
A Theory of Programming:

Denotational, Algebraic and Operational

Semantics

C.A.R. Hoare

November 12, 1999

Abstract

Professional practice in a mature engineering disci-

pline is based on relevant scienti�c theories, usually

expressed in the language of mathematics. A math-

ematical theory of programming aims to provide a

similar basis for speci�cation, design and implemen-

tation of computer programs. The theory can be

presented in a variety of styles, including

1. Denotational, relating a program to a speci�ca-

tion of its observable properties and behaviour.

2. Algebraic, providing equations and inequations

for comparison, transformation and optimisation

of designs and programs.

3. Operational, describing individual steps of a pos-

sible mechanical implementation.

This paper presents a simple theory of sequential

non-deterministic programming in each of these three

styles; by deriving each presentation from its prede-

cessor, mutual consistency is assured.

1



1 Introduction

A scienti�c theory is formalised as a mathematical

description of some selected class of processes in the

physical world. Observable properties and behaviour

of such a process can then be predicted from the the-

ory by mathematical deduction or calculation. An

engineer applies the theory in the reverse direction. A

speci�cation describes the observable properties and

behaviour of some system that does not yet exist in

the physical world; and the goal is to design and im-

plement a product which can be predicted by the

theory to meet the speci�cation.

This paper proposes a mathematical treatment of

computer programming in the simple non-deterministic

programming language introduced by Dijkstra [?].

The theory is well suited for use by engineers, since it

supports both stepwise development of designs from

speci�cations and hierarchical decomposition of com-

plex systems into simpler components which can be

designed separately. Furthermore, it permits deriva-

tion of a complete set of algebraic laws to help in

transformation of designs and optimisation of pro-

grams. Finally, an operational semantics is derived;

this treats practical aspects of implementation and

e�ciency of execution.

The insights described here were obtained by a

study of communication and concurrency in paral-

lel processes, where the three semantic styles have

been applied individually by independent schools of

2



research to the same class of phenomena. The opera-

tional style was used �rst [?] to de�ne the Calculus of

Concurrent Systems (CCS); the algebraic style took

precedence in the de�nition [?] of the Algebra of Con-

current Processes (ACP), whereas the denotational

style lies at the basis of the mathematical theory

[?] of Communicating Sequential Processes (CSP).

Many of the detailed di�erences between these three

process theories originate from their di�erent styles

of presentation. To obtain a synthesis based on a full

understanding, it is helpful to concentrate on a single

theory, and present it fully in all three styles; there is

the additional hope that their complementary ben-

e�ts can be exploited in practice. It is the goal of

this paper to explore the relevant techniques in the

case of a simple sequential programming language,

thereby avoiding any controversy that surrounds the

treatment of process algebra.

Not a single idea in this paper is original. The

concept of denotational semantics is due to Strachey

and Scott [?], and the particular choice of ordering

of non-deterministic programs is due to Smyth [?].

The embedding of programs as predicates is due to

Hehner [?]. The language is essentially the same as

that of Dijkstra [?]. The denotational theory is taken

from Tarski's calculus of relations [?]. The treatment

of recursion in speci�cations is given by Tarski's �xed

point theorem [?] and for programs by Plotkin [?].

The algebraic treatment of the language has already

3



been fully covered in [?]. Even the idea of consis-

tent and complementary de�nitions of programming

languages goes back at least to [?].

The only originality in the paper is to show simple

ways in which the three presentations of the same

language can be derived from each other by mathe-

matical de�nition, calculation and proof. The deno-

tational theory consists just of a number of separate

mathematical de�nitions of the operators of the lan-

guage in terms of the second-order predicate calculus.

These can be individually formulated and understood

in isolation from each other. The algebraic laws can

then be derived one by one, without danger of com-

plex or unexpected interactions. A normal form the-

orem gives insight into the degree of completeness of

the laws, and permits additional laws to be proved

without induction.

An operational theory is equally easily derived from

the algebraic. First an algebraic de�nition is given

for the basic step (transition relation) of an abstract

implementation; and then the individual transition

rules can be proved separately and individually as

algebraic theorems, again with reduced risk of com-

plex or unexpected interactions. The phenomena of

deadlock (no transitions) and divergence (an in�nite

sequence of transitions) are analysed, and shown to

relate correctly to their algebraic interpretation.

