
Active Oberon Language Report

Patrik Reali
Institut für Computersysteme, ETH Zürich

reali@inf.ethz.ch

October 27, 2004

1 Introduction

Active Oberon is an extension of the original Oberon language [29, 30]. Its
purpose is to introduce features into the language to express concurrency by
means of active objects. This report assumes that you already know Oberon;
only the extensions to it are described here.

The design of the language extension has been driven by the search for
unification and symmetry. The changes are based on established concepts such
as scopes and locality. The rationale behind Active Oberon is described in [10].

1.1 Acknowledgments

Many thanks to B. Kirk, A. Fischer, T. Frei, J. Gutknecht, D. Lightfoot, and
P. Muller for reviewing this document and improving it with corrections and
improvements, and to Vladimir Los for improving the barriers example.

1.2 History and Related Work

Programming language development at ETH Zurich has a long reaching tra-
dition. The Oberon language is the latest descendant of the Algol, Pascal,
and Modula family. Pascal [16] was conceived as a language to express small
programs; its simplicity and leanness made it particularly well-suited for teach-
ing programming. Modula [28] evolved from Pascal as a language for system
programming, and benefited from the practical experience gained during the de-
velopment of the Lilith [22] workstation and of the Medos [17] operating system.
The need to support the programming-in-the-large paradigm was the motivation
for Oberon [29]. The Ceres [6] and Chameleon [12] platforms, and the Oberon
operating system [11] projects were developed in parallel with the language, and
allowed to test and evaluate the language improvements.

Many experimental language extensions have been proposed for Oberon at,
and outside of the ETH. Object Oberon [19], Oberon-2 [20], and Froderon [7]
explored adding further object-oriented features to the language; Oberon-V [9]
proposed additions for parallel operations on vector computers; Oberon-XSC [15]
added mathematical features to support scientific computation; module em-
bedding [24] was also proposed. Concurrency was first added to the operat-
ing system through a specialized system API in Concurrent Oberon [25] and

1

Pascal
Modules, ADT��- Modula

Type Extension��- Oberon

Concurrency

Definitions��- Active Oberon

-
Structured

Programming

1970

System

Programing

1980

Object

Orientation

1990

Component

Frameworks

2000

Figure 1: The Pascal Language Family Evolution

XOberon [2]; attempts to model concurrency in the language itself were also
done by Radenski [23].

Active Oberon is the first exponent of a new generation of languages in this
family. Our motivation is to support concurrency and component modeling in
the language in a clean, seamless way.

1.3 Language Design

The design of Active Oberon was influenced by the experiences made with Ob-
ject Oberon and Oberon-2. We follow the Object Oberon notation for declaring
classes and methods, because we think it is more expressive than the one in
Oberon-2: methods belong to the class scope and therefore they must be de-
clared there; this way, other methods and fields belonging to the record scope
can be accessed without explicit qualifier. Protection against concurrent access
through the EXCLUSIVE modifier is easier to read if the methods are declared
in the same scope. Active Oberon departs from the Object Oberon design, in
that records are generalized to be both classes and records, instead of letting
classes and records co-exist in the same system. Another important difference
is the decision to let the compiler handle forward references. The syntax of Ob-
ject Oberon and Oberon-2 was designed to simplify the compiler construction,
whereas we chose to simplify the programmer’s task by avoiding the needless
redundancy of forward declarations and declarations, leaving it to the compiler
to handle them.

Java [8] and C# [4] share some similarities with Active Oberon. They are
both object-oriented languages stemming from the imperative language world,
and the concurrency protection mechanism with object instance bound monitors
is the same. On the other hand, they both put the accent on the object-
orientation in such an extreme manner, that class methods and class fields
seem just special cases of the instance fields and methods, because they belong
to a class namespace. Furthermore, Java has no support at all for statically
allocated structures: everything is dynamic, even user-defined constant arrays;
for this reason, to perform at an acceptable speed, Java programs must rely
on complicated and expensive compiler optimizations. All languages in the

2

Oberon family treat modules and classes as orthogonal concepts, each has its
own scope; the module semantics is different from a class’ semantics as shown
in [26] (for a comparison, B. Meyer advocates the opposite [18]): modules group
static components and related implementations, and provide a deployment and
structuring primitive. In fact, Java and C# had to introduce concepts like
packages, namespaces and assemblies, that de facto reintroduce modules with
just another name. We think that static structures and modules still have a
very valid reason to be part of a programming language.

The AWAIT statement was proposed and investigated by Brinch Hansen [3]
who showed its conceptual simplicity and elegance, but also thought it would
be impossible to implement it efficiently. We repropose it in Active Oberon,
with the conviction that it is a real improvement compared with signals and
semaphores, because of the unification and clarity it brings; it becomes par-
ticularly obvious in an object-oriented programming style, where signals and
semaphores are completely inappropriate because of their unstructured use, as
they can be inserted arbitrarily in a program. Pieter Muller’s thesis [21] proves,
that with the appropriate restrictions, AWAIT can be implemented efficiently.
The language Ada 95 [14] has also a construct called barriers, which is se-
mantically very similar to Active Oberon’s AWAIT, although with a coarser
procedure-width granularity.

