
Diss. ETH No. 10497

Code_Generation On_the_Fly:

A Key to Portable Software

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of

Doctor of Technical Sciences

presented by

Michael Steffen Oliver Franz

Dipl. Informatik_Ing. ETH

born 1st May 1964

citizen of Germany

accepted on the recommendation of

Prof. Dr. N. Wirth, examiner

Prof. Dr. J. Gutknecht, co_examiner

1994

Acknowledgement

I am deeply indebted to Professor N. Wirth for the privilege of being allowed to

work with him. Over the years, he has taught me a wealth of wisdom that will

follow me throughout my professional life, and beyond. I admire his unique

ability of immediately recognizing the essential, and his courage to eliminate

the superfluous even when considered indispensable by others. Often enough, I

have attempted to apply his standards of judgement in my own work, and the

results have been most gratifying. I thank him most sincerely for taking up the

supervision of this thesis and commenting so competently on the ongoing

project.

I thank Professor J. Gutknecht for his willingness to be my co_examiner and

for advising me on this thesis. He is truly a great pedagogue, and if the contents

of this thesis are comprehensible at all, this is also a result of his valuable

criticism of an earlier draft, delivered in his unrivalled didactic style.

I am grateful to my colleagues at the Institut für Computersysteme for their

openness to new ideas and their enthusiasm in discussing them, even late at

night. Together, they have provided a friendly and intellectually most stimulating

working environment.

Finally, I thank C. Pfister and S. Ludwig for proof_reading this thesis.

Contents

Abstract 7

Kurzfassung 9

1. Introduction 11

2. Program Representation 13

3. The SDE Encoder and Decoder 29

4. Modular Design of the Implementation 43

5. Benchmark Results 53

6. Portability and Software Components 61

7. Further Applications 73

8. Related Work 79

9. Summary and Conclusion 87

References 89

Abstract

A technique for representing programs abstractly and independently of the eventual

target architecture is presented that yields a file representation twice as compact

as machine code for a CISC processor. It forms the basis of an implementation,

in which the process of code generation is deferred until the time of loading. At

that point, native code is created on_the_fly by a code_generating loader.

The process of loading with dynamic code_generation is so fast that it

requires little more time than the input of equivalent native code from a disk

storage medium. This is predominantly due to the compactness of the abstract

program representation, which allows to counterbalance the additional effort of

code_generation by shorter input times. Since processor power is currently rising

more rapidly than disk_access times and transfer rates are falling, the proposed

technique is likely to become even more competitive as hardware technology

evolves.

To users of the implemented system, working with modules in the abstract

representation is as convenient as working with native object_files. Both kinds of

file_representation coexist in the implemented system; they are completely

interchangeable and modules in either representation can import from the other

kind. Separate compilation of program modules with type_safe interfaces, and

dynamic loading on a per_module basis are both fully supported.

Deferring code_generation until loading time can provide several new

capabilities, especially when the intermediate program representation is

machine_independent and thereby portable. It is argued that the combination of

portability with practicality denotes an important step toward a software_

component industry. Further benefits include a potential for reducing the number

of recompilations after changes in source text, and a mechanism to decide at

load time whether or not run_time integrity checks should be generated for a

library module, eliminating the need to distinguish between development and

production library configurations. All of these new possibilities have the

potential of lowering the cost of software development and maintenance.

In the long run, fast on_the_fly code_generation may even replace binary

compatibility for achieving software portability among processors implementing

the same architecture. Already today, different models of a processor family are

diverging more and more and it is becoming increasingly difficult to serve all of

them equally well with just one version of native code. If code is generated only

at the time of loading, however, it can always be custom_tailored toward the

specific processor that it will eventually run on.

Kurzfassung

Es wird eine Technik zur abstrakten und Zielarchitektur_unabhängigen Programm_

repräsentation vorgestellt, die zu einem Dateiformat führt, welches doppelt so

kompakt wie der Maschinencode eines CISC_Prozessors ist. Auf der Basis dieser

Technik wurde ein System erstellt, in dem die Codegenerierung bis zum

Zeitpunkt des Ladens verzögert wird. An jenem Punkt wird dann Maschinen_

code durch einen codegenerierenden Lader erzeugt.

Der Ladeprozess mit dynamischer Codegeneration ist annähernd so schnell

wie das Lesen äquivalenten Maschinencodes von einem Plattenspeicher_

medium. Das ist hauptsächlich der Kompaktheit der abstrakten Programm_

repräsentation zu verdanken, welche es gestattet, den Mehraufwand für die

Codegenerierung durch einen reduzierten Eingabeaufwand auszugleichen.

Vermutlich wird die vorgestellte Technik mit fortschreitender Hardware_

entwicklung vergleichsweise sogar noch effizienter werden, da die Leistung von

Mikroprozessoren momentan schneller wächst, als Plattenzugriffszeiten und

_übertragungsraten abnehmen.

Für die Benutzer des erstellten Systems ist der Komfort bei der Verwendung

von Modulen in der abstrakten Repräsentation vergleichbar mit demjenigen für

herkömmliche Objektdateien. Die beiden Dateiformate können nebeneinander

eingesetzt werden und sind vollständig gegeneinander austauschbar; auch

können Module beider Repräsentationsformen einander wahlweise importieren.

Die typsichere separate Compilation wird ebenso unterstützt wie das

dynamische Laden auf Modulstufe.

Die Verzögerung der Codegeneration auf den Ladezeitpunkt birgt viele neue

Möglichkeiten, besonders wenn die Programm_Zwischenrepräsentation maschi_

nenunabhängig und damit portabel ist. In der vorliegenden Arbeit wird

argumentiert, dass die Kombination von Portabilität und Einfachheit der

Verwendung einen wichtigen Schritt hin zu einer Industrie von Softwarebauteilen

bedeutet. Darüberhinaus wird die Voraussetzung dazu geschaffen, die Anzahl

notwendiger Recompilationen nach Änderungen im Quelltext vermindern zu

können. Auch wird ein Mechanismus eingeführt, der es gestattet, erst zur

Ladezeit entscheiden zu müssen, ob ein Bibliotheksmodul Laufzeittests be_

inhalten soll oder nicht, womit die Notwendigkeit zur Unterscheidung von

Entwicklungs_ und Produktionskonfigurationen der Programmbibliotheken weg_

fällt. All diese neuen Möglichkeiten verkörpern ein Kostensenkungspotential für

Softwareentwicklung und _unterhalt.

Langfristig ist sogar denkbar, dass schnelle dynamische Codegeneration

anstelle von Binärkompatibilität eingesetzt werden wird, um Portabilität

zwischen Prozessoren zu gewährleisten, die dieselbe Architektur implemen_

tieren. Schon heute unterscheiden sich die Modelle einer Prozessorfamilie

immer stärker, und es wird immer schwieriger, mit einer einzigen Version von

binärem Objektcode auf ihnen allen zufriedenstellende Leistungen zu erbringen.

Wird der Maschinencode hingegen erst zur Ladezeit erzeugt, so kann er immer

für denjenigen Prozessor massgeschneidert werden, auf dem er schlussendlich

ausgeführt werden wird.

1. Introduction

The rapid evolution of hardware technology is constantly influencing software

development, for better as well as for worse. On the downside, faster hardware

can conceal the complexity and cost of badly_designed programs; Reiser [Rei89]

is not far off the mark in observing that sometimes "software gets slower more

quickly than hardware gets faster". On the other hand, improvements in

hardware, such as larger memories and faster processors, have also provided the

means for better software tools.

Often enough, methodical breakthroughs have been indirect consequences

of better hardware. For instance, software_engineering techniques such as

information hiding and abstract data types could be developed only after

computers became powerful enough to support compilers for modular

programming languages. Mechanisms such as separate compilation place certain

demands on the underlying hardware and so had a chance of proliferation only

after sufficiently capable computers were commonplace.

This thesis presents another example of a systematic technological advance

that owes its viability to improved hardware. It describes a technique for

representing programs abstractly in a format that is twice as compact as object

code for a CISC processor. Combined with the speed of current processors and

abundance of main storage, the use of an intermediate program representation

based on the new technique makes it possible to accelerate the process of code

generation to such a degree that it can be performed on_the_fly during program

loading on ordinary desktop computers, even with a high resulting code quality.

A system has been implemented that permits the convenient use of program

modules in this machine_independent intermediate representation, as if they

had been compiled to native code. In this thesis, it is argued that such a system

presents some completely new possibilities, among which lies the prospect of

founding an industry offering user_serviceable software components that are

immediately functional on more than one kind of target architecture.

Among the themes that recur throughout this thesis are methods of program

representation, code generation, modular programming, and software portability.

This is a comparatively wide scope for a doctoral dissertation, which is reflected

in a large and diverse list of references.

2. Program Representation

For every calculable function, there exists an algorithm that computes it

[Chu35]. A program is an encoded description of such an algorithm that

instructs a universal computing machine how to compute the corresponding

function. A machine is called universal exactly if it can compute every function

that is representable by an algorithm; Turing [Tur36] has shown that such

universal machines exist. Programming languages correspond to abstract and

relatively complex universal machines, while digital computers represent physical

realizations of universal machines that are programmable in their characteristic

machine languages.

Algorithms can be translated from one program representation into another;

the mere existence of an algorithm guarantees that a corresponding program

can be constructed for every machine that is universal. This chapter discusses

the use of intermediate languages as transitional steps in such transformations

between program representations, particularly solutions based on abstract

machines. It then introduces a new program_representation technique called

semantic_dictionary encoding, which achieves a high information density while

facilitating simultaneously the efficient further translation into various machine

languages.

Subdivided Compilers

Often, and for a variety of reasons, compilers are subdivided into smaller units.

This may be a static separation into modules, or a dynamic partition into two

or more separate compilation phases (or passes) that execute one after the

other. The initial argument for such a division is often a physical limitation of

the host machine that makes the construction of a monolithic compiler

impossible. There are, however, other advantages to be gained from splitting a

compiler into smaller parts, which make this approach attractive even when it is

not mandated by external constraints, and keep it attractive when the

constraints are eventually removed by evolving hardware technology.

Most importantly, subdividing a compiler usually reduces its complexity. The

individual pieces are smaller and thereby simpler than the whole, and often the

combined complexity of all parts taken together is less than that of a

corresponding monolithic compiler. The reason for this is that the different

parts can usually be decoupled from each other quite well, resulting in narrow

interfaces between them. Complexity, on the other hand, is mostly rooted in

non_local dependencies.

Another reason for structuring a compiler concerns the ease with which it

can be retargeted for another architecture. By disentangling the code_generating

functions from the rest of the compiler, the construction of a family of

compilers for different target architectures can be simplified considerably.

Adapting the compiler for a new target machine then amounts to the

construction of a new code generator, while the rest of the compiler can

remain unchanged. As a matter of fact, this technique has become so common

that we tend to speak of "code generators" today as if they were self_contained

programs in their own right, disregarding completely that syntactic analysis and

code generation were not separated from each other in early compilers.

Intermediate Languages

A compiler transforms a program from one representation into another. When

such a compiler consists of several phases, this implies the existence of further

intermediate representations carrying the state of the compilation from one

phase to the next. These intermediate representations are usually only transient

data structures in memory, but in some compilers they have a linear form that

can be stored on a data file. In the following, such stand_alone linear

representations are referred to as intermediate languages.

Intermediate languages are interesting from the aspect of software

portability. If an intermediate language is sufficiently simple, it will provide for

the easy construction of a series of interpreters that can execute the

intermediate language directly on a number of different target machines.

Interpreters are usually easier to build than code generators, so that this

approach is attractive, although it comes at the expense of reduced

performance. Implementations that have been based on interpreted

intermediate languages in this manner include BCPL [Ric71, RW79], SNOBOL4

[Gri72], and Pascal [NAJ76].

Intermediate languages are often also used in the process of bootstrapping

compilers onto new machines [Hal65]. Suppose that we have a portable

compiler that translates a source language SL into an intermediate language IL,

and that this compiler is itself written in SL and available encoded both in SL

and in IL. Suppose further that we have an interpreter for IL that runs on a

computer with a machine language TL. We may then modify the portable

compiler (written in SL) to derive a native compiler that translates from SL to TL

directly. By compiling it with the interpretable version of the original compiler

we gain a native compiler that is written in IL, and hence executable by the

interpreter. This compiler can now be used to create a native compiler capable

of running directly on the target machine (Figure 2.1).

written in

>SL

SL >

>SL

SL >

SL

IL ILSL >

SL

from this
language into this

language

Each ' T ' _ shaped box
represents a compiler

that translates
this language

IL

Available at Start

SL

>SL

SL >

>SL

TL TL

TLTL

TL

First Compilation

Second Compilation

IL

IL

TL

IL

;

IL

interpreted execution

interpreted execution

compilation
output of

compilation
input to

* *

derived
variant

;

;

Figure 2.1: Bootstrapping a Compiler

UNCOL

In the 1950's, it became apparent that the ongoing proliferation of

programming languages and hardware architectures would continue for some

time. This would set off a vast demand for different compilers, as potentially

one would require separate compilers for each combination of source language

and target architecture.

To counteract the anticipated combinatorial explosion, the idea of a

linguistic switchbox materialized in 1958 [SWT58, Con58, Ste60, Ste61a]. It

was planned to design a universal intermediate language, into which programs

originating in any problem_oriented language could be translated by an

appropriate generator (front_end in today's terminology), and from which code

for any processor architecture could be generated by a suitable translator

(back_end). This would enable the construction of compilers for m languages to

be run on n machines by having to write only m+n programs (m front_ends and

n back_ends), instead of m*n (Figure 2.2). The intermediate language was to be

called UNCOL, for universal computer_oriented language.

Source Languages

Front_Ends

Back_Ends

Target Languages

FE1 FE2

;

SL1

TL1 TL2 TLn

SL2

; ;

;;;

. . .

. . .

;;;

UNCOL
;

BE1 BE2 BEn

SLm

FEm

Universal Language

Figure 2.2: The Use of UNCOL as a Linguistic Switchbox

One might of course wonder why such an intermediate language needs to be

designed specifically for this purpose. If algorithms can be translated from one

program representation into another, then in principle the machine language of

any sufficiently powerful computer could serve as UNCOL. Unfortunately,

however, most translations between languages are so difficult to do that they

are not practical. To wit, potential UNCOL candidates need to be amenable to

efficient implementation. They should also provide for further developments in

source and target languages. Steel [Ste61b] cites the example of a hypothetical

UNCOL specified before the invention of index registers, which would be very

cumbersome to use with programs operating on arrays.

To this date, no proposed UNCOL has been met with universal agreement.

However, many compiler families have offered varying combinations of front_

ends and back_ends by way of common intermediate representations, and

thereby kept the spirit of UNCOL alive. Moreover, certain programming

languages have been implemented on so many different architectures that they

have attained an almost UNCOL_like status. For instance, the programming

language C [KR78] is nearly pervasive. Atkinson et al. [ADH89] describe a Cedar

compiler that achieves portability by performing high_level source_to_source

translation, producing C as its output. The resulting C programs are then

passed directly to a C compiler, without further human editing. They serve only

as an intermediate representation in this context.

Abstract Machines

A straightforward method for obtaining an intermediate_language representation

of a program is to represent it as an instruction sequence for some fictitious

computer, also called an abstract machine [PW69, NPW72, KKM80]. Most

intermediate languages, including the very first UNCOL ever proposed [Con58],

follow this pattern. Besides abstract machines, intermediate languages have also

been based on linearized parse_trees [GF84, DRA93a]. Furthermore, there are

compilers that compile via ordinary high_level programming languages by way

of source_to_source program translation as mentioned above [ADH89].

Abstract machines reached their heyday in the early 1970's. They were

widely popular for a decade, providing software portability to a variety of target

architectures while consuming only moderate resources. There were even

architectures that started out as abstract machines and, because of their

popularity, were subsequently realized physically [WD79] or implemented in

microcode [Hal82]. Some of the better known abstract machines from that era

are the following:

− BCPL. BCPL [Ric69] is a small, block_structured programming language

aimed primarily at systems_programming applications. It has only one

data type, the Rvalue, to which the language attaches different

interpretations depending on the operation applied. Each Rvalue

occupies one unit of store on an idealized object computer that is visible

at the level of the source language. The implementation of BCPL [Ric71,

RW79] is based on an abstract stack machine. BCPL's type_less semantic

model of an idealized computer allows for portable address arithmetic in

source programs and target_machine_independent stack management in

the compiler.

− SNOBOL4. SNOBOL4 is a member of the SNOBOL family of character_string_

processing languages [Gri78]. Its original implementation [Gri72] uses a

register_less abstract machine that offers only memory_to_memory

instructions. The basic data unit of this abstract machine is called a

descriptor. All of SNOBOL4's data types are encoded within such

descriptors. However, the internal layout of descriptors varies between

different target architectures, allowing for an efficient implementation of

the interpreter on different kinds of hardware, but requiring changes in

the SNOBOL4 compiler whenever the system is ported.