As always in such smooth developments, the sim-

plicity is an artefact of many laborious and less suc-

4



cessful iterations, mercifully concealed from the reader.

Another reason for the simplicity and modularity of

the proofs described above is that they follow the

natural progression from abstract description to con-

crete implementation. It is possible (and indeed more

usual) to work in the other direction, starting with

an operational presentation. A concept of bisimula-

tion is then selected, permitting the proof of alge-

braic laws; and a model can then be derived by a

standard initial algebra construction. A derivation

in both directions establishes completeness as well as

consistency of the three presentations. But that is

the subject of another paper.

2 Observations and Predicates

When a physical system is described by a mathemat-

ical formula, the free variables of the formula are un-

derstood to denote results of possible measurements

of selected parameters of the system. For example,

in the description of a mechanical assembly, it may

be understood that x denotes the projection of a par-

ticular joint along the x-axis, _x stands for the rate

of change of x, and t denotes the time at which the

measurement is taken. A particular observation can

be described by giving measured values to each of

these variables, for example:

x = 14mm ^ _x = 7mm/s ^ t = 1:5sec.

5



The objective of science is not to construct a list of

actual observations of a particular system, but rather

to describe all possible observations of all possible

systems of a certain class. The required generality is

embodied in mathematical equations or inequations,

which will be true whenever their free variables are

given values obtained by particular measurements of

any particular system of that class. For example, the

di�erential equation

_x = 0:5� x; for t � 3

describes the �rst three seconds of movement of a

point whose velocity varies in proportion to its dis-

tance along the x axis. The equation is clearly satis-

�ed by the observation given previously, because

7 = 0:5� 14 and 1:5 � 3:

In applying this insight to computer programming,

we shall con�ne attention to programs in a high level

language, which operate on a �xed collection of dis-

tinct global variables

x; y; : : : z:

The values of these variables are observed either be-

fore the program starts or after it has terminated.

To name the �nal values of the variables (observed

after the program terminates), we place a dash on

6



the names of the variables

x0; y0; : : : ; z0:

But to name the initial values of the variables (ob-

served before the program starts), we use the vari-

able names themselves, without decoration. So an

observation of a particular run of a program might

be described as a conjunction

x = 4 ^ x0 = 5 ^ y0 = y = 7:

This is just one of the possible observations of a

program that adds one to the variable x, and leaves

unchanged the values of y and all the other variables;

or in familiar symbols, the single assignment

x := x + 1:

A general formula describing all possible observations

of every execution of the above program is

x0 = x + 1 ^ y0 = y ^ : : : ^ z0 = z:

Such a formula will henceforth be abbreviated by the

programming notation which it exactly describes; for

example, the meaning of an assignment is actually

explained by the de�nition

x := x + 1 =df x0 = x + 1 ^ y0 =

y ^ : : : ^ z0 = z:

7



Similarly, a program which makes no change to any-

thing is written as II (pronounced \skip") and de�ned

II =df x0 = x ^ y0 = y ^ : : : ^ z0 = z:

In words, an observation of the �nal state of II is the

same as that of its initial state.

Of course, high level programs are more usually

(and more usefully) regarded as instructions to a

computer, \given certain values of x; y; : : : ; z, to

�nd values of x0; y0; : : : ; z0 that will make the predi-

cate true". But for the purpose of our mathematical

theory, there is no need to distinguish between de-

scriptive and imperative uses of the same predicate.

In engineering practice, a project usually begins

with a speci�cation, perhaps embodied in a formal

or informal contract between a customer and an im-

plementor. A speci�cation too is a predicate, describ-

ing the desired (or at least permitted) properties of

a product that does not yet exist. For example, the

predicate

x0 > x ^ y0 = y

speci�es that the value of x is to be increased, and

the value of y is to remain the same. No restriction

is placed on changes to any other variable. There are

many programs that satisfy this speci�cation, includ-

ing the previously quoted example

x := x + 1:

8



Correctness of a program means that every possi-

ble observation of any run of the program will yield

values which make the speci�cation true; for exam-

ple, the speci�cation (x0 > x^ y0 = y) is satis�ed by

the observation (x = 4 ^ x0 = 5 ^ y0 = y = 7). The

formal way of de�ning satisfaction is that the speci�-

cation is implied by a description of the observation,

for example

(x = 4 ^ x0 = 5 ^ y0 = y = 7) ) (x0 >

x ^ y0 = y):

