shown to be between factors of two and three on the PowerPC 601 and

above three for POWER_2. For floating_point intensive code, even larger improvements around a factor of

seven are found on POWER_2 [IBM94b]. Our simple optimizing Oberon_2 compiler OOC2 improves the

execution speed of programs by about a factor of two.

5 Intermediate Program Representations

The single most critical design decision when building an optimizing compiler is the choice of the

intermediate program representation, on which the individual optimization phases operate. Its structure

remains the same throughout the entire compilation process, and thus affects all parts of the compiler.

There are three important mutually independent attributes of intermediate representations that we

can distinguish: The level of abstraction at which the operations are described, the way results of

computations are referenced, and the way control_flow is represented.

5.1 Abstraction Levels for Operations

The level of abstraction for operations can range from using operators of the high_level language directly,

through using the target machine instructions, to using a sub_machine_language.

Source Language Operators

A high level of abstraction, i.e. using the operators of the source language, has the advantage of being

easy to generate and easy to understand. It offers the highest amount of portability, as it can be

translated into executable code for any machine on which the source language can be implemented.

Optimizations also take place at this level and therefore become machine_independent as well. However,

since many of the high_level operators will eventually be translated into several machine operations, this

does not allow the compiler to optimize the actual machine instructions. For example, an access to an

array element will consist of checking the index against the array bounds, multiplying the index by the

size of the element, and then accessing the memory location. In the following example, two accesses to

arrays of the same type with the same index are shown. A high_level representation of the array access

using an index operator cannot express the common parts between them.

VAR

a, b: ARRAY N OF INTEGER;

BEGIN

... a[i] + b[i]

The accesses will be represented as

index a, i

index b, i

and quite correctly are not congruent. However, at the machine level, i will be checked against the bounds

0 and N and multiplied by the size of an INTEGER twice. This fact could be discovered by optimization

algorithms if the individual steps of checking and multiplying the index were expressed directly.

34

Sub_Machine Level Operators

The above fact is the reasoning behind using a sub_machine language for the operators, which is the

other extreme in terms of abstraction_levels. Each operation is represented by atomic operations at the

machine level of a very primitive hypothetical machine, allowing to optimize every single step that has to

be performed for a given result. Since real machines tend to have instructions combining multiple such

atomic operations, achieving good code quality requires patterns of operations to be found that may be

implemented by a single target machine instruction. One example for such a low_level representation is

the register_transfer_level (RTL) representation used in GNU CC [Stall94]. Note that such a representation

also yields a rather portable compiler, as long as all primitive operations can be implemented on every

target machine.

Machine Operators

A compromise would be to use machine instructions of the target machine in the intermediate

representation. This still allows the compiler to optimize most constructs, but does not require a pattern

matcher which finds operations to be combined in one machine instruction. Moreover this leads to a

more compact intermediate representation. In fact, if all machine instructions have the same execution

cost, optimizing the internals of an instruction as allowed by a lower_level representation does not yield a

benefit. The size of the intermediate representation has a big impact on compilation speed. Using

machine_level operations, the size of the intermediate representation is in between those of the other

options, and so will be the compilation speed. Moreover, since actual machine instructions will eventually

have to be generated for the operations, this is the only way to avoid changing the operation level within

the compiler at some point. The disadvantage is that the intermediate representation becomes

non_portable. With architectures becoming more and more similar, we believe this to be a minor

problem, however. Affected the most by instruction_set differences are peephole optimizations, which are

inherently non_portable.

Sometimes it is useful to keep high_level operations in the intermediate representation and lower

them into real machine instructions later. Lowering them to the machine level means loss of information,

which might have been useful in later optimization stages. For example, the code sequence implementing

a record_assignment in Oberon may be much harder to optimize than an assignment operation itself. It

may be found that the original record could be used instead of the assigned copy, avoiding the

assignment altogether. Such a fact would be hard to determine from the machine code implementing the

record assignment.

5.2 Abstraction Levels for Control_Flow

Control flow can also be represented at different levels. As for instructions, a high level corresponds to

using the control structures of the source language directly in the intermediate representation, while a low

level corresponds to exposing the branching structure of the program.

High_Level Control Structures

In a high_level programming language, a procedure contains a sequence of statements, some of which

may be structured. Such structured statements contain one or more statement sequences, and conditions

which control the execution of them. Applying this concept to an intermediate program representation,

structured statements become special instructions which contain sequences of instructions implementing

the condition evaluation and other sequences for the statement bodies. Figure 5.1 depicts an example.

35

If_else

cond0 stat0 stat1

While

cond1 stat2

IF cond0 THEN stat0 ELSE stat1 END ;

WHILE cond
1
DO stat

2
END

Figure 5.1: High_level control structures as part of an intermediate program representation.

Using the control structures directly has several advantages. Since it directly reflects the high_level

structure of the program, it is easy to generate and to understand. No useful information from the source

language is lost. Many optimization algorithms require information about the presence and position of

loops and about the nesting of control structures, which is readily available in this representation. No

separate data structure is required to model control_flow besides nested instruction lists. Reconsidering

the example of common subexpression elimination, a result is available in the sequence of instructions

in which it is computed, including nested control structures. This is a very simple rule to determine

availability.

The rule is slightly too pessimistic, however. Conditions are evaluated even when the body of the

control structure is not executed, and the results of the instructions used in this evaluation would be

available later on, both inside and outside the control structure. Even though in determining availability

one could deal with these cases, the artificial separation of condition evaluation from other computations

complicates things.

Another disadvantage is that branching is not explicitly represented and therefore cannot be

optimized. Since everything has to be expressed in terms of high_level control structures, some legitimate

transformations are not possible, as shown in the following example.

WHILE (p # NIL) & (p↑.key # x) DO p := p↑.next END ;

IF p # NIL THEN stat0 ELSE stat1 END

Assume it is determined that the comparison of p against NIL is congruent in both the While_ and the

If_statement. Then, the branch out of the loop in case p equals NIL could be redirected to stat1, the other

branch to stat0, and the If_statement would become superfluous. Without using explicit branches in the

intermediate representation, this cannot be expressed.

Using Loop_ and Exit_statements, the above code could be optimized even in Oberon itself, as

follows.

LOOP

IF p = NIL THEN stat1; EXIT

ELSIF p↑.key = x THEN stat0; EXIT

ELSE p := p↑.next

END

END

36

However, Exit_statements are explicit branches, and cause several problems when generating the

intermediate program representation and analyzing the program. For example, assume that there would

be Exit_instructions in the intermediate representation just like If_ or While_instructions, closely reflecting

the source program. Such an instruction would correspond to a branch behind the loop. At that position,

however, it would not be possible to determine the available results without first finding all

corresponding Exit_instructions, and analyzing the paths leading to them. Storing all Exit_instructions with

the Loop_instruction they belong to would simplify this, but would also introduce complicated

dependencies between different control structures, break the hierarchical nesting, and introduce another

data structure which has to be maintained throughout optimizations.

Other problems of unstructured control_flow and possible approaches to dealing with them will be

discussed in a later section.

High_level control structure representations can be generated directly while parsing the source

program, with algorithms that have a time complexity linear in the size of the program.

Guarded Representations

Instead of representing branching implicitly only through high_level control structures, it could be made

more explicit using guarded statements. This form is inspired by the guarded command language of E.W.

Dijkstra [Dijk76], and provides very clean semantics, on which analysis can be based. We are the first to

study it as the only representation of control flow in a compiler.

When translating an If_statement into guarded command language, a guard controlling the execution

must be provided for each path. The guard represents a condition that causes the following statement

sequence to be executed if the condition is true respectively to be skipped if it is false. If multiple guards

evaluate to true, one of them is selected in a non_deterministic way, i.e. there is no defined order of

evaluation for guards. This differs from the semantics of a simple If_statement in languages such as

Oberon, where conditions are evaluated in source order and only if the previous conditions were false.

However, by replicating previous conditions in negated form, this requirement can be expressed.

IF cond THEN stat0 ELSE stat1 END

|[if cond . stat0 [] Xcond . stat1 fi]|

In an intermediate program representation, the combination of a guard and the corresponding statement

sequence can be treated like a guarded statement, without the evaluation of the condition, e.g. without

the comparison of two expressions. The condition is computed separately using ordinary instructions

and is referenced by the guards. In the following, guards are marked by a colon at the end and printed in

italics for better readability.

(1) cond

(2) if_true: (1)

(3) stat0
(4) if_false: (1)

(5) stat1

Nesting of instructions corresponds to the instructions being controlled by the enclosing guard. In the

above example, instruction 3 is part of the guarded statement represented as instruction 2. It will only be

executed, if the parameter of the guard is true.

Oberon requires that conditions including Or_ and And_operators are evaluated in short_circuit form.

The elementary conditions are evaluated from left to right, and only as long as the complete result is not

known. For example, if there are two conditions combined by an And_operator, and the first one

evaluates to false, it is known that the combined result will be false and the second condition is not

evaluated. In guarded command language, this can be expressed by nesting guards.

37

IF cond0 & cond1 THEN stat0 ELSE stat1 END

|[

if cond0 .

|[if cond1 . stat0 [] Xcond1 . stat1 fi]|

[] Xcond0 . stat1
fi

]|

Note that the statement sequence in the Else_path stat1 is replicated. In order to avoid this, an instruction

to combine two guards by Or_ing them is introduced into the intermediate program representation. We

call it a merge, as it merges two paths of control, and more precisely a c_merge as it combines conditions.

The above example would then translate as follows.

(1) cond0
(2) if_true: (1)

(3) cond1
(4) if_true: (3)

(5) stat0
(6) if_false: (3)

(7) if_false: (1)

(8) c_merge: (6), (7)

(9) stat1

Now that there is a construct to combine different paths of control, this construct could be used in other

situations as well, namely to merge the paths of an If_statement at the end with an i_merge, and to

combine the path into a loop and the loop_closing branch using a l_merge. This way, no additional

construct is needed to represent loops as shown in the following examples.

IF cond THEN stat0 ELSE stat1 END

(0) true:

(1) cond

(2) if_true: (1)

(3) stat0
(4) if_false: (1)

(5) stat1
(6) i_merge: (2), (4)

WHILE cond DO stat END

(0) true:

(1) l_merge: (0), (3)

(2) cond

(3) if_true: (2)

(4) stat

(5) if_false: (2)

Representations using guarded form still reflect the high_level control structure of the source program, but

allow the compiler to optimize the branching structure. The set of predicates controlling the execution of

an instruction can easily be determined as the conjunction of all guards in which the instruction is

nested. Control_flow is also integrated with instruction lists and no separate data structure is needed to

represent it. There is a single representation for loops. For common subexpression elimination, a result is

available within the sequence of instructions in which it is computed, including nested ones. All

38

advantages of using high_level control structures still apply, but additionally the branching structure of the

program can be analyzed and optimized.

WHILE (p # NIL) & (p↑.key # x) DO p := p↑.next END ;

IF p # NIL THEN stat0 ELSE stat1 END

In this example, which we have already encountered in the section on high_level control_structures, the

compiler would find both guards for p # NIL to be equivalent. It could move stat0 into the loop_exit guard

corresponding to p = NIL, and stat1 into the exit guard corresponding to p↑.key = x. The If_statement would

then become completely superfluous.

The fact that each instruction is guarded by a set of conditions offers very clean semantics and

allows many powerful optimization algorithms, but also has one disadvantage. In the presence of

unstructured control_flow, the predicates controlling execution of instructions are not directly available,

and no clean nesting of guards can be given.

For programs with structured control_flow only, guarded forms can be generated while parsing the

source program using algorithms of time complexity O(N), where N is the number of instructions in the

program.

Control_Flow Graphs and Related Representations

A low_level representation of control flow directly exposes the branching structure of a program, like in an

assembly language program, where conditional and unconditional branches are used to control the

execution of individual instructions. Instead of using symbolic names or labels for branch targets,

pointers are used to connect branches and targets, thus creating a directed graph called control_flow graph

(CFG) [ASU86]. For a definition, the concept of a basic block is required.

Definition: A basic block is a sequence of consecutive statements in which flow of control enters at the

beginning and leaves at the end without halt or possibility of branching except at the end. [ASU86]

A basic block may only contain a branch instruction as the last instruction, and a label may only be at the

very beginning. A basic block is either executed as a whole or not at all.

Definition: A control_flow graph is a directed graph whose nodes are basic blocks. There is a directed edge

between nodes A and B if control may flow from basic block A directly to block B. This is the case if the

last statement in A is a branch to B, or when B is on the fall_through path from A.

Control_flow graphs have the advantage that they can express arbitrary control_flow, but on the other

hand they are not well−suited for optimizers. Information about the high_level control structures has

been lost, and all information about what is executed under which conditions is only implicit. For

example, loops are translated into cyclic subgraphs, and statements belonging to a single statement

sequence are separated into different basic blocks when an intervening statement includes any kind of

control_flow. Besides control structures, there are several operations in Oberon which translate into

control_flow. For example the standard function ABS(x) compiles to a conditional statement on machines

without an instruction to compute the absolute value of x, as does the arithmetic shift function ASH on

machines which do not interpret the sign of the shift count. Even index_checks or NIL_checks are compiled

into control_structures on several machines.

The control_flow graph of a program can be built while parsing the source program with algorithms

that have linear time complexity in the size of the program.

In order to expose more optimization potential, many refinements to simple control_flow graphs

have been proposed. They are built from the control_flow graph and find structural information by

applying graph_theoretical algorithms.

39

(1) cond
0

(2) bf (1)

(3) stat
0

(4) cond1
(5) bf (4)

(6) stat
1

(7) b

IF cond
0
THEN

stat
0
;

WHILE cond
1
DO stat

1
END

END

Figure 5.2: A control_flow graph.

Extended Basic Blocks

Consider how the property of availability could be determined in a control_flow graph. A result must have

been computed before in the program in order to be available at some point P, no matter which path

was taken to P. Obviously, a result is available within the basic block in which it is computed, but this is a

very pessimistic solution. A better solution requires to analyze the branching structure of the program.

A simple refinement is based on the observation, that a result remains available in an instruction

sequence after a branch. Only at a label paths join and availability has to be determined by considering

all paths. This leads to the notion of an extended basic block.

Definition: An extended basic block is a sequence of consecutive statements, in which flow of control

enters only at the beginning but may leave at several points.

More intuitively, we do allow branches out of an extended basic block, but we do not allow other entry

points into the block than at the very beginning. This guarantees that at some instruction in an extended

basic block, all preceding instructions in the same block have been executed, and thus their results are

available.

Even though this delivers better results than just considering basic blocks, any structured statement

will still make all results unavailable that have been computed before.

Dominator and Postdominator Trees

The flaws of not being able to determine availability over basic block or extended basic block boundaries

can be avoided through the concept of dominance.

40

Definition: In a directed graph with start node S, we say that a node A dominates node B, iff for all paths

P from S to B, A is a member of P. We call A a dominator of B, and write A &. B. [ASU86]

Dominance is a relation on the nodes of the graph which is reflexive, transitive, and anti_symmetric.

Definition: We call A the immediate dominator of B, iff A &. B, A # B, and XSC, A &. C Y C &. B. We write A

. B. [ASU86]

Definition: The dominator tree of a directed graph G with start node S is the tree including the nodes of G,

S being the root, and having an edge between nodes A and B iff A . B.

Note that the dominator tree really is a tree, as each node has exactly one immediate dominator which

becomes its parent in the tree. An exception is start node S that does not have any dominators by

definition and represents the root of the tree. All nodes being predecessors of some node A are

dominators of A. Applying the dominance theory to a control_flow graph, we can say that if a basic block

A dominates basic block B, A is on every path from S to B, and thus the statements in A have always

been executed when control reaches B.

A necessary condition for the result of an instruction at position A to be available at position B is

that A dominates B, and that the operands cannot be overwritten on any path from A to B. Such paths

have the property that they are also dominated by A.

Theorem: If A &. B, all nodes on paths P from A to B either include A or are dominated by A.

Proof: Assume the contrary. Then, there would be a node C, XA &. C, and a path from C to B not including

A. Since XA &. C, there would be a path from S to C not including A. By appending the path from S to C

to the one from C to B, a path from S to B not including A can be constructed. This contradicts the

premise A &. B. `

By traversing the dominator tree in preorder and keeping track of which values are available at a certain

dominating node, problems dealing with the availability property can often be resolved in a simple way.

For some purposes, also the concept of the postdominator tree is useful.

Definition: In a directed graph with stop node Z, we say that a node A postdominates node B, iff for all

paths P from B to Z, A is a member of P. We call A a postdominator of B, and write A &, B. [ASU86]

The definitions for immediate postdominator and the postdominator tree are analogous to the above

definitions for the dominance relation. The postdominator tree can be computed as the dominator tree

of the reverse control_flow graph, that is the graph having the stop node Z as root and connecting

control_flow successors with their predecessors by a directed edge.

For the class of operations that define the global state, most notably store instructions, our common

subexpression elimination algorithm must be modified. Replacing an instruction with a similar

instruction storing to the same location available at that point would yield wrong results. Instead of using

the instruction that dominates similar instructions, one has to use the instruction that postdominates

other stores to the same location.

The dominator tree can be computed from the control_flow graph. The algorithm due to Lengauer

and Tarjan [LeTa79] makes four passes over the CFG, and runs in time O(N * a(N)), where N is the

number of nodes in the CFG and a is the inverse of the Ackermann function.

Control_Equivalence and the Control_Dependence Graph

While the algorithm based on the dominance relation to determine availability delivers better results

than algorithms for basic blocks or extended basic blocks, it still exhibits an asymmetry. Instructions

preceeding a control structure can replace instructions within the control structure, but instructions

41

succeeding the control structure cannot. This is obvious, since the result is not available within the control

structure. However, by moving this succeeding instruction in front of the control structure, the semantics

of the program would not be changed, and the result would become available. The movement changes

only the order of evaluation, and not the conditions under which the instruction is executed. In fact,

whenever the block preceeding the control structure is executed, the block succeeding it is known to be

executed as well. We call these two basic blocks control_equivalent, as they are executed under the same

control conditions. Instructions can be freely moved between control_equivalent blocks without altering

the semantics of the program as long as no data dependencies are violated.

Definition: Two basic blocks A and B are control_equivalent, iff A &. B and B &, A.

For control_equivalent nodes A and B, there must be a common dominator D including the conditional

branch controlling execution of A and B. We say that A and B are control_dependent on D, as in D it is

determined whether A and B are to be executed. A more formal definition due to [FeOW87] is as follows.

Definition: A node B is control dependent on node A, iff there exists a directed path P from A to B with

any Z N P (excluding A and B) postdominated by B and A is not postdominated by B.

If B is control_dependent on A, then A must have multiple successors. Following one path from A results

in B being executed, while taking others may result in B not being executed.

Definition: The control_dependence graph (CDG) over a control_flow graph G is the graph over all nodes of

G, in which there is a directed edge between nodes A and B, iff B is control_dependent on A.

Note that control_equivalent nodes are control_dependent on the same node, and thus have the same

parent node in the control_dependence graph. The CDG compactly encodes the required order of

execution due to control. A node evaluating a condition on which the execution of other nodes depends

has to be executed first. As long as this condition holds and data dependencies allow, nodes can be

moved. Moreover, single instructions can be moved between control_equivalent nodes.

Definition: A node B is transitively control dependent on node A, iff there is a path from A to B in the

CDG.

Reconsidering the example of common subexpression elimination, a result is available if it has been

computed in a node on which the current node is transitively control_dependent or a control_equivalent

node.

From the control_dependence graph, a possible control_flow graph can be reconstructed [BaHo92]. It

can serve as a replacement for the control_flow graph in most situations. Note that it recovers some of

the high_level information about the nesting of control structures that has been lost in the translation to

a CFG. The control_dependence graph encodes, which blocks are executed under the same conditions in

the source program, but does not make the conditions explicit like guarded forms. Note that it does not

explicitly support combining conditional branches based on congruent comparisons. If_conversion

[AKPW83] allows to construct guards from control_dependencies, but only for parts of the program

which exhibit structured control_flow.

The control_dependence graph can be built from the control_flow graph and the postdominator tree

using an algorithm with three passes and having a time complexity of O(N2), where N is the number of

nodes in the CFG [FeOW87].

5.3 Abstraction Levels for Data_Flow

In order to optimize a program, it is not sufficient to know that a certain variable is used as an operand

by some instruction. One needs to know which assignments to the variable affect the operand value, as

the variable can take on different values when executing the program. In our CSE example, two

42

computations of a+b are only equivalent, if both computations use the same value of a and b. It depends

on the intermediate representation how easily different values of a variable can be identified.

Multi_Assignment Intermediate Languages

Traditional imperative high_level languages allow multiple assignments to the same variable, with the

consequence that the same variable may take on different values during program execution. This is also

the case for the source language in question, Oberon_2. Using an intermediate representation that also

allows multiple assignments to the same variable is a natural match for them, but has an impact on the

analysis methods used.

Traditional data_flow analysis techniques use bit_vectors to determine different properties of

variables and anonymous computations. Anonymous computations receive temporary names. Often the

names are reused in such a way, that lexically identical expressions receive the same temporary name

[AuHo82], e.g. all computations a+b receive the temporary name t1.

Thus, having two results with the same temporary name is a required but not sufficient precondition

for congruence. It is also required that none of the operands can be modified in between two congruent

computations. This precondition can be determined together with the precondition of availability of an

expression, as the following algorithm for common subexpression elimination shows. It assumes to be

run on a control_flow graph, but could be adapted to other control_flow representations.

The algorithm assumes that lexically_equivalent expressions have received identical temporary

names. It uses a bit_vector with a bit for each temporary name, which indicates whether a certain

expression is available at the current point. For each basic block, a bit_vector avail_out containing the

expressions available at the end of the block is kept.

PROCEDURE CommonSubexpressionElimination (CFG: Graph);

VAR avail: Bitvector; B, P: Block; instr: Instruction;

BEGIN

FOR each basic block B in CFG DO

B.avail_out := {}

END;

REPEAT

FOR each basic block B in CFG DO

IF B is start node THEN avail := {}

ELSE

avail := {0..n};

FOR all predecessors P of B in CFG DO

avail := avail Y P.avail_out

END

END;

FOR each instruction instr in B in order DO

IF instr.result IN avail THEN Delete(instr)

ELSE

remove all results dependent on instr.name from avail;

INCL(instr.name, avail)

END

END

END

UNTIL done

END CommonSubexpressionElimination;

The algorithm at first makes the conservative assumption that nothing is available at the end of a block. It

traverses each block, determining what is available at the top of the block by taking the intersection of

avail_out of all predecessors. This corresponds to the rule that an expression is only available at the

43

beginning of the block if it is available along all paths leading to this block. Then, all instructions in the

block are traversed. If the result an instruction computes is already available, the instruction can be

deleted. Otherwise, the newly computed value for some name v invalidates computations that used v as

operand, and thus these computations can be considered as not being available anymore. We say that

the newly computed value kills the previous value and thus all dependent expressions. Note that the

transitive closure of such dependent computations has to be removed from the set of available

expressions. Since the expression was just computed, it can then be added to the set of available results.

We have not specified under which conditions the algorithm terminates. In principle, it can be

terminated at any point, with the consequence that some common subexpressions may not be found. In

order to find all common subexpressions, and in the presence of loops, this algorithm has to be iterated

several times over the CFG until a fixed point is reached. Finding that an expression t is available from a

previous loop iteration can cause killing definitions of t to be deleted, and thus dependent expressions to

become available at the end and the top of the loop. The upper limit for the number of iterations

required to reach a fix_point for a loop is the number of instructions in the longest dependence chain of

operations in the loop, which is at most the number of instructions in the loop. For nested loops, inner

loops may have to be considered several times.

Relying on lexical equivalence has the disadvantage that common subexpressions like in the

following example are not found.

(1) t0 := a + 1;

(2) b := a;

(3) t1 := b + 1

Even though a and b have the same value in this context, the incremented values receive different

temporary names and thus will not be found to be congruent.

Static Single_Assignment Intermediate Languages

Static single_assignment programming languages like Sisal [BGOCF93] have not found widespread use

among programmers. While their functional programming model offers a lot of interesting properties for

parallel computing, it is sufficiently different to require a paradigm shift on the side of the programmers.

However, programs in imperative programming languages can be translated easily into static

single_assignment (SSA) form. Compilers may use static single_assignment intermediate representations

to benefit from its properties, with the source language adhering to a standard imperative programming

paradigm.

Reconsider our example of common subexpression elimination, applied to straight_line code. If

there are multiple assignments to some variable a, the optimizer has to keep track for each use of a by

which assignment it received its value. One simple method to do so would be to give a unique number

to each assignment, and to store the number along with the use of the variable. Figure 5.3 shows a piece

of code with and without this numbering, where the numbers are appended as suffixes to the variables.

(1) a := 5 (1) a1 := 5

(2) x := a + 1 (2) x2 := a1 + 1

(3) y := a + 1 (3) y3 := a1 + 1

(4) a := b * 2 (4) a4 := b0 * 2

(5) z := a + 1 (5) z5 := a4 + 1

Figure 5.3: Straight_line code and its static single_assignment representation.

44

Common subexpression elimination becomes very simple, as for two instructions only the opcodes and

the operands with their suffixes have to be compared in order to determine congruence. If one of the

operands were assigned a new value between its uses, the suffix would be different and thus the

operands would not be equivalent. In the example, the computations for y and z are not congruent due

to the differently numbered variable a.

Seen from a slightly different angle, each of the suffixed variables could be seen as a separate

temporary copy of the original variable, with each copy being assigned only once. This is the main

property of static single_assignment languages, namely that for each variable there is exactly one

assignment in the program text. One can also say that each assignment in the program text receives a

unique name, by which the result of the computation can be referenced.

The actual numbering does not play a role as long as each assignment can be uniquely identified,

e.g. by a unique pair of variable name and number, or simply by a unique assignment number, thus

dropping names altogether. Also, instead of storing assignment numbers, one could keep references

directly to the assignments using pointers, which simplifies lookups.

cond
1
:= v

0
< 100

a2 := v0 a3 := 100

x 4 := a ? * 2

IF v < 100 THEN a := v ELSE a := 100 END ;

x := a * 2

Figure 5.4: A static single_assignment program with control flow.

In the presence of control flow, there are sometimes multiple assignments that can affect the value of an

operand at a certain point, as shown in Figure 5.4. Depending on the value of cond1, either a2 or a3 has to

be used in the computation of x4.

Instead of keeping just a single assignment_reference for an operand, one could store references to

all assignments that can affect the value. Doing so is known as using def_chains [ASU86]. That is, for each

operand there is a chain of references to assignments possibly defining it. These chains can become long

in the presence of complex control_flow, however, and maintaining and comparing them is complex and

error_prone.

As an alternative to maintaining long def_chains for each operand, a placeholder for the chain may

be generated that can then be referenced like an assignment [FeOW87]. When two control_flow paths

join, and different instances of some variable v are available along these paths, a f_function for v is

generated referencing both instances, and serving as a placeholder for the chain of them. The f_function

is assigned to v, thus creating a new single instance of the variable that can be used thereafter (Figure

5.5).

45

cond1 := v0 < 100

a
2
:= v

0
a
3
:= 100

IF v < 100 THEN a := v ELSE a := 100 END ;

x := a * 2

a5 := f (a2 , a3)

x
4
:= a

5
* 2

Figure 5.5: A static single_assignment program with control flow and f_function.

As the name implies, f_functions can not only be seen as placeholders for def_chains but also as

functions. For a point at which n control_flow paths join, f_functions have n operands, and implement a

selection function. If control reaches the join point via the m_th path, the m_th operand represents the

result of the function. An unfortunate property is that the selection criterion, namely by which path the

join point is reached, is not an explicit parameter of the function. This prevents it from being treated as a

function in the mathematical sense. A list of predicates specifying the controlling conditions for the

individual paths would make them true functions. f_functions with such predicates are named gates, and

the resulting data_flow framework is called gated single_assignment form. Such predicates are not available

in the presence of unstructured control_flow. As a conservative approximation, control dependencies or

basic blocks can be used as parameters. In this case, each basic block is considered as a placeholder for

an unspecified predicate controlling its execution, and all such predicates are treated as being different.

Note that this reduces the optimization potential.

Unlike other instructions, f_functions will not be translated into actual machine instructions. By

allocating all operands and the result to the same storage location − including the same register − the

function can be turned into a no_operation and deleted. Allocation of all operands to the same location

can always be achieved, possibly by introducing move_operations on some paths to the gate.

Static single_assignment form has a couple of advantages over multi_assignment representations. The

dependence between an instruction computing a value and another instruction using it, is explicit rather

than implicit through variable name and position. Instructions can be freely moved without affecting

semantics; they still use the same operands and produce operands for the same instructions. We can

also say that instructions have a meaning independent of their position, and the meaning is completely

defined by the opcode and the operands. Moreover, no result can be killed by intervening assignments,

thus availability of a result at some position is only a matter of it being computed on all paths to that

position.

Note that SSA form corresponds to complete renaming performed in software. All anti_ and

output_dependencies have been removed, and only true dependencies are represented. This is equivalent

to a static data flow graph of the program.

Static single_assignment form can be computed for programs with arbitrary control_flow using three

passes over the control_flow graph, the dominator tree, and the postdominator tree [CFRWZ91]. The time

complexity of the algorithm is O(N3), where N is the size of the program. We have presented an

algorithm which can generate SSA form for structured languages in a single pass while parsing the source

program. It has the same time complexity O(N3) [BrMö94].

46

Dynamic Single_Assignment Intermediate Languages

Static single_assignment languages give a unique name to each statically occurring assignment in a

program. In a loop, the variable may still take on different values for each iteration, and thus kills values

from previous iterations. Dynamic single_assignment form avoids this by giving unique names to

assignments dynamically, as defined by Rau [Rau91].

