
 1

Project Oberon

Preface

This book presents the results of Project Oberon, namely an entire software environment for a modern
workstation. The project was undertaken by the authors in the years 1986-89, and its primary goal was to
design and implement an entire system from scratch, and to structure it in such a way that it can be
described, explained, and understood as a whole. In order to become confronted with all aspects,
problems, design decisions and details, the authors not only conceived but also programmed the entire
system described in this book, and more.

Although there exist numerous books explaining principles and structures of operating systems, there is a
lack of descriptions of systems actually implemented and used. We wished not only to give advice on
how a system might be built, but to demonstrate how one was built. Program listings therefore play a key
role in this text, because they alone contain the ultimate explanations. The choice of a suitable formalism
therefore assumed great importance, and we designed the language Oberon as not only an effective
vehicle for implementation, but also as a publication medium for algorithms in the spirit in which Algol
60 had been created three decades ago. Because of its structure, the language Oberon is equally well
suited to exhibit global, modular structures of programmed systems.

In spite of the small number of man-years spent on realizing the Oberon System, and in spite of its
compactness letting its description fit a single book, it is not an academic toy, but rather a versatile
workstation system that has found many satisfied and even enthusiastic users in academia and industry.
The core system described here, consisting of storage, file, display, text, and viewer managers, of
program loader and device drivers, draws its major power from a suitably chosen, flexible set of basic
facilities and, most importantly, of their effective extensibility in many directions and for many
applications. The extensibility is particularly enhanced by the language Oberon on the one, and by the
efficiency of the basic core on the other hand. It is rooted in the application of the object-oriented
paradigm which is employed wherever extensibility appears advantageous.

In addition to the core system, we describe in full detail the compiler for the language Oberon and a
graphics system, which both may be regarded as applications. The former reveals how a compact
compiler is designed to achieve both fast compilation and efficient, dense code. The latter stands as an
example of extensible design based on object-oriented techniques, and it shows how a proper integration
with an existing text system is possible. Another addition to the core system is a network module
allowing many workstations to be interconnected. We also show how the Oberon System serves
conveniently as the basis for a multi-server station, accommodating a file distribution, a printing, and an
electronic-mail facility.

Compactness and regular structure, and due attention to efficient implementation of important details
appear to be the key to economical software engineering. With the Oberon System, we wish to refute
Reiser's Law, which has been confirmed by virtually all recent releases of operating systems: In spite of
great leaps forward, hardware is becoming faster more slowly than software is becoming slower. The
Oberon System has required a tiny fraction of the manpower demanded for the construction of widely-
used commercial operating systems, and a small fraction of their demands on computing power and
storage capacity, while providing equal power and flexibility to the user, albeit without certain bells and
whistles. The reader is invited to study how this was possible.

But most importantly, we hope to present a worth-while case study of a substantial piece of programming
in the large for the benefit of all those who are eager to learn from the experiences of others.

We wish to thank the many anonymous contributors of suggestions, advice, and encouragement. In
particular we wish to thank our colleagues H. Mössenböck and B. Sanders and our associates at the
Institut für Computersysteme for reading all or parts of the draft of this book. We are grateful to M.
Brandis, R. Crelier, A. Disteli, M. Franz, and J. Templ for their work in porting the Oberon System
successfully to various commercially available computers, and thus making the study of this book more

 2

worth-while for many readers. And we gratefully acknowledge the contribution of our school, ETH, for
providing the environment and support which made it possible for us to pursue and complete this project.

Zürich, February 1992

N.W. and J.G.

 3

Project Oberon
The Design of an Operating System and Compiler

N. Wirth and J. Gutknecht

Table of Contents
1. Historical background and motivation
References

2. Basic concepts and structure of the system

2.1. Introduction
2.2. Concepts
2.3. The System's Structure
2.4. A Tour through the Chapters

3. The Tasking System

3.1. The Concept of Task
3.1.1. Interactive Tasks
3.1.2. Background Tasks
3.2. The Task Scheduler
3.3. The Concept of Command
3.3.1. Generic Actions
3.3.2. Generic Text Selection
3.3.3. Generic Copy-Over for Text
3.3.4. Generic Copy Viewer
3.4. Toolboxes

4. The Display System

4.1. Screen Layout Model
4.2. Viewers as Objects
4.3. Frames as Basic Display Entities
4.4. Display Management
4.4.1. Viewers
4.4.2. Menu Viewers
4.4.3. Cursor Management
4.5. Raster Operations
4.6. Standard Display Configurations

5. The Text System

5.1. Text as Abstract Data Type
5.1.1. Loading and Storing
5.1.2. Editing Text
5.1.3. Accessing Text
5.2. Text Management
5.3. Text Frames
5.4. The Font Machinery
5.5. The Edit Toolbox

6. The Module Loader

6.1. Linking and Loading
6.2. Module Representation in the Oberon System
6.3. The Linking Loader
6.4. The Toolbox of the Loader
6.5. The Oberon Object File Format

 4

7. The File System

7.1. Files
7.2. Implementation of Files on a Random-Access Store
7.3. Implementation of Files on a Disk
7.4. The File Directory
7.5. The Toolbox of File Utilities

8. Storage Layout and Management

8.1. Storage Layout and Run-time Organization
8.2. Allocation of Module Blocks
8.3. Management of Dynamic Storage
8.4. The Kernel

9. Device drivers

9.1. Overview
9.2. The RS-232 Standard for Keyboard
9.3. The RS-485 SDLC Standard for a Network
9.4. The SCSI Standard for Disks

10. The network

10.1. Introduction
10.2. The Protocol
10.3. Station Addressing
10.4. Implementation

11. A dedicated server for file distribution, electronic mail, and printing

11.1. Concept and Structure
11.2. Electronic Mail Service
11.3. Printing Service
11.4. Miscellaneous Services
11.5. User Administration

12. The compiler

12.1 Introduction
12.2 Code Patterns
12.3. Internal Data Structures and Interfaces
12.4. The Parser
12.5. The Scanner
12.6. The Symbol Table and Symbol Files
12.7. Code Selection
12.8. Code Generation
12.9. A Facility for Symbolic Debugging

13. A graphics editor

13.1. History and Goal
13.2. A Brief Guide to Oberon's Line Drawing System
13.2.1 Basic Commands
13.2.2. Menu Commands
13.2.3. Further Commands
13.2.4. Macros
13.2.5. Rectangles
13.2.6. Oblique Lines, Circles, and Ellipses
13.2.7. Spline Curves
13.2.8. Constructing new Macros
13.3. The Core and its Structure

 5

13.4. Displaying Graphics
13.5. The User Interface
13.6. Macros
13.7. Object Classes
13.8. The Implementation
13.8.1. Module Draw
13.8.2. Module GraphicFrames
13.8.3. Module Graphics
13.9. Rectangles and Curves
13.9.1. Rectangles
13.9.2. Oblique Lines, Circles, and Ellipses

14. Building and maintenance tools

14.1. The Startup Process
14.2. Building Tools
14.3. Maintenance Tools

A. Ten Years After: From Objects to Components

A.1. Object Libraries
A.2. Frames as Visual Objects
A.3. Embedded Objects
A.4. Gadgets

 6

Copyright N.Wirth, 30.8.91 / 9.11.91

1. Historical Background and Motivation
How could anyone diligently concentrate on his work on an afternoon with such warmth, splendid
sunshine, and blue sky. This rhetorical question I asked many times while spending a sabbatical leave
in California in 1985. Back home everyone would feel compelled to profit from the sunny spells to
enjoy life at leisure in the country-side, wandering or engaging in one's favourite sport. But here, every
day was like that, and giving in to such temptations would have meant the end of all work. And, had I
not chosen this location in the world because of its inviting, enjoyable climate?

Fortunately, my work was also enticing, making it easier to buckle down. I had the privilege of sitting
in front of the most advanced and powerful workstation anywhere, learning the secrets of perhaps the
newest fad in our fast developing trade, pushing colored rectangles from one place of the screen to
another. This all had to happen under strict observance of rules imposed by physical laws and by the
newest technology. Fortunately, the advanced computer would complain immediately if such a rule
was violated, it was a rule checker and acted like your big brother, preventing you from making steps
towards disaster. And it did what would have been impossible for oneself, keeping track of thousands
of constraints among the thousands of rectangles laid out. This was called computer-aided design.
"Aided" is rather a euphemism, but the computer did not complain about the degradation of its role.

While my eyes were glued to the colorful display, and while I was confronted with the evidence of my
latest inadequacy, in through the always open door stepped my colleague. He also happened to spend a
leave from duties at home at the same laboratory, yet his face did not exactly express happiness, but
rather frustration. The chocolate bar in his hand did for him what the coffee cup or the pipe does for
others, providing temporary relaxation and distraction. It was not the first time he appeared in this
mood, and without words I guessed its cause. And the episode would reoccur many times.

His days were not filled with the great fun of rectangle-pushing; he had an assignment. He was charged
with the design of a compiler for the same advanced computer. Therefore, he was forced to deal much
more closely, if not intimately, with the underlying software system. Its rather frequent failures had to
be understood in his case, for he was programming, whereas I was only using it through an application;
in short, I was an end-user! These failures had to be understood not for purposes of correction, but in
order to find ways to avoid them. How was the necessary insight to be obtained? I realized at this
moment that I had so far avoided this question; I had limited familiarization with this novel system to
the bare necessities which sufficed for the task on my mind.

It soon became clear that a study of the system was nearly impossible. Its dimensions were simply
awesome, and documentation accordingly sparse. Answers to questions that were momentarily
pressing could best be obtained by interviewing the system's designers, who all were in-house. In
doing so, we made the shocking discovery that often we could not understand their language.
Explanations were fraught with jargon and references to other parts of the system which had remained
equally enigmatic to us.

So, our frustration-triggered breaks from compiler construction and chip design became devoted to
attempts to identify the essence, the foundations of the system's novel aspects. What made it different
from conventional operating systems? Which of these concepts were essential, which ones could be
improved, simplified, or even discarded? And where were they rooted? Could the system's essence be
distilled and extracted, like in a chemical process?

During the ensuing discussions, the idea emerged slowly to undertake our own design. And suddenly it
had become concrete. "Crazy" was my first reaction, and "impossible". The sheer amount of work
appeared as overwhelming. After all, we both had to carry our share of teaching duties back home. But
the thought was implanted and continued to occupy our minds.

Sometime thereafter, events back home suggested that I should take over the important course about
System Software. As it was the unwritten rule that it should primarily deal with operating system

 7

principles, I hesitated. My scruples were easily justified: After all I had never designed such a system
nor a part of it. And how can one teach an engineering subject without first-hand experience!

Impossible? Had we not designed compilers, operating systems, and document editors in small teams?
And had I not repeatedly experienced that an inadequate and frustrating program could be programmed
from scratch in a fraction of source code used by the original design? Our brain-storming continued,
with many intermissions, over several weeks, and certain shapes of a system structure slowly emerged
through the haze. After some time, the preposterous decision was made: we would embark on the
design of an operating system for our workstation (which happened to be much less powerful than the
one used for my rectangle-pushing) from scratch.

The primary goal, to personally obtain first-hand experience, and to reach full understanding of every
detail, inherently determined our manpower: two part-time programmers. We tentatively set our time-
limit for completion to three years. As it later turned out, this had been a good estimate; programming
was begun in early 1986, and a first version of the system was released in the fall of 1988.

Although the search for an appropriate name for a project is usually a minor problem and often left to
chance and whim of the designers, this may be the place to recount how Oberon entered the picture in
our case. It happened that around the time of the beginning of our effort, the space probe Voyager
made headlines with a series of spectacular pictures taken of the planet Uranus and of its moons, the
largest of which is named Oberon. Since its launch I had considered the Voyager project as a
singularly well-planned and successful endeavor, and as a small tribute to it I picked the name of its
latest object of investigation. There are indeed very few engineering projects whose products perform
way beyond expectations and beyond their anticipated lifetime; mostly they fail much earlier,
particularly in the domain of software. And, last but not least, we recall that Oberon is famous as the
king of elfs.

The consciously planned shortage of manpower enforced a single, but healthy guideline: Concentrate
on essential functions and omit embellishments that merely cater to established conventions and
passing tastes. Of course, the essential core had first to be recognized and crystallized. But the basis
had been laid. The ground rule became even more crucial, when we decided that the result should be
able to be used as teaching material. I remembered C.A.R. Hoare's plea that books should be written
presenting actually operational systems rather than half-baked, abstract principles. He had complained
in the early 70s that in our field engineers were told to constantly create new artifacts without being
given the chance to study previous works that had proven their worth in the field. How right was he,
even to the present day!

The emerging goal to publish the result with all its details let the choice of programming language
appear in a new light: it became crucial. Modula-2 which we had planned to use, appeared as not quite
satisfactory. Firstly, because it lacked a facility to express extensibility in an adequate way. And we
had put extensibility among the principal properties of the new system. By "adequate" we include
machine-independence. Our programs should be expressed in a manner that makes no reference to
machine peculiarities and low-level programming facilities, perhaps with the exception of device
interfaces, where dependence is inherent.

Hence, Modula-2 was extended with a feature that is now known as type extension. We also
recognized that Modula-2 contained several facilities that we would not need, that do not genuinely
contribute to its power of expression, but at the same time increase the complexity of the compiler. But
the compiler would not only have to be implemented, but also to be described, studied, and understood.
This led to the decision to start from a clean slate also in the domain of language design, and to apply
the same principle to it: concentrate on the essential, purge the rest. The new language, which still
bears much resemblance to Modula-2, was given the same name as the system: Oberon [1, 2]. In
contrast to its ancestor it is terser and, above all, a significant step towards expressing programs on a
high level of abstraction without reference to machine-specific features.

We started designing the system in late fall 1985, and programming in early 1986. As a vehicle we
used our workstation Lilith and its language Modula-2. First, a cross-compiler was developed, then
followed the modules of the inner core together with the necessary testing and down-loading facilities.
The development of the display and the text system proceeded simultaneously, without the possibility

 8

of testing, of course. We learned how the absence of a debugger, and even more so the absence of a
compiler, can contribute to careful programming.

Thereafter followed the translation of the compiler into Oberon. This was swiftly done, because the
original had been written with anticipation of the later translation. After its availability on the target
computer Ceres, together with the operability of the text editing facility, the umbilical cord to Lilith
could be cut off. The Oberon System had become real, at least its draft version. This happened around
mid 1987; its description was published thereafter [3].

The system's completion took another year and concentrated on connecting the workstations in a
network for file transfer [4], on a central printing facility, and on maintenance tools. The goal of
completing the system within three years had been met. The system was introduced in mid 1988 to a
wider user community, and work on applications could start. A service for electronic mail was
developed, a graphics system was added, and various efforts for general document preparation systems
proceeded. The display facility was extended to accommodate two screens, including color. At the
same time, feedback from experience in its use was incorporated by improving existing parts. Since
1989, Oberon has replaced Modula-2 in our introductory programming courses.

At this point, a word about the underlying hardware is perhaps in order. The Ceres workstation had
also been developed at the Institute for Computer Systems of ETH, and it provided an ideal platform
for implanting the Oberon System on a bare machine. It offered the immensely valuable opportunity to
design without regard to established constraints and to avoid compromises enforced by an
incompatible environment.

Ceres-1 was built around a National Semiconductor 32032 microprocessor, which was in 1985 the first
commercially available processor using a 32 bit wide bus. It appeared as particularly attractive to the
compiler builder because of its regular instruction set. The computer was equipped with 2 MBytes of
main memory, a 40 MByte disk, a diskette, a 1024*800 pixel display, and of course with keyboard and
mouse. These resources were more than adequate for the Oberon System.

Ceres-2 was introduced in 1988 and replaced the processor by its faster version, the NS 32532, which
increased its computing power by a factor of at least 5 over its predecessor. Memory was extended to 4
- 8 MByte and the disk to 80 MByte. In order to install the software, "only" a few modules had to be
adapted, the kernel because of different page structure, and device drivers because of different device
addresses.

In 1990, a low-cost version, Ceres-3 was designed, and 100 computers were built and installed in
laboratories. This single-board computer is based on the NS 32GX32 processor without virtual
addressing unit, and includes a 4-8 MByte memory. The distinctive feature is that the file system is
implemented in one (protected) half of memory instead of a disk, increasing operating speed
dramatically. Ceres-3 is free from mechanically moving parts (no fan) and therefore is completely
noiseless. It is primarily used in laboratories for students. The usefulness of a central server for system
file distribution is evident.

Because of its success and flexibility in use, a project was started in 1989 to transport the System to a
number of commercially available workstations. The plan to install it on bare machines, like on Ceres,
was quickly discarded; nobody would even give it a try, if one had to buy another computer or even
only to exchange ROMs in order to experiment with Oberon. The drawback of building on top of an
existing system had to be accepted; it implies the cost of some rarely used software occupying part of
memory, sometimes even occupying a sizeable part. At the time of this writing, implementations exist
on Apple's Macintosh II, Sun Microsystem's Sparc Station, DEC's DECStation 3100 and 5000, and
IBM's RS/6000. These implementations each took about half a man-year of effort. The solution to
build on top of an existing system carries the invaluable advantage that applications designed under the
base system are accessible from Oberon. All these systems comply with their published description in
a user manual [Reiser, 1991], all have exactly the same user interface, and every program operating on
one of these computers can be executed on any of the others without change. Evidently, this is an
important advantage that can only be gained by programming at a higher level of abstraction, such as
in the language Oberon.

 9

References
1. N. Wirth. The programming language Oberon. Software - Practice and Experience 18, 7, (July

1988) 671-690.

2. M. Reiser and N. Wirth. Programming in Oberon - Steps beyond Pascal and Modula. Addison-
Wesley, 1992.

3. N. Wirth and J. Gutknecht. The Oberon System. Software - Practice and Experience, 19, 9 (Sept.
1989), 857-893.

4. N. Wirth. Ceres-Net: A low-cost computer network. Software - Practice and Experience, 20, 1 (Jan.
1990), 13-24.

5. M. Reiser. The Oberon System - UserGuide and Programmer's Manual. Addison-Wesley, 1991.

 10

Copyright N.Wirth, 30.8.91 / 9.11.91

2. Basic Concepts and Structure of the System

2.1 Introduction
In order to warrant the sizeable effort of designing and constructing an entire operating system from
scratch, a number of basic concepts need to be novel. We start this chapter with a discussion of the
principal concepts underlying the Oberon System and of the dominant design decisions. On this basis,
a presentation of the system's structure follows. It will be restricted to its coarsest level, namely the
composition and interdependence of the largest building blocks, the modules. The chapter ends with an
overview of the remainder of the book. It should help the reader to understand the role, place, and
significance of the parts described in the individual chapters.

The fundamental objective of an operating system is to present the computer to the user and to the
programmer at a certain level of abstraction. For example, the store is presented in terms of requestable
pieces or variables of a specified data type, the disk is presented in terms of sequences of characters (or
bytes) called files, the display is presented as rectangular areas called viewers, the keyboard is
presented as an input stream of characters, and the mouse appears as a pair of coordinates and a set of
key states. Every abstraction is characterized by certain properties and governed by a set of operations.
It is the task of the system to implement these operations and to manage them, constrained by the
available resources of the underlying computer. This is commonly called resource management.

Every abstraction inherently hides details, namely those from which it abstracts. Hiding may occur at
different levels. For example, the computer may allow certain parts of the store, or certain devices to
be made inaccessible according to its mode of operation (user/supervisor mode), or the programming
language may make certain parts inaccessible through a hiding facility inherent in its visibility rules.
The latter is of course much more flexible and powerful, and the former indeed plays an almost
negligible role in our system. Hiding is important because it allows maintenance of certain properties
(called invariants) of an abstraction to be guaranteed. Abstraction is indeed the key of any
modularization, and without modularization every hope of being able to guarantee reliability and
correctness vanishes. Clearly, the Oberon System was designed with the goal of establishing a modular
structure on the basis of purpose-oriented abstractions. The availability of an appropriate programming
language is an indispensible prerequisite, and the importance of its choice cannot be over-emphasized.

2.2. Concepts

2.2.1. Viewers

Whereas the abstractions of individual variables representing parts of the primary store, and of files
representing parts of the disk store are well established notions and have significance in every
computer system, abstractions regarding input and output devices became important with the advent of
high interactivity between user and computer. High interactivity requires high bandwidth, and the only
channel of human users with high bandwidth is the eye. Consequently, the computer's visual output
unit must be properly matched with the human eye. This occurred with the advent of the high-
resolution display in the mid 1970s, which in turn had become feasible due to faster and cheaper
electronic memory components. The high-resolution display marked one of the few very significant
break-throughs in the history of computer development. The typical bandwidth of a modern display is
in the order of 100 MHz. Primarily the high-resolution display made visual output a subject of
abstraction and resource management. In the Oberon System, the display is partitioned into viewers,
also called windows, or more precisely, into frames, rectangular areas of the screen(s). A viewer
typically consists of two frames, a title bar containing a subject name and a menu of commands, and a
main frame containing some text, graphic, picture, or other object. A viewer itself is a frame; frames
can be nested, in principle to any depth.

The System provides routines for generating a frame (viewer), for moving and for closing it. It
allocates a new viewer at a specified place, and upon request delivers hints as to where it might best be

 11

placed. It keeps track of the set of opened viewers. This is what is called viewer management, in
contrast to the handling of their displayed contents.

But high interactivity requires not only a high bandwidth for visual output, it demands also flexibility
of input. Surely, there is no need for an equally large bandwidth, but a keyboard limited by the speed
of typing to about 100 Hz is not good enough. The break-through on this front was achieved by the so-
called mouse, a pointing device which appeared roughly at the same time as the high-resolution
display.

This was by no means just a lucky coincidence. The mouse comes to fruition only through appropriate
software and the high-resolution display. It is itself a conceptually very simple device delivering
signals when moved on the table. These signals allow the computer to update the position of a mark -
the cursor - on the display. Since feedback occurs through the human eye, no great precision is
required from the mouse. For example, when the user wishes to identify a certain object on the screen,
such as a letter, he moves the mouse as long as required until the mapped cursor reaches the object.
This stands in marked contrast to a digitizer which is supposed to deliver exact coordinates. The
Oberon System relies very much on the availability of a mouse.

Perhaps the cleverest idea was to equip mice with buttons. By being able to signal a request with the
same hand that determines the cursor position, the user obtains the direct impression of issuing
position-dependent requests. Position-dependence is realized in software by delegating interpretation
of the signal to a procedure - a so-called handler or interpreter -which is local to the viewer in whose
area the cursor momentarily appears. A surprising flexibility of command activation can be achieved in
this manner by appropriate software. Various techniques have emerged in this connection, e.g. pop-up
menus, pull-down-menus, etc. which are powerful even under the presence of a single button only. For
many applications, a mouse with several keys is far superior, and the Oberon System basically assumes
three buttons to be available. The assignment of different functions to the keys may of course easily
lead to confusion when every application prescribes different key assignment. This is, however, easily
avoided by the adherence to certain "global" conventions. In the Oberon System, the left button is
primarily used for marking a position (setting a caret), the middle button for issuing general commands
(see below), and the right button for selecting displayed objects.

Recently, it has become fashionable to use overlapping windows mirroring documents being piled up
on one's desk. We have found this metaphor not entirely convincing. Partially hidden windows are
typically brought to the top and made fully visible before any operation is appiled to their contents. In
contrast to the insignificant advantage stands the substantial effort necessary to implement this scheme.
It is a good example of a case where the benefit of a complication is incommensurate with its cost.
Therefore, we have chosen a solution that is much simpler to realize, yet has no genuine disadvantages
compared to overlapping windows: tiled viewers as shown in Fig. 2.1.

Fig. 2.1. Oberon Display with tiled Viewers

2.2.2. Commands

Position-dependent commands with fixed meaning (fixed for each type of viewer) must be
supplemented by general commands. Conventionally, such commands are issued through the keyboard
by typing the program's name that is to be executed into a special command text. In this respect, the
Oberon System offers a novel and much more flexible solution which is presented in the following
paragraphs.

First of all we remark that a program in the common sense of a text compiled as a unit is mostly a far
too large unit of action to serve as a command. Compare it, for example, with the insertion of a piece
of text through a mouse command. In Oberon, the notion of a unit of action is separated from the
notion of unit of compilation. The former is a command represented by a (exported) procedure, the
latter is a module. Hence, a module may, and typically does, define several, even many commands.
Such a (general) command may be invoked at any time by pointing at its name in any text visible in
any viewer on the display, and by clicking the middle mouse button. The command name has the form
M.P, where P is the procedure's identifier and M that of the module in which P is declared. As a
consequence, any command click may cause the loading of one or several modules, if M is not already

 12

present in main store. The next invocation of M.P occurs instataneously, since M is already loaded. A
further consequence is that modules are never (automatically) removed, because a next command may
well refer to the same module.

Every command has the purpose to alter the state of some operands. Typically, they are denoted by
text following the command identification, and Oberon follows this convention. Strictly speaking,
commands are denoted as parameterless procedures; but the system provides a way for the procedure
to identify the text position of its origin, and hence to read and interpret the text following the
command, i.e. the actual parameters. Both reading and interpretation must, however, be programmed
explicitly.

The parameter text must refer to objects that exist before command execution starts and are quite likely
the result of a previous command interpretation. In most operating systems, these objects are files
registered in the directory, and they act as interfaces between commands. The Oberon System broadens
this notion; the links between consecutive commands are not restricted to files, but can be any global
variable, because modules do not disappear from storage after command termination, as mentioned
above.

This tremendous flexibility seems to open Pandora's box, and indeed it does when misused. The reason
is that global variables' states may completely determine and alter the effect of a command. The
variables represent hidden states, hidden in the sense that the user is in general unaware of them and
has no easy way to determine their value. The positive aspect of using global variables as interfaces
between commands is that some of them may well be visible on the display. All viewers - and with
them also their contents - are organized in a data structure that is rooted in a global variable (in module
Viewers). Parts of this variable therefore constitute visible states, and it is highly appropriate to refer to
them as command parameters.

One of the rules of what may be called the Oberon Programming Style is therefore to avoid hidden
states, and to reduce the introduction of global variables. We do not, however, raise this rule to the
rank of a dogma. There exist genuinely useful exceptions, even if the variables have no visible parts.

There remains the question of how to denote visible objects as command parameters. An obvious case
is the use of the most recent selection as parameter. A procedure for locating that selection is provided
by module Oberon. (It is restricted to text selections). Another possibility is the use of the caret
position in a text. This is used in the case of inserting new text; the pressing of a key on the keyboard is
also considered to be a command, and it causes the character's insertion at the caret position.

A special facility is introduced for designating viewers as operands: the star marker. It is placed at the
cursor position when the keyboard's mark key (SETUP) is pressed. The procedure
Oberon.MarkedViewer identifies the viewer in whose area the star lies. Commands which take it as
their parameter are typically followed by an asterisk in the text. Whether the text contained in a text
viewer, or a graph contained in a graphic viewer, or any other part of the marked viewer is taken as the
actual parameter depends on how the command procedure is programmed.

Finally, a most welcome property of the system should not remain unmentioned. It is a direct
consequence of the persistent nature of global variables and becomes manifest when a command fails.
Detected failures result in a trap. Such a trap should be regarded as an abnormal command termination.
In the worst case, global data may be left in an inconsistent state, but they are not lost, and a next
command can be initiated based on their current state. A trap opens a small viewer and lists the
sequence of invoked procedures with their local variables and current values. This information helps a
programmer to identify the cause of the trap.

2.2.3. Tasks

From the presentations above it follows that the Oberon System is distinguished by a highly flexible
scheme of command activation. The notion of a command extends from the insertion of a single
character and the setting of a marker to computations that may take hours or days. It is moreover
distinguished by a highly flexible notion of operand selection not restricted to registered, named files.
And most importantly, by the virtual absence of hidden states. The state of the system is practically
determined by what is visible to the user.

 13

This makes it unnecessary to remember a long history of previously activated commands, started
programs, entered modes, etc. Modes are in our view the hallmark of user-unfriendly systems. It
should at this point have become obvious that the system allows a user to pursue several different tasks
concurrently. They are manifest in the form of viewers containing texts, graphics, or other displayable
objects. The user switches between tasks implicitly when choosing a different viewer as operand for
the next command. The characteristic of this concept is that task switching is under explicit control of
the user, and the atomic units of action are the commands.

At the same time, we classify Oberon as a single-process (or single-thread) system. How is this
apparent paradox to be understood? Perhaps it is best explained by considering the basic mode of
operation. Unless engaged in the interpretation of a command, the processor is engaged in a loop
continuously polling event sources. This loop is called the central loop; it is contained in module
Oberon which may be regarded as the system's heart. The two fixed event sources are the mouse and
the keyboard. If a keyboard event is sensed, control is dispatched to the handler installed in the so-
called focus viewer, designated as the one holding the caret. If a mouse event (key) is sensed, control is
dispatched to the handler in which the cursor currently lies. This is all possible under the paradigm of a
single, uninterruptible process.

The notion of a single process implies non-interruptability, and therefore also that commands cannot
interact with the user. Interaction is confined to the selection of commands before their execution.
Hence, there exists no input statement in typical Oberon programs. Inputs are given by parameters
supplied and designated before command invocation.

This scheme at first appears as gravely restrictive. In practice it is not, if one considers single-user
operation. It is this single user who carries out a dialog with the computer. A human might be capable
of engaging in simultaneous dialogs with several processes only if the commands issued are very time-
consuming. We suggest that execution of time-consuming computations might better be delegated to
loosely coupled compute-servers in a distributed system.

The primary advantage of a system dealing with a single process is that task switches occur at user-
defined points only, where no local process state has to be preserved until resumption. Furthermore,
because the switches are user-chosen, the tasks cannot interfere in unexpected and uncontrollable ways
by accessing common variables. The system designer can therefore omit all kinds of protection
mechanisms that exclude such interference. This is a significant simplification.

The essential difference between Oberon and multiprocess-systems is that in the former task switches
occur between commands only, whereas in the latter a switch may be invoked after any single
instruction. Evidently, the difference is one of granularity of action. Oberon's granularity is coarse,
which is entirely acceptable for a single-user system.

The system offers the possibility to insert further polling commands in the central loop. This is
necessary if additional event sources are to be introduced. The prominent example is a network, where
commands may be sent from other workstations. The central loop scans a list of so-called task
descriptors. Each descriptor refers to a command procedure. The two standard events are selected only
if their guard permits, i.e. if either keyboard input is present, or if a mouse event occurs. Inserted tasks
must provide their own guard in the beginning of the installed procedure.

The example of a network inserting commands, called requests, raises a question: what happens if the
processor is engaged in the execution of another command when the request arrives? Evidently, the
request would be lost unless measures are taken. The problem is easily remedied by buffering the
input. This is done in every driver of an input device, in the keyboard driver as well as the network
driver. The incoming signal triggers an interrupt, and the invoked interrupt handler accepts the input
and buffers it. We emphasize that such interrupt handling is confined to drivers, system components at
the lowest level. An interrupt does not evoke a task selection and a task switch. Control simply returns
to the point of interruption, and the interrupt remains unnoticeable to programs. There exists, as with
every rule, an exception: an interrupt due to keyboard input of the abort character returns control to the
central loop.

2.2.4. Tool Texts as Configurable Menus

 14

Certainly, the concepts of viewers specifying their own interpretation of mouse clicks, of commands
invokable from any text on the display, of any displayed object being selectable as an interface
between commands, and of commands being dialog-free, uninterruptible units of action, have
considerable influence on the style of programming in Oberon, and they thoroughly change the style of
using the computer. The ease and flexibility in the way pieces of text can be selected, moved, copied,
and designated as command and as command parameters, drastically reduces the need for typing. The
mouse becomes the dominant input device: the keyboard merely serves to input textual data. This is
accentuated by the use of so-called tool texts, compositions of frequently used commands, which are
typically displayed in the narrower system track of viewers. One simply doesn't type commands! They
are usually visible somewhere already. Typically, the user composes a tool text for every project
pursued. Tool texts can be regarded as individually configurable private menus.

The rarity of issuing commands by typing them has the most agreeable benefit that their names can be
meaningful words. For example, the copy operation is denoted by Copy instead of cp, rename by
Rename instead of rn, the call for a file directory excerpt is named Directory instead of ls. The need for
memorizing an infinite list of cryptic abbreviations, which is another hallmark of user-unfriendly
systems, vanishes.

But the influence of the Oberon concept is not restricted to the style in which the computer is used. It
extends also to the way programs are designed to communicate with the environment. The definition of
the abstract type Text in the system's core suggests the replacement of files by texts as carrier of input
and output data in very many cases. The advantage to be gained lies in the text's immediate editability.
For example, the output of the command System.Directory produces the desired excerpt of the file
directory in the form of a (displayed) text. Parts of it or the whole may be selected and copied into
other texts by regular editing commands (mouse clicks). Or, the compiler accepts texts as input. It is
therefore possible to compile a text, execute the program, and to recompile the re-edited text without
storing it on disk between compilations and tests. The ubiquiteous editability of text together with the
persistence of global data (in particular viewers) allows many steps that do not contribute to the
progress of the task actually pursued to be avoided.

2.2.5. Extensibility

An important objective in the design of the Oberon System was extensibility. It should be easy to
extend the system with new facilities by adding modules that make use of the already existing
resources. Equally important, it should also reduce the system to those facilities that are currently and
actually used. For example, a document editor processing documents free of graphics should not
require the loading of an extensive graphics editor, a workstation operating as a stand-alone system
should not require the loading of extensive network software, and a system used for clerical purposes
need include neither compiler nor assembler. Also, a system introducing a new kind of display frame
should not include procedures for managing viewers containing such frames. Instead, it should make
use of existing viewer management. The staggering consumption of memory space by many widely
used systems is due to violation of such fundamental rules of engineering. The requirement of many
megabytes of store for an operating system is, albeit commonly tolerated, absurd and another hallmark
of user-unfriedliness, or perhaps manufacturer friendliness. Its reason is none other than inadequate
extensibility.

We do not restrict this notion to procedural extensibility, which is easy to realize. The important point
is that extensions may not only add further procedures and functions, but introduce their own data
types built on the basis of those provided by the system: data extensibility. For example, a graphics
system should be able to define its graphics frames based on frames provided by the basic display
module and by extending them with attributes appropriate for graphics.

This requires an adequate language feature. The language Oberon provides precisely this facility in the
form of type extensions. The language was designed for this reason; Modula-2 would have been the
choice, had it not been for the lack of a type extension feature. Its influence on system structure was
profound, and the results have been most encouraging. In the meantime, many additions have been
created with surprising ease. One of them is described at the end of this book. The basic system is
nevertheless quite modest in its resource requirements (see Table at the end of Section 2.3).

 15

2.2.6. Dynamic Loading

Activation of commands residing in modules that are not present in the store implies the loading of the
modules and, of course, all their imports. Invoking the loader is, however, not restricted to command
activation; it may also occur through programmed procedure calls. This facility is indispensible for a
successful realization of genuine extensibility. Modules must be loadable on demand. For example, a
document editor loads a graphics package when a graphic element appears in the processed document,
but not otherwise.

The Oberon System features no separate linker. A module is linked with its imports when it is loaded,
and never before. As a consequence, every module is present only once, in main store (linked) as well
as on backing store (unlinked, as file). Avoiding the generation of multiple copies in different, linked
object files is the key to storage economy. Prelinked mega-files do not occur in the Oberon System,
and every module is freely reusable.

2.3 The System's Structure
The largest identifiable units of the system are its modules. It is therefore most appropriate to describe
a system's structure in terms of its modules. As their interfaces are explicitly declared, it is also easy to
exhibit their interdependence in the form of a directed graph. The edges indicate imports.

The module graph of a system programmed in Oberon is hierarchical, i.e. has no cycles. The lowest
members of the hierarchy effectively import hardware only. We refer here to modules which contain
device drivers. But module Kernel also belongs to this class; it "imports memory" and includes the disk
driver. The modules on the top of the hierarchy effectively export to the user. As the user has direct
access to command procedures, we call these top members command modules or tool modules.

