
Diss. ETH No 10655

Metaprogramming in Oberon

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of

Doctor of Technical Sciences

presented by

Josef Templ, Dipl._Ing.

Johannes_Kepler_Universität, Linz

born July 24, 1961

citizen of Austria

accepted on the recommendation of

Prof. Dr. H. Mössenböck, examiner

Prof. Dr. N. Wirth, co_examiner

1994



Metaprogramming in Oberon

Josef Templ



Copyright (c) Josef Templ, 1994





5

Acknowledgements

I want to thank my advisor Prof. H. Mössenböck for a liberal supervision of this

project and for his ongoing encouragement and patience. I also wish to thank

Prof. N. Wirth for being my co_examiner. His way of thinking and problem

solving had a significant impact on this work and is gratefully acknowledged.

The Oberon system, developed by Prof. Wirth and Prof. Gutknecht was an

excellent working tool and an appropriate base for the work presented in this

thesis. My thanks go also to Regis Crelier, Marc Brandis, Jaques Szupcik,

Matthias Hausner and Michael Franz who participated in the project of porting

Oberon to stock hardware. Regis Crelier provided also the front_end of the

portable Oberon compiler. Clemens Szyperski's PhD thesis "On Object_Orien_

tation in Operating Systems" was a rich source of inspiration and provided

valuable insights and some starting points for improvements presented in this

work. The extensible text editor Write, also developed by Clemens Szyperski

and now used as the standard Oberon V4 text editor, has been used to typeset

this thesis. Robert Griesemer and Michael Franz proof_read earlier versions of

this thesis and provided valuable comments and improvements. I would also

like to thank the people from the northern hemisphere of our floor for many

stimulating discussions about Oberon System_3. Last but not least, I wish to

thank the friends I met in Zurich and my swiss relatives for making my stay in

Switzerland an enjoyable experience.



6

Contents

Abstract 8

Kurzfassung 9

1 Introduction 11

1.1 Motivation 11

1.2 Goals 12

1.3 Outline 12

2 Meta_level Programming 15

2.1 Historical Notes 15

2.2 Terminology 16

2.3 Conflicting Terminology 19

2.4 Previous Work 20

2.4.1 The Smalltalk Family 21

2.4.2 The Lisp Family 23

2.4.3 Beta 26

2.4.4 C++ 26

2.5 Related Fields 27

3 The Oberon Language and System 29

3.1 Language 29

3.2 System 32

3.3 Metaprogramming in Oberon 33

3.3.1 Language 33

3.3.2 System 35

4 AMeta_level Architecture for Oberon 41

4.1 Overview 41

4.2 The Metaprogramming Protocoll 42

4.2.1 Libraries 42

4.2.2 Modules 50

4.2.3 Generic Object Manipulation 52

4.2.4 Active Procedures 59

4.3 Modularization 63



7

5 Implementation 65

5.1 The Library Mechanism 65

5.1.1 A Framework for Library Loading 65

5.1.2 Library Unloading 73

5.1.3 Libraries as Roots for Garbage Collection 78

5.2 Object Finalization 83

5.3 Modules 88

5.3.1 The Object_File Format 89

5.3.2 Run_time Organization 90

5.3.3 Reference Information 93

5.3.4 Module Loading 95

5.3.5 Garbage Collection 96

5.4 Fonts 98

5.5 Generic Access to Arbitrary Objects 101

5.6 ActiveProcedures 104

6 Applications of Metaprogramming 111

6.1 Overview 111

6.2 Module System 112

6.3 Persistent Objects 114

6.3.1 Maps 115

6.3.2 Implementation Aspects 117

6.4 Metaprogramming in an Extensible Graphics Editor 119

6.5 Data Structure Visualization 123

6.6 Command Interpretation 126

6.7 A Tracing Utility 129

6.8 Notification 130

7 Summary and Conclusions 133

Appendix: Module Definitions 139

Bibliography 145



8

Abstract

The term metaprogramming refers to programming at the level of program

interpretation, or in other words, to extending the interpreter of a given pro_

gramming language in an application_specific way. Traditionally, this concept is

available only in dynamically typed and interpreted languages such as Smalltalk

or Lisp. This thesis investigates the possibilities of metaprogramming in a

statically typed and efficiently compiled programming language. In the course of

a case study, we introduce metaprogramming facilities for the Oberon pro_

gramming language and system.

The result is a variant of the Oberon operating environment which allows a

seamless integration of useful meta_level facilities. The key to this integration is

a generalized notion of persistent objects and object libraries and its application

to components of Oberon programs. Types and procedures are considered to

be persistent objects collected in a special kind of library, namely a module. We

introduce a metaprogramming protocol which allows to manipulate arbitrary

data structures based on the notion of object riders. An object rider is an iterator

which can be used to scan the components of an object and which can be

hierarchically refined to structured components down to an arbitrary nesting

level. We introduce also facilities for controlling procedure activations based on

the notion of active procedures. An active procedure is a procedure object which

has its own instance specific behavior expressed by a message handler. Active

procedures can individually respond to invocation messages and perform any

computation as response.

We investigate the implications of this approach with respect to the overall

system structure and to the implementation of critical components of the

run_time system, such as the library loader and the garbage collector. A new

approach to safe library loading and unloading is introduced as well as a simple

finalization technique and a way for optimizing libraries with a large number of

objects. We show that the integration of metaprogramming facilities does not

introduce undue static or dynamic complexity into the Oberon system. A

number of realistic applications serve as proof_by_example of the feasibility of

the metaprogramming approach.
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Kurzfassung

Der Begriff Metaprogrammierung bezieht sich auf Programmieren auf der Ebene

der Interpretation eines Programmes, oder in anderen Worten, auf das Erweitern

des Interpreters einer gegebenen Programmiersprache in einem anwendungs_

bezogenen Sinn. Traditionellerweise ist dieses Konzept nur in dynamisch

typisierten und interpretativ ausgeführten Sprachen, wie zum Beispiel Smalltalk

oder Lisp, vorhanden. Die vorliegende Arbeit untersucht die Möglichkeiten der

Metaprogrammierung in einer statisch typisierten und effizient kompilierten

Programmiersprache. Im Rahmen einer Fallstudie wird Metaprogrammierung für

die Programmiersprache Oberon und das Oberon_System eingeführt.

Das Ergebnis ist eine Variante des Oberon_Systems, die eine nahtlose

Integration von nützlichen Metaprogrammiermöglichkeiten erlaubt. Der Schlüs_

sel für diese Integration liegt in einem verallgemeinerten Begriff von persisten_

ten Objekten und Objektbibliotheken und dessen Anwendung auf Bestandteile

von Oberon_Programmen. Typen und Prozeduren werden dabei als persistente

Objekte betrachtet, die in einer speziellen Bibliothek, einem Modul, gesammelt

sind. Auf dieser Grundlage wird ein Metaprogrammierprotokoll eingeführt, das

es gestattet, beliebige Datenstrukturen mit Hilfe sogenannter Objekt_Riders zu

manipulieren. Ein Objekt_Rider ist ein Iterator, mit dem die Komponenten eines

Objekts aufgezählt werden können und der für strukturierte Komponenten

hierarchisch verfeinert werden kann. Es werden auch Mechanismen zur Kon_

trolle von Prozeduraufrufen eingeführt, die auf dem Konzept von aktiven

Prozeduren beruhen. Eine aktive Prozedur ist ein Prozedurobjekt, das sein

eigenes Verhalten in Form eines Meldungsinterpreters ausdrückt. Aktive

Prozeduren können individuell auf Aufrufmeldungen reagieren und beliebige

Berechnungen als Reaktion darauf durchführen.

Die Konsequenzen dieses Ansatzes auf die Systemstruktur im Grossen und

auf wichtige Bestandteile des Laufzeitsystems, wie zum Beispiel Bibliotheks_

verwaltung und automatische Speicherrückgewinnung, werden detailliert unter_

sucht. Für das sichere Laden und Entladen von Bibliotheken, das Finalisieren

von Objekten und das Optimieren von Bibliotheken, die aus einer grossen Zahl

von Objekten bestehen, werden neue Ansätze vorgestellt. Es wird gezeigt, dass

die Integration von Metaprogrammiermöglichkeiten in Oberon keine übermäs_

sige Komplexität, weder in Bezug auf die Laufzeit noch auf die Programmierung,

nach sich zieht. Einige nicht_triviale Anwendung sollen als Beweis für die Sinn_

haftigkeit dieses Ansatzes dienen.





1 Introduction

1.1 Motivation

The motivation for the work presented in this thesis stems from the observation

that there are programming tasks which cannot be accomplished in

conventional general_purpose programming systems. Even modern languages

such as Modula_3 or Oberon with object_oriented facilities and polymorphism

fail when applied to a certain class of problems. This class can be characterized

as programming tasks that happen at the level of language interpretation, i.e. on

the level behind (=meta) the user programs. Consider for example the task of

writing a program that linearizes an arbitrary data structure and maps it from

main memory to non_volatile storage. This program has to know about the

internal representation of the data structure in order to perform the mapping

without requiring auxiliary type_specific code. A similar problem is the

visualization of data structures − again without type_specific code − which may

be useful for documentation or debugging purposes. Another example is to

implement a package which allows to call procedures remotely (RPCs) or to

dynamically check pre_ and postconditions of procedure activations. All these

examples involve some code that participates in the program (and data)

interpretation, or in other words, that extends the language interpreter. Of

course, such extensions should be written at a reasonably high level of

abstraction. They should not depend on hardware details or internal system

data structures and − in the case of a general_purpose programming system −

they should be efficiently executable and they should not affect the effciency of

traditional programs.

Such demanding tasks have been a matter of research in the Lisp and

Smalltalk communities for about 10 years now. The outcome of these efforts

may be identified by the keywords Metaprogramming and Computational

Reflection. The impact of this work on other fields of computer science,

however, has been modest. This is probably due to different priorities guiding

programming language research. The artificial intelligence community on the

one side was primarily interested in expressive and flexible languages. Efficient

implementation was of secondary importance. General_purpose programming

languages on the other side have to be as efficient as possible. A general_

purpose programming system should for example be applicable to
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implementing itself, i.e. it should be possible to write a compiler and an

operating system with it.

1.2 Goals

The purpose of this work is to investigate the possibilities of metaprogramming

in a general_purpose programming system that is based on static compilation

(such as Pascal or C) rather than on interpretation or dynamic compilation

(such as Smalltalk or Lisp). We try to show that it is possible to introduce

useful metaprogramming facilities without introducing undue complexity. As

outcome of this work, we have created a programming system that allows to

write programs which take part in the language interpretation or in other words,

we have created an extensible programming system.

As a general rule, we follow the principle don't use, don't lose, i.e. we focus

on those meta_level facilities that have no or almost no impact on the efficiency

of traditional programming tasks. We are also interested in finding a way to

integrate metaprogramming facilities seamlessly into the overall structure of a

programming system. Furthermore, we want to inquire into the implementation

of vital parts of the system such as the module loader and the garbage

collector. We try to show that it is possible to combine the introduction of

metaprogramming facilities with the elimination of weaknesses of traditional

programming systems. Since we notice that previous work in this area has

focused on dynamically_typed languages, we are also interested in finding out if

and where static typing gets into the way of metaprogramming.

1.3 Outline

Chapter 2 gives an introduction into the subject of metaprogramming. Basic

terminology is introduced and history and related work in this area are

sketched.

Chapter 3 describes the main concepts of a state_of_the_art general_purpose

programming system (Oberon) that has been used as the basis of this work.

Existing and lacking metaprogramming facilities in Oberon are discussed.

Chapters 4, 5, and 6 contain the essence of this dissertation. Chapter 4 deals
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with integration of metaprogramming into a general_purpose programming

system. As a case study, a meta_level architecture for Oberon is introduced and

the introduced facilities are specified by means of a metaprogramming proto_

col.

Chapter 5 describes implementation aspects of the introduced meta_level

facilities and of vital parts of the Oberon run_time system such as the module

loader and the garbage collector. The implementation description is kept target

machine independent wherever possible.

Chapter 6 describes several realistic applications of the introduced meta_

programming facilities and compares them to traditional approaches. The

emphasis is not put on outstanding sophistication of individual examples but

on showing what can be achieved in principle by metaprogramming and what

our metaprograms look like. Thus, Chapter 6 serves also to deepen the under_

standing of the metaprogramming protocol introduced in Chapter 4.

Finally, Chapter 7 summarizes what has been achieved, outlines some areas for

future research and concludes the thesis.





2 Meta_level Programming

This chapter presents an introduction into the field of meta_level programming.

Besides some historical notes, basic terminology is introduced and previous

work in this field is discussed.

2.1 Historical Notes

The very beginning of meta_level programming can be traced back to the design

of the EDVAC computer by Mauchly & Eckert, which was described in a famous

draft paper by John von Neumann [Neu45]. The new concept in the EDVAC's

design was that data and programs were stored in the same memory. This

turned programs into data that could be manipulated at run time. First

applications of this concept were simple relocation tasks performed at load

time. Interestingly, Mauchly & Eckert pointed out that they would have

designed earlier computers the same way, but memory was too small to be

(ab)used for programs. The idea of using the gained flexibility in dynamic

algorithms (self modifying code) was present since these early days of

computing and has been investigated by J. v. Neumann and others. It soon

turned out that arbitrary self modification should be avoided because it lacks a

mathematical foundation and is difficult if not impossible to understand.

Nevertheless, the possibility to modify code at run time has become standard

practice for special purposes such as dynamic loading, dynamic compilation, or

dynamic debugging. The involved code modifications are, however, not really

self modifications but modifications initiated outside the modified program by

the loader, the compiler, or the debugger. Generally speaking, they take place

on a meta_level leading to the term metaprogramming.

Another influencing idea was the concept of frame languages proposed by

M. Minsky for knowledge representation [Min74]. The novel point in this class

of languages was that data was represented in units called frames that not only

contained information about the problem domain but also knowledge about

the data being stored. By providing access to this meta_information, programs

could be written that not only delt with knowledge but also with knowledge

about knowledge.
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Probably the most influencial (or at least the most often cited) work in the

field of metaprogramming and computational reflection has been carried out by

B. Smith [Smi82]. His work not only introduced a reflective variant of Lisp

(3_Lisp) but also many of the terms which are now in common use (c.f. 2.2).

Subsequently, [Maes 87] combined the work done by the knowledge represen_

tation people and the Lisp community and pointed out the close relationship

between reflective architectures and object_oriented programming. Maes' design

of a reflective language (3_KRS) introduced the notion of metaobjects and is a

predecessor of the Common Lisp Object system (CLOS) [KRB91].

2.2 Terminology

This section introduces the basic terminology used throughout this work. It

starts with rather simple terms (e.g. computational system) which are

nevertheless necessary to introduce more advanced concepts such as meta_

programming and reflective computation. Most of the terminology has been

introduced by [Smi82] and [Maes87] and is now generally agreed upon in the

metaprogramming community.

Computational Systems

A computational system (also called a system for short) is something that reasons

about or acts upon some part of the world, called the domain of the system. A

computational system represents its domain in form of data. Its program

prescribes how these data should be manipulated. It dictates the actions that

can or must be taken in order to reason about or act upon the domain in a way

that complies with the semantics of the domain, i.e. with the relations and

properties of entities which hold in the domain.

Causal Connection

A computational system is said to be causally connected to its domain if the

system and its domain are linked in such a way that if one changes, the other

changes too. A causal connection has to be set up only once and is maintained

by the system without any further actions. An example of causal connection is a

system controlling a robot arm, where the position of the robot arm is known

to the system and may also be changed by the system. An example of a system

that is not causally connected is a data base of music records, where the

insertion or deletion of a record does not change the physical collection of

records.
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Reason about / act upon

A computational system is said to act upon its domain if it is causally

connected to it. Otherwise it is said to only reason about it. Consequently, to act

upon implies to reason about.

Meta_system

A computational system is called a meta_system if it has as its domain another

computational system, called its object_system or base_system. Thus a meta_

system is a system that reasons about and/or acts upon another computational

system. A meta_system has a representation of its object_system in its data. Its

program specifies meta_computation about the object_system and is therefore

called a metaprogram. The meta_computation returns new information about

the object_system, i.e. reasons about the object_system or actually acts upon the

object_system.

Metaprogramming

The activity of designing and implementing a meta_system is called meta_level

programming or metaprogramming for short. It is the same as object_level

programming except for the fact that the domain of the system is another

computational system.

Reflective Systems

A computational system is called a reflective system if it is a causally connected

meta_system that has as object_system itself.

Reification

Reification is the process of making something explicit and thus available. A

reifier is an object which is used to reify something, i.e. to make something

explicit. An example of reification is to make the run_time data structures of an

interpreter (such as type descriptors or the run_time stack) available for the

meta_level programmer.

Meta_level Architecture

A programming environment has a meta_level architecture if it has an

architecture which supports meta_level programming. This definition deviates

from the literature [Maes87], which excludes reflective computation from a

meta_level architecture. We felt that excluding reflection is not consistent with

regarding a reflective system as a special case of a meta_system.

The activity of implementing a meta_level architecture should not be mixed

up with metaprogramming. The latter essentially means to make use of the
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former. In this thesis, we shall describe the design and implementation of a

meta_level architecture in Chapter 4 and 5 and make use of it in Chapter 6.

Two_level Architecture

A meta_level architecture which presents different languages for object_

computation and meta_computation is called a two_level architecture.

Reflective Architecture

A programming language is said to have a reflective architecture if it recognizes

reflection as an important structuring concept and provides building blocks for

reflection. Thus, all computational systems implemented in such a language

have access to a causally connected representation of (parts of) themselves and

can make use of reflection. As reflection can also be applied to meta_level

programs, there is no statically fixed number of meta_levels. This phenomenon

is commonly called reflective tower.

Metalinguistic Abstractions

Given a language that is executable on a computer, one can construct in that

language an interpreter for a second language, which is called an embedded

language. Constructing embedded languages is a powerfull abstraction tool,

which is called metalinguistic abstraction [AS85]. A simple form of embedded

languages occurs whenever one designs a module interface which constitutes a

special_purpose language embedded in the implementation language. Meta_

linguistic abstractions also occur when a special language or notation is

invented in order to cope with the complexity of a given problem. As an

example, T_diagrams [Bra61], which are used for describing the bootstrapping

steps of a compiler, were introduced because a textual description of the boot_

strapping is not the most effective form of communication. The T_diagram

language, which is based on a graphical notation, is described by an english

text.

Meta_circularity

An interpreter which is written in the same language it evaluates is called

meta_circular.

Fig. 2.1 outlines a very general programming system and visualizes some of the

introduced terms. Note that the notion of compilation does not exist in this

model. In this context, compilation is considered an implementation technique

(compile and go) rather than a concept on its own.
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interpreter for L1 written in L2

interpreter for L0 written in L1

program written in L0

application domain problem level

object level

meta level

...

meta meta_level

Fig. 2.1 − Levels of Activities

2.3 Conflicting Terminology

Two usages of the term metaprogramming that differ considerably from the

definition used in this thesis have been found in the literature. One is the usage

of the term metaprogramming in connection with project management, the

other is the usage of metaprogramming in the sense of distributed program_

ming. Both definitions are discussed below.

Metaprogramming: A Software Method

[Sim77] defines the term metaprogram as follows: "Metaprograms are informal,

written communications from the metaprogrammer, who creates the local

language, to the technicians who learn it and actually write the programs.

Metaprograms are characterized more by their purpose than by any specific

form or syntax".

The idea behind this definition is that in a group of programmers there

should be one distinguished person (the metaprogrammer) who defines the

rules for programming. Writing those rules down is considered an act of

metaprogramming. For example, the metaprogrammer can require some

indentation or naming conventions, or that comments are to be written in

German. Other examples are that programs should be designed following a

certain design method or that software quality should be verified by using a

certain quality assurance technique.

A possible criticism of this definition is, in our oppinion, that it is in

contradiction to the common understanding of programming, viz. to formulate

an algorithm in a machine readable form. In this sense, the task of the manager
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may be at a metalevel, but it is certainly not programming.

Metacomputer

A metacomputer as defined in [SC92] is a computer that consists of

components linked together via some network. For example, all computers

connected via the internet may be regarded as one metacomputer. [SC92] also

defines a personal computer as a special sort of metacomputer (a mini_

metacomputer) if it consists of independent processing units such as an integer

arithmetic unit, a floating point unit, a memory management unit and/or a

graphics coprocessor. All these units are connected via some links (e.g. a bus)

and act together in a way that makes them appear as one metacomputer rather

than many individual processing units. A meta_application according to [SC92]

is an application that makes use of a metacomputer and metaprogramming is

the activity of creating a meta_application.

It is our oppinion that the term distributed programming already covers this

sort of computation very well, so there is hardly any need to invent another

term for it. There is also hardly any computer system that is not at least a

minimetacomputer. Thus, the term metacomputer does not provide much

information.

2.4 PreviousWork

This section describes previous work in the area of metaprogramming. We

focus on two language families, the Smalltalk and the Lisp family, which both

served as vehicles for research in metaprogramming. Smalltalk is a purely

object_oriented language, i.e. a language where every action is described as a

message sent to some object. Lisp is an expression_oriented language, i.e. a

language where every action is described by an expression (with possible side

effects). Both language families evolved over several generations, the later ones

trying to remove weaknesses of the earlier ones. In the following, special

emphasis is put on a comparison of the different generations with respect to

metaprogramming. Besides Smalltalk and Lisp, we take also a short look at the

design of a programming environment for the Beta programming language and

at a meta_information protocol for C++.
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2.4.1 The Smalltalk Family

Smalltalk_80

Smalltalk_80 (or Smalltalk for short) was one of the first languages which

offered a considerable amount of meta_level facilities by means of so called

metaclasses [GR83]. In Smalltalk, everything is an object. Objects which are

able to generate other objects are called classes. Classes which are able to

generate classes are called metaclasses. Objects which are generated by a class

are called instances of that class. Looking at integer values, the is_instance_of

relationship is

42 −> SmallInteger −> SmallIntegerclass −> Metaclass <−> Metaclassclass

where a −> b means that a is an instance of b. Metaclasses have been

introduced in Smalltalk_80 mainly to handle class variables and class methods

uniformly with instance variables and instance methods. Earlier versions, such

as Smalltalk_76 used only one common metaclass for all classes, which implied

the restriction that all classes had exactly the same class features. For example,

it was not possible to have class_specific arguments for the new method, which

are sometimes usefull for initializing a newly generated object. With an

individual metaclass for each class, this restriction is removed. Metaclasses have

also been used for various Smalltalk_80 system tools like the class browser or

the inspector. For these meta_level tools some high_level form of accessing the

system state must be provided in order to avoid dependence on low_level

implementation details.

In retrospect, using metaclasses for two different tasks seems to be a

questionable design decision. The one task, introducing class methods and

class variables, acts on the object_level, the other task, providing access to

meta_information, acts on the meta_level. The user community Smalltalk was

aiming for, most notably children, were not able to clearly separate these two

usages of metaclasses. There were also a number of irregularities in the

subtype_of and instance_of hierachies that complicated understanding of

Smalltalk_80 even for professional users. The most obvious one is the top of the

is_instance_of hierarchy. In Smalltalk it is represented by two different classes

(Metaclass and Metaclassclass) acting as there mutually respective metaclasses.

Such constructs can probably only be understood if one knows how Smalltalk

systems are bootstrapped. Hiding the existence of metaclasses to the

object_level programmer required special tools that split a class definition into a

class and a metaclass definition and generated a metaclass for every class

implicitly. This automatism also established a sort of mysterium around the
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metaclass facility.

Like Simula_67, which introduced most of the object_oriented concepts

without recognizing it as a new programming paradigm, Smalltalk_80 intro_

duced metaprogramming without paying much attention to it. However, the

problems introduced by Smalltalk_80's twofold usage of metaclasses have been

addressed by two recent language designs in two different ways.

Self

The programming language Self [US87] avoids the need for metaclasses by

removing the notion of a class from the language. Self objects are self

describing and may serve as prototypes for the creation of new objects

(cloning). An object consists of a set of slots, which are references to other

objects and may inherit from any other object. An object's self_description is not

available as first_class object but only via so_called mirror objects. A mirror is a

vector of slot descriptions that reifys the state of the mirrored object. The

creation of mirrors is handled by predefined run_time routines that access an

object's self_description. In current Self implementations, this self_description is

represented by data structures (so_called maps) shared among objects cloned

from the same prototype. Although invisible to the programmer, this shared

data plays a vital role for space and run_time efficiency if executing Self

programs. Actually, a map can be regarded as an invisible class. The effect of

Smalltalk's class variables and class methods is obtained in Self by inheritance

of state in addition to inheritance of behavior. Inheritance of state is made

possible by the delegation_based inheritance mechanism employed by Self. An

object may delegate a message to its parent object without changing the

identity of the receiver. Method lookup therefore always starts at the original

receiver of a message even in case of self invocation in an inherited method.

Although it can be shown that this behavior can be used to express the effect of

class variables and methods [Stein87], it requires to follow some programming

conventions in order to organize objects and inheritance relations properly.

[UCCH91] describes a technique where so_called traits_objects play the role of

classes.

Cecil

Designed as a successor of Self, Cecil [Cha93] takes a different approach by

unifying the is_instance_of and inherits_from relationships. A new object can be

defined as being derived from one or more anchestor objects. There are no

prototypes that are cloned in order to generate new objects. The effect of class

variables is obtained in Cecil by distinguishing between copy_down and shared

object fields. This means that objects serve as building plans for other objects.
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In this aspect Cecil is closer to class_based languages and, in some sense, might

be regarded as a class_only rather than as a class_less language.

In summary, the problems introduced by Smalltalk_80's twofold usage of

metaclasses have been circumvented in Self by simply removing classes (and

thereby also metaclasses) as first_class objects. In Cecil, the is_instance_of

hierarchy has not been dropped but merged with the inheritance hierarchy.

2.4.2 The Lisp Family

Lisp

The programming language Lisp [McCar60] unified the representation of data

and programs by treating both as list structures. In Lisp it only depends on the

interpretation of a given list whether it acts as data or as program. As a

consequence, it is possible to write programs that compute and return other

programs (higher order functions). Lisp is a dynamically_typed language, which

means that each value carries with it a type tag that describes the kind of the

value. Predefined functions can be used to test the type of a value at run time in

order to invoke type_specific code. Due to Lisp's highly dynamic structure, Lisp

interpreters make heavy use of dynamically allocated storage. In order to speed

up execution and to guarantee memory consistency, many garbage collection

techniques have been pioneered by the Lisp community. It should be noted

that the implicit type tags are important prerequisites for garbage collection.

The author believes that it was the advanced memory management technology

and not the syntax which attracted many Lisp users. Programming language

researchers were mainly attracted by the simplicity of Lisp, which allows

experimentation with different language variants without too much program_

ming overhead. It is for example very easy to write an interpreter for a new Lisp

dialect in an existing Lisp version. Therefore, it is not surprising that for Lisp

more dialects evolved over time than for any other programming language.

Finally, experimentation with language variants and implementing language

extensions have been elevated to a concept which is manifested in the

Common Lisp Object System (CLOS). An important intermediate step, however,

was the work on a reflective variant of Lisp called 3_Lisp.

3_Lisp

The unique feature of 3_Lisp [Smith 82, RS84] is the possibility to define

reflective functions in addition to normal (non_reflective) Lisp functions.

Execution of a reflective function brings the computation to the level where the
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interpreter of the current computation is run. Reflective functions always take

two additional parameters (env and cont) which are causally connected to the

state of the interpreter. Env is a list of variable bindings (the environment) and

cont is a function that specifies the continuation (the run_time stack) of the

object_level computation. Both parameters may be inspected and/or changed

by a reflective function. Reflective functions are themselves implemented in

3_Lisp, which means that 3_Lisp is based on a meta_circular interpreter.