− Pascal_P. The general_purpose programming language Pascal [Wir71] is

still widely used today. One of its early implementations, Pascal_P

[NAJ76], is founded on a hypothetical stack computer similar to the

abstract machine used in the implementation of BCPL. Unlike BCPL,

however, Pascal differentiates between various data types. In the Pascal_P

implementation, the abstract_machine representations of these types are

adapted to each individual target architecture, with respect to their

storage requirements, and to their alignment. As in the implementation

of SNOBOL4, this target_architecture dependence prevents direct

portability of the intermediate language and requires parametrization of

the compiler, but results in efficient storage allocation and execution of

the interpreter.

− Janus. Unlike the previous three examples, each of which uses an

abstract machine to implement a single source language on a variety of

target architectures, Janus [CPW74, HW78] comes closer to the original

idea of UNCOL by defining the essentials of an intermediate language

independently of any source language or target architecture. Rather than

providing a single abstract machine, Janus describes the common basic

structure (stack machine with index register) of a whole family of abstract

machines, which differ in their instruction sets to accommodate the

specific constructs of source languages. Janus has been used successfully

in the development of compilers for the programming languages Pascal

[Wir71] and Algol_68 [WMP69].

The advent of the personal computer eventually caused the demise of the

abstract machine, since it led to a de_facto standardization of the machine

language on the low end of the computer performance spectrum while

simultaneously making these computers affordable. In the light of a quasi_

standard machine language, however, there was no longer a need to use

intermediate languages to achieve software portability, even more so as the

interpreted execution of abstract machines was associated with inefficiency.

This picture is changing again only now. Although the standardization of

hardware has continued over the past two decades, leaving only about a dozen

major architectures to which software needs to be ported, the appeal of

traditional binary compatibility is waning. This is because different

implementations of the same architecture begin to diverge by so much that it is

becoming more and more difficult to generate native code that performs well

on all processors within a family. As will be shown in a later chapter, the work

presented in this thesis offers an alternative, by allowing to generate code

quickly at the time of loading. It is thereby possible to deliver optimized

instruction sequences to individual processors while still maintaining a user_

convenience comparable to that of binary compatibility.

Disadvantages of Abstract Machines

Abstract machines are often defined by forming a conceptual intersection of

potential target_machine architectures. Hence, intermediate languages based on

abstract machines are by their very nature closer to machine languages than to

high_level programming languages. Unfortunately, this has the undesirable

consequence that the abstract_machine representation of an algorithm contains

less structure than the corresponding source program. Most abstract machines

can describe only the algorithmic aspects of a computation, and cannot

correctly preserve all of the higher_order information expressed in high_level_

language programs, such as block structure and data typing.

For example, consider the following source fragment in the programming

language Oberon [Wir88]:

VAR

ch: CHAR;

lint: LONGINT;

BEGIN

lint := LONG(ORD(ch));

A possible representation as an instruction sequence for an abstract stack

computer might be the following:

LOAD1 ch move single_byte CHAR value onto stack

ORD zero_extend, result is an INTEGER

LONG sign_extend, result is a LONGINT

STORE4 lint move four_byte LONGINT value back to memory

However, this sequence of operations can be performed by a single instruction

on certain processors, such as those of the National Semiconductor 32000 family

[NS84]:

MOVZBD ch, lint move, zero_extending byte to double_word

Hence, it may be necessary to combine several abstract_machine instructions

into one target_machine instruction when generating anything but the most

naive code out of an abstract_machine intermediate representation. In these

cases, the code generator effectively needs to reconstruct, at considerable

expense, information that was more easily accessible in the front_end, but lost

in the transition to the intermediate representation.

The only way to solve this particular problem is by bridging the semantic gap

through the introduction, on the level of the abstract machine, of a separate

move instruction for every combination of source and destination data type. Still, this

is able to rectify only those cases that involve a direct data_format conversion.

As target architectures may potentially offer arbitrarily complex operations, e.g.,

combined move_and_shift operations, the merger of several abstract_machine

instructions into one single target_machine instruction can never be ruled out

completely, no matter how elaborate the abstract machine's design.

Because of their systematic defects, intermediate languages based on

abstract machines are not well suited as a basis for the fast generation of high_

quality native code. The remainder of this chapter introduces an intermediate

representation that is. This representation, which I call semantic_dictionary

encoding (SDE), preserves the full semantic context of source programs while

being highly compact.

An Overview of Semantic_Dictionary Encoding

SDE is a dense representation. It encodes a syntactically correct source program

by a succession of indices into a semantic dictionary, which in turn contains

the information necessary for generating native code. The dictionary itself is not

part of the SDE representation, but is constructed dynamically during the

translation of a source program to SDE form, and reconstructed before (or

during) the decoding process. This method bears some resemblance to

commonly used data compression schemes [Wel84].

With the exception of wholly constant expressions, which are evaluated

during the transformation of a source program to SDE form, SDE preserves all

of the information that is available at the level of the source language. Hence,

unlike abstract_machine representations, transformation to SDE preserves the

block structure of programs, as well as the type of every expression. Moreover,

when used as the input for code_generation, SDE in certain cases provides for

short_cuts that can increase translation efficiency.

A program in SDE form consists of a symbol table (in a compact format, as

explained in [Fra93b]) and a series of dictionary indices. The symbol table

describes the names and the internal structure of various entities that are

referenced within the program, such as variables, procedures, and data types. It is

used in an initialization phase, in the course of which several initial entries are

placed into the semantic dictionary. The encoding of a program's actions

consists of references to these initial dictionary entries, as well as to other

entries added later in the encoding process.

Dictionary entries represent nodes in a directed acyclic graph that describes

the semantic actions of a program abstractly. In its most elementary form, a

semantic dictionary is simply such an abstract syntax_tree in tabular shape, in

which the references between nodes have been replaced by table indices. Each

dictionary entry consists of a class attribute denoting the semantic action that

the entry stands for (e.g., assignment, addition, etc.), and possibly some

references to objects in the symbol table (connected via an info attribute in the

following diagram) and to other dictionary entries (described by the links

attribute). Figure 2.3 gives an example of a simple arithmetic expression

represented as an abstract syntax tree and as a semantic dictionary.

n, n+3

n+1, n+2

Semantic Dictionary

Arithmetic Expressiona + b * c

+

*a

b c

addition

multiplication

variable

variable

variable

ClassIndex

n

n+1

n+2

n+3

n−1

n+4

n+5

Info

a

b

c

Links

...

...

Abstract Syntax Tree

Figure 2.3: Different Representations of an Expression

What differentiates a tabular abstract syntax_tree from a semantic dictionary is

that the latter can describe also generic characteristics of potential nodes that

might appear in such a tree. In addition to complete entries that directly

correspond to nodes of an abstract syntax tree, semantic dictionaries contain

also generic, or template entries. These templates have the same structure as

complete entries, but at least one of their attributes is missing, as recorded in a

status flag. In SDE, complex expressions can be represented not only by

complete entries, but also by templates in combination with other entries. For

example, the expression " a + b " can be represented by the index of an

"addition" template followed by the indices of two variable_reference entries.

Now suppose that a template existed in the semantic dictionary for every

construct of the source language (assignment, addition, etc.), and that

furthermore the semantic dictionary were initialized in such a way that it

contained at least one entry (possibly a template) for every potential use of

every object in the symbol table. For example, an object describing a procedure

in the programming language Oberon [Wir88] requires a minimum of four

entries in the dictionary, relating in turn to a call of the procedure, entry of the

procedure, return from the procedure, and addressing the procedure, which is

used in the assignment of the procedure to procedure variables. There are no

other operations involving procedures in Oberon.

These preconditions can be fulfilled by initializing the semantic dictionary in

a suitable way. They enable us to represent any program by only a symbol table

and a succession of dictionary indices. As an example, consider the following

module M in the programming language Oberon:

MODULE M;

VAR i, j, k: INTEGER;

PROCEDURE P(x: INTEGER): INTEGER;

BEGIN ...

END P;

BEGIN

i := P(i); i := i + j; j := i + k; k := i + j; i := i + j

END M.

In order to encode this program by the method of SDE, we first need to

initialize the semantic dictionary, which depends on the operations offered by

the programming language (Oberon in this case) and on the objects in the

symbol table. The symbol table for the example program contains three integer

variables (i, j, and k) and a function procedure (P). After initialization, the

corresponding semantic dictionary might look like the following (the individual

entries' indices are represented by symbolic names so that they can be

referenced further along in this chapter, and missing attributes of templates are

denoted by a dot).

...

retp return P_RETURN . left

entp entry P_BEGIN −

callp function call P(.) left

refp address P −

vk variable k −

vj variable j −

vi variable i −

...

plus addition . + . left, right

asgn assignment . := . left, right

 Index Class Meaning Missing

The instruction sequence that constitutes the body of module M may then be

represented by the following sequence of 24 dictionary indices:

asgn vi callp vi i := P(i)

asgn vi plus vi vj i := i + j

asgn vj plus vi vk j := i + k

asgn vk plus vi vj k := i + j

asgn vi plus vi vj i := i + j

This is where the second major idea of SDE comes in. What if we were to keep

on adding entries to the dictionary during the encoding process, based on the

expressions being encoded, in the hope that a similar expression would occur

again later in the encoding process? For example, once we have encoded the

assignment " i := P(i) " we might add the following three entries to the

dictionary:

assignment i := P(i) −

assignment i := . right

function call P(i) −

 Class Meaning Missing

Thereafter, if the same assignment " i := P(i) " occurs again in the source text,

we can represent it by a single dictionary index. If another assignment of a

different expression to the variable i is come across, this may be represented

using the template "assign to i", resulting in a shorter encoding.

Encoding module M in this manner results in the following additional

entries being placed in the dictionary (assuming that, after initialization, the

dictionary comprised n_1 entries):

...

n+12 assignment k := i + j −

n+11 assignment k := . right

n+10 assignment j := i + k −

n+9 assignment j := . right

n+8 addition i + k −

n+7 addition . + k left

n+6 assignment i := i + j −

n+5 addition i + j −

n+4 addition . + j left

n+3 addition i + . right

n+2 assignment i := P(i) −

n+1 assignment i := . right

n function call P(i) −

...

 Index Class Meaning Missing

The body of module M can then be encoded as follows:

asgn vi callp vi i := P(i)

n+1 plus vi vj i := i + j

asgn vj n+3 vk j := i + k

asgn vk n+5 k := i + j

n+6 i := i + j

Instead of the previous 24 dictionary indices, this encoding requires only 16 of

them, although the individual indices themselves may be larger since the

dictionary has more entries. Still, the second encoding is usually much more

space_economical and has further advantages, as will be shown in the following

paragraph.

Increasing the Speed of Code Generation

The decoding of a program in SDE form is similar to the encoding operation. At

first, the dictionary is initialized to a state identical to that at the onset of

encoding. Since the symbol table is part of the SDE file_representation, the

decoder has all required information available to perform this task.

Thereafter, the decoder repeatedly reads dictionary indices from the file,

looking up each corresponding entry in the semantic dictionary. Whenever a

complete entry is found in this manner, its meaning is encoded directly in the

dictionary and the decoder can proceed to process the next index on the input

stream. If a template is retrieved instead, it is copied, further entries

corresponding to its undefined attributes are input in turn, and the modified

copy is added to the dictionary as a new complete entry. Moreover, additional

templates are sometimes added to the semantic dictionary according to some

fixed heuristics, in the hope that a corresponding branch of the program's

syntax tree will show up further along. A more detailed discussion of these

heuristics follows in the next chapter.

In addition to providing a dense program representation, SDE is able to

supply certain information that is not explicitly available in source text, namely

about multiple textual occurrences of identical subexpressions (including,

incidentally, common designators). This can sometimes be exploited during code

generation, resulting in an increase in the speed of code output.

Consider again the (second, more compact) SDE_representation of module

M above. Now suppose that we want to generate object code for a simple stack

machine directly from this SDE form. Let us assume that we have processed the

first two statements of M's body already, yielding the following instruction

sequence starting at address a:

a LOAD i load i onto stack

a+1 BRANCH P call procedure P with argument i

a+2 STORE i assign result to i

a+3 LOAD i load i

a+4 LOAD j load j

a+5 ADD add i to j

a+6 STORE i assign their sum to i

Let us further assume that we have kept a note in the decoder's semantic

dictionary, describing which of the generated instructions correspond to what

dictionary entry. For example, we might simply have recorded the program

counter value twice for every entry in the semantic dictionary, both before and

after generating code for the entry:

...

n+6 assignment i := i + j a+3 a+6 Yes

n+5 addition i + j a+3 a+5 Yes

...

n+1 assignment i := P(i) a a+2 No

n function call P(i) a a+1 No

...

 Index Class Meaning Begin End Invar

A setup such as this allows us to bypass the usual code generation process

under certain circumstances, replacing it with a simple copy operation of

instructions already generated. For example, when we encounter the second

reference to entry n+6 in the SDE_representation of module M, we know that

we have already compiled the corresponding statement " i := i + j " earlier

on. In this case, we may simply re_issue the sequence of instructions generated

at that earlier time, which can be found in the object code between the

addresses a+3 and a+6, as recorded in the dictionary.

Of course, this method cannot be applied in every case and on all kinds of

machine. First of all, code_copying is possible only for position invariant

instruction sequences. For example, a subexpression that includes a call of a

local function by way of a relative branch is not position invariant because the

branch distance is different each time that the function is called. It happens that

information about position invariance can also be recorded conveniently in the

dictionary, as shown in the example above.

Secondly, the instruction sequences obtained by code_copying may not be

optimal for more complex processors with many registers and multistage

instruction_pipelines. For these machines, it may be necessary to employ

specific optimization techniques. However, since SDE preserves all information

that is available in the source text, arbitrary optimization levels are possible at

the time of code generation, albeit without the shortcuts provided by

code_copying. One then simply treats the semantic dictionary as an abstract

syntax_tree in tabular form.

The interesting part is that code_copying is beneficial especially on machines

that are otherwise slow, i.e., CISC processors with few registers. Consider

module M again, in which the subexpression " i := i + j " appears three

times. On a simple machine that has only a single accumulator or an

expression stack, the identical instruction sequence will have to be used in each

occurrence of the subexpression. Code_copying can accelerate the code_

generation process in this case. The optimal solution for a modern RISC

processor, on the other hand, might well consist of three distinct instruction

sequences for the three instances of the subexpression, due to the use of

register variables and the effects of instruction pipelining. However, such

processors will generally be much faster, counterbalancing the increased code_

generation effort, so that an acceptable speed of code generation can still be

achieved even if optimization is necessary.

3. The SDE Encoder and Decoder

The previous chapter has introduced the technique of semantic_dictionary

encoding (SDE). On the basis of this encoding technique, a system has been

implemented, in which the code generator is no longer part of the compiler, but

has been incorporated into the module loader. The implemented system

features an Oberon_to_SDE compiler that transforms programs written in the

programming language Oberon [Wir88] into the SDE file_representation, and a

code_generating loader that reads SDE_files and uses the information

contained in them for generating code on_the_fly for Motorola 68020 processors

[Mot87].

This chapter discusses the encoding and decoding mechanisms and relates

the motivation behind key design decisions. Most importantly, it explains some

of the heuristics used in the management of semantic dictionaries.

Making use of Scoping

Many programming languages limit the scope of certain objects appearing

within a program, for example by restricting the visibility of a procedure's local

variables to the extent of the procedure body. These scoping rules can be

exploited for reducing the size of the semantic dictionary. Smallness of the

semantic dictionary is beneficial because a program in SDE form is composed

of dictionary indices. The larger the dictionary, the more bits are required on

average for the representation of these indices.

It is therefore desirable to remove from the semantic dictionary continuously

all entries which (directly or indirectly) relate to objects that have become

inaccessible by the scoping rules. However, the encoder and the decoder of the

SDE format need to synchronize their dictionary operations. Any removal of an

entry from the encoder's dictionary must, therefore, be communicated to the

decoder, and this can happen only via the encoded program itself.

We also note that there are objects that are visible throughout a module,

such as constants and global variables. Furthermore, the dictionary contains also

the operation templates that are used for encoding the semantic actions of a

program. These must never be removed from the dictionary.

An easy and efficient solution to dictionary management, taking into

account these differences between temporary and permanent entries, is to let

the dictionary grow in two directions simultaneously, as illustrated in Figure 3.1.

Entries with unlimited scope are added at one end of the dictionary, which

grows unboundedly. All other nodes are added at the opposite end of the

dictionary, which is managed as a stack. Every time a new scope is opened, the

dictionary's current extent in this second direction is marked. It is reset to the

same point when the scope is closed again. The decoder of the SDE format can

keep track of these mark and restore operations by monitoring its input stream

for the occurrence of dictionary indices denoting procedure entry and return.

