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Résumé

L'évolution incessante du matériel informatique permet la construction d'ordi_

nateurs toujours plus performants. Parallèlement, de nouveaux concepts et de

nouvelles techniques de programmation deviennent nécessaires afin de maîtri_

ser la complexité grandissante des logiciels. L'une de ces techniques, la

compilation séparée de modules, a fait ses preuves en Modula_2 et en Obéron,

entre autres langages de programmation fortement typés.

Le module, qui est à la fois l'unité structurelle et l'unité de compilation des

programmes, est interchangeable sans affecter les autres modules d'un système.

Toutefois, si l'interface du nouveau module est différente de l'ancienne, les

modules clients de cette interface modifiée doivent être recompilés afin de

maintenir la cohérence du système. L'éditeur de liens vérifie habituellement que

la clef réelle de chaque interface importée est identique à la clef attendue par le

client, une différence indiquant une incohérence. Ce modèle simple et efficace

n'est pas très souple, puisqu'une légère modification d'interface, telle l'insertion

d'une nouvelle procédure, par exemple, peut provoquer de nombreuses recom_

pilations inutiles.

Cette thèse présente deux nouveaux modèles de vérification fine de cohé_

rence, ainsi que leur mise en oeuvre. Ces modèles permettent l'extension

d'interfaces de modules compilés séparément sans qu'une recompilation des

clients ne soit nécessaire, ce qui est particulièrement utile dans des systèmes

avec chargement dynamique, où les clients d'une bibliothèque de modules ne

sont pas forcément connus lors de la révision ou de l'extension de cette

bibliothèque. L'édition d'interface sans conséquence ne se limite pas à des

extensions, puisque la modification d'un article existant n'invalide pas les

clients n'utilisant pas cet article. Et même s'ils l'utilisent d'une manière encore

compatible après modification, une recompilation n'est pas plus indispensable.

Ces techniques ont été implantées dans le Système Obéron, mais elles ne

sont spécifiques ni au Langage, ni au Système Obéron, et pourraient être

appliquées à n'importe quel système de programmation modulaire pour en

améliorer la sécurité, la flexibilité, ou tous les deux à la fois. De plus, ces

techniques ne se présentent pas au programmeur sous forme d'outils dont

l'utilisation reste facultative, mais elles sont entièrement intégrées au compi_

lateur ainsi qu'au chargeur de modules. La sécurité ne doit pas être offerte en

option.



Abstract

As continuous evolution in hardware results in more powerful computers, new

programming techniques and concepts must be developed to master the

consequently increasing software complexity. Separate compilation of modules

is such a technique that has proven valuable in Modula_2 and in Oberon,

among other strongly_typed programming languages.

The module is both the structural unit and the compilation unit of pro_

grams. Replacing a module by a new one does not affect the rest of the system,

provided that the module interface has not changed. Otherwise, client modules

of the modified interface have to be recompiled to maintain system consis_

tency. The last opportunity to detect an inconsistency is when modules are

linked to form an executable unit. The check usually consists in comparing, for

each imported interface, the expected key of that interface, as known at

compilation time of the client, with the key of the effectively supplied interface.

A mismatch indicates an inconsistency. This model is simple and efficient, but

not very flexible. Indeed, a minor modification of an interface, such as the

insertion of a new procedure, can trigger many unnecessary recompilations.

This thesis presents two new models for fine_grained consistency checking

and their implementation. These models allow the interface of separately

compiled modules to be extended without requiring a recompilation of client

modules. This is particularly valuable in systems with dynamic loading, where

the clients of a library are not known when the library is revised or extended.

Interface editing that does not require client recompilation is not restricted to

extensions, since the modification of an existing item does not invalidate

clients not using this particular item. Even if they use it in a way that is

upward_compatible with the modification, they still do not need a recom_

pilation.

These techniques have been implemented in the Oberon System, but they

are neither specific to the Oberon Language nor to the Oberon System. They

can be applied to any modular programming system in order to improve its

safety, its flexibility, or both. Furthermore, these techniques are not available to

the programmer as a separate tool whose use remains optional, but have been

fully and transparently integrated into the compiler and module loader. Safety

must not be optional.





Chapter 1

Introduction

As long as computers have existed, programming techniques have evolved. The

first machines were programmed by setting a few dozen switches in adequate

positions or by plugging some cables into the right connectors. Nowadays,

software systems consist of thousands or even millions of bytes of code. Of

course, the performance attained by old and current computers, as well as the

kind of problems solved by them, cannot be compared.

In the computer pioneers' time, the whole difficulty resided in constructing

the machine. Its programming was almost a trivial task that did not need

special attention. The storage capacity was so low that only very simple

algorithms and small amounts of data could fit into the program and data

stores. The evolution of hardware made it necessary to develop software

techniques. Since then, computer programming has become a science of its

own.

Today, so much effort is invested in programming that software packages

often survive several hardware generations. This does not mean that computer

construction has become a trivial task. Computer architecture and computer

programming are now largely two independent sciences evolving almost separa_

tely and are not intertwined as in the past. One does not need to know how a

computer is built to be able to program it. Programming languages have created

a level of abstraction between software and the underlying hardware. There is

no longer a one_to_one correspondence between program statements and

machine instructions.

Constant improvements in data storage capacity and processing speed make

it possible to solve more and more complex problems. Consequently, more

complex algorithms and data structures are needed. The role of the software

engineer is to master this increasing complexity. He can model a problem by a

simpler one, with a very similar behavior. He can also break the problem into

several smaller problems easier to solve, and then put the results together

("divide et impera" technique). In practice, the structure of the program reflects

this stepwise refinement at several levels: the program consists of modules,

modules of procedures, and procedures of statements.
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Declarations and Statements

A module defines and refers to different kinds of objects: constants, variables,

types and procedures. A constant is a named value that cannot be changed

during the execution of the module. A variable is a named container that can

hold one value at a time. However, different values may be assigned to a variable

during the same execution. A type is associated with every constant or variable.

The type denotes the kind of value an object can have. It restricts the

manipulation of the object to some applicable operations specific to that type.

There are predefined types like integer, character, or boolean, and user_defined

types like pointers, arrays, or records. Procedures describe sequences of opera_

tions applied to objects. They may take expressions of constants and variables

as input parameters and yield result values. The operations, also called state_

ments, are executed when the procedure is called. A procedure may also be

assigned as a value to a variable. It is executed when the variable is referenced.

Before an object can be used, it has to be declared. The declaration provides

the object with a name for subsequent references to the object, and with a

type, which defines the nature of the object and its applicable manipulations. A

local declaration appears in the block of a procedure, opening the scope of the

declared object. The scope stretches from the point of the declaration to the

end of the procedure, and corresponds to the domain where the object is valid

and visible, and therefore accessible by statements or further declarations. A

scope also extends to locally (internally) declared procedures. However, it may

be masked by a declaration of an equally named object, in which case

subsequent appearances of the name always refer to the object of the inner_

most scope.

Scopes extend to the inside, but not to the outside: an object declared in a

local procedure cannot be accessed from within the enclosing procedure.

Objects local to a procedure are instantiated when the procedure is entered and

removed when the procedure returns. If they have to survive across several calls

of the procedure, they must be declared at least in the same block where the

procedure is declared or in some enclosing block.

Declarations appearing in the module block are global, in contrast to local

ones found in procedures. Sometimes, the term scope is employed with a

slightly different meaning: the local scope of a procedure designates the visibility

range of local declarations in the procedure block. Global declarations follow

the same scope rules as local declarations, and allow global objects to be

visible in every procedure of the module and in the module body itself, but not

outside of the module.
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The interface of the module actually breaks these rules in a controlled way,

making selected global objects visible and accessible to partner modules.

Modules and Interfaces

The concept of module or package is present in many modern programming

languages like Ada [1], Mesa [2], Modula_2 [3], Modula_3 [4], and Oberon [5,

6]. The module is not just a container for a collection of objects; it has several

purposes.

The enlarged picture of a car will not be very useful to understand its

functioning. A detailed list of the parts the car is made of will not help either. It

would be more appropriate to study the subsystems of the car separately, like

the chassis, the engine, the electric system, and so on. It is then important to

understand how these systems relate to each other. Their interactions define

the global behavior of the car.

Similarly, software systems are sometimes very difficult to understand, and

hence to implement, because they consist of many interacting components.

The programmer has to identify these components and to specify the inter_

actions between them by defining an interface for each of them. The module is

then the implementation of the component's interface and accordingly the

structural unit of the stepwise refinement process.

Interfaces play a central role in the design of a software system. They

represent an abstraction by giving a simplified view of the module to the

outside. Implementation details are not relevant to the clients of the interface.

The driver does not need to know how a car engine is built in order to press on

the accelerator. The module and its interface implement the concept of data

abstraction and code abstraction.

It is sometimes desirable to explicitly hide information in order to protect

this information. An ill_intentioned or ignorant client might invalidate program

invariants by directly manipulating visible data structures. It is preferable to

restrict access to sensitive information through a set of functions that can

maintain invariants by rejecting unauthorized operations. Similarly, a security

mechanism usually prevents the driver from engaging the reverse gear while the

car is still moving, which may damage the gearbox otherwise. Modules assure

data integrity and protection using data encapsulation and information hiding.

Interfaces also make it possible for a team to work on the same program.

Each programmer is responsible for the implementation of one or several

modules, the interfaces of which are defined at the beginning of the project. In

this way, implementers can work independently of each other, using the
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interface as a contract. Modules being in development can rely on interfaces of

other modules not yet implemented. The car constructor does not have to wait

for the chassis to be built before designing the engine. He just has to plan the

exact position of the bolts and the nuts that will fix the engine onto the chassis.

Therefore, interfaces serve as protocol between programmers and help to

coordinate larger software projects.

One does not have to reinvent the wheel each time a new car is built.

Different programs may use the same algorithms or the same look_and_feel

features. Writing a user interface of an application often consists of calling the

right routines from a graphical library in the right order. Libraries make their

resources available to applications based on them, contrary to closed programs

that can only be executed as they are, incapable of sharing parts of themselves

with similar applications. Libraries are implemented as a collection of modules,

where each module can be used by different clients. The module is the unit of

reusability.

It is not necessary to buy a new car after a tire blows out. Changing the tire

or the wheel usually solves the problem. One just has to be careful to replace it

with a compatible model. Parts of software systems can also be changed

without redesigning the whole system. Modules can be partially modified

without affecting other modules in the system. They can also be completely

replaced by a new implementation of the same interface. Modules are the unit

of compilation and unit of replacement.

A module is described by a text that is comprehensible for a person, but that

cannot be executed in that form by the computer. Processors expect executable

machine code, which is hardly readable for a human. This is why several forms

of the same module are necessary. The programmer writes a module in a

high_level programming language, which is machine_independent, and then

uses a compiler to translate it to a sequence of machine_dependent binary

instructions. The textual form is named the source text (or source file), and the

translated form is the object code (or object file). Since each module can be

compiled independently of the others, one speaks of separate or independent

compilation. The distinction between separate and independent compilation is

explained below.

Separate Compilation and Interface Checking

The role of the compiler is not only to translate the source text into object

code, but also to verify that the text is well_formed, in other words that it con_

forms to the syntax and semantics of the language. The context_independent
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syntax can be checked as the text is read sequentially without context infor_

mation, but checking the context_dependent syntax needs some additional

information about declared objects such as their type and locality. For this

purpose, the compiler manages an auxiliary data structure called the symbol

table. Actually, the data structure is more complex than a table, since it reflects

the hierarchy of nested scopes occurring in the program. Scopes themselves are

not represented by tables either, but by sorted trees of identifiers that allow

objects to be retrieved by their name.

The symbol table is constructed as declarations are parsed, and it is removed

after the compilation of each module. Contrary to declarations, statements do

not provide context information, and consequently do not contribute to the

symbol table. They are instead directly compiled to machine code, to inter_

mediate code, or to an abstract syntax tree for later processing.

The question coming naturally to one's mind now is: how can the compiler

guarantee that objects visible across module boundaries are used in con_

formance with type compatibility rules? In other words: how can object

declarations from one module be visible during the compilation of another

module? Obviously, a mechanism providing a symbol table for external objects

is necessary, a symbol table extract that is stored in order to be retrieved upon

other compilations.

Some programming languages and assemblers avoid this problem by intro_

ducing external declarations informing the compiler that an object with the

given name exists and is declared somewhere outside the currently compiled

module. Usually, the external declaration mentions neither the exact origin of

the object, nor its type, which makes interface checking impossible; and even if

the type is provided, there is no guarantee that it is the right one. In that case,

one speaks of independent compilation, in contrast to separate compilation, the

latter performing full interface checking. Independent compilation will not be

considered further here, since the techniques presented in this thesis improve

the implementation of import_export mechanisms in modular programming

languages like Modula_2 or Oberon, which already guarantee type safety across

module boundaries.

This safety cannot be guaranteed by the compiler alone, as smart as it may

be, without some support from the programming language in the form of clear

concepts and adequate language constructs. Modula_2, for example, provides

this support by both the definition module and the import list. A definition

module is a separate text file specifying the interface of a module. It contains

declarations of exported objects, making them available to partner modules,

also called clients of the interface. In order to access the external object X

exported by the interface of module M, a client N has to insert the name M in
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its import list, thereby extending the scope of the interface of M to the module

N. The qualified identifier M.X then refers to the imported object.

In Modula_2, the source text of a module consists of two files: the definition

and the implementation part. The definition part consists only of declarations

and does not contain any statements. Therefore, its compilation does not

produce code, but only a symbol table, which is linearized to a file called

symbol file. This symbol file is actually a compact representation of the interface

that will be reused to compile client modules of this interface. The compiler

restores the symbol table in memory from the symbol file each time the name

of this interface appears in the import list of the compiled module. On the

other hand, the compilation of the implementation part does not produce

persistent information, except the machine code which is written to a file called

object file.

Some implementations of Modula_2 [7, 8, 9], as well as Modula_3 [10], do

without symbol files. The symbol table is reconstructed by recompiling the

definition part each time a client imports the interface, which is less efficient,

but has the advantage to eliminate the burden of managing a supplementary

file for each module. A drawback of this method is that some interfaces may

rely on several other interfaces by reexporting imported types. Importing such

an interface forces the compiler to recompile many other interfaces, from which

only a few type declarations are needed. Depending on the module hierarchy, a

significant decrease in compiler performance may be observed. This problem

cannot occur with self_consistent symbol files, since they duplicate type decla_

rations imported from other modules (see next chapter).

In Oberon, definition and implementation parts are merged. Exported ob_

jects building the interface are marked in the text by an asterisk in their

declaration. This approach has several advantages: the programmer has always

the interface at hand, and works only on one document. This is especially

practical during the development of a module, where the definition and the

implementation must be held consistent after frequent modifications. For

documentation purposes, the definition part can be extracted automatically.

This simplification also releases the compiler from a nontrivial structural com_

parison between definition and implementation parts that is necessary to detect

defined but possibly not implemented objects.

Here is the example of a module M, client of modules A and B, exporting a

procedure Do and a variable max. First, the Modula_2 version:
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DEFINITION MODULE M;

IMPORT A;

VAR max: A.Type;

PROCEDURE Do(arg: A.Type);

END M.

IMPLEMENTATION MODULE M;

IMPORT A, B;

PROCEDURE Do(arg: A.Type);

VAR temp: A.Type;

BEGIN

temp := B.Transform(arg);

IF A.Greater(temp, max) THEN max := temp END

END Do;

BEGIN

max := A.Min

END M.

And then the Oberon version:

MODULE M;

IMPORT A, B;

VAR max*: A.Type;

PROCEDURE Do*(arg: A.Type);

VAR temp: A.Type;

BEGIN

temp := B.Transform(arg);

IF A.Greater(temp, max) THEN max := temp END

END Do;

BEGIN

max := A.Min

END M.

In Modula_2, two compilation steps (denoted by C below) are necessary. First,

the definition part M.Def is compiled producing a symbol file M.Sym. Then, the

compilation of the implementation part yields the object file M.Obj:

M.Sym := C(M.Def, A.Sym); M.Obj := C(M.Mod, M.Sym, A.Sym, B.Sym)
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Only one step suffices in Oberon:

(M.Sym, M.Obj) := C(M.Mod, A.Sym, B.Sym)

Actually, it is desirable that the compiler detects and announces a modification

of the interface of M, if a previous version already exists. Therefore, the Oberon

compilation also involves M.Sym if the file can be found:

(M.Sym, M.Obj) := C(M.Mod, M.Sym, A.Sym, B.Sym)

The symbol file M.Sym is necessary for compiling clients of M (or M itself), but

it is not used for the execution of M, which only requires the object file M.Obj

(besides the object files of imported modules).

Program Linking and Loading

The module concept along with separate compilation allows to partition a

program into units that can be edited, documented, stored, distributed and

compiled independently of each other. However, when a unit is being executed,

it is not independent any longer: concrete interdependences exist between the

module and its imports. For example, the address of imported procedures must

be known in the calling module. The task of the program linker (or shortly

linker) is to merge separate object files into an executable unit in which

external references between modules are resolved. Depending on the program_

ming environment and operating system, the executable unit is stored in a file

and loaded later into memory by the program loader (or loader) for execution; or

the linked unit remains in memory for immediate execution without being

saved as a file. In the latter case, one speaks of a linking loader.

The linking and loading tasks in the Oberon System are somehow special,

because there is no clear distinction between the operating system and an

application. The Oberon System, which consists of a hierarchy of modules, is

open, in the sense that the symbol files of these modules are available to the

programmer. An application module can therefore import system modules; the

module can be linked and loaded during execution, thereby dynamically

extending the functionality of the base system. In fact, a distinction between

system and user modules vanishes.

The organization of the run_time system influences the linker in its task.

Depending on the way external procedures are called (indirection tables or

absolute memory addresses) and global variables are accessed, the code may

require more or less link editing work. Usually, local procedure calls use relative
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addressing and accordingly do not need changes by the linker. Internal and

external global variables are typically accessed through absolute memory ad_

dresses inserted in the code at link time.

Besides its linking function, the linker is also responsible for checking

consistency of dependent modules. Indeed, it can happen that a module

interface is modified in some incompatible way, and that clients having been

compiled prior to the modification are not recompiled. Such an error must be

detected before execution, since unforeseeable behavior might ruin the effort of

the compiler in type checking.

This consistency check needs additional information in object files. This

could be a timestamp indicating the last time the module was compiled. The

linker could verify that the chronology of the timestamps corresponds to a

topological order of the modules relatively to their import relations. Actually,

this is not a good solution since implementation modules may be recompiled

in any order, providing that the interfaces have not changed. A better solution is

to consider the timestamp of the last interface compilation. The timestamps for

the own interface and for each imported one are inserted in the object file. This

timestamping mechanism is usually adopted in current implementations of

modular programming systems.

The main drawback of this method is that a modification of an interface in a

purely upward_compatible way cannot be detected and that clients sometimes

need to be recompiled unnecessarily. The essence of the present work is to

show how these recompilations can be avoided by using a fine_grained consis_

tency check.





Chapter 2

Symbol Files

During module compilation, object declarations are recorded in the symbol

table, which is an internal data structure of the compiler, or more precisely, a

graph of linked records. The symbol table is discarded after every compilation,

except for the part corresponding to exported declarations that must still be

visible when client modules are compiled later on. Since this does not need to

happen in the same compilation session, and since main memory is not

unlimited, this part is externalized to a file called the symbol file, which is a

linear representation of the symbol table of the module interface. Each time a

client imports this interface, the compiler restores or internalizes the symbol

table from the symbol file.

The exact contents of a symbol file, as well as the details of internalization

and externalization mechanisms depend directly on the internal structure of the

symbol table, which in turn depends on the compiled programming language.

However, the global concepts and principles remain the same for all traditional

strongly_typed, separately_compilable programming languages. In the following,

Oberon_2 [11] is taken as example to describe symbol tables and symbol files.

Symbol Table

There are two main constituents of symbol tables: objects and structures.

Objects are named entities like declared constants, type identifiers, variables,

and procedures. The object's name is the only attribute by which the object is

retrieved and identified in its scope. Each object has a reference to a structure

node representing the object's type. Structures themselves are anonymous and

therefore never accessed independently in their scope, but always in con_

junction with an object they describe.

Type Graph

Structures may be shared by different objects having the same type, but objects

are unique and appear only once in a scope. A name is attributed to a type in
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order to declare objects of that type at scattered positions in a module text. The

structure representing that type is associated with an identifying object con_

taining the type name. In that case, a link exists from the structure to the

naming object. Type aliases are objects defining an alternative name for a type,

but the already existing reference from the structure to the original object is not

modified by aliases. This original name is called the canonical name of the type.

Here is a simple example of an Oberon declaration:

TYPE

A = ARRAY 2 OF INTEGER;

B = A;

VAR

a: A;

b: B;

c: ARRAY 4 OF B;

A is the canonical name of the array type. INTEGER is a predefined type name. B

is an alias for A: an object declared as of type B is actually of type A.

Accordingly, the two variables a and b are of type A and the variable c is of an

anonymous type, an array of B (hence of A). This declaration is compiled into

the following type graph (figure 2.1), where an edge to a structure means "is of

type" and an edge back to an object means "whose canonical name is".

name

name

type

type

type

type

base type

base type

type type

array 4array 2

integer

<

INTEGER

structure:

c

;;

B

b

;

a

>
<

<
>A

;;

object:
;

Figure 2.1 Example of a type graph

As shown in the previous example, structures may rely on further structures: an

array consists of elements all of the same type. This element type can be a basic

type, like the element type of A, which is an integer, or it can in turn be a

composite type (also called structured type), like the element type of c, which is
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an array of integers. A basic type is always a predefined and unstructured type,

as opposed to a composite type, which is structured by components of further

types.

If these components of a structured type are named, as in the case of record

fields or parameters of a procedure type, the structure node also refers to

named and typed objects. In contrast to what its name could suggest, the

symbol table is a graph, and since recursive type definitions are possible, the

graph may contain cycles. Example:

TYPE

Ptr = POINTER TO Desc;

Desc = RECORD

do: PROCEDURE (VAR this: Desc; that: Ptr): BOOLEAN;

list: Ptr

END ;

VAR

root: Ptr;

list

root

type

result

next par

first par

type

type

type

type

type

type

next field

first field

base type

type

BOOLEAN

>

:

:

Desc

Ptr that

this

proc boolean
;

:

>

<

<

:

do

record

pointer>
<

>
<

;

;

;

;

Figure 2.2 Example of a recursive type graph

The type graph describes the structure of user_defined types and objects, but

does not give any information about the locality of declarations. Nevertheless,

when an object is inserted into the symbol table, it must be checked that the

object has not already been declared in the same scope; likewise, when an

object is referenced, the object must exist in the current scope or in one of the
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enclosing ones. This information about locality is also contained in the symbol

table in the form of an additional and independent graph superimposed on the

type graph.

Scope Graph

This second graph collects the objects of a scope and allows them to be

retrieved by their name. Note that scope graphs consist of object nodes only

and, unlike type graphs, do not involve structure nodes. Indeed, a structure is

anonymous and does not appear alone in a scope, but always associated with a

named object, as reflected by the type graph.

Usually, a scope graph is a binary tree of alphabetically sorted objects, but

unsorted linear lists also yielded good results in the original Oberon compiler by

N. Wirth [12]. Indeed, when the number of objects in a scope is rather small,

which is usually the case, the gain due to the simple management of the list −

only one pointer per object and no sorting − suffices to compensate for the loss

of efficiency of the slower sequential search. Binary trees have a further

drawback over unsorted linear lists: they do not keep track of the declaration

order, which is important for formal parameters in procedure signatures and

fields in records. For this reason, a third graph, a linear list this time, is

superimposed on the binary tree for the objects whose declaration order must

be known.

Therefore, the binary tree could be seen as an optional measure to optimize

look_up operations in the symbol table only. Actually, it is also useful for a

different reason: as explained later in this thesis, it is sometimes necessary to

define a canonical order over a set of named objects, and this independently of

the declaration order that may vary over several versions of the same module.

The binary tree alphabetically sorts objects and hence simultaneously serves

two purposes: efficiency and canonical ordering. Figure 2.3 shows the scope

graphs for the same declarations as in figure 2.2:
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first paramfirst field

;

;

record

rightleft

rightleft left right

right

rightleft rightleft

left

rightleft

list

root

Ptr

Desc
;

TopScope

;

do
;

;

this

that

proc

;

Figure 2.3 Example of scope graphs

The figure shows three scopes: a global one containing the objects Ptr, Desc and

root of the outermost level, then a scope which is local to the record structure

containing the fields do and list, and finally a scope local to the procedure

structure containing the parameter this and that. The structure nodes as well as

the dashed references actually belong to the type graph. Plain lines represent

the tree of alphabetically sorted objects. Each scope is rooted at an object or at

a structure of the enclosing scope. A global variable of the compiler named

TopScope points to the first object of the current scope. This variable is the point

where the whole symbol table is anchored in the table handler during compile

time.

When the symbol table of an imported interface is internalized from a

symbol file, a new module object is inserted in the global scope of the currently

compiled module. The scope of the interface is then attached to this module

object. Each time a designator of the form M.A is met during compilation, the

object M is searched in the global scope; if M is found and is a module object,

the object A is then searched in the scope attached to M.

Object and structure nodes are implemented as compile_time records linked

by pointer fields (see chapter 4). The kind of object − constant, type, field,

variable, procedure, parameter, and so on − is encoded in a field of the object,

as well as the visibility of the object (internal, exported, exported as read_only).

Similarly, the form of the structure − predefined type, pointer, record or array −

is stored in a field of the structure, along with corresponding attributes like

number of array elements or extension level in the record hierarchy.
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The symbol table consisting of the information described above is machine_

independent and reflects the textual declaration only, but other values are

calculated by the compiler and inserted before and during code generation in

the symbol table as well. One says that the symbol table is augmented by

machine_dependent attributes. Among these attributes are the storage addresses

of variables, allocation sizes and alignment factors of types, and entry points of

procedures.

In order to produce a symbol file, the global scope graph of the symbol table

is traversed, and each object that is marked as being exported is written to the

file. The object alone does not suffice, but all related information that is

necessary for using the object from a client module must also appear in the

symbol file. In particular, the type of the object has to be externalized, too.

More precisely, the complete type graph rooted in the object has to be

linearized and written to the symbol file.

A Brief History

Symbol File Classification

Symbol files have not always been implemented the same way. A paper by J.

Gutknecht [13] classifies the different file formats by using two criteria. The first

one concerns the self_consistency of the file. If the symbol file of a module only

describes objects declared in that module, objects being of some imported type

are incompletely described. The missing information can only be completed by

importing further symbol files. In that case, the first symbol file is not self_

consistent and this method is said to be of class A. Note that this reexport of

imported objects is only possible for types: constants, variables or procedures

cannot be reexported. In contrast, if the symbol file flattens the module

hierarchy by replicating parts of imported interfaces, the file is self_consistent

and hence of class B. The module hierarchy is flattened in the sense that

declarations stemming from modules at different levels in a module hierarchy

are described together in the same symbol file. Thereby, clients do not have to

internalize several symbol files in order to obtain the complete type information

of an interface.

Using class_A symbol files in a system with a high hierarchy of modules may

result in a serious degradation of compilation speed. Imagine for example an

operating system whose resources are made available to applications through

module interfaces, as it is the case in the Oberon System [14]. Some types

declared in bottom modules of the hierarchy (e.g. Display.Frame in the Oberon
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System) are imported and reexported by many interfaces. Each time a module

importing such an interface would be compiled, the symbol file of the low_level

interface declaring the type would have to be internalized. In the worst case, all

interfaces of the operating system must be loaded to compile one application

module.

The second classification criterion is the method used to encode the

information in the symbol file. When the syntax used is very similar to the

syntax of the source text, then the file is of class a. In the extreme, the symbol

file is even replaced by the definition module itself, like proposed by Foster [7]

and used in UCSD_Pascal [15] and Modula_3 [10]. The definition module being

not self_consistent, the technique corresponds to the Aa class with the draw_

back explained above. That means that the definition module is recompiled

each time it is directly or indirectly imported. When the symbol file is a

compact representation of the symbol table, it is of class b. A scanner and a

parser are necessary to build a symbol table from a class_a symbol file, whereas

a very simple and efficient parser can directly load a class_b symbol file into a

symbol table.

Symbol File Linearization

The first Modula_2 compiler developed at ETH [16] used a Ba technique, but

the next generation of Modula_2 compilers [17] have used the more efficient

Bb method described by Gutknecht [13]. This method relies on a postorder

traversal of the type graph, in the sense that all components of an object appear

in the file before the object itself. For example, the type of an object is listed

before the name and attributes of the object, record fields appear prior to their

enclosing record type, and parameters prior to their procedure type. Since types

may be shared by different objects, they are numbered as they appear in the file,

and objects reference them with the corresponding number, therefore avoiding

to list the same type several times. The first few reference numbers are reserved

for predefined types. The postorder traversal of an acyclic type graph guarantees

that a type is always listed before the number referencing it. This facilitates the

reconstruction of the symbol table: a reference number can be replaced

immediately by the type it represents as it is read from the symbol file, since the

structure node for this type could already be allocated. Unfortunately, this nice

property is not guaranteed any longer in case of cyclic type graphs. The

following declaration illustrates the problem:



18

TYPE

Ptr = POINTER TO Rec;

Rec = RECORD next: Ptr END ;

According to the rule above, the pointer type Ptr cannot be listed before the

record type Rec, since Rec is the base type of Ptr. On the other hand, Rec has a

component next of type Ptr, so Ptr should be listed first. Obviously, this legal

Modula_2 or Oberon type definition will require special treatment when ex_

ported. Note that this recursive type definition also needs special care from the

compiler to be parsed correctly, since the identifier Rec is used prior to its

declaration. Actually, this is the only exception to the Oberon rule stating that

an identifier must be declared before being used. The solution to the problem

is to break the cycle within the graph, to write the new acyclic graph to the file

using the described method, but to leave a hint explaining how to close the

cycle again when reading the file. More concretely, the graph of the example

above is written to the file in the following acyclic form:

TYPE

Ptr = #16 POINTER TO #0;

Rec = #17 RECORD next: #16 END ;

FIX_UP

#16 POINTER TO #17;

The first free reference number (#16) is implicitly assigned to the pointer type

(reference numbers 0 to 15 are reserved for predefined types). This pointer type

is temporarily undefined in order to point to a dummy predefined type with

reference #0. The next unused reference number (#17) is implicitly assigned to

the record type. The type of its field refers to the pointer type through the

reference #16. The definition of the pointer type #16 can be corrected later to

point to the record type #17, as indicated in the FIX_UP section.