Concurrent Oberon was a first attempt to provide concurrency in an Oberon
system. It was done through a specialized API defining a Thread type and func-
tions to create, stop and resume execution. Protection was achieved through a
single global system lock. There was no provision for a synchronization prim-
itive. This model is too weak to support Active Oberon, because locks and
synchronization are tightly bound (when synchronization is performed, locks
are released), and the locking mechanism is too coarse; a single lock would
make a multiprocessor-based system—where many threads run at the same
time—useless.

2 Object Oriented Extensions

2.1 Pointer to Anonymous Record Types

TYPE

(* examples of pointer to record types *)

(* pointer to named record type *)

Tree = POINTER TO TreeDesc;

TreeDesc = RECORD key: INTEGER; l, r: Node END;

(* pointer to anonymous record types *)

Node = POINTER TO RECORD key: INTEGER; next: Node END;

DataNode = POINTER TO RECORD (Node) data: Data END;

DataTree = POINTER TO RECORD (Tree) data: Data END;

The types Node and DataNode are pointers to anonymous record types; Tree
is a pointer to named record type.

These types can only be dynamically instantiated (with NEW), no static in-
stance is possible; this is enforced by the fact that the record type is anonymous
and it is not possible to declare a variable having that type.

3

Both RECORD and POINTER TO RECORD types are allowed as base types of
pointer to anonymous record type; a record type cannot extend a pointer to
an anonymous record, thus preserving the property of allowing only dynamic
instances.

2.2 Object Types

TYPE

(* object types *)

DataObj = OBJECT VAR data: Data; l, r: DataObj END DataObj;

The type DataObj is an object type.
The type OBJECT has a syntax different from the POINTER TO RECORD type;

it must match the [DeclSeq] Body production instead of the FieldList
production. This implies that procedures can be declared inside an object type.
We call them methods or type-bound procedures.

Only an object type can extend another object type. Object types must be
dynamically instantiated with NEW, subject to the rules imposed by initializers
(Section 2.4).

2.3 Type-bound Procedures

TYPE

Coordinate = RECORD x, y: LONGINT END;

VisualObject = OBJECT

VAR next: VisualObject;

PROCEDURE Draw*; (*draw this object*)

BEGIN HALT(99); (*force extensions to override this method*)

END Draw;

END VisualObject;

Point = OBJECT (VisualObject)

VAR pos: Coordinate;

PROCEDURE Draw*; (*override Draw method declared in VisualObject*)

BEGIN MyGraph.Dot(pos.x, pos.y)

END Draw;

END Point;

Line = OBJECT (VisualObject)

VAR pos1, pos2: Coordinate;

PROCEDURE Draw*;

BEGIN MyGraph.Line(pos1.x, pos1.y, pos2.x, pos2.y)

END Draw;

END Line;

VAR

objectRoot: VisualObject;

PROCEDURE DrawObjects*;

VAR p: GraphObject;

BEGIN

(* draw all the objects in the list *)

p := objectRoot;

WHILE p # NIL DO p.Draw; p := p.next END;

END DrawObjects;

4

Procedures declared inside an object are called type-bound procedures or
methods. Methods are associated with an instance of the type and operate
on it; inside a method implementation, if another method is visible using the
Oberon scope rules, it can be accessed without qualification.

A method can overwrite another method of the same name inherited from
the base type of the record, but it must have the same signature. The visibility
flag is part of the signature.

Note: We decided to declare the methods in a object scope, because they

belong to the record scope and can only be accessed through record in-

stances. This simplifies the method declaration (no receiver, as in Oberon-

2 [20]) and the access to the fields and methods following the well-known

Oberon scoping rules. We were aware that cyclic references would be a

problem (i.e. whenever two object types mutually refer to each other), but

considered the conceptual elegance of the language more important. The

solution to the problem is a relaxation of the visibility rules that allows for-

ward references of symbols declared later in the source text (section 4.1).

An alternative would have been to extend the forward declarations to de-

scribe whole types (as in Object Oberon [19]). We discarded this solution

because of the unnecessary redundancy it introduces in the code, and we

delegate the problem to the compiler instead.

Given an object instance o of type T with type-bound procedures P and
Q, o.P is the call to the method. Inside a method of T another method of T
can be called with Q. A method P can call the method it overrides with the
notation P↑. This is a supercall and can only be made inside a method.

2.4 Initializers

A method tagged with & is an object initializer. This method is automatically
called when an instance of the object is created. An object type may have at
most one initializer. If present, it is always public, and can be called explicitly,
like a method; if absent, the initializer of the base type is inherited. An initializer
can have a signature differing from the inherited initializer from the base object
type, in which case it must have a different name too.

If an object type T has or inherits an initializer P with signature (p0: T0;
pn: Tn), then the instantiation of a variable o:T by NEW requires the parameters
needed by the initializer: NEW(o, p0, ..., pn). The initializer is executed
atomically with NEW.