Definition: A program representation is said to be in dynamic single_assignment (DSA) form if the same

virtual register is never assigned more than once on any dynamic execution path.

A virtual register in Rau's context corresponds to a renamed variable in ours. He adds that the static code

may have multiple statements with the same virtual register on the left hand side, thus programs in

dynamic single_assignment form are not necessarily in static single_assignment form. A definition for

variable v in an earlier iteration can be referenced as v[i], where i corresponds to the number of iterations

executed in between. v[0] is the value defined in the current iteration and can be abbreviated as v.

WHILE i < N DO WHILE i[0] < N DO

remap(a);

a[i] := a[i−1] + a[i−2]; a[0] := a[1] + a[2];

remap(i);

i := i + 1 i[0] := i[1] + 1

END END

Figure 5.6: An Oberon program and its DSA form.

In Figure 5.6, the remap_operations are inserted for a variable v before v is assigned, allocating a new

register for that variable. Older instances of the same variable are appropriately renamed. The compiler

will later move all remap operations to the top of the loop, so that the new registers can be allocated all

at once.

The representation closely reflects the hardware architecture of the Cydra 5 VLIW computer

[RYYT89], in which different iterations are executed in different windows of the register file. It uses a

circular register file, with a based index according to which all register accesses are performed, and which

is incremented once for each iteration, thus using new registers for new results, but still allowing the

access to earlier results by other numbers.

Rau describes a framework for optimizing array accesses making use of DSA form. It is based on the

idea that an array expression a[i] being available before a statement i := i+1 could be made available as

a[i−1] after the increment, as shown in Figure 5.6. However, this reasoning also applies to other

frameworks, and has been exploited by others [CaCK90] to improve the register allocation of subscripted

variables without using DSA form.

The main attractions of DSA form are that loops are expressed in their maximal parallel form, i.e.

without any anti_ or output_dependencies between iterations, and that values from previous iterations can

be reused. In environments without special hardware support, however, DSA form must be translated to

machine code by either replicating the loop body or by copying registers. By doing so, the same effects

would be achievable with other representations as well. We believe that DSA form does not simplify

analysis of the program in any form.

47

5.4 Combining Control_ and Data_Flow

The above discussions have assumed that control_ and data_flow are represented separately, that is in

different kinds of data structures. This requires two data structures to be maintained and separate

optimization algorithms for them to be designed. It is hard to make use of interactions between

optimizations in the data_flow representation and the ones for control_flow. For example, control_flow

could be optimized when common subexpression elimination determines that two conditional branches

use congruent conditions. Control_flow optimizations change paths, and may make results available in

places where they were not before, thus affecting common subexpression elimination. Finally, if SSA_form

is used, a clean representation of control_flow within the data_flow framework would allow to give

f_functions well_defined semantics.

These advantages have been noted long time ago, and several approaches have been made to

combine both.

Program Dependence Graphs

Program dependence graphs (PDG) [FeOW87] combine control dependencies and data dependencies into

a common framework. Data and control dependencies are modeled as def_chains. Each instruction has

references to the block it is control_dependent on, and to the instructions defining its operands. In order

to reduce the number of defining instructions stored for each operand, so_called merge nodes are used,

which have similar properties as f_functions and combine the list of definitions for several operations.

The presentation of the framework does not explicitly mention SSA form, but uses its concepts for scalar

variables. However, references to structures (arrays or records) are still modeled in a multi_assignment

style with anti_dependencies and output_dependencies. This and the missing control_flow information in

merge_nodes make some operations still dependent on their position in the PDG.

Program Dependence Webs

The program dependence web (PDW) [BaMO90] is a refinement of the PDG. It is computed from the PDG,

and replaces the data dependencies by gated single_assignment form. Since control_flow predicates are

required for gates, it restricts the control_flow to reducible flow graphs [Aho] and spends a lot of effort

on determining these predicates from the CDG. Program dependence webs offer very clean semantics and

support powerful optimization algorithms, but are complex to generate. The presented algorithm starts

from the PDG, and requires five passes to construct the PDW, with a time complexity of O(N3), where N

is the size of the program.

Value Dependence Graphs

Value dependence graphs (VDG) [WCES94] use gated single_assignment form to represent data

dependencies, and do not explicitly model control flow at all. Instead, the concept of

demand_dependencies is introduced: If a value x is used as a gate operand, and if that operand

corresponds to some condition C, then x is demanded under condition C. When control dependencies are

reconstructed, a computation of x must be placed in the region corresponding to C or in a dominating

region. Looping is represented using recursive function calls in the VDG.

While avoiding control flow altogether as in VDGs is an attractive idea, we are unable to assess all

implications this might have on optimization algorithms and the back_end, which has to reconstruct valid

control flow. However, we consider VDGs an interesting topic for future research.

48

Guarded Single_Assignment Form

Guarded single_assignment (GSA) form is the intermediate representation used in our optimizing Oberon_2

compiler OOC2. It combines a high_level representation of control_flow, namely guarded instructions, with

instruction lists at the machine level and a static data flow graph. All information is combined in a single

graph.

The representation has been inspired by the program dependence web, but includes the innovation

of merge instructions to model confluence of control predicates, and has been simplified to serve the

requirements of structured programming languages. It can be generated in one pass while parsing the

source program and thus can replace all other intermediate representations used in optimizing compilers.

The next chapter will discuss the GSA representation in detail and describe how it can be generated.

5.5 Discussion

Table 5.1 classifies several used or proposed intermediate representations according to the above

mutually independent attributes. OP2 is the portable Oberon_2 compiler [Crel91] using an abstract syntax

tree to achieve separation of front_end and back_end and thus portability of the front_end. Optimization

algorithms were not considered in its design. GNU CC [Stall94] is based on traditional control_flow and

data_flow frameworks, and spends a lot of effort to ensure portability, both to other source languages

and other target machine architectures. OOC2 takes the opposite route in several respects, with the goal

of reducing the complexity of optimizing compilers significantly. It combines the most recent results in

optimizing compiler research and provides very clean semantics that makes all dependencies explicit. By

restricting the source language to structured languages, it achieves clean semantics in the intermediate

representation, and avoids complex graph algorithms in the front end. The machine_dependent

intermediate representation allows omitting the translation from the intermediate level operators into

real machine instructions.

OOC2 guards guarded single assignment machine language

PDW CDG gated single assignment unspecified

PDG CDG multi_assignment / SSA unspecified

GNU CC CFG multi_assignment sub_machine language

OP2 AST control structures multi_assignment source language

control flow data flow operator level

Table 5.1: Classification of intermediate representations.

6 Guarded Single_Assignment Form

This chapter discusses what guarded single_assignment form as used in OOC2 looks like in detail. Besides

presenting example programs in GSA form, it will be shown how instructions, control structures, data

accesses, procedure calls, and aliasing effects are modeled.

Every procedure is translated into a list of instructions in GSA form, of which some may represent

structured statements using guards and merges.

There are some points to know about how to read listings of GSA form. An instruction consists of

an opcode followed by a list of operands. An operand can be a constant, a variable, a type, or a result of

another instruction. Each instruction has a number identifying it, which can also be used to reference its

result by writing it within parentheses. If there are multiple results, a second number separated by a

colon is used to identify the result referenced. The first result has the number 1, and does not have to be

explicitly specified.

Instructions that represent predicates controlling execution include a colon at the end of the opcode.

For better identification, they are printed in italics. Instructions whose execution is controlled by such

predicates are printed below them, indented appropriately.

If the result of an instruction is assigned to a variable in the source, the name of that variable will be

printed on the left. Note, however, that this is only for readability purposes, and that this information is

not used by the compiler in any way.

Instructions

Instructions are represented by an opcode node, operand nodes, and result nodes, all chained together

(Figure 6.1). There are links to support the following important tasks.

− For an operand or result, find the instruction it belongs to. For an instruction, traverse all its

operands or results.

− For an instruction, find the control_condition (region), under which it is executed. For a region,

traverse all instructions that are executed under its control.

− For a region, traverse all regions that are nested in it.

− For an operand, find the place where it is defined, which can be either a result, a constant, or a

variable. For a result, constant, or variable, traverse all operands where it is used (use_chain).

Furthermore, there are type_ and location_attributes (see below) for all operands and results. Results

additionally contain a general purpose field info, which can be used by optimization algorithms to store

arbitrary attributes.

50

opcode

result
0

result1 operand0 operand1 operand2

Figure 6.1: Representation of an instruction.

6.1 Control Structures

Guards and merge instructions are the building blocks for representing control structures. Both control

the execution of a statement sequence, and are commonly referred to as regions. In addition, there is one

global region greg representing the body of the procedure, which will always be executed. It contains the

instructions at the outermost level. Note that regions are special instructions that participate in

instruction lists just like ordinary instructions.

Guards

Guards represent predicates controlling the execution of statement sequences, and are simultaneously

paths through the program. Which view is used depends on the context. In contrast to the presentation

in Chapter 5, guards do not take a boolean value as operand and check it for being TRUE or FALSE, but

rather take the result of a comparison (a condition code) and determine whether a certain condition

holds. This more closely models the comparisons and conditional branches of the PowerPC architecture.

Possible conditions are listed in Table 6.1.

guard if_eq: if_neq: if_less: if_gteq: if_gtr: if_lseq:

condition = # < >= > <=

Table 6.1: Mapping of conditions to guards.

Merges

Merges combine several predicates by Or_ing them. They are used to model short_circuit evaluation in

Oberon, and to provide a list of predicates to gates, determining which operands are selected in the gate.

The n_th operand of the merge corresponds to the (n+1)_th operand of the gate being returned as the

result. For practical reasons, the compiler distinguishes between c_merges for Or_ing conditions, i_merges

for terminating If_statements, and l_merges for closing loops.

If_Statements

As shown in Chapter 5, simple If_statements are modeled using one guard for the THEN_ and ELSE_paths

each, and an i_merge operation to combine the paths at the end. This i_merge operation serves as the

predicate operand for succeeding gates. Note that the guards for the respective paths always specify

exactly complementary conditions.

For a compound condition with And operators, the guards are nested according to the order of the

operands from left to right, reflecting the short_circuit evaluation of Oberon. Or_ed conditions are

modeled using c_merge instructions combining two paths.

51

In If_statements with ELSIF_clauses, two guards obviously cannot be sufficient. Furthermore, the semantics

of Oberon require that the conditions are evaluated in source order. As soon as a condition evaluates to

true, the corresponding statement sequence must be executed and the remainder of the If_statement be

skipped.

IF cond0 THEN stat0
ELSIF cond1 THEN stat1
ELSE stat2
END

If, in the above example, cond0 would evaluate to TRUE, stat0 would have to be executed and cond1 as

well as all the rest would have to be skipped. In other words, cond1 must only be executed if ˜cond0. This

can be expressed by nesting the evaluation of cond1 into the guard ˜cond0, which in fact would even be a

valid transformation at the source level.

IF cond0 THEN stat0
ELSE (* ˜cond0 *)

IF cond1 THEN stat1
ELSE stat2 (* ˜cond1 *)

END

END

All complex If_statements are transformed into such a nesting of simple If_statements. Figure 6.2 shows a

simple If_statement with a compound condition and its corresponding GSA form.

IF (0 < a) & (a < 100) THEN a := a * 10 ELSE a := a DIV b END

(1) greg:

(2) cmp 0, a

(3) if_less: (2) ; 0 < a

(4) cmp a, 100

(5) if_less: (4) ; a < 100

(6) a := mul a, 10

(7) if_gteq: (4) ; a >= 100

(8) if_gteq: (2) ; 0 >= a

(9) c_merge: (8), (7) ; (0 >= a) OR (a >= 100)

(10) a := div a, b

(11) i_merge: (5), (9)

(12) a := gate (11), (6), (10)

Figure 6.2: An Oberon If_statement and its corresponding GSA form.

While_ and Repeat_Loops

Loops are represented with an l_merge node representing the loop header, which controls execution of

the loop body. The l_merge combines the path leading to the loop and the path leading back from the

end of the loop. The difference between a While_statement and a Repeat_statement is as follows. In a

While_statement, the predicate is evaluated at the beginning, and it guards the execution of the statement

body. In a Repeat_statement, the predicate is evaluated at the end and the statement body precedes it.

Figures 6.3 and 6.4 present two simple counting loops and their GSA form.

52

WHILE i < 100 DO i := i + 1 END

(1) greg:

(2) l_merge: (1), (5)

(3) i := gate (2), i, (6)

(4) cmp (3), 100

(5) if_less: (4)

(6) i := add (3), 1

(7) if_gteq: (4)

Figure 6.3: An Oberon While_statement and its corresponding GSA form.

REPEAT i := i + 1 UNTIL i >= 100

(1) greg:

(2) l_merge: (1), (6)

(3) i := gate (2), i, (4)

(4) i := add (3), 1

(5) cmp (4), 100

(6) if_less: (5)

(7) if_gteq: (5)

Figure 6.4: An Oberon Repeat_statement and its corresponding GSA form.

Other Control Structures

Even though we have not implemented Case_statements in OOC2, we would like to sketch how they may

be represented. Note that a Case_statement has similar properties as an If_statement, but does not select

a path according to a boolean value, but rather according to a numeric value serving as index of a list L of

statement labels. We propose to introduce a special case_guard taking E and L as parameters, and causing

execution of the nested instructions if E N L. Since there can be more than two paths through a

Case_statement, merges and gates with variable numbers of operands would be required as well.

Guarded single_assignment form does not directly support unstructured flow of control like in Exit_

and Return_statements. For a more detailed discussion, see Section 7.4. Since Exit_statements are not

supported in OOC2, Loop_statements were omitted as well.

6.2 Access to Structured Data

So far our GSA framework has only dealt with references to scalar variables. For structured variables,

operations to access only a part of a variable are required. As proposed by [CFRWZ91], we use access_

and update_instructions for this purpose.

Access_instructions allow the extraction of an item of the structured variable, which is a field in case

of a record variable, or an array element in case of an array variable. The parameters are the variable to be

accessed, the computed address of the item, and either the field offset of a record, or the indices used to

access the array. The following example presents both kinds of accesses.

x := r.f (1) add adr_r, offset_f

(2) x := access r, (1), offset_f

53

y := a[i] (3) trapw >=u, i, LEN(a)

(4) mul i, elsize_a

(5) add adr_a, (4)

(6) y := access a, (5), i

There is some redundancy in using both the computed address, the variable, and the offset or index

values as operands. However, the variable is required in further analysis steps, and the offset or index

values are helpful in distinguishing between accesses to different parts of the variable. On the other hand,

the code to compute the address has to be emitted at some point in time, and if it is to be optimized as

well, it should be present right from the beginning. Eventually access_instructions will be translated into

machine loads, at which point superfluous offset_ and index_parameters will be discarded.

Assignments to record fields or array elements are modeled in a similar way by update_instructions.

In addition to the parameters of access_operations, they include an operand representing the value with

which the field or element is to be updated. Conceptually, the result of an update_instruction is a new

structured variable with the specified item updated, which is then assigned to the original variable.

r.f := x (1) add adr_r, offset_f

(2) r := update r, (1), offset_f, x

Assignments to a structured variable are modeled as assignments of the whole variable. This is a

conservative treatment, as without precise information about the item accessed, it is not known which

accesses to the variable are affected by the assignment. Thus, the pessimistic assumption is made that the

whole variable is modified. Note that subsequent accesses will use the updated value, as shown in the

following example. For clarity, the address computations have been omitted.

x := a[i] (1) x := access a, adr1, i

a[j] := y (2) a := update a, adr2, j, y

z := a[i] (3) z := access (2), adr1, i

If instruction (3) would not use the updated array but the original one, a common subexpression

elimination algorithm would find instructions (1) and (3) to be congruent, even though the accessed

array element may have been changed by the update. Without further information about i and j, the

whole array must be assumed to be updated. In fact, the redundant index_ and offset_operands have been

included to allow optimization algorithms to disambiguate such references.

Note that update_instructions will be translated into machine stores and do not really assign the

whole structured variable.

If the structured variable is anonymous, such as in an access through a pointer, no variable can be

specified as the first operand. In this case, the type of the structured variable is used as a placeholder. This

maps all anonymous variables of the same type onto one parameter, which also is a conservative

solution. If two pointers P and Q point to the same object, an assignment through P will also change the

variable seen through Q. In the next access through Q, the updated value will be used as an operand,

conservatively assuming that it has been changed.

In a programming language such as Oberon, there are also memory accesses to meta_information

like type descriptors or type tags, and many implementations will include accesses to constants or

module_linkage pointers in memory. Note that they do not belong to any variable or type, and that they

are never written by the program. In access_instructions, special meta_variables are used as placeholders

for the first parameter in such cases, one for each kind of meta_information. Common subexpression

elimination will be able to remove redundant accesses.

54

6.3 Aliasing

Two designators are called aliases, if they are not identical but refer to the same storage location. In

Oberon, aliases occur in conjunction with pointers and VAR parameters.

PROCEDURE p (VAR x, y: INTEGER);

BEGIN

x := x+1; y := y+1

END p;

If the procedure is called as p(a, a), x and y will refer to the same variable inside p, and the observed effect

would be that a is incremented twice. We call multiple names referring to the same storage location

aliases, i.e. x and y are aliases in this scenario. If p were called with two different parameters, no such

aliasing would occur, and two different variables would be incremented.

When looking just at procedure p, it is unknown whether x and y are aliases or not, since this

depends on the actual parameters passed to p. In this case, we call x and y may_aliases. They are

must_aliases if they are known to be aliases or no_aliases if they are known not to be aliases, respectively.

Note that the outlined translation of p to GSA form would yield incorrect results in the case of x and

y being aliases.

x1 := x0 + 1;

y1 := y0 + 1

In GSA form, the effects of aliasing have to be expressed using assignments. If a designator is assigned, all

designators that are must_aliases have to be assigned the same value. If there are may_aliases, they may

receive the new value or keep their original one, which is expressed using a selector function [CyGe93].

x1 := x0 + 1;

y1 := MayAlias(x, y, x1, y0);

y2 := y1 + 1

The meaning of the MayAlias function is: If the first two operands refer to the same memory location,

select the third operand, otherwise the last operand. Note that the first two operands are the objects that

may alias, and not the current values of these objects. The addresses of these objects determine whether

the third or the fourth operand corresponds to the result.

At the machine level, the MayAlias function can be turned into a no_op by requiring the third and

fourth operand being in their home memory location, the location into which a simple compiler would

store them. If x and y are aliases, requiring x1 and y0 to be in memory guarantees that x1 has overwritten

y0, and the fetch of y1 will yield the correct value. Alternatively, the MayAlias function can be

implemented by explicitly comparing the addresses and conditionally assigning the values, which may

yield better code on some machines.

If there is an assignment to a potentially aliased variable v, MayAlias functions have to be generated

for each variable that may be aliased to v. In programs making heavy use of reference parameters and

pointers this can have a large impact on the size of the intermediate representation.

In OOC2, the MayAlias function is split into an address_compare function, and a selection function.

This models more closely the translation of MayAlias functions using a compare and a conditional

assignment. The address_comparison can often be propagated out of loops, or simplified in conjunction

with optimizations on addressing code.

55

6.4 Locations

There are situations in which variables have to be in certain locations. For example, when a value is

passed as a parameter to a procedure, it must be in the register or stack location that the calling

convention dictates. If a variable is passed by reference, the most recent value computed for it must be

stored at the address that is passed. Within a procedure, parameters are initially found at the location

given by the calling convention. If MayAlias nodes are to be transformed into no_operations, both

parameters and the result must be allocated in their home memory locations. Furthermore, there are

certain instructions that deliver results in special registers; for example ALU_operations with the

record_option return their condition code into CR0.

In order to model these requirements, all operands and results have a location attribute specifying

allocation constraints. The constraint can be none, a certain register class, a certain register, or a memory

location. The concept has been generalized to include other operations as well. For example, integer

operations in the PowerPC architecture read their operands from integer registers and write their result to

an integer register. Thus, the operands and the result are constrained to the class of integer registers.

The compiler includes an algorithm that traverses all uses of all values, introducing appropriate

move_operations where constraints are not satisfied, and resolving conflicts where multiple values

compete for the same location.

6.5 Procedure Calls

Procedure calls are modeled as call_instructions, which take as operands the procedure to be called and

the parameters to be passed. For scalar value parameters the computed results will become the operands.

For parameters passed by reference, that is VAR_parameters and structured value parameters, both the

computed address and the actual variable are used as operands. The reasoning behind using both is

similar as for modeling memory accesses. The address computation should be exposed to the optimizer

and represents the data that will finally be passed to the procedure. The actual variable is required to

guarantee the correct value flow, as exemplified in the next listing.

PROCEDURE P (VAR x: INTEGER);

END P;

PROCEDURE Q;

VAR y: INTEGER;

BEGIN

y := 10; ...

y := 20;

P(y)

GSA_listing for Q:

(1) greg:

(2) y := id 10

...

(4) y := id 20

(5) add FP, offset_y

(6) call P, (5), (4)

If instruction (4) were not used as an operand in the call_instruction, one of the following errors could

happen. The optimizer may find instruction (4) to have no uses at all and delete it. Even if there were

other uses of it, the optimizer may move it behind the call, thus passing the previous value of y to P.

Finally, the compiler may decide to keep y in a register and to not update its home memory location −

e.g. on the stack − which is the location accessed by P.

56

The last error cannot be avoided simply by using the actual variable as operand of the call. However, by

constraining the operand to its home memory location, the optimizer will make sure that the correct

value is actually stored before the procedure is called. The calling convention itself is satisfied by

constraining all parameters to the dictated location, be it a register or a position on the stack. If auxiliary

items like static links or static base pointers are to be passed, they are represented as ordinary

parameters.

The effects of calling P on the variables seen in Q has not yet been modeled. P may modify y which

has been passed as VAR_parameter, or assign variables that are accessible from both scopes. In GSA form,

these modifications must also be expressed by assignments to the corresponding variables in Q.

For the following, assume that the set of variables assigned by P is known. For each variable v in this

set, a new result node will be added to the call and assigned to v. Thus, if there are N variables modified

in P, a call to P will become an instruction with N results. If P in the above example assigned to the

variables y and a, the complete form of the call would be as follows. Note the added location attributes in

its operands and results.

(6) y:locy, a:loca := call P, (5):R3, (4):locy

In case the set of variables assigned by a procedure is not known, the pessimistic assumption must be

made that everything could be assigned. In order to model this, a pseudo_variable $mem is introduced,

which aliases with everything. Calls to such procedures assign to $mem, and cause MayAlias assignments

to be introduced for all variables. Note that at assignments to $mem, there is a consistent view of

memory, which is identical to the one a non_optimizing compiler would have generated.

The compiler must also make sure that variables accessed from both P and Q are in their home

memory location before calling P. If the set of these variables is known, they can be appended as

operands to the call_instruction, receiving an appropriate location_attribute. Again, if this set is not

available, all variables must be put in their home memory location. Instead of adding them all as

operands to the call, a consistent view of memory is generated, assigned to $mem, and $mem is used as

an operand.

Generating a consistent view of memory requires to collect the last assignments for all variables

since the last consistent view, that is the last assignment to $mem, and to store them into their home

memory locations. This is achieved by a special collect_instruction, which includes all such assignments as

operands attributed with appropriate locations. The result of this instruction is assigned to $mem.

The call to a parameter_less procedure C, of which neither the set of accessed nor the set of assigned

variables is known would then be represented as follows.

(11) $mem := collect ... ; some variables

(12) $mem := call C, (11)

... ; some MayAlias functions

The same mechanism is used to model the effects of the SYSTEM_procedures GET, PUT, MOVE, and BIT,

which can access arbitrary locations and therefore also require a consistent view of memory.

6.6 Procedure Prolog and Epilog

In the previous section it has been discussed, how the calling convention of the target architecture is

supported with location attributes on the side of the caller. A similar mechanism is used to model the

calling convention on the side of the callee.

Each procedure starts with an enter_instruction and ends with a return_instruction. The

enter_instruction includes a result for every item passed from the outside to the procedure, be it

parameters, the return address, the stack pointer, static or dynamic links, and static base pointers. Every

result has a location attribute corresponding to the position at which it will be found at procedure entry.

57

The return_instruction uses as operands everything that is passed back to the caller or that is used in the

procedure epilogue. This includes the return_address and the dynamic link, as well as results returned.

Again, these values have location attributes according to the calling convention. Furthermore, every

variable outside of the procedure's scope that is assigned provides an operand. This way, all non_local

effects of the procedure are summarized in the return_instruction. This is exactly the information needed

in procedure calls to model their effect. Naturally, it is only available if the called procedure is statically

bound, within the same module, and has been translated before. In all other cases, the compiler assumes

that everything may be written by the call.

6.7 Ordering of Instructions

In intermediate program representations, instructions are usually ordered in the way a straightforward

compiler would have generated them, which is a valid execution order. If a multi_assignment language is

used, the meaning of an instruction even depends on its position, so the order is an (implicit) part of the

semantics. All optimization algorithms must make sure that this part of the semantics is preserved.

In GSA form, however, all dependencies are explicitly expressed, and the semantics of an instruction

are completely independent of its position relative to other instructions. Therefore, requiring the

instructions to be in a particular order is unnecessary. Since the instruction scheduling algorithm will

order instructions in a way that all dependencies are satisfied, placing any ordering constraints on other

optimization algorithms is an unnecessary replication of concern. As an example, if some instruction is

found to be loop_invariant, it can be moved to the region enclosing the loop. Where to insert it into the

instruction list would require to determine its dependencies on other instructions, and introduce a

significant overhead.

6.8 A Numbering Scheme for Fast Dominance Tests

There are several situations in which it must be tested, whether a region B is transitively nested in a

region A, that is, whether A &. B. For example, if a result has been computed in region A, it is available in

B if A &. B. Or if A and B are found to represent the same control condition, B will evaluate to true iff A &.

B and A # B.

The test could be performed by traversing the region nesting upwards from B until A or the root is

reached, but for deep nestings, this may be impractical. In the following we propose a simple numbering

scheme that allows us to determine dominance in a tree with two simple comparisons. The method is by

no means restricted to our nesting of regions, but can be applied to any tree.

1 1

2 2 3 3

2 4

1 5

6 6 7 7 8 8

6 9

1 10

Figure 6.5: A numbering for a tree.

58

The idea is to map the half_order of dominance onto the half_order of subrange inclusion. A parent node

is associated with a range of numbers that is the union of the ranges of all of its children plus a number

for the parent node. We further require that nodes at the same depth of the tree receive distinct ranges

(Figure 6.5). Then the following theorem holds.

Theorem: Let A and B be two nodes in a tree, with A.range and B.range corresponding to their respectively

associated ranges. Then A &. B [A.range J B.range .

Proof: By the first requirement for the associated ranges, A &. B ↑ A.range J B.range holds. It must be

shown that A.range J B.range ↑ A &. B also holds. Assume the contrary. Then there would be nodes A

and B, so that A.range J B.range, but not A &. B. There must be some node Z, for which Z &. A Y Z &. B,

and Z.range J A.range J B.range . Z has two children U and V, so that U &. A Y V &. B, U.range J A.range Y

V.range J B.range . Since U and V are at the same depth of the tree, U.range G V.range = F. But also

U.range J A.range J B.range Y V.range J B.range, U.range G V.range J B.range, contradicting our requirement

for nodes at the same depth. `

Such a numbering can be generated by traversing the tree in postorder, giving monotonically increasing

numbers N as ranges Ni..Nj to leaf nodes, where the first node receives N0, and the last node Nk. The

parent node receives the range N0..Nk+1. The numbering in the next subtree of the same level will start at

Nk+2. The following procedure implements this numbering.

PROCEDURE NumberTree (node: Node; VAR n: INTEGER);

VAR N: Node;

BEGIN

node.rangeL := n; (* store the lower bound *)

FOR each successor N of node DO NumberTree (N, n) END;

node.rangeH := n;

(* store the higher bound, which is also the number associated with node *)

INC(n)

END NumberTree;

After this numbering, a test whether a node is dominated by another translates into a simple subrange

check. More precisely, since there are no overlapping ranges, a check of the upper bound identifying the

node uniquely is sufficient.

PROCEDURE Dominates (X, Y: Node): BOOLEAN;

BEGIN

(* X &. Y[Y.rangeH N X.range *)

RETURN (X.rangeL <= Y.rangeH) & (Y.rangeH <= X.rangeH)

END Dominates;

This procedure corresponds to the reflexive definition of dominance. By excluding the upper bound from

the range, one can also implement the non_reflexive variant where required.

PROCEDURE DominatesNR (X, Y: Node): BOOLEAN;

BEGIN

(* X &. Y Y X # Y[Y N X.range−{X.rangeH} *)

RETURN (X.rangeL <= Y.rangeH) & (Y.rangeH < X.rangeH)

END DominatesNR;

59

6.9 Implementation Issues

In this section, we give a short overview of the modularization of our prototype compiler OOC2 and of

the data structure implementing guarded single_assignment form.

The compiler is based on the portable Oberon_2 compiler OP2 [Crel91] and shares its basic

structure. The front_end constructs an abstract syntax tree of the program, and then calls the back_end to

generate the code. The difference to other compilers based on OP2 as in [BCFT92] lies in the introduction

of a GSA phase. Instead of directly emitting machine code, OOC2 generates a GSA representation for each

procedure (GSA phase), calls optimization algorithms, and finally emits the code (back_end). Figure 6.6

shows this structure.

OOCS

OOCT

OOCB

OOCP

OOCM OOCD

front end

OOCC

OOCV

GSA phase optimizations

OOCEC

back end

OOC2

Figure 6.6: General structure of OOC2.