<

::

...

Level 3

Level 2

Level 1

Scope Markers

;

Local EntriesOperation PrototypesGlobal Entries

;;

Initial Dictionary

Current Extent of Dictionary

>

;

<

:

Figure 3.1: Two Directions of Dictionary Growth

Representing Indices on the File

In the implemented system, dictionary indices are represented on SDE_files in a

variable_length data format based on a stop_bit, as has been described in

[Fra93b]. This variable_length data format requires less space for encoding small

absolute values than it needs for encoding large absolute values.

Such a compact format is ideally suited for representing dictionary indices.

However, the information density of the resulting encoding depends

significantly on the magnitudes of the individual indices and, therefore, on the

distance of entries from the origin of the dictionary. For a compact encoding, it

is essential to map the index vector onto the dictionary in such a way that often_

occurring dictionary entries come to lie within the range that can be addressed

by a minimum number of bits.

Experiments have revealed that the most common dictionary references in

SDE_encoded programs relate to templates describing the primitive operations

of the source language, and to expressions involving local variables. A dictionary

addressing scheme as indicated in Figure 3.2 has, therefore, been adopted.

Since most procedures start at lexical level zero and are relatively short (i.e., they

generate few new dictionary entries), a high proportion of the dictionary indices

appearing in typical SDE representations will then actually fall within the range

of indices that can be represented space_efficiently.

Range
Short_Address

:

< >

Initial Dictionary
; ;

Global Entries Operation Prototypes Local Entries

:

<

Figure 3.2: Relative Position of the Short Dictionary Addressing Range

Encoding Oberon Source_Programs into SDE

The Oberon_to_SDE compiler incorporates a fairly conventional compiler front_

end [Cre91]. It parses each Oberon source text by recursive descent and builds

a symbol table as well as an abstract syntax tree, i.e., a directed acyclic graph

that describes the semantic actions of the program. If no error is detected

during parsing, control passes to the encoder, which creates an SDE_file

representing the contents of the source program in a compact and machine_

independent manner.

In doing so, the encoder traverses the abstract syntax tree. For each node

reached during this traversal, it searches the current semantic dictionary for an

entry with a high conformance to the node. Conformance describes how well a

dictionary entry matches a node of the tree. An entry is fully conforming, or

isomorphic, to a node of the abstract syntax tree, if both of them describe the

same semantic action, and if they both either have no descendants at all, or if

all of their corresponding descendants are isomorphic to each other. For

example, in Figure 3.3, the dictionary entry with index n+2 is isomorphic to the

node labelled "t", and the entry with index n is isomorphic to node "u".

u:

t:

n+3

n+2

Abstract Syntax Tree

...

...

n, n+1

Links

b

a

Info

n−1

n+1

n

Index Class

variable

variable

addition

ba

+

Semantic Dictionary

Figure 3.3: Dictionary Entry "n+2" is Isomorphic to Node "t".

Only complete entries (i.e., entries with no undefined descendants) can

conform fully to syntax_tree nodes. Conformance for templates is defined in a

more modest manner. A template conforms to a node of the abstract syntax_

tree, if it describes the same semantic action and all of its defined descendants

are isomorphic to the corresponding descendants of the node. For example, in

Figure 3.4 below, the templates with indices x, x+1, and x+2 all conform to the

node labelled "t".

The search for a conforming dictionary entry succeeds always, because

through the initialization of the dictionary we guarantee that there is at least

one minimally conforming template in the dictionary for every possible node in

the abstract syntax tree. After finding a conforming dictionary entry, the encoder

writes its index to the SDE_file and then traverses recursively all of the sub_trees

of the abstract syntax_tree that correspond to undefined descendants of the

conforming entry. In cases in which there are several alternative entries that all

conform to a node in the abstract syntax tree, as in the example of Figure 3.4,

the encoder can maximize the information density of the SDE_file by selecting

always the entry with the largest number of defined descendants.

. , n+1

n, .

. , .

addition

......

addition

x+2

x+1

x

Semantic Dictionary

+

a b

addition

variable

variable

ClassIndex

n

n+1

n−1

Info

a

b

Links

...

Abstract Syntax Tree

t:

u:

Figure 3.4: Dictionary Entries "x", "x+1", and "x+2" all Conform to Node "t".

The representation used in SDE_files is heavily biased towards the ease of

decoding. The process of encoding requires many searches in the dictionary and

is, therefore, inherently less efficient than decoding. In principle, it would be

quite possible to perform all of these required searches by traversing the whole

dictionary linearly each time until an adequate entry had been found. However,

this would make the semantic_dictionary encoding of large programs

unpractical.

Instead of searching the whole dictionary over and over, the current

implementation uses an overlay sorting structure to reduce the number of

dictionary entries that need to be inspected. Dictionary entries are grouped by

their semantic action in this sorting structure, and all entries related to a certain

procedure_scope are removed as soon as that scope has been closed.

Note that for correctness of the algorithm, it would suffice to reset the

dictionary counter at the end of each scope, while the entries themselves would

not have to be removed from the dictionary. Due to the nature of the scoping

rules, it would be impossible for any dictionary entry ever to be returned as the

result of a search after the corresponding scope had been closed.

Heuristics of Dictionary Management

There are several time and space trade_offs to be considered in the algorithm

that manages the semantic dictionary. This becomes most important when

considering the strategy by which new templates are added. In general, adding a

greater number of templates leads to a denser program representation on

SDE_files, but it also inflates the size of the dictionary and thereby the memory

requirements of the encoding and decoding steps. It may also increase the time

of decoding, due to the overhead of having to allocate a larger dictionary and

having to perform more initializations. The following discussion should

exemplify the sort of questions that need to be answered in the design of

dictionary_management heuristics. As before, an expression syntax is used, in

which a dot stands for a missing link of a template entry.

Consider the expression " a + b ". Since addition is a fundamental

operation of the Oberon language, a template for the generic expression

" . + . " is guaranteed to exist in every Oberon_specific semantic dictionary

after its initialization. Similarly, if some variables " a " and " b " appear in the

symbol table of a certain program, then the corresponding semantic dictionary

will be initialized automatically to contain appropriate references. The

expression " a + b " occurring at the very beginning of a program will,

therefore, be translated into a sequence of three dictionary indices, standing for

" . + . ", " a ", and " b ".

At this point, the designer of the dictionary_management heuristics has a

choice which of the related entries " . + b ", " a + . ", and " a + b " should

be added to the dictionary. Clearly, the strategy that yields the most compact

SDE_files, at the expense of table space, is to add all three variants. For the

moment, let us assume that all three variants were added. Now consider what

happens if, further down in the same program, the expression " a + x " is

come across. This can be encoded based on the entry " a + . " already in the

semantic dictionary. But then what? Again there is a choice of further entries

that could be added to the dictionary. Clearly, adding " a + x " is beneficial,

but what about " . + x "?

The problem lies in the fact that " . + x " may very well be in the semantic

dictionary already, for example, resulting from a previous encoding of

" y + x ". However, determining whether an entry is in the dictionary requires

a search, which is expensive and, therefore, not acceptable at the the time of

decoding. Hence, there is a choice of either leaving the entry in question out of

the dictionary altogether, or to blindly enter it anyway, possibly for a second

time and at a waste of table space.

The question of which strategy is better is still very much open. Different

heuristics of template_generation have been experimented with, leading to the

observation that the effect varies with the style in which the original source

program has been written, depending, among other things, on the number of

common subexpressions that have been factored out by the programmer

explicitly. A possible solution would of course be to try several variants during

the encoding process, finally using the strategy best suited for each particular

source program. The corresponding heuristic to be applied during decoding

could then be identified by a tag in the SDE_file. To keep it simple, the current

implementation uses a straightforward strategy generating relatively few

templates.

Factorization of Procedure Calls

When we examine existing Oberon programs, we observe that the parameter

lists of procedures are usually arranged in such a way that parameters become

"more variable" to the right side of a parameter list. For example, the procedure

WriteBytes(VAR r: Files.Rider; VAR x: ARRAY OF CHAR; n: LONGINT)

is likely to be called several times for any fixed rider r with varying further

parameters. Moreover, the actual parameter substituted for n is still more likely

to vary than the one assigned to the formal parameter x.

This arrangement is partly due to the extensive use of abstract data types,

which naturally appear as the first parameters of the procedures operating on

them. However, there also seems to exist a deeper, unwritten, but generally

observed rule among programmers to structure parameter lists in the way

mentioned. The dictionary_management heuristics used in the encoding of

procedure calls has been based on the hypothesis that it is natural to place "less

variable" parameters before "more variable" ones.

Consequently, the implemented system supports the factorization of

common parameter lists that partially match from the left side. For example,

after encoding the procedure call " P(x, y, z) ", a corresponding complete entry

is added to the semantic dictionary, as are the two templates " P(x, ., .) ", and

" P(x, y, .) ". A subsequent procedure call " P(x, y, a) " can then be

represented space_efficiently by only two dictionary indices, standing for

" P(x, y, .) " and " a ".

This strategy represents a trade_off between information density and size of

the dictionary, while it is amenable to efficient implementation. An adequate

mapping onto a semantic_dictionary representation can be found quite simply

by viewing each procedure call as a binary tree of partial evaluations, as shown in

Figure 3.5.

P(x, *, *):

P(x, y, z):

P(x, y, *):

P

proc call

proc call

proc call

proc call

x

y

z

variable

variable

variable

1

2

2

1match:

match:

3

0

match:

undef:

undef:

undef:

Figure 3.5: Tree View of a Procedure Call.

An alternative strategy would have been to generate even further dictionary

entries describing every possible permutation of wild_cards in parameter lists.

For example, after encoding the procedure call " P(x, y, z) " above, one might

have also included the following entries, in addition to the ones mentioned

previously: " P(., y, .) ", " P(., ., z) ", " P(., y, z) ", and " P(x, ., z) ".

Preparing the Dictionary for Decoding

In the implemented system, SDE_files are decoded at the time of loading. This is

done by an SDE_decoding code_generating loader that is based on the code

generator of the MacOberon system [Fra90a, Fra90b, Fra91, BCF92, Fra93a,

Fra93b]. It makes use of the idea of code_copying, as outlined in the previous

chapter, for which a preprocessed syntax tree, as it results from semantic_

dictionary encoding and in which source_level common subexpressions and

common designators have been factorized, offers an ideal basis. The strategy of

initializing the semantic dictionary with entries based on the objects occurring

in the symbol table is able to further enhance the efficiency of code generation.

Consider an object of the variable category in the symbol table. No further

discrimination is usually made in the compiler front_end between different

kinds of variables; for example, with respect to whether they are global to a

module or local to a procedure. This distinction is left to the code generator,

which for each variable reference has to determine what particular kind of

variable it is handling, i.e., which addressing mode is to be employed.

Within an SDE_file, however, all references to variables are based on entries

that are placed into the dictionary in an initialization step. The important insight

is that the meanings of the individual entries in the decoder's dictionary need

not directly match those of the corresponding entries used in the encoding

step, as illustrated in Figure 3.6. Hence, it is possible to simplify the task of code

generation by performing a certain amount of preprocessing at the time of

dictionary initialization, discriminating more finely between different variants of

symbol_table objects on the decoder's side than is necessary in the encoder.

Used for Decoding

Used for Encoding

Semantic Dictionary

ClassIndex Info

...

...

VAR loc: INTEGER;

VAR glob: INTEGER;

...

Source Program

...

...

i

j

k

...

...

...

...

loc

glob

k

j

i

...

...

variable

...

...

InfoIndex Class

variable

variable
Semantic Dictionary

mem_ind_var

abs_adr_var

PROCEDURE P(VAR vp: INTEGER);

vp

BEGIN

adr(glob)

off(adr(vp))

off(loc)fp_rel_var

Figure 3.6: Different Semantic Dictionaries for Encoding and Decoding.

The implemented code_generating loader for the MC68020 [Mot87] performs

some of this preprocessing. For example, it differentiates between global

variables (absolute addressing), direct local variables (frame_pointer relative

addressing) and indirect local variables (memory indirect addressing, used for

variable parameters). Consequently, three different kinds of dictionary entry are

used to represent these different kinds of variables, and all information required

for address generation is gathered in the semantic dictionary already when it is

initialized. Since in typical programs most variables are referenced more than

once, this strategy usually accelerates the code_generation process.

Decoding SDE_Files

After all the previous explanations, the design of the SDE_decoding code_

generating loader then becomes quite straightforward. First, the global symbol

table is read from the SDE_file. Next, the semantic dictionary is initialized as

discussed before. Then, dictionary indices are read in succession and processed

as is outlined below:

< read an index idx and look up the corresponding entry E := dict[idx] >

IF E.copy_safe THEN

< duplicate the code between E.beg and E.end at the current PC location >

ELSE

IF < E is a template > THEN

< input undefined descendants of E recursively >

< possibly create further templates heuristically >

< create a new complete entry E from template and descendants >

END;

E.beg := PC;

< generate code for E, updating the E.copy_safe flag appropriately >

E.end := PC

END;

The copy_safe property needs to be kept track of for every complete dictionary

entry. It indicates whether code for the corresponding expression can be

produced simply by duplicating an instruction sequence generated earlier.

Templates are never copy_safe.

A dictionary entry is copy_safe if there are no pending fix_ups within the

resulting code fragment, and if the code is position_independent. In the

implemented code_generating loader for the Motorola 68020, these criteria are

fulfilled by all full entries with the exception of those describing expressions

that contain calls of local functions. These calls are translated into relative

branches, which have a different branch distance at every occurrence.

In fact, code_copying was the main reason why it was decided not to

translate calls to external procedures into relative branches, which would have

been easy since all addresses in external modules are known when generating

code on_the_fly. This was the single instance in which speed of execution was

traded for speed of code generation. However, the performance of the two call

instructions does not differ by much, while external calls occur often in typical

modules so that one can benefit from code_copying frequently.

Miscellaneous Implementation Details

There is a multitude of smaller design decisions in any project such as the one

described here. Many of these decisions may be rather ad_hoc, while the

motivations behind others may long be lost before they can be documented.

The following list is by no means complete, but illustrates some of the finer

points that are not mentioned elsewhere in this thesis.

− Symbol Table. From what has been said before, the reader might have

obtained the impression that the complete symbol table is stored

contiguously at the beginning of the SDE_file. This is not entirely correct.

In fact, only the global scope is stored at the front of the SDE_file, while

the remaining scopes follow the dictionary indices that represent the

corresponding procedure entries. This provides for a more efficient

storage management in the decoder, allowing a stack mechanism to be

used not only for the dictionary, but also for the symbol table.

− Constants. In the currently implemented system, unnamed literal

constants are actually not part of the symbol table, but inserted literally

into the stream of dictionary indices, following the index of a "constant"

template that implicitly indicates the type of the constant. For each

constant represented in this way, a complete entry is constructed and

added to the global end of the dictionary, so that further occurrences of

the same constant can be referenced directly by an index. The constant

NIL corresponds to a reserved word of the Oberon language and is

placed into the dictionary during its initialization, as are the pre_defined

constants TRUE and FALSE.

− Storage Allocation Primitives. In Oberon, calls to the standard procedures

NEW and SYSTEM.NEW are usually translated into dedicated supervisor

calls, so that only the appropriate trap vector number need be statically

known to the compiler, but not the routine that implements it. In the

absence of memory protection on the target machine, it makes no sense

to utilize the expensive supervisor call mechanism when the actual

address of the Kernel routine that implements the supervisor instruction

is obvious at the time of code generation. Hence, the current

implementation maps these two storage_allocation primitives onto

ordinary procedure calls, which not only shortens the instruction

sequence, but also accelerates the call.

4. Modular Design of the Implementation

The previous chapters have introduced the technique of semantic_dictionary

encoding and have presented an Oberon_to_SDE compiler and a code_generating

loader. Up to this point, however, it has been disregarded completely that the

implemented system has a modular structure. This chapter gives an overview

of this modular architecture and points out some alternatives to the chosen

approach.

Modular Architecture

The implemented system is based on the Oberon System [WG89, WG92],

specifically its MacOberon implementation [Fra90a, Fra90b, Fra93a] for Apple

Macintosh computers [App85]. The Oberon System supports separate

compilation with static interface checking of programs written in the

programming language Oberon [Wir88]. It also offers dynamic loading of

individual modules, meaning that separately compiled modules can be linked

into an executing computing session at any time, provided that their interfaces

are consistent with the interfaces of the modules that have been loaded already.

In MacOberon, dynamic loading is accomplished by a linking loader, which

modifies the code image retrieved from an object file in such a way that all

references to other modules are replaced by absolute addresses.