Therefore reflection is not restricted to one level, but may also occur on the

meta_level and the level above the meta_level and so forth. Some ideas of 3_Lisp,

especially the idea of making continuations explicit, have also shown up in

other Lisp dialects such as Scheme, but, due to efficiency considerations, in a

restricted form only.

Examples of meaningful usage of reflective functions are the introduction of

non_standard control flow as in the case of coroutines or exception handling.

Reflective facilities allow to omit these kinds of concepts from a core language

and to introduce them later on by user programs. There is no (known)

possibility to introduce such features in a clean way without reflective facilities.

This can be seen e.g. if one tries to introduce coroutines in a traditional system

based on static compilation. In this case the procedure activation stack has to

be manipulated, which breaks the abstractions of any high level language since

the activation stack belongs to the interpreter (the processor) and not to the

user program. Reflective languages try to reify the whole or at least parts of the

state of the interpreter and make it available to reflective programs.

CLOS − The Common Lisp Object System

Experimentation with object_oriented programming in Lisp led to many slightly

different dialects which are an inherent problem for the portability of

object_oriented Lisp programs. To overcome these problems, CLOS [Ste90] has

been designed as an open language, i.e. CLOS is not a single point in the

language design space but subsumes a whole range of possibilities. The main

concept behind the design of CLOS is to base the semantics of important and

orthogonal language constructs on so_called meta_objects. A meta_object

defines the particular semantics of a language construct by executing its

associated methods. There exist default meta_objects which define a default

semantics of CLOS, but additional meta_objects may be added as CLOS

programs. The designers of CLOS point out that they invested great care into

the performance of CLOS programs [KRB91] by a proper design of the

meta_object protocol (mop). The main idea is that CLOS programs should be

compilable and that the efficiency of the compiler has no effect on the

efficiency of the compiled program. Hence, the meta_object protocol should
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only be used at compile time but not at run time. [HDKP92], however, points

out that CLOS did not really succeed to reach this goal because accessing for

example a data slot, which is a very time critical operation, involves a dynamic

protocol, i.e. one that must be executed at run time. The involved overhead is at

least one normal plus two generic function calls and a table lookup. The

overhead is not inherently coupled with the idea of meta_objects, but due to the

particular design of the CLOS mop. Static slot access protocols such as the one

described in [HDKP92] are feasible without restricting the flexibility.

CLOS is meta_circular, since programming at the object_level and

programming at the meta_level are both done in CLOS. The meta_object

protocol is based on five different kinds of meta_objects which may be specified

as optional parameters to the special forms that introduce classes, generic

functions and methods. The five meta_object classes are specializer,

generic_function, slot_definition, method and method_combination. Specializer

meta_objects serve as spezializers of generic functions. Unlike most other

object_oriented languages, CLOS is not a single_receiver language, but allows

specialization on any number of parameters. Consequently, activation of a

dynamically bound procedure is not called message send but generic function

call. An important kind of specializers are class meta_objects which are used to

describe the properties of instances. In contrast to Smalltalk_80, CLOS does not

use class meta_objects to introduce class variables or class procedures. Special

class meta_objects may be used, for instance, to specify a certain inheritance

priority which in case of multiple inheritance differs in the various

object_oriented Lisp dialects. Generic_function meta_objects specify the

properties of generic functions, which play the role of multiply dispatched

methods in CLOS. An important property of generic_function meta_objects is

the argument precedence list, which is used to resolve ambiguities in generic

function calls, i.e. if it is not possible to determine the most specific method

uniquely. Again, this can be used to emulate the various generic function call

strategies of different object_oriented Lisp dialects within CLOS. Slot_definition

meta_objects contain information about the definition of a slot (a data field).

This information includes whether a slot is shared among all instances of a

class or not, how to access a slot via reader and writer functions, the location

(offset) of the slot and much more. Slot_definition meta_objects may be used to

intercept access to slots for example to interface CLOS objects with the

non_CLOS world. An example of using this mechanism for introducing

persistent objects in CLOS has been described in [PA90]. Method and

method_combination meta_objects are used to specify the properties of

methods and the order of execution in case of optional pre_ or post processing

methods.
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2.4.3 Beta

The purely object_oriented programming language Beta [MMN92] is a

descendant of Simula_67, the language that pioneered the object_oriented

programming paradigm. Beta is aiming at a maximum of regularity by

introducing the term pattern for anything that encapsulates state and behavior.

Not only objects are denoted by patterns but also modules, procedures and

types. Beta is implemented with an object_oriented metaprogramming system

called Yggdrasil. Metaprograms in the Beta implementation are for example the

syntax directed editor, the compiler and browsing tools. The whole Beta

programming environment can be considered as a collection of metaprograms

that all work on one of three levels of a common representation of Beta

programs. The lowest level is the tree level, which can be compared to

S_expressions in Lisp. Beta programs at this level are represented as a tree

structure without obeying any syntactic or semantic requirements. This level is

useful for any kind of table_driven tool that is used for Beta or any other

language in the same environment. A higher level of abstraction is provided by

the context free level, which obeys the context free syntax of Beta. Yggdrasil is

actually grammar based, i.e. any language that is specified by a context free

grammar can be accessed at an according context free level. The top level is the

semantic level, which may be used to add semantic attributes to the abstract

syntax tree. This level is tool_dependent and usually reflects context sensitive

aspects of the language. In the case of a compiler, the semantic attributes may

for instance be the storage class of an expression.

2.4.4 C++

Despite its complexity, the programming language C++ [Str91] in its current

version (2.1) completely lacks all kinds of metaprogramming facilities. In many

cases C++ programmers have introduced the missing functionality by means of

programming conventions, preprocessors, libraries, or even by modifying the

compiler. An ANSI standardization working group is now actively discussing a

way to introduce meta_level facilities in C++. One of the proposals which are

considered to be standardized is based on a multi_layer approach [BKPS92]. The

first layer of meta_facilities allows access to type information of an object. In

particular, it allows type comparison which can be used for safe (i.e. run_time

checked) down_casts. Layer two provides access to information about

inheritance relationships of classes. Layer three provides low_level information

about relative addresses of instance variables in order to support object
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input/output, and finally, layer four provides detailed information about

instance methods, class methods, method parameters and friend functions. The

meta_information protocol provides also information about built_in types such

as int or float.

One of the intricate problems of even only introducing layer 1 (type tags)

into the C++ standard is that compatibility with existing programs written in

pure C or with already compiled C++ libraries should not be affected. The

additional type information, however, has to be stored within an object, which

changes the storage layout. Note that the vtable pointer (the pointer to the

virtual function table) of standard C++ implementations can hardly be used to

hold the type information since it does not have a fixed position within all

objects and might be missing at all for objects of certain classes.

2.5 Related Fields

Since programming paradigms are usually not defined in a mathematically

precise way, one has to cope with grey areas when talking about paradigms.

We discuss several such grey fields with respect to the meta_level programming

paradigm.

Compiler Construction

A compiler transforms a program from one programming language into a

semantically equivalent formulation in another language. It has as its domain

other programs, hence it can be called a meta_level program. However, the field

of compiler construction is usually not considered to fall into the meta_level

programming paradigm. The reasons are that traditional compilers are not built

on top of a meta_level architecture and they also don't introduce one, i.e. they

don't provide a framework for possible language extensions. A compiler

implements a language, it does not extend it. An exception might be the Beta

programming system, where the compiler actually is a meta_level program

which makes heavy use of the underlying meta_level architecture.

Partial Evaluation

Partial Evaluation is a technique which is sometimes used for the construction

of optimizing compilers or static program checkers. It essentially means the

specialization of expressions (or procedures) by replacing variables by constants

or by reducing the range of variables. Partial Evaluation has other programs as

its domain but it is not a typical meta_level program for the same reasons as

mentioned for compilers.
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Interpreters

An Interpreter takes a program as input and produces the output of this

program by interpreting it. Interpreters are acting on a meta level, but again,

they are not typical examples for metaprogramming since they implement a

language at the first place, they don't extend it. If implemented on top of a

meta_level architecture, an interpreter could of course also be a more typical

metaprogram. A Lisp interpreter written in Lisp, for instance, could make use of

Lisp's built in meta_level facilities and must therefore be considered a very

typical meta_level program. Actually, this was and is the most common way to

experiment with Lisp dialects.

Higher Order Functions

A Higher Order Function is a function which takes one or more functions as

input parameters and/or returns a function as result. The possibility to pass

functions as parameters must be built into the programming language in use.

Higher order functions make use of advanced language constructs. However,

they don't extend the language interpreter. Therefore, they should not be

considered to be meta_level.

Recursion vs. Reflection

Recursion means to refer to something of the same kind, usually of a smaller

size. For example, factorial(n) might be partially defined as n * factorial(n − 1).

There is no self reference to the term factorial, but only a reference from one

instance (factorial(n)) to another (smaller) instance (factorial(n − 1)). When

looking at the interpretation of recursive functions, this fact can be seen easily

by the existence of an activation frame for every recursive function call.

Reflection, on the other hand, means the existence of a self reference. For

example, the sentence "This sentence has property x." refers to itself, not to any

other instance of the same kind.



3 The Oberon Language and System

The name Oberon refers to both a modular operating system and a hybrid

object_oriented programming language [WG92]. Oberon has been chosen as

the basis for our case study on metaprogramming for various reasons. First, the

programming language Oberon reflects the state_of_the_art in software

engineering by not only providing facilities for programming in the small and

programming in the large, but by supporting also the concept of extensible

software. This was previously the domain of interpreted, dynamically typed

languages aiming more at rapid prototyping than at programming industrial

strength software. A second reason was that Oberon is both a language and a

supporting environment. Experiments with metaprogramming require modifi_

cations of both the compiler and the run_time system. The simplicity of Oberon

promised to enable such modifications within reasonable time bounds. Third,

the implementation of the Oberon language and system are available in source

form and last but not least, the author was familiar with a particular

implementation of Oberon [Te91]. The following sections give a short survey of

the Oberon programming language and operating environment as far as it

relates to this thesis. Existing metaprogramming facilities will be discussed in

detail.

3.1 Language

Oberon [RW92] is a general purpose programming language in the tradition of

Pascal and Modula_2. It combines the well proven type system and module

concept of its ancestors with the new concept of record extensions in a

seamless way. Additional improvements such as basic string operations and

numeric type inclusion make the language more convenient to use. Oberon

also removes some features known from Pascal or Modula_2, most notably

variant records, nested modules, subranges and enumerations. Variant records

are fully replaced by record extension. Nested modules in Modula_2 have been

used rarely and complicate the language semantics. In many cases, subranges

and enumerations have added more to the verbosity of a program than to its

readability and they also don't fit nicely into the numeric type inclusion

hierarchy. With the principal new concept of record extension, Oberon aims at
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extensible programs. Any extensible component of a system can be expressed

in the type system as an extensible record type. Dynamic binding of messages

to methods is expressed by procedure variables or type_bound procedures.

Programming in Oberon means to extend a given system (e.g. the Oberon

operating system, an extensible text editor, ...) by new components. Of course,

by ignoring extensibility it is in principle also possible to write more traditional

stand_alone programs by statically linking all necessary modules into a sealed

object file although this is not the way Oberon programs are intended to work.

The programming language Oberon is designed to be efficiently compilable

into native machine instructions. There is, however, also a run_time system

involved in the execution of Oberon programs, which maintains the illusion of

infinite heap space by means of automatic garbage collection. Taking the

burden of memory management from the programmer is an invaluable

improvement in program robustness since fatal errors such as dangling pointers

simply cannot occur any more. Moreover, automatic garbage collection is a

necessity in the case of extensible systems since a programmer is not able to

keep track of all references to data structures which are introduced as

extensions possibly years later. It is to a large degree the garbage collection

argument why the author believes that Oberon as a language will eventually

replace other widespread statically typed languages such as Pascal, Modula_2 or

C and therefore research based on Oberon is not only an academic exercise.

In the following chapters, the concept of record type extension and the

various kinds of dynamic binding in Oberon will be used regularily. To keep this

work self_contained, these features will be shortly outlined below.

TYPE

Object = POINTER TO ObjectDesc;

ObjectDesc = RECORD object fields END;

SpecializedObject = POINTER TO SpecializedObjectDesc;

SpecializedObjectDesc = RECORD (Object) additional fields END ;

A record type may extend another record type and introduce additional fields.

The type SpecializedObject is said to be a direct extension of type Object, which

is the direct base type of SpecializedObject. An extended type inherits all fields

of its base type and is therefore upward compatible with it. Roughly speaking,

anything that can be done with the base type can also be done with the

extended type, but not vice versa.

Dynamic binding in its most flexible form is expressed using a procedure

field and extensible message records for sending arbitrary messages to an

object. The following type declaration introduces objects that encapsulate not

only state but also behavior by means of a message handler that takes the
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receiver of a message and the message itself as parameters. This style of

object_oriented programming is sometimes referred to as instance_centered as

opposed to class_centered, since every instance may have its own individual

behavior.

TYPE

ObjMsg = RECORD END ;

Object = POINTER TO ObjectDesc;

ObjectDesc = RECORD

object fields

Handle: PROCEDURE (o: Object; VAR msg: ObjMsg)

END;

An example of a concrete message is the request to an object to generate a

copy of itself.

CopyMsg = RECORD (ObjMsg) to: Object; deep: BOOLEAN END ;

The message handler which is installed in an object can distinguish explicitly

between different kinds of messages by the boolean type_test operator IS. o IS T

yields TRUE if and only if the dynamic type of o is either T or an extension of T.

PROCEDURE Handle (o: Object; VAR msg: ObjMsg);

BEGIN

IF msg IS CopyMsg THEN handle copy message

ELSIF ... look for further messages

END

END Handle;

Message records introduce messages as first_class objects which can be

manipulated just like any other data structure. It is for instance possible to

broadcast a message to many receivers by a generic Broadcast procedure that

only deals with arguments of the abstract base type of a message. Message

records can also be regarded as a means to express open parameter lists. By

explicitly programming the message dispatch mechanism in a message

handling procedure, there is − beside the type system − also no restriction in

the inheritance structure. Inheritance from the base type, super calls, delegation

or forwarding of messages, and abstract (i.e. unimplemented) classes follow

naturally without any special language constructs. Section 3.3.1 gives more

details about the connection between message handlers and meta_

programming. For those cases where this flexibility is not needed, Oberon_2

type_bound procedures [Moe93] can be used to express dynamic binding more

conveniently and more efficiently.
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PROCEDURE (o: Object) Copy (VAR to: Object; deep: BOOLEAN); ...

PROCEDURE (o: SpecializedObject) Copy (VAR to: Object; deep: BOOLEAN); ...

A message type is implicitly defined by the signature of a type_bound procedure

and there is no need (and no way) to explicitly program the message dispatch

mechanism as in the message_record example above. Procedures bound to a

base type are inherited by a derived type but may be overridden by binding a

procedure to the more specific type. Oberon_2 type_bound procedures are

covariant in the type of the receiver parameter and invariant in the rest of the

signature.

One can also think of various mixed forms of type_bound procedures and

message records. They are, however, not relevant for this work and are therefore

omitted in this description.

3.2 System

Oberon is a modular, single_threaded operating system aiming especially at

single_user operation of workstations. The Oberon system removes the

distinction of system and user programs by treating both as system extensions

wich are loaded on demand. The unit of loading is the module, which is also

the unit of compilation. Oberon removes the notion of a statically linked

application. Instead, it allows the direct execution of parameterless procedures

(commands) exported by a module. When a command is to be executed, the

system first checks if the exporting module has already been loaded and, if not,

loads it and all directly and indirectly imported modules. After executing the

procedure, all modules remain loaded until they are explicitly freed by the user.

This behavior enables consecutive commands to communicate via global

variables rather than via files or other persistent objects. Execution of

commands is supported by a command interpreter, which in the Oberon

system is integrated in the text editor. Commands are textually denoted in the

form M.P, where M denotes the module and P the procedure name. In

principle, commands can also be invoked using a graphical representation

(button, menu), but this is not part of the core system.

The Oberon system is implemented in the Oberon language and provides a

supporting environment for programming and execution of Oberon programs.

The system implements the run_time support needed for the Oberon language,

in particular heap management and module loading. Oberon has originally

been implemented on the Ceres personal computer [Ebe87] but is now

available on many commercial machines as well [BCFT92]. These implemen_
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tations build the Oberon system on top of another operating system [Fra93],

from which it mainly uses the device drivers. All implementations hide the

underlying operating system as much as possible and provide a target machine

independent application programmers interface (API) by means of the set of

library modules which comprises the Oberon system. Except for the modules

that offer a device driver abstraction, all modules are portable across all target

machines. The device driver modules have a target machine independent

interface but, of course, the implementation depends on the underlying

operating system such as Unix, MacOS, DOS or Windows. With respect to

program portability, the Oberon system offers unprecedented convenience.

Taking a module and recompiling it on the target machine suffices to port

programs.

If Oberon is not used as the native operating system of a machine, there

are at least two further application areas. The first one is to regard it as a

framework for writing extensible applications. Oberon systems running under

Unix, for example, can be started multiple times and every Oberon process can

be regarded as an extensible Unix application. The second application area is to

use Oberon as a customizable programming environment for almost any kind

of language. The Oberon system has been successfully used (and customized)

for developing Fortran, Modula_2, C, Lisp and Maple programs to mention just

a few.

3.3 Metaprogramming in Oberon

As mentioned in [Maes87], metaprogramming and reflection are a matter of

degree in most systems and languages; and this is also true for Oberon. We

find some meta_level facilities in both the language and the system without

making Oberon a fully meta_level or reflective programming system. Surprising_

ly, we find meta_level facilities exactly at those points in the language and

system that distinguish Oberon from its predecessors.

3.3.1 Language

By introducing the two operations type test and type guard, Oberon implicitly

defines on the language level that every object carries with it some form of type

description. With regard to metaprogramming, testing a type is the more

interesting operation as it is actually a sort of introspection under the control of

a program. In the following we shall discuss the two operations and also an
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important application of type tests, viz. message handlers, which have also a

close relationship to metaprogramming.

Type guard

A type guard v(T) is a run_time check that ensures that variable v refers to an

object of at least type T. This check might be implicit as well, but requesting the

programmer to make it explicit leads to annotating source texts with possible

exception points and therefore adds in readability and maintainability of

programs.

Type test

A type test v IS T returns true if and only if the dynamic type of v equals T or an

extension of T. A type test allows the program to inspect the dynamic type of a

variable and according to the result of the test to invoke some type_specific

code. Therefore, type tests are actually a reflective facility of the Oberon

language. It should be noted that the need for this reflective facility has been

ignored by popular, object_oriented Pascal dialects, earlier versions of Eiffel and

by the current version (2.1) of C++. There is, however, some discussion for

introducing meta_level facilities in C++ (c.f. 2.3.4).

Procedure Variables

Another potentially reflective facility of Oberon are procedure variables, i.e.

variables that can be assigned a procedure. Procedure variables can be used, for

example, to encapsulate state and behavior in the sense of object_oriented

programming. In this case, an object can test for its own behavior by comparing

the procedure variable that holds its behavior with a known procedure

constant. It can also change its own behavior by assigning another procedure to

its behavior field. An example of such a self_modification is to adapt the

implementation of an abstract data type according to a changing environment.

Message Handlers

Both type tests and procedure variables are used extensively in the standard

Oberon way of object_oriented programming, i.e. by using message records and

handlers (c.f. 3.1). Although this technique is not part of the language

specification proper, it has a close relationship to it especially when compared

with other object_oriented languages. In all object_oriented languages, there is a

mechanism for dynamic binding of messages to methods, i.e. to the code that

is invoked to handle a request. Usually, there is also a mechanism for automatic

code inheritance, e.g. a subclass inherits all the methods of the superclass. If a

specific inheritance mechanism is part of the language, it is sometimes not the
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right one for a given problem. Therefore, some object_oriented languages

provide for possibilities to adapt the standard inheritance mechanism to ones

own needs by means of metaprogramming facilities. CLOS, for example,

provides the concept of class and generic_function metaobjects in order to

allow the programmer to deviate from the standard inheritance mechanism.

Oberon message records and handlers provide even more flexibility by leaving

out a static description of inheritance from the language and requesting the

programmer to specify the message dispatching and code inheritance explicitly

as an Oberon procedure. Conceptually, the Oberon message handler plays the

role of a message_dispatching metaobject. Therefore, it is not surprising that the

handler technique has much more flexibility than any other language_defined

dispatching mechanism. It even allows dynamic inheritance, i.e. to change the

inheritance relation at run time. Although in most cases simple forms of

message dispatching are sufficient, the potential flexibility of the handler

technique should not be underestimated. Some people have criticized the

handler technique as being too low_level (in the sense of assembly level) for

object_oriented programming. We point out that the term low_level is not

appropriate here. A possible criticism would be that handlers are too meta_level.

3.3.2 System

The Oberon system contains in its inner core the run_time support necessary for

executing Oberon programs. We shall discuss the two almost independent

components, viz. heap management and module loading, in turn. Other

components of the inner core such as device drivers and most parts of the

outer core will not be discussed here since they are not relevant for our

purposes.

Heap Management

The language Oberon allows to dynamically allocate data structures in a

conceptually infinite area. The infiniteness of this area is implicitly introduced by

not providing a possibility to deallocate data structures explicitly. On today's

computers, however, memory is finite. Thus, maintaining the illusion of an

infinite heap requires to deallocate unused, i.e. unreferenced data structures

automatically. The current Oberon systems use mark_scan garbage collection in

order to detect and remove unused data structures. We note that garbage

collection is actually an example of a built_in meta_level computation as it has

as its domain the data structures of other programs. It is to a significant extent

the introduction of this meta_level facility that distinguishes Oberon from its
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predecessors and it is also the reason why interfacing Oberon with more

traditional languages is not as trivial as it seems to be from a syntactical point

of view.

Module Loading

Oberon programs consist of a set of components called modules. Modules at

the language level serve as name spaces. In Oberon, modules allow selective

import and export of names and may not be nested. A module may import

another module and refer to its exported names. At the system level, modules

typically serve as units of compilation and loading. If a computer system

provides a memory hierarchy with separate address spaces between the

different levels, then there must be a program that establishes executable

images at the level which is appropriate for execution by the processor. In

practice, this means that compiled Oberon modules stored on non_volatile

external storage must be loaded into internal memory to be executable. The

terms external and internal refer to the address spaces with respect to the

processor. Therefore, besides transferring the binary image, the loader has also

to perform address transformations (fixups) in order to map addresses from the

external to the internal address space. Additionally, all directly or indirectly

imported modules must be loaded in turn. Generally speaking, the loader deals

with other programs, hence it can be regarded a metaprogram. Seen from the

system point of view, module loading is a highly reflective activity as it

introspects and extends the system itself. The ability to load modules on

demand and thereby to extend the running system (dynamic linking) is one of

the distinguishing features of Oberon at the system level.

In the Oberon system, dynamic linking is introduced by providing a

programmatic interface to the module loader, which in Oberon is embodied in

module Modules. By examining this metaprogramming protocol, we shall detect

more meta_level facilities.

DEFINITION Modules;

TYPE

Module = POINTER TO ModDesc;

ModDesc = RECORD

next: Module;

name: ARRAY 20 OF CHAR

END ;

Command = PROCEDURE;

VAR

ModList: Module;
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res: INTEGER;

importing, imported: ARRAY 20 OF CHAR;

PROCEDURE ThisMod (name: ARRAY OF CHAR): Module;

PROCEDURE ThisCommand (mod: Module; name: ARRAY OF CHAR): Command;

PROCEDURE Free (name: ARRAY OF CHAR; all: BOOLEAN);

END Modules.

An abstract data type Module is introduced and instances of this type are

sequentially linked and anchored in a global variable. A call of function

ThisMod(name) returns the module with the given name, which is first searched

in the list of loaded modules and if it is not found, it is loaded from external

memory. The global variable res returns a result code and variables importing

and imported contain additional diagnostic information. A call of the function

ThisCommand(mod, name) returns the command with given name from module

mod. Commands in Oberon are parameterless exported procedures which serve

as units of interaction. The user of an Oberon program is expected to execute a

sequence of commands rather than a main program with only one entry point.

Executing a command is nothing else than calling the procedure installed in a

procedure variable. A loaded module remains loaded until an explicit call of

Free is made, which means that the module with given name is to be unloaded

from memory and, depending on the second parameter, that all imported and

no longer needed modules should be unloaded recursively. Due to the property

that modules stay loaded as long as possible, subsequent commands can

communicate simply via a module's global variables.

The Oberon system offers three basic commands for system introspection.

A command to show the list of loaded modules (System.ShowModules), a

command to show the commands provided by a given module (System.Show_

Commands) and a command to display the state of global variables of a

module (System.State). It also offers a command to unload unnecessary

modules (System.Free) and it provides a command interpreter which, as a

possible side effect, extends the system by loading additional modules. The

four mentioned commands are potentially reflective, as they can even be

applied to themselves (e.g. System.Free System ˜).

Two subtle problems exist with loading and unloading of modules which

are not satisfactorily solved in current implementations of Oberon. The first

problem is related to calling the module loader when the module list is in an

inconsistent state. Such situations may arise if a preceding module loading has

been terminated by an exception or if the loader is called recursively in the body

of a module. The second problem is related to unloading of modules. A
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procedure exported by a higher level module (client) might be installed in a

procedure variable belonging to a lower level module. Unloading the client

module is possible, but in this case, the installed procedure variable refers to a

non_existent procedure, i.e. it becomes a dangling procedure variable. It is one

of the side_goals of this work to provide a solution to these problems (c.f.

4.3.5).

Trap Handling

Another kind of introspection is used for handling of run_time errors. If an

exception occurs, the system trap handler inspects the run_time stack and lists

the procedure activation chain together with the values of local variables. After

that, the system falls back into the central event loop and waits for user input.

Producing a trap listing is also a meta_level facility which − in the unintended

case of a trap within the trap handler − might even be used recursively.

Module Types

Those Oberon versions which implement the Oberon_2 extensions, additional

meta_level facilities are typically provided by means of a module Types, which

provides run_time access to types defined in Oberon programs. Technically

speaking, module Types reifies the type descriptors that are available in the

Oberon run_time system anyway. As Oberon does not support untyped pointers,

a SYSTEM level type PTR is used to express compatibility with every pointer

type.

DEFINITION Types;

IMPORT SYSTEM, Modules;

TYPE

Type = POINTER TO TypeDesc;

TypeDesc = RECORD

name: ARRAY 32 OF CHAR;

module: Modules.Module;

END ;

PROCEDURE BaseOf (t: Type; level: INTEGER): Type;

PROCEDURE LevelOf (t: Type): INTEGER;

PROCEDURE NewObj (VAR o: SYSTEM.PTR; t: Type);

PROCEDURE This (mod: Modules.Module; name: ARRAY OF CHAR): Type;

PROCEDURE TypeOf (o: SYSTEM.PTR): Type;

END Types.
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A call of function TypeOf returns the run_time type of the given object. The name

of the type and the module in which the type is declared are provided as fields.

The inheritance structure of a type may be examined by the function

procedures BaseOf and LevelOf. LevelOf(t) returns the extension level of t where

the topmost base type has level 0. BaseOf(t, n) returns the base type of t at level

n. Procedure NewObj allows to generate new objects of a given type and This

returns the type with the given name from a given module.

Although module Types is not unconditionally necessary, it simplifies tasks

such as internalization/externalization of extensible data structures by providing

generic mechanisms to deal with type information [GPHT91]. The fundamental

problem lies in the unsymmetry of an object_oriented approach since an object

which exists in internal memory can respond to a write message but an object

which exists on external storage cannot respond to a read message. In order to

solve the problem, the information stored per object must be split up into type

and contents information. Internalization/externalization then consists of

reading/writing the type information, generating an internal/external object of

that type, and sending a read/write message to the internal object. The type

specific behavior is only needed for the contents of an object, not for the type

information. A solution without module Types would be to represent type

information indirectly in form of class specific procedures (generators)

formulated as Oberon commands. A generator is a procedure which allocates

and initializes a new object of a particular class. An object may return the name

of its corresponding generator as response to an appropriate message and

instantiation can be done by calling the generator as an Oberon command.