The front_end modules have not been changed: OOCM provides the host machine interface, OOCS and

OOCP implement the scanner and parser, respectively, OOCT is the symbol table handler, and OOCB builds

the abstract syntax tree. OOCV traverses the tree in order to generate the GSA representation by calls to

the code generator OOCC. Module OOCD implements the abstract data structure for the intermediate

program representation. Type extension has been used to model the structure. Figure 6.7 depicts the type

hierarchy.

60

Info

Node

Usable Opnd

ConstAddressable Result

Object Struct Instruction

Region

Guard Merge

Gate

Opt_Specific

Figure 6.7: Type hierarchy in OOCD (an arrow from A to B corresponds to B extending A).

The hierarchy follows the is_a relation. For example, either constants (Const), results (Result), or

something addressable (Addressable) can be used in computations, and thus represent Usables. Regions

are special instructions, and can be further specialized into guards and merges.

The Info_type at the root is empty and has been introduced to support optimization algorithms.

Results include an info_field of this type, which can point to any object of the data structure, or to

optimization_specific attributes in types derived from Info.

As we have seen above, there are various lists maintained in the data structure. There is a list of

instructions for each region, a list of operands and results for each instruction, and a list of uses for each

Usable. In OOCD, all of the lists have been implemented as double_linked lists in order to allow for rapid

traversal and rapid deletion. For the list of instructions and the list of uses, deletions or movements are

frequent operations, which can be implemented efficiently only in double_linked lists, while for operands

and results, a single_linked implementation may suffice.

OOCD provides procedures for all kinds of modifications to the data structure. The fields

implementing the linked lists are exported to allow for quick traversal, but should be considered

read_only outside of OOCD. The most important operations are shown in the following excerpt.

61

DEFINITION OOCD;

(* operations on instructions *)

PROCEDURE OpenInstruction (instr: Instruction); (* initialize *)

PROCEDURE OpenGate (gate: Gate); (* initialize *)

PROCEDURE Insert (region: Region; instr: Instruction);

PROCEDURE Delete (instr: Instruction);

PROCEDURE MoveInstruction (to: Region; instr: Instruction);

(* operations on regions *)

PROCEDURE OpenRegion (region, parent: Region);

PROCEDURE CloseRegion (region: Region);

PROCEDURE MergeRegions (region, tomerge: Region);

(* combine two equivalent regions *)

(* operations on operands *)

PROCEDURE Operand (instr: Instruction; VAR x: Item);

(* add the operand x, evaluating a variable to its last definition *)

PROCEDURE OperandQ (instr: Instruction; VAR x: Item);

(* add the operand x, do not evaluate variables to their last definition *)

PROCEDURE DeleteOperand (opnd: Opnd);

PROCEDURE ReplaceOperand (opnd: Opnd; VAR x: Item);

(* miscellaneous *)

PROCEDURE ReplaceUses (of, with: Usable);

PROCEDURE GetConstant (VAR x: Item; val: LONGINT; type: Struct);

(* find the Const node corresponding to val *)

END OOCD.

Many optimization algorithms both traverse and modify these lists at the same time, which can cause

many problems. For example, when traversing a list of instructions and deleting some of them, it must be

ensured that the instruction at the current position is not deleted before proceeding to the next. OOCD

tries to catch such errors by resetting the links of deleted elements to NIL. However, all such problems

cannot be caught at this level, and extreme care must be taken when simultaneously traversing and

modifying a list.

7 Generating Guarded Single_Assignment Form

Guarded single_assignment form can be generated directly while parsing the source program if the

program contains structured control flow only. For practical reasons, our compiler uses the portable

Oberon_2 front_end OP2 [Crel91], and thus generates GSA form from the abstract syntax tree. However,

this intermediate step is by no means required. This chapter describes the direct method.

It is assumed that the reader is familiar with single_pass parsing and code generation techniques as

described in [Wirth86b] and [BCFT92]. In single_pass compilers, the parser directly calls code generation

procedures when a source construct has been recognized. These code generation procedures write a

machine code pattern matching the construct to a code array, which will finally be written to the object

file. Only minimal amounts of context information are used to select the code pattern. The required

information for operands, such as their type and their location, is passed in so_called items, which are

records completely describing the operand.

Our optimizing compiler uses the same techniques to generate its intermediate data structure, but

instead of emitting machine code to an array, it generates instructions into control regions. The selection

of code patterns and the passing of attributes in items are similar. The differences are as follows.

− The region into which the instruction is to be placed is passed as a parameter to

code_generation procedures. Since many different parts of the parser call the code generator,

this information must also be passed between parser routines.

− Instead of branches, guards and merges are generated and used as regions into which

instructions are to be placed.

− As required by GSA form, operands directly reference their defining result. Where necessary,

gates are introduced. The following sections describe how this can be achieved.

− A separate graph is generated for each procedure.

In OOC2, module OOCC generates the data structure, relying on the operations provided by OOCD, as

described in Chapter 6.

7.1 Translating Straight_Line Code

Generating intermediate code for expressions and other simple statements works like in single_pass

compilers. Operands are evaluated and passed to operations as items, and instructions are generated and

inserted into the current region.

The following listing shows how the parser recognizes simple expressions of the form

SimpleExpression = Term ("+" | "−") Term .

and how the code generator routine Add creates the corresponding code pattern.

64

PROCEDURE SimpleExpression (region: Region; VAR x: Item);

VAR y: Item; op: Symbol;

BEGIN

Term(region, x);

IF (sym = plus) OR (sym = minus) THEN op := sym; GetSym(sym)

ELSE Error

END ;

Term(region, y);

IF op = plus THEN Add(region, x, y)

ELSIF op = ...

...

END SimpleExpression;

PROCEDURE Add (region: Region; VAR x, y: Item); (* x := x + y *)

VAR instr: Instruction;

BEGIN

NEW(instr); OpenInstruction(instr);

instr.op := add; Operand(instr, x); Operand(instr, y);

Insert(region, instr);

x.node := instr

END Add;

In order to get the program into single_assignment form, the compiler has to keep track of the most

recent assignment to a variable. This information can conveniently be stored in the symbol table.

Whenever a variable is assigned, this information is updated in the variable's object node in the symbol

table. When a variable occurs as an operand, its most recent definition is fetched from the object node

and used as the actual operand. A variable suffixed with its most recent definition is called the current

value of the variable, or value for short. Figure 7.1 shows straight_line code, its single_assignment form, and

the changes in the symbol table during compilation.

a b x y z

(1) a := 5 (1) a1 := 5 (1) − − − −

(2) x := a + 1 (2) x2 := (1) + 1 (1) − (2) − −

(3) y := a + 1 (3) y3 := (1) + 1 (1) − (2) (3) −

(4) a := b * 2 (4) a4 := b0 * 2 (4) − (2) (3) −

(5) z := a + 1 (5) z5 := (4) + 1 (4) − (2) (3) (5)

Figure 7.1: Straight_line code, its static single_assignment form, and changes in the symbol table during its

translation.

7.2 Translating If_Statements

In GSA_form, a simple If_statement with no Elsif_clauses corresponds to two guarded regions for the Then_

and Else_branch, and a merge_instruction combining the paths. After evaluating the condition, these

regions can be generated. The statement_sequences of the Then_ and Else_paths are placed into the

regions corresponding to the condition being True and False, respectively. As described in Chapter 6,

Elsif_clauses are translated into If_clauses in the Else_path.

65

PROCEDURE IfStatement (region: Region);

VAR cond: Item; truePath, falsePath, merge: Region; nested: BOOLEAN;

BEGIN

(* sym N {if, elsif} *)

nested := sym = elsif;

GetSym(sym);

Condition(region, cond);

SplitPaths(cond, truePath, falsePath, merge);

CheckSym(sym, then);

StatementSequence(truePath);

ResetIfMerge(merge); (* see below *)

IF sym = elsif THEN IfStatement(falsePath)

ELSIF sym = else THEN GetSym(sym); StatementSequence(falsePath)

END ;

CommitIfMerge(merge); (* see below *)

IF ˜nested THEN CheckSym(sym, end) END

END IfStatement;

Obtaining the single_assignment property for If_statements is based on the following observations: If the

current value of variable v is vk at the beginning of the If_statement, vk will be the initial value on both

paths through the If_statement, no matter what is assigned to v in the other paths. That is, the state of the

symbol table is the same for the beginning of each path. Moreover, a rule concerning the placement of

gates can be given.

Theorem: Let P and Q be the two paths through an If_statement, with corresponding merge node M. If P

or Q contains an assignment to variable v, a gate for v will be needed at M.

Proof: Assume vk is the current value of v before the If_statement, P contains an assignment to v leading

to vl, and Q contains no assignment to v. At M, there will be both vk and vl as current values of v, which

have to be combined into one. On the other hand, if there is also an assignment to v in Q, a new current

value vm being different from vk will reach M, thus also requiring a gate. The case where P contains no

assignment to v while Q does is symmetric to the first case. `

Based on this theorem, a gate can be created as soon as an assignment to a variable is compiled in either

path. If there already is a gate for the corresponding variable in the merge node, its operands are updated

to reflect the most recent definition along that path. This functionality can be implemented in the code

generation procedure for assignments, as shown below.

Since changes to the symbol table have to be undone after one path has been compiled, a place to

store the old value is required. Instead of keeping a copy of the whole symbol table, the old value is

stored in the gates of modified variables. Note that there is a gate for every modified variable. The

following listing shows a simplified implementation of the method.

PROCEDURE Assign (region: Region; obj: Object; VAR x: Item);

(* assign obj := x *)

VAR gate: Gate;

BEGIN

(* find the gate corresponding to obj in region.merge *)

gate := FindGate (region.merge, obj);

IF gate = NIL THEN gate := CreateGate (region.merge, obj) END ;

(* replace the gate operand corresponding to region with x *)

ReplaceGateOperand (gate, region, x);

obj.current := x.node

END Assign;

66

PROCEDURE CreateGate (merge: Region; obj: Object): Gate;

VAR gate: Gate;

BEGIN

NEW(gate); OpenGate(gate);

gate.op := gat; Operand(gate, merge);

(* initial operands *)

Operand(gate, obj.current); Operand(gate, obj.current);

gate.obj := obj; (* record which variable this gate corresponds to *)

gate.oldValue := obj.current; (* save the old value of obj *)

Insert(merge, gate);

RETURN gate

END CreateGate;

After the Then_path has been compiled, the symbol table has to be reset to the old values. This can be

performed by traversing all gates in the merge node, as in procedure ResetIfMerge.

PROCEDURE ResetIfMerge (merge: Region);

BEGIN

FOR all uses ofmerge in gates G DO G.obj.current := G.oldValue END

END ResetIfMerge;

When both paths have been compiled, the gates represent the new current values of assigned variables.

By assigning the gates to the corresponding variables, gates for the same variable at outer merge nodes

are correctly inserted or updated. This is the task of procedure CommitIfMerge.

PROCEDURE CommitIfMerge (merge: Region);

BEGIN

FOR all uses of merge in gates G DO Assign(merge.region, G.obj, G) END

END CommitIfMerge;

Note that at the topmost level of the procedure, no gates can be inserted for assignments as there is no

merge point with other paths. Instead, assignments to non_local objects are used in the return_node of

the procedure, which summarizes all non_local effects.

Translating Case_statements would follow the same pattern. After each variant, the symbol table

would have to be reset, and at the end, all gates would have to be committed. One important difference is

that the arity of the merge instructions and gates is not known in advance, as the number of paths

through the Case_statement is not known either. A method to increase the arity every time a new variant

is compiled has to be implemented to deal with this.

7.3 Translating While_ and Repeat_Statements

The translation of While_statements works very similarly to the translation of If_statements. At the

beginning, a loop merge instruction is generated, into which the loop_controlling condition is evaluated.

After splitting the paths, the true_path is made the second parameter of the loop merge, and all

instructions generated for the loop body are inserted into it. The false_path makes up the exit path.

When variables are assigned in the loop, corresponding gates are generated in the loop merge.

However, there are two important differences to the way gates are treated in If_statements.

− The loop merge combines the path leading into the loop and the backedge of the loop. Since

all assignments in the loop are on the path to the backedge, and not on multiple different

paths, it is never required to reset the symbol table.

− Not the gates in the loop header correspond to the most recent definition after the loop, but

the last definition before the exit. This information can be stored in the gates.

67

− At the time the gate for variable v is generated, there may already be accesses to v within the

loop. Initially, the referenced value is the last one defined outside of the loop, but now it has

to be the gate for v. These uses have to be modified accordingly (see Figure 7.2).

WHILE i < 100 DO i := i + 1 END

(1) greg: (1) greg:

(2) l_merge: (1), (4) (2) l_merge: (1), (4)

(7) i := gate (2), i, (6)

(3) cmp i, 100 (3) cmp (7), 100

(4) if_less: (3) (4) if_less: (3)

(6) add i, 1 (6) i := add (7), 1

(5) if_gteq: (3) (5) if_gteq: (3)

Figure 7.2: An Oberon While_statement and its corresponding GSA form; to the left before the assignment to i

has been compiled, to the right after the assignment. Changes are marked in bold.

At the time the exit_path is split off, procedure ExitLoop saves the current value for all variables assigned

so far. They will be made the current values again after the loop. For gates that are inserted later, the gate

itself represents the current value after the loop. Assume a gate for variable v would be inserted after the

exit path has been split off. In this case, there has been no previous assignment to v in the loop, in

particular no assignment between the loop merge and the exit path. Thus, the gate for v corresponds to

the last assignment to v before the exit, and represents the current value of v after the loop.

PROCEDURE ExitLoop (lmerge: Region);

BEGIN

FOR all uses of lmerge in gates G DO G.exitdef := G.obj.current END

END ExitLoop;

The renaming of accesses to a variable within a loop after a gate has been inserted can be accomplished

by procedure FixupLoopGate, which is called by Assign. Let the assigned variable be v, its value before the

loop vk, and the newly assigned value vm. When the gate is created in the loop merge, its operands will

be the merge, vk and vm, and its result will be vn. All uses of vk within the loop − that is, uses in regions

that are dominated by the loop merge − will be replaced by uses of vn, except for the use in the gate

itself.

PROCEDURE FixupLoopGate (lmerge: Region; gate: Gate);

BEGIN

old := second operand of gate;

new := gate;

FOR all uses U of old DO

IF (U.instr # gate) & Dominates(lmerge, U.instr.region) THEN

ReplaceOperand(U, new)

END

END

END FixupLoopGate;

Note that this procedure requires copy assignments to be left in the code. That is, if some variable i is

assigned to j, a copy instruction has to be generated, instead of just letting both objects reference the

same computation. Consider the following piece of code.

68

i := ...;

j := i;

WHILE cond DO ... i+j ...; i := i+1 END

If i and j would refer to the same computation c before the loop, the assignment to i in the loop would

cause all uses of c to be renamed to the gate, which would erroneously rename the original use of j. For

this reason, the use_chains of different variables have to be kept separate, namely by introducing a copy

instruction which is referenced by the j object. These copy instructions will later be removed by an

optimization step called copy propagation.

At the end of the loop, the values stored in the gates as exit values are copied into the

corresponding objects as current values.

The translation of Repeat_statement works exactly the same and uses the same procedures. The only

difference is that the exit path is determined at a different time.

7.4 Dealing with Unstructured Control_Flow

In Oberon, there are two forms of unstructured control_flow: Exit_ and Return_statements. Since they

correspond to a branch to the end of the loop or the end of the procedure, respectively, they cannot be

directly expressed in GSA form. However, there is a simple method to rewrite such code into structured

form automatically in the compiler, which we will outline in the following section. For the sake of

simplicity, we discuss Exit_statements only, but exactly the same methods can be used to deal with

Return_statements.

The basic idea is to introduce a boolean variable $exit for each Loop_statement, which indicates

whether an exit from the loop has been performed. Obviously, $exit is initialized to False. Exit_statements

are translated into assignments of True to this variable. All subsequent statements after an Exit will then

be guarded by $exit being False, that is, they will only be executed if no Exit_statement has been executed.

If a loop backedge is encountered, it also becomes guarded by this variable, which prepends $exit to the

conditions controlling execution of the loop. Figure 7.3 shows an example for such a transformation in

source form, with changes marked in boldface.

The translation includes some overhead in form of repeated checks of the $exit variable. However,

much of this overhead can be eliminated by optimization algorithms. We have seen in Chapter 5 that

repeated uses of the same condition will be found and the branching structure can be optimized. This

optimization does not only help to improve the above code, but also makes it useless to write

unstructured code with the intention of improving performance. The corresponding structured code will

be optimized so that it executes as fast as the unstructured code.

$exit := FALSE;

LOOP REPEAT

stat0; stat0;

REPEAT REPEAT

IF cond0 THEN IF cond0 THEN

EXIT $exit := TRUE

END ; END ;

stat1 IF ˜$exit THEN stat1 END

UNTIL cond1; UNTIL $exit OR cond1;

stat2 IF ˜$exit THEN stat2 END

END UNTIL $exit

Figure 7.3: A Loop_statement and its structured translation.

69

The translation can easily be added to the parser. Upon encountering a Loop_statement, a new $exit

variable is generated and initialized to False. Exit_statements are translated into assignments to $exit.

When a statement sequence is compiled, it is determined for each statement whether it is an

Exit_statement or includes one. If it does, the remaining statements in the sequence are guarded by the

$exit variable.

Note that the property of containing an Exit_statement propagates through the parser procedures as

an exited_attribute. A simple statement sets exited if it was an Exit_statement, and a statement sequence

sets the attribute if there was at least one statement that exited. If_statements exited if any path through

them exited, as do Case_, While_ and Repeat_statements. A Loop_statement never exited, as you cannot

use Exit_statements to terminate multiple nested Loops. In all kinds of loops, $exit is prepended to the

loop_controlling condition when their statement body exited.

Return_statements differ in a couple of small issues. There is only one $return variable for each

procedure. If the procedure compiled is a function procedure, an additional variable is required to keep

the function result. The returned_attribute is also propagated through Loop_statements up to the

outermost region. Apart from this, the translation works the same.

The benefits of not having to deal with unstructured control_flow in the intermediate representation

have also been noted in [HDEGSS92]. In [ErHe93] corresponding methods to automatically rewrite

unstructured code into structured form have been described. Their approach differs from ours in that it

can deal with arbitrary control_flow due to goto_statements, but it is inherently multi_pass and needs

some representation that can express unstructured control_flow.

7.5 Alias Analysis

Aliasing effects are modeled by inserting MayAlias instructions into the code. When an assignment to a

designator A is compiled, such instructions for all other designators within the current scope which may

alias to A have to be generated. In the worst case, the number of MayAlias nodes is quadratic in the

number of designators accessed. Thus, the cost to generate them is quadratic in the size of the program,

assuming that the number of designators in a program is a linear function of its size.

Given such large numbers of nodes, and the negative impact they have on the optimization result, it

is of utmost importance to find designators which cannot be aliases. The strong type system of Oberon

and a couple of other properties of the language allow us to come up with a set of rules, telling when

two designators A and B cannot be aliases.

− A and B can only reference the same memory cell when A or B is a VAR_parameter, or both A

and B include a pointer dereferenciation.

− A and B must be alias_compatible in their types. Aliases are created by passing a designator to

a VAR_parameter, or by assigning a pointer to another. For both, the type compatibility rules

of Oberon must hold, and can be used in alias analysis.

− A VAR_parameter can only reference objects outside of its own scope − where we consider the

heap being a scope outside of the global scope − and a pointer can only reference objects in

the heap. Thus, a VAR_parameter does not alias to anything in its own or nested scopes, and

only VAR_parameters or other pointers can alias to objects referenced through pointers. In

particular, local variables of the currently compiled procedure are free of aliasing effects.

The notion of alias_compatibility is different from the one of type_compatibility. We say that two

designators are alias_compatible iff there is a way how the designators could be made to reference the

same memory location without violating type rules. However, due to the complex interaction between

type extensions and parameter passing rules, a precise definition of when designators are

alias_compatible is hard to give. For our purposes of avoiding superfluous MayAlias nodes, a pessimistic

set of rules describing when two designators cannot be aliases is sufficient. Two designators A and B are

not alias_compatible if any of the following points holds.

70

− A and B have different scalar types.

− A and B have structured types, and the type of A is not an extension of B's type, and vice versa.

− A is a VAR_parameter of pointer type and B is not of the same type.

− A is a VAR_parameter and B is of a record type which does not include a field of A's type.

This is only a small subset of all conditions under which two designators are not alias_compatible. It is a

matter of future research to replace it by a proven notion of alias_compatibility.

Note that in languages such as C where pointers are addresses that may point anywhere, including at

objects on the stack and in global storage, no matter whether their types are compatible or not, and in

which pointers can even be made to point into objects, none of the above rules hold. The compiler has

to start with the pessimistic assumption that objects accessed through pointers alias with everything, and

then prove that the address of some variables is never taken, which prevents them from aliasing with

pointers. In Fortran, it is not possible to determine at compile_time whether two variables in global

storage are aliases, as the overlaying due to EQUIVALENCE statements happens at link_time.

In OOC2 alias analysis is performed as follows. Whenever an assignment to a non_local object A is

compiled, all previously accessed non_local designators B are scanned and checked against the above

rules. If it could not be determined that A and B cannot alias, a MayAlias node is generated and assigned

to B. Note that this assignment to B does not trigger another scan for potentially aliased variables.

8 Optimizations

In this chapter, optimization algorithms on guarded single_assignment form as implemented in OOC2 will

be discussed. After looking at some general properties of such algorithms, several optimization

algorithms will be outlined.

8.1 General Properties

We have already seen in Chapter 2 that optimization algorithms are based on transformation rules. After

certain properties of a piece of code have been determined, transformations are applied to it. This is also

reflected in the structure of such algorithms. They include an analysis phase and a transformation phase.

Analysis Algorithms

The analysis phase finds attributes of computations or regions. An attribute describes some property of a

value, e.g. the value being constant, or the value being available at a certain point. In Chapter 5, we have

discussed the propagation of the availability_attribute in common subexpression elimination through

programs in multi_assignment form. A collection of attributes − one for each computation in the

considered program − is iteratively propagated through all paths of the program. This is a classical

data_flow analysis algorithm as described by Allen and Cocke [AlCo76]. Figure 8.1 shows its general form.

A single pass of this algorithm over the program may not be able to establish all desired properties.

When there are loops, there are also cyclic dependencies between computations. Whenever an attribute

of an instruction in such a cycle changes, the whole cycle must be reconsidered.

PROCEDURE IterativeDataFlowAnalysis (P: Program);

VAR v: AttributeVector;

BEGIN

init attribute vector v;

REPEAT

propagate v over P

UNTIL no more changes in v

END IterativeDataFlowAnalysis;

Figure 8.1: Iterative data_flow analysis.

Iterative data_flow algorithms can also be applied to programs in static single_assignment form. Iterative

methods have several shortcomings, which can be avoided in SSA form. First, the attribute of every

computation is propagated throughout the whole program, even though it may only affect a single use. If

72

the analysis is performed until a fixpoint is reached, a single change in the attributes will result in another

iteration of the analysis phase over the whole program. This makes the analysis unnecessarily inefficient.

Second, attribute vectors often have to be stored for each basic block or region so that the results on

different paths can be combined. These vectors require large amounts of memory, and the combination

of attributes consumes a lot of run_time.

PROCEDURE SparseDataFlowAnalysis (P: SSAprogram);

VAR worklist: LIST OF Instruction; instr: Instruction;

BEGIN

init attributes of all instructions;

add all instructions to worklist;

WHILE worklist not empty DO

fetch instruction instr from worklist;

compute attributes of instr;

IF attributes of instr were changed THEN

add uses of instr to worklist

END

END

END SparseDataFlowAnalysis;

Figure 8.2: Sparse data_flow analysis.

Better algorithms for static single_assignment form are based on the following observation: When the

attribute of some computation C changes, it is known that it can only directly affect the attributes in

instructions that use C. Instead of reiterating over the whole program after an attribute change in C, only

instructions which use C have to be reconsidered. This leads to the worklist_based algorithm in Figure 8.2.

Note that there is no longer an attribute vector, but one attribute associated with each computation.

This makes use of the property of SSA_form, that a value and its attributes are independent of the

position in the program. Thus, sparse data_flow analysis can only be applied to programs in SSA_form.

The algorithm is called sparse because it only reconsiders small fractions of the program after an attribute

change. It offers significantly better performance than iterative algorithms.

Pessimistic vs. Optimistic Algorithms

Assume some property P is the precondition for performing a transformation. It is desirable to find as

many instructions as possible for which P holds, iterating over the instructions until a fixpoint is reached.

Since programs can contain cyclic dependencies, the attributes of an instruction must be initialized

properly before initiating the propagation.

Before discussing how to initialize the attributes, we would like to point out that the attribute values

must change monotonically. That is, there must be an order_function on the attribute values, and it must

be assured that changes are only made in one direction. As an example, consider the problem of constant

propagation: The attribute values can be constant or non_constant. We only allow the attribute to change

from constant to non_constant, but not in the other direction. Alternatively, we could allow it to change

from non_constant to constant but not in the other direction. Without such a restriction, the attribute of an

instruction could toggle between both values, so that a fixpoint would never be found and the above

data_flow analysis algorithms would not terminate.

Obviously, the initialization value must be a value at one end of the attribute value ordering, and the

direction of change must lead to the other end. If we initialize with the desired property, we call the

algorithm optimistic. In constant propagation, this would correspond to setting all attributes to constant

in the beginning, optimistically assuming everything to be constant. The propagation would then find

instructions for which the optimistic assumption does not hold and change their attributes to

73

non_constant. On the other hand, if we start with the assumption that the desired property does not hold

− initializing to non_constant in constant propagation − we call the algorithm pessimistic.

Optimistic and pessimistic algorithms do not compute the same fixpoint in the presence of cyclic

dependencies, as the following example shows.

(2) l_merge: (1), (6)

(3) i := gate (2), 0, (5)

(4) add (3), 1

(5) add (4), −1

(6) cond

(7) if_true: (6)

In this program fragment, 1 and −1 are added to i, so that i is not changed in the loop. If constant

propagation starts with the pessimistic assumption that everything is non_constant, there is no way to

find any of the instructions in the cycle (3)_(4)_(5) to be constant. On the other hand, if it starts with the

assumption of everything being constant, it will be determined that (4) computes the constant 1, and (5)

corresponds to the constant 0. The gate (3) then combines the constant 0 twice and thus is constant as

well.

Note that the artificial nature of this example is due to its shortness and due to the simplicity of

constant propagation. We will later meet more realistic examples with similar properties.

Pessimistic algorithms have the advantage that they start with a conservative and safe assumption. If

they are not run until the fixpoint is reached, or if they miss some cases, the worst that can happen is that

the property allowing the transformation is not determined in places where it would hold, thus leaving

the code untransformed. Optimistic analysis procedures must always be run until a fixpoint is found and

must handle all cases correctly. Otherwise, invalid transformations will be applied to the program.

8.2 Copy Propagation

The code generation phase of the compiler introduced copy_operations for assignments of constants or

variables to other variables. Due to the single_assignment property, the assigned value cannot be

overwritten, thus it can be used directly instead of the copy. Copy propagation replaces all uses of

copy_instructions by uses of the respective operands on the right_hand side. This will not only remove

some superfluous copy_instructions, but it will also improve the effectiveness of other optimization

algorithms. In the following example, copy propagation enables a common subexpression elimination

algorithm to derive that instructions (1) and (3) compute the same value.

x := i + 1; j := i; y := j + 1

(1) x := addi i, 1

(2) j := copy i

(3) y := addi (2), 1

After copy propagation has been performed, the code looks as follows. Note that the copy instruction is

still present but not used anymore. It will later be removed by dead code elimination.

(1) x := addi i, 1

(2) j := copy i

(3) y := addi i, 1

Copy propagation is a simple algorithm that traverses all instructions, looking for copy instructions, and

replacing their uses.

74

PROCEDURE CopyPropagation (P: Region);

VAR R: Region; instr: Instruction;

BEGIN

FOR all regions R in P DO

FOR all instructions instr in R DO

IF instr.op = copy THEN ReplaceUses(instr, instr.opnd) END

END

END

END CopyPropagation;

In OOC2, this algorithm is run once after GSA form has been generated. Due to the renaming of values

after the insertion of gates in loops, copy instructions cannot be avoided altogether and hence this pass

is required to cleanup the code. However, no new copy instructions will be introduced by later passes.

In contrast to this, optimizers based on multi_assignment intermediate representations often require

copy assignments to temporary variables in order to avoid computed results to be overwritten. Consider

the following example.

a := x+1;

....

a := ...

b := x+1

The result of computation x+1 must be either recomputed for the assignment to b, or be assigned to a

temporary variable t before the second assignment to a overwrites it, thus introducing a copy assignment

between a and t. In such optimizers, copy propagation plays a crucial role in obtaining good code quality

and is run several times. Moreover, the precondition of the transformation is much more complex in a

multi_assignment framework, as all possibilities of overwriting a variable must be considered.

8.3 Procedure Inlining

Procedure inlining is the optimization of replacing the call to a procedure by the body of the procedure.

This does not only avoid the cost of calling and returning from the procedure, but also allows one to

optimize the inlined body together with the code of the original caller. Parameters do not have to be

moved to a special parameter passing area, but can be accessed directly. To other optimization

algorithms, the inlined operations are no different from the original operations in the procedure. For

example, this allows finding common subexpressions between pieces of code that originally were in

different procedures, or computing the result of operations on constant parameters at compile_time. It is

mostly this customization of the inlined code to the call site that makes inlining profitable.