Note: The optional initializer allows the parameterization of a type. In

particular, it is very useful when working with active objects, because the

instance parameterization must be done before the activity is started. To

be honest, we don’t really like this notation, but it is the only one we

could imagine that would fit into the language without changing it.

TYPE

Point = OBJECT (VisualObject)

VAR pos: Coordinate;

PROCEDURE & InitPoint(x, y: LONGINT);

BEGIN pos.x := x; pos.y := y

5

END InitPoint;

END Point;

PROCEDURE NewPoint(): Point;

VAR p: Point;

BEGIN NEW(p, x, y); (*calls NEW(p) and p.InitPoint(x, y) *)

RETURN p

END NewPoint;

2.5 SELF

The keyword SELF can be used in any method or any procedure local to a
method of an object. It has the object type and the value of the current object
instance the method is bound to. It is used to access the object whenever a
reference to it is needed or to access a record field or method when shadowed
by other symbols, i.e. fields that are hidden by a local variable with the same
name.

TYPE

ListNode = OBJECT

VAR data: Data; next: ListNode;

PROCEDURE & InitNode (data: Data);

BEGIN

SELF.data := data; (* initialize object data *)

next := root; root := SELF (* prepend node to list *)

END InitNode;

END ListNode;

VAR

root: ListNode;

2.6 Delegate Procedure Types

TYPE

MediaPlayer = OBJECT

PROCEDURE Play; play a movie END Play;

PROCEDURE Stop; stop movie END Stop;

END MediaPlayer;

ClickProc = PROCEDURE {DELEGATE};

Button = OBJECT

VAR

onClick: ClickProc;

caption: ARRAY 32 OF CHAR;

PROCEDURE OnClick;

BEGIN onClick END OnClick;

PROCEDURE & Init(caption: ARRAY OF CHAR; onClick: ClickProc);

BEGIN SELF.onClick := onClick; COPY(caption, SELF.caption)

END Init;

END Button;

PROCEDURE Init(p: MediaPlayer);

VAR b0, b1, b2: Button;

BEGIN

(* Reboot -> call system reboot function *)

NEW(b0, "Reboot", System.Reboot);

6

(* MediaPlayer UI: bind buttons with player instance *)

NEW(b1, "Play", p.Play);

NEW(b2, "Stop", p.Stop);

END Init;

Delegates are similar to procedure types; they are compatible to both meth-
ods and procedures, while procedure types are only compatible with procedures.

Delegate procedure types are annotated with the DELEGATE modifier. They
can be assigned with procedures and methods. Given a variable with procedure
type t , o an object instance and M a method bound to o, it is allowed to
assign o.M to t if the method and t have compatible signatures. The object
self-reference is omitted from the procedure type signature. Whenever t is called,
the assigned object o is implicitly passed as self-reference. Assignment and call
of procedures remains compatible with the Oberon definition.

2.7 Definitions

A Definition is a syntactic contract 0

defining a set of method signatures. A definition D0 can be refined by a
new definition D1, which will inherit all methods declared in D0. Definitions
and their methods are globally visible. An object can implement one or more
definitions, in which case it commits itself to give an implementation to all the
methods declared in the definitions.

DEFINITION

Runnable;

PROCEDURE Start;

PROCEDURE Stop;

END Runnable;

DEFINITION Preemptable REFINES Runnable;

PROCEDURE Resume;

PROCEDURE Suspend;

END Preemptable;

TYPE

MyThread = OBJECT

IMPLEMENTS Runnable;

PROCEDURE Start;

BEGIN END Start;

PROCEDURE Stop;

BEGIN END Stop;

END MyThread;

The keyword IMPLEMENTS is used to specify the definitions implemented
by an object type. An object type can implement multiple definitions.

Definitions can be thought to be additional properties that a class must have,
but that are orthogonal to the object type hierarchy. A object’s method can be
invoked through the definition, in which case the run-time checks if the object
instance implements the definition and then invokes the method; if a definition
is not implemented by the object instance, a run-time exception occurs.

0[1] describes four levels of contracts: 1. syntactic contracts (type systems), 2. behavioral
contracts (invariants, pre- and post-conditions), 3. synchronization contracts, 4. quality of
service contracts

7

PROCEDURE Execute(o: OBJECT; timeout: LONGINT);

BEGIN

Runnable(o).Start;

Delay(timeout);

Runnable(o).Stop;

END Execute;

3 Concurrency Support

3.1 Active Objects

The declaration of an object type may include a StatBlock, called the object
body. The body is the object’s activity, to be executed whenever an object
instance is allocated after the initializer (if any) completed execution; the object
body is annotated with the ACTIVE modifier. At allocation, a new process is
allocated to execute the body concurrently; the object is called an active object.

If the ACTIVE modifier is not present, the body is executed synchronously;
NEW returns only after the body has terminated execution.

The system holds an implicit reference to an active object as long as the
activity has not terminated to prevent garbage collection of the object. The
object can live longer than its activity.