This implication is true for all values of the observ-

able variables x; x0; y; y0; : : : ; z; z0:

8x; : : : ; z0 :: (x = 4^x0 = 5^y0 = y = 7)) (x0 > x^y0 = y):

In future, we will abbreviate such universal quan-

ti�cation by Dijkstra's conventional square brackets,

which surround the universally quali�ed formula thus

[(x = 4 ^ x0 = 5 ^ y = y0 = 7) ) (x0 >

x ^ y0 = y)]:

In fact, the speci�cation is satis�ed not just by this

single observation but by every possible observation

of every possible run of the program x := x + 1:

[(x := x + 1)) x0 > x ^ y0 = y]:

This mixture of programming with mathematical no-

9



tations may seem unfamiliar; it is justi�ed by the

identi�cation of each program with the predicate which

describes exactly its range of possible behaviours.

Both programs and speci�cations are predicates over

the same set of free variables; and that is why the

concept of program correctness can be so simply ex-

plained as universally quanti�ed logical implication

between a program and its speci�cation.

Logical implication is equally interesting as a rela-

tion between two programs or between two speci�ca-

tions. If S and T are speci�cations,

[S ) T ]

means that T is a more general or abstract speci�-

cation than S, and at least as easy to implement.

Indeed, by transitivity of implication, any program

that correctly implements S will serve as an imple-

mentation of T , though not necessarily the other way

round. So a logically weaker speci�cation is easier to

implement, and the easiest of all is the predicate true,

which can be implemented by anything.

Similarly, if P and Q are programs,

[P ) Q]

means that P is a more speci�c or determinate pro-

gram than Q, and it is (in general) more useful. In-

deed, by transitivity of implication, any speci�cation

met by Q will be met by P , though not necessarily

the other way round. So a logically weaker program

10



is for any given purpose less likely to serve; and the

weakest program true is the most useless of all.

The initial speci�cation of a complex product is

usually separated from its eventual implementation

by one or more stages of development. The interface

between each stage can in principle be formalised as

a design document D. If this is also interpreted as a

predicate, the correctness of the design is assured by

the implication

[D ) S]

and the correctness of the later implementation P by

[P ) D]:

The correctness of P with respect to S (and the valid-

ity of the whole idea of stepwise development) follows

simply by transitivity of implication:

If [P ) D] and [D ) S] then [P ) S]:

When a predicate is used as a speci�cation, there

is no reason to restrict the mathematical notations

available for its expression. Indeed, any notation

with a clear meaning should be available, because

clarity of speci�cation is the only protection we have

against subsequent misunderstandings of the client's

requirements, which can often lead to disappoint-

ment or even rejection of a delivered product.

11



Particularly important aids to clarity of speci�-

cation are the simple connectives of Boolean alge-

bra, conjunction (and), disjunction (or), and nega-

tion (not). Conjunction is needed to connect individ-

ual requirements such as \Temperature must be less

than 30� and more than 27�". Disjunction is needed

to provide useful options for economic implementa-

tion: \For mixing, use either the pressure vessel or

the settling tank". And negation is needed for even

more important reasons: \It must not explode".

The freedom of notation which is appropriate for

speci�cation cannot be extended to the programming

language in which the ultimate implementation is ex-

pressed. Programming notations must be selected

to ensure computability, compilability, and reason-

able e�ciency of execution. In a given programming

language, there is a limited collection of combina-

tors available for construction of programs from their

primitive components. Typical components include

assignments, inputs and outputs; and typical combi-

nations include conditionals, sequential composition,

and some form of iteration or recursion. It is for good

reason that most programming languages exclude the

Boolean combinators and quanti�ers of mathemati-

cal logic. For example, there is no programming lan-

guage or compiler that would enable you to protect

against disaster by writing a program that causes an

explosion and then avoid explosion by just negating

the program before execution.

