
The Role of Programming Languages

in the Life�Cycle of Safe Systems

Clemens Szyperski and John Gough

fc�szyperski� j�goughg�qut�edu�au

Faculty of Information Technology

Queensland University of Technology

Brisbane� Australia

July ��� ����

Abstract

Safety as understood in the conference theme can be separated into the more technical
terms of safety� progress� and security� nothing bad happens� the right things do happen�
and things happen under proper authorization� All three interact to make a system �safe� in
the broader sense� This article introduces to the degree of safety in the technical sense that
can be directly supported by programming languages and their type systems in particular�
From a generalized de�nition of type a brief journey through contemporary type systems is
taken and illustrated using examples from di�erent programming languages� Finally� current
trends and some novel approaches are presented�

� Introduction

With the ever increasing presence of computers controlling critical systems � critical to missions�
the environment� human lives� or the society � the safety of such systems is a prime concern�
Safety� as understood in the conference theme� is a rather general notion of �the system does
what it should� and does not what it should not�� A careful separation of aims is required in
order to analyze in more detail how safety can actually be achieved and how it can be supported
by technologies and methodologies�

There are di�erent possibilities to split up safety into detailed aims� For example� within an
economical framework one might want to consider the fact that �nothing happens that would
severely exceed the budget�� In a societal framework one might require that �nothing happens
without a �rm basis on a sound decision and responsibility process��

This article is focussed on the impact that the choice of using a programming language and
its implementation has on the safety of the built system� For this particular domain it is helpful
to separate the general term �safety� into the more technical terms of safety� progress�� and

�Note that progress cannot be covered by safety unless time is handled explicitly� For example� in a hard
real�time system� the safety requirement that actions meet their deadlines does imply progress� However� in many
abstract formalisms� including those based on the predicate calculus� there is no notion of time� it is considered
su�cient to specify that the right things happen �eventually�� a notion that needs to be covered by specialized
speci�cation tools � such as temporal or real�time logic � and therefore justi�es the separation of safety and
progress�

�

security�

The informal meaning of the three categories is�

� Safety � Nothing bad happens�

� Progress � The right things do happen�

� Security � Things happen under proper authorization�

All three interact to make a system �safe� in the broader sense�
In some cases it is possible to statically enforce safety 	or progress or security for that matter
�

by using construction methods that simply exclude bad cases� Examples are formal proofs of
correctness or automatic derivation�construction of components using a proved transformer� In
other cases it may be necessary to enforce safety dynamically� if something bad is about to
happen� this gets detected and proper steps are taken� Clearly� and whenever at all possible�
static safety is to be preferred over dynamic safety which is to be preferred over �safety by
assumption��

More and more system components are manifest in software and programming languages
are the most concrete tools of the software engineer� it is only natural to expect programming
languages to help improve system safety� In fact� it is well known that languages
 and in
particular proper language paradigms and type systems
 can do a lot� functional languages�
languages with strong static type checking� and languages with statically enforced encapsulation
mechanisms go a long way in helping programmers to get it right� Also� the gamut of powerful
language concepts in favor of safety is still getting richer� For example� linear types ��� and
behavioral subtypes ����� both a matter of ongoing research� strongly support static safety in
languages with side e�ects�

Strangely enough� despite the existence of viable alternatives� many software components �
including safety
critical ones � get produced using languages that either provide dynamic safety
only� only partial static�dynamic safety� or no safety at all�

Some examples of programming languages in each of the above categories are�

� Static and Dynamic Safety� Oberon ����� garbage
collected versions of Ada�� Java �����
Sather �����

� Dynamic Safety Only� Smalltalk ����� Lisp�

� Partial Static�Dynamic Safety� Pascal� Modula
�� and Ada 	using explicit deallocation
�

� Unsafe C� C���

A whole industry thrives on selling tools to �x the situation� debugging tools that help to uncover
errors that should not have been possible in the �rst place� such as memory leaks or dangling
pointers� In some situations static safety cannot be established 	the compiler would run into
undecidability problems
� but dynamic safety should still be supported� There is no excuse to
let an array index out
of
bounds violation pass�

A common argument against using languages of ultimate static safety� such as statically typed
purely functional ones� is the observed ine�ciency of their implementations� or much rather their

�Ada leaves garbage collection as an option to the implementation�

�

unpredictable performance�� There is some point to that and current research is aiming at the
merger of imperative�object
oriented and functional paradigms� The anchoring concept are
powerful type systems� the idea being that a type
correct program is safe with respect to clearly
de�ned requirements� Current research aims at moving type systems forward from constraints
expressed over individual variables to constraints expressed over related variables� Linear types
are again an example�

In the case of static type checking all restrictions imposed by the typing are fully veri�ed
by the compiler� there is no run
time overhead whatsoever�� Advanced type systems� such
as those commonly found in typed object
oriented languages� can render fully static checking
impossible 	undecidable
 or at least impractical� In such cases some residual run
time type
checks are needed�� Again� such dynamic checking should be used� there is no excuse to let a
type violation pass�

The article is organized as follows� An informal introduction to type systems based on their
historical evolution is given in Section �� combined with an account of the role of types in pro

gramming� Examples from contemporary languages are given� Section � broadens the approach
and introduces current and some novel ways of enhancing the expressiveness of type systems�
Section � sketches safety
relevant applications of such type systems� Finally� conclusions and a
summary of contributions is given�

� Type Systems � Review and Brief History

A type system allows a programmer to express restrictions � invariant properties of a typed
program fragment� Type checking aims at the mechanical veri�cation of these invariant� static
type checking establishes the invariants at compile
time� while dynamic type checking introduces
run
time checks to verify at critical points of change that all invariants still hold�

A type system can be seen as specialized sub
language that allows to annotate a program with
invariants� Most type systems are restricted to certain categories of invariants� For example�
it is usually not possible to require that a certain variable always holds a prime number� i�e�
�prime� is not a type in most type systems� If a type system is too restrictive it may become
useless� of course� but it is important to understand that restricted expressiveness is unavoidable
in a practical type system� It is easy to generalize a type system beyond the point of static
checkability 	sometimes this is necessary
� but it is also easy to further generalize a type system
beyond dynamic checkability� Clearly� a type system that cannot evan be dynamically checked
is no more than a mechanism for the introduction of �formal comments�� and should be avoided�
Figure � illustrates the evolution of data types in programming languages�

Before going into further details it is important to fully understand the notion of type
annotation� Most statically typed imperative�procedural programming languages require the
programmer to almost completely type
annotate a program� Among the few exceptions are
constants� e�g� in Pascal the actual type of the constant ��� is derived by the compiler � there
is no need to write CONST foo� INTEGER � ���� Typed functional languages take the idea

�The quite acceptable average performance of modern implementations of functional languages is based on
aggressive optimizations� If a particular programming style is not well covered by the transformations used to
optimize functional programs� performance can su	er a great deal� The complexity of the transformations used
makes it di�cult for the programmer to understand performance implications of using one or the other coding
style�

�In fact� the mere fact that static typing restricts a program opens doors for many advanced optimization
techniques�

�A careful language design is necessary to ensure that the introduced dynamic checks occur at as few points
as possible and that the checking points are obvious to the programmer�

�

supported
hardware

types
data types
abstract

system
enforced
access

invariants

Figure �� The evolution of type systems� outer rings come later

of compiler
inferred types further� inspired by principal type systems ���� ��� many functional
languages allow for partial type annotations� The compiler computes the most general types
that a given program fragment can deal with and raises a compile
time error if the result
is inconsistent or ambiguous� Within the context of this article there is no need to further
distinguish between fully and partially annotated programs� as long as it is guaranteed that the
type inferencing has a sound basis� cannot lead to surprises� and does not try to use arbitrary
heuristics for disambiguation�

A type system can in principle be used to annotate all entities and all variables of a program�
Entities are constructed or primitive things of a language� e�g� constants� values� functions� or
objects� Variables are named paths to entities� e�g� local or global variables� function parameters�
or object �elds� An entity can itself have variables� e�g� function parameters and object �elds�
Depending on the language at hand� variables may be constant or not and a single entity may
be held by at most one� exactly one� or many variables at any one time�

A type is either identi�ed primarily by its name or by its structure 	its de�nition
� Con

sequentially� there are two di�erent approaches to telling whether two type expressions denote
the same type� compatibility by name requires the same name� while compatibility by struc

ture requires structural equivalence� Most imperative languages adopt compatibility by name�
including Oberon� Pascal� Sather� Ada� and C��� In functional languages it is natural to think
in terms of denoted values and therefore compatibility by structure is the common approach� It
is also adopted by a few imperative languages such as Modula
� ����� Besides some advantages�
compatibility by structure has a severe drawback� it can lead to accidental compatibility� a sig

ni�cant safety threat� Two user
de�ned types may be structurally identical� but have totally
di�erent meaning��

�To cope with such problems� Modula�
 introduces the compromise of branded types� such types are only
compatible if they have the same structure and are labelled to belong to the same �brand��

�

��� Abstract Data Types and Modularity

Simple type systems go back to languages like FORTRAN� variables can be of one of the basic
types of the language 	e�g� integer or real
 or of a constructed type 	multidimensional arrays in
the case of FORTRAN
� ALGOL
like languages� and in particular Pascal introduced a rich set of
type constructors to form records� sets� unions� and even �les� These original type systems could
be summarized to allow expression of invariants that restrict 	specify
 the domain of variables�
i�e� a type is seen as a set of possible values that a variable of that type may be bound to�

The introduction of abstract data types 	ADTs
 led to a re�ned understanding of what a type
is� Instead of viewing a type as a set of values� a type is viewed as an algebraic sort � a tuple
de�ning a set of entities plus the operations thereon� The type de�nition lists the operations
de�ned on the abstract data type� To form an algebraic structure� the type de�nition needs to
be augmented by axioms that specify the semantics of the abstract operations�

value belongs to an abstract type

...

+ value belongs to a user defined abstract type
+ value belongs to a multi-sorted algebra (module)

= types as sets of entities defined by characteristic predicate

+ objects belong to a behavioural (substitutable) type

Figure �� The evolution of abstract data types

Other than traditional constructed types� such as records� an ADT does not reveal its rep

resentation or implementation� Therefore� an ADT can be used to introduce a new type that
behaves just like any built
in type� For example� neither INTEGER nor the ubiquitous ADT
Stack reveal either their representation or the implementation of their operations� Furthermore�
an ADT is free to impose restrictions such as limited mutability� The advanced type system of
CLU ���� directly supports this by providing all type constructs in a mutable and an immutable
variant�

To facilitate a clean separation of ADT interface and implementation� modular languages
have been introduced� Modula
� ���� and Ada ���� are the standard examples� Mesa�Cedar ����
and Modula ���� actually introduced the core concepts� It is possible to view a module de�ning
and implementing a single ADT as being identical with the ADT� However� typical modular
languages follow a di�erent line� a module may well de�ne 	export
 more than one ADT� and as
well� it may partially or totally break with encapsulation by revealing part of the implementation
details� Modula
�� for example� allows incremental revealing of implementation details� the idea
being e�ciency can be traded for encapsulation by picking an intermediate semi
abstract view�

The idea of using a module to present multiple interacting ADTs leads to the notion of
modules as multi�sorted algebras or modules as theories� However� this again does not fully match
the role of modules in modular languages� The prime role of modules is that of providing con�ned
contexts of analysis and system composition ����� For the purposes of this article this can be
reduced to the requirement that just by inspecting the interface of all imported modules plus the
implementation of the module under inspection� it should be possible to do static type checking�
Finally� a module construct may provide for �ne
grained access control of exported entities� For
example� Oberon allows to export a variable read�only � while the module implementation itself
remains free to modify the variables value� Restricted export interacts with the type system to
enable programmers of modules to establish strong invariants without being concerned with the
details of client modules�

�

The importance of the use of modules to decompose the task of establishing correctness
cannot be overemphasised� The usual encasulation of ADTs ensures that only the encapsulated
operations need to be shown to be correct in order to ensure that objects are always in a valid
state� Similarly� the export modes of Oberon can ensure the validity of values even when the
structure of the object is not opaque� Ada�s limited private export mode goes even further�
by supporting variables which outside their package are not only opaque� but cannot even be
copied� In some contexts this is critical for establishing integrity properties� Notice that the
separation of types and modules allows for the type invariant to depend on scope� Thus instead
of a variable having the ANSI C attribute const everywhere� a variable may be constant except
within a limited scope� or even stronger� is only subject to aliassing with a particular scope�

��� Genericity and Polymorphism

Concurrent with the development of modular languages attempts have been made to group
and interrelate families of similar types� The two major threads are generic typing 	parametric
or bound polymorphism
 and subtyping 	inclusion polymorphism or object
oriented typing
�
Generic typing aims at factoring de�nitions and implementations by allowing type parameters�
Subtyping aims at establishing compatibility relationships among types�

Generic types � generic packages in Ada or templates in C�� ��� � do allow for some degree
of code re
use and therefore can increase safety�� However� the actual types resulting from
di�erent instantiations of generic types are usually incompatible�

When interpreting types as sets of acceptable entities it is easy to understand subtyping as
forming de�ned subsets� In other word� a variable of a given type can be bound to entities
of that type or of any subtype thereof� The key is to get a handle on the de�nition of useful
subsets� For a subset to be useful it must ful�ll a simple requirement� all entities in the subset
must behave just as any member of the whole set� as far as this can be observed through the
operations de�ned by the basetype ����� In practice� no language exists that fully guarantees
this requirement to hold� Most languages merely guarantee that a subtype has at least all of the
operations of its basetype and that all these operations are de�ned using subtype
compatible
signatures��

Subtypes have often been confused with sub
classes in early statically typed object
oriented
languages�� such as Simula ���� C��� or Ei�el ����� Since subclassing 	inheritance
 leads to the
inclusion of code� the requirement of behavioral substitutability for instances of subclasses is
hard to establish� Clearly� an uncaught subtyping error can be a serious safety threat leading
to arbitrary program misbehavior� Sather in turn fully separates classes and types ����� types
can only be derived 	subtyped
 from other types and classes implement types and inherit code
from other classes�	�

Also� there have been proposals to integrate subtyping and genericity� Early attempts treated
genericity as a special case of subtyping leading to languages like Ei�el� Later this has been re

�ned by viewing genericity and subtyping as two orthogonal constructs� e�g� ����� Consequently�
Sather separately supports both� genericity and subtyping� In particular� generic parameters

�Relying on a single parametrized implementation for a series of related concrete implementations allows to
amortize higher costs for specifying� verifying� and validating the shared code than would be possible for an
unrelated set of repeated implementations�

�A compatible signature in a subtype must have covariant �out� and contravariant �in� parameters� e�g� ��
�
�Surprisingly� Smalltalk does not su	er from this problem� as it simply does not have static type information

at all� therefore Smalltalk classes are in a pure code inheritance relationship and it is only the programmer that
might confuse subclassing with subtyping�

�	Inheritance is viewed as mere textual inclusion� i�e� is a pure code factoring and re�use utility�

�

are bound by basetypes and therefore allow for static type checking of generic code� The latter
is a known shortcoming of languages like Ada or C��� their generic constructs have unbounded
parameters and cannot be type checked in general� each instance must be checked separately�
Whether or not the type checking works out depends largely on the existence of the right oper

ations in the parameter types� In such cases safety is reduced to the level of type compatibility
by structure�

Finally� there have been attempts to unify classes and modules� Ei�el� once again� provides
an example� Nevertheless� since the two concepts play quite di�erent roles� it seems wise to have
separate constructs instead ����� Oberon or Ada
�X ���� provide examples of such separation�
The �nal blending of module and type systems is still a topic of ongoing research�

��� Types and Exceptions

All properties of a system can break down if unexpected events � exceptions � cannot be dealt
with properly� Exception handling is a long debated issue� but most discussion has centered
on the semantics of the exception handling mechanism� on whether an interrupted computation
is terminated or can be resumed� and on the granularity of exception handling���� Recent
languages� including Modula
� and C��� mostly converged on a termination model of exception
handling with a termination granularity of a protected statement � following Modula
� typically
called a try statement� All of these language also provide for the automatic propagation of
unhandled exceptions to the dynamically enclosing environment�

Languages in this category allow declaration of possible exceptions as part of procedure or
function signatures� However� they typically allow a procedure that has been declared without
any list of potential exceptions to raise any exception� The only language that got this point
right� and also the �rst to introduce strongly typed exception handling� is CLU� In CLU a
procedure simply cannot raise an exception that has not been declared in its signature� If
code may raise an exception and it is not handled locally and it is not declared as a possible
exception of the enclosing procedure� then a compile
time error is �agged� CLU implements a
rather di�erent model of propagation� which almost forces exceptions to be handled locally by
the caller of the faulting routine�

It seems obvious that code that is not supposed to raise a particular exception should not
be able to do so� Following this policy through adds some burden for the programmer and
hence C��� Modula
�� and many other languages are less strict in their demands� As a result a
programmer must either know the implementation of an interface 	which breaks encapsulation�
extensibility� and principles of modular development
� or must be entirely defensive and expect
and handle all possible exceptions whenever calling non
local code�

At a second glance it seems that there is a contradiction between strong typing of exceptions
and extensibility� how can an extensible interface 	say an abstract base class in C��
 list all
possible exceptions that may be raised by one of its methods� The problem can be solved by
using inclusion polymorphism 	subtyping
 for exception types as well� For example� an abstract
interface may declare that� say� operation SendMessage may raise exception CommunicationEx�
ception� Then any concrete implementation of SendMessage is free to raise that exception or any
subtype thereof� e�g� UnknownReceiver� if that is a subtype of CommunicationException� This
facility is supported by all modern languages that cover exceptions� including C��� Modula
��
Java� and Sather� However� none of these languages 	CLU again remains the exception
 force a
programmer to declare possible exceptions� leaving a safety gap open�

�

� Going Beyond Sets of Entities

Although quite elaborate� all the type schemes introduced so far can be understood as de�ning
potential sets of entities� 	Recall that an entity is anything that a language o�ers and that a
variable can be bound to�
 The initial claim above was that type systems allow the expression
of certain invariants over program fragments� By restricting a type system to look at a single
variable�entity relation at a time� the possible invariants are limited to the same scope� However�
consider the de�nition of a statically typed function� each of the parameters is associated with a
type� Hence the function implementation can rely on the correct typing of all arguments�� of the
function� How does this �t into the model of individual and separate variable�entity relations�
The answer is simple� the parameters are fully independent� just as a set of global variables
would be� and the static matching of argument types against parameter types does not at all
consider the combination of the parameter or argument types�

A more general view is that type systems can themselves be seen as little functional program

ming languages superimposed on their host languages ����� In the case of static type checking
the �type program� gets fully evaluated by the compiler� Advanced type systems� such as those
supporting inclusion polymorphism as commonly found in typed object
oriented languages� can
render fully static checking impossible 	undecidable
 and some residual run
time type checks are
needed�

��� Multi�Methods

Inspired by the functional view of type systems one might have a look at dynamic function
selection based on argument types� Object
oriented dispatch 	late binding
 usually uses the
type of a single distinguished object� the receiver� to select the appropriate method to execute�
In CLOS ��� this has been generalized to generic functions or multi
methods� but CLOS is
untyped� Cecil is the �rst language to introduce fully typed multi
methods ����

For example� consider the problem of de�ning addition for all numerical types supported by
some language� say integer� real� and complex� All of these types support addition and since the
mathematical �elds they approximate are sub�elds of each other� mixed additions are de�ned
as well and yield a result of the next enclosing �eld� In Cecil one might write �

��Arguments are sometimes called actual parameters� parameters are then called formal parameters�

�

add � x � complex� y � complex �

�� x�T speci�es dispatch on x

�� the speci�ed method is selected if x is of type T

� ��� code to return the sum of two complex numbers

add � x � complex� y � real �

� add � x� asComplex�y� �

add � x � complex� y � integer �

� add � x� asComplex�y� �

asComplex � x � real �

� ��� convert real to complex and return

asComplex �x � integer �

� asComplex �asReal�x��

���

The main point is that code is written individually for each separate case� When writing
add	x� y
 somewhere in a program� the Cecil run
time inspects the dynamic types of x and y
and uses this information to lookup the method that implements addition for these particular
types���

Clearly� multi
methods eliminate many complicated case analysis constructs and thus seem
to be a strong feature� However� reality is not that simple� multi
methods need an additional
harness to become useful� The problem becomes visible when combining multi
methods with
modules� Multi
methods e�ectively implement a table lookup in a fully populated Cartesian
product� each parameter of a multi
method introduces a separate dimension for subtyping and
for multi
methods to work it is necessary to fully inspect all possible combinations� It may not
be necessary to implement separate methods for all combinations� since a single method can
handle multiple combinations� but it needs to be checked that each combinations is indeed and
without ambiguity handled by exactly one method�

For modules to be useful it must be possible to analyze each module separately� If de�nitions
of subtypes can cross module boundaries� the presence of multi
methods makes separate checking
impossible� There are two possible conclusions� restrict a multi
method to a single module or
introduce a new construct to �seal o�� a set of modules and prevent further addition of subtypes
outside of the set that would a�ect the selection of multi
methods in the set� Cecil takes the
latter approach and introduces resolving modules that e�ectively form the closures of the before
mentioned sets of modules�

��� Linear Types

Instead of focussing on a set of entities when trying to form more powerful typing constructs� it
is also possible to stay with a single entity but consider multiple or even all possible variables
that might be bound to that entity� A type construct along this line that is attracting research
attention are the linear types� Linear types are based on linear logic ����� for a introduction to
linear types in the context of contemporary languages cf� ����

A linear type restricts the number of variables that can be bound to a 	linear
 entity at any
one time to exactly one� In other words� once created� a linear entity is held by exactly one

��In general� Cecil uses the most speci�c method closest to the actual types� Ambiguities are considered errors�

�

variable at a time and explicit destruction of the entity is the only way to get rid of it again�
Linear entities have the interesting property of never being accessible via multiple paths� i�e�
there is no aliasing and therefore no need for synchronization�

 object has at most one reference (linear types)

+ references may be borrowed but are returned

 ...