Passing parameters or return values to or from generators has to be done via

global variables since Oberon commands are parameterless procedures. It

should be noted that generic instantiation via module Types is more convenient

but less flexible than using generators. For example, module Types cannot be

used for dealing with objects implemented in an instance_centered style as

instantiation also requires to explicitly install an object's message handler.

Using type_bound procedures, this explicit initialization is not necessary and

generic instantiation without class specific code is possible.





4 A Meta_level Architecture for Oberon

This chapter describes a variant of the Oberon system which incorporates a

meta_level architecture as its principal new addition. We give a definition of the

introduced metaprogramming facilities by specifying a programming interface

to meta_level facilities. This interface is called the metaprogramming protocol.

The description of this protocol follows a top_down approach by introducing

abstract concepts in the form of abstract classes first, which are then

specialized to concrete classes. Finally, we describe a proper modularization,

which follows naturally from the top_down approach. The Appendix summa_

rizes the interfaces of the introduced modules. Implementation aspects of the

proposed architecture are discussed in Chapter 5 and a selection of possible

applications is described in Chapter 6.

4.1 Overview

The basic idea of the introduced metaprogramming protocol is to treat

important components of Oberon modules, in particular record types and

procedures, as first_class objects, i.e. as objects which can be manipulated by a

program (almost) like other objects. In traditional Oberon systems, these

objects only exist implicitly in the compiler and are stored in some internal

format on a file (the object file). From there, they can be accessed by the

module loader but not by normal user programs. Since the life time of type and

procedure objects is not bound to any executing process, we shall regard them

as persistent objects.

Due to the modular structure of Oberon programs, types and procedures

are collected in an enclosing entity called a module. In the introduced meta_

level architecture, modules are a special kind of collection, viz. a persistent

collection of type and procedure objects. Inspired by Oberon System_3 [Gut93],

modules and other forms of persistent object collections have been generalized

to an abstract library concept, which forms a common base for the object and

metaprogramming system (Section 4.2.1, 4.2.2). In contrast to System_3, where

libraries resulted from a generalization of fonts (super fonts) aiming especially

at graphical end_user objects, our libraries are a generalization of program

modules aiming especially at a seamless integration of metaprogramming
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facilities into the Oberon system.

The proposed metaprogramming protocol consists of two essential parts.

One is a facility for generic access to arbitrary objects (Section 4.2.3) and the

other is a generic interface to take control over Oberon procedure calls (Section

4.2.4).

4.2 TheMetaprogramming Protocol

Metaprogramming facilities are introduced for different kinds of Oberon

language objects including modules, types, variables, and procedures. No meta_

programming support is introduced for constants. In the following sections we

shall describe the metaprogramming protocol for the various object kinds in

turn. We start with the concept of libraries on which the rest of the protocol is

based. We shall use the corresponding Oberon type and procedure declarations

for describing this protocol. Note that in the presented record type definitions

all of the record fields are considered to be used read_only. The only exception

is for implementing subclasses of abstract base classes in which case it might

also be necessary to write onto inherited fields. An alternative solution would

have been to export the fields as get/set pairs of type_bound procedures, which

can be overridden in subclasses only, but this would have introduced unjusti_

fied verbosity and inefficiency.

4.2.1 Libraries

According to [Gut93], a library is defined to be an indexed collection of

persistent objects. In analogy to traditional files, which are persistent arrays of

bytes, libraries allow direct access to objects. Fig. 4.1 shows the apparent

analogy between files and libraries.

open ended

File

open ended

Library

Byte

Object

Byte Byte

0 1 2

0 1 2

Object Object

Fig. 4.1 − Files and Libraries
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Libraries are typically used as common resources shared between different

programs or data structures. Sharing of resources avoids wasting main memory

and increases the efficiency of resource loading since a shared resource need be

loaded only once into main memory. Well known examples of libraries are

fonts (collections of character glyphs), libraries of graphical macros, or libraries

of graphical end_user objects. Our notion of libraries extends even further and

includes also modules, which are regarded as collections of objects such as

types and procedures. The variety of libraries and the need for efficient access to

exported objects suggest the use of a class_centered programming style for

libraries. We introduce an extensible library mechanism based on an abstract

class Library which can be refined to specific library classes by means of object_

oriented programming techniques.

Library

Font MacroLib Module future extensions

Fig. 4.2 − The hierarchy of library classes

Objects collected in libraries cover a large spectrum. Therefore, the base type

Object has to be kept as general as possible. Fig. 4.3 outlines the hierarchy of

object types. Objects within a library are always accessible via their reference

number, which acts as an index into the library. In addition, objects may also

be accessible via their name, in which case they are called exported objects.

Object

Character Graph Procedure future extensionsType

Fig. 4.3 − The object hierarchy

We are now prepared to go into more detail and to discuss the programming

interface of the library system. We shall introduce the interface step by step and

remind the reader that the Appendix contains the complete module definitions.
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TYPE

Name = ARRAY 20 OF CHAR;

Library = POINTER TO LibraryDesc;

LibraryDesc = RECORD

name: Name;

nofClients, nofImports, nofObjects: LONGINT;

init, fini: PROCEDURE (L: Library)

END ;

ThisProc = PROCEDURE (name: ARRAY OF CHAR): Library;

VAR

res: INTEGER;

importing, imported: Name;

PROCEDURE This (name: ARRAY OF CHAR): Library;

PROCEDURE Free (L: Library);

PROCEDURE Install (ext: ARRAY OF CHAR; this: ThisProc);

Every library is identified by its name. A library may depend on (import) other

libraries and may itself be imported by other libraries (clients). The number of

loaded clients of a library is given by nofClients, the number of imported libraries

by nofImports and the number of exported objects by nofObjects. Cyclic imports

are not allowed, thus, the import graph forms a directed acyclic graph (DAG).

Fig 4.3 outlines the import relationship between five sample libraries. The

arrows point to the client library, i.e. L1 imports L2 and L1 imports L3 and so

on.

L1

L2 L3

L4 L5

Fig. 4.4 − A sample import graph

The import relationship between libraries is well known for the case of

modules. It is, however, also meaningful for other kinds of libraries. A graphical

object exported by a library might for instance be composed of imported

objects such as icon images, drawing macros or it might need a font for

labeling the object.
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This

Procedure This provides access to a library with a given name and internalizes

the library and all its imported libraries if necessary. This may be called for all

kinds of libraries, thus it is not a class_specific procedure but a generic interface

for loading of different library kinds. Therefore, This is also called the generic This

as opposed to a specific This_procedure (c.f. procedure Install below for more

details about class specific library loading).

In order to enable sharing of resources, multiple accesses with the same

name return the same library instance. In the case of libraries, the name is

considered to be the same kind of reference as a pointer variable. Unlike a

pointer reference, which is under control of the run_time system, a reference by

name is under control of the user. Hence, libraries are potentially always

reachable and therefore are never reclaimed automatically. Similar to module

Modules in Oberon, procedure This returns a result code in variable res. Possible

result values are Done, LibNotFound, InvalidLib, InvalidKey, CyclicImport, and

OutOfMemory. The variables imported and importing are used for reporting

those libraries which could not be loaded.

Free

Procedure Free frees the specified library if no clients of this library exist and

sets res to Done; otherwise to ClientsExist. Freeing a library does not mean to

physically unload the library from main memory but simply to make it

unaccessible to further calls of This. Free actually sets the name field of the

library to the empty string to signal that the library is to be considered

anonymous from now on. Anonymous libraries are subject to garbage collection

just like any other object on the heap. In addition to making a library

anonymous, Free decrements also the nofClients counts of all libraries imported

by the freed library by one. A client module is not automatically freed even if

the nofClients count reaches zero.

Install

In order to support extensibility at the level of library loading, procedure Install

is provided to install a specialized This_procedure for a given library type. The

type is derived from the library name or more precisely, from the postfix of the

library name. In case of multiple matching postfixes, the This_procedure

associated with the longest postfix is chosen. In particular, this means that the

empty postfix is allowed, but that it is only used if no other extension matches.

It is recommended to use a dot as the start of the library name extension (e.g.

".Fnt" for fonts). Specialized This_procedures are expected to load a library from

whatever medium the library name suggests (most often a disk file) into main



46 A Meta_level Architecture for Oberon

memory without inserting this library into the set of loaded libraries. It is the

task of the generic This_procedure to give the newly loaded library a name and

to maintain the set of named libraries (i.e. those that are accessible by name),

which is necessary for accessing the same library instance later on via its name.

Imported libraries must be loaded by means of recursively calling the generic

This_procedure. The life cycle of a library is illustrated by the state diagram in Fig.

4.5.

external (anonymous)

accessible
(anonymous)

garbage

collection

specific

internal memory generic

Free

by name

loaded

freed

This

This

Fig. 4.5 − Library Life Cycle

Initialization / Finalization

An initialization and a finalization procedure (init and fini) may be associated

with a library. Since these procedures are intended to represent for example a

module's body or a cleanup procedure, they are bound to a library instance and

not to a type. Initialization (i.e. calling init) is performed after a library is first

loaded into main memory and finalization (i.e. calling fini) is done when a

library is freed. During initialization the library is accessible by name whereas

during finalization it is not. This asymmetry is justified by the need that cyclic

loading is possible but cyclic frees are hardly meaningful.

To summarize, the process of loading a library is under control of This but

includes two upcalls. The first one is the library_specific This_procedure which is

expected to return an anonymous, uninitialized library. The second is the

initialization after the library has been made accessible. Freeing a library is

under control of Free and includes one upcall, viz. the library_specific finalization

routine. Both anonymous states are of a temporary nature, although the

anonymous state after freeing a library may last for a longer time.
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Invariants

From a robust library loading mechanism we expect that it guarantees at least

the following three invariants.

7 Uniqueness: no two libraries with the same name are accessible at the

same time.

7 Completeness: all libraries imported by an accessible library are also

accessible.

7 Consistency: the nofClients counts hold the exact number of client

libraries.

The uniqueness property guarantees that every library is uniquely identified by

its name. The completeness property guarantees that the import graph does not

contain holes, which might for instance occur if loading is prematurely

terminated by an exception. It guarantees also that imported libraries can be

shared. The third property guarantees that freeing a library is possible at the

right time, i.e. when no clients of this library exist. We shall see in Section 5.1

that a framework for library loading which guarantees the above invariants is

not as trivial as it might seem at the first glance. Other requirements, e.g. correct

nofImports and nofObjects counts, are much simpler to implement correctly

since they are invariant against the activities of the loader, i.e. they are not

changed during loading or unloading of libraries.

Library handling is enhanced by two further procedures which don't have side

effects on the set of loaded libraries.

TYPE

EnumProc = PROCEDURE (L: Library; VAR cont: BOOLEAN);

PROCEDURE Enumerate (do: EnumProc);

PROCEDURE Lookup (name: ARRAY OF CHAR; VAR L: Library);

Procedure Enumerate calls the provided do_procedure for all libraries in an

unspecified order. A do_procedure may stop the enumeration by setting cont to

FALSE. For the common task of searching in the current set of accessible

libraries (without changing this set), a more convenient way than Enumerate is

provided by procedure Lookup, which returns either the named library or NIL if

the library is not accessible.

Extensibility

As mentioned earlier, libraries are supposed to provide efficient access to their
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components despite the fact that they unify object collections such as modules

and fonts, which are usually stored in a highly specialized binary format.

Furthermore, it should be possible to introduce new kinds of libraries later on.

Thus, libraries need type specific behavior in order to provide the requested

efficiency and flexibility. This behavior is provided by the set of type_bound

procedures (methods) specified below. We deliberately left out any methods

for writing libraries, i.e. there are no corresponding Put−Procedures. This

omission is justified by the goal to introduce meta−level facilities into Oberon

rather than to reinvent the sophisticated Oberon System_3 library mechanism.

Furthermore, all libraries necessary for the Oberon system (modules, fonts) are

used in a read_only way. The compiler or a font editor don't necessarily need a

common interface for writing their output to a file.

PROCEDURE (L: Library) GetImport (n: LONGINT; VAR imp: Library);

PROCEDURE (L: Library) GetObj (ref: LONGINT; VAR o: Object);

PROCEDURE (L: Library) GetRef (name: ARRAY OF CHAR; VAR ref: LONGINT);

PROCEDURE (L: Library) GetName (ref: LONGINT; VAR name: ARRAY OF CHAR);

PROCEDURE (L: Library) GetVersion (ref: LONGINT; VAR n: LONGINT);

Method GetImport returns the n_th imported library if 0 <= n < nofImports.

GetImport is useful for inspecting the import graph of a loaded module. A

concrete example is to implement a command that recursively frees a module

and all its imported modules which have no clients any more. GetObj indexes

the library and returns the object with the given reference number or NIL, if

such an object does not exist. The type Object will be explained below.

Exported objects may also be identified within a library by their name. Method

GetRef provides this directory service by mapping names to reference numbers.

If the name is not found, the value _1 is returned. Method GetName provides

the inverse mapping. It returns the empty string if the object does not have a

name, i.e. if it is a private object. The interface of an object may be specified by

a number (e.g. a version number, a finger print, or a time stamp), which can be

retrieved by method GetVersion. The version number can be used to dynamically

check compatibility between objects.

Objects

The atomic persistent entities collected in libraries are called Objects. The

following introduces the protocol for the abstract base class Object.
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TYPE

Object = POINTER TO ObjectDesc;

ObjectDesc = RECORD

lib: Library;

ref: LONGINT;

handle: Handler

END ;

ObjectMsg = RECORD END ;

Handler = PROCEDURE (O: Object; VAR M: ObjectMsg);

Similar to Oberon System_3, persistent objects exported from a library are self

describing in the sense that they carry their external address as well as their

behavior in form of instance variables. The external address is described by the

pair (lib, ref) where lib refers to the library the object is exported from, and ref is

the index of the object in the library. If lib is NIL, the object is said to be

unbound otherwise it is said to be bound to lib. The reference number ref

uniquely identifies a bound object within the library it is bound to. Unbound

objects exist only in internal memory and have no external address at all.

The design decision that objects contain their external address within

themselves probably needs more justification. The main advantage is that

whenever the external address of an object is needed (e.g for externalization of

data structures) it can be immediately accessed without any additional

computation. Storing the external address within an object is the simplest and

most efficient mapping from internal to external addresses. The alternative

would be to introduce additional data structures (e.g. hash tables or search

trees) which provide this mapping. This would, however, not save any memory

(except for unbound objects) but introduce more complexity. Another (minor)

advantage is that the lib pointer naturally expresses the fact that an object can

be bound to at most one library. It also simplifies garbage collection of libraries,

since the lib pointer within an object establishes a reference to the exporting

library and prevents it from being garbage collected as long as at least one of its

objects is reachable.

The behavior of an object is expressed by the instance variable handle. In

order to prepare objects for utmost flexibility and adaptability, we use

procedure variables and message records to express object behavior. However,

we do not introduce any message types except the abstract ObjectMsg in the

core library system. Passive objects, i.e. objects which are not prepared to

respond to messages, may set their handle field to NIL.
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4.2.2 Modules

In the proposed metaprogramming system, modules are represented as a

special kind of persistent object library, viz. one that exports type and procedure

objects. Besides that, the protocol defined for modules is similar to the interface

for module Modules as described in Section 3.3.2.

TYPE

Module = POINTER TO ModuleDesc;

ModuleDesc = RECORD

(LibraryDesc)

nofProcs, nofTypes: INTEGER;

data: Data

END ;

Command = PROCEDURE;

Data = POINTER TO RECORD END ;

PROCEDURE ThisMod (name: ARRAY OF CHAR): Module;

PROCEDURE ThisCommand (mod: Module; name: ARRAY OF CHAR): Command;

Procedure ThisMod returns the specified module or NIL if it does not exist.

ThisMod is actually a shorthand notation for This followed by a test which

ensures that the type of the returned library is Module. A call of ThisCommand

returns the specified Oberon command from the given module or NIL if the

command does not exist. As in standard Oberon implementations, module

names have the empty library name extension. On external storage, however,

modules are typically stored with the file name extension ".Obj" (i.e.

ThisMod("xxx") loads module "xxx" from file "xxx.Obj"). Objects exported from

a module are procedures and (record) types. The fields nofProcs and nofTypes

hold the number of exported procedures and record types respectively. Global

variables are not considered as persistent since they are reinitialized whenever a

module is loaded. Therefore, global variables are not exported as objects in the

strict sense but made accessible for meta_level programs (e.g. a debugger or the

System.State command) via a module's data field.

Types

A type object represents an Oberon record type. The restriction to record types

follows from the fact that in Oberon only record types introduce polymorphism

and need run_time data structures to represent them. Instances of type TypeDesc

are exactly these type descriptors. Types are passive objects, i.e. they are not
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prepared to respond to messages. Therefore, the handle field of type objects is

always NIL.

TYPE
Type = POINTER TO TypeDesc;

TypeDesc = RECORD

(ObjectDesc)

level: INTEGER;

base: ARRAY maxExt OF Type

END

Oberon allows to construct a record type hierarchy by means of type extension.

This hierarchy is reflected by the attributes level and base, which describe the

record extension level and the direct and indirect base types. A type with level n

has base types base[i] with i in [0..n]. Any record type T extends itself, i.e.

T.base[T.level] = T. The remaining base table entries are set to NIL. The level and

base type table can be used to express type tests in constant time [Coh91]. The

Oberon type test (o IS T) can be thought of being a shorthand notation for

o.type.base[T.level] = T where we simply write o.type to access the dynamic type

of object o. Level and base table have been introduced as record fields instead

of accessor functions to allow efficient access to the information which reflects

the record extension hierarchy.

Procedures

Procedure objects represent Oberon procedures. More precisely, they represent

exported procedures and procedures which are assigned to procedure variables.

In principle, it would be possible to represent all procedures (including private

and nested procedures) by procedure objects. This would, however, not give an

adequate advantage for the introduced storage overhead and conceptual

complications. Nested procedures, for instance, would have to be treated

specially, since they can only be activated within a given context.

TYPE

Procedure = POINTER TO ProcedureDesc;

ProcedureDesc = RECORD

(ObjectDesc)

END ;

Like type objects, procedures are normally passive, i.e. they don't have a

message handler. However, it is also possible to think of procedures as active

objects which respond to messages such as a request to execute themselves.

The idea of active procedure objects will be put forward in Section 4.2.4.
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4.2.3 Generic Access to Objects

The purpose of introducing a meta_level architecture for Oberon is to allow the

construction of meta_level programs written in Oberon which act upon other

Oberon programs and data structures. Meta_level programs must have a

possibility to access data structures of other programs in a generic way. In

particular, the access mechanism must be independent of the actual type of a

data structure since meta_level programs cannot know all possible types in

advance and the accessed objects cannot (and should not) know all possible

meta_level operations in advance. By the term generic access we therefore mean

not type specific access.

We introduce generic access to arbitrary data structures by means of

iterators which can be used by a metaprogram to iterate over the fields of an

object and to access them for reading and writing. Following the terminology of

Oberon and ETHOS [Szy92], we call these iterators Riders. Object riders can be

used for meta_operations on arbitrary objects including global data of modules,

objects allocated on the heap and even for procedure activation records. In

contrast to file riders, which only allow purely sequential access, object riders

have to allow hierarchical access in order to allow zooming into structured

components such as records or arrays.

A rider is not causally connected to the object it is based on but reifies the

state of this object by means of a set of Read and Write procedures which will

be explained below. Examples for usage of generic object manipulation are

mainly in the field of mapping data structures from one format or address

space into another without relying on type or instance specific code as it would

be necessary by an object_oriented approach (c.f. Chapter 6).

The following definition of a generic access mechanism is aiming at

simplicity, efficiency, and run_time safety. We intentionally do not provide

access to the complete compiler symbol table in order to be independent of a

particular compiler and not to affect garbage collection performance due to a

large number of objects needed to represent the symbol tables of all loaded

modules. Also, we deliberately do not treat objects themself as libraries which

allow access to their components by means of GetObj or GetName methods

since objects are not necessarily persistent and components of objects are not

necessarily objects in turn.

TYPE

Rider = RECORD

mode, class: SHORTINT

END ;
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PROCEDURE (VAR R: Rider) GetLocation (VAR name: ARRAY OF CHAR; VAR vis: SHORTINT);

PROCEDURE (VAR R: Rider) ReadX (VAR x: X);

PROCEDURE (VAR R: Rider) WriteX (x: X);

PROCEDURE (VAR R: Rider) Pass (VAR from: Rider; VAR res: INTEGER);

PROCEDURE (VAR R: Rider) Skip;

In order to allow efficient access to different kinds of structured variables,

different kinds of riders with type_bound procedures are introduced. The

abstract base type Rider contains fields mode and class, which are necessary to

describe the attributes of the variable at the rider's current location. Additional

information about this variable is provided by method GetLocation, which

returns the name and the visibility of the variable at the rider's location. Name

and vis have been handled separately because this information is not always

needed and, if not needed, should not slow down iterating over objects.

vis = Private | Exported | ReadOnly.

The field mode specifies whether the rider is positioned on a variable, a

VAR_parameter, a record field, an array element or none of them because the

end of the object has been reached. Value parameters are treated like variables,

i.e. they have mode Var.

mode = Var | VarPar | Fld | Elem | None.

The field class specifies the type class of the element a rider is positioned on.

The classes comprise all Oberon standard types plus classes for pointers,

procedures, arrays and records.

class = Byte | Bool | Char | SInt | Int | LInt | Real | LReal | Set | Ptr | Proc

| Array | Record | DynArr.

Methods ReadX and WriteX serve to read and write a value at the current

position and to advance the rider's position. X stands for any of the basic type

classes. Concrete examples are:

PROCEDURE (VAR R: Rider) ReadInt (VAR x: INTEGER);

PROCEDURE (VAR R: Rider) ReadPtr (VAR x: REFANY);

PROCEDURE (VAR R: Rider) ReadString (VAR x: ARRAY OF CHAR);

etc.
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The parameter type REFANY in ReadPtr stands for any pointer type. Since Oberon

requires a static type for all pointers, it has been necessary to express the type

REFANY by means of the pseudo module SYSTEM as TYPE REFANY =

SYSTEM.PTR. It should be noted that type errors can still be checked

dynamically.

Method Pass may be used to pass a value or a variable directly from a

source to a destination rider and to advance the position of both riders.

R.Pass(from, res) can be seen as from.Read(X) followed by R.Write(X) but allows

also to pass structured data and to pass variables by reference in case that

R.mode = VarPar. The result variable res is set to zero if passing was successful.

A typical application of Pass will be seen in Chapter 6, the passing of parameters

to a parameter record in a generalized command interpreter.

A rider may be advanced to the next position (e.g. the next record field or

the next array element) without reading or writing the variable at its current

location by calling method Skip.

Special rider classes have been introduced for iterating over records, arrays, and

procedure activation records. Fig. 4.6 shows the hierarchy of the introduced

rider classes.

Rider

RecordRiderArrayRider ActivationRider

Fig. 4.6 − The Rider Hierarchy

RecordRider

A RecordRider may be used to iterate over the fields of a record structure.

Record riders introduce one additional attribute, the level of the field a rider is

positioned on. The level starts at zero after opening a record rider, i.e. at the

fields of the very base record type.

TYPE

RecordRider = RECORD (Rider)

level: INTEGER

END ;

PROCEDURE OpenRider (VAR R: RecordRider; o: REFANY);

PROCEDURE SetLevel (VAR R: RecordRider; level: INTEGER);
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Procedure OpenRider sets up a record rider on a record object specified by a

pointer to the record. Generic access to global module data is also provided via

record riders. The Oberon command System.State, for instance, uses

OpenRider(R, m.data) to open a rider R on the global data of module m.

Procedure SetLevel may be used to set the rider's location to the first field of the

specified extension level.

ArrayRider

An ArrayRider may be used to iterate over the elements of an array structure.

Array riders introduce two additional attributes, the length of the array and the

index of the rider's location. Method GetLocation returns index in form of a

string as the name of the current location.

TYPE

ArrayRider = RECORD (Rider)

len, index: LONGINT

END ;

PROCEDURE SetIndex (VAR R: ArrayRider; idx: LONGINT);

Procedure SetIndex may be used to directly position the rider to the specified

array index. As a minor restriction, we do currently not allow to open an array

rider via a pointer to an array (fixed size or open). Array riders may be opened

only as zooming operations on structured components of a given base rider

(see below).

ActivationRider

A special kind of rider is provided for operating on procedure activation frames.

The main purpose of activation riders is to allow the implementation of human

readable stack dumps without relying on implementation_dependent informa_

tion. Activation riders reify the run_time stack of Oberon programs in order to

allow the implementation of trap handlers as meta_level programs.

TYPE

ActivationRider = RECORD (Rider)

module, proc: ARRAY 32 OF CHAR;

dlink, retpc, relpc: LONGINT

END ;

PROCEDURE OpenFrame (VAR R: ActivationRider; sp, pc: LONGINT);
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For setting up an activation rider with OpenFrame, the frame must be identified

by the pair (sp, pc) where sp means the stack pointer and pc means the value of

the program counter. The latter acts as a tag for the otherwise untagged

activation frame at sp and allows to recover the structure of the activation

frame. The values for sp and pc are supposed to be provided by an exception

handling mechanism, which − in the case of Oberon − is not part of the

language but provided in the form of library routines. Fields module and proc

return the module and procedure name of the identified procedure activation.

OpenFrame also sets fields retpc, relpc and dlink. retpc is the return address of

the procedure call, relpc is the program counter value relative to the beginning

of the module's code section, and dlink (dynamic link) is the stack pointer of

the calling procedure. Thus, OpenFrame(R, R.dlink, R.retpc) may be used to open

a rider on the calling procedure activation.

Zooming into Structured Components

Structured data types can be accessed via hierarchically refining (zooming) a

rider which is located on a structured component such as a record or an array.

Zooming into structured components may be done by calling the appropriate

Zoom procedure as specified below.

PROCEDURE ZoomRecord (VAR R: RecordRider; VAR base: Rider);

PROCEDURE ZoomArray (VAR R: ArrayRider; VAR base: Rider);

ZoomRecord opens a record rider on the current position of the base rider,

which may be any kind of rider with base.class = Record. Similarly, ZoomArray

opens an array rider on the current position of the base rider, which may be any

kind of rider with base.class IN {Array, DynArr}. (In principle, these three

procedures could have been introduced as type_bound procedures as well. As a

matter of taste, we tried to stay with normal procedures wherever possible.)

Textual Representation of Objects

The Oberon system provides a built_in abstract data type Text and access

mechanisms for reading and writing called Readers and Writers respectively.

Since texts play a central role in the Oberon system, we provide two general

purpose procedures for writing a variable starting at a rider's current location to

a text writer. In principle, these procedures could be implemented as regular

meta_level programs solely based on the previously introduced protocol.

PROCEDURE WriteObj (VAR W: Texts.Writer; VAR R: Rider; expand, indent: INTEGER);

PROCEDURE WriteItem (VAR W: Texts.Writer; VAR R: Rider);
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Procedure WriteObj may be used to map a variable starting at R's current

location until the end of the object to a textual representation by iterating over

all components of the variable. Every iteration step produces text of the form

"location = value", where procedure WriteItem is used to format the values of

simple data types including pointers and procedure variables. Structured

components (records, arrays) are represented by so_called folds, which are text

pieces embraced by special fold marks that can be interactively expanded and

collapsed when displayed in the standard Oberon text editor [Hau93]. The first

expand nesting levels are initially expanded, the others are collapsed in the

generated text. Each refinement of a structured component increases the

indentation level specified by indent. The indentation information is used to

indent the output by an appropriate amount of white space. Character arrays

are always represented as double quoted strings. Pointers and procedure

variables are represented by a special text element (RefElem) which prints either

as "NIL", as "↑" for pointers or as "@" for procedure variables. The purpose of

reference elements is not only to display pointer values (this could also be done

textually) but to establish a reference to an object that might otherwise be

unreferenced and thus become subject to garbage collection. Note that the

existence of a textual representation of a pointer does not imply the existence

of the pointer itself although the pointer existed at the time the textual

representation has been constructed. The reason is that eventually the rider will

not be accessible any more or it might have been set to another object. Thus,

the object which contains the pointer might become unreachable and thereby

any pointers anchored in this object would disappear although the textual

representation still exists. A typical place where this happens is the procedure

activation stack, which contains references into the heap but is destroyed after

the stack has been mapped into a textual representation and control is returned

to the Oberon main event loop.