The hierarchy of the basic system is shown in Fig. 2.1. The picture is simplified by omitting direct
import edges if an indirect path also leads from the source to the destination. For example, Files
imports Kernel; the direct import is not shown, because a path form Kernel leads to Files via FileDir.
Module names in the plural form typically indicate the definition of an abstract data type in the
module. The type is exported together with the pertinent operations. Examples are Files, Modules,
Fonts, Texts,Viewers, MenuViewers, and TextFrames. (The exception is Reals which is an auxiliary
module to Texts containing conversion operations for floating-point numbers programmed in
assembler code). Modules whose names are in singular form typically denote a resource that the
module manages, be it a global variable or a device. The variable or the device is itself hidden (not
exported) and becomes accessible through the module's exported procedures. Examples are all device
drivers, Input for keyboard and mouse, Kernel for the store and disk, Display, and SCC
(communication controller). Exceptions are the command modules whose name is mostly chosen
according to the activity they primarily represent, like Edit and Backup.

Module Oberon is, as already mentioned, the heart of the system containing the central loop to which
control returns after each command interpretation, independent of whether it terminates normally or
abnormally. Oberon exports several procedures of auxiliary nature, but primarily also the one allowing
the invocation of commands (Call) and access to the command's parameter text through variable
Oberon.Par. Furthermore, it contains the log text and exports this variable. The log text typically serves
to issue prompts and short failure reports of commands. The text is displayed in a log viewer that is
automatically opened when module System is initialized. Module Oberon furthermore contains the two
markers used globally on the display, the cursor and the mark. It exports procedures to draw and to
erase them, and allows the installation of different patterns for them.

 16

Oberon

Viewers

Display

System

TextFrames

MenuViewers

Texts

Modules

Files

FileDir

Kernel

Reals

Fonts

Edit

Printer

Input

Net

SCC

Backup

Diskette

command modules

drivers

Fig. 2.2. Structure of the Oberon core

The system shown in Fig. 2.1. basically contains facilities for generating and editing texts, and for
storing them in the file system and for backing them up on diskettes. All other functions are performed
by modules that must be added in the usual way by module loading on demand. This includes, notably,
the compiler, network communication, document editors, and all sorts of programs designed by users.
The high priority given in the system's conception to modularity, to avoiding unnecessary frills, and to
concentrate on the indispensible in the core, has resulted in a system of remarkable compactness.
Although this property may be regarded as of little importance in this era of falling costs of large
memories, we consider it to be highly essential. We merely should like to draw the reader's attention to
the correlation between a systems' size and its reliability. Also, we do not consider it as good
engineering practice to consume a resource lavishly just because it happens to be cheap. The following
table lists the core's modules and the major application modules, and it indicates the number of bytes
used for their code, their constants, and their static variables and, lastly, the number of source code
lines.

module name code (bytes) constants variables source lines

Kernel 1896 144 108 *
FileDir 4324 56 0 368
Files 3640 24 4 450
Modules 2356 32 48 229
Input 452 4 48 73
Display 2284 392 52 *
Fonts 1204 44 8 117
Viewers 1836 12 20 248

 17

Reals 484 104 0 *
Texts 9388 176 8 666
Oberon 3836 48 120 495
MenuViewers 2776 8 4 226
TextFrames 10148 152 112 868
System 6820 688 76 617
 51444 1884 608 4357

SCC 1144 8 2056 161
V24 340 4 516 71
Diskette 2812 40 1504 382
Printer 1512 36 1072 175
Edit 4668 240 596 458
Backup 1428 280 48 147
Net 5868 548 88 610
 17772 1156 5880 2004

Compiler 8988 144 84 967
OCS 3600 448 944 314
OCT 5000 504 260 583
OCC 6252 140 22540 611
OCE 12212 320 48 972
OCH 5804 48 36 553
 41856 1604 23912 4000

Graphics 7124 232 116 728
GraphicFrames 5648 60 60 566
Draw 2876 268 44 265
Rectangles 1508 16 8 128
Curves 3572 12 4 229
 20728 588 232 1916
total 131800 5232 30632 12277
* written in assembler code

2.4. A Tour through the Chapters
Implementation of a system proceeds bottom-up. Naturally, because modules on higher levels are
clients of those on the lower levels and cannot function without the availability of their imports.
Description of a system, on the other hand, is better ordered in the top-down direction. This is because
a system is designed with its expected applications and functions in mind. Decomposition into a
hierarchy of modules is justified by the use of auxiliary functions and abstractions and by postponing
their more detailed explanation to a later time when their need has been fully motivated. For this
reason, we will proceed essentially in the top-down direction.

Chapters 3 - 5 describe the outer core of the system. Chapter 3 focusses on the dynamic aspects. In
particular, this Chapter introduces the fundamental operational units of task and command. Oberon's
tasking model distinguishes the categories of interactive tasks and background tasks. Interactive tasks
are represented on the display screen by rectangular areas, so-called viewers. Background tasks need
not be connected with any displayed object. They are scheduled with low priority when interactions are
absent. A good example of a background task is the memory garbage collector. Both interactive tasks
and background tasks are mapped to a single process by the task scheduler. Commands in Oberon are
explicit atomic units of interactive operations. They are realized in the form of exported parameterless
procedures and replace the heavier-weight notion of program known from more conventional operating
systems. The Chapter continues with a definition of a software toolbox as a logically connected
collection of commands. It terminates with an outline of the system control toolbox.

 18

Chapter 4 explains Oberon's display system. It starts with a discussion of our choice of a hierarchical
tiling strategy for the allocation of viewers. A detailed study of the exact role of Oberon viewers
follows. Type Viewer is presented as an object class with an open message interface providing a
conceptual basis for far-reaching extensibility. Viewers are then recognized as just a special case of so-
called frames that may be nested. A category of standard viewers containing a menu frame and a frame
of contents is investigated. The next topic is cursor handling. A cursor in Oberon is a marked path.
Both viewer manager and cursor handler operate on an abstract logical display area rather than on
individual physical monitors. This allows a unified handling of display requests, independent of
number and types of monitors assigned. For example, smooth transitions of the cursor across screen
boundaries are conceptually guaranteed. The Chapter continues with the presentation of a concise and
complete set of raster operations that is used to place textual and graphical elements in the display area.
An overview of the system display toolbox concludes the Chapter.

Chapter 5 introduces text. Oberon distinguishes itself by treating Text as an abstract data type that is
integrated in the central system. Numerous fundamental consequences are discussed. For example, a
text can be produced by one command, edited by a user, and then consumed by a next command.
Commands themselves can be represented textually in the form M.P, followed by a textual parameter
list. Consequently, any command can be called directly from within a text (so-called tool) simply by
pointing at it with the mouse. However, the core of this Chapter is a presentation of Oberon's text
system as a case study in program modularization. The concerns of managing a text and displaying it
are nicely separated. Both the text manager and the text display feature an abstract public interface as
well as an internally hidden data structure. Finally in this Chapter, Oberon's type-font management and
the toolbox for editing are discussed and, in particular, an abstract printer interface is defined.

Chapters 6 - 9 describe the inner core, still in a top-down path. Chapter 6 explains the loader of
program modules and motivates the introduction of the data type Module. The chapter includes the
management of the memory part holding program code and defines the format in which compiled
modules are stored as object files. Furthermore, it discusses the problems of binding separately
compiled modules together and of referencing objects defined in other modules. It is explained how the
processor's addressing modes support this objective in the case of the Ceres computer.

Chapter 7 is devoted to the file system, a part of crucial importance, because files are involved in
almost every program and computation. The chapter consist of two distinct parts, the first describing
the structure of files, i.e. their representation on disk storage with its sequential characteristics, the
second describing the directory of file names and its organisation as a B-tree for obtaining fast
searches.

The management of memory is the subject of Chapter 8. A single, central storage management was one
of the key design decisions, guaranteeing an efficient and economical use of storage. The chapter
explains the store's partitioning into specific areas. Its central concern, however, is the discussion of
dynamic storage management in the partition called the heap. As an exception, the algorithm for
allocation (corresponding to the intrinsic procedure NEW) and for retrieval (called garbage collection)
are explained in their principles rather than through concrete program listings. The reason for this is
that they are programmed in assembler code rather than in the language Oberon, and that therefore
their details are of less general interest to the readership.

At the lowest level of the module hierarchy we find device drivers. They are desribed in Chapter 9,
which contains drivers for some widely accepted interface standards: an RS-232 line driver used in
modules Input for the keybord, and module V24 for data links, an RS-485 line driver (module SCC)
used for the network connecting workstations, and a SCSI driver usable for interfaces to disks and
possibly other devices via a 8-bit parallel bus.

The second part of the book, consisting of Chapter 10 - 14, is devoted to what may be called first
applications of the basic Oberon System. These chapters are therefore independent of each other,
making reference to Chapters 3 - 9 only.

Although the Oberon System is well-suited for operating stand-alone workstations, a facility for
connecting a set of computers should be considered as fundamental. Module Net, which makes
transmission of files among workstations connected by a bus-like network possible, is the subject of

 19

Chapter 10. It presents not only the problems of network access, of transmission failures and collisions,
but also those of naming partners. The solutions are implemented in a surprisingly compact module
which uses the network driver presented in Chapter 9.

When a set of workstations is connected in a network, the desire for a central server appears. A central
facility serving as a file distribution service, as a printing station, and as a storage for electronic mail is
presented in Chapter 11. It emerges by extending the Net module of Chapter 10, and is a convincing
application of the tasking facilities explained in section 2.2. In passing we note that the server operates
on a machine that is not under observation by a user. This circumstance requires an increased degree of
robustness, not only against transmission failures, but also against data that do not conform to defined
formats.

The presented system of servers demonstrates that Oberon's single-thread scheme need not be
restricted to single-user systems. The fact that every command or request, once accepted, is processed
until completion, is acceptable if the request does not occupy the processor for too long, which is
mostly the case in the presented server applications. Requests arriving when the processor is engaged
are queued. Hence, the processor handles requests one at a time instead of interleaving them which, in
general, results in faster overall performance due to the adsence of frequent task switching.

Chapter 12 describes the Oberon Compiler. Although here it appears as an application module, it
naturally plays a distinguished role, because the system (and the compiler itself) is formulated in the
language which the compiler translates into code. Together with the text editor it was the principal tool
in the system's development. The use of straight-forward algorithms for parsing and symbol table
organization led to a reasonably compact piece of software (see Section 2.3). A main contributor to this
result is the language's definition: the language is devoid of complicated structures and rarely used
embellishments. Its structure is regular and its syntax compact.

The compiler and thereby the chapter is partitioned into three main parts. The first is language-specific,
but does not refer to any particular target computer. This part is therefore of most general interest to
the readership. The second part is, essentially, language-independent, but is specifically tailored to the
instruction set of the target computer; it discusses the selection of instructions. The third part describes
the module which puts instructions into the particular format defined by the target machine.

Although the algorithms and details decribed in the latter two parts are machine-specific, much would
remain similar for other target computers with similar architectures. Our choice of the National
Semiconductor 32000 processor (eight years ago) may appear mistaken, because it happens to be not
widely known. In contrast to similar architectures (like Motorola 680x0 and Intel 80x86) it is
distinguished by a much more regular instruction set. This is the most attractive property for compiler
designers, and it is even more so for the compiler's description. Every irregularity is a source of
additional complexity. Even in retrospect, the 32000 was by far the best choice from the point of view
of description. And we presume that our readers wish to not merely copy, but to understand our
programs.

Texts play a predominant role in the Oberon System. Their preparation is supported by the system's
major tool, the editor. In Chapter 13 we describe another editor, one that handles graphic objects. At
first, only horizontal and vertical lines and short captions are introduced as objects. The major
difference to texts lies in the fact that their coordinates in the drawing plane do not follow from those
of their predecessor automatically, because they form a set rather than a sequence. Each object carries
its own, independent coordinates. The influence of this seemingly small difference upon an editor are
far-reaching and permeate the entire design. There exist hardly any similarities between a text and a
graphics editor. Perhaps one should be mentioned: the partitioning into three parts. The bottom module
defines the respective abstract data structure for texts or graphics, together with, of course, the
procedures handling the structure, such as searches, insertions, and deletions. The middle module in
the hierarchy defines a respective frame and contains all procedures concerned with displaying the
respective objects including the frame handler defining interpretation of mouse and keyboard events.
The top modules are the respective tool modules (Edit, Draw). The presented graphics editor is
particularly interesting in so far as it constitutes a convincing example of Oberon's extensibility. The
graphics editor is integrated into the entire system; it embeds its graphic frames into menu-viewers and
uses the facilities of the text system for its caption elements. And lastly, new kinds of elements can be

 20

incorporated by the mere addition of new modules, i.e. without expanding, even without recompiling
the existing ones. Three examples are shown in Chapter 13 itself: rectangles, circles, and ellipses.

The Draw System has been extensively used for the preparation of diagrams of electronic circuits. This
application suggests a concept that is useful elsewhere too, namely a recursive definition of the notion
of object. A set of objects may be regarded as an object itself and be given a name. Such an object is
called a macro. It is a challenge to the designer to implement a macro facility such that it is also
extensible, i.e. in no way refers to the type of its elements, not even in its input operations of files on
which macros are stored.

At this point the reader may have become aware that our presented applications are those that were
actually required by our own project. This at least bears the guarantee that they were not only designed
but used. In fact, many have been used by hundreds of people, and many daily over several years.
Chapter 14 indeed presents two other such tools, namely one used for installing an Oberon System on a
new, bare machine, and two used to recover from failures of the disk. Although rarely employed, the
first was indispensible for the development of the system. The maintenance or recovery tools are
invaluable assets when failures occur. And they do! Chapter 14 covers material that is rarely presented
in the literature.

 21

3. The Tasking System
Eventually, it is its generic ability to perform custom tasks orderly that turns a rigid computing device
into a versatile universal tool. Consequently, modelling and scheduling of tasks are principal and
crucial issues in the design of any operating system. Of course, we cannot expect a single fixed tasking
metaphor to be the ideal solution for all possible modes of use. For example, different metaphors are
probably appropriate in the cases of a closed central system serving a large set of users in time-sharing
mode on one hand, and of a personal workstation that is operated by a single user with a high degree of
interactivity on the other hand.

 In the case of Oberon we have consciously concentrated on personal workstations. More precisely, we
have directed Oberon's tasking facilities towards a single-user interactive personal workstation that is
possibly integrated into a local area network. We start the presentation in Section 3.1 with a
clarification of the notion of task. In Section 3.2 we continue with a detailed explanation of the
scheduling strategy. Then, in Section 3.3 we shall introduce the concept of command. And finally,
Section 3.4 provides an overview of predefined system-oriented toolboxes. A toolbox is a coherent
collection of commands that are devoted to a specific topic. Example topics are system control and
diagnosis, display management, and file management.

3.1. The Concept of Task
In principle, we distinguish two categories of tasks in Oberon: Interactive tasks and background tasks.
Roughly said, interactive tasks are bound to local regions on the display screen and to interactions with
their contents. In contrast, background tasks are global. They are not necessarily related to any specific
displayed entity.

3.1.1. Interactive Tasks

Every interactive task is represented by a so-called viewer. Viewers constitute the interface to Oberon's
display-system and embody a variety of roles that are collected in an abstract data type Viewer. We
shall give a deeper insight into the display system in Chapter 4. For the moment it suffices to know that
viewers are represented graphically as rectangles on the display screen and that they are implicit
carriers of interactive tasks. Figure 3.1 shows a typical Oberon display screen that is divided up into
seven viewers corresponding to seven simultaneously active interactive tasks.

In order to get firmer ground under our feet we give the programmed declaration of type Viewer in a
slightly abstracted form:

Viewer = POINTER TO ViewerDesc;

ViewerDesc = RECORD
 X, Y, W, H: INTEGER;
 handle: Handler;
 state: INTEGER
 END;

X, Y, W, H define the viewer's rectangle on the screen, i.e. location X, Y of the lower left corner relative
to the display origin, width W and height H. The variable state informs about the current state of
visibility (visible, closed, covered), and handle represents the functional interface of viewers. The type
of the handler is

Handler = PROCEDURE (V: Viewer; VAR M: ViewerMsg);

where ViewerMsg is some base type of messages whose exact declaration is of minor importance for
the moment:

ViewerMsg = RECORD ... (*basic parameter fields*) END;

However, we should point out the use of object-oriented terminology. It is justified because handle is a
procedure variable whose identity depends on the specific viewer. A call V.handle(V, M) can therefore

 22

be interpreted as the sending of a message M to be handled individually by the method of the receiving
viewer V.

Figure 3.1 Typical Oberon display configuration consisting of seven viewers

We recognize an important difference between the standard object-oriented model and our handler
paradigm. The standard model is closed in the sense that only a fixed set of messages is understood by
a given class of objects. In contrast, the handler paradigm is open because it defines just the root
(ViewerMsg) of a potentially unlimited tree of extending message types. For example, a concrete
handler might be able to handle messages of type MyViewerMsg, where

MyViewerMsg = RECORD (ViewerMsg)
 mypar: MyParameters
END;

is an extended type of ViewerMsg.

It is worth noting that our open object-oriented model is extremely flexible. For example, extending
the set of message types that are handled by an object is a mere implementation issue, that is, it has no
effect on the object’s compile-time interface. It is fair to mention though that such a high degree of
flexibility does not come for free. The price to pay is the obligation of explicit message dispatching at
runtime. Our object model is therefore runtime dispatched. The following Chapters will exemplify this
property.

Finally coming back to the perspective of tasks, we should point out that each sending of a message to
a viewer corresponds to an activation or reactivation of the interactive task that is represents.

3.1.2. Background Tasks

 23

Oberon background tasks are not connected a priori with any specific aggregate in the system. Seen
technically, they are instances of an abstract data type consisting of type declarations Task and
TaskDesc together with intrinsic operations Install and Remove:

Task = POINTER TO TaskDesc;

TaskDesc = RECORD
 safe: BOOLEAN;
 handle: PROCEDURE
END;

PROCEDURE Install (T: Task);
PROCEDURE Remove (T: Task);

The procedures Install and Remove are called explicitly in order to transfer the state of the specified
task from not ready to ready and from ready to not ready respectively. The field named safe in
TaskDesc distinguishes so-called safe tasks. In contrast to potentially unsafe tasks they are not
cancelled automatically after a program trap. The procedure variable handle is again used for the
reactivation of the task. We should view a call of the parameterless procedure handle as the sending of
an implicit message continue.

A concrete background task is normally a type-extension of the abstract type Task. Typically, the
extending part refers to the object(s) this task is operating on:

MyTask = POINTER TO MyTaskDesc;

MyTaskDesc = RECORD (TaskDesc)
 myobj: MyObjType
END;

 It may contribute to an improved understanding, if we give two realistic examples of concrete
background tasks. The first one is a system-wide garbage collector collecting unused memory. The
second example is a network monitor monitoring incoming traffic on a local area network. In both
examples the state of the task is captured by global system variables. We shall come back to these
topics in Chapters 8 and 10 respectively. Table 3.1 summarizes Oberon's tasking model.

We should not end this Section without drawing an important conclusion. Transfers of control between
tasks are implemented in Oberon as ordinary calls and returns of ordinary procedures (procedure
variables, actually). Preemption is not possible. From that we imply that active periods of tasks are
sequentially ordered and can be controlled by a single flow (thread, process). This simplification pays
well: Locks of common resources are completely dispensable and deadlocks are not a topic at all.

Table 3.1

task type create to
ready (re)activate passivate to not

ready

interactive create
viewer

open
viewer

send
message

terminate
handling

close
viewer

background create
task install send

continue
terminate
handling remove

3.2. The Task Scheduler
We start from the general assumption that, at any given time, a number of well-determined tasks are
ready in the system to be serviced. Remember that two categories of tasks exist: Interactive tasks and
background tasks. They differ substantially in the criteria of activation or reactivation and in the
priority of dispatching. Interactive tasks are (re)activated exclusively upon interactions by the user and
are dispatched with high priority. In contrast, background tasks are polled with low priority.

We already know that interactive tasks are activated by sending messages. The types of messages used
for this purpose are InputMsg and ControlMsg reporting on keyboard events and mouse events
respectively. Slightly simplified, they are declared as

 24

InputMsg = RECORD (ViewerMsg)
 id: INTEGER;
 X, Y: INTEGER;
 keys: SET;
 ch: CHAR
END;

ControlMsg = RECORD (ViewerMsg)
 id: INTEGER;
 X, Y: INTEGER
END;

The field id specifies the exact request transmitted with this reactivation. In the case of InputMsg the
possible requests are consume (the character specified by field ch) and track (mouse, starting from
state given by keys and X, Y). In case of ControlMsg the choice is mark (the viewer at position X, Y)
or neutralize. Marking means moving the global system pointer (typically represented as a star-shaped
mark) to the current position of the mouse. Neutralizing a viewer is equivalent to removing all marks
and graphical attributes from this viewer.

All tasking facilities are collected in one module, called Oberon. In particular, the module's definition
exposes the declarations of the abstract data type Task and of the message types InputMsg and
ControlMsg. The module's most important contribution, however, is the task scheduler that can be
regarded as the system's dynamic centre.

Before we can study the scheduler in detail we need some more preparation. We start with the
institution of the focus viewer. By definition, this is a distinguished viewer that applied for consuming
subsequent keyboard input. Note that the focus viewer is actually a focus task. However, recalling our
definition of tasks, we regard the terms viewer and interactive task as interchangeable.

Module Oberon provides the following facilities in connection with the focus viewer: A global
variable FocusViewer, a procedure PassFocus to transfer the role of focus to a new viewer, and a
defocus variant of ControlMsg to notify the old focus viewer of such a transfer.

Next, we reveal the implementation of the abstract type Task that is hidden from the clients. It is based
on a ring of task descriptors and on a pointer to the previously activated task in the ring. The ring is
guaranteed never to be empty because the above mentioned garbage collector is installed as a safe task
at system loading time

We can now scrutinize the following version of the task scheduler. The reader should relate this to
procedure Loop in the module Oberon listed in detail at the end of this Chapter.

 get mouse position and state of keys;
 LOOP
 IF keyboard input available THEN read character
 IF character is escape THEN
 broadcast neutralize message to viewers
 ELSIF character is setup THEN
 send mark message to viewer containing mouse
 ELSE send consume message to focus viewer
 END;
 get mouse position and state of keys
 ELSIF at least one key pressed THEN
 REPEAT
 send track message to viewer containing mouse;
 get mouse position and state of keys
 UNTIL all keys released
 ELSE (*no key pressed*)
 send track message to viewer containing mouse;
 get mouse position and state of keys;
 WHILE mouse unmoved and no keyboard input DO

 25

 take next task in ring as current task;
 IF current task is unsafe THEN remove it from ring END;
 send continue message to current task;
 assure current task in ring again;
 get mouse position and state of keys
 END
 END
 END

Having consciously excluded exceptional program behaviour in our explanations so far, it seems fair
enough to add some conceptual remarks about the way of continuation in case of a program trap or, in
other words, in case of a failing task. Of course, the handling of such a case can be pursued on many
different levels of abstraction. In accordance with our general top-down approach we focus our current
attention to the level of our tasking model.

We can identify three sequential actions of recovery after a program failure:

 recovery after program failure = BEGIN
 save current system state;
 call installed trap handler;
 roll back to start of task scheduler
 END

Essentially, the system state is determined by the values of all global and local variables at the given
time. The trap handler typically opens an extra viewer displaying the cause of the trap and the saved
system state. Figure 3.1 shows a trap viewer at the lower right corner of the display screen.

Notice in the program fragment above that unsafe background tasks are removed from the ring of
ready tasks before reactivation and are installed again only after successful return. Consequently,
unsafe tasks are eliminated automatically after failing. This is an effective precaution against cascades
of repeated failures. Obviously, no such precaution is necessary in the case of interactive tasks because
their reactivation is under control of the system user.

 In summary, Oberon is a multitasking system based on a two-category model. Interactive tasks are
interfacing with the display system and are scheduled with high priority upon user interactions.
Background tasks are stand-alone and are scheduled with low priority. Task activations are modelled
as message passing and eventually as calls of procedures assigned to variables. They are sequentially
ordered and controlled by a single process.

3.3. The Concept of Command
In short, an operating system constitutes a general purpose platform on which application software
packages can build. The platform appears to software designers as interface to "the system" and (in
particular) to the underlying hardware. Unfortunately, interfaces defined by more conventional
operating systems suffer from an all too primitive access mechanism that is based solely on the concept
of "software interrupt" or "supervisor call" and on files taking the role of connecting "pipes". The
situation is especially ironic in comparison with the development of high-level programming languages
towards abstraction.

We have put greatest emphasis in Oberon to close the semantic gap between application software
packages and the system platform. The result of our effort is a highly expressive and consistent
application programming interface in the form of an explicit hierarchy of module definitions. Perhaps
the most significant and most conspicuous outcome of this approach is a collection of very powerful
and system-wide abstract data types like Task, Frame, Viewer, File, Font, Text, Module, Reader,
Scanner, Writer etc..

 26

3.3.1. Atomic Actions

The most important because most generic function of any operating system is executing programs. Our
next step is therefore a clarification of the term program, as it is used in Oberon. We should consider a
static aspect as well as a dynamic aspect. Statically, an Oberon program is simply a package of
software together with an entry point. More formally, it is a pair (M*, P), where M is an arbitrary
module, P is an exported parameterless procedure of M, and M* denotes the hierarchy consisting of M
itself and of all directly and indirectly imported modules. Notice that two hierarchies M* and N* are
not disjoint in general, even if M and N are different modules. Rather, their intersection is a superset of
the operating system.

Viewed dynamically, an Oberon program is defined as an atomic action operating on the global system
state, where atomic means "without user interaction". Note that this definition is just a compelling
consequence of our model of non-preemptive task scheduling with the benefit of a single carrier
process. We can argument like this: When a traditional interactive program requires input from the
user in order to be able to proceed, there is no justification whatsoever not to allow the user to preempt
the current task and to start another task with the aim of producing the required input data. Therefore,
a traditional interactive program can be viewed as a sequence of atomic actions separated by
interactions that possibly include actions of other programs. Figures 3.2 and 3.3 visualize this
argumentation by opposing possible traces of processing in a more traditional interactive system and in
an Oberon system respectively.

As a quintessence, Oberon programs are represented in the form of exported parameterless procedures
that do not interact with the user of the system. In honor of these distinguishing properties such
procedures are called commands.

Returning to the calling and execution of programs we now arrive at the following refinement:

 call program (M*, P) = BEGIN
 load module hierarchy M*; call command P
 END

The system interface to the command mechanism itself is again provided by module Oberon. Its
primary operation can be paraphrased as "call a command by its name and pass a list of actual
parameters":

PROCEDURE Call (VAR name: ARRAY OF CHAR;
 par: ParList; new: BOOLEAN; VAR res: INTEGER);

name is the name of the desired command in the form M.P, par is the list of actual parameters, new is
an option guaranteeing preliminary loading of a new version of M*, and res is a result code. Type
ParList is declared essentially as

 27

 ParList = POINTER TO ParRec;
 ParRec = RECORD
 vwr: Viewers.Viewer;
 text: Texts.Text;
 pos: LONGINT
 END;

Parameter vwr indicates the calling viewer (task) and the pair (text, pos) of parameters specifies the
starting position pos of a textual parameter list within text. Notice the occurrence of another abstract
data type with name Text that is exported by module Texts. We shall devote the entire Chapter 5 to a
thorough presentation of Oberon's text system. For the moment we can simply look at a text as a
sequence of characters.

The list of actual parameters is put at the disposal of the called command by module Oberon in the
form of an exported global variable

 Par: ParList

The actual list of parameters may well be an extension of the standard parameter list ParList. In such a
case, the extending fields represent non-standard and customized parameters.

In principle, commands operate on the entire system and can access the current global state via the
system's powerful modular interface, of which the list of actual parameters is just one component.
Another one is the so-called system log which is a system-wide protocol reporting on the progress of
command execution and on exceptional events in chronological order.

The log is represented as a global variable of type Text:

 Log: Texts.Text;

It should have become clear by now that implementors of versatile and adaptable commands may rely
on a rich arsenal of global facilities that reflect the current system state and make it accessible. In other
words, they may rely on a high degree of system integration. Therefore, we find in Oberon an
extraordinarily broad spectrum of integrated notions. For example, the system distinguishes itself by a

 28

complete integration of the abstract data types Viewer and Text that we encountered above. They will
be the subjects of Chapters 4 and 5.

Module Oberon assists the integration of these types with the following conceptual features, of which
the first two are familiar to us already: Standard parameter list for commands, system log, generic text
selection, generic copy-over for text, and generic copy viewer. At this point we should perhaps add a
word of clarification to our use of the term "generic". It is synonymous with "interpretable individually
by any viewer (interactive task)", and is typically used in connection with messages or orders whose
receiver's exact identity is unknown.

We now go into a brief discussion of the generic facilities without, however, leaving the level of our
current abstraction and understanding.

3.3.2. Generic Text Selection

Textual selections are characterized by a text, a stretch of characters within that text, and a time stamp.
Without further qualification "the text selection" always means "the most recent text selection". It can
be obtained programmatically by calling procedure GetSelection:

 PROCEDURE GetSelection (VAR text: Texts.Text; VAR beg, end, time: LONGINT);

The parameters specify the desired stretch of text starting at position beg and ending at end - 1 as well
as the associated time stamp. The procedure is implemented by a broadcast of a so-called selection
message to all viewers. The declaration of this message is

 SelectionMsg = RECORD (ViewerMsg)
 time: LONGINT;
 text: Texts.Text;
 beg, end: LONGINT
 END;

3.3.3. Generic Copy-Over for Text

The aim is an integrated order "copy-over text". A variant of type ViewerMsg is defined to the purpose
of transmitting such requests:

 CopyOverMsg = RECORD (ViewerMsg)
 text: Texts.Text;
 beg, end: LONGINT
 END;

Typically, receivers of a copy-over message copy the specified stretch of text to their local focus.

3.3.4. Generic Copy Viewer

Generic copying is synonymous with reproducing and cloning. It is the most elementary generic
operation possible. Again, a variant of type ViewerMsg is used for the purpose of transmitting requests
of the desired type:

 CopyMsg = RECORD (ViewerMsg)
 vwr: Viewers.Viewer
 END;

Receivers of a copy message generate a clone of themselves and return it to the sender via field vwr.

We now summarize this Section: Oberon is an operating system that presents itself to its clients in the
form of a highly expressive modular interface that exports many powerful abstract data types like, for
example, Viewer and Text. A rich arsenal of global and generic facilities serve the purpose of system
integration. Programs in Oberon are modelled as so-called commands, i.e. as exported parameterless
procedures that do not interact with the user. The collection of commands provided by a module
appears as its user interface. Parameters are passed to commands via a global parameter list, registered
by the calling task in the central module Oberon. Commands operate on the global state of the system.

 29

3.4. Toolboxes
In a modular programming environment software modules may appear in many different forms. Some
familiar examples are listed in Table 3.2: Collection of logically connected declarations of data and of
types, capsule representing an abstract data type, framework for the implementation of an object class,
and library of service procedures.

Oberon adds another form: The toolbox. By definition, this is a pure collection of commands in the
sense of the previous Section.

Toolboxes distinguish themselves principally from the other forms of modules by the fact that they lie
on top of the modular hierarchy. Toolbox modules are "imported" by system users at run-time. In other
words, their definitions define the user interface.

As a rule of thumb there exists a toolbox for every topic or application. Table 3.3 lists system oriented
topics together with the name of the associated toolbox and a reference to a Chapter explaining the
commands.

Table 3.2
form of
module

role of
definition

role of
implementation

declarations declare data and
objects void

abstract data
type define interface implement

operations
framework
for class

define object
generator

implement
methods

service
procedures

define
parameters

implement
services

toolbox define user
interface

implement user
interface

Table 3.3
topic toolbox chapters
system management System 3
display management System 4
text editing Edit 5
module management System 6
file management System 7
system inspection System 8, 12
network management Net 10
compiling Compiler 12
graphics editing Draw 13

As an example of a toolbox definition we quote an annotated version of module System:

DEFINITION System;

(*System management*)
 PROCEDURE SetUser; (*identification*)
 PROCEDURE SetFont; (*for typed text*)
 PROCEDURE SetColor; (*for typed text and graphics*)
 PROCEDURE Time; (*set or display*)
 PROCEDURE Collect; (*garbage*)

(*Display management*)
 PROCEDURE Open; (*viewer*)
 PROCEDURE OpenLog; (*viewer*)

 30

 PROCEDURE Close; (*viewer*)
 PROCEDURE CloseTrack;
 PROCEDURE Recall; (*most recently closed viewer*)
 PROCEDURE Copy; (*viewer*)
 PROCEDURE Grow; (*viewer*)

(*Module management*)
 PROCEDURE Free; (*specified modules*)
 PROCEDURE ShowCommands; (*of specified module*)
 PROCEDURE ShowModules; (*loaded*)

(*File management*)
 PROCEDURE Directory;
 PROCEDURE CopyFiles;
 PROCEDURE RenameFiles;
 PROCEDURE DeleteFiles;)

(*System inspection*)
 PROCEDURE Watch; (*memory and disk storage*)
 PROCEDURE State; (*of global module variables*)

END System;

In principle, commands can be interpreted by any interactive task in an arbitrary and individual way.
However, if the task is represented by a textual viewer, we obtain an attractive universal command
interpreter simply by interpreting the underlying text. If the text is a list of command names followed
by parameters we call it a tool.

More precisely, a tool is a text obeying the following syntax in EBNF-notation (Extended Backus-
Naur Formalism):

 tool = { [Comment] CommandName [ParameterList] }.

 If present, the textual parameter list is made available to the called command via fields text and pos in
the global parameter list Par that is exported by module Oberon. Because this parameter list is
interpreted individually by every command, its format is completely open. However, we fixed some
conventions and rules for the purpose of a standardized user interface:

1.) The elements of a textual parameter list are universal syntactical tokens like name, literal string,
integer, real number, long real number, and special character.

2.) A reference-character "^" in the textual parameter list refers to the current text selection for
continuation. In the special case of the reference character following the command name immediately,
the entire parameter list is represented by the text selection.

3.) A mark-character "*" in the textual parameter list refers to the currently marked viewer. Typically,
the mark-character replaces the name of a file. In such a case the contents of the viewer marked by the
system pointer is processed by the command interpreter instead of the contents of a file.

4.) An at-character "@" in the textual parameter list indicates that the selection marks the (beginning
of the) text which is taken as operand.

5.) A terminator-character "~" terminates the textual parameter list in case of a variable number of
parameters.

Because tools are ordinary and editable texts (in contrast to conventional menus) they can be
customized "on the fly". We refer again to Figure 3.1 that shows a typical Oberon screen layout
consisting of two vertical tracks, a wider user track on the left and a narrow system track on the right.
Three documents are displayed in the user track: A text, a graphic, and a picture. In the system track
we find one log-viewer displaying the system log, two tool-viewers making available the standard
system tool and a customized private tool respectively, and one trap viewer at the bottom.

 31

Let us exemplify the concepts of command and tool by the system control section of the System
toolbox. Consisting of the commands SetUser, Time, SetFont, SetColor, and Collect it is used to
control system-wide facilities. In detail, their function is installing the user's identification, displaying
or setting the system time, presetting the system type-font for typed text, setting the system color, and
activating the garbage collector. The implementations are included in the Implementations Section at
the end of this Chapter. Figure 3.4 presents a possible excerpt of a textual tool consisting of system
control commands.

And this concludes the Section. In summary, the toolbox is a special form of an Oberon module. It is
defined as a collection of commands. Appearing at the top of the modular hierarchy the toolboxes in
their entirety fix the system’s user interface. Tools are sequences of textually represented command
calls. They are editable and customizable. In a typical Oberon screen layout the tools are displayed in
viewers within the system track.