TYPE

(*define the object and its intended behavior*)

Object = OBJECT

BEGIN {ACTIVE} (*object body*)

... do something ...

END Object;

PROCEDURE CreateAndStartObject;

VAR o: Object;

BEGIN

... NEW(o); ...

END CreateAndStartObject;

The active object activity terminates whenever the body execution termi-
nates. As long as the body executes, the object is kept alive (i.e. cannot be
garbage collected). After that, the object becomes a passive one, and will be
collected according to the usual rules.

3.2 Protection

A Statement Block is a sequence of statements delimited by BEGIN and END. It
can be used anywhere like a simple statement. It is most useful when used with
the EXCLUSIVE modifier to create a critical region to protect the statements
against concurrent execution.

PROCEDURE P;

VAR x, y, z: LONGINT;

BEGIN

x := 0;

BEGIN

y := 1

END;

z := 3

END P;

8

An object can be viewed as a resource and various activities may potentially
compete for using the object or for exclusive access to the facilities it provides;
in such cases some kind of access protection is essential. Our protection model
is an instance-based monitor.

(* Procedures Set and Reset are mutually exclusive*)

TYPE

MyContainer = OBJECT

VAR x, y: LONGINT; (* Invariant: y = f(x) *)

PROCEDURE Set(x: LONGINT);

BEGIN {EXCLUSIVE} (* changes to both x and y are atomic *)

SELF.x := x; y := f(x)

END Set;

PROCEDURE Reset;

BEGIN

...

BEGIN {EXCLUSIVE} (* changes to both x and y are atomic *)

x := x0; y := y0;

END;

....

END Reset;

END MyContainer;

Every object instance is protected and the protection granularity is any
statement block inside the object’s method, ranging from a single statement to
a whole method. A statement block can be protected against concurrent access
by annotating it with the modifier EXCLUSIVE. Upon entering an exclusive block,
an activity is preempted as long as another activity stands in an exclusive block
of the same object instance.

An activity cannot take an object’s lock more than once, re-entrancy is not
allowed.

Every module is considered to be an object type with a singleton instance,
thus its procedures can also be protected. The scope of protection is the whole
module, like in a monitor [13].

Note: Only the EXCLUSIVE locks are implemented: SHARED locks (as

in [10]) can be implemented using EXCLUSIVE locks and are thus not

a basic concept. They are very seldom used and don’t justify the added

complexity in the language and its implementation. See Appendix B.1 for

a implementation of SHARED locks.

Note: Lock re-entrancy is not supported because it is conceptually un-

clear (see [27, section 5.9]) and expensive to handle correctly; it is not

really needed, since it is possible to design the program to work without

using it. Re-entrant locks can be implemented using non re-entrant locks

(see Appendix B.3)

3.3 Synchronization

TYPE

Synchronizer = OBJECT

awake: BOOLEAN

PROCEDURE Wait;

9

BEGIN {EXCLUSIVE} AWAIT(awake); awake := FALSE

END Wait;

PROCEDURE WakeUp;

BEGIN {EXCLUSIVE} awake := TRUE

END WakeUp;

END Synchronizer;

The built-in procedure AWAIT is used to synchronize an activity with a state
of the system. AWAIT can take any boolean condition; the activity is allowed
to continue execution only when condition is true. While the condition is not
established, the activity remains suspended ; if inside a protected block, the lock
on the protected object is released, as long as the activity remains suspended
(to allow other activities to change the state of the object and thus establish
the condition); the activity is restarted only if the lock can be taken.

The system is responsible for evaluating the conditions and for resuming
suspended activities. The conditions inside an object instance are re-evaluated
whenever some activity leaves a protected block inside the same object instance.
This implies that changing the state of an object outside a protected block won’t
have the conditions re-evaluated.

When several activities compete for the same object lock, the activities whose
conditions are true are scheduled before those that only want to enter a protected
region.

Appendix B.6 shows the synchronization inside a shared buffer.

Note: Synchronization depends on the object state, e.g waiting for some

data to be available or the state to change. The object is used as container

for the data and every access is done through protected methods or blocks.

We assume that every time a protected block is accessed, the state of

the object has changed; thus the condition is only re-evaluated at that

time. This implies that changing the state of an object without protecting

it won’t have the condition re-evaluated. To force re-evaluation of the

conditions in one object, an empty protected method can be called or

protected block entered.

4 Other Language Extensions

This section describes a few minor changes made to better integrate the exten-
sions into the language.

4.1 Declaration sequence and forward references

In Active Oberon, the definition scope of a symbol ranges over the whole block
containing it. This implies that a symbol can be used before being declared,
and that names are unique inside a scope.