Example:

In order to give the reader a feeling of how the introduced metaprogramming

protocol may be used, we present parts of the implementation of WriteItem and

WriteObj as an example. Examples for applications of WriteObj will be

presented in Chapter 6.

PROCEDURE WriteItem (VAR W: Texts.Writer; VAR R: Rider);

VAR si: SHORTINT; i: INTEGER; ... p: REFANY;

BEGIN

CASE R.class OF

| SInt: R.ReadSInt(si); Texts.WriteInt(W, si, 0)

| Int: R.ReadInt(i); Texts.WriteInt(W, i, 0)
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...

| Pointer: R.ReadPtr(p); Texts.WriteElem(W, reference element for p)

...

END

ENDWriteItem;

PROCEDURE WriteObj (VAR W: Texts.Writer; VAR R: Rider; expand, indent: INTEGER);

VAR R1: RecordRider; R2: ArrayRider; W2: Texts.Writer;

name, s: ARRAY 64 OF CHAR; vis: SHORTINT;

BEGIN

WHILE R.mode # None DO

R.GetLocation(name, vis);

WriteName(W, name, indent);

IF R.class < Array THEN WriteItem(W, R)

ELSIF R.class = Record THEN

ZoomRecord(R1, R);

Texts.WriteElem(W, opening fold element); Texts.OpenWriter(W2);

IF expand <= 0 THEN Texts.WriteLn(W2);

WriteObj(W2, R1, expand − 1, indent + 1); Indent(W2, indent)

ELSE Texts.WriteLn(W);

WriteObj(W, R1, expand − 1, indent + 1); Indent(W, indent)

END ;

insert contents of W2 into opening fold element;

Texts.WriteElem(W, closing fold element);

R.Skip

ELSIF R.class IN {Array, DynArr} THEN

ZoomArray(R2, R);

IF R2.class = Char THEN R.ReadString(s);

Texts.Write(W, 22X); Texts.WriteString(W, s); Texts.Write(W, 22X)

ELSE

...

END

END ;

Texts.WriteLn(W)

END

ENDWriteObj;

Generic Instantiation

Similar to module Types as described in Section 3, generic instantiation, i.e.

creation of objects where the type is given as a variable, is provided by

procedure New and the type of an arbitrary object may be examined by

function Type. Note that the apparent name conflict of using Type for two

different purposes (TYPE Type and PROCEDURE Type) is resolved by a proper

modularization (c.f. Section 4.3).
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PROCEDURE New (VAR o: REFANY; t: Type);

PROCEDURE Type (o: REFANY): Type;

The remaining functionality of type objects results directly from the library

mechanism. In particular, the exporting module can be accessed via the

inherited lib field, and the name of the type with GetName.

Example

Creation of a variable of type "M.T" may be done by the following sequence of

steps:

VAR mod: Module; ref: LONGINT; typ: Object; obj: REFANY;

BEGIN

mod := ThisMod("M");

mod.GetRef("T", ref);

mod.GetObj(ref, typ);

New(obj, typ(Modules.Type));

4.2.4 Active Procedures

Besides access to data structures, metaprograms need also be able to control

procedure activations by means of appropriate facilities. We shall introduce

these facilities by exploiting the idea of active procedure objects, which are

procedure objects that do have a message handler. Applications of the

introduced facilities range from generalized command interpreters over

customization and debugging tools (tracing, pre_ and post_condition checking)

to advanced concepts such as remote procedure calls.

Eval

As a first step towards meta_level facilities for controlling procedure activations,

we introduce procedure Eval, which takes two parameters, namely a procedure

object and a record that represents the parameters of a procedure activation.

For the latter, we introduce the abstract data type Parameters. Procedure Eval

provides a generic interface to invocation of Oberon procedures by evaluating

the given procedure P with the provided arguments par. A generalized

command interpreter may for example not only activate parameterless

procedures (as usual in standard Oberon systems) but also procedures with

parameters.
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TYPE

Parameters = RECORD END ;

ParamRider = RECORD (Rider) END;

PROCEDURE Eval (P: Procedure; VAR par: Parameters);

PROCEDURE GetParams (p: Procedure; VAR par: Parameters);

PROCEDURE OpenParams (VAR R: ParamRider; VAR par: Parameters);

Every procedure has its own parameter record with the procedure specific

parameters. The parameters can be read and written using generic access to

objects as discussed in the previous section. A special kind of rider (ParamRider)

is provided, which can be used to iterate over parameter blocks. A special

property of parameter riders is that they allow to Pass VAR_parameters by

reference. Procedure GetParams may be used to create a parameter record

corresponding to the parameters of a particular procedure. A rider on a

parameter record can be opened by calling procedure OpenParams. The typical

sequence of steps is to create a parameter block first, then to set up a

parameter rider, assign or pass the actual parameters and finally call Eval.

Chapter 6 presents as an example a generalized Oberon command interpreter

based on this protocol.

Procedure Handlers

As the second step towards controlling procedure activations, we introduce the

notion of active procedures. These are procedures which have a message handler

installed, i.e. which can react to messages sent to them (c.f. 4.2.1). We

postulate that calling an active procedure results in sending an appropriate

invocation message to this procedure object. Thus, by installing a message

handler in a procedure object, we get control over execution of this procedure

by reacting to invocation messages. This mechanism is supposed to be

transparent to the caller, i.e. it should not be necessary to recompile all

modules where an active procedure is called. Instead of, we provide procedure

InstallHandle to install a message handler in a procedure object and to maintain

internal data structures which are necessary for the implementation of this

facility.

TYPE

InvocationMsg = RECORD (ObjectMsg)

par: Parameters

END ;

PROCEDURE InstallHandle (p: Procedure; handle: Handler);
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The handler mechanism provides a generic interface for taking control over

procedure calls. To illustrate this, we introduce a simple procedure handler

which simulates the behavior of passive procedure objects by calling Eval as

response to an invocation message.

PROCEDURE PassiveHandle(P: Object; VAR M: ObjectMsg);

BEGIN

WITH P: Procedure DO

IF M IS InvocationMsg THEN Eval(P, M(InvocationMsg).par) END

END

END PassiveHandle;

By means of calling InstallHandle(P, PassiveHandle) for any procedure P, proce_

dure PassiveHandle acts as an interpreter for this procedure object independent

of its parameter list. Thus, PassiveHandle is really a generic interpreter for all

procedures. This genericity is gained by some loss of efficiency and convenience

since there is an implicit transformation of the actual parameters of a procedure

call into a message record and vice versa. Accessing parameters (if needed) can

not be done directly but only by using the rider mechanism. To trade some of

the overhead of message passing for reduced flexibility, we introduce a second

facility for controlling procedure activations called filters and let programmers

choose the flexibility they need.

Filters

For the case that a specific interpreter or one or more interpreter extensions for

a specific procedure are needed, we introduce the concept of filters. A filter is a

procedure which takes control over the activation of a specific kind of

procedure, viz. a procedure with exactly the same parameters as it has itself. A

filter procedure can access the parameters of a procedure call directly as its own

parameters rather than by applying the rider mechanism to a parameter record.

Fig. 4.7 shows a procedure P with three parameters x, y, z which has two

associated filter procedures F1 and F2. Calling P results in activating the

outermost filter F2 first, which might itself call P. This results in the activation of

the filter one level below − F1 in this case. IF F1 calls P, the body of P is

activated. Recursive calls of P at this point should result in activating the

outermost filter again. Thus, the filter chain is supposed to be cyclic in case of

recursion.
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Body of P

Filter F1(x, y, z)

Filter F2(x, y, z)

call P(x, y, z)

Fig. 4.7 − A Filter Chain

The concept of filters is introduced by means of the special procedure handler

FilterHandle, which allows to perform Push and Pop operations on this

procedure to install and deinstall filters in a stack_like fashion.

PROCEDURE FilterHandle (O: Object; VAR M: ObjectMsg);

PROCEDURE Push (P, Filter: Procedure);

PROCEDURE Pop (P: Procedure): Procedure;

For convenience reasons, we allow also to apply Push to passive procedure

objects (handle = NIL), in which case an implicit installation of FilterHandle is

performed. Symmetrically, we define that Pop resets a procedure object to

passive state if the filter chain eventually becomes empty.

The filter concept could in principle be implemented solely as a regular

meta_level program based on procedure handlers. But for simplifying the

implementation, it is advantageous to have it integrated in the core system.

To summarize, we would like to point out explicitly that using active

procedures should not be regarded as the regular programming style but should

be used for the sole purpose of dealing with procedure calls within meta_level

programs. In passing, we note that Oberon's modular structure naturally

supports restricting the usage of certain facilities. It is easily possible not to

provide the definition (symbol file) of the module which implements active

procedures to a novice programmer.
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4.3 Modularization

The presented metaprogramming protocol has not been implemented as one

unit but has been distributed into several modules by considering the natural

division of functionality and the levels of abstraction. The advantage of a proper

modularization is to make explicit in the import list of a module which kinds of

meta_level facilities are to be used and which are not.

Libraries

The basic library mechanism is implemented in module Libraries. For each

library subclass (e.g. Modules, Fonts) we introduced a separate module.

GenericObjects

Generic access to arbitrary data structures and generic instantiation are encap_

sulated in module GenericObjects.

ActiveProcedures

Module ActiveProcedures implements the facilities to deal with parameter lists,

procedure evaluation, procedure handlers and filters.

Figure 4.7 outlines the import relationships between the introduced modules

where an arrow from A to B means that B imports A. There are in fact more

imports, however, we focus on the most relevant ones to show the system's

overall structure.

GenericObjects

ActiveProcedures

Libraries

Modules Fonts MyLib

...

Fig. 4.8 − Modularization
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Comparison with Standard Oberon and Oberon System_3

In order to stress the difference between our approach and other Oberon

system architectures, Fig. 4.9 shows the subtyping relationships between impor_

tant system components. Standard Oberon as described in [WG92] introduces

no subtyping relations between Modules, Fonts or other libraries such as macro

libraries for the Draw package. Oberon System_3 introduced a dual system

architecture consisting of modules on the one side and libraries on the other

side. All kinds of persistent object collections are defined as subtypes of

Libraries. Our approach integrates also modules into the library framework.

Modules

Fonts

MyLib Modules Libraries

Modules Fonts MyLib

Standard Oberon Oberon System_3 Our Approach

Libraries

MyLibFonts

Fig. 4.9 − Architecture Comparison

This concludes the definition of our meta_level architecture for Oberon. The

next chapter will focus on implementation aspects.
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This chapter describes implementation aspects of the introduced meta_level

architecture. We try to follow the same order as used for the definition of the

metaprogramming protocol. Therefore, we start with the basic library

mechanism. After that, the implementation of two special kinds of libraries

(Modules and Fonts) will be discussed. Special emphasis is put on module

loading and unloading as well as on garbage collection issues. Subsequently,

the implementation of generic access to objects and the implementation of

active procedures is discussed. Most implementation aspects in this chapter are

independent from the underlying hardware or operating system platform, those

which are not refer to the Oberon implementation for SPARC−based

workstations [Te91] and are marked as Note.

5.1 The Library Mechanism

Libraries play multiple roles in the presented meta_level architecture. These

different roles impose different requirements and challenges on the implemen_

tation of the library mechanism. In particular, the library mechanism provides a

way for system extension, a means for shrinking the system and libraries

represent the state of the system and by that they are the roots for garbage

collection. In the following, we shall discuss the various roles and associated

implementation problems in detail.

5.1.1 A Framework for Library Loading

First of all, libraries serve as units of system extension. The set of accessible

libraries, which constitutes the state of the system, may be extended at

run_time. The task of the library loading mechanism is to internalize libraries

and to resolve references to other libraries (imports). Since libraries are an

abstract class which can be specialized to modules, fonts and the like, we can

only provide a framework for library loading. The specialized classes participate

in the loading process via upcalls.

Although library loading seems to be a straight_forward recursive process, it
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is surprisingly intricate. This can be seen by the fact that in the existing Oberon

implementations many different solutions for module loaders exist, none of

them satisfies all expectations, though. It is not difficult to implement a loader

which works well for the common cases, however, in the presence of library

initialization routines (e.g. module bodies) there are situations which are likely

to leave the system in an inconsistent state. By inconsistent state we mean that

the main invariants for libraries as described in Section 4.2.1 (uniqueness,

completeness, consistency) are not established after the loader returns control.

There are two problematic situations, cyclic loads and abnormal termination,

which are both possible due to the existence of arbitrary initialization routines.

We shall study these problems by taking a closer look at the special case of

module loading. The reader might keep in mind that module loading is just an

instance of the general problem of library loading.

Cyclic Loads

The library import graph is defined to be a directed acyclic graph (DAG), i.e.

cyclic imports are not allowed. However, if the loader can be invoked directly

for instance within a module's body, arbitrary libraries may be loaded, including

clients of the initializing module or even this very module itself. The following

example outlines the situation where the library loader is invoked explicitly

within the body of M1, which expresses a reflective computation in which M1

accesses itself.

MODULE M1;

IMPORT Libraries;

VAR L: Libraries.Library;

BEGIN

L := Libraries.This("M1")

END M1.

In order to distinguish such situations from cyclic imports we call them cyclic

loads. Note that cyclic loads are not restricted to single module cycles but may

include multiple modules as well.

One might argue that a cyclic load within a single module is a

programming error and has not to be considered by the loader. Anyway, this

would not really solve the problem and it is hard to predict that there will never

be a useful application of it (cf. Section 5.1.2). Furthermore, single module

cycles are the simplest among the problematic situations and they are handled

gracefully in most existing Oberon loaders.

More subtle problems arise if several modules participate in a load cycle as

shown in the next example.
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MODULE M1;

IMPORT M2;

END M1.

MODULE M2;

IMPORT Libraries;

VAR L: Libraries.Library;

BEGIN

L := Libraries.This("M1")

END M2.

In existing Oberon loaders, it is likely to happen that two modules named M1

will be inserted into the list of loaded modules or that the system crashes. In

some loaders, the result depends on whether M1 or M2 is to be loaded first.

Fig. 5.1 summarizes the mentioned single_ and multi_module load cycles.

M1 M2

M1

explicit load

M1 imports M2

start loading at

M2

M1

Fig. 5.1 − Cyclic loads

In realistic examples, there are usually more modules involved, several of them

may form a cycle. Such situations are not very common but they do appear in

practice. An example can be found in the boot process of the Oberon system,

where module Oberon explicitly loads module System, which in turn imports

module Oberon. Other examples occur whenever a program (e.g. Oberon's Edit

package) tries to load optional extensions.

Exceptions

Another problem is the correct treatment of abnormal termination of a library's

initialization routine by a run_time error, a user interrupt, or a HALT statement.

The interested reader may check the nofClients count of module M2 in his/her

favorite Oberon loader after trying to import module M1 of the following

example (it is likely to be one although no client of M2 can be loaded).

MODULE M1;

IMPORT M2, M3;

END M1.
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MODULE M2;

END M2.

MODULE M3;

BEGIN HALT(99)

END M3.

Since libraries are vital system resources, we expect the loading mechanism to

guarantee the main invariants for all situations, i.e. even for the examples

presented above. If the library mechanism is to be extensible, we have of course

to rely on the correctness of the specialized libraries but given a correct

implementation of all library classes, it should not be possible to produce an

inconsistency simply by using the mechanism.

It is well_known that by means of a tricky sequence of compilation and

editing steps cyclic imports can be constructed which cannot be detected by an

Oberon compiler. In contrast to cyclic loads, we do consider this a

programming error. In our opinion, an endless recursion, which leads to a

stack_overflow or out_of_memory exception, is an acceptable implementation of

this pathological case.

Possible library loading mechanisms can be classified into iterative and

recursive strategies. Recursive strategies can be further divided into pre_ and

post_order approaches (in_order does not make sense here). We have come to

the conclusion that a recursive post_order strategy is the ideal solution for our

library loading framework. The following sections describe the advantages and

disadvantages of the different approaches.

Iterative Approach

[Szy92] describes an iterative module loader which guarantees consistency in

all cases. The central idea is to maintain three disjoint sets of modules (load,

init, ready) in order to handle cyclic loads and to be able to resume loading

after a module initialization has trapped. The load_set contains all modules

which have to be loaded, the init_set contains all completely loaded modules

which have to be initialized, and the ready set contains the set of accessible

modules. During a module's life time in internal memory, it travels from the

load_set to the init_set and then to the ready_set. In case of a trap in a module

body, the init and load sets have to be cleared by an exception handler. The

described algorithm guarantees uniqueness, completeness, and correct client

counts. However, it is fairly complex and it is difficult to verify that it is correct.

This can be seen by the fact that two errors have been found in an earlier

version of the iterative loader despite extensive testing, using, and reasoning.

One of the errors could have been fixed locally, the other one uncovered a
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contradiction in the specification of the loader. The correction required

substantial changes in the loader's specification and implementation. Without

going into details, the essence is that an iterative approach does not simplify

the loading process.

Some of the introduced complexity arises from the fact that the import

graph is flattened by the described approach. This destroys information (e.g.

initialization order) which is necessary and needs to be recomputed afterwards.

The optimal solution would be a recursive loader which can also handle

problematic situations gracefully. In contrast to [Szy92] we claim that such a

loader is possible without giving up the elegance of the recursive approach.

Pre_order Traversal

Pre_order traversal means to make a client library accessible before all of the

imported libraries are loaded. Obviously, this technique removes problems with

load cycles in an elegant way and has been used in the original Oberon

implementation. The problem with this approach is that the completeness

property is violated as long as not all imports are resolved. If an initialization

routine traps or if a cyclic load occurs, there may be accessible modules which

are not initialized or whose imports are not completely resolved. To fix the

problem, one has to introduce additional state information for each library. This

information must describe the set of unresolved imports. Thus, when accessing

a library, the existence of unresolved imports can be detected and the missing

libraries can be loaded silently. Initialization of the library has also to be

performed if the set of unresolved imports becomes empty.

The required additional state for expressing the set of unresolved imports

and the necessary checks for finding incomplete libraries are the most

important drawbacks of this approach. Furthermore, it is unsatisfying that

inconsistency is introduced and eliminated later on instead of being avoided at

all.

Post_order Traversal

Post_order traversal means to make a client library accessible only after all of its

imports have been loaded. This automatically guarantees completeness. It

needs, however, special attention for the case of load cycles in order to

guarantee also uniqueness. Note that termination is not a problem since load

cycles always involve at least one module which is already loaded (and

initialized) and therefore breaks the cycle. A module loader following the

post_order approach but ignoring the problems with cyclic loads and

exceptions has been described in [WG92]. Fig. 5.2 outlines the situation of a

load cycle consisting of two modules.
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accessible

anonymous

M1

M2

M1

Fig. 5.2 − Post_order traversal of a load cycle between two modules

Suppose that loading starts with module M1, which imports module M2. Due

to the post_order strategy, M1 is not accessible by name as long as M2 is not

loaded and initialized. M2 in turn accesses explicitly module M1 which will be

loaded despite the fact that it is already in the process of being loaded. The

recursive activation of the loader can produce as a side effect an accessible

library in addition to an anonymous one. Thus, in order to guarantee

uniqueness, it is necessary to check for the existence of a library before

inserting a new element into the set of accessible libraries. Note that this guard

is not only necessary but also sufficient for the uniqueness property. The reason

is that there is only one place where libraries are added into the library set, this

place is guarded and there are no side effects between the guard and the actual

insertion which might affect the library set.

We can now outline a framework for library loading based on a recursive

approach using post_order traversal.

PROCEDURE This (name: ARRAY OF CHAR): Library;

VAR lib, h: Library; this: ThisProc;

BEGIN Lookup(name, lib);

IF lib = NIL THEN

get library generator(name, this)

IF this # NIL THEN

lib := this(name);

IF (lib # NIL) & (lib.name = "") THEN

Lookup(name, h);

IF h # NIL THEN lib := h

ELSE Publish(lib, name);

IF lib.init # NIL THEN lib.init(lib); res := Done END

END

END

ELSE res := TypeNotFound

END

ELSE res := Done

END ;

RETURN lib

END This;
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Accessing a library starts with checking if the mentioned library is already

accessible (Lookup). If not, the generator of the library, i.e. the this_procedure

installed for the particular library name extension (cf. Section 4.2.1), must be

searched. If found, it will be called and is expected to load and return a library

or NIL. In addition, this sets the result variable res to Done or to an appropriate

error code. A library generator may return both accessible and anonymous

libraries, the latter is the regular case, though. An accessible library may be

returned in case of a cyclic load or in case that one library is substituted for

another library. An example is font substitution in case a font library is not

found. If the generator returns an anonymous library, a second Lookup is

performed to guarantee uniqueness after inserting a new element into the set of

accessible libraries. Recall that a library might have been inserted into the set of

accessible libraries as a side effect of this. Insertion into the set of accessible

libraries is done by the auxiliary procedure Publish. Lookup and Publish must be

performed atomically, i.e. they must either be performed as a whole or not at

all. This can be achieved by disabling interrupts (esp. keyboard interrupts) but is

highly platform specific and therefore not discussed here. After initialization of

the newly loaded library, the (global) result code is reset to Done in order to

avoid propagation of error messages across library initializations.

VAR libs: Library;

PROCEDURE Publish(L: Library; name: ARRAY OF CHAR);

VAR imp: Library; i: INTEGER;

BEGIN

COPY(name, L.name);

L.nofClients := 0;

L.next := libs; libs := L;

FOR i := 0 TO L.nofImports _ 1 DO

L.GetImport(i, imp);

INC(imp.nofClients)

END

END Publish;

The set of accessible libraries is represented as a sequentially linked list

anchored in the global variable libs. The post_order traversal has the nice effect

that by simply inserting new libraries at the beginning of the library list, the list

is topologically sorted, i.e. a library is always in front of all of its imported

libraries.

Note that neither the name of a library nor the nofClients count are allowed

to be modified outside the library loading framework. To guarantee this restric_

tion, we use Oberon_2 read_only exports for the name and nofClients fields.
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Correct treatment of reference counts for libraries is guaranteed in the

proposed solution by delaying the increment of an imported library's reference

count until the client is inserted into the library set. Thus, if an initialization

routine of one of the imported libraries traps, the reference counts of all other

imported libraries are not changed.

The reader might miss a recursive invocation of the loader within the library

loading framework. Actually, recursion does not appear directly but indirectly. If

a library is loaded, the library generator may invoke the generic This_procedure

recursively in order to load imported libraries.

Example

To illustrate the mechanism, we show the main steps for loading a

configuration consisting of modules M1 and M2 which form a two_module

load cycle (cf. Fig. 5.1). We assume that we start loading with module M1.

This("M1") library loader

m1 := thismod("M1") module loader

import := This("M2") resolve imports

m2 := thismod("M2")

Publish(m2, "M2")

m2.init body of M2 loads M1

L := This("M1")

m1:= thismod("M1")

import := This("M2") M2 is published

Publish(m1, "M1")

m1.init

RETURN m1

RETURN m2

Lookup("M1", m1) avoid a second instance of M1

RETURN m1m1.name = "M1"

RETURN m1

Summary

The proposed framework for library loading is based on a variant of the

recursive post_order traversal described in [WG92]. The differences are that it is

extensible and it guarantees all three main invariants even in problematic

situations. Completeness is guaranteed by using a post_order traversal, Uniqueness

is guaranteed by checking the library set before inserting a new node and

Consistency is guaranteed by incrementing the number of clients counts only

when a client is actually inserted into the library list.
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5.1.2 Library Unloading

Symmetrically to the task of system extension, libraries serve also as units of

unloading. From a library mechanism we expect the same robustness in case of

reducing the system as for extending it. However, as described in Section 3.3.2,

safely unloading a module, which in our architecture is a specialized library, is

an unsolved problem in all existing Oberon implemen_ tations. In the following,

we try to present a possible solution by taking a closer look at the specification

of the problem. We discuss advantages and disadvan_ tages of several

implementation strategies according to the traditional specification. Again,

since module and library unloading are so closely related, we cannot always

distinguish between the two problems.

Traditional Specification

Modules.Free(m) unloads module m if it is not imported by other modules.

The intention behind this specification is that the freed module is physically

unloaded, i.e. the associated storage is disposed by calling Modules.Free.

Unfortunately, a module which is not imported by other modules may still be

referenced via procedure variables, Oberon_2 method tables (allocated within

type descriptors) or module pointers. In order to cope with the introduced

dangling references, a number of possibilities exist:

7 Unload modules by unmapping them from virtual memory. This technique uses a

memory management unit (MMU) for making an unloaded module

inaccessible. The virtual memory address space assigned to a module is

unmapped and never reused as long as the system is not rebooted. By means of

the MMU, however, physical memory will be reused. At run_time, access to

dangling references can be trapped by the memory management hardware

without any run_time penalty to legal memory references.

The disadvantages of this technique are that hardware support is required

and that virtual memory will eventually get exhausted, although very slowly.

Moreover, there is the problem that unexpected run_time errors may occur. The

problem with these traps is that they may force the user to reboot the system

unintentionally. Consider for example the case where an open viewer contains a

dangling reference because the module which implements the contents frame

has been unloaded. Closing the viewer results in a message sent to the

contents frame which in turn causes a trap. The viewer cannot be resized or

closed from that time on. Thus, rebooting the system is the only way to get rid

of the viewer. Such situations happen quite often during the development stage
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of a program, especially because in a system which is based on garbage

collection the user (=programmer) does not pay any attention to dangling

references. Closing a viewer followed by unloading a module is expected to be

the same as unloading a module followed by closing a viewer.

7 Use indirection for external calls. This technique uses an additional indirection

for external procedure calls via a so_called link table. Freeing a module is

coupled with disposing the module space and resetting the link table to

dummy entries which, when invoked, result in a run_time error. The link table

itself is never reused.

The disadvantages of this solution are that it slows down external

procedure calls, it needs a distinction between external and internal procedure

calls in the compiler, it will not catch dangling module pointers and memory

will also get exhausted although much slower. The problem with run_time

errors remains the same as with the unmapping strategy.

7 Never dispose modules. This strategy makes a module only inaccessible, but

does not dispose memory (although this is not the intention of the

specification). The advantage is that it neither requires an MMU nor indirect

external calls, and it also avoids run_time errors.

The obvious disadvantage of this approach is that it requires a large

physical memory in order to be practical. The approach is also appropriate for

systems with virtual memory and demand paging (Unix) where unloaded

modules are simply swapped out by the operating system if physical memory is

needed for other purposes. In any case, memory will eventually get exhausted,

although the paging device is normally significantly larger than the physical

memory. A less obvious but more severe problem is that there is a memory leak

if the garbage collector does not regard all unloaded modules as roots for

accessible heap objects. The reason is that calling a procedure of an unloaded

module might access global pointer variables of this module which point to a

reclaimed heap block. If the garbage collector takes also unloaded modules as

roots, data structures rooted in unloaded modules including those which are

unreachable will never be released. If all global pointers are set to NIL when

unloading a module, run_time errors may occur as in the previously discussed

approaches, although less frequently since references to procedures of

unloaded modules are legal now.

7 Check for references before unload. This approach has (to the best of our

knowledge) not been implemented so far, but it has been proposed by several

people. The idea is to check for references to a module before unloading it.
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Only if there are no references, the module is allowed to be unloaded otherwise

unloading results in an error message.