 32

Complete Implementations

MODULE Oberon; (*JG 6.9.90*)

 IMPORT Kernel, Modules, Input, Display, Fonts, Viewers, Texts;

 CONST
 consume* = 0; track* = 1; (*input message id*)
 defocus* = 0; neutralize* = 1; mark* = 2; (*control message id*)
 BasicCycle = 20;
 ESC = 1BX; SETUP = 0A4X;

 TYPE
 Painter* = PROCEDURE (x, y: INTEGER);
 Marker* = RECORD Fade*, Draw*: Painter END;

 Cursor* = RECORD
 marker*: Marker; on*: BOOLEAN; X*, Y*: INTEGER
 END;

 ParList* = POINTER TO ParRec;

 ParRec* = RECORD
 vwr*: Viewers.Viewer;
 frame*: Display.Frame;
 text*: Texts.Text;
 pos*: LONGINT
 END;

 InputMsg* = RECORD (Display.FrameMsg)
 id*: INTEGER;
 keys*: SET;
 X*, Y*: INTEGER;
 ch*: CHAR;
 fnt*: Fonts.Font;
 col*, voff*: SHORTINT
 END;

 SelectionMsg* = RECORD (Display.FrameMsg)
 time*: LONGINT;
 text*: Texts.Text;
 beg*, end*: LONGINT
 END;

 ControlMsg* = RECORD (Display.FrameMsg)
 id*, X*, Y*: INTEGER
 END;

 CopyOverMsg* = RECORD (Display.FrameMsg)
 text*: Texts.Text;
 beg*, end*: LONGINT
 END;

 CopyMsg* = RECORD (Display.FrameMsg)
 F*: Display.Frame
 END;

 33

 Task* = POINTER TO TaskDesc;

 TaskDesc* = RECORD
 next: Task;
 safe*: BOOLEAN;
 handle*: PROCEDURE
 END;

 VAR
 User*: ARRAY 8 OF CHAR;
 Password*: LONGINT;

 Arrow*, Star*: Marker;
 Mouse*, Pointer*: Cursor;

 FocusViewer*: Viewers.Viewer;
 Log*: Texts.Text;
 Par*: ParList; (*actual parameters*)

 CurTask*, PrevTask: Task;

 CurFnt*: Fonts.Font; CurCol*, CurOff*: SHORTINT;

 DW, DH, CL, H0, H1, H2, H3: INTEGER;

 ActCnt: INTEGER; (*action count for GC*)
 Mod: Modules.Module;

 PROCEDURE Min (i, j: INTEGER): INTEGER;
 BEGIN IF i <= j THEN RETURN i ELSE RETURN j END
 END Min;

 (*user identification*)

 PROCEDURE Code(VAR s: ARRAY OF CHAR): LONGINT;
 VAR i: INTEGER; a, b, c: LONGINT;
 BEGIN
 a := 0; b := 0; i := 0;
 WHILE s[i] # 0X DO
 c := b; b := a; a := (c MOD 509 + 1) * 127 + ORD(s[i]);
 INC(i)
 END;
 IF b >= 32768 THEN b := b - 65536 END;
 RETURN b * 65536 + a
 END Code;

 PROCEDURE SetUser* (VAR user, password: ARRAY OF CHAR);
 BEGIN COPY(user, User); Password := Code(password)
 END SetUser;

 (*clocks*)

 PROCEDURE GetClock* (VAR t, d: LONGINT);
 BEGIN Kernel.GetClock(t, d)
 END GetClock;

 34

 PROCEDURE SetClock* (t, d: LONGINT);
 BEGIN Kernel.SetClock(t, d)
 END SetClock;

 PROCEDURE Time* (): LONGINT;
 BEGIN RETURN Input.Time()
 END Time;

 (*cursor handling*)

 PROCEDURE* FlipArrow (X, Y: INTEGER);
 BEGIN
 IF X < CL THEN
 IF X > DW - 15 THEN X := DW - 15 END
 ELSE
 IF X > CL + DW - 15 THEN X := CL + DW - 15 END
 END;
 IF Y < 15 THEN Y := 15 ELSIF Y > DH THEN Y := DH END;
 Display.CopyPattern(Display.white, Display.arrow, X, Y - 15, 2)
 END FlipArrow;

 PROCEDURE* FlipStar (X, Y: INTEGER);
 BEGIN
 IF X < CL THEN
 IF X < 7 THEN X := 7 ELSIF X > DW - 8 THEN X := DW - 8 END
 ELSE
 IF X < CL + 7 THEN X := CL + 7
 ELSIF X > CL + DW - 8 THEN X := CL + DW – 8
 END
 END ;
 IF Y < 7 THEN Y := 7 ELSIF Y > DH - 8 THEN Y := DH - 8 END;
 Display.CopyPattern(Display.white, Display.star, X - 7, Y - 7, 2)
 END FlipStar;

 PROCEDURE OpenCursor* (VAR c: Cursor);
 BEGIN c.on := FALSE; c.X := 0; c.Y := 0
 END OpenCursor;

 PROCEDURE FadeCursor* (VAR c: Cursor);
 BEGIN IF c.on THEN c.marker.Fade(c.X, c.Y); c.on := FALSE END
 END FadeCursor;

 PROCEDURE DrawCursor* (VAR c: Cursor; VAR m: Marker; X, Y: INTEGER);
 BEGIN
 IF c.on & ((X # c.X) OR (Y # c.Y) OR (m.Draw # c.marker.Draw)) THEN
 c.marker.Fade(c.X, c.Y); c.on := FALSE
 END;
 IF ~c.on THEN
 m.Draw(X, Y); c.marker := m; c.X := X; c.Y := Y; c.on := TRUE
 END
 END DrawCursor;

 (*display management*)

 PROCEDURE RemoveMarks* (X, Y, W, H: INTEGER);

 35

 BEGIN
 IF (Mouse.X > X - 16) & (Mouse.X < X + W + 16)
 & (Mouse.Y > Y - 16) & (Mouse.Y < Y + H + 16) THEN FadeCursor(Mouse)
 END;
 IF (Pointer.X > X - 8) & (Pointer.X < X + W + 8)
 & (Pointer.Y > Y - 8) & (Pointer.Y < Y + H + 8) THEN FadeCursor(Pointer)
 END
 END RemoveMarks;

 PROCEDURE* HandleFiller (V: Display.Frame; VAR M: Display.FrameMsg);
 BEGIN
 WITH V: Viewers.Viewer DO
 IF M IS InputMsg THEN
 WITH M: InputMsg DO
 IF M.id = track THEN DrawCursor(Mouse, Arrow, M.X, M.Y) END
 END;
 ELSIF M IS ControlMsg THEN
 WITH M: ControlMsg DO
 IF M.id = mark THEN DrawCursor(Pointer, Star, M.X, M.Y) END
 END
 ELSIF M IS Viewers.ViewerMsg THEN
 WITH M: Viewers.ViewerMsg DO
 IF (M.id = Viewers.restore) & (V.W > 0) & (V.H > 0) THEN
 RemoveMarks(V.X, V.Y, V.W, V.H);
 Display.ReplConst(Display.black, V.X, V.Y, V.W, V.H, 0)
 ELSIF (M.id = Viewers.modify) & (M.Y < V.Y) THEN
 RemoveMarks(V.X, M.Y, V.W, V.Y - M.Y);
 Display.ReplConst(Display.black, V.X, M.Y, V.W, V.Y - M.Y, 0)
 END
 END
 END
 END
 END HandleFiller;

 PROCEDURE OpenDisplay* (UW, SW, H: INTEGER);
 VAR Filler: Viewers.Viewer;
 BEGIN
 Input.SetMouseLimits(Viewers.curW + UW + SW, H);
 Display.ReplConst(Display.black, Viewers.curW, 0, UW + SW, H, 0);
 NEW(Filler); Filler.handle := HandleFiller;
 Viewers.InitTrack(UW, H, Filler); (*init user track*)
 NEW(Filler); Filler.handle := HandleFiller;
 Viewers.InitTrack(SW, H, Filler) (*init system track*)
 END OpenDisplay;

 PROCEDURE DisplayWidth* (X: INTEGER): INTEGER;
 BEGIN RETURN DW
 END DisplayWidth;

 PROCEDURE DisplayHeight* (X: INTEGER): INTEGER;
 BEGIN RETURN DH
 END DisplayHeight;

 PROCEDURE OpenTrack* (X, W: INTEGER);
 VAR Filler: Viewers.Viewer;
 BEGIN

 36

 NEW(Filler); Filler.handle := HandleFiller;
 Viewers.OpenTrack(X, W, Filler)
 END OpenTrack;

 PROCEDURE UserTrack* (X: INTEGER): INTEGER;
 BEGIN RETURN X DIV DW * DW
 END UserTrack;

 PROCEDURE SystemTrack* (X: INTEGER): INTEGER;
 BEGIN RETURN X DIV DW * DW + DW DIV 8 * 5
 END SystemTrack;

 PROCEDURE UY (X: INTEGER): INTEGER;
 VAR fil, bot, alt, max: Display.Frame;
 BEGIN
 Viewers.Locate(X, 0, fil, bot, alt, max);
 IF fil.H >= DH DIV 8 THEN RETURN DH END;
 RETURN max.Y + max.H DIV 2
 END UY;

 PROCEDURE AllocateUserViewer* (DX: INTEGER; VAR X, Y: INTEGER);
 BEGIN
 IF Pointer.on THEN X := Pointer.X; Y := Pointer.Y
 ELSE X := DX DIV DW * DW; Y := UY(X)
 END
 END AllocateUserViewer;

 PROCEDURE SY (X: INTEGER): INTEGER;
 VAR fil, bot, alt, max: Display.Frame;
 BEGIN
 Viewers.Locate(X, DH, fil, bot, alt, max);
 IF fil.H >= DH DIV 8 THEN RETURN DH END;
 IF max.H >= DH - H0 THEN RETURN max.Y + H3 END;
 IF max.H >= H3 - H0 THEN RETURN max.Y + H2 END;
 IF max.H >= H2 - H0 THEN RETURN max.Y + H1 END;
 IF max # bot THEN RETURN max.Y + max.H DIV 2 END;
 IF bot.H >= H1 THEN RETURN bot.H DIV 2 END;
 RETURN alt.Y + alt.H DIV 2
 END SY;

 PROCEDURE AllocateSystemViewer* (DX: INTEGER; VAR X, Y: INTEGER);
 BEGIN
 IF Pointer.on THEN X := Pointer.X; Y := Pointer.Y
 ELSE X := DX DIV DW * DW + DW DIV 8 * 5; Y := SY(X)
 END
 END AllocateSystemViewer;

 PROCEDURE MarkedViewer* (): Viewers.Viewer;
 BEGIN RETURN Viewers.This(Pointer.X, Pointer.Y)
 END MarkedViewer;

 PROCEDURE PassFocus* (V: Viewers.Viewer);
 VAR M: ControlMsg;
 BEGIN M.id := defocus; FocusViewer.handle(FocusViewer, M); FocusViewer := V
 END PassFocus;

 37

 (*command interpretation*)

 PROCEDURE Call* (VAR name: ARRAY OF CHAR; par: ParList; new: BOOLEAN;
 VAR res: INTEGER);
 VAR Mod: Modules.Module; P: Modules.Command; i, j: INTEGER;
 BEGIN res := 1;
 i := 0; j := 0;
 WHILE name[j] # 0X DO
 IF name[j] = "." THEN i := j END;
 INC(j)
 END;
 IF i > 0 THEN
 name[i] := 0X;
 IF new THEN Modules.Free(name, FALSE) END;
 Mod := Modules.ThisMod(name);
 IF Modules.res = 0 THEN
 INC(i); j := i;
 WHILE name[j] # 0X DO name[j - i] := name[j]; INC(j) END;
 name[j - i] := 0X;
 P := Modules.ThisCommand(Mod, name);
 IF Modules.res = 0 THEN
 Par := par; Par.vwr := Viewers.This(par.frame.X, par.frame.Y); P; res := 0
 END
 ELSE res := Modules.res
 END
 END
 END Call;

 PROCEDURE GetSelection* (VAR text: Texts.Text; VAR beg, end, time: LONGINT);
 VAR M: SelectionMsg;
 BEGIN
 M.time := -1; Viewers.Broadcast(M);
 text := M.text; beg := M.beg; end := M.end; time := M.time
 END GetSelection;

 PROCEDURE* GC;
 VAR x: LONGINT;
 BEGIN IF ActCnt <= 0 THEN Kernel.GC; ActCnt := BasicCycle END
 END GC;

 PROCEDURE Install* (T: Task);
 VAR t: Task;
 BEGIN t := PrevTask;
 WHILE (t.next # PrevTask) & (t.next # T) DO t := t.next END;
 IF t.next = PrevTask THEN T.next := PrevTask; t.next := T END
 END Install;

 PROCEDURE Remove* (T: Task);
 VAR t: Task;
 BEGIN t := PrevTask;
 WHILE (t.next # T) & (t.next # PrevTask) DO t := t.next END;
 IF t.next = T THEN t.next := t.next.next; PrevTask := t.next END;
 IF CurTask = T THEN CurTask := PrevTask.next END
 END Remove;

 PROCEDURE Collect* (count: INTEGER);

 38

 BEGIN ActCnt := count
 END Collect;

 PROCEDURE SetFont* (fnt: Fonts.Font);
 BEGIN CurFnt := fnt
 END SetFont;

 PROCEDURE SetColor* (col: SHORTINT);
 BEGIN CurCol := col
 END SetColor;

 PROCEDURE SetOffset* (voff: SHORTINT);
 BEGIN CurOff := voff
 END SetOffset;

 PROCEDURE Loop*;
 VAR V: Viewers.Viewer; M: InputMsg; N: ControlMsg;
 prevX, prevY, X, Y: INTEGER; keys: SET; ch: CHAR;
 BEGIN
 LOOP
 Input.Mouse(keys, X, Y);
 IF Input.Available() > 0 THEN Input.Read(ch);
 IF ch < 0F0X THEN
 IF ch = ESC THEN
 N.id := neutralize; Viewers.Broadcast(N); FadeCursor(Pointer)
 ELSIF ch = SETUP THEN
 N.id := mark; N.X := X; N.Y := Y; V := Viewers.This(X, Y); V.handle(V, N)
 ELSE
 IF ch < " " THEN
 IF ch = 1X THEN ch := 83X (*ƒ*)
 ELSIF ch = 0FX THEN ch := 84X (*„*)
 ELSIF ch = 15X THEN ch := 85X (*…*)
 END
 ELSIF ch > "~" THEN
 IF ch = 81X THEN ch := 80X (*€*)
 ELSIF ch = 8FX THEN ch := 81X (*� *)
 ELSIF ch = 95X THEN ch := 82X (*‚*)
 END
 END;
 M.id := consume; M.ch := ch; M.fnt := CurFnt; M.col := CurCol; M.voff := CurOff;
 FocusViewer.handle(FocusViewer, M);
 DEC(ActCnt)
 END
 ELSIF ch = 0F1X THEN Display.SetMode(0, {}) (*on*)
 ELSIF ch = 0F2X THEN Display.SetMode(0, {0}) (*off*)
 ELSIF ch = 0F3X THEN Display.SetMode(0, {2}) (*inv*)
 END
 ELSIF keys # {} THEN
 M.id := track; M.X := X; M.Y := Y; M.keys := keys;
 REPEAT
 V := Viewers.This(M.X, M.Y); V.handle(V, M);
 Input.Mouse(M.keys, M.X, M.Y)
 UNTIL M.keys = {};
 DEC(ActCnt)
 ELSE
 IF (X # prevX) OR (Y # prevY) OR ~Mouse.on THEN

 39

 M.id := track; M.X := X; M.Y := Y; M.keys := keys; V := Viewers.This(X, Y);
 V.handle(V, M);
 prevX := X; prevY := Y
 END;
 CurTask := PrevTask.next;
 IF ~CurTask.safe THEN PrevTask.next := CurTask.next END;
 CurTask.handle; PrevTask.next := CurTask; PrevTask := CurTask
 END
 END
 END Loop;

BEGIN User[0] := 0X;
 Arrow.Fade := FlipArrow; Arrow.Draw := FlipArrow;
 Star.Fade := FlipStar; Star.Draw := FlipStar;
 OpenCursor(Mouse); OpenCursor(Pointer);

 DW := Display.Width; DH := Display.Height; CL := Display.ColLeft;
 H3 := DH - DH DIV 3;
 H2 := H3 - H3 DIV 2;
 H1 := DH DIV 5;
 H0 := DH DIV 10;

 OpenDisplay(DW DIV 8 * 5, DW DIV 8 * 3, DH);
 FocusViewer := Viewers.This(0, 0);

 CurFnt := Fonts.Default;
 CurCol := Display.white;
 CurOff := 0;

 Collect(BasicCycle);
 NEW(PrevTask);
 PrevTask.handle := GC;
 PrevTask.safe := TRUE;
 PrevTask.next := PrevTask;

 Mod := Modules.ThisMod("System");
 Display.SetMode(0, {})

END Oberon.

MODULE System; (* JG 11.11.90*)

 IMPORT Kernel, Input, Oberon, Fonts, Texts;

 CONST
 StandardMenu = "System.Close System.Copy System.Grow Edit.Search Edit.Store";
 LogMenu = "System.Close System.Grow Edit.Locate Edit.Store";

 VAR W: Texts.Writer;

 PROCEDURE Max (i, j: LONGINT): LONGINT;
 BEGIN IF i >= j THEN RETURN i ELSE RETURN j END
 END Max;

 40

 (* ------------- Toolbox for system management ---------------*)

 PROCEDURE SetUser*;
 VAR i: INTEGER; ch: CHAR;
 user: ARRAY 8 OF CHAR;
 password: ARRAY 16 OF CHAR;
 BEGIN
 i := 0; Input.Read(ch);
 WHILE (ch # "/") & (i < 7) DO user[i] := ch; INC(i); Input.Read(ch) END;
 user[i] := 0X; i := 0; Input.Read(ch);
 WHILE (ch > " ") & (i < 15) DO password[i] := ch; INC(i); Input.Read(ch) END;
 password[i] := 0X;
 Oberon.SetUser(user, password)
 END SetUser;

 PROCEDURE SetFont*;
 VAR beg, end, time: LONGINT;
 T: Texts.Text; S: Texts.Scanner;
 BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
 IF (S.class = Texts.Char) & (S.c = "^") THEN
 Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN
 Texts.OpenScanner(S, T, beg); Texts.Scan(S);
 IF S.class = Texts.Name THEN Oberon.SetFont(Fonts.This(S.s)) END
 END
 ELSIF S.class = Texts.Name THEN Oberon.SetFont(Fonts.This(S.s))
 END
 END SetFont;

 PROCEDURE SetColor*;
 VAR beg, end, time: LONGINT;
 T: Texts.Text; S: Texts.Scanner; ch: CHAR;
 BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
 IF (S.class = Texts.Char) & (S.c = "^") THEN
 Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN
 Texts.OpenReader(S, T, beg); Texts.Read(S, ch); Oberon.SetColor(S.col)
 END
 ELSIF S.class = Texts.Int THEN Oberon.SetColor(SHORT(SHORT(S.i)))
 END
 END SetColor;

 PROCEDURE SetOffset*;
 VAR beg, end, time: LONGINT;
 T: Texts.Text;S: Texts.Scanner; ch: CHAR;
 BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
 IF (S.class = Texts.Char) & (S.c = "^") THEN
 Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN
 Texts.OpenReader(S, T, beg); Texts.Read(S, ch); Oberon.SetColor(S.voff)
 END
 ELSIF S.class = Texts.Int THEN Oberon.SetOffset(SHORT(SHORT(S.i)))
 END
 END SetOffset;

 PROCEDURE Time*;

 41

 VAR par: Oberon.ParList;
 S: Texts.Scanner;
 t, d, hr, min, sec, yr, mo, day: LONGINT;
 BEGIN par := Oberon.Par;
 Texts.OpenScanner(S, par.text, par.pos); Texts.Scan(S);
 IF S.class = Texts.Int THEN (*set date*)
 day := S.i; Texts.Scan(S); mo := S.i; Texts.Scan(S); yr := S.i; Texts.Scan(S);
 hr := S.i; Texts.Scan(S); min := S.i; Texts.Scan(S); sec := S.i;
 t := (hr*64 + min)*64 + sec; d := (yr*16 + mo)*32 + day;
 Kernel.SetClock(t, d)
 ELSE (*read date*)
 Texts.WriteString(W, "System.Time");
 Oberon.GetClock(t, d); Texts.WriteDate(W, t, d); Texts.WriteLn(W);
 Texts.Append(Oberon.Log, W.buf)
 END
 END Time;

 PROCEDURE Collect*;
 BEGIN Oberon.Collect(0)
 END Collect;

BEGIN Texts.OpenWriter(W)
END System.

 42

4. The Display System
The display screen is the most important part of the interface presented by a personal workstation to its
users. At first sight, it simply represents a rectangular output area. However, in combination with the
mouse, it quickly develops into a sophisticated interactive input/output platform of almost unlimited
flexibility. It is mainly its Janus-faced characteristic that makes the display screen stand out from
ordinary external devices to be managed by the operating system. In the current Chapter we shall give
more detailed insight into the reasons for the central position the display system takes within the
operating system, and for its determining influence on the entire system architecture. In particular, we
shall show that the display system is a natural basis or anchor for functional extensibility.

4.1. Screen Layout Model
In the early seventies, Xerox PARC in California launched the Smalltalk-project with the goal of
conceiving and developing new and more natural ways to communicate with personal computers
[Goldberg]. Perhaps the most conspicuous among several significant achievements of this endeavour is
the idea of applying the desktop metaphor to the display screen. This metaphor comprises a desktop
and a collection of possibly mutually overlapping pages of paper that are laid out on the desktop. By
projecting such a configuration onto the surface of a screen we get the (today) familiar picture of
Figure 4.1(a) showing a collection of partially or totally visible rectangular areas on a background, so-
called windows or viewers.

Figure 4.1 (a) Simulated desktop, showing overlapping viewers. (b) Partial overlappings in the
desktop model.

The desktop metaphor is used by many modern operating systems and user interface shells both as a
natural model for the system to separate displayed data belonging to different tasks, and as a powerful
tool for users to organize the display screen interactively, according to individual taste and preference.

 43

However, there are inherent drawbacks in the metaphor. They are primarily connected with
overlapping. Firstly, any efficient management of overlapping viewers must rely on a subordinate
management of (arbitrary) sub-rectangles and on sophisticated clipping operations. This is so because
partially overlapped viewers must be partially restored under control of the viewer manager. For
example, in Figure 4.1(b), rectangles a, b, and c of viewer A ought to be restored individually after
closing of viewer B. Secondly, there is a significant danger of covering viewers completely and losing
them forever. And thirdly, no canonical heuristic algorithms exist for automatic allocation of screen
space to newly opened viewers.

Experience has shown that partial overlapping is desirable and beneficial in rare cases only, and so the
additional complexity of its management [Binding, Wille] is hard to justify. Therefore, alternate
strategies to structure a display screen have been looked for. An interesting class of established
solutions can be titled as tiling. There are several variants of tiling [Cohen]. Perhaps the most obvious
one (because most unconstrained one) is based on iterated horizontal or vertical splitting of existing
viewers. Starting with the full screen and successively opening viewers A, B, C, D, E, and F we get to a
configuration as in Figure 4.2. A second variant is hierarchic tiling. Again, the hierarchy starts with a
full screen that is now decomposed into a number of vertical tracks, each of which is further
decomposed into a number of horizontal viewers. Figure 4.3 shows a snapshot of a hierarchically tiled
display screen. We decided in favor of this kind of tiling in Oberon, mainly because the algorithm of
reusing the area of a closed viewer is simpler and more uniform. For example, assume that in Figure
4.2 viewer F has been closed. Then, it is straightforward to reverse the previous opening operation by
extending viewer E at its bottom end. However, if the closed viewer is B, no such simple procedure
exists. For example, the freed area can be shared between viewers C and D by making them extend to
their left. Clearly, no such complicated situations can occur in the case of hierarchic tiling.

Figure 4.2 (a) Screen layout produced by unconstrained tiling. (b) Viewer configuration resulting
from uncontrained tiling.

 44

Figure 4.3 Screen layout produced by hierarchic tiling.

Hierarchic tiling is also used in Xerox PARC's Cedar system [Teitelman]. However, the Oberon
variant differs from the Cedar variant in some respects. Firstly, Oberon supports quick temporary
context switching by overlaying one track or any contiguous sequence of tracks with new layers. In
Figure 4.4 a snapshot of a standard Oberon display screen is graphically represented. It suggests two
original tracks and two levels of overlay, where the top layer is screen-filling. Secondly, unlike Cedar
display screens, Oberon displays do not provide reserved areas for system-wide facilities. As depicted
in Figure 4.5, standard Cedar screens feature a command row at the top and an icon row at the bottom.
And thirdly, Oberon is based on a different heuristic strategy for the automatic placement of new
viewers. As a Cedar default invariant, the area of every track is divided up evenly among the viewers
in this track. When a new viewer is to be placed, the existing viewers in the track are requested to
reduce their size and move up appropriately. The newly opened viewer is then allocated in the freed
spot at the bottom. In contrast, Oberon normally splits the largest existing viewer in a given track into
two halves of equal size. As an advantage of this latter allocation strategy we note that existing
contents are kept stable.

 45

Figure 4.4 Overlays of tracks and of sequences of tracks.

Figure 4.5 The layout of a standard Cedar screen showing command row and icon row.

4.2. Viewers as Objects

 46

Although everybody seems to agree on the meaning of the term viewer, no two different system
designers actually do. The original role of a viewer as merely a separate display area has meanwhile
become heavily overloaded with additional functionality. Depending on the underlying system are
viewers individual views on a certain configuration of objects, carriers of tasks, processes,
applications, etc. Therefore, we first need to define our own precise understanding of the concept of
viewer.

The best guide to this aim is the abstract data type Viewer that we introduced in Chapter 3. We
recapitulate: Type Viewer serves as a template describing viewers abstractly as “black boxes” in terms
of a state of visibility, a rectangle on the display screen, and a message handler. The exact functional
interface provided by a given variant of viewer is determined by the set of messages accepted. This set
is structured as a customized hierarchy of type extensions.

We can now obtain a more concrete specification of the role of viewer by identifying some basic
categories of universal messages that are expected to be accepted by all variants of viewer. For
example, we know that messages reporting about user interactions as well as messages defining a
generic operation are universal. These two categories of universal messages document the roles of
viewers as interactive tasks and as parts of an integrated system respectively.

In total, there are four such categories. They are listed in Table 4.1, together with the corresponding
topics and message dispatchers.

Table 4.1
Dispatcher Topic Message

Task scheduler dispatching of
interactive tasks

reports user
interaction

Command interpreter processing of
integrated command

defines generic
operation

Viewer manager organizing the
display area

requests change of
location or size

Document manager operating on
documents

reports change of
contents or format

These topics essentially define the role of Oberon viewers. In short, we may look at an Oberon viewer
as a non-overlapped rectangular box on the screen both acting as an integrated display area for some
objects of a document and representing an interactive task in the form of a sensitive editing area.

Shifting emphasis a little and regarding the various message dispatchers as subsystems, we recognize
immediately the role of viewers as integrators of the different subsystems via message-based
interfaces. In this light type Viewer appears as a common object-oriented basis of Oberon's subsystems.

The topics emphasized in Table 4.1 constitute some kind of backbone of the contents of the Chapters
3, 4 and 5. Task scheduling and command interpreting are already familiar to us from Sections 3.2 and
3.3. Viewer management and text management will be the topics of Sections 4.4 and 5.2 respectively.
Thereby, the built-in type Text will serve as a prime example of a document type.

The activities that a viewer performs are basically controlled by events or, more precisely, by messages
representing event notices. We shall explain this in detail in Sections 4.4 and 5.3 in the cases of an
abstract class of standard viewers and a class of viewers displaying standard text respectively.

Here is a preliminary overview of some archetypal kinds of message:

• After each key stroke a keyboard message containing the typed character is sent to the current
focus viewer and after each mouse click a mouse message reporting the new state of the
mouse is sent to the viewer containing the current mouse position.

• A message often represents some generic operation that is expected to be interpreted
individually by its recipients. Obvious examples in our context are "return current textual
selection", "copy-over stretch of text", and "produce a copy (clone)". Notice that generic
operations are the key to extensibility.

 47

• In a tiling viewer environment, every opening of a new viewer and every change of size or
location of an existing viewer has an obvious effect on adjacent viewers. The viewer manager
therefore issues a message for every affected viewer requesting it to adjust its size
appropriately.

• Whenever the contents or the format of a document has changed, a message notifying all
visible viewers of the change is broadcast. Notice that broadcasting messages by a model
(document) to the entirety of its potential views (viewers) is an interesting implementation of
the famous MVC (model-view-controller) pattern that dispenses models from “knowing”
(registering) their views.

4.3. Frames as Basic Display Entities
When we introduced viewers in Chapter 3 and in the previous Section, we simplified with the aim of
abstraction. We know already that viewers appear as elements of second order in the tiling hierarchy.
Having treated them as black boxes so far we have not revealed anything about the continuation of the
hierarchy. As a matter of fact, viewers are neither elementary display entities nor atoms. They are just
a special case of so-called display frames. Display frames or frames in short are arbitrary rectangles
displaying a collection of objects or an excerpt of a document. In particular, frames may recursively
contain other frames, a capability that makes them an extremely powerful tool for any display
organizer.

The type Frame is declared as

 Frame = POINTER TO FrameDesc;

 FrameDesc = RECORD
 next, dsc: Frame;
 X, Y, W, H: INTEGER;
 handle: Handler
 END;

The components next and dsc are connections to further frames. Their names suggest a multi-level
recursive hierarchical structure: next points to the next frame on the same level, while dsc points to the
(first) descendant, i.e. to the next lower level of the hierarchy of nested frames. X, Y, W, H, and the
handler handle serve the original purpose to that we introduced them. In particular, the handler allows
frames to react individually on the receipt of messages. Its type is

 Handler = PROCEDURE (F: Frame; VAR M: FrameMsg);

where FrameMsg represents the root of a potentially unlimited tree hierarchy of possible messages to
frames:

 FrameMsg = RECORD END;

Having now introduced the concept of frames, we can reveal the whole truth about viewers. As a
matter of fact, type Viewer is a derived type, it is a type extension of Frame:

 Viewer = POINTER TO ViewerDesc;

 ViewerDesc = RECORD (FrameDesc)
 state: INTEGER
 END;

These declarations formally express the fact that viewers are nothing but a special case (or variant or
subclass) of general frames, additionally featuring a state of visibility. In particular, viewers inherit the
hierarchical structure of frames. This is an extremely useful property immediately opening an
unlimited spectrum of possibilities for designers of a specific subclass of viewers to organize the
representing rectangular area. For example, the area of viewers of, say, class Desktop may take the role
of a background being covered by an arbitrary collection of possibly mutually overlapping frames. See
Figure 4.6 for an example. In other words, our decision of using a tiling viewer scheme globally can
easily be overwritten locally.

 48

Figure 4.6 A viewer class desktop organizing overlapping frames.

An even more important example of a predefined structure is provided by the abstract class of so-
called menu viewers whose shape is familiar from most snapshots taken of the standard Oberon display
screen. A menu viewer consists of a thin rectangular boundary line and an interior area being vertically
decomposed into a menu region at the top and a contents region at the bottom (see Figure 4.7).

Figure 4.7 The compositional structure of a menu viewer.

 49

In terms of data structures, the class of menu viewers is defined as a type extension of Viewer with an
additional component menuH specifying the height of the menu frame:

 MenuViewer = POINTER TO MenuViewerDesc;

 MenuViewerDesc = RECORD (ViewerDesc)
 menuH: INTEGER
 END;

Each menu viewer V specifies exactly two descendants: The menu frame V.dsc and the frame of main
contents or main frame V.dsc.next. Absolutely nothing is fixed about the contents of the two
descendant frames. In the standard case, however, the menu frame is a text frame, displaying a line of
commands in inverse video mode. By definition, the nature of the main frame specifies the type of the
viewer. If it is a text frame as well, then we call the viewer a text viewer, if it a graphics frame, we call
it a graphics viewer etc.

4.4. Display Management
Oberon's display system comprises two main topics: Viewer management and cursor handling. Let us
first turn to the much more involved topic of viewer management and postpone cursor handling to the
end of this Section. Before we can actually begin our explanations we need to introduce the concept of
the logical display area. It is modeled as two-dimensional Cartesian plane housing the totality of
objects to be displayed. The essential point of this abstraction is a rigorous decoupling of any aspects
of physical display devices. As a matter of fact, any concrete assignment of display monitors to certain
finite regions of the display area is a pure matter of configuring the system.

Being a subsystem of a system with a clear modular structure the display system appears in the form of
a small hierarchy of modules. Its core is a linearly ordered set consisting of three modules: Display,
Viewers, and MenuViewers, the latter building upon the formers. Conceptually, each module
contributes an associated class of display-oriented objects and a collection of related service routines.

Table 4.2 provides an overview of the subsystem viewer management. In this table, modules on upper
lines import modules on lower lines and types on upper lines extend types on lower lines.

Table 4.2
Module Type Service
MenuViewers Viewer Message handling for menu viewers
Viewers Viewer Tiling viewer management
Display Frame Block-oriented raster operations

Inspecting the column titled Type in Table 4.2 we recognize precisely our familiar types Frame,
Viewer, and MenuViewer respectively, where the latter is an abbreviation of MenuViewers.Viewer.

In addition to the core modules of the display system a section in module Oberon provides a
specialized application programming interface that simplifies the use of the viewer management
package by applications in the case of standard Oberon display configurations. We shall come back to
this topic in Section 4.6.

For the moment let us concentrate on the core of the viewer management and in particular on the
modules Viewers and MenuViewers, saving the discussion of the module Display for the next Section.
Typically, we start the presentation of a module by listing and commenting its definition, and we end it
by discussing its implementation.

4.4.1. Viewers

Focusing first on module Viewers we can roughly define the domain of its responsibility as
"initializing and maintaining the global layout of the display area". From the previous discussion we
are well acquainted already with the structure of the global display space as well as with its building
blocks: The display area is hierarchically tiled with display frames, where the first two levels in the
frame hierarchy correspond to tracks and viewers respectively.

 50

This is the formal definition:

DEFINITION Viewers;

 IMPORT Display;

 CONST restore = 0; modify = 1; suspend = 2; (*message ids*)

 TYPE
 Viewer = POINTER TO ViewerDesc;

 ViewerDesc = RECORD (Display.FrameDesc)
 state: INTEGER
 END;

 ViewerMsg = RECORD (Display.FrameMsg)
 id: INTEGER;
 X, Y, W, H: INTEGER;
 state: INTEGER
 END;

 VAR curW: INTEGER;

 (*track handling*)
 PROCEDURE InitTrack (W, H: INTEGER; Filler: Viewer);
 PROCEDURE OpenTrack (X, W: INTEGER; Filler: Viewer);
 PROCEDURE CloseTrack (X: INTEGER);

 (*viewer handling*)
 PROCEDURE Open (V: Viewer; X, Y: INTEGER);
 PROCEDURE Change (V: Viewer; Y: INTEGER);
 PROCEDURE Close (V: Viewer);

 (*miscellaneous*)
 PROCEDURE This (X, Y: INTEGER): Viewer;
 PROCEDURE Next (V: Viewer): Viewer;

 PROCEDURE Recall (VAR V: Viewer);
 PROCEDURE Locate (X, H: INTEGER; VAR fil, bot, alt, max: Viewer);

 PROCEDURE Broadcast (VAR M: Display.FrameMsg);

END Viewers.

Some comments: A first group of procedures consisting of InitTrack, OpenTrack, and CloseTrack
supports the track structure of the display area. InitTrack creates a new track of width W and height H
by partitioning off a vertical strip of width W from the display area. In addition, InitTrack initializes
the newly created track with a filler viewer that is supplied as parameter. The filler viewer essentially
serves as background filling up the track at its top end. It reduces to height 0 if the track is covered
completely by productive viewers.

Configuring the display area is part of system initialization after startup. It amounts to executing a
sequence of steps of the form

NEW(Filler); Filler.handle := HandleFiller; InitTrack(W, H, Filler)

where HandleFiller is supposed to handle messages that require modifications of size and cursor
drawing.

 51

The global variable curW indicates the width of the already configured part of the display area. Note
that configuring starts with x = 0 and is non-reversible in the sense that the grid defined by the
initialized tracks cannot be refined later. However, remember that it can be made coarser at any time
by overlaying a contiguous sequence of existing tracks by a single new track.