The new implementation adds a second loader to MacOberon, namely a

code_generating loader that processes files containing semantic_dictionary_

encoded programs (SDE_files). It has been possible to integrate this code_

generating loader transparently into the existing MacOberon environment, in

the sense that SDE_files and native object_files are completely interchangeable

and can, therefore, import from each other arbitrarily. Depending on a tag in the

file (first two bytes), either the native linking loader or the code_generating

loader is used to set up the module in memory and prepare it for execution.

The code_generating loader has not been incorporated into the core of

MacOberon, but constitutes a self_contained module package at the application

level. The existing module loader was modified slightly, introducing a procedure

variable into which an alternate load procedure can be installed. Once

initialized, this procedure variable is up_called whenever an abnormal tag is

detected in an object file, and so initiates the passage of control, from the

linking loader that is part of the system core, to the code_generating loader

external to it. The installation of such an alternate load procedure is considered

a privileged operation, analogous to the modification of an interrupt vector.

Besides the obvious advantages during the design and testing phases, this

architecture permits us to view machine_independence quite naturally as an

enhancement of an existing system. It also hints at the possibility of adding

successive external code_generating loaders as time progresses and standards

for machine_independent object_file formats emerge. Several such formats could

in fact be supported simultaneously, among which one would distinguish by

different file_tags.

Discussion: On System Architecture

In the implemented system, the code_generating loader is installed by an

explicit call to Modules.This. However, it would be entirely possible to issue such

a call during the initialization of module Modules itself, leading to a three_stage

bootstrap of successively more powerful loading capabilities:

1. Boot Loader

2. Native Linking Loader

3. Code_Generating Loader

The only task of the boot loader is to install the native linking loader and the

core operating system routines required by it, such as file_system_access

capabilities. The native linking loader in turn sets up the code_generating loader

from a pre_compiled object file. All higher modules, even such essential ones as

the display system, may then be represented by SDE_files, as long as the

algorithms contained in them can be formulated machine_independently.

One immediately senses the possible implications of this. Entirely feasible,

and implemented in an experimental system variant, is a mode of operation in

which external inputs during the bootstrapping process modify the default

behaviour of the system. For example, depressing the key labelled "x" on the

keyboard during startup could turn on array subscript checking for all library

modules being loaded during this phase, while it would normally be turned off.

Likewise, symbolic_debugging information could be generated only when

needed, and need not take up memory space in configurations that are used

solely for running finished applications.

It is also notable that, after an initial bootstrap, one could have done away

with machine_specific object_files altogether by including a code_generating

loader in the boot_file and providing a mechanism for generating new boot_files.

In fact, with some simple modifications for supporting the generation of

relocation information, the code_generating loader itself could be employed for

the generation of new boot_files. The contents of a boot_file are very similar to

those of the module area in the system heap at run_time, except that the former

contains also a list of references that need to be relocated.

A similar approach has been taken in the Smalltalk_80 system [Gol84], in

which there are only target_machine_independent source_files and an image file

containing the snapshot of a compiled system state. The image file needs to

contain an interpreter or compiler, so that the portable source_files can be used

at all. After modifying the run_time environment, a new image file can be

generated that incorporates all of the changes applied to the previous image.

Unfortunately, however, systems in which all machine_dependent parts are

encapsulated within a boot_file have a drawback, which is that a change in any

of the modules contained in the boot_file requires the generation of a whole

new boot_file. It was exactly this inflexibility that modular architectures were

trying to avoid in the first place. For this reason, the idea has not been pursued

any further for the time being.

Execution Frequency Hierarchy Considerations

Programs are usually compiled far less frequently than they are executed.

Therefore, it is worthwhile to invest some effort into compilation, because the

benefit will be repeated. The same holds for program loading versus execution.

While a program is normally loaded more often than it is compiled, the

individual machine instructions are executed even more often, many times on

average per load operation. Unfortunately, we need to shift workload

unfavourably when we employ a loader that performs code generation. This can

be justified only if important advantages are gained in return, or if the resulting

code quality is increased. After all, it is execution speed that matters ultimately.

From the outset, three desired properties were therefore put forward that a

system incorporating a code_generating loader should possess in comparison to

a system employing a traditional compiler and linking loader:

1. run_time performance should be at least as good

2. loading time should not be much worse

3. source_encoding time should be tolerable

These requirements could be met. Benchmarks in the next chapter will show

that it was not only possible to construct a fast code_generating loader for

Motorola 68020 processors [Mot87], but that the native code produced by it is

of high quality. Indeed, although its method of code_generation is quite

straightforward, the code_generating loader is sometimes able to yield object

code that would require a much more sophisticated code_generation strategy in

a regular compiler. This is mainly due to the fact that the absolute addresses of

all imported objects are known at loading time, which enables the code_

generating loader to optimize access to them; for example, by using short

displacements instead of long ones.

The time required by the code_generating loader for creating native code

on_the_fly turned out to be quite acceptable, too. Loading with code_generation

takes only slightly longer than loading of a native object_file with linking; the

difference is barely noticeable in practice. A partial reason for this is that the

Oberon system has a modular structure, in which many functions are shared

between different application packages. In traditional systems, these common

functions would be replicated in many applications and statically linked to each

of these applications.

As a consequence of Oberon's modular design, each new application adds

just little code to an already running system. Hence, at most times during

normal operation, the code_generating loader need only process the moderate

number of modules that are unique to an application, while other modules that

are also required will already be in memory from past activations of other

applications.

Interchangeability of Object Files

SDE_files and their native_object_file counterparts are completely interchange_

able in the implemented system. This flexibility doesn't come as readily as it

may seem. Not only does it require that the code_generating loader is able to

interpret native symbol_files and the corresponding entry_tables in memory, but

also that information can be communicated from the new load architecture to

the old one, in formats that are backward_compatible with the native compiler

and loader.

In the present case, the more difficult part of this problem had an almost

trivial solution, since the two varieties of "object" files in the implemented

system share a common representation of symbol_table information. As documen_

ted in a paper by the author [Fra93b], a portable symbol_file format had been

introduced into MacOberon some time ago, leading to improvements in

performance completely unrelated to portability. But now, there were further

benefits from the previous investment into machine_independence:

SDE_files use exactly the same symbol_table encoding as do the symbol files

of the native compiler. Furthermore, the symbol table is embedded within each

SDE_file in such a way that its front_most part would constitute also a valid

symbol file (Figure 4.1). Consequently, the native MacOberon compiler cannot

distinguish SDE_files from its regular symbol_files. It is able to compile modules

that import libraries stored in SDE form, as it can extract the required interface

information directly from SDE_files.

in Symbol_File Format Symbol_Table

Rest of Global

::

End of FileBeginning of File

Public Symbol_Table
Dictionary Indices

Figure 4.1: Embedding of Symbol File within SDE_File

Apart from the native compiler, the native loader need also be able to handle

modules that import machine_independent libraries. This is achieved by

enabling the code_generating loader to construct on_the_fly not only object

code, but also all of the remaining data structures that are usually part of a

native object_file, such as entry tables. Once that a module has been loaded

from an SDE_file, it loses all aspects of machine_independence, and can

henceforth be maintained (enumerated, unloaded, etc.) by the regular

MacOberon module manager.

Discussion: On Interfacing Without a Common Symbol File Format

Without a common symbol_table encoding, the task of interconnecting

machine_independent modules in the SDE format with others in a regular

object_file format would have been more difficult. Indeed, since SDE_files are

independent of the target architecture, we might want to use them on more

than one kind of machine, on which many different native symbol_file formats

could be in concurrent use. In the following discussion, the adjective native

refers to the formats used on the eventual target machine, while portable

denotes the machine_independent SDE format.

Enabling native clients to import portable libraries is quite straightforward,

although it may not be so simple to implement. It requires that each local

compiler on every target machine can understand the portable symbol_table

encoding in addition to its own, and that each code_generating loader can

provide entry tables matching this symbol information, in the format required

by the corresponding native loader. For some target machines, fulfilling the first

requirement may entail a significant amount of programming, because the

portable symbol_table encoding contains no machine_dependent information

such as type_sizes and offsets. Consequently, local compilers need to be able to

calculate these values on_the_fly when reading the symbol table from an

SDE_file.

The reverse import relationship, however, is even more problematic.

Consider a portable module that imports module Files. Implementations of Files

are inherently non_portable, so that they need to be compiled by a native

compiler always. Nevertheless, a portable client module should be linkable to

the local Files module of an arbitrary target machine, assuming that the different

Files modules all have the same interface. But how do we ensure that all of these

interfaces on different machines are indeed compatible with the portable client,

and how do we encode references to them in the portable object_file?

A possible solution to this problem, which has actually been implemented

in a precursor version of the present system, starts by defining a second,

portable interface for each of the native library modules in question. These

portable interfaces serve as place_holders for a portable subset of the actual

interfaces found on different machines. They define capabilities that are

expected to be present on every machine, so that native interfaces are in fact

allowed to be a superset of their portable counterparts. Portable symbol_files are

then generated from these "place_holder" interfaces, and used whenever

portable clients are compiled.

For each target machine, one then constructs a tool called a localizer. The

localizer connects each portable "place_holder" interface with the corresponding

native one, reading both the native and the portable symbol file. If the native

version of the module includes every feature specified in the portable interface,

the localizer creates a mapping file that will tell the code_generating loader

which local entry number is associated with which feature in the portable

interface. This mapping mechanism is illustrated in Figure 4.2. Each mapping

file contains also the keys of both related symbol files, so that the validity of a

mapping can be verified by comparing module keys.

CloseWriteOpenRead PurgeFlush

CloseOpen WriteRead

::

Client 3Client 2Client 1

Files'

Files

:

Localization Mapping

Native Interface

Portable Interface

Portable Clients

Figure 4.2: Localization of an Interface

Levels of Symbolic Information

As mentioned in [Fra93b], machine_independence of symbol files mandates

that the size of each data type (as well as offsets and other machine_dependent

data) is calculated only at the time that the symbol file is read, because it may

differ from machine to machine. This has consequences when parts of a data

structure can be hidden, as is possible in Oberon. Since it is impossible to

calculate the total size of the invisible components beforehand, portable

symbol_files need to contain a full structural description (the names of the hidden

parts are obviously not needed) of every exported feature, including all non_

exported parts.

This has the undesirable effect that a portable symbol_file (and thereby its

key) may change when certain modifications are made in the hidden part of the

corresponding module, at least as long as a conventional combination of

compiler, linker, and loader is used. When employing a code_generating loader

instead, this situation changes. Upon closer analysis of a symbol file's

information content, we find that ordinary compilers require more information

than code_generating loaders:

− Code_generating loaders need only know about exported names and

structure. They never require any addresses, offsets, or sizes, nor do they

need information about invisible parts of an exported object. This is

because all inter_module references are handled strictly symbolically and

are not resolved until the loading phase, which includes code generation.

− A compiler generating native code requires the same symbolic

information, plus knowledge about all invisible fields and structures to

which references exist from exported types. This is because the native

compiler has to calculate offsets, on which the addressing modes of

some instructions may depend; certain offsets may also appear literally in

the object code.

It would therefore in principle be possible to use a two_tier structure for storing

the symbol table, in which the second layer reveals some finer grained details of

the implementation. This mechanism has not been implemented because it

adds complexity while applying only to a side_issue of the dissertation project,

but the following elaboration on the idea of two_tier symbol_files suggests a

possible evolution of the current work. Consider the following structure of a

symbol file:

Interface Part

re_exported modules

exported constants

exported types (not mentioning invisible fields)

exported global variables

exported procedures

Offset Calculation Part

more imported modules (containing the types of invisible fields)

invisible types of invisible fields

invisible fields (of types mentioned in Interface Part)

With this organization, all client modules that are represented by SDE_files are

impervious to changes in the hidden part of a library module, because they

depended only on the interface part of the library's symbol file. Whenever a

module is compiled under such a scheme, both parts of the symbol file are

updated, regardless of the type of "object" file generated. However, changes in

the offset calculation part can affect only those clients that have been compiled

into directly executable object code.

In systems supporting two_level symbol_files, it is therefore advantageous to

use as few native object_files as possible, in order to reduce intermodule

dependencies. Moreover, the penalty for using native object_files is greater at a

higher level in the hierarchy than at a low level, because interface invalidations

propagate upwards. It has always been good software engineering practice to

isolate machine dependencies in low_level modules and strive for portability

higher up in the module hierarchy. Having a technical argument might further

increase the acceptance of these rules.

The interface part of the symbol file may even be changed to include

per_feature keys instead of a single key for the whole interface. This would

further reduce the interdependency of the portable modules in the system, as it

would make possible a link_by_name facility. A client module can be

connected to a library if all of the requirements of the client can be fulfilled by

features of the library. Instead of a crude comparison of whole interfaces, we

could therefore compare exported objects on one side with imported objects on

the other. Changes in a module's interface would then only invalidate those

portable clients that made direct use of the features that were modified, but left

all other portable clients unperturbed. By appending a separate version key to

every name, we would be able to use a simple string comparison to determine

whether the requirements of one module conform to the features of another,

without having to repeat the compiler's structural analysis.

Note that some key changes could be avoided also if the native compiler

were allowed to change the ordering of fields in record types (i.e., moving the

visible fields to the lowermost offsets). However, the native compiler requires

also the size of these types. Adding or removing data fields therefore necessarily

invalidates clients represented by native object_files.

5. Benchmark Results

This chapter provides some data on the performance of the implemented

system and discusses these results. Four different Oberon application_packages

have been used in the following benchmarks. Filler is a program that draws the

Hilbert and Sierpinski varieties of space_filling curves onto the screen. Hex is a

byte_level file editor of medium sophistication. Draw is an extensible object_

oriented graphics editor [WG92], of which the three main modules and three

extension modules are included in the survey. Edit (formerly called Write) is a

relatively sophisticated extensible document processing system [Szy92], five

modules of which are studied here.

Memory and File_Store Requirements

Figure 5.1 gives an impression of the compactness of SDE_files, the influence of

the presence of run_time integrity checks on code size, and the memory

requirements of the code_generating loader. Its first three columns compare the

sizes (in bytes) of native MacOberon object_files with those of SDE_files. Two

different values are given for the former, reflecting different levels of run_time

integrity checking. SDE_files contain enough information to generate code with

full integrity checking, but the user need only decide at loading time whether or

not he requires code that includes these run_time checks, and which ones

should be included.

The column labelled "Native −" in the table below displays the size of native

object_files that include reference information for the MacOberon post_mortem

debugger, but no extra code for nil_checking, index_checking, type_checking, nor

for the initialization of local pointers to NIL. Conversely, the column labelled

"Native +" gives the sizes of native object_files that include not only reference

information, but also code for the aforementioned run_time checks. Neither

kind of object file includes symbolic information for interactive debugging,

which can be added by enabling a further option.

The fourth column of Figure 5.1 shows the maximum size to which the

semantic dictionary grows during compilation and code_generation. The code_

generating loader requires about 80 times this number of bytes as temporary

storage while loading a module.

144031 170361 56948

EditTools 18756 20898 7397 1488

Edit 11670 13431 5157 1659

ParcElems 15259 17540 5273 1437

TextPrinter 11503 12537 4494 1486

TextFrames 30687 37491 11667 1892

Splines 4611 5659 1955 1566

Curves 5810 7340 2168 1287

Rectangles 3255 4297 1378 1271

Draw 6033 7133 2193 1498

GraphicFrames 10045 12186 4273 1549

Graphics 12692 15935 5281 1382

Hex 10810 12678 4480 1308

Filler 2900 3236 1232 1003

Module Native − Native + SDE Dictionary

Figure 5.1: Object_File Size (Bytes) and Dictionary Size (Entries)

This data shows that on average, SDE_files are about 2.5 times more compact

than native MacOberon object_files not containing run_time integrity checks,

and about 3 times more compact than native files incorporating these checks. It

is also noteworthy that the maximum size, to which the semantic dictionary

grows during encoding and decoding, is not proportional to the overall size of a

module, but only roughly proportional to the length of the longest procedure in

a module. This seems to level out at a relatively small value in typical modules,

much smaller than anticipated originally.

Figure 5.2 indicates how much information is output into memory by the

code_generating loader. The first column repeats the sizes of SDE_files from the

previous table. The second and third columns give two different values for the

size of the object code generated on_the_fly, depending on whether or not run_

time integrity checks (in the same combinations as before) are emitted. The

remaining columns list the sizes of dynamically_generated constant data

(including type descriptors), reference data for the Oberon post_mortem

debugger, and link data. The latter comprises entry tables generated on_the_fly,

so that native client modules can later be connected to dynamically generated

library modules.