12



A result of these practical restrictions is that, al-

though we can interpret all programs as predicates,

the converse is obviously invalid: not every predicate

describes the behaviour of a program. For example,

consider the extreme predicate false. No observa-

tion satis�es this predicate, so the only object that

it could correctly describe is one that gives rise to no

observation whatsoever. From a scienti�c viewpoint,

such an object does not exist, and could never be

constructed. The notations of a programming lan-

guage must therefore be de�ned to ensure that they

can never express the predicate false, or any other

wholly unimplementable predicate.

This means that we must live with the danger of

proposing and accepting an unimplementable predi-

cate as a speci�cation. Indeed, any general notational

restriction that ensures computability (or even just

satis�ability) could seriously impact clarity and con-

ciseness of speci�cation, and so increase the much

greater risk of failure to capture the true require-

ments and goals of the project. Once these have

been correctly formalised, a check on implementabil-

ity, and on e�ciency of implementation, may be made

separately with the aid of mathematics or good engi-

neering judgement; and this will be con�rmed in the

end by successful delivery of an actual product which

meets the speci�cation. There is fortunately no dan-

ger whatsoever of delivering an implementation of an

unimplementable speci�cation.

13



3 The programming language

In this section we shall give a denotational semantics

of our simple sequential programming language in

terms of predicates describing the behaviour of any

program expressed in that language. As explained

earlier, the variables x; y; : : : ; z stand for the initial

values of the like-named global variables of the pro-

gram, and x0; y0 : : : ; z0 stand for the �nal values.

Let e; f; : : : ; g stand for expressions such as x +

1; 3� y + z; : : : that can feature on the right hand

side of an assignment. Clearly, their free variables are

con�ned to the undashed variables of the program;

and for simplicity, we assume that all expressions al-

ways evaluate successfully to a determinate result.

Generalising an example given earlier, we de�ne a

simple assignment,

x := e =df x0 = e ^ y0 = y ^ : : : ^ z0 = z:

The program which makes no change is just a special

case

II =df x := x:

A multiple assignment has a list of variables on the

left hand side, and a list of the same number of ex-

pressions on the right; it is de�ned

x; y := e; f =df x0 = e^y0 = f^: : :^z0 =

z:

14



A clear consequence of the de�nition is that an im-

plementation must evaluate all the expressions on the

right hand side before assigning any of the resulting

values to a variable on the left hand side.

Other consequences can be simply formulated as

algebraic laws; they have very simple proofs. For ex-

ample

x := e = x; y := e; y

x; y := e; f = y; x := f; e:

All the de�nitions and laws extend to lists of more

than two variables, for example

(z; y := g; f) = (x; y; : : : ; z := x; f; : : : ; g):

In fact every assignment may be transformed by these

laws to a total assignment

x; y; : : : ; z := e; f; : : : ; g

where the left hand side is a list of all the free vari-

ables of the program, in some standard order. In

future we will abbreviate this to

v := f(v)

where v is the vector (x; y; : : : ; z) of program vari-

ables, and f is a total function from vectors to vec-

tors. Predicates will be similarly abbreviated

P (v; v0) instead of P (x; y; : : : ; z; x0; y0; : : : ; z0):

15



Any non-trivial program is composed from its prim-

itive components by the combining notations (com-

binators) of the programming language. The run-

time behaviour of a composite program is obtained

by actual execution of its components | all, some,

or sometimes even none of them. Consequently, at a

more abstract level, a predicate describing this com-

posite behaviour can be de�ned by an appropriate

composition of predicates describing the individual

behaviours of the components. So a combinator on

programs is de�ned as a combinator on the corre-

sponding predicates.

The �rst combinator we consider is the conditional.

Let b be a program expression, containing only un-

dashed variables and always producing a Boolean re-

sult (true or false); and let P and Q be predicates

describing two fragments of program. A conditional

with these parameters describes a program which be-

haves like P if b is initially true, and like Q if b is

initially false. It may therefore be de�ned

P � b�Q =df (b ^ P ) _ (:b ^Q).

A more usual notation for a conditional is

if b then P else Q instead of P � b�Q:

The reason for the change to in�x notation is that it

simpli�es the expression of algebraic laws:

16



P � b� P = P

P � b�Q = Q� :b� P

(P � b�Q)� b�R = P � b� (Q� b�R)

= P � b�R

P � b� (Q� c�R) = (P � b�Q)� c� (P � b�R):

The �rst law expresses idempotence, the second gives

a form of skew symmetry, the third is an associative

law, and the fourth states the distribution of any con-

ditional operator �b� through the conditional �c�,

for any condition c. All the laws may be proved by

propositional calculus; the easiest way is to consider

separately the cases when b is true and when it is

false. In the �rst case, replace P � b � Q by P

and in the second case by Q. The purpose of the

algebraic laws is to help in mathematical reasoning,

without such tedious case analyses.