Procedure OpenTrack serves exactly this purpose. The track (or sequence of tracks) to be overlaid in
the display-area must be spanned by the segment [X, X + W). Procedure CloseTrack is inverse to
OpenTrack. It is called to close the (topmost) track located at X in the display area, and to restore the
previously covered track (or sequence of tracks).

The next three procedures are used to organize viewers within individual tracks. Procedure Open
allocates a given viewer at a given position. More precisely, Open locates the viewer containing the
point (X, Y), splits it horizontally at height Y, and opens the viewer V in the lower part of the area. In
the special case of Y coinciding with the upper boundary line of the located viewer this is closed
automatically. Procedure Change allows to change the height of a given viewer V by moving its upper
boundary line to a new location Y (within the limits of its neighbors). Procedure Close removes the
given viewer V from the display area. Figure 4.8 makes these operations clear.

Figure 4.8 The basic operations on viewers.

The last group of procedures provides miscellaneous services. Procedure This identifies the viewer
displayed at (X, Y). Procedure Next returns the next upper neighbor of a given displayed viewer V.
Procedure Recall allows recalling and restoring the most recently closed viewer. Locate is a procedure
that assists heuristic allocation of new viewers. For any given track and desired minimum height,
procedure Locate offers a choice of some distinguished viewers in the track: the filler viewer, the
viewer at the bottom, an alternative choice, and the viewer of maximum height. Finally, procedure
Broadcast broadcasts a message to the display area, that is, sends the given message to all viewers that
are currently displayed.

 52

Figure 4.9 A snapshot of the internal display data structure corresponding to the display layout of
Figure 4.4.

 53

It is now time to throw a glance behind the scenes. Let us start with revealing module Viewer’s internal
data structure. Remember that according to the principle of information hiding an internal data
structure is fully private to the containing module and accessible through the module’s procedural
interface only. Figure 4.9 shows a data structure view of the display snapshot taken in Figure 4.4. Note
that the overlaid tracks and viewers are still part of the internal data structure.

In the data structure we recognize an anchor that represents the display area and points to a list of
tracks, each of them in turn pointing to a list of viewers, each of them in turn pointing to a list of
arbitrary sub-frames. Both the list of tracks and the list of viewers are closed to a ring, where the filler
track (filling up the display area) and the filler viewers (filling up the tracks) act as anchors.
Additionally, each track points to a (possibly empty) list of tracks lying underneath.

Technically, the track descriptor type TrackDesc is a private extension of the viewer descriptor type
ViewerDesc. Repeating the declarations of viewer descriptors and frame descriptors, we get to this
hierarchy of types:

TrackDesc = RECORD (ViewerDesc)
 under: Display.Frame
END;

ViewerDesc = RECORD (FrameDesc)
 state: INTEGER
END;

FrameDesc = RECORD
 next, dsc: Frame;
 X, Y, W, H: INTEGER;
 handle: Handler
END;

It is noteworthy that the data structure of the viewer manager is heterogeneous with Frame as base
type. It provides a nice example of a nested hierarchy of frames with the additional property that the
first two levels correspond to the first two levels in the type hierarchy defined by Track, Viewer, and
Frame.

In an object-oriented environment objects are autonomous entities in principle. However, they may be
bound to some higher instance (other than the system) temporarily. For example, we can look at the
objects belonging to a module's private data structure as bound to this module. Deciding if an object is
currently bound is then a fundamental problem. In the case of viewers, this information is contained in
an extra instance variable called state.

As a system invariant we have for every viewer V

V is bound to module Viewers <=> V.state # 0

If we call visible any displayed viewer and suspended any viewer that is covered by an overlaying
track we can refine this invariant to

{V is visible <=> V.state > 0 } and { V is suspended <=> V.state < 0 }

In addition, more detailed information about the kind of viewer V is given by the magnitude |V.state|:

Table
|V.state| kind of viewer
0 closed
1 filler
> 1 productive

Two side remarks:

 54

• The magnitude |V.state| is kept invariant by module Viewers. It could be used, for example, to
distinguish different levels of importance or preference with the aim of supporting a smarter
algorithm for heuristic allocation of new viewers.

• Although there is no language facility to enforce it, the variable state is to be treated as read-
only by every module other than Viewers.

We are now prepared to understand how the exported procedures of module Viewers work behind the
scenes. All of them operate on the internal dynamic data structure just explained. Some use the
structure as a reference only or operate on individual elements (procedures This, Next, Locate,
Change), others add new elements to the structure (procedures InitTrack, OpenTrack, Open), and even
others remove elements (procedures CloseTrack, Close). Most procedures have side-effects on the size
or state of existing elements.

Let us now change perspective and look at module Viewers as a general low-level manager for viewers
whose exact contents are unknown to it (and whose controlling software might have been developed
years later only). In short, let us look at module Viewers as a manager of black boxes. Such an
abstraction immediately makes it impossible for the implementation to call fixed procedures for, say,
changing a viewer's size or state. The needed facility is a message-oriented interface.

Module Viewer's contribution to this message interface corresponds to the third category of messages
listed in Table 4.1. Their common type is

ViewerMsg = RECORD (Display.FrameMsg)
 id: INTEGER;
 X, Y, W, H: INTEGER;
 state: INTEGER
 END;

There exist three variants of this type, specified by the field id: Restore contents, modify height (extend
or reduce at bottom), and suspend (close temporarily or permanently). The additional components of
the message inform about the desired new location, size, and state.

The following Table 4.3 lists senders, messages, and recipients of viewer messages.

Table 4.3
Originator Message Recicpients
OpenTrack Suspend temporarily Viewers covered by opening track
CloseTrack Suspend permanently Viewers in closing track
 Restore Viewers covered by closing track
Open Modify or suspend permanently Upper neighbour of opening viewer
Change Modify Upper neighbour of changing viewer
Close Suspend permanently Closing viewer

4.4.2. Menu Viewers

So far, we have treated viewers abstractly as black boxes. Our next step is now to focus on a special
class of viewers called menu viewers. Remembering the definition given earlier we know that a menu
viewer is characterized by a structure consisting of two vertically tiled “descendant” frames, a menu
frame at the top and a frame of contents at the bottom. Because the nature and contents of these frames
are typically unknown by their “ancestor” (or “parent”) viewer, a collection of abstract messages is
again a promising form of interface. As net effect, the handling of menu viewers boils down to a
combination of preprocessing, transforming and forwarding messages to the descendant frames. In
summary, the display space in Oberon is hierarchically organized and message passing within the
display space obeys the pattern of strict parental control.

Again, we start our more detailed discussion with a module definition:

DEFINITION MenuViewers;

 55

 IMPORT Viewers, Display;

 CONST extend = 0; reduce = 1; move = 2; (*message ids*)

 TYPE
 Viewer = POINTER TO ViewerDesc;

 ViewerDesc = RECORD (Viewers.ViewerDesc)
 menuH: INTEGER
 END;

 ModifyMsg = RECORD (Display.FrameMsg)
 id: INTEGER;
 dY, Y, H: INTEGER
 END;

 PROCEDURE Handle (V: Display.Frame; VAR M: Display.FrameMsg);
 PROCEDURE New (Menu, Main: Display.Frame; menuH, X, Y: INTEGER): Viewer;

END MenuViewers.

The interface represented by this definition is conspicuously narrow. There are just two procedures:
A generator procedure New and a standard message handler Handle. The generator returns a newly
created menu viewer displaying the two (arbitrary) frames passed as parameters. The message
handler implements the entire “behavior” of an object and in particular the above mentioned
dispatcher functionality.

Message handlers in Oberon are implemented in the form of “procedure variables” that obviously must
be initialized properly at object creation time. In other words, some concrete behavior must explicitly
be bound to each object, where different instances of the same object type could potentially have a
different behavior and/ or the same instance could change its behavior during its lifetime. Our object
model is therefore instance-centered.

Conceptually, the creation of an object is an atomic action consisting of three basic steps:

allocate memory block; install message handler; initialize state variables

In the case of a standard menu viewer V this can be expressed as

NEW(V); V.handle := Handle; V.dsc := Menu; V.dsc.next := Main; V.menuH := menuH

With that, calling New is equivalent with

create V; open V at X, Y

where opening V needs assistance by module Viewers.

The implementation of procedure Handle embodies the standard strategy of message handling by
menu viewers. The following code is a coarse view of it.

Message handler for menu viewers

 IF message reports about user interaction THEN
 IF variant is mouse tracking THEN
 IF mouse is in menu region THEN
 IF mouse is in upper menu region and left key is pressed THEN
 handle changing of viewer
 ELSE delegate handling to menu-frame
 END
 ELSE
 IF mouse is in main-frame THEN delegate handling to main-frame END
 END

 56

 ELSIF variant is keyboard input THEN
 delegate handling to menu frame;
 delegate handling to main frame
 END
 ELSIF message defines generic operation THEN
 IF message requests copy (clone) THEN
 send copy message to menu frame to get a copy (clone);
 send copy message to main frame to get a copy (clone);
 create menu viewer clone from copies
 ELSE
 delegate handling to menu frame;
 delegate handling to main frame
 END
 ELSIF message reports about change of contents THEN
 delegate handling to menu frame;
 delegate handling to main frame
 ELSIF message requests change of location or size THEN
 IF operation is restore THEN
 draw viewer area and border;
 send modify message to menu frame to make it extend from height 0;
 send modify message to main frame to make it extend from height 0
 ELSIF operation is modify THEN
 IF operation is extend THEN
 extend viewer area and border;
 send modify message to menu frame to make it extend;
 send modify message to main frame to make it extend
 ELSE (*reduce*)
 send modify message to main frame to make it reduce;
 send modify message to menu frame to make it reduce;
 reduce viewer area and border
 END
 ELSIF operation is suspend THEN
 send modify message to main frame to make it reduce to height 0;
 send modify message to menu frame to make it reduce to height 0
 END
 END

In principle, the handler acts as a message dispatcher that either processes a message directly and/or
delegates its processing to the descendant frames. Note that the handler's main alternative statement
discriminates precisely among the four basic categories of messages identified by Table 4.1.

From the above outlined algorithm handling copy messages, that is, requests for generating a copy or
clone of a menu viewer, we can derive a general recursive scheme for the creation of a clone of an
arbitrary frame:

send copy message to each element in the list of descendants;
generate copy of original frame descriptor;
attach copies of descendants to the copy of descriptor

The essential point here is the use of new outgoing messages in order to process a given incoming
message. We can regard message processing as a transformation that maps incoming messages into a
set of outgoing messages, with possible side-effects. The simplest case of such a transformation is
known as delegation. In this case, the input message is simply passed on to the descendant(s).

As a fine point we clarify that the above algorithm is designed to create a deep copy of a composite
object (a menu viewer in our case). If a shallow copy would be desired, the descendants would not
have to be copied, and the original descendants instead of their copies would be attached to the copy of
the composite object.

 57

Another example of message handling is provided by mouse tracking. Assume that a mouse message is
received by a menu viewer while the mouse is located in the upper part of its menu frame and the left
mouse key is kept down. This means "change viewer's height by moving its top line vertically". No
message to express the required transformation of the sub-frames yet exists. Consequently, module
MenuViewers takes advantage of our open message model and simply introduces an appropriate
message type called ModifyMsg:

ModifyMsg = RECORD (Display.FrameMsg)
 id: INTEGER;
 dY, Y, H: INTEGER
END;

The field id specifies one of two variants: extend or reduce. The first variant of the message requests
the receiving frame to move by the vertical translation vector dY and then to extend to height H at
bottom. The second variant requests the frame to reduce to height H at bottom and then to move by dY.
In both cases Y indicates the Y-coordinate of the new lower-left corner. Figure 4.10 summarizes
graphically.

Figure 4.10 The modify frame operation.

 58

Messages arriving from the viewer manager and requesting the receiving viewer to extend or reduce at
its bottom are also mapped into messages of type ModifyMsg as well. Of course, no translation is
needed in these cases, and dY is 0.

The attentive reader might perhaps have asked why the standard handler is exported by module
MenuViewers at all. The thought behind is reusability of code. For example, a message handler for a
subclass of menu viewers could be implemented effectively by reusing menu viewer's standard
handler. After having handled all new or differing cases first it would simply call the standard handler
subsequently.

4.4.3. Cursor Management

Traditionally, a cursor indicates and visualizes on the screen the current location of the caret in a text
or, more generally, the current focus of attention. A small arrow or similar graphic symbol is typically
used for this purpose. In Oberon, we have slightly generalized and abstracted this concept. A cursor is
a path in the logical display area whose current position can be made visible by a marker.

The viewer manager and the cursor handler are two separate users of the same display area. Actually,
we should imagine two parallel planes, one displaying viewers and the other displaying cursors. If
there is just one physical plane we take care of painting markers non-destructively, for example in
inverse-video mode. Then, no precondition must be established before drawing a marker. However, in
the case of a viewer task painting destructively in its viewer's area, the area must be locked first after
turning invisible all markers in the area.

The technical support of cursor management is again contained in module Oberon. The corresponding
application programming interface is

DEFINITION Oberon;
 ...
 TYPE
 Marker = RECORD
 Fade, Draw: PROCEDURE (x, y: INTEGER)
 END;

 Cursor = RECORD
 marker: Marker; on: BOOLEAN; X, Y: INTEGER
 END;

 VAR
 Arrow, Star: Marker;
 Mouse, Pointer: Cursor;

 PROCEDURE OpenCursor (VAR c: Cursor);
 PROCEDURE FadeCursor (VAR c: Cursor);
 PROCEDURE DrawCursor (VAR c: Cursor; VAR m: Marker; X, Y: INTEGER);

 PROCEDURE MarkedViewer (): Viewers.Viewer;
 PROCEDURE RemoveMarks (X, Y, W, H: INTEGER);
 ...
 END Oberon.

The state of a cursor is given by its mode of visibility (on), its position (X, Y) in the display area, and
the current marker. Marker is an abstract data type with an interface consisting of two operations Fade
and Draw. The main benefit we can draw from this abstraction is once more conceptual independence
of the underlying hardware. For example, Fade and Draw can adapt to a given monitor hardware with
built-in cursor support or, in case of absence of such support, can simply be implemented as identical
procedures (an involution) drawing the marker pattern in inverse video mode.

The functional interface to cursors consists of three operations: OpenCursor to open a new cursor,
FadeCursor to switch off the marker of an open cursor, and DrawCursor to extend the path of a cursor

 59

to a new position and mark it with the given marker. We emphasize that the marker representing a
given cursor can change its shape dynamically on the fly.

Two cursors, Mouse and Pointer are predefined. They represent the mouse and an interactively
controlled global system pointer respectively. Typically (but not necessarily) these cursors are
visualized by the built-in markers Arrow (a small arrow pointing to north-west) and Star (a star
symbol) respectively. The pointer can be used to mark any displayed object. It serves primarily as an
implicit parameter of commands.

Two assisting service procedures MarkedViewer and RemoveMarks are added in connection with the
predefined cursors. MarkedViewer returns the viewer that is currently marked by the pointer. Its
resulting value is equivalent to Viewers.This(Pointer.X, Pointer.Y). RemoveMarks turns invisble the
predefined cursors within a given rectangle in the display area. This procedure is used to lock the
rectangle for its caller.

Let us recapitulate the essential points and characteristics of Oberon's concept of cursor handling.

1.) By virtue of the use of abstract markers and of the logical display area any hardware dependence is
encapsulated in system modules and is therefore hidden from the application programmer. Cursors are
moving uniformly within the whole display area, even across screen boundaries.

2.) Cursor handling is decentralized by delegating it to the individual handlers that are installed in
viewers. Typically, a handler reacts on the receipt of a mouse tracking message by drawing the mouse
cursor at the indicated new position. The benefit of such individualized handling is flexibility. For
example, a smart local handler might choose the shape of the visualizing marker depending on the
exact location, or it might force the cursor onto a grid point.

3.) Even though cursor handling is decentralized, there is some intrinsic support for cursor drawing
built into the declaration of type Cursor. Cursors are objects of full value and, as such, can "memorize"
their current state. Consequently, the interface operations FadeCursor and DrawCursor need to refer
to the desired future state only.

4.) Looking at the viewer manager as one user of the display area, the cursor handler is a second user
of the same resource. If there is just one physical plane implementing the display area, any region must
be locked by a current user before destructive painting. Therefore, markers are usually painted non-
destructively in inverse-video mode.

Let us now summarize the entire Section. The central resource managed by the display subsystem is
the logical display area whose purpose is abstraction from the underlying display monitor hardware.
The display area is primarily used by the viewer manager for the accommodation of tracks and
viewers. They are just the first two levels of a potentially unlimited nested hierarchy of display frames.
For example, standard menu viewers contain two subordinate frames: A menu frame and a main frame
of contents. Viewers are treated as black boxes by the viewer manager and are addressed via messages.
Viewers and, more generally frames, are used as elements of message-based interfaces connecting the
display subsystem with other subsystems like the task scheduler and the various document managers.
Finally, the display area also provides a base space for the movement of cursors. In Oberon, a cursor is
a marked path. Two standard cursors Mouse and Pointer are predefined.

4.5. Raster Operations
In Section 4.4 we introduced the display area as an abstract concept, modeled as two-dimensional
Cartesian plane. So far, this information was sufficient because we were interested in its global
structure only and ignored contents completely. If we are now interested in the contents, we need to
reveal more details about the model.

The Cartesian plane representing the display area is discrete. We shall consider points in the display
area as grid points or picture elements (pixels), and we assume contents to be generated by assigning
colors to the pixels. For the moment, the number of possible colors a pixel can attain is irrelevant. In
the binary case of two colors we think of one color representing background and the other color
representing foreground.

 60

The most elementary operation generating contents in a discrete plane is "set color of pixel" or "set
pixel" for short. However, there are few algorithms actually building directly on this atomic operation.
Much more important in practice are block-oriented operations, traditionally called raster operations.
By a block we mean a rectangular area of pixels whose bounding lines are parallel to the axes of the
coordinate system.

Raster operations are based on a common principle of operation: A block of width SW and height SH
of source pixels is placed at a given point of destination (DX, DY) in the display area. In the simplest
case, the destination block (DX, DY, SW, SH) is plainly overwritten by the source block. In general, the
new value of a pixel in the destination block is a combination of its old value and the value of the
corresponding source pixel:

d := f(s, d)

f is sometimes called mode of combination of the raster operation.

In the binary case we have the following modes:

Table
mode f
replace s
paint s OR d
invert s XOR d

Note that invert is equivalent with inverse video mode if s is TRUE for all pixels.

There are many different variants of raster operations. Some refer to a source block in the display area,
others specify a constant pattern to be taken as source block. Some variants require replication of the
source block within a given destination block (DX, DY, DW, DH) rather than simple placement.

The challenge with designing a raster interface was to find a unified, small and complete set of raster
operations that covers all needs, in particular the need of placing character glyphs. The amazingly
compact resulting set of raster operations is exported by module Display:

DEFINITION Display;
 ...
 CONST
 black = 0; white = 15; (*colors*)
 replace = 0; paint = 1; invert = 2; (*operation modes*)

 PROCEDURE CopyBlock (SX, SY, W, H, DX, DY, mode: INTEGER);

 PROCEDURE CopyPattern (col: INTEGER; pat: Pattern; DX, DY, mode: INTEGER);
 PROCEDURE Dot (col: INTEGER; DX, DY: LONGINT; mode: INTEGER);

 PROCEDURE ReplPattern (
 col: INTEGER; pat: Pattern; DX, DY, DW, DH, mode: INTEGER);
 PROCEDURE ReplConst (col: INTEGER; DX, DY, DW, DH, mode: INTEGER);
 ...
END Display.

In the parameter lists, mode is the mode of combination (replace, paint, or invert). CopyBlock copies
the source block (SX, SY, W, H) to position (DX, DY) and uses mode to combine new contents in the
destination block (DX, DY, W, H). It is assumed tacitly that the numbers of colors per pixel in the
source block and in the destination area are identical. It is perhaps informative to know that CopyBlock
is essentially equivalent with the famous BitBlt (bit block transfer) in the SmallTalk project [Goldberg].
In Oberon, CopyBlock is used primarily for scrolling contents within a viewer.

 61

The remaining raster operations use a constant pattern. Conceptually, we should regard type Pattern as
a pointer:

Pattern = POINTER TO PatternDesc;

PatternDesc = RECORD
 w, h: SHORTINT;
 raster: ARRAY (w + 7) DIV 8 * h OF SYSTEM.BYTE
END;

w and h are width and height of a block containing the binary pattern data defined by raster. The
pattern data are given as a linear sequence of bytes to be poured into the block from left to right and
from bottom to top.

There are two non-conceptual problems with this declaration. First, arrays of variable length are not
allowed in Oberon. The second problem concerns economy of memory usage. Looking at type-fonts as
large collections of character patterns, it would be extremely wasteful to allocate a separate record for
every single pattern. We shall see in Chapter 5 how sequences of character patterns are packed. As a
way out we decided to define type Pattern as LONGINT (in the sense of “memory address”), together
with a pattern constructor

PROCEDURE SetPattern (
 VAR image: ARRAY OF SYSTEM.BYTE; W, H: INTEGER; VAR pat: Pattern);

Some standard patterns are predefined in module Display and exported as global variables of type
Pattern. Among them are patterns arrow, star, and cross intended to represent markers, a hook
marking the caret, and a downward arrow. A second group of predefined patterns supports drawing
graphics. It includes several grey tone patterns and a grid pattern.

Figure 4.11 Visualization of the replicate pattern operation.

The parameter col in the pattern-oriented raster operations specifies the pattern's foreground color.
Colors black and white are predefined. Procedure CopyPattern copies the colored pattern to location
(DX, DY) in the display area, using the given combination mode. It is probably the most frequently
used operation of all because it is needed to write text. Procedure ReplPattern replicates the given
pattern to the given destination block. It starts at bottom left and proceeds from left to right and from

 62

bottom to top. Figure 4.11 exemplifies the way this operation works. Procedures Dot and ReplConst
are special cases of CopyPattern and ReplPattern respectively, taking a fixed implicit pattern
consisting of a single foreground pixel. Dot is exactly our previously mentioned "set pixel". ReplConst
is used to draw horizontal and vertical lines as well as rectangles.

So far, we have carefully avoided any reference to the underlying hardware. However, eventually, the
raster operations operate on concrete bitmaps mirroring the contents of concrete display monitors. In
our original implementation they are programmed in assembler code for efficiency reasons. We
decided to include the necessary support directly in place. For this reason, we burdened two more
domains of responsibility on module Display: a) Mapping display monitors to the display area and b)
acting as device driver.

Here is the relevant part of module Display's definition:

 DEFINITION Display;
 ...

 VAR (*map*)
 Unit: LONGINT;
 Width, Height: INTEGER;
 Bottom, UBottom: INTEGER;
 Left, ColLeft: INTEGER;

 PROCEDURE Map (X: INTEGER): LONGINT;

 (*device drivers*)
 PROCEDURE SetMode (X: INTEGER; s: SET);

 (*color table*)
 PROCEDURE SetColor (col, red, green, blue: INTEGER);
 PROCEDURE GetColor (col: INTEGER; VAR red, green, blue: INTEGER);

 (*hardware cursor*)
 PROCEDURE SetCursor (mode: SET);
 PROCEDURE DrawCX (X, Y: INTEGER);
 PROCEDURE FadeCX (X, Y: INTEGER);
 ...

 END Display.

This definition (and even more so its implementation) provides support for a restricted class of
possible configurations only. Any number of display monitors is theoretically possible. However, they
must be mapped to a regular horizontal array of predefined cells in the display area. Each cell is
vertically split into two congruent regions, where the corresponding monitor is supposed to be able to
select and display one of the two regions alternatively. Finally, it is assumed that all cells of black-and-
white monitors are allocated to the left of all cells of color monitors. Figure 4.12 gives a good
impression of such a configuration.

Under these restrictions any concrete configuration can be parameterized by the variables of the
definition above. Unit, Width, and Height specify the extent of a displayed region, where Width and
Height are width and height in pixel units, and Unit is the size of a pixel in units of 1/36000 mm.
1/36000 mm is a common divisor of all of the standard metric units used by the typesetting
community, like mm, inch, Pica point and point size of usual printing devices. Bottom and UBottom
specify the bottom y-coordinate of the primary region and the secondary region respectively. Finally,
Left and ColLeft give the left x-coordinate of the area of black-and-white monitors and of color
monitors respectively.

We conclude these explanations with a short functional description of the procedures listed in the
above definition: To a given x-coordinate, procedure Map returns the starting address of the (primary)

 63

bitmap corresponding to the display monitor at this position. This procedure allows a client to
transform any given pair (X, Y) of coordinates into a memory address and thus to implement private
raster operations. The remaining procedures are driver-specific. Obviously, they are tailored to certain
concrete types of monitors.

Figure 4.12 The standard regular cell structure of the display area.

Procedure SetMode sets the display mode of the monitor at position X. Typically, the mode selects
among normal, inverse video, and display screen off. Also, it specifies the region to be displayed
(primary or secondary). Procedures SetColor and GetColor maintain the (common) color table of the
color screens. This table maps color numbers to colors composed of the basic elements red, green, and
blue. The remaining procedures support hardware cursor management. SetCursor selects among two
possible cursor classes: Crosshair or pattern. Finally, procedures DrawCX and FadeCX draw and erase
the selected cursor at the given position.

4.6. Standard Display Configurations and Toolbox
Let us now take up again our earlier topic of configuring the display area. We have seen that no
specific layout of the display area is distinguished by the general viewer management itself. However,
some support of the familiar standard Oberon display look is provided by module Oberon.

In the terminology of this module, a standard configuration consists of one or several horizontally
adjacent displays, where a display is a pair consisting of two tracks of equal height, a user track on the
left and a system track on the right. Figure 4.13 shows a standard configuration featuring two displays
of equal size, one black-and-white and one colored. Note that even though no reference to any physical
monitor is made, a display is typically associated with a monitor in reality.

This is the relevant excerpt of the definition:

DEFINITION Oberon;
 ...

 PROCEDURE OpenDisplay (UW, SW, H: INTEGER);
 PROCEDURE OpenTrack (X, W: INTEGER);

 PROCEDURE DisplayWidth (X: INTEGER): INTEGER;

 64

 PROCEDURE DisplayHeight (X: INTEGER): INTEGER;
 PROCEDURE UserTrack (X: INTEGER): INTEGER;
 PROCEDURE SystemTrack (X: INTEGER): INTEGER;

 PROCEDURE AllocateUserViewer (DX: INTEGER; VAR X, Y: INTEGER);
 PROCEDURE AllocateSystemViewer (DX: INTEGER; VAR X, Y: INTEGER);
...
END Oberon.

Procedure OpenDisplay initializes and opens a new display of the dimensions H (height), UW (width
of user track), and SW (width of system track). Procedure OpenTrack overlays the sequence of existing
tracks spanned by the segment [X, X + W) by a new track. Both procedure OpenDisplay and
OpenTrack take from the client the burden of creating a filler viewer.

The next group of procedures DisplayWidth, DisplayHeight, UserTrack and SystemTrack return width
or height of the respective structural entity located at position X in the display area.

Procedures AllocateUserViewer and AllocateSystemViewer make proposals for the allocation of a new
viewer in the desired track of the display located at DX. In first priority, the location is determined by
the system pointer that can be set manually. If the pointer is not set, a location is calculated on the basis
of some heuristics whose strategies rely on different splitting fractions that are applied in the user track
and in the system track respectively, with the aim of generating aesthetically satisfactory layouts.

Figure 4.13 Standard Oberon configuration featuring two logically adjacent displays of equal size

and structure.

In addition to the programming interface provided by module Oberon for the case of standard display
layouts, the display management section in the System toolbox provides a user interface:

DEFINITION System;

(*Display management*)
 PROCEDURE Open; (*viewer*)

 65

 PROCEDURE OpenLog; (*viewer*)
 PROCEDURE Close; (*viewer*)
 PROCEDURE CloseTrack;
 PROCEDURE Recall; (*most recently closed viewer*)
 PROCEDURE Copy; (*viewer*)
 PROCEDURE Grow; (*viewer*)
END System.

In turn, these commands are called to open a text viewer in the system track, open a viewer displaying
the system log text, close a viewer, close a track, recall (and reopen) the most recently closed viewer,
copy a viewer, and grow a viewer. The commands Close, CloseTrack, Recall, Copy, and Grow are
generic. Close, Copy, and Grow are typically included in the title bar of a menu viewer. Their detailed
implementations follow subsequently.

Literature
[Binding] C. Binding, User Interface Components based on a Multiple Window Package,
 University of Washington, Seattle, Technical Report 85-08-07.

[Cohen] E.S. Cohen, E.T. Smith, L.A. Iverson, Constraint-Based Tiled Windows,
 IEEE, 1985

[Wille] M. Wille, Overview: Entwurf und Realisierung eines Fenstersystems f…r Arbeitsplatzrechner,
 Diss. ETH Nr. 8771, 1988.

[Goldberg] A. Goldberg, Smalltalk-80: The Interactive Programming Environment,
 Addison-Wesley 1984.

[Teitelman] W. Teitelman, "A tour through Cedar",
 IEEE Software, 1, (2), 44-73 (1984).

 66

Complete Implementations
MODULE Viewers; (*JG 14.9.90*)

 IMPORT Display;

 CONST
 restore* = 0; modify* = 1; suspend* = 2; (*message id*)
 inf = MAX(INTEGER);

 TYPE
 Viewer* = POINTER TO ViewerDesc;

 ViewerDesc* = RECORD (Display.FrameDesc)
 state*: INTEGER
 END;

 (*state > 1: displayed
 state = 1: filler
 state = 0: closed
 state < 0: suspended*)

 ViewerMsg* = RECORD (Display.FrameMsg)
 id*: INTEGER;
 X*, Y*, W*, H*: INTEGER;
 state*: INTEGER
 END;

 Track = POINTER TO TrackDesc;

 TrackDesc = RECORD (ViewerDesc)
 under: Display.Frame
 END;

 VAR
 curW*, minH*, DW, DH: INTEGER;
 FillerTrack: Track; FillerViewer, buf: Viewer; (*for closed viewers*)

 PROCEDURE Open* (V: Viewer; X, Y: INTEGER);
 VAR T, u, v: Display.Frame; M: ViewerMsg;
 BEGIN
 IF (V.state = 0) & (X < inf) THEN
 IF Y > DH THEN Y := DH END;
 T := FillerTrack.next;
 WHILE X >= T.X + T.W DO T := T.next END;
 u := T.dsc; v := u.next;
 WHILE Y > v.Y + v.H DO u := v; v := u.next END;
 IF Y < v.Y + minH THEN Y := v.Y + minH END;
 IF (v.next.Y # 0) & (Y > v.Y + v.H - minH) THEN
 WITH v: Viewer DO
 V.X := T.X; V.W := T.W; V.Y := v.Y; V.H := v.H;
 M.id := suspend; M.state := 0;
 v.handle(v, M); v.state := 0; buf := v;
 V.next := v.next; u.next := V;
 V.state := 2
 END

 67

 ELSE
 V.X := T.X; V.W := T.W; V.Y := v.Y; V.H := Y - v.Y;
 M.id := modify; M.Y := Y; M.H := v.Y + v.H - Y;
 v.handle(v, M); v.Y := M.Y; v.H := M.H;
 V.next := v; u.next := V;
 V.state := 2
 END
 END
 END Open;

 PROCEDURE Change* (V: Viewer; Y: INTEGER);
 VAR v: Display.Frame; M: ViewerMsg;
 BEGIN
 IF V.state > 1 THEN
 IF Y > DH THEN Y := DH END;
 v := V.next;
 IF (v.next.Y # 0) & (Y > v.Y + v.H - minH) THEN
 Y := v.Y + v.H - minH
 END;
 IF Y >= V.Y + minH THEN
 M.id := modify; M.Y := Y; M.H := v.Y + v.H - Y;
 v.handle(v, M); v.Y := M.Y; v.H := M.H;
 V.H := Y - V.Y
 END
 END
 END Change;

 PROCEDURE RestoreTrack (S: Display.Frame);
 VAR T, t, v: Display.Frame; M: ViewerMsg;
 BEGIN
 WITH S: Track DO
 t := S.next;
 WHILE t.next.X # S.X DO t := t.next END;
 T := S.under;
 WHILE T.next # NIL DO T := T.next END;
 t.next := S.under; T.next := S.next;
 M.id := restore;
 REPEAT t := t.next;
 v := t.dsc;
 REPEAT v := v.next; v.handle(v, M);
 WITH v: Viewer DO v.state := - v.state END
 UNTIL v = t.dsc
 UNTIL t = T
 END
 END RestoreTrack;

 PROCEDURE Close* (V: Viewer);
 VAR T, U: Display.Frame; M: ViewerMsg;
 BEGIN
 IF V.state > 1 THEN
 U := V.next; T := FillerTrack;
 REPEAT T := T.next UNTIL V.X < T.X + T.W;
 IF (T(Track).under = NIL) OR (U.next # V) THEN
 M.id := suspend; M.state := 0;
 V.handle(V, M); V.state := 0; buf := V;
 M.id := modify; M.Y := V.Y; M.H := V.H + U.H;

 68

 U.handle(U, M); U.Y := M.Y; U.H := M.H;
 WHILE U.next # V DO U := U.next END;
 U.next := V.next
 ELSE (*close track*)
 M.id := suspend; M.state := 0;
 V.handle(V, M); V.state := 0; buf := V;
 U.handle(U, M); U(Viewer).state := 0;
 RestoreTrack(T)
 END
 END
 END Close;

 PROCEDURE Recall* (VAR V: Viewer);
 BEGIN V := buf
 END Recall;

 PROCEDURE This* (X, Y: INTEGER): Viewer;
 VAR T, V: Display.Frame;
 BEGIN
 IF (X < inf) & (Y < DH) THEN
 T := FillerTrack;
 REPEAT T := T.next UNTIL X < T.X + T.W;
 V := T.dsc;
 REPEAT V := V.next UNTIL Y < V.Y + V.H;
 RETURN V(Viewer)
 ELSE RETURN NIL
 END
 END This;

 PROCEDURE Next* (V: Viewer): Viewer;
 BEGIN RETURN V.next(Viewer)
 END Next;

 PROCEDURE Locate* (X, H: INTEGER; VAR fil, bot, alt, max: Display.Frame);
 VAR T, V: Display.Frame;
 BEGIN
 IF X < inf THEN
 T := FillerTrack;
 REPEAT T := T.next UNTIL X < T.X + T.W;
 fil := T.dsc; bot := fil.next;
 IF bot.next # fil THEN
 alt := bot.next; V := alt.next;
 WHILE (V # fil) & (alt.H < H) DO
 IF V.H > alt.H THEN alt := V END; V := V.next
 END
 ELSE alt := bot
 END;
 max := T.dsc; V := max.next;
 WHILE V # fil DO
 IF V.H > max.H THEN max := V END; V := V.next
 END
 END
 END Locate;

 PROCEDURE InitTrack* (W, H: INTEGER; Filler: Viewer);
 VAR S: Display.Frame; T: Track;

 69

 BEGIN
 IF Filler.state = 0 THEN
 Filler.X := curW; Filler.W := W; Filler.Y := 0; Filler.H := H;
 Filler.state := 1;
 Filler.next := Filler;
 NEW(T);
 T.X := curW; T.W := W; T.Y := 0; T.H := H;
 T.dsc := Filler; T.under := NIL;
 FillerViewer.X := curW + W; FillerViewer.W := inf - FillerViewer.X;
 FillerTrack.X := FillerViewer.X; FillerTrack.W := FillerViewer.W;
 S := FillerTrack;
 WHILE S.next # FillerTrack DO S := S.next END;
 S.next := T; T.next := FillerTrack;
 curW := curW + W
 END
 END InitTrack;

 PROCEDURE OpenTrack* (X, W: INTEGER; Filler: Viewer);
 VAR newT: Track; S, T, t, v: Display.Frame; M: ViewerMsg;
 BEGIN
 IF (X < inf) & (Filler.state = 0) THEN
 S := FillerTrack; T := S.next;
 WHILE X >= T.X + T.W DO S := T; T := S.next END;
 WHILE X + W > T.X + T.W DO T := T.next END;
 M.id := suspend;
 t := S;
 REPEAT t := t.next; v := t.dsc;
 REPEAT v := v.next;
 WITH v: Viewer DO
 M.state := -v.state; v.handle(v, M); v.state := M.state
 END
 UNTIL v = t.dsc
 UNTIL t = T;
 Filler.X := S.next.X; Filler.W := T.X + T.W - S.next.X; Filler.Y := 0; Filler.H := DH;
 Filler.state := 1;
 Filler.next := Filler;
 NEW(newT);
 newT.X := Filler.X; newT.W := Filler.W; newT.Y := 0; newT.H := DH;
 newT.dsc := Filler; newT.under := S.next; S.next := newT;
 newT.next := T.next; T.next := NIL
 END
 END OpenTrack;

 PROCEDURE CloseTrack* (X: INTEGER);
 VAR T, V: Display.Frame; M: ViewerMsg;
 BEGIN
 IF X < inf THEN
 T := FillerTrack;
 REPEAT T := T.next UNTIL X < T.X + T.W;
 IF T(Track).under # NIL THEN
 M.id := suspend; M.state := 0; V := T.dsc;
 REPEAT V := V.next; V.handle(V, M); V(Viewer).state := 0 UNTIL V = T.dsc;
 RestoreTrack(T)
 END
 END
 END CloseTrack;

 70

 PROCEDURE Broadcast* (VAR M: Display.FrameMsg);
 VAR T, V: Display.Frame;
 BEGIN
 T := FillerTrack.next;
 WHILE T # FillerTrack DO
 V := T.dsc;
 REPEAT V := V.next; V.handle(V, M) UNTIL V = T.dsc;
 T := T.next
 END
 END Broadcast;

BEGIN buf := NIL;
 NEW(FillerViewer);
 FillerViewer.X := 0; FillerViewer.W := inf; FillerViewer.Y := 0; FillerViewer.H := DH;
 FillerViewer.next := FillerViewer;
 NEW(FillerTrack);
 FillerTrack.X := 0; FillerTrack.W := inf; FillerTrack.Y := 0; FillerTrack.H := DH;
 FillerTrack.dsc := FillerViewer;
 FillerTrack.next := FillerTrack;
 curW := 0; minH := 1;
 DW := Display.Width; DH := Display.Height
END Viewers.