56948 117342 142534 5093 13635 860

EditTools 7397 14844 16886 723 2009 116

Edit 5157 9368 10940 555 1098 72

ParcElems 5273 12944 15180 493 1085 52

TextPrinter 4494 9176 10180 478 1367 40

TextFrames 11667 25878 32536 629 2843 156

Splines 1955 3812 4806 137 437 20

Curves 2168 5042 6462 100 439 24

Rectangles 1378 2644 3596 104 292 20

Draw 2193 4754 5752 236 451 60

GraphicFrames 4273 8268 10354 433 824 76

Graphics 5281 9036 12140 799 1452 204

Hex 4480 9224 11020 267 1094 12

Filler 1232 2352 2682 139 244 8

Module File Code − Code + Const Ref Link

Figure 5.2: Sizes of SDE_Files and of Dynamically_Generated Data (Bytes)

It is notable that SDE_files encode programs more than twice as densely as

object code for the MC68020 architecture [Mot87]. If code that includes run_

time checking is considered instead, the factor becomes even 2.5. This is in

spite of the fact that SDE_files can additionally also serve as symbol files and

contain reference information as well.

Performance

Unless stated otherwise, the following benchmarks were all carried out under

MacOberon Version 4.03 on a Macintosh Quadra 840AV computer (MC68040

Processor running at 40MHz, equipped with a graphics accelerator card), using

version 7.1.1 of the Macintosh System Software. All results are given in real

time, i.e. the actual delay that a user experiences sitting in front of a computer,

with a resolution of 1/60th of a second. Each benchmark was executed after a

cold start, so that no files were left in the operating system's file cache between

a compilation and subsequent loading, and the best of three measurements is

given in each case. Every attempt has been made to present the system as a

regular user would experience it in everyday use.

Figure 5.3 presents the times (in milliseconds) required for compilation and

for module loading. The first two columns compare the native compilation

times of the MacOberon compiler with the times that the Oberon_to_SDE

compiler requires for generating an SDE_file out of an Oberon source program.

The remaining two columns report the loading times for both varieties of object

file, including disk access, and, in the case of SDE_files, also including on_the_fly

generation of native code. On average, 10% of the object code emitted by the

code_generating loader can be generated by code_copying. All timings apply to

the situation in which no run_time integrity checking is used.

8912 12914 1279 1928

EditTools 900 1483 150 233

Edit 716 1166 100 166

ParcElems 750 1150 116 200

TextPrinter 666 950 100 133

TextFrames 1416 2183 216 316

Splines 433 583 66 83

Curves 450 650 50 116

Rectangles 400 500 50 83

Draw 516 683 66 100

GraphicFrames 650 950 66 116

Graphics 766 1083 116 166

Hex 666 900 100 116

Filler 583 633 83 100

Module Compile Encode Ld Native Ld SDE

Figure 5.3: Compilation versus SDE_Encoding and Module Loading Times (ms)

As can be seen from these timings, Oberon_to_SDE encoding on average takes

about 1.5 times as long as normal compilation. This factor could certainly be

further reduced by using more complicated sorting structures for the semantic

dictionary (see Chapter 3). However, more important is the speed of loading

with code generation. This currently takes about 1.5 times as long as normal

loading, but the times spent directly on module loading tell only half the story.

Figure 5.4 presents a more realistic measure of loading time, as it takes into

account not only the time required for loading an application, but also the

duration of loading and displaying a typical document. The following timing values

indicate how long (in milliseconds) a user must wait after activating a

document_opening command before he can execute the next operation.

Commands take longer the first time that they are issued, because the modules

of the corresponding application have to be loaded as well. Subsequent

activations then take up much less time.

 subsequent activations 883 883

first Edit.Open OberonReport.Text 1400 1766 + 26 %

 subsequent activations 700 700

first Draw.Open Counters.Graph 1333 1450 + 9%

Command Native − SDE − Difference

Figure 5.4: Command Execution Times with Checks Disabled (ms)

Figure 5.5 demonstrates the effect of run_time integrity_checking on loading

time. The measurements of Figure 5.4 have been repeated, but with native

object_files that incorporate run_time integrity checks and are therefore larger,

and with on_the_fly emission of the same checks in the code_generating_loader.

 subsequent activations 916 916

first Edit.Open OberonReport.Text 1550 1800 + 16%

 subsequent activations 700 700

first Draw.Open Counters.Graph 1366 1466 + 7%

Command Native + SDE + Difference

Figure 5.5: Command Execution Times with Checks Enabled (ms)

The timings in Figures 5.4 and 5.5 show that, in practice, on_the_fly code_

generation is already almost competitive to dynamic loading of pre_compiled

native code from regular object_files. This applies to current state_of_the_art CISC

hardware, and is in part due to the fact that disk reading is relatively slow. The

compactness of the SDE representation speeds up the disk_access component

of program loading considerably, and the time gained thereby counterbalances

most of the additional processing necessary for on_the_fly code generation. This

argument is supported by a comparison of Figures 5.4 and 5.5. It seems to be

more efficient to generate run_time checks on the fly than to inflate the size of

object_files by including them there.

A noteworthy trend in hardware technology today is that processor power is

rising more rapidly than disk access times and transfer rates are falling. This

trend is likely to continue in the future, which means that hardware technology

is evolving in favor of the ideas proposed in this thesis. Consider Figures 5.6 and

5.7, which repeat the timings of Figure 5.5 for different processors of the

MC680x0 family, using the identical external disk drive unit for all experiments.

Quadra 840AV (40MHz MC68040) 1366 1466 + 7%

Macintosh IIfx (40MHz MC68030) 1833 2283 + 25%

Macintosh IIx (16MHz MC68030) 4300 5933 + 38%

Macintosh II (16MHz MC68020) 5683 7966 + 40%

Machine Native + SDE + Difference

Figure 5.6: Time for Draw.Open Counters.Graph on Different Machines (ms)

Quadra 840AV (40MHz MC68040) 1550 1800 + 16%

Macintosh IIfx (40MHz MC68030) 1550 2400 + 55%

Macintosh IIx (16MHz MC68030) 3600 6750 + 88%

Macintosh II (16MHz MC68020) 4733 8850 + 87%

Machine Native + SDE + Difference

Figure 5.7: Time for Edit.Open OberonReport.Text on Different Machines (ms)

Extrapolating from these results, there is reason to believe that on_the_fly code_

generation from small SDE_files may eventually become faster than dynamic

loading of larger native object_files, unless of course secondary storage

universally migrates to a much faster technology. One way or the other,

on_the_fly code_generation will definitely become faster in absolute terms as

clock speeds increase further, so that the relative speed in comparison to native

loading should not much longer be of importance anyway. Ultimately, the

speed of loading needs to be tolerable for an interactive user − that is all that

matters.

Code Quality

The last point that needs to be addressed concerns the quality of code that is

generated dynamically. Figure 5.8, by way of a popular benchmark, compares

the quality of code generated on_the_fly with that generated by the Apple MPW C

compiler for the Macintosh (Version 3.2.4) with all possible optimizations for

speed enabled ("_m _mc68020 _mc68881 _opt full _opt speed"). The generation of

integrity checks was disabled in the code_generating loader, because no

equivalent concept is present in C.

Fast Fourier Transform 133 123

Treesort 83 > 1000

Bubblesort 117 88

Quicksort 66 61

Puzzle 800 800

Real Matrix Multiplication 133 171

Integer Matrix Multiplication 150 173

Eight Queens 50 43

Towers of Hanoi 83 121

Permutation 83 113

Benchmark SDE − MPW C

Figure 5.8: Benchmark Execution Times (ms)

The table lists execution times in milliseconds (less is better). Due to processor

cache effects, these timings can vary by as much as 15% when executed

repeatedly; the figures give the best of three executions. The C version of the

Treesort benchmark exceeded all meaningful time bounds, due to apparent

limitations of the standard Macintosh operating system storage_allocator. The

code_generating loader is not bound by these limitations, as it generates calls to

the storage_allocator of MacOberon, which includes an independent memory_

management subsystem.

From this data, it can be inferred that the code_generating loader emits

native code of high quality that can compete with optimizing C compilers. In

some cases, it surpasses even the output of the official optimizing compiler

recommended by the manufacturer of the target machine, which is orders of

magnitude slower in compilation. It should be possible to improve the

remaining cases in which the code_generating loader is currently inferior,

without sacrificing much of the speed of on_the_fly code generation. Since the

code_generation efficiency of the code_generating loader is rooted in the

compactness of the abstract program representation, rather than in any

machine_specific details, it should also be possible to duplicate it for other

architectures.

The Apple MPW C compiler requires about 6.9 seconds for compiling a C

source program that performs the series of benchmarks listed above, and a

similar time additionally for linking, compared to 1.1 seconds that are needed

for encoding a corresponding Oberon program into the SDE file_representation

and 233 milliseconds for loading it with on_the_fly code generation (including

file access after a cold start).

6. Portability and Software Components

It has already been mentioned that semantic_dictionary_encoded programs are

independent of the eventual target machine, which means that they are, in

principle, portable between different machine architectures. This chapter

examines the notion of software portability more closely; it presents some

existing definitions and approaches to portability and introduces a new, concise

and practical definition of upward_compatibility. It is then argued that fast

on_the_fly code_generation from a machine_independent intermediate represen_

tation constitutes an enabling technology for a software_component industry,

because it would simplify the distribution and maintenance of such compo_

nents considerably, without resulting in a loss of code efficiency or user_

convenience.

Portability

Portability is one of the more elusive concepts in computer science. There is in

fact only one aspect of portability about which there seems to exist a general

consensus, namely that it is beneficial. Probing further, we soon find that there

are many diverse opinions of what portability actually amounts to in practice.

This is somewhat surprising, considering the economic importance of the

concept and the widespread use of the term "portable", which seems to be

quite clear intuitively.

Most computer_literate people would probably agree that portability

somehow relates to "usability of the same software on different machines". A

casual remark by Dahl [Dah84] describes portability as "having the same

meaning for software as compatibility for hardware". Again, most of us would

probably consent to that statement, but this does not get us much further.

Unfortunately, the term "compatible" is equally ambiguous as "portable".

Part of the problem of the portability debate is that so many diverse things

have been mixed up into it. Moreover, the emphasis has shifted significantly

over time. Not long ago, a major thread of the portability argument concerned

the physical portability of programs and data, specifically the problems of

different character sets (e.g., ASCII versus EBCDIC) and the multitude of storage

media (e.g., 7_track versus 9_track magnetic tape). In 1975, Waite [Wai75]

reported that "getting it into the computer" was often more difficult than

"getting it to run". Those were the days when the first design decision at the

beginning of a programming project concerned the choice of a character set.

Today, physical portability of programs is no longer of any concern and

physical portability of data is becoming less of an issue because rising processor

speed makes it possible to re_code data transparently on_the_fly. The problems

of media compatibility have been moderated by evolving standards and by

dropping hardware costs, which have made it possible to support a multitude

of formats concurrently. On top of all this, pervasive networking is successively

eliminating the need to use physical media at all for transporting machine_

readable information.

Other no longer relevant issues relate to former limitations in compilers and

operating systems, for example, regarding the length of identifiers in source

programs − it is becoming hard to appreciate that this was ever a problem.

Tanenbaum et al. [TKB78] enumerate exhaustively the areas in which programs

were most unlikely to be portable in 1978. Half of their concerns simply no

longer apply in 1993. Unfortunately, however, new challenges have emerged in

the meantime, such as the mastery of parallelism in multiprocessor systems.

These will keep us busy for a while.

Portability of Programs

The cost of developing software is rising steadily as programs get ever more

complex in order to use the additional capabilities of emerging hardware to the

fullest. At the same time, hardware costs are falling, making the dispro_

portionately high price that we pay for software more apparent. An obvious

solution for keeping in check the exploding costs of software is to spread the

cost of development by selling it in large volumes. However, in view of the

many different computer architectures that coexist, such mass_market software

must necessarily be portable so that it is not confined to the market segment of

just one specific type of target machine.

A necessary precondition for portable software is the use of a high_level

language in its construction, because all alternatives would render it machine_

dependent. In this context, a high_level language is one that abstracts from the

underlying hardware. However, the obstacles to portability that remain even

when high_level languages are used are often underestimated, as relatively few

computational processes do not depend upon their environment in some way.

Nevertheless, most algorithms can be parametrized in a manner that

facilitates easy adaptation to a particular target environment, although this

usually requires some planning ahead ("design for portability"). A common

solution for handling machine dependencies in a program is to isolate into a

single module those parts of the program that are machine_dependent.

Hopefully, only this machine_dependent module needs to be modified when

the program is subsequently ported to another machine.

Some authors make a finer distinction between programs that are usable on

several machines without any changes whatsoever, and those that require

adjustments. Hague and Ford [HF76] use the term portable in a restrictive way

to describe only those programs that can be compiled and will then execute

correctly on other machines completely unmodified. If the necessary changes

for such a move are capable of mechanical implementation via a preprocessor,

they call the software transportable.

Others use a less rigid definition of the term portable. A widespread practice

is to call a program portable if the effort of moving it to a new environment is

much less than the effort of rewriting it for the new environment [BH76,

Fox76]. For some authors, a program may even be called portable if it is so well

documented that it can be rewritten completely for another machine with the

help of the original design documents [Wal82]. Dahlstrand [Dah84] interprets

portability as a measurable quantity and suggests to express it as "the percentage

of lines that could be left unchanged when porting an application".

Portability of Numerical Software

Numerical software is written almost exclusively in FORTRAN, so that the

"portability" effort in this context concerns itself only with the incompatibilities

that arise out of the use of various language dialects and the particularities of

different target environments. Tools such as the PFort verifier [Ryd74], which

checks a FORTRAN program for adherence to a portable subset of the language,

are useful in detecting these potential impediments to portability.

Several existing numerical software libraries have been designed to be

portable. The central idea of a portable library is to maintain only a single

master version of each routine, and derive all variants from it mechanically

[Boy76]. Maintaining just one version of a program offers substantial economic

advantages.

The simplest approach to such a master_file solution is a markup scheme,

under which a programmer inserts annotations into a FORTRAN source file,

which specify the changes that need to be made to produce other versions.

These annotations (which are specially marked comments) are interpreted by a

preprocessor, which outputs a version of the FORTRAN routine that is tailored to

a particular target environment. Examples of markup schemes are the Specializer

[Kro76] and the IMSL Converter [Air76]. The latter includes also a special "scan"

option that can perform a precision conversion without requiring specially

marked comments to trigger its operation. It is able to change type declarations,

constants, and function names automatically as required.

In the Master Library File System (MLFS) [HF76, RH77] of the Oxford University

Numerical Algorithms Group, the control statements that differentiate between

the different variants of a program are introduced automatically rather than by a

human programmer. This is accomplished by the use of an anti_editor. The

anti_editor is a tool that compares a particular executable version of a certain

routine with the master version of the same routine. It then modifies the master

version so that the executable variant can be generated from it automatically in

the future.

An even more ambitious tool is used in the maintenance of the LINPACK

library [DMB79]. LINPACK is designed to be completely machine independent

and makes no use of machine dependent constants, input/output statements,

character manipulation, the COMMON or EQUIVALENCE statements of the FORTRAN

language, nor of mixed_mode arithmetic. It is therefore possible to automate

completely the process of converting it for the use in different target

environments. The LINPACK project uses a system originally called NATS II and

later renamed to Transformation_Assisted Multiple Program Realisation (TAMPR)

[BD74, Dri76]. In this system, programs are stored in a canonical intermediate

representation that can be translated mechanically into variants of FORTRAN for

several machines. The backward translation is also possible, so that existing

programs originating on some particular machine can be added to the library.

All knowledge about specific target environments in TAMPR is contained in the

converter programs, and not in the individual master files. As a consequence,

however, this system can handle only programs that have been designed for

machine independence.

Unfortunately, numerical software is inherently portable only among

machines that support the same model of machine arithmetic. For example, it

is quite possible for an iterative algorithm not to converge when executed in a

different precision than the one it was designed for. Likewise, the behaviour of

different machines in the events of overflow and underflow may not be the

same. The questions of numerical algorithm stability are intricate and leave

many pitfalls to the mathematical layman attempting to adapt a scientific

calculation from one machine to another. A partial answer has been provided in

the form of a standard arithmetic model, namely the IEEE Standard for Binary

Floating_Point Arithmetic [IEEE85].

Emulation, Abstraction Layers, and Intermediate Languages

The concept of portability is also closely related to that of emulation. Software

that has been constructed to run in a certain environment E can be made to run

in another environment E' by supplying an emulator within E' that provides the

functions of E. Emulation is quite common and can be applied at different

levels of abstraction. For example, most readers will be familiar with terminal

emulation programs that simulate the functions of the classic visual display

terminals (HP 2645, IBM 3101, VT 100, ...) on modern computers equipped

with bit_mapped displays. Some more complex emulators allow software

created for one processor to be run on another, by replicating the behaviour of

the original target hardware on the other machine in software [BKM87]. There

are emulators that provide the services of a whole operating system on a

machine running a different operating system, by mapping the functions of the

first onto equivalent calls to the second [Fra93a].