The most characteristic combinator of a sequential

programming language is sequential composition, of-

ten denoted by semicolon. (P ; Q) may be executed

by �rst executing P and then Q. Its initial state is

that of P , and its �nal state is that of Q. The �nal

state of P passed on as the initial state of Q; but this

is only an intermediate state of (P ; Q), and it cannot

be directly observed. All we know is that it exists.

The formal de�nition therefore uses existential quan-

ti�cation to hide the intermediate observation, and

to remove the variables which record it from the list

17



of free variables of the predicate.

P (v; v0) ; Q(v; v0) =df 9v
0P (v; v0)^Q(v0; v0):

Here, the vector variable v0 stands for the corre-

spondingly decorated list of bound variables

(x0; y0; : : : ; z0):

These record the intermediate values of the program

variables

(x; y; : : : ; z);

and so represent the intermediate state as control

passes between P and Q. But this operational ex-

planation is far more detailed than necessary. A

clever implementation is allowed to achieve the de-

�ned e�ect by more direct means, without ever pass-

ing through any of the possible intermediate states.

That is the whole purpose of a more abstract de�ni-

tion of the programming language.

In spite of the complexity of its de�nition, sequen-

tial composition obeys some simple, familiar and ob-

vious algebraic laws. For example, it is associative

and has II as its left and right unit. Finally, sequen-

tial composition distributes leftward (but not right-

ward) over the conditional. This asymmetry arises

because the condition b is allowed to mention only

the initial values of the variables, and not the �nal

(dashed) variables.

18



(P ; Q) ; R = P ; (Q ; R)

II ; P = P = P ; II

(P � b�Q) ; R = (P ; R)� b� (Q ; R):

If e is any expression (only mentioning undashed vari-

ables), the assignment

x := e

changes the value of x so that its �nal value is the

same as the initial value of e, obtained by evaluating

e with all its variables taking its initial values. So if

P (x) is any predicate mentioning x, P is true of the

�nal value of x in just the case that P is true of e,

i.e.,

x := e ; P (x) = (9x0 : x0 = e : P (x0))

= P (e):

But P (e) is just P with x substituted by e. This

substitution e�ect generalises to any expression:

(x := e ; f(x)) = f(e):

For example

(x := x + 1 ; (3 � x + y < z)) = (3 �

(x + 1) + y < z):

This convention permits a rightward distribution law

for conditionals:

x := e ; (P�b�Q) = (x := e ; P )�x := e ; b�(x := b ; Q):

19



Let P andQ be predicates describing the behaviour

of programs. Their disjunction (P _Q) describes the

behaviour of a program which may behave like P or

like Q, but does not say which it will be. As an oper-

ator of our programming language, disjunction may

be easily implemented by arbitrary selection of either

of the operands; and the selection may be made at

any time, either before or after the program is com-

piled or even after it starts execution. Disjunction

is an extremely simple explanation of the tradition-

ally obscure phenomenon of non-determinism in com-

puting science; and its simplicity provides additional

justi�cation for the de�nition and manipulation of

programs as predicates.

All the program combinators de�ned so far dis-

tribute through disjunction. This means that sepa-

rate consideration of each case is adequate for all rea-

soning about non-determinism. Curiously, disjunc-

tion also distributes through itself and through the

conditional

P � b� (Q _R) = (P � b�Q) _ (P � b�R)

P ; (Q _R) = (P ; Q) _ (P ; R)

(Q _R) ; P = (Q ; P ) _ (R ; P )

P _ (Q _R) = (P _Q) _ (P _R)

P _ (Q� b�R) = (P _Q) �b� (P _R):

As a consequence of distribution through disjunc-

tion, all program combinators also share the property

of monotonicity. A function f is said to be mono-

20



tonic if it preserves the relevant ordering, in this case

implication. More formally

[f:X ) f:Y ] whenever [X ) Y ]:

(Here, X and Y are mathematical variables rang-

ing over predicates, and the line displayed above is

true, no matter what predicates take the place of X

and Y ). All program combinators de�ned so far are

monotonic in all arguments; for example

[X ; Y ) X 0 ; Y 0] whenever [X ) X 0] and [Y )

Y 0]:

Monotonicity is a very important principle in en-

gineering. Consider an assembly which tolerates a

given range of variation in its working environment.