In contrast to common expectations, inlining can also increase run_time, as it tends to increase code

size. For very small procedures, e.g. functions like MIN or MAX, inlined code is not larger than the code

for passing of parameters. In such cases, inlining is always profitable. For larger procedures, no simple

rule can be given, as the benefit depends on how much the inlined code will be improved, and how much

the code size increase affects the run_time. Many compilers use size heuristics to decide which procedures

to inline, e.g. IBM XLC [IBM90d] inlines procedures having less than 100 instructions in the intermediate

code. We have decided to leave the decision to the programmer and to let him mark procedures to be

inlined with a plus "+" sign. Size heuristics could easily be added, namely by marking small procedures as

inline_procedures after their intermediate code has been generated.

In order to get the benefits of customizing a procedure body without actually inlining the procedure,

procedure cloning has been implemented in some compilers [IBM94b]. Procedure cloning is an

optimization which generates multiple versions of a procedure, each adapted to a certain subset of call

sites. The IBM XLC compiler assumes that procedures being called with constant parameters would

benefit from cloning, in particular when these parameters are used to guide the control flow inside the

procedure. For such procedures, copies are generated with the parameter being replaced by the

75

appropriate constant. The call sites including this constant parameter are modified to call the copy

without that parameter. Other possible heuristics to select procedures for cloning could be derived from

alias analysis, creating different versions of procedures which are sometimes called with aliased

parameters and sometimes without, or from type analysis, when procedures are called with objects of

different dynamic type. The ideas behind procedure cloning are similar to the ones of partial evaluation,

which is a field of ongoing research [Sura93][Jones93][SeSo88].

In our compiler, inlining is performed while the caller is compiled. When a call to an inline

procedure is generated, a deep copy of the procedure's body is inserted at the current position,

parameters are connected to the uses in the copied body, and assignments to non_local variables

modified by the inlined procedure are generated. Deep copying is implemented as a simple recursive

algorithm. Since the copied data structure may include cycles, copying has to keep track of which objects

have been copied already, so that the appropriate connections can be made. The info_field is used for this

purpose, and initially is set to NIL. This field contains the reference to use in copies, or NIL if this

reference still has to be determined.

PROCEDURE Inline (region, proc: Region);

BEGIN

init info_fields of instructions in proc to NIL;

copy := DeepCopy(proc);

connect copy to region

END Inline;

Connecting the copy to the call site consists of putting the copy into the region of the call site, setting the

operands of the enter_instruction to the passed parameters, and assigning the results of the

return_instruction to the corresponding result variables.

In the following example, a function MIN returning the smaller of its parameters is to be inlined.

PROCEDURE+ MIN (a, b: INTEGER): INTEGER;

BEGIN

IF a < b THEN RETURN a ELSE RETURN b END

END MIN;

...

x := MIN(x+1, 100);

... x * 2

Applying the above procedure to this example, the following intermediate code will be generated. Copied

instructions are marked with an asterisk. Note that the numbering of instructions is not copied but

generated in the context of the callee.

PROCEDURE MIN:

(1) greg:

(2) a, b := enter a, b

(3) cmp (2), (2:1)

(4) if_less: (3)

(5) if_gteq: (3)

(6) i_merge: (4), (5)

(7) $ret := gate (6), (2), (2:1)

(8) return (7)

76

PROCEDURE Caller:

(1) greg:

...

(20) add x, 1

*(21) greg:

*(22) a, b := enter (20), 100

*(23) cmp (22), (22:1)

*(24) if_less: (23)

*(25) if_gteq: (23)

*(26) i_merge: (24), (25)

*(27) $ret := gate (26), (22), (22:1)

*(28) x := return (27)

(29) mul (28), 2

The inlined enter_ and return_instructions are only used as copy assignments like copy_instructions. By

applying copy propagation, they can be removed. Furthermore, instead of placing the instructions into an

inlined global region, they could be put directly into the enclosing region, and making the copied region

superfluous as well. As an improvement to the outlined algorithm, one can avoid copying the enter_ and

return_instructions and the global region node right from the beginning, and connect them directly by

initializing the info_field appropriately.

PROCEDURE Inline (region, proc: Region);

VAR res: Result; par: Node;

BEGIN

init info_fields of instructions in proc to NIL;

proc.info := region; (* use region as 'copy' of proc *)

FOR all results res of the enter_instruction

and the corresponding parameters par DO

res.info := par

END;

FOR all results res of the return_instruction

and the corresponding parameters par DO

Assign(res.defobj, DeepCopy(par))

END

END Inline;

As opposed to the first version, not the top_level region of the procedure is taken as the root to be

copied, but rather the operands of the return_instruction. Since the return_instruction summarizes all

visible effects of the procedure, all required operations will still be copied. Dead code, however, will not

be traversed and thus not be copied. The above example then looks as follows.

PROCEDURE Caller:

(1) greg:

...

(20) add x, 1

*(23) cmp (20), 100

*(24) if_less: (23)

*(25) if_gteq: (23)

*(26) i_merge: (24), (25)

*(27) x := gate (26), (20), 100

(29) mul (27), 2

77

Space for local variables of the inlined procedure is allocated in the stack frame of the caller, together with

the space for its own local variables. In the case of open arrays passed as value parameters to the inlined

routine, this would require to dynamically expand the stack frame. Due to the complexity involved in this,

OOC2 does not allow to inline routines with value parameters of open array type.

The other kinds of procedures which cannot be easily inlined are recursive and exported ones.

Inlining recursive routines would lead to infinite recursion in the inlining algorithm, unless the situation

would be detected and the inlining process be cut off at a certain depth of inlined calls. Exported

procedures may be inlined in the same module, but inlining them within another module would require

to export the code to client modules, and to make them dependent on the actual implementation of the

module. In OOC2, both recursive and exported procedures are not permitted as inline_procedures.

All differences between value_ and VAR_parameters are modelled in the enter_ and return_instructions

of the inlined routine (see Sections 6.5 and 6.6). Inlining code does not change the most recent definition

of variables in the caller, except if the they were passed as VAR_parameters or accessed as

intermediate_level variables and if they were modified in the callee. In the latter case, the return_node

includes a result for that variable, which is assigned and therefore updates the most recent definition of

the variable.

8.4 Constant Propagation and Unreachable Code Elimination

In this section we describe an algorithm jointly finding constant computations and unreachable code.

Code is unreachable if control will never pass to it, which in GSA form corresponds to a controlling guard

evaluating to the constant FALSE. The algorithm presented here is Wegman and Zadeck's Sparse

Conditional Constant Propagation [WeZa91], adapted to GSA form.

At first, this optimization looks superfluous, as the programmer should not introduce constant

computations into the code and write unreachable code. However, if procedures are inlined, it can offer

big benefits. Constant parameters are often encountered, and after inlining, instructions or guards using

such constant parameters can be optimized with this algorithm.

The method is based on the sparse data flow analysis algorithm described before. It assigns a lattice

element to each value in the program. As depicted in Figure 8.3, the lattice element can be of three types:

The highest element is top T, the lowest one is bottom ↑, and all elements in the middle are constant, z.

T

↑

zi zj zk zl zm

Figure 8.3: Lattice elements of constant propagation.

78

There is an infinite number of z i lattice elements, each corresponding to a different constant i. There is no

ordering among the constants, and there is no way how a computation attributed with element z i will

ever be attributed with a different z j.

In the optimistic constant propagation algorithm of OOC2, the top element T corresponds to a

computation being unclassified, and the bottom element ↑ to the value being non_constant. For regions,

the meaning of the attributes is slightly different. A guard evaluating to FALSE controls unreachable code

which does not have to be considered and which can be deleted later. Code guarded by TRUE will always

be executed and can be moved to the region enclosing the guard. Merges can take on the constant

attributes FALSE if both merged regions are FALSE, and LEFT or RIGHT if one of these regions is attributed

FALSE.

Initially, computations are attributed as follows: Parameters, i.e. the result nodes of the

enter_instruction, non_local variables, and accesses to data structures are assigned the bottom element,

assuming that they do not evaluate to constants. Also, the top_level region greg is set to the bottom

element. Constants are attributed with the corresponding lattice element z i, and everything else, including

regions, is initialized with the top element. Then, the instructions in the top_level region greg are put into

the worklist, and the propagation starts.

PROCEDURE ConstantPropagation (P: SSAprogram);

VAR

worklist: LIST OF Instruction;

newlattices: ARRAY OF Lattice;

instr: Instruction; res: Result;

BEGIN

initialize lattice elements;

initialize lattice values of instructions in greg and put them into worklist;

WHILE worklist is not empty DO

fetch instruction instr from worklist;

NewLatticeElements(instr, newlattices);

FOR each result res of instr DO

IF res.lattice # newlattices[res.no] THEN

(* lattice element changed *)

res.lattice := newlattices[res.no];

add uses of res to worklist;

IF (res IS Region) & (res.lattice # False) THEN

initialize lattice values of instructions in region res

and add them to worklist

END

END

END

END

END ConstantPropagation;

The algorithm does not add instructions to the worklist from regions which are either attributed FALSE or

T for unclassified. In the latter case, the region can still be found to be FALSE, and the algorithm

optimistically assumes so. Unreachable code thus does not affect the result of constant propagation in

any way and does not consume compilation_time either.

In determining lattice values, the optimistic nature of the algorithm requires that values have to be

considered constant as long as they have not been proven non_constant. In particular, yet unclassified

values have to be taken as constants, of which the actual value is not yet known. This logic is built into

the procedure computing the lattice elements of an instruction.

79

PROCEDURE NewLatticeElements (instr: Instruction; VAR lattices: ARRAY OF Lattice);

VAR opnd: Operand; state: INTEGER; res: Result;

BEGIN

IF instr IS Gate THEN LatticeOfGate(instr(Gate), lattices[0])

ELSIF instr IS Merge THEN LatticeOfMerge(instr(Merge), lattice[0])

ELSE

state := z;

FOR each operand opnd of instr and WHILE state # ↑ DO

IF opnd.lattice = T THEN state := T

ELSIF opnd.lattice = ↑ THEN state := ↑

END

END ;

IF state = z THEN

ComputeConstantResults (instr, lattices)

ELSIF state = ↑ THEN

FOR all results res of instr DO lattices[res.no] := ↑ END

END

END

END NewLatticeElements;

Gates and merges must be treated specially, as will be discussed below. An operand being attributed

bottom ↑ makes the whole computation bottom ↑, and an operand being yet top T makes it top T. If all

operands are known constants, the procedure ComputeConstantResults is used to determine the constant

values of the results. This procedure is an interpreter for the operations found in the intermediate code,

and the only machine_dependent part of the constant propagation algorithm.

Merges receive an attribute value depending on which paths to it are executable. Figure 8.4 lists the

function to compute it.

In computing the value of gates, only the operands corresponding to executable paths have to be

considered. The merge operation contains the necessary information to select the operands. If both paths

are executable, i.e. the lattice value of the merge is bottom ↑, and both value operands of the gate are not

top T, then the result of the gate is only constant if both value operands correspond to the same constant.

PROCEDURE LatticeOfGate (gate: Gate; VAR lattice: Lattice);

VAR merge: Merge; src1, src2: Usable;

BEGIN

merge := first operand of gate;

src1, src2 := second and third operands of gate;

IF (merge.lattice = T) OR (merge.lattice = False) THEN (* do nothing *)

ELSIF merge.lattice = Left THEN lattice := src1.lattice

ELSIF merge.lattice = Right THEN lattice := src2.lattice

ELSIF (src1.lattice is z) & (src1.lattice = src2.lattice) THEN

lattice := src1.lattice (* constant *)

ELSE lattice := ↑

END

END LatticeOfGate;

80

others Right Right ↑

False T False Left

T T T Left

T False others

Figure 8.4: Lattice element assignment for merges. Lattice values for the first operand are listed horizontally,

those for the second operand vertically.

OOC2 performs constant propagation on integer operations only. Floating_point arithmetic is sensitive to

the rounding mode set at run time, which is not known at compile time. The lattice elements are

represented by extensions of type Info, containing a field for the lattice type and a field for the actual

constant value if the type is constant.

The asymptotic complexity of the algorithm is O(N), where N is the number of instructions in the

program. An instruction is added to the worklist when one of its operands lowers its lattice. Since every

value can at most be lowered twice, every instruction can be added to the worklist at most 2*c times,

where c is the number of operands the instruction includes. Thus the upper bound on how often an

instruction is visited is constant.

When the worklist has become empty, a fixpoint has been reached. A single pass over all

instructions is sufficient to make the corresponding replacements.

PROCEDURE ReplaceByConstants (region: Region);

VAR instr: Instruction; region0: Region; res: Result;

BEGIN

FOR each instruction instr in region DO

IF instr IS Region THEN

IF instr.lattice = False THEN DeleteRegion(instr(Region))

ELSIF instr.lattice = True THEN

MoveInstructions(instr(Region), region)

ELSIF instr.lattice = Left THEN

region0 := first operand of merge instr;

MoveInstructions(instr(Region), region0)

ELSIF instr.lattice = Right THEN

region0 := second operand of merge instr;

MoveInstructions(instr(Region), region0)

ELSE ReplaceByConstants(instr(Region))

END

ELSE

FOR all results res of instr DO

IF res.lattice is z THEN ReplaceUses(res, res.lattice) END

END

END

END

END ReplaceByConstants;

This algorithm simultaneously traverses and modifies the intermediate representation, and great care

must be taken in the implementation to assure its correctness. For example, if a region has the assigned

lattice value TRUE, the enclosed instructions are moved into the currently traversed region. It must be

made sure that the moved instructions are traversed as well.

81

8.5 Value Numbering

Value numbering is a technique to find instructions in a program computing the same value, allowing to

remove some of these instructions. It is the most prominent technique to eliminate common

subexpressions. Symbolic values are associated with computations in such a way that two computations

receive the same value only if they are known to always compute the same result. The algorithms

presented here build upon the notions of congruence and availability, as discussed in Chapter 2. There is

a pessimistic and an optimistic value numbering technique, the latter of which has been implemented in

OOC2.

As we have seen in Chapter 2, two instructions yield congruent results, iff their opcodes are the same

and all their corresponding operands are congruent. Constant operands are congruent, iff they are

identical. The pessimistic value numbering algorithm at first assumes that no two computations are

congruent. It then computes value numbers for all instructions such that two instructions receive the same

number if they are found to be congruent. Algorithms for this were first described by Cocke and Schwartz

[CoSch70] and later adapted to SSA form [AlZa94].

A naive implementation of the algorithm would traverse all instructions, comparing operators and

operands with the ones in all other instructions. If the instructions are traversed in a topologically sorted

order, i.e. an instruction precedes all its uses, it will be known whether the operands of the instructions

are congruent. A single pass over the program will be sufficient to reach a fixpoint in O(N2) time, where N

is the number of instructions in the program. This ignores loop gates, however, for which the definition of

the last operand has not yet been visited and which have to be considered as non_congruent with other

values. If these effects have to be dealt with too, 2k iterations will be required to reach a fixpoint in the

worst case, where k is the deepest nesting level of loops.

A better implementation of the algorithm is based on hashing and has an expected running time of

O(N) for one iteration. The value number of some computation is determined using a hash function h

over the operator and the value numbers of the operands. For a computation f(A,B), the hash value is

computed as h(f,h(A),h(B)). Hashing collisions can be resolved in any common way. The algorithm looks

as follows.

PROCEDURE PessimisticValueNumbering (P: SSAprogram);

VAR instr: Instruction;

BEGIN

FOR all instructions instr in P DO

initialize instr.valNum to a unique number outside of the hashing range

END ;

FOR all instructions instr in P DO instr.valNum := Hash(instr) END

END PessimisticValueNumbering;

PROCEDURE Hash (instr: Instruction): ValueNumber;

BEGIN

IF instr.valNum is not in the hashing range THEN (* not yet computed *)

instr.valNum := h(instr.op, Hash(instr.operand0), Hash(instr.operand1), ...)

END ;

RETURN instr.valNum

END Hash;

Hash collisions are detected by comparing the operands of the function h, i.e. the opcodes and the value

numbers of the operands. If they are the same, the instructions are congruent, otherwise there is a

collision.

Loop gates have to be treated separately, as computing their hash value from the hash value of the

last operand may lead to infinite recursion. The solution chosen here is to initialize all operations to a

unique number in the beginning, and to use this number for loop gates instead of the hash value. The

uniqueness of the number reflects the pessimistic initial assumption that no instructions are congruent.

82

After having found the congruent instructions, some instructions can be eliminated. If for a computation

A, there is a congruent computation B that is available at A, all uses of A can be renamed to B and A can

be deleted. In SSA form, B is available at A if B dominates A. The replacement phase can be implemented

in different ways, e.g. by a top_down traversal of the dominator tree, in which a stack of lists keeps track of

available instructions.

PROCEDURE Replace (R: Region; list: List);

VAR instr, instr0: Instruction; R0: Region;

BEGIN

FOR each instruction instr in R DO

IF there is a congruent instruction instr0 in list THEN

ReplaceUses(instr, instr0);

Delete(instr)

ELSE

AddToList(list, instr)

END

END ;

FOR each region R0 in R DO Replace(R0, list) END

END Replace;

Every instance of Replace has its own list, which is a copy of the one of its enclosing region, and to which

it adds the encountered instructions. When the instance for region R returns, the old state is reset,

making all instructions unavailable that have been added during traversal of R.

It is possible to combine the steps of determining congruence and replacing instructions into one

pass, if instructions are topologically sorted within the regions, i.e. an instruction is traversed before all its

uses (with the exception of loop gates, as before). In this case, the order of traversal in the replacement

step is also a valid order for the traversal in the analysis step.

The optimistic value numbering algorithm has first been described in [AlWZ88] and [AlZa94]. It is only

applicable to SSA form, while the pessimistic algorithm can also be made to work with programs in

multi_assignment intermediate representations. Finite_state machine minimization [Hopcr71] is the basis

for the optimistic method. It finds more values to be congruent than the pessimistic algorithm.

Optimistic value numbering assumes, until evidence to the contrary is discovered, that all

computations that plausibly could be congruent are indeed congruent. Instructions considered to be

congruent are placed in the same partition. Evidence that two computations are not congruent is that

they have different operators, or that they have corresponding operands in different partitions.

If the i_th operand of an instruction in partition P belongs to partition Q, all instructions in P should

have their i_th operand in Q. If for some instructions, the i_th operand is in a different partition than Q,

these instructions should be taken out of P. We say that Q splits partition P into two subpartitions,

namely P\Q containing the instructions with the i_th operand belonging to Q, and P/Q including the

instructions with the i_th operand not being in Q.

Optimistic value numbering is based on splitting, which is repeated until a fixpoint is reached, i.e.

until no further splitting is possible. Initially, all instructions with the same opcode are assumed to be

congruent and placed in the same partition. Then, the algorithm uses the partitions to split other

partitions, until no more changes are encountered. Splitting with partition Q can be implemented by

traversing all uses of instructions in Q, moving the encountered instructions of partitions Aj with i_th

operand being in Q into a new partition (Aj\Q)i. The original partition Aj is then equivalent to (Aj/Q)i.

Empty partitions can be discarded.

83

PROCEDURE OptimisticValueNumbering (P: SSAprogram);

VAR

Q: ARRAY OF Partition;

worklist: LIST OF Partition;

op: INTEGER; instr: Instruction; A: Partition;

BEGIN

worklist := NIL;

FOR each possible opcode op DO

create a partition Q[op];

add Q[op] to worklist

END ;

FOR all instructions instr in P DO

place instr into partition Q[instr.op]

END ;

WHILE worklist # NIL DO

fetch partition A from worklist;

split by A;

add new non_empty partitions to worklist, discard empty partitions

END

END OptimisticValueNumbering;

This algorithm has a run_time complexity of O(N2), where N is the number of instructions in the program.

The time to split by a partition is proportional to the number of traversed uses, which is proportional to

N. When each instruction ends up in its own partition, the algorithm splits by N partitions, yielding a

total time of O(N2). This can be reduced to O(N log N) by the following observation: Assume a partition

P has already been used to split other partitions A, and is now split into P0 and P1. Neither P0 nor P1 will

split A/P, as the i_th operand of instructions in A/P is not in P. Let B = A\P, i.e. the i_th operand of all

instructions in B is in P. This implies that the i_th operand of all instructions in B is either in P0 or in P1.

Thus, B\P0 = B/P1 and B/P0 = B\P1. It is therefore sufficient to split by either P0 or P1 instead of both, and

it makes sense to select the one with fewer uses. When choosing the smaller subpartition, a partition

with N elements can at most be split log N times. Thus, at most log N partitions will be added to the

worklist after the initial constant number of partitions, reducing the time complexity to O(N log N).

The optimistic algorithm finds congruences that the pessimistic misses, as in the following example.

i := 0; j := 0; s := 0;

WHILE i < 100 DO

... stat0 ...;

s := s+a[i];

i := i+1; j := j+1

END ;

i := 0; t := 0;

WHILE i < 100 DO

... stat1 ...;

t := t+a[i];

i := i+1

END

The optimistic algorithm would find i and j to be congruent in the first loop, and it would also find that

the second loop is executed under the same conditions as the first one, and that s and t are congruent.

Knowledge that the loops are executed under the same control conditions could be used for an

optimization called loop fusion, which combines multiple loops into one, saving the loop control

overhead. Such optimizations can be useful after inlining has been performed. The above example would

then be reduced to the following.

84

i := 0; s := 0;

WHILE i < 100 DO

... stat0 ...; ... stat1 ...;

s := s+a[i];

i := i+1

END

The pessimistic algorithm would not discover these congruences, as the loop gates for i and j would be

considered as different, thus the increments would not be found as congruent either. Due to the latter,

the gates remain different, no matter how many iterations of pessimistic value numbering over the

program are performed.

8.6 Dead Code Elimination

Dead code elimination is the optimization of deleting code that does not affect the final result. As for many

optimization problems, there are pessimistic and optimistic algorithms for it, which we will both present.

According to our definition of semantic equivalence, we require that a program generates the same

output state and generates the same exceptions after it has been optimized. From the view of a complete

program, the final result is the state that it leaves in global storage and the operations it has performed

on output_devices. If no interprocedural analysis is performed, one has to assume that every assignment

to non_local variables − including all indirect assignments − could contribute to the final result. In our

framework of intraprocedural analysis, we thus define the final result of a procedure as the combination

of all non_local assignments and the exceptions raised. Note that the non_local assignments have been

collected in the return_instruction of the procedure.

The pessimistic dead code elimination algorithm assumes all instructions to be alive, and then

searches for instructions that can be proven to be dead. Instructions that have no uses, that cannot raise

exceptions, and that do not assign non_local variables are dead, and thus can be deleted.

PROCEDURE DeadCodeElimination (region: Region);

VAR instr: Instruction;

BEGIN

FOR all instructions instr in region DO

IF instr IS Region THEN

DeadCodeElimination(instr(Region));

IF instr(Region) contains no instructions THEN

Delete(instr)

END

ELSIF instr has no uses & instr cannot raise exceptions

& instr does not assign a non_local object THEN

Delete(instr)

END

END

END DeadCodeElimination;

Since deleted instructions may be the only uses of other instructions, their removal can unveil other dead

code. The algorithm should thus be iterated, for best results until a fixpoint is reached. Traversing the

instructions in a topologically sorted order, so that uses of values are visited before their definitions

reduces the number of iterations to reach a fixpoint. The number of iterations required corresponds to

the longest chain of dead instructions being used by other dead instructions, and can be quite large.

This algorithm corresponds closely to a reference_counting garbage collector, where instructions

having zero uses are considered being unreferenced and thus can be deleted.

85

The optimistic dead code elimination algorithm assumes all instructions to be dead, except for the ones

that contribute to the final result. The return_node summarizes all non_local assignments and thus can be

taken as the placeholder for the final result, and be marked as live. All instructions that transitively

provide operands to the return_node also contribute to the result, and therefore are alive as well. They

can be found by a recursive MarkLive procedure.

PROCEDURE MarkLive (instr: Instruction);

VAR opnd: Operand;

BEGIN

IF ˜(live IN instr.attrib) THEN

INCL(instr.attrib, live); MarkLive(instr.region);

FOR all operands opnd of instr DO

IF opnd.def IS Result THEN MarkLive(opnd.def(Result).instr) END

END

END

END MarkLive;

Instructions that raise exceptions have to be marked alive as well by a separate pass. It would be possible

to represent the exception behavior of an instruction like an assignment to a global exception variable,

and thus anchoring its effect in the return_node as well. We have not done so in OOC2 and leave the

issue to future work.

Calling MarkLive to mark the return_instruction and instructions raising exceptions will mark all

instructions contributing to the final result as alive. Everything not being marked is dead and can be

deleted. Note that this algorithm corresponds to a mark_and_sweep garbage collector, where the

return_instruction and exception_raising instructions provide the alive roots.

PROCEDURE DeadCodeElimination (P: GSAprogram);

VAR instr: Instruction;

BEGIN

initialize all instructions as dead;

MarkLive(return_instruction);

FOR all exception_raising instructions instr DO MarkLive(instr) END ;

delete all instructions not marked live

END DeadCodeElimination;

Since both algorithms closely resemble garbage collection algorithms, we would assume that their

individual strengths are similar to the ones of the garbage collectors. This is in fact the case. The

pessimistic algorithm does not need to know all roots, but needs the effort to keep track of how often an

instruction is used, and cannot delete cyclic structures. For example, the empty counting loop

i := 0;

WHILE i < N DO INC(i) END

would not be found as dead code by the pessimistic algorithm, as the value computed by the increment

instruction is used in a gate for i at the top of the loop, the value of which is then used in the comparison

and increment instructions. The optimistic algorithm would be able to remove the whole loop. Moreover,

if a non_local variable A is assigned multiple times in a procedure, only the last assignment to A will be

marked as alive by the optimistic method, while the pessimistic one will treat all assignments as live.

In our framework, the root for optimistic dead code elimination is readily available in form of the

return_instruction summarizing the final result. OOC2 implements the optimistic approach. While

programmers should not write dead code, such code is often generated as a by_product of other

optimizations. When some constructs are replaced by others, the original code may become dead.

Instead of keeping track of what is still referenced in all optimization algorithms and deleting instructions

directly, it is easier to perform a dead code elimination step later.

86

8.7 Strength Reduction, Reassociation, and Loop Invariant Code Motion

Strength reduction is an optimization that replaces an expensive operation by a less_expensive one,

usually a multiplication by an addition within a loop. Reassociation is a related transformation exploiting

commutative, associative, and distributive laws to rewrite expressions, so that strength reduction

becomes more profitable. Loop invariant code motion moves computations that are constant over all

iterations of the loop to a place before the loop, and is performed as a by_product of the other

transformations. The algorithms discussed here are those described by Markstein and Zadeck [MMZ94],

adapted to GSA form.

Code amenable to strength reduction typically stems from array addressing within loops, as in the

following example of matrix multiplication.

FOR i := 0 TO N−1 DO

FOR j := 0 TO N−1 DO t := 0;

FOR k := 0 TO N−1 DO t := t + a[i, k] * b[k, j] END ;

c[i, j] := t

END

END

The address of a[i, k] in the innermost loop is computed as follows.

ADR(a[i, k]) = ADR(a) + ((i * LEN(a)) + k) * SIZE(ElementType)

In the next iteration, array element a[i, k+1] will be accessed, the address of which is computed similarly.

ADR(a[i, k+1]) = ADR(a) + ((i * LEN(a)) + (k + 1)) * SIZE(ElementType)

By using the distributive and associative laws, this computation can be rewritten to a form reusing

subexpressions from the computation of a[i, k].

ADR(a[i, k+1]) = ADR(a) + ((i * LEN(a)) + k) * SIZE(ElementType) + 1 * SIZE(ElementType)

ADR(a[i, k+1]) = ADR(a[i, k]) + SIZE(ElementType)

The address of the element accessed in iteration i+1 can thus be computed by a simple addition if the

address from iteration i is known, avoiding 2 multiplications and 2 additions. More technically, we can

think of a pointer being set to a before the loop, which is incremented to point to the next element in

each iteration, instead of computing the element address from the index values over and over. The C

programming language allows performing this optimization at the source level, which we consider

disadvantageous from a programmer's point of view. Namely, readability suffers a lot, accesses cannot be

checked against array bounds, and many more aliasing problems are introduced. We will now discuss

how the compiler can generate the more efficient addressing code while still using the array notation at

the source level.

Induction Variables

Strength reduction is centered around the notion of induction variables, which are variables that are

changed in a predictable way when proceeding from one loop iteration to the next. The definitions used

in compilers vary slightly, but all allow such variables to be incremented by a constant offset in each

iteration. Our definition is more general.

87

Definition: An induction variable V is a variable that is computed by linear operations only, namely:

− V := I

− V := W + I

− V := W − I

− V := f(merge, X, Y)

where W is an induction variable, I is a constant or a loop invariant, and X and Y are constants, loop

invariants, or induction variables.

The goal of strength reduction as implemented in OOC2 is to rewrite expressions of the form V*I+J,

where V is an induction variable, and I and J are constants or loop invariants. As a first step, induction

variables and loop invariants have to be determined.

The loop_counting variables in For_statements are induction variables by definition in many

programming languages, and thus are found easily. However, if the language explicitly allows to change

the variable directly or through side_effects, the inductive nature is lost. The definition given in the

Oberon_2 language report [MöWi91] specifies an equivalent While_statement allowing the programmer

to modify the induction variable. It is not clear, whether the compiler is allowed to consider the counting

variable to be inductive.

Classifying Computations

The same sparse data flow analysis algorithm used in constant propagation can also be used to classify

computations in a loop into loop invariants, induction variables, and everything else. Instead of applying

it to a whole procedure at once, it is run on single loops only, from innermost to outermost. The lattice

elements are loop_invariant LI, which takes the role of top T, forward_inductive FI, and bottom ↑. Initially, all

computations in the loop are marked as LI. The functions listed in Figure 8.5 are used to compute new

lattice values during the propagation.