In 1986, the first Oberon compiler written by N. Wirth [12] for the Ceres

workstation [18] was derived from a Modula_2 compiler by the same author.

Naturally, the existing technique for generating symbol files was adopted. At

that time, definition modules still existed in Oberon. They were eliminated in

1990 because of the complexity they caused in the compiler (see next section),

besides the advantages for the programmer not to have them, as explained in

chapter 3. For compatibility reasons, the portable Oberon_2 compiler called OP2

which I developed in 1990 [19] used the same symbol file format. OP2 is

described in chapter 4.

Unfortunately, this technique has one major drawback: it is not able to

linearize cyclic graphs, except those where the cycle is created by a forward
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pointer declaration, as shown in the example above. More general declarations

with recursive type definitions − like the one in figure 2.2 for example − cannot

be exported. The fix_up trick is easy to apply for a pointer type, since only one

reference in the symbol table − the base type of the pointer − has to be

patched. The general case requires the patch of several scattered references for

each cycle.

R. Griesemer showed a more natural method of linearizing symbol tables

[20]. The method relies on a preorder traversal of the type graph. The idea is

that the linear description of an object in the file may open a parenthesis

containing the complete description of a component of the object. The

description of the object is resumed after closing the parenthesis. If the inserted

description recursively refers to the enclosing object, a reference number is used

instead, thereby breaking the cycle. This reference number is also used for

further nonrecursive references to this object as in the postorder method. The

rule stating that all components of an object have to appear in the file before

the object itself is relaxed, since the components will be described in the same

order as they appear in the declaration of the object. The previous example of a

forward pointer declaration would be linearized in the following way:

TYPE

Ptr = #16 POINTER TO (Rec = #17 RECORD next: #16 END) ;

The example in figure 2.2 would yield the following sequence, where #2 stands

for the predefined type BOOLEAN:

TYPE

Ptr = #16 POINTER TO

(Desc = #17 RECORD

do: #18 PROCEDURE (VAR this: #17; that: #16): #2;

list: #16

END) ;

VAR

root: #16;

The externalization algorithm used in the project of this thesis and described in

more details in further chapters uses a preorder traversal of the symbol table

and produces a symbol file of the Bb class. This technique simplifies the

corresponding internalization algorithm and simultaneously eliminates the im_

plementation restriction disallowing the export of recursive type declarations,

which is not forbidden in the Oberon language.





Chapter 3

System Consistency and Client Invalidation

A system of separately compiled modules is said to be consistent if each object

being imported by some client module is effectively supplied by its exporter

module. Furthermore, the effective type of each imported object must comply

with the type the object had when the client was compiled. In other words, the

implementation of each external object must be compatible with the object

definition used to compile each client module of that object. Note that

"compatible" is weaker than "identical". Indeed, in some cases as shown below,

a slight modification of an object does not have any effect on its clients and the

system remains consistent. However, most programming environments do not

implement consistency checks with such a fine granularity. They usually do not

consider objects of an interface separately, but interfaces as a whole; they

declare a system inconsistent if a module interface supplied at link time is not

identical to the one seen at compile time by a client of it. This rule widely

applied to detect inconsistencies is actually too strict and often requires

unnecessary recompilations in order to maintain system consistency.

Consistency Checking

A strongly_typed, separately_compiled programming language without consis_

tency checking at link time is comparable to a car equipped with airbags, but

without brakes. In other words, it does not make much sense. All the effort

spent for security at compile time can be ruined at link time, since inconsistent

modules cannot be detected. Executing them can have unpredictable and

destructive effects on the rest of the system. One cannot speak of a safe

language implementation without automatic consistency checking at link time.

There are many different ways of implementing these checks. An important

criterion is that checks that can be made by the compiler should not be

repeated by the linker, unless it is necessary, and that the former should assist

in reducing the effort required by the latter.
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Granularity of the Checks

A system of modules may remain consistent after the modification of an

interface in a compatible way, even if the clients of this interface are not

recompiled. Here is an example of such a modification. First, the original

version:

MODULE A;

TYPE

Ptr* = POINTER TO Desc;

Desc* = RECORD

visible*, hidden: INTEGER;

END ;

VAR

p*, q*: Ptr;

BEGIN

NEW(p); NEW(q); ...

END A.

MODULE B;

IMPORT A;

VAR i: INTEGER;

BEGIN

i := A.p.visible

END B.

Module A is compiled first, then module B. The name and the type of the

internal field hidden in the record type A.Desc are then modified in the following

way:

Desc* = RECORD

visible*: INTEGER;

newhidden: LONGINT;

END ;

Module A is recompiled. However, module B does not need to be recompiled

since the modification of a hidden field is not visible for B and has no effect on

the use B makes of A.Desc. The system of modules remains consistent, and B is

not invalidated. The fact that an invalidation occurs does not depend only on

the modification itself, but also on the way the imported object is used. The

same modification of A has no effect on B, but invalidates the module C below:
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MODULE C;

IMPORT A;

BEGIN

A.p↑ := A.q↑

END C.

If module C is not recompiled, the record assignment will not copy enough

bytes, since the modification altered the size of A.Desc. On the other hand, if the

number of bytes to be copied is determined at run time from the type

descriptor of A.Desc, C does not need to be recompiled.

As shown by the examples above, system consistency can be defined at dif_

ferent granularity levels, from the entire interface down to object components,

and it may also take into account implementation issues. The complexity of

consistency checks can therefore strongly vary from one programming envi_

ronment to the other, depending on the method used. Checks with coarse

granularity are very simple and efficient to perform, but they negatively influence

the productivity of the programming environment since recompilations are

more often requested than actually necessary. On the other hand, the cost of

very fine_grained checks is not always compensated by rarely avoided recom_

pilations.

Compilation Dependence Graph

Independently of the checking technique, a recompilation of the complete

system always makes it consistent, as long as the modules are recompiled in a

correct order. Since an imported module has to be compiled before an

importing module, the partial order defined by the import_export relation is also

the compilation order. The system of modules forms a directed acyclic graph

called the compilation dependence graph, where the vertices are compilation

units and the edges export relations. In programming languages with separate

definition and implementation parts, like in Modula_2, reciprocal imports (in

implementation parts only) are allowed, which apparently introduces cycles in

the compilation dependence graph making a compilation impossible, as shown

in figure 3.1.

DEFINITION MODULE A;

TYPE T = RECORD a: INTEGER END ;

END A.
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IMPLEMENTATION MODULE A;

IMPORT B;

...

B.b.a := 0;

...

END A.

DEFINITION MODULE B;

IMPORT A;

VAR b: A.T;

END B.

IMPLEMENTATION MODULE B;

IMPORT A;

...

END A.

A

B

:

;

Figure 3.1 Cyclic import graph

In fact, each vertex of the cyclic import graph must be split in two subvertices

yielding two separate acyclic graphs with edges from the definition graph to the

implementation graph only, since an implementation part never exports any_

thing (figure 3.2). It is therefore possible to first compile all definition modules

in topological order, thereby producing the needed symbol files. The compi_

lation of implementation modules may then occur in any order.
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B.Mod

A.Mod

B.Def

A.Def

:

: :

:

Figure 3.2 Corresponding acyclic compilation dependence graph

Reciprocal imports are not possible in Oberon, since definition and imple_

mentation parts are merged into one module. The import graph is therefore

identical to the compilation dependence graph. Actually, cyclic import is also

possible but not encouraged in Oberon, since it requires several editing/

compiling sessions on the same module and surely does not reflect a clean

programming style.

Using Keys for Consistency Checks

In most programming environments with separate compilation, consistency is

guaranteed by a very simple rule stating that every client of an interface has to

use exactly the same version of that interface. More practically, a unique symbol

file for each module is used for all subsequent client compilations. In order to

allow a check at link time, each symbol file contains the timestamp of its last

compilation, which is a unique number derived from the date and time of the

compilation. It may also be a number delivered by a random generator. The

word key is often used in place of timestamp. If a module interface is modified

and the module is recompiled, its symbol file receives a new key.

The key of a symbol file is copied to the object file of a compiled module

using this symbol file. Note that self_consistent symbol files reexporting parts of

further interfaces do not only contain their own key, but also the keys of these

imported interfaces. So, each object file keeps track of the keys of all directly or

indirectly imported interfaces, besides its own key. Example:
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C.Obj

MODULE C;

B.Obj

MODULE B;MODULE A;

A.Obj

MODULE D;

IMPORT A; IMPORT A,B; IMPORT C;

TYPE T* = ...; VAR u*: CHAR; VAR v*: A.T; VAR w*: CHAR;

D.Obj

A_key

A.Sym

A_key

B_key C_key D_key

A_key A_, B_key A_, C_key

B.Sym C.Sym D.Sym

B_key D_key

T = ... u: CHAR v: A.T w: CHAR

C_, A_key

Figure 3.3 Key lists in symbol files and in object files

The linker compares the key lists in the imported object files of the modules

being linked. An inconsistency is detected if the key of a module has different

values in different object files. This occurs if a client of an interface is not

recompiled when this interface has been recompiled and has received a new

key. Consistency checking at link time is thereby reduced to the fast compa_

rison of keys, one for each imported module.

Note that the keys of indirectly imported modules only would be sufficient

for checking consistency at link time, but the keys of both directly and indirectly

imported modules are listed in object files for simplicity reasons.

In implementations of Modula_2 using symbol file keys, the compilation of a

definition part always results in a new symbol file with a new key, thereby

invalidating clients of this interface, whereas compilation of an implementation

part only produces a new object file without side effect. This is different in

Oberon: remember that the compilation of an Oberon module produces both a

symbol file and an object file. The original Oberon compiler [12] needs to

compare the new symbol file with the old one in order to decide whether a

new key is required. It would not be acceptable that the compiler generates a

new key each time an implementation is slightly modified and recompiled. So,

the newly generated symbol file is only definitively stored on disk if it is really

different. Symbol files are written in a canonical form to allow an efficient

byte_stream comparison.

In its very first version [21], the Oberon language had separate definition and

implementation modules compiled in the same way as Modula_2 modules, but
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with one major exception: the compilation of an implementation module could

also generate a new symbol file and, as a consequence, invalidate clients. The

problem was that the definition module was only defining visible fields of

records, whereas the implementation part had to reprocess each record defi_

nition and possibly complete it with hidden fields. The compiler could therefore

not always determine the size of an exported record by compiling the definition

part only, so that a new corrected symbol file was generated after compiling the

implementation part. Merging the two parts in one module elegantly solved the

problem and eliminated the burden of checking the two declarations of the

same record type for inconsistency, which involved a nontrivial recursive struc_

tural comparison.

Restoring System Consistency

Once a client has been invalidated, the system of modules becomes incon_

sistent and cannot be loaded before consistency has been restored. Client

invalidation always occurs after the interface of a supplier module has been

modified and recompiled, which generates a new symbol file for that module.

Just recompiling the invalidated client does not always restore system consis_

tency, since the interface of that client might reexport parts of the previously

modified interface. In that case, recompiling the invalidated client results in a

new symbol file for the client, which in turn invalidates further clients of it.

Trickle_Down Recompilations

This is particularly annoying if the modification concerns a basic interface, an

interface at a low level in the system. Indeed, a basic interface often exports

types and routines widely used in the system; its modification can cause

trickle_down recompilations (recompilations triggering further recompilations)

affecting a large portion of the system and thereby annihilates the benefits of

separate compilation. Unfortunately, this happens quite often, because a basic

interface is defined very early in a project and the abstraction it represents is not

always well understood at that stage. As more clients of it are implemented,

refinements of the interface are necessary, causing trickle_down recompilations.

Sometimes, recompilation is not sufficient or, in fact, not possible at all. This

occurs, for example, when the component of an interface has been deleted but

is still referenced by a client module, or when the formal parameter list of an

exported procedure has been extended. In that case, the client needs editing
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before being recompiled. This differentiates the source invalidation from the

object invalidation; the latter class requires only a recompilation of the un_

changed source text. Obviously, object invalidation is preferable to source

invalidation, since consistency cannot be restored automatically without the

intervention of the programmer in case of source invalidation.

Benefits of Tools

Unfortunately, the kind of invalidation depends intrinsically on the nature of the

modification and cannot be controlled by tools, as smart as they might be.

However, tools can help predicting the effect of a planned modification, or

finding the modules affected after the modification is accomplished. They can

also limit the recompilation to those modules that have really been invalidated.

A programmer, manually restoring the consistency of a module set, would

probably follow the compilation dependence graph, starting from the first

invalid module up to the top level modules of the hierarchy, while recompiling

all visited modules. In spite of the danger of forgetting some of them, this is the

right thing to do in the case of a coarse_grained consistency check on the

interface level. However, if the linker uses fine_grained checks, it would be a

waste of time to proceed in this way, because many modules would be

recompiled unnecessarily. Indeed, the trickle_down recompilations may stop

before reaching the top level modules of the graph, since the propagation of

recompilations is dependent on the granularity of the consistency checks.

Example:
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Fine_grained checks:

Coarse_grained checks:

MODULE C;MODULE B;MODULE A;

IMPORT A;TYPE

T0* = ... ;

T1* = ... :

VAR x*: A.T0;

IMPORT B;

... B.x ...

A_key A_, B_key C_key

new A_key
new T1

recompilation recompilation

new B_key

recompilation

same C_key
↑ ↑ ↑

T0, T1 x, A.T0

new T1
recompilation

not recompiled not recompiled↑
new T1, same T0

exported:

exported:

Figure 3.4 Granularity of the checks and number of recompilations

Using consistency check at the interface level may require more recompilations

than when using consistency checks at the object level, as shown in figure 3.4;

with coarse_grained checks, the modification of type A.T1 and the recompilation

of its module A result in a new key for A, which requires the recompilations of

modules B and C, although they do not use A.T1. In contrast, with fine_grained

checks, the clients of A do not need to be recompiled since they do not use the

modified item.

Considering the number of interdependences, the programmer cannot de_

cide by himself whether a client module needs recompilation, and cannot even

tell whether a software system is consistent, unless he tries to link it. Clearly,

the use of tools is compulsory to obtain the maximal gain out of a fine_grained

consistency check method, especially if the first goal is to avoid redundant

recompilations.

Previous work has sometimes concentrated too much on such tools while

keeping old and unsafe module linkers unchanged. This is a questionable

approach, since it is up to the programmer to use these tools performing the

consistency checks. If he does not, the safety of the system is not ensured.
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Background

There is not much literature to be found on the subject of link_time type

checking of strongly_typed, separately compiled languages. Most work has been

done between 1984 and 1989, with a peak in 1986. Still, even if research seems

to have stopped by then, no entirely satisfying solutions have been presented

yet.

Checksum Versus Timestamp

In 1984, as C. Bron, E. J. Dijkstra, and T. J. Rossingh [22] were about to

implement link_time checking in their programming environment using a sim_

ple timestamping mechanism, they realized that this would only work in a

universal module space. With the envisaged method, the symbol file (called

specification file in Modular Pascal) of each interface would have been time_

stamped so that the linker could have checked that the code of each client is

younger than the interface it relies on. But consider the situation where two

different projects, A and B, are under development, each one in a different

module space (in a different subdirectory of the same hierarchical file system,

for example), and both of them using the same name M for two unrelated

modules. If both modules M have been incidentally compiled at about the

same time, and for some obscure reason, the object file M.Obj of A space is

accidentally moved to B space, thereby replacing the correct M.Obj of B space,

the linker will not be able to detect the inconsistency, because the timestamp

of the erroneous M.Obj will be in a valid range.

The above observation convinced the authors to implement a different

technique. For every interface a checksum is calculated, which is supposed to

change with every change in the interface. The object file of every client module

of this interface contains the interface checksum. At link time, the checksum of

the effectively supplied interface must be identical to the one expected by the

client.

Mesa, Modula_2, and Oberon use the same checking mechanism with the

difference that the checksum is unique, in that it is derived from the date and

time the interface is compiled. Actually, this is not a checksum − it is called key

− since it does not depend on the contents of the interface. This has the

advantage to work well in different module spaces, to be simpler and more

efficient (no checksum to be computed), but the disadvantage that an interface

can never be restored to a previous stage. For example, an accidentally deleted
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symbol file cannot be recovered by recompiling the corresponding interface

without receiving a new key, and thereby invalidating clients.

At about the same time, M. Rain proposed a solution involving both

timestamps and checksums [23]. Symbol files, here called unit dictionary, are

given a timestamp at creation time. Before each recompilation, the old unit

dictionary is loaded into the cache dictionary, some kind of global symbol table,

if it is not already present. During this operation, the compiler computes a

checksum of the dictionary being loaded. As the compiler produces the new

dictionary, it also computes a checksum in the same way. The dictionaries are

considered the same if the checksums are equal. In that case, the old time_

stamp is reused for the new compiled unit.

Actually, M. Rain does not explain why he is using both timestamps and

checksums. The checksum could replace the timestamp in the symbol file.

Incidentally, note that the test at link time is very different for timestamps or

checksums. On the one hand, each object file has only its own timestamp and

the linker checks that this timestamp is younger than the one of every imported

object file. On the other hand, each object file contains its own checksum and

a list of checksums of imported interfaces, and the linker checks that all

effectively supplied checksums are equal to the expected ones. So, the use of

checksums is slightly more expensive but eliminates the problem of multiple

module spaces.

Enhancing the Granularity

The main drawback of the above methods is the very coarse granularity of the

corresponding link_time and compile_time checking. Changing a single line in

an interface may trigger massive recompilations. In 1986, W. T. Tichy presented

his smart recompilation algorithm to solve this problem [24]. The algorithm

analyzes the effect of a modification in a module by computing a change set for

the definition part of this module and a reference set for each dependent

implementation part. The change set is computed each time an interface is

recompiled by comparing the old and new symbol files, and consists of those

objects that were either added, changed, or deleted. The reference set records

the objects being imported by an implementation part. If the intersection of

these two sets is empty, then a recompilation of the considered imple_

mentation part is not necessary.

The cost of computing the change sets is not negligible and is reported to

be, on average, less than a third of the cost of a compilation. The technique is
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not fully integrated in the compiler, but requires two separate tools in con_

junction with the Make utility of UNIX [25].

R. Hood, K. Kennedy, and H. A. Müller extended the smart recompilation

algorithm in order to determine the effects of a change not only on the direct

clients of an interface, but also on its indirect ones [26]. The improved

algorithm, called global interface analysis algorithm, propagates the change set

along the compilation dependence graph, starting from the vertex of the

modified interface. The change set is filtered through the contents of each

traversed vertex, before being propagated to children vertices. More precisely,

the change set is first filtered through the list of imported objects (i.e. the

intersection of the change set with the set of imported objects is calculated). A

nonempty result indicates that the module needs to be recompiled. The Tichy

algorithm is then used to analyze the effect of this recompilation. The new

change set is then filtered through the list of exported objects and propagated

to the children.

The global interface analysis algorithm does not work directly on the object

files, but on a private data structure. This requires some preprocessing on a

well_defined set of modules, like constructing the compilation dependence

graph or computing the filters for each vertex. The problem with this approach

is that the auxiliary data structure has to be kept consistent with the system of

modules under development. If a new module is added, for example, the data

structure has to be recomputed. The paper does not specify how this is

achieved. It neither mentions any safety aspect. The algorithm is (to be)

embodied in an editor which interactively displays a list of modules affected by

incremental changes. It is not clear what happens if a module is edited using

another editor and then recompiled. The loader probably does not detect

inconsistencies.

Integrating Type Information into Object Files

H. Eidnes, S. O. Hallsteinsen, and D. H. Wanvik implemented a smart separate

compilation facility that has been used since 1983 in the CHIPSY programming

environment for the CHILL language [27]. In contrast to the global interface

analysis algorithm described above, the method integrates the information

needed for the checks into the object files. This eliminates the burden of

keeping a separate data structure up_to_date. Furthermore, the exported symbol

table information is also stored in object files and not in separate symbol files.

Like Oberon, CHILL has no textually separate interfaces.
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Each object file in CHIPSY contains an array of exported objects (the export

interface), an array of imported objects (the import interface), and a timestamp

which is given to the object file when the module is compiled for the first time.

With each exported object is associated a version counter and symbol table

information. An imported object has a version counter and a cross_link to the

exporter. The cross_link consists of a file name, a timestamp, and an array index,

uniquely identifying the imported object. When a module is recompiled, the old

timestamp is reused, and the new export interface is compared to the old one.

If an exported object is modified, its version counter is incremented, but the

object retains its position in the array. If an exported object is deleted, it leaves

an empty slot in the array. Global type consistency is guaranteed at link_time if

all cross_links to the same exporter have the same and correct timestamp, and if

in each pair of imported and exported objects, the array index, as well as the

version counter, have the same values.

This technique has some drawbacks caused by the fact that the history of

development of a module is contained in its object file. If, for example, an

object is removed from an interface and reinserted later, it is considered as a

new object and it receives a different array index, thereby invalidating all the

clients of this object. Furthermore, the problem in conjunction with multiple

module spaces is not solved. Indeed, a module and its copy may be edited and

recompiled with their clients in two different module spaces. The same object

modified in two different ways sees its version counter being incremented by

one in both spaces. If the duplicated module is copied back to the original

space, recompiled clients become inconsistent and the linker cannot detect the

problem.

The Modula_2 compiler from Digital's Western Research Laboratory for VAX

and MIPS DECstations [9] implements link_time type checking by a tool called

intermodule checker that is run separately from the linker. The compiler writes

the type information of each exported and each imported object in the object

file. The tool verifies by structural comparison that the same type information is

used throughout the system of modules to be linked.

The latest version of the Modula_3 compiler from Digital's System Research

Center [10] seems to use a similar technique as the one presented in chapter 6

of this thesis. [It should be stated that I presented the idea of this thesis during

an internship at DEC SRC in summer 1990.]
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Motivation

In 1986, W. Tichy noted in a paper [24] the consequences of using slow

compilers: "With modern high_level languages, redundant compilations are a

serious obstacle. The processing cost of making a minor change or adding a

few declarations to a large system may be so great that it retards the growth

and evolution of the system. At the very least, it imposes hours of idle time on

development teams while everything is periodically recompiled from scratch.

High compilation costs also tend to convolute system structure, because they

force programmers to incorporate changes in ways that minimize the number

of recompilations, rather than preserve well_structuredness."

Knowing that the Oberon_2 compiler [19] for MIPS processors [28] consis_

ting of 9 modules recompiles itself on a Silicon Graphics' Indigo2 (MIPS R4400,

150 MHz) in about 1.5 second user time, one could think that the statement

above is not true any longer, and that all the care taken to avoid recompilations

is not justified any longer, since compilers have become so fast now (which is

partly due to faster modern workstations).

Unfortunately, there will always be slow compilers and inefficient program_

ming environments, but the principal reason why this statement, especially its

second part, is still true today comes from a completely different consideration.

Indeed, the style of programming and the architecture of software systems have

radically changed in the last few years. In the past, programs consisting of a set

of modules used to be considered as a complete whole. These programs had to

be used as they were, any modification or accommodation to the context being

impossible. As shared libraries and dynamic loading become more widespread,

a different kind of software systems seems to emerge. These systems consist of

libraries of modules and serve as resource and base for future applications that

are still unknown when the system is compiled. An application developed later

can dynamically link and load modules of the library.

As developer and manager of a library, it is important to be careful not to

invalidate clients unless absolutely necessary. Indeed, it is always unpleasant to

have to explain to a client that his software will need a complete recompilation

if he uses the new version of a library. In the extreme case, some clients are

even unable to recompile their programs, because they simply lost the sources.

Hence, a slightly different goal is pursued today: instead of reducing the

number of recompilations, which are cheap now, one tries to minimize the

number of invalidations, which may have severe consequences when a library is

used world_wide by many unknown clients. Even if the goal has changed, the
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means to reach it are approximately the same, because avoiding an invalidation

also avoids a recompilation. As shown above, using fine_grained checks is

always better in terms of number of recompilations. However, the costs of a

consistency check vary depending on the granularity of the checks, as deter_

mined by the definition of consistency. Finer granularity causes higher costs. A

trade_off between flexibility in use and complexity of implementation must be

chosen.

The role played by tools has also changed. In the past, research in the area

aimed at producing tools capable of automatically restoring consistency after an

invalidation in a system of well_defined modules. Today, it is impossible to

restore the consistency since the invalidated clients are not known. Tools,

whose use remains optional, have a secondary role now. In this work, more

attention is given to the compiler and the associated linker. These have to

collaborate in order to maintain integrity.





Chapter 4

The Portable Oberon_2 Compiler OP2

Two new models for compile_time and link_time consistency checking of

separately compiled modules are presented in the following chapters. Both

models have been implemented in the portable Oberon_2 compiler OP2 [19]

described in this chapter. OP2 was developed to port Oberon onto commer_

cially available platforms. Like the original Oberon compiler [12], from which it

was derived, OP2 is itself written in Oberon and its first version produced code

for the Ceres workstation [18]. Since then, OP2 has been modified slightly to

accept Oberon_2 programs [11] and different code generators have been writ_

ten to cover today's most commonly encountered processor architectures [29].

Architecture of the Compiler

In contrast to other programs written in a high_level programming language, a

compiler cannot be merely ported. The program has to be modified to produce

different code for the new machine the language is to be ported to. Therefore, it

is worthwhile paying attention to portability before constructing the compiler.

The time invested in designing a well_structured compiler, separating machine_

independent from machine_dependent parts, is rewarded many times when

porting it. However, many compilers developed with the goal of being portable

have turned out to be inefficient in terms of compilation speed and quality of

compiled code. Portability and efficiency have been given equal importance in

OP2. Therefore, automated retargetable code generation has not been consi_

dered. More conventional and faster techniques have been chosen instead.

In a single_pass recursive_descent compiler, all the tasks of the compilation

are executed "simultaneously": for example, actions of syntax analysis, code

generation and type checking are interleaved. Because all required attributes are

passed on the procedure stack, no intermediate representation of the source

text is needed between the different tasks. This makes the compiler compact

and efficient, but not easily portable. Indeed, since machine_dependent and

machine_independent tasks are closely coupled, it is difficult to modify the

compiler for a new machine. One solution to the problem is to clearly separate

the compilation tasks into two groups: a front_end consisting of the machine_
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independent tasks (lexical analysis and syntax analysis, type checking) and a

back_end consisting of the machine_dependent tasks (storage allocation, code

generation).

Effectively, compilation thereby becomes a two_pass process, although the

source text is processed only once. The interface between front_end and

back_end is a complex data structure in memory instead of a sequential file,

taking advantage of large stores. Only the back_end needs to be modified when

the compiler is ported. The front_end enters declarations into a symbol table

and builds an abstract syntax tree representing the program statements. If no

errors are found, control is passed to the back_end, which generates code from

this syntax tree. Since this structure is guaranteed to be free of structural errors

and type inconsistencies, type checking and error recovery are not part of the

back_end, which is a noteworthy advantage. Only implementation restrictions

must be checked for.

Another advantage of an intermediate representation is that additional

passes may be inserted to improve code quality. Such an optimization phase

cannot be embedded easily in a conventional single_pass compiler, if at all.

Also, an intermediate representation reduces the effort of porting several

programming languages to a new target architecture, since a new back_end can

be used with different existing front_ends.

Module Structure

The front_end and the back_end are implemented separately as a set of nine

modules, all written in Oberon. The lowest module of this hierarchy is OPM,

where M stands for machine. One must distinguish between the host machine

on which the compiler is running, and the target machine for which the

compiler is generating code. Most of the time, the two machines are the same,

except when using a cross_compiler. OPM defines and exports several constants

used to parametrize the front_end. Some of these constants reflect target

machine characteristics or implementation restrictions. For example, these

values are used in the front_end to detect overflow conditions in the evaluation

of constant expressions. OPM has a second function. It works as the interface

between the compiler and the host machine. This interface includes procedures

to read the text to be compiled, to read and write data in symbol files, and to

display text (error messages, for example) on the screen. All these input and

output operations are strongly dependent on the operating system. The com_

piler is structured in such a way that it can easily be ported to environments
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other than the Oberon System. If the compiler resides in the Oberon System

environment, the host_dependent part of OPM is based on the standard

modules Texts and Files.

Table Handler

Tree Travers.

Low_lev. Code

Code Gen.

Parameters

Scanner

Tree Builder

Parser

Command

front_end

back_end

::::::::

OPM

OPS

:

::

OPB

OPT

: ::

OPP

:

OPL

:

::

::

OPV

OPC

::: ::::

OP2

Figure 4.1 OP2 Module import graph

The topmost module OP2 is very short. It is the interface to the user, and

therefore host machine_dependent, since input parameters like module file

names and compiling options have to be read through host_dependent rou_

tines. Like the host_dependent part of OPM, this module remains unchanged

when the compiler is used in the Oberon System environment. It first calls the

front_end with the source text to be compiled as a parameter. If no error is

detected, it then calls the back_end, passing the symbol table and the syntax

tree that were generated by the front_end as parameters.
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Between the highest and the lowest module, one finds the front_end and the

back_end, which consist of four and three modules, respectively. During compi_

lation, there is no interaction between these two sets of modules. The symbol

table and the syntax tree are defined in module OPT and are accessed both by

the front_end and the back_end. This explains the presence of import arrows

from OPT to back_end modules visible in the import graph of figure 4.1.

However, there is no transfer of control, such as procedure calls (some will be

introduced later by the new consistency_check models).

The front_end is controlled by module OPP, a recursive_descent parser. Its

main task is to check the syntax and to call procedures constructing the symbol

table and the syntax tree. The parser requests lexical symbols from the scanner

(OPS) and calls procedures of OPT, the symbol table handler, and of OPB, the

syntax tree builder. OPB also checks for type compatibility.

The back_end is controlled by OPV, the tree traverser. It first augments the

symbol table with machine_dependent data (using OPM constants), such as the

size of types, the address of variables, or the offset of record fields. It then

traverses the syntax tree and calls procedures of OPC, the code generator, which

in turn synthesizes machine instructions using procedures of OPL, the low_level

code emitter.