Consider also some one of its components, which also

has a certain tolerance t. The tolerance of the whole

assembly can be expressed as some function f of t.

The engineer usually assumes that f is a monotonic

function, so that if the component is replaced by one

21



with a broader tolerance t0, then the tolerance of the

whole assembly will in general also be broader, or at

worst, the same:

[t � t0 ) f(t) � f(t0)]:

Problems arising from violation of monotonicity are

in practice the most di�cult to diagnose and rectify,

because they invalidate the whole theory upon which

design of the assembly has been based.

When faced with the task of implementing a com-

plex speci�cation S, it is usual to make an early de-

cision on the general structure of the product, for

example as the sequential composition of two pro-

gram components. To formalise and communicate

this decision, each of these components is going to

need separate speci�cations, say D and E. The cor-

rectness of these speci�cations can be checked before

implementation by proof of the implication

[(D ; E)) S]; (�)

where the sequential composition between speci�ca-

tions has the same de�nition as between programs

considered as predicates. Now what remains is the

presumably simpler task of �nding two programs P

and Q which implement the two designs, i.e.,

[P ) D] and [Q) E]:

Now all that remains is to deliver the product (P ; Q).

22



By monotonicity of sequential composition

[P ; Q) D ; E];

and the fact that

[(P ; Q)) S]

follows by transivity from a proof of the correctness

of the design step (�). What is more, this proof

was completed before the start of implementation

of P or Q. The technique can be repeated on the

components P and Q; and because of monotonicity

it extends to all other program combinators. Their

monotonicity is essential to the general engineering

method of stepwise design decomposition. Note that

designs are expressed in a mixture of programming

notations (for decisions that have already been taken)

and more general predicates (for the parts that are

speci�ed but still need to be designed). This is yet

another advantage of the philosophy of expressing

both programs and speci�cations in the same logical

space of predicates.

4 Recursion

A �nal advantage of monotonicity is that it permits a

simple treatment of the important programming con-

cept of recursion and of its important special case,

iteration; without this, no program can take longer

to execute than to input. Predicates over a given set

23



of observational variables may be regarded as a com-

plete lattice under implication ordering, with univer-

sal quanti�cation as meet and existential as join. The

bottom of the lattice is the strongest predicate false

and the top is true. Here we will use bold font to

distinguish true (considered as a program predicate

over free variables v; v0) from italic true, which is a

possible value of a Boolean expression b (containing

only free variables v).

Moving to a second-order predicate calculus, we in-

troduce a variable X to stand for an arbitrary pred-

icate over the standard set of �rst-order variables.

Fortunately, all the combinators of our programming

language are monotonic, and any formula constructed

by monotonic functions is monotonic in all its free

variables. Let G:X be a predicate constructed solely

by monotonic operators and containing X as its only

free predicate variable. Tarski's theorem [?] guaran-

tees that the equation

X = G:X

has a solution forX ; and this is called a �xed point of

the function G. Indeed, among all the �xed points,

there is a weakest one in the implication ordering.

This will be denoted by

(�X :: G:X):

It can be implemented as a single non-recursive call

of a parameterless procedure with name X and body

24



(G:X). Occurrences of X within (G:X) are imple-

mented as recursive calls on the same procedure.

The mathematical de�nition of recursion is given

by Tarski's construction:

�X :: G:X =df
W
fX : [X ) G:X ] : Xg

where
W
is the lattice join applied to the set of all

solutions of (X ) G:X). The following laws state

that the join is indeed a �xed point of G, and that it

is the weakest such.

[G:(�X :: G:X) � (�X :: G:X)]

[Y ) �X :: G:X ] whenever [Y ) G:Y ]:

A simple common case of recursion is the iteration

or while loop. If b is a condition,

while b do P

repeats the program P for as long as b is true before

each iteration. More formally, it can be de�ned as

the recursion

(�X :: (P ; X)� b� II):

An even simpler example (but hopefully less com-

mon) is the in�nite recursion which never terminates

�X:X .

