
Learning from Components: Fitting AOP for System
Software ∗

Andreas Gal, Michael Franz
Department of Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

{gal,franz}@uci.edu

Danilo Beuche
School of Computer Science

Otto-von-Guericke-University of Magdeburg
Magdeburg, D-39106, Germany

danilo@ivs.cs.uni-magdeburg.de

ABSTRACT
Aspect-oriented programming (AOP) and implementation
of system software are fairly complex tasks on their own.
Combining these two severe challenges seems to be not very
inviting to operating system and system software builders.
To make AOP more appealing to the system software com-
munity, we limit the sometimes pervasive nature of AOP by
applying lessons learned from component-oriented program-
ming to make AOP more manageable and easier to verify.
The result is AspectLagoona, a featherweight aspect lan-
guage with very simple semantics and easily understandable
and well specified aspect and component code interaction.

1. MOTIVATION
At first, aspect-oriented programming [7] and component-
oriented programming (COP) seem to be totally irreconcil-
able as far as their fundamental design principles are con-
cerned.

Components are defined as a unit of composition with con-
tractually specified interfaces and explicit context dependen-
cies only [13]. A component can be understood as a black
box for which it is only known how to connect to it to request
a certain service (Figure 1). How the request is processed
internally is hidden from the client. This property makes
components interchangeable, as all dependencies are on the
interface level only.

Aspects have a very different way of interconnecting with
components. Instead of communicating with components
through well defined interfaces, they have to reach directly
inside the component to extract and modularize crosscut-
ting concerns (which might very well even crosscut across
component boundaries).

In general, commercial operating system builders tend to be
much more reluctant to adapt new technologies than soft-
ware writers in other domains. Operating system imple-
mentors are this conservative for a good reason: it is the re-
sponsibility of the OS to facilitate all I/O operations and to
manage all hardware resources. While a faulty application
might affect a certain single task performed by that particu-
lar application, a software error inside the operating system
can easily interfere with all applications at once, causing

∗This work was partially supported by the National Science
Foundation under grants EIA-9975053 and CCR-0105710.

damage to a much greater extent. Operating systems are
in general also much more difficult to debug than standard
applications as usually little control over the machine is left
once the OS crashed.

Probably the most repulsive property of AOP for system
software programmers is its crosscutting nature. While a
line of component code tends to be connected to one par-
ticular action resulting in some predictable local effect, as-
pect code can sometimes have a subtle, sometimes even
“ghostly”, influence on the whole system by bypassing es-
tablished communication protocols and interfaces between
components and directly manipulating internal component
state.

The interdependence between aspect code and component
code is particularly hard to grasp as existing general pur-
pose aspect languages like AspectJ [6] and AspectC++ [12]
offer a wide variety of mechanisms for aspects to attach to
component code.

To make AOP more attractive for system software develop-
ers, it is required to make aspect and component code inter-
action more obvious by simplifying the involved mechanisms
and offering the programmer a mechanism to control where
aspect code is allowed to interfere with component code and
where not.

In this position paper, we present the language Lagoona [3]
and its aspect-oriented extension AspectLagoona. Lagoona
is an object-oriented language based on the idea of stand-
alone messages and message forwarding. In Section 2 we will
discuss the fundamentals of the Lagoona language. Section 3
highlights why stand-alone messages greatly simplify the un-
derstanding of aspect-component interaction while still pre-
serving the similar level of expressibility as other general-
purpose aspect languages. Section 4 discusses related work
while Section 5 finally contains our conclusions and possible
future extensions.

2. LAGOONA
The most obvious feature that sets Lagoona apart from es-
tablished object-oriented programming languages is stand-
alone messages. In Lagoona messages are bound to (de-
clared in) modules instead of types, whereas most other
object-oriented statically-typed languages subordinate mes-
sages to classes (Figure 2). Stand-alone messages prevent



well defined interface

componentcomponent component

COP AOP

aspect

Figure 1: Interdependencies between components and aspects

“accidental” conformance relationships, where for example
a Cowboy type and a Shape type both understanding a mes-
sage draw with different semantics. Similar to the assump-
tion made about interfaces in COM [10], it is assumed that
messages and their specification are immutable once pub-
lished and thus have the same meaning to any potential
receiver object independently from its type.