4.2 HUGEINT

The 64-bit signed integer type HUGEINT has been added to the language. It
fits into the numeric type hierarchy as follows:

LONGREAL ⊇ REAL ⊇ HUGEINT ⊇ LONGINT ⊇ INTEGER ⊇ SHORTINT

10

Name Argument Type Result Type Function
SHORT(x) HUGEINT LONGINT identity (truncation possible)
LONG(x) LONGINT HUGEINT identity
ENTIERH(x) real type HUGEINT largest integer not greater than x

Table 1: New Type Conversion Procedures

Name Function
PUT8(adr: LONGINT; x: SHORTINT) Mem[adr] := x
PUT16(adr: LONGINT; x: INTEGER)
PUT32(adr: LONGINT; x: LONGINT)
PUT64(adr: LONGINT; x: HUGEINT)
GET8(adr: LONGINT): SHORTINT RETURN Mem[adr]
GET16(adr: LONGINT): INTEGER
GET32(adr: LONGINT): LONGINT
GET64(adr: LONGINT): HUGEINT
PORTIN(port: LONGINT; x: AnyType) x := IOPort(port)
PORTOUT(port: LONGINT; x: AnyType) IOPort(port) := x
CLI disable interrupts
STI enable interrupts

PUTREG/GETREG constants
EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP 32-bit register
AX, BX, CX, DX, SI, DI 16-bit register
AL, AH, BL, BH, CL, CH, DL, DH 8-bit register

Table 2: IA32 Version Additions to SYSTEM

Table 1 shows the new conversion functions added for HUGEINT.
No new constant definition is needed; constants are typed according to their

value.

4.3 Untraced Pointers

Untraced pointers are pointers that are not traversed by the garbage collector. A
structure or object referenced only through an untraced pointer may be collected
at any time.

Untraced pointers are defined using the UNTRACED modifier.

TYPE Untraced = POINTER {UNTRACED} TO T;

4.4 IA32 Specific Additions

The functions in Table 2 have been added to the Intel IA32 version of the
compiler.

The PUTx and GETx have been added for security sake, to cope with untyped
constants.

4.5 Miscellaneous

A few Oberon-2 extensions have been adopted in Active Oberon:

• ASSERT

• FOR

11

• read-only export

• dynamic arrays

Pointer variables are automatically initialized to NIL.

References

[1] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins. Making com-
ponents contract aware. Computer, 32(7):38–45, July 1999.

[2] R. Brega. Real-time kernel for the Power-PC architecture. Master’s thesis,
Institut für Robotik, ETH Zürich, 1995.

[3] P. Brinch Hansen. Structured multiprogramming. Communications of the
ACM, 15(7):574–578, July 1972. Reprinted in The Search for Simplicity,
IEEE Computer Society Press, 1996.

[4] Microsoft Corporation. Microsoft C# Language Specifications. Microsoft
Press, 2001.

[5] Edsger W. Dijkstra. The structure of the THE-multiprogramming system.
Communications of the ACM, 11(5):341–346, May 1968.

[6] H. Eberle. Development and Analysis of a Workstation Computer. Disser-
tation 8431, ETH Zürich, 1987.

[7] P. Fröhlich. Projekt Froderon: Zur weiteren Entwicklung der Program-
miersprache Oberon-2. Master’s thesis, Fachhochschule München, 1997.

[8] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. The
Java Series. Addison-Wesley, 1st edition, 1996.

[9] R. Griesemer. A Programming Language for Vector Computers. Disserta-
tion 10277, ETH Zürich, 1993.

[10] J. Gutknecht. Do the fish really need remote control? A proposal for self-
active objects in Oberon. In Proc. of Joint Modular Languages Conference
(JMLC). LNCS 1024, Linz, Austria, March 1997. Springer Verlag.

[11] J. Gutknecht and N. Wirth. Project Oberon - The Design of an Operating
System and Compiler. Addison-Wesley, 1992.

[12] B. Heeb and C. Pfister. Chameleon: A workstation of a different colour.
In Field-Programmable Gate Arrays: Architectures and Tools for Rapid
Prototyping. Second International Workshop on Field Programmable Logic
and Applications, pages 152–161, August 1992.

[13] C. A. R. Hoare. Monitors: An operating system structuring concept. Com-
munications of the ACM, 17(10):549–557, October 1974. Erratum in Com-
munications of the ACM, Vol. 18, No. 2 (February), p. 95, 1975. This paper
contains one of the first solutions to the Dining Philosophers problem.

12

[14] International Organization for Standardization. ISO/IEC 8652:1995: In-
formation technology — Programming languages — Ada. International Or-
ganization for Standardization, Geneva, Switzerland, 1995.

[15] P. Januschke. Oberon-XSC - Eine Programmiersprache und Arithmetikbib-
liothek für das Wissenschaftliche Rechnen. PhD thesis, Universität Karl-
sruhe, 1998.

[16] K. Jensen and N. Wirth. PASCAL - User Manual and Report, volume 18
of Lecture Notes in Computer Science. Springer, 1974.

[17] S. E. Knudsen. Medos-2: A Modula-2 oriented operating system for the
personal computer Lilith. Diss no. 7346, ETH Zürich, 1983.

[18] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd edi-
tion, 1997.