MODULE MenuViewers; (*JG 26.8.90*)

 IMPORT Input, Display, Texts, Viewers, Oberon;

 CONST extend* = 0; reduce* = 1;

 TYPE
 Viewer* = POINTER TO ViewerDesc;

 ViewerDesc* = RECORD (Viewers.ViewerDesc)
 menuH*: INTEGER
 END;

 ModifyMsg* = RECORD (Display.FrameMsg)
 id*: INTEGER;
 dY*, Y*, H*: INTEGER
 END;

 PROCEDURE Copy (V: Viewer; VAR V1: Viewer);
 VAR Menu, Main: Display.Frame; M: Oberon.CopyMsg;
 BEGIN
 Menu := V.dsc; Main := V.dsc.next;
 NEW(V1); V1^ := V^; V1.state := 0;
 Menu.handle(Menu, M); V1.dsc := M.F;
 Main.handle(Main, M); V1.dsc.next := M.F
 END Copy;

 PROCEDURE Draw (V: Viewers.Viewer);
 BEGIN
 Display.ReplConst(Display.white, V.X, V.Y, 1, V.H, 0);
 Display.ReplConst(Display.white, V.X + V.W - 1, V.Y, 1, V.H, 0);
 Display.ReplConst(Display.white, V.X + 1, V.Y, V.W - 2, 1, 0);

 71

 Display.ReplConst(Display.white, V.X + 1, V.Y + V.H - 1, V.W - 2, 1, 0)
 END Draw;

 PROCEDURE Extend (V: Viewer; newY: INTEGER);
 VAR dH: INTEGER;
 BEGIN dH := V.Y - newY;
 IF dH > 0 THEN
 Display.ReplConst(Display.black, V.X + 1, newY + 1, V.W - 2, dH, 0);
 Display.ReplConst(Display.white, V.X, newY, 1, dH, 0);
 Display.ReplConst(Display.white, V.X + V.W - 1, newY, 1, dH, 0);
 Display.ReplConst(Display.white, V.X + 1, newY, V.W - 2, 1, 0)
 END
 END Extend;

 PROCEDURE Reduce (V: Viewer; newY: INTEGER);
 BEGIN Display.ReplConst(Display.white, V.X + 1, newY, V.W - 2, 1, 0)
 END Reduce;

 PROCEDURE Grow (V: Viewer; oldH: INTEGER);
 VAR dH: INTEGER;
 BEGIN dH := V.H - oldH;
 IF dH > 0 THEN
 Display.ReplConst(Display.white, V.X, V.Y + oldH, 1, dH, 0);
 Display.ReplConst(Display.white, V.X + V.W - 1, V.Y + oldH, 1, dH, 0);
 Display.ReplConst(Display.white, V.X + 1, V.Y + V.H - 1, V.W - 2, 1, 0)
 END
 END Grow;

 PROCEDURE Shrink (V: Viewer; newH: INTEGER);
 BEGIN Display.ReplConst(Display.white, V.X + 1, V.Y + newH - 1, V.W - 2, 1, 0)
 END Shrink;

 PROCEDURE Adjust (F: Display.Frame; id, dY, Y, H: INTEGER);
 VAR M: ModifyMsg;
 BEGIN M.id := id; M.dY := dY; M.Y := Y; M.H := H; F.handle(F, M); F.Y := Y; F.H := H
 END Adjust;

 PROCEDURE Restore (V: Viewer);
 VAR Menu, Main: Display.Frame;
 BEGIN
 Menu := V.dsc; Main := V.dsc.next;
 Oberon.RemoveMarks(V.X, V.Y, V.W, V.H);
 Draw(V);
 Menu.X := V.X + 1; Menu.Y := V.Y + V.H - 1; Menu.W := V.W - 2; Menu.H := 0;
 Main.X := V.X + 1; Main.Y := V.Y + V.H - V.menuH; Main.W := V.W - 2; Main.H := 0;
 IF V.H > V.menuH + 1 THEN
 Adjust(Menu, extend, 0, V.Y + V.H - V.menuH, V.menuH - 1);
 Adjust(Main, extend, 0, V.Y + 1, V.H - V.menuH - 1)
 ELSE Adjust(Menu, extend, 0, V.Y + 1, V.H - 2)
 END
 END Restore;

 PROCEDURE Modify (V: Viewer; Y, H: INTEGER);
 VAR Menu, Main: Display.Frame;
 BEGIN
 Menu := V.dsc; Main := V.dsc.next;

 72

 IF Y < V.Y THEN (*extend*)
 Oberon.RemoveMarks(V.X, Y, V.W, V.Y - Y);
 Extend(V, Y);
 IF H > V.menuH + 1 THEN
 Adjust(Menu, extend, 0, Y + H - V.menuH, V.menuH - 1);
 Adjust(Main, extend, 0, Y + 1, H - V.menuH - 1)
 ELSE Adjust(Menu, extend, 0, Y + 1, H - 2)
 END
 ELSIF Y > V.Y THEN (*reduce*)
 Oberon.RemoveMarks(V.X, V.Y, V.W, V.H);
 IF H > V.menuH + 1 THEN
 Adjust(Main, reduce, 0, Y + 1, H - V.menuH - 1);
 Adjust(Menu, reduce, 0, Y + H - V.menuH, V.menuH - 1)
 ELSE
 Adjust(Main, reduce, 0, Y + H - V.menuH, 0);
 Adjust(Menu, reduce, 0, Y + 1, H - 2)
 END;
 Reduce(V, Y)
 END
 END Modify;

 PROCEDURE Change (V: Viewer; X, Y: INTEGER; Keys: SET);
 VAR Menu, Main: Display.Frame;
 V1: Viewers.Viewer; keysum: SET; Y0, dY, H: INTEGER;
 BEGIN (*Keys # {}*)
 Menu := V.dsc; Main := V.dsc.next;
 Oberon.DrawCursor(Oberon.Mouse, Oberon.Arrow, X, Y);
 Display.ReplConst(Display.white, V.X + 1, V.Y + V.H - 1 - V.dsc.H, V.W - 2, V.dsc.H, 2);
 Y0 := Y;
 keysum := Keys;
 LOOP
 Input.Mouse(Keys, X, Y);
 IF Keys = {} THEN EXIT END;
 keysum := keysum + Keys;
 Oberon.DrawCursor(Oberon.Mouse, Oberon.Arrow, X, Y)
 END;
 Display.ReplConst(Display.white, V.X + 1, V.Y + V.H - 1 - V.dsc.H, V.W - 2, V.dsc.H, 2);
 IF ~(0 IN keysum) THEN
 IF 1 IN keysum THEN V1 := Viewers.This(X, Y);
 IF Y < V1.Y + V.menuH + 2 THEN Y := V1.Y + V.menuH + 2 END;
 Viewers.Close(V); Viewers.Open(V, X, Y); Restore(V)
 ELSE
 IF Y > Y0 THEN (*extend*) dY := Y - Y0;
 V1 := Viewers.Next(V);
 IF V1.state > 1 THEN
 IF (V1 IS Viewer) & (V1.H >= V1(Viewer).menuH + 2) THEN
 IF dY > V1.H - V1(Viewer).menuH - 2 THEN dY := V1.H - V1(Viewer).menuH - 2 END
 ELSIF dY > V1.H - Viewers.minH THEN dY := V1.H - Viewers.minH
 END
 ELSIF dY > V1.H THEN dY := V1.H
 END;
 Viewers.Change(V, V.Y + V.H + dY);
 Oberon.RemoveMarks(V.X, V.Y, V.W, V.H);
 Grow(V, V.H - dY);
 IF V.H > V.menuH + 1 THEN
 Adjust(Menu, extend, dY, V.Y + V.H - V.menuH, V.menuH - 1);

 73

 Adjust(Main, extend, dY, V.Y + 1, V.H - V.menuH - 1)
 ELSE Adjust(Menu, extend, dY, V.Y + 1, V.H - 2)
 END
 ELSIF Y < Y0 THEN (*reduce*) dY := Y0 - Y;
 IF dY > V.H - V(Viewer).menuH - 2 THEN dY := V.H - V(Viewer).menuH - 2 END;
 Oberon.RemoveMarks(V.X, V.Y, V.W, V.H);
 H := V.H - dY;
 IF H > V.menuH + 1 THEN
 Adjust(Main, reduce, dY, V.Y + 1, H - V.menuH - 1);
 Adjust(Menu, reduce, dY, V.Y + H - V.menuH, V.menuH - 1)
 ELSE
 Adjust(Main, reduce, dY, V.Y + H - V.menuH, 0);
 Adjust(Menu, reduce, dY, V.Y + 1, H - 2)
 END;
 Shrink(V, H);
 Viewers.Change(V, V.Y + H)
 END
 END
 END
 END Change;

 PROCEDURE Suspend (V: Viewer);
 VAR Menu, Main: Display.Frame;
 BEGIN
 Menu := V.dsc; Main := V.dsc.next;
 Adjust(Main, reduce, 0, V.Y + V.H - V.menuH, 0);
 Adjust(Menu, reduce, 0, V.Y + V.H - 1, 0)
 END Suspend;

 PROCEDURE Handle* (V: Display.Frame; VAR M: Display.FrameMsg);
 VAR Menu, Main: Display.Frame; V1: Viewer;
 BEGIN
 WITH V: Viewer DO
 Menu := V.dsc; Main := V.dsc.next;
 IF M IS Oberon.InputMsg THEN
 WITH M: Oberon.InputMsg DO
 IF M.id = Oberon.track THEN
 IF M.Y < V.Y + 1 THEN Oberon.DrawCursor(Oberon.Mouse, Oberon.Arrow, M.X, M.Y)
 ELSIF M.Y < V.Y + V.H - V.menuH THEN Main.handle(Main, M)
 ELSIF M.Y < V.Y + V.H - V.menuH + 2 THEN Menu.handle(Menu, M)
 ELSIF M.Y < V.Y + V.H - 1 THEN
 IF 2 IN M.keys THEN Change(V, M.X, M.Y, M.keys)
 ELSE Menu.handle(Menu, M)
 END
 ELSE Oberon.DrawCursor(Oberon.Mouse, Oberon.Arrow, M.X, M.Y)
 END
 ELSE Menu.handle(Menu, M); Main.handle(Main, M)
 END
 END
 ELSIF M IS Oberon.ControlMsg THEN
 WITH M: Oberon.ControlMsg DO
 IF M.id = Oberon.mark THEN
 Oberon.DrawCursor(Oberon.Mouse, Oberon.Arrow, M.X, M.Y);
 Oberon.DrawCursor(Oberon.Pointer, Oberon.Star, M.X, M.Y)
 ELSE Menu.handle(Menu, M); Main.handle(Main, M)
 END

 74

 END
 ELSIF M IS Oberon.CopyMsg THEN
 WITH M: Oberon.CopyMsg DO Copy(V(Viewer), V1); M.F := V1 END
 ELSIF M IS Viewers.ViewerMsg THEN
 WITH M: Viewers.ViewerMsg DO
 IF M.id = Viewers.restore THEN Restore(V)
 ELSIF M.id = Viewers.modify THEN Modify(V, M.Y, M.H)
 ELSIF M.id = Viewers.suspend THEN Suspend(V)
 END
 END
 ELSE Menu.handle(Menu, M); Main.handle(Main, M)
 END
 END
 END Handle;

 PROCEDURE New* (Menu, Main: Display.Frame; menuH, X, Y: INTEGER): Viewer;
 VAR V: Viewer;
 BEGIN NEW(V);
 V.handle := Handle; V.dsc := Menu; V.dsc.next := Main; V.menuH := menuH;
 Viewers.Open(V, X, Y); Restore(V);
 RETURN V
 END New;

END MenuViewers.

MODULE System; (*JG 3.10.90*)

 IMPORT Viewers, MenuViewers, Oberon, Texts, TextFrames;

 CONST
 StandardMenu = "System.Close System.Copy System.Grow Edit.Search Edit.Store";
 LogMenu = "System.Close System.Grow Edit.Locate Edit.Store";

 VAR W: Texts.Writer;

 PROCEDURE Max (i, j: LONGINT): LONGINT;
 BEGIN IF i >= j THEN RETURN i ELSE RETURN j END
 END Max;

 (* ------------- Toolbox for standard display ---------------*)

 PROCEDURE Open*;
 VAR par: Oberon.ParList;
 V: Viewers.Viewer;
 T: Texts.Text; S: Texts.Scanner;
 X, Y: INTEGER;
 beg, end, time: LONGINT;
 BEGIN
 par := Oberon.Par;
 Texts.OpenScanner(S, par.text, par.pos); Texts.Scan(S);
 IF (S.class = Texts.Char) & (S.c = "^") OR (S.line # 0) THEN
 Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN Texts.OpenScanner(S, T, beg); Texts.Scan(S) END
 END;
 IF S.class = Texts.Name THEN
 Oberon.AllocateSystemViewer(par.vwr.X, X, Y);

 75

 V := MenuViewers.New(
 TextFrames.NewMenu(S.s, StandardMenu),
 TextFrames.NewText(TextFrames.Text(S.s), 0),
 TextFrames.menuH,
 X, Y)
 END
 END Open;

 PROCEDURE OpenLog*;
 VAR V: Viewers.Viewer; X, Y: INTEGER;
 BEGIN
 Oberon.AllocateSystemViewer(Oberon.Par.vwr.X, X, Y);
 V := MenuViewers.New(
 TextFrames.NewMenu("System.Log", LogMenu),
 TextFrames.NewText(Oberon.Log, Max(0, Oberon.Log.len - 200)),
 TextFrames.menuH,
 X, Y)
 END OpenLog;

 PROCEDURE Close*;
 VAR par: Oberon.ParList; V: Viewers.Viewer;
 BEGIN par := Oberon.Par;
 IF par.frame = par.vwr.dsc THEN V := par.vwr
 ELSE V := Oberon.MarkedViewer()
 END;
 Viewers.Close(V)
 END Close;

 PROCEDURE CloseTrack*;
 VAR V: Viewers.Viewer;
 BEGIN V := Oberon.MarkedViewer(); Viewers.CloseTrack(V.X)
 END CloseTrack;

 PROCEDURE Recall*;
 VAR V: Viewers.Viewer; M: Viewers.ViewerMsg;
 BEGIN
 Viewers.Recall(V);
 IF V.state = 0 THEN
 Viewers.Open(V, V.X, V.Y + V.H); M.id := Viewers.restore; V.handle(V, M)
 END
 END Recall;

 PROCEDURE Copy*;
 VAR V, V1: Viewers.Viewer; M: Oberon.CopyMsg; N: Viewers.ViewerMsg;
 BEGIN
 V := Oberon.Par.vwr; V.handle(V, M); V1 := M.F(Viewers.Viewer);
 Viewers.Open(V1, V.X, V.Y + V.H DIV 2);
 N.id := Viewers.restore; V1.handle(V1, N)
 END Copy;

 PROCEDURE Grow*;
 VAR V, V1: Viewers.Viewer; M: Oberon.CopyMsg; N: Viewers.ViewerMsg;
 DW, DH: INTEGER;
 BEGIN V := Oberon.Par.vwr;
 DW := Oberon.DisplayWidth(V.X); DH := Oberon.DisplayHeight(V.X);
 IF V.H < DH - Viewers.minH THEN Oberon.OpenTrack(V.X, V.W)

 76

 ELSIF V.W < DW THEN Oberon.OpenTrack(Oberon.UserTrack(V.X), DW)
 END;
 IF (V.H < DH - Viewers.minH) OR (V.W < DW) THEN
 V.handle(V, M); V1 := M.F(Viewers.Viewer);
 Viewers.Open(V1, V.X, DH);
 N.id := Viewers.restore; V1.handle(V1, N)
 END
 END Grow;

 PROCEDURE OpenViewers;
 VAR V: Viewers.Viewer; t, d: LONGINT; X, Y: INTEGER;
 BEGIN
 Oberon.GetClock(t, d); Texts.WriteString(W, "System.Time");
 Texts.WriteDate(W, t, d); Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf);
 Oberon.AllocateSystemViewer(0, X, Y);
 V := MenuViewers.New(
 TextFrames.NewMenu("System.Log", LogMenu),
 TextFrames.NewText(Oberon.Log, 0),
 TextFrames.menuH,
 X, Y);
 Oberon.AllocateSystemViewer(0, X, Y);
 V := MenuViewers.New(
 TextFrames.NewMenu("System.Tool", StandardMenu),
 TextFrames.NewText(TextFrames.Text("System.Tool"), 0),
 TextFrames.menuH,
 X, Y)
 END OpenViewers;

BEGIN
 Texts.OpenWriter(W);
 Oberon.Log := TextFrames.Text("");
 OpenViewers
END System.

 77

5. The Text System
At the beginning of the computing era, text was the only medium mediating information between users
and computers. Not only was a textual notation used to denote all kinds of data like names and
numbers (represented by sequences of digits respectively), but also for the specification of programs
(based on the notions of formal language and syntax) and of commands and (by their name). Actually,
not even the most modern and most sophisticated computing environments have been able to make
falter the dominating role of text substantially. At most, they have introduced alternative models like
graphical user interfaces (GUI) as a graphical replacement of command lines.

There are many reasons for the popularity of text in general and in connection with computers in
particular. To name but a few: Text containing an arbitrary amount of information can be built from a
small alphabet of widely standardized elements (characters), their building pattern is extremely simple
(lining up elements), and the resulting structure is most elementary (a sequence). And perhaps most
importantly, syntactically structured text can be parsed and interpreted.

In computing terminology, sequences of elements are called files and, in particular, sequences of
characters are known as text files. Looking at their binary representation, we find them excellently
suited to be stored in computer memories and on external media. Remember that individual characters
are usually encoded in one byte each (ASCII-code). We can therefore identify the binary structure of
text files with sequences of bytes, matching perfectly the structure of any underlying computer storage.
We should recall at this point that, with the possible exception of line-break control characters,
rendering information is not part of ordinary text files. For example, the choices of type-font and of
paragraph formatting parameters are entirely left to the rendering interpreter.

Unfortunately, in conventional computing environments, text is merely used for input/ output and not
exploited optimally. Input texts are typically read from the keyboard under control of some editor,
interpreted and then discarded. Output text is volatile. Once displayed on the screen it is no longer
available to any other parts of the program. The root of the problem is easily located: Conventional
operating systems neither feature an integrated management nor an abstract programming interface for
texts.

Of course, such poor support of text on the level of programming must reflect itself on the user surface.
More often than not, users are forced to retype a certain string of text instead of simply getting it from
elsewhere on the screen. Investigations have shown that, in average, up to 80% of required input text is
displayed somewhere already.

Motivated by our positive experience with integrated text in the Cedar system [Teitelman] we decided
to provide a central text management in Oberon at a sufficiently low system level. However, this is not
enough. We actually need an abstract programming interface for text that is, an abstract data type Text,
together with a complete set of operations. We shall devote Section 5.1 to the explanation of this data
type. In Section 5.2 we take a closer look at the basic text management in Oberon, including data
structures and algorithms used for the implementation.

Text frames are a special class of display frames. They appear typically (but not necessarily) as frames
within a menu viewer (see Section 4.4.2). Their role is double-faced: a) Rendering text on the display
screen and b) interpreting editing commands. The details will be discussed in Section 5.3.

With the aim of exploiting the power of modern bitmap-displays and also of using the results of earlier
projects in the field of digital font design, we decided to include graphical attributes and in particular
font specifications in Oberon texts. In Section 5.4 we shall explain the font machinery, starting from an
abstract level and proceeding down to the level of raster data.

5.1. Text as an Abstract Data Type
The concept of abstraction is the most important achievement of programming language development.
It provides a powerful tool to create simplified views on complicated program components. Two
prominent examples of program abstractions are definitions (interfaces) and abstract data types. These

 78

notions embody “public views” on a certain piece of program and on a certain kind of objects
respectively.

We shall now give a precise definition of the notion of text in Oberon by presenting it as an abstract
data type. It is important not to confuse this type with the far less powerful type string as it is often
supported by advanced programming languages. We will rigorously avoid it in this Section to reveal
any aspects of implementation. Our viewpoint is that of an application program operating on text or
using text as a medium of communication.

Let us first get a refined understanding of characters. We know that characters represent textual
elements of information. However, each character also refers to some specific graphical pattern, often
called glyph. In Oberon, we do justice to both aspects by thinking of the ASCII-code as an index range
for type-fonts. We let characters be represented as pairs (font, ref), where font designates a font and ref
is the character's ASCII-code. We shall treat the topic of fonts and glyphs thoroughly in Section 5.4.
Adding two more attributes color and vertical offset we get to a quadruple representation of characters
(font, ref, col, voff). The components font, color, and vertical offset together are often referred to as
looks. We can now roughly declare a text as a “sequence of attributed characters”.

Formally, we define the following descriptor type

Text = POINTER TO TextDesc;

TextDesc = RECORD
 len: LONGINT;
 notify: Notifier
END;

There is only one state variable and one method. The variable len represents the current length of the
described text (i.e. the number of characters in the sequence). The procedure variable notify is included
as a method (occasionally called after-method) to notify interested clients of state changes.

By definition, each abstract data type comes with a complete set of operations. In the case of Text,
three different topics need to be considered, loading (from file)/ storing (to file), editing, and accessing
respectively.

5.1.1. Loading and Storing

Let us start with the file topic. We first introduce a pair of mutually inverse operations called
internalize and externalize. Their meaning is "load from file and build up an internal data structure"
and "serialize the internal data structure and store on file". There are three corresponding procedures:

PROCEDURE Open (T: Text; name: ARRAY OF CHAR);
PROCEDURE Load (T: Text; f: Files.File; pos: LONGINT; VAR len: LONGINT);
PROCEDURE Store (T: Text; f: Files.File; pos: LONGINT; VAR len: LONGINT);

Logical entities like texts are stored in Oberon on external media in the form of sections. A section is
addressed by a pair (file, pos) consisting of a file descriptor and a starting position. In general, the
structure of sections obeys the following syntax:

section = identification type length contents.

Procedure Open internalizes a named text file (consisting of a single text section), procedure Load
internalizes an arbitrary text section starting at (f, pos), and Store externalizes a text section to (f, pos).
The parameter T designates the internalized text. len returns the length of the section. Note that in case
of Load the identification of the section must have been read and consumed before the loader is called.

5.1.2. Editing

Our next group of operations supports text editing. It comprises four procedures:

PROCEDURE Delete (T: Text; beg, end: LONGINT);
PROCEDURE Insert (T: Text; pos: LONGINT; B: Buffer);
PROCEDURE Append (T: Text; B: Buffer);

 79

PROCEDURE ChangeLooks (T: Text; beg, end: LONGINT;
 sel: SET; fnt: Fonts.Font; col, voff: SHORTINT);

Again, we should first explain the types of parameters. Procedures Delete and ChangeLooks each take
a stretch of text as an argument which, by definition, is an interval [beg, end) within the given text. In
the parameter lists of Insert and Append we recognize a new data type Buffer.

Buffers are a facility to hold anonymous sequences of characters. Type Buffer presents itself as another
abstract data type:

Buffer = POINTER TO BufDesc;

BufDesc = RECORD
 len: LONGINT
END;

len specifies the current length of the buffered sequence. The following procedures represent the
intrinsic operations on buffers:

PROCEDURE OpenBuf (B: Buffer);
PROCEDURE Copy (SB, DB: Buffer);
PROCEDURE Save (T: Text; beg, end: LONGINT; B: Buffer);
PROCEDURE Recall (VAR B: Buffer);

Their function is in turn opening a given buffer B, copying a buffer SB to DB, saving a stretch [beg,
end) of text in a given buffer, and recalling the most recently deleted stretch of text and put it into
buffer B.

We are now prepared to understand how the editing procedures work. Procedure Delete deletes the
given stretch [beg, end) within text T, Insert inserts the buffer's contents at position pos within text T,
and Append(T, B) is a shorthand form for Insert(T, T.len, B). Note that, as a side-effect of Insert and
Append, the buffer involved is emptied. Finally, procedure ChangeLooks allows to change selected
looks within the given stretch [beg, end) of text T. sel is a mask selecting a subset of the set of looks {
font, color, vertical offset }.

It is now time to come back to the notifier concept. Recapitulate that notify is an “after-method”. It
must be installed by the client when opening the text and is called at the end of every editing operation.
Its procedural type is

Notifier = PROCEDURE (T: Text; op: INTEGER; beg, end: LONGINT);

The parameters op, beg, and end report about the operation (op) that calls the notifier and on the
affected stretch [beg, end) of the text. There are three different possible variants of op corresponding to
the three different editing operations: op = delete, insert, replace correspond to procedures Delete,
Insert (and Append), and ChangeLooks respectively.

By far the most important application of the notifier is updating the display, i.e. adjusting all affected
views that are currently displayed to the new state of the text. We shall come back to this important
point when we discuss text frames in Section 5.3.

In concluding this Section it is perhaps worth noting that the group of operations just discussed has
been designed to be equally useful for both interactive text editors and programmed text generators/
manipulators.

5.1.3. Accessing

Let us now turn to the third and last group of operations on texts: Accessing. According to the
principle of separation of concerns, one of our guiding principles, the access mechanism operates on
extra aggregates called readers and writers rather than on texts themselves.

Readers are used to read texts sequentially. Their type is declared as

Reader = RECORD
 eot: BOOLEAN; (*end of text*)

 80

 fnt: Fonts.Font;
 col: SHORTINT;
 voff: SHORTINT
END;

A reader must first be setup at some given position in the text and can then be moved forward
incrementally by reading character-by-character. Its state variables indicate end-of-text and expose the
looks of the previously read character.

The corresponding operators are

PROCEDURE OpenReader (VAR R: Reader; T: Text; pos: LONGINT);
PROCEDURE Read (VAR R: Reader; VAR ch: CHAR);

Procedure OpenReader sets up a reader R at position pos in text T. Procedure Read returns the
character at the current position of R and makes R move to the next position.

The current position of reader R is returned by a call to the function Pos:

PROCEDURE Pos (VAR R: Reader): LONGINT;

In Chapter 3 we learnt that texts are often used in Oberon as parameter lists of commands. To a
command interpreter, however, a text appears as a sequence of tokens much rather than as a sequence
of characters. Therefore, we adopted the well-known concepts of syntax and scanning from the
discipline of compiler construction. The Oberon scanner recognizes tokens of some universal classes.
They are name, string, integer, real, longreal, and special character.

The exact syntax of universal Oberon tokens is:

token = name | string | integer | real | longreal | spexchar.

name = ident { "." ident }.
ident = letter { letter | digit }.
string = "'" { char } "'" | '"' { char } '"'.
integer = ["+"|"-"] number.
real = ["+"|"-"] number "." number ["E" ["+"|"-"] number].
longreal = ["+"|"-"] number "." number ["D" ["+"|"-"] number].
number = digit { digit }.
spexchar = any character except letters, digits, space, tabulator, and carriage-return.

Type Scanner is defined analogously as

Scanner = RECORD (Reader)
 nextCh: CHAR;
 line: INTEGER;
 class: INTEGER;
 i: LONGINT;
 x: REAL;
 y: LONGREAL;
 c: CHAR;
 len: SHORTINT;
 s: ARRAY 32 OF CHAR
 END;

This type is actually a variant record type with class as discriminating tag. Depending on its class the
value of the current token is stored in one of the fields i, x, y, c, or s. len gives the length of s, nextCh
typically exposes the character terminating the current token, and line counts the number of lines
scanned.

The operations on scanners are

PROCEDURE OpenScanner (VAR S: Scanner; T: Text; pos: LONGINT);
PROCEDURE Scan (VAR S: Scanner);

 81

They correspond exactly to their counterparts OpenReader and Read respectively.

It is important to be aware that an arbitrary number of readers and scanners can coexist on one and the
same text. Typically, readers and scanners are controlled by and bound to some specific activity and
are of a transient nature, in contrast to their host texts that typically have a much longer life in the
system’s object heap. This fact manifests itself by the absence of any possibility to reference readers
and scanners by pointers.

Writers are dual to readers. They serve the purpose of creating and extending texts. However, again,
they do not operate on texts directly. Rather, they act as self-contained aggregates continuously
consuming and buffering textual data.

The formal declaration of type Writer resembles that of type Reader:

Writer = RECORD
 buf: Buffer;
 fnt: Fonts.Font;
 col: SHORTINT;
 voff: SHORTINT
END;

buf is an internal buffer containing the consumed data. fnt, col, and voff specify the current looks for
the next character consumed by this writer.

The following procedures together constitute the basic management of writers:

PROCEDURE OpenWriter (VAR W: Writer);
PROCEDURE SetFont (VAR W: Writer; fnt: Fonts.Font);
PROCEDURE SetColor (VAR W: Writer; col: SHORTINT);
PROCEDURE SetOffset (VAR W: Writer; voff: SHORTINT);

Procedure OpenWriter opens a new writer with an empty buffer. Procedures SetFont, SetColor, and
SetOffset set the respective current look. For example, SetFont(W, fnt) is equivalent to W.fnt := fnt.
These procedures are included because fnt, col, and voff are considered read-only for clients.

The question arising is how data is produced and transferred to writers. The answer is a set of writer
procedures, each of them handling an individual data type:

PROCEDURE Write (VAR W: Writer; ch: CHAR);
PROCEDURE WriteLn (VAR W: Writer);
PROCEDURE WriteString (VAR W: Writer; s: ARRAY OF CHAR);
PROCEDURE WriteInt (VAR W: Writer; x, n: LONGINT);
PROCEDURE WriteHex (VAR W: Writer; x: LONGINT);
PROCEDURE WriteReal (VAR W: Writer; x: REAL; n: INTEGER);
PROCEDURE WriteRealFix (VAR W: Writer; x: REAL; n, k: INTEGER);
PROCEDURE WriteRealHex (VAR W: Writer; x: REAL);
PROCEDURE WriteLongReal (VAR W: Writer; x: LONGREAL; n: INTEGER);
PROCEDURE WriteLongRealHex (VAR W: Writer; x: LONGREAL);
PROCEDURE WriteDate (VAR W: Writer; t, d: LONGINT);

It may help to study the following schematic fragment of a client program that creates textual output:

open writer; set desired font;
REPEAT
 process;
 write result to writer;
 append writer buffer to output text
UNTIL ended

Of course, writers can be reused. For example, a single global writer is typically shared by all of the
procedures within a module. In this case, the writer needs to be opened once at module loading time
only.

 82

The main benefit of such a rigorous decoupling of writing operations and editing operations on texts is
the option of choosing freely the granularity at which a text (and its displayed image) is updated.

Let us summarize: Text in Oberon is a powerful abstract data type with intrinsic operations from three
areas: Loading/storing, editing, and accessing. The latter two areas on their part introduce further
abstract types called Buffer, Reader, Scanner, and Writer. In combination they guarantee a clean and
rigorous separation of the concerns text, editing text, and accessing text. An after-method is used to
allow context-dependent post-processing of editing operations. It is used primarily for preserving
consistency between text models and their displayed views.

5.2. Text Management
The art and challenge of modularization lie in finding an effective decomposition into modules with
relatively thin interfaces or, in other words, into modules with a great potential for information hiding.
Text systems provide a nice exercise to this topic. A closer analysis immediately leads to the following
separate tasks corresponding with Model, View and Controller of the MVC scheme: Text management,
text rendering, and text editing. If we combine View and Controller and add an auxiliary font handling
module Fonts, we arrive at the linear three-module import hierarchy displayed in Table 5.1.

Table 5.1
Module Object Type Service
TextFrames Frame Text rendering and editing
Texts Text Text management
Fonts Font Font management

Notice that, in contrast to the display-subsystem, the associated object types are not connected
hierarchically.

Separate Sections 5.3 and 5.4 will be devoted to modules TextFrames and Fonts respectively. In the
current Section we direct our attention to module Texts. Regarding it as a model of the abstract data
type Text presented in the previous Section, its definition is congruent with the specification of the
abstract data type itself, and we need not repeat it here.

The actual topics of this Section are internal representation and file representation of texts. We first
emphasize that the internal representation is a completely private matter of module Texts. It is
encapsulated and hidden from clients. In particular, the representation could be changed at any time
without invalidating a single client module. In principle, the same is true for the file representation.
However, its stability is of paramount importance in reality because it serves the additional purposes of
backing up text on external media and of porting text to other environments.

Our choice of an internal representation of text was determined by a catalogue of requirements and
desired properties. The wish list is:

 1.) lean data structure
 2.) closed under editing operations
 3.) efficient editing operations
 4.) efficient sequential reading
 5.) efficient direct positionning
 6.) super efficient internalizing
 7.) preserving file representations

With the exception of 5.), we found these requirements met perfectly by an adequately generalized
variant of the piece chain technique that was originally used for Xerox PARC's Bravo text editor and
also for ETH's former document editors Dyna and Lara [Gutknecht]. The original piece chain is able to
describe a vanilla text without looks. It is based on two principles:

1.) A text is regarded as a sequence of pieces, where a piece is a section of a text file consisting of a
sequence of contiguous characters.

 83

2.) Every piece is represented by a descriptor (f, pos, len), where the components designate a file, a
starting position, and a length respectively. The whole text is represented as a chain of piece
descriptors (in short: piece chain). The editing operations operate on the chain of piece descriptors
rather than on the pieces themselves.

Figure 5.1 Piece chain representing a text.

Figure 5.1 shows a typical piece chain representing (the current state of) a text. Investigating the
effects of the basic editing operations delete and insert on the piece chain we find these algorithms:

delete stretch [beg, end) of text = BEGIN
 split pieces at beg and at end;
 remove piece descriptors from beg to end from the chain
END

insert stretch of text at pos = BEGIN
 split piece at pos;
 insert piece descriptors representing the stretch at pos
END

Of course, splitting is superfluous if the desired splitting point happens to coincide with the beginning
of a piece. Figures 5.2 and 5.3 show the resulting piece chain after a delete and an insert-operation
respectively.