↑ ↑ ↑ ↑

FI FI FI ↑

LI FI FI ↑

f LI FI ↑

↑ ↑ ↑ ↑

FI FI FI ↑

LI LI FI ↑

+/− LI FI ↑

↑ ↑ ↑ ↑

FI ↑ ↑ ↑

LI LI ↑ ↑

others LI FI ↑

Figure 8.5: Combination functions for f, +/− and others in determining loop invariants and inductive variables.

Loop_invariant computations can then be moved out of the loop, if their execution is not guarded by

conditions within the loop. Otherwise, moving them out of the loop would also mean to move them out

of their guarding region, and they may be executed in the transformed program even though they were

not executed in the original program. In While_loops, the whole body is guarded by the loop condition,

setting a barrier to move code out of such loops. This is one of the reasons why OOC2 transforms

While_statements into Repeat_loops as follows.

IF cond THEN

WHILE cond DO REPEAT

stat stat

END UNTIL ˜cond

END

88

Alternatively, if the loop_invariant computations do not have side_effects, they could be speculatively

moved out of their controlling guard, under the assumption that they are likely to be executed in the

original program as well. The topic of such speculative code motions will again be considered in Chapter

9 on instruction scheduling. Cytron et al. [CyLZ86] describe an algorithm to move nested control

structures with loop_invariant guards out of loops, which we have not considered for OOC2.

For the purpose of strength reduction, we not only need knowledge about inductive expressions, but

also about inductive cycles. Computations on an inductive cycle deliver results to be used in subsequent

iterations. Consider the following example.

(2) l_merge: (1), (8)

(3) i := gate (2), i, (4)

(4) add (3), 1

(5) add (3), 20

(6) sub (5), 9

(7) cmp (4), 100

(8) if_less: (7)

In this loop, (3), (4), (5), and (6) are all inductive, but only (3) and (4) are on an inductive cycle. The

others represent just offsets from elements of the cycle. The increment from one iteration to the next can

be determined from the cycle. Since all cycles must include a gate at the top of the loop, the gates are a

natural point to start the search for such cycles. A simple recursive algorithm finds inductive cycles and

marks instructions belonging to it appropriately.

PROCEDURE FindInductiveCycles (loop: Region);

VAR g: Gate; IC: IndCycleDesc; opnd: Operand; cyclic: BOOLEAN;

BEGIN

FOR all loop_gates g in loop DO

IF g is forward_inductive THEN

create a new inductive cycle descriptor IC;

opnd := last operand of g, corresponding to loop_backedge;

cyclic := FALSE;

SearchCycle (opnd.def, g, IC, cyclic);

IF cyclic THEN g.info := IC END

END

END

END FindInductiveCycles;

PROCEDURE SearchCycle (def, header: Instruction; IC: IndCycleDesc; VAR cyclic: BOOLEAN);

VAR opnd: Operand;

BEGIN

IF def = header THEN

cyclic := TRUE

ELSIF def is forward_inductive THEN

FOR all operands opnd of def DO

SearchCycle (opnd.def, header, IC, cyclic)

END ;

IF cyclic THEN def.info := IC END

END

END SearchCycle;

Each cycle receives its own descriptor which uniquely identifies it and to which all instructions on the

cycle refer.

89

Reassociation

In the next step, expressions within the loop are symbolically rewritten to sums of products, using the

commutative, associative, and distributive laws. More precisely, every computation is transformed into

the form (V*A + B + C + others), where V is the header of an inductive cycle, i.e. a gate, A and B are

loop_invariant, C is constant, and others is everything else. The expression is thus separated into a group

of terms: A product of an induction variable with a loop_invariant, which can be reduced in strength; a

term including all loop_invariants, which can be moved out of the loop; a constant term, which can be

computed at compile time and likely be added for free as a displacement in a memory access; and a term

including everything else, which cannot be optimized.

In the implementation, a descriptor for the four terms is associated with every computation.

Procedure Flatten is called for all instructions to perform the actual rewriting.

PROCEDURE Flatten (instr: Instruction);

VAR opnd1, opnd2: Operand;

BEGIN

IF instr is not yet flattened THEN

IF instr is the header of an inductive cycle THEN

instr.sum := (instr*1, 0, 0, 0)

ELSIF instr.op = "+" THEN

opnd1, opnd2 := first and second operand of instr;

Flatten(opnd1.def); Flatten(opnd2.def);

instr.sum := opnd1.def.sum + opnd2.def.sum

(* sum terms individually *)

(*

instr.sum.const := opnd1.def.const + opnd2.def.const;

instr.sum.LI := opnd1.def.LI + opnd2.def.LI;

...

*)

ELSIF instr.op = "−" THEN

opnd1, opnd2 := first and second operand of instr;

Flatten(opnd1.def); Flatten(opnd2.def);

instr.sum := opnd1.def.sum + (−1)*opnd2.def.sum

ELSIF instr.op = "*" THEN

opnd1, opnd2 := first and second operand of instr;

Flatten(opnd1.def); Flatten(opnd2.def);

instr.sum := opnd1.def.sum * opnd2.def.sum

(* use distributive law *)

(*

instr.sum.const := opnd1.def.sum.const * opnd2.def.sum.const;

instr.sum.LI := opnd1.def.sum.const * opnd2.def.sum.LI

+ opnd1.def.sum.LI * opnd2.def.sum.const

+ opnd1.def.sum.LI * opnd2.def.sum.LI;

...

*)

ELSE

instr.sum := (0, 0, 0, instr)

END

END

END Flatten;

90

Note that the additions and multiplications in procedure Flatten are not performed at compile time, but

correspond to operations performed at run time. In the compiler, they are inserted into expression trees

combining the expression trees of their operands. All information required to perform strength reduction

is then available in classified expression trees.

Strength Reduction

The algorithm traverses all instructions again, and generates new induction variables where useful. For an

expression of the form (V*A + B + C + others) with the above meanings for the variables, it performs the

following steps.

− V corresponds to a loop gate f(merge, X, Y). Introduce a new loop gate V' = f(merge, X', Y'),

with X' = X*A + B + C being computed outside of the loop. X' corresponds to the initial value of

the expression V*A + B + C.

− Traverse the instructions Vn on the inductive cycle of V. For every instruction, add

corresponding instructions that update V' to V'n, as listed in Figure 8.6.

− Replace all occurrences of V*A + B + C by V'.

The algorithm also has to keep track of which new inductive cycles have been generated already, so that

for two occurrences of the same expression, only one inductive cycle is generated. The computations

added as described in Figure 8.6 may include loop_invariant terms, which should be placed outside of the

loop.

Vn = Vm + d V'n = V'm + d*A

Vn = Vm − d V'n = V'm − d*A

Vn = d V'n = d*A + B + C

Vn = f(merge, V m, Vk) V'n = f(merge, V' m, V'k)

Figure 8.6: Added inductive operations when creating inductive cycle V' being a replacement for V*A + B + C.

While this description is complete, it does not make good use of the addressing modes in the PowerPC

architecture yet. Load_ and store_instructions in the PowerPC architecture specify a base register and either

a 16_bit signed offset or another register, which is added to the base to obtain the effective address. In the

case where the others term of the expression was 0 − a common case according to our experience − the

free addition performed as part of an address computation is not exploited. Moreover, there may be

cases where two inductive expressions differ only in the constant term, and introducing new inductive

cycles for each of them is superfluous, when the difference between the constant parts can be

incorporated into the offset part of a memory access. The strength reduction algorithm in OOC2 also

considers these cases, and adds the constant or loop_invariant terms only to the new inductive cycle if

their addition cannot be performed as part of an address computation.

The PowerPC architecture also allows to perform an increment of a base register as a side effect of

memory accesses with its load_and_update and store_and_update instructions. These instructions store the

effective address computed into the base register, and thus can combine a memory access with the

increment of the inductive cycle. In order to exploit this, the offset specified in one memory access must

equal the increment of the inductive cycle. This can always be achieved by appropriately choosing the

starting value of the inductive cycle, as shown in the following example.

91

(1) greg:

(2) ldi 0

(3) addr a

(4) l_merge: (1), (9)

(5) gate (4), (3), (7)

(6) stw (5), 0, (2)

(7) add (5), 4

(8) cond

(9) if_true: (8)

After adapting offsets:

(1) greg:

(2) ldi 0

(3) addr a

(10) add (3), −4

(4) l_merge: (1), (9)

(5) gate (4), (10), (6:2)

(6) stwu (5), 4, (2) ; store_and_update

(8) cond

(9) if_true: (8)

Adding this feature to OOC2 is a matter of future work and should further improve performance on some

loops.

After the uses of the original induction variables have been replaced by the pointer references,

controlling the number of iterations of the loop is often their only purpose. In [MMZ94] an optimization

called linear test replacement is described, which rewrites comparisons of old induction variables in terms

of new ones. For example, assume a loop includes a guard of the form V < X, where V was an induction

variable and X a loop_invariant. Uses of V in the form V*A+B+C were rewritten to use a new inductive

variable V', and the guard is the only remaining use of V. The guard may then be rewritten to V' <

X*A+B+C, making V superfluous. However, we consider the transformation being unsafe. Without further

knowledge about the possible ranges of V and X, the terms V*A+B+C or X*A+B+C may overflow, and the

comparison may yield a different result than the original one.

We have developed another approach for OOC2, which makes use of the PowerPC branch_and_count

instruction. Guards are reassociated to compare a value against zero, e.g. V < X is rewritten to X−V > 0. This

can be implemented as a simple addition to the Flatten procedure described above. The expression is

also subject to strength reduction, and in our example, a new inductive variable V' representing X−V is

introduced, which is counted down to zero. This is precisely the semantics of the branch_and_count

instruction, which decrements a value and compares it against zero.

If the value of the original inductive variable is used outside of the loop, it is still not possible to

remove the associated computations. When the variable V counts up or down to a known limit L, an

assignment V := L right after the loop will make the inductive variable superfluous. If there are additional

loop_controlling guards, so that the value after the loop cannot be precomputed, it may be possible to

obtain the original value of V from some strength_reduced V' = V*A+B+C by computing V = ((V'−B−C) DIV

A). However, as with linear test replacement, such a transformation is only valid if information about the

range of V is available. Oberon has an advantage over languages such as C or Fortran in this respect,

because index checks within loops allow to derive range information which is not available in languages

without array index checking.

92

8.8 Peephole Optimizations

OOC2 makes use of the more complex instructions in the PowerPC architecture through peephole

optimizations. The code is scanned for combinations of instructions that may be expressed with a single

instruction, and appropriate replacements are made. Figure 8.7 presents some of these replacements.

(1) fmul x, y

(2) fadd (1), z (2) fmadd x, y, z

(1) fabs x

(2) fneg (1) (2) fnabs x

(1) rlwinm x, s, a, b

(2) rlwinm (1), t, c, d (2) rlwinm x, (s+t) MOD 32, e, f

; with {e..f} := {a..b} * ROT({c..d}, 31−t)

(1) muli x, 2n (1) rlwinm x, n, 0, 31−n

(1) FXU_op x, y (1) FXU_op. x, y ; Record_Option

(2) cmpi (1), 0

Figure 8.7: Some transformation patterns for peephole optimization.

There are many more possible patterns, e.g. to exploit the floating_point multiply_and_subtract

instructions, to use loads and stores with update, or to combine shifts and mask_operations in

rotate_left_and_mask instructions.

When scanning the code, the algorithm searches for the last instruction in the pattern and then

determines whether the operands match as well. For example, for a floating_point add, it is checked

whether one of the operands is the result of a floating_point multiply. If it is, the addition is rewritten to a

multiply_and_add. The multiplication will be left in the code, as there may be other uses of its result. If all

uses could be consumed into a multiply_and_add instruction, the multiply instruction becomes dead code

and will be removed later. Note that by allowing either operand of the addition to be computed in a

multiply, we make use of the commutativity of addition. Similar arithmetic laws are used in other

transformation patterns.

8.9 Other Possible Optimizations

The literature contains a large number of optimization algorithms, attacking very different types of

programming languages, target architectures, and source programs. The compiler writer must select a set

of algorithms that yield a benefit commensurable with the involved cost. In our view, the most important

optimizations have been implemented in OOC2, but we would like to discuss several other algorithms

which may be added in the future.

Redundancy Elimination and Partial Redundancy Elimination

Redundancy elimination is an optimization with similar goals as common subexpression elimination. It

finds instructions which compute the same result and eliminates superfluous recomputations. Consider

the example in Figure 8.8.

93

(1) a
1
:= x

0
* y

0

(2) a
1
+ b

0

(3) a
3
:= w

0
DIV z

0

(4) a
3
+ b

0

(5) a5 := f (a1 , a3)

(6) a
5
+ b

0

Figure 8.8: Redundant computations.

Instruction (6) computes the same result as (2) and (4), depending on which path was taken. Note that

these instructions are not congruent, but include redundancies. By adding a gate combining the results of

instructions (2) and (4), instruction (6) becomes superfluous. This optimization is called redundancy

elimination.

Now assume that instruction (4) were not present. In this case, instruction (6) would be partially

redundant to instruction (2), as on one path the value computed by instruction (6) is already available. By

adding the computation to the other path, i.e. inserting instruction (4), instruction (6) becomes fully

redundant and can be removed. The optimization of eliminating partial redundancies is always profitable,

as it does not increase the number of instructions on any path executed and does not increase the code

size either.

Classical redundancy elimination algorithms as the one by Morel and Renvoise [MoRe79] use

lexical equivalence of computations to find redundancies, and thus are better suited to programs in

multi_assignment intermediate representations. In [RoWZ88] an algorithm for SSA form is presented

which can also detect redundancies between instructions that are not lexically equivalent, but which is

rather complex. [BrCo94] describes an algorithm which uses reassociation to expose more redundant

expressions and optimistic value numbering to detect the actual redundancies. We believe that this last

algorithm would make for a nice addition to OOC2.

Elimination of Redundant Checks

Index checks can be removed when it is known that the checked value is within certain bounds.

Information about the range of numbers that a value may take on can be derived from several sources:

Induction variable analysis computes upper and lower bounds for induction variables, some operations

like MOD return results within given bounds, and sometimes the range is restricted by the range of the

type, e.g. a SHORTINT value is restricted to the range −128..127. By propagating such range information

through the program, many index checks can be removed.

Our value numbering algorithm is capable of eliminating type tests or type guards for identical

types. Corney and Gough [CoGo94] describes type_flow analysis propagating type information through the

data_flow graph, which allows to eliminate redundant type checks even if the types are not identical but

belong to the same type hierarchy. For example, if type T2 extends T1, and an object has already been

determined to be of type T2, a later check for it being of type T1 can be omitted.

94

Lazy Evaluation and Partial Dead Code Elimination

A correct program requires that the definition of a value dominates all its uses, i.e. the value must have

been computed before it is used, no matter which path is taken to this use. It is often encountered that a

computation also dominates paths on which it is not used. By delaying the execution until its need is

known (lazy evaluation), the execution time on some paths will be reduced. More technically, the

computation should be moved to the least frequently executed region which still dominates all uses.

Note that when a value is used inside a loop, this is not necessarily the closest dominator of all uses.

Partial dead code elimination [KnRS94] attacks the same problem with a slightly different

terminology. A computation is considered partially dead if there are paths on which its result is not used.

By moving instructions, partially dead code can be avoided.

Array Dependence Analysis

In OOC2, assignments to array elements are treated as assignments to the whole array, reducing the

optimization potential. If two array references a[i] and a[j] are known to access different elements of the

array, there are no dependencies between them. This allows them to be moved more freely and enables

data_flow analysis to find more precise information. Consider the following example.

x := a[i];

a[j] := c;

y := a[i]

In this program fragment, x and y are equivalent if j refers to a different array element than i. If, on the

other hand, j refers to the same element as i, y will be equivalent to c. Thus, knowing more about the

relationship between i and j would be helpful, and the uncertainty prevents optimization of this fragment.

Array dependence analysis tries to determine such information, in particular on induction variables of

loops. A general solution requires to solve diophantine equations and is not feasible. However, practical

methods to determine dependence or independence between array accesses for many common cases in

numerical programs are known. Griesemer [Grie93] presents an overview of the topic, and Banerjee

[Baner88] as well as Zima and Chapman [ZiCh90] discuss it thoroughly.

There are provisions in OOC2 to enable such analysis, namely the index values used to access an

array are stored with the actual access. How the dependence and independence information could be

represented within the GSA framework is a topic of future research.

Locality_Improving Transformations

Programs using large amounts of data sometimes encounter huge performance decreases due to cache

misses. Consider the following program to multiply two matrices.

FOR i := 0 TO N−1 DO

FOR j := 0 TO N−1 DO t := 0;

FOR k := 0 TO N−1 DO t := t + a[i, k] * b[k, j] END ;

c[i, j] := t

END

END

Without loss of generality, we assume all matrices to be of size N*N. When computing the value of cij,

the i_th row of a is multiplied by the j_th column of b. In order to compute the i_th row of c, the i_th row of

a is multiplied with the whole matrix b, as shown in Figure 8.9.

95

:= *

c a b

Figure 8.9: Data access patterns in matrix multiplication.

Assume that the code is executed on a machine with a 64 kBytes data cache with LRU_replacement, and

none of the matrices are stored in the cache initially. If N = 100, and if the element type of the matrices is

LONGREAL, one matrix will consume N2 * 8 bytes = 80 kBytes. We will now compute how many array

elements have to be fetched from main memory during matrix multiply.

In the computation of row c0, row a0 consisting of N elements and matrix b containing N2 elements

have to be read from main memory. Columns of b will be brought into the cache from left to right. After

having fetched approximately 64 kBytes of b, the next column accessed will replace the leftmost column

of b, which is the least_recently used one. At the end of the computation, the rightmost columns making

up about 64 kBytes of data will be stored in the cache. In the computation of c1, row a1 and again the

whole matrix b have to be accessed. When the first column of b is loaded for this, it replaces another

column of b in the cache. Due to this, no column accessed will ever be found in the cache and the whole

matrix has to be fetched from main memory again. As there are N columns of c to compute, the total

number of array elements loaded from main memory during matrix multiply is N * (N2 + N) = N3 + N2.

Note the unfortunate property that no element brought into the cache is accessed more than once before

being discarded again.

The number of main memory accesses can be dramatically reduced by a technique called cache

blocking. Instead of multiplying a row of a by the whole matrix b, subblocks of a and b that fit into the

cache are fetched, and as many operations on this data as possible are performed before replacing a

subblock by another. The multiplication of large matrices can be partitioned into the multiplication of

smaller matrices which are then combined, as shown in Figure 8.10.

:= *

c10

c01

c11

c00

a10

a01

a11

a00

b10

b01

b11

b00

c00 := a00 * b00 + a01 * b10

c01 := a00 * b01 + a01 * b11

c11 := a10 * b01 + a11 * b11

c10 := a10 * b00 + a11 * b10

Figure 8.10: Partitioning a large matrix multiplication into smaller ones.

96

One quarter of a matrix consumes 20 kBytes, so three such blocks can be kept in the cache at once. In the

computation of c00, four blocks are fetched into the cache, corresponding to N2 elements. The blocks a00
and a01 can be reused in the computation of c01, so only two blocks containing N2/2 elements have to be

loaded from main memory. Similar reuse is encountered in the other two computations, yielding a total

number of N2 + 3 * N2/2 = 5/2 * N2 elements to be accessed in main memory. Compared to the original

code, the rewritten program needs approximately 40 times less main memory accesses.

The optimization does not only apply to matrix multiplication, but in general to programs dealing

with large arrays and having regular access patterns, e.g. which traverse the array sequentially several

times. In numerical applications, such patterns are often encountered. Array dependence analysis is a

prerequisite for this optimization: The compiler must know about the order in which elements are

accessed and it must determine, which accesses can be reordered.

According to Lam et al. [LaRW91], speedups by a factor of five are common when cache blocking

numerical programs. Sarkar [Sark93] claims even higher factors around ten and predicts such

transformations to become more important in the future. Wolf and Lam [WoLa91] describe algorithms

to perform cache blocking in compilers and present some other cache_oriented optimizations.

9 Machine Code Generation

In this chapter we discuss instruction scheduling and register allocation. Instruction scheduling is the task

of finding a valid execution order for the instructions of the program which makes good use of the

processor pipelines. Register allocation assigns registers to operands and results, and inserts load_ and

store_operations where values cannot be kept in registers.

These two techniques are usually also considered to belong to the class of optimization algorithms.

In our framework, however, they differ from other optimizations in that they cannot be omitted and in

that they establish additional invariants of the intermediate representation: Instruction scheduling

generates a valid execution order, whereas register allocation finds a possible register assignment.

9.1 Instruction Scheduling

Determining a valid execution order for instructions means topologically sorting the instructions

according to their dependencies. We will discuss an algorithm that achieves this, and we will learn how it

can be adapted to exploit the processor pipelines well.

Dependencies

We have introduced three kinds of instruction_dependencies in Chapter 3: data_, anti_, and

output_dependencies. In GSA_form, a data_dependency between two instructions A and B corresponds to

a result of A being used as an operand of B. Thus, A has to be executed before B. There are no anti_ or

output_dependencies between computations. There is one notable exception in which they are required,

however, and have to be added before scheduling the code. Assignments to structured variables are fully

renamed, i.e. each assignment generates a new instance of the variable. Depending on the order of

accesses to these different instances, they may have to be allocated to different memory locations.

(1) a := upd a, adr0, i, expr0
(2) acc (1), adr1, j

(3) a := upd (1), adr2, k, expr1

In our example, there is no dependency between instructions (2) and (3). Assume the scheduler would

choose to execute instruction (3) before (2), and there would only be one copy of array a assigned by

both (1) and (3). In this case, instruction (2) would access the wrong value if indices j and k were equal.

Therefore, either (2) has to be executed before (3), or separate copies of the array have to be created.

Keeping separate copies of the array has the following disadvantages. First, update_instructions

receive the semantics of an array_copy with one element changed, and thus have a high overhead. Second,

the addressing code has to be adapted to the actual instance accessed, and to where it has been

allocated. This is complicated if one attempts to avoid unnecessary copying. Third, the higher memory

consumption of the program will also reduce cache performance. It is extremely rare that the benefit of

having separate copies outweighs these disadvantages. In OOC2, we have decided to allocate only one

98

memory location for the array and to introduce corresponding anti_dependencies. Note that the

output_dependency between (1) and (3) is already modeled by the first parameter. By making (2) an

operand of (3), the correct execution order is guaranteed. More general, in an update_instruction of the

form

aj := upd ak, ...

all accesses to ak on the path between the defining instructions of ak and aj become operands of the

definition of aj, so that they will be executed before.

All dependencies are then represented as definition_operand relationships. The instruction that

computes a value has to be scheduled before all uses of that value. Consider the example in Figure 9.1.

(10) rliwnm i, 2, 0, 29

(11) lwx (2), (10)

(12) lwx (3), (10)

(13) add (11), (12)

(14) stwx (5), (10), (13)

(15) i := add i, 1

Figure 9.1: Example instructions in GSA form.

The dependencies can be visualized as a directed graph, with an arc between two instructions A and B if A

computes a value that B uses (Figure 9.2).

(10) rliwnm

(11) lwx (12) lwx

(13) add

(14) stwx

(15) add

Figure 9.2: Dependence graph of the instructions in Figure 9.1.

List Scheduling

A scheduling algorithm traverses the instructions in the graph and emits them in an order that satisfies

all dependencies, i.e. an instruction is only emitted after all instructions on which it is dependent have

been emitted. We call an instruction ready if it is not dependent on other unscheduled instructions. Ready

instructions are candidates for being emitted. Using this notion, a scheduling algorithm has the following

form, as described by Hennessy and Gross [HeGr83].

99

PROCEDURE Schedule (g: Graph);

VAR ready: LIST OF (*ready*) Instruction;

BEGIN

determine ready in g;

WHILE not everything emitted from g DO

select instruction i from ready;

emit i;

update ready

END

END Schedule;

Keeping track of ready instructions can be implemented by a field in each instruction counting the

number of yet unavailable operands. When an instruction is emitted, the uses of all its results are

traversed and the corresponding counters decremented. As soon as the counter of an instruction drops

to zero, the instruction is ready.

The above algorithm will generate a valid ordering in any case. Finding an ordering that achieves

high performance is a matter of implementing a good function selecting instructions from the set of

ready instructions. Heuristics that immediately come to mind are as follows.

− Select instructions that do not cause interlocks, i.e. avoid instructions for which an operand or

a resource is not available in the current cycle.

− Favor instructions on long dependence chains over ones on short chains. The longest

dependence chain in the graph is a lower bound for the total execution time of the code, and

thus should be scheduled with priority.

− Select instructions with many uses, thus making as many instructions ready as possible.

− Prefer instructions with many operands and few results, so that the number of registers will be

reduced.

Similar heuristics have been described by Gibbons and Muchnick [GiMu86], and many others would be

possible. We will now discuss how the first two heuristics could be implemented, as it has been done in

OOC2.

With each result its latency is associated as an attribute. Each instruction stores the maximum length

of the dependence chain from itself to the leaves of the dependence graph. These values can be

determined in a depth_first traversal of the graph once at the beginning. Figure 9.3 shows the previous

dependence graph with these attributes.

(10) rliwnm

(11) lwx (12) lwx

(13) add

(14) stwx

(15) add

(2, 3)

(1, 1)

(2, 3)

(1, 4) (1, 0)

(1, 0)

Figure 9.3: Dependence graph with (latency, dependence_length)_attributes.

100

For each instruction, the first cycle in which it could be executed without introducing interlocks is

recorded. This is the maximum of issue_time plus latency for each instruction it depends upon. Note that

this value is updated as the scheduling algorithm proceeds, selecting instructions for each issue_time.

The scheduler tries to emit an instruction for each execution unit in each cycle. Our selection

function chooses an operation matching the execution unit, which can be issued in the current cycle, and

which has the longest dependence chain. Note that the selection can be the empty set if there is no

instruction to be executed in this cycle.

PROCEDURE Select (unit: Unit; cycle: INTEGER; VAR best: Instruction);

VAR maxDep: INTEGER; instr: Instruction;

BEGIN

maxDep := MIN(INTEGER); best := NIL;

FOR each instruction instr in ready DO

IF (instr executes on unit) & (instr.first <= cycle) THEN

IF maxDep < instr.depLen THEN

maxDep := instr.depLen; best := instr

END

END

END

END Select;

After the selected instruction has been emitted, the ready set and dependent instructions have to be

updated accordingly.

PROCEDURE UpdateReady (emitted: Instruction; cycle: INTEGER);

VAR res: Result; u: Opnd; instr: Instruction; first: INTEGER;

BEGIN

Remove(ready, emitted);

FOR each result res of emitted DO

first := cycle + res.latency;

FOR each use u of res DO

instr := u.instr;

IF instr.first < first THEN instr.first := first END ;

DEC(instr.depCount);

IF instr.depCount = 0 THEN Add(ready, instr) END

END

END

END UpdateReady;

5 {(14)(5,0)} (14)

4 {(13)(4,1)} (13)

3 {(15)(0,0), (13)(4,1)} (15)

2 {(15)(0,0), (12)(1,3)} (12)

1 {(15)(0,0), (11)(1,3), (12)(1,3)} (11)

0 {(10)(0,4), (15)(0,0)} (10)

cycle ready emitted

Figure 9.4: Scheduling the graph of Figure 9.3. Suffixed numbers in parentheses correspond to the first and

dependence_length attributes, respectively.

101

Figure 9.4 presents step by step how our algorithm would schedule the above piece of code for the

PowerPC 601. Note that all instructions execute in the FXU, so this is an example of scheduling for a

single pipeline.

As described, this algorithm can be used to schedule basic blocks or innermost non_cyclic regions

(i.e. no loops). Schedulers operating on basic blocks only are called local schedulers. Reordering

instructions across branches as performed in global schedulers is significantly more complex, since the

control_conditions under which instructions are executed can change. We will return to this issue in the

section on global scheduling algorithms below.

Note that the algorithm requires the dependence graph to be acyclic. Loops in GSA_form do not lead

to acyclic definition_use relationships, however. Consider the following example.

(1) greg:

(2) l_merge: (1), (6)

(3) i := gate (2), i, (4)

(4) i := add (3), 1

(5) cmp (4), 100

(6) if_less: (5)

(7) if_gteq: (5)

There is a cycle of dependencies between instructions (3) and (4). This cycle has to be broken

somewhere, and since the schedule is generated for one iteration of the loop, the best place to do so is

the back_edge of the loop. By ignoring the last parameter of loop_gates, a valid ordering would still be

achieved. Note that every value being defined in one iteration and used in a later one goes through a

loop_gate. In order not to schedule instructions with long latencies at the bottom of the loop when they

are used at the top of the next iteration, their dependence_length could be set to their latency, even

though they are leaves in the dependence graph. The scheduler will attempt to schedule them so that

they terminate before the end of the current iteration.

Scheduling Nested Control_Structures

Nested control_structures are represented in GSA_form by regions participating in the instruction list.

Assume that the instructions in the control_structure have already been scheduled and that the structure

can be considered as one "large" instruction. Then, there are values − denoted by in − which are used

inside the structure and defined outside, as well as values out being defined inside and used outside. This

is similar to normal instructions, which use values and define new ones being used later. We thus say,

the region uses the values in and defines the values out. Using this model, a control_structure can be

scheduled just like other instructions. Note that this is already more aggressive than basic_block local

scheduling, since it allows instructions to be moved over control_structures or even control_structures to

be ordered in a different way than in the source. A technique achieving similar results at a much higher

cost on control_flow graphs has been proposed by Bernstein and Rodeh [BeRo91].

As simple as it looks, there are several issues which have to be dealt with separately. An If_statement

is not represented by a single region, but by guards and merges, which have to be scheduled all at once.