A closely related alternative to emulation is the introduction of a common

abstraction layer into all target environments simultaneously. Software that is

to be portable can then build upon this portable interface layer, in order to

achieve independence of the target system. One could also say that the abstract

system is emulated on every target system. Weiser et al. [WDH89] describe

such an intermediate layer that abstracts from a concrete operating system and

serves as a language_independent and operating_system_independent software

system base.

The level at which a common abstraction is established may also be the

target architecture for which the software is coded. A popular way of

accomplishing software portability is by using a machine_independent, fairly

low_level intermediate language, which can be easily mapped into a number

of different assembly languages [Bro72]. Intermediate languages have already

been discussed in Chapter 2.

Portability of Data

Processor architectures differ in the internal representations that are used for the

various data types, with respect to the number of bits representing a certain

value, and with respect to the specific meaning of the individual bits in such a

representation. When information is transported from one computer system to

another, a format conversion is therefore often necessary.

Data conversion requires that the source and destination formats are

specified down to the level of the individual bit. For this purpose, Sibley and

Taylor [ST73] propose a data_definition language that describes not only the

logical data structures, but also how they are realized physically in a computer

system. Atkinson [Atk77] goes one step further and reports of an actual

implementation in which the conversion process has been automated. It uses

an intermediate representation, described by a machine_independent data

language, to transfer complex data structures across the boundaries imposed by

differing machines, operating systems, and languages.

Unfortunately, however, systematic solutions such as these have never much

caught on. Instead, most of the external data formats that are in use today are

simply ad_hoc specifications that have become de_facto standards by virtue of

their popularity. Quite often, they are based on the particular internal storage

layout of the machine on which they originated. Whenever such values are

input or output on a machine that has a different internal layout, they need to

be converted. Luckily, the computations required for these conversions no

longer carry much weight in comparison to the cost of the input and output

operations. This is due to rising processor power relative to storage speeds.

There are even cases in which data portability is achieved by limited

hardware support of data formats that are not considered native by the

processor. A reason for this may be backward compatibility with older product

lines. For example, in Digital Equipment's Alpha architecture [Dig92], some

floating_point values are kept in memory in a representation that differs from

the one that is used inside of processor registers. Alpha processors provide

special load and store instructions for dealing with values in these "historical"

formats, and include dedicated circuitry for re_arranging the bits of floating_

point values accordingly as they pass between memory and processor.

Algorithmic Consequences

The differences in data representation between hardware architectures matter

not only when values are transferred from one system to another. They have

also direct consequences on the validity of portable programs. For compu_

tations involving real numbers, true portability is impossible unless the

computation is parametrized in terms of certain models of machine arithmetic.

This is the case because floating_point values are only approximations of real

numbers, and the correspondence between actual values and machine numbers

may vary for different machines.

On the other hand, rational values can be represented exactly in a digital

computer (by quotients of integers). However, there are variations of

representation, with respect to the number of bytes used, and with respect to

byte_ordering. In order to guarantee universal portability, an algorithm must not

depend on these parameters. Although byte_ordering is of no consequence for

program portability in principle, it plays a role when data is to be serialized, e.g.,

represented externally or transferred over a network.

So what about a program in which a certain value N needs to be

represented at some point of the computation? Obviously, there is a qualitative

difference between machines on which N can be represented directly, and less

capable machines that cannot process values of N's magnitude. On the latter

type of machine, portability can be achieved only by emulation, which may be

relatively costly.

Consequently, we need to differentiate between moving software to a "less

capable" machine and moving it to a "more capable one". It would be wise to

classify programs by a more refined notion than just "portable by recom_

pilation", considering that portability by emulation may cause unreasonable

expenses. In practice, programs are usable on a target machine only if no

emulation is required for elementary computations [FL91].

I therefore propose a new concept that I call upward_compatibility, to

replace the traditional notion of portability. Upward_compatibility establishes a

partial ordering UPCOMP on the set of machine_classes. Programs that are

executable on machines in a machine_class M are also executable on all

machines belonging to classes that are UPCOMP to M, as long as no low_level

language features are used to circumvent type_safety.

A machine's class is determined by the number of bytes it uses to represent

those basic data types of the programming language that are precise (in

contrast to the approximate REAL) and infinite (in contrast to the finite CHAR). In

Oberon, these are the SET data type and the numeric types SHORTINT, INTEGER, and

LONGINT. A machine M' is UPCOMP to a machine M if it represents each of these

data types by at least as many bits as M does, and if it uses identical models of

real arithmetic. Figure 6.1 illustrates this relationship for some typical processor

architectures in use today. Note that neither of the two 16/32_bit machines is

UPCOMP to the other, but that they are both UPCOMP to the 16_bit architecture.

32/32/32/32

8/16/32/32

8/16/32/16 8/16/16/32

8/16/16/16

16/32_bit Architectures

16_bit Architecture

32_bit CISC Architecture

32−bit RISC Architecture

:

::

: :

UPCOMP

UPCOMP

UPCOMP

SETSHORTINT

Number of bits used in the representation of

INTEGER
LONGINT

Figure 6.1: Upward_Compatibility among Different Machine_Classes

In order to decide whether a program is portable to a certain target architecture

without emulation, one therefore needs information about the minimal

machine_class that is required for its execution. Considering that almost all

processors in use today implement the identical IEEE model of real arithmetic,

this may simply be a list of prerequisite data sizes, which can be encoded in a

tag value and appended to the program. The tag can be provided by the

programmer (in which case a deep understanding of the algorithm is needed)

or approximated by assuming that the program has been designed to be

executable on the machine on which it originated. One then simply uses the

originating machine's characteristic tag value.

Having a tag value available lets us determine in advance whether a program

will be able to run at all on a certain target machine, without having to load and

execute it. This should be practical in a heterogeneous environment, in which

all programs are maintained in a portable intermediate representation although

not all of them are executable on each of the machines.

In passing, we also observe that a cross_compiler for a machine_class M

should only be used on a machine that is UPCOMP to M, because it may have to

perform constant arithmetic in the value range of the target machine. However,

the use of emulation is less critical in this case and may be tolerable during a

boot_strapping process.

Software Components

At the 1968 NATO conference, during which the term of software engineering

was coined, McIlroy [McI68] argued that "software production today appears in

the scale of industrialization somewhere below the more backward

construction industries" and attributed this to the absence of a software_

component industry. Yet more than twenty_five years later, not much has

changed in the way we construct software. Reuse of software at best takes place

within commercial organizations, but not between them. An industrial

programmer still cannot just open a catalog of standard software parts and

order a module from it that will execute an algorithm according to some given

specifications. At best, he can hope that the algorithm he requires is built into

the operating system. Strangely enough, today we witness an ongoing

standardization of software functions by incorporation into operating systems

and related libraries, instead of a separate industry developing software

components.

Why, then, has no independent market for platform_independent standard

software components developed over the years? Why have operating systems

and their supporting libraries instead grown to an awesome complexity,

encompassing functions as diverse as user_interface management and data_base

support? The answer may simply be that there is currently no commercial

incentive to develop plug_in software components because the maintenance

costs would be prohibitive in today's marketplace. An independent software_

component vendor would have to provide his products either in a multitude of

link and object formats, which is costly, or in source form, which requires

complex legal arrangements to protect the intellectual property of the authors

and might cost even more. On the other hand, there is a direct commercial

advantage for an operating_system vendor when he adds functionality to his

product. As a consequence, we see a proliferation of operating_system_level

enhancements instead of an intermediate industry for operating_system_

independent support libraries.

The work presented in this dissertation contributes to lowering the cost of

providing drop_in software components. It demonstrates the feasibility of a

platform_independent software distribution format that enables portable

modules to be used right out_of_the_box, without any off_line steps of

compilation or linking, on any machine that is upward_compatible to the machine

on which the component originated.

The on_line aspect is important because it means that even end_users can

migrate libraries in their possession to new hardware platforms. It also suggests

that different component_vendors could offer competing implementations of

the same library, which an end_user would install or replace simply by plugging

in. This is analogous to the situation in the personal computer hardware

market, in which end_users are expected to buy and install themselves certain

parts such as floating_point co_processors.

Intra_Architectural Compatibility

Different implementations of the same architecture are beginning to diverge by

so much that it is becoming increasingly difficult to generate native object_code

that performs well on all processors within a family. Among other features,

processors within an architecture differ in the number of instructions that can

be issued simultaneously to independent functional units, and in the depth of

their instruction pipelines.

Fast on_the_fly code generation presents a solution here, and may eventually

even replace traditional binary compatibility among processors implementing

the same architecture. It allows to provide each processor with a version of

object code that is custom_tailored towards its particular characteristics, for

example with respect to the scheduling of individual instructions, and does so

even for existing programs when new processor models are introduced at a

later time. One merely has to provide an updated code_generating loader

attuned to the new processor variant, and all existing portable software will at

once execute on the new hardware with maximum efficiency.

Since it lowers the importance of binary backward_compatibility, fast

on_the_fly code_generation may in the long run also lead to a reduced coupling

of hardware and software architectures, allowing the two to evolve more

independently of each other.

7. Further Applications

Besides being able to provide a basis for portable software, as outlined in the

previous chapter, fast on_the_fly code generation by a code_generating loader has

further interesting applications. The following presentation is by no means

exhaustive, but it should be sufficient to expose the potential of the new

technique.

Run_Time Integrity Checks

On_the_fly code generation eliminates many of the cases that have traditionally

required several versions of a module to coexist side_by_side on a single target

machine. During development, we often need variants of standard library

modules because the software being developed might not be robust enough to

guarantee that all constraints of the library are fulfilled. Accordingly, a

development version includes additional checks that validate the arguments

passed to library routines. For reasons of efficiency, however, one would not

want to perform these validations during regular operation when all clients of

the library have been thoroughly tested and can be trusted. Consequently, the

tests are usually removed from the production version.

For example, consider the following procedure

ReadBytes(f: File; VAR b: ARRAY OF CHAR; n: LONGINT)

in module Files. It is essential that the procedure never reads beyond the end of

the input buffer, i.e. the precondition n <= LEN(b) must hold. In some cases, the

compiler alone may be able to verify that this condition is satisfied, given that

there is a suitable mechanism for specifying such context requirements.

However, there will always be cases in which the precondition can only be

verified at run_time. Therefore, a corresponding validation needs to be present in

the development version of module Files, but not necessarily in the production

version.

Unfortunately, a serious management problem arises from having to

maintain more than one compiled version of the same module, and having to

keep track of which one is which. One constantly has to make sure that

changes in a source text are propagated to all compiled variants of the module

that may exist concurrently, and use an elaborate naming scheme to

differentiate between the different object files.

On_the_fly code generation does away with module variants and the

associated management overhead. Only at the time of loading do we need to

indicate whether we require a development or a production version of a module.

The implemented system supports several independent run_time integrity

guards that can be enabled selectively (Figure 7.1). Instead of the individual

object file, it is then the run_time_environment that dictates whether or not

these guards will be generated. Likewise, the current implementation provides

for the optional insertion of routine names in the code, in a format acceptable

to the standard debugger of the host machine.

assert generate code for ASSERT function

type perform run_time type tests (used with type extension)

index check that array subscripts lie within bounds

nil test pointers for NIL prior to dereferencing

clear initialize local pointer variables to NIL at procedure entry

debug annotate code for symbolic debugging

Switch Effect if Enabled

Figure 7.1: Code Generation Switches

The key to argument validation in the implemented system lies in the standard

function ASSERT of the programming language Oberon [Wir88]. ASSERT accepts

as its arguments a Boolean expression and an Integer constant. It has the effect

of a run_time test to check if the Boolean expression yields TRUE. If it doesn't, a

run_time trap to the exception vector indicated by the second argument is

taken. The main point about ASSERT is that it can be turned off by a compiler

option, so that no code will be generated at all. Allowing the user to decide at

run_time whether or not assertions should be verified eliminates the need for a

separate development environment.

Management of Changes

Having available a system in which native code is generated only at the time of

loading reduces also the organizational overhead required to keep a modular

application consistent. Each time that a module is loaded, the implemented

system performs a recompilation of the module's implementation, but in a

manner that is completely transparent to the user. Consequently, the effects of

certain changes of library modules can remain invisible, in contrast to other

systems in which source_level recompilations of client modules are unavoidable.

A module needs to be recompiled whenever its own implementation is

changed, or whenever it is invalidated by a change in one of the modules it

depends on. Deciding which clients are invalidated by a change in a library is

the difficult part. The easiest solution, implemented in tools such as the Make

utility [Fel79] of the UNIX operating system [TR74], is to invalidate all clients

each time that a library is changed. However, this introduces many

recompilations that could be avoided in principle.

Tichy and Baker [TB85, Tic86] have introduced the notion of smart

recompilation. This technique is founded on a detailed analysis of import and

export relationships, considering not only each of the involved modules as a

whole, but also the individual features that are exported from one module and

imported by another. The results of this analysis are maintained in a database,

along with a module dependency graph. One can then mechanize the decision

which modules need to be recompiled by comparing the changed feature set of a

modified library with the referenced feature sets of clients. In some cases, such as

the addition of further procedures to a library, an interface change need not

invalidate all existing clients then.

The proposed method opens a path to even further reductions in the

number of (source_text) recompilations. A large proportion of changes that

typically occur during the software life_cycle has no effect on the behavior of a

program but nevertheless on the machine code being generated, because native

code contains addresses, sizes, and relative offsets literally, and addressing

modes often depend on particular address values. An example for a change that

has consequences only in the code generator is the insertion of an additional data

field in an exported record type. Apart from the possible error that may occur if

the corresponding identifier is used already within the scope of the record, a

condition that is detected easily, this addition preserves the semantics of all

client modules. Unfortunately, however, the addition alters the size of the record

type, and may change the relative offsets of some of the existing record fields,

so that new code needs to be generated for all modules that use the record

type. In a system such as the implemented one, code generation happens

transparently and need not be of concern to users, because all client modules

will be updated automatically when they are loaded the next time.

In principle, therefore, in a system in which code generation occurs at

loading time, recompilation (of source code) is not required to propagate

changes. There are, of course, certain changes that invalidate the source code of

some client modules completely, such as removing a routine from a library

module or changing the result type of a library function, but these require some

source_level re_coding of all affected clients and cannot simply be dealt with by

simple recompilation. Such situations can be detected in advance using the

techniques described by Tichy and Baker, or will in any event be flagged when

the code_generating loader senses an interface mismatch, resulting in a load

error.

Accordingly, in a system offering on_the_fly code generation at load time, the

only factor that determines whether (source_text) recompilation of clients is

necessary in reaction to changes in libraries, is the strategy that is used for

describing the inter_module links in the symbol table. The current implemen_

tation uses per_module fingerprints to ensure interface consistency, so that more

recompilations are needed than would be necessary if per_feature fingerprints

were used. In the latter case, no recompilations of clients would be necessary

ever. However, this aspect has not been the main focus of the current work and,

therefore, not been pursued.

Improving Code Quality by Targeted Optimizations

The fact that object code is generated anew each time that a module is loaded

could also be exploited for increasing the overall performance of the whole

system, although this has currently not been implemented. Borrowing from

ideas discussed by Morris [Mor91] and Wall [Wal91], an execution profile

obtained in a previous run of the system could guide the level of optimization

applied by the code_generating loader in the creation of the next executable

version.

While fine_grained profiling might be useful as a basis for specifically_

targeted optimizations, run_time profiling, which is associated with an overhead,

might not even be necessary in a modular system. Instead, one might simply

use the import counter, which indicates how many clients a module has, as an

estimate for the "relative importance" of a module. The more important a

module is, the greater the potential benefits of optimization.

The idea of targeted optimization may be developed even further, taking into

account that object code can be re_created from SDE_files at any time. The

system might expend its idle time on the recompilation of whole subtrees of the

loaded_module graph, employing a higher optimization level than the currently

loaded version. After recompiling such a subtree, it may then attempt to unload

the old version, and if unloading is successful adjust the global module graph

to include the new, optimized version. Note that the unloading step may fail if

further clients are added to the originally loaded modules while re_generation is

underway, or if installed procedures from the original modules remain active in

the system.

Further Applications

A machine_independent abstract program representation from which high_

quality code can efficiently be generated on_the_fly might also prove to be

valuable in the context of heterogeneous distributed systems consisting of

several different hardware platforms.

For example, the proposed technique could form the basis for a very general

remote procedure_call mechanism [Nel81]. Instead of compiling a separate

stub for each procedure to be called remotely and installing it as a process on

the target machine, one might send a complete instruction sequence in a

machine_independent format, to be processed by a single code_generating stub

on the side of the receiver. Cryptological authentication measures could be

applied to prevent misuse in an open network.