[19] H. Mössenböck, J. Templ, and R. Griesemer. Object Oberon: An object-
oriented extension of Oberon. Technical Report 1989TR-109, Department
of Computer Science, ETH Zürich, June 1989.

[20] H. Mössenböck and N. Wirth. The programming language Oberon-2. Struc-
tured Programming, 12(4):179–195, 1991.

[21] P.J. Muller. The Active Object System – Design and Multiprocessor Imple-
mentation. PhD thesis, ETH Zürich, 2002.

[22] R. Ohran. Lilith: A Workstation Computer for Modula-2. Dissertation
7646, ETH Zürich, 1984.

[23] A. Radenski. Introducing objects and concurrency to an imperative pro-
gramming language. Information Sciences, an International Journal, 87(1-
3):107–122, 1995.

[24] A. Radenski. Module embedding. Software - Concepts and Tools,
19(3):122–129, 1998.

[25] B. A. Sanders and S. Lalis. Adding concurrency to the Oberon system. In
Proceedings of Programming Languages and System Architectures, Lecture
Notes in Computer Science (LNCS) 782. Springer Verlag, March 1994.

[26] C. Szyperski. Import is not inheritance – why we need both: modules and
classes. In O. Lehrmann Madsen, editor, Proceedings, ECOOP 92, number
615 in Lecture Notes in Computer Science, pages 19–32. Springer-Verlag,
1992.

[27] Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. ACM Press and Addison-Wesley, New York, NY, 1998.

[28] N. Wirth. MODULA : A language for modular multiprogramming. Soft-
ware Practice and Experience, 7:3–35, 1977.

[29] N. Wirth. The programming language Oberon. Software Practice and
Experience, 18(7):671–690, July 1988.

[30] N. Wirth and M. Reiser. Programming in Oberon - Steps Beyond Pascal
and Modula. Addison-Wesley, 1992.

13

A Active Oberon Syntax

Module = MODULE ident ‘;’ [ImportList] {Definition} {DeclSeq} Body ident ‘.’.

ImportList = IMPORT ident [‘:=’ ident] {‘,’ ident [‘:=’ ident]} ‘;’.

Definition = DEFINITION ident [REFINES Qualident] {PROCEDURE ident [FormalPars] ‘;’} END ident.

DeclSeq = CONST {ConstDecl ‘;’} | TYPE {TypeDecl ‘;’} | VAR {VarDecl ‘;’} | {ProcDecl ‘;’}.
ConstDecl = IdentDef ‘=’ ConstExpr.

TypeDecl = IdentDef ‘=’ Type.

VarDecl = IdentList ‘:’ Type.

ProcDecl = PROCEDURE ProcHead ‘;’ {DeclSeq} Body ident.

ProcHead = [SysFlag] [‘*’ | ‘&’] IdentDef [FormalPars].

SysFlag = ‘[’ ident ‘]’.

FormalPars = ‘(’ [FPSection {‘;’ FPSection}] ‘)’ [‘:’ Qualident].

FPSection = [VAR] ident {‘,’ ident} ‘:’ Type.

Type = Qualident

| ARRAY [SysFlag] [ConstExpr {‘,’ ConstExpr}] OF Type

| RECORD [SysFlag] [‘(’ Qualident ‘)’] [FieldList] END

| POINTER [SysFlag] TO Type

| OBJECT [[SysFlag] [‘(’ Qualident ‘)’] [IMPLEMENTS Qualident] {DeclSec} Body]

| PROCEDURE [SysFlag] [FormalPars].

FieldDecl = [IdentList ‘:’ Type].

FieldList = FieldDecl {‘;’ FieldDecl}.
Body = StatBlock | END.

StatBlock = BEGIN [‘{’IdentList‘}’] [StatSeq] END.

StatSeq = Statement {‘;’ Statement}.
Statement = [Designator ‘:=’ Expr

| Designator [‘(’ ExprList‘)’]

| IF Expr THEN StatSeq {ELSIF Expr THEN StatSeq}[ELSE StatSeq] END

| CASE Expr DO Case {‘|’ Case} [ELSE StatSeq] END

| WHILE Expr DO StatSeq END

| REPEAT StatSeq UNTIL Expr

| FOR ident ‘:=’ Expr TO Expr [BY ConstExpr] DO StatSeq END

| LOOP StatSeq END

| WITH Qualident ‘:’ Qualident DO StatSeq END

| EXIT

| RETURN [Expr]

| AWAIT ‘(’ Expr ‘)’

| StatBlock

].

Case = [CaseLabels { ‘,’ CaseLabels } ‘:’ StatSeq].

CaseLabels = ConstExpr [‘..’ ConstExpr].

ConstExpr = Expr.

Expr = SimpleExpr [Relation SimpleExpr].

SimpleExpr = Term {MulOp Term}.
Term = [‘+‘|’-’] Factor {AddOp Factor}.
Factor = Designator[‘(’ ExprList‘)’] | number | character | string

| NIL | Set | ‘(’Expr‘)‘|’ ’Factor.

Set = ‘{’ [Element {‘,’ Element}] ‘}’.
Element = Expr [‘..’ Expr].