Although the proposal seems to be appealing at a first glance, there are

several problems with it. First, it needs more run_time type information than

available in current Oberon implementations. In particular, it needs to know

where procedure variables are located in memory. Second, if a module is

referenced via a variable which is not under explicit control by the user,

unloading is impossible and the user normally does not know why. Even if the

system reports where a reference is anchored in, the user can normally not

change it. Third, if a group of modules is to be unloaded and there exist

references only within this group, unloading should be possible. This would

further increase the complexity of this approach.

Weakened Specification

Modules.Free(m) removes module m from the set of accessible modules if it is

not imported by other modules.

This specification allows to separate the task of making a module inaccessible

from the task of physically unloading it. The former is done by Free, the latter

can be delegated to the garbage collector. The specification further allows

several generations of modules to coexist in memory. At most one is accessible

by name, though.

Obviously, the weakened specification can be generalized to libraries

without any problems. One has simply to replace the word module by library. A

solution where library disposing is delegated to the garbage collector imposes

two new requirements on the collector:

7 Procedure variables must be treated like pointers. This implies that procedures

which might be assigned to a procedure variable must carry a type tag. In our

architecture this is the case since procedures are treated as objects anyway. Fig.

5.3 outlines the representation of procedure objects.

type tag

code

procedure descriptorprocedure object
procedure variable

Fig. 5.3 − Procedure variables treated as pointers
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Note: Care has to be taken if a procedure variable points to a procedure outside the

Oberon system, e.g. a procedure of the underlying operating system as it is sometimes

the case in SPARC_Oberon. In this case, the compiler needs a hint that the variable is

to be ignored by the garbage collector. We employed the sysflag mechanism of the

OP2 compiler [Cre90] to signal untraced procedure variables (e.g. VAR setjump:

PROCEDURE [1] (env: TrapEnv)).

7 Type tags must be treated like pointers. This is also done easily (at least

conceptually) since type tags are pointers to type descriptors and type

descriptors in our architecture are first_class objects.

Note: There is a subtle problem involved if mark/sweep garbage collection is used and

the type tag of an object is not treated as a normal pointer by the marking algorithm.

This is for instance the case if the marking technique proposed in [GPHT91] is used.

This technique avoids any restriction in the number of pointers per object by not

treating type tags as regular pointers but by using them essentially as counters which

span the whole address space.

Type descriptors contain exactly one interesting reference, the lib field pointing to

the exporting module. If this module is accessible (lib.name # ""), it will be marked

anyway. Only if it is anonymous, marking must be done explicitly for this module.

Therefore, we have to invoke the Mark procedure recursively in order to mark

anonymous modules referenced within type descriptors. The recursive invocation of

Mark, which is an iterative process otherwise, is justified here since the recursion

depth is limited by the (small) number of anonymous modules and not by the

number of reachable heap objects.

A particular problem in the context of the Oberon tasking system is unloading

of a module which implements an installed task. A task in Oberon is an object

with an associated procedure, which gets activated periodically. Without any

provisions, the task would continue to run and the module continue to be

reachable via the global list of installed tasks until the task is removed. But how

can it be removed? If the module exports a command to deinstall the task, this

would not help since the module (and the command) is no longer accessible.

The solution is to use the library finalization mechanism for such cases. A

module might install a finalization routine which is up_called within Free after

the module has been made inaccessible. (Installing a finalization routine is an

example for a reflective computation which produces a single module load

cycle as described in Section 5.1.1).

MODULE TaskMod;

PROCEDURE TaskHandle ...

PROCEDURE StopTask ...

...
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BEGIN

L := Libraries.This("TaskMod");

L.fini := StopTask;

END TaskMod.

A simple framework for library unloading can now be outlined. It is represented

by procedure Free, which takes a library as parameter. We call this procedure a

framework because it contains upcalls of methods and of the finalization

routine. The second parameter of standard Oberon Free (the all parameter) has

been left out because unloading of imported libraries can be expressed in terms

of recursively calling Free with the knowledge of nofImports and GetImport.

Modifications of the library set should be done atomically, i.e. interrupts should

be disabled. In practice, however, this is not necessary since Free is so fast that

a user interrupt via keyboard is almost impossible.

PROCEDURE Free* (L: Library);

VAR imp: Library; i: INTEGER;

BEGIN

IF L.name # "" THEN

IF lib.nofClients = 0 THEN

lib.name := "";

FOR i := 0 TO lib.nofImports − 1 DO

lib.GetImport(i, imp); DEC(imp.nofClients)

END

IF lib.fini # NIL THEN lib.fini(lib) END ;

res := Done

ELSE res := ClientsExist

END

ELSE res := Done

END

END Free;

After a library has been freed, it remains in memory until the garbage collector

detects that it is not reachable any longer and can be reclaimed safely. It is the

task of the garbage collector to remove an unreachable and anonymous (name

= "") library node from the list of loaded modules. The details about garbage

collection of libraries in general and modules in particular will be discussed in

sections 5.1.3 and 5.3.5 respectively.

Summary

The proposed strategy for unloading libraries separates the task of making a

library inaccessible and the task of physically unloading the library. Physical

unloading is delegated to the garbage collector, which avoids the need for a
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memory management unit, avoids run_time errors, and avoids wasting of

memory. We claim that the proposed solution fits naturally into an operating

environment based on garbage collection.

5.1.3 Libraries as Roots for Garbage Collection

The accessible libraries represent the state of the system and are therefore the

principal roots for garbage collection. If garbage collection is performed

between commands (synchronous collection) we can rely on the fact that no

objects are rooted on the procedure activation stack whereas if garbage

collection is performed during command execution (asynchronous collection)

we have also to take into account that objects may be anchored in the stack.

Considering a traditional mark_and_sweep collector, libraries impose no

fundamentally new kind of problem. However, if libraries are supposed to

contain a large number of objects, this raises the problem of how to tune the

heap manager and the garbage collector such that annoying garbage collection

pauses are avoided. This section focuses on exactly this problem. It is assumed

that the reader is familiar with basic garbage collection techniques especially

with mark/sweep collection ([Wil92] gives an excellent overview of state_of_the_

art garbage collection techniques in uni_processor systems).

Tuning Strategy

Garbage collection pauses might result from both the mark and the sweep

phase. The efficiency of the mark phase depends on the number of reachable

objects and the number of references within each object. The efficiency of the

sweep phase depends on the number of both reachable and unreachable

objects. Therefore, we have to aim for reducing the number of objects which

are touched during both garbage collection phases. The biggest advantage can

be expected by reducing the number of reachable objects, since both phases

depend on them. If a library contains many objects, we must take care that not

every single object is regarded as a root for the reachability analysis whenever

this is possible.

Subobjects

In order to reduce the number of individual objects on the heap, we can

introduce a sort of hierarchical heap and think of a library as being one big

memory block (a compound object) which contains an arbitrary number of

components. The idea is to allocate and deallocate compound objects as a

whole rather than as many individual parts. If a component does not have
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references pointing outside the set of objects which are reachable from its

container, we call it a subobject (see Fig. 5.4). Subobjects need not be regarded

as roots for the mark phase, since they don't introduce any references that

might affect the result of the reachability analysis. Examples for subobjects are

character objects collected in fonts. A character typically has a reference to a

data structure which describes its raster image but this pattern object is also a

component of the font. Other examples are type and procedure objects

exported by a module. Fig. 5.4 shows a compound object with three

subobjects.

Compound Object C

Subobjects

Closure of C

Fig. 5.4 − Subobjects

[Szy92] describes a technique which supports a simplified form of subobjects

within a mark/sweep garbage collector by specially marking compound objects

and distinguishing between atomic and compound objects during the mark

phase. The introduced simplification is that a compound object must be leaf,

i.e. it must not contain references to other objects. The reason for this

restriction is that a subobject is never marked itself but marking is propagated

to the encapsulating compound object. In order to keep the marking algorithm

simple and iterative, the leaf restriction had to be introduced. Subobjects must

have a back pointer to their container in order to enable propagation of

marking.

The consequence and advantage of this approach is that subobjects need

not be unmarked in the sweep_phase since they are not marked in the

mark_phase. Thus, the goal of reducing the number of objects touched in both
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phases has been achieved.

The most striking disadvantage of this solution is the restriction of

compound objects to be leaf, which precludes its usage for libraries. Recall that

libraries in general do have references to other objects, e.g. to imported libraries.

Another disadvantage is that during the mark phase an additional test has to be

performed for every pointer. The detection of subobjects is done by testing an

implicit flag expressed by a certain alignment of objects, which introduces

some storage overhead. Thus, there is a certain run_time and storage overhead

which exists even if subobjects are not used at all.

In contrast to this approach, we tried to trade the leaf restriction for another

one and to move any overhead from the garbage collector to the place where

subobjects are actually used. The technique outlined below shares with [Szy92]

the unpleasant property that it is not implementable within the safe subset of

Oberon, i.e. library implementations which want to take advantage of

subobjects have to import the pseudo module SYSTEM.

Libraries as compound objects

The main idea is to restrict compound objects to libraries in contrast to

restricting them to be leaf. The implication of the new restriction is that

marking of subobjects need not be propagated to their parent objects since

(accessible) libraries are marked anyway. Thereby, we can avoid any

complication in the marking algorithm. Subobjects can be marked exactly like

other objects. The only difference is that subobjects will not and need not be

unmarked in the sweep phase. Only after unloading a library, an exact

reachability analysis of compound objects and their components has to be

performed (see below). This is, however, expected to be the exceptional case

and can therefore be accepted.

Since subobjects may remain marked after garbage collection, we need to

treat them as possibly marked whenever their type tag is used (because the type

tag is the place used in SPARC_Oberon and other Oberon implementations to

store the mark bit). When using the type tag (e.g for type tests or type guards),

the mark bit must be masked out before dereferencing the tag. On modern

processors this additional operation requires at most one machine cycle. Of

course, this requires a cooperating compiler, which has to insert the mask

instruction whenever we specify an appropriate hint for a record type. The

necessity of this hint is an unpleasant property of the introduced optimization.

Furthermore, due to polymorphism in Oberon the hint must be provided for the

very base type of possibly marked records. In particular, we have to provide this

hint for the base type ObjectDesc in order to allow optimized handling of

libraries. Fortunately, the hint has no damaging effect on unoptimized libraries,



81Implementation

since masking an unset bit is idempotent. The hint is also completely invisible

to users of libraries and to implementors of unoptimized libraries.

Unmarking Subobjects

In order to eventually provide for correct physical unloading of anonymous

libraries, we must detect when a library is not reachable any more. For this

purpose we have to unmark all subobjects of anonymous libraries before every

garbage collection. A library is unreachable if it is anonymous and it is not

reachable itself and none of its subobjects is reachable. Reachability of a library

via one of its subobjects is implicitly tested by requiring that every subobject

has a back pointer to its parent object. The consequence is that whenever a

subobject gets marked, the corresponding parent object gets also marked. The

only important point is that for an exact reachability analysis all subobjects

must be unmarked before marking. We introduce method Unmark for exactly

this purpose. In order to provide greater flexibility, we introduce a way to

handle also components which violate the subobject property of having only

references to objects which are reachable from the containing library. Those

objects must be unmarked before every garbage collection regardless whether

the library is anonymous or not. The all parameter specifies whether all

components or only the non_proper subobjects should be unmarked (an

example for a non_proper subobject will be seen in Section 5.3.2).

PROCEDURE (L: Library) Unmark (all: BOOLEAN);

Method Unmark is not abstract but implemented as the empty procedure in

order to provide a suitable standard behavior for non_optimized libraries. Note

that the existence of procedure Unmark is not in contradiction with our goal of

tuning libraries with a large number of subobjects. Unmark(FALSE) affects only

the exceptional case of non_proper subobjects, and Unmark(TRUE) is called

only for the exceptional case of freed libraries. Experiments have shown that on

a 20 MHz SPARCstation 1, 5000 heap objects already produce noticeable

garbage collection pauses. This number of objects would result for instance by

loading 10 fonts with 256 character and 256 pattern objects if fonts were not

optimized (see Section 5.4 for more details about fonts).

Implementors of optimized libraries must be careful when overriding

method Unmark. They must be aware of the fact that it is called as part of

garbage collection and must therefore neither use nor affect the state of the

heap except for clearing the mark bits of subobjects.
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Out_Of_Heap Libraries

The last problem which we have to mention before we can present the

structure of the garbage collector is the need to handle both libraries allocated

on the Oberon heap and libraries allocated outside this heap. The latter is

intended to be used especially for modules. The advantage of allocating module

space outside the Oberon heap is that it avoids the restriction of a module's

size (incl. global data) to the size of the heap and it helps also in reducing heap

fragmentation. Libraries allocated outside the heap must be unmarked explicitly

since the regular scan phase will not meet them.

The Garbage Collector

We are now ready to outline the overall structure of the garbage collector.

PROCEDURE GC(markStack: BOOLEAN);

VAR L: Library;

BEGIN L := libs;

WHILE L # NIL DO L.Unmark(L.name = ""); L := L.next END ;

L := libs;

WHILE L # NIL DO

IF L.name # "" THEN Mark(L) END ;

L := L.next

END ;

IF markStack THEN MarkStack END ;

SweepLibs;

Sweep

END GC;

Procedure Mark(p) marks all objects reachable from p including p itself. We

shall not discuss Mark/Sweep in more detail here nor shall we discuss the

conservative stack garbage collection represented by procedure MarkStack since

both are standard techniques implemented in most existing Oberon implemen_

tations. The interested reader is referred to [GPHT91] and [Szy92].

Before Sweep, we have to unlink unmarked anonymous libraries and to

dispose unmarked out_of_heap libraries. This is done in procedure SweepLibs. It

is important to call SweepLibs before Sweep because the latter destroys the mark

information which is needed by the former. The criterion used for the

out_of_heap property is simply the address of the library, which can be compared

with the address range of the heap.
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PROCEDURE SweepLibs;

VAR L, prev, next: Library;

BEGIN L := libs; prev := NIL;

WHILE L # NIL DO

next := L.next;

IF (L.name = "") & ˜marked(L) THEN

IF L = libs THEN libs := next ELSE prev.next := next END ;

IF out_of_heap(L) THEN dispose(L) END ;

L := prev

ELSIF out_of_heap(L) THEN unmark(L)

END ;

prev := L; L := next

END

END SweepLibs;

Summary

The presented approach for handling bulky libraries is based on the technique

of subobjects. It avoids any overhead in case subobjects are not used. There is

only a small overhead when accessing the type tag of a subobject. Due to the

escape to unsafe SYSTEM level features and the required compiler support, the

tuning strategy is still not fully satisfying but works well in practice. More

involved garbage collection techniques such as generational collection [Ung84]

would solve the problem of large libraries in a conceptually cleaner way but at

the same time it would introduce significantly more complexity into the system.

Pointer assignments would have to be trapped by memory management hard_

ware or by additional conditional statements. Stop_and_copy generational

collection (the usual way) would also prohibit a conservative approach to stack

collection. We think that this additional complexity is not justified.

5.2 Object Finalization

Objects which represent external resources such as disk files, processes, or

network connections need to be notified upon deallocation in order to

synchronize with their associated external resource. Typical examples are file

objects, which can release their associated disk sectors when not accessible any

more. Since the kinds of limited external resources are not known in advance,

we cannot hard_code them in the garbage collector. What we need is an

extensible mechanism to deal with such situations. A solution to this problem

is object finalization. This means that an arbitrary procedure can be registered for

an object which is to be finalized. Before reclaiming the object, the registered

procedure is called in order to perform object specific finalization operations. It
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should be noted that finalization is not a problem which comes up when

implementing an operating environment such as Oberon on another one such

as Unix but is a problem which is inherent in every garbage_collection based

system which deals with the world outside the main memory. [Szy92] describes

the problem of finalization in more detail and presents a safe finalization

technique. A less involved technique is used in most existing Oberon

implementations. We shall shortly outline both of them. After that, we shall

combine the advantages of both to create a new finalization mechanism.

To avoid a possible confusion, we would like to point out that object

finalization is completely independent from library finalization. Object

finalization is a garbage collection issue, library finalization happens when

freeing a library, i.e. before the garbage collector gets into effect.

Safe Finalization

[Szy92] describes a technique for object finalization which is claimed to be safe

in two respects. One is the absence of dangling pointers, the other is that

finalized objects are not reachable from any garbage collection roots (externally

unreachable) and not reachable from other finalizable objects (internally

unreachable). A finalizable object is an object which has been registered for

finalization and is not externally reachable. In other words, besides the absence

of memory inconsistencies, this technique claims to guarantee that an object

which has been finalized will never be used later on, not even from other

finalizing objects.

The proposed solution is based on additional reachability tests between

finalizable objects after the mark phase of a mark/sweep garbage collector. It

uses additional marking colors to perform these tests by means of a specialized

variant of the mark phase. The algorithm essentially enumerates all acyclic

paths starting at finalization candidates (red) in a directed graph whose nodes

are the unmarked objects (grey or white) reachable from finalization candidates

and the edges are the pointers between these objects. A subtle point is that

references to a finalizable object o which stem from a cycle starting at o and

references which originate in another finalizable object have to be distinguished

(see Fig. 5.5). The former can be ignored, the latter establish internal reachability

and prohibit finalization of o. Any finalization candidate which stays red gets

finalized after the sweep phase.
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garbage collection roots

externally reachable (black)

internally reachable (grey)

finalization candidates (red)

unreachable (white)

causes a red object

to become black

Fig. 5.5 − Safe Finalization

We would like to point out that a finalized object may always establish

global reachability of itself during finalization, e.g. by assigning a reference to

itself to a global variable. Thus, any particular finalization order cannot

guarantee unreachability for finalized objects. Other drawbacks of this approach

are that the specific finalization order leads to problems if cyclic references

between finalizable objects exist. Actually, the finalization strategy inhibits

finalization and storage reclamation in this case. Another problem is that the

presented solution is rather complex. The specialized mark phase essentially

doubles the static complexity of the collector and the dynamic worst_case

behavior is exponential! Another minor disadvantage is that the technique can

only be used for objects derived from a given base type because it uses

additional state information per finalizable object.

Sweepers

A simple yet extensible technique for object finalization has been introduced in

many Oberon implementations by providing a way to install additional

procedures which extend the sweep phase of the garbage collector. These

installable sweep procedures are called sweepers. A sweeper may test the mark

bit of an object associated with a particular external resource to perform some

additional sweep operation such as deallocating disk sectors or closing network

connections if the object is unmarked. The advantage of this technique is that it

avoids any additional static and dynamic complexity. Even if it is heavily used, it

is very efficient.

The most striking disadvantage of this technique is that it is not safe and it

relies on internal details of the run_time system such as the mark bit and the

fact that mark/sweep collection is used. The technique is unsafe because
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sweepers are called between the mark and the sweep phase in order to have

the mark information available. Allocating new objects or usage of type tags at

this point will result in heap havoc.

Combining the Advantages

Since both techniques have disadvantages, we have to look at the specification

of the problem more thoroughly in order to find a solution which allows to

combine the advantages of both. We notice that the internal unreachability

property in the safe solution causes the troubles without actually providing an

adequate advantage. By omitting this property from the requirements, we get a

simpler solution which is still safe with respect to memory consistency. In

practice, we observe that finalization procedures are simple, and don't create

new references. Thus, we can delegate the problem of re_establishing reacha_

bility of finalized objects to the programmer without introducing any practical

problems.

Note: The worst case for file objects in SPARC_Oberon, for example, would be that a

run_time error occurs after a finalized file object is used for reading or writing. This is

due to the associated Unix file descriptor, which gets an invalid value upon

finalization. Of course, a more sophisticated implementation could provide a

mechanism for reopening closed files automatically. Such objects would have to be

registered again for finalization. Thus, having references to finalized objects need not

always lead to a disaster and need not necessarily be considered unsafe.

To summarize, what we want is a solution to the finalization problem which

has the following properties:

7 no effect on efficiency if not used

7 efficient if used

7 safe with respect to memory consistency

7 applicable to arbitrary objects

7 an object which is not externally reachable will be finalized

An object that is to be finalized before being reclaimed by the garbage collector

has to be registered together with a finalization procedure. We provide the

following interface to clients of the finalization mechanism:

TYPE

ObjFinalizer = PROCEDURE(o: REFANY);

PROCEDURE Register (o: REFANY; finalize: ObjFinalizer);
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The set of objects registered for finalization is internally maintained by a list of

auxiliary nodes anchored in the global variable fin.

TYPE

Node = POINTER TO NodeDesc;

NodeDesc = RECORD

next: Node

o: WEAKPTR;

marked: BOOLEAN;

finalize: ObjFinalizer

END

VAR fin: Node;

An object o which is to be finalized is referred to by a weak pointer, i.e. a

pointer which is ignored in the reachability analysis of the garbage collector

(WEAKPTR is actually expressed as LONGINT since there is no language

construct for weak pointers in Oberon). This means that the mark phase will

mark all the auxiliary nodes as reachable but not all the objects which are

registered for finalization. After the mark phase, procedure CheckFin scans the

node list, saves the mark state of the registered object in marked, and calls the

regular Mark procedure for this object. This guarantees that all objects which

are reachable by a finalization procedure will survive the following scan phase

and precludes dangling references.

PROCEDURE CheckFin;

VAR n: Node;

BEGIN n := fin;

WHILE n # NIL DO

IF ˜marked(n.o) THEN n.marked := FALSE; Mark(n.o)

ELSE n.marked := TRUE

END ;

n := n.next

END

END CheckFin;

Unmarked nodes are finalized after the sweep phase. The finalized objects will

be reclaimed in the next garbage collection cycle if none of the finalization

procedures has re_established reachability of the objects. In general, if an object

is registered n times, it will be finalized n times and it needs at least n+1

garbage collection activations to be reclaimed.
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PROCEDURE Finalize;

VAR n, prev: Node;

BEGIN n := fin;

WHILE n # NIL DO

IF ˜n.marked THEN

IF n = fin THEN fin := fin.next ELSE prev.next := n.next END ;

n.finalize(n.o)

ELSE prev := n

END ;

n := n.next

END

END Finalize;

At least one registered unmarked object will be finalized and removed by one

garbage collection activation. Usually, all of the inaccessible objects can be

finalized at once since references between finalizable objects are very rare. The

exact sequence of steps in the garbage collection algorithm is now:

mark;

CheckFin;

SweepLibs;

Sweep;

Finalize

Summary

The presented finalization mechanism has been implemented and turned out

to work very well. Finalization has been used for implementing Oberon's Files

module on top of a Unix file system, for interprocess communication under

Unix, and for interfacing to an X_Windows server. The mechanism is simple to

implement, simple to use, efficient, and safe with respect to memory

consistency.

5.3 Modules

An important concrete subclass of libraries are Modules, which are the principal

building blocks of Oberon programs. Modules are normally composed in a

textual form but other representations (e.g. graphical) are imaginable as well.

For efficient execution of Oberon programs, modules have to be translated from

a human readable and writable form into a machine dependent format by a

compiler. Since compilation is a time_consuming process which in general

involves processing of additional files for interface checking across module

boundaries, compiled modules are usually stored in (object) files from where
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they can be efficiently loaded without recompilation.

As it has been shown by [Fra94], an efficient object_file format is possible

which is independent of any particular processor architecture by moving the

machine dependent parts of the compiler (the back_end) into the module

loader. It has been reported that this technique is fast enough to be practicable.

Nevertheless, a performance penalty which has to be reduced by advanced

object_file compression techniques is put on the loader. Since the work on a

portable, efficient object_file format is still ongoing research, we decided to stay

with the well_proven technique of generating machine dependent object files.

The object file format has been modeled after the one described in

[WG92]. Some changes have been made to adapt the format to our specific

needs. In the following we shall outline the structure and contents of object

files in more detail, however, we shall not consider the machine specific parts

of object files. We shall also discuss the run_time organization of modules.

5.3.1 The Object_File Format

Object files consist of a sequence of sections, each of them preceded by a tag

which can be used for plausibility checks. The structure of object files may be

described by the following EBNF grammar:

Module = Header Imports Entries Directory Const Code Links Ref.

The Header section contains the module name and key and information

concerning the various other sections. In contrast to many existing Oberon

implementations, the Imports block is immediately following the Header. This

order is better suited for recursively loading imported modules before allocating

the new module node (post_order traversal) since it avoids the need for

temporarily saving data within auxiliary storage. The Entries section describes

the addresses of all exported objects (including type objects) relative to the

beginning of the code section. The Directory section provides the information

required to access exported objects by name. The Const section contains

constants of the module including type descriptor subobjects. Therefore, no

extra type section in the object file is necessary. The executable code is

contained in the Code section in a machine dependent format. External

references within the code which have to be relocated by the loader are

described by Links. Finally, Ref contains the run_time type information necessary

for generic access to objects.

The most important deviations to standard Oberon object files are the
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generalization of the command section and the absence of the type and pointer

section. The new command section (Directory) contains not only the names

and entry points of commands but information for all exported objects. The

directory consists of a set of pairs (entry number, reference position) which

describes for each exported entry the location of the associated reference

information, which includes the name of the object. The absence of the type

and pointer sections will be explained in the following section.

5.3.2 Run_time Organization

In our particular implementation for SPARC−based computers, modules are

represented internally as a single storage block consisting of several subobjects

and allocated outside the Oberon heap. This organization helps to reduce the

number of objects on the heap and avoids any restriction implied by the heap

size. Moreover, allocating procedure objects on the Oberon heap would require

to split them up into two objects, one being of a fixed size (record) and the

other of a variable size (open array). Activation of a procedure would then

require an additional indirection which is clearly unacceptable (a similar

splitting would be required for type objects since they also contain a variable

size part, viz. the pointer_offset table used for garbage collection). By

representing procedures (and types) as subobjects, the variable size part can

immediately follow the header. Fig. 5.6 shows the layout of module blocks. It

starts with a fixed part defined in the LibraryDesc and ModuleDesc records which

contains also the necessary pointers to various subsections following the

header.
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next

imports

refs

SB

CB
code

data

const

vars

name

ref info

entry adrs

eno, refpos

entries

dir

...

Fig. 5.6 − Structure of a Module Block

The entry table contains the absolute addresses of all exported type and

procedure objects. The directory provides a mapping from entry numbers (an

index in the entry table) to reference information by means of a pointer into the

reference section. Fig. 5.7 shows more details of the marked part in Fig 5.6. In

contrast to the original Oberon implementation, the reference block is not

loaded on demand (e.g. by the trap handler), but permanently present within

the module block. This storage overhead is easily justified by the improved

access time to reference information. In a meta_level architecture, this access

time must of course be short.

Subobjects of module blocks include an object which represents the global

data of the module, record type descriptors and procedure objects. The global

data object is not a proper subobject (c.f. Section 5.1.3) but has to be

unmarked before every garbage collection. Type objects are allocated within the

constant section, and procedure objects are allocated within the code area.

Note: Allocating type descriptors as subobjects within the constant area turned out to

simplify code generation since access to types can be treated exactly like global data

(or constant) access without the need for an additional indirection. It also helped to

avoid a restriction in the number of pointers per record type. The only remaining

restriction is the total size of the constant section. Another simplification is in the

run_time system where the fact that Oberon_2 type descriptors grow in two directions

(pointer table and method table) would complicate garbage collection of type

descriptor objects.
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Every subobject has a type tag, which points to the appropriate type descriptor

object. For global variables of a module, a type descriptor is introduced which is

used mainly to describe the position of global pointers. Therefore it is neither

necessary to have a separate pointer offset table in the object file nor to treat

global variables in a special way during garbage collection.

Module nodes themselves have a type tag pointing to the type object

Modules.ModuleDesc. Thus, module Modules, which exports this type, describes

itself by means of a type tag pointing to one of its own subobjects.

Type objects have a tag which points to the type object Modules.TypeDesc.

Consequently, the object Modules.TypeDesc describes itself!

data

const

SB

CB

Modules.TypeDesc

Modules.ProcedureDesc

...

...