The simplest solution is to make one of these regions the placeholder for all of them, i.e. it becomes

ready when all regions belonging to the If_statement are ready. Since there is exactly one i_merge for each

simple If_statement, it makes sense to make the i_merge this placeholder.

Another problem is that the timing over region boundaries is not well represented. First of all, an

execution time for a control_structure can usually not be given. If it is an If_statement, it can be the

execution time of either the Then_ or the Else_path, or even larger numbers of different paths if there are

c_merges or further nested structures involved. If, on the other hand, it is a loop, it depends on the

number of iterations taken through the loop. For the purpose of scheduling, we always consider the

shortest path in estimating the execution time of a control_structure. Assuming longer execution times

would mask long latencies of instructions issued before the control_structure. For example, if a division

with a latency of 20 cycles is issued before a control_structure with a minimum execution time of 3 cycles

102

and a maximum one of 30 cycles, assuming the longest execution time would allow to schedule a use of

the division result right after the control_structure. The program may often run through the short path and

incur a 17 cycle interlock on the division result.

Conservatively, a control_structure is assumed to take all processor resources during its execution

time, which in fact may not be the case. Instructions from the outer region could be scheduled into such

free pipeline slots, but they would have to be replicated on all paths through the control_structure. We

have not investigated this possibility further.

Finally, latencies for in and out values of a region are more complicated to obtain. Knowing that a

value is used inside a control_structure or defined inside is not sufficient to determine its latency as seen

in the outer region. For example, if a division with a latency of 20 cycles is scheduled as the last

instruction in a region, the encountered latency for its result in the enclosing region is also 20 cycles. It

must be known where within the control_structure the value is used or defined, on all possible paths

through the structure.

Another idea we had but did not investigate further is to try to schedule nested regions at the very

beginning or very end of their enclosing region. This would allow to optimize branching. For example, if

an If_statement is the last statement in a loop, there is a branch from the end of the THEN_path to the

end of the If_statement, where there is a branch to the loop header. The first branch can be redirected to

the loop header, avoiding the second branch altogether. This is a topic for future research.

Forward vs. Backward Scheduling

The algorithm we have discussed so far generates the schedule forward, i.e. in the order in which the

instructions will be executed. Unfortunately, the path_length heuristic tends to move instructions with

long latencies too far apart from their uses, as it tries to make similar progress on all paths. In particular,

load operations are usually placed at the top, ALU operations in the middle, and store instructions at the

end, consuming large amounts of registers over large sections of the code. This effect is called

overscheduling, as instructions and their uses are moved further apart than necessary. The problem is

particularly pronounced in our framework, in which operations can be moved over large control

structures and hence can increase register pressure significantly. Lam [Lam93] claims that by generating

the schedule from the bottom, i.e. backwards, the danger of overscheduling can be reduced.

An intuitive explanation for this behavior is that in forward scheduling, instructions with long

latencies are scheduled as early as possible, while in backward scheduling, they are scheduled as early as

needed [Boll94]. For example, when scheduling forward, load instructions will be selected first due to

their long latency, moving them to the top. In backward scheduling, a load instruction can be emitted as

soon as the latency to all uses of the loaded value has been covered, which typically is much further

down in the considered region.

We have neither found nor collected empirical data on this topic, but we have implemented both

forward_ and backward_schedulers for OOC2. The algorithm needs only minor adjustments, namely in

that an instruction is ready when all its uses have been emitted, and in how the first_attribute is

computed and interpreted.

Cycle vs. Operation Scheduling

The above algorithm performs so_called cycle scheduling, i.e. selects instructions for each cycle.

Alternatively, one may also select cycles for operations as in operation scheduling. According to Lam

[Lam93], operation scheduling offers the advantage that high_priority operations can be scheduled first. It

requires that a reservation table is kept recording which processor resource is used in which cycle, and

makes it harder to implement than cycle scheduling. Moreover, keeping track of which instruction can be

issued in which cycles is more complicated. When instruction A is scheduled for cycle t, all instructions Bi
computing operands for A must be issued to the latest in cycle t−latency(Bi). This also places restrictions

on operations computing operands for Bi which have to be tracked. Furthermore, an instruction which

consumes A's result as an operand cannot be issued before t+latency(A). The effort to keep track of all

103

these restrictions is much higher than for a cycle_driven scheduler. Furthermore, for local schedulers, the

concept of high_priority instructions is not well_defined. We do not believe operation scheduling to be

superior in our framework, although we do not have empirical data on this topic.

Operation scheduling has benefits in scheduling loops, and we will return to this in the next section.

Direct Placement Scheduling

Griesemer [Grie92] describes a scheduling method for basic blocks that does not require the full

dependence graph to be build. In this algorithm, instructions are immediately placed into a reservation

table as they are generated. Assume that instruction A is just to be scheduled. All instructions Bi on which

A is dependent have already been scheduled and their issue time t(Bi) is known. The scheduler

determines max(t(Bi)+latency(Bi)) of all Bi as the earliest possible issue time t(A). Starting with this time, it

scans forward in the reservation table for the next available pipeline slot and places A into it. After the

whole basic block has been generated, it emits the reservation table in order, skipping over empty slots.

While the technique is simpler to integrate into a single_pass compiler, it would be harder to

implement for GSA form. Note that the algorithm makes use of the order in which instructions are

emitted by the code generator. This information is not available in GSA form, while the dependence graph

is.

In terms of quality of the schedule, direct placement scheduling delivers inferior results, as it cannot

use path_length heuristics and only considers the already generated schedule for its decisions.

9.2 Global Instruction Scheduling

Local scheduling methods suffer from a lack of overview, i.e. they do not determine latencies over region

boundaries, and they are restricted by their inability to move instructions between regions. Usually, the

number of instructions in a region is small, leaving only little freedom to rearrange code. Better schedules

can be obtained by establishing a more global view and allowing to move instructions over region

boundaries. Scheduling algorithms doing so are called global.

We distinguish between acyclic and cyclic global scheduling methods. Acyclic ones deal with control

flow graphs which either include no cycles, or in which artificial scheduling barriers are introduced on

loop back_edges. Thus, loop back_edges present no opportunity for optimization. In cyclic methods,

instructions can also be moved across loop back_edges and the latencies along such edges are also

considered for the schedule.

In the next section, we will discuss trace scheduling as the most prominent acyclic global scheduling

algorithm, and software pipelining as a cyclic global scheduling method attacking innermost loops. Both

methods deal with different kinds of code patterns and both have their place within an optimizing

compiler.

9.3 Trace Scheduling

Trace scheduling was first proposed by Fisher [Fish81] as a method for global microcode compaction,

and has later been adapted to VLIW machines for the Bulldog compiler by Ellis [Ellis85]. The central idea

of the method is the concept of a trace, an acyclic path through the program, which might be taken during

program execution. Instead of scheduling every basic block on this trace separately, the trace as a whole

is scheduled at once as if it were a single basic block. By doing so, instructions are implicitly moved over

branches and merges. If at execution time, the program takes this path, the results will be equivalent to

those generated by the original program, but the code has a better schedule. However, if a different path

is taken, the results would differ, and modifications have to be made to these off_trace paths in order to

ensure semantic equivalence. Figure 9.5 shows a control_flow graph and traces on it shaded in grey.

Traces are selected and scheduled in decreasing likelihood of execution, i.e. the trace with the highest

execution probability is selected and scheduled first. Then, among the remaining basic blocks in the

104

A

B

C

Figure 9.5: Control_flow graph with selected traces (A, B, C).

graph, the next likely path is selected and scheduled. This continues until all blocks have been scheduled.

Note that traces do not overlap, i.e. every block belongs to exactly one trace.

Which path is likely to be executed can be determined using static branch_prediction. The root block

of the graph is taken as the first block in the trace. The selection then follows branches to other blocks,

and wherever multiple paths are possible, a prediction is made on which direction the corresponding

branch is likely to take. Ball and Larus [BaLa93] have found a set of heuristics achieving correct prediction

rates above 80%. Alternatively, profiling could be used to get even better results. In profiling, the code is

instrumented to collect information on which paths are taken most frequently at execution time. The

program is then run on a sample set of data, and the collected information is used to guide later

compilations. Correct prediction rates above 90% are possible, but depend heavily on how realistic the

sample data is.

The selection of a trace on a nested region graph as in OOC2 is no different from the selection on a

control_flow graph. For pairs of guards, one is predicted as the likely path and added to the trace. The

selection then continues within its nested instructions.

When scheduling a trace, implicit code motions over region boundaries are encountered. Figure 9.6

shows the two possible directions. If an instruction is moved into a region, a new condition cond is

added to the guards controlling execution of this instruction. By making sure that the same instruction is

also executed under the condition Xcond, semantic equivalence can be ensured. More technically, a

so_called compensation copy of the moved instruction has to be inserted in the region corresponding to

the inverse condition. This inverse condition always represents an off_trace path. The results of both

instructions have to be combined by a gate and some uses have to be renamed accordingly to reference

the compensation copy or the gate. Keeping track of such movements and generating compensation

instructions is called bookkeeping and is an essential activity in trace scheduling.

105

greg

if_true

if_false

into region

out of region

Figure 9.6: Code motions over region boundaries in trace scheduling.

On the other hand, when an instruction is moved out of a region, a condition guarding its execution is

ignored. We say the instruction is executed speculatively. No compensation copies are required in this

case. Note that instructions that may raise exceptions or change global data cannot be executed

speculatively, as they change the output of the program. Motion of such instructions out of regions has

to be prohibited, for instance by adding dependency edges between their enclosing region, them, and the

next merge on the path. Alternatively, all instructions up to the speculative one can be moved back into

the original region, and compensation copies can be generated where needed. This back_movement is

called rejoining, as the position where paths are joined (merged in our terminology) is moved.

An instruction can be both executed speculatively and require compensation copies, namely when it

has been moved from within one control structure into another control_structure not nested within the

first. Keeping track of all cases is complicated and makes a trace scheduler hard to implement correctly.

For OOC2, we have developed an alternative approach to bookkeeping. Instead of keeping track of

code motions, bookkeeping is implemented as an algorithm reestablishing an invariant of the

intermediate program representation: The definition of a value must dominate all its uses, with the

exception of gates, where the definition must dominate the path corresponding to the gate operand.

When moving an instruction into a region, this invariant may not hold any more. If after scheduling a

trace, a use is found which is not dominated by the corresponding definition, gates and compensation

copies are added until all paths to the use contain a definition of the value. Figure 9.7 shows an example.

Instruction X in block A originally dominated its use in instruction Y in block G. X was moved into

block E by the scheduler, and now does not dominate Y any more. The algorithm detects this, and places

a gate in block G which will combine computations of X. Since the path through B does not contain a

computation of X, a copy is inserted in B, and made the first operand of the gate in G. On the other path,

it is found that a gate in block F is required, which combines the original computation X with the

compensation copy in block D. After this, there is no path to Y which does not contain a computation of

X.

106

A

B D E

C

F

G

moved instruction X

instruction Y using result of X

compensation code

Figure 9.7: Bookkeeping by reestablishing dominance of definitions over uses.

This algorithm simultaneously achieves some of the effects of partial dead code elimination [KnRS94],

which moves instructions to a position where they dominate all uses but no other paths. This

corresponds to lazy evaluation, where a computation is only performed if its result is known to be

needed. If an instruction is moved into a region by the scheduler, but still dominates all uses, no

superfluous compensation copies will be generated as compared to the original bookkeeping algorithm.

The restriction of trace scheduling to acyclic graphs prevents it from significantly improving

innermost loops, where most of the execution time is spent. If multiple iterations of the loop could be

overlapped, much better schedules were possible. By first unrolling loops, i.e. repeating the original loop

body several times, trace scheduling can be applied to it. However, trace scheduling already increases

code size through its compensation copies, and loop unrolling continues this trend. Good heuristics are

needed to keep the code size within reasonable limits.

For a more thorough discussion of trace scheduling and a description of how it has been

implemented for OOC2, see the diploma thesis of Bolliger [Boll94].

9.4 Software Pipelining

As we have seen in the last section, trace scheduling must resort to loop unrolling in order to improve

innermost loops. These loops are the section of code in which most of the execution time is spent.

Because of this, special scheduling methods for innermost loops have been designed under the name

software pipelining. Their goal is to overlap the execution of several loop iterations just like a processor

pipeline overlaps the execution of several instructions. This is superior to loop unrolling followed by trace

scheduling, as it allows a higher degree of overlap. Trace scheduling an unrolled loop with two iterations

in its body allows to intermix the execution of iterations 1 and 2, 3 and 4, and so on. However, it does

107

t

t

Loop Unrolling and Trace Scheduling

Software Pipelining

Figure 9.8: Overlap of 8*2 iterations in trace scheduling and software pipelining. Pipeline startup and drain

costs are shaded gray.

not allow to overlap the execution of iterations 2 and 3. Thus, we encounter pipeline startup and pipeline

drain effects at the beginning and the end of the trace scheduled unrolled loop, which are avoided in

software pipelined loops (Figure 9.8).

Software pipelining achieves the effect of unlimited loop unrolling without the associated code size

increase. Usually, it is not required to unroll the loop in order to obtain good overlap in the pipeline. If

unrolling is required in order to obtain a good schedule, it can be computed by how much a loop should

be unrolled, while with trace scheduling, one has to rely on heuristics.

In this section, we will discuss several methods for software pipelining.

Classic Software Pipelining

The fundamental idea of software pipelining − namely starting an iteration of a loop before the previous

iterations have terminated − can be implemented with a simple modification to a local scheduler.

Assume the scheduler is cycle_driven. When the selection function could not find an instruction to be

issued for the current cycle, a new iteration of the loop is added to the set of instructions to be

scheduled, increasing the amount of parallelism. Note that this simultaneously unrolls the loop. After

adding the iteration, the selection function is called again, and hopefully will find an instruction to issue.

Figure 9.9 shows a simple code pattern for a block copy, and Figure 9.10 exemplifies how it would

be software pipelined for the PowerPC 601. The decnz_ and decz_guards correspond to a PowerPC

branch_and_count instruction which simultaneously decrements and tests the count register.

(1) greg:

(2) l_merge: (1), (8)

(3) gate (2), src, (6:1) ; address of src −4

(4) gate (2), dest, (7:1) ; address of dest −4

(5) gate (2), count, (8:1) ; loop counter

(6) lwu (3), 4

(7) stwu (4), 4, (6)

(8) decnz: (5) ; decrement and branch

(9) decz: (5)

Figure 9.9: Code pattern for a block move.

108

3 {(7)1(3,1),(8)1(0,0)} (7)1,(8)1

2 {(7)(2,1),(7)1(3,1),(8)1(0,0)} (7)

1 {(7)(2,1),(2)1(0,0),(3)1(0,0),(4)1(0,0),(5)1(0,0),(6)1(0,3),(8)1(0,0)} (2)1,(3)1,(4)1,(5)1,(6)1

1 {(7)(2,1),(8)(0,0)} (8),add iteration

0 {(2)(0,0),(3)(0,0),(4)(0,0),(5)(0,0),(6)(0,3),(8)(0,0)} (2),(3),(4),(5),(6)

cycle ready emitted

Figure 9.10: Software pipelining the loop of Figure 9.9.

There are several things to note in this example. Instructions are suffixed with the iteration they belong

to, except for iteration 0. Merges and gates do not require any resources and have a latency of 0, thus

they can be scheduled immediately after becoming ready. We distinguish between branches and

non_branches, i.e. all other instructions. Loop_closing branches are usually only scheduled at the end of the

body; a restriction which has to be lifted here.

In cycle 1, the scheduler did not find a non_branch instruction to issue. It decides to add a new

iteration, the instructions of which become only ready after their controlling branch has been scheduled,

so the branch (8) is emitted in advance. Similarly to trace scheduling, this motion of the branch over the

store instruction requires to copy the store into both subsequent paths. After this, the scheduler finds

enough operations to fill all pipeline slots, resulting in the following final code.

(1) greg:

(2) l_merge: (1), (8) 1

(3) gate (2), src, (6:1)1

(4) gate (2), dest, (7:1)1

(5) gate (2), count, (8:1)1

(6) lwu (3), 4

(8) decnz: (5)

(6)1 lwu (6:1), 4

(7) stwu (4), 4, (6)1

(7)1 stwu (7:1), 4, (6)

(8) 1 decnz: (8:1)

(9) 1 decz: (8:1)

(9) decz: (5)

(7)' stwu (4), 4, (6)

(10) c_merge: (9), (9) 1 ; exit path

Since the addition of the second iteration corresponds to unrolling the loop, several operands had to be

renamed. The instructions of the second iteration no longer reference the gates, but use the values

generated in the first iteration − found in the last operand of the original loop gates. The gates have to be

modified to use the values computed in the second iteration instead of the ones from the first.

As simple as the method looks, there are many problems with it, which have also been noted by

Aiken and Nicolau [AiNi91]. In general, it is not easy to find out in which cycle a loop_closing branch can

be placed. Consider the dependence graph of a loop body and the corresponding software pipelined

code for a machine with two identical functional units in Figure 9.11.

There is no cycle in which all initiated iterations have terminated, and so there is no cycle in which a

branch back to the very beginning could be placed. However, there is a certain pattern in the schedule,

namely the schedules for cycles 1, 3, and 5 and for cycles 2, 4, and 6 are equal except for incremented

loop indices. If there were a loop_closing branch from the end of cycle 2 to cycle 1 the schedule would be

correct.

109

A B

C

D 7

6 D2 B3

5 C2 A3

4 D1 B2

3 C1 A2

2 D0 B1

1 C0 A1

0 A0 B0

cycle unit 1 unit 2

Figure 9.11: Dependence graph of a loop body and the corresponding software pipelined code.

The problem faced is finding such repeating patterns, which can only be solved if restrictions are made to

the scheduler. Aiken and Nicolau [AiNi91] propose the scheduler to be deterministic, i.e. to be a function

of the ready set. If done so, the ready set completely identifies a state of the scheduler. If a ready set is

encountered that had already been scheduled, which is equal to the current ready set except for all

iteration indices differing by the same constant k. Then both sets represent the same state, and a

back_edge can be placed to the scheduled state. In the above example, we would find cycles 1 and 3 to

have the ready sets {C0, A1, B1} and {C1, A2, B2} respectively. The iteration indices all differ by one −

corresponding to one iteration having passed in between − and the sets represent the same state. Note

that for a good schedule, not only the ready instructions have to be the same in the set, but also the

remaining latencies until they can be issued.

The loop in which iterations are completely overlapped is called the steady state − corresponding to

the pipeline being completely filled. Possibly there is also some code before it to fill the pipeline, which

we call the pipeline startup code, as well as some code behind it to finish initiated iterations called

pipeline drain code.

As is, the algorithm cannot be guaranteed to terminate. It is possible that an infinite number of

different states would be generated, as exemplified in Figure 9.12. Assume the target machine would

contain an integer_unit and a floating_point unit, and the loop body would include two instructions A, B

for the integer_unit and an instruction F for the floating_point unit, all of which were independent of each

other.

In cycle 1, there is no available instruction for the FPU, so a new iteration is added, which adds two

integer and one floating_point instruction to the ready set. The same happens for all subsequent cycles.

On the other hand, one floating_point instruction and only one integer instruction will be scheduled from

the ready set every cycle, increasing the number of ready integer instructions by one every cycle, and thus

leading to an infinite growth in the ready set.

3 {B1, A2, B2, A3, B3, F3} B1 F3

2 {A1, B1, A2, B2, F2} A1 F2

1 {B0, A1, B1, F1} B0 F1

0 {A0, B0, F0} A0 F0

cycle ready IU FPU

Figure 9.12: Example generating an infinite number of ready states.

110

By restricting the number of iterations from which instructions can be ready simultaneously, the problem

can be solved, as pointed out by Aiken and Nicolau [AiNi91]. Let N be this upper bound of iterations

with instructions in the ready set. Then a new iteration M can only be added if there is no instruction

XM−k in the ready set with k > N.

In the presence of control flow within the loop body, the software pipelining algorithm follows each

path, adding iterations as necessary and placing loop back_edges when possible. That is, if there is an

If_statement in the loop, both its THEN_ and its ELSE_path may include instructions from subsequent

iterations and can have separate loop_closing branches. The scheme allows loops with arbitrary control

flow to be software pipelined, but possibly at a very large code size increase.

The presented algorithm is elegant, allows to software pipeline arbitrary loops, and achieves very

good schedules. However, it tends to result in very large code and requires large amounts of

compile_time, both because a lot of code is generated and because it has to keep track of all states that

the ready set took on. For further details on the technique, see [AiNi91].

Modulo Scheduling

Modulo scheduling as described by Lam [Lam88] takes a different approach. Instead of placing

restrictions on the selection function and the number of iterations in progress at any point in time, it

restricts the way iterations can be overlapped. Every iteration has exactly the same schedule, and the

interval at which new iterations are initiated is fixed. This interval is called the initiation interval II, and

lower and upper bounds for it can be precomputed. For best performance, the algorithm tries to make II

as small as possible.

The upper bound for the initiation interval is the length of the scheduled loop body, corresponding

to no overlap between iterations and completely sequential execution of the iterations. The lower bound

depends on the following two restrictions.

− Resource restrictions: Let the target processor have nt units of type t, and the loop body

contain mt instructions executed on units of type t. Then, maxt(mt/nt) over all types t is a

lower bound for II.

− Cyclic dependencies: If the value of some variable v in iteration n is used to compute the value

of v in iteration n+k, there is a cyclic dependency between operations. Its length is the sum of

all latencies on the cycle. The length l of the longest such cycle divided by k is a lower bound

for II.

The first restriction can be substantiated as follows. In the steady state, k iterations will take k * II cycles

to execute. Assuming that each execution unit is available every cycle, there will be k * II * nt available

resources for the execution of instructions of type t. On the other hand, k * mt instructions of type t have

to be executed in this time. Since a resource cannot perform multiple computations at once, k * mt # k * II

* nt , i.e. mt/nt # II for all t.

Without loss of generality, assume that k in the second restriction is 1, i.e. the computation of v in

iteration n+1 is dependent on the computation of v in iteration n. If v is computed by the first instruction

in the schedule, a new iteration cannot be started before v is available after l cycles, thus placing a lower

bound on the initiation interval. If v is determined by the j'th instruction in the schedule, it will be so in

all iterations, thus the same bound l applies to the initiation interval.

111

(1) greg:

(2) l_merge: (1), (8)

(3) gate (2), src, (6:1) ; address of src −4

(4) gate (2), dest, (7:1) ; address of dest −4

(5) gate (2), count, (8:1) ; loop counter

(6) lwu (3), 4

(7) stwu (4), 4, (6)

(8) decnz: (5) ; decrement and branch

(9) decz: (5)

Figure 9.13: Code pattern for a block move.

Note that the initiation interval is an integer number. However, if the lower bound is a rational number of

the form p/q, unrolling the loop q times will allow for an initiation interval bound of p cycles for q

iterations. Alternatively, the lower bound can be rounded up to the next integer number.

The software pipelining algorithm precomputes this lower bound and then systematically constructs

a schedule for the loop. Reconsider the above example for a block move (Figure 9.13).

For the sake of clarity, we omit the merges and gates in the following as they do not influence the

schedule, leaving only the load, the store, and the branch to be scheduled. When scheduling for the

PowerPC 601, the integer_unit will be required twice by the load and the store, placing a lower bound on

II of 2. Figure 9.14 shows the generated schedule, where a new iteration is started every II cycles.

The store operation (7)0 could not be scheduled in cycle 2, as the load of the next iteration had to

be scheduled there. Remember that the schedule for every iteration must look the same and that after

every II cycles, a new iteration has to be started. If the next iteration were added in cycle 4, cycles 4 and 5

would be the same as cycles 2 and 3, except for the incremented iteration indices. Thus, cycles 2 and 3

make up the steady state, i.e. there is a branch at the end of cycle 3 to cycle 2. Cycles 0 and 1 and cycles 4

and 5 represent the pipeline startup and pipeline drain sequences.

Instead of requiring a technique to determine when the steady state is found, modulo scheduling

allows to directly generate the steady state. The fundamental idea behind it is the so_called modulo

reservation table. If an instruction A is scheduled for cycle t, it also has to be scheduled for all cycles t + II *

k, k 3 1. Instead of repeating this placement information over and over, one could only store its relative

position t MOD II within an interval once. This can be done in a reservation table with II rows, which is

(6)0 lwu

(7)0 stwu (8)0 decnz

(6)1 lwu

(7)1 stwu (8)1 decnz

interval boundaries

0

1

2

3

4

5

iteration 0 iteration 1

Figure 9.14: Software pipelined block move.

112

(6)0 lwu

(7)−1 stwu (8)−1 decnz

0

1

Figure 9.15: Modulo reservation table for the block move.

called the modulo reservation table. Figure 9.15 shows the modulo reservation table for the previous

example.

After scheduling the load instruction into the table, the scheduler does not proceed beyond cycle 1

but wraps around into cycle 0. After wrapping around once, instructions then scheduled belong to the

iteration started in cycle −1*II = −2. Since the integer unit is already reserved in cycle 0, the store and the

branch are placed into cycle 1. Note that these instructions are marked with the corresponding iteration

−1.

(6)0 lwu

(7)−1 stwu (8)−1 decnz

(6)−1 lwu

(7)−1 stwu (8)−1 decnz

(6)0 lwu

(7)0 stwu (8)0 decnz

startup

steady state

drain

Figure 9.16: Generating pipeline startup and drain code.

The schedule generated into the modulo reservation table forms the steady state of the software pipeline.

The pipeline startup and drain code can be generated easily from the steady state, namely by copying

parts of it. Note that before entering the steady state, the load instruction of iteration −1 is missing, while

after exiting from the steady state, the store and the branch of iteration 0 are missing. This information

can be obtained from the modulo reservation table, as shown in Figure 9.16.

A copy of the reservation table with appropriately renumbered entries is used as the startup code.

The load belonging to iteration −1 is needed, but since there is no iteration −2, the store and branch

numbered −2 can be omitted. This translates to the following procedure.

PROCEDURE GenerateStartup (table: ModuloResTable; nofIter: INTEGER);

VAR iter, newIterIndex: INTEGER;

BEGIN

iter := 1;

WHILE iter < nofIter DO

FOR each instruction instr in table DO

newIterIndex := instr.iterIndex − iter;

IF newIterIndex >= −nofIter THEN

113

CopyIntoStartup(instr, newIterIndex)

END

END ;

INC(iter)

END

END GenerateStartup;

nofIter represents the number of iterations overlapped in the reservation table, which is the number of

times the scheduler wrapped around plus one. The instructions in the table have associated iteration

indices in the range −(nofIter−1)..0. The algorithm determines for each instruction from the table which

iteration index it would receive when copied into the startup code. If it belongs to an existing iteration, it

is copied, otherwise it is skipped. The procedure to generate the pipeline drain code is similar, with the

only difference being that the iteration count iter is added instead of subtracted to obtain the new

iteration index, and that the check of whether it belongs to an existing iteration is a check of being less

than or equal to zero.

In this software pipelining technique, a reservation table is used, and thus operation_driven

scheduling is feasible. In the presence of cyclic dependencies, it makes a lot of sense to schedule the

dependence cycles first, calling for such a scheduler. Assume a cyclic dependence of length l, which places

the lower bound on II. In this case, every instruction on the dependence cycle must be issued as soon as

it becomes ready to be issued, i.e. all latencies are fulfilled. If an instruction has to be delayed because of

resource conflicts, the cycle lengthens and II increases as well. In the presence of dependence cycles, the

algorithm can fail to produce a schedule with a given II, and then the process has to be started all over

with a larger II. Lam [Lam88] recommends to increase II by 1 until the algorithm finds a schedule, and

claims that the scheduler very often succeeds within the first three trials. Note that the algorithm must

terminate when II reaches its upper bound.

When the lower bound is given by resource constraints, there is no transformation which can

improve upon the bound. However, if a dependence cycle determines the lower bound, and the

dependence cycle includes conditional branches, moving instructions over the branches may reduce the

dependence length and thus allow to achieve a smaller II. Reconsider the list traversal loop we have seen

in Chapter 4.

p := root;

WHILE (p # NIL) & (p.key # key) DO p := p.next END

The loop translates into the following GSA code.

(1) greg:

(2) p := lw root

(3) l_merge: (1), (9)

(4) p := gate (3), (2), (10)

(5) cmp (4), 0

(6) if_neq: (5)

(7) lw (4), 0 ; p.key

(8) cmp (7), key

(9) if_neq: (8)

(10) p := lw (4), 4 ; p.next

(11) if_eq: (8)

(12) if_eq: (5)

(13) c_merge: (11), (12) ; exit path

When scheduling for the PowerPC 601, there are two load and two compare instructions to be executed

in the integer unit, placing a lower bound of four on II due to resource constraints. However, there is a

long cyclic dependence chain which puts the lower bound to eight (Figure 9.17).

114

(5) cmp

(6) if_neq:

(7) lw

(8) cmp

(9) if_neq:

(10) lw

(2)

(0)

(2)

(2)

(0)(2)

(2) (2)

Figure 9.17: Cyclic dependence chains for the list traversal loop.

There are several cyclic dependence chains in the graph, the longest with a length of 8. However, many

delays are caused by having to wait until conditions are resolved, and by speculatively executing some

instructions, some dependence cycles can be broken. For example, by allowing all load and compare

instructions to be moved over guards (6) and (9), the longest dependence cycle will then be a two_cycle

one between successive accesses to p.next (the dependence cycle on instruction (10)). Figure 9.18 shows

the modulo reservation table after allowing the speculative motions and obtaining an II of 4. The finally

generated code for POWER_2 which even achieves an II of 2 is shown in Chapter 4.