25



This is the weakest solution of the trivial equation

X = X

and is therefore the weakest of all predicates, namely

true. In engineering practice, a non-terminating

program is the worst of all programs, and must be

carefully avoided by any responsible engineer. That

will have to su�ce as justi�cation for practical use

of a theory which equates any non-terminating pro-

gram with a totally unpredictable one, which is the

weakest in the lattice ordering.

Consider now the program

(�X :: X) ; x; y; : : : ; z := 3; 12; : : : ; 17

which starts with an in�nite loop. In any normal im-

plementation, this would fail to terminate, and so be

equal to (�X :: X). Unfortunately, our theory gives

the unexpected result

x0 = 3 ^ y0 = 12 ^ : : : ^ z0 = 17;

the same as if the prior non-terminating program had

been omitted. To achieve this result, an implementa-

tion would have to execute the program backwards,

starting with the assignment, and stopping as soon

as the values of the variables are known. While back-

ward execution is not impossible (indeed, it is stan-

dard for lazy functional languages), it is certainly not

e�cient for normal procedural languages. Since we

26



want to allow the conventional forward execution, we

are forced to accept the practical consequence that

the program

(�X :: X) ; P

will fail to terminate for any program P ; and the

same is true of

P ; (�X :: X):

Substituting (�X :: X) by its value true we observe

in practice of all programs P that

true ; P = true

P ; true = true:

These laws state that true is a zero for sequential

composition.

But these laws are certainly not valid for an ar-

bitrary predicate P . As always in science, if a the-

ory makes an incorrect prediction of the behaviour

of an actual system, it is the theory that must be

adapted; and this usually involves an increase in com-

plication. That is what requires and justi�es intro-

duction of new concepts and variables, which can-

not perhaps be directly observed or controlled, but

which are needed to explain what would otherwise be

anomalies in more directly observable quantities. All

the discoveries of fundamental forces and particles in

modern physics have been made in this way.

27



In the case of computer programs, the anomaly is

resolved by investigating more closely the phenomena

of starting and stopping of programs. The collection

of free variables describing programs is enlarged to

include two new Boolean variables, which are never

allowed to appear in the text of the program:

st; which becomes true when the program

has been started, and is false beforehand.

st0, which becomes true when the program

has stopped, and remains forever false in

case of non-termination (and a fortiori,

if program is never started).

While st0 is false, the �nal values of the program vari-

ables are unobservable, and the predicate describing

the program should make no prediction about these

values. Similarly, while st is false, even the initial val-

ues are unobservable. These considerations underlie

the validity of the desired zero laws.

We still maintain the convention that no observa-

tion will be made of the variables while the program

is running, so we never observe that st is true and st0

is false, except in the case of non-termination. This

is the essential abstraction from details of execution

time, which permits a separation of concerns between

correctness and e�ciency in reasoning about program

behaviour. It also permits programs written for the

IBM 704 in 1960 to run correctly on supercomputers

28



for the present day, in spite of a vast di�erence in

speed.

The variables st and st0 are useful also in speci�ca-

tions of components of larger programs. The correct-

ness and even the termination of a component with

speci�cation Q is often dependent on some assumed

properties of the initial values of the variables. This

assumption is described by a precondition P , which

will be true before the program starts. The speci�-

cation can then be written

(st ^ P )) (st0 ^Q)

or in words \If the program components start in a

state satisfying P , it will stop in a state satisfying

Q."

The responsibility for ensuring that P is true at

the start is thereby delegated to the preceding part

of the program. If the assumption is violated, no

constraint whatsoever is placed on the designed be-

haviour of the subsequent program; it may even fail

to terminate. Successful teamwork in a large engi-

neering project always depends on appropriately se-

lected assumptions made by the individual design-

ers, and the corresponding obligations undertaken by

their colleagues. So it is worth while to introduce a

special notation

(P;Q) =df (st ^ P ) st0 ^Q):

This is the primitive notation used by Morgan in [?].

29



The clear distinction of precondition P from post-

condition Q is a distinctive feature of VDM [?].