Relation = ‘=’ | ‘#’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’ | IN | IS.

MulOp = ‘*’ | DIV | MOD | ‘/’ | ‘&’ .

AddOp = ‘+’ | ‘-’ | OR .

Designator = Qualident { ‘.’ ident | ‘[’ExprList‘]’ | ‘’̂ | ‘(’ Qualident ‘)’ }.
ExprList = Expr {‘,’ Expr}.
IdentList = IdentDef {‘,’ IdentDef}.
Qualident = [ident ‘.’] ident.

IdentDef = ident [‘*‘|’-’].

14

B Synchronization Examples

B.1 Readers and Writers

MODULE ReaderWriter;

TYPE

RW = OBJECT

(* n = 0, empty *)

(* n < 0, n Writers *)

(* n > 0, n Readers *)

VAR n: LONGINT;

PROCEDURE EnterReader*;

BEGIN {EXCLUSIVE}

AWAIT(n >= 0); INC(n)

END EnterReader;

PROCEDURE ExitReader*;

BEGIN {EXCLUSIVE}

DEC(n)

END ExitReader;

PROCEDURE EnterWriter*;

BEGIN {EXCLUSIVE}

AWAIT(n = 0); DEC(n)

END EnterWriter;

PROCEDURE ExitWriter*;

BEGIN {EXCLUSIVE}

INC(n)

END ExitWriter;

PROCEDURE & Init;

BEGIN n := 0

END Init;

END RW;

END ReaderWriter.

The Readers - Writers paradigm regulates the data access in a critical sec-
tion. Either a single Writer (activity changing the state of the object) or many
Readers (activities that don’t change the state of the object) are allowed to
enter the critical section at a given time.

15

B.2 Signals

TYPE

Signal* = OBJECT

VAR

in: LONGINT; (*next ticket to assign*)

out: LONGINT; (*next ticket to service*)

(* entries with (out <= ticket < in) must wait *)

PROCEDURE Wait*;

VAR ticket: LONGINT;

BEGIN {EXCLUSIVE}

ticket := in; INC(in); AWAIT(ticket - out < 0)

END Wait;

PROCEDURE Notify*;

BEGIN {EXCLUSIVE}

IF out # in THEN INC(out) END

END Notify;

PROCEDURE NotifyAll*;

BEGIN {EXCLUSIVE}

out := in

END NotifyAll;

PROCEDURE & Init;

BEGIN in := 0; out := 0

END Init;

END Signal;

Signal implements signaling primitives in Active Oberon, similar to those
of Java and Modula-2. It uses a slightly modified ticket-algorithm. Like in some
stores, every customer receives a numbered ticket, to ensure that the customers
are serviced in order of arrival. This algorithm handles the wrap-around of in
and out indexes too.

16

B.3 Re-entrant Locks

ReentrantLock* = OBJECT

VAR

lockedBy: PTR;

depth: LONGINT;

PROCEDURE Lock*;

VAR me: PTR;

BEGIN {EXCLUSIVE}

me := AosActive.CurrentThread();

AWAIT((lockedBy = NIL) OR (lockedBy = me));

lockedBy := me;

INC(depth)

END Lock;

PROCEDURE Unlock*;

BEGIN {EXCLUSIVE}

DEC(depth);

IF depth = 0 THEN lockedBy := NIL END

END Unlock;

END ReentrantLock;

The ReentrantLock Object allows to re-lock an object by its owner more
than once. Clients of this object must explicitly use Lock and Unlock instead
of tagging their protected regions with EXCLUSIVE.

17

B.4 Binary and Generic Semaphores

MODULE Semaphores;

TYPE

Sem* = OBJECT (* Binary Semaphore *)

VAR taken: BOOLEAN

PROCEDURE P*; (*enter semaphore*)

BEGIN {EXCLUSIVE}

AWAIT(~taken); taken := TRUE

END P;

PROCEDURE V*; (*leave semaphore*)

BEGIN {EXCLUSIVE}

taken := FALSE

END V;

PROCEDURE & Init;

BEGIN taken := FALSE

END Init;

END Sem;

GSem* = OBJECT (* Generic Semaphore *)

VAR slots: LONGINT;

PROCEDURE P*;

BEGIN {EXCLUSIVE}

AWAIT(slots > 0); DEC(slots)

END P;

PROCEDURE V*;

BEGIN {EXCLUSIVE}

INC(slots)

END V;

PROCEDURE & Init(n: LONGINT);

BEGIN slots := n

END Init;

END GSem;

END Semaphores.

The well-known synchronization primitive by Dijkstra [5]. Note that the
ability to implement semaphores shows that the Active Oberon model is also
a synchronization primitive and is powerful enough to support protection and
synchronization of concurrent processes.

18

B.5 Barrier

MODULE Barriers;

(*

A barrier is used to synchronize N activities together.