Consistency problems between program segments for different machines in

a distributed application could be avoided trivially by sending a consistent

version across the network before the start of a distributed computation,

thereby guaranteeing that identical code executes on all machines taking part in

the computation.

Last but not least, designers of object_oriented systems could use an even

broader definition of object persistence. A persistent object might contain its

own code in an abstract format. Such an object could then migrate over a

network or be transported on some storage medium. At a destination site, first

the code to handle the object would be generated dynamically. Thereafter, the

object's data would be read in.

8. Related Work

The project described in this thesis was started in 1990, and first results were

published in September of 1991 [FL91]. At that time, it seemed almost exotic

to attempt any revival of the old UNCOL idea. Today, the topic again seems "hot",

and many researchers are working on related projects. The most notable of

these other projects is the architecture neutral distribution format (ANDF) initiative

by the Open Software Foundation (OSF), which will be discussed in the first part

of this chapter. The remaining paragraphs mention other topics that are related

to the subject of this thesis in certain ways.

The OSF ANDF Project

The Open Software Foundation (OSF) is a not_for_profit organization jointly

established by several companies in the information technology industry. In

May 1989, OSF solicited proposals for an architecture neutral software

distribution format (ANDF). They received twenty_three such proposals in

response, and in June 1991, OSF selected a technology called TDF [OSF91,

DRA93a, DRA93b], designed and implemented by the United Kingdom Defence

Research Agency (DRA), to serve as the basis of their ANDF. In the meantime,

TDF has been adopted also by UNIX System Laboratories and the European

Community's Esprit Program.

The technology of TDF is still developing. With one exception [Bra92], all

existing documentation about TDF at the time of this writing still comes from

DRA and the OSF. Unfortunately, this documentation does not describe the

current state of the TDF development very accurately, as can be inferred from a

footnote in [DRA93d]:

"The description of the TDF system in this paper reflects a very slightly idealised

version of the current technology; one in which all the features we intend to

put in, but have not had time to, are included."

TDF has many characteristics in common with semantic_dictionary encoding.

Just like semantic_dictionary encoding, and unlike previous UNCOL attempts,

TDF is not based on an abstract machine, but on a tree_structured intermediate

language in conjunction with an embedded symbol table.

Scope of TDF versus that of Semantic_Dictionary_Encoding

TDF has been designed to be both source_language and target_architecture

independent, although as of June 1993, the only existing compiler front_end for

TDF was for the programming language C [KR78]. TDF is claimed to be useful

for source languages other than C, and compilers translating into the TDF

representation from other languages are being developed. In regard to the

suitability of TDF for encoding programs in other languages, the official TDF

documentation [DRA93c] states the following:

"TDF constructs have been carefully designed so as to be able to accommodate

the particular variants found in different programming languages. However,

TDF cannot guarantee coverage of new programming languages as it can for

new architectures. New languages might contain novel features that are not

efficiently implementable using existing features of TDF. [...] It is likely that the

implementation of [TDF encoders] for programming languages other than C

will expose new features that would enhance the efficiency of the run_time

code for these new languages − it is likely that such extensions can be added in

an upwards compatible manner, but this cannot be guaranteed."

In contrast, the method of SDE is not a program representation in its own right,

but a meta_technique for encoding programs abstractly. It is parametrized by

the initial configuration of the dictionary and the heuristics used for dictionary

management.

So far, SDE has been applied only to programs originally written in the

programming language Oberon [Wir88]. However, since semantic meaning is

instilled into each SDE_file solely by the initial configuration of a dictionary, it is

possible to support easily future language requirements, even without

invalidating existing SDE_files in an old format. All that is necessary is a key in

the SDE_file that uniquely identifies the initial configuration of the dictionary

that has to be used for decoding. This might, for example, be simply the name

of a file in which the configuration is stored.

Hence, SDE allows us to evolve the set of encodeable language constructs

independently of the actual file_formats. In fact, by using configuration files,

individual SDE_decoders could be made completely independent of the file

formats they need to process. It would require a standardization only of the

meanings of different meta_language constructs. Software developers would then

be able to choose freely which of these meta_language constructs to use in the

encoding of their programs, and at which positions of the initial dictionary they

would place these constructs. The smaller the set of meta_language constructs,

the more difficult it will be to reverse_engineer the encoded program, although

the use of fewer constructs could also affect compactness and optimizeability

adversely.

Ease of Reverse_Engineering

The success of any new technology will lastly depend on its acceptance in the

marketplace. In the case of a machine_independent software_distribution

format, software vendors need to be convinced that they do not give away their

trade secrets when distributing their products in this way. This conviction will

not be brought about easily.

In effect, any intermediate format that preserves the abstract structure of

programs can be reverse_engineered to produce a "shrouded" source program,

i.e. one that contains no meaningful internal identifiers [Mac93]. However, with

current technology, reverse_engineering to a similar degree is possible also from

binary code. Many of the algorithms that have been developed for object_code_

level optimization [DF84] are useful for these purposes.

Moreover, the statement [DRA93c] is probably correct that portable formats

are such attractive targets to reverse_engineer that suitable tools will become

available anyway, regardless of how difficult it is to produce such tools. It

would, therefore, not make much sense to jeopardize the advantages of SDE in

an attempt to make reverse_engineering more difficult.

Performance of SDE in Comparison to TDF

SDE has some performance_advantages over TDF. To start with, it is more

compact. Although in [OSF91] the OSF recognized that "it is important that the

ANDF file size be as small as possible", TDF is in fact less compact than object

code. TDF is quoted [DRA93c] as being "around twice the size of the binary of

CISC machines", while SDE is at most half the size of MC68020 binary code.

Because of the lack of a common operating platform on which both

mechanisms have been implemented, a direct performance comparison of SDE

versus TDF is currently not possible. However, DRA [DRA93c] state that native

object_file generation takes between 32% and 83% of native C compile time.

Considering that Oberon compilers usually outperform C compilers by a factor

of more than 15 in compilation speed [BCF92], and that loading of SDE_files is

more than four times faster than regular Oberon compilation, it seems

reasonable to claim that, at least on CISC processors and without taking code

quality into account, SDE should provide for much faster code generation than

TDF.

In TDF, the individual modules (called capsules in TDF terminology) that

comprise an application program are linked together statically and then

translated into native code in an off_line process. Conversely, SDE has been

designed to support dynamic module loading with on_the_fly code_generation. As

has been explained in Chapter 6, only the latter approach leads to user_

serviceable, plug_in software components.

Incremental Compilation and Linking

In some ways, the implemented could also be compared with systems offering

incremental compilation or incremental linking. After all, whenever a new

module is installed by the code_generating loader, this amounts to a

compilation and a linking step, in the course of which the code_base of the

executing environment is increased.

Incremental compilers are highly complex programs that are often

integrated with structural editors [EC72, MF81, TR81, FS84], and optimizing

variants [PS84, PS92] are of even more formidable intricacy. In light of the

speed of current code generators it is highly questionable whether the

technology of incremental compilation should be developed any further.

Separate compilation of modular programs seems to be a far simpler means

of achieving the same goal.

On the other hand, incremental linking systems, such as the one by Quong

and Linton [QL91], require large amounts of memory and generate large object

files, in which extra space is allocated between modules in order to allow the

code to grow between versions. If a module grows beyond the space reserved

for it, then the module following it on the object file has to be re_linked as well,

and this overflow_effect may propagate all the way to the end of the object file.

Without doubt, the technique of dynamic loading, upon which my own

method is based, is more elegant and efficient than incremental linking.

I believe that both incremental compilation and incremental linking will

cease to be of any significance as code generators become ever faster. Instead,

separate compilation of program modules should gain in importance, aided by

the spread of modular programming languages and the availability of module

loaders that can process machine_independent object formats directly. This will

give vital new impulses to the field of library design and increase productivity by

way of software reuse.

Dynamic Translation

The concept of dynamic translation of programs from one representation into

another has been around for some time. Early implementations, such as one by

Brown [Bro76], were developed with the aim of balancing execution speed and

memory requirements under the extreme hardware constraints that were then

the norm. These early implementations applied only to programming languages

without block_structure and performed the generation of native object_code on

a statement_by_statement basis.

For a long time, the main reason for implementing dynamic translation

remained the fact that it allowed an elegant trade_off between execution

efficiency and memory consumption. A paper by Rau [Rau78] classifies

program representations into three categories, namely high_level, directly

interpretable, and directly executable, and discusses the use of dynamic

translation between these categories as a means for achieving speed and

compactness simultaneously.

Then came Deutsch and Schiffmann's [DS84] landmark paper on the

efficient implementation of the programming language Smalltalk_80 [GR83].

They used dynamic translation for increasing execution speed while retaining

virtual_machine code_compatibility with existing implementations. The latter was

necessary because the Smalltalk_80 virtual machine is actually visible to user

programs, and much of the system code depends on it. In Deutsch and

Schiffmann's implementation, native code for the actual target machine is

generated on_the_fly and cached until it is invalidated by changes in the source

program, or until it is overwritten in the code_cache due to lack of space.

A more recent application of dynamic translation comes from the

implementation [CUL89, CU89, CU90, CU91] of the programming language Self

[US87], a dynamically_typed language based on prototypes. Just as the

Smalltalk_80 system, it can benefit enormously from on_the_fly code generation,

because type information, although unavailable statically, is available at run_

time. By allowing the dynamic generation of several variants of an expression,

optimized for different run_time types of the component variables, the efficiency

of such systems can be multiplied, but still cannot compete with statically_

typed programming languages.

In contrast, the implemented system attempts to deliver run_time

performance comparable to traditional compilers and offers on_the_fly code

generation primarily as a means for increased user convenience, not code

quality. It ties dynamic translation intimately to the two concepts of separate

compilation and dynamic module loading. The information contained in SDE_files

is equivalent to the source description, so that there is no fundamental limit to

the obtainable code quality. Hence, the most effective optimizing code

generators could potentially be built into a code_generating loader operating on

SDE.

It is also true that modules are much better suited as the unit of code

generation than procedures. A module is a collection of data types, variables,

and procedures that are loaded together always, and, almost equally important,

unloaded together always. Furthermore, a module can be loaded only after all of

its servers (imported library modules) have been loaded successfully, and

unloaded only after all of its clients (importing modules) have been unloaded.

Consequently, code is generated from the bottom upwards, and the addresses

of all callees are known when compiling a caller. Likewise, there are never any

clients that need to be invalidated explicitly when a module is unloaded.

In systems in which the unit of code generation is the procedure, such as

Smalltalk_80 and Self, program execution is interspersed with code_generation.

Each procedure call may potentially fault, at which point native code needs to

be generated dynamically before the call can be completed. Unfortunately, this

may sometimes generate formidable amounts of such faults in succession, each

associated with a re_load of the instruction cache, causing disruptive delays for

interactive users at unexpected points in time.

Dynamic Binary_To_Binary Object_Code Translation

A technology that has emerged only recently is binary translation of object

code [SCK93]. It enables programs for one architecture to be executed directly

on another, by way of true translation of whole object programs into the native

instruction set of the new target machine. The main rationale behind binary

translation is the need to protect previous investments into software when

migrating to a new hardware architecture. Rather than constituting a portability

technique in the spirit of "software components", binary translation represents a

capitulation before the fact that much of the software in existence is not

portable, and cannot be ported by ordinary means; for example, because the

source texts and the original design documents are no longer available.

Binary translation is a complex technique. Since it is put to use mainly in

circumstances in which little is known about the programs that serve as its

input, the translation mechanism needs to be suitable for any program that

could possibly have executed on the architecture of origin. This includes

programs that modify themselves. Consequently, self_modification conditions

need to be detected on the new target machine, at which time the affected

code segments may have to be re_translated on_the_fly.

Due to its complexity, binary translation cannot really be seen as an answer

to the portability problem, but only as an intermediate solution allowing us to

keep using an existing software base while it is being rewritten for the new

architecture. The technique that is being advocated in this dissertation is much

simpler and concerned less with backward_compatibility than with forward_

compatibility, with whatever may lie ahead in the future.

Syntax_Directed Source Compression

SDE utilizes the syntactic structure of programs to achieve a high information

density. Hence, the subject of this dissertation is distantly related to previous

work in the area of syntax_directed source compression. Only two implemen_

tations are documented in the literature:

− Contla [Con85] describes a program_source_compaction technique that

is based on recording the path followed by the parser while traversing the

syntax tables of the programming language in which the program is

written. For this purpose, the alternatives in each production of the

language grammar are labelled. A syntactically correct program can then

be represented by the sequence of particular choices that need to be

taken in the process of deriving the program from the start symbol of the

grammar.

Programs in such a grammar_path representation are decoded by a

parser without any look_ahead, in which the next action to be taken

follows directly from the front_most encoded symbol on the input

stream. Although such a decoder is simpler than an ordinary source_text

parser, it is a parser nevertheless. Generating object code directly from

Contla's representation would therefore not be much different from

ordinary compilation, apart from possible speed gains due to reduced

input overhead. Contla himself not even hints at this possibility,

perceiving his work strictly as a storage reduction method.

− Katjainen et al. [KPT86] report of a program_source_compression method

based on parsing, which has been implemented for the programming

language Pascal [Wir71]. They represent programs by a pre_order

enumeration of the parse tree, along with an encoding of the symbol

table. However, for purported reasons of efficiency (their system is

written in Prolog [CM84]), they do not generate semantically correct

parse trees for expressions, but parse them as if there were no operator

precedence. This is of course permissible if textual reproducibility of

source programs is the only objective. Before code can be generated

from their representation, however, it has to be fully expanded and re_

parsed. The possibility of immediate object_code generation directly from

the compact representation was, obviously, not anticipated by the

designers of this data compression method.

Both of these techniques are concerned only with preserving the source text of

a program in a compact form. SDE goes beyond that objective, additionally

striving to represent the program's semantic content in a way that is well suited

for dynamic code_generation, and achieves this goal admirably.

9. Summary and Conclusion

This dissertation has described a new technique called semantic_dictionary

encoding (SDE) for representing programs abstractly. SDE yields a highly

compact encoding and is able to provide a code generator with all the

information available on the level of the source language, plus additional

knowledge about the occurrence of common subexpressions in the source text.

It facilitates simple and efficient on_the_fly code generation on relatively slow

processors without precluding the use of highly optimizing code generation

methods on faster ones.

The new technique is able to provide separate compilation of program

modules with type_safe interfaces, independent module distribution, and

interchangeability of modules with the same interface. These properties give it

an advantage over other approaches to portability, such as using a "shrouded"

high_level programming language. While it is true that many of the cost_

lowering benefits of portability can be gained by using shrouded source_code,

code generation from the SDE representation is also much faster than ordinary

compilation

The proposed technique offers the potential of providing a universal

software distribution format that is practical to use. Hence, it might encourage

software developers to share reusable software components or offer them

commercially. It eliminates the need for separate development environments

and can reduce the number of recompilations after changes in library modules.

Other potential applications of object_level portability may lie in heterogeneous

distributed computing environments, in which the compactness of the SDE

representation would be of particular advantage when network transfer is

required.

References

[Air76] T. J. Aird; The IMSL Fortran Converter: An Approach to Solving

Portability Problems; Workshop on the Portability of Numerical

Software, published as Springer Lecture Notes in Computer Science,

57, 368−388; 1976. {6}

[App85] Apple Computer, Inc.; Inside Macintosh; Addison_Wesley; 1985ff.

{4}

[Atk77] M. P. Atkinson; IDL: A Machine_independent Data Language;

Software−Practice and Experience, 7:6, 671−684; 1977. {6}

[ADH89] R. Atkinson, A. Demers, C. Hauser, Ch. Jacobi, P. Kessler and M.

Weiser; Experiences Creating a Portable Cedar; Proceedings of the

Sigplan '89 Conference on Programming Language Design and

Implementation, published as Sigplan Notices, 24:7, 322−329;

1989. {2}

[BKM87] A. B. Bergh, K. Keilman, D. J. Magenheimer and J. A. Miller; HP

3000 Emulation on HP Precision Architecture Computers; Hewlett_

Packard Journal, 38:11, 87−89; 1987. {6}

[Boy76] J. M. Boyle; Mathematical Software Transportability Systems: Have

the Variations a Theme?; Workshop on the Portability of Numerical

Software, published as Springer Lecture Notes in Computer Science,

57, 304−353; 1976. {6}

[BD74] J. M. Boyle and K. W. Dritz; An Automated Programming System

to Facilitate the Development of Quality Mathematical Software;

Information Processing 74 (Proceedings of the IFIP Congress 74),

North Holland, 542−546; 1974. {6}

[BCF92] M. Brandis, R. Crelier, M. Franz and J. Templ; The Oberon System

Family; Report #174, Departement Informatik, ETH Zurich; 1992.

{3, 8}

[Bra92] M. Brandreth; All for One and One for All; Physics World, 5:6,

47−50; 1992. {8}

[Bro72] P. J. Brown; Levels of Language for Portable Software;

Communications of the ACM, 15:12, 1059−1062; 1972. {6}

[Bro76] P. J. Brown; Throw_Away Compiling; Software−Practice and

Experience, 6:3, 423−434; 1972. {8}

[BH76] W. S. Brown and A. D. Hall; Fortran Portability via Models and

Tools; Workshop on the Portability of Numerical Software, published

as Springer Lecture Notes in Computer Science, 57, 158−164; 1976.

{6}

[CU89] C. Chambers and D. Ungar; Customization: Optimizing Compiler

Technology for SELF, a Dynamically_Typed Object_Oriented

Programming Language; Proceedings of the ACM Sigplan '89

Conference on Programming Language Design and Implementation,

published as Sigplan Notices, 24:7, 146−160; 1989. {8}

[CU90] C. Chambers and D. Ungar; Iterative Type Analysis and Extended

Message Splitting: Optimizing Dynamically_Typed Object_Oriented

Programs; Proceedings of the ACM Sigplan '90 Conference

Programming Language Design and Implementation, published as

Sigplan Notices, 25:6, 150−162; 1989. {8}

[CU91] C. Chambers and D. Ungar; Making Pure Object_Oriented

Languages Practical; OOPSLA '91 Conference Proceedings, published

as Sigplan Notices, 26:11, 1−15; 1989. {8}

[CUL89] C. Chambers, D. Ungar and E. Lee; An Efficient Implementation of

SELF, a Dynamically_Typed Object_Oriented Language Based on

Prototypes; OOPSLA '89 Conference Proceedings, published as

Sigplan Notices, 24:10, 49−70; 1989. {8}

[Chu35] A. Church; An Unsolvable Problem of Elementary Number Theory;

American Journal of Mathematics, 58, 345−363; 1936. {2}

[CM84] W. F. Clocksin and C. S. Mellish; Programming in Prolog: Second

Edition; Springer; 1984. {8}

[CPW74] S. S. Coleman, P. C. Poole and W. M. Waite; The Mobile

Programming System, Janus; Software−Practice and Experience, 4:1,

5−23; 1974. {2}

[Con58] M. E. Conway; Proposal for an UNCOL; Communications of the

ACM, 1:10 5−8; 1958. {2}

[Con85] J. F. Contla; Compact Coding of Syntactically Correct Source

Programs; Software−Practice and Experience, 15:7, 625−636; 1985.

{8}

[Cre91] R. Crelier; OP2: A Portable Oberon_2 Compiler; Proceedings of the

2nd International Modula_2 Conference, Loughborough, England,

58−67; 1991. {3}

[Dah84] I. Dahlstrand; Software Portability and Standards; Ellis Horwood,

Chichester; 1984. {6}

[DF84] J. W. Davidson and C. W. Fraser; Code Selection through Object

Code Optimization; ACM Transactions on Programming Languages

and Systems, 6:4, 505−526; 1984. {8}

[DRA93a] United Kingdom Defence Research Agency; TDF Specification, Issue

2.1; June 1993. {2, 8}

[DRA93b] United Kingdom Defence Research Agency; A Guide to the TDF

Specification, Issue 2.1.0; June 1993. {8}

[DRA93c] United Kingdom Defence Research Agency; Frequently Asked

Questions about ANDF, Issue 1.1; June 1993. {8}

[DRA93d] United Kingdom Defence Research Agency; TDF and Portability,

Issue 1.0; June 1993. {8}

[DS84] L. P. Deutsch and A. M. Schiffmann; Efficient Implementation of

the Smalltalk_80 System; Conference Record of the 11th Annual ACM

Symposium on Principles of Programming Languages, Salt Lake City,

Utah, 297−302; 1984. {8}

[Dig92] Digital Equipment Corporation; Alpha Architecture Handbook;

1992. {6}

[DMB79] J. J. Dongarra, C. B. Moler, J. R. Bunch and G. W. Stewart; LINPACK

Users' Guide; Society for Industrial and Applied Mathematics,

Philadelphia; 1979. {6}

[Dri76] K. W. Dritz; Multiple Program Realizations using the TAMPR

System; Workshop on the Portability of Numerical Software,

published as Springer Lecture Notes in Computer Science, 57,

405−423; 1976. {6}

[EC72] J. Earley and P. Caizergues; A Method for Incrementally Compiling

Languages with Nested Statement Structure; Communications of

the ACM, 15:12, 1040−1044; 1972. {8}

[Fel79] S. I. Feldman; Make: A Program for Maintaining Computer

Programs; Software−Practice and Experience, 9:4, 255−265; 1979.

{7}

[Fox76] P. A. Fox; Port: A Portable Mathematical Subroutine Library;

Workshop on the Portability of Numerical Software, published as

Springer Lecture Notes in Computer Science, 57, 163−177; 1976. {6}

[FS84] R. Ford and D. Sawamiphakdi; A Greedy Concurrent Approach to

Incremental Code Generation; Conference Record of the 12th Annual

ACM Symposium on Principles of Programming Languages, New

Orleans, Louisiana, 165−178; 1985. {8}

[Fra90a] M. Franz; The Implementation of MacOberon; Report #141,

Departement Informatik, ETH Zürich; 1990. {3, 4}

[Fra90b] M. Franz; MacOberon Reference Manual; Report #142, Departement

Informatik, ETH Zurich; 1990. {3, 4}

[Fra91] M. Franz; The Rewards of Generating True 32_bit Code; Sigplan

Notices, 26:1, 121−123; 1991. {3}

[Fra93a] M. Franz; Emulating an Operating System on Top of Another;

Software−Practice and Experience, 23:6, 677−692; June 1993.

{3, 4, 6}

[Fra93b] M. Franz; The Case for Universal Symbol Files; Structured

Programming, 14:3, 136−147; October 1993. {2, 3, 4}

[FL91] M. Franz and S. Ludwig; Portability Redefined; Proceedings of the

2nd International Modula_2 Conference, Loughborough, England;

1991. {6, 8}

[GF84] M. Ganapathi and C. N. Fischer; Attributed Linear Intermediate

Representations for Retargetable Code Generators; Software−

Practice and Experience, 14:4, 347−364; 1984. {2}

[Gol84] A. Goldberg; Smalltalk_80: The Interactive Programming Environment;

Addison_Wesley; 1984. {4}

[GR83] A. Goldberg and D. Robson; Smalltalk_80: The Language and its

Implementation; Addison_Wesley; 1983. {8}

[Gri72] R. E. Griswold; The Macro Implementation of SNOBOL4: A Case Study

in Machine_Independent Software Development; Freeman, San

Francisco; 1972. {2}

[Gri78] R. E. Griswold; A History of the SNOBOL Programming Languages;

in R. L. Wexelblat, editor, History of Programming Languages

(Proceedings of the of the History of Programming Languages

Conference), Academic Press (ACM Monograph Series), New York,

601−645; 1981. {2}

[HW78] B. K. Haddon and W. M. Waite; Experience with the Universal

Intermediate Language Janus; Software−Practice and Experience,

8:5, 601−616; 1978. {2}

[HF76] S. J. Hague and B. Ford; Portability: Prediction and Correction;

Software−Practice and Experience, 6:1, 61−69; 1976. {6}

[Hal82] J. A. Hall; A Microprogrammed P_Code Interpreter for the Data

General Eclipse S/130 Minicomputer; Software−Practice and

Experience, 12:8, 755−765; 1982. {2}

[Hal65] M. I. Halpern; Machine Independence: Its Technology and

Economics; Communications of the ACM, 8:12, 782−785; 1965. {2}

[IEEE85] IEEE Standard for Binary Floating_Point Arithmetic; ANSI/IEEE

Standard 754; 1985. {6}

[KPT86] J. Katajainen, M. Penttonen and J. Teuhola; Syntax_directed

Compression of Program Files; Software−Practice and Experience,

16:3, 269−276; 1986. {8}

[KR78] B. W. Kernighan and D. M. Ritchie; The C Programming Language;

Prentice_Hall; 1978. {2, 8}

[KKM80] P. Kornerup, B. B. Kristensen and O. L. Madsen; Interpretation and

Code Generation Based on Intermediate Languages; Software−

Practice and Experience, 10:8, 635−658; 1980. {2}

[Kro76] F. T. Krogh; A Method for Simplifying the Maintenance of Software

which Consists of Many Versions; Memorandum 314, Jet Propulsion

Laboratory, Pasadena, California; 1976. {6}

[Mac93] S. Macrakis; Protecting Source Code with ANDF; Open Software

Foundation Research Institute; June 1993. {8}

[McI68] M. D. McIlroy; Mass Produced Software Components; in Naur,

Randell, Buxton (eds.), Software Engineering: Concepts and

Techniques, Proceedings of the NATO Conferences, New York,

88−98; 1976. {6}

[MF81] R. Medina_Moria and P. H. Feiler; An Incremental Programming

Environment; IEEE Transactions on Software Engineering, 7:5,

472−482; 1981. {8}

[Mor91] W. G. Morris; CCG: A Prototype Coagulating Code Generator;

Proceedings of the ACM Sigplan '91 Conference on Programming

Language Design and Implementation, published as Sigplan Notices,

26:6, 45−58; 1991. {7}

[Mot87] Motorola, Inc.; M68030 Enhanced 32_bit Microprocessor User's

Manual; Motorola Customer Order No. MC68020UM/AD; 1987.

{3, 4, 5}

[NS84] National Semiconductor Corporation; Series 32000: Instruction Set

Reference Manual; National Semiconductor Customer Order No.

NSP_INST_REF_M, Publication Number 420010099_001B, Santa

Clara, California; 1984. {2}

[Nel81] B. J. Nelson; Remote Procedure Call; Report #CLS_81_9, Palo Alto

Research Center, Xerox Corporation, Palo Alto, California; 1981.

{7}

[NPW72] M. C. Newey, P. C. Poole and W. M. Waite; Abstract Machine

Modelling to Produce Portable Software: A Review and Evaluation;

Software−Practice and Experience, 2:2, 107−136; 1972. {2}

[NAJ76] K. V. Nori, U. Amman, K. Jensen, H. H. Nägeli and Ch. Jacobi;

Pascal_P Implementation Notes; in D.W. Barron, editor; Pascal: The

Language and its Implementation; Wiley, Chichester; 1981. {2}

[OSF91] Open Software Foundation; OSF Architecture_Neutral Distribution

Format Rationale; 1991. {8}

[PS84] L. L. Pollock and M. L. Soffa; Incremental Compilation of Locally

Optimized Code; Conference Record of the 12th Annual ACM

Symposium on Principles of Programming Languages, New Orleans,

Louisiana, 152−164; 1985. {8}

[PS92] L. L. Pollock and M. L. Soffa; Incremental Global Reoptimization of

Programs; ACM Transactions on Programming Languages and Systems,

14:2, 173−200; 1992. {8}

[PW69] P. C. Poole and W. M. Waite; Machine Independent Software;

Proceedings of the ACM 2nd Symposium on Operating System

Principles, Princeton, New Jersey; 1969. {2}

[QL91] R. W. Quong and M. A. Linton; Linking Programs Incrementally;

ACM Transactions on Programming Languages and Systems, 13:1,

1−20; 1991. {8}

[Rau78] B. R. Rau; Levels of Representation of Programs and the

Architecture of Universal Host Machines; Proceedings of the 11th

Annual Microprogramming Workshop, Pacific Grove, California,

67−79; 1978. {8}

[Rei89] M. Reiser; Private Communication; 1989. {1}

[Ric71] M. Richards; The Portability of the BCPL Compiler;

Software−Practice and Experience, 1:2, 135−146; 1971. {2}

[Ric69] M. Richards; BCPL: A Tool for Compiler Writing and System

Programming; Proceedings of the 1969 Spring Joint Computer

Conference, published as AFIPS Conference Proceedings, 34, AFIPS

Press, Montvale; 1969. {2}

[RW79] M. Richards and C. Whitby_Strevens; BCPL: The Language and its

Compiler; Cambridge University Press; 1979. {2}

[RH77] M. G. Richardson and S. J. Hague; The Design and

Implementation of the NAG Master Library File System; Software−

Practice and Experience, 7:1, 127−137; 1977. {6}

[Ryd74] B.G. Ryder; The PFORT Verifier; Software−Practice and Experience,

4:4, 359−377; 1974. {6}

[ST73] E. H. Sibley, and R. W. Taylor; A Data Definition and Mapping

Language; Communications of the ACM, 16:12, 750−759; 1973. {6}

[SCK93] R. L. Sites, A. Chernoff, M. B. Kirk, M. P. Marks and S. G. Robinson;

Binary Translation; Communications of the ACM, 36:2, 69−81;

February 1993. {8}

[Ste60] T. B. Steel; UNCOL: Universal Computer Oriented Language

Revisited; Datamation, 6:1, 18−20; 1960. {2}

[Ste61a] T. B. Steel, Jr.; A First Version of UNCOL; Proceedings of the Western

Joint IRE_AIEE_ACM Computer Conference, Los Angeles, California,

371−378; 1961. {2}

[Ste61b] T. B. Steel, Jr.; UNCOL: The Myth and the Fact; Annual Review in

Automatic Programming, 2, 325−344; 1961. {2}

[SWT58] J. Strong, J. Wegstein, A. Tritter, J. Olsztyn, O. Mock and T. B. Steel;

The Problem of Programming Communication with Changing

Machines: A Proposed Solution: Report of the Share Ad_Hoc

Committee on Universal Languages; Communications of the ACM,

1:8, 12−18, and 1:9, 9−15; 1958. {2}

[Szy92] C. A. Szyperski; Write_ing Applications: Designing an Extensible

Text Editor as an Application Framework; Proceedings of the 7th

International Conference on the Technology of Object_Oriented

Languages and Systems (TOOLS'92), Dortmund, Germany, 247−261;

1992. {5}

[TKB78] A. S. Tanenbaum, P. Klint, and W. Bohm; Guidelines for Software

Portability; Software−Practice and Experience, 8:6, 681−698; 1978.

{6}

[TR81] T. Teitelbaum and T. Reps; The Cornell Program Synthesizer: A

Syntax_Directed Programming Environment; Communications of the

ACM, 24:9, 563−573; 1981. {8}

[TR74] K. Thompson and D. M. Ritchie; The UNIX Time_Sharing System;

Communications of the ACM, 17:2, 1931−1946; 1974. {7}

[Tic86] W. F. Tichy; Smart Recompilation; ACM Transactions on

Programming Languages and Systems, 8:3, 273−291; 1986. {7}

[TB85] W. F. Tichy and M. C. Baker; Smart Recompilation; Conference

Record of the 12th Annual ACM Symposium on Principles of

Programming Languages, New Orleans, Louisiana, 236−244; 1985.

{7}

[Tur36] A. M. Turing; On Computable Numbers, with an Application to

the Entscheidungsproblem; Proceedings of the London Mathematical

Society, 2nd Series, 42, 230−265; 1937. {2}

[US87] D. Ungar and R. B. Smith; Self: The Power of Simplicity; OOPSLA

'87 Conference Proceedings, published as Sigplan Notices, 22:12,

227−242; 1987. {8}

[Wai75] W. M. Waite; Hints on Distributing Portable Software; Software−

Practice and Experience, 5, 295−308: 1975. {6}

[Wal91] D. W. Wall; Predicting Program Behavior Using Real or Estimated

Profiles; Proceedings of the ACM Sigplan '91 Conference on

Programming Language Design and Implementation, published as

Sigplan Notices, 26:6, 59−70; 1991. {7}

[Wal82] P. J. L. Wallis; Portable Programming; Macmillan, London; 1982.

{6}

[WDH89] M. Weiser, A. Demers and C. Hauser; The Portable Common

Runtime Approach to Interoperability; Proceedings of the 12th ACM

Symposium on Operating System Principles, published as Operating

System Reviews, 23:5, 114−122; 1989. {6}

[Wel84] T. A. Welch; A Technique for High_Performance Data

Compression; IEEE Computer, 17:6, 8−19; 1984. {2}

[WD79] Western Digital Corporation; Pascal Microengine; 1979. {2}

[WMP69] A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck and C. H. A. Koster;

Report on the Algorithmic Language Algol 68; Numerische

Mathematik, 14, 79−218; 1969. {2}

[Wir71] N. Wirth; The Programming Language Pascal; Acta Informatica, 1:1,

35−63; 1971. {2}

[Wir88] N. Wirth; The Programming Language Oberon; Software−Practice

and Experience, 18:7, 671−690; 1988. {2, 3, 4, 7, 8}

[WG89] N. Wirth and J. Gutknecht; The Oberon System; Software−Practice

and Experience, 19:9, 857−893; 1989. {4}

[WG92] N. Wirth and J. Gutknecht; Project Oberon: The Design of an

Operating System and Compiler; Addison_Wesley; 1992. {4, 5}