This module structure results in a fully portable front_end, as well as a

host_machine independent back_end.

Symbol Table

The symbol table contains information about declared constants, variables,

types, and procedures, as explained in chapter 2. It is built by the front_end. The

front_end uses it to check the context conditions of the language and the

back_end retrieves type information from it. In OP2, the symbol table is a

dynamically allocated data structure with three different component types:

TYPE

Object = POINTER TO ObjDesc;

Struct = POINTER TO StrDesc;

Const = POINTER TO ConstDesc;

An Object is a record (more precisely a pointer to a record), which represents a

declared object, such as a variable, a named constant, a procedure, or a named

type. The object declaration in the compiler is the following:
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ObjDesc = RECORD

left, right, link, scope: Object;

name: OPS.Name; (* identifier *)

leaf: BOOLEAN; (* procedure: leaf; variable: candidate to be allocated in register *)

mode: SHORTINT; (* constant, type, variable, procedure, or module *)

mnolev: SHORTINT; (* negative module no if imported, level no if local *)

vis: SHORTINT; (* visibility: not exported, exported, read_only exported *)

typ: Struct; (* object type *)

conval: Const; (* numeric attributes *)

adr, linkadr: LONGINT (* storage allocation *)

END ;

The name of the object stored in the object itself (field name) is used to retrieve

the object in its scope. Each scope is organized as a sorted binary tree of

objects (fields left and right) and is anchored to the owner procedure (field

scope), which in turn belongs as an object to the enclosing scope. Parameters of

the same procedure, fields of the same record and variables of the same scope

are additionally linked sequentially (field link) to maintain the declaration order.

Procedures that do not call any further procedures (leaf procedures) are marked

by the front_end (flag leaf), as are variables whose addresses are never needed,

and which therefore can be allocated in registers. The back_end may use this

information for improving code quality. Note that this information would not

be available in a single_pass compiler. An object always has a type, described by

a StrDesc record, pointed to by a field typ in the object:

StrDesc = RECORD

form, comp: SHORTINT; (* basic or composite type, type class *)

mno: SHORTINT; (* imported from module no mno *)

extlev: SHORTINT; (* record extension level *)

ref, sysflag: INTEGER; (* export reference, system flag *)

n, size: LONGINT; (* number of elements and allocation size *)

tdadr, align: LONGINT; (* address of type descriptor, alignment factor *)

txtpos: LONGINT; (* text position *)

BaseTyp: Struct; (* base record type or array element type *)

link: Object; (* record fields or formal parameters of procedure type *)

strobj: Object (* named declaration of this type *)

END ;

There are several classes of types: basic types such as character, integer, or set,

and composite types like array, open array, or record (fields form and comp).

The field form denotes the exact class of a basic type or indicates a composite

type, whereas the field comp denotes the exact class of a composite type or

indicates a basic type. This separation allows to distinguish basic from com_

posite types by an efficient integer comparison. It also permits a 16_bit imple_
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mentation to use sets for efficient tests; this would not be possible with a

single field, since more than 16 different classes exist.

The third element type of the symbol table is ConstDesc. This record contains

numeric attributes of objects, like values of declared or anonymous constants:

ConstDesc = RECORD

ext: ConstExt; (* extension for string constant *)

intval: LONGINT;

intval2: LONGINT;

setval: SET;

realval: LONGREAL

END ;

An example involving the three different kinds of components is shown in

figure 4.2 below:

x, y: LONGINT;

a: A;

i: INTEGER;

VAR

A = ARRAY 4 OF LONGINT;

TYPE

Pi = 3.14;

CONST

3.14

longint

integer

y
var

x
var

a
var

vartyp
iA real

con
Pi

StrDesc:

ObjDesc:

ConstDesc:

typ

mode
name conval

rightleft

value

BaseTypform

array 4

Figure 4.2 Declarations and corresponding symbol table

Syntax Tree

The front_end builds an abstract syntax tree representing all statements of the

program being compiled. The Oberon syntax is mapped onto a tree of elements

called NodeDesc:



43

Node = POINTER TO NodeDesc;

NodeDesc = RECORD

left, right, link: Node;

class, subcl: SHORTINT; (* kind of node: construct, operation, expression *)

readonly: BOOLEAN; (* whether this expression is read_only *)

typ: Struct; (* type of the expression represented by this node *)

obj: Object; (* named object represented by this node *)

conval: Const (* constant value represented by this node *)

END ;

Each Oberon construct can be decomposed into a root element identifying the

construct and a maximum of two subtrees representing its components: an

assignment has a left and a right side, a While statement has a condition and a

sequence of statements, and so on. Some Oberon constructs are organized

sequentially: for example, lists of actual parameters in procedure calls and

sequences of statements in structured statements. Auxiliary nodes might have

been inserted to link these subtrees, yet an additional link field in the node is

more space_efficient.

Each node has a class, and possibly a subclass, identifying the Oberon

construct represented. It also has a type, which is a pointer to a StrDesc of the

symbol table. Similarly, a leaf node representing a declared object contains a

pointer (field obj) to the corresponding ObjDesc of the symbol table. A

ConstDesc may be attached (field conval) to a node to describe a numeric

attribute, such as the value of an anonymous constant. The position in the

source text is stored in the root node of each statement. This facilitates locating

compilation errors reported by the back_end. Figure 4.3 shows the repre_

sentation of two statements involving variables declared in figure 4.2.
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dyadic

dyadic
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longintlongint

longintlongint

integerinteger

longint

...

x := i * a[i] + y;

...

...

WHILE expr DO statseq END ;

class

subcl

obj

assign
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x

+

link

rightleft

while

expr statseq

...

var

y

*

indexconv

var

a

array

var

i

var

i

type

Node:

Figure 4.3 Statements and corresponding syntax tree

While generating code for a node, one typically has to evaluate left and right

subtrees recursively, then the node itself, and finally the linked successors. A

traversal of the tree looks like this:

Traverse(node: Node):

WHILE node # NIL DO

Traverse(node↑.left);

Traverse(node↑.right);

Do something with node;

node := node↑.link

END

The intermediate representation might have been a stream of instructions for a

virtual machine, but an abstract syntax tree has been preferred for various

reasons. Using an instruction stream may have some advantages in regard to

register allocation, for example. The virtual machine may be defined as having a
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infinite number of registers, which are manipulated by the instructions; some

optimizations on register level are then possible by reordering or modifying the

instructions. The infinite register set is then mapped in the back_end to a real

register set.

An instruction set for a virtual machine would have been defined without

any knowledge of future target machines. Perhaps the mapping of this instruc_

tion set to a real instruction set would not be easy, the virtual and real

machines being very different (RISC and CISC, for example). Furthermore,

generating these pseudoinstructions requires a code generator already, whereas

building the syntax tree is a trivial recursive task easily embedded in a recursive_

descent parser.

Trying to solve these problems by maintaining the instruction set for the

virtual machine on a high abstraction level − using a stack instead of a register

set, for example − does not help either, since most of the advantages of an

instruction stream disappear.

Since the tree is a natural mapping of the Oberon syntax, each procedure of

the parser returns as parameter the root of the subtree corresponding to the

construct just parsed. Furthermore, a tree keeps the program structure intact, so

that control_flow dependent optimizations can be integrated easily. Without a

tree, an expensive control_flow analysis would be required, since basic blocks

would have been dissolved in the linear code. The reordering of program pieces

is easier to perform in a tree than in an instruction stream. For example, by first

generating the statement sequence of a While statement (right subtree) and

then evaluating the condition (left subtree), one branch instruction can be

removed from the loop and replaced by an unconditional branch instruction

executed only once.

Compilation Phases

As explained at the beginning of this chapter, the task of compilation can be

divided into several more or less independent phases. Each phase works on

some data produced by previous phases and provides input data for the

following phases. The input data of the first phase is the source text of the

module to be compiled. The output of the last phase is the object file

containing the generated code. Additional input and output data in the form of

symbol files are necessary in a context of separate compilation (figure 4.4).
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Figure 4.4 The different compilation phases

Lexical Analysis and Syntax Analysis

The scanner implements lexical analysis and the parser implements syntax

analysis. Although these two tasks are implemented by separate modules, they

execute in parallel and form the first compilation phase. Thereby, the sequence

of symbols provided by the scanner does not have to be stored for later

processing. Instead, the symbols are continuously passed, one after the other,

as required by the recursive_descent parser. This is possible because the Oberon

syntax can be parsed with one symbol lookahead. Similarly, the scanner needs

only one character lookahead to decompose the character stream into a

sequence of terminal symbols. In other words, lexical analysis and syntax

analysis are done in a single pass on the source text.

The output of this first compilation phase performed by the front_end is the

symbol table on the one hand, and the syntax tree on the other hand. From the

front_end's point of view, the syntax tree is a write_only structure, but the

symbol table is a read_and_write structure accessed for checking the context_

dependent syntax. Context information for external objects is obtained from the

symbol files (as explained in chapter 2). When the parser recognizes an import

declaration, the corresponding symbol file is loaded into a separate scope of

the symbol table.
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Storage Allocation

In contrast to the previous phase, which is machine_independent, the next one,

storage allocation, has to be parametrized depending on the target architecture.

Storage allocation adds target_machine specific attributes to the objects of the

symbol table. These attributes depend on the kind of object being considered:

7 Every type gets a size attribute. For record types, a type descriptor is

allocated and its address is associated with the type. Type descriptors are

used at run time to perform type tests and garbage collection.

7 Record fields get an offset specifying their position in the enclosing

record.

7 Variables get an address, or a register number if they are permanently

allocated in a register.

7 For procedures, a frame size sufficient to keep all locally defined variables

is calculated. Exported procedures additionally need an identifying num_

ber − called entry number − so that they can be referenced from a client

module. Oberon_2 type_bound procedures (methods) get a number that

is used as an index into a method table.

Note that some attributes listed above, as well as the different allocation steps

described below are specific to the original version of OP2. The storage

allocation phase has been completely rewritten in the two models presented in

the following chapters. Indeed, storage allocation is tightly coupled with mod_

ule linking, which in turn depends on the method used for link_time consis_

tency checking.

As shown in figure 4.4, the syntax tree is not affected by storage allocation.

Some information inferred from the structure of the syntax tree − like whether

or not a procedure is leaf, or whether a variable can be allocated in a register −

is nevertheless useful for storage allocation. This information is already collec_

ted by the front_end as the tree is built and stored in the concerned objects.

Thereby, the syntax tree does not have to be traversed during storage allocation.

Since external objects are imported together with their allocation infor_

mation, they are not affected by this phase. It is therefore not necessary to

traverse scopes of imported modules, but only the scope of locally declared

objects. Storage allocation is done in the three following steps:

1. Exported types and procedures are visited in alphabetical order. Alphabe_

tical order is preferable to declaration order: this allows the programmer

to swap type declarations or procedure declarations in an already com_
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piled source text. A recompilation of the modified text has then no

influence on entry numbers or type descriptor addresses, which are

stored in the symbol file. Different attribute values would enforce the

creation of a new symbol file, thereby invalidating clients of the interface.

Similarly, a modification of nonexported objects should be invisible to

clients. This is why internal objects are visited after exported ones.

2. The list of (global) variables is traversed in the order of their declaration.

Alphabetical order would be less appropriate, since allocation could not

take advantage of a programmer's tendency to declare variables of the

same size in clusters. This would result in a higher memory frag_

mentation caused by alignment requirements. If addresses of exported

variables are not visible over module boundaries, but entry numbers are

exported instead, entry numbers can be distributed in alphabetical order

of the exported variables in step 1, whereas addresses are still distributed

in declaration order of the variables in step 2.

3. The last step treats all remaining nonexported (global) types and

procedures, as well as the local scopes of all procedures. Step 2 is

applied for each list of local variables and step 3 is recursively called on

each local scope. Traversal order is not important here, since objects

decorated in this step never appear in an interface, and therefore have no

influence on system consistency.

At the end of this phase, the symbol table is traversed and each exported object

is linearized together with its allocation information into a symbol file. The

original version of OP2 reads the old symbol file, compares it in a byte_wise

fashion with the new one, and stores the new file on disk if it is different.

Otherwise, the old file is retained with its old key (see chapter 2). When

possible, the order in which the objects appear in the symbol file should remain

the same among subsequent compilations, even if some declarations have

been swapped. Here again, processing the objects in alphabetical order helps to

avoid unnecessary invalidations.

Code Generation

The last compilation phase is code generation. The symbol table now contains

sufficient information to emit code. Some allocation information about impor_

ted objects may still be missing (like the entry point addresses of imported
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procedures). This information is inserted in the code by the linker at load time.

The code accessing internally defined objects does not need to be patched at

load time, since the relative addresses of these objects are known. However,

depending on the processor architecture, absolute addressing is sometimes

preferred to relative addressing. Therefore, the linker may also insert absolute

addresses of internal objects in the code.

The task of code generation can be thought of as mapping every node of the

syntax tree into a semantically equivalent code sequence, and storing these

code pieces linearly into an array. Every code piece consists of zero or more

machine instructions and, in general, depends on code generated for other

nodes. These dependences should be kept as small as possible to allow for an

efficient and systematic code generation process. A simple rule to enforce a

high degree of locality in the code generator is to postulate that dependences

exist between adjacent nodes only. In this case, dependences can be modeled

as attributes flowing along the edges of the syntax tree. These attributes are

recorded in an item that is passed as parameter (on the stack) instead of being

stored in the syntax tree. The contents of an item are highly dependent on the

target machine architecture. An excerpt of the module OPV is listed below. It

gives an overview of the syntax tree traversal:

PROCEDURE design(n: OPT.Node; VAR x: OPL.Item);

(* generate code for the designator n *)

VAR y: OPL.Item;

BEGIN

CASE n↑.class OF

...

| index:

design(n↑.left, x);

expr(n↑.right, y);

OPC.Index(x, y) (* x := x[y] *)

...

END ;

x.typ := n↑.typ

END design;

PROCEDURE expr(n: OPT.Node; VAR x: OPL.Item);

(* generate code for the expression n *)

VAR y: OPL.Item;

BEGIN

CASE n↑.class OF

...

| dyadic:

expr(n↑.left, x); ...

expr(n↑.right, y);
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CASE n↑.subcl OF

...

| plus:

OPC.Add(x, y) (* x := x + y *)

...

END ;

...

END

x.typ := n↑.typ

END expr;

PROCEDURE stat(n: OPT.Node);

(* generate code for the statement sequence n *)

VAR x: OPL.Item; L0, L1: OPL.Label;

BEGIN

WHILE n # NIL DO

CASE n↑.class OF

...

| while:

L0 := OPL.pc; (* remember start address of loop *)

expr(n↑.left, x); (* evaluate conditional expression into x *)

OPC.CFJ(x, L1); (* if not x then jump to L1 *)

stat(n↑.right); (* do statement sequence *)

OPC.BJ(L0); (* backward jump to L0 *)

OPL.FixLink(L1) (* fix_up L1 with current pc *)

...

END ;

n := n↑.link

END

END stat;

Code generation is not the subject of this thesis and will not be discussed

further here. For more details about code generation and retargeting of OP2, see

the technical report The Oberon System Family [29].



Chapter 5

The Layer Model

As observed in previous chapters, being able to modify module interfaces

without invalidating their clients would be very convenient. The original OP2

compiler does not permit this, since any modification to an exported object

always results in a new symbol file with a new key. Obviously, as smart and

sophisticated the technique might be, deleting or modifying an object in an

interface will always affect clients importing that object. On the other hand,

extending an interface with a new object should be a harmless operation, since

previously compiled clients do not see the newly inserted object.

This chapter presents a new model for interface extension and its realization

in OP2. Note that the new model has been conceived with one special require_

ment in mind: the existing implementation of OP2 and of the linking module

loader should need only few modifications in order to switch to the new

model. Especially, the compiler back_end and the object file format should not

be affected too much by the modifications, so that the new model can be

adopted without programming effort onto the many different platforms running

the Oberon System and OP2. However, the compiler front_end and the symbol

file format can be entirely replaced since they are machine_independent and

hence identical on all platforms.

The Idea

Clients of an exported object need some allocation information about the

object to access it. These clients are invalidated when this information is

modified. Extending an interface by some new objects should leave the

allocation information for already existing objects unchanged, so that clients of

these old objects do not need a recompilation. The part of the existing symbol

file, which provides this allocation information, should remain unchanged by an

interface extension. This can be the case if the additional symbol table

information corresponding to inserted objects is appended at the end of the file.

Conceptually, each time an interface is extended, a new extension layer appears

on top of the existing interface.
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A Stack of Extension Layers

Repeated extensions of an interface result in a multilayered interface. The

compilation of an extended interface must yield a new symbol file containing

the preceding symbol file as a prefix. In order to build such a stack of

chronologically ordered layers, the routine generating the symbol file must first

externalize exported objects belonging to the oldest layer, continue with objects

of intermediate layers, and finish with newly inserted objects (if any). Obviously,

it is not possible to determine the layer an object is belonging to, by only

looking at its declaration in the source text. This information must be taken

from the old symbol file.

The first compilation phase therefore reads the objects of the old symbol file

into a separate scope. This scope is used during parsing to assign a layer

number to a declared name. Note that it would be sufficient to keep in memory

a table associating a layer number with each name present in the symbol file,

instead of loading the complete symbol file into a scope. But for convenience,

the same routine is used as for decoding and loading symbol files of imported

modules.

The layer number of each object is determined by the position of the object

in the symbol file, but is not explicitly stored in the file. Layers are separated in

the file by a stopper. The first layer contains the objects with layer number 0.

The compilation consists of the following steps:

1. read own symbol file (SF);

n := number of layers in SF;

each object old from SF recalls its layer number: 0 <= old.layer < n;

2. parse source text, build symbol table and abstract syntax tree;

for each declaration of a global object obj:

if obj is exported and was present in SF: obj.layer := old.layer (0..n−1)

if obj is exported and was not present in SF: obj.layer := n

if obj is not exported: obj.layer := NotExported

3. allocate storage;

4. generate new symbol file:

FOR i := 0 TO n DO externalize objects with obj.layer = i END

5. generate code;

The variable n indicates the number of layers present in the old symbol file. If

the symbol file does not exist yet or does not contain any exported object, n is

simply set to 0. In the second phase, the source text is parsed. When a global
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exported object is declared, the scope of the old symbol file is searched for an

object with equal name. If such an object is found, this means that the object

was already exported in a previous version. In that case, the old layer number is

copied to the new object (field layer), otherwise the object is new and is

assigned layer number n. A nonexported object has no layer number (field layer

set to NotExported, a large constant). After storage allocation, which distributes

addresses and entry numbers to local and exported objects, the new symbol file

is generated, layer after layer. The code generation phase completes the

compilation.

Extensions Versus Modifications

The algorithm above does not take into account the case where an object

previously belonging to the layer number i is not exported any longer, is

modified, or is simply deleted. In that case, the stack of extension layers should

collapse from the height n to the height i, all the objects with a layer number

between i and n−1 forming a new layer with number i. Indeed, modifying an

object in a layer has consequences in storage allocation for objects in the same

layer and layers above. The example in figure 5.1 shows the effect of editing

changes to the number of layers in a symbol file originally consisting of 2

layers:

A, V, Z

B deleted

X, Y
>

U deleted

>

X, YX, Y

U, V

ZZ

Z inserted

>

A, B

A and B inserted

>

U, VU, V

X, YX, Y

A, B, V, Z

Figure 5.1 Growing and shrinking of extension layers

The algorithm has to detect differences between the old and new layers, and

shrink the stack of layers if necessary. Such a difference indicates an interface

modification that is more destructive than a simple extension: clients of the

modified layer have to be invalidated.

Verifying that each previously exported object is still present in the new

source text is not sufficient, but every exported attribute of it, like its type or its
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allocation information, must also remain unchanged, otherwise clients have to

be invalidated.

A structural comparison between the old and the new version of each object

of the same layer is expensive. A global comparison at the layer level is

preferable. Therefore, all objects of a same layer must be externalized in some

canonical order, thereby allowing a byte_stream comparison of the new and old

layers.

In order to avoid unnecessary invalidations caused by the insertion of an

exported object anywhere in the source text, which is a legal interface exten_

sion, the allocation of a new object should not influence the allocation of

objects in lower layers. Storage allocation has therefore to be done in the order

of the layers, starting with the oldest exported objects, and finishing with

nonexported objects. Furthermore, objects of the same layer must be allocated

in a canonical order, so that swapping two object declarations in the text has

no effect on storage allocation.

Consequently, both storage allocation and symbol file generation process

the objects in the same order: canonical order for objects of the same layer

(alphabetical order for types and procedures, declaration order for variables, see

previous chapter) and chronological order of the layers. It is therefore possible

to combine these two tasks into the same phase, thereby reducing the number

of symbol table traversals. Here is a more elaborate version of the algorithm

executing the different compilation phases:

1. read own symbol file (SF);

n := number of layers in SF;

each object old from SF recalls its layer number: 0 <= old.layer < n;

2. parse source text, build symbol table and abstract syntax tree;

for each declaration of a global object obj:

if obj is exported and was present in SF: obj.layer := old.layer (0..n−1)

if obj is exported and was not present in SF: obj.layer := n

if obj is not exported: obj.layer := NotExported

3. allocate storage and generate new symbol file:

i := 0; match := TRUE;

WHILE (i < n) & match DO

save allocation state;

allocate and export types and procedures with obj.layer = i, in alphabetical order;

allocate and export variables with obj.layer = i, in declaration order;

match := new layer = old layer;

INC(i)

END ;

IF ˜match THEN discard last layer; restore allocation state END ;
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allocate and export types and procedures with i <= obj.layer <= n, in alphabetical order;

allocate and export variables with i <= obj.layer <= n, in declaration order;

allocate remaining nonexported objects;

4. generate code;

The comparison between old and new versions of a layer takes place imme_

diately after the allocation and generation of the new layer. If a mismatch is

detected, this last layer is discarded and a new layer containing all remaining

exported objects is created. This makes storage allocation necessary for all

remaining objects, including the objects of the faulty layer, which have already

been allocated once. The storage allocation for these objects is nevertheless

repeated, since the set of objects to be allocated in canonical order may have

changed.

Storage allocation reserves some global resources like entry numbers or

memory space for allocated objects. Resources attributed to objects of the

discarded layer must be released prior to the reallocation. The allocation state is

saved before each allocation of a layer, and restored after a possible mismatch.

Consistency Checking

At compile time, the client of a module sees a stack of layers describing the

exported interface. If an identical stack is provided at link time by the exporter,

the client is consistent and can be safely linked to the module. Also, if the

interface is extended in the meantime, consistency is guaranteed, because the

stack of layers required by the client is present as a prefix of the effectively

provided stack. However, if the stack is smaller, some required layer may not be

present, and the client may have to be invalidated.

Comparing the height of the stack seen by the client at compile time with

the height of the stack provided by the exporter at link time is not sufficient for

detecting inconsistencies: the stack may be higher and yet not conform,

because it may shrink and grow again in an incompatible way; it may also be

smaller and nevertheless conform, because a client may not import objects

from every layer it sees; a prefix of the visible stack may contain all required

objects. The interface part following the required prefix may be modified or

even deleted without invalidating that particular client.

For each imported module, the client specifies in its object file the number

of layers it needs as well as a checksum, here called fingerprint, reflecting the

contents of these layers. Note that a single fingerprint for all required layers is

sufficient, because the client always imports a set of contiguous layers starting
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from the lowest layer. Contrary to the client, the exporter has to list one

fingerprint at each layer level, since a client may import any number of layers.

When a client is being linked to an exporter, the linker first checks that the

exporter supplies at least as many layers as required by the client. Then, it

compares the effectively listed fingerprint for the highest required layer to the

fingerprint expected by the client. Verifying one fingerprint at some layer level

implicitly verifies all fingerprints below that level as well, because each finger_

print does not only depend on the layer contents but also on the fingerprint of

the preceding layer. The advantages of using a fingerprint instead of a conven_

tional timestamp will become obvious in the next section describing the

implementation.

Figure 5.2 shows an exporter M with one layer and its client A. The export

section of the object file M.Obj mentions the number of exported layers, one in

the example, and lists the corresponding fingerprints, here fp0. The import

section of the object file A.Obj indicates that the first layer of module M with

fingerprint fp0 is required.

MODULE M;

VAR

x*: CHAR;

u*: BOOLEAN;

MODULE A;

IMPORT M;

... M.x ...

x, u layer 0

export

import...

...1: fp0

M, 1: fp0

M.Sym

M.Obj A.Obj

Figure 5.2 An interface M and its client A

Figure 5.3 shows an extension of module M by two exported variables, as well

as two new clients, B and C. Note that client A is still consistent after the

extension of M and does not need to be recompiled.
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A.ObjM.Obj

M.Sym

M, 1: fp0

...

... import

export

layer 0x, u

... M.x ...

IMPORT M;VAR

MODULE M;

x*, y*: CHAR;

u*, v*: BOOLEAN;

MODULE A;

y, v

2: fp0, fp1

IMPORT M;

...

MODULE B;

... M.v ...

B.Obj

M, 2: fp1

...

IMPORT M;

MODULE C;

... M.u ...

M, 1: fp0

C.Obj

still valid new new

new layer 1

... M.u ...

Figure 5.3 Interface extension without client invalidation

Although client B uses two layers from M, only one fingerprint corresponding to

the topmost layer is listed in its object file. Client C sees two layers from M, but

uses only one. Consequently, the second layer of M may be modified without

invalidating C, and neither A. However, B is invalidated if any object of the

second layer is modified, as shown in figure 5.4, where the variable y is dropped

from M.

fp1 # fp1' still valid

2: fp0, fp1'

v modified layer 1

x*: CHAR;

A.ObjM.Obj

M.Sym

M, 1: fp0

...

... import

export

layer 0x, u

... M.x ...

IMPORT M;VAR

MODULE M;

u*, v*: BOOLEAN;

MODULE A;

IMPORT M;

...

MODULE B;

... M.v ...

B.Obj

M, 2: fp1

...

IMPORT M;

MODULE C;

... M.u ...

M, 1: fp0

C.Obj

still valid

... M.u ...

invalidated:

Figure 5.4 Interface modification resulting in client invalidation
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Client B is invalidated: although it does not use the deleted variable y, it uses

the layer the variable was removed from. Note that the variable v could also be

deleted without affecting either A or C. In this case, the layer stack would shrink

to the initial height, causing no problem to client C, which would nevertheless

see a smaller stack at link time than at compile time.

The Implementation

The Layer Model has been implemented in the portable Oberon_2 Compiler

OP2 described in its original version in the preceding chapter. OP2 was nearly

left unchanged except for the modules OPT and OPV. A new symbol file format

reflecting the stack structure required new import and export routines in OPT,

and the OPV part performing storage allocation was rewritten. The part traver_

sing the abstract syntax tree was left unchanged.

Symbol File Format

Because it was not possible to maintain compatibility between symbol files in

the original model and in the layer model, the opportunity has been used to

completely revise the symbol file format. The new format is still of the Bb class,

but corresponds now to a preorder traversal of the type graph, thereby allowing

recursive types to be exported (see chapter 2). The following productions in

EBNF syntax describes the structure of the symbol file:

SymFile = 0FAX Module {{Object} FPrint}.

After the one_byte file tag and the module name, lists of objects separated by

stoppers (FPrint) forms the different layers. The stopper consists of a one_byte

tag (FPRINT) followed by the fingerprint value of the layer:

FPrint = FPRINT value.

Note: identifiers in capital letters represent one_byte tags, identifiers starting with a

capital letter are production names, other identifiers stand for numbers, except name,

which represents a 0X_terminated list of characters. See the complete format in the

appendix.
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It would not be necessary to store the fingerprint of each layer in the symbol

file, since it could be recomputed when the symbol file is loaded, but it is done

for efficiency reasons. The additional disk space is insignificant, considering the

relative small size of a fingerprint (LONGINT) compared to the size of a layer.

Each object is either a constant, a type, a variable, or a procedure:

Constant = CHAR value:1

| BOOL (FALSE | TRUE)

| (SINT | INT | LINT | SET) value

| REAL value:4

| LREAL value:8

| STRING name

| NIL.

Object = Constant name

| TYPE Struct

| ALIAS Struct name

| (RVAR | VAR) Struct offset name

| (XPRO | IPRO) Signature entryno name

| CPRO Signature len {code:1} name.

Note that the name of a type object (TYPE) is not listed, because it appears as

canonical name of the object's structure (production Struct). This is explained in

more details in the following. A type may appear in a symbol file without being

marked as exported by an asterisk. This occurs for example when the type of a

variable is not exported, but the variable is. On the one hand, the identifier of

such a type should not appear in the symbol file, because clients are not

allowed to use it. On the other hand, the compiler has to recognize types

indirectly imported from different modules, in order to guarantee type equiva_

lence. Now, Oberon uses name equivalence. Undoubtedly, the name has to be

listed in the symbol file. This is also convenient for the browser which would

have notation problems with anonymous types otherwise.

A clear distinction has to be made between the structure and the object of

the type: the structure of a type always appears in the symbol file if any

exported object of that type exists, but the object of the type only appears if the

type itself is marked as exported. The question now is whether the name

belongs to the structure or to the object. Obviously, the considerations above

attribute the name to the structure, which is correct. Note that data structures in

OP2 do not provide a name field for structures (record StrDesc, see previous

chapter), but a pointer (field strobj) to a named object. The pointer avoids

redundancy and contributes to efficiency.
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The name in a type declaration is the canonical name of the type (see

chapter 2). It is an attribute of the structure of the type that has to be listed

with the structure in the symbol file. When a type is marked as exported, both

its structure and its object are listed in the symbol file. Since the name is an

attribute of the structure, it is not necessary to repeat it with the type object.

Clients can only use the name if the corresponding object is exported. Type

aliases introduce alternative names for the same type, or, in other words, new

objects for the same structure. In that case, type alias objects are listed with

their name, which is different from the already listed canonical name.

A previous version of the symbol file format bound the name to the object

rather than to the structure. The object had therefore always to be exported

with the structure. Exported and nonexported types had different tags. This did

not cause any problems in the original model, but it would do so in the layer

model. Indeed, a type not explicitly exported, but nevertheless appearing as

hidden type in a symbol file layer, could not be made visible later on, without

modifying the layer, since a new tag would be necessary. The new technique

allows the structure to be listed alone in a layer, and the corresponding object

in a subsequent layer. Marking the type identifier with an asterisk becomes a

true extension.