*)

TYPE

Barrier = OBJECT

VAR in, out, N: LONGINT;

PROCEDURE Enter*;

VAR i: LONGINT;

BEGIN {EXCLUSIVE}

INC(in);

AWAIT (in >= N);

INC(out);

IF (out = N) THEN in := 0; out := 0 END;

END Enter;

PROCEDURE & Init (nofProcs: LONGINT);

BEGIN

N := nofProcs; in := 0; out := 0;

END Init;

END Barrier;

END Barriers.

Barriers are used to synchronize activities together. If activities are defined
as

Pi = Phasei,0;Phasei,1;Phasei,n

then the barrier is used to ensure that all activities will complete Phase − i, j
before starting Phasei,j+1. One thread of execution would look like this:

FOR j := 0 TO N DO

Phase(i, j); barrier.Enter

END;

The barrier resets the in counter after the condition to avoid an overflow.
This is possible because activities competing to reacquire the lock in the AWAIT
instruction have priority over the activities competing to acquire the same lock
for the EXCLUSIVE statement block.

19

B.6 Bounded Buffer

MODULE Buffers;

CONST

BufLen = 256;

TYPE

(* Buffer- First-in first-out buffer *)

Buffer* = OBJECT

VAR

data: ARRAY BufLen OF INTEGER;

in, out: LONGINT;

(* Put - insert element into the buffer *)

PROCEDURE Put* (i: INTEGER);

BEGIN {EXCLUSIVE}

AWAIT ((in + 1) MOD BufLen # out); (*AWAIT ~full *)

data[in] := i;

in := (in + 1) MOD BufLen

END Put;

(* Get - get element from the buffer *)

PROCEDURE Get* (VAR i: INTEGER);

BEGIN {EXCLUSIVE}

AWAIT (in # out); (*AWAIT ~empty *)

i := data[out];

out := (out + 1) MOD BufLen

END Get;

PROCEDURE & Init;

BEGIN

in := 0; out := 0;

END Init;

END Buffer;

END Buffers.

Buffer implements a bounded circular buffer. The methods Put and Get are
protected against concurrent access; they also check that a buffer slot , resp.
data, is available, otherwise the activity is suspended until the until the slot or
data become available.

20

C Active Object Examples

C.1 Dining Philosophers

MODULE Philo;

IMPORT Semaphores;

CONST

NofPhilo = 5; (* number of philosophers *)

VAR

fork: ARRAY NofPhilo OF Semaphores.Sem;

i: LONGINT;

TYPE

Philosopher = OBJECT

VAR

first, second: LONGINT;

(* forks used by this philosopher *)

PROCEDURE & Init(id: LONGINT);

BEGIN

IF id # NofPhilo-1 THEN

first := id; second := (id+1)

ELSE

first := 0; second := NofPhilo-1

END

END Init;

BEGIN {ACTIVE}

LOOP

.... Think....

fork[first].P; fork[second].P;

.... Eat

fork[first.V; fork[second].V

END

END Philosopher;

VAR

philo: ARRAY NofPhilo OF Philosopher;

BEGIN

FOR i := 0 TO NofPhilo DO

NEW(fork[i]);

NEW(philo[i]);

END;

END Philo.

21

C.2 Sieve of Eratosthenes

MODULE Eratosthenes; (* prk 13.09.00 *)

IMPORT Out, Buffers;

CONST

N = 2000;

Terminate = -1; (* sentinel *)

TYPE

Sieve = OBJECT (Buffers.Buffer)

VAR prime, n: INTEGER; next: Sieve;

PROCEDURE & Init;

BEGIN

Init^; (*call Buffer’s (superclass) initializer *)

prime := 0; next := NIL

END Init;

BEGIN {ACTIVE}

LOOP

Get(n);

IF n = Terminate THEN

(* terminate execution *)

IF next # NIL THEN next.Put (n) END;

EXIT

ELSIF prime = 0 THEN

(* first number is always a prime number *)

Out.Int(n, 0); Out.String(" is prime"); Out.Ln;

prime := n;

NEW (next)

ELSIF (n MOD prime) # 0 THEN

(* pass to the next sieve if not a multiple of prime *)

next.Put (n)

END

END

END Sieve;

PROCEDURE Start*;

VAR s: Sieve; i: INTEGER;

BEGIN

NEW(s);

FOR i := 2 TO N-1 DO s.Put (i) END;

s.Put(Terminate) (* use sentinel to indicate completion*)

END Start;

END Eratosthenes.

Eratosthenes implements the sieve algorithm for finding prime numbers.
Every sieve is an active object that passes the all the received values that are
not a multiple of the first received value to the next sieve. The synchronization
between sieves is encapsulated in the buffer.

22

D Version Log

15 Mar 2003 Barrier example improved
4 Apr 2002 Minor corrections
14 Mar 2002 Definition’s syntax; some small corrections
11 Jan 2002 Small corrections, Statement Block moved to Protection
20 Dec 2001 History
9 Aug 2001 Small corrections and Delegate modifier added
19 Apr 2001 Object Types instead of dynamic record, many small im-

provements
25 Mar 2001 Revision
20 Feb 2001 Delegates added

23