We have not yet discussed the interplay of software pipelining and register allocation. Note that

when there are overlapping loop iterations, each iteration typically requires its own set of registers so that

values of other iterations are not overwritten. For example, in the reservation table for the block move

(Figure 9.15), a new value is loaded before the previous one has been written. One could either save

(5)0 cmp

(7)0 lw (9) −1 if_neq:

0

1

(10)0 lw (6) 0 if_neq:

(8)0 cmp

2

3

Figure 9.18: Modulo reservation table for the list traversal loop after speculative code motions.

115

the old value using a register_register move, which would destroy the carefully constructed schedule, or

one could emit two copies of the steady state and appropriately rename registers. An upper bound for

the number of copies required is the number of iterations in the modulo reservation table. With a

detailed analysis of the live ranges as performed by register allocation a smaller number of copies may

sometimes be found.

One problem we have not yet dealt with is how to perform modulo scheduling on control structures

in a loop. Note that modulo scheduling is limited to innermost loops, so the only control structures in

question are If_statements and possibly Case_statements.

Lam [Lam88] proposes hierarchical reduction, in which each path through the control structure is

scheduled separately into a reservation table, and is then considered as one "large" instruction consuming

many resources at once and being scheduled like simpler instructions. This approach is very closely

reflected by GSA form, in which a guard can also be considered as a "large" placeholder instruction for all

nested instructions.

Warter et al. [WHSB92] describe a different technique called enhanced modulo scheduling. Each

instruction is annotated with a predicate under whose control the instruction is executed. Since every

instruction can then be executed conditionally, the control structure completely vanishes. This model is

called predicated execution [RYYT89] and requires special hardware support. In later work, Warter et al.

[WMHR93][WaLH93] describe how the technique can be applied to conventional machines by first

assuming that predicated execution is available, and then reconstructing a possible control_flow graph

through replacing the predicates. Note that the model of predicated execution is also very well reflected

in GSA form, as the controlling predicate for an instruction is readily available in its guard.

Other Algorithms for Software Pipelining

Circular scheduling is a simple software pipelining technique used in recent MIPS compilers and described

by Jain [Jain91]. It only applies to loops consisting of a single basic block, i.e. with no branching within

the loop body, and for which the number of iterations can be precomputed. Assume a loop is

represented as {ABC}n, where A, B, and C correspond to instructions and n is the number of iterations

executed. The execution of this loop is equivalent to the execution of A{BCA}n−1BC or AB{CAB}n−1C.

Circular scheduling tries to find a good such ordering through heuristics deciding which instructions to

circle from the top of the loop to the bottom. It schedules these orderings, and terminates as soon as an

ordering with no pipeline stalls is found or no other reasonable ordering can be tried out. Jain also

describes how register renaming helps to reduce dependencies and how it can be integrated into the

algorithm.

The technique is restricted to overlapping at most two iterations and cannot create multiple copies

of the loop body. Larger amounts of overlap can only be achieved through previous loop unrolling.

Furthermore, due to its restriction to simple loops only, its effect on run_time is smaller than for the other

algorithms.

Blainey [IBM94b] describes the software pipelining technique used in the IBM XL compilers, which

is similar in spirit to circular scheduling. From the description, we are not able to tell in which respects it

differs.

9.5 Register Allocation

So far, all our algorithms made the assumption, that an infinite number of registers is available. Every

value computed is kept totally separate from others, and thus consumes its own virtual register. Since we

are applying machine operations to values, they have to be stored in physical registers when used as

operands in our machine model. If the number of values would be smaller than the amount of available

physical registers, register allocation would be trivial: The compiler would just number all values

uniquely. However, the usual case is that the number of values is larger than the amount of physical

registers. Thus, some values must share a single physical register or must temporarily be kept in memory

116

rather than in registers. The decision which values to store in which location is the task of a register

allocator. In this section, we outline register allocation using graph coloring.

Live Ranges and the Interference Graph

Graph coloring register allocators are based on the notion of live ranges and the interference graph on

them. A live range of some value v is the union of the intervals from the definition point of v to all uses

of v in the scheduled code. Figure 9.19 shows a section of code and the live ranges in it.

(9) adr a

(10) l_merge: (1), (24)

(11) i := gate (10), i, (16)

(12) s := gate (10), s, (23)

(13) cmp (12), 100

(14) mul (11), 4

(15) lwx (9), (14)

(16) i := add (11), 1

(17) cmp (16), 127

(18) if_gtr: (13)

(19) s := subf (15), (12)

(20) if_lte: (13)

(21) s := add (12), (15)

(23) s := gate (22), (19), (21)

(24) if_lte: (17)

(9)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(19)

(21)

(23)
(22) i_merge: (18), (20)

Figure 9.19: Code example with associated live ranges.

A live range may consist of several short intervals, all of which should be allocated to the same register.

The idea is as follows: The defining computation evaluates the value into a register R, and all instructions

using the value as an operand access it from R. When two live ranges overlap in the above graph − e.g.

range (9) overlaps with all other ranges − we say the ranges interfere. Interfering ranges cannot be

allocated to the same register R: Doing so would mean to ask R to store two values at once.

The information, which live ranges interfere and which do not, can be represented in an interference

graph − a graph whose nodes represent live ranges. There is an edge between two nodes if they interfere.

Figure 9.20 shows the interference graph of the example in Figure 9.19.

There are two disjoint graphs, one for general purpose registers and another one for condition code

registers. If the code would access floating_point registers, they would be represented in a third graph.

Since integer values and condition codes cannot be allocated to the same class of registers in the

PowerPC architecture, they will be treated separately. That is, the GPR graph is mapped onto the available

general purpose registers, while the condition code graph is mapped onto the available condition code

registers.

117

General Purpose Registers (GPR) Condition Code Registers

(17)(13)

(23)

(11)

(12)

(14)

(15)

(16)

(19)

(21) (9)

Figure 9.20: Interference graphs of the example in Figure 9.19.

Registers should be assigned to life ranges in a way, that all nodes connected by an edge get different

register numbers. This problem is equivalent to the graph coloring problem, where two nodes cannot

receive the same color if they are connected. This equivalence was first noted by Chaitin et al.

[CACCHM81]. Since then, graph coloring has become the standard technique to allocate registers in

optimizing compilers. Chow and Hennessy [ChHe90] have developed simplifications to the algorithm

which allow a faster implementation, delivering only slightly inferior allocations. The techniques by

Chaitin and Chow represent the two main directions in graph coloring register allocation research. In the

following, we present the original algorithm by Chaitin.

Computing the Interference Graph

The interference graph is typically represented as a bit_matrix b, in which element bij is TRUE corresponds

if live ranges i and j interfere. It can be constructed by propagating a vector of currently live values over

the program. The propagation proceeds backwards over the program and iterates until a fixpoint is

reached. Upon encountering the end of a live range l, i.e. value l is used at the current point but not yet in

the live vector, l is added to the vector. If the defining computation of a value m in the vector is

encountered, m is removed from the live vector, as it is not live before its definition.

Whenever two values are live at the same point in time, their live ranges interfere. A convenient

method to record this is to add interferences between live range l and all ranges in the live vector at the

time l is added to the live vector. Due to cyclic dependencies in case of loops, the algorithm has to be

iterated until a fixpoint is reached. The method is optimistic in that it assumes live ranges not to interfere

in the beginning.

118

PROCEDURE ComputeInterferenceGraph (P: SSAprogram; VAR b: Bitmatrix);

VAR live: Bitvector; instr: Instruction; res: Result; opnd: Operand; R: Node;

BEGIN

live := {}; b := {};

REPEAT

FOR each instruction instr in reverse order DO

FOR all results res of instr DO EXCL(live, res) END ;

FOR all operands opnd of instr DO

IF ˜(opnd IN live) THEN

FOR all ranges R in live DO Interfere(b, opnd, R) END ;

INCL(live, opnd)

END

END

END

UNTIL fixpoint reached

END ComputeInterferenceGraph;

Coalescing Live Ranges

Coalescing is the activity of combining two live ranges which are connected by a copy_instruction into one

live range. In OOC2, there are no ordinary copy_instructions after copy propagation, but two instructions

with similar properties. When a value must be allocated in a certain physical register R, e.g. in order to

accommodate the calling conventions, the compiler inserts a load_register_physical (lrp) instruction. The

instruction copies between the original value, which can be located anywhere, and the value constrained

to R. Constraining the original value to R is not always possible, as shown in Figure 9.21.

(10) add i, 1

(11) mul j, i

(12) call p, (10):R3

(13) call q, (11):R3

(10)

(11)

Figure 9.21: Two interfering live ranges constrained to the same physical register R3.

Both (10) and (11) need to be in R3, but since they interfere, they cannot be allocated to the same

register. It would be a very difficult problem to find a position at which inserting a register_register move

would resolve the conflict. The register allocator therefore inserts lrp_instructions right before all uses

constrained to a physical register, and right after all definitions constrained to a register, making the rest

of the live range unconstrained (Figure 9.22).

The compiler coalesces all live ranges constrained to the same physical register into one live range P,

as they have to be allocated to the same register. It then searches for ranges connected by

lrp_instructions, which do not interfere with P and which are not yet constrained to another physical

register. If such a range is found, it is coalesced into range P, avoiding the register_register move a

lrp_instruction corresponds to. In the above example, after coalescing (14) and (15), (10) does not

interfere and can be combined as well, making instruction (14) superfluous. (11) interferes with

(14)−(15), however, and can thus not be coalesced into the same range.

119

(10) add i, 1

(11) mul j, i

(12) call p, (14):R3

(13) call q, (15):R3

(10)

(11)

(14) lrp R3, (10)

(15) lrp R3, (11)

(14)

(15)

Figure 9.22: Avoiding the problem in Figure 9.21 by introducing lrp_instructions.

Another kind of register_register moves in OOC2 occurs in conjunction with gates. A gate combines two

values and generates a third, which are all represented as separate live ranges. Consider the example in

Figure 9.23.

The values (1) and (2) must be copied to the same register Rx, in which value (3) will be found. If (1)

and (2) can be coalesced with (3), the copy assignments (4) and (5) can be omitted. Whether coalescing

is possible is derived from the original interference graph.

Great care must be taken when inserting such copy assignments after the interference graph has

been built. Consider an If_statement, in which in one path two variables a and b are swapped, while in the

other path they are unchanged. Copy propagation will have removed the corresponding copy

assignments. However, the original value of a will have to be combined with the value of b from the other

path in the gate, and vice versa. Thus, the compiler has to generate a valid order of register assignments

which performs a register swap. There are less obvious cases in which similar problems are encountered.

(1) x
0
* y

0

(4) Rx := (1)

(2) w
0
DIV z

0

(5) Rx := (2)

(3):Rx f ((1), (2))

Figure 9.23: Translation of gates.

Coloring the Interference Graph

After live ranges have been coalesced, the register allocator tries to assign a color to each live range, so

that no interfering ranges receive the same color. The number of available colors corresponds to the

number of available registers. If there are k registers, we say that we search a k_coloring for the graph. If

no coloring is found, the compiler selects some ranges for spilling, i.e. some values are kept in memory

instead of registers. It then rebuilds the interference graph, and tries to find a k_coloring again. This

process is repeated until a k_coloring is found.

120

Since the problem of finding a k_coloring for an arbitrary graph is NP_complete, we rely on non_optimal

heuristic techniques. Chaitin's heuristic [CACCHM81] is based on the degree dN of a node N, which is the

number of neighbors of N, i.e. the number of edges between N and other nodes. His algorithm proceeds

as follows.

PROCEDURE ColorGraph (g: Graph; k: INTEGER);

VAR stack: Stack; N: Liverange; C: INTEGER;

BEGIN

REPEAT

empty stack;

select a node N from g with degree dN < k;

WHILE such a node N is found DO

remove N from g, lowering the degree of the neighbors of N;

Push(stack, N);

select a node N from g with degree dN < k

END ;

IF ˜(g is empty) THEN

select node N to spill;

Spill(N);

rebuild interference graph g

END

UNTIL g is empty;

(* success, all nodes could be removed and are now on the stack *)

WHILE ˜(stack is empty) DO

Pop(stack, N);

add N and all its previous edges to graph g;

select a color C different from the colors of all neighbors of N;

assign C to N

END

END ColorGraph;

The algorithm works because of the following observation: If a node N has a degree dN < k, dN colors are

used in its neighbors, and there must be another color for N out of the k available colors. That is, if a

node N with degree dN is successfully removed from the graph, it will also have dN neighbors when it is

added to the graph in the second step, and there will be a color for it. Figure 9.24 depicts the process on a

simple graph taken from [Brig92], which is 3−colored.

The technique is sensitive to the order in which nodes are selected from the graph. A good heuristic

is to select the node with the highest degree first, as it will lower the degree of the largest number of

neighbors. Note that the algorithm may not find a k_coloring for a graph which is k_colorable. In practice,

however, it delivers good results.

Spilling

When the coloring algorithm finds no node N of degree dN < k, not all nodes can be kept in the k

available registers. Some node must be selected to reside in memory, and so_called spill code to load and

store the value must be inserted. After removing such a node from the interference graph, the degree of

neighboring nodes is reduced.

Counting the number of accesses and weighting them by the loop nesting depth delivers a

reasonable approximation of the cost of spilling a node, and can be used to choose the actual node to

reside in memory. Note that spilling a node N does not correspond to N not consuming any register

resources at all. When its value is computed, it resides in a register until it is stored, and before it can be

used as an operand, it has to be loaded into a register. However, instead of one large live range for the

value, there is a set of small live ranges which is more likely to be colorable.

121

(3)

(1)

(2)

(4) (5)

B

G

R

G R

B

R

G R

(4) (5) G R

(3)

(2)

(4) (5)

(3)

(4) (5)

B

G R

R(5)

Figure 9.24: Coloring a simple graph with the colors R, G, B.

Problems with the Algorithm

The algorithm as described suffers from several problems. After one node has been spilled, the whole

interference graph must be reconstructed and the coloring started from scratch. Briggs [Brig92] describes

a modification to the algorithm which allows to spill several nodes at once, but which still cannot

guarantee that a single pass will suffice to find an allocation.

122

Another problem is that the interference graph can be very large. Large procedures sometimes contain

several thousand instructions. Their interference graph would be represented as a bitmatrix consuming

several megabytes of memory. Such a large matrix does not fit into typical caches, causing performance

degradations when allocating registers for large procedures.

Besides these two problems on the implementation side, there is also one problem with the

allocation it generates. If a live range has to be spilled to memory in one place, it will reside in memory

for the whole procedure. Long live ranges being defined at the beginning of the procedure and being used

at the end can take up registers for the whole procedure, even though they are not accessed over large

fractions of the code. Figure 9.25 shows an example.

a := ...; b := ...;

WHILE DO

... a ...

... b ...

END ;

....

c := ...;

WHILE DO

... c ...

END ;

... a + b ...

a b

c

Figure 9.25: Two long live ranges (a, b) cause an often accessed live range (c) to be spilled inside a loop on a

machine with 2 available registers.

In the example, a and b have larger numbers of uses than c, and thus will not be spilled, even though they

are not accessed in the second loop. A better solution would be to allocate a and b to registers for the

first loop, then spill a before the second loop and allocate the freed register to c. Doing so is called

live_range splitting, as the range of a is split into two parts, with one part being allocated in a register and

the other in memory. Briggs [Brig92] discusses several techniques to perform live_range splitting, with the

main problem being to find which ranges should be split and where. Hierarchical graph coloring avoids

these problems by considering the control structure of the program right from the beginning.

Hierarchical Graph Coloring

Callahan and Koblenz [CaKo91] reason that classical graph coloring register allocators do not consider

the control structure of the program, and are not sensitive to local usage patterns. Moreover, they have

no intelligent mechanism to place spill code, i.e. loads and stores to move values between memory and

registers. Note that the goal of a register allocator is to minimize the number of dynamically executed

memory accesses, so spill code should be inserted in locations where it is rarely executed. They propose

hierarchical graph coloring as a method to split live ranges and to place spill code intelligently. This is also

the method implemented in OOC2.

Instead of coloring an interference graph for a whole procedure at once, hierarchical graph coloring

takes a bottom_up approach on the control structures of the procedure. It first builds interference graphs

for the innermost regions, and colors them. After a coloring with m registers for region R has been found,

R can be treated as one instruction requiring m registers at the next outer level. The algorithm proceeds

up to the topmost region, integrating colorings for nested regions into the interference graphs of their

respective enclosing regions.

123

This approach has several advantages. It does not need to build the interference graph of a whole

procedure, but rather just interference graphs of individual regions, so the graphs become much smaller.

When a value must be spilled, the algorithm has precise information about the associated costs instead

of just estimates: The algorithm only decides whether a value should be kept in a register in the current

region − and not in other regions − thus the number of memory accesses required when spilling the

value denotes the cost precisely. In the previous algorithm, the cost is computed as the sum of all

accesses in each region, weighted by an estimated execution frequency of the region. Finally, a value can

reside in a register in some regions and in memory in others with hierarchical graph coloring.

When coloring the interference graph of a region, the algorithm distinguishes between local and

global live ranges. Local live ranges are only accessed within the region, including nested regions, thus the

whole live range is known in coloring. Global live ranges are also accessed in outer regions, and only a

part of the whole live range is known. Global live ranges are never coerced into one register with other

global live ranges, as two global ranges may interfere in the unknown part of their range, although they

do not interfere within the current region. However, they may share a register with local ranges. This

behavior can be implemented by temporarily adding interference edges between all global live ranges,

and then coloring the graph. The coloring will deliver the following results: An assignment for each global

live range to either memory or a register, a number m of registers used for local live ranges, and an

interference graph encoding which ranges in registers may still be coerced into the same register. The

latter is needed as we conservatively avoided to coerce global live ranges, even if they do not interfere in

the colored region. Note that this register_interference graph is never larger than k2 bits, where k is the

number of available registers. There are no more than k registers to allocate, thus there cannot be more

than k live ranges in registers for every region.

The result from region R is then integrated at the next outer level as follows: m live ranges for local

ranges of R are introduced at the position of R, which interfere with everything being live across R. The

interferences between global ranges from R are added to the interference graph. Then this graph is

colored as well.

When selecting a range for spilling, the allocation in nested regions has to be considered as well. If a

range is allocated to a register within a region R and should be spilled on the outside, the value has to be

loaded before entering R and must be stored after exiting from R. On the other hand, when the value is

kept in memory in R and should be allocated in a register on the outside, a store before R and a load

after R must be added. This ignores the cases where the value is dead before or after R or when a valid

copy of the value is already in memory. Some of these memory accesses can be omitted under these

circumstances. The required memory accesses have to be considered when determining spill costs. Note

that the allocator never changes the allocation in a nested region, but only adds spill code around that

region if necessary. For loops, the spill code is added outside of R, so that it is executed only once. For

guards, it is added on the inside, so that it is only executed if the region is actually entered.

Figure 9.26 depicts how this algorithm would allocate registers for the example of Figure 9.25.

a := ...; b := ...;

WHILE DO

... a ...

... b ...

END ;

....

c := ...;

WHILE DO

... c ...

END ;

... a + b ...

a b

c

R0

mem

R1

R0

Figure 9.26: Register assignment after hierarchical graph coloring.

124

Register Allocation using Cyclic Interval Graphs

Another problem with graph coloring register allocators is that they do not necessarily coerce live ranges

into registers so that a maximum amount of time is covered, i.e. that the register is put into use over as

large a fraction of the code as possible. In an interference graph representation, information about the

fraction of code covered by a live range is not available. Hendren et al. [HGAM92][HGAM93] propose a

technique centered around cyclic interval graphs, in which this information is available, and present

efficient algorithms to find sets of ranges covering maximal fractions of the code. The technique is

inherently hierarchical in that it can only color one region at a time. Moreover, it requires live ranges to

be a contiguous single interval. This latter aspect is an obstacle in representing the live ranges generated

by arbitrary control_flow, and already causes problems with the conditional merges in OOC2.

Magun [Magun94] has implemented an experimental register allocator for OOC2 building upon

cyclic interval graphs, but had to resort to interference graph representations when integrating the

coloring of nested regions into the next outer region. The combination of two representations turned out

to be rather complicated. Further experiments in this field are a topic of future research.

Supporting the PowerPC Calling Convention

In the PowerPC calling convention, parameters have to be passed in certain registers. Furthermore, there

are so_called caller_saved registers, which are not preserved over calls, and callee_saved registers which are.

The latter have to be saved by the callee if modified.

We have already discussed, how values can be forced into certain registers using location attributes

and lrp_instructions. The destruction of the values in caller_saved registers over procedure calls can be

modelled with the same mechanism. For every caller_saved register, a dummy result is added to the

call_instruction, which is forced into the corresponding physical register. Therefore, all caller_saved

registers are assigned to these dummy results at the position of the call. Ranges that live over the call will

automatically be allocated to callee_saved registers.

The code to save and restore callee_saved registers that were assigned to life_ranges in a procedure is

placed in the procedure prolog and epilog, respectively. In order to save as few registers as possible, the

register allocator first assigns all caller_saved registers before proceeding to the callee_saved ones. It

records which callee_saved registers were used, and inserts corresponding save_ and restore_code after the

allocation has succeeded.

10 Measurements

In this chapter we present some measurements on our optimizing Oberon_2 compiler OOC2. There are

three different attributes that we consider: Size of the compiler, compilation speed, and quality of the

generated code. As far as possible, we compare the numbers with those of the GNU C_Compiler 2.6.0

[Stall94] and those of IBM XLC 1.3 [IBM90d].

10.1 Compiler Size

One of our goals was to implement an optimizing compiler which is much smaller than other optimizing

compilers, and not much larger than non_optimizing compilers. Table 10.1 lists some data about

optimizing C_compilers for the PowerPC architecture.

IBM XLC 1.3 n.a. n.a. n.a. xlc, xlcentry 3529600

GNU CC 2.6 179 304842 8858307 gcc, cpp, cc1 2201752

Compiler source files source lines source (bytes) executables code (bytes)

Table 10.1: Optimizing C_compilers for the PowerPC architecture.

Compared to these compilers, Oberon_2 compilers are extremely small. The non_optimizing Oberon_2

compiler POP2 consists of nine modules, totaling slightly above eight thousand source lines and 150

kBytes object code (Table 10.2). POP2's source code is roughly thirty times smaller than the one of GNU

CC, and its object code is 15 and 23 times shorter than the one of GNU CC and XLC, respectively. Note

that each compiler has been compiled by itself, so theoptimizing compilers have benefited from the code

size reduction due to their own optimizations.

The optimizing Oberon_2 compiler OOC2 shares the front_end with POP2, and thus there are no

significant differences between the two compilers in the front_end. Table 10.3 shows the corresponding

data for OOC2. The code emitter has been replaced by module OOCD implementing the GSA data

structure, and the code generator has been rewritten to construct GSA form.

126

Total 8142 300944 151476

Compiler Driver Program 186 6479 3576

POPC Code Generator 2154 86994 48116

POPL Code Emitter 870 28619 10908

POPV Tree Traversal 874 32100 13296

front_end 4058 146752 75580

POPP Parser 1020 34685 21636

POPB Tree Builder 1478 52579 29312

POPT Table Handler 872 35488 13296

POPS Scanner 298 10064 6480

POPM Machine Interface 390 13936 4856

Module function source lines source (bytes) code (bytes)

Table 10.2: The non_optimizing Oberon_2 compiler POP2.

Total 6859 271761 146116

OOC2 Driver Program 224 7837 5120

OOCC GSA Code Generator 1588 74710 40340

OOCD GSA Data Types 413 18349 5868

OOCV Tree Traversal 615 24336 12720

OOCP Parser 1011 34281 22252

OOCB Tree Builder 1467 51730 33576

OOCT Table Handler 840 35282 14892

OOCS Scanner 298 10006 6480

OOCM Machine Interface 403 15230 4868

Module function source lines source (bytes) code (bytes)

Table 10.3: The front_end of the optimizing Oberon_2 compiler OOC2.

Considering that not all Oberon features have been implemented in OOC2 yet, the sizes of the two code

generators are remarkably similar. The added complexity due to the algorithms generating GSA form is

well consumed by simplifications in the code generator. OOC2's code generator does not have to deal

with register allocation and with optimizing certain code patterns, making it easier to understand than the

one of POP2.

OOC2 currently builds upon an abstract syntax tree, but as described in Chapter 7, this intermediate

step is by no means required. The front_end could directly generate GSA form, omitting most of module

OOCB and parts of OOCV.

127

Total 1788 68028 40040

OOCPH Peephole Optimizations 62 2730 2044

OOCSR Strength Reduction 873 35834 23008

OOCDC Dead Code Elimination 98 3031 1312

OOCVN Value Numbering 256 8628 4128

OOCCP Constant Propagation 372 12798 6360

OOCI Inlining 127 5007 3188

Module function source lines source (bytes) code (bytes)

Table 10.4: Optimization algorithms in OOC2.

Table 10.4 lists the optimization algorithms of OOC2. Copy propagation has been integrated with the

value numbering algorithm. Except for module OOCSR, the algorithms are remarkably small. This can be

attributed to the properties of GSA form, which simplify both analysis and transformations of the code.

Most of the complexity of the strength_reduction algorithm is due to dealing with machine properties, e.g.

selecting which parts of a reassociated sum should be consumed into an addressing mode and which

ones should be propagated out of the loop.

Data about a simple back_end for OOC2 is presented in Table 10.5. This is the back_end which is also

used in further measurements. It consists of an algorithm to adapt the code to machine restrictions, i.e.

sizes of immediate fields in instructions or to instructions which do not accept immediate operands at

all, and a simple local backwards_scheduler in module OOCMC. Module OOCRA implements a simplistic

hierarchical graph coloring register allocator, which cannot spill variables to memory. The code emitter

generates the bit_patterns corresponding to the PowerPC instructions and writes the object file.

Combining the front_end, the optimization algorithms, and the simple back_end, OOC2 is slightly

above 10500 lines of code or 415 kBytes of source code and 212 kBytes of object code (Table 10.6). The

object code has been generated by POP2, and a significant reduction can be expected by compiling OOC2

with an optimizing compiler.

Total 1968 74930 25920

OOCEC Code Emitter 827 31932 11952

OOCRA Register Allocator 662 25134 6176

OOCMC Machine Code Generator 479 17864 7792

Module function source lines source (bytes) code (bytes)

Table 10.5: A simple back_end for OOC2.

Total 10615 414719 212076

back_end 1968 74930 25920

optimizations 1788 68028 40040

front_end 6859 271761 146116

subsystem source lines source (bytes) code (bytes)

Table 10.6: OOC2 with the simple back_end.

128

Jürg Bolliger has implemented a trace scheduler for OOC2 [Boll94], about which some numbers are

presented in Table 10.7. This scheduler has a much better functionality than the one mentioned above: It

allows exchanging a machine model, delivers branch_prediction information which could be exploited

when actually emitting code, and generates better schedules. However, its size being more than five times

the one of the simple scheduler is an indication of how easily optimization algorithms can become

overweight.

Jakob Magun developed a register allocator combining the concepts of cyclic interval graphs and

hierarchical graph coloring [Magun94]. Like the trace scheduler, it offers better functionality than the

simple back_end, but is also significantly larger (Table 10.8). The trace scheduler and this register allocator

could replace modules OOCMC and OOCRA in the back_end and further improve the code quality

achieved by OOC2.

Total 2409 124698 50204

OOCTS Trace Scheduler 981 51324 22620

OOCFS Forward Scheduler 642 33805 13676

OOCBP Branch Prediction 442 21909 8728

OOCRIOS1 RIOS_1 Machine Model 158 8550 2544

OOCSD Scheduler Data 186 9110 2636

Module function source lines source (bytes) code (bytes)

Table 10.7: A trace scheduler for OOC2.

OOCRAX Register Allocator 1922 92483 41996

Module function source lines source (bytes) code (bytes)

Table 10.8: An improved register allocator for OOC2.

10.2 Compilation Time

We have measured the compilation time of different compilers on a test program, which comprises

several of the Hennessy benchmarks. The C_compilers have been run with both optimizations turned on

and turned off. They have been instructed to just compile and generate an object file, so that the linking

OOC2 871 4.31

POP2 202 1.00

GNU CC 2.6 −O3 −finline−functions 7100 35.15

GNU CC 2.6 3300 16.34

IBM XLC 1.3 −O3 −Q 71200 352.48

IBM XLC 1.3 1200 5.94

Compiler time (ms) factor

Table 10.9: Compilation times of different compilers. The C_compilers are instructed to use all optimizations

(−O3) and to perform inlining (−Q and finline−functions, respectively). OOC2 performs all optimizations by

default.

129

time is not included in the numbers. Table 10.9 presents an overview of the compilation times, all

measured on an IBM RS/6000 Model 250 (66 MHz PowerPC 601) running AIX 3.2.5. The compiled

program is our benchmark of five algorithms, which consists of 283 lines of source code in Oberon and

291 lines in C. The times given correspond to user time as opposed to elapsed time, excluding disk access

times and times related to context switching. This favors the C_compilers, which tend to perform more

disk I/O, and the non_optimizing compilers over the optimizing ones, as optimizations do not perform

I/O.

OOC2 is between four and five times slower than the non_optimizing Oberon_2 compiler POP2, but

still faster than the C_compilers with all optimizations turned off. GNU CC seems to have a pretty

inefficient front_end or back_end, so that the added optimizations only double the compilation time. The

IBM XLC compiler adds the most optimizations and runs almost sixty times slower when all

optimizations are turned on.

The compilation time of OOC2 can be further split up into the times spent in individual parts of the

compiler. Table 10.10 shows these numbers.

Total 871 100

Code Emission 66 8

Register Allocation 147 17

Instruction Scheduling 76 9

Peephole Optimizations 24 3

Strength Reduction 66 8

Dead Code Elimination 14 2

Value Numbering 126 14

Constant Propagation 59 7

Generate GSA 142 16

Front End 151 17

Task time (ms) %

Table 10.10: Compilation time of OOC2.