Messages are the basis for interface types, (interface in our
concrete syntax) which represent references to objects that
implement a certain set of messages. Conformance to inter-
face types is structural. The pervasive interface type any

represents the empty message set and is the top element in
the resulting type lattice. Note that the name we give to
an interface type is only a convenient abbreviation; instead
of using such a name, we could also declare isomorphic in-
terface types repeatedly. Conceptually, interface types in
Lagoona are used to decouple independent components [4],
similar to the use of interfaces in both COM [10] and to a
certain extent Java [5].

Implementation types (class in our concrete syntax) host
methods and declarations for instance variables. While mes-
sages are abstract operations that describe what effect they
achieve, methods are concrete operations that describe how
an effect is achieved. In other words, messages are speci-
fications for methods, and methods are implementations of
messages. Each method implements exactly one message
and is triggered when an object of the associated type re-
ceives that particular message.

While an interface type is simply a set of messages, an imple-
mentation type consists of a set of methods and associated
storage definitions. In contrast to messages, methods are
declared in the scope of an implementation type. This asym-
metry is intentional, since we want to support multiple im-
plementations of identical specifications on the level of mes-
sages and methods as well as on the level of interface types
and implementation types to foster component-oriented pro-
gramming. As with messages and methods, interface types

and implementation types serve as specifications and imple-
mentations for each other.

To relate interface types and implementation types (includ-
ing their instances), we need to define some notion of con-
formance.

First, an interface type B denoting a set of messages MB

conforms to an interface type A denoting a set of messages
MA if and only if MB is a superset of MA:

A � B ⇐⇒ MA ⊆ MB (1)

In other words, we employ structural subtyping between in-
terface types.

Second, an implementation type C with a set of methods
implementing a set of messages MC conforms to an interface
type B denoting a set of messages MB if and only if MC is
a superset of MB :

B � C ⇐⇒ MB ⊆ MC (2)

Third, an interface type never conforms to an implement-
ation type. Of course, Lagoona allows interface types to be
cast to implementation types, guarded by a dynamic check.

Finally, two implementation types only conform if they are
the same type. In other words, we employ occurrence equiv-
alence between implementation types.

As instance variables are internal to the associated object,
at runtime, Lagoona’s object model essentially reduces to
a web of independent instances that communicate through
messages.

Assume we are sending a message m to a receiver r, which
can be an interface or an implementation reference, whose
type R denotes a message set MR. We distinguish two mes-
sage send operators with different semantics.



object−bound messages stand−alone messages

Object A Object A

Object B Object B

method A.X

method A.Y

message A.X

message A.Y

method B.Y message B.Y

method A.X

method A.Y

method B.Y

message X

message Y

Figure 2: Messages in Lagoona and traditional object-oriented languages

The first operator . is strict in the sense that the expression
r.m is valid if and only if m is an element of MR:

r.m ⇐⇒ m ∈ MR (3)

In other words, this operator statically ensures that the mes-
sage m will be ‘handled” by the instance bound to r.

The second operator ! is blind in the sense that the expres-
sion r!m is always valid. Of course, we have to guard the
application of this operator by a dynamic check, similar to
the one for casts mentioned above.1

Implementation types can define a default method which is
triggered for messages that do not have an explicit method
associated with them. Inside this default method, messages
can be resent or forwarded to other instances (Figure 3).

Lagoona does not contain any implicit fall back rules for the
message dispatch such as inheritance. However, the pro-
grammer can easily emulate inheritance, both class-based
as well as prototype-object based, using the default method
and a simple forwarding statement. We use the term generic
message forwarding to express that the actual message re-
mains opaque during the forwarding process. The default
method is implemented in a generic way and describes the
forwarding action for all otherwise unhandled messages for
the implementation type. Figure 4 shows a concrete code
example where objects of type A forward all unhandled mes-
sages to an object of type B. Thus, basically A behaves as
it would be derived from B in traditional object-oriented
languages.

3. AOP WITH LAGOONA
Adding support for aspect-oriented programming to Lagoona
is surprisingly simple. As we have mentioned earlier, in-

1For sensible assignment semantics, it is also necessary to
perform a dynamic check for the generation of return values
in case of messages, which are expected to produce a return
value.

module Example {

...

class A {

B b = new B();

void X() {

...

}

void default(message m) {

m.forward(b);

}

};

class B {

void Y() {

...

}

};

};

Figure 4: Emulating inheritance with stand-alone
messages

stance variables are internal to the associated object in La-
goona and thus objects communicate exclusively using mes-
sage send operations. This removes the need for get/set
pointcut functions, which exist in other aspect languages to
capture read and write actions to attributes.

There is also no need to distinguish between different types
of invocations such as call and execution as all complex dis-
patch algorithms are explicit in Lagoona. If the programmer
decides to use inheritance by emulating it with forwarding,
that emulation code is embedded within the default method
and can be directly accessed by aspect code.

In AspectLagoona advice code is bound to messages and
executed every time that particular message is being send



Object A

Object B

default method

method A.X

method B.Y

generic forwarding

message Y

message

Figure 3: Using generic message forwarding to extend objects

to an object. As messages are unique in Lagoona, there
is no need to introduce the concept of named pointcuts to
describe and select parts of the class hierarchy. This has a
subtle but significant impact on the code maintainability.

Languages like AspectJ and AspectC++ rely on explicit
class names or name patterns to select the join points for
which advice is being specified. To maintain consistency,
these pointcut expression in the aspect code have to be up-
dated every time a new class is added to the system which
should receive advice from that particular aspect. Name
patterns like “my*” can be used to ease this maintenance
burden, allowing to capture all classes or methods having
a name matching the pattern. However, this approach is
error prone, if the name of a new class accidentally matches
already existing name patterns in the program.

In AspectLagoona, aspects are bound to messages and not
to concrete implementation types. If advice is specified for
a certain method, it will apply to all methods implementing
that particular message. When new implementation types
are added to the system, the pointcut expression and the
aspect definition do not have to be changed, because advice
code is specified for messages instead of concrete methods.
This feature is vital to apply aspect-oriented programming
in a component-based environment, where new components
can be added on the fly.

There is also no need to introduce a novel construct for
pointcuts and pointcut expressions. A pointcut is a set of
join points. In Lagoona the only meaningful join points are
messages and Lagoona already supports the notion of a set
of messages: interfaces. Figure 5 demonstrates how advice
code is declared in Lagoona.

In contrast to other aspect languages where privileged as-
pects can inject code inside components, in Lagoona public
interfaces exported by components serve as join points. This
decouples the aspect code from the component code and al-
lows the component to hide its internal structure to the de-
gree it is necessary to provide interchangeability. Effectively,
interfaces become not only the well-defined specification for
inter-component communication, but also for the interaction
between aspects and components (Figure 6).

module Application {

interface NeedLocking {

void print(char c);

void flush();

};

class Screen {

void print(char c) {

// lock must be held

...

}

void flush() {

// lock must be held

...

}

};

};

module Locking {

advice Application.NeedLocking {

void before() {

// aquire lock

}

void after() {

// release lock

}

}

};

Figure 5: Defining advice code in Lagoona

4. RELATED WORK
A number of powerful aspect-oriented languages exists to-
day, including AspectJ [6], AspectC++ [12], and more re-
cently AspectC# [8]. Unfortunately, none of them is geared
to accommodate component-oriented programming and aspect-
oriented programming at the same time.

AOP has been successfully applied in the operating systems
domain by a number of projects. The PURE family of op-
erating systems uses AspectC++ to implement interrupt
synchronization for deeply embedded systems [9]. The a-
kernel [2] project uses AspectC, a subset of AspectJ to mod-
ularize certain crosscutting concerns in the FreeBSD kernel.



component aspect

Figure 6: Well-defined aspect/component interface

Both projects operate on a monolithic operating system ker-
nel and do not address component-based systems.

The Aspect-Modulator Framework [11] also permits to mod-
ularize C++ OS code with aspects. An aspect modulator is
responsible to execute advice code where appropriate. The
aspect modulator is invoked from join points generated man-
ually through code insertion. Bossa [1] uses event-based
AOP to modularize OS schedulers. Events are inserted man-
ually into the source code and aspects can choose to sub-
scribe to them. An interesting feature of the event-based
AOP model is the possibility to dynamically enable and dis-
able aspect code.

5. CONCLUSIONS AND FUTURE WORK
Implementors of system software are reluctant to adopt novel
programming mechanisms and paradigms, unless the new
technology is handed to them in manageable pieces. As-
pectLagoona aims exactly at these hard-to-convince users
by offering a lightweight mechanism for aspect-oriented pro-
gramming that still allows to deal effectively with all ap-
plications of aspects that the authors of this paper have
encountered so far.

On the other hand AspectLagoona does not try to compete
directly with AspectJ or AspectC++, as it is in contrast
to the latter two aspect languages a complete new language
design with a different object-oriented core language. This
disqualifies AspectLagoona for the re-engineering of legacy
operating systems, which seems to be currently the most
pursued approach in pushing AOP into the commercial OS
market.

The lesson we are trying to learn from AspectLagoona is
what the smallest and least invasive approach to extend a
languages with AOP capabilities would be. We are confident
that such a minimalistic approach has a good chance of being
accepted in certain areas of the system software domain.

Our current implementation of AspectLagoona includes a
complete compiler and runtime system, all written in La-
goona. Recently we started to re-engineer parts of the com-
piler and especially the runtime system to make use of the
aspect-oriented features of the language, which were initially
not present.

As far as future work is concerned, we plan to rework the
advice activation infrastructure, which is currently compile-
time driven. Our goal is to fully integrate aspects into the
component framework of Lagoona, allowing to compose sys-
tems from binary components and precompiled aspects at
deployment time or even dynamically.

6. REFERENCES
[1] L. P. Barreto, R. Douence, G. Muller, and M. Südholt.

Programming os schedulers with domain-specific
languages and aspects: New approaches for os kernel
engineering. In Proceedings of the 1st AOSD
Workshop on Aspects, Components, and Patterns for
Infrastructure Software, Apr. 2002.

[2] Y. Coady, G. Kiczales, M. Feeley, N. Hutchinson, and
J. S. Ong. Structuring operating system aspects: using
AOP to improve OS structure modularity, 2001.

[3] M. Franz. The Programming Language Lagoona: A
fresh Look at Object-Orientation. Software - Concepts
and Tools, 18(1):14–26, 1997.

[4] P. Fröhlich and M. Franz. On certain basic properties
of component-oriented programming languages. In
D. H. Lorenz and V. C. Sreedhar, editors, Proceedings
of the Workshop on Language Mechanisms for
Programming Software Components (at OOPSLA),
pages 15–18, Tampa Bay, FL, Oct. 15 2001. Technical
Report NU-CCS-01-06, College of Computer Science,
Northeastern University, Boston, MA 02115.

[5] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification. Addison-Wesley, 2nd edition,
2000.

[6] G. Kiczales, E. Hilsdale, J. Hugonin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of
AspectJ. In J. L. Knudsen, editor, ECOOP 2001 –
Object-Oriented Programming, volume 2072 of LNCS.
Springer-Verlag, June 2001.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In M. Aksit and
S. Matsuoka, editors, Proceedings of the 11th European
Conference on Object-Oriented Programming (ECOOP
‘97), volume 1241 of Lecture Notes in Computer
Science, pages 220–242. Springer-Verlag, June 1997.

[8] H. Kim. AspectC#: An AOSD implementation for
C#. Master’s thesis, Department of Computer
Science, Trinity College Dublin, Sept. 2002.

[9] D. Mahrenholz, O. Spinczyk, A. Gal, and
W. Schrder-Preikschat. An aspect-orientied
implementation of interrupt synchronization in the
pure operating system family. In Proceedings of the
5th ECOOP Workshop on Object-Orientation and
Operating Systems, Malaga, Spain, June 2002.

[10] Microsoft Corporation. The Component Object Model
(Version 0.9), Oct. 1995.



[11] P. Netinant, T. Elrad, and M. E. Fayad. A layered
approach to building open aspect-oriented systems: a
framework for the design of on-demand system
demodularization. Communications of the ACM,
44(10):83–85, 2001.

[12] O. Spinczyk, A. Gal, and W. Schröder-Preikschat.
AspectC++: An Aspect-Oriented Extension to the
C++ Programming Language. In Fortieth
International Conference on Technology of
Object-Oriented Languages and Systems (TOOLS
Pacific), volume 10 of Conferences in Research and
Practice in Information Technology. ACS, 2002.

[13] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley /
ACM, 1998.