The tag RVAR specifies a read_only variable, VAR a read_write variable, XPRO

an external procedure, IPRO an interrupt procedure (which may have different

calling conventions), and CPRO a code procedure (inline procedure which is

used for hardware interfacing purposes). Storage allocation information has the

form of an offset for variables and an entry number for procedures. Entry

numbers could replace offsets for variables, which would allow variables of the

same layer to be reordered in the source text without invalidating clients. Note

that with either of the two methods, a new variable can be inserted at any

position into the text without client invalidation, since the new variable is

allocated in a new layer.

Procedures have a signature, whereas variables and types have a structure:

Struct = negref

| STRUCT Module name [SYS value]

( PTR Struct

| ARR Struct nofElem

| DARR Struct

| REC Struct size align descAdr nofMeth {Field} {Method} END

| PRO Signature).
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The same structure may be referenced several times by different objects. The

(positive) tag STRUCT introduces the first occurrence of a structure. Subsequent

occurrences are replaced by a (negative) reference number. The first user_

defined structure has reference number 16, since smaller reference numbers are

reserved for predefined basic types. Indeed, the structure of standard types is

implicitly known in every module and does not need to be described in symbol

files. Every occurrence of a standard type is therefore replaced by a small

(negative) predefined reference number (see appendix).

A structure may be a pointer referencing a further structure, a fixed or

dynamic array of elements, a record − possibly extending some base record −

with fields and methods, or a procedure type specified by a signature. Allo_

cation information for record types is the allocation size, an alignment factor,

the type descriptor address, and the total number of methods.

Fields, methods (also called type_bound procedures), and signatures are

described by the following productions:

Field = ((RFLD | FLD) Struct name | (HDPTR | HDPRO)) offset.

Method = (TPRO Signature name | HDTPRO) methno entryno.

Signature = Struct {(VALPAR | VARPAR) Struct offset name} END.

Visible record fields may be read_only (RFLD) or read_write (FLD). Hidden fields

represent nonexported fields, which are of a pointer (HDPTR) or procedure

(HDPRO) type. The mark_and_sweep garbage collector needs to know the

position of pointer fields in records. For this reason, type descriptors contain a

table of pointer fields offsets. Information on hidden pointers may be used by

the compiler to build type descriptors for record types extending an imported

record type. This information is not necessary if type descriptors are built at

load time. In that case, similar information must be stored in the object file, so

that hidden fields can be found at load time in nested records as well as in

global variables. OP2 prefers the first variant which is more convenient.

A safe implementation of module unloading may need the exact location of

hidden procedure fields in imported records. Information about nonexported

methods (HDTPRO) is necessary to build method tables at compile time. Three

boolean constants exported from module OPM can disable the generation of

information in the symbol file on hidden pointer fields, hidden procedure fields,

and hidden type_bound procedures.

Signatures consist of a function result type − which can be the predefined

type NoTyp in case of a procedure − and a list of value (VALPAR) or variable

(VARPAR) formal parameters. Parameter names are present for documentation
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purposes and are used by the browser only. The presence of parameter offsets

avoids recomputing them when compiling caller modules. Formal parameter

offsets may not be necessary depending on the calling conventions. Other

allocation information is record field offsets, method table indexes, and method

entry numbers.

A structure always has a name − which can be empty if the structure is

anonymous − a module specifier (Module), and an optional system flag (SYS).

The meaning of the flag is implementation_dependent and is interpreted by the

back_end only. It can be set in the source text of low_level interfaces, for

example, to mark redeclared types of the host operating system, which may

have different allocation requirements.

Contrary to objects, structures may be reexported. As a consequence, they

need a module specifier indicating their origin, so that the compiler can

recognize the same structure indirectly imported via different symbol files. The

module specifier indicates the module name and layer number the structure

stems from:

Module = 0 | ((negmno layerno | MNAME name) {FPrint} END).

The module whose symbol file is currently read has a module specifier equal to

zero, because both the module name and layer number are implicitly known.

Otherwise, a similar numbering scheme as for structures is used for module

specifiers: a module name is only spelled out at its first occurrence (after the

positive tag MNAME), subsequent occurrences are replaced by a (negative)

number.

If an imported type is reexported, a module specifier lists the fingerprint

value of the original layer declaring the type. Indeed, such a reexported type

may be imported several times through different symbol files, and a possible

inconsistency has to be detected at compile time. Therefore, the compiler

verifies that the layer declaring the type has the same fingerprint in all symbol

files.

The consistency check is more flexible at link time, since the fingerprints of

the used layers only are listed in the object file and checked by the linker. The

model thereby tolerates inconsistent fingerprints of unused layers, which is not

a mistake, but a contribution to extension flexibility.

Each fingerprint is only listed once in the symbol file. The number of listed

fingerprint determines the number of used layers at the first occurrence of a

module (MNAME). The number of layers (layerno) is explicitly listed in sub_

sequent occurrences of a module specifier. If this number is larger than in the

first occurrence, missing fingerprints only are listed.
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The example in figure 5.5 shows a module M and its client N. Module N

reexports the types T0, T1, and T2, declared in the layers no 1, 0, and 3 of

module M.

z

N.Obj

N.Sym

T2

2: fp0', fp1'

M, 4: fp3

layer 3

...

T0

T1

z*: M.T2;

y*: M.T1;

x*: M.T0;

VAR

MODULE N;

T2* = ... ;

T1* = ... ;

T0* = ... ;

TYPE

M.Obj

M.Sym

... import

export

layer 0

IMPORT M;

MODULE M;

4: fp0..fp3

x, y

Figure 5.5 Type reexport in symbol files

Here are excerpts from the symbol file of N, which consists of two layers, and

which reexports the types declared in M:

N's layer no 0:

... STRUCT MNAME M fp0 fp1 END T0 ...

fp0 and fp1 are listed ↑ T0 belongs to M's layer no 1

... STRUCT −1 0 END T1 ...

−1 means module M, 0 means T1 belongs to M's layer 0 ↑ fp0 is not repeated

N's layer no 1:

... STRUCT −1 3 fp2 fp3 END T2 ...

T2 belongs to M's layer 3 ↑ fp0 and fp1 are not repeated

A fifth layer in M could be modified without invalidating the already compiled

client N. Also, a client P importing both N and the new M would not notice that

M has been extended after the compilation of N, because N does not use the

new layers of M.
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Consistency checking at compile time is performed when a layer is imported

several times through different symbol files. The compiler verifies that such a

layer has the same fingerprint in all symbol files.

The new symbol file format is machine_independent in that the same

module OPT of the compiler is able to read and write a symbol file on different

platforms without modifications, provided that the boolean constants control_

ling generation of hidden information are correctly set in OPM. However, the

contents of the symbol file are not machine_independent, because some

attributes, like record field offsets for example, may take different values on

different machines. It would be possible to recalculate these offsets when

loading the symbol file, but this would require the presence of every exported

and nonexported field along with its type in the symbol file. This would not

only take more space but also dramatically complicate the consistency check or

introduce superfluous dependences for clients. Furthermore, the symbol file

contents would not make any advantages of being machine_independent, since

the symbol file can be reproduced at any time from the textual interface with

no danger of invalidation for any clients.

Externalization, Fingerprinting, and Internalization

The algorithm for storage allocation presented in the previous section is

implemented in a procedure of module OPV. This procedure traverses the

scope graph of globally declared objects, allocates objects in the required order,

and calls a routine OutObj in OPT for each object to be exported. OutObj

initiates a recursive depth_first traversal of the object's type graph to serialize

each node into a byte sequence as defined by the symbol file format. To each

production of the format corresponds a serializing procedure:

PROCEDURE OutObj*(obj: Object);

BEGIN

CASE obj↑.mode OF

| Con:

OutConstant(obj); OutName(obj↑.name)

...

| XProc:

OPM.SymWInt(Sxpro, expCtxt.fprint); OutSign(obj↑.typ, obj↑.link);

OPM.SymWInt(obj↑.adr, expCtxt.fprint); OutName(obj↑.name)

...

| Typ:

IF obj↑.typ↑.strobj = obj THEN

OPM.SymWInt(Stype, expCtxt.fprint); OutStr(obj↑.typ)
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ELSE

OPM.SymWInt(Salias, expCtxt.fprint); OutStr(obj↑.typ); OutName(obj↑.name)

END

END

END OutObj;

PROCEDURE OutStr(typ: Struct);

BEGIN

IF typ↑.ref < expCtxt.ref THEN OPM.SymWInt(−typ↑.ref, expCtxt.fprint)

ELSE

OPM.SymWInt(Sstruct, expCtxt.fprint);

typ↑.ref := expCtxt.ref; INC(expCtxt.ref);

IF expCtxt.ref > maxStruct THEN err(228) END ;

OutMod(typ);

IF typ↑.strobj # NIL THEN OutName(typ↑.strobj↑.name)

ELSE OPM.SymWCh(0X, expCtxt.fprint)

END ;

IF typ↑.sysflag # 0 THEN ... END ;

CASE typ↑.form OF

| Pointer:

OPM.SymWInt(Sptr, expCtxt.fprint); OutStr(typ↑.BaseTyp)

| ProcTyp:

OPM.SymWInt(Spro, expCtxt.fprint); OutSign(typ↑.BaseTyp, typ↑.link)

...

END

END

END OutStr;

PROCEDURE OutSign(result: Struct; par: Object);

BEGIN

OutStr(result);

WHILE par # NIL DO

IF par↑.mode = Var THEN OPM.SymWInt(Svalpar, expCtxt.fprint)

ELSE OPM.SymWInt(Svarpar, expCtxt.fprint)

END ;

OutStr(par↑.typ);

OPM.SymWInt(par↑.adr, expCtxt.fprint);

OutName(par↑.name); par := par↑.link

END ;

OPM.SymWInt(Send, expCtxt.fprint)

END OutSign;

Terminal symbols of the file syntax are generated by procedures of OPM, like

SymWInt for an integer or SymWCh for a character. These procedures also

update the current fingerprint passed as second parameter. The fingerprint is
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the result of a hash function applied to the sequence of values making up the

layer. The fingerprint FP of a sequence of n+1 values V0 to Vn is defined as

follows:

FP(V0, V1, ... Vn) := (FP(V0, V1, ... Vn−1) XOR Vn) ROT 1

FP(empty sequence) := 1

where XOR denotes a 32_bit exclusive or, and ROT 1 a 32_bit rotate left by one

bit. This recursive definition allows the procedure FPrint to compute fingerprints

in an incremental fashion, like checksums. FPrint is called each time a proce_

dure like SymWCh or SymWInt writes a value to the symbol file:

PROCEDURE FPrint*(VAR fp: LONGINT; val: LONGINT);

BEGIN fp := S.ROT(S.VAL(LONGINT, S.VAL(SET, fp) / S.VAL(SET, val)), 1)

END FPrint;

PROCEDURE SymWCh*(ch: CHAR; VAR fp: LONGINT);

BEGIN Files.Write(newSF, ch); FPrint(fp, ORD(ch))

END SymWCh;

PROCEDURE SymWInt*(i: LONGINT; VAR fp: LONGINT);

BEGIN Files.WriteNum(newSF, i); FPrint(fp, i)

END SymWInt;

Using fingerprints for consistency checking has several advantages over using

unique keys derived from the compilation time and date. First, a fingerprint can

be recomputed, because it is a hash function of the layer contents. Therefore,

the same layer always results in the same fingerprint, independently of its

compilation time. This is convenient when the same source text is compiled on

different machines. Another advantage is that a newly generated layer can be

compared to its older version by comparing their fingerprints, which is more

efficient than reading the old symbol file a second time. This also avoids

reading the newly generated symbol file.

The fingerprinting function should guarantee that any change in a layer is

reflected in the fingerprint. Unfortunately, this is impossible because the finger_

print is of a finite length (32_bit integer here) and there can be more different

layers than possible fingerprint values. Therefore, two different layers may have

the same fingerprint, which is called a fingerprint collision. Taking the layer

contents as fingerprint value would avoid collisions, but this is both impractical

and inefficient in terms of memory usage and comparison time.

In practice, a fingerprint is nevertheless as safe as a timestamp, because a

collision is not more probable than a breakdown of the computer real_time
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clock (dead backup battery, for example). Even in the case of a collision, the

consistency of the system of modules would most probably not be endangered.

The only fatal collision is the one occurring between the original and the

modified version of a same layer. In that case, the linker will not notice that

nonrecompiled clients of that layer have been invalidated.

The probability of a collision can be reduced by simply increasing the

fingerprint length. More sophisticated fingerprinting algorithms, like the MD5

Message_Digest Algorithm presented by R. Rivest [30] and intended for digital

signature applications, could be employed here. However, these methods fulfill

special requirements, like function irreversibility, which are not necessary in the

layer model. More important here are the incremental aspect of computation,

low probability of collision, and efficiency. In order to find a good fingerprinting

method, one should take into account the influence of typical interface modifi_

cations on the probability of a collision. Undoubtedly, several PhD theses could

be written on the subject. However, it is not manifest why the very simple

fingerprinting function presented above should give poorer results than a more

complicated one. Complexity is often superfluous. It is nevertheless possible to

use another fingerprinting function by simply replacing the FPrint procedure in

module OPM with no effect on the model.

The global record variable expCtxt contains the export context information,

which is used and updated during the externalization phase. Fields of this

record are for example the current fingerprint being computed (fprint) and the

reference counter for exported structures (ref).

Similarly, a global record variable impCtxt manages import context infor_

mation, which is used and updated during the internalization phase. Among

other fields, tables are necessary to associate with a reference number an

already internalized structure or module name. Predefined structures have

predefined reference numbers smaller than the constant FirstRef.

The internalizing routines are the counterpart to the externalizing routines

presented above:

PROCEDURE InSign(mno: SHORTINT; layer: INTEGER; VAR res: Struct; VAR par: Object);

VAR last, new: Object; tag: LONGINT;

BEGIN

InStruct(res);

tag := OPM.SymRInt(); last := NIL;

WHILE tag # Send DO

new := NewObj(); new↑.mnolev := −mno; new↑.layer := layer;

IF last = NIL THEN par := new ELSE last↑.link := new END ;

IF tag = Svalpar THEN new↑.mode := Var ELSE new↑.mode := VarPar END ;

InStruct(new↑.typ); new↑.adr := OPM.SymRInt(); InName(new↑.name);

last := new; tag := OPM.SymRInt()
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END

END InSign;

PROCEDURE InStruct(VAR typ: Struct);

VAR mno: SHORTINT; layer: INTEGER;

tag: LONGINT; name: OPS.Name; obj, last, old: Object;

BEGIN

tag := OPM.SymRInt();

IF tag # Sstruct THEN typ := impCtxt.ref[−tag]

ELSE

typ := NewStr(...);

InMod(mno, layer); typ↑.mno := mno; typ↑.layer := layer;

InName(name);

IF name # "" THEN obj := NewObj(); obj↑.name := name;

InsertImport(obj, GlbMod[mno].head↑.right, old);

IF old # NIL THEN typ := old↑.typ

ELSE

obj↑.mode := Typ; obj↑.typ := typ; typ↑.strobj := obj;

obj↑.mnolev := −mno (* obj↑.layer = NotExported, name not visible here *)

END

END ;

impCtxt.ref[impCtxt.nofr] := typ; INC(impCtxt.nofr);

tag := OPM.SymRInt();

IF tag = Ssys THEN ... END ;

CASE tag OF

| Sptr:

typ↑.form := Pointer; ... InStruct(typ↑.BaseTyp)

| Spro:

typ↑.form := ProcTyp; ... InSign(mno, layer, typ↑.BaseTyp, typ↑.link)

...

END

END

END InStruct;

PROCEDURE InObj*(VAR obj: Object); (* first number in impCtxt.nextTag *)

VAR mno: SHORTINT; typ: Struct; tag: LONGINT;

BEGIN

tag := impCtxt.nextTag;

IF tag = Stype THEN (* type name visible now *)

InStruct(typ); obj := typ↑.strobj; obj↑.layer := impCtxt.layer

ELSE

mno := ...;

obj := NewObj(); obj↑.mnolev := −mno; obj↑.layer := impCtxt.layer;

IF tag <= Pointer THEN (* Constant *)

obj↑.mode := Con; obj↑.typ := impCtxt.ref[tag];

obj↑.conval := NewConst(); InConstant(tag, obj↑.conval)

ELSIF tag >= Sxpro THEN

...
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InSign(mno, impCtxt.layer, obj↑.typ, obj↑.link);

CASE tag OF

| Sxpro: obj↑.mode := XProc; obj↑.adr := OPM.SymRInt()

...

END

ELSIF tag = Salias THEN

obj↑.mode := Typ; InStruct(obj↑.typ)

...

END ;

InName(obj↑.name)

END

END InObj;

These routines do not have to recompute fingerprints, since each layer is

followed by its fingerprint in the symbol file. Reading a symbol file consists of

repeated calls to the procedure InObj, which returns an object to be inserted in

the scope of the corresponding module:

InMod(mno, dummy);

impCtxt.nextTag := OPM.SymRInt();

WHILE ˜OPM.eofSF() DO

WHILE impCtxt.nextTag # Sfprint DO

InObj(obj);

InsertImport(obj, GlbMod[mno].head↑.right, old);

impCtxt.nextTag := OPM.SymRInt()

END ;

InFPrint(mno);

INC(impCtxt.layer);

impCtxt.nextTag := OPM.SymRInt()

END ;

Writing a symbol file is a little bit more complicated than reading it, since

storage allocation is performed at the same time. Furthermore, the last written

layer may have to be discarded and storage allocation repeated in case of a

layer mismatch.

Storage Allocation and Reallocation

During storage allocation, objects and structures are supplied with both con_

text_independent attributes, like type size or field offsets, and context_dependent

attributes, like address or entry number. The order in which objects are

processed has no effect on the value of context_independent attributes, but

influences context_dependent attributes. When an object is reallocated after a
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layer mismatch, only its context_dependent attributes need to be recomputed. It

is therefore advantageous to perform storage allocation in two distinct steps

and only repeat the second step after a mismatch.

Moreover, the size of a type may be required already in the front_end by the

Oberon standard function SIZE for constant folding. Since the source text is not

entirely parsed at this stage, a complete allocation is not possible yet. However,

the first allocation step, which includes the computation of the size, can be

computed, since almost all context_independent attributes are defined, except

for one. Indeed, since type_bound procedures may be declared outside the

context of their record type, it is not possible to count them before the text is

completely parsed. So, the number of methods is determined in the second

step, although this number is context_independent.

Objects have no context_independent attributes, but context_dependent attri_

butes only. Therefore, the first step is done on structures only, by a procedure in

OPV called TypeSize. As indicated by its name, this procedure computes the size

of the type passed as parameter, by first determining recursively the size,

alignment, and offsets of the type components:

PROCEDURE TypeSize*(typ: OPT.Struct);

VAR f, c: INTEGER; offset, size: LONGINT; align, falign: LONGINT;

fld: OPT.Object; btyp, ftyp: OPT.Struct;

BEGIN

IF typ = OPT.undftyp THEN OPM.err(58)

ELSIF typ↑.size = −1 THEN (* not yet computed *)

f := typ↑.form; c := typ↑.comp; btyp := typ↑.BaseTyp;

IF c = Record THEN

IF btyp = NIL THEN offset := 0; align := 1

ELSE TypeSize(btyp); offset := btyp↑.size; align := btyp↑.align

END ;

fld := typ↑.link;

WHILE (fld # NIL) & (fld↑.mode = Fld) DO

ftyp := fld↑.typ; TypeSize(ftyp);

size := ftyp↑.size; falign := Base(ftyp); Align(offset, falign);

fld↑.adr := offset; INC(offset, size);

IF falign > align THEN align := falign END ;

fld := fld↑.link

END ;

typ↑.align := align;

Align(offset, Base(typ)); typ↑.size := offset;

typ↑.n := −1 (* methods not counted yet *)

ELSIF c = Array THEN

TypeSize(btyp);

typ↑.size := typ↑.n * btyp↑.size

ELSIF f = Pointer THEN
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typ↑.size := OPM.PointerSize

ELSIF f = ProcTyp THEN

typ↑.size := OPM.ProcSize

ELSE (* c = DynArr *)

TypeSize(btyp);

IF btyp↑.comp = DynArr THEN typ↑.size := btyp↑.size + 4

ELSE typ↑.size := 8

END

END

END

END TypeSize;

The first line of the procedure catches erroneous type definitions that recursively

use SIZE, like this one:

TYPE A = ARRAY SIZE(A) OF CHAR;

When a named type is being defined, the structure associated with the named

object is still undefined (undftyp). This allows TypeSize to detect such illegal

definitions. Other recursive type definitions resulting in cyclic type graphs are

either correct, or already caught by the front_end. Cycles cannot cause TypeSize

to loop forever, because there is always a pointer type or a procedure type in a

cycle; the constant size of a pointer or of a procedure (OPM.PointerSize and

OPM.ProcSize, usually one word) breaks the cycle. The initial value of _1

indicates that the size has not been calculated yet. The comparison with _1

avoids a second traversal of the type graph.

The field align in a record structure reflects the alignment constraint in

number of bytes of the record. Usual values are 1, 2, 4 or 8 bytes. For example,

a long real field may have to be aligned on a double word boundary (8 bytes).

The procedure Base returns the alignment factor of the type passed as para_

meter. A record type takes on the strongest alignment constraint of its fields, so

that the alignment is respected when the record is allocated as field in another

record.

The procedure TypeAlloc performs the second allocation step. Contrary to

TypeSize, TypeAlloc may reach the same node several times in a recursive type

graph. It is therefore necessary to mark visited nodes to avoid infinite loops. An

integer value is used to mark nodes, because a binary value, "visited" or "not

visited", would not allow a type to be revisited during reallocation after a layer

mismatch. Note that only the types belonging to the last layer need a reallo_

cation; types already allocated in lower layers do not. Therefore, each type has

to recall the layer number in which it was visited for the first time. Moreover,

objects in local scopes are allocated after exported objects; since local scopes
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are rooted in global objects or global structures, these global nodes have to be

revisited. In addition, type graphs of exported objects are also traversed during

export. Figure 5.6 shows the different states of a structure node during

allocation and export:

nonexported

;

>

>

incl. local scopes

reallocated

incl. local scopes

allocated

mismatch

;

> reexportedreallocated

exported

;

>allocated

not allocated

Figure 5.6 States of a user_defined type during allocation and export

The procedure TypeAlloc may reach type nodes being in any of these states. The

procedure has to identify the state before deciding whether to (re)allocate the

node or not: a node being already in the next state is part of a cycle and is not

reallocated. When the first symbol file layer is built, the type nodes of the layer

number 0 change from the "not allocated" state to the "allocated" state, and

then to the "exported" state when export routines are called during the same

traversal. All other type nodes remain in the "not allocated" state.

A second traversal of the scope brings all the type nodes belonging to the

layer number 1 into the "allocated" and then "exported" state. This continues

until all symbol file layers are generated. At this stage, all exported type nodes

are in the "exported" state (or in the "reexported" state if a mismatch occurred)

and all nonexported type nodes are still in the "not allocated" state. A last

traversal revisits all nodes in order to find and allocate nonexported objects and

types in local scopes and to bring remaining type nodes into the "allocated incl.

local scopes" state.

The new field stamp in StrDesc encodes the state and layer number of each

node in such a way that a simple comparison indicates whether the node has

to be (re)traversed. The field ref in StrDesc indicates the reference number of the

structure in the symbol file. This field is reset during a reallocation, so that the

node can be correctly reexported. Note that reference numbers are valid in all

symbol file layers, since an object in a higher layer may be of a type already

defined in a lower layer. The following table shows the value of the fields stamp

and ref for each state:
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Table 5.1 State encoding during allocation

realloc. incl. local scopes 4*layer + 1 < NotExported

reexported 4*layer < NotExported

reallocated 4*layer = NotExported

alloc. incl. local scopes 4*layer + 3 # NotExported

exported 4*layer + 2 < NotExported

allocated 4*layer + 2 = NotExported

not allocated NotAllocated = NotExported

State Field stamp Field ref

An odd stamp value in a type node indicates that the type and the objects in

the local scope of the type have been allocated. In each traversal, TypeAlloc

decides whether to traverse (and stamp) a node or not, by comparing the

node's stamp to a global stamp (expCtxt.stamp), which is updated for each new

layer. The value of expCtxt.stamp divided by 4 always corresponds to the

number of the layer being allocated. The first value of the global stamp is 2; it is

then incremented by 4 after each layer, except after a mismatch, in which case

it is decremented by 2. A node is (re)traversed if its stamp value is greater than

the global stamp value. Hence, decrementing the global stamp by 2 after a

mismatch forces nodes to be reallocated in the next traversal.

NotAllocated and NotExported are large constants whose values are chosen

to simplify the stamp comparison (NotAllocated is even). Predefined types have

a predefined ref field and do not need to be allocated in TypeAlloc. External

types, imported from other modules, are not allocated, but since they may be

reexported, they need a field ref. This field must be reset after a layer mismatch

if the type was reexported in the discarded layer. For this reason, the procedure

TypeAlloc also stamps external types, exactly like internal types.

PROCEDURE TypeAlloc(typ: OPT.Struct);

BEGIN

IF typ↑.mno # 0 THEN (* imported type, its size is already computed *)

IF OPT.expCtxt.exported & (typ↑.stamp > OPT.expCtxt.stamp) THEN

typ↑.stamp := OPT.expCtxt.stamp; typ↑.ref := OPT.NotExported;

... stamp all reachable external types and reset their ref ...

END

ELSIF typ↑.ref >= OPT.FirstRef THEN (* not a predefined type *)

stamp := typ↑.stamp; TypeSize(typ);

IF OPT.expCtxt.exported THEN

IF stamp > OPT.expCtxt.stamp THEN
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typ↑.stamp := OPT.expCtxt.stamp; typ↑.ref := OPT.NotExported;

... allocate all reachable types and reset their ref ...

END

ELSE

IF ˜ODD(stamp) THEN (* not yet traversed with OPT.expCtxt.exported = FALSE *)

IF stamp > OPT.expCtxt.stamp THEN (* not traversed at all *)

typ↑.stamp := OPT.expCtxt.stamp + 1;

... allocate all reachable types and local scopes ...

ELSE (* already traversed with OPT.expCtxt.exported = TRUE *)

INC(typ↑.stamp);

... allocate all reachable local scopes ...

END

END

END

END TypeAlloc;

The field exported of the export context expCtxt indicates whether the current

traversal allocates exported objects only. The fields of expCtxt are updated by the

procedure OutLayer, each time a new layer is written to the symbol file. The

fields expCtxt.from and expCtxt.to specify a range of layer numbers; objects with

a field layer in that range are selected by the following two procedures to be

allocated and possibly written to the symbol file:

PROCEDURE Variables(var: OPT.Object);

VAR adr: LONGINT; layer: INTEGER; typ: OPT.Struct;

BEGIN ...

WHILE var # NIL DO

layer := var↑.layer;

IF (layer >= OPT.expCtxt.from) & (layer <= OPT.expCtxt.to) THEN

typ := var↑.typ;

TypeAlloc(typ);

IF var↑.stamp > OPT.expCtxt.stamp THEN

var↑.stamp := OPT.expCtxt.stamp;

NegAlign(adr, Base(typ));

DEC(adr, typ↑.size); var↑.adr := adr; var↑.linkadr := adr;

IF OPT.expCtxt.exported THEN OPT.OutObj(var) END

END ;

END ;

var := var↑.link

END ;

...

END Variables;

PROCEDURE Objects(obj: OPT.Object);

VAR layer: INTEGER;

BEGIN
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IF obj # NIL THEN

Objects(obj↑.left);

layer := obj↑.layer;

IF (obj↑.mode IN {Con, Typ, ... (* not Var *) }) &

(layer >= OPT.expCtxt.from) & (layer <= OPT.expCtxt.to) THEN ...

TypeAlloc(obj↑.typ);

IF OPT.expCtxt.exported THEN OPT.OutObj(obj) END

END ;

Objects(obj↑.right);

END

END Objects;

The range specified by expCtxt.from and expCtxt.to contains only one layer, until

a mismatch occurs. The range then includes the remaining layers to be

exported. A last traversal with expCtxt.exported set to FALSE completes the

allocation phase. In this last traversal, the range is set to include all exported

and nonexported objects, so that every local scope can be reached and

allocated. The following statements from the procedure AllocAndExport in OPV

show the global structure of the allocation phase:

OPT.InitExport;

WHILE OPT.expCtxt.exported & OPM.noerr DO

OPL.GetAllocState(allocState);

Variables( first variable );

Objects( first object );

OPT.OutLayer;

IF OPT.expCtxt.mismatch THEN OPL.SetAllocState(allocState) END

END ;

...

Variables( first variable );

Objects( first object )

...

The procedure OPT.OutLayer detects a possible layer mismatch and sets the

different fields of the expCtxt variable. After a layer mismatch, the allocation

state is restored and the variable expCtxt.exported remains TRUE for one more

traversal. The allocation state indicates the amount of memory allocated for

global variables and constants, and of the number of entries attributed to

exported procedures and methods. The procedure OutLayer also resets the

writing position of the symbol file rider to the beginning of the discarded layer.
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Front_End Modifications

The implementation of the layer model requires only few modifications in OP2.

Besides new OPT procedures that are described above, existing procedures of

the front_end are not modified, except for two in the table handler:

7 The procedure retrieving imported objects in external scopes recalls for

each imported module the number of the highest accessed layer. This

layer number is recorded together with the corresponding fingerprint in

the object file and will be used by the module linker for consistency

checking.

7 After each declaration of an exported object, the table handler searches

in the scope of the old symbol file for an object with the same name, in

order to reuse the same layer number for the declared object.

The data structures in OP2 are left unchanged, except for the records ObjDesc

and StrDesc in OPT, which both need two new integer fields, stamp and layer.

The field stamp is used to mark nodes visited during allocation as shown above.

The field layer recalls the layer number from which the object or the structure

was imported. In addition, module OPT declares several new data structures,

like import and export contexts, that are used locally by the new procedures,

but have no influence on the rest of the compiler.