Checking our wish list above we immediately recognize the requirements 1.), 2.), and 3.) as met.
Requirement 4.) is also met under the assumption of an efficient mechanism for direct positioning in
files. Requirement 6.) can be checked off because the piece list initially consists of a single piece
spanning the entire text file. Finally, requirement 7.) is met simply because the operations do not affect
file representations at all.

 84

 Figure 5.2 Piece chain after delete operation.

Figure 5.3 Piece chain after insert operation.

 85

In Oberon we adopted the piece chain technique to texts with looks. Formally, we first define a run as
a stretch of text whose characters show identical looks. Now, we require the piece chain to subordinate
itself to the run structure. This obviously means that every piece is contained within a single run.
Figure 5.4 visualizes such a piece chain representing a text with varying looks. There are only two new
aspects compared to the original version of the piece chain discussed above: An additional operation to
change looks and the initial state of the piece chain.

change looks in a stretch [beg, end) of text = BEGIN
 split pieces at beg and at end;
 change looks in piece descriptors from beg to end in the chain
END

This shows that requirements 2.) and 3.) in the wish list are still satisfied.

Initially, the pieces are identical with runs, and the number of elements in the piece chain is equal to
the number of runs. Because this number is typically small in comparison with the total number of
characters in a text requirement 6.) is still met.

Figure 5.4 Generalized piece chain representing a text with looks.

We conclude that the new aspects do not invalidate the positive rating given above to the piece chain
with regard to requirements 1.), 2.), 3.), 4.), 6.), and 7.) in our wish list. However, the requirement of
efficient direct positioning remains. The problem is the necessity to scan through the piece list
sequentially in order to locate the piece that contains the desired position. We investigated different
solutions of this efficiency problem. They are based on different data structures connecting the piece
descriptors, among them a piece tree and a variant of the piece chain featuring an additional long-
distance link.

Eventually, we decided in favor of a simpler solution. To its justification we point out that the typical
scenario is zooming into a local region of text for editing, i.e. positioning to an arbitrary remote
location once and subsequently positioning to locations in its neighborhood many times. Therefore, an
appropriate solution is caching the most recently calculated values (pos, piece) of the translation map.
Of course, this does not solve the problem in the case of cache misses. Notice, however, that the

 86

problem is acute only in the case of extremely long piece chains that do not occur in ordinary texts and
editing sessions.

We shall now illustrate the piece technique at the example of two important but basic operations: Insert
and read. Let us start with an overview of the data types involved. Apart from some auxiliary private
variables marked with an arrow, the types Text, Buffer, and Reader are already familiar to us from the
previous Section. Type Piece is completely private. It is hidden from the clients.

 Text = POINTER TO TextDesc;
 Notifier = PROCEDURE (T: Text; op: INTEGER; beg, end: LONGINT);
 TextDesc = RECORD
 len: LONGINT;
 notify: Notifier;
 → trailer: Piece;
 → org: LONGINT;
 → pce: Piece
 END;

 Buffer = POINTER TO BufDesc;
 BufDesc = RECORD
 len: LONGINT;
 → header, last: Piece
 END;

 Reader = RECORD
 (Files.Rider)
 eot: BOOLEAN;
 fnt: Fonts.Font;
 col: SHORTINT;
 voff: SHORTINT;
 → ref: Piece;
 → org: LONGINT;
 → off: LONGINT
 END;

 → Piece = POINTER TO PieceDesc;
 → PieceDesc = RECORD
 f: Files.File;
 off: LONGINT;
 len: LONGINT;
 fnt: Fonts.Font;
 col: SHORTINT;
 voff: SHORTINT;
 prev, next: Piece
 END;

As depicted in Figure 5.1, the piece chain is implemented as a doubly linked list with a sentinel piece
closing it to a ring. The field trailer in type TextDesc points to the sentinel piece. Fields org and pce
implement a translation cache consisting of one entry (org, pce) only. It links a position org with a
piece pce. The fields header and last in type Buffer reveal the implementation of buffers as piece
chains. They point to the first and last piece descriptors respectively. Finally, the fields ref, org, and off
in type Reader memorize the current piece, its origin, and the current offset within this piece.

Notice that readers are actually type extensions of so-called file riders. Riders play the same role for
files as readers do for texts. For details see Chapter 7 on files.

The fields f, off, and len in type Piece specify the underlying file, starting position in the file, and
length of the piece. fnt, col, and voff are its looks. Finally prev and next are pointers to the previous
piece and the next piece in the chain respectively.

 87

FindPiece and SplitPiece are auxiliary procedures that are used by almost all piece-oriented operations.

 PROCEDURE FindPiece (T: Text; pos: LONGINT; VAR org: LONGINT; VAR p: Piece);
 VAR n: INTEGER;
 BEGIN
1) IF pos < T.org THEN T.org := -1; T.pce := T.trailer END;
2) org := T.org; p := T.pce;
 n := 0;
3) WHILE pos >= org + p.len DO org := org + p.len; p := p.next; INC(n) END;
4) IF n > 50 THEN T.org := org; T.pce := p END
 END FindPiece;

Explanations (referring to the line numbers in the above code excerpt)

1) invalidate cache if new position < position in cache
2) use cache as starting point
3) traverse piece chain
4) update cache if more than 50 pieces traversed

1) PROCEDURE SplitPiece (p: Piece; off: LONGINT; VAR pr: Piece);
 VAR q: Piece;
 BEGIN
2) IF off > 0 THEN NEW(q);
 q.fnt := p.fnt; q.col := p.col; q.voff := p.voff;
 q.len := p.len - off;
 q.f := p.f; q.off := p.off + off;
 p.len := off;
3) q.next := p.next; p.next := q;
4) q.prev := p; q.next.prev := q;
 pr := q
 ELSE pr := p
 END
 END SplitPiece;

Explanations:

1) return right part piece pr after split
2) generate new piece only if remaining length > 0
3) insert new piece in forward chain
4) insert new piece in backward chain

Procedure Insert handles text insertion. It operates on a buffer that contains the stretch of text to be
inserted:

 PROCEDURE Insert (T: Text; pos: LONGINT; B: Buffer);
 VAR pl, pr, p, qb, qe: Piece; org, end: LONGINT;
 BEGIN
 1) FindPiece(T, pos, org, p); SplitPiece(p, pos - org, pr);
 2) IF T.org >= org THEN
 T.org := org - p.prev.len; T.pce := p.prev
 END;
 pl := pr.prev; qb := B.header.next;
 3) IF (qb # NIL) & (qb.f = pl.f) & (qb.off = pl.off + pl.len)
 & (qb.fnt = pl.fnt) & (qb.col = pl.col) & (qb.voff = pl.voff) THEN
 pl.len := pl.len + qb.len; qb := qb.next
 END;
 IF qb # NIL THEN qe := B.last;
4) qb.prev := pl; pl.next := qb; qe.next := pr; pr.prev := qe
 END;
5) T.len := T.len + B.len; end := pos + B.len;

 88

6) B.last := B.header; B.last.next := NIL; B.len := 0;
7) T.notify(T, insert, pos, end)
 END Insert;

Explanations:

1) split piece to isolate point of insertion
2) adjust cache if necessary
3) merge pieces if possible
4) insert buffer
5) update text length
6) empty buffer
7) notify

Procedure Read implements sequential reading of characters in texts. It operates on a text reader:

 PROCEDURE Read (VAR R: Reader; VAR ch: CHAR);
 BEGIN
 1) Files.Read(R, ch); R.fnt := R.ref.fnt; R.col := R.ref.col; R.voff := R.ref.voff;
 INC(R.off);
 2) IF R.off = R.ref.len THEN
 3) IF R.ref.f = WFile THEN R.eot := TRUE END;
 R.org := R.org + R.off; R.off := 0;
 4) R.ref := R.ref.next; R.org := R.org + R.off; R.off := 0;
 5) Files.Set(R, R.ref.f, R.ref.off)
 END
 END Read;

Explanations:

 1) read character from file and update looks in reader
 2) if piece boundary reached
 3) check if sentinel piece reached
 4) move reader to next piece
 5) position file rider

Procedure Read is typically used as a primitive by text scanners and in particular by the built-in
scanner Scan for the recognition of universal tokens, as they were defined in the previous Section.
Scanning is a rather complex operation that, for example, includes the conversion of a sequence of
digits into an internal floating-point representation. Some low-level assistance for such conversions in
both directions is provided by module Reals whose implementation is machine-dependent. This
module is also used by WriteReal procedures.

DEFINITION Reals;
 PROCEDURE Convert (x: REAL; n: INTEGER; VAR d: ARRAY OF CHAR);
 PROCEDURE ConvertH (x: REAL; VAR d: ARRAY OF CHAR);
 PROCEDURE ConvertHL (x: LONGREAL; VAR d: ARRAY OF CHAR);
 PROCEDURE ConvertL (x: LONGREAL; n: INTEGER; VAR d: ARRAY OF CHAR);
 PROCEDURE Expo (x: REAL): INTEGER;
 PROCEDURE ExpoL (x: LONGREAL): INTEGER;
 PROCEDURE FSR (): LONGINT;
 PROCEDURE SetFSR (status: LONGINT);
 PROCEDURE Ten (e: INTEGER): REAL;
 PROCEDURE TenL (e: INTEGER): LONGREAL;
 PROCEDURE Valid (x: REAL): BOOLEAN;
 PROCEDURE ValidL (x: LONGREAL): BOOLEAN;
END Reals.

In spite of its apparent simplicity the piece chain technique interoperates with other system
components in a quite subtle way. For example, after a while of editing, there are typically numerous

 89

cross references between the documents involved. In other words, pieces of one document may point to
foreign files, that is, to files that were originally related with other documents. As a consequence, the
file system must either employ some smart garbage collection algorithm or not recycle file pages at all,
even if a new version of a file of the same name has been created in the meantime.

A problem of another kind again affecting the file system arises if, say, a single text line is composed
of several small pieces. Then, reading this line sequentially may necessitate several quick jumps to
different positions in different files. Depending on the quality of the file buffering mechanism this may
lead to significantly hesitant mouse tracking.

And finally, typed characters that are supposed to be inserted into a text need to be stored on a
continuously growing file, the so-called keyboard file. For this file, several readers and one writer must
be allowed to exist concurrently.

As a consequence, the following qualities of the underlying file system are necessary for the piece
technique to work properly:

1. Once a file page is allocated it must not be reused (until system restart).
2. A versatile file buffering mechanism supporting multiple buffers per file is required.
3. Files must be allowed to be open in read mode and in write mode simultaneously.

The format of text sections in files obeys a set of syntactical rules (“productions”) that can easily be
specified in EBNF-notation:

 TextSection = ident header {char}.
 header = type offset run {run} null length.
 run = font [name] color offset length.

In the TextSection production ident is an identifier for text blocks. In the header production type is a
type-discriminator, offset is the offset to the character part, run is a run-descriptor, null is a null-
character, and length is the length of the character sequence. In the run production font, color, and
offset are specifications of looks, and length is the run-length. In order to save space, font names are
coded as ordinal numbers within a text section. If and only if a font appears for the first time in a text
block it is followed by the font's name.

Let us conclude this Section with two side-remarks and a summary.

Remarks:

• For compatibility reasons, plain ASCII-files are accepted as text files as well. They are
mapped to texts consisting of a single run with standard looks.

• Internalizing a text section from a file is extremely efficient because it is obviously sufficient
to read the header and translate it into the initial state of the piece chain.

Summary: The mechanism used for the implementation of the abstract data type Text is completely
hidden from clients. It is a generalized version of the original piece chain technique, adapted to texts
with looks. The piece chain technique is based on the principle of indirection: Operations operate on
descriptors of texts rather than on texts themselves. The benefits are efficiency and non-destructive
operations. However, the technique works properly only in combination with a suitable file system.

5.3. Text Frames
The tasks of text frames are text rendering and user interaction. A text frame represents a text view and
a controller in the form of an interactive text editor. Technically, text frames are a subclass of display
frames and, as such, are objects with an open message interface of the kind explained in Chapter 4.

The geometric layout of text frames is determined by two areas: A rectangle of contents and a vertical
scroll-bar along the left borderline. The type of text frames is a direct extension of type Display.Frame:

 Frame = POINTER TO FrameDesc;

 90

 FrameDesc = RECORD (Display.FrameDesc)
 text: Texts.Text;
 org: LONGINT;
 col: INTEGER;
 lsp: INTEGER;
 left, right, top, bot: INTEGER;
 markH: INTEGER;
 time: LONGINT;
 mark, car, sel: INTEGER;
 carloc: Location;
 selbeg, selend: Location
 END;

Fields text and org specify the text part to be displayed, the former referring to the underlying text and
the latter designating the starting position of the displayed part. Fields col and lsp are rendering
parameters. They specify the frame's background color and line spacing. Fields left, right, top, and bot
are margins. They determine the rectangle of contents. mark represents the state of the position marker,
which is a small horizontal bar indicating the position of the displayed part relative to the whole text.
markH represents its location within the text frame.

Caret and selection are two important features associated with a text frame. The caret indicates a
potential "point of insertion" and serves as an implicit parameter for placing consumed characters (for
example from the keyboard). The selection is a stretch of displayed text. It also typically serves as a
parameter for various operations and commands, among them delete and change looks. The state and
location of the caret is given by the variables car and carloc respectively. Analogously, the state of the
selection and its begin and end are reflected by the fields sel, selbeg, and selend in the frame
descriptor. Field time is a time stamp on the current selection.

In principle, caret and selection could be regarded as ingredients of the underlying text (the model)
equally well. However, we deliberately decided to associate these features with frames (views) in order
to get increased flexibility. For example, two different selections in adjacent viewers displaying the
same text are normally interpreted as one extensive selection of their span.

The auxiliary type Location summarizes information about a location in a text frame. Its definition is:

 Location = RECORD
 org, pos: LONGINT;
 dx, x, y: INTEGER
 END;

x, y specifies the envisaged location relative to the text frame's origin and dx is the width of the
character at this location. pos is the corresponding position in the text and org is the origin position of
the corresponding text line.

Remember that the "capabilities" of a frame object are determined solely by its message handler. It is
therefore worth the while to study the text frame handler. This is a rough description:

 PROCEDURE Handle (F: Display.Frame; VAR M: Display.FrameMsg);
 VAR F1: Frame;
 BEGIN
 WITH F: Frame DO
 IF M IS Oberon.InputMsg THEN
 WITH M: Oberon.InputMsg DO
 1) IF M.id = Oberon.track THEN Edit(F, M.X, M.Y, M.keys)
 ELSIF M.id = Oberon.consume THEN
 2) IF F.car # 0 THEN Write(F, M.ch, M.fnt, M.col, M.voff) END
 END
 END
 ELSIF M IS Oberon.ControlMsg THEN
 WITH M: Oberon.ControlMsg DO

 91

 3) IF M.id = Oberon.defocus THEN Defocus(F)
 4) ELSIF M.id = Oberon.neutralize THEN Neutralize(F)
 END
 END
 ELSIF M IS Oberon.SelectionMsg THEN
 5) WITH M: Oberon.SelectionMsg DO GetSelection(F, M.text, M.beg, M.end, M.time)
END
 ELSIF M IS Oberon.CopyOverMsg THEN
 6) WITH M: Oberon.CopyOverMsg DO CopyOver(F, M.text, M.beg, M.end) END
 ELSIF M IS Oberon.CopyMsg THEN
 7) WITH M: Oberon.CopyMsg DO Copy(F, F1); M.F := F1 END
 ELSIF M IS MenuViewers.ModifyMsg THEN
 8) WITH M: MenuViewers.ModifyMsg DO Modify(F, M.id, M.dY, M.Y, M.H) END
 ELSIF M IS UpdateMsg THEN
 WITH M: UpdateMsg DO
 9) IF F.text = M.text THEN Update(F, M) END
 END
 END
 END
 END Handle;

Explanations:

 1) Mouse tracking message: Call built-in editor immediately
 2) Consume message: In case of valid caret insert character
 3) Defocus message: Remove caret
 4) Neutralize message: Remove caret and selection
 5) Selection message: Return current selection with time stamp
 6) Copyover message: Copy given stretch of text to caret
 7) Copy message: Create a copy (clone)
 8) Modify message: Translate and change size
 9) Update message: If text was changed then update display

We recognize again our categories of universal messages introduced in Chapter 4, Table 4.1: Messages
in lines 1) and 2) report about user interactions. Messages in 3), 4), 5), 6), and 7) specify some generic
operation. Messages in 8) require a change of location or size. Messages of the latter kind arrive from
the ancestor menu viewer. They are generated by the interaction handler and by the preprocessor of
original viewer messages. Finally, messages in line 9) report about changes of contents.

The text frame handler is encapsulated in a module called TextFrames. This module exports the above
introduced types Frame (text frame) and Location, as well as the procedure Handle. Furthermore, it
exports type UpdateMsg to report on changes made to a displayable text.

 UpdateMsg = RECORD (Display.FrameMsg)
 id: INTEGER;
 text: Texts.Text;
 beg, end: LONGINT
 END;

Field id names one of the operators replace, insert, or delete. The remaining fields text, beg, and end
restrict the change to a range. Additional procedures generate a new standard menu text frame and
main contents text frame respectively:

 PROCEDURE NewMenu (name, commands: ARRAY OF CHAR): Frame;
 PROCEDURE NewText (text: Texts.Text; pos: LONGINT): Frame;

This completes the minimum definition of module TextFrames. However, this module additionally
exports a set of useful service procedures that support the composition of custom handlers from
elements of the standard handler:

 92

 PROCEDURE Edit (F: Frame; X, Y: INTEGER; Keys: SET);
 PROCEDURE Write (F: Frame; ch: CHAR; fnt: Fonts.Font; col, voff: SHORTINT);
 PROCEDURE Defocus (F: Frame);
 PROCEDURE Neutralize (F: Frame);
 PROCEDURE GetSelection (F: Frame; VAR text: Texts.Text;
 VAR beg, end, time: LONGINT);
 PROCEDURE CopyOver (F: Frame; text: Texts.Text; beg, end: LONGINT);
 PROCEDURE Copy (F: Frame; VAR F1: Frame);
 PROCEDURE Modify (F: Frame; id, dY, Y, H: INTEGER);
 PROCEDURE Update (F: Frame; VAR M: UpdateMsg);

The module also supports mouse tracking inside text frames:

 PROCEDURE TrackCaret (F: Frame; X, Y: INTEGER; VAR keysum: SET);
 PROCEDURE TrackSelection (F: Frame; X, Y: INTEGER; VAR keysum: SET);
 PROCEDURE TrackLine (F: Frame; X, Y: INTEGER; VAR org: LONGINT;
 VAR keysum: SET);
 PROCEDURE TrackWord (F: Frame; X, Y: INTEGER; VAR pos: LONGINT;
 VAR keysum: SET);

Let us now take a look at the implementation of some selected operations. For this purpose, we must
first explain the notion of line descriptor that is used to optimize the operation of locating positions
within text frames.

Line = POINTER TO LineDesc;

LineDesc = RECORD
 len: LONGINT;
 wid: INTEGER;
 eot: BOOLEAN;
 next: Line
END;

Each line descriptor provides detailed information about a single line of text that is currently displayed:
len is the number of characters on the line, wid is the line width, eot indicates terminating line, and next
points to the next line descriptor.

Text frames maintain a private data structure called line-chain that describes the list of text lines
displayed:

 Frame = POINTER TO FrameDesc;

 FrameDesc = RECORD (Display.FrameDesc)
 text: Texts.Text;
 org: LONGINT;
 col: INTEGER;
 lsp: INTEGER;
 left, right, top, bot: INTEGER;
 markH: INTEGER;
 time: LONGINT;
 mark, car, sel: INTEGER;
 carloc: Location;
 selbeg, selend: Location;
 → trailer: Line
 END;

Field trailer represents a sentinel element that closes the line chain to a ring.

The line-chain contains useful summary information about the current contents of the text frame. It can
be used beneficially by some related data types, for example by type Location that was introduced
earlier:

 93

 Location = RECORD
 org, pos: LONGINT;
 dx, x, y: INTEGER;
 → lin: Line
 END;

The built-in editor procedure Edit is a worthwhile part to look at in some detail. It is called by the task
scheduler to handle mouse events within a text frame. The following code excerpt shows nicely how
the different components of the text system interoperate.

 1) PROCEDURE Edit (F: Frame; X, Y: INTEGER; Keys: SET);
 2) VAR
 3) M: Oberon.CopyOverMsg;
 4) R: Texts.Reader;
 5) text: Texts.Text; buf: Texts.Buffer;
 6) cmd: INTEGER;
 7) time, pos, beg, end: LONGINT;
 8) keysum: SET;
 9) ch: CHAR;
10) BEGIN
11) Oberon.DrawCursor(Oberon.Mouse, Oberon.Arrow, X, Y);
12) IF X < F.X + Min(F.left, barW) THEN
13) IF (0 IN Keys) OR (1 IN Keys) THEN keysum := Keys;
14) REPEAT
15) Input.Mouse(Keys, X, Y);
16) keysum := keysum + Keys;
17) Oberon.DrawCursor(Oberon.Mouse, Oberon.Arrow, X, Y)
18) UNTIL Keys = {};
19) IF ~(2 IN keysum) THEN
20) IF (0 IN keysum) OR (F.Y + F.H < Y) THEN pos := 0
21) ELSE pos := (F.Y + F.H - Y) * (F.text.len) DIV F.H
22) END;
23) RemoveMarks(F); Oberon.RemoveMarks(F.X, F.Y, F.W, F.H);
25) ELSIF ~(0 IN keysum) THEN
26) RemoveMarks(F); Oberon.RemoveMarks(F.X, F.Y, F.W, F.H);
27) Show(F, F.text.len)
28) END
29) ELSIF 2 IN Keys THEN
30) TrackLine(F, X, Y, pos, keysum);
31) IF (pos >= 0) & ~(0 IN keysum) THEN
32) RemoveMarks(F); Oberon.RemoveMarks(F.X, F.Y, F.W, F.H);
33) Show(F, pos)
34) END
35) END
36) ELSE
37) IF 0 IN Keys THEN
38) TrackSelection(F, X, Y, keysum);
39) IF F.sel # 0 THEN
40) IF (2 IN keysum) & ~(1 IN keysum) THEN
41) Oberon.PassFocus(Viewers.This(F.X, F.Y));
42) Oberon.GetSelection(text, beg, end, time);
43) Texts.Delete(text, beg, end); SetCaret(F, beg)
44) ELSIF (1 IN keysum) & ~(2 IN keysum) THEN
45) Oberon.GetSelection(text, beg, end, time);
46) M.text := text; M.beg := beg; M.end := end;
47) Oberon.FocusViewer.handle(Oberon.FocusViewer, M)
48) END

 94

49) END
50) ELSIF 1 IN Keys THEN
51) TrackWord(F, X, Y, pos, keysum);
52) IF (pos >= 0) & ~(0 IN keysum) THEN Call(F, pos, 2 IN keysum) END
53) ELSIF 2 IN Keys THEN
54) Oberon.PassFocus(Viewers.This(F.X, F.Y)); TrackCaret(F, X, Y, keysum);
55) IF F.car # 0 THEN
56) IF (1 IN keysum) & ~(0 IN keysum) THEN
57) Oberon.GetSelection(text, beg, end, time);
58) IF time >= 0 THEN
59) NEW(buf); Texts.OpenBuf(buf);
60) Texts.Save(text, beg, end, buf);
61) Texts.Insert(F.text, F.carloc.pos, buf);
62) SetCaret(F, F.carloc.pos + (end - beg))
63) END
64) ELSIF (0 IN keysum) & ~(1 IN keysum) THEN
65) Oberon.GetSelection(text, beg, end, time);
66) IF time >= 0 THEN
67) Texts.OpenReader(R, F.text, F.carloc.pos); Texts.Read(R, ch);
68) Texts.ChangeLooks(text, beg, end, {0, 1, 2}, R.fnt, R.col, R.voff)
69) END
70) END
73) END
74) END
75) END
76) END Edit;

Explanations:

11) Update cursor

12) - 35) handling of mouse within scroll bar

 13) - 28) If right key or middle key pressed
 14) - 18) Track mouse until all keys released
 19) - 24) If left key was not interclicked
 20) - 22) calculate new top origin
 23) remove all markers to monopolize frame
 24) jump to new top origin
 25) - 28) If right key was not pressed
 26) remove all markers to monopolize frame
 27) jump to the end

 29) - 35) If left key is pressed
 30) track mouse to determine new top line
 31) - 34) if valid then scroll to new top line

36) - 75) handling of mouse within text area

 37) - 49) if right key pressed ("select-key")
 38) track mouse to determine selection
 39) - 49) if selection valid
 40) - 43) if left key interclicked (but not middle key)
 41) grab focus
 42) get selection
 43) delete selected stretch of text
 44) - 48) if middle key interclicked (but not left key)
 45) get selection
 46) - 47) copy over selected stretch to focus

 95

 50) - 52) if middle key pressed ("execute-key")
 51) track mouse to determine name
 52) if valid then call command with this name

 53) - 74) if left key pressed ("point-key")
 54) grab focus and track mouse to determine caret
 55) - 73) if caret valid
 56) - 63) if middle key interclicked (but not right)
 57) get newest selection
 58) - 63) if existing
 59) create and open buffer
 60) save newest selection in buffer
 61) insert it at caret
 64) - 70)
 65) get newest selection
 66) - 69) if existing
 67) open reader at caret and read one character
 68) change looks of selected stretch to those of character read

In particular we see that the editing operation is determined by the first key pressed (primary key) and
can then be varied by “interclicking” that is, by clicking a secondary key while holding down the
primary key. As a convention, (inter)clicking all keys means annulling the operation. Notice that the
interpretation of mouse events in the scroll-bar area differs from the interpretation in the text area.
Tables 5.2a and 5.2b summarize the two cases. They can easily be derived from the above
explanations.

Table 5.2a (in scroll bar)
key - left
left scroll line to top -
middle jump to mouse jump to end
right jump to start -

Table 5.2b (in text area)
key - left middle
left set caret - copy looks
middle execute command load and execute command -
right select select and delete select and copy

 In the text area the keys are interpreted according to their generic semantics:

left key = point key
middle key = execute key
right key = select key

Let us “zoom into” one of the editing operations, for example into TrackCaret on line 54).

 PROCEDURE TrackCaret (F: Frame; X, Y: INTEGER; VAR keysum: SET);
 VAR loc: Location; keys: SET;
 BEGIN
 1) IF F.trailer.next # F.trailer THEN
 2) LocateChar(F, X - F.X, Y - F.Y, F.carloc);
 3) FlipCaret(F);
 4) keysum := {};
 REPEAT
 Input.Mouse(keys, X, Y);
 keysum := keysum + keys;
 Oberon.DrawCursor(Oberon.Mouse, Oberon.Mouse.marker, X, Y);

 96

 LocateChar(F, X - F.X, Y - F.Y, loc);
 IF loc.pos # F.carloc.pos THEN FlipCaret(F); F.carloc := loc; FlipCaret(F) END
 5) UNTIL keys = {};
 6) F.car := 1
 END
 END TrackCaret;

Explanations:

 1) guard guarantees non-empty line-chain
 2) locates the character pointed at
 3) drags caret to new location
 4) - 5) tracks mouse and drags caret accordingly
 6) set caret state

TrackCaret makes use of two auxiliary procedures FlipCaret and LocateChar. FlipCaret is used to
turn off or on the pattern of the caret. LocateChar is an important operation that is used to locate the
character at a given Cartesian position (x, y) within the frame.

 PROCEDURE FlipCaret (F: Frame);
 BEGIN
1) IF F.carloc.x < F.W THEN
2) IF (F.carloc.y >= 10) & (F.carloc.x + 12 < F.W) THEN
3) Display.CopyPattern(Display.white, Display.hook,
 F.X + F.carloc.x, F.Y + F.carloc.y - 10, 2)
 END
 END
 END FlipCaret;

Explanations:

1) - 2) if there is room for drawing the caret
3) copy standard hook-shaped pattern to caret location in inverse video mode

 PROCEDURE LocateChar (F: Frame; x, y: INTEGER; VAR loc: Location);
 VAR R: Texts.Reader;
 pat: Display.Pattern;
 pos, lim: LONGINT;
 ox, dx, u, v, w, h: INTEGER;
 1) BEGIN LocateLine(F, y, loc);
 2) lim := loc.org + loc.lin.len - 1;
 3) pos := loc.org; ox := F.left;
 4) Texts.OpenReader(R, F.text, loc.org); Texts.Read(R, nextCh);
 5) LOOP
 IF pos = lim THEN dx := eolW; EXIT END;
 6) Display.GetChar(R.fnt.raster, nextCh, dx, u, v, w, h, pat);
 IF ox + dx > x THEN EXIT END;
 INC(pos); ox := ox + dx; Texts.Read(R, nextCh)
 7) END;
 8) loc.pos := pos; loc.dx := dx; loc.x := ox
 END LocateChar;

Explanations:

 1) locate text line corresponding to at y
 2) set limit to the last actual character on this line
 3) start locating loop with first character on this line
 4) setup reader and read first character of this line
 5) - 7) scan through characters of this line until limit or x is reached

 97

 6) get character width dx of current character
 8) return location found

Notice that the need to read characters from the text (again) in LocateChar has its roots in the so-called
proportional fonts texts are represented in. We found that keeping character widths is an unnecessary
optimization thanks to the buffering capabilities of the underlying file system. In the case of fixed-pitch
fonts a simple division by the character width would be sufficient, of course.

Finally, procedure LocateLine uses the line-chain to locate the desired text line without reading text at
all.

 PROCEDURE LocateLine (F: Frame; y: INTEGER; VAR loc: Location);
 VAR T: Texts.Text; L: Line; org: LONGINT; cury: INTEGER;
 BEGIN T := F.text;
 1) org := F.org; L := F.trailer.next; cury := F.H - F.top - asr;
 2) WHILE (L.next # F.trailer) & (cury > y + dsr) DO
 org := org + L.len; L := L.next; cury := cury - lsp
 3) END;
 4) loc.org := org; loc.lin := L; loc.y := cury
 END LocateLine;

Explanations:

 1) start with first line in the frame
 2) - 3) traverse line chain until last line or y is reached
 4) return found line

After text editing text rendering is our next topic. Let us pursue the case in that a user pressed the
point-key and then interclicked the middle key, corresponding to line 56) in procedure Edit. Remember
that notifier is called at the end of every editing operation and in particular at the end of Texts.Insert. In
case of standard text frames, the notifier simply broadcasts an update message into the display space:

 PROCEDURE NotifyDisplay (T: Texts.Text; op: INTEGER; beg, end: LONGINT);
 VAR M: UpdateMsg;
 BEGIN M.id := op; M.text := T; M.beg := beg; M.end := end; Viewers.Broadcast(M)
 END NotifyDisplay;

Let us now take the perspective of a text frame receiving an update message. Looking at line 9) in the
text frame handler, we see that procedure Update is called, which in turn calls procedure Insert in
TextFrames:

 PROCEDURE Insert (F: Frame; beg, end: LONGINT);
 VAR R: Texts.Reader; L, L0, l: Line;
 org, len: LONGINT; curY, botY, Y0, Y1, Y2, dY, wid: INTEGER;
 BEGIN
 IF beg < F.org THEN F.org := F.org + (end - beg)
 ELSE
 1) org := F.org; L := F.trailer.next; curY := F.Y + F.H - F.top - asr;
 WHILE (L # F.trailer) & (org + L.len <= beg) DO
 org := org + L.len; L := L.next; curY := curY - lsp
 2) END;
 3) IF L # F.trailer THEN
 botY := F.Y + F.bot + dsr;
 4) Texts.OpenReader(R, F.text, org); Texts.Read(R, nextCh);
 5) len := beg - org; wid := Width(R, len);
 6) ReplConst (F.col, F, F.X + F.left + wid, curY - dsr, L.wid - wid, lsp, 0);
 7) DisplayLine(F, L, R, F.X + F.left + wid, curY, len);
 8) org := org + L.len; curY := curY - lsp;
 Y0 := curY; L0 := L.next;
 WHILE (org <= end) & (curY >= botY) DO

 98

 NEW(l);
 Display.ReplConst(F.col, F.X + F.left, curY - dsr, F.W - F.left, lsp, 0);
 DisplayLine(F, l, R, F.X + F.left, curY, 0);
 L.next := l; L := l;
 org := org + L.len; curY := curY - lsp
 9) END;
10) IF L0 # L.next THEN Y1 := curY;
11) L.next := L0;
 WHILE (L.next # F.trailer) & (curY >= botY) DO
 L := L.next; curY := curY - lsp
12) END;
 L.next := F.trailer;
 dY := Y0 - Y1;
 IF Y1 > curY + dY THEN
13) Display.CopyBlock
 (F.X + F.left, curY + dY + lsp - dsr, F.W - F.left, Y1 - curY - dY,
 F.X + F.left, curY + lsp - dsr,
 0);
 Y2 := Y1 - dY
 ELSE Y2 := curY
 END;
14) curY := Y1; L := L0;
 WHILE curY # Y2 DO
 Display.ReplConst(F.col, F.X + F.left, curY - dsr, F.W - F.left, lsp, 0);
 DisplayLine(F, L, R, F.X + F.left, curY, 0);
 L := L.next; curY := curY - lsp
15) END
 END
 END
 END;
16) UpdateMark(F)
 END Insert;

Some explanations:

 1) - 2) search line where inserted part starts
 3) if it is displayed in this viewer
 4) setup reader on this line
 5) get width of unaffected part of line (avoid touching it)
 6) clear remaining part of line
 7) display new remaining part of line
 8) - 9) display newly inserted text lines
10) if it was not a one line update
11) - 12) skip overwritten text lines
13) use fast block move to adjust reusable lines
14) - 15) redisplay previously overwritten text lines
16) adjust position marker

Special care is exercised in the implementation to avoid "flickering" and to minimize processing time.
Concretely, the following measures are taken:

1.) Avoid writing the same data again.
2.) Keep the number of newly rendered text lines at a minimum.
3.) Use block move to adjust reusable displayed lines.

Of course, the rules governing the rendering and formatting process crucially influence the complexity
of procedures like Insert. For text frames we have consciously chosen the simplest possible set of
formatting rules. They can be summarized as:

 99

1.) For a given text frame the distance between lines is constant.
2.) There are no implicit line breaks.

It is exactly this set of rules that makes it possible to display a text line in one pass. Two passes are
inevitable if line distances have to adjust to font sizes or if lines must be broken implicitly.

Update algorithms make use of the following one-pass rendering procedures Width and DisplayLine:

 PROCEDURE Width (VAR R: Texts.Reader; len: LONGINT): INTEGER;
 VAR pat: Display.Pattern; pos: LONGINT; ox, dx, x, y, w, h: INTEGER;
 1) BEGIN pos := 0; ox := 0;
 WHILE pos # len DO
 Display.GetChar(R.fnt.raster, nextCh, dx, x, y, w, h, pat);
 ox := ox + dx; INC(pos); Texts.Read(R, nextCh)
 2) END;
 3) RETURN ox
 END Width;

Explanations:

 1) - 2) scan through len characters of this line
 3) return accumulated width

Notice that procedures Width and LocateChar are similar. Therefore the above comment about relying
on the buffering capabilities of the underlying file system applies to procedure Width equally well.

 PROCEDURE DisplayLine (F: Frame; L: Line;
 VAR R: Texts.Reader; X, Y: INTEGER; len: LONGINT);
 VAR pat: Display.Pattern; NX, dx, x, y, w, h: INTEGER;
 1) BEGIN NX := F.X + F.W;
 2) WHILE (nextCh # CR) & (R.fnt # NIL) DO
 3) Display.GetChar(R.fnt.raster, nextCh, dx, x, y, w, h, pat);
 4) IF (X + x + w <= NX) & (h # 0) THEN
 5) Display.CopyPattern(R.col, pat, X + x, Y + y, 2)
 6) END;
 7) X := X + dx; INC(len); Texts.Read(R, nextCh)
 8) END;
 9) L.len := len + 1; L.wid := X + eolW - (F.X + F.left);
10) L.eot := R.fnt = NIL; Texts.Read(R, nextCh)
 END DisplayLine;

Explanations:

 1) set right margin
 2) - 8) display characters of this line
 3) get width dx, box x, y, w, h, and pattern pat of next character
 4) if there is enough space in the rectangle of contents
 5) display pattern
 7) jump to location of next character; read next character
 9) - 10) setup line descriptor

Procedure DisplayLine is again similar to LocateChar, and the comment on relying on the file system’s
buffering capabilities applies once more. The principal difference between LocateChar and Width on
one hand and DisplayLine on the other hand is the fact that the latter accesses the display screen
physically. Therefore, possession of the screen lock is a tacit precondition for calling DisplayLine.