Modules.ModuleDesc

module

code

+

global data

type object

procedure

procedure

object

object

type object

Fig. 5.7 − Subobjects in a Module Node
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5.3.3 Reference Information

The data contained in the reference section provides run_time access to type

information. The structure and contents of the reference section might be

considered as a simplified symbol file [Gut85]. In contrast to the latter, it is not

self_contained and does not contain objects such as modules or constants. An

obvious commonality of symbol files and reference information is the linearized

form of the data. The following EBNF grammar describes the structure of the

reference information.

Ref = {TypRef | ParamRef | ActivationRef}.

TypRef = 0F7X refno name {name off Type} 0X.

ParamRef = 0F8X refno name {mode name off Type} 0X.

ActivationRef = 0F9X endpc name {mode name off Type} 0X.

name = len {char} [exported | readOnly].

mode = Var | VarPar.

Type = form [Pointer | Procedure | Array | Record | DynArr].

Pointer = Type.

Procedure = key.

Array = length elemsize Type.

DynArr = elemsize Type.

Record = mno tdoff.

The reference section has been designed in a way which allows efficient

sequential access to the type information. In particular, it uses Pascal_style

strings with a leading length byte to enable fast skipping of unused names

without giving up a simple sequential format. The export mark belongs also to

the name, however, it is omitted for parameters and local variables. Short

numbers are encoded in a single byte, large numbers (off, endpc, key, length,

elemsize, tdoff) use the variable length integer representation which is also

used in the standard Oberon Files module.

There are only three different kinds of objects in the reference section.

Record types (TypRef), parameter lists (ParamRef) and procedure activation

records (ActivationRef). Note that the global variables of a module are described

by the record type of the global data object.

Record types consist of a reference number, a name and a list of record

fields. Every field consists of a name, an offset within the record and the type.

The type consists of a form and optional form_specific attributes. Pointer types

have a base type, procedure types have a fingerprint, arrays have a length, an

element size and an element type, record types are described by a module

number and a type descriptor offset and open arrays have an element size and

an element type. The fingerprint of procedure types encodes the procedure's
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signature and can be used as a version key. Since calculating good fingerprints

is a research topic on its own [Cre94], we used a very simple technique essen_

tially as a placeholder for future improvements. The pair (mno, tdoff), which

describes record types, contains the module number relative to the enclosing

module (say m) and the type descriptor offset relative to the start of the

referenced module's code section. More precisely, module number zero means

m itself, and any module number n > 0 means module m.GetImport(n −1).

Parameter lists consist of the reference number of the associated procedure,

the name of this procedure and a list of parameters which serve as actual

parameters. Every parameter has a mode such as Var or VarPar, a name, an

offset within the parameter block and a type.

The reference information for activation records consists of a program

counter value, the name of the activated procedure and a list of formal

parameters and local variables. The program counter is used to identify

procedure activation records, which are untagged for efficiency reasons.

Actually, the program counter value of the instruction following the procedure

is stored (relative to the code base) since this simplifies this identification.

Note: Unfortunately, some of the reference information is actually redundant.

Activation records might be seen as extensions of parameter records, which share the

parameters as common objects. The problem encountered was that this requires to

separate parameter objects and other local variables within a procedure's scope. In the

portable Oberon compiler all parameter objects are sequentially linked, however, local

variables are sorted in a binary tree together with parameters. Extracting the local

variables from the procedure scope, which contains both parameters and local

variables, seemed to be an unjustified complication. Moreover, addresses of

parameter objects (off) might be different in parameter records and in activation

records or in other words, from outside and inside of a procedure. If a parameter is for

example passed in a register, the callee may store it to memory and use the memory

address to access it. Therefore, two addresses would have to be maintained anyway. It

should be noted that parameter records are provided for exported procedures only,

which further reduces the redundancy.

The price to be paid for full run_time type information is the increase of the size

of the reference section. Table 5.1 shows that the size is approximately twice as

large as in a standard Oberon implementation with run_time type information

reduced to unstructured local and global variables.

Oberon 1123 2848
TextFrames 3833 6621
Texts 2026 4755
Module reduced full

Table 5.1 − Size of Reference Sections
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5.3.4 Module Loading

Loading of modules is enabled by installing a module specific This−procedure

(the module loader) in the library loading framework. Since the modules

Libraries and the Modules must already be loaded for this task, we have

conflicting requirements for the order in which libraries are to be loaded. Such

a conflict is commonly known as a bootstrapping problem. The conflict can be

resolved in two ways. One is to implement a boot linker, which takes a

specified set of libraries and links them into a boot file from where the libraries

can be easily loaded by means of a primitive boot_loader. The other possibility

is to write a less primitive boot loader which already includes the module

loader. For reasons of simplicity we adopted the second strategy and implemen_

ted the boot loader in Modula_2. This Modula_2 program can be linked and

executed without the need of any Oberon modules. The task of the boot loader

is to execute the command Oberon.Loop, i.e. to load module Oberon and all

directly or indirectly imported or loaded modules, and then to enter the central

Oberon main event loop.

Note: One disadvantage of this solution was that it became apparent that the

particular Modula_2 implementation (Sun Modula−2) was not very well suited for

low_level programming tasks, which are needed to implement a module loader. It was

for instance not possible to read and write directly from untyped memory as it is

possible in typical Oberon implementations by means of SYSTEM.GET and

SYSTEM.PUT operations. One had to use pointer types and type casts to achieve the

same effect. Furthermore there were a number of inconveniences in the library which

made life harder than necessary. Almost every library operation had its result

parameter defined as an enumeration type. All in all, this led to an unnecessary

verbosity and to the feeling that the missing enumeration types in Oberon are a real

progress. Another problem with the chosen approach was that it required some extra

communication between the Modula_2 loader and the Oberon modules which

constitute the library loading framework. Although not particularly complex, this sort

of programming is on an inherently unsafe level and therefore notoriously dangerous.

The structure of the module loader essentially follows the one described in

[WG92] but with the deviations described in Section 5.1.1 (A Framework for

Library Loading). The program fragment below outlines the recursive structure

of the loader's core. As an optimization for the case of cyclic loads, an

additional Lookup has been introduced to avoid multiple allocation of module

nodes. Note that superfluous nodes would not affect the uniqueness property

of the set of accessible libraries (due to the guard in the library loader) but

would fragment the module area and slow down the loading process.
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PROCEDURE ThisMod(name: ARRAY OF CHAR): Library;

VAR imp: ARRAY maxLib OF Library; ...

BEGIN L := NIL;

open object file name.Obj;

IF object file exists THEN read header block;

IF res = Done THEN i := 0;

WHILE (i < nofImports) & (res = Done) DO

ReadLInt(impkey); ReadBytes(impname, 20);

imp[i] := This(impname);

IF (res = Done) & (imp[i].key # impkey) THEN res := InvalidKey END ;

INC(i)

END ;

IF res = Done THEN Lookup(name, L);

IF L = NIL THEN allocate module node L;

IF L = NIL THEN res := OutOfMemory

ELSE initialize L; read further sections; fixup links

END

END

END

END ;

ELSE res := libNotFound

END ;

RETURN L

END ThisMod;

One additional check would still be possible, viz. to ensure that all libraries

imported by a module are modules as well. We expect, however, that this

property is encoded in the library's key and report an InvalidKey error if the type

does not match.

Although we mentioned that cyclic imports are not allowed in Oberon, they

can be constructed by means of a sequence of compilation and editing steps.

We deliberately refrain from explaining this sequence in order not to motivate

the reader to try this out. In the presented library loading framework, an endless

recursion would occur which is terminated only by exhaustion of any of the

consumed resources such as the procedure activation stack, file descriptors or

heap space. If using a Unix file system, consuming all file descriptors is by far

the most likely reason to terminate the loop since typically only 64 file

descriptors are available to a Unix process. Thus, running out of file descriptors

could be used as a poor_men's heuristics for detection of cyclic imports.

5.3.5 Garbage Collection

Since modules consist of a number of subobjects, we have to override the
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Unmark method (see Section 5.1.3), which is necessary for correct reachability

analysis of subobjects, and think of the subobject properties of these objects.

The set of subobjects of a module is comprised of type descriptors, procedures,

and the global data object. Not all of them are proper subobjects. In the

following we shall discuss the different kinds of subobjects and their references

in more detail.

Type Objects

Type objects contain the following three different kinds of references

7 references to type_bound procedures

7 a reference to the defining module

7 a type tag

References to type_bound procedures are contained within the method table

which is associated with an Oberon_2 type descriptor. Entries of the method

table may be methods defined in the defining module itself or inherited

methods defined for a base type in an imported module. The reference to the

defining module (via field lib) provides the requested back pointer to the

enclosing compound object. The type tag of a type object constitutes an

implicit reference to object Modules.TypeDesc, which is assumed to be a

subobject of module Modules. Beside the fact that it is hardly meaningful to

unload Modules, it is always reachable via any other module's type tag, which

points to object Modules.ModuleDesc. This implies that type objects can be

safely regarded as proper subobjects.

Procedure Objects

Procedure objects have also three different kinds of references

7 a type tag

7 a reference to the defining module

7 a reference to the handle procedure

For the type tag and the reference to the defining module, the same

argumentation holds as for type objects. As long as procedures are passive

objects (the regular case), the handle field is NIL. Active procedures have an

arbitrary handle field, thus they cannot be regarded as proper subobjects.

Therefore, changing the handler has to be done under the control of a special

procedure (InstallHandle) in order to keep track of the subobject property. A

simple solution is to introduce a counter per module (nofActiveProcs) which
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defines whether the module has active procedures or not.

Global Data

Since the global data of a module can hold arbitrary references, this object is in

general not a proper subobject. The global data object is also missing a direct

back pointer to the module node. Fortunately, the back pointer is available

indirectly via the lib field of its type descriptor object. In order to guarantee

reachability of the module node via the global data object, not only the global

data object must be unmarked before every garbage collection, but also its type

descriptor object although the latter is a proper subobject.

The following method implements unmarking of modules.

PROCEDURE (M: Module) Unmark (all: BOOLEAN);

VAR i: INTEGER; o: REFANY;

BEGIN

unmark(M.data); unmark(Type(M.data));

IF all OR (m.nofActiveObjects > 0) THEN

FOR i := 0 TO m.nofObjects − 1 DO M.GetObj(i, o); unmark(o) END ;

END

END Unmark;

5.4 Fonts

Compared to modules, Oberon's bitmap fonts are much easier to handle since

they are (at least in Oberon) always self contained, i.e. they don't import other

libraries. Thus, font loading mainly consists of reading a font file and building

the internal character patterns. There is only the problem that fonts consist of

many objects. Thus, they would introduce a large number of objects on the

heap if there were no optimizations. Note that every character is represented by

two objects, one with a fixed size to hold the metric information and another

with a variable size to hold the raster image of the character. A number of

different implementations exist to optimize organization of fonts.

Don't treat characters as objects

In standard Oberon implementations, characters are not considered to be

objects exported by a library. Therefore, access to metric information is provided

by means of procedure GetChar, which returns the metric information rather

than an object representing the character.
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PROCEDURE GetChar(f: Font; ch: CHAR;

VAR dx, x, y, w, h: INTEGER; VAR p: LONGINT);

Surprisingly, this procedure is exported from module Display rather than from

module Fonts as one would expect. The font parameter is of type Display.Font

which is a component of Fonts.Font. The main reason for this design is

efficiency since in the original Oberon implementation on Ceres the Display

module was implemented in assembly language (which allowed a slightly more

efficient access to metric information) while module Fonts was implemented in

Oberon.

A second anomaly is the treatment of the raster image p as a LONGINT

variable. Conceptually speaking, p is a weak pointer to a subobject which

represents the raster image. Weak pointers are to be ignored by the garbage

collector. However, it is possible to generate dangling references with this

arrangement if fonts as a whole are subject to garbage collection.

Treat characters as shared objects

Oberon System_3 has introduced fonts as libraries and characters as exported

objects. In order to avoid a large number of character objects, there is only one

globally defined object into which the metric information is copied before a

pointer to this object is returned. Since pointers to characters are rarely stored,

this optimization is in practice transparent to the user. Pointers to character

patterns are handled in exactly the same (unsafe) way as in standard Oberon.

Treat characters and character patterns as subobjects

A more consequent approach is to treat all characters as individual (unshared)

objects and patterns as regular pointers. The introduced memory overhead is

easily justified by improved run_time efficiency since when the metric

information of a character is accessed, only a single pointer has to be passed

instead of copying all individual fields of the metric record. There is no need any

more to implement something like GetChar in assembly language. The speed

improvement is especially important in the context of multi pass text formatters

(e.g. for WYSIWYG text formatting and automatic line breaks), where multiple

accesses to printer and display character objects are necessary but only a few

fields are actually used. The introduced storage overhead compared to the Ceres

version and a standard Oberon implementation based on Sun's pixrect library is

shown in Table 5.2. The pixrect implementation needs significantly more space

than Ceres Fonts due to different alignment requirements (32_bit alignment for

every raster line) and a more general (device independent) pattern format. The

additional overhead for treating characters as objects is fairly small and by no
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means prohibitive. External constraints such as the required memory bitmap

layout for a given graphics library dominate the effect of introducing characters

and patterns as objects.

Syntax24b.Scn.Fnt 5314 14004 15268

Syntax24.Scn.Fnt 4836 13368 14632

Syntax20.Scn.Fnt 3556 12492 13720

Syntax16.Scn.Fnt 2816 11900 13128

Syntax12.Scn.Fnt 2238 11200 12464

Syntax10.Scn.Fnt 2178 10724 12708

Syntax8.Scn.Fnt 1931 11228 11988

Font Ceres pixrect pixrect subobjects

Table 5.2 − Font Size in Bytes

Garbage collection efficiency is only affected in the exceptional case of

unloading fonts, where all subobjects have to be checked for being referenced.

A subtle point is the necessary back pointer from any subobject to the parent

object. In case of patterns, this pointer does not exist directly but can be

introduced indirectly via a specially prepared type descriptor object which

points back to the font node via its lib field. All pattern objects of a font can

share the same pattern descriptor. Fig. 5.8 outlines the layout of fonts.

Fonts.CharDesc

...

Fonts.FontDesc

font

metric "A"

pattern "A"

PatternDesc

...

Fig. 5.8 − Fonts as Compound Objects
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5.5 Generic Access to Arbitrary Objects

As introduced in Section 4.2.3, generic object access is based on the concept of

object riders. Sequential riders correspond naturally with the linearized form of

the type information provided in the reference section. It should not be

necessary to build up complex data structures such as a compiler's symbol

table for the task of generic object access. Maintaining such data structures

would require significant heap space. Moreover, such an approach would

increase the number of objects on the heap, thereby slowing down the garbage

collector. In the case of our mark and scan collector, both phases would be

affected. Note that a compiler has to build a temporary symbol table for only

one module whereas for generic object access we would have to keep the

tables of all loaded modules permanently in memory. Sequential access to

objects turned out to be the dominant access pattern, therefore, the sequential

iteration has never been felt as a restriction.

The algorithmic solution of generic object access is rather simple. The only

complication is that it works mostly on untyped memory and that some tuning

measures have to be taken in order to reduce the run_time overhead. In

addition to the exported fields of object riders, several private fields have to be

introduced. In the following, we describe this private data and outline the

problems encountered.

TYPE

Rider = RECORD

public fields

base: REFANY;

adr, off, paroff, info: LONGINT;

mod: Modules.Module

END ;

base

keeps a reference to the object a rider is riding on in order to prohibit garbage

collection of the object as long as a rider on this object exists. The unmodified

base field is passed to all riders which zoom into a structured component of an

object.

adr

holds the start address of the object a rider is iterating on. In case of zooming

into a structured component of the object, the adr field is changed to the start

of the component.
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off

holds the offset of the variable at the rider's current position from adr. Thus,

(adr + off) gives the address of the variable which corresponds to the position

of the rider. Field off is changed whenever a rider is advanced to the next

position.

paroff

Field paroff is used to manipulate VAR_parameters (e.g. in activation or

parameter riders). VAR_parameters are passed by reference, i.e. only a pointer to

the start of the parameter is passed. Depending on the kind of parameter,

additional values such as the actual record type or length information for open

arrays are passed. (adr + paroff) gives the address of the reference, which is

passed for a VAR_parameter. In contrast to this, (adr + off) gives the address of

the VAR_parameter.

info

the address of the type information in a module's reference section

corresponding to the rider's position. The type information is read sequentially

and the info value is updated whenever the rider is advanced to the next

position except for array riders, where the info field is invariant. Every type

descriptor object contains an info field, which points to the start of the

corresponding reference information. When opening a record rider, the info

field is taken from the object's type descriptor. To simplify the implementation

of riders, the info field always points after the fixed part of a type, i.e. after the

form information (see Fig. 5.9 below).

mod

a reference to the module which exports the type of the object the rider is

riding on. More precisely, mod is an abbreviation for t := Type(base); mod :=

t.lib(Modules.Module). The reference section contains record and pointer base

types as pairs (mno, tdadr) where mno is the module number relative to the

exporting module mod. Module number zero means the exporting module

itself, and any module number n > 0 means the result of calling

mod.GetImport(n − 1). tdadr means the offset of the record type object from the

exporting module's code base.

Accessing the current location of a rider is done as shown for the example of

integer values below. A method Advance is assumed, which advances the rider's

position to the next one. Advance is rider specific, i.e. it is different for riders on

arrays, records, procedure activations and parameter blocks.
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PROCEDURE (VAR R: Rider) ReadInt (VAR x: INTEGER);

BEGIN ASSERT(R.class = Int); SYSTEM.GET(R.adr + R.off, x); R.Advance

END ReadInt;

Specific riders introduce additional fields as appropriate. RecordRiders, for

example, introduce a typ field, which points to the corresponding type object.

This field is necessary for switching from one extension level to the next via the

type's base table and the additional public field level. They introduce also a field

location, which is a pointer into the reference section for retrieving the field

name in GetLocation.

RecordRider = RECORD (Rider)

public fields

typ: Modules.Type;

location: LONGINT

END ;

Analogously, ArrayRiders introduce a private field which describes the size of the

array elements.

Example

VAR

a: POINTER TO RECORD

x: LONGINT;

r: RECORD y: REAL END

END ;

R0, R1: RecordRider;

BEGIN

NEW(a); a↑.x := 47; a↑.r.y := 11;

OpenRider(R0, a); R0.Skip;

ZoomRecord(R1, R0);

The state of the computation after ZoomRecord is sketched in Fig. 5.9.
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base = a

adr = ADR(a↑)

off = 4

info

mode = Fld

class = Record

reference section

base = a

adr = ADR(a↑.r)

off = 0

info

mode = Fld

class = Real

R0 R1a

r = RECORD

y = 11

x = 47

... ...

"x" 0 6 "r" 4 16 0 tdoff 0X... "y" 0 7 0X... ...

4

Fig. 5.9 − Nested Riders

5.6 Active Procedures

Implementing the facilities for controlling procedure activations is to a high

degree machine specific, i.e. it depends on the machine architecture and the

calling conventions being used. However, it is expected, that the general ideas

behind the following approach, which has been implemented for SPARC_based

machines, could be used at least for other reduced instruction set computers

(RISCs) as well.

Parameters

At the center of implementing the facilities for controlling procedure activations

are parameter records. These represent the actual parameters of a procedure call

and are initialized by procedure GetParams. On a RISC machine, parameter

passing is usually done both in registers and in memory. The first parameters

are passed in registers, subsequent ones are passed in memory allocated on the

procedure activation stack. In SPARC_Oberon, six integer registers and six

floating point registers (or three floating point register pairs) are used for

parameter passing. Function results are returned in an integer register or one or

two floating point registers. The layout of parameter records reflects these

calling conventions directly.
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TYPE

Parameters = RECORD

ires: LONGINT;

fres: LONGREAL;

ireg: ARRAY 6 OF LONGINT;

freg: ARRAY 3 OF LONGREAL;

mem: ARRAY 6 OF LONGINT;

p: Procedure

END ;

Each procedure has its own kind of parameter record according to the

parameters of the procedure. To allow checking of the correspondence between

a procedure and a parameter record, every parameter record must be marked

with the procedure it corresponds to. Field p has been introduced for this

purpose. Procedure GetParams initializes p and sets all other fields of parameter

records to zero. Since parameter records have a fixed maximum size, there is no

allocation of dynamic memory involved.

Note: The official SPARC application binary interface specification (ABI) requires to

pass floating point values in integer registers. Following these guidelines would

simplify the above layout of parameter records (no need for field freg) but slow down

parameter passing in some cases.

When iterating over parameter records, the meta_level programmer does not

want to see the internal representation of parameter records but wants to see

the list of parameters as declared for a particular procedure. Procedure

OpenParam provides this mapping by setting the info field of the initialized

ParamRider to the corresponding ParamRef entry in the reference section rather

than to the TypeRef entry of type Parameters.

Eval

In a programming environment which is based on compilation rather than

interpretation, procedure Eval has to set up an appropriate stack and register

context and to transfer control to the compiled body of the procedure which is

to be evaluated. The first activity of Eval is to check the correspondence

between the parameter record and the passed procedure. The rest of Eval is also

not particularly difficult, but of course somewhat machine specific. The trick to

simplify passing of all the different register and memory parameters is to

introduce an auxiliary procedure variable with as many parameters as ever

reasonable. Transfer of control is done by calling this variable after it has been

set to the body of the procedure to be evaluated. The body is immediately

following the fixed size part of a procedure object. The evaluated procedure will
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silently ignore all unused parameters if removal of parameters from the

activation stack is the task of the caller and not the callee. In our

implementation for SPARC_Oberon, we support up to 18 parameters. At most

six of them are passed as integer registers, at most six are passed as floating

point registers (or three floating point register pairs) and the rest is passed in

memory. Since the auxiliary procedure variable is not a proper procedure

variable but points inside a procedure object, it has to be marked as untraced

(expressed by the [1] mark in the declaration) to avoid any problems with

garbage collection. After the procedure has been evaluated, possible function

result values are stored in fields ires and fres respectively (register numbers > 31

refer to floating point registers).

PROCEDURE Eval (P: Modules.Procedure; VAR par: Parameters);

VAR

p: PROCEDURE [1] (i0, i1, i2, i3, i4, i5, m0, m1, m2, m3, m4, m5: LONGINT;

f0, f2, f4: LONGREAL);

BEGIN

ASSERT(par.p = P);

SYSTEM.PUT(SYSTEM.ADR(p), SYSTEM.ADR(P↑) + SIZE(Procedure));

p(par.ireg[0], par.ireg[1], par.ireg[2], par.ireg[3], par.ireg[4], par.ireg[5],

par.mem[0], par.mem[1], par.mem[2], par.mem[3], par.mem[4], par.mem[5],

par.freg[0], par.freg[1], par.freg[2]);

SYSTEM.GETREG(8, par.ires);

SYSTEM.GETREG(32, par.fres);

END Eval;

It should be noted that this schema makes the implicit assumption that

structured value parameters are copied by the callee, i.e. within the called

procedure and not before the call. Therefore, such parameters are internally

passed by reference, which takes a small, constant amount of memory per

parameter. If structured values had to be expanded into the parameter record,

the simple layout with a fixed size would not be practical. We claim that

assuming a copy_by_callee schema is justified since it is the more general

technique. This can be seen by the fact that it can also be applied to open array

parameters. Furthermore, copy_by_callee results in increased code density,

because structure copying is done in one place only.

Independent of copy_by_caller or copy_by_callee, another subtle problem

exists, namely the fact that parameter records contain weak references

(VAR_parameters, pointers, procedure variables). Thus, it is in principle possible

to create dangling references by inappropriate use of parameter records. In

practice, however, this was never a problem since parameter records are

typically allocated as local variables and never assigned to non_local variables.
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Filters

Before we shall look at the more general problem of implementing active

procedures, we show a possible implementation of the concept of Filters as

introduced in Section 4.2.4. The main reason why this concept has been

introduced in the basic system is that it requires additional state per procedure

to anchor the filter chain. Therefore, we introduce an additional field f into

procedure objects, which points to a cyclic list of filter nodes.

TYPE

Procedure = POINTER TO ProcedureDesc;

ProcedureDesc = RECORD (Libraries.ObjectDesc)

f: Filter

END ;

Filter = POINTER TO FilterDesc;

FilterDesc = RECORD

link: Filter;

p: Procedure

END ;

The concrete situation of Fig. 4.7 (a procedure with two filters) corresponds to

the data struture outlined in Fig. 5.10.

procedure

link

p

↑ ↑

↑

code

...

link

p

↑

↑

link

p

↑

filter F2 filter F1

f

f ↑ f ↑

code code

Fig. 5.10 − The Filter Chain

A possible implementation of filters is given in the procedure handler

FilterHandle outlined below. The presented implementation is fully portable.

However, by giving up portability, it could be tuned to avoid the overhead of

calling Eval explicitly. In practice, it turned out that the presented implemen_

tation is sufficiently efficient.
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PROCEDURE FilterHandle (P: Libraries.Object; VAR M: Libraries.ObjectMsg);

VAR f: Filter;

BEGIN

WITH P: Procedure DO

WITH M: InvocationMsg THEN

f := P.f; P.f := f.link;

IF f.p = NIL THEN M.par.p := P; Eval(P, M.par)

ELSIF f.p.handle = NIL THEN M.par.p := f.p; Eval(f.p, M.par)

ELSE f.p.handle(f.p, M)

END ;

P.f := f

ELSE

END

END

END FilterHandle;

Active Procedures

Installing a procedure handler into a procedure object requires to provide a

mechanism that allows intercepting any calls to this procedure. Different

strategies exist for this task, among them are the usage of an additional

indirection for procedure calls via a link table or patching the entry code of the

called procedure in an appropriate way. Since we tried to minimize the

overhead on conventional programming tasks and since there is no hardware

support for indirect procedure calls on SPARC, we implemented the latter

alternative. We introduce a number of dummy instructions at the beginning of

a procedure's code, which can be overridden by a call to an intercepting

procedure. Although not unconditionally necessary, these dummy instructions

help to simplify the implementation and to avoid undue machine

dependencies. Fig. 5.11 shows the layout of passive and active procedure

objects for SPARC_Oberon.
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lib

ref

handle

f

nop

nop

nop

body

passive procedure

lib

ref

handle

f

store retadr

call Intercept

nop

body

active procedure

procedure handler

Intercept

control flow

Fig. 5.11 − Passive and Active Procedures

The final form of the fixed size part of a procedure object is defined as:

TYPE

ProcedureDesc = RECORD

(Libraries.ObjectDesc)

f: Filter;

code: ARRAY 3 OF LONGINT

END ;

Active procedures have to save the return address first and then to transfer

control to an interceptor. Due to the particular SPARC architecture, it is

necessary to have a dummy instruction, the so_called delay slot, after the call.

This instruction cannot be used to save the return adress due to peculiarities in

the semantics of delayed branches of SPARC. In total, we need to reserve three

nop (no operation) instructions at the beginning of an external procedure,

which implies only a very small run_time and storage overhead for exported

procedures.

Similar to the auxiliary procedure variable used to implement Eval, the

interceptor has as much parameters declared as reserved in parameter records.

This guarantees that parameters passed in registers are not accidentally

changed within Intercept and they can be easily accessed and stored into a

parameter record. In addition, the interceptor has to fixup the return address

such that the intercepting call is skipped when returning from it. In

SPARC_Oberon, register 31 holds the return address of a call instruction, and

register 1 holds the return address stored in the intercepting code. The auxiliary

variable p20 holds the address of the "call Intercept" instruction, which is at

offset 20 from the beginning of the procedure object. After the constructed

invocation message has been handled, a possible result value is returned or put
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into the appropriate floating point registers, which are not changed upon return.