= types are global invariants over objects (modal types)

Figure �� Types with access or sharability invariants

The use of such types is well established in functional programming� but is still the subject of
research in the imperative setting� The attraction of such types include the possibility of safely
using very aggressive compiler optimisations� the simpli�cation of dynamic memory management
issues� and the elimination of mutual exclusion concerns from distributed or multi
threaded
programs� Implementation issues are not yet well understood however�

��� Modal Types � Generalizing Linear Types

As indicated above� linear types depart from traditional classes of predicates expressable by type
systems in that they simultaneously cover all possible variables that potentially could be bound
to a given entity� Linear types restrict the number of simultaneous access paths to an entity�
This idea can be followed further to introduce other global restrictions on how entities can be
accessed�

It has been suggested that linear types within an integrated language can allow for easy
handling of mutable single
owner objects� before they get published as immutable shared 	�func

tional�
 objects����� This possibility hints in an important direction� the abolition of separate
access control mechanisms in multi
threaded environments in favor of new type systems�

The Gardens Project�� ��� is an example of a current research project developing new type
concepts driven by the idea of generalizing linear types� These new types are called modal types�
a term which subsumes the concept of linear types� but adds some novel type concepts as well�
e�g� borrow types�

The key idea of a borrow type is to �lend out� a reference to an entity � thereby temporarily
losing all access � to some other variable with the additional requirement that as soon as that
other variable ceases to exist� the reference will be transferred back to the original owner� This
concept requires the use of variables with a controlled lifetime� such as parameters of procedures
or variables introduced by let statements�

At �rst glance it seems that the concepts of linear and borrow types overlap� with linear
and with borrow types the original reference is lost when passing it on� However� with borrow
types the reference is guaranteed to return�� and the referenced entity is guaranteed to still
exist� Also� a borrow type by itself says nothing about the number of references that might
temporarily exist before the lent
out reference is returned�

As an example� consider a simple database serving clients that execute in parallel� In a
traditional setting� items �checked out� from the database need to be locked to prevent write�

��Gardens aims at enabling parallel programming across networks of workstations� One of the key objectives
is to develop a new programming language that is tightly integrated with its supporting system to minimize
overheads� An important part of that development is the careful evaluation of type systems to lift the level of
expressible global invariants�

��In principle� even under the presense of exceptions� This adds some burden to a possible exception handling
scheme in a language supporting borrow types�

��

write con�icts with other clients� Using a modal type system� the data base would call a client
closure and pass the requested item using a borrow type to serve clients asking for exclusive
write access� The concept of locking the item is replaced by the concept of temporarily removing
it from the database under control of the type system� Of course� this does not eliminate the
possibility of deadlock� but it may open ways for analysis methods to check for guaranteed
deadlock freeness of some given program�

It is interesting to compare the combination of borrow and immutable types with the concepts
of single assignment variables� plain immutable types� or constant types as known from Ada�
C��� or ANSI C� With all of the latter types a computation can be performed once resulting
in an entity that thereafter can no longer change� This can be very useful� but quite often turns
out to be too strong� For example� the �owner� of an entity may still want to be able to change
it� something that is supported by Oberon�s read
only or Ada�s limited private types� However�
it is usually only safe to change such a semi
constant entity when �no one is looking�� i�e� when
no other references to the entity are currently active� That is easy to establish by combining
borrow and immutable types� whenever a client asks for the entity� it is handed out borrow�
immutable� while inside the owner module the entity remains mutable whenever it is accessible�
i�e� when it is not lent out�

Since a variable of borrow type has to ful�ll a strong requirement� it can only be used to
pass entities on to other borrow types variables � all other uses would require global analysis
to establish that the borrowed entity is indeed returned� This requirement is similar to that
for linear types� but even stronger in that a linear entity can be freely destroyed by its current
owner� i�e� a linear entity is always fully owned by the variable currently holding the reference
to it�

Borrow types are related to the concept of observer types ����� again from the domain of
functional languages� However� just as for the linear types� there is little known about the
integration into imperative settings��� A thorough investigation of these matters is underway as
part of the ongoing Gardens Project�

The novel concept of modal types promises to enrich the potential of type systems and to
further strengthen their role in programming for safe systems�

� Powerful Type Systems and Their E�ect on Safety

Type systems which enforce useful invariants on their variables have the possibility to enhance
the safety of software systems� and to assist in the task of analysing correctness� As type systems
have evolved� so the range of program errors which it is possible to detect as type violations has
widened� The avoidance of type errors in programs is so fundamental to safety� that it should
be a matter of some incredulity that such a large proportion of current software depends on
languages with weak type systems� and primitive mechanisms of encapsulation�

In some domains� the soundness of the type system is critical to the security of applications�
as well as to correctness� Such is the case with the Java language� intended as a language for
constructing executable content in the World Wide Web� For such an application� it is important
to ensure that object code does not 	for example
 breach the type system and invalidly access
data� If this were allowed� it would allow virus
like vandalware to be inadvertently loaded by
users� Indeed in this case� although a correct compiler can only produce typesafe code� the Java
runtime system cannot rely on this� In Java� downloaded object code is subjected to one last
level of typechecking in order to guard against a rogue compiler which might try to trick the

��Or object�oriented settings for that matter�

��

system into accessing data outside of declared objects� Java is a C�� based language� however
many constructs had to be removed� and the type system needed to be signi�cantly strengthened
to provide safety and security� A comparison of the two languages is an enlightening exercise�

In general� type systems in which type checking is fully static do not require any runtime
type checks� However� they may require other runtime tests in order to guarantee their declared
invariants� A simple example is the use of subrange types in Pascal� The use of well chosen
subrange types in Pascal can almost completely eliminate index bounds checks� However� in
order to guarantee that the values of such variables are valid requires runtime range tests� In
almost all programs� this leads to a smaller runtime overhead� which in any case is exceptionally
small� In the case of the more radical uses of type systems which are currently the subject
of research� there will often be runtime overheads in maintaining declared invariants� However�
elimination of other runtime tests may more than pay for the cost� as well as providing additional
safety�

� Conclusions

Type systems may be viewed as a mechanism to introduce assertions about the entities in
a program� In the short history of programming languages one evolutionary path has been
to introduce progressively more powerful type systems� In the case that the type system is
either partly or fully statically checkable� a large class of incorrect programs may be detected
and eliminated during compilation� Even in the case where type correctness is not completely
statically determinable� such type systems provide a framework for analysis which guides the
introduction of economical runtime checks to complete the type safety guarantee�

Statically checkable type systems play an important role in the safe use of software com

ponents� Without a su�ciently powerful type system� the type correctness of an individual
component is not preserved by the incorporation of the component into a compound frame

work� A particular issue is the so
called fragile base class problem� in which the extension of a
particular class invalidates the correctness of an existing component�

Modules provide an encapsulation mechanism which provides a physical embodiment of the
logical decomposition of a complex system� In conjunction with strong static typing� modules
provide a framework in which arbitrary compositions of typesafe modules are also typesafe� thus
helping decompose the task of analysing correctness� Modularity is thus a key attribute which
provides the framework for the construction of trustworthy software systems�

Future languages may incorporate some of the more exotic types which are currently the
subject of research� These languages o�er not only the promise of a higher level of automatic
checking� but may also provide performance advantages to their users�

References

��� H� G� Baker� Use
Once� Variables and Linear Objects � Storage Management� Re�ection�
and Multi
Threading� SIGPLAN Notices� ��	�
� January �����

��� L� Cardelli� Typeful programming� Technical Report TR���� Digital Equipment Corpora

tion� Systems Research Center� Palo Alto� CA� May �����

��� C� Chambers� Object
Oriented Multi
Methods in Cecil� In Proceedings of the Sixth Euro�
pean Conference on Object�Oriented Programming �ECOOP��	
� Utrecht� The Netherlands�

��

volume LNCS ��� of Lecture Notes in Computing Science� pages ������ Springer Verlag�
June �����

��� O�
J� Dahl and K� Nygaard� Simula
 an ALGOL
based Simulation Language� Communi�
cations of the ACM� �	�
� September �����

��� L� Damas and R� Milner� Principal type schemes for functional programs� In Proceedings
of the Ninth Annual Symposium on Principles of Programming Languages� January �����

��� L� G� DeMichiel and R� P� Gabriel� The Common Lisp Object System� An overview� In Pro�
ceedings of the First European Conference on Object�Oriented Programming �ECOOP���
�
volume LNCS ��� of Lecture Notes in Computing Science� Springer Verlag� June �����

��� J� Diederich� J� Gough� G� Mohay� and C� Szyperski� The Gardens Project � an introduc

tion� In Bound Collection of Submissions to the First Australasian Computer Architecture
Workshop �Adelaide� South Australia
� pages ������ Not available� A softcopy can be re

trieved from URL http���www�fit�qut�edu�au��szypersk�Gardens� January �����

��� S� Drew and K� J� Gough� Exception handling� Expecting the unexpected� Computer
Languages� ��	�
������� August �����

��� M� Ellis and B� Stroustrup� The Annotated C

 Reference Manual� Addison
Wesley� �����

���� J�
Y� Girard� Linear logic� Theoretical Computer Science� ��������� �����

���� A� Goldberg and D� Robson� Smalltalk���� The Language and Its Implementation� Addison