A quick look at an auxiliary procedure that updates the position marker concludes our tour behind the
scenes of the text system:

 PROCEDURE UpdateMark (F: Frame);
 VAR oldH: INTEGER;
 BEGIN

 100

 1) oldH := F.markH; F.markH := SHORT(F.org * F.H DIV (F.text.len + 1));
 IF (F.mark > 0) & (F.left >= barW) & (F.markH # oldH) THEN
 2) Display.ReplConst(Display.white, F.X + 1, F.Y + F.H - 1 - oldH, markW, 1, 2);
 3) Display.ReplConst(Display.white, F.X + 1, F.Y + F.H - 1 - F.markH, markW, 1, 2)
 END
 END UpdateMark;

Explanations

 1) shows how the marker's position is calculated. Roughly said, the invariant proportion is

distance from top of frame / frame height
= text position of first character in frame / text length

 2) erase the old marker
 3) draw the new marker

And this in turn concludes our Section on text frames. Recapitulating the most important points: The
tasks of text editing (input oriented) and text rendering (output oriented) are combined in the concept
of text frames. Text frames constitute a subclass of display frames and are implemented in a separate
module called TextFrames. The implementation of TextFrames accesses the displayed text exclusively
via the “official” abstract interface of module Texts discussed in Section 5.2. It maintains a private data
structure of line chains to accelerate locating requests. Text frames use simple formatting rules that
allow super-efficient rendering of text in a single pass. In particular, line spacing is fixed for every text
frame. Therefore, different styles of a base font are possible within a given text frame while different
sizes are not.

Putting into relation the different derivations of type Display.Frame that we came across in Chapters 4
and 5, we obtain the type hierarchy of Table 5.3, where types on upper lines are an extension of their
corresponding base type on lower lines:

Table 5.3
Viewers.Track MenuViewers.Viewer
Viewers.Viewer TextFrames.Frame
 Display.Frame

5.4. The Font Machinery
We have seen in the previous Sections that Oberon texts support attribute specifications (“looks”) for
characters. Three different attributes are supported: Font, color, and vertical offset. Let us first focus on
the font attribute. A font can be regarded as a style the standard character set is designed in. Typically,
an entire text is typeset in a single style, that is, there is one font per text. However, sometimes, an
author wants to emphasize titles or words by changing the size of the font or by varying it to bold face
or italics. In special texts, special characters like mathematical symbols or other kinds of icons may
occur. In even more complex documents, mathematical or chemical formulae might flow within the
text.

These observations lead us to a different interpretation of the notion of font. We can regard a font as an
indexed library of (graphical) objects, mostly but not necessarily glyphs. In the case of ordinary
characters it is natural to use the ASCII-code as an index, and we arrive at an interpretation of text as
sequence of pairs (library, index). Notice that this is a very general view that, in principle, is equivalent
with defining text as sequence of arbitrary objects.

The imaging model of characters provides two levels of abstraction. On the first level, characters are
black boxes given by a set of metric data x, y, w, h, and dx. (x, y) is a vector from the current point of
reference on the base line to the origin of the box. w and h are width and height of the box, and dx is
the distance to the point of reference of the next character on the same base line. On the second level of
abstraction, a character is given by a digital pattern or glyph that is to be rendered into the box. Figure
5.5 visualizes this model of characters.

 101

Figure 5.5 The geometric character model.

The additional two character attributes color and vertical offset appear now as parameters for the
character model. The vertical offset allows translating the y-coordinate in the vector (x, y) to y + voff,
and the color attribute specifies the foreground color of the pattern.

Good examples of procedures operating on the first level of abstraction are LocateChar and Width that
we discussed in the previous Section, as well as text formatters for a remote printer. In contrast,
procedure DisplayLine operates on the second level.

The representation of characters as digital patterns is merely the last step in a complex process. At the
beginning is a generic description of the shape of each character in the form of outlines and hints.
Outlines are typically composed of straight lines and spline-curves. Hints are included to assist the
digitizer in its effort to faithfully map the filled character outlines into the device raster. For example,
hinting can guarantee consistency of serif shapes and stem widths across an entire font within a text,
independent of the relative positions of the characters with respect to the grid lines. Automatic
digitization produces digital patterns of sufficiently high quality for printing media resolutions. For
screen resolutions, however, we prefer to add a hand-tuning step. This is the reason why digital
patterns are not produced "on the fly" in Oberon.

Oberon's font management is encapsulated in module Fonts, with a low-level extension in the module
Display that we already know from Chapter 4. The interface to module Fonts is very simple and
narrow:

 MODULE Fonts;

 IMPORT Display;

 TYPE
 Name = ARRAY 32 OF CHAR;

 102

 Font = POINTER TO FontDesc;
 FontDesc = RECORD
 name: Name;
 height, minX, maxX, minY, maxY INTEGER;
 raster: Display.Font
 END;

 VAR Default: Font;

 PROCEDURE This (name: ARRAY OF CHAR): Font;

 END Fonts.

Component name in type Font is the name of the underlying file. Components height, minX, maxX,
minY, and maxY are line height and summary metric data, and field raster refers to the mentioned low-
level extension in module Display. Default is a system-wide default font. It is installed at system
loading time. This is a procedure to internalize a font from a file given by its name.

This is the definition of the low-level extension of the font management:

 MODULE Display;
 ...
 TYPE
 Font = POINTER TO Bytes;
 Bytes = RECORD END;

 PROCEDURE GetChar (f: Font; ch: CHAR; VAR dx, x, y, w, h: INTEGER;
 VAR p: Pattern);
 ...
 END Display.

Type Display.Font is a pointer to a record of open length containing the metric descriptions and
patterns of all characters contained in the font. Procedure GetChar returns the metric data dx, x, y, w, h,
and the pattern p of character ch in font f.

Type Font should be regarded as an abstract data type with two intrinsic operations This and GetChar.
Thinking of the immutable nature of fonts, multiple internal copies of the same font are certainly
undesired. Therefore, internalized fonts are cached in a private list that manifests itself in a private
field next in type FontDesc:

 Font = POINTER TO FontDesc;
 FontDesc = RECORD
 name: Name;
 height, minX, maxX, minY, maxY: INTEGER;
 raster: Display.Font;
 → next: Font
 END;

The cache is maintained by the internalizing procedure This according to the following scheme:

 search font in cache;
 IF found THEN return cached internalization
 ELSE internalize font; cache it
 END

The implementation of type Font did not give many nuts to crack. One is an undesired side-effect of
caching. The problem arises if a font is used for a limited time only. Because it is cached it will never
be collected by the system's garbage collector again. In extreme cases such as a print server with many
large fonts there is a good chance for the memory to be filled up with no-longer-used fonts. The only
clean way out in this and in analogous cases is making the font cache known to the garbage collector.

 103

We conclude this Section with a formal specification of the font file format. Note that on one hand, the
file format is completely private to the managing module and on the other hand, it must be ultimately
stable because it is probably used for long-term backup and for wide-range data exchange.

This is an EBNF specification of Oberon font files:

 FontFile = ident header contents.
 header = abstraction family variant height minX maxX minY maxY.
 contents = nofRuns { beg end } { dx x y w h } { rasterByte }.

ident, abstraction, family, and variant are one-byte values indicating file identification, abstraction
(first level without raster bytes, second level with raster bytes), font family (Times Roman, Syntax etc.),
and variant (bold face, italics etc.). The values height, minX, maxX, minY and maxY are two bytes long.
They give line height, minimum x-coordinate (of a box), maximum x-coordinate, minimum y-
coordinate, and maximum y-coordinate respectively. All values in production contents are two bytes
long. nofRuns specifies the number of runs within the ASCII-code range (intervals occupied without
gaps) and every pair [beg, end) describes one run. The tuples (dx, x, y, w, h) are the metric data of the
occupied characters (in their ASCII-code order), and the sequence of rasterByte gives the total of raster
information.

In summary, fonts in Oberon are indexed libraries of objects. The objects are descriptions of character
images in two levels of abstraction: As metric data of black boxes and as binary patterns (glyphs).
Type Font is an abstract data type with intrinsic operations to internalize and to get character object
data. Internalized fonts are cached in a private list.

5.5. The Edit Toolbox
We have seen that every text frame integrates an interactive text editor that we can regard as an
interpreter of a set of built-in commands (intrinsic commands). Of course, we would like to be able to
extend this set by customized editing commands (extrinsic commands). It is indeed a worthwhile test
for every framework or basic toolbox to try and add additional tools seamlessly. Module Edit is the
result of such an attempt. It is a toolbox of consisting of some standard extrinsic editing commands.

Its definition is

 DEFINITION Edit;
 PROCEDURE Open; (*text viewer*)
 PROCEDURE Show; (*text*)
 PROCEDURE Locate; (*position*)
 PROCEDURE Search; (*pattern*)
 PROCEDURE Store; (*text*)

 PROCEDURE Recall; (*deleted text*)
 PROCEDURE CopyFont;
 PROCEDURE ChangeFont;
 PROCEDURE ChangeColor;
 PROCEDURE ChangeOffset;

 PROCEDURE Print; (*text*)
 END Edit.

The first group of commands in this toolbox is used to display, locate, and store texts or parts of texts.
In turn they open a text file and display it, open a program text and show the declaration of a given
object, locate a given position in a displayed text (main application: locating an error found by the
compiler), search a pattern, and store the current state of a displayed text. Commands in the next group
are related with editing. They allow restoring of the previously deleted part of text, copying a font to
the current text selection, and change attributes of the current text selection. Notice that the commands
CopyFont, ChangeFont, ChangeColor, and ChangeOffset are extrinsic variations of the intrinsic copy-
look operation. Finally, the Print command causes the specified text to be printed.

 104

The implementations of the toolbox commands are given in the Implementations Section. Note that the
implementation of the Print command relies on a module called Printer. Consisting of a collection of
procedures for accessing a printing device and printing text strings and graphical elements, this module
represents an abstract printer.

It is defined as follows:

DEFINITION Printer;
 VAR PageWidth, PageHeight, res: INTEGER; (*result*)
 PROCEDURE Open (VAR name, user: ARRAY OF CHAR; password: LONGINT);
 (*res = 0: opened, 1: no printer, 2: no link, 3: bad response, 4: no permission*)
 PROCEDURE UseListFont (VAR name: ARRAY OF CHAR);
 PROCEDURE String (x, y: INTEGER; VAR s, fname: ARRAY OF CHAR);
 PROCEDURE ContString (VAR s, fname: ARRAY OF CHAR); (*continuation*)
 PROCEDURE Line (x0, y0, x1, y1: INTEGER);
 PROCEDURE Circle (x0, y0, r: INTEGER);
 PROCEDURE Ellipse (x0, y0, a, b: INTEGER);
 PROCEDURE Spline (x0, y0, n, open: INTEGER; VAR X, Y: ARRAY OF INTEGER);
 PROCEDURE Picture (x, y, w, h, mode: INTEGER; adr: LONGINT);
 PROCEDURE ReplConst (x, y, w, h: INTEGER);
 PROCEDURE ReplPattern (x, y, w, h, col: INTEGER);
 PROCEDURE Page (nofcopies: INTEGER);
 PROCEDURE Close;
END Printer.

Explanations:

The printing model is page-oriented. Procedures Open and Close are used to open and close a printing
session. Procedure UseListFont installs a suitable font for printing lists. Procedures String, ContString,
Line, Circle, Ellipse, Spline, Picture, ReplConst, and ReplPattern are called in order to place a string, a
straight line, a circle, an ellipse, a spline curve, a digitized picture, or a shaded rectangle onto the
current page. These procedures are typically called repetitively until the desired page is laid out
completely. Then, procedure Page is called to produce the actual hardcopy of this page.

The implementation of module Printer depends on the environment. Alternatively, it might drive a
local printer or generate a program for remote printing. In Chapter 10 a variant is presented for a local
area network with an integrated print server. For every printing session a so-called print file is
generated and subsequently sent to the server.

Literature
[Gutknecht] J. Gutknecht, "Concept of the Text Editor Lara",

 Communications of the ACM, Sept. 1985, Vol.28, No. 9.

[Teitelman] W. Teitelman, "A tour through Cedar",
 IEEE Software, 1, (2), 44-73 (1984).

Complete Implementations
MODULE Fonts; (*JG 18.11.90*)

 IMPORT Display, SYSTEM, Files;

 CONST FontFileId = 0DBX;

 TYPE
 Name* = ARRAY 32 OF CHAR;

 Font* = POINTER TO FontDesc;
 FontDesc* = RECORD

 105

 name*: Name;
 height*, minX*, maxX*, minY*, maxY*: INTEGER;
 raster*: Display.Font;
 next: Font
 END;

 VAR Default*, First: Font; nofFonts: INTEGER;

 PROCEDURE This* (name: ARRAY OF CHAR): Font;

 TYPE
 RunRec = RECORD beg, end: INTEGER END;
 BoxRec = RECORD dx, x, y, w, h: INTEGER END;

 VAR
 F: Font;
 f: Files.File; R: Files.Rider;
 NofBytes, RasterBase, A, a: LONGINT;
 NofRuns, NofBoxes: INTEGER;
 k, l, m, n: INTEGER;
 ch: CHAR;

 run: ARRAY 16 OF RunRec;
 box: ARRAY 256 OF BoxRec;

 PROCEDURE Enter (d: LONGINT);
 BEGIN
 SYSTEM.PUT(A, d MOD 256); INC(A);
 SYSTEM.PUT(A, d DIV 256); INC(A)
 END Enter;

 BEGIN F := First;
 WHILE (F # NIL) & (name # F.name) DO F := F.next END;
 IF F = NIL THEN
 f := Files.Old(name);
 IF f # NIL THEN
 Files.Set(R, f, 0); Files.Read(R, ch);
 IF ch = FontFileId THEN
 Files.Read(R, ch); (*abstraction*)
 Files.Read(R, ch); (*family*)
 Files.Read(R, ch); (*variant*)
 NEW(F);
 Files.ReadBytes(R, F.height, 2);
 Files.ReadBytes(R, F.minX, 2); Files.ReadBytes(R, F.maxX, 2);
 Files.ReadBytes(R, F.minY, 2); Files.ReadBytes(R, F.maxY, 2);
 Files.ReadBytes(R, NofRuns, 2);
 NofBoxes := 0; k := 0;
 WHILE k # NofRuns DO
 Files.ReadBytes(R, run[k].beg, 2); Files.ReadBytes(R, run[k].end, 2);
 NofBoxes := NofBoxes + run[k].end - run[k].beg;
 INC(k)
 END;
 NofBytes := 512 + 5; l := 0;
 WHILE l # NofBoxes DO
 Files.ReadBytes(R, box[l].dx, 2);
 Files.ReadBytes(R, box[l].x, 2); Files.ReadBytes(R, box[l].y, 2);

 106

 Files.ReadBytes(R, box[l].w, 2); Files.ReadBytes(R, box[l].h, 2);
 NofBytes := NofBytes + 5 + (box[l].w + 7) DIV 8 * box[l].h;
 INC(l)
 END;
 SYSTEM.NEW(F.raster, NofBytes);
 RasterBase := SYSTEM.VAL(LONGINT, F.raster);
 A := RasterBase; a := A + 512;
 SYSTEM.PUT(a, 0X); INC(a); (*dummy ch*)
 SYSTEM.PUT(a, 0X); INC(a);
 SYSTEM.PUT(a, 0X); INC(a);
 SYSTEM.PUT(a, 0X); INC(a);
 SYSTEM.PUT(a, 0X); INC(a);
 k := 0; l := 0; m := 0;
 WHILE k < NofRuns DO
 WHILE m < run[k].beg DO Enter(515); INC(m) END;
 WHILE m < run[k].end DO Enter(a + 3 - RasterBase);
 SYSTEM.PUT(a, box[l].dx MOD 256); INC(a);
 SYSTEM.PUT(a, box[l].x MOD 256); INC(a);
 SYSTEM.PUT(a, box[l].y MOD 256); INC(a);
 SYSTEM.PUT(a, box[l].w MOD 256); INC(a);
 SYSTEM.PUT(a, box[l].h MOD 256); INC(a);
 n := (box[l].w + 7) DIV 8 * box[l].h;
 WHILE n # 0 DO
 Files.Read(R, ch); SYSTEM.PUT(a, ch); INC(a); DEC(n)
 END;
 INC(l); INC(m)
 END;
 INC(k)
 END;
 WHILE m < 256 DO Enter(515); INC(m) END;
 COPY(name, F.name);
 IF nofFonts < 12 THEN INC(nofFonts); F.next := First; First := F END
 ELSE F := Default
 END
 ELSE F := Default
 END
 END;
 RETURN F
 END This;

BEGIN Default := This("Syntax10.Scn.Fnt"); nofFonts := 1
END Fonts.

MODULE Texts; (*JG 21.11.90*)

 IMPORT Files, Fonts, Reals;

 CONST
 (*symbol classes*)
 Inval* = 0; (*invalid symbol*)
 Name* = 1; (*name s (length len)*)
 String* = 2; (*literal string s (length len)*)
 Int* = 3; (*integer i (decimal or hexadecimal)*)
 Real* = 4; (*real number x*)
 LongReal* = 5; (*long real number y*)
 Char* = 6; (*special character c*)

 107

 TAB = 9X; CR = 0DX; maxD = 9;

 (* TextBlock = TextBlockId off run {run} 0 len {AsciiCode}.
 run = fnt [name] col voff len. *)

 TextBlockId = 1FFH;

 replace* = 0; insert* = 1; delete* = 2; (*op-codes*)

 TYPE
 Piece = POINTER TO PieceDesc;
 PieceDesc = RECORD
 f: Files.File;
 off: LONGINT;
 len: LONGINT;
 fnt: Fonts.Font;
 col: SHORTINT;
 voff: SHORTINT;
 prev, next: Piece
 END;

 Text* = POINTER TO TextDesc;

 Notifier* = PROCEDURE (T: Text; op: INTEGER; beg, end: LONGINT);

 TextDesc* = RECORD
 len*: LONGINT;
 notify*: Notifier;
 trailer: Piece;
 org: LONGINT; (*cache*)
 pce: Piece
 END;

 Reader* = RECORD (Files.Rider)
 eot*: BOOLEAN;
 fnt*: Fonts.Font;
 col*: SHORTINT;
 voff*: SHORTINT;
 ref: Piece;
 org: LONGINT;
 off: LONGINT
 END;

 Scanner* = RECORD (Reader)
 nextCh*: CHAR;
 line*: INTEGER;
 class*: INTEGER;
 i*: LONGINT;
 x*: REAL;
 y*: LONGREAL;
 c*: CHAR;
 len*: SHORTINT;
 s*: ARRAY 32 OF CHAR
 END;

 108

 Buffer* = POINTER TO BufDesc;
 BufDesc* = RECORD
 len*: LONGINT;
 header, last: Piece
 END;

 Writer* = RECORD Files.Rider)
 buf*: Buffer;
 fnt*: Fonts.Font;
 col*: SHORTINT;
 voff*: SHORTINT
 END;

 VAR W: Writer; WFile: Files.File; DelBuf: Buffer;

 PROCEDURE EQ (VAR s, t: ARRAY OF CHAR): BOOLEAN;
 VAR i: INTEGER;
 BEGIN i := 0;
 WHILE (s[i] # 0X) & (t[i] # 0X) & (s[i] = t[i]) DO INC(i) END;
 RETURN s[i] = t[i]
 END EQ;

 PROCEDURE ReadName (VAR R: Files.Rider; VAR name: ARRAY OF CHAR);
 VAR i: INTEGER; ch: CHAR;
 BEGIN
 i := 0; Files.Read(R, ch);
 WHILE ch # 0X DO name[i] := ch; INC(i); Files.Read(R, ch) END;
 name[i] := 0X
 END ReadName;

 PROCEDURE WriteName (VAR W: Files.Rider; VAR name: ARRAY OF CHAR);
 VAR i: INTEGER; ch: CHAR;
 BEGIN
 i := 0; ch := name[i];
 WHILE ch # 0X DO Files.Write(W, ch); INC(i); ch := name[i] END;
 Files.Write(W, 0X)
 END WriteName;

 PROCEDURE Load* (T: Text; f: Files.File; pos: LONGINT; VAR len: LONGINT);
 VAR
 R: Files.Rider;
 Q, q, p: Piece;
 off: LONGINT;
 N, fnt: SHORTINT;
 FName: ARRAY 32 OF CHAR;
 Dict: ARRAY 32 OF Fonts.Font;
 BEGIN
 N := 1;
 NEW(Q); Q.f := WFile; Q.off := 0; Q.len := 1; Q.fnt := NIL; Q.col := 0; Q.voff := 0; p := Q;
 Files.Set(R, f, pos); Files.ReadBytes(R, off, 4);
 LOOP
 Files.Read(R, fnt);
 IF fnt = 0 THEN EXIT END;
 IF fnt = N THEN
 ReadName(R, FName);
 Dict[N] := Fonts.This(FName);

 109

 INC(N)
 END;
 NEW(q);
 q.fnt := Dict[fnt];
 Files.Read(R, q.col);
 Files.Read(R, q.voff);
 Files.ReadBytes(R, q.len, 4);
 q.f := f; q.off := off;
 off := off + q.len;
 p.next := q; q.prev := p; p := q
 END;
 p.next := Q; Q.prev := p;
 T.trailer := Q; Files.ReadBytes(R, T.len, 4);
 T.org := -1; T.pce := T.trailer; (*init cache*)
 len := off - pos
 END Load;

 PROCEDURE Open* (T: Text; name: ARRAY OF CHAR);
 VAR f: Files.File; R: Files.Rider; Q, q: Piece;
 id: INTEGER; len: LONGINT;
 BEGIN
 f := Files.Old(name);
 IF f # NIL THEN
 Files.Set(R, f, 0); Files.ReadBytes(R, id, 2);
 IF id = TextBlockId THEN Load(T, f, 2, len)
 ELSE (*Ascii file*)
 len := Files.Length(f);
 NEW(Q); Q.fnt := NIL; Q.col := 0; Q.voff := 0; Q.f := WFile; Q.off := 0; Q.len := 1;
 NEW(q); q.fnt := Fonts.Default; q.col := 15; q.voff := 0; q.f := f; q.off := 0; q.len := len;
 Q.next := q; q.prev := Q; q.next := Q; Q.prev := q;
 T.trailer := Q; T.len := len;
 T.org := -1; T.pce := T.trailer (*init cache*)
 END
 ELSE (*create new text*)
 NEW(Q); Q.fnt := NIL; Q.col := 0; Q.voff := 0; Q.f := WFile; Q.off := 0; Q.len := 1;
 Q.next := Q; Q.prev := Q;
 T.trailer := Q; T.len := 0;
 T.org := -1; T.pce := T.trailer (*init cache*)
 END
 END Open;

 PROCEDURE OpenBuf* (B: Buffer);
 BEGIN NEW(B.header); (*null piece*)
 B.last := B.header; B.len := 0
 END OpenBuf;

 PROCEDURE FindPiece (T: Text; pos: LONGINT; VAR org: LONGINT; VAR p: Piece);
 VAR n: INTEGER;
 BEGIN
 IF pos < T.org THEN T.org := -1; T.pce := T.trailer END;
 org := T.org; p := T.pce; (*from cache*)
 n := 0;
 WHILE pos >= org + p.len DO org := org + p.len; p := p.next; INC(n) END;
 IF n > 50 THEN T.org := org; T.pce := p END
 END FindPiece;

 110

 PROCEDURE SplitPiece (p: Piece; off: LONGINT; VAR pr: Piece);
 VAR q: Piece;
 BEGIN
 IF off > 0 THEN NEW(q);
 q.fnt := p.fnt; q.col := p.col; q.voff := p.voff;
 q.len := p.len - off;
 q.f := p.f; q.off := p.off + off;
 p.len := off;
 q.next := p.next; p.next := q;
 q.prev := p; q.next.prev := q;
 pr := q
 ELSE pr := p
 END
 END SplitPiece;

 PROCEDURE OpenReader* (VAR R: Reader; T: Text; pos: LONGINT);
 VAR p: Piece; org: LONGINT;
 BEGIN
 FindPiece(T, pos, org, p);
 R.ref := p; R.org := org; R.off := pos - org;
 Files.Set(R, R.ref.f, R.ref.off + R.off); R.eot := FALSE
 END OpenReader;

 PROCEDURE Read* (VAR R: Reader; VAR ch: CHAR);
 BEGIN
 Files.Read(R, ch); R.fnt := R.ref.fnt; R.col := R.ref.col; R.voff := R.ref.voff;
 INC(R.off);
 IF R.off = R.ref.len THEN
 IF R.ref.f = WFile THEN R.eot := TRUE END;
 R.org := R.org + R.off; R.off := 0;
 R.ref := R.ref.next; R.org := R.org + R.off; R.off := 0;
 Files.Set(R, R.ref.f, R.ref.off)
 END
 END Read;

 PROCEDURE Pos* (VAR R: Reader): LONGINT;
 BEGIN RETURN R.org + R.off
 END Pos;

 PROCEDURE Store* (T: Text; f: Files.File; pos: LONGINT; VAR len: LONGINT);
 VAR
 p, q: Piece;
 R: Reader; W: Files.Rider;
 off, rlen: LONGINT; id: INTEGER;
 N, n: SHORTINT; ch: CHAR;
 Dict: ARRAY 32 OF Fonts.Name;
 BEGIN
 Files.Set(W, f, pos);
 id := TextBlockId; Files.WriteBytes(W, id, 2);
 Files.WriteBytes(W, off, 4); (*place holder*)
 N := 1;
 p := T.trailer.next;
 WHILE p # T.trailer DO
 rlen := p.len; q := p.next;
 WHILE (q # T.trailer) & (q.fnt = p.fnt) & (q.col = p.col) & (q.voff = p.voff) DO
 rlen := rlen + q.len; q := q.next

 111

 END;
 Dict[N] := p.fnt.name;
 n := 1;
 WHILE ~EQ(Dict[n], p.fnt.name) DO INC(n) END;
 Files.Write(W, n);
 IF n = N THEN WriteName(W, p.fnt.name); INC(N) END;
 Files.Write(W, p.col);
 Files.Write(W, p.voff);
 Files.WriteBytes(W, rlen, 4);
 p := q
 END;
 Files.Write(W, 0); Files.WriteBytes(W, T.len, 4);
 off := Files.Pos(W);
 OpenReader(R, T, 0); Read(R, ch);
 WHILE ~R.eot DO Files.Write(W, ch); Read(R, ch) END;
 Files.Set(W, f, pos + 2); Files.WriteBytes(W, off, 4); (*fixup*)
 len := off + T.len - pos
 END Store;

 PROCEDURE Save* (T: Text; beg, end: LONGINT; B: Buffer);
 VAR p, q, qb, qe: Piece; org: LONGINT;
 BEGIN
 IF end > T.len THEN end := T.len END;
 FindPiece(T, beg, org, p);
 NEW(qb); qb^ := p^;
 qb.len := qb.len - (beg - org);
 qb.off := qb.off + (beg - org);
 qe := qb;
 WHILE end > org + p.len DO
 org := org + p.len; p := p.next;
 NEW(q); q^ := p^; qe.next := q; q.prev := qe; qe := q
 END;
 qe.next := NIL; qe.len := qe.len - (org + p.len - end);
 B.last.next := qb; qb.prev := B.last; B.last := qe;
 B.len := B.len + (end - beg)
 END Save;

 PROCEDURE Copy* (SB, DB: Buffer);
 VAR Q, q, p: Piece;
 BEGIN
 p := SB.header; Q := DB.last;
 WHILE p # SB.last DO p := p.next;
 NEW(q); q^ := p^; Q.next := q; q.prev := Q; Q := q
 END;
 DB.last := Q; DB.len := DB.len + SB.len
 END Copy;

 PROCEDURE ChangeLooks* (T: Text; beg, end: LONGINT; sel: SET; fnt: Fonts.Font; col, voff:
SHORTINT);
 VAR pb, pe, p: Piece; org: LONGINT;
 BEGIN
 IF end > T.len THEN end := T.len END;
 FindPiece(T, beg, org, p); SplitPiece(p, beg - org, pb);
 FindPiece(T, end, org, p); SplitPiece(p, end - org, pe);
 p := pb;
 REPEAT

 112

 IF 0 IN sel THEN p.fnt := fnt END;
 IF 1 IN sel THEN p.col := col END;
 IF 2 IN sel THEN p.voff := voff END;
 p := p.next
 UNTIL p = pe;
 T.notify(T, replace, beg, end)
 END ChangeLooks;

 PROCEDURE Insert* (T: Text; pos: LONGINT; B: Buffer);
 VAR pl, pr, p, qb, qe: Piece; org, end: LONGINT;
 BEGIN
 FindPiece(T, pos, org, p); SplitPiece(p, pos - org, pr);
 IF T.org >= org THEN (*adjust cache*)
 T.org := org - p.prev.len; T.pce := p.prev
 END;
 pl := pr.prev; qb := B.header.next;
 IF (qb # NIL) & (qb.f = pl.f) & (qb.off = pl.off + pl.len)
 & (qb.fnt = pl.fnt) & (qb.col = pl.col) & (qb.voff = pl.voff) THEN
 pl.len := pl.len + qb.len; qb := qb.next
 END;
 IF qb # NIL THEN qe := B.last;
 qb.prev := pl; pl.next := qb; qe.next := pr; pr.prev := qe
 END;
 T.len := T.len + B.len; end := pos + B.len;
 B.last := B.header; B.last.next := NIL; B.len := 0;
 T.notify(T, insert, pos, end)
 END Insert;

 PROCEDURE Append* (T: Text; B: Buffer);
 BEGIN Insert(T, T.len, B)
 END Append;

 PROCEDURE Delete* (T: Text; beg, end: LONGINT);
 VAR pb, pe, pbr, per: Piece; orgb, orge: LONGINT;
 BEGIN
 IF end > T.len THEN end := T.len END;
 FindPiece(T, beg, orgb, pb); SplitPiece(pb, beg - orgb, pbr);
 FindPiece(T, end, orge, pe); SplitPiece(pe, end - orge, per);
 IF T.org >= orgb THEN (*adjust cache*)
 T.org := orgb - pb.prev.len; T.pce := pb.prev
 END;
 DelBuf.header.next := pbr; DelBuf.last := per.prev;
 DelBuf.last.next := NIL; DelBuf.len := end - beg;
 per.prev := pbr.prev; pbr.prev.next := per;
 T.len := T.len - DelBuf.len;
 T.notify(T, delete, beg, end)
 END Delete;

 PROCEDURE Recall* (VAR B: Buffer); (*deleted text*)
 BEGIN B := DelBuf; NEW(DelBuf); OpenBuf(DelBuf)
 END Recall;

 PROCEDURE OpenScanner* (VAR S: Scanner; T: Text; pos: LONGINT);
 BEGIN OpenReader(S, T, pos); S.line := 0; Read(S, S.nextCh)
 END OpenScanner;

 113

 (*floating point formats:
 x = 1.m * 2^(e-127) bit 0: sign, bits 1- 8: e, bits 9-31: m
 x = 1.m * 2^(e-1023) bit 0: sign, bits 1-11: e, bits 12-63: m *)

 PROCEDURE Scan* (VAR S: Scanner);
 CONST maxD = 32;
 VAR ch, term: CHAR;
 neg, negE, hex: BOOLEAN;
 i, j, h: SHORTINT;
 e: INTEGER; k: LONGINT;
 x, f: REAL; y, g: LONGREAL;
 d: ARRAY maxD OF CHAR;

 PROCEDURE ReadScaleFactor;
 BEGIN Read(S, ch);
 IF ch = "-" THEN negE := TRUE; Read(S, ch)
 ELSE negE := FALSE;
 IF ch = "+" THEN Read(S, ch) END
 END;
 WHILE ("0" <= ch) & (ch <= "9") DO
 e := e*10 + ORD(ch) - 30H; Read(S, ch)
 END
 END ReadScaleFactor;

 BEGIN ch := S.nextCh; i := 0;
 LOOP
 IF ch = CR THEN INC(S.line)
 ELSIF (ch # " ") & (ch # TAB) THEN EXIT
 END ;
 Read(S, ch)
 END;
 IF ("A" <= CAP(ch)) & (CAP(ch) <= "Z") THEN (*name*)
 REPEAT S.s[i] := ch; INC(i); Read(S, ch)
 UNTIL (CAP(ch) > "Z")
 OR ("A" > CAP(ch)) & (ch > "9")
 OR ("0" > ch) & (ch # ".")
 OR (i = 31);
 S.s[i] := 0X; S.len := i; S.class := 1
 ELSIF ch = 22X THEN (*literal string*)
 Read(S, ch);
 WHILE (ch # 22X) & (ch >= " ") & (i # 31) DO
 S.s[i] := ch; INC(i); Read(S, ch)
 END;
 S.s[i] := 0X; S.len := i+1; Read(S, ch); S.class := 2
 ELSE
 IF ch = "-" THEN neg := TRUE; Read(S, ch) ELSE neg := FALSE END ;
 IF ("0" <= ch) & (ch <= "9") THEN (*number*)
 hex := FALSE; j := 0;
 LOOP d[i] := ch; INC(i); Read(S, ch);
 IF ch < "0" THEN EXIT END;
 IF "9" < ch THEN
 IF ("A" <= ch) & (ch <= "F") THEN hex := TRUE; ch := CHR(ORD(ch)-7)
 ELSIF ("a" <= ch) & (ch <= "f") THEN hex := TRUE; ch := CHR(ORD(ch)-27H)
 ELSE EXIT
 END
 END

 114

 END;
 IF ch = "H" THEN (*hex number*)
 Read(S, ch); S.class := 3;
 IF i-j > 8 THEN j := i-8 END ;
 k := ORD(d[j]) - 30H; INC(j);
 IF (i-j = 7) & (k >= 8) THEN DEC(k, 16) END ;
 WHILE j < i DO k := k*10H + (ORD(d[j]) - 30H); INC(j) END ;
 IF neg THEN S.i := -k ELSE S.i := k END
 ELSIF ch = "." THEN (*read real*)
 Read(S, ch); h := i;
 WHILE ("0" <= ch) & (ch <= "9") DO d[i] := ch; INC(i); Read(S, ch) END ;
 IF ch = "D" THEN
 e := 0; y := 0; g := 1;
 REPEAT y := y*10 + (ORD(d[j]) - 30H); INC(j) UNTIL j = h;
 WHILE j < i DO g := g/10; y := (ORD(d[j]) - 30H)*g + y; INC(j) END ;
 ReadScaleFactor;
 IF negE THEN
 IF e <= 308 THEN y := y / Reals.TenL(e) ELSE y := 0 END
 ELSIF e > 0 THEN
 IF e <= 308 THEN y := Reals.TenL(e) * y ELSE HALT(40) END
 END ;
 IF neg THEN y := -y END ;
 S.class := 5; S.y := y
 ELSE e := 0; x := 0; f := 1;
 REPEAT x := x*10 + (ORD(d[j]) - 30H); INC(j) UNTIL j = h;
 WHILE j < i DO f := f/10; x := (ORD(d[j])-30H)*f + x; INC(j) END;
 IF ch = "E" THEN ReadScaleFactor END ;
 IF negE THEN
 IF e <= 38 THEN x := x / Reals.Ten(e) ELSE x := 0 END
 ELSIF e > 0 THEN
 IF e <= 38 THEN x := Reals.Ten(e) * x ELSE HALT(40) END
 END ;
 IF neg THEN x := -x END ;
 S.class := 4; S.x := x
 END ;
 IF hex THEN S.class := 0 END
 ELSE (*decimal integer*)
 S.class := 3; k := 0;
 REPEAT k := k*10 + (ORD(d[j]) - 30H); INC(j) UNTIL j = i;
 IF neg THEN S.i := -k ELSE S.i := k END;
 IF hex THEN S.class := 0 ELSE S.class := 3 END
 END
 ELSE S.class := 6;
 IF neg THEN S.c := "-" ELSE S.c := ch; Read(S, ch) END
 END
 END;
 S.nextCh := ch
 END Scan;