Another advantage of explicit mention of starting

and stopping is a solution of the postponed problem

of unde�ned expressions in assignments. For each ex-

pression e of a reasonable programming language, it

is possible to calculate a condition De which is true

in just those circumstances in which e can be suc-

cessfully evaluated. For example

D17 = Dx = true

D(e + f) = De ^Df

D(e=f) = De ^Df ^ (f 6= 0):

Successful execution of an assignment relies on the

assumption that the expression will be successfully

evaluated, so we formulate a new de�nition of as-

signment

x := e =df (De ; x0 = e ^ y0 =

y ^ : : : ^ z0 = z):

Expressed in words, this de�nition states that

30



either the program has not started (st = false)

and nothing can be said about its initial

and �nal values

or the initial values of the variables are such

that evaluation of e fails (:De), and noth-

ing can be said about the �nal values

or the program has terminated (st0 = true),

and the value of x0 is e, and the �nal values

of all the other variables are the same as

their initial values.

Fortunately, this is the only new de�nition that

is needed; the de�nition of conditionals, recursion,

and sequential composition remain unchanged, and

all laws (except those involving assignment) remain

valid. In fact, the laws involving assignment also re-

main valid, provided that their variables range not

over arbitrary predicates, but only over predicates

expressed in programming notations. For this re-

stricted class of predicates (hereafter called programs),

we will have to prove the unit laws

II;P = P = P ; II; for all programs P

as well as the new zero laws

P ; true = true = true;P; for all programs P:

In compensation, the zero laws give an assurance that

31



no programs can be equal to the unimplementable

predicate false, which does not satisfy them.

It is quite easy to check that the zero and unit laws

are valid for the simple case of programs that are as-

signments, even when these are interpreted according

to the new de�nition. This proof can be extended by

structural induction to more complex kinds of pro-

gram. A simple example of a lemma needed in this

proof is:

If P and Q satisfy the laws

P ; true = true = Q; true

then so do (P ;Q) and (P � b�Q).

The proof of this theorem is also quite simple:

(P ;Q); true = P ; (Q; true) = P ; true = true

(P � b�Q); true = (P ; true)� b� (Q; true)

= true� b� true = true:

Unfortunately the required additional theorems for

the left zero law and for the recursion operator � are

much more di�cult to prove. The relevant mathe-

matics is worked out in the next chapter.

32



References

[1] E.W. Dijkstra, \A Discipline of Programming",

Prentice Hall, 1976.

[2] A.R.J.G. Milner, \A Calculus of Communicating

Systems", LNCS 92, Springer-Verlag, 1980.

[3] J.A. Bergstra and J.W. Klop, \Algebra of Com-

municating Processes with Abstraction", Theo-

retical Computer Science 37(1), 77-121, 1985.

[4] S.D. Brookes, C.A.R. Hoare and A.W. Roscoe,

\A Theory of Communicating Sequential Pro-

cesses", Journal of ACM 31(7) 560-599, 1984.

[5] D.S. Scott and C. Strachey,\Towards a Math-

ematical Semantics for Computer Languages",

PRG-6, Oxford 1971.

[6] M.B. Smyth, \Power domains", JCSS (16) 23-

26, 1978.

[7] E.C.R. Hehner, \Predicative Programming",

Comm ACM 27(2), 134-143.

[8] A. Tarski, \On the Calculus of Relations", J

Symbolic Logic 6, 73-89, 1941.

[9] G.D. Plotkin, \A Structural Approach to Opera-

tional Semantics", Report DAIMI-FN-19, Com-

puter Science Department, Aarhus University,

1981.

[10] A. Tarski, \A Lattice-theoretic Fixed Point The-

orem and its Applications".

33



[11] C.A.R. Hoare et al., \The Laws of Program-

ming", Comm ACM 30(8), 672-87.

[12] C.A.R. Hoare, R.E.Lauer, \Consistent and com-

plementary formal theories of the semantics of

programming languages", Acta Informatica 3(2),

135-153, 1974.

[13] C.B. Jones, \Systematic Software Development

using VDM", Prentice Hall International, 1986.

[14] C.C. Morgan, \Programming from Speci�ca-

tions", Prentice Hall International, 1990.

[15] J.A. Goguen and T. Winkler, \Introducing

OBJ3", Technical Report SRI-CSL-88-9, SRI In-

ternational Computer Science Lab., 1988.

34