PROCEDURE Intercept(i0, i1, i2, i3, i4, i5, m0, m1, m2, m3, m4, m5: LONGINT;

r0, r2, r4: REAL): LONGINT;

VAR p20, ret: LONGINT; P: Procedure; M: InvocationMsg;

BEGIN

SYSTEM.GETREG(31, p20);

SYSTEM.GETREG(1, ret);

SYSTEM.PUTREG(31, ret);

P := SYSTEM.VAL(Procedure, p20 − 20);

M.par.p := P;

M.par.ireg[0] := i0; M.par.ireg[1] := i1; M.par.ireg[2] := i2;

M.par.ireg[3] := i3; M.par.ireg[4] := i4; M.par.ireg[5] := i5;

M.par.mem[0] := m0; M.par.mem[1] := m1; M.par.mem[2] := m2;

M.par.mem[3] := m3; M.par.mem[4] := m4; M.par.mem[5] := m5;

M.par.freg[0] := r0; M.par.freg[1] := r2; M.par.freg[2] := r4;

P.handle(P, M);

SYSTEM.PUTREG(32, M.par.fres);

RETURN M.par.ires

END Intercept;

Measurements

On a 20 MHz SPARCstation1 with a unified data and instruction cache (write

through), we obtained the following benchmark results. Note that due to

mysterious cache behavior, the actual results may deviate by more than a factor

of 10! We took those results that fit together in a reasonable way, i.e. we

ignored extremely deviating values.

Empty Filter 19
Intercept 11
Eval 6

Operation micro secs

Table 5.3 − Measurements of Active Procedures

Summary

This concludes the chapter on implementation aspects of the introduced

meta_level architecture. It was surprising that everything could be implemented

in Oberon itself partly by using Oberon's low level facilities and some

knowledge about the underlying compiler. The set of available low level

facilities (module SYSTEM) turned out to be sufficient for our purposes. We

never found the need to use a more sophisticated in_line assembler or to

escape to system programming languages such as C. In total, the low_level part

is rather small compared to the fully portable part of the implementation.
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This chapter describes several examples of applications which have been

implemented with the introduced metaprogramming protocol. The emphasis is

not put on outstanding functionality or sophistication of the individual

examples but on the fact that they have been implemented by using the meta_

programming approach. We claim that extending the functionality is only a

quantitative difference whereas metaprogramming introduces a new quality.

The user, i.e the programmer, benefits from this new quality by the ability to

implement or customize tools which he/she simply could not do previously.

6.1 Overview

The presented examples can be divided into two groups, one focusing on

generic object manipulation, the other on controlling procedure activations.

The generic object manipulation examples start with the implementation of

parts of module System, which is the top level module of the Oberon

environment and serves to configure and use the Oberon system. The sub_

sequent examples have certain dependencies among each other. We shall

proceed in a bottom_up order and present as the first application the mapping

of arbitrary data structures to non_volatile memory or in other words the

implementation of a sort of persistent objects. We will use this mechanism to

implement the load/store functions in an extensible graphics editor and we

shall use other generic object manipulations to support editing facilities without

the need for type_specific code. The graphics editor will be used in a sub_

sequent example to implement a tool for interactive two_dimensional data

structure visualization.

Applications for controlling procedure activations can be divided into those

which work for all procedures (Eval) and those which make use of active

procedure objects. The latter cases can be further divided into examples for

procedure handlers and filter procedures.
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6.2 Module System

In standard Oberon systems, module System implements what the user sees of

Oberon. It defines the startup screen layout, provides commands for handling

viewers and other system resources and implements the trap handler and a

facility for displaying the state of global variables (see also Section 3.3.2). The

latter two tasks can benefit from metaprogramming as shown below.

Trap Handling

In case of an exception, the Oberon trap handler dumps the contents of the

run_time stack to a text and displays it in a so_called trap viewer before

transferring control back to the Oberon main event loop. Dumping the run_time

stack can be implemented easily by employing ActivationRiders and the

WriteObj procedure, which maps objects to a textual representation. Procedure

DumpStack below is the core of the trap handler. Note that the module name

GenericObjects has been abbreviated to GO. The initial values of stack pointer

and program counter (sp, pc) are supposed to be provided by the system's

interrupt handling mechanism, which will not be further described here.

PROCEDURE DumpStack(sp, pc: LONGINT; T: Texts.Text);

VAR R: GO.ActivationRider;

BEGIN

GO.OpenFrame(R, sp, pc);

LOOP

Texts.WriteString(W, R.module); Texts.Write(W, ".");

Texts.WriteString(W, R.proc); Texts.WriteString(W, " ");

Texts.WriteInt(W, R.relpc, 0); Texts.WriteLn(W);

GO.WriteObj(W, R, 0, 1); Texts.Append(T, W.buf);

IF R.dlink > stackbot THEN EXIT END ;

GO.OpenFrame(R, R.dlink, R.retpc)

END

END DumpStack;

A stack dump may contain fold and reference elements and may look as shown

in Fig. 6.1. Clicking the middle mouse button on a fold element (displayed by

the fold brackets ) expands or collapses this element. For instance,

expanding message record M in the activation frame Oberon.Loop leads to the

expanded text shown to the right in Fig. 6.1.
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Input.Mouse 1044
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Oberon.Loop 6756
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...
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keys = {}
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col = 0

voff = 0

N = ...

Fig. 6.1 − A Stack Dump

Middle clicking reference elements (displayed as ↑) causes a new text viewer to

be displayed which contains the referenced object. This simple mechanism

essentially covers the functionality of traditional post mortem debuggers. An

alternative tool which features a two dimensional representation of objects will

be introduced in a subsequent section.

Displaying Global Variables

In standard Oberon systems, the command System.State takes a list of module

names as parameters and dumps the values of the global variables of these

modules to a text which is displayed in a text viewer. In our meta_level

architecture, we allow arbitrary libraries as parameters and display the state of

these libraries. Only in case of a module, we display the contents of the global

data of this module. The core of the implementation consists of a library

lookup, and in case of success the mapping of the state variables to a text. The

output looks similar to stack dumps and contains also fold and reference

elements for structured components and pointers respectively.

PROCEDURE State;

VAR S: Texts.Scanner; W: Texts.Writer; L: Libraries.Library; R: GO.RecordRider;

BEGIN

open scanner S, writer W, and a text viewer;

WHILE S.class = Texts.Name DO

Lookup(S.s, L);
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IF L # NIL THEN

IF L IS Modules.Module THEN GO.OpenRider(R, L(Modules.Module).data)

ELSE GO.OpenRider(R, L)

END ;

GO.WriteObj(W, R, 0, 1);

END ;

Texts.Scan(S)

END ;

append W to output text

END state;

6.3 Persistent Objects

Folowing the terminology used in the field of object_oriented data base

systems, implementation strategies for persistent objects can be divided into

declared and programmed persistency. Declared persistency means that data

structures are marked as being persistent by introducing a new storage class

persistent in addition to storage classes automatic (local variables) and static

(global variables). Besides the difference in their life time, persistent objects can

be used in the same way as other objects. This approach requires language

support and can be found in object_oriented data base systems such as Exodus

with the integrated programming language E [RC93]. Another example is

PCLOS [PA90], an implementation of declared persistency by using the CLOS

metaobject protocol. Programmed persistency, on the other hand, means that

mapping a data structure from or to non_volatile memory is actuated explicitly

during execution of a program. Typically, all objects which are reachable from a

given root object (the closure of this object) are mapped together. An example

is the Pickle package available in Modula_3 [Nel91]. The persistent objects

introduced in this section are similar to the latter, i.e. programmed and

reachability based.

The implementation of this kind of persistency consists of two main

subproblems, data mapping and pointer swizzling. Data mapping means to map

atomic data such as integers or characters to an external representation (and

back), pointer swizzling means to keep track of references between the nodes

which comprise a data structure. We try to solve both problems in a generic

way. However, in order to allow a wider range of applicability and reasonable

performance in special situations, we must also allow customization of the

mechanism in an application specific way. We shall introduce a class called

Map which encapsulates the information necessary for pointer swizzling and

customization. Before we describe maps in more detail, we shall outline some

of the inherent problems of automatic persistency.
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Closure Control

Following all references is sometimes not possible or meaningful. For example,

if an object contains a reference to a font, it is sufficient to store the font name

instead of the whole font. In general, any references to libraries or objects

exported by libraries can be regarded as external reference, i.e. as a reference

outside the data structure under consideration. The existence of the notion of

libraries and persistent objects can be used to limit closures to a reasonable

size. In fact, the notion of libraries is essential to automatic persistent objects.

In many cases, it limits the closures to exactly those objects that would also be

stored in a hand_crafted implementation. There may still remain some cases

where a reference should be ignored or handled specially. An example is a

reference into Oberon's display space (e.g a pointer to a viewer) which would

cause all open viewers and associated data structures to become part of the

closure. We decided to leave these rare cases to customization by the user.

Implicit Dependencies

Externalized objects may have implicit dependencies on other data structures.

This relation can be expressed by an unsuspicious integer value, say, but could

be disastrous if not handled properly. A prominent example are file objects,

which may contain integers representing sector numbers. It is of course not

sufficient to store and load sector numbers as long as data structures for sector

management are not updated. For the concrete example of file objects, we

decided to disallow them per default. In order not to rule out the important

case of (file based) texts, which in Oberon almost has the character of a built in

data type, we provide an appropriate default text handling.

Partially used Arrays

Sometimes, array structures are only used partially. There may be a counter

outside an array which determines used an unused elements or there may be a

sentinel in one of the array elements. The most popular example for the latter

are character arrays which have a zero terminated string as contents. Since this

case is so common, we decided to treat character arrays always as strings and

to leave other special cases to customization by the user.

6.3.1 Maps

We introduce an abstract data type Map, which contains all necessary

information for mapping a data structure to a file and vice versa. It contains

also information necessary for customization of special types.
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TYPE

Map = RECORD END ;

Mapper = PROCEDURE (VAR m: Map; VAR R: Files.Rider; obj: REFANY);

PROCEDURE (VAR m: Map) Init;

PROCEDURE (VAR m: Map) Reset;

PROCEDURE (VAR m: Map) WriteClosure (VAR to: Files.Rider; o: REFANY);

PROCEDURE (VAR m: Map) ReadClosure (VAR from: Files.Rider; VAR o: REFANY);

PROCEDURE (VAR m: Map) Register (t: Modules.Type; read, write: Mapper);

Procedure Init initializes a map with a default behavior. This implies that

Oberon texts are handled appropriately and references to files are not allowed.

Procedure Reset resets a map for reading or writing. Procedure WriteClosure may

be used to externalize an arbitrary data structure rooted in o. Analogously,

procedure ReadClosure may be used to internalize a previously externalized data

structure. ReadClosure and WriteClosure maintain a set of already visited nodes

in order to provide correct handling of arbitrary (possibly cyclic) data structures.

These sets are cleared by the Reset operation.

We provide for overriding the default mapping by means of registering type

specific read and write procedures (mappers). If the specified type t is at record

extension level n, the registered mappers are responsible for handling only the

fields introduced at level n. This is in contrast to the semantics of overriding in

object_oriented programming, where the overriding procedure is responsible for

the whole type and is even inherited by subclasses. The advantage of the finer

grained overriding based on extension levels is that it can be done completely

transparent to subclasses. If mappers are registered for a type t, all extensions of

t inherit the default mapping, not the customized mappers of t. There is no

need to register mappers for all subtypes of t in order to handle the extended

fields. Fig. 6.2 outlines the situation.

level 0

level 1

...

level n

level n + 1

m.Register(t, read, write)

default

default

default

Fig. 6.2 − Customization based on extension levels
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Customized mappers are allowed to call ReadClosure and WriteClosure

recursively. In fact, that is the reason why we separated resetting a map from

the ReadClosure resp. WriteClosure operation. Mappers have to be symmetric for

reading and writing. Unfortunately, this symmetry can neither be guaranteed by

the compiler not by run_time checks since files are an untyped array of bytes.

6.3.2 Implementation Aspects

The key for the implementation of maps is the file format being used. The

requirements for this format are that it should be compact and it should allow

efficient reading and writing where reading is considered to be the more

important operation. We describe the external format by the EBNF_grammar

below.

closure = NIL | ref | xref | typref [typinfo] {field}.

ref = 1 | 2 | 3 ... .

xref = libref | objref

libref = −1 name.

objref = −2 closure name.

typref = −3 | −4 | −5 ... .

typinfo = closure name.

field = simple | record | array | closure.

A closure is recursively defined as either the special value NIL, an internal

reference, an external reference or a record consisting of type information

followed by the record fields. Internal references (references to previously

externalized objects) are encoded by positive numbers, external references by

the negative numbers −1 and −2 and zero encodes the special value NIL. Types

are encoded by negative numbers less than −2. Any externalized object (incl.

references to libraries and exported objects) implicitly gets a sequence number

and can be referred to by this internal reference number later on. This provides

for a compact file format since these numbers are not explicitly stored on the

file and there is no redundant information such as repeated library or object

names.

Two kinds of external references exist, references to libraries (−1) and

references to objects exported by libraries (−2). The former is followed by the

library name, the latter by a closure representing the library and followed by the

object's name.

Whenever an object's type is referenced for the first time, it is fully specified

like an external reference of kind −2. The fields of an object may be of a simple

type, a structured type, or it may be a reference to another object which is
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recursively treated as a closure.

The following outlines the structure of procedure ReadClosure, which uses a

table of objects, a table of types, and counters for the number of objects and

types (m.objtab, m.typtab, m.nofObjs, m.nofTyps). In order to avoid restrictions

due to fixed table sizes, we used Oberon_2 open arrays and resize the tables in

case of overflow (amortized doubling). For the sake of simplicity, we don't

show this resizing in the procedure below.

PROCEDURE (VAR m: Map) ReadClosure (VAR from: Files.Rider; VAR o: REFANY);

VAR ref, onum, level, h: LONGINT; name: ARRAY 24 OF CHAR;

lib: Libraries.Library; lo: Libraries.Object; typ: TypeMap;

BEGIN

Files.ReadNum(from, ref);

IF ref < 0 THEN onum := m.nofObjs; INC(m.nofObjs);

IF ref >= −2 THEN

IF ref = −1 THEN Files.ReadString(from, name); o := Libraries.This(name)

ELSE m.ReadClosure(from, lib); Files.ReadString(from, name);

lib.GetRef(name, h); lib.GetObj(h, lo); o := lo

END ;

m.objtab[onum] := o

ELSE ref := −ref;

IF ref = m.nofTyps THEN

NEW(typ); m.typtab[ref] := typ; INC(m.nofTyps);

m.ReadClosure(from, lib); Files.ReadString(from, name);

lib.GetRef(name, h); lib.GetObj(h, lo);

typ.this := lo(Modules.Type);

InitMappers(m, typ)

ELSE typ := m.typtab[ref]

END;

GenericObjects.New(o, typ.this); m.objtab[onum] := o;

FOR level := 0 TO typ.this.level DO typ.read[level](m, from, o) END

END

ELSE o := m.objtab[ref]

END

END ReadClosure;

The mentioned type table essentially is an array of records, which contain the

associated mapper procedures (typtab[n].read[level], typtab[n].write[level]) for

a given type and a reference to the type itself (typtab[n].this). Procedure

InitMappers(m, typ) is supposed to initialize the mappers for all extension levels

of typ according to map m.

Writing data to a file is mostly symmetrical to reading from it. The most

important difference is that the mapping from reference numbers to objects

cannot be inverted directly. We used hashing to map objects and types from

internal addresses to reference numbers. With load factors below 2/3, linear
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probing for collision handling turned out to provide the best results.

The depth first traversal of graphs, which we assumed silently, has one

noticeable disadvantage, viz. the handling of degenerated graph structures such

as sequentially linked lists. In this case, the algorithm uses many levels of

recursion, one for each list element. This behavior can slow down reading or

writing significantly due to bad data locality, which reduces cache effectivity

and may cause swapping of memory to disk. It can also lead to stack overflow

exceptions. Avoiding recursion by a breath first strategy, on the other hand,

requires additional storage and is more complex. We decided to stay with the

simple depth first strategy and to leave tuning of list structures to the user as

we shall see in the next section.

6.4 Metaprogramming in an Extensible Graphics Editor

This section describes the experiment of using the introduced

metaprogramming facilities and the persistency mechanism of Section 6.3 in an

extensible graphics editor. Before we take a closer look at this editor, a few

words about the general idea behind it may be in order. The extensible graphics

editor is called Kepler [Te93] and is the outcome of an attempt to create an

editor which can be extended with as less programming effort as possible.

Kepler was also the first non_trivial program that was written with Oberon_2

style type_bound procedures and thereby served as a test bed for the introduced

syntax and semantics. The usage of type_bound procedures instead of message

handlers or explicit method records was a first step towards improved

extensibility in terms of reduced programming effort. Another step was the

chosen editing model, which is based on the idea that not every individual class

should provide an Edit_method but editing should be done generically on the

level of handles. In Kepler, every object depends on the position of a number of

handles and changing a handle indirectly means to change one or more objects

which depend on this handle. Fig. 6.3 shows a few object classes with the

handles selected.

Caption

Fig. 6.3 − Kepler objects with selected handles

This editing model avoids the need for type specific editing methods and

essentially reduces the number of methods to three − Draw, Read and Write. It

is obvious that Draw is inherently type specific, but methods Read and Write,
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which account for 2/3 of the programming effort of many classes, are almost

always trivial and can be replaced by the persistency mechanism described in

the previous section. This is the third step of reducing the programming effort

for extensions. The result is that only one method − Draw − has to be

overridden for each concrete class.

In a real world graphics editor, it must also be possible to change the

attributes of objects such as line width or fill pattern later on. Since these

attributes are in general type specific, there must be type specific commands to

set (or get) the individual attributes. In order to avoid these almost always trivial

commands, we shall also employ metaprogramming for implementing generic

attribute handling.

As a final point, we mention that there may be cases where objects would

like to take control over the mouse or keyboard. This is the case for example if

we want to use the graphics editor for composing graphical user interfaces with

buttons or other sorts of end_user objects. Only in this case, the object must be

able to respond to user input in a type specific way.

The reader might miss several functions such as printing, copying or

selecting objects in the previous discussion. The solution is that printing is the

same as drawing if a device independent display abstraction is used. This

independence can also be used for getting the bounding box (size) of an object

by drawing into a specialized display port which calculates the size of an object

rather than actually drawing it. Copying of objects can be expressed by Write

followed by Read (or by a generic deep_copy procedure). Similar to editing,

selection can be done on the level of handles rather than on the level of

objects. Thus, there is no other type specific behavior needed except for

drawing.

Read/Write

A Kepler_graph consists of a list of handles and a list of objects. The handles are

called stars and the objects are called constellations due to the analogy of the

editing model to constellations in astronomy.

TYPE

Star = POINTER TO StarDesc;

StarDesc = RECORD

x, y, refcnt: INTEGER;

sel: BOOLEAN;

next: Star

END ;
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Constellation = POINTER TO ConsDesc;

ConsDesc = RECORD

nofstars: INTEGER;

s: ARRAY 4 OF Star;

next: Constellation

END ;

Graph = POINTER TO GraphDesc;

GraphDesc = RECORD

cons, lastcons: Constellation;

stars, laststar: Star;

seltime: LONGINT

END ;

Although our persistency mechanism of Section 6.3 would work with the above

data structures, we want to customize it to avoid a number of problems. One is

the deep recursion which would occur due to the sequentially linked lists.

Another is the role of the selection flag and the refcnt field (the number of

constellations depending on a star), which are not necessary to store, and the

last one is the array s, of which only nofstars elements are used.

Note: If we look at the mentioned problems more closely, we see that they are all in

some way symptoms of a disease rather than the disease itself. Selection, for instance,

could be regarded as a property of the view and not the model, which would remove

the sel field from Star objects. The array of stars could be expressed as an open array,

thereby being totally filled and avoiding a restriction on the number of stars. The

sequential lists could be replaced by an appropriate two dimensional tree structure,

which could also be used to speed up redraw operations significantly. Also, it would

be more convenient for programmers of more complex extensions to eliminate the

refcnt field. The reasons why we implemented it not this way is to keep the number of

objects on the heap small and the editor's core simple. We note that applying the

persistency mechanism did not introduce the problems but made them visible.

The following procedures have been used for customizing the persistency

mechanism. (The type cast in the first line of each procedure is only necessary

because the OP2 compiler [Cre90] does not allow type guards on untyped

pointers.)

PROCEDURE WriteGraph (VAR m: Files2.Map; VAR R: Files.Rider; o: REFANY);

VAR G: Graph; s: Star; c: Constellation;

BEGIN G := SYSTEM.VAL(Graph, o);

s := G.stars; WHILE s # NIL DO m.WriteClosure(R, s); s := s.next END ;

m.WriteClosure(R, NIL);

c := G.cons; WHILE c # NIL DO m.WriteClosure(R, c); c := c.next END ;

m.WriteClosure(R, NIL);

ENDWriteGraph;



122 Applications of Metaprogramming

PROCEDURE WriteCons (VAR m: Files2.Map; VAR R: Files.Rider; o: REFANY);

VAR c: Constellation; i: INTEGER;

BEGIN c := SYSTEM.VAL(Constellation, o);

Files.WriteNum(R, c.nofstars);

FOR i := 0 TO c.nofstars − 1 DO m.WriteClosure(R, c.s[i]) END

ENDWriteCons;

PROCEDURE WriteStar (VAR m: Files2.Map; VAR R: Files.Rider; o: REFANY);

VAR s: Star;

BEGIN s := SYSTEM.VAL(Star, o);

Files.WriteNum(R, s.x); Files.WriteNum(R, s.y)

ENDWriteStar;

PROCEDURE ReadGraph (VAR m: Files2.Map; VAR R: Files.Rider; o: REFANY); ...

PROCEDURE ReadCons (VAR m: Files2.Map; VAR R: Files.Rider; o: REFANY); ...

PROCEDURE ReadStar (VAR m: Files2.Map; VAR R: Files.Rider; o: REFANY); ...

The corresponding Read_procedures follow easily by inverting the

Write_procedures. Recall that the introduced customization is completely

transparent to subclasses of Constellation such as rectangles or lines.

Performance measurements have shown that the mechanism provides

acceptable performance, which is for both reading and writing about a factor of

two below a carefully hand_crafted implementation. This means that except for

very large graphics the difference in speed is not observable by the user.

Get/Set Attributes

Changing object attributes such as line width, fill pattern or arrow kind can also

benefit from meta_programming. We provide two commands Get and Set which

allow to read and write the value of the specified attribute of the most recent

graphics selection. Two examples are "Kepler.Get linewidth" or "Kepler.Set

linewidth 8", which look for the attribute linewidth of the selected objects and,

if present, display or set it. Of course, a class can also provide additional

commands to handle attributes which cannot be handled generically. Note that

in the procedure Set below the module name GenericObjects is again

abbreviated as GO.

PROCEDURE Set*;

VAR S: Texts.Scanner; R: GO.RecordRider; R2: GO.ArrayRider;

attr, field: ARRAY 32 OF CHAR; vis: BOOLEAN;

BEGIN

open scanner S; Texts.Scan(S);

IF S.class = Texts.Name THEN

COPY(S.s, attr); Texts.Scan(S);

for each selected constellation c do
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GO.OpenRider(R, c); GO.SetLevel(R, 1);

LOOP

IF R.mode = GO.None THEN EXIT END ;

R.GetLocation(field, vis);

IF (field = attr) & (vis = GO.Exported) THEN EXIT END ;

R.Skip

END ;

IF R.mode # None THEN

CASE R.class OF

| GO.Char: IF S.class = Texts.Char THEN R.WriteChar(S.ch) END

| GO.Bool: IF S.class = Texts.Name THEN R.WriteBool(S.s = "TRUE") END

| ...

| GO.Array: GO.ZoomArray(R2, R);

IF R2.class = GO.Char THEN WriteString(R, S.s) END

ELSE

END

END

end foreach;

update views

END

END Set;

6.5 Data Structure Visualization

Our next example is built on top of the graphics editor introduced in the

previous section. It is a facility for visualization of dynamic data structures in a

two dimensional way, i.e. as a graphics rather than as a text. For this purpose, it

suffices to extend Kepler by two specialized classes, one for displaying heap

objects and one for displaying connections between those objects. In the

following, we shall outline the functionality of the introduced classes without

going into details of the implementation.

The visualization facility is based on the observation that it is in general not

possible to display an arbitrary data structure with an appropriate layout

automatically. This would be as complex as solving the routing and placement

problem in VLSI design tools and it would in most cases display a lot of data

which the user is not interested in. Therefore, we provide a way for interactively

dereferencing pointers and give the user control over placement of dereferenced

objects. Starting from a root object, which might be taken from a trap viewer for

instance, the user can point to a pointer field and drag the mouse to the place

where the dereferenced object is to be displayed. Fig. 6.4 outlines this activity.
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2. dereferenced object

ch = "Y"

s = "xyz"

...

1. root object

next ↑

ch = "x"

s = "abc"

...

next ↑

Fig. 6.4 − Dereferencing a pointer

ObjectView

Heap objects are visualized by instances of class ObjectView. The contents of

the object is stored in a text which is produced by GenericObjects.WriteObj.

When displayed, this text is surrounded by a rectangle. For handling of

structured components, level specifies the number of expanded nesting levels. A

reference to the underlying heap object is kept in field o. This field is necessary

for detection of already displayed objects for instance in case of cyclic referen_

ces. A visual feedback is given in such cases by highlighting the identified object

instead of inserting a new one.

TYPE

ObjectView = POINTER TO ObjectViewDesc;

ObjectViewDesc = RECORD

(KeplerFrames.ButtonDesc)

text: Texts.Text;

level: INTEGER;

o: REFANY

END;

Connection

References between heap objects are visualized by instances of class

Connection. Connections are based on three handles, the top_left edge of the

root object, an in_between handle and the top_left edge of the target object.

This allows to display connections in an intuitive way for all relevant situations.

A nice side_effect of the editing model used in Kepler is that if a view object is

moved, all dependent connection objects are moved too. Connection objects

have to know their vertical position in the root object for drawing themselves at

the right place. This information is stored in field yoff as offset from the top

boundary.
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TYPE

Connection = POINTER TO ConnectionDesc;

ConnectionDesc = RECORD

(KeplerGraphs.ConstellationDesc)

yoff: INTEGER

END ;

For convenience reasons, connections have a number of drawing heuristics built

in. The routing of connections can be affected later on by moving handle 1.

Drawing of connections always starts at coordinates (x0, y0 − yoff) and ends at

coordinate (x2, y2). Connections are placed behind object views as shown in

Fig. 6.5.

0
1 2

forward pointer backward pointerdown pointers

1 1

1

x2 > x1 x2 <= x1 & y0 − yoff > y2 x2 <= x1 & y0 − yoff <= y2

0

2 2

2 0

Fig. 6.5 − Display heuristics for Connections

It should be noted that it is also possible to provide for the automatic display of

composite data structures such as sequential lists or binary trees. We

implemented two commands List and BinTree for exactly this purpose. List takes

a pointer field name as parameter and displays a sequential list rooted in the

star marked object by placing the objects horizontally aligned. BinTree takes two

parameters, the name of a left pointer field and the name of a right pointer

field. It places the objects as a binary tree rooted in the star marked object such

that no overlappings occur.

It is also possible to provide additional commands for application specific

display of composite data. For the development of a compiler which is based

on an abstract syntax tree, for example, it could be helpful to provide a

command which displays (parts of) this tree. If application specific knowledge

is available, the placement problem becomes very simple in most cases.

Compared with tools available in commercial programming systems

(debuggers, browsers, inspectors), the presented approach is distinguished by

its simplicity and extensibility. It has been implemented in a couple of days

after the requirements had become clear. This shows that our facilities for

generic access to data structures are useful for a number of practical examples
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and concludes the first part of this chapter. The second part deals with

application of facilities for controlling procedure activations.

6.6 Command Interpretation

A first example for controlling procedure activations is a command interpreter

which activates arbitrary procedures. This is a generalization of standard Oberon

command interpretation, where only parameterless procedures can be activated.