The front_end time includes everything until the abstract syntax tree has been built, and is the same as in

POP2. About the same amount of time is spent in constructing GSA form from the tree. We have found

that about 60% of this time is spent in the memory allocator, which is called several times for every

instruction. Reducing the number of distinct memory blocks in the GSA representation or implementing

an improved memory allocator may reduce this time by a large margin.

Among the optimizations, value numbering, instruction scheduling, and most notably register

allocation are the most expensive steps. The latter two cannot be omitted, thus only minor speed

improvements can be expected by allowing to turn off optimizations. By turning off the other

optimizations, more code would have to be scheduled and to be dealt with in the register allocator, so

that the compilation time may even increase.

It should be noted, however, that the compiler has been compiled using POP2, and compiling it by

an optimizing compiler will improve its speed. OOC2 does not yet support the full Oberon_2 language, so

that it cannot compile itself. The missing features are Case_ and Loop_statements, procedure variables and

type_bound procedures, and spilling in the register allocator.

130

10.3 Code Quality

We have measured the code quality produced by the different compilers. There are two aspects of code

quality: Code size and execution speed. In terms of code size, both Oberon compilers achieve remarkably

small numbers, as listed in Table 10.11.

OOC2 2336 0.87

POP2 2672 1.00

GNU CC 2.6 −O3 −finline−functions 2504 0.94

GNU CC 2.6 3112 1.16

IBM XLC 1.3 −O3 −Q 7448 2.79

IBM XLC 1.3 3072 1.15

Compiler code size factor

Table 10.11: Code size achieved by the different compilers.

POP2 generates the smallest code among the non_optimizing compilers, on which OOC2 improves by

14%. The IBM XLC compiler more than doubles the amount of code when all optimizations are turned

on. This is due to aggressive procedure inlining and loop unrolling. GCC also unrolls loops and inlines

procedures, but too a smaller extent than XLC, and achieves a code size reduction by optimizing. OOC2

does not include any optimizations which increase the code size except for procedure inlining, which was

only used on very small procedures.

Among the non_optimizing compilers, POP2 also generates the fastest code. This can be mostly

attributed to POP2 allocating variables in registers, while the others only keep variables in registers for

one basic block. The execution time of our sample programs on an IBM RS/6000 Model 250 (66 MHz

PowerPC 601) is listed in Table 10.12. Perm is a heavily recursive program generating all permutations of a

number with seven digits. Intmm multiplies two integer matrices, while Mm multiplies two REAL

matrices. Quick and Bubble sort an integer array using Quicksort and Bubblesort, respectively.

Bubble 66 114 56

Quick 36 53 25

Mm 50 66 31

Intmm 44 59 35

Perm 43 62 36

Program XLC 1.3 GNU CC 2.6 POP2

Table 10.12: Execution times for the non_optimized code (in ms).

With all optimizations turned on, these execution times decrease by large margins for the C_compilers.

The effects are less dramatic in case of the optimizing Oberon compiler OOC2, as the code quality of the

non_optimizing compiler is already good. However, OOC2 can keep up with GNU CC 2.6 in most respects,

as shown in Table 10.13.

131

Bubble 14 22 25

Quick 15 18 20

Mm 13 19 18

Intmm 12 17 17

Perm 20 25 23

Program XLC 1.3 GNU CC 2.6 OOC2

Table 10.13: Execution times for the optimized code (in ms).

The better execution times of GNU CC code compared to OOC2 code on Quick and Bubble can be

attributed to loop unrolling. XLC improves the code further by yet larger amounts of loop unrolling, by

making use of load_and_update as well as store_and_update instructions, and by using advanced

instruction scheduling techniques. As we have seen, these optimizations come at a high cost of

compilation, even though we are convinced that similar results can be achieved with smaller effort.

11 Summary and Conclusions

This last chapter summarizes what has been achieved, and outlines areas for further research, both in the

field of compilers and in the field of programming languages.

11.1 Summary

We have discussed recent developments in computer architecture, and how they affect the execution time

of programs. RISC architectures provide relatively simple instructions only, out of which more complex

operations can be built. They rely on compilers to customize code patterns to the surrounding context,

e.g. to avoid unneccessary recomputations, which were hidden and therefore seemed to be for free in

more complex architectures. Pipelining and superscalar microarchitectures allow to overlap the execution of

multiple instructions, but require the compiler to order instructions in such a way, that there are no

dependencies between instructions to be executed concurrently. Caches provide a mechanism to hide the

widening gap between processor clock speed and main memory speed, but rely on the program to

exhibit large amounts of temporal and spatial locality. Again, the compiler can try to improve upon the

locality in order to enhance performance on cached systems. Thus, compilers play an important role in

achieving good performance on modern machines.

We have presented a framework in which a compiler can perform the corresponding code

improvements, which are commonly referred to as optimizations. Our framework is based on our

intermediate representation called guarded single_assignment (GSA) form, which combines the best

features of high_level and low_level representations, and which allows close integration of data_flow and

control_flow. It makes all dependencies between instructions explicit, and allows to implement efficient

and powerful optimization algorithms. Aggressive instruction scheduling algorithms are well_supported

by several means: Only essential dependencies between instructions are modeled, and control_flow is

expressed using guarded statements. The latter allows control_structures to be treated like 'large'

instructions to be scheduled, or to implement scheduling algorithms centered around predicated

execution, which it resembles.

We have developed single_pass algorithms to generate GSA form for source programs in structured

programming languages. The algorithms can be integrated with scanning and parsing, so that no other

intermediate representation of the program has to be constructed by the compiler. The remaining forms

of unstructured control_flow in languages like Oberon, namely the Exit_ and the Return_statement, can be

accommodated by rewriting them into structured form while parsing the source text.

Using these results, we have implemented a prototypical optimizing compiler for a subset of

Oberon_2, which includes most common scalar optimization algorithms. It achieves a code quality

competitive with state_of_the_art optimizing compilers, still it is not much more complex than single_pass

compilers. In fact, the compiler is more than an order of magnitude smaller than competing optimizing

compilers.

134

11.2 Implications on Programming Language Design

The semantics of the source program must be accurately reflected in the intermediate program

representation and in the final object code. The more the definition of the source language is based on

sound concepts, the simpler become the intermediate representation, the translation from the source

program, and the transformation into executable machine code. Moreover, in order to allow for different

implementation options, the source language should not overspecify semantics. Freedom in how a

particular construct can be translated can also be exploited by optimizing compilers to choose a code

pattern which fits the target machine well.

Oberon has proven to be a programming language which can be well accommodated in optimizing

compilers. It avoids two problems present in languages like C and Fortran: (1) It does not contain a

Goto_statement, which allows for arbitrary control_flow, and (2) its strong type system reduces the

aliasing problems encountered. A lot of compiler research in the last decade has tried to circumvent these

problems with Fortran and C, and could have been avoided by mending the language.

However, Oberon could still be improved in some respects. Unstructured control_flow in the form of Exit_

and Return_statements must be accomodated by translating it into structured form. We have found

unstructured control_flow to be rare in today's programming practice [Bran94]. Dropping it altogether

would not cause any major inconveniences to the programmer. Unstructured control_flow is often

encountered in places where the programmer tried to optimize the branching structure of the program.

This task is better left to the compiler.

Aliasing of data in Oberon is found in conjunction with pointers or VAR_parameters. The latter

allows to create a reference to arbitrary objects of a given type, even within other objects. For example, a

VAR_parameter of type INTEGER can be an alias to all variables, record fields or array elements of type

INTEGER in outer scopes, including the heap. The programmer usually does not want to create an alias

when using a VAR_parameter, but rather provides a destination for a result or avoids copying a large data

structure. We believe that the behaviour of programs is often unexpected or even wrong when actual

aliasing occurs, i.e. when the same memory cell is accessed using two different names. We thus propose

to omit VAR_parameters from future languages. The Ada programming language [Ada83] provides in_,

out_, and inout_parameters but no VAR_parameters. The language definition explicitly allows

call_by_reference or copy_in_copy_out as parameter_passing mechanisms, and programs whose result

depends on the mechanism used are considered erroneous (sections 6.2.7 and 6.2.13). A similar

mechanism may be used in future programming languges.

A lot of research has been directed towards extracting parallelism from sequential code. Our

optimizing compiler extracts parallelism between scalar operations by building a data_flow graph, but is

not able to extract parallelism between operations on a single array or on complex data structures with

pointers. More parallelism could be found by adding array dependence analysis and techniques to

analyze code on dynamic data structures. As an alternative, the programming language could allow the

programmer to explicitly express parallelism, and to describe data structures and operations on it in a

'more parallel' way. As is, the Oberon programming language requires the programmer to specify a total

ordering of operations, which often results in an overspecification. The work of Griesemer on his

programming language Oberon_V [Grie93] could serve as a starting point in this direction.

11.3 Future Work

There are two major directions of future research based on our work. The principles developed can be

applied to other environments, and some minor problems of OOC2 could be solved.

The set of optimizations implemented in OOC2 turned out to be well_supported by our intermediate

representation. Adapting other optimization techniques to GSA form and evaluating their performance

could yield interesting feedback to the designer of intermediate programming representations. Morever,

OOC2 uses a machine_dependent intermediate representation in order to reduce the number of

transformation steps and in order to allow optimizations to improve the actual machine code. We

believe that due to the similarities between different RISC processors, the compiler should be easily

portable to other RISC architectures. This claim has still to be proven by porting the compiler to a

135

different target architecture. Finally, we believe that several of the principles we developed could also be

applied to the translation of other programming languages, and doing so would be a rewarding project.

Aliasing turned out to be bigger a problem than we originally thought, and is probably the weakest

point in OOC2. Our model of aliasing is an optimistic one, where the compiler assumes that variables do

not alias and then adds MayAlias nodes where it cannot prove it. A pessimistic approach as described by

Weise et al. [WCES94] may be more practical. It treats all references as being to one global store, and

then selectively modifies references which can be shown to be free of aliasing effects. Implementing a

pessimistic model and evaluating its benefits over the current model would yield interesting feedback to

the compiler designer.

11.4 Conclusions

The overall conclusion which can be drawn from this work is that optimizing compilers do not have to be

as large and complex as they used to be. By developing principles targeted towards programming

languages with clean semantics, and by restricting the compiler to the essential task of an optimizing

compiler − namely emitting code of high quality for one target architecture − the complexity of

optimizing compilers can be reduced by an order of magnitude. At the same time, their run_time is

reduced by an order of magnitude as well.

The reduction in complexity makes optimizing compilers not only more easily understandable and

teachable, but also allows such compilers to be built by small workforces. Moreover, reducing complexity

has a positive impact on the quality of any program, so we can expect more reliable compilers in the

future.

References

[Ada83] Department of Defense, United States of America. Military Standard, Ada Programming

Language. ANSI/MIL_STD_1815A. January 1983.

[AiNi91] A. Aiken and A. Nicolau. A Realistic Resource_Constrained Software Pipelining Algorithm. In

Languages and Compilers for Parallel Processing. MIT Press. 1991.

[AKPW83] J. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of Control Dependence to

Data Dependence. In Conference Record of the 10th Annual Symposium on Principles of

Programming Languages. Austin, Texas. January 1983.

[AlCo76] F. Allen and J. Cocke. A Program Data Flow Analysis Procedure. In Communications of the

ACM. Vol. 19, No. 3. March 1976.

[AlWZ88] B. Alpern, M. Wegman, and F. Zadeck. Detecting Equality of Variables in Programs. In

Proceedings of the Fifteenth Annual ACM Symposium on Principles of Programming

Languages. San Diego, California. January 1988.

[AlZa94] B. Alpern and K. Zadeck. Value Numbering. In Optimization in Compilers, edited by F.

Allen, B. Rosen, and K. Zadeck. To be published by ACM Press.

[Amda67] G. Amdahl. Validity of the Single Processor Approach to Achieving Large Scale Computing

Capabilities. In Proceedings of the AFIPS 1967 Spring Joint Computer Conference. Atlantic

City, New Jersey. April 1967.

[ASU86] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools.

Addison_Wesley Publishing Company, Reading, Massachusetts. 1986. ISBN

0−201−10088−6.

[AuHo82] M. Auslander and M. Hopkins. An Overview of the PL.8 Compiler. In Proceedings of the

ACM SIGPLAN '82 Conference on Programming Language Design and Implementation.

Boston, Massachusetts. June 1982.

[BaHo92] T. Ball and S. Horwitz. Constructing Control Flow from Control Dependence. Technical

Report No. 1091, University of Wisconsin, Madison. June 1992.

[BaLa93] T. Ball and J. Larus. Branch Prediction for Free. In Proceedings of the ACM SIGPLAN '93

Conference on Programming Language Design and Implementation. Albuquerque, New

Mexico. June 1993.

138

[BaMO90] R. Ballance, A. Maccabe, and K. Ottenstein. The Program Dependence Web: A

Representation Supporting Control_, Data_, and Demand_Driven Interpretation of Imperative

Languages. In Proceedings of the ACM SIGPLAN '90 Conference on Programming Language

Design and Implementation. White Plains, New York. June 1990.

[Baner88] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishers. 1988.

ISBN 0−89838−289−0.

[BCFT92] M. Brandis, R. Crelier, M. Franz, and J. Templ. The Oberon System Family. Technical

Report 174, Departement Informatik, ETH Zürich. April 1992.

[BeRo91] D. Bernstein and M. Rodeh. Global Instruction Scheduling for Superscalar Machines. In

Proceedings of the ACM SIGPLAN '91 Conference on Programming Language Design and

Implementation. Toronto, Canada. June 1991.

[BGOCF93] A. Böhm, D. Grit, R. Oldehoeft, D. Cann, and J. Feo. SISAL Reference Manual, Language

Version 2.0. Computer Science Department, Colorado State University and Computing

Research Group, Lawrence Livermore National Laboratory. 1993.

[Boll94] J. Bolliger. Aggressive Instruction Scheduling. ETH Informatik Diploma Thesis, Institut für

Computersysteme, ETH Zürich. March 1994.

[Bran94] M. Brandis. Building an Optimizing Compiler for Oberon: Implications on Programming

Language Design. In Advances in Modular Languages, Proceedings of the Joint Modular

Languages Conference, Ulm, Germany. September 1994. Universitätsverlag Ulm, ISBN

3−89559−220−X.

[BrCo94] P. Briggs and K. Cooper. Effective Partial Redundancy Elimination. In Proceedings of the

ACM SIGPLAN '94 Conference on Programming Language Design and Implementation.

Orlando, Florida. June 1994.

[Brig92] P. Briggs. Register Allocation via Graph Coloring. Ph.D. thesis, Rice University, Houston,

Texas. Available as Technical Report Rice COMP TR92−183. 1992.

[BrMö94] M. Brandis and H. Mössenböck. Single_Pass Generation of Static Single Assignment Form

for Structured Languages. In ACM Transactions on Programming Languages and Systems;

1994.

[CACCHM81] G. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins, and P. Markstein. Register

Allocation via Coloring. In Computer Languages, Vol. 6, pp. 47−57. 1981.

[CaCK90] D. Callahan, S. Carr, and K. Kennedy. Improving Register Allocation for Subscripted

Variables. In Proceedings of the ACM SIGPLAN '90 Conference on Programming Language

Design and Implementation. White Plains, New York. June 1990.

[CaKo91] D. Callahan and B. Koblenz. Register Allocation via Hierarchical Graph Coloring. In

Proceedings of the ACM SIGPLAN '91 Conference on Programming Language Design and

Implementation. Toronto, Canada. June 1991.

[CFRWZ91] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck. Efficiently Computing Static

Single Assignment Form and the Control Dependence Graph. In ACM Transactions on

Programming Languages and Systems. Vol. 13, No. 4. October 1991.

139

[ChHe90] F. Chow and J. Hennessy. The Priority_Based Coloring Approach to Register Allocation. In

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 4. October 1990.

[CoGo94] D. Corney and J. Gough. Type Test Elimination Using Typeflow Analysis. In Proceedings of

the International Conference on Programming Languages and System Architectures. Zurich,

Switzerland. Published as Springer Lecture Notes in Computer Science No. 782. March

1994.

[CoSch70] J. Cocke and J. Schwartz. Programming Languages and Their Compilers: Preliminary Notes.

Courant Institute of Mathematical Sciences, New York University. April 1970.

[CyGe93] R. Cytron and R. Gershbein. Efficient Accommodation of May_Alias Information in SSA

Form. In Proceedings of the ACM SIGPLAN '93 Conference on Programming Language Design

and Implementation. Albuquerque, New Mexico. June 1993.

[Crel91] R. Crelier. OP2: A Portable Oberon_2 Compiler. In Proceedings of the Second International

Modula_2 Conference. Loughborough, UK. 1991.

[CyLZ86] R. Cytron, A. Lowry, and F. Zadeck. Code Motion of Control Structures in High_Level

Languages. In Conference Record of the 13th Annual ACM Symposium on Principles of

Programming Languages; 1986.

[DEC92] Digital Equipment Corporation. Alpha Architecture Handbook. 1992.

[DHB89] J. Dehnert, P. Hsu, and J. Bratt. Overlapped Loop Support in the Cydra 5. In Proceedings of

the Third International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS III), ACM Press, New York. April 1989.

[Dijk76] E. Dijkstra. A Discipline of Programming. Prentice Hall 1976. ISBN 0−13−215871−X.

[Ellis85] J. Ellis. Bulldog: A Compiler for VLIW Architectures. MIT Press 1985. ISBN

0−262−05034−X.

[ErHe93] A. Erosa and L. Hendren. Taming Control Flow: A Structured Approach to Eliminating Goto

Statements. ACAPS Technical Memo 76, School of Computer Science, McGill University.

Montreal, Canada. September 1993.

[FeOW87] J. Ferrante, K. Ottenstein, and J. Warren. The Program Dependence Graph and Its Use in

Optimization. In ACM Transactions on Programming Languages and Systems, Vol. 9, No. 3.

July 1987.

[Franz94] M. Franz. Code_Generation On_the_Fly: A Key to Portable Software. Doctoral Thesis Diss.

ETH No. 10497. Zurich, March 1994.

[GiMu86] P. Gibbons and S. Muchnick. Efficient Instruction Scheduling for a Pipelined Architecture.

In Proceedings of the ACM SIGPLAN '86 Symposium on Compiler Construction. Palo Alto,

1986.

[Grie92] R. Griesemer. Scheduling Instructions by Direct Placement. In Proceedings of the 4th

International Conference on Compiler Construction. Lecture Notes in Computer Science

641, Springer. 1992.

[Grie93] R. Griesemer. A Programming Language for Vector Computers. Doctoral Thesis Diss. ETH

No. 10277. Zurich, August 1993.

140

[Half94] T. Halfhill. 80x86 wars. BYTE, June 1994.

[HDEGSS92] L. Hendren, C. Donawa, M. Emami, G. Gao, J. Sridharan, and B. Sridharan. Designing the

McCAT Compiler based on a Family of Structured Intermediate Representations. In

Conference Record of the 5th Workshop on Languages and Compilers for Parallel

Computing. Department of Computer Science, Yale University. New Haven, Conneticut.

August 1992.

[HePa90] J. Hennessy and D. Patterson. Computer Architecture, A Quantitative Approach. Morgan

Kaufman Publishers, San Mateo, California. 1990. ISBN 1−55860−069−8.

[HeGr83] J. Hennessy and T. Gross. Postpass Code Optimization of Pipeline Constraints. In ACM

Transactions on Programming Languages and Systems. Vol. 5, No. 3. July 1983.

[HGAM92] L. Hendren, G. Gao, E. Altman, and C. Mukerji. A Register Allocation Framework Based on

Hierarchical Cyclic Interval Graphs. In Proceedings of the 4th International Conference on

Compiler Construction. Lecture Notes in Computer Science 641, Springer. 1992.

[HGAM93] L. Hendren, G. Gao, E. Altman, and C. Mukerji. Register Allocation using Cyclic Interval

Graphs: A New Approach to an Old Problem. ACAPS Memo No. 33. Available from

FTP_server ftp.cs.mcgill.ca. 1993.

[IBM90a] IBM. IBM RISC System/6000 Technology. IBM Order Number SA23−2619−00.

[IBM90b] IBM. IBM Journal of Research and Development. Vol. 34, No. 1. January 1990.

[IBM90c] IBM. POWER Processor Architecture Version 1.52. February 1990.

[IBM90d] IBM. XL C User's Guide. April 1990. IBM Order Number SC09−1259−00.

[IBM94a] IBM. The PowerPC Architecture: A Specification for a New Family of RISC Processors.

Morgan Kaufman Publishers, San Mateo, California. 1994. ISBN 1−55860−316−6.

[IBM94b] IBM. PowerPC and POWER2: Technical Aspects of the New IBM RISC System/6000. IBM

Order Number SA23−2737−00.

[Jain91] S. Jain. Circular Scheduling: A new Technique to Perform Software Pipelining. In Proceedings

of the ACM SIGPLAN '91 Conference on Programming Language Design and Implementation.

Toronto, Canada. June 1991.

[John90] W. Johnson. Super_Scalar Processor Design. Technical Report CSL_TR_89_383. Computer

Systems Laboratory, Stanford University, California. June 1989.

[Jones93] N. Jones (editor). Special Issue on Partial Evaluation. Journal of Functional Programming.

Vol. 3, No 4. 1993.

[Kane87] G. Kane. MIPS R2000 RISC Architecture. Prentice Hall. 1987.

[Knuth71] D. Knuth. An Empirical Study of FORTRAN Programs. In Software Practice and Experience,

Vol. 1, 105−133. 1971.

[KnRS94] J. Knoop, O. Rüthing, and B. Steffen. Partial Dead Code Elimination. In Proceedings of the

ACM SIGPLAN '94 Conference on Programming Language Design and Implementation.

Orlando, Florida. June 1994.

141

[Lam88] M. Lam. Software Pipelining: An Effective Scheduling Technique for VLIW Machines. In

Proceedings of the ACM SIGPLAN '88 Conference on Programming Language Design and

Implementation. Atlanta, Georgia. June 1988.

[Lam93] M. Lam. Instruction Scheduling. Tutorial Notes, ACM SIGPLAN '93 Conference on

Programming Language Design and Implementation. Albuquerque, New Mexico. June

1993.

[LaRW91] M. Lam, E. Rothberg, and M. Wolf. The Cache Performance and Optimizations of Blocked

Algorithms. In Proceedings of the Fourth International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS IV). Palo Alto, California.

April 1991.

[LeTa79] T. Lengauer and R. Tarjan. A Fast Algorithm for Finding Dominators in a Flowgraph. In

ACM Transactions on Programming Languages and Systems. Vol. 1, No. 1. July 1979.

[MaEV92] N. Malik, R. Eickemeyer, and S. Vassiliadis. Interlock Collapsing ALU for Increased

Instruction_Level Parallelism. In Proceedings of the 25th Annual International Symposium on

Microarchitecture. Portland, Oregon. December 1992.

[Magun94] J. Magun. Hierarchical Register Allocation with Cyclic Interval Graphs. Diploma Thesis,

Institut für Computersysteme, ETH Zürich. March 1994.

[MLCHB92] S. Mahlke, D. Lin, W. Chen, R. Hank, and R. Bringmann. Effective Compiler Support for

Predicated Execution Using the Hyperblock. In Proceedings of the 25th Annual International

Symposium on Microarchitecture. Portland, Oregon. December 1992.

[MMZ94] P. Markstein, V. Markstein, and K. Zadeck. Strength Reduction. In Optimization in

Compilers, edited by F. Allen, B. Rosen, and K. Zadeck. To be published by ACM Press.

[Möss93] H. Mössenböck. Objektorientierte Programmierung in Oberon_2. Springer Verlag, 1993.

ISBN 3−540−55690−7.

[MöWi91] H. Mössenböck and N. Wirth. The Programming Language Oberon−2. In Structured

Programming, 12, 170−195. 1991.

[Mult93] The Multiflow Trace Scheduling Compiler. In The Journal of Supercomputing. Vol. 7, Pages

51−142. 1993.

[PPC601] IBM Microelectronics, Motorola. PowerPC 601 RISC Microprocessor User's Manual. IBM

Order Number 52G7484, Motorola Order Number MPC601UM/AD Rev 1. 1993.

[PPC604] IBM Microelectronics, Motorola. PowerPC 604 RISC Microprocessor Technical Summary.

IBM Order Number MPR604TSU_02, Motorola Order Number MPC604/D. 1994.

[Pren92] D. Prener. Personal communications. 1992.

[Radin82] G. Radin. The 801 Minicomputer. In Proceedings of the Symposium on Architectural

Support for Programming Languages and Operating Systems, ACM Press, Palo Alto,

California. March 1982. Also published in IBM Journal of Research and Development. Vol.

27, No. 3. May 1983.

142

[Rau91] B. Rau. Data Flow and Dependence Analysis for Instruction Level Parallelism. In Proceedings

of the 4th International Workshop on Languages and Compilers for Parallel Computing.

Santa Clara, California. August 1991.

[ReWi92] M. Reiser and N. Wirth. Programming In Oberon − Steps Beyond Pascal and Modula_2.

Addison Wesley 1992. ISBN 0−201−56543−9.

[RoWZ88] B. Rosen, M. Wegman, and F. Zadeck. Global Value Numbers and Redundant

Computations. In Proceedings of the Fifteenth Annual ACM Symposium on Principles of

Programming Languages. San Diego, California. January 1988.

[RYYT89] B. Rau, D. Yen, W. Yen, and R. Towle. The Cydra 5 Departmental Supercomputer: Design

Philosophies, Decisions, and Tradeoffs. In IEEE Computer, Vol. 22, No. 1. January 1989.

[SmLH90] M. Smith, M. Lam, and M. Horowitz. Boosting Beyond Static Scheduling in a Superscalar

Processor. In Proceedings of the 17th Annual Symposium on Computer Architecture, ACM

Press, New York. Published as Computer Architecture News, Vol. 18, No. 2. June 1990.

[SmHL92] M. Smith, M. Horowitz, and M. Lam. Efficient superscalar performance through boosting.

In Proceedings of the Fifth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS V), ACM Press, New York.

Published as SIGPLAN Notices, Vol. 27, No. 9. September 1992.

[Sark93] V. Sarkar. Advanced Optimizations for Memory Hierarchies. Tutorial Notes, ACM SIGPLAN

'93 Conference on Programming Language Design and Implementation. Albuquerque, New

Mexico. June 1993.

[SeSo88] P. Sestoft and H. Sondergaard. A Bibliography on Partial Evaluation. In ACM Sigplan

Notices. Vol. 23, No 2. February 1988.

[Sura93] R. Surati. A Parallelizing Compiler Based on Partial Evaluation. Technical Report AITR_1377,

Artifical Intelligence Laboratory, Massachusetts Institute of Technology. July 1993.

[Stall94] R. Stallman. Porting GNU CC. Online Documentation of GNU CC 2.6. Free Software

Foundation. 1994.

[WaLH93] N. Warter, D. Lavery, and W. Hwu. The Benefit of Predicated Execution for Software

Pipelining. In Proceedings of the 26th Annual Hawaii International Conference on System

Sciences, Architecture Track. Hawaii. January 1993.

[Wang94] K. Wang. Precise Compile_Time Performance Prediction for Superscalar_Based Computers. In

Proceedings of the ACM SIGPLAN '94 Conference on Programming Language Design and

Implementation. Orlando, Florida. June 1994.

[WCES94] D. Weise, R. Crew, M. Ernst, and B. Steensgaard. Value Dependence Graphs:

Representation Without Taxation. In Conference Record of the 21th Annual Symposium on

Principles of Programming Languages. January 1994.

[WeSmi94] S. Weiss and J. Smith. POWER and PowerPC: Principles, Architecture, Implementation.

Morgan Kaufman Publishers, San Mateo, California. 1994. ISBN 1−55860−279−8.

143

[WeZa91] M. Wegman and F. Zadeck. Constant Propagation with Conditional Branches. In ACM

Transactions on Programming Languages and Systems. Vol. 13, No. 2. April 1991.

[WHSB92] N. Warter, G. Haab, K. Subramanian, and J. Bockhaus. Enhanced Modulo Scheduling for

Loops with Conditional Branches. In Proceedings of the 25th Annual International

Symposium on Microarchitecture. Portland, Oregon. December 1992.

[Wirth86a] N. Wirth. Algorithmen und Datenstrukturen mit Modula_2. B. G. Teubner Verlag, Stuttgart.

1986. ISBN 3−519−02260−5.

[Wirth86b] N. Wirth. Compilerbau. B. G. Teubner Verlag, Stuttgart. 1986. ISBN 3−519−32338−9.

[Wirth88] N. Wirth. The Programming Language Oberon. In Software − Practice and Experience. Vol.

18, No. 7. July 1988.

[WMGH94] T. Wagner, V. Maverick, S. Graham, and M. Harrison. Accurate Static Estimators for

Program Optimization. In Proceedings of the ACM SIGPLAN '94 Conference on

Programming Language Design and Implementation. Orlando, Florida. June 1994.

[WMHR93] N. Warter, S. Mahlke, W. Hwu, and B. Rau. Reverse If_Conversion. In Proceedings of the

ACM SIGPLAN '93 Conference on Programming Language Design and Implementation.

Albuquerque, New Mexico. June 1993.

[WoLa91] M. Wolf and M. Lam. A Data Locality Optimization Algorithm. In Proceedings of the ACM

SIGPLAN '91 Conference on Programming Language Design and Implementation. Toronto,

Canada. June 1991.

[ZiCh90] H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers.

Addison_Wesley. 1990. ISBN 0−201−17560−6.