Object File Format and Linker Modifications

The back_end remains unchanged, except for the procedure generating the

object file and the allocation procedures in OPV described above. Indeed, a

slight modification of the object file format (see the complete format in the

appendix) is necessary to list the number and fingerprints of exported layers:

HeaderBlk = ... noflayer:2 {fprint:4} modname.

The old object file format used to list a key only. Another modification concerns

the import block where the number and fingerprint of the highest used layer

from each imported module replace the key of that imported module:

ImpBlk = 85X {noflayer:2 [fprint:4] name}.
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Note that a module may be imported without being used; in that case, the

number of used layers is 0 and no fingerprint is present. Here also, the old

object file format provided a key for each imported module. Other aspects of

the format remain unchanged.

According to the modified format, the linker performs a different consistency

check. Instead of comparing the key of each imported module with the

expected one, it now verifies that each imported module supplies at least the

same number of layers as required, and then it compares the corresponding

fingerprint with the expected value:

IF (LEN(m.fprints↑) < e) OR (e > 0) & (m.fprints[e−1] # fprint) THEN mismatch END

Where m is the imported module, m.fprints the array of fingerprints of the

supplied layers, e the required number of layers, and fprint the required

fingerprint. This test is performed for each imported module.

Drawbacks and Limitations of the Model

The layer model attains the objective stated at the beginning of this chapter: it

is now possible to extend module interfaces without invalidating their clients.

Updating an existing implementation of OP2 to the layer model is easy,

because only machine_independent portions of the compiler need to be re_

placed. The minor modifications required in the back_end and in the module

linker are trivial.

A new portable module browser, which is necessary due to the new symbol

file format, is available and replaces the old one. Furthermore, the use of

fingerprints instead of unique keys has several advantages. A fingerprint compa_

rison is more efficient than a byte_stream comparison, for example. Also, the

recompilation of an older interface version does not yield a new and incom_

patible key, but the original fingerprint. Similarly, an interface compiled in

different module spaces gets the same fingerprint in all spaces.

Record Field Revelation

The model has nevertheless some limitations. One could expect that exporting

a hidden record field, which is called revelation, is treated as an extension and

does not cause clients of the record to be recompiled; but this is not the case.

Indeed, a field made visible in a base record might cause a name collision with
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a field of a record extending this base record. Slightly modifying the Oberon

scope rules for record fields could solve this problem. Applying the concept of

locality to the scopes of extending records would allow fields in extending and

extended records to be declared with identical names. This would not be

comparable to method overriding, since the name would always designate the

same field independently of the dynamic type of the record. This could confuse

the programmer and discourage good programming style.

The implementation of field revelation would also pose difficulties. The layer

exporting the record with the hidden field should not be modified, otherwise

clients would be invalidated. So, a kind of fix_up in a higher layer should reveal

the field. That means that the declaration of a record would be spread over

several layers. This fix_up mechanism would introduce complexity in the export

routines: each type object might belong to a range of layers instead of to a

single layer, and it might have to be traversed several times to be exported. A

layer number would be assigned to each record field. Furthermore, several

versions of the same record might be indirectly imported from different

modules, which would require an additional consistency check. The reexport of

a revealed field without client invalidation would be difficult to implement.

Fix_ups would have to appear in a higher layer of the symbol file of the

reexporting module.

For these reasons, field revelations, as well as method revelations, are not

considered as extensions, but as invalidating modifications. Similarly, changing

a read_only variable or field into a read_write variable or field would require

fix_ups causing the same problems.

Extending a record with a new hidden field usually modifies the size of the

record, and therefore the fingerprint of the layer. Also, a new hidden method

results in a new fingerprint because the number of methods is modified in the

symbol file. In both cases, clients of the record are invalidated.

History of Development

The main drawback of the model is that the history of the module's develop_

ment is included in the symbol file. It is necessary to read the old symbol file to

assign a layer number to an object. This number represents the age of the

object and is not present in the source text. If the old symbol file is not

available for some reason when the module is recompiled, the history of

development is lost, and all exported objects then form a single layer. This may

invalidate clients expecting a different stack of layers.
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Also, deleting an obsolete object may invalidate clients, even if these do not

use the object. Indeed, the stack of layers above the layer previously containing

the object will collapse.

A solution to the problem would be to store history of development in the

source text. A layer number could follow each export mark, for example. This

would probably create other consistency problems, even more difficult to solve.

A better idea is to get rid of the history of development. History is only

necessary to associate a layer number with each exported object, and to order

the different layers. So, if each layer would only contain one object, and if the

relative order of the layers would be irrelevant, then history of development

would not be necessary any longer. This naturally leads to the object model

presented in the next chapter.





Chapter 6

The Object Model

The OP2 version implementing the layer model avoids client invalidation by

using the history of development that is stored in the symbol file of each

interface. If the symbol file gets lost, the compiler cannot guarantee compa_

tibility between the recompiled interface and clients of it, even if the interface is

not modified. The original compiler also stores history into the symbol file in

the form of a unique key derived from date and time of the first interface

compilation. The recompilation of a module whose symbol file is lost may have

disastrous consequences on system consistency.

This chapter proposes a second model for separate compilation and module

extension that does not require the history of development. Applying this new

model, the compiler can recompile modules without altering the system

consistency, even if the old symbol files are not available. Symbol files do not

keep track of history of development as in the layer model. Although old

symbol files are not indispensable for a noninvalidating recompilation, the

compiler nevertheless reads them to warn the programmer when an interface is

modified in a way that may invalidate clients.

The Idea

System consistency is lost when some symbol table information stored in the

symbol file of a module and expected by clients is modified after the recom_

pilation of this module. Without history of development, it is not possible to

allocate newly inserted objects after existing ones in order to keep the symbol

table information for older objects unchanged. The problem is that older and

newer objects cannot be differentiated without history. Therefore, objects of the

same age cannot be grouped in the same layer and layers cannot be chrono_

logically sorted. A single layer containing all objects and labeled by a single

fingerprint would be a step back to the original model: any interface modi_

fication would always result in a new fingerprint and hence in a client

invalidation. As a unique alternative, the new model chooses the other extreme;

instead of packing all objects into a single layer, the model provides a layer and

an individual fingerprint for each object.
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A Fingerprint per Object

Conceptually, this model is a special case of the layer model with a finer

granularity for consistency checking. There is nevertheless an important differ_

ence to the layer model: since these layers containing one object each cannot

be sorted without history of development, a client cannot express its require_

ments by just specifying a layer number and a fingerprint, but it has to explicitly

list every needed object with its fingerprint. Every module exports objects to

clients and makes use of objects from imported modules. The new model

discards the concept of layers and is called the object model.

Names and fingerprints of all exported objects are listed in the export

section of an object file, but only the names and fingerprints of effectively used

objects are listed in the import sections for imported modules. An external

object is marked to be listed in the import section if its name is used in the

source text being compiled.

The example in figure 6.1 shows an exporter M and its client A. The export

section of M lists every exported object with its fingerprint, and the import

section for M in A lists every used object from M with its fingerprint.

use from Muse

export

x: fpx

u: fpu

x: fpx

A.ObjM.Obj

M.Sym

...

...

export

x, u

... M.x ...

IMPORT M;

MODULE A;

u*: BOOLEAN;

x*: CHAR;

VAR

MODULE M;

Figure 6.1 An interface M and its client A

Figure 6.2 shows an extension of module M by two exported variables, as well

as two new clients, B and C. Note that client A is still consistent after the

extension of M and does not need to be recompiled.
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fpx unchanged

A.ObjM.Obj

M.Sym

...

...

export

... M.x ...

IMPORT M;VAR

x*, y*: CHAR;

u*, v*: BOOLEAN;

MODULE A;

IMPORT M;

...

MODULE B;

... M.v ...

B.Obj

...

IMPORT M;

MODULE C;

... M.u ...

C.Obj

still valid new new

... M.u ...

u, v, x, y

use

u: fpu

v: fpv

x: fpx

y: fpy

x: fpx u: fpu

u: fpu

v: fpv

MODULE M;

Figure 6.2 Interface extension without client invalidation

The fingerprint of the variable x is left unchanged by the extension of M.

Therefore, the client A using x can be linked to M without being recompiled

first. The linker verifies that exporter modules supply objects with the fingerprint

values expected by client modules.

Note that the variable y is not used by any clients and can therefore be

modified or even dropped from the interface of M without invalidating clients.

In contrast, modifying the variable x will result in a new fingerprint value for x

and A will be invalidated. Deleting x also invalidates A, since the linker will not

find the fingerprint for x in the export section of M when linking A. However,

modifying or deleting x neither affects B nor C.

In the layer model, the fingerprint of a layer is a hash function of the symbol

file contents describing the layer and is also a function of the fingerprint of the

preceding layer. As a consequence, the fingerprint is dependent on the history

and is context_dependent. Fingerprints cannot be computed that way in the

object model, since they have to be context_independent. Otherwise, the

insertion of a new object could have side effects on the fingerprint of other

objects.

Remember that fingerprints are only used to check consistency over module

boundaries. Nonexported attributes of an exported object are therefore not

relevant for the fingerprint computation. Obviously, the fingerprint of an object

has to depend on its type, because the type is also an exported attribute of the

object. The name of the type is not sufficient, because a modification of the
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type structure may leave the name unchanged. Such a modification has to be

detected by the module linker and must therefore influence the fingerprint

value of the object. As a consequence, the fingerprint of an object is a function

of all attributes defining the object in the symbol file, including those of the

type of the object. The fingerprint of an object can only be context_independent

if all exported attributes of the object are also context_independent.

A symbol file describing two objects of the same type does not list the type

structure twice. The type of the second object is replaced by a number

referencing the type of the first object. Now, the fingerprint of the second object

should not depend on the presence of the first object. The reference number is

a context_dependent attribute and hence cannot be used in the fingerprint

computation. Structure reference numbers in symbol files can be seen as an

optimization for avoiding the duplication of common type graphs. Similarly, a

multiple traversal of a type graph should be avoided for efficiency reasons when

computing the fingerprint of objects of a same type structure. As a result, every

structure also receives a fingerprint. Structure fingerprints can be considered as

common subexpressions in the computation of object fingerprints.

The fingerprint of an object is therefore a function of the fingerprint of its

type structure. A clear distinction is made between objects and structures. A

type involves an object and a structure, each with a fingerprint (fpo and fps), as

illustrated by the following example:

;

object:

;

A >
<

<
>

a

structure: INTEGER

MODULE M;

VAR a*: A;

END M.

fpo

fpo

fpo

fps

fps

fpo

fps

TYPE A* = ARRAY 8 OF INTEGER;

array 8

integer

Figure 6.3 Example of a type declaration and associated fingerprints

Fingerprints of predefined types and objects are predefined constants. Finger_

prints of user_defined types and objects in figure 6.3 are computed as follows:

fps(A) := "M.A" E Array E 8 E fps(INTEGER);

fpo(A) := Type E fps(A);

fpo(a) := Var E fps(A);
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The symbol E represents the fingerprinting operator. The fingerprint of the

structure of the type A depends on the module name and canonical name of

the structure ("M.A"), on the fact that A is an array (Array, Type, and Var are small

integers), on the number of elements (8), and finally, on the fingerprint of the

element structure (the fingerprint of the structure INTEGER).

The fingerprint of a structure depends on the canonical name of the

structure, because the canonical name is an attribute of the type. Also, the

module name is part of the fingerprint because structures can be reexported,

contrary to objects, whose fingerprint neither contains the object name, nor the

module name, because objects cannot be reexported. Since exported objects

are not dependent on other objects, but only on structures, the fingerprint of an

exported object is never used to compute another fingerprint (record fields,

methods, and parameters do not have their own fingerprint since they are not

stand_alone exported objects). Therefore, the name of an object is not part of

the fingerprint, but is explicitly listed with the fingerprint in object files.

The value of an imported constant object (not the object itself) may be

reexported by a newly declared constant (alias). In that case, the fingerprint of

the new constant does not depend on the fingerprint of the imported constant,

but on its value only. A consistent constant value is guaranteed at link time,

since the fingerprint of the imported constant is checked, when the reexporting

module is linked.

Addresses of variables, entry numbers of procedures, and addresses of type

descriptors do not appear as arguments of the fingerprinting function, because

they are context_dependent attributes of objects. Therefore, the linker would not

be able to detect an inconsistent use of these attributes by client modules,

since the values of these attributes are not part of the fingerprints. As a

consequence, these attributes cannot be used at compile time by client

modules and hence cannot be listed in the symbol file. Without history of

development, it is impossible to guarantee that inserting a new object in an

interface will not modify addresses or entry numbers of existing objects.

Therefore, the address of an external object is not inserted in the client code at

compile time, but at link time. The address is present in the object file of the

exporting module only. This requires a fix_up chain for each external object in

client modules. External objects are then linked by name (see the section on

the implementation).
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Fingerprinting Recursive Types

Clearly, computing the fingerprint of a type involves a bottom_up traversal of the

type tree. Unfortunately, a type is not always represented by a tree, but a more

general graph is sometimes necessary. Consider the following type declaration

and the corresponding attempt for a fingerprint computation (for better reada_

bility, the module name M is not shown in the expressions):

TYPE

Ptr* = POINTER TO Desc;

Desc* = RECORD next*: Ptr END ;

fps(Ptr) := "Ptr" E Pointer E fps(Desc);

fps(Desc) := "Desc" E Record E "next" E offset(next) E fps(Ptr);

fpo(Ptr) := Type E fps(Ptr);

fpo(Desc) := Type E fps(Desc);

Obviously, this is a recursive type declaration: fps(Ptr) depends on fps(Desc), and

vice_versa. The cycle has to be broken to compute the fingerprints. Considering

that the computation involves a recursive depth_first traversal of the type graph,

a fingerprint value may be required, when it is not completely computed at that

time, because the corresponding node may belong to a cycle being traversed. A

simple solution would be to use the partially computed value since the final

one is not available yet. This would yield the following expressions, where the

first one denotes a temporary value corrected in the third line:

fps(Ptr) := "Ptr" E Pointer;

fps(Desc) := "Desc" E Record E "next" E offset(next) E fps(Ptr);

fps(Ptr) := fps(Ptr) E fps(Desc);

The problem with this solution is that starting the computation with Desc

instead of Ptr yields different expressions and hence different fingerprint values:

fps(Desc) := "Desc" E Record E "next" E offset(next);

fps(Ptr) := "Ptr" E Pointer E fps(Desc);

fps(Desc) := fps(Desc) E fps(Ptr);

Without using history of development, it is difficult to guarantee a constant

evaluation order. Both alphabetical order and order of declaration may be

perturbed by the insertion of new objects. In the example below, inserting the

new type A in front of the declarations of B and C modifies both orders:
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TYPE

A* = POINTER TO C;

B* = POINTER TO C;

C* = RECORD z*: B END ;

Prior to the insertion of A, the fingerprint computation started by visiting B, then

C, whether alphabetical order or declaration order was used. Now, A is visited

first in both cases, and C is visited before B, because A depends first on C.

Therefore, by using any of these orders, the fingerprint values for B and C would

depend on the presence of A, which would be incorrect, because neither B nor

C depends on A.

Actually, B and C form a strongly connected component of the type graph. A

correct solution is to locate strongly connected components and to compute

fingerprints of the nodes of these components first. A canonical node must be

determined, so that the computation can always start at the same node. A new

inserted type cannot alter the fingerprint values, except if the new type is a node

of the strongly connected type graph. In that case, it is correct to modify the

fingerprints, because this is a modification of the types in the graph.

Declaration order is inadequate to determine the canonical node of the

strongly connected component, because swapping two declarations in the

source text should have no effect on fingerprint values. Alphabetical order is a

good choice; the node with the "smaller" name is the canonical representative.

Applying this technique to the previous example results in the following

statement sequence for computing the fingerprints of the structures in the

strongly connected graph (the structure A does not belong to it):

fps(B) := "B" E Pointer;

fps(C) := "C" E Record E "z" E offset(z) E fps(B);

fps(B) := fps(B) E fps(C);

The node B is the canonical representative of the graph. The fingerprint of C

uses a temporary value of the fingerprint of B. Object fingerprints are not

shown; the computation of their fingerprint is never problematic, because

objects never belong to cycles. The execution of these statements yields the

following results:

fps(B) = "B" E Pointer E ("C" E Record E "z" E offset(z) E ("B" E Pointer));

fps(C) = "C" E Record E "z" E offset(z) E ("B" E Pointer);

There is nevertheless a problem with this technique: each fingerprint in a cycle

should contain the complete type information of the cycle. Testing any finger_

print of the cycle at link time should simultaneously verify all types in the cycle.
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Unfortunately, this is not the case. For example, the fingerprint of C above does

not "know" that B is a pointer to C. It just knows that B is a pointer, because a

temporary value for the fingerprint of B was used to compute the fingerprint of

C. Breaking the cycle also cuts this information.

Although every fingerprint in a strongly connected component of a type

graph does not contain the complete type information of the component,

evidently, the sum of them does. This sum is a kind of global fingerprint of the

component. Therefore, if this global fingerprint is added back to each finger_

print, then each of them contains the complete type information. This solution

requires three traversals of the type graph:

1. Traverse the type graph to find strongly connected components and their

canonical representatives; for each found component, execute steps 2

and 3.

2. Traverse the strongly connected component starting from its canonical

representative to compute fingerprints, and combine them to form a

global fingerprint.

3. Traverse the strongly connected component to combine the global

fingerprint with each fingerprint.

This solution is too expensive and hence not acceptable. The following remark

will help finding a more efficient solution: cycles made accessible to the

outside by one node only cannot have more than one evaluation order for the

fingerprint computation. In contrast, a cycle with several entry nodes can have

different evaluation sequences for the same fingerprint. In other words, a

different fingerprint value is obtained when the computation enters a cycle at a

different node.

An entry node is always a named type that can be referenced by other types.

The previous example had two entry nodes (B and C), but the following

declaration has only one:

TYPE

Desc* = RECORD

handler*: PROCEDURE(VAR par: Desc; msg: INTEGER);

next*: POINTER TO Desc

END ;
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Although the type graph is cyclic, the evaluation order is always the same,

because the computation can only start at the node Desc (record structure). The

partially computed fingerprint value for Desc used for fingerprinting the signa_

ture of handler and for fingerprinting the type of next does not contain the

complete type information of the cycle, because the computation is not

concluded yet. However, this is irrelevant, since the fingerprints of these field

types will never be used by nodes other than Desc. Other nodes can only use

the final fingerprint of Desc (which contains the complete type information),

because Desc is the only accessible node from outside the cycle. Therefore,

record field objects do not need fingerprints.

As a conclusion, the fingerprinting of a type graph does not pose any

problems if each strongly connected component of the graph involves only one

named type.

Breaking Cycles

The question now is: when, exactly, may a strongly connected component

contain more than one named type? The scope rules of the Oberon language

[6], more precisely the amendments of them, give the answer:

1. If a type T is defined as POINTER TO T1, then the identifier T1 can be

declared textually following the declaration of T, but it must lie within the

same scope.

2. Field identifiers of a record declaration are valid in field designators only.

The second point confirms that record fields do not need fingerprints. The first

amendment above is the only exception to the rule stating that identifiers must

be declared before being used. Therefore, the only possibility for a strongly

connected component of a type graph to describe more than one named type

is to include at least one named pointer to a forward_declared named type, as

demonstrated here:

7 Type declarations introducing a new type name T cannot be nested. They

all have the form T = ...;

7 A strongly connected type graph declaring more than one type name

involves several such type declarations; one of them appears first in the

source text.



90

7 Since the type graph is strongly connected, type declarations in the graph

must directly or indirectly depend on each other.

7 The first declaration must depend on a following declaration (cyclic

module imports are not allowed); according to the Oberon scope rules,

this declaration can only be a named pointer to a named type.

As explained before, a single recursive depth_first traversal of a type graph is

capable of correctly computing all fingerprints of the graph nodes, only if each

strongly connected component of the graph has at most one entry point. A

correct fingerprint for a node T must contain the type information of T and the

type information of every node that is reachable from T. Also, its value must not

depend on the starting point of the computation. Now, strongly connected

components with more than one entry point always contain a named pointer to

a named type. Interrupting the recursion of the fingerprint computation each

time a named pointer to a named type is encountered ensures that each

strongly connected component with more than one entry point is decomposed

into subgraphs consisting of strongly connected components with a single

point of entry.

For example, the following type declarations constitute a strongly connected

component with four entry points, namely A, ADesc, B, and BDesc:

A* = POINTER TO ADesc;

B* = POINTER TO BDesc;

ADesc* = RECORD b*: B END ;

BDesc* = RECORD

a*: A;

p*: PROCEDURE(VAR b: BDesc)

END ;

Figure 6.4 shows the connectivity of the corresponding type graph. If the cycle

is broken between a named pointer and its named base type (dashed lines), the

strongly connected component splits into four strongly connected components

with one entry point each (rectangle).
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p
>

a b

BBDesc

:

;

<

> ADescA

Figure 6.4 Breaking a cyclic type graph

Similarly, the recursion in the fingerprint computation can be interrupted if the

fingerprint of a named pointer type does not depend on the fingerprint of the

named pointer base type, but only on the name of the base type. Figure 6.5

illustrates the remaining dependences in the fingerprint computation.

"BDesc"

"ADesc"A ADesc>

<

;

:

BDesc B

ba

>

p

Figure 6.5 Fingerprinting recursive types

The strongly connected component containing the type BDesc is still cyclic, but

it has only one entry point. Therefore, the computation of the fingerprint of

BDesc does not pose any problems, as shown below:

fps(A) := "A" E Pointer E "ADesc";

fps(B) := "B" E Pointer E "BDesc";

fps(ADesc) := "ADesc" E Record;

fps(ADesc) := fps(ADesc) E "b" E offset(b) E fps(B);

fps(BDesc) := "BDesc" E Record;

fps(BDesc) := fps(BDesc) E "a" E offset(a) E fps(A) E

"p" E offset(p) E Proc E Varpar E fps(BDesc);
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All fingerprints can be computed in one traversal of the type graph. If the value

of a fingerprint is needed during its own computation, as for fps(BDesc) above,

an initial value is used instead. This initial value contains the name and the

form of the type, but it could be any special value meaning self, since an initial

value is never used by another fingerprint computation, except by its own one.

Indeed, there is only one entry point in a recursive computation.

This drastic simplification of the fingerprint computation has a serious

drawback: consistency checking at link time can only guarantee that the base

type of the imported pointer has the expected name, but it cannot verify that

the structure of this base type has not changed. However, it is interesting to

note that this verification is sufficient if the pointer is only assigned in client

modules, but never dereferenced. Indeed, the memory integrity of the system of

modules is preserved after a pointer assignment on one condition: that the

assigned pointer is assignment_compatible with the destination variable. The

client executing the assignment does not need to know exactly what the

pointer is pointing at (opaque pointer types in Modula_2 make use of this

property).

In Oberon, pointer assignment_compatibility rules are tightly coupled with

the concept of record extension. A pointer can be assigned to a variable if the

pointer type extends the type of the variable. Therefore, the fingerprint of the

pointer must not only contain the name of the pointer base type, but also the

names of all record types extended by the pointer base type. Otherwise,

assignment incompatibility could not always be detected:

TYPE

BT* = POINTER TO BTDesc;

BTDesc* = RECORD ... END ;

T* = POINTER TO TDesc;

TDesc* = RECORD (BTDesc) next: T END ;

VAR

bt*: BT;

t*: T;

A client importing the module containing these declarations is allowed to

assign t to bt, since T extends BT. In that case, the linker only checks the

fingerprints of t and of bt, which depend on the fingerprints of T and of BT

respectively. Now, if the declaration of TDesc is modified and does not extend

BTDesc any longer, t is no more compatible with bt, and the client should be

invalidated. If the fingerprint of T does not also include the name of the
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extended record BTDesc, the inconsistency cannot be detected. So, the finger_

prints of the variables bt and t must be the following:

fpo(bt) = Var E "M.BT" E Pointer E "M.BTDesc";

fpo(t) = Var E "M.T" E Pointer E "M.BTDesc" E "M.TDesc";

Of course, if a client dereferences a pointer, then the structure of the pointer

base type must be consistent. In that case, both the fingerprints of the pointer

and of the pointer base type are verified. Besides marking imported objects

whose names are used in the source text, the compiler also marks the named

base type of every dereferenced, named pointer. The fingerprints of marked

objects are listed in the object file and are compared at link time to the

fingerprints of the corresponding objects supplied by the exporter module.

Fingerprinting Signatures

Until now, the analysis of strongly connected components declaring more than

one named type has only considered the original Oberon language. In the

Oberon_2 version of the report [11], the second amendment to the scope rules,

which is described above, also includes method identifiers besides field iden_

tifiers. This confirms that neither record fields nor methods need fingerprints.

In Oberon, every component of a named type is textually declared between

the equal sign following the name of the type and the semicolon terminating

the declaration. This is not the case in Oberon_2, since methods are procedures

bound to a record type from outside the record declaration. This means that a

record type has an implicit forward reference to its methods. This observation

modifies the conclusion that a strongly connected component must include a

named pointer to a named type in order to declare several named types. Indeed,

a type_bound procedure may strongly connect two components of a type graph

declaring a type name each:

TYPE

T1* = RECORD ... END ;

T2* = RECORD t: T1; ... END ;

PROCEDURE (VAR self: T1) M* (VAR t: T2); ... END M;

When fingerprinting the signature of the method M above, the fingerprint of the

parameter type T2 should not be computed, otherwise the fingerprint values

become dependent on the starting point of the computation. The fingerprint of
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the signature has nevertheless to reflect the type of its formal parameters so that

a modification of the signature can be detected at link time.

It is interesting to note that memory integrity is preserved if the fingerprint of

a procedure only depends on the type name and mode of the formal para_

meters, as well as on the name of the result type. Indeed, the complete

structure of the formal parameter types and of the result type does not need to

be included in the fingerprint of the procedure, because this structure is

checked in the client module calling the (type_bound) procedure. For con_

venience, procedures and type_bound procedures are fingerprinted using the

same algorithm.

The following example shows a module B exporting a procedure P whose

formal parameter type T is imported from A, and two client modules C and D

calling P:

MODULE A;

TYPE T* = ... ;

VAR t*: T;

END A.

MODULE B;

IMPORT A;

PROCEDURE P*(t: A.T); ... END P;

END B. (* the fingerprint of A.T is checked *)

MODULE C;

IMPORT A, B;

BEGIN

B.P(A.t)

END C. (* the fingerprints of B.P and of A.t are checked *)

MODULE D;

IMPORT A, B;

VAR t: A.T;

BEGIN

B.P(t)

END C. (* the fingerprints of B.P and of A.T are checked *)

Although the fingerprint of B.P does not reflect modifications in the structure of

A.T, it is impossible to call B.P from an inconsistent client module. Indeed, if A.T

is modified, its fingerprint and the fingerprint of the variable A.t are modified.

Therefore, module B cannot be linked without being recompiled, since the

fingerprint of A.T is checked (when a client module uses an imported identifier,

the linker has to check the corresponding fingerprint). Note that the recom_
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pilation of B does not result in a new fingerprint for B.P, since this one depends

only on the name "A.T".

The client modules C and D have to declare or to import a variable of type

A.T in order to call the procedure B.P. Thereby, the fingerprint of A.T or of a

variable of type A.T is checked and hence an inconsistency is detected if either C

or D is not recompiled. On the other hand, if A.T is not modified, but the

signature of B.P is (a new formal parameter type replaces A.T, for example), the

inconsistency is detected by checking the fingerprint of B.P.

In other words, the fingerprint of a (type_bound) procedure depends only on

the names occurring in its signature. It does not have to reflect the complete

structure of the formal parameter types, since this is done when declaring or

calling the procedure. The fingerprint of the signature only guarantees that the

signature has not been modified textually, and that the type checking of actual

and formal parameters performed by the compiler is still valid at link time.

Note that the name and the offset of a formal parameter are not finger_

printed. The name is present in the signature for documentation purpose only

and can be modified without invalidating clients of the signature. The offset of

a formal parameter cannot be inconsistent, because the order of the formal

parameters is included in the signature fingerprint and the complete structure of

every formal parameter type is verified as explained above.

Obviously, the name of a formal parameter type cannot be used in the

fingerprint computation if the type is anonymous. The fingerprint has never_

theless to guarantee the validity of the type checking between actual and formal

parameters performed at compile time. For example, a formal open array of

some element type accepts any open or fixed_size array of the same element

type as actual parameter. In this case, the fingerprint of the signature has to

include the form of the type (open array) and the name of the element type.

Also, a formal fixed_size or open array of characters accepts a constant string as

actual parameter. In contrast, anonymous records do not make sense as formal

parameters, since name equivalence in Oberon prohibits any assignment com_

patibility and thereby makes it impossible to call the procedure. The fingerprint

computation for a signature exactly reflects the Oberon rules for parameter

passing.

Fingerprint Computation

To resume, fingerprinting recursive types does not pose any problems if the

recursion is broken at each occurrence of a named pointer type to a named

base type, and at each occurrence of a (type_bound) procedure signature. The



96

fingerprint of such a pointer type and of a signature then guarantees that the

declaration has not changed textually, but does not represent the complete type

information. A complete type checking is performed by verifying the fingerprint

of the base type when the pointer type is dereferenced, and by verifying the

fingerprint of the parameters when a procedure is declared and called.

A fingerprint that contains the complete type information also guarantees

the validity of the textual declaration. Therefore, the fingerprint of any type can

be computed in two steps: first, the part containing information about the

textual declaration only, and then the part containing the remaining type

information. The first part is called the identifier fingerprint, since it mainly relies

on the type identifier. The final fingerprint is a combination of both parts,

except for procedure signatures and named pointer types to named base types,

for which the identifier fingerprint is also the final fingerprint.

Table 6.1 describes the computation of the identifier fingerprint (denoted

idfp) of any user_defined structures. Each predefined type has a different

identifier fingerprint, which is a predefined constant (not shown in table 6.1).

Table 6.1 Computation of identifier fingerprints

... E Varpar E idfp(Tn−1) E idfp(T)

PROC (a0: T0; ...; VAR an−1: Tn−1): T name E Proc E Valpar E idfp(T0) E ...