We use a simplified Oberon procedure_call_syntax for commands and allow

literals and designators as arguments. Both the command name and the

designators must be qualified with a module name (i.e. the designators refer to

global variables). As a simplification, we use the dot_notation of record field

selection for array indexing as well.

command = qualident ["↑" | param {param} ].

param = designator | literal.

designator = qualident { "." (name | number) }.

literal = intconst | realconst | stringconst ... .

qualident = name "." name.

Examples of commands are:

Out.Open

Out.Int 42 2

Out.Int Oberon.curCol 3

Viewers.This 100 100

The implementation of the command interpreter consists of a scanner and a

simple parser. The built_in Oberon text scanner has been used for scanning and

the parser essentially consists of two procedures Params and Desig. In the

following code fragments, the module names GenericObjects and

ActiveProcedures have been abbreviated to GO nad AP respectively.

VAR res: INTEGER; S: Texts.Scanner; W: Texts.Writer;

PROCEDURE Exec;

VAR mod, proc: ARRAY 64 OF CHAR; p: Libraries.Object;

m: Modules.Module; ref: LONGINT; function: BOOLEAN;

msg: AP.InvocationMsg; R: AP.ParamRider;

BEGIN open scanner S; Texts.Scan(S); res := 0;

IF S.class = Texts.Name THEN

Split(S.s, mod, proc); m := Modules.ThisMod(mod);

IF m # NIL THEN
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m.GetRef(proc, ref); m.GetObj(ref, p);

IF (p # NIL) & (p IS Modules.Procedure) THEN

AP.GetParams(p(Modules.Procedure), msg.par);

Texts.Scan(S); Params(msg.par, function);

IF res = 0 THEN

IF p.handle = NIL THEN AP.Eval(p(Modules.Procedure), msg.par)

ELSE p.handle(p, msg)

END ;

IF function THEN AP.OpenRider(R, msg.par); GO.WriteItem(W, R)

ELSE RETURN

END

...

The top level procedure Exec sets up a text scanner, checks if the first token is a

name and splits this name into its two components. Then it tries to get the

corresponding procedure object, creates the parameter block, and parses the

actual parameters with a one symbol lookahead technique. Eventually, it calls

Eval to evaluate the procedure with the given parameters and displays a

possible function result value in the log viewer.

PROCEDURE Params(VAR par: AP.Parameters; VAR f: BOOLEAN);

VAR R: AP.ParamRider; name: ARRAY 32 OF CHAR; vis: SHORTINT;

BEGIN f := FALSE; AP.OpenRider(R, par);

IF R.mode # GO.None THEN R.GetLocation(name, vis);

IF name = "$" THEN f := TRUE; R.Skip END ;

WHILE (R.mode # GO.None) & (res = 0) DO

IF R.mode = GO.VarPar THEN Desig(R)

ELSE CASE R.class OF

| GO.Char:

IF S.class = Texts.Char THEN R.WriteChar(S.c); Texts.Scan(S)

ELIF S.class = Texts.String THEN R.WriteChar(S.s[0]); Texts.Scan(S)

ELSE Desig(R)

END

| ...

The task of the parser is not only to check whether the actual parameters are

well formed according to the grammar but also that they match with the

structure of the formal parameters. Therefore, the parser is controlled by the

formal parameter list which is represented by the parameter rider R. The parser

is actually not a simple recursive decent parser but table driven, where the table

is encoded in the parameter record. This mechanism can be seen easily in the

outermost loop, which terminates if the end of the formal parameter list has

been reached. It can also be seen in the handling of VAR_parameters, which

require a designator as actual parameter, whereas for value parameters both

literals and designators are allowed. As a side_task, procedure Params checks if
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the called procedure is a function by comparing the first element of the

parameter record with the special name "$", which serves as the name of

function result values.

PROCEDURE Desig(VAR R: GO.Rider);

VAR mod, var, rest: ARRAY 64 OF CHAR;

m: Modules.Module; R0: GO.RecordRider;

BEGIN

IF S.class = Texts.Name THEN

Split(S.s, mod, rest);

m := Modules.ThisMod(mod);

IF m # NIL THEN GO.OpenRider(R0, m.data);

Split(rest, var, rest); set(R0, var); Sel(R, R0, rest);

ELSE res := moduleNotFound

END ;

Texts.Scan(S)

ELSE res := identExpected

END

END Desig;

For the sake of simplicity, we assume that designators are written without white

space in between, thus, they can be treated as a single scanner token. This

token has to be split up into its components. Every component means either a

field selection or an array indexing. Pointers are assumed to be dereferenced

implicitly (as it is done in the Oberon language). Since the rider which holds

the resulting actual parameter (RecordRider or ArrayRider) is not known in

advance, we have to use a recursive selection mechanism and pass the actual

parameter at the end of the recursion as it can be seen in procedure Sel below.

An auxiliary procedure Set is assumed, which sets the rider position to the

location with the specified name.

PROCEDURE Sel(VAR R, R0: GO.Rider; VAR rest: ARRAY OF CHAR);

VAR var: ARRAY 32 OF CHAR; p: REFANY;

R1: GO.RecordRider; R2: GO.ArrayRider;

BEGIN

IF res = 0 THEN

IF rest # "" THEN

Split(rest, var, rest);

IF R0.class = GO.Record THEN

GO.ZoomRecord(R1, R0); Set(R1, var); Sel(R, R1, rest)

ELSIF R0.class IN {GO.Array, GO.DynArr} THEN

GO.ZoomArray(R2, R0); Set(R2, var); Sel(R, R2, rest)

ELSIF R0.class = GO.Pointer THEN

R0.ReadPtr(p); GO.OpenRider(R1, p); Set(R1, var); Sel(R, R1, rest)

ELSE res := structuredTypeExpected
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END

ELSE R.Pass(R0, res)

END

END

END Sel;

A tool with the functionality of our generalized command interpreter is

sometimes called a test frame generator (not to be confused with a test case

generator). It enables the programmer to invoke (test) individual procedures

without having to build an environment for providing the parameters and for

displaying the results. Test frame generators are usually applied to a module

definition and generate a program which acts as a test bed for the specified

module. Compared to this sort of tool, our command interpreter is much easier

to implement (more than a factor of 10 shorter if compared to a test frame

generator that has been implemented by the author but never released) and at

least as convenient to use. There are no temporary or hidden files involved,

there is no need for a compiler and last but not least, it is a general purpose

tool which covers the functionality of a test frame generator more or less by

accident. The main task is the execution of possibly parameterized commands,

which in Oberon serve as the atomic entities of interaction between the user

and the computer.

6.7 A Tracing Utility

The next example shows the usage of procedure handlers. We implement a

simple facility which allows to trace procedure calls by installing a handler in

the corresponding procedure object. After every call of a traced procedure, its

parameter record is appended in textual form to the log text. Value parameters

are printed as they appear before the call and VAR_parameters and function

results as they appear after the call. A pitfall is the recursive activation of the

tracing facility while generating the trace output. To avoid tracing the tracer, a

global tracing flag is used, which is initially set to FALSE.

PROCEDURE Tracer(p: Libraries.Object; VAR M: Libraries.ObjectMsg);

VAR name: ARRAY 24 OF CHAR; R: AP.ParamRider;

BEGIN

WITH M: AP.InvocationMsg DO

AP.Eval(p(Modules.Procedure), M.par);

IF ˜tracing THEN tracing := TRUE;

p.lib.GetName(p.ref, name);

Texts.WriteString(W, "tracing "); Texts.WriteString(W, p.lib.name);

Texts.Write(W, "."); Texts.WriteString(W, name); Texts.WriteLn(W);
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AP.OpenRider(R, M.par); GO.WriteObj(W, R, 0, 1);

Texts.Append(Oberon.Log, W.buf);

tracing := FALSE

END

ELSE

END

END Tracer;

The tracing facility can be enabled on a per procedure basis, by an auxiliary

command which callls AP.InstallHandle for a given procedure. For example,

tracing Oberon's display broadcast mechanism would be enabled by a call of

AP.InstallHandle(This("Viewers.Broadcast"), Tracer)

where an auxiliary procedure This is assumed to map qualified identifiers to

procedure pointers.

6.8 Notification

As an example for filter procedures, we assume the following situation. A

graphical user interface tries to display all files as icons on a desktop. Whenever

a change in the file directory is made, the desktop should be kept consistent. If

the Files module does not know about desktops and does not provide any

means for notification, there is no traditional way but to periodically check the

directory for changes. This is obviously unsatisfying and can be solved easily by

using special filters for the procedures which manipulate the file directory. In

principle, this could also be done by using a procedure handler, but in this case,

we know exactly which procedures we want to monitor. We shall look at the

implementation of filters for two examples, deleting and renaming of files. The

filters are essentially notifiers (they notify objects about events which they might

be interested in) and are therefore called NotifyDelete and NotifyRename

respectively. In the standard Oberon Files module, delete and rename

operations are specified with the following signatures:

PROCEDURE Delete (name: ARRAY OF CHAR; VAR res: INTEGER);

PROCEDURE Rename (old, new: ARRAY OF CHAR; VAR res: INTEGER);

The notifiers are declared in a different module. In our example, they would

most probably be implemented in one of the modules that implement the

graphical desktop. In the same module, a new message type is introduced
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(FileDirMsg). Messages of this type can be broadcast to the display space,

where a desktop viewer can respond to them appropriately.

TYPE

FileDirMsg = RECORD

(Display.FrameMsg)

id: INTEGER;

name, new: ARRAY 32 OF CHAR;

END ;

PROCEDURE NotifyDelete (name: ARRAY OF CHAR; VAR res: INTEGER);

VAR M: FileDirMsg;

BEGIN

Files.Delete (name, res);

IF res = 0 THEN

COPY(name, M.name); M.id := del; Viewers.Broadcast(M)

END

END NotifyDelete;

PROCEDURE NotifyRename (old, new: ARRAY OF CHAR; VAR res: INTEGER);

VAR M: FileDirMsg;

BEGIN

Files.Rename (old, new, res);

IF res = 0 THEN

COPY(old, M.name); COPY(new, M.new); M.id := ren; Display.Broadcast(M)

END

END NotifyRename;

The filters must be installed by Push operations which are typically performed in

a module's body.

AP.Push(This("Files.Delete"), This("module.NotifyDelete"));

AP.Push(This("(Files.Rename"), This("module.NotifyRename"));





7 Summary and Conclusions

This last chapter summarizes what has been achieved, outlines areas for future

research and tries to draw the conclusions of this project with respect to the

programming language Oberon in particular and with respect to the meta_

programming approach in general.

7.1 Summary

We have introduced a generalized notion of persistent objects and object

libraries which also covers components of programs such as types, procedures

and modules. In our approach, a module is considered to be a persistent

collection of type and procedure objects, thus it is a special kind of object

library. Since there may be a potentially unlimited number of different library

kinds, we have introduced an extensible mechanism for library handling which

includes dynamic library loading and unloading. Module loading in this

framework is just a special instance of a more general task. We have applied

this framework to the design of a meta_level architecture which introduces

types, procedures and modules as first_class objects.

Based on this architecture, a metaprogramming protocol has been defined

which consists of two main parts. The first part provides generic access to

arbitrary data structures by introducing the concept of hierarchical riders, which

can be used to iterate over objects allocated on the heap, global data of

modules, procedure activation records and parameter lists. Riders can be used

to zoom into structured components of objects down to an arbitrary nesting

level. The second part allows controlling procedure activations by means of

reifying parameter lists and providing explicit access to the evaluation of

procedures. By treating procedures as objects, which in general have behavior

also, we have introduced the concept of active procedures. An active procedure

has a message handler and can respond to messages such as invocation

requests in its own, possibly application_dependent, way.

We have shown a simple and efficient implementation for safe library

loading and unloading and we have discussed the implications with respect to

garbage collection. A practical approach for the handling of large libraries and

for solving the finalization problem has been introduced. We have also shown
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that an implementation of the introduced metaprogramming protocol is

possible without introducing undue complexity or inefficiency.

Some of our results can be applied in isolation and have already found

their way into standard Oberon implementations. Safe library loading, for

instance, is now implemented in most ETH_Oberon systems. The finalization

mechanism and the handling of subobjects could also be implemented

independently of the metaprogramming facilities.

7.2 FutureWork

At the time when our work began, the notion of metaprogramming was a

rather exotic concept for the general_purpose programming community. Since

then, the interest in this approach has increased significantly and new

application areas have become apparent. Metaprogramming is now considered

to be a promising approach for all kinds of interfacing tasks including

interfacing to graphical user interface toolkits, interfacing to data base systems,

and interfacing between multiple processes or computers with remote

procedure calls or by sending objects across a network.

For the latter, our approach of unifying persistent object libraries and

modules seems to be relevant. An object server could for instance be built that

would allow accessing remote objects stored in a library. This library could have

a number of imports including the modules needed to implement the exported

objects. Recall that the type tag of an object and procedure variables are

nothing but references to possibly imported types and procedure objects. Thus,

a simple protocol could be defined that not only allows transferring an object's

local and imported data, but also transferring the implementation of an object,

i.e. its code. This transparent handling of behavior in addition to contents

would of course also provide new challenges to the designers of such systems.

The most obvious problem is expected to be security. The behavior of an object

must be trusted, since an object can get control without explicit user inter_

action. Another problem is the machine dependence of today's compiled

modules. This could be solved by using a portable module distribution format

and delaying the machine_specific code generation until installation time or −

more traditionally − by providing multiple object file versions on the server.

If the idea of object servers is put into a commercial context, the flat name

space for libraries could become an obstacle. In fact, any vendor could pollute

the library name space with names being used by other vendors for different

purposes and thereby could cause incompatibilities. It will probably be

necessary to introduce one additional level, which provides locality for libraries
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supplied by different vendors. Let us introduce the term package for such a

group of libraries. Packages would export library names and import other

packages. A package name would probably be subject to trademark, hence it

would be world_wide unique. Packaging will probably not be introduced at the

language level, but at the level of the library loading framework, i.e. at the

system level.

A different topic is the application of metaprogramming facilities for

implementing or interfacing to object_oriented data bases. It is expected that for

supporting this kind of applications, dereferencing pointers must be under

explicit programmer control. This can either be done by using the protection

mechanism of memory management units and page fault handlers or − similar

to our implementation of active procedures − by intercepting pointer access by

special in_lined code. Since object_oriented data bases are a rather new research

topic and it is not clear yet what an object_oriented data base really is, we have

not further inquired into this topic.

7.3 Implications for Programming Language Design

During the design and implementation of our meta_level architecture for

Oberon, some minor weaknesses of the language Oberon_2 have been

detected. Some of the problems have to be seen in connection with the

particular requirements of metaprogramming, others are more general. Most

points refer to the type system, which is not surprising since the type system is

at the very heart of a strongly typed programming language such as Oberon.

The following discusses these points and outlines proposals for possible

improvements. In order to avoid a wrong picture, we want to emphasize that

our experience with the language Oberon_2 was very positive in general and

that we do not suggest an immediate language update. The following points

might be taken as ideas for discussion and in case other projects uncover

similar problems might lead to extending the language slightly.

Untyped Pointers

We have used the type REFANY in some places in our metaprogramming

protocol. This type is actually defined as TYPE REFANY = SYSTEM.PTR, which

means that it is not expressed within proper Oberon_2 but escapes to pseudo

module SYSTEM. This module is intended for doing system_level programming

where it is necessary to circumvent type checking when operating directly on

untyped memory. However, we wanted to use type REFANY not to operate on

untyped but on arbitrary typed memory. What we want is fully dynamic type
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checking as opposed to type casting. The language Modula_3 [Nel91]

introduced type REFANY for exactly this purpose and inspired the use of

REFANY in this work. In Modula_3, any pointer variable can be assigned to

variables of type REFANY, the reverse assignment needs a type guard, though. In

addition, we would also like that arbitrary procedures and procedure variables

can be assigned to REFANY. In principle it would be possible to live with

SYSTEM.PTR if only type guards and type tests were allowed on variables of this

type. In the portable Oberon_2 front_end this is currently not possible.

Abstract Methods

Oberon_2 does not provide any means for expressing the difference between an

abstract (not implemented) and a concrete (implemented) method. Abstract

methods have to be expressed as concrete methods with a HALT statement in

their body. This is not a severe restriction but concerning the importance of

abstract methods for implementors of subclasses an unpleasant shift from

static to dynamic checking. Neither for the programmer nor for the compiler is

it visible from the definition of a type whether a procedure bound to this type

must be overridden or not. A possible solution for this problem may be to

denote abstract methods within record types and concrete ones outside as it is

done now. One advantage of this notation is that it would not invalidate any

existing programs.

TYPE

Library = POINTER TO LibraryDesc;

LibraryDesc = RECORD

...

PROCEDURE (L: Library) GetImport (n: INTEGER; VAR imp: Library);

END;

Module = POINTER TO ModuleDesc;

ModuleDesc = RECORD (LibraryDesc)

...

END;

PROCEDURE (M: Module) GetImport (n: INTEGER; VAR imp: Library);

Another more pragmatic solution, which avoids any syntax change at all, would

be to employ Oberon's forward_declaration mechanism and to regard

unresolved forward methods as being abstract.

PROCEDURE ↑ (L: Library) GetImport (n: INTEGER; VAR imp: Library);
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Comparison of Procedure Variables

Oberon does not allow to compare a procedure variable with a procedure

constant. It is necessary to assign the procedure constant to an auxiliary

procedure variable first and to compare the two variables. The restriction of

using procedure constants only for assignments seems to be rather accidental

and leads to the usage of unnecessary auxiliary variables.

7.4 Conclusions

The overall conclusion which can be drawn from this project is that

metaprogramming in a statically typed and compiled programming language

such as Oberon is indeed feasible and useful. With the only exception of

dynamically typed pointers as mentioned above, the type system was never in

the way of our goals but helped to structure and document the system. For the

demanding tasks of future software systems, metaprogramming seems to be a

promising technique which should be part of the standard repertoire of every

software engineer. The presented applications show that programs using

meta_level facilities are as simple as programs that don't. In fact,

metaprogramming does not introduce meta_level problems but is just like

normal programming but with other programs and data structures as its

domain.
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DEFINITION Libraries;

CONST

Done = 0; TypeNotFound = 1; LibNotFound = 2; InvalidLib = 3;

InvalidKey = 4; OutOfMemory = 5; ClientsExist = 7;

TYPE

Name = ARRAY 20 OF CHAR;

Library = POINTER TO LibraryDesc;

Object = POINTER TO ObjectDesc;

LibraryDesc = RECORD

name−: Name;

nofClients−, nofImports, nofObjects: LONGINT;

init, fini: PROCEDURE (L: Library);

PROCEDURE (L: Library) GetImport (n: LONGINT; VAR imp: Library);

PROCEDURE (L: Library) GetName (ref: LONGINT; VAR name: ARRAY OF CHAR);

PROCEDURE (L: Library) GetObj (ref: LONGINT; VAR o: Object);

PROCEDURE (L: Library) GetRef (name: ARRAY OF CHAR; VAR ref: LONGINT);

PROCEDURE (L: Library) GetVersion (ref: LONGINT; VAR key: LONGINT);

PROCEDURE (L: Library) Unmark (all: BOOLEAN);

END ;

ObjectMsg = RECORD END ;

Handler = PROCEDURE (O: Object; VAR M: ObjectMsg);

ThisProc = PROCEDURE (name: ARRAY OF CHAR): Library;

EnumProc = PROCEDURE (L: Library; VAR cont: BOOLEAN);

ObjectDesc = RECORD

lib: Library;

ref: LONGINT;

handle: Handler;

END ;

VAR

imported, importing: Name;

res: INTEGER;

PROCEDURE This (name: ARRAY OF CHAR): Library;

PROCEDURE Free (L: Library);

PROCEDURE Install (ext: ARRAY OF CHAR; this: ThisProc);

PROCEDURE Enumerate (do: EnumProc);

PROCEDURE Lookup (name: ARRAY OF CHAR; VAR L: Library);

END Libraries.
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DEFINITION Modules;

IMPORT Libraries;

TYPE

Module = POINTER TO ModuleDesc;

ModuleDesc = RECORD (Libraries.LibraryDesc)

nofcoms−, nofrecs−, nofrefs−, nofActiveProcs: INTEGER;

entries−, names−, SB−, code−, refs−: LONGINT;

data−: Data;

imp−: ARRAY 32 OF Module;

PROCEDURE (M: Module) GetImport (n: LONGINT; VAR imp: Libraries.Library);

PROCEDURE (M: Module) GetName (ref: LONGINT; VAR name: ARRAY OF CHAR);

PROCEDURE (M: Module) GetObj (ref: LONGINT; VAR o: Libraries.Object);

PROCEDURE (M: Module) GetRef (name: ARRAY OF CHAR; VAR ref: LONGINT);

PROCEDURE (M: Module) GetVersion (ref: LONGINT; VAR key: LONGINT);

PROCEDURE (M: Module) Unmark (all: BOOLEAN);

END ;

Procedure = POINTER TO ProcedureDesc;

ProcedureDesc = RECORD (Libraries.ObjectDesc) END ;

Type = POINTER TO TypeDesc;

TypeDesc = RECORD (Libraries.ObjectDesc)

info−: LONGINT;

level−: INTEGER;

base−: ARRAY 8 OF Type;

END ;

Command = PROCEDURE;

PROCEDURE ThisCommand (mod: Module; name: ARRAY OF CHAR): Command;

PROCEDURE ThisMod (name: ARRAY OF CHAR): Module;

END Modules.
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DEFINITION GenericObjects;

IMPORT SYSTEM, Modules, Texts;

CONST

(* type classes *)

Byte = 1; Bool = 2; Char = 3; SInt = 4; Int = 5; LInt = 6;

Real = 7; LReal = 8; Set = 9; Pointer = 13; Procedure = 14;

Array = 15; Record = 16; DynArr = 17;

(* object modes *)

None* = 0; Var* = 1; VarPar* = 2; Elem* = 3; Fld* = 4;

(* visibility *)

Private = 0; Exported = 1; ReadOnly = 2;

TYPE

REFANY = SYSTEM.PTR;

Rider = RECORD

mode−, class−: SHORTINT;

PROCEDURE (VAR R: Rider) GetLocation (VAR n: ARRAY OF CHAR; VAR vis: SHORTINT);

PROCEDURE (VAR R: Rider) Pass (VAR Rs: Rider; VAR res: INTEGER);

PROCEDURE (VAR R: Rider) ReadBool (VAR x: BOOLEAN);

PROCEDURE (VAR R: Rider) ReadChar (VAR x: CHAR);

PROCEDURE (VAR R: Rider) ReadInt (VAR x: INTEGER);

PROCEDURE (VAR R: Rider) ReadLInt (VAR x: LONGINT);

PROCEDURE (VAR R: Rider) ReadLReal (VAR x: LONGREAL);

PROCEDURE (VAR R: Rider) ReadProc (VAR x: REFANY);

PROCEDURE (VAR R: Rider) ReadPtr (VAR x: REFANY);

PROCEDURE (VAR R: Rider) ReadReal (VAR x: REAL);

PROCEDURE (VAR R: Rider) ReadSInt (VAR x: SHORTINT);

PROCEDURE (VAR R: Rider) ReadSet (VAR x: SET);

PROCEDURE (VAR R: Rider) ReadString (VAR x: ARRAY OF CHAR);

PROCEDURE (VAR R: Rider) Skip;

PROCEDURE (VAR R: Rider) WriteBool (x: BOOLEAN);

PROCEDURE (VAR R: Rider) WriteChar (x: CHAR);

PROCEDURE (VAR R: Rider) WriteInt (x: INTEGER);

PROCEDURE (VAR R: Rider) WriteLInt (x: LONGINT);

PROCEDURE (VAR R: Rider) WriteLReal (x: LONGREAL);

PROCEDURE (VAR R: Rider) WriteProc (x: REFANY);

PROCEDURE (VAR R: Rider) WritePtr (x: REFANY);

PROCEDURE (VAR R: Rider) WriteReal (x: REAL);

PROCEDURE (VAR R: Rider) WriteSInt (x: SHORTINT);

PROCEDURE (VAR R: Rider) WriteSet (x: SET);

PROCEDURE (VAR R: Rider) WriteString (VAR x: ARRAY OF CHAR);

END ;
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ActivationRider = RECORD (Rider)

module−, proc−: ARRAY 64 OF CHAR;

retpc−, relpc−, dlink−: LONGINT;

PROCEDURE (VAR R:ActivationRider) GetLocation(VAR n:ARRAY OF CHAR; VAR vis:SHORTINT);

END ;

ArrayRider = RECORD (Rider)

len−, index−: LONGINT;

PROCEDURE (VAR R: ArrayRider) GetLocation (VAR n: ARRAY OF CHAR; VAR vis: SHORTINT);

PROCEDURE (VAR R: ArrayRider) ReadProc (VAR x: REFANY);

PROCEDURE (VAR R: ArrayRider) ReadPtr (VAR x: REFANY);

PROCEDURE (VAR R: ArrayRider) ReadString (VAR x: ARRAY OF CHAR);

PROCEDURE (VAR R: ArrayRider) Skip;

PROCEDURE (VAR R: ArrayRider) WriteProc (x: REFANY);

PROCEDURE (VAR R: ArrayRider) WritePtr (x: REFANY);

PROCEDURE (VAR R: ArrayRider) WriteString (VAR x: ARRAY OF CHAR);

END ;

RecordRider = RECORD (Rider)

level−: SHORTINT;

PROCEDURE (VAR R: RecordRider) GetLocation (VAR n: ARRAY OF CHAR; VAR vis: SHORTINT);

END ;

RefElem = POINTER TO RefElemDesc;

RefElemDesc = RECORD (Texts.ElemDesc)

proc: BOOLEAN;

p: REFANY;

END ;

PROCEDURE OpenRider (VAR R: RecordRider; o: REFANY);

PROCEDURE OpenFrame (VAR R: ActivationRider; sp, pc: LONGINT);

PROCEDURE SetLevel (VAR R: RecordRider; level: INTEGER);

PROCEDURE SetIndex (VAR R: ArrayRider; idx: LONGINT);

PROCEDURE ZoomRecord (VAR R: RecordRider; VAR base: Rider);

PROCEDURE ZoomArray (VAR R: ArrayRider; VAR base: Rider);

PROCEDURE WriteItem (VAR W: Texts.Writer; VAR R: Rider);

PROCEDURE WriteObj (VAR W: Texts.Writer; VAR R: Rider; expand, indent: INTEGER);

PROCEDURE Type (o: REFANY): Modules.Type;

PROCEDURE New (VAR o: REFANY; t: Modules.Type);

PROCEDURE AllocRef;

PROCEDURE NewRef (proc: BOOLEAN; p: REFANY): RefElem;

PROCEDURE HandleRef (E: Texts.Elem; VAR M: Texts.ElemMsg);

END GenericObjects.
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DEFINITION ActiveProcedures;

IMPORT Libraries, GenericObjects, Modules;

TYPE

Parameters = RECORD END ;

InvocationMsg = RECORD (Libraries.ObjectMsg)

par: Parameters;

END ;

ParamRider = RECORD (GenericObjects.Rider)

PROCEDURE (VAR R: ParamRider) GetLocation (VAR n: ARRAY OF CHAR; VAR vis: SHORTINT);

PROCEDURE (VAR Rd: ParamRider) Pass (VAR Rs: GenericObjects.Rider; VAR res: INTEGER);

END ;

PROCEDURE GetParams (p: Modules.Procedure; VAR par: Parameters);

PROCEDURE OpenRider (VAR R: ParamRider; VAR par: Parameters);

PROCEDURE Eval (P: Modules.Procedure; VAR par: Parameters);

PROCEDURE SetProcHandle (p: Modules.Procedure; handle: Libraries.Handler);

PROCEDURE FilterHandle (P: Libraries.Object; VAR M: Libraries.ObjectMsg);

PROCEDURE Push (P, F: Modules.Procedure);

PROCEDURE Pop (P: Modules.Procedure): Modules.Procedure;

END ActiveProcedures.
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