Wesley� �����

���� R� Hindley� The principal type scheme of an object in combinatorial logic� Trans� Am�
Math� Soc�� ���������� December �����

���� B� Liskov and J� Guttag� Abstraction and Speci�cation in Program Development� MIT
Press� �����

���� B� H� Liskov and J� M� Wing� A Behavioral Notion of Subtyping� ACM Transactions on
Programming Languages and Systems� ��	�
� November �����

���� B� Meyer� Ei�el � The Language� Prentice Hall� � edition� �����

���� J� G� Mitchell� W� Maybury� and R� Sweet� Mesa language manual� Technical Report
CSL������ Xerox Palo Alto Research Center� Palo Alto� CA� April �����

���� G� Nelson� editor� Systems Programming with Modula��� Series in Innovative Technology�
Prentice Hall� �����

���� M� Odersky� Observers for linear types� In Proceedings of the European Symposium on
Programming� February �����

���� D� of Defence� Reference Manual for the Ada Programming Language� United States DOD�
Washington D�C�� November �����

���� S� Omohundro� The Sather programming language� Dr� Dobbs Journal� ��	��
�������
October �����

��

���� J� Palsberg and M� I� Schwartzbach� Type substitution for object
oriented programming�
In Proceedings of the Joint Fifth Conference on Object�Oriented Programming Systems�
Languages and Applications and the Fourth European Conference on Object�Oriented Pro�
gramming �OOPSLA�ECOOP���
� pages �������� October �����

���� M� Reiser and N� Wirth� Programming in Oberon � Steps beyond Pascal and Modula�
Addison
Wesley� �����

���� Sun Microsystems� The Java Language Speci�cation� Technical report� Sun Microsystems�
May �����

���� C� A� Szyperski� Import is not Inheritance� why we need both� Modules and Classes� In Pro�
ceedings of the Sixth European Conference on Object�Oriented Programming �ECOOP��	
�
Utrecht� The Netherlands� volume LNCS ��� of Lecture Notes in Computing Science� pages
������ Springer Verlag� June �����

���� C� A� Szyperski� S� Omohundro� and S� Murer� Engineering a Programming Language �
the Type and Class System of Sather� In Proceedings� First Intl Conf on Programming
Languages and System Architectures� number ��� in Springer LNCS� Zurich� Switzerland�
March �����

���� S� T� Taft� Ada �x� From Abstraction
Oriented to Object
Oriented� In Proceedings of the
Eighth Conference on Object�Oriented Programming Systems� Languages� and Applications
�OOPSLA���
� pages �������� October �����

���� S� Thompson� Type Theory and Functional Programming� Intl� Comp� Science Series�
Addison
Wesley� �����

���� N� Wirth� Modula� A programming language for Modular Multiprogramming� Software �
Practice and Experience� �	�
������� January �����

���� N� Wirth� Programming in Modula�	� Texts and Monographs in Computer Science� Springer
Verlag� � edition� �����

��

� About the Authors

Clemens Szyperski is an Associate Professor in the School of Computing Science and Director of the
Research Concentration in Programming Languages and Systems� Queensland University of Technology�
Brisbane� Australia� In ���	
�� he was a postdoctoral research scientist at the International Computer
Science Institute a�liated with the University of California at Berkeley� He received the PhD in CS in
���	 from the Swiss Federal Institute of Technology
ETH Zurich� and the Dipl��Ing� in EECE from the
Aachen Institute of Technology
RTWH�� Germany� in ����� In ���� he co�founded Oberon microsystems
Inc� Basel� Switzerland and contributed to the design and implementation of the Oberon
F component
framework� His research interests are extensible and distributed systems and the programming languages
to support these� He has been participating in the Oberon and Ethos language and system projects at
ETH� as well as in the Sather language and Tenet realtime communication projects at ICSI� At QUT he
heads the Gardens Project� aiming at the de�nition and implementation of an integrated programming
language and system to ease the creation of safe and e�cient parallel programs executing on networks of
workstations� A major focus in the Gardens project is to fully utilize static properties of the language
and the
trusted� compiler to minimize local
non�maskable� overheads�

John Gough is Acting Dean of the Faculty of Information Technology and Professor in the School

of Computing Science� Queensland University of Technology� Brisbane� Australia� A PhD graduate of

the University of Wellington in his native New Zealand� his interests were originally in hardware� but

switched to software in the late ����s� Since that time� he has worked almost exclusively on programming

language implementation� and is well known for the �gardens point� family of language compilers� His

current research interests encompass code generation and optimisation theory� particularly for modular

languages� He heads the language implementation team in the Gardens project�

��

