
 1 

Mälardalens University 
Department of Computer Science and Electronics 
CD5130  Object Oriented programming 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Ada 95 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Abdul Rahim Rao (ral04001@student.mdh.se) 
Muhammad Asif(amd04003@student.mdh.se)  

Supervisor: Martin Skogeval 
 

 



 2 

 
 
 
 

Abstract 
 
 
It is rightly said by someone that current age is an age of information overload and 

that’s why it is easier to write computer codes using different object oriented 

programming.Because Today there are many  Object Oriented Programming (OOP) 

languages which are used to create software that are more realistically modeled, just 

like the real-world entities. OOP has been available for developers for about 15 

years, because of the popularity of the C++, and C heritage, C++ is not completely 

object-oriented compared to Java which is completely object-oriented. Like Java, 

there are many languages that strictly follow OO features, for example,C++,C#,Java, 

Ada  and many more. The main objective of our report is to emphasize on 

introduction of  Ada, its basic concepts,usage of Ada in this modern period,what are 

the reasons that world’s most popular companies and Departments willing to use the 

Ada based programs in their applications. A comparison between two languages will 

also be discussed in this report. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 3 

 
 

Table of  Contents 
 
 
Introduction..................................................................................................................4 
History of Ada..............................................................................................................4 
What Is Ada.................................................................................................................5 
Language Overview.....................................................................................................7 
Comparison of Ada to different languages ..................................................................8 
Ada At Work ................................................................................................................8 
Programming in the large ..........................................................................................10 
Generic templates .....................................................................................................10 
Object-Oriented Programming (OOP) .......................................................................11 
Concurrent programming...........................................................................................12 
Systems programming...............................................................................................12 
Real-time programming .............................................................................................12 
High-integrity systems ...............................................................................................13 
Ada Benefits Summary..............................................................................................13 
Ada Features Summary.............................................................................................13 
Ada data types:..........................................................................................................14 
Predefined data types................................................................................................14 
Programmer defined data types ................................................................................15 
EXAMPLE PROGRAMS............................................................................................16 
The Use of Dynamic Strings ......................................................................................17 
Conclusion.................................................................................................................19 
References: ...............................................................................................................20 
 

 



 4 

Introduction 
 

In the early days of computing, from the mid 1940 through the early 1960s, 

computers were very costly and were used primarily for research by government 

agencies and universities. After that period, the size and cost of computers 

decreased while their computing abilities increased dramatically. 

 

We may define a program as a specific set of instructions that direct the computer to 

perform some computation. Programs are written in some specific programming 

languages. Originally, these languages were very cumbersome since they were 

written to be used for particulars computers. It became clear quite early that writing 

programs in such languages was tedious and easily error prone. The first step in the 

development of new programming languages was made by replacing these machine-

language instructions by those that replaced strings of bits by alphabetic and numeric 

symbols. High level languages, the first of which was developed in 1952and called 

FORTRAN I, are those that are used most often by programmers. The major 

advantage of high level languages is that their instructions are easier to read and are 

portable to a wide variety of computers. 

History of Ada 

In the 1970s, a lot of programming languages were hardware independent, and none 

of them supported safe modular programming. In 1975 the Higher Order Language 

Working Group (HOLWG) was formed with the intent of reducing this number by 

finding or creating a programming language generally suitable for the department's 

requirements. And the result of this investigation was the Ada language. The US 

Department of Defense (DOD) required the use of Ada for every software project 

where new code was more than 30% of result, though exceptions to this rule were 

often granted. This requirement was effectively removed in 1997, as the DOD began 

to embrace Commercial Off The Shelf (COTS) technology. This version of the 

language is commonly known as Ada 83, from the date of its adoption by ANSI. Ada 

95, the joint ISO/ANSI standard is the latest standard for Ada. Ada 95 the first ISO 

standard object-oriented programming language is accepted in 1995. To help with 

the standard revision and future acceptance, the US Air Force funded the 



 5 

development of the GNAT Compiler. The GNAT Compiler is part of the GNU 

Compiler Collection. 

Work continues on improving and updating the technical content of the Ada 

programming language. A Technical Corrigendum to Ada 95 was published in 

October 2001.  

What Is Ada 
 

Ada is a modern programming language designed for large, long-lived applications - 

and embedded systems in particular - where reliability and efficiency are essential. It 

was originally developed in the early 1980s (this version is generally known as Ada 

83) and then revised and enhanced in an upward compatible fashion in the mid 

1990s. The resulting language, Ada 95, was the first internationally standardized 

(ISO) Object-Oriented Language. Under the auspices of ISO, the language is 

currently undergoing another (minor) revision, scheduled for completion in the form of 

an amendment to the standard in 2005. 

 

The name "Ada" is not an acronym; it was chosen in honour of Augusta Ada 

Lovelace (1815-1852), a mathematician who is sometimes regarded as the world's 

first programmer because of her work with Charles Babbage. She was also the 

daughter of the poet Lord Byron. 

 

Ada 95 is seeing significant usage worldwide in the high-integrity and safety-critical 

domains including commercial and military aircraft avionics, air traffic control, railroad 

systems, and medical devices. With its embodiment of modern software engineering 

principles Ada is an excellent teaching language for both introductory and advanced 

computer science courses, and it has been the subject of significant university 

research especially in the area of real-time technologies. 

 

AdaCore has a long and intimate history with the Ada programming language. 

Company members worked on the original Ada 83 designs and review, played key 

roles in the Ada 95 project, and continue to be deeply involved with the Ada 05 

revision process. The initial GNAT compiler was essential to the growth of Ada 95; 



 6 

the company delivered it at the time of the language's standardization, thus 

guaranteeing that users would have a quality implementation for transitioning to Ada 

95 from Ada 83 or other languages. 

 

Ada is a structured, statically typed programming language while it addresses much 

the same tasks as C or C++, but it has  the type-safety of a language like Java. 

 

Ada is a procedural language. It is called a procedural language since the 

programmers when programming in Ada, break their program into smaller programs 

or procedures in order to handle different parts of the given problem.  These 

programs operate by calling the procedures one after another to solve the entire 

problem. 

 

 
The figure given above shows the procedure Call mechanism in Ada 

 

 



 7 

 

 

Language Overview 
 

The Ada programming language was designed in response to a problem posed in the 

mid 1970 by the US Department of defence. Ada is multi-faceted. From one 

perspective it is a classical stack-based general-purpose language, not tied to any 

specific development methodology. It has a simple syntax, structured control 

statements, flexible data composition facilities, strong type checking, traditional 

features for code modularization ("subprograms"), and a mechanism for detecting 

and responding to exceptional run-time conditions ("exception handling"). 

 

One of the important concepts in Ada is the idea of encapsulating items together to 

form a package which may be re-used in other programs. The library package 

Ada.Text_Io is provided on Ada systems to allow the input and output of textual 

information to and from the user’s program. 

Ada is a programming language designed to support the construction of long-lived, 

highly reliable software systems. The language includes facilities to define packages 

of related types, objects, and operations. The packages may be parameterized and 

the types may be extended to support the construction of libraries of reusable, 

adaptable software components. The operations may be implemented as 

subprograms using conventional sequential control structures, or as entries that 

include synchronization of concurrent threads of control as part of their invocation. 

The language treats modularity in the physical sense as well, with a facility to support 

separate compilation. 

 

The language includes a complete facility for the support of real-time, concurrent 

programming. Errors can be signalled as exceptions and handled explicitly. The 

language also covers systems programming; this requires precise control over the 

representation of data and access to system-dependent properties. Finally, a 

predefined environment of standard packages is provided, including facilities for, 



 8 

among others, input-output, string manipulation, numeric elementary functions, and 

random number generation.  

Comparison of Ada to different languages 
 A simple overview of comparison of ada among most popular languages because 

Some people believe that Java is "like" C++. However, usual C++ idioms do not carry 

over to Java because Java is not a superset of C++. Java is not even a subset of 

C++; it can at best be seen as a derivation with many modifications and extensions. 

Thus the syntax of Java and C++ may seem similar at a first glance, but the 

semantics and philosophy of these two languages is very different. [4]    

Java is closer to Ada 95 than to C++, syntax notwithstanding. 

 

A minimal comparison of Java with C++ and Ada 95 

 Java  C++  Ada 95  

Inheritance  Single 
(but with multiple subtyping)  Multiple  

Single 
(but supports 
MI)  

Preprocessor  No  Yes  No  

Separate 
Interface/Implementation  

No 
(interface generated from 
code)  

Yes 
(header files)  

Yes 
(specifications)  

Garbage Collection  Yes  No  Yes  

Operator Overloading  No  Yes  Yes  

Pointer Arithmetic  No  Yes  No  

Generics  No 
(but extensive polymorphism)  

Yes 
("templates")  Yes  

Exceptions  Yes  Yes  Yes  

Native Multi-threading  Yes  No  Yes  

 

Ada At Work  
 



 9 

The use of Ada language in this modern era in most famous and secure regions, 

convert our attention  that Ada language is still most popular language as compare to 

other modern languages i.e. C++.Java,XML,.Net,COM etc.Programmers can use this 

language most confidently.Practicaly usage of Ada language in some most intelligent 

fields is under: 

 

o Flight  

• Boeing 777 

• Helicoptors 

• Flight control 

• Landing Gear 

• BE-200 

 

o Transportation 

• New York City Subway  

• Paris Subway 

• Cairo & Calcutta Metros 

• European Train Control 

• Ship System 2000 

• Trains in Class 

• GPS 

 

o Space 

• Space Station Robot Embeds Ada (.pdf) 

 

o Manufacturing 

• Weirton Steel Mill 

• Furniture Making 

 



 10 

o Safety & Testing 

• Pratt & Whitney 

• Nuclear Power Plant 

 

o Other 

• Pollution Monitoring 

• Video Security 

• Ada Cuts Time 99.5% 

• For MS Windows 

• Radio Telescope 

• Editing Videos [2] 

 

Programming in the large 
 

The original Ada 83 design introduced the package construct, a feature that supports 

encapsulation ("information hiding") and modularization, and that allows the 

developer to control the namespace that is accessible within a given compilation unit. 

Ada 95 introduced the concept of "child units," adding considerably flexibility and 

easing the design of very large systems 

Generic templates 
 

A key to reusable components is a mechanism for parameterizing modules with 

respect to data types and other program entities, for example a stack package for an 

arbitrary element type. Ada meets this requirement through a facility known as 

"generics"; since the parameterization is done at compile time, run-time performance 

is not penalized. 

 

A generic unit is a program unit that is either a generic subprogram or a generic 

package. A generic unit is a template, which can be parameterized, and from which 



 11 

corresponding (nongeneric) subprograms or packages can be obtained. The 

resulting program units are said to be instances of the original generic unit. 

 

A generic unit is declared by a generic_declaration. This form of declaration has a 

generic_formal_part declaring any generic formal parameters. An instance of a 

generic unit is obtained as the result of a generic_instantiation with appropriate 

generic actual parameters for the generic formal parameters. An instance of a 

generic subprogram is a subprogram. An instance of a generic package is a 

package.  

 

Generic units are templates. As templates they do not have the properties that are 

specific to their nongeneric counterparts. For example, a generic subprogram can be 

instantiated but it cannot be called. In contrast, an instance of a generic subprogram 

is a (nongeneric) subprogram; hence, this instance can be called but it cannot be 

used to produce further instances 

Object-Oriented Programming (OOP) 
 

Ada 83 was object-based, allowing the partitioning of a system into modules 

corresponding to abstract data types or abstract objects. Full OOP support was not 

provided since, first, it seemed not to be required in the real-time domain that was 

Ada's primary target, and, second, the apparent need for automatic garbage 

collection in an OO language would have interfered with predictable and efficient 

performance. 

However, large real-time systems often have components such as GUIs that do not 

have real-time constraints and that could be most effectively developed using OOP 

features. In part for this reason, Ada 95 supplies full support for OOP, through its 

"tagged type" facility: classes, polymorphism, inheritance, and dynamic binding. Ada 

95 does not require automatic garbage collection but rather supplies definitional 

features allowing the developer to supply type-specific storage reclamation 

operations ("finalization"). 

Ada is methologically neutral and does not impose a "distributed overhead" for OOP. 

If an application does not need OOP, then the OOP features do not have to be used, 

and there is no run-time penalty. 



 12 

Concurrent programming 
 

Ada supplies a structured, high-level facility for concurrency. The unit of concurrency 

is a program entity known as a "task." Tasks can communicate implicitly via shared 

data or explicitly via a synchronous control mechanism known as the rendezvous. A 

shared data item can be defined abstractly as a "protected object" (a feature 

introduced in Ada 95), with operations executed under mutual exclusion when 

invoked from multiple tasks. Asynchronous task interactions are also supported, 

specifically timeouts and task termination. Such asynchronous behavior is deferred 

during certain operations, to prevent the possibility of leaving shared data in an 

inconsistent state. 

 

 

Systems programming 

 
Both in the "core" language and the Systems Programming Annex, Ada supplies the 

necessary features to allow the programmer to get close to the hardware. For 

example, you can specify the bit layout for fields in a record, define the alignment and 

size, place data at specific machine addresses, and express specialized or time-

critical code sequences in assembly language. You can also write interrupt handlers 

in Ada, using the protected type facility. 

 

Real-time programming 
 

Ada's tasking features allow you to express common real-time idioms (periodic tasks, 

event-driven tasks), and the Real-Time Annex provides several facilities that allow 

you to avoid unbounded priority inversions. A task dispatching policy is defined that 

basically requires tasks to run until blocked or preempted. A protected object locking 

policy is defined that uses priority ceilings; this has an especially efficient 

implementation in Ada (mutexes are not required) since protected operations are not 

allowed to block. 



 13 

High-integrity systems 
 

With its emphasis on sound software engineering principles Ada supports the 

development of high-integrity applications, including those that need to be certified 

against safety standards such as DO-178B. For example, strong typing means that 

data intended for one purpose will not be accessed via inappropriate operations; 

errors such as treating pointers as integers (or vice versa) are prevented. 

However, the full language is inappropriate in a safety-critical application, since the 

generality and flexibility may interfere with traceability / certification requirements. 

Ada addresses this issue by supplying a compiler directive, pragma Restrictions, that 

allows you to constrain the language features to a well-defined subset (for example, 

excluding exception handlers). One of the most interesting restrictions is the 

Ravenscar Profile, a collection of concurrency features that are powerful enough for 

real-time programming but simple enough to make certification practical. 

Ada Benefits Summary 
 

� Helps you design safe and reliable code  

� Reduces development costs  

� Supports new and changing technologies  

� Facilitates development of complex programs  

� Helps make code readable and portable  

� Reduces certification costs for safety-critical software 

Ada Features Summary 
 

� Object orientated programming  

� Strong typing  

� Abstractions to fit program domain  

� Generic programming/templates  

� Exception handling  

� Facilities for modular organization of code  

� Standard libraries for I/O, string handling, numeric computing  

� Systems programming  

� Concurrent programming  



 14 

� Real-time programming  

� Distributed systems programming  

� Interfaces to other languages (C, COBOL, Fortran)  

 

 

In brief, Ada is an internationally standardized language combining object-oriented 

programming features, well-engineered concurrency facilities, real-time support, and 

built-in reliability. An appropriate tool for addressing the real issues facing software 

developers today, Ada is used throughout a number of major industries to design 

software that protects businesses and lives. 

 

Ada data types: 
 

A data type is a collection of values together with operations that are used to 

manipulate those values in some way. An example of a data type is the set of all 

even integers with the operations of addition, subtraction and multiplication defined 

on these integers. In adda data types classify into two general categories: predefined 

and programmer defined. 

  

Predefined data types 
 

The predefined data types are built into the implementation 

Float type 
The float data type stores numeric values that are expressed to several decimal 

places of accuracy. Such values are commonly called floating point numbers. The 

advantage of having FLOAT values in part lies in the ability to express a wider range 

of numbers at the possible expense of less precision. 

  

 

 

Boolean type 
 



 15 

Ada has a predefined BOOLEAN data type for dealing with such situations named after the 

19th century British mathematician and logician, George Boole. The BOOLEAN type has only 

two values: TRUE and FALSE. 

Programmer defined data types 
 

Any programmer defined type must be originate with the programmer, who creates 

the set of values and defines all operations that apply 

 

Control statement and program flow- conditional and block flow 

 

• Loops 

 

• Subprograms 

 

• Arrays and strings 

 

• Applications of array processing 

 

• Records 

 

• Ada types and their declaration 

 

• Packages: design and Implementation 

 

• Exception handling and Text file processing 

 

• Generics 

 

 

• Access types 

 

• Recursive Methods 

 



 16 

• Concurrency and task structures 

EXAMPLE PROGRAMS 
 
 
Here are some sample  programs designed in Ada language.  

 
package CharStak is 
 
procedure Push(In_Char : in CHARACTER);  -- In_Char is added to the 
                                         -- stack if there is room. 
 
procedure Pop(Out_Char : out CHARACTER); -- Out_Char is removed from 
                                         -- stack and returned if a 
                                         -- character is on stack. 
                                         -- else a blank is returned 
 
function Is_Empty return BOOLEAN;        -- TRUE if stack is empty 
 
function Is_Full return BOOLEAN;         -- TRUE if stack is full 
 
function Current_Stack_Size return INTEGER; 
 
procedure Clear_Stack;                   -- Reset the stack to empty 
 
end CharStak; 
 
 
 
 
 
package body CharStak is 
 
Maximum_Size : constant := 25; 
Stack_List : STRING(1..Maximum_Size); -- The stack itself, purposely 
                                      -- defined very small. 
Top_Of_Stack : INTEGER := 0;          -- This will always point to 
                                      -- the top entry on the stack. 
 
procedure Push(In_Char : in CHARACTER) is 
begin 
   if not Is_Full then 
      Top_Of_Stack := Top_Of_Stack + 1; 
      Stack_List(Top_Of_Stack) := In_Char; 
   end if; 
end Push; 
 
 
procedure Pop(Out_Char : out CHARACTER) is 
begin 
   if Is_Empty then 
      Out_Char := ' '; 
   else 
      Out_Char := Stack_List(Top_Of_Stack); 
      Top_Of_Stack := Top_Of_Stack - 1; 
   end if; 
end Pop; 



 17 

 
 
function Is_Empty return BOOLEAN is 
begin 
   return Top_Of_Stack = 0; 
end Is_Empty; 
 
 
function Is_Full return BOOLEAN is 
begin 
   return Top_Of_Stack = Maximum_Size; 
end Is_Full; 
 
 
function Current_Stack_Size return INTEGER is 
begin 
   return Top_Of_Stack; 
end Current_Stack_Size; 
 
 
procedure Clear_Stack is 
begin 
   Top_Of_Stack := 0; 
end Clear_Stack; 
 
end CharStak; 
 

 

The above program code illustrates how we can define our own stack for using in our 

programs. A Stack can be defined as list of homogeneous items which always grows 

and shrinks  in this way that an item will be removed from stack which will enter in 

last with LIFO(Last In First Out) method.  

In order to keep it simple, we will only allow the stack to store CHARACTER type 

variables, although it could be defined to store any type of variables we desired, even 

arrays or records.[3] 

 

 

The Use of Dynamic Strings 
 
with Ada.Text_IO; use Ada.Text_IO; 
with Ada.Integer_text_IO; use Ada.Integer_Text_IO; 
with DynStrng; use DynStrng; 
 
procedure TryStrng is 
 
   Try_This : STRING(1..13); 
   Name     : DYNAMIC_STRING(0..15); 
   Stuff    : DYNAMIC_STRING(0..35); 
   Result   : BOOLEAN; 
   Neat     : constant STRING := "XYZ"; 



 18 

   Good3    : STRING(1..3); 
   Good4    : STRING(1..4); 
   Column   : INTEGER; 
 
begin 
 
   Name(0) := CHARACTER'VAL(3); 
   Stuff(0) := CHARACTER'VAL(7); 
 
   Put(Size_Of(Name)); 
   Put(Size_Of(Stuff)); 
   Put(Length(Name)); 
   Put(Length(Stuff)); 
   New_Line; 
 
   Try_This := "ABCDEFGHIJKL$"; 
   Copy(Try_This,Stuff,Result); 
   Put(Size_Of(Stuff)); 
   Put(Length(Stuff)); 
   Put(Stuff); Put(Stuff); 
   New_Line(2); 
 
   Copy(Stuff,Name,Result); 
   Put(Name); Put(Name); Put(Name); New_Line; 
 
   Concat(Name,Name,Stuff,Result); 
   Put(Stuff); New_Line; 
 
   Delete(Stuff,5,3,Result); 
   Put(Stuff); New_Line; 
   Delete(Stuff,6,3,Result); 
   Put(Stuff); New_Line; 
   Delete(Stuff,6,3,Result); 
   Put(Stuff); New_Line; 
   Delete(Stuff,6,3,Result); 
   Put(Stuff); New_Line; 
   Delete(Stuff,6,3,Result); 
   Put(Stuff); New_Line; 
   Delete(Stuff,6,3,Result); 
   Put(Stuff); New_Line; 
   Delete(Stuff,6,3,Result); 
   Put(Stuff); New_Line; 
   Delete(Stuff,6,3,Result); 
   Put(Stuff); New_Line(2); 
 
   Try_This := "1234567890123"; 
   Copy(Try_This,Stuff,Result); 
   Copy(Neat,Name,Result); 
   Put(Stuff); Put(Name); New_Line; 
 
   Insert(Stuff,Name,5,Result); 
   Put(Stuff); New_Line; 
   Insert(Stuff,Name,50,Result); 
   Put(Stuff); New_Line; 
   Insert(Stuff,Name,2,Result); 
   Put(Stuff); New_Line; 
   Insert(Stuff,Name,24,Result); 
   Put(Stuff); New_Line; 
   Insert(Stuff,Name,5,Result); 
   Put(Stuff); New_Line; 
   Insert(Stuff,Name,5,Result); 



 19 

   Put(Stuff); New_Line; 
   Insert(Stuff,Name,5,Result); 
   Put(Stuff); New_Line; 
   Insert(Stuff,Name,5,Result); 
   Put(Stuff); New_Line(2); 
 
   Good3 := "123"; 
   Try_This := "1234567890123"; 
   Copy(Try_This,Stuff,Result); 
   Copy(Good3,Name,Result); 
   Pos(Stuff,Name,1,Column,Result); 
   Ada.Text_IO.Put("Found in column number"); Put(Column); New_Line; 
   Pos(Stuff,Name,2,Column,Result); 
   Ada.Text_IO.Put("Found in column number"); Put(Column); New_Line; 
   Pos(Stuff,Name,7,Column,Result); 
   Ada.Text_IO.Put("Found in column number"); Put(Column); New_Line; 
   Pos(Stuff,Name,12,Column,Result); 
   Ada.Text_IO.Put("Found in column number"); Put(Column); New_Line; 
   Pos(Stuff,Name,18,Column,Result); 
   Ada.Text_IO.Put("Found in column number"); Put(Column); New_Line; 
   Pos(Stuff,Name,50,Column,Result); 
   Ada.Text_IO.Put("Found in column number"); Put(Column); New_Line; 
 
end TryStrng; 
 

 

The Above code is designed to use the dynamic string package in various ways by 

defining strings, inserting characters or strings, deleting portions of strings, and 

displaying the results. This program was written to test the DynStrng package so it 

does a lot of silly things. There is nothing new or innovative in this utilitarian program, 

so we will be left on our own to understand, compile, and execute it.[3] 

 

Conclusion 
 

Ada is among the one of the most progressing and emerging object oriented 

language. As it has the strong typing and abstraction to fit program domain as well it 

is also supports exception handling and generic programming templates. As it is 

excellent exception handling and supports standard libraries. Ada has also proved it 

self for the system, concurrent, real-time and distributed system programming. Ada is 

also flexible as it supports the interface to other languages.



 20 

References: 

 
[1]   A first course in computer science with ADA , Nicholas J.Delillo. 

[2]  http://www.adaic.org/atwork/index.html 

[3]   http://www.infres.enst.fr/~pautet/Ada95/chap16.htm 

[4]   http://www.adahome.com/Resources/Languages/chart3.html 

 