ARRAY n OF T name E Array E n E idfp(T)

ARRAY OF T name E DynArr E idfp(T)

RECORD (T) ... END name E Record E idfp(T)

RECORD ... END name E Record

POINTER TO T name E Pointer E idfp(T)

Structure S idfp(S)

The name of the structure and the name of the module declaring the structure

are included in the identifier fingerprint (the concatenation of both is denoted

name in the table). However, if a structure is anonymous, no name is consi_

dered by the computation.

The identifier fingerprint of a pointer type also contains the identifier

fingerprint of its base type. The identifier fingerprint of an extending record type

also contains the identifier fingerprint of the record type it extends. The

identifier fingerprint of a signature also contains the identifier fingerprint of its

formal parameter types. In other words, the type name is not always sufficient

to guarantee consistency, because Oberon uses structural type equivalence
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instead of type name equivalence in some cases like procedure assignment,

parameter passing to formal open arrays, as well as pointer and record

assignment.

The identifier fingerprint of an array must include the identifier fingerprint of

the element type, because a client module can pass a string as parameter to a

formal array of characters; the final fingerprint of the array type is not checked

in that case, but only the fingerprint of the procedure, which is independent of

the final fingerprint of the array type.

The final fingerprint of a structure depends on the identifier fingerprint of

that structure, as shown in table 6.2.

Table 6.2 Computation of structure fingerprints

PROC (a0: T0; ...; VAR an−1: Tn−1): T idfp(S)

ARRAY n OF T idfp(S) E fp(T)

ARRAY OF T idfp(S) E fp(T)

RECORD (T) ... END idfp(S) E fp(T) E ... (like above)

END

meth* (...) PROC (...) "meth" Emethno E fp(signature)

fld*: T; ... "fld" E offset E fp(T) E ...

RECORD ... idfp(S) E size E align E nofmeth E ...

POINTER TO T idfp(S) E fp(T)

(named) POINTER TO (named) T idfp(S)

Structure S fp(S)

Depending on the implementation, further attributes may also be included in

the fingerprint computation: the offset of hidden pointer fields and/or of

procedure fields, the method number of hidden methods, and the value of the

system flag (sysflag, see chapter 4), for example.

The fingerprint of an object depends on the mode of the object and on the

fingerprint of its type, but it does not include the object name because objects

are linked by name. Table 6.3 shows the different object modes and the

corresponding fingerprint computation.
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Table 6.3 Computation of object fingerprints

PROC− x*(...) c0, ... cn−1 CProc E fp(signature) E n E c0 E ... E cn−1

PROC+ x*(...) IProc E fp(signature)

PROC x*(...) XProc E fp(signature)

VAR x−: T Var E Readonly E fp(T)

VAR x*: T Var E Readwrite E fp(T)

TYPE x* = T Type E fp(T)

CONST x* = value of type T Const E form(T) E value

Object x fp(x)

XProc denotes a conventional exported procedure, IProc an interrupt procedure

(which may have different calling conventions), and CProc a code procedure

(inline procedure which is used for hardware interfacing purposes). Note that

no distinction is made between a type object and its alias object. Both have

therefore the same fingerprint and a client may use either of the two names.

However, swapping the alias name with the canonical name in the type and

alias declarations results in a new fingerprint, since the canonical name is

included in the fingerprint of the structure.

Anonymous Types and Name Equivalence

Remember that the fingerprint of a recursive type defined as pointer to a base

type has to include the name of the pointer type as well as the name of the

base type, in order to break the cycle in the fingerprint computation. However,

this is not possible if the base type is anonymous. In that case, the fingerprint of

the pointer type depends on the fingerprint of its base type and includes the

complete type information. In contrast, the fingerprint of the base type does not

contain the complete information, but it is only used to compute the fingerprint

of the pointer type:

TYPE

T* = POINTER TO RECORD next*: T END ;

fps(T) = "M.T" E Pointer E Record E ...

... E "next" E offset(next) E ("M.T" E Pointer E Record);
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Since there is only one named type in this graph, there is a single entry point;

so, the fingerprint computation is not problematic, as explained in the prece_

ding sections.

Anonymous types nevertheless pose a problem. Consider the following

module exporting two variables of an anonymous type:

MODULE M;

VAR

p*, q*: POINTER TO RECORD ... END ;

END M.

A client assigning M.p to M.q has to list the fingerprints of p and q in its object

file. These two fingerprints are identical, since both variables are of the same

type, and since the fingerprint of an object does not include the object name.

However, this is not the problem. Consider now the new version of module M:

MODULE M;

VAR

p*: POINTER TO RECORD ... END ;

q*: POINTER TO RECORD ... END ;

END M.

The assignment of M.p to M.q is not allowed any longer, because the variables

are of a different type, although the type structures are identical. Indeed, Oberon

does not use structural equivalence, but name equivalence. The problem is that

the modification has no effect on the fingerprint values and that the client is

therefore not invalidated. Remember that the fingerprint has to be context_

independent. It is inherently impossible to reflect this kind of modification in

the fingerprint (which must be context_independent), since everything but the

context remains unchanged.

At first sight, this seems to be disastrous and to cast doubts on the

correctness of the proposed model. A more careful examination reveals that the

problem is harmless. First, exported objects of an anonymous type are ex_

tremely rare. Second, the depicted interface modification would denote a

dubious programming style and makes this scenario still more improbable.

However, the compiler neither has to judge the quality of the submitted

programs nor to rely on improbabilities.

If the incompatible assignment is really executed, the memory integrity of

the system is not endangered (a language favoring structural type equivalence

would admit the assignment). A program working before the modification will

still work after it. One could fear a different behavior of type tests implied by

assignments of dereferenced pointers in the exporting module, after an illegal
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pointer assignment performed by an noninvalidated client; but the compiler

does not generate implied type tests for anonymous types, because an anony_

mous type cannot be extended.

So, in some extremely rare cases, the object model may apply structural

equivalence for anonymous types used over module boundaries. However, if the

old symbol file is available when the modified interface is recompiled, which is

normally the case, the compiler signals the interface change (the implemen_

tation is described later in this chapter).

A Fingerprint per Object Component

The granularity of type checking in the original linker is rather coarse: a single

key guarantees the consistency of an entire interface. Therefore, any interface

modification always results in a new key and clients of the interface are

invalidated. The layer model improves the situation by prescribing a fingerprint

for each layer of an interface, and the object model by a fingerprint for each

object of an interface. One wonders whether still finer_grained checks are

desirable and possible. Would a fingerprint for each object component be both

practical and efficient?

Object components are formal procedure parameters, record fields, and

type_bound procedures. Modifying the number of formal parameters in an

exported procedure without invalidating clients does not make much sense.

First, a mechanism for default parameters as well as for superfluous parameters

(questionable idea!?) would have to be introduced in the language. Second, it

would be difficult to distinguish between an interface modification with no

desirable client invalidation and a modification with required invalidation.

Furthermore, the consistency check would be more expensive, since as many

fingerprints as parameters would be checked for each imported procedure.

Inserting and removing exported record fields or type_bound procedures

pose similar problems. As explained in the preceding chapter, a name collision

might occur between a newly inserted field and a field in a record extending the

modified record. Here too, the language and in particular its scope rules would

have to be modified to permit such extensions.

A component is tightly bound to its object, much more than an object is

bound to the module interface it belongs to. For example, there is a well_

defined order among object components, which is not the case among objects

of a same module interface. So, any externally visible change to an object

should be considered as an invalidating modification.
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In contrast, it would be interesting to be able to modify the hidden part of

an object. Similarly to the reimplementation of a procedure body that does not

invalidate clients, the modification of the internal implementation of a record

type is desirable. For example, inserting or deleting hidden fields (at least at the

end of the record) should not invalidate clients of the record.

At first sight, this should be already possible now since implementation_

specific and hidden attributes neither appear in the symbol file, nor in the

fingerprint computation. A more careful attention reveals that this is not true,

since the record size, hidden pointer fields, hidden procedure fields, and hidden

methods may be used by some clients (to build type descriptors or method

tables, for example) and are therefore included in the symbol file and in the

fingerprint value.

The point is that these attributes are only used under special circumstances.

A client accessing record fields through a pointer will not need the record size,

for example. On the other hand, a client statically allocating a record, or copying

a record will. It would be possible to classify the clients of a record in different

categories, depending on the use the client makes of the record. A record may

be accessed through a pointer, statically allocated, dynamically allocated, ex_

tended, copied, and so on. Unfortunately, each category would require a

fingerprint, thereby yielding larger object files. The additional complexity in both

the compiler and the linker would be too important in comparison with the

relatively small gain in flexibility.

The object model makes a distinction between two classes of record clients

only: on the one hand, clients using the public information about the record

(like exported fields), on the other hand, the clients using the private infor_

mation about the record (like hidden fields or record size). Note that the

membership to one of these classes also depends on the system's implemen_

tation. For example, some implementation might determine the record size at

run time before copying a record.

Each record has two fingerprints: a public one and a private one. Both

fingerprints are listed in the object file exporting the record type, but only one of

them is listed in the object file of a client importing this record type. If a client

just accesses fields of the imported record, it then lists the public fingerprint of

this record. Only this fingerprint will be checked by the linker. That means that

a modification of the private information of the record, like the insertion of new

hidden fields at the end of the record, cannot invalidate this client. In contrast,

such a modification will generate a new private fingerprint and will thereby

invalidate clients that declare a variable of this record type and therefore list the

private fingerprint in their object file. Evidently, the modification of the public

fingerprint of a record, caused by the insertion of a new exported field for
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example, invalidates all clients of this record. The private fingerprint has

therefore to depend on the public fingerprint.

Both public and private fingerprints of a record type are bound to the type

structure, but not to the type object. The object itself has a single fingerprint,

which depends on the public fingerprint of the structure only. The object

fingerprint is only listed in the object file if the type name is exported, but both

structure fingerprints are listed if the type appears in the symbol file, as shown

in the following example:

MODULE M;

TYPE

Desc = RECORD ... END ;

VAR

p*, q*: POINTER TO Desc;

END M.

MODULE N;

IMPORT M;

BEGIN

NEW(M.p)

END N.

The module M lists four fingerprints in its object file: both public and private

fingerprints for the structure Desc (which is exported through the exported

variable p and q), as well as the fingerprints of the variables p and q that

depend on the public fingerprint of Desc. However, the fingerprint of the object

Desc is not listed, because the name Desc is not exported. The client N lists the

fingerprint of p only in its object file. In this example, the linker will not verify

that the private structure of Desc has not changed; it will only check the

fingerprint of p, which does not depend on the private fingerprint of Desc. This

is correct, because the client N does not use the private structure of Desc: the

required information for the dynamic allocation is obtained at run time from

the type descriptor and is therefore always consistent.

Consider now a new version of the client N:

MODULE N;

IMPORT M;

BEGIN

M.p↑ := M.q↑

END N.
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The client performs a record assignment and hence needs to know the record

size, which is found in the symbol file of M. The linker must verify that the

record size is consistent when N is linked to M. Therefore, this version of N lists

the private fingerprint of Desc along with the fingerprints of p and q. Note that

an Oberon implementation taking the size at run time from the type descriptor

of Desc would not require a verification of the private fingerprint of Desc at link

time.

One observes that fingerprints of exported structures whose name is not

exported may nevertheless be needed, if these structures can be the base type

of a pointer type. This is the case for array, dynamic array, and record structures.

Therefore, the private and public fingerprints of such exported structures are

always listed in the object file, even if their name is not exported. In contrast,

fingerprints of objects are only listed if the object's name is exported. Actually,

an object cannot appear in a symbol file if its name is not exported, contrary to

a structure.

Two fingerprints per record type is the right balance between the two ex_

tremes, namely, a single fingerprint per module interface or a fingerprint per

object component. One can conclude that the object model is a trade_off

between both simplicity of implementation and efficiency of consistency check_

ing on the one hand, and flexibility in module extension on the other hand.

The Implementation

Similarly to the layer model, the object model has been implemented in the

portable Oberon_2 Compiler OP2. However, the object model needed more

editing changes in OP2 than the layer model, partly because of the new object

file format. On the other hand, the storage allocation in the object model is

much simpler than in the layer model and even simpler than in the original

OP2, because the order in which objects are allocated is not relevant. Indeed,

context_dependent attributes are not used over module boundaries. So, different

values due to a different allocation order are not visible to the outside and

hence cannot invalidate clients.

Symbol File Format

Basically, the object model employs the same symbol file format as the layer

model. However, some context_dependent attributes have been eliminated from
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the symbol file. This section enumerates the differences between the formats

(the complete file format is described in the appendix).

In the object model, the symbol file is not built as a stack of layers separated

by stoppers and containing objects, but as a single list of objects:

SymFile = 0FBX Module {Object}.

The new one_byte file tag indicates a different file format. The layer model

stores the fingerprint of each layer in the file. The usually small number of layers

requires a small amount of disk space for the fingerprints. This is different in

the object model, which requires one fingerprint for each object and two

fingerprints for each named record or array structure. So, the fingerprints are

recomputed when reading the symbol file and are not stored in the file. The

time gained in reading more compact files compensates for the time spent in

recomputing fingerprints. Writing the fingerprints into the symbol file would

result in a file size increase of 20% in average.

The module specifier consists of the module name only, or a negative

number referencing an already listed name, but it includes neither layer num_

bers nor layer fingerprints:

Module = 0 | negmno | MNAME name.

The first module specifier in the file (after the file tag) lists the module name of

the interface described by the file (the own module name). The number 0 refers

then to the own module. Other module names and negative numbers refer to

modules that are imported by the interface.

Variables have no offsets and (type_bound) procedures have no entry num_

bers, since these attributes are context_dependent:

Object = ...

| (RVAR | VAR) Struct name

| (XPRO | IPRO) Signature name

| ...

Method = (TPRO Signature name | HDTPRO) methno.

Offsets of variables are present in the object file and are used by the linking

loader to compute absolute addresses, which are inserted in the code of client

modules as well as in the exporting module (unless pc_relative addressing is

used in the exporting module). Procedure entry numbers disappear completely,

since absolute addresses can also be computed by the linking loader from the

absolute code position in memory and from procedure offsets, which are stored
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in the object file. The linker finds imported variables and procedures by their

name.

The address of the descriptor of each record type is not listed any longer as

an attribute of the record structure in the symbol file. Type descriptors are

linked using the name of the type they describe. If this type is anonymous, its

private fingerprint is used instead of its name.

Struct = negref

| STRUCT Module name [SYS value]

( ...

| REC Struct size align nofMeth {Field} {Method} END

| ... ).

The type descriptor is a data structure allocated at run time that contains

information about each record type. Type descriptors contain the hierarchy of

type extensions, which is used for type tests at run time. They also include a

method table dispatching the calls to type_bound procedures, as well as a

pointer offset table accessed during garbage collection to locate pointer fields

in records and in array elements.

From an implementation point of view, a type descriptor address is actually

the address of a global variable initialized at load time to point to a type

descriptor. In the previous models, a type descriptor is always indirectly

accessed through this pointer variable. The object model, which requires one

fix_up chain for each object, links every use of a type descriptor into one fix_up

chain. This allows the absolute address of the type descriptor to be directly

inserted in the code.

The elimination of these global pointers represents a gain in both memory

space and execution speed of type tests: the type tag to be checked is

compared to a constant value (immediate addressing mode) instead of being

compared to the contents of a global variable (memory access). Note that this

optimization is not possible if a compacting garbage collector is used, or else

type descriptors have to be allocated outside the heap.

As explained in the preceding chapter, to each production of the symbol file

grammar correspond both an externalizing and an internalizing routine. Since

the format is almost the same in both models, the routines are very similar and

hence not listed here.

In the layer model, fingerprints of imported layers are not computed, but

read from the symbol file of imported modules, whereas fingerprints of ex_

ported layers are computed by the externalizing routines. This is different in the

object model. First, the fingerprints of imported structures and objects cannot

be read from imported symbol files, because symbol files do not contain
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fingerprints. So, they are computed when these symbol files are internalized.

Second, the externalizing routines do not need to compute fingerprints for

exported items, since fingerprints are not written into the symbol file. However,

fingerprints for exported items have to be listed in the object file. So, the

fingerprinting routines that are called for imported items by internalizing

routines are also called for exported items by the routine generating the object

file. Consequently, these fingerprinting routines, which are presented in the

following sections, are stand_alone procedures separate from the externalizing

and internalizing routines.

Fingerprinting Structures

Remember that structure nodes need (public and private) fingerprints for two

reasons. First, fingerprints of structure nodes may serve as common sub_

expression in the computation of the object fingerprints. Indeed, different

objects may be of the same type. In that case, their fingerprint depends on the

fingerprints of the common type structure. It would be a waste of time to

compute these fingerprints several times. Second, the fingerprint of a named

pointer type does not depend on the structure of its base type if this base type

is named too (possible cycles are broken in this context). Dereferencing a

variable of such a pointer type then requires the verification at link time of the

fingerprints of the base structure.

The cost of determining whether a structure node really needs to recall its

fingerprint values (whether the node is the root of a common subgraph, for

example) is not negligible. It is much more efficient to store the fingerprint

values in each structure node, without distinction.

The identifier fingerprint of a structure may be used several times by the

computation of other fingerprints. For example, the identifier fingerprint of a

base record is used for computing the identifier fingerprints of all record types

extending this base record. Here too, common subexpressions can be elimi_

nated by storing the identifier fingerprint in each structure node.

The data structure StrDesc in OP2, which represents nodes of compiled struc_

tures, is augmented by new fields holding the three different fingerprint values:

StrDesc* = RECORD

...

fpdone, idfpdone: BOOLEAN;

idfp, pbfp*, pvfp*: LONGINT;

...

END ;
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An identifier fingerprint (idfp), a public fingerprint (pbfp) and a private finger_

print (pvfp) are stored in each structure node. pbfp and pvfp are exported from

OPT, because their value may be written to the object file by the module OPL.

The same node of a cyclic type graph may be reached several times during

the fingerprint computation. Therefore, already traversed nodes must be marked

to avoid infinite loops. It is not possible to determine whether a fingerprint is

already computed by looking at its value, because all 32_bit numbers can be a

valid fingerprint value. Consequently, additional boolean fields are both neces_

sary and convenient to mark the node. Public and private fingerprints are

computed simultaneously. Accordingly, the completion of their computation is

denoted by a single field (fpdone). A second boolean field (idfpdone) indicates

that the identifier fingerprint has been computed.

The same hash function as in the layer model computes the fingerprints in

an incremental fashion. The procedure FPrint of module OPM implements this

fingerprinting function:

PROCEDURE FPrint*(VAR fp: LONGINT; val: LONGINT);

BEGIN fp := S.ROT(S.VAL(LONGINT, S.VAL(SET, fp) / S.VAL(SET, val)), 1)

END FPrint;

Each attribute the fingerprint has to depend on is passed as parameter to this

procedure. For example, a name is fingerprinted by applying the hash function

to each character of the name:

PROCEDURE FPrintName(VAR fp: LONGINT; VAR name: ARRAY OF CHAR);

VAR i: INTEGER; ch: CHAR;

BEGIN i := 0;

REPEAT ch := name[i]; OPM.FPrint(fp, ORD(ch)); INC(i) UNTIL ch = 0X

END FPrintName;

The fingerprint of a signature includes the identifier fingerprint of the types

occurring in the formal parameter list of the signature. Now, the type of a

formal parameter may in turn be a signature. This mutual recursion requires a

forward declaration for one of the two procedures computing either identifier

fingerprints (procedure IdFPrint) or signature fingerprints (procedure FPrintSign).

The procedure FPrintSign first calls the procedure IdFPrint on the function

result type of the signature and on each formal parameter type of the signature,

in order to compute their respective identifier fingerprint. The final fingerprint

for the signature is a combination of these identifier fingerprints (see table 6.1).
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PROCEDURE ↑IdFPrint*(typ: Struct);

PROCEDURE FPrintSign(VAR fp: LONGINT; result: Struct; par: Object);

BEGIN

IdFPrint(result); OPM.FPrint(fp, result↑.idfp);

WHILE par # NIL DO

OPM.FPrint(fp, par↑.mode); IdFPrint(par↑.typ); OPM.FPrint(fp, par↑.typ↑.idfp);

par := par↑.link

END

END FPrintSign;

PROCEDURE IdFPrint*(typ: Struct);

VAR btyp: Struct; strobj: Object; idfp: LONGINT; f, c: INTEGER;

BEGIN

IF ˜typ↑.idfpdone THEN

typ↑.idfpdone := TRUE;

idfp := 0; f := typ↑.form; c := typ↑.comp;

OPM.FPrint(idfp, f); OPM.FPrint(idfp, c);

btyp := typ↑.BaseTyp; strobj := typ↑.strobj;

IF (strobj # NIL) & (strobj↑.name # "") THEN

FPrintName(idfp, GlbMod[typ↑.mno]↑.name);

FPrintName(idfp, strobj↑.name)

END ;

IF (f = Pointer) OR (c = Record) & (btyp # NIL) OR (c = DynArr) THEN

IdFPrint(btyp); OPM.FPrint(idfp, btyp↑.idfp)

ELSIF c = Array THEN

IdFPrint(btyp); OPM.FPrint(idfp, btyp↑.idfp); OPM.FPrint(idfp, typ↑.n)

ELSIF f = ProcTyp THEN

FPrintSign(idfp, btyp, typ↑.link)

END ;

typ↑.idfp := idfp

END

END IdFPrint;

The identifier fingerprint of a structure depends on the form of the structure

(boolean, integer, array, and so on). If the structure is named, its fingerprint also

depends on the canonical name of the structure and on the name of the

module defining the structure. The identifier fingerprint of an (open) array

depends on the identifier fingerprint of its element type (see the section on

fingerprinting signature). An anonymous formal record type is not compatible

with any actual type; therefore, its identifier fingerprint does not need to include

information about its internal structure.

The flag idfpdone is set at the beginning of the procedure, so that recursive

type definitions like the following ones do not cause the procedure to loop

forever:
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TYPE

Proc = PROCEDURE(proc: Proc);

Ptr = POINTER TO ARRAY OF Ptr;

In this case, the recursive use of an identifier fingerprint by its own computation

yields the value 0, which is entirely satisfying.

The procedure FPrintStr simultaneously computes the public fingerprint and

the private fingerprint of the structure received as parameter:

PROCEDURE FPrintStr*(typ: Struct);

VAR f, c: INTEGER; btyp: Struct; strobj, bstrobj: Object; pbfp, pvfp: LONGINT;

BEGIN

IF ˜typ↑.fpdone THEN

IdFPrint(typ); pbfp := typ↑.idfp;

IF typ↑.sysflag # 0 THEN OPM.FPrint(pbfp, typ↑.sysflag) END ;

pvfp := pbfp; typ↑.pbfp := pbfp; typ↑.pvfp := pvfp;

(* initial fingerprints may be used recursively *)

typ↑.fpdone := TRUE;

f := typ↑.form; c := typ↑.comp; btyp := typ↑.BaseTyp;

IF f = Pointer THEN

strobj := typ↑.strobj; bstrobj := btyp↑.strobj;

IF (strobj = NIL) OR (strobj↑.name = "") OR

(bstrobj = NIL) OR (bstrobj↑.name = "") THEN

FPrintStr(btyp); OPM.FPrint(pbfp, btyp↑.pbfp); pvfp := pbfp

(* else named pointer to named record; use idfp as pbfp and as pvfp *)

END

ELSIF f = ProcTyp THEN (* use idfp as pbfp and as pvfp *)

ELSIF c IN {Array, DynArr} THEN FPrintStr(btyp);

OPM.FPrint(pbfp, btyp↑.pvfp); pvfp := pbfp

ELSE (* c = Record *)

IF btyp # NIL THEN FPrintStr(btyp);

OPM.FPrint(pbfp, btyp↑.pbfp); OPM.FPrint(pvfp, btyp↑.pvfp)

END ;

OPM.FPrint(pvfp, typ↑.size); OPM.FPrint(pvfp, typ↑.align);

OPM.FPrint(pvfp, typ↑.n);

nofhdfld := 0; FPrintFlds(typ↑.link, 0, TRUE);

IF nofhdfld > OPM.MaxHdFld THEN OPM.Mark(225, typ↑.txtpos) END ;

FPrintTProcs(typ↑.link);

OPM.FPrint(pvfp, pbfp); (* checking pvfp must also check pbfp *)

strobj := typ↑.strobj;

IF (strobj = NIL) OR (strobj↑.name = "") THEN pbfp := pvfp

(* pbfp of an anonymous record must contain the complete information *)

END

END ;

typ↑.pbfp := pbfp; typ↑.pvfp := pvfp

END

END FPrintStr;
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The initial value of both the public and private fingerprints of a structure is the

identifier fingerprint of the structure. Remember that a named structure may

refer to itself. In this case, the initial value is used as fingerprint during a

recursive computation.

In contrast, a named pointer to a named structure, as well as a procedure

type, breaks the recursion, by using the identifier fingerprint as public and

private fingerprint (the public and private fingerprints of any pointer type are

always equal). Remember that if a named pointer to a named structure is

dereferenced, the public fingerprint of the structure will be checked at link time.

The fingerprint of other pointer types depends on the public fingerprint of

the referenced structure. If this structure is allocated, copied or extended, its

private fingerprint will be checked. However, if this structure is anonymous, the

verification is not possible, because the structure cannot be identified. In this

case, its public fingerprint also contains its private fingerprint, which is always

the case for (open) array types. This dependence is forced for anonymous

records. Example:

MODULE M;

TYPE

Desc = RECORD ... END ;

P = POINTER TO Desc;

Q = POINTER TO RECORD ... END ;

VAR

p0*, p1*: P;

q0*, q1*: Q;

BEGIN ...

END M.

MODULE N;

IMPORT M;

BEGIN

M.p0↑ := M.p1↑;

M.q0↑ := M.q1↑

END N.

The fingerprints of the variables p0, p1, and q0, q1 depend on the fingerprints of

P and Q, respectively, and are checked in module N, since these variables are

imported and used by N. The fingerprint of P depends on the public fingerprint

of Desc only. The private fingerprint of Desc is explicitly checked in N, because of

the record assignment. However, it is not possible to check the private finger_

print of the base type of Q, because this base type is anonymous. Therefore, the

fingerprint of the pointer type Q − and hence of q0 and q1 − has to depend on

the private fingerprint of its base type. This is the case, since the public
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fingerprint of an anonymous record is set to the value of its private fingerprint,

and since the fingerprint of Q depends on this public fingerprint.

The public and private fingerprints of an (open) array structure are equal and

depend on the public fingerprint of the element type of the structure. The

fingerprint of a fixed_size array also depends on the number of elements, which

is already contained in the identifier fingerprint.

The private fingerprint of a record structure depends on the complete

allocation information listed in the symbol file (size, alignment factor, number

of methods, both visible and hidden fields and methods), whereas its public

fingerprint depends on the visible fields and methods only.

The local procedure FPrintHdFld searches for hidden fields that have never_

theless to be fingerprinted. This requires the scanning of nonexported fields

being of a record type and the unrolling of nonexported fields being of an array

type. Relevant hidden fields are pointers and procedures. They only contribute

to the private fingerprint value of the record structure they belong to, if the flags

controlling their presence in the symbol file are set. Public fingerprints do not

include information on hidden pointers.

PROCEDURE FPrintHdFld(typ: Struct; fld: Object; adr: LONGINT);

(* modifies pvfp only *)

VAR i, j, n: LONGINT; btyp: Struct;

BEGIN

IF typ↑.comp = Record THEN FPrintFlds(typ↑.link, adr, FALSE)

ELSIF typ↑.comp = Array THEN btyp := typ↑.BaseTyp; n := typ↑.n;

WHILE btyp↑.comp = Array DO n := btyp↑.n * n; btyp := btyp↑.BaseTyp END ;

IF (btyp↑.form = Pointer) OR (btyp↑.comp = Record) THEN

j := nofhdfld; FPrintHdFld(btyp, fld, adr);

IF j # nofhdfld THEN i := 1;

WHILE (i < n) & (nofhdfld <= OPM.MaxHdFld) DO

INC(adr, btyp↑.size); FPrintHdFld(btyp, fld, adr); INC(i)

END

END

END

ELSIF OPM.ExpHdPtrFld &

((typ↑.form = Pointer) OR (fld↑.name = OPM.HdPtrName)) THEN

OPM.FPrint(pvfp, Pointer); OPM.FPrint(pvfp, adr); INC(nofhdfld)

ELSIF OPM.ExpHdProcFld &

((typ↑.form = ProcTyp) OR (fld↑.name = OPM.HdProcName)) THEN

OPM.FPrint(pvfp, ProcTyp); OPM.FPrint(pvfp, adr); INC(nofhdfld)

END

END FPrintHdFld;
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The local procedure FPrintFlds computes the contribution of each exported

record field to the fingerprints of the enclosing record structure. The public

fingerprint of a record structure depends on the accessibility (read_write or

read_only), name and offset of each of its exported fields, as well as on the

public fingerprint of the type of each of its exported fields. The private

fingerprint of a record structure depends on the private fingerprint of the type of

each of its exported fields, as well as on its hidden fields, if these are present in

the symbol file.

PROCEDURE FPrintFlds(fld: Object; adr: LONGINT; visible: BOOLEAN);

(* modifies pbfp and pvfp *)

BEGIN

WHILE (fld # NIL) & (fld↑.mode = Fld) DO

IF (fld↑.vis # internal) & visible THEN

OPM.FPrint(pbfp, fld↑.vis); FPrintName(pbfp, fld↑.name);

OPM.FPrint(pbfp, fld↑.adr); FPrintStr(fld↑.typ);

OPM.FPrint(pbfp, fld↑.typ↑.pbfp); OPM.FPrint(pvfp, fld↑.typ↑.pvfp)

ELSE FPrintHdFld(fld↑.typ, fld, fld↑.adr + adr)

END ;

fld := fld↑.link

END

END FPrintFlds;

The local procedure FPrintTProcs recursively traverses the scope graph of a

record structure in order to find the procedures bound to the record. The public

fingerprint of a record structure depends on the method number (obj↑.linkadr),

on the signature and on the name of each exported type_bound procedure. The

private fingerprint of a record structure depends on the method number of non_

exported type_bound procedures if these numbers are listed in the symbol file.

PROCEDURE FPrintTProcs(obj: Object); (* modifies pbfp and pvfp *)

BEGIN

IF obj # NIL THEN

FPrintTProcs(obj↑.left);

IF obj↑.mode = TProc THEN

IF obj↑.vis # internal THEN

OPM.FPrint(pbfp, TProc); OPM.FPrint(pbfp, obj↑.linkadr);

FPrintSign(pbfp, obj↑.typ, obj↑.link); FPrintName(pbfp, obj↑.name)

ELSIF OPM.ExpHdTProc THEN

OPM.FPrint(pvfp, TProc); OPM.FPrint(pvfp, obj↑.linkadr)

END

END ;

FPrintTProcs(obj↑.right)

END

END FPrintTProcs;
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Fingerprinting Objects

Fingerprinting objects is much simpler than fingerprinting structures, because

objects have only one fingerprint whose computation cannot be recursive.

Similarly to StrDesc, the data structure ObjDesc of OPT gets a new field holding

the fingerprint value, as well as a field indicating whether the fingerprint has

been computed:

ObjDesc* = RECORD

...

fpdone: BOOLEAN;

fprint*: LONGINT;

....

END ;

The fingerprint value is stored in the object to avoid a recomputation when the

fingerprint is needed more than once. The procedure generating the object file

and the procedure comparing the new and old symbol files (see the next

section) both require object fingerprint values.

PROCEDURE FPrintObj*(obj: Object);

VAR fprint: LONGINT; f, m: INTEGER; rval: REAL; ext: ConstExt;

BEGIN

IF ˜obj↑.fpdone THEN

fprint := 0; obj↑.fpdone := TRUE;

OPM.FPrint(fprint, obj↑.mode);

IF obj↑.mode = Con THEN

f := obj↑.typ↑.form; OPM.FPrint(fprint, f);

CASE f OF

| Bool, Char, SInt, Int, LInt:

OPM.FPrint(fprint, obj↑.conval↑.intval)

| Set:

OPM.FPrintSet(fprint, obj↑.conval↑.setval)

| Real:

rval := SHORT(obj↑.conval↑.realval); OPM.FPrintReal(fprint, rval)

| LReal:

OPM.FPrintLReal(fprint, obj↑.conval↑.realval)

| String:

FPrintName(fprint, obj↑.conval↑.ext↑)

| NilTyp:

ELSE err(127)

END

ELSIF obj↑.mode = Var THEN

OPM.FPrint(fprint, obj↑.vis); FPrintStr(obj↑.typ);

OPM.FPrint(fprint, obj↑.typ↑.pbfp)
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ELSIF obj↑.mode IN {XProc, IProc} THEN

FPrintSign(fprint, obj↑.typ, obj↑.link)

ELSIF obj↑.mode = CProc THEN

FPrintSign(fprint, obj↑.typ, obj↑.link); ext := obj↑.conval↑.ext;

m := ORD(ext↑[0]); f := 1; OPM.FPrint(fprint, m);

WHILE f <= m DO OPM.FPrint(fprint, ORD(ext↑[f])); INC(f) END

ELSIF obj↑.mode = Typ THEN

FPrintStr(obj↑.typ); OPM.FPrint(fprint, obj↑.typ↑.pbfp)

END ;

obj↑.fprint := fprint

END

END FPrintObj;

The fingerprint of an object depends on the mode of the object. In case of a

constant, it depends on the constant value. Module OPM exports additional

fingerprinting routines for constant values that cannot be passed as parameter

to the fingerprinting procedure without a machine_dependent type cast.

The fingerprint of a variable depends on its accessibility (read_write or

read_only) and on the public fingerprint of its structure. The fingerprint of a

normal or an interrupt procedure depends on the fingerprint of its signature

only, whereas the fingerprint of a code procedure also includes the byte_stream

inserted in the code at each call site of the code procedure (this byte_stream is

present in the symbol file).

Finally, the fingerprint of a type object includes the public fingerprint of the

type structure.

Consistency Checking at Compile Time

Inconsistencies should be detected as early as possible. Therefore, the compiler

checks whether multiple imports of a same item are consistent. Inconsistent

imports of constants, variables or procedures are not possible at compile time,

because such objects can only be directly imported from a single symbol file. In

contrast, types can be reexported and hence imported from different symbol

files, as shown here:

MODULE M;

TYPE

T* = ... ;

END M.
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MODULE N;

IMPORT M;

VAR a*: M.T;

END N.

MODULE O;

IMPORT M, N;

VAR b: M.T;

BEGIN b := N.a

END O.

In this example, the type T, which is originally exported from M, is imported

into N and reexported from N as the type of the variable a. Therefore, T is

present in both the symbol files of M and N. If T is modified and M is

recompiled, but N is not recompiled, then the module O will import a different

version of T from M than from N. This inconsistency can be detected when

compiling O.

The compiler reads the symbol files in the order specified by the import list

(which is not relevant). For each import of a module, a new module object is

inserted into the symbol table, and a new scope graph is attached to this

module object. Each object present in a symbol file is inserted into the scope

graph of the module declaring this object. So, when the type T of the example

above is read from the symbol file of N and is being inserted into the scope of

M, the compiler notices that an object with the same name is already there,

because it was inserted when reading the symbol file of M. In that case, the

compiler has to compare the two versions of T and to inform the programmer

of a possible inconsistency.

The original model simply compares the keys of the modules which are

imported several times, whereas the layer model compares the fingerprints of

the common layers. In the object model, the check consists in computing and

comparing the fingerprints of both versions of T. The new version has to be

completely loaded, so that its fingerprint can be computed. The problem is that

the symbol table cannot hold multiple versions of the same type graph for

several reasons. First, an object node reserves only one pointer field to hold its

type graph. Second, type identity would not correspond to pointer identity any

longer. Indeed, since Oberon favors type name equivalence, the compiler simply

tests structure pointers for equality to decide whether two types are equal.

Several versions of the same type would render this simple test impossible.

Managing two versions of a type graph (by attaching the second one to a

temporary variable, for example) while keeping pointer identity for already

loaded types is complex and may result in a different topology for a cyclic graph
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and hence in a different fingerprint value. Storing the fingerprints of reexported

types in the symbol file could simplify the problem, but would increase the

symbol file size.

A simple solution to this problem exists: the procedure reading the symbol

file first computes the fingerprint of the old version of a type before overwriting

this old version with the new one. Overwriting means that the nodes describing

the old structure are reused for the new version, thereby leaving the pointer

values unchanged. The fingerprint of the new version is then computed and

compared to the fingerprint of the old version. Note that only named types can

be imported from different symbol files and hence can be inconsistent. Conse_

quently, it is sufficient to reuse the nodes representing named structures only.

Also, only the fingerprints of named structures are compared.

Before computing new fingerprints for a type, it is important to wait until all

structures the type depends on are loaded from the symbol file. Otherwise,

fingerprinting a partly loaded type graph would yield wrong results. For this

reason, the routine internalizing structures from the symbol file does not call

the fingerprinting routines after each loaded structure of a type graph, but after

each strongly connected component of the graph. Since the routine exter_

nalizing the structures proceeds in a preorder fashion, the internalizing routine

has to wait until a complete type graph is loaded.

It is then possible to compare old and new fingerprints for each named type.

If the new public fingerprint of a structure is different, the compiler gives an

error. In contrast, if the new private fingerprint is different, the compiler only

gives an error if the private structure of the type is really used. For example, if

the type T above was defined as a pointer to a record, it would be possible to

insert new hidden fields in this record type and to recompile M without

invalidating N, because declaring a variable of a pointer type does not require

the private structure of the pointer base type. Also, the module O, which does

not need this private structure either, could be compiled without errors,

although two different private structures for the record type would be imported

from M and N.

The compilation of O should not report an error because of inconsistent

versions of M.T, otherwise it would be a waste of flexibility and would discard

the advantages of having two fingerprints for record types. However, if the

module O would export the pointer variable b, the pointer base type would be

exported too and would have to be consistently imported then. The compiler

therefore marks each type whose private part is inconsistently imported, and

waits to report an error until this private part is really used or until this type is

exported.
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Comparing with the Old Symbol File

Contrary to the layer model, the object model does not require the history of

development to ensure compatibility between a recompiled module and older

clients. For this reason, the compiler does not need to read the old symbol file

of a recompiled module. However, it is desirable that the compiler warns the

programmer if an interface modification may invalidate clients. So, if the old

symbol file is available, the compiler reads it to compare the new interface to

the old one. If the interface is different, the compiler reports an error and does

not register the new symbol file, unless the programmer explicitly allows the

generation of a new symbol file by specifying a compiler option.

The compiler reads the old symbol file using the same routines as for

symbol files of imported modules. It computes the fingerprints of old objects

and structures that are also present in the new version of the interface. As in the

layer model, a global record variable impCtxt manages context information that

is discarded after each import of a symbol file. The field ref of this record is a

table associating reference numbers with already loaded structures. The field

pvfp holds the fingerprint value of each structure already in the symbol table

until the fingerprints of the structures being loaded can be computed. The field

minr is used to delay this fingerprinting until a strongly connected component

of a type graph is completely loaded. The boolean field self indicates whether

the symbol file being loaded is the symbol file of the module being compiled or

of any other imported module.

Here is an excerpt from the routine that internalizes structures:

PROCEDURE InStruct(VAR typ: Struct);

VAR mno: SHORTINT; ref: INTEGER; tag: LONGINT; name: OPS.Name;

t: Struct; obj, old: Object;

BEGIN

tag := OPM.SymRInt();

IF tag # Sstruct THEN typ := impCtxt.ref[−tag]

ELSE

ref := impCtxt.nofr; INC(impCtxt.nofr);

IF ref < impCtxt.minr THEN impCtxt.minr := ref END ;

InMod(mno); InName(name); obj := NewObj();

IF name = "" THEN

IF impCtxt.self THEN old := NIL

ELSE (* insert an anonymous object, used to mark type descs *)

obj↑.name := "@";

InsertImport(obj, GlbMod[mno].right, old); (* old = NIL *)

obj↑.name := ""

END ;

typ := NewStr(Undef, Basic)
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ELSE (* insert a named object *)

obj↑.name := name; InsertImport(obj, GlbMod[mno].right, old);

IF old # NIL THEN (* recalculate fprints to compare with old fprints *)

FPrintObj(old); impCtxt.pvfp[ref] := old↑.typ↑.pvfp;

IF impCtxt.self THEN (* do not overwrite old typ *)

typ := NewStr(Undef, Basic)

ELSE (* overwrite old typ for compatibility reason *)

typ := old↑.typ; typ↑.link := NIL; typ↑.sysflag := 0;

typ↑.fpdone := FALSE; typ↑.idfpdone := FALSE

END

ELSE typ := NewStr(Undef, Basic)

END

END ;

impCtxt.ref[ref] := typ; impCtxt.old[ref] := old;

typ↑.ref := ref + maxStruct; (* ref >= maxStruct means not exported yet *)

typ↑.mno := mno; typ↑.allocated := TRUE;

typ↑.strobj := obj; obj↑.mode := Typ; obj↑.typ := typ;

obj↑.mnolev := −mno; obj↑.vis := internal; (* name not visible yet here *)

...

read structure into impCtxt.ref[ref]

...

IF ref = impCtxt.minr THEN (* strongly connected component is complete *)

WHILE ref < impCtxt.nofr DO

t := impCtxt.ref[ref]; FPrintStr(t);

obj := t↑.strobj;

IF obj↑.name # "" THEN FPrintObj(obj) END ;

old := impCtxt.old[ref];

IF old # NIL THEN t↑.strobj := old; (* restore strobj *)

IF impCtxt.self THEN

IF old↑.mnolev < 0 THEN

IF old↑.history # inconsistent THEN

IF old↑.fprint # obj↑.fprint THEN

old↑.history := pbmodified

ELSIF impCtxt.pvfp[ref] # t↑.pvfp THEN

old↑.history := pvmodified

END

(* ELSE remain inconsistent *)

END

ELSIF old↑.fprint # obj↑.fprint THEN

old↑.history := pbmodified

ELSIF impCtxt.pvfp[ref] # t↑.pvfp THEN

old↑.history := pvmodified

ELSIF old↑.vis = internal THEN

old↑.history := same (* may be changed to "removed" in InObj *)

ELSE old↑.history := inserted (* may be changed to "same" in InObj *)

END

ELSE

(* check private part, delay error message until really used *)
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IF impCtxt.pvfp[ref] # t↑.pvfp THEN old↑.history := inconsistent END ;

IF old↑.fprint # obj↑.fprint THEN FPrintErr(old, 249) END

END

ELSIF impCtxt.self THEN obj↑.history := removed

ELSE obj↑.history := same

END ;

INC(ref)

END ;

impCtxt.minr := maxStruct

END

END

END InStruct;

Record types need type descriptors for type tests and dynamic allocation at run

time. The linker uses the name of the type to find and link type descriptors over

module boundaries. If the type is anonymous, then the private fingerprint is

used to identify the descriptor. A client using a type descriptor marks the type

object as used (see next section). For this reason, the procedure InStruct creates

anonymous objects for anonymous imported types.

The own symbol file is read after the parsing of the source text and the

construction of the syntax tree. So, the objects and structures loaded from the

old symbol file do not need to be kept after the fingerprint comparison. They

are hence not inserted into the symbol table. It is important that declared

structures and objects are not overwritten with possibly obsolete versions of

them still contained in the old symbol file.

The result of the comparison is stored into a new object field called history.

Structures have no history field, because only named structures are compared.

So, each result of a structure comparison can be stored in the object containing

the canonical name of the structure. This field history may hold 6 different

values listed along with their meanings:

inserted

The object is not present in the old symbol file. This is the default value.

same

The fingerprints of the new and old objects are identical, as well as the

public and private fingerprints of their respective structures.

pbmodified

The fingerprints of the new and old objects differ.

pvmodified

The fingerprints of the new and old objects are identical, as well as the

public fingerprints of their respective structures, but the private finger_

prints of their structures differ.
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removed

The object is present in the old symbol file, but has been removed in the

new interface.

inconsistent

The type object is imported from different symbol files with different

private structures. This is not a problem if the public part only is used.

It is not possible to know whether the name of a type object was exported

when reading its structure from the symbol file. One has to wait until the

corresponding object is found or until the end of the symbol file is reached. So,

if the new version of the object is not exported, the field history is tentatively set

to same when the old structure is read, which is correct if the old object is not

found. However, if the old object is found later on (see the next procedure),

that means that it was exported and that its export mark has been removed in

the new interface. Therefore, the field history is modified from same to removed.

On the other hand, if the new version is exported, the field history is

tentatively set to inserted when the old structure is read, which is correct if the

old object is not found, because it was not exported and an export mark has

been inserted in the new interface. However, if the old version is found, that

means that it was exported and the field is therefore modified from inserted to

same.

Of course, the field history cannot be set to same if the fingerprints of the old

and new objects are different. Here is the routine that internalizes objects:

PROCEDURE InObj(mno: SHORTINT): Object;

VAR i, s: INTEGER; ch: CHAR; obj, old: Object; typ: Struct;

tag: LONGINT; ext: ConstExt;

BEGIN

tag := impCtxt.nextTag;

IF tag = Stype THEN

InStruct(typ); obj := typ↑.strobj;

IF ˜impCtxt.self THEN obj↑.vis := external END (* type name is visible now *)

ELSE

obj := NewObj();

...

read obj

...
END ;

FPrintObj(obj);

IF (obj↑.mode = Var) &

((obj↑.typ↑.strobj = NIL) OR (obj↑.typ↑.strobj↑.name = "")) THEN

(* compute a global fprint to avoid structural type equivalence for anonymous types *)

OPM.FPrint(impCtxt.reffp, obj↑.typ↑.ref − maxStruct)
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END ;

IF tag # Stype THEN

InsertImport(obj, GlbMod[mno].right, old);

IF impCtxt.self THEN

IF old # NIL THEN

(* obj is from old symbol file, old is new declaration *)

IF old↑.vis = internal THEN old↑.history := removed

ELSE FPrintObj(old); (* FPrint(obj) already called *)

IF obj↑.fprint # old↑.fprint THEN

old↑.history := pbmodified

ELSIF obj↑.typ↑.pvfp # old↑.typ↑.pvfp THEN

old↑.history := pvmodified

ELSE old↑.history := same

END

END

ELSE obj↑.history := removed

END

END

ELSE (* obj already inserted in InStruct *)

IF impCtxt.self THEN

IF obj↑.vis = internal THEN obj↑.history := removed

ELSIF obj↑.history = inserted THEN obj↑.history := same

END

END

END ;

RETURN obj

END InObj;

As explained in the section on anonymous types and name equivalence, two

variables of two different anonymous types may have the same fingerprints. It is

therefore impossible to detect such an interface modification as the following:

VAR

a*, b*: ARRAY 4 OF INTEGER;

c*: ARRAY 4 OF INTEGER;

which is then modified to:

VAR

a*: ARRAY 4 OF INTEGER;

b*, c*: ARRAY 4 OF INTEGER;

All three variables a, b, and c have the same fingerprints in both versions, but a

and b are not assignment_compatible any longer in the second version. The

compiler computes a global fingerprint on the symbol file in order to detect
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such an interface modification. The global fingerprint is simply a combination

of all structure reference numbers of anonymous types of exported variables

appearing in the file. So, the global fingerprint for the first version is

16 E 16 E 17

whereas the fingerprint of the second version is

16 E 17 E 17

which is different (remember that the reference numbers from 0 to 15 are

reserved for predefined types).

The procedure InStruct sets the field history in all type objects the procedure

loads, but the procedure InObj sets the field history only in objects loaded from

the old symbol file. Other nontype objects are imported only once from other

modules than the module being compiled. These objects have no history,

cannot be inconsistent, and cannot be reexported. The field history is checked

when a structure or an object is externalized into the new symbol file:

PROCEDURE OutStr(typ: Struct);

VAR strobj: Object;

BEGIN

IF typ↑.ref < expCtxt.ref THEN OPM.SymWInt(−typ↑.ref)

ELSE

OPM.SymWInt(Sstruct);

typ↑.ref := expCtxt.ref; INC(expCtxt.ref);

IF expCtxt.ref >= maxStruct THEN err(228) END ;

OutMod(typ↑.mno); strobj := typ↑.strobj;

IF (strobj # NIL) & (strobj↑.name # "") THEN OutName(strobj↑.name);

CASE strobj↑.history OF

| pbmodified: FPrintErr(strobj, 252)

| pvmodified: FPrintErr(strobj, 251)

| inconsistent: FPrintErr(strobj, 249)

ELSE (* checked in OutObj or correct indirect export *)

END

ELSE OPM.SymWCh(0X)

END ;

...

write typ

...

END

END OutStr;

PROCEDURE OutObj(obj: Object);

VAR i, j: INTEGER; ext: ConstExt;

BEGIN

IF obj # NIL THEN

OutObj(obj↑.left);

IF obj↑.mode IN {Con, Typ, Var, LProc, XProc, CProc, IProc} THEN
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IF obj↑.history = removed THEN FPrintErr(obj, 250)

ELSIF obj↑.vis # internal THEN

CASE obj↑.history OF

| inserted: FPrintErr(obj, 253)

| same: (* ok *)

| pbmodified: FPrintErr(obj, 252)

| pvmodified: FPrintErr(obj, 251)

END ;

...

write obj

...

END

END ;

OutObj(obj↑.right)

END

END OutObj;

The procedure FPrintErr gives an error only the first time it is called, to avoid a

large list of redundant errors. The error message includes the name of the

concerned object, so that the programmer can decide either to allow the

generation of a new symbol file (recompilation with option) or to edit the

object declaration. The option e allows an interface to be extended only. This

guarantees that no client will be invalidated. The option s allows an interface to

be modified, which does not exclude a client invalidation. Depending on the

options, the procedure FPrintErr suppresses the output of some errors. Here is

the list of the possible error messages:

249: X is not consistently imported, recompile imports

250: X is no longer visible, compile with \s

251: X is redefined (private part only), compile with \s

252: X is redefined, compile with \s

253: X is new, compile with \e

X is replaced by the effective object name. The error number is listed here for

comparison with the code listed above, but is not visible in the real message.

Object File Format

The compiler has to write linking information into the object file, so that the

linking loader can resolve external references. This information may have the

form of a fix_up chain linking all the instructions that access an imported
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variable, for example. The linking loader follows this chain and inserts the

absolute address in the code. The imported variable may be of a record or array

type, and may then be accessed with an offset. Each address is formed by

adding the absolute address of the variable to the offset, which is written into

the code array of the object file together with the link to the next instruction.

Depending on the target architecture, it might not always be possible to

store both the variable offset (typically 32_bit unsigned) and the link (typically

16_bit signed for 32K aligned instructions, i.e. 128KB of code per module for

RISC architectures). This is not a problem with the MIPS processor [28] which

needs two instructions to access a 32_bit address. Since the first instruction

loading the upper half of the address is implicitly known (LUI, Load Upper

Immediate) and since its target register is also the base register of the next

instruction, all 32 bits of this first instruction are used to code the offset. The 16

bits coding the lower half of the address in the second instruction can be used

for the link. If the target architecture does not allow such a compression or if

the restriction of 128KB of code per module is too severe, a separate table can

replace the chain in the code array.

In the original model, as well as in the layer model, a single fix_up chain is

sufficient for all variable accesses of a module, because the offset of each

variable is known from the symbol file. This is different in the object model: the

offset of an imported variable is not known at compile time, because the offset

is a context_dependent attribute not listed in the symbol file. Therefore, a

separate fix_up chain is necessary for each imported object.

This has repercussions on the code generator of OP2. Indeed, the module

OPL has to manage a chain for each imported object whose access needs fix_up

at link time. The root of the chain is stored in the field linkadr of the object.

Since type descriptors may also be accessed over module boundaries, they also

need a chain. This is why the procedure InStruct creates objects for anonymous

types.

The linking loader checks the consistency of each imported object by

comparing the fingerprint of the object listed in the exporting module with the

fingerprint of the object listed in the importing module. If a mismatch is

detected, the module is unloaded and an error is reported.

The object file needs therefore an export section and an import section. The

object file format may be slightly different from one target architecture to the

other. The format presented here is used in the Oberon System running on

MIPS_based workstations. The export section (export block ExpBlk) consists of

a list of exported items:
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ExpBlk = 82X {EConst | EType | EVar | EProc | ECProc | EStruct | TDesc | LinkProc} 0X.

EConst = 1X name fprint.

EType = 2X name fprint.

EVar = 3X name fprint offset.

EProc = 4X name fprint entry.

ECProc = 5X name fprint.

EStruct = 6X name pbfprint pvfprint.

TDesc = 8X (name | 0X pvfprint) link recsize ( −1 | basemod (name | 0X pvfprint))

nofmth nofinhmth nofnewmth nofptr {mthno entry} {ptroff}.

LinkProc = 9X entry link.

The format of each item depends on the kind of object as indicated by the first

byte. Although the value of an exported constant (EConst) is not linked in client

modules but inserted at compile time in the code, its fingerprint must never_

theless be checked at link time, because the client might use an obsolete value.

A type object (EType) is exported with its name and fingerprint. Remember

that structure objects (EStruct) have a public fingerprint and a private fingerprint

and must be listed separately to type objects. Each exported variable (EVar) also

lists its offset. Since offsets of global (exported or nonexported) variables are

known at compile time, a single chain links them all. The root of this chain

appears in the header of the object file (see appendix). For some target

architectures, the compiler could take advantage of pc_relative addressing for

global variables.

Exported procedures (EProc) are listed with their relative entry point. No

fix_up chain is necessary for global (exported or nonexported) procedures called

in the module of their declarations, because pc_relative addressing is used.

However, assignments of global procedures to variables use absolute addresses

inserted by the linker (LinkProc). Code procedures (ECProc) are not linked, but

are very similar to constants, since their "value", the byte_stream to be inserted

into the code at the call site, is present in the symbol file.

The export section also contains information for allocating type descriptors

(TDesc). Type descriptors are not checked for consistency, because the infor_

mation listed here is not used by client modules or is already checked by

structure fingerprints (hidden pointer fields, for example). Type descriptors are

listed in the export section for convenience only: the same traversal of the

symbol table generates information for exported objects and for type descrip_

tors. They could be listed in a separate section.

For each type descriptor, a fix_up chain (link) links the instructions referen_

cing the type descriptor (type tests and calls to NEW). Also, information is

provided for allocating and initializing the type descriptor (record size, base

record, new methods, pointer offsets). The type extension table (used for

run_time type tests) is copied from the type descriptor of the base record and
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the own type is then inserted in the new table. Similarly, the method dispatch

table is copied from the base type descriptor − nofinhmth lines are copied to

the new table consisting of nofmth lines − and the entry address (entry) of the

new methods (nofnewmth) are inserted into the lines corresponding to the

method number (mthno), possibly overriding copied entry addresses from the

base type descriptor.

Note that record types declared in procedures may also need type descrip_

tors. However, such a type descriptor is always listed without its name in the

object file, in order to avoid a possible name collision with a descriptor of a

globally declared type. An anonymous descriptor is identified by its private

fingerprint. This explains the presence of anonymous types as base type of an

extended type in the production TDesc above. In the same production, the

number _1 means that the type is not extended. Otherwise the module

declaring the base type is specified by its index basemod in the list of imported

modules (ImpBlk below) and the base type is identified by its name or its

private fingerprint, if it is anonymous (0X).

If several exported anonymous types have the same private fingerprint, the

linker allocates only one type descriptor and uses it for all of these types in a

client module. The linker picks the first anonymous type descriptor with the

required private fingerprint in the export section. Remember that structural type

equivalence replaces type name equivalence for anonymous types used over

module boundaries without affecting memory integrity.

The import section of the object file consists of an import block and a use

block. The import block lists the names of imported modules:

ImpBlk = 81X {name}.

The use block contains as many lists of used items as there are modules in the

import block, and in the same order. Each list is 0X_terminated and enumerates

used items imported from the corresponding module of the import block. Each

item is listed with its name, its fingerprint (except for type descriptors) and, if

necessary, the root of its fix_up chain (link):

UseBlk = 89X {{UConst | UType | UVar | UProc | UCProc | UpbStr | UpvStr | LinkTD} 0X}.

UConst = 1X name fprint.

UType = 2X name fprint.

UVar = 3X name fprint link.

UProc = 4X name fprint link.

UCProc = 5X name fprint.

UpbStr = 6X name pbfprint.

UpvStr = 7X name pvfprint.

LinkTD = 8X (name | 0X pvfprint) link.
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The object file lists only the imported objects that are really used. A new

boolean field used is declared in the object descriptor ObjDesc and is set to true

if the object is accessed by the symbol table handler. Examining the root of the

chain in an object is not sufficient to decide whether this object is used or not:

an imported constant, for example, is never linked.

Remember that structures are sometimes checked separately from objects.

Clients may use the public part of a structure only, and sometimes the private

part too. Two new boolean fields, pbused and pvused, are declared in the

structure descriptor StrDesc. The front_end sets the field pbused when a variable

of a named pointer type pointing to the named structure is dereferenced. The

field pvused is set when the structure is

7 the base record of an extending record

7 the element type of an (open) array

7 the type of a declared variable or of a record field

7 the type of a formal value parameter

7 the type of the destination of an assignment

7 the actual parameter of a call to the standard function SIZE

In other words, a client module that does not use a structure in any of these

cases is not dependent on the private part of this structure. Therefore, such a

client is not invalidated when the private part of this structure is modified.

Linker and Run_Time Data Structures

In the Oberon System, a module is loaded from its object file into the main

store when a command of this module is invoked for the first time, or when a

client module of this module is being loaded. A loaded module then remains in

memory for the rest of the session, unless the user explicitly unloads it.

The declarations of the run_time data structures necessary to represent

loaded modules in the Oberon heap are the following:

TYPE

Name = ARRAY 32 OF CHAR;

Export = RECORD

name: Name;

fprint, adr: LONGINT;

mode: INTEGER

END ;
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Module = POINTER TO ModuleDesc;

ModuleDesc = RECORD

next: Module;

name: Name;

refcnt: INTEGER;

exports: POINTER TO ARRAY OF Export;

imports: POINTER TO ARRAY OF Module;

tdescs, data, code: POINTER TO ARRAY OF LONGINT;

...

END ;

A loaded module is represented by a module descriptor and a module block.

Module descriptors are fixed_size records (ModuleDesc) linked to form the

module list. Each descriptor contains several attributes of the module, such as

its name, its reference count (used for module unloading) and different

pointers to the different sections of its module block. The module block is a

juxtaposition of sections containing the module code and global data, the list

of imported modules, the list of type descriptor addresses, and so on. The size

of each section is determined at load time. The size of the module block is

therefore different for each module.

The array of Export nodes is particular to the object model. It replaces an

array of layer fingerprints and an array of procedure entry addresses in the layer

model. These arrays are used for consistency checking and for module linking.

Loading, linking, and consistency checking of a module M involves the follow_

ing steps:

1. Open the object file of M, read the import block, and recursively load,

link, and check each module imported from M.

2. Search for module M in the module list; if it is found, then it has been

correctly loaded through an explicit call to the loader during the initiali_

zation of a module loaded in step 1, quit.

3. Allocate a module descriptor and a module block for M on the heap;

load the various sections of the object file into the corresponding

sections of the module block, except for the use block, which is not

stored in the module block, but discarded after step 4.

4. For each item scanned from the use block in the object file, find the

corresponding exported item in the Export array of the corresponding

imported module, compare the fingerprints of both items, patch the item

references in the code of M with the absolute address obtained from the
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field adr of Export; if the item is not found or if the fingerprints differ,

report an error, unload the module M, and quit.

5. Initialize the type descriptors and call the initialization part of module M.

These steps are identical in the original model and in the layer model, except

for step 4. Contrary to the object model, both other models do not require used

items to be searched in the export section, since variable offsets and procedure

entry numbers are known from the symbol file at compile time already. Also,

type descriptors are accessed indirectly through global pointers. However, the

number of references to be patched is the same in all three models.

If the same order is used for items in use blocks as for items in export

sections, step 4 can be executed by two parallel sweep phases, one on each list

of used items and one on each corresponding export section of imported

modules. For this reason, the compiler writes the items into the various lists in

the object file in alphabetical order. Consequently, the execution time of step 4

is linearly proportional to the sum of used items and of exported items in

imported modules (see the next chapter for benchmarks).

The procedure FindExp searches for a named item in an export section of an

imported module. The procedure takes the mode, name, and fingerprint of the

item as parameter, and returns the address of the item, which is a dummy

address for types or constants. The pointer variable curexp indicates the current

position of the sweep phase in the export array and limexp indicates the limit of

the array (pointer arithmetic is used for efficiency reasons). The contents of the

variables curexp and limexp are preserved over successive calls to the procedure

FindExp:

VAR curexp, limexp: POINTER TO Export;

PROCEDURE FindExp(mode: INTEGER; VAR name: Name; fprint: LONGINT; VAR adr:

LONGINT);

BEGIN

LOOP

IF curexp = limexp THEN object not found; EXIT END ;

IF (curexp.name = name) & (curexp.mode = mode) THEN

IF curexp.fprint # fprint THEN fingerprint mismatch END ;

adr := curexp.adr;

INC(S.VAL(LONGINT, curexp), SIZE(Export));

EXIT

END ;

INC(S.VAL(LONGINT, curexp), SIZE(Export))

END

END FindExp;
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The procedure searching type descriptors is slightly more complicated, because

a type descriptor may be anonymous. In that case, the type descriptor is

identified through its private fingerprint. Anonymous type descriptors are listed

together at the beginning of the UseBlk section and of the array of Export nodes

(because they have the "smallest" possible name: 0X), but they are not sorted

according to their fingerprint values. This requires to restore the current position

(curtd) of the sweep phase at the beginning of the list, each time an anony_

mous type descriptor has been searched.

TYPE TDescPtr = pointer to type descriptor;

VAR curtd, limtd: LONGINT;

PROCEDURE FindTDesc(VAR name: Name; fprint: LONGINT; VAR adr: TDescPtr);

VAR save: LONGINT; td: TDescPtr;

BEGIN save := curtd;

LOOP

IF curtd = limtd THEN tdesc not found; EXIT END ;

S.GET(curtd, td);

IF td.name = name THEN

IF (td.pvfprint = fprint) OR (fprint = 0) THEN

adr := td; INC(curtd, 4); EXIT

END ;

IF name # "" THEN fingerprint mismatch; EXIT END

END ;

INC(curtd, 4)

END ;

IF name = "" THEN curtd := save END

END FindTDesc;

Remember that the fingerprint of a named type descriptor is not checked. In

that case, the procedure FindTDesc is called with 0 as fprint value.

When an error occurs, both the mode and name of the item are written to

exported variables of the loader, so that a clear error message can be generated

by the system to inform the user of the exact problem.



Chapter 7

Efficiency Considerations and Conclusions

Both the layer model and the object model have been implemented in the

version of OP2 generating native MIPS code. This version of the compiler is

used in the Oberon System implementations for MIPS_based workstations,

namely DECoberon for Digital Equipment DECstations and SGIoberon for Silicon

Graphics workstations [29]. After a period of testing and comparison, the object

model has become the standard and is now distributed with these Oberon

System implementations in place of the original model.

The first section of this chapter compares the new models to the original

one, in terms of efficiency and implementation costs. Possible improvements to

the object model are proposed in the second section. The third section draws

the conclusions of this thesis.

Implementation Costs andMeasurements

In the following, different cost factors such as compilation time, symbol and

object file size, linking and loading time, and run_time memory requirements

are measured and compared for all three models. The Oberon's line drawing

system, called Draw [12, Chap. 13], is used for the benchmarks. This graphics

editor is a typical Oberon application consisting of 5 modules representing a

total of 46200 bytes of compiled MIPS code for 1684 lines of Oberon code:

Table 7.1 Modules of the Draw graphics editor

Total 46200 1684

Curves 6800 223 35 9

Rectangles 4560 125 56 8

Draw 7656 287 95 15

GraphicFrames 12448 483 104 29

Graphics 14736 566 47 92

Module Code Source Imports Exports
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The last two columns in table 7.1 reflect the number of imported and used

items, as well as the number of exported items. An item can be an object, a

type, or a type descriptor. These numbers are particularly relevant in the object

model, since an imported item increases the linking time, whereas an exported

item requires run_time memory. Furthermore, both imported and exported

items consume space in the object file, as shown in the following table:

Table 7.2 Object file size

Average +0.16% +9.2%

Curves 7942 7948 (+0.08%) 8383 (+6%)

Rectangles 5491 5503 (+0.21%) 6156 (+12%)

Draw 9319 9337 (+0.19%) 10526 (+13%)

GraphicFrames 14532 14570 (+0.26%) 16027 (+10%)

Graphics 18256 18270 (+0.08%) 19552 (+7%)

Module Orig. Model Layer Model Object Model

As expected, the size increase due to the layer model is almost unnoticeable,

especially as each module had only one layer for the benchmarks. Every

additional layer takes only 4 bytes in the object file.

The object model is more greedy. Each import or export of an individual

object costs 10 bytes on average in the object files of the modules above. This

number depends on the identifier length and therefore on the programming

style.

The relative increase of 9.2% is rather pessimistic, because the modules of

Draw import and export many objects in proportion to their small code size.

The same measurements on all modules of the Oberon base system report an

average increase of 6%.

Table 7.3 shows the size of the symbol files in each model. The size

reduction is due to the new symbol file format, which is more compact.
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Table 7.3 Symbol file size

Average −2.7% −10.6%

Curves 660 654 (−0.9%) 585 (−11.4%)

Rectangles 642 639 (−0.5%) 571 (−11.1%)

Draw 225 227 (+0.9%) 205 (−8.9%)

GraphicFrames 1402 1362 (−2.8%) 1243 (−11.3%)

Graphics 2193 2100 (−4.2%) 1975 (−9.9%)

Module Orig. Model Layer Model Object Model

The difference between the layer model and the original model is small,

because the space occupied by the fingerprints in the layer model is compen_

sated by the encoding of integers. In contrast, the object model does not store

fingerprints in the symbol file. The cumulated effect of integer encoding and

elimination of context_dependent attributes like variable offsets is clearly visible

in the last column.

The largest part of the original compiler is left unchanged by the implemen_

tation of either the layer model or the object model. The compilation tasks

affected by modifications are the reading and writing of symbol files, storage

allocation, and generation of the object file, but the lexical analysis, syntax

analysis, and code generation are (almost) not modified. All three models

generate identical code, with the exception of the object model, which elimi_

nates an indirection in the code accessing type descriptors.

Table 7.4 shows the time necessary to compile all five modules of Draw,

using the different models. Besides the total execution time, the time spent in

each of the different compilation tasks is listed separately.

The measurements have been done on a DECstation 5000 Model 200

running at 25MHz with 24MB of RAM and a 332MB hard disk with 16ms

average seek time. All times are elapsed time expressed in milliseconds (the sum

of user time and system time would not include the disk access time). Due to a

rather low clock resolution of about 16ms, compilations were repeated several

times. Displayed results are therefore average values.
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Table 7.4 Compilation time of all 5 Draw modules in ms

−1.5% +2.8%

Total 2323 2289 2387

Writing object file 634 642 652

Code generation 303 304 293

Storage allocation 14 − 10

Sym file generation 59 42 23

Reading own sym file − 43 54

Parsing & tree 933 932 943

Reading symbol files 380 326 412

Compilation task Orig. Model Layer Model Object Model

Although the symbol files are more compact in the object model than in the

original model, reading the symbol files takes more time (+8%) with this model.

The reason is that the object model immediately computes the fingerprints of

the items that are imported several times from different symbol files. Avoiding

these recomputations by storing the fingerprints in the symbol file would be a

bad choice. Indeed, the symbol files, which are now 10% smaller than in the

original model, would be about 20% larger, i.e. about 10% larger than in the

original model. Since the time necessary to read a symbol file is proportional to

the file size, the time difference would be higher than the current 8%.

In the layer model, the old symbol file is read before parsing the source text.

After each declaration of a global object, the scope graph of the old symbol file

is traversed to find the old version of the just declared object. This symbol table

lookup is necessary to keep the object in the same interface layer, in order not

to invalidate clients. This lookup is neither done in the original model, nor in

the object model. However, the time difference is too small to be noticeable.

The time indicated for generating the symbol file does not include the time

necessary for writing this file to the disk, because, in the benchmarks, the

symbol file was identical to the old one and hence not registered. On the other

hand, this time includes the time necessary to compare the new interface to the

old one. Each model uses a different technique: the object model compares the

fingerprints of old and new objects, the layer model the fingerprints of old and

new layers, and the original model the byte_streams of the old and new files.

One can see that the byte_stream comparison is the more expensive

technique because it involves the reading of a file, but it is largely compensated
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by the fact that the original model does not need to internalize the own symbol

file into the symbol table.

In the layer model, storage allocation is intertwined with symbol file

generation and is a multi_pass process. Therefore, the time indicated for the

symbol file generation includes the time for storage allocation. In contrast,

storage allocation in the object model is always done in a single pass, without

differentiating exported objects from nonexported objects (remember that the

allocation order is not relevant, since context_dependent attributes are not

stored in the symbol file), and without possible object reallocation as in the

layer model.

The total time for symbol file generation, symbol file internalization, and

storage allocation is nearly the same for all three models. Also, the cost of code

generation is identical in all three models. The object model produces larger

object files and computes the fingerprint of used items, which explains the time

difference for object file generation.

In order to determine the impact of the number of interface layers on the

compilation time in the layer model, measurements have been done with 8

layers per module interface. No noticeable difference could be observed,

because of the noise induced by unpredictable cache effects and file buffering.

Table 7.5 shows the loading and linking time of the Draw modules. Here

too, the same operation was repeated several times. However, the precision of

the measurements is better here, because fewer files and smaller code were

involved.

Table 7.5 Loading and linking time of the Draw modules in ms

+0% +8%

Total (not buffered) 421 421 456

+0.8% +17%

Total 133.4 134.5 156.4

Curves 19.9 20.1 22.2

Rectangles 15.7 16.0 19.3

Draw 23.6 24.0 28.8

GraphicFrames 33.1 33.2 39.5

Graphics 41.1 41.2 46.6

Module (buffered) Original Model Layer Model Object Model
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Modifications in the object file format are reflected in the structure of the

linking loader. Since the layer model only replaces a key by a list of fingerprints

in the export section of an object file and a key by both a number and a

fingerprint in the import section, the modifications in the linker are minimal.

Consequently, the loading and linking time are the same in the original model

and in the layer model.

The last column of the table indicates that the object model is more

expensive. However, the prominent slow_down of 17% is biased. Indeed, the

consecutive loading and linking of the same module, in order to get more

precision, results in a buffering of the object files by the underlying operating

system. If object files are not buffered, which is usually the case when a module

is loaded, the loading time increases by a large amount, whereas the linking

time remains constant. The percentage of overhead therefore decreases from

17% to 8%, which corresponds approximately to the object file size increase in

the object model. The cost of a more complicated linking technique is hence

negligible in comparison to the cost of loading larger object files.

Memory requirements at run time are almost the same for the original

model and for the layer model, as shown in the following table:

Table 7.6 Run_time memory requirements in bytes

+0.29% +11.2%

Total 55296 55456 61504

Curves 8032 8064 8352

Rectangles 5504 5536 5824

Draw 9600 9632 10208

GraphicFrames 14272 14304 15424

Graphics 17888 17920 21696

Module Orig. Model Layer Model Object Model

Here again, the object model is more greedy, since a description of each

exported item is kept in memory to allow clients to be linked later on. Each

description includes the item mode, name, address, and fingerprint, which

occupies a total of 44 bytes, whereas the corresponding information occupies

only 4 bytes for each procedure entry in the other models. The size of

debugging information is included in the numbers above and is the same in all

three models, about 5KB in total.
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The last table reflects the implementation costs of each model in the OP2

compiler. The code size of the MIPS version is listed for each module of the

compiler. The self_compilation time is also displayed.

Table 7.7 Compiler size and self_compilation time

Self_compilation (ms)

Source size (lines)

Total

OP2

OPV

OPC

OPL

OPP

OPB

OPT

OPS

OPM

Code size (bytes)

+2.9% +3.4%

7476 7696 7731

+3.6% +6.1%

7085 7344 7516

+2.6% +4.5%

175688 180192 183528

3592 3592 3696

18072 20832 18120

33896 34280 34496

28000 28408 30856

24400 24696 24496

39072 39144 39200

16280 17296 20264

7600 7600 7600

4776 4344 4800

Orig. Model Layer Model Object Model

The overhead in both code size and compilation time of about 4% stays within

very tolerable limits.

One point has not been brought up yet: all three models write exported

objects in alphabetical order to the symbol file. Internalizing a symbol file into

the symbol table therefore results in a degenerated tree. Measurements have

shown that using degenerated trees instead of balanced trees for imported

objects costs 0.8% of the total compilation time. Rebalancing these trees is

therefore not recommended, especially as this operation would also cost

execution time. Contrary to other models, the object model does not require

the objects being written in a canonical order to the symbol file. However, this

order simplifies the detection of interface modifications concerning exported

variables of an anonymous type (see precedent chapter).
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Outlook

Currently, the object model has also been adopted by two other Oberon

implementations based on OP2, namely HP_Oberon [31] for Hewlett_Packard

PA_RISC workstations and a commercial Oberon programming environment. It

is also planned that other Oberon implementations from ETH will switch to the

object model.

Migrating from the original model to the object model does not only require

modifications in the compiler and in the module loader, but also in some

associated tools. For example, the object file decoder must be adjusted to the

new object file format. Similarly, the module browser, which generates text

from symbol files, is replaced by a portable version based on the revised symbol

file format, which is identical on all platforms. The browser first calls module

OPT of the compiler to internalize a symbol file and then generates the

corresponding interface text while traversing the loaded symbol table.

Automating Recompilations

One can imagine further tools to help the programmer to restore consistency in

a system after an inconsistency has been detected. The compiler and the

module loader produce error messages containing the name of the faulty

object. This facilitates the identification of the module needing a recompilation.

However, recompiling this module may in turn require further client recom_

pilations. This phenomenon is known as trickle_down recompilation. A tool

could help the programmer to find the optimal recompilation sequence. The

tool would take a list of modules as parameter. The top modules of a hierarchy

of modules would be sufficient. The tool would then analyze the dependences

between these modules and the modules imported by them and return a list of

modules to be recompiled in topological order.

The structure of this tool would be very similar to the one of the module

loader. The tool would recursively read object files and check fingerprints.

Module names and export sections of the corresponding object files would be

kept in an internal data structure, whereas code and data sections would not be

loaded. In order to predict trickle_down recompilations, it would be necessary

to analyze the effect of a recompilation onto a module interface. The tool

would therefore call the compiler to load symbol files (fingerprint checking in

internalizing routines would have to be disabled) in order to calculate the new

fingerprint values for exported objects.
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This tool would generate the compile command with the list of modules to

be recompiled, or call the compiler to automate recompilations. However, a

fully automated recompilation would not be possible in case of a source code

invalidation, which would require the intervention of the programmer for

editing changes.

Inserting New Type_Bound Procedures

As in the layer model, the revelation of hidden fields or hidden methods is

impossible in the object model without invalidating clients. As explained

before, a modification of the Oberon scope rules for record fields would be

necessary to avoid field name collisions in extending record types. Contrary to

record fields, the revelation or insertion of type_bound procedures would not

pose any problems in client modules. Indeed, an existing type_bound procedure

would just override an equally named type_bound procedure newly inserted in a

base record.

The fingerprint of a record type would not contain information about type_

bound procedures (methods) any longer, so that its value remains unchanged

when type_bound procedures are inserted or revealed. Each type_bound proce_

dure would have its own fingerprint. Method table indices (method number)

would not be attributed to type_bound procedures any longer, since such a

number is a context_dependent attribute that could be modified by the in_

sertion of a new type_bound procedure. The total number of type_bound

procedures for a record type would be determined at link time only, since

record types being extended by this record might have more type_bound

procedures than expected.

Method tables would have to include the method names in addition to the

method addresses, so that method tables for extending records can be con_

structed at link time using the method tables of the extended records, and so

that a table index can be attributed to each imported method. This would

require a fix_up of each external method call at link time. All the calls to the

same method would be linked by a fix_up chain. An entry in the use block of

the object file would list the root of this chain, as well as the name of the

type_bound procedure, the name of the static type of the receiver, and the

fingerprint value. The fix_up would consist in finding the index of this type_

bound procedure in the method table of the receiver type using the method

name, and to insert this index in the code.

This improvement in flexibility would result in larger object files, more work

at link time, and greater run_time memory requirements. It is not clear whether
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this improvement would be really useful in practice. As an example, one can

imagine a class hierarchy of graphical objects being unable to print themselves

in a first release. The insertion of a print method in the base class would not

invalidate derived classes. However, this method would be useless until derived

classes override it with their own method knowing how to print derived objects.

Similarly, the improvement in flexibility introduced by the distinction be_

tween public and private fingerprints for record types has not really been

demonstrated yet. This distinction does not cost as much as the improvement

described above would, but it is not for free, since additional fingerprints take

space in object files and run_time data structures. Also, some compiler routines

could be simplified if the distinction would not have to be done. Hopefully, the

utilization of the object model in long_term Oberon projects will provide an

answer.

Multiple Interfaces

A symbol file plays two roles in Oberon. First, it describes the part of the

module symbol table needed by the compiler to perform type checking over

module boundaries. Second, it is a compressed representation of the module

interface that can be made available in readable form to the programmer of

client modules by the browser. In this last respect, the symbol file often

documents the interface at a level of abstraction that is too low for most of the

clients. As proposed by J. Gutknecht [32], multiple interfaces should reflect the

services provided by modules at different levels of abstraction.

The object model is best suited to support multiple interfaces. One can

imagine a symbol file editor that would allow the programmer of a module to

remove some particular objects from the module interface before distributing

the edited symbol file to less trustworthy clients. For example, the programmer

could hide procedures manipulating sensitive data structures that these clients

should not use. This symbol file editor would work without any modifications

either in the current compiler or in the module linker.

Note that multiple interfaces are possible without requiring an additional

tool if the source code of a module is available, which is usually the case in this

context. Indeed, the programmer can remove export marks in the text of a

module before recompiling it, thereby producing a slimmed version of the

symbol file for this module.

The layer model is less appropriate for this kind of interface editing. The

programmer would have to be careful only to remove entire layers of objects
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from the top of the layer stack of an interface. A symbol file editor is therefore

recommended for the layer model.

Applying the Models to Other Languages

Both presented models could also be applied to compilers for other strongly_

typed programming languages. The layer model is rather universal and could

rapidly be adapted to other languages using symbol files or some canonical

representation of module interfaces. More work would probably be necessary

for the object model, since the fingerprint computation is highly dependent on

the type system of the language. For example, fingerprints would not include

type names in a language favoring structural type equivalence instead of type

name equivalence. Furthermore, the computation of the fingerprint for a recur_

sive type might require several traversals of the cyclic type graph if the cycle

cannot be easily cut as in Oberon. However, the principles of fingerprint

computation presented in this thesis are applicable to other languages. Context_

dependent attributes of an object should not be included in the fingerprint of

this object, because such attributes depend on the history of development of

the module declaring the object. It is preferable that fingerprints do not depend

on history in order to avoid invalidations caused by the accidental loss of this

history.

Another problem could arise for implementing the consistency check at link

time if a standard linker must be used. In that case, fingerprint values could be

checked by some code inserted in the initialization part of each module by the

compiler. As an alternative, the fingerprint could be appended to the name of

each item of the object file needing link editing. The linker would not be able

to link an inconsistent item since its name would be different in the exporting

and importing modules due to the different fingerprint value. A similar tech_

nique is proposed by M. A. Ellis and B. Stroustrup [33] to increase the safety of

function linkage in the C++ language. The string appended to the function

name simply encodes the type of every formal parameter of the function, by

using one character for each predefined type or the complete name for each

user_defined structure. However, the string does not reflect the internal structure

of a formal parameter type and is only used for functions. The authors admit

that this technique has severe limitations and is just a step in the right

direction, contrary to the object model, which improves the flexibility of

separate compilation, which is safe already.
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Conclusions

The objective of this work was to allow modules to be extended by new

exported items without requiring a recompilation of client modules and with_

out sacrificing type safety at link time. This has been achieved by increasing the

resolution of consistency checking at compile time and at link time.

The first presented model, the layer model, organizes every module interface

as a stack of extension layers growing as new items are exported from the

module. This approach has the severe drawback that the history of development

of each module is included in the symbol file of this module. If this history

information gets lost, the recompilation of an unchanged module may never_

theless invalidate clients.

This problem is solved by the second model, the object model, which

increases the resolution of consistency checks from the layer level to the object

level. Each object receives at compile time a fingerprint containing its type

information. The linking loader checks the fingerprints of exported and used

objects for equality.

Both models attain the envisaged goal, but the object model has proven

more practical than the layer model. Besides the fact that the history of

development is not retained in the object model, this model also allows the

elimination of obsolete objects without invalidating clients not using these

objects, which is impossible in the layer model.

In comparison to other work, the models do not require clients to be known

at compile time in order to ensure consistency. This is particularly important in

today's systems of modules that do not live in closed programs as in the past,

but in object_oriented environments open to new clients and ready to accept

new functionality at any time.

The new models are integrated in the compiler and linking module loader

and do not require a database, dictionary, or similarly centralized information

recording, thereby avoiding maintenance problems. The only context infor_

mation is present in the form of symbol files, which are unavoidable for

separate compilation. These symbol files can always be reconstructed from the

source text, since they include neither timestamps nor arbitrary keys. Further_

more, the consistency checking is not an optional operation performed by a

separate tool, but is performed unconditionally at link time by the linking

loader itself.

At a modest implementation cost, both presented models combine the

flexibility of module extension in an open environment with the security offered

by separate compilation. However, the object model is preferred to the layer

model, since it does not depend on the history of development.



Appendix A: Layer Model File Formats

Names are sequences of characters terminated by 0X. Lower case identifiers

denote numbers. A digit appended to an identifier indicates the length of the

number in bytes (LSByte first). Otherwise, the number is compressed into a

variable number of bytes by the procedure WriteNum of the Oberon module

Files (LSByte first, base 128, cleared MSBit is stop bit, see below). The binary

representation of a set is interpreted as an integer word and is coded by

WriteNum. Floating point numbers are in IEEE format (LSByte first).

PROCEDURE WriteNum(x: LONGINT);

BEGIN

WHILE (x < − 64) OR (x > 63) DO

Write(CHR(x MOD 128 + 128)); x := x DIV 128

END ;

Write(CHR(x MOD 128))

ENDWriteNum;

Symbol File

SymFile = 0FAX Module {{Object} FPrint}.

Module = 0 | ((negmno layerno | MNAME name) {FPrint} END).

FPrint = FPRINT value.

Constant = CHAR value:1

| BOOL (FALSE | TRUE)

| (SINT | INT | LINT | SET) value

| REAL value:4

| LREAL value:8

| STRING name

| NIL.

Object = Constant name

| TYPE Struct

| ALIAS Struct name

| (RVAR | VAR) Struct offset name

| (XPRO | IPRO) Signature entryno name

| CPRO Signature len {code:1} name.
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Field = ((RFLD | FLD) Struct name | (HDPTR | HDPRO)) offset.

Method = (TPRO Signature name | HDTPRO) methno entryno.

Signature = Struct {(VALPAR | VARPAR) Struct offset name} END.

Struct = negref

| STRUCT Module name [SYS value]

( PTR Struct

| ARR Struct nofElem

| DARR Struct

| REC Struct size align descAdr nofMeth {Field} {Method} END

| PRO Signature).

MNAME = 16. XPRO = 31. predefined refs:

FPRINT = 17. IPRO = 32.

END = 18. CPRO = 33. BYTE = 1.

TYPE = 19. STRUCT = 34. BOOL = 2.

ALIAS = 20. SYS = 35. CHAR = 3.

VAR = 21. PTR = 36. SINT = 4.

RVAR = 22. ARR = 37. INT = 5.

VALPAR = 23. DARR = 38. LINT = 6.

VARPAR = 24. REC = 39. REAL = 7.

FLD = 25. PRO = 40. LREAL = 8.

RFLD = 26. SET = 9.

HDPTR = 27. STRING = 10.

HDPRO = 28. boolean constants: NIL = 11.

TPRO = 29. FALSE = 0X. NOTYP = 12.

HDTPRO = 30. TRUE = 1X. POINTER = 13.

MIPS Object File

ObjFile = OFtag HeaderBlk EntryBlk CmdBlk PtrBlk ImpBlk LinkBlk ConstBlk CodeBlk

TypeBlk RefBlk.

OFtag = 0F8X 36X.

HeaderBlk = refsize:4 nofentr:2 nofcom:2 nofptr:2 nofrec:2 nofmod:2 noflink:2

datasize:4 consize:2 codesize:2 noflayer:2 {fprint:4} modname.

EntryBlk = 82X {pc:2}.

CmdBlk = 83X {name pc:2}.

PtrBlk = 84X {off:4}.

ImpBlk = 85X {noflayer:2 [fprint:4] name}.
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LinkBlk = 86X {mod:1 entry:1 pc:2}.

ConstBlk = 87X {con:1}.

CodeBlk = 88X {instr:4}.

TypeBlk = 89X {recsize:4 tdadr:2 basemod:2 baseadr:2 nofmth:2 nofinhmth:2

nofnewmth:2 nofptr:2 name {mthno:2 entno:2} {ptroff:4}}.

RefBlk = 8AX {0F8X procend savedr savedf frame callarea name

{Mode Form adr name}}.

Mode = Var | VarPar.

Var = 1X.

VarPar = 3X.

Form = Byte | Bool | Char | SInt | Int | LInt | Real | LReal | Set | String | Pointer.

Byte = 1X.

Bool = 2X.

Char = 3X.

SInt = 4X.

Int = 5X.

LInt = 6X.

Real = 7X.

LReal = 8X.

Set = 9X.

String = 0AX.

Pointer = 0DX.



Appendix B: Object Model File Formats

Names are sequences of characters terminated by 0X. Lower case identifiers

denote numbers. A digit appended to an identifier indicates the length of the

number in bytes (LSByte first). Otherwise, the number is compressed into a

variable number of bytes by the procedure WriteNum of the Oberon module

Files (LSByte first, base 128, cleared MSBit is stop bit, see below). The binary

representation of a set is interpreted as an integer word and is coded by

WriteNum. Floating point numbers are in IEEE format (LSByte first).

PROCEDURE WriteNum(x: LONGINT);

BEGIN

WHILE (x < − 64) OR (x > 63) DO

Write(CHR(x MOD 128 + 128)); x := x DIV 128

END ;

Write(CHR(x MOD 128))

ENDWriteNum;

Symbol File

SymFile = 0FBX Module {Object}.

Module = 0 | negmno | MNAME name.

Constant = CHAR value:1

| BOOL (FALSE | TRUE)

| (SINT | INT | LINT | SET) value

| REAL value:4

| LREAL value:8

| STRING name

| NIL.

Object = Constant name

| TYPE Struct

| ALIAS Struct name

| (RVAR | VAR) Struct name

| (XPRO | IPRO) Signature name

| CPRO Signature len {code:1} name.
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Field = ((RFLD | FLD) Struct name | (HDPTR | HDPRO)) offset.

Method = (TPRO Signature name | HDTPRO) methno.

Signature = Struct {(VALPAR | VARPAR) Struct offset name} END.

Struct = negref

| STRUCT Module name [SYS value]

( PTR Struct

| ARR Struct nofElem

| DARR Struct

| REC Struct size align nofMeth {Field} {Method} END

| PRO Signature).

MNAME = 16. XPRO = 31. predefined refs:

not used 17. IPRO = 32.

END = 18. CPRO = 33. BYTE = 1.

TYPE = 19. STRUCT = 34. BOOL = 2.

ALIAS = 20. SYS = 35. CHAR = 3.

VAR = 21. PTR = 36. SINT = 4.

RVAR = 22. ARR = 37. INT = 5.

VALPAR = 23. DARR = 38. LINT = 6.

VARPAR = 24. REC = 39. REAL = 7.

FLD = 25. PRO = 40. LREAL = 8.

RFLD = 26. SET = 9.

HDPTR = 27. STRING = 10.

HDPRO = 28. boolean constants: NIL = 11.

TPRO = 29. FALSE = 0X. NOTYP = 12.

HDTPRO = 30. TRUE = 1X. POINTER = 13.

MIPS Object File

ObjFile = OFtag HeaderBlk ImpBlk ExpBlk CmdBlk PtrBlk ConstBlk CodeBlk UseBlk

RefBlk.

OFtag = 0F9X 36X.

HeaderBlk = refsize:4 nofexp:2 noftdesc:2 nofcom:2 nofptr:2 nofimp

newreclink newsyslink newarrlink datalink datasize consize codesize modname.

ImpBlk = 81X {name}.

ExpBlk = 82X {EConst | EType | EVar | EProc | ECProc | EStruct | TDesc | LinkProc} 0X.

EConst = 1X name fprint.

EType = 2X name fprint.

EVar = 3X name fprint offset.

EProc = 4X name fprint entry.



148

ECProc = 5X name fprint.

EStruct = 6X name pbfprint pvfprint.

TDesc = 8X (name | 0X pvfprint) link recsize ( −1 | basemod (name | 0X pvfprint))

nofmth nofinhmth nofnewmth nofptr {mthno entry} {ptroff}.

LinkProc = 9X entry link.

CmdBlk = 83X {name entry}.

PtrBlk = 84X {off}.

ConstBlk = 87X {con:1}.

CodeBlk = 88X {instr:4}.

UseBlk = 89X {{UConst | UType | UVar | UProc | UCProc | UpbStr | UpvStr | LinkTD} 0X}.

UConst = 1X name fprint.

UType = 2X name fprint.

UVar = 3X name fprint link.

UProc = 4X name fprint link.

UCProc = 5X name fprint.

UpbStr = 6X name pbfprint.

UpvStr = 7X name pvfprint.

LinkTD = 8X (name | 0X pvfprint) link.

RefBlk = 8AX {0F8X procend savedr savedf frame callarea name

{Mode Form adr name}}.

Mode = Var | VarPar.

Var = 1X.

VarPar = 3X.

Form = Byte | Bool | Char | SInt | Int | LInt | Real | LReal | Set | String | Pointer.

Byte = 1X.

Bool = 2X.

Char = 3X.

SInt = 4X.

Int = 5X.

LInt = 6X.

Real = 7X.

LReal = 8X.

Set = 9X.

String = 0AX.

Pointer = 0DX.
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