 PROCEDURE OpenWriter* (VAR W: Writer);
 BEGIN
 NEW(W.buf); OpenBuf(W.buf); W.fnt := Fonts.Default; W.col := 15; W.voff := 0;
 Files.Set(W, Files.New(""), 0)
 END OpenWriter;

 PROCEDURE SetFont* (VAR W: Writer; fnt: Fonts.Font);

 115

 BEGIN W.fnt := fnt
 END SetFont;

 PROCEDURE SetColor* (VAR W: Writer; col: SHORTINT);
 BEGIN W.col := col
 END SetColor;

 PROCEDURE SetOffset* (VAR W: Writer; voff: SHORTINT);
 BEGIN W.voff := voff
 END SetOffset;

 PROCEDURE Write* (VAR W: Writer; ch: CHAR);
 VAR p: Piece;
 BEGIN
 IF (W.buf.last.fnt # W.fnt) OR (W.buf.last.col # W.col) OR (W.buf.last.voff # W.voff) THEN
 NEW(p);
 p.f := Files.Base(W); p.off := Files.Pos(W); p.len := 0;
 p.fnt := W.fnt; p.col := W.col; p.voff:= W.voff;
 p.next := NIL; W.buf.last.next := p;
 p.prev := W.buf.last; W.buf.last := p
 END;
 Files.Write(W, ch);
 INC(W.buf.last.len); INC(W.buf.len)
 END Write;

 PROCEDURE WriteLn* (VAR W: Writer);
 BEGIN Write(W, CR)
 END WriteLn;

 PROCEDURE WriteString* (VAR W: Writer; s: ARRAY OF CHAR);
 VAR i: INTEGER;
 BEGIN i := 0;
 WHILE s[i] >= " " DO Write(W, s[i]); INC(i) END
 END WriteString;

 PROCEDURE WriteInt* (VAR W: Writer; x, n: LONGINT);
 VAR i: INTEGER; x0: LONGINT;
 a: ARRAY 11 OF CHAR;
 BEGIN i := 0;
 IF x < 0 THEN
 IF x = MIN(LONGINT) THEN WriteString(W, " -2147483648"); RETURN
 ELSE DEC(n); x0 := -x
 END
 ELSE x0 := x
 END;
 REPEAT
 a[i] := CHR(x0 MOD 10 + 30H); x0 := x0 DIV 10; INC(i)
 UNTIL x0 = 0;
 WHILE n > i DO Write(W, " "); DEC(n) END;
 IF x < 0 THEN Write(W, "-") END;
 REPEAT DEC(i); Write(W, a[i]) UNTIL i = 0
 END WriteInt;

 PROCEDURE WriteHex* (VAR W: Writer; x: LONGINT);
 VAR i: INTEGER; y: LONGINT;
 a: ARRAY 10 OF CHAR;

 116

 BEGIN i := 0; Write(W, " ");
 REPEAT y := x MOD 10H;
 IF y < 10 THEN a[i] := CHR(y + 30H) ELSE a[i] := CHR(y + 37H) END;
 x := x DIV 10H; INC(i)
 UNTIL i = 8;
 REPEAT DEC(i); Write(W, a[i]) UNTIL i = 0
 END WriteHex;

 PROCEDURE WriteReal* (VAR W: Writer; x: REAL; n: INTEGER);
 VAR e: INTEGER; x0: REAL;
 d: ARRAY maxD OF CHAR;
 BEGIN e := Reals.Expo(x);
 IF e = 0 THEN
 WriteString(W, " 0");
 REPEAT Write(W, " "); DEC(n) UNTIL n <= 3
 ELSIF e = 255 THEN
 WriteString(W, " NaN");
 WHILE n > 4 DO Write(W, " "); DEC(n) END
 ELSE
 IF n <= 9 THEN n := 3 ELSE DEC(n, 6) END;
 REPEAT Write(W, " "); DEC(n) UNTIL n <= 8;
 (*there are 2 < n <= 8 digits to be written*)
 IF x < 0.0 THEN Write(W, "-"); x := -x ELSE Write(W, " ") END;
 e := (e - 127) * 77 DIV 256;
 IF e >= 0 THEN x := x / Reals.Ten(e) ELSE x := Reals.Ten(-e) * x END;
 IF x >= 10.0 THEN x := 0.1*x; INC(e) END;
 x0 := Reals.Ten(n-1); x := x0*x + 0.5;
 IF x >= 10.0*x0 THEN x := x*0.1; INC(e) END;
 Reals.Convert(x, n, d);
 DEC(n); Write(W, d[n]); Write(W, ".");
 REPEAT DEC(n); Write(W, d[n]) UNTIL n = 0;
 Write(W, "E");
 IF e < 0 THEN Write(W, "-"); e := -e ELSE Write(W, "+") END;
 Write(W, CHR(e DIV 10 + 30H)); Write(W, CHR(e MOD 10 + 30H))
 END
 END WriteReal;

 PROCEDURE WriteRealFix* (VAR W: Writer; x: REAL; n, k: INTEGER);
 VAR e, i: INTEGER; sign: CHAR; x0: REAL;
 d: ARRAY maxD OF CHAR;

 PROCEDURE seq(ch: CHAR; n: INTEGER);
 BEGIN WHILE n > 0 DO Write(W, ch); DEC(n) END
 END seq;

 PROCEDURE dig(n: INTEGER);
 BEGIN
 WHILE n > 0 DO
 DEC(i); Write(W, d[i]); DEC(n)
 END
 END dig;

 BEGIN e := Reals.Expo(x);
 IF k < 0 THEN k := 0 END;
 IF e = 0 THEN seq(" ", n-k-2); Write(W, "0"); seq(" ", k+1)
 ELSIF e = 255 THEN WriteString(W, " NaN"); seq(" ", n-4)

 117

 ELSE e := (e - 127) * 77 DIV 256;
 IF x < 0 THEN sign := "-"; x := -x ELSE sign := " " END;
 IF e >= 0 THEN (*x >= 1.0, 77/256 = log 2*) x := x/Reals.Ten(e)
 ELSE (*x < 1.0*) x := Reals.Ten(-e) * x
 END;
 IF x >= 10.0 THEN x := 0.1*x; INC(e) END;
 (* 1 <= x < 10 *)
 IF k+e >= maxD-1 THEN k := maxD-1-e
 ELSIF k+e < 0 THEN k := -e; x := 0.0
 END;
 x0 := Reals.Ten(k+e); x := x0*x + 0.5;
 IF x >= 10.0*x0 THEN INC(e) END;
 (*e = no. of digits before decimal point*)
 INC(e); i := k+e; Reals.Convert(x, i, d);
 IF e > 0 THEN
 seq(" ", n-e-k-2); Write(W, sign); dig(e);
 Write(W, "."); dig(k)
 ELSE seq(" ", n-k-3);
 Write(W, sign); Write(W, "0"); Write(W, ".");
 seq("0", -e); dig(k+e)
 END
 END
 END WriteRealFix;

 PROCEDURE WriteRealHex* (VAR W: Writer; x: REAL);
 VAR i: INTEGER;
 d: ARRAY 8 OF CHAR;
 BEGIN Reals.ConvertH(x, d); i := 0;
 REPEAT Write(W, d[i]); INC(i) UNTIL i = 8
 END WriteRealHex;

 PROCEDURE WriteLongReal* (VAR W: Writer; x: LONGREAL; n: INTEGER);
 CONST maxD = 16;
 VAR e: INTEGER; x0: LONGREAL;
 d: ARRAY maxD OF CHAR;
 BEGIN e := Reals.ExpoL(x);
 IF e = 0 THEN
 WriteString(W, " 0");
 REPEAT Write(W, " "); DEC(n) UNTIL n <= 3
 ELSIF e = 2047 THEN
 WriteString(W, " NaN");
 WHILE n > 4 DO Write(W, " "); DEC(n) END
 ELSE
 IF n <= 10 THEN n := 3 ELSE DEC(n, 7) END;
 REPEAT Write(W, " "); DEC(n) UNTIL n <= maxD;
 (*there are 2 <= n <= maxD digits to be written*)
 IF x < 0 THEN Write(W, "-"); x := -x ELSE Write(W, " ") END;
 e := SHORT(LONG(e - 1023) * 77 DIV 256);
 IF e >= 0 THEN x := x / Reals.TenL(e) ELSE x := Reals.TenL(-e) * x END ;
 IF x >= 10.0D0 THEN x := 0.1D0 * x; INC(e) END ;
 x0 := Reals.TenL(n-1); x := x0*x + 0.5D0;
 IF x >= 10.0D0*x0 THEN x := 0.1D0 * x; INC(e) END ;
 Reals.ConvertL(x, n, d);
 DEC(n); Write(W, d[n]); Write(W, ".");
 REPEAT DEC(n); Write(W, d[n]) UNTIL n = 0;
 Write(W, "D");

 118

 IF e < 0 THEN Write(W, "-"); e := -e ELSE Write(W, "+") END;
 Write(W, CHR(e DIV 100 + 30H)); e := e MOD 100;
 Write(W, CHR(e DIV 10 + 30H));
 Write(W, CHR(e MOD 10 + 30H))
 END
 END WriteLongReal;

 PROCEDURE WriteLongRealHex* (VAR W: Writer; x: LONGREAL);
 VAR i: INTEGER;
 d: ARRAY 16 OF CHAR;
 BEGIN Reals.ConvertHL(x, d); i := 0;
 REPEAT Write(W, d[i]); INC(i) UNTIL i = 16
 END WriteLongRealHex;

 PROCEDURE WriteDate* (VAR W: Writer; t, d: LONGINT);

 PROCEDURE WritePair(ch: CHAR; x: LONGINT);
 BEGIN Write(W, ch);
 Write(W, CHR(x DIV 10 + 30H)); Write(W, CHR(x MOD 10 + 30H))
 END WritePair;

 BEGIN
 WritePair(" ", d MOD 32); WritePair(".", d DIV 32 MOD 16); WritePair(".", d DIV 512 MOD 128);
 WritePair(" ", t DIV 4096 MOD 32); WritePair(":", t DIV 64 MOD 64); WritePair(":", t MOD 64)
 END WriteDate;

BEGIN
 NEW(DelBuf); OpenBuf(DelBuf);
 OpenWriter(W); Write(W, 0X);
 WFile := Files.Base(W)
END Texts.

MODULE TextFrames; (*JG 8.10.90*)

 IMPORT Input, Modules, Display, Viewers, MenuViewers, Fonts, Texts, Oberon;

 CONST
 replace* = 0; insert* = 1; delete* = 2; (*message id*)
 CR = 0DX;

 TYPE
 Line = POINTER TO LineDesc;

 LineDesc = RECORD
 len: LONGINT;
 wid: INTEGER;
 eot: BOOLEAN;
 next: Line
 END;

 Location* = RECORD
 org*, pos*: LONGINT;
 dx*, x*, y*: INTEGER;
 lin: Line
 END;

 119

 Frame* = POINTER TO FrameDesc;

 FrameDesc* = RECORD (Display.FrameDesc)
 text*: Texts.Text;
 org*: LONGINT;
 col*: INTEGER;
 lsp*: INTEGER;
 left*, right*, top*, bot*: INTEGER;
 markH*: INTEGER;
 time*: LONGINT;
 mark*, car*, sel*: INTEGER;
 carloc*: Location;
 selbeg*, selend*: Location;
 trailer: Line
 END;

 (*mark < 0: arrow mark
 mark = 0: no mark
 mark > 0: position mark*)

 UpdateMsg* = RECORD (Display.FrameMsg)
 id*: INTEGER;
 text*: Texts.Text;
 beg*, end*: LONGINT
 END;

 VAR
 menuH*, barW*, left*, right*, top*, bot*, lsp*: INTEGER; (*standard sizes*)
 asr, dsr, selH, markW, eolW: INTEGER;
 par: Oberon.ParList; nextCh: CHAR;
 W, KW: Texts.Writer; (*keyboard writer*)

 PROCEDURE Min (i, j: INTEGER): INTEGER;
 BEGIN IF i >= j THEN RETURN j ELSE RETURN i END
 END Min;

 (*------------------display support------------------------*)

 PROCEDURE ReplConst (col: INTEGER; F: Frame; X, Y, W, H: INTEGER; mode: INTEGER);
 BEGIN
 IF X + W <= F.X + F.W THEN Display.ReplConst(col, X, Y, W, H, mode)
 ELSIF X < F.X + F.W THEN Display.ReplConst(col, X, Y, F.X + F.W - X, H, mode)
 END
 END ReplConst;

 PROCEDURE FlipMark (F: Frame);
 BEGIN
 IF (F.mark > 0) & (F.left >= barW) THEN
 Display.ReplConst(Display.white, F.X + 1, F.Y + F.H - 1 - F.markH, markW, 1, 2)
 END
 END FlipMark;

 PROCEDURE UpdateMark (F: Frame);
 VAR oldH: INTEGER;
 BEGIN
 oldH := F.markH; F.markH := SHORT(F.org * F.H DIV (F.text.len + 1));

 120

 IF (F.mark > 0) & (F.left >= barW) & (F.markH # oldH) THEN
 Display.ReplConst(Display.white, F.X + 1, F.Y + F.H - 1 - oldH, markW, 1, 2);
 Display.ReplConst(Display.white, F.X + 1, F.Y + F.H - 1 - F.markH, markW, 1, 2)
 END
 END UpdateMark;

 PROCEDURE Width (VAR R: Texts.Reader; len: LONGINT): INTEGER;
 VAR pat: Display.Pattern; pos: LONGINT; ox, dx, x, y, w, h: INTEGER;
 BEGIN pos := 0; ox := 0;
 WHILE pos # len DO
 Display.GetChar(R.fnt.raster, nextCh, dx, x, y, w, h, pat);
 ox := ox + dx; INC(pos); Texts.Read(R, nextCh)
 END;
 RETURN ox
 END Width;

 PROCEDURE DisplayLine (F: Frame; L: Line;
 VAR R: Texts.Reader; X, Y: INTEGER; len: LONGINT);
 VAR pat: Display.Pattern; NX, dx, x, y, w, h: INTEGER;
 BEGIN NX := F.X + F.W;
 WHILE (nextCh # CR) & (R.fnt # NIL) DO
 Display.GetChar(R.fnt.raster, nextCh, dx, x, y, w, h, pat);
 IF (X + x + w <= NX) & (h # 0) THEN
 Display.CopyPattern(R.col, pat, X + x, Y + y, 2)
 END;
 X := X + dx; INC(len); Texts.Read(R, nextCh)
 END;
 L.len := len + 1; L.wid := X + eolW - (F.X + F.left);
 L.eot := R.fnt = NIL; Texts.Read(R, nextCh)
 END DisplayLine;

 PROCEDURE Validate (T: Texts.Text; VAR pos: LONGINT);
 VAR R: Texts.Reader;
 BEGIN
 IF pos > T.len THEN pos := T.len
 ELSIF pos > 0 THEN
 DEC(pos); Texts.OpenReader(R, T, pos);
 REPEAT Texts.Read(R, nextCh); INC(pos) UNTIL R.eot OR (nextCh = CR)
 ELSE pos := 0
 END
 END Validate;

 PROCEDURE Mark* (F: Frame; mark: INTEGER);
 BEGIN
 IF ((mark >= 0) = (F.mark < 0)) & (F.H >= 16) THEN
 Display.CopyPattern(Display.white, Display.downArrow, F.X, F.Y, 2)
 END;
 IF ((mark > 0) = (F.mark <= 0)) & (F.H > 0) & (F.left >= barW) THEN
 Display.ReplConst(Display.white, F.X + 1, F.Y + F.H - 1 - F.markH, markW, 1, 2)
 END;
 F.mark := mark
 END Mark;

 PROCEDURE Restore* (F: Frame);
 VAR R: Texts.Reader; L, l: Line; curY, botY: INTEGER;
 BEGIN (*F.mark = 0*)

 121

 Display.ReplConst(F.col, F.X, F.Y, F.W, F.H, 0);
 IF F.left >= barW THEN
 Display.ReplConst(Display.white, F.X + barW - 1, F.Y, 1, F.H, 2)
 END;
 Validate(F.text, F.org);
 botY := F.Y + F.bot + dsr;
 Texts.OpenReader(R, F.text, F.org); Texts.Read(R, nextCh);
 L := F.trailer; curY := F.Y + F.H - F.top - asr;
 WHILE ~L.eot & (curY >= botY) DO
 NEW(l);
 DisplayLine(F, l, R, F.X + F.left, curY, 0);
 L.next := l; L := l; curY := curY - lsp
 END;
 L.next := F.trailer;
 F.markH := SHORT(F.org * F.H DIV (F.text.len + 1))
 END Restore;

 PROCEDURE Suspend* (F: Frame);
 BEGIN (*F.mark = 0*)
 F.trailer.next := F.trailer
 END Suspend;

 PROCEDURE Extend* (F: Frame; newY: INTEGER);
 VAR R: Texts.Reader; L, l: Line; org: LONGINT; curY, botY: INTEGER;
 BEGIN (*F.mark = 0*)
 Display.ReplConst(F.col, F.X, newY, F.W, F.Y - newY, 0);
 IF F.left >= barW THEN
 Display.ReplConst(Display.white, F.X + barW - 1, newY, 1, F.Y - newY, 2)
 END;
 F.H := F.H + F.Y - newY; F.Y := newY;
 IF F.trailer.next = F.trailer THEN Validate(F.text, F.org) END;
 L := F.trailer; org := F.org; curY := F.Y + F.H - F.top - asr;
 WHILE L.next # F.trailer DO
 L := L.next; org := org + L.len; curY := curY - lsp
 END;
 botY := F.Y + F.bot + dsr;
 Texts.OpenReader(R, F.text, org); Texts.Read(R, nextCh);
 WHILE ~L.eot & (curY >= botY) DO NEW(l);
 DisplayLine(F, l, R, F.X + F.left, curY, 0);
 L.next := l; L := l; curY := curY - lsp
 END;
 L.next := F.trailer;
 F.markH := SHORT(F.org * F.H DIV (F.text.len + 1))
 END Extend;

 PROCEDURE Reduce* (F: Frame; newY: INTEGER);
 VAR L: Line; curY, botY: INTEGER;
 BEGIN (*F.mark = 0*)
 F.H := F.H + F.Y - newY; F.Y := newY;
 botY := F.Y + F.bot + dsr;
 L := F.trailer; curY := F.Y + F.H - F.top - asr;
 WHILE (L.next # F.trailer) & (curY >= botY) DO
 L := L.next; curY := curY - lsp
 END;
 L.next := F.trailer;
 IF curY + asr > F.Y THEN

 122

 Display.ReplConst(F.col, F.X + F.left, F.Y, F.W - F.left, curY + asr - F.Y, 0)
 END;
 F.markH := SHORT(F.org * F.H DIV (F.text.len + 1));
 Mark(F, 1)
 END Reduce;

 PROCEDURE Show* (F: Frame; pos: LONGINT);
 VAR R: Texts.Reader; L, l: Line;
 org: LONGINT; curY, botY, Y0: INTEGER; keys: SET;
 BEGIN
 IF F.trailer.next # F.trailer THEN
 Validate(F.text, pos);
 IF pos < F.org THEN Mark(F, 0);
 Display.ReplConst(F.col, F.X + F.left, F.Y, F.W - F.left, F.H, 0);
 botY := F.Y; F.Y := F.Y + F.H; F.H := 0;
 F.org := pos; F.trailer.next := F.trailer; Extend(F, botY);
 Mark(F, 1)
 ELSIF pos > F.org THEN
 org := F.org; L := F.trailer.next; curY := F.Y + F.H - F.top - asr;
 WHILE (L.next # F.trailer) & (org # pos) DO
 org := org + L.len; L := L.next; curY := curY - lsp;
 END;
 IF org = pos THEN
 F.org := org; F.trailer.next := L; Y0 := curY;
 WHILE L.next # F.trailer DO
 org := org + L.len; L := L.next; curY := curY - lsp
 END;
 Display.CopyBlock
 (F.X + F.left, curY - dsr, F.W - F.left, Y0 + asr - (curY - dsr),
 F.X + F.left, curY - dsr + F.Y + F.H - F.top - asr - Y0, 0);
 curY := curY + F.Y + F.H - F.top - asr - Y0;
 Display.ReplConst(F.col, F.X + F.left, F.Y, F.W - F.left, curY - dsr - F.Y, 0);
 botY := F.Y + F.bot + dsr;
 org := org + L.len; curY := curY - lsp;
 Texts.OpenReader(R, F.text, org); Texts.Read(R, nextCh);
 WHILE ~L.eot & (curY >= botY) DO NEW(l);
 DisplayLine(F, l, R, F.X + F.left, curY, 0);
 L.next := l; L := l; curY := curY - lsp
 END;
 L.next := F.trailer;
 UpdateMark(F)
 ELSE Mark(F, 0);
 Display.ReplConst(F.col, F.X + F.left, F.Y, F.W - F.left, F.H, 0);
 botY := F.Y; F.Y := F.Y + F.H; F.H := 0;
 F.org := pos; F.trailer.next := F.trailer; Extend(F, botY);
 Mark(F, 1)
 END
 END
 END
 END Show;

 PROCEDURE LocateLine (F: Frame; y: INTEGER; VAR loc: Location);
 VAR T: Texts.Text; L: Line; org: LONGINT; cury: INTEGER;
 BEGIN T := F.text;
 org := F.org; L := F.trailer.next; cury := F.H - F.top - asr;
 WHILE (L.next # F.trailer) & (cury > y + dsr) DO

 123

 org := org + L.len; L := L.next; cury := cury - lsp
 END;
 loc.org := org; loc.lin := L; loc.y := cury
 END LocateLine;

 PROCEDURE LocateString (F: Frame; x, y: INTEGER; VAR loc: Location);
 VAR R: Texts.Reader; pat: Display.Pattern;
 bpos, pos, lim: LONGINT; bx, ex, ox, dx, u, v, w, h: INTEGER;
 BEGIN LocateLine(F, y, loc);
 lim := loc.org + loc.lin.len - 1;
 bpos := loc.org; bx := F.left;
 pos := loc.org; ox := F.left;
 Texts.OpenReader(R, F.text, loc.org); Texts.Read(R, nextCh);
 LOOP
 LOOP (*scan string*)
 IF (pos = lim) OR (nextCh <= " ") THEN EXIT END;
 Display.GetChar(R.fnt.raster, nextCh, dx, u, v, w, h, pat);
 INC(pos); ox := ox + dx; Texts.Read(R, nextCh)
 END;
 ex := ox;
 LOOP (*scan gap*)
 IF (pos = lim) OR (nextCh > " ") THEN EXIT END;
 Display.GetChar(R.fnt.raster, nextCh, dx, u, v, w, h, pat);
 INC(pos); ox := ox + dx; Texts.Read(R, nextCh)
 END;
 IF (pos = lim) OR (ox > x) THEN EXIT END;
 Display.GetChar(R.fnt.raster, nextCh, dx, u, v, w, h, pat);
 bpos := pos; bx := ox;
 INC(pos); ox := ox + dx; Texts.Read(R, nextCh)
 END;
 loc.pos := bpos; loc.dx := ex - bx; loc.x := bx
 END LocateString;

 PROCEDURE LocateChar (F: Frame; x, y: INTEGER; VAR loc: Location);
 VAR R: Texts.Reader; pat: Display.Pattern;
 pos, lim: LONGINT; ox, dx, u, v, w, h: INTEGER;
 BEGIN LocateLine(F, y, loc);
 lim := loc.org + loc.lin.len - 1;
 pos := loc.org; ox := F.left;
 Texts.OpenReader(R, F.text, loc.org); Texts.Read(R, nextCh);
 LOOP
 IF pos = lim THEN dx := eolW; EXIT END;
 Display.GetChar(R.fnt.raster, nextCh, dx, u, v, w, h, pat);
 IF ox + dx > x THEN EXIT END;
 INC(pos); ox := ox + dx; Texts.Read(R, nextCh)
 END;
 loc.pos := pos; loc.dx := dx; loc.x := ox
 END LocateChar;

 PROCEDURE LocatePos (F: Frame; pos: LONGINT; VAR loc: Location);
 VAR T: Texts.Text; R: Texts.Reader; L: Line; org: LONGINT; cury: INTEGER;
 BEGIN T := F.text;
 org := F.org; L := F.trailer.next; cury := F.H - F.top - asr;
 IF pos < org THEN pos := org END;
 WHILE (L.next # F.trailer) & (pos >= org + L.len) DO
 org := org + L.len; L := L.next; cury := cury - lsp

 124

 END;
 IF pos >= org + L.len THEN pos := org + L.len - 1 END;
 Texts.OpenReader(R, T, org); Texts.Read(R, nextCh);
 loc.org := org; loc.pos := pos; loc.lin := L;
 loc.x := F.left + Width(R, pos - org); loc.y := cury
 END LocatePos;

 PROCEDURE Pos* (F: Frame; X, Y: INTEGER): LONGINT;
 VAR loc: Location;
 BEGIN LocateChar(F, X - F.X, Y - F.Y, loc);
 RETURN loc.pos
 END Pos;

 PROCEDURE FlipCaret (F: Frame);
 BEGIN
 IF F.carloc.x < F.W THEN
 IF (F.carloc.y >= 10) & (F.carloc.x + 12 < F.W) THEN
 Display.CopyPattern(Display.white, Display.hook, F.X + F.carloc.x, F.Y + F.carloc.y - 10, 2)
 END
 END
 END FlipCaret;

 PROCEDURE SetCaret* (F: Frame; pos: LONGINT);
 BEGIN LocatePos(F, pos, F.carloc); FlipCaret(F); F.car := 1
 END SetCaret;

 PROCEDURE TrackCaret* (F: Frame; X, Y: INTEGER; VAR keysum: SET);
 VAR loc: Location; keys: SET;
 BEGIN
 IF F.trailer.next # F.trailer THEN
 LocateChar(F, X - F.X, Y - F.Y, F.carloc);
 FlipCaret(F);
 keysum := {};
 REPEAT
 Input.Mouse(keys, X, Y);
 keysum := keysum + keys;
 Oberon.DrawCursor(Oberon.Mouse, Oberon.Mouse.marker, X, Y);
 LocateChar(F, X - F.X, Y - F.Y, loc);
 IF loc.pos # F.carloc.pos THEN FlipCaret(F); F.carloc := loc; FlipCaret(F) END
 UNTIL keys = {};
 F.car := 1
 END
 END TrackCaret;

 PROCEDURE RemoveCaret* (F: Frame);
 BEGIN IF F.car # 0 THEN FlipCaret(F); F.car := 0 END
 END RemoveCaret;

 PROCEDURE FlipSelection (F: Frame; VAR beg, end: Location);
 VAR T: Texts.Text; L: Line; Y: INTEGER;
 BEGIN T := F.text;
 L := beg.lin; Y := F.Y + beg.y - 2;
 IF L = end.lin THEN ReplConst(Display.white, F, F.X + beg.x, Y, end.x - beg.x, selH, 2)
 ELSE
 ReplConst(Display.white, F, F.X + beg.x, Y, F.left + L.wid - beg.x, selH, 2);
 LOOP

 125

 L := L.next; Y := Y - lsp;
 IF L = end.lin THEN EXIT END;
 ReplConst(Display.white, F, F.X + F.left, Y, L.wid, selH, 2)
 END;
 ReplConst(Display.white, F, F.X + F.left, Y, end.x - F.left, selH, 2)
 END
 END FlipSelection;

 PROCEDURE SetSelection* (F: Frame; beg, end: LONGINT);
 BEGIN
 IF F.sel # 0 THEN FlipSelection(F, F.selbeg, F.selend) END;
 LocatePos(F, beg, F.selbeg); LocatePos(F, end, F.selend);
 IF F.selbeg.pos < F.selend.pos THEN
 FlipSelection(F, F.selbeg, F.selend); F.time := Oberon.Time(); F.sel := 1
 END
 END SetSelection;

 PROCEDURE TrackSelection* (F: Frame; X, Y: INTEGER; VAR keysum: SET);
 VAR loc: Location; keys: SET;
 BEGIN
 IF F.trailer.next # F.trailer THEN
 IF F.sel # 0 THEN FlipSelection(F, F.selbeg, F.selend) END;
 LocateChar(F, X - F.X, Y - F.Y, loc);
 IF (F.sel # 0) & (loc.pos = F.selbeg.pos) & (F.selend.pos = F.selbeg.pos + 1) THEN
 LocateChar(F, F.left, Y - F.Y, F.selbeg)
 ELSE F.selbeg := loc
 END;
 INC(loc.pos); loc.x := loc.x + loc.dx; F.selend := loc;
 FlipSelection(F, F.selbeg, F.selend);
 keysum := {};
 REPEAT
 Input.Mouse(keys, X, Y);
 keysum := keysum + keys;
 Oberon.DrawCursor(Oberon.Mouse, Oberon.Mouse.marker, X, Y);
 LocateChar(F, X - F.X, Y - F.Y, loc);
 IF loc.pos < F.selbeg.pos THEN loc := F.selbeg END;
 INC(loc.pos); loc.x := loc.x + loc.dx;
 IF loc.pos < F.selend.pos THEN FlipSelection(F, loc, F.selend); F.selend := loc
 ELSIF loc.pos > F.selend.pos THEN FlipSelection(F, F.selend, loc); F.selend := loc
 END
 UNTIL keys = {};
 F.time := Oberon.Time(); F.sel := 1
 END
 END TrackSelection;

 PROCEDURE RemoveSelection* (F: Frame);
 BEGIN IF F.sel # 0 THEN FlipSelection(F, F.selbeg, F.selend); F.sel := 0 END
 END RemoveSelection;

 PROCEDURE TrackLine* (F: Frame; X, Y: INTEGER; VAR org: LONGINT; VAR keysum: SET);
 VAR T: Texts.Text; old, new: Location; keys: SET;
 BEGIN
 IF F.trailer.next # F.trailer THEN T := F.text;
 LocateLine(F, Y - F.Y, old);
 ReplConst(Display.white, F, F.X + F.left, F.Y + old.y - dsr, old.lin.wid, 2, 2);
 keysum := {};

 126

 REPEAT
 Input.Mouse(keys, X, Y);
 keysum := keysum + keys;
 Oberon.DrawCursor(Oberon.Mouse, Oberon.Mouse.marker, X, Y);
 LocateLine(F, Y - F.Y, new);
 IF new.org # old.org THEN
 ReplConst(Display.white, F, F.X + F.left, F.Y + old.y - dsr, old.lin.wid, 2, 2);
 ReplConst(Display.white, F, F.X + F.left, F.Y + new.y - dsr, new.lin.wid, 2, 2);
 old := new
 END
 UNTIL keys = {};
 ReplConst(Display.white, F, F.X + F.left, F.Y + new.y - dsr, new.lin.wid, 2, 2);
 org := new.org
 ELSE org := -1
 END
 END TrackLine;

 PROCEDURE TrackWord* (F: Frame; X, Y: INTEGER; VAR pos: LONGINT; VAR keysum:
SET);
 VAR T: Texts.Text; old, new: Location; keys: SET;
 BEGIN
 IF F.trailer.next # F.trailer THEN T := F.text;
 LocateString(F, X - F.X, Y - F.Y, old);
 ReplConst(Display.white, F, F.X + old.x, F.Y + old.y - dsr, old.dx, 2, 2);
 keysum := {};
 REPEAT
 Input.Mouse(keys, X, Y);
 keysum := keysum + keys;
 Oberon.DrawCursor(Oberon.Mouse, Oberon.Mouse.marker, X, Y);
 LocateString(F, X - F.X, Y - F.Y, new);
 IF new.pos # old.pos THEN
 ReplConst(Display.white, F, F.X + old.x, F.Y + old.y - dsr, old.dx, 2, 2);
 ReplConst(Display.white, F, F.X + new.x, F.Y + new.y - dsr, new.dx, 2, 2);
 old := new
 END
 UNTIL keys = {};
 ReplConst(Display.white, F, F.X + new.x, F.Y + new.y - dsr, new.dx, 2, 2);
 pos := new.pos
 ELSE pos := -1
 END
 END TrackWord;

 PROCEDURE Replace* (F: Frame; beg, end: LONGINT);
 VAR R: Texts.Reader; L: Line; org, len: LONGINT; curY, wid: INTEGER;
 BEGIN
 IF end > F.org THEN
 IF beg < F.org THEN beg := F.org END;
 org := F.org; L := F.trailer.next; curY := F.Y + F.H - F.top - asr;
 WHILE (L # F.trailer) & (org + L.len <= beg) DO
 org := org + L.len; L := L.next; curY := curY - lsp
 END;
 IF L # F.trailer THEN
 Texts.OpenReader(R, F.text, org); Texts.Read(R, nextCh);
 len := beg - org; wid := Width(R, len);
 ReplConst(F.col, F, F.X + F.left + wid, curY - dsr, L.wid - wid, lsp, 0);
 DisplayLine(F, L, R, F.X + F.left + wid, curY, len);

 127

 org := org + L.len; L := L.next; curY := curY - lsp;
 WHILE (L # F.trailer) & (org <= end) DO
 Display.ReplConst(F.col, F.X + F.left, curY - dsr, F.W - F.left, lsp, 0);
 DisplayLine(F, L, R, F.X + F.left, curY, 0);
 org := org + L.len; L := L.next; curY := curY - lsp
 END
 END
 END;
 UpdateMark(F)
 END Replace;

 PROCEDURE Insert* (F: Frame; beg, end: LONGINT);
 VAR R: Texts.Reader; L, L0, l: Line;
 org, len: LONGINT; curY, botY, Y0, Y1, Y2, dY, wid: INTEGER;
 BEGIN
 IF beg < F.org THEN F.org := F.org + (end - beg)
 ELSE
 org := F.org; L := F.trailer.next; curY := F.Y + F.H - F.top - asr;
 WHILE (L # F.trailer) & (org + L.len <= beg) DO
 org := org + L.len; L := L.next; curY := curY - lsp
 END;
 IF L # F.trailer THEN
 botY := F.Y + F.bot + dsr;
 Texts.OpenReader(R, F.text, org); Texts.Read(R, nextCh);
 len := beg - org; wid := Width(R, len);
 ReplConst (F.col, F, F.X + F.left + wid, curY - dsr, L.wid - wid, lsp, 0);
 DisplayLine(F, L, R, F.X + F.left + wid, curY, len);
 org := org + L.len; curY := curY - lsp;
 Y0 := curY; L0 := L.next;
 WHILE (org <= end) & (curY >= botY) DO NEW(l);
 Display.ReplConst(F.col, F.X + F.left, curY - dsr, F.W - F.left, lsp, 0);
 DisplayLine(F, l, R, F.X + F.left, curY, 0);
 L.next := l; L := l;
 org := org + L.len; curY := curY - lsp
 END;
 IF L0 # L.next THEN Y1 := curY;
 L.next := L0;
 WHILE (L.next # F.trailer) & (curY >= botY) DO
 L := L.next; curY := curY - lsp
 END;
 L.next := F.trailer;
 dY := Y0 - Y1;
 IF Y1 > curY + dY THEN
 Display.CopyBlock
 (F.X + F.left, curY + dY + lsp - dsr, F.W - F.left, Y1 - curY - dY,
 F.X + F.left, curY + lsp - dsr,
 0);
 Y2 := Y1 - dY
 ELSE Y2 := curY
 END;
 curY := Y1; L := L0;
 WHILE curY # Y2 DO
 Display.ReplConst(F.col, F.X + F.left, curY - dsr, F.W - F.left, lsp, 0);
 DisplayLine(F, L, R, F.X + F.left, curY, 0);
 L := L.next; curY := curY - lsp
 END

 128

 END
 END
 END;
 UpdateMark(F)
 END Insert;

 PROCEDURE Delete* (F: Frame; beg, end: LONGINT);
 VAR R: Texts.Reader; L, L0, l: Line;
 org, org0, len: LONGINT; curY, botY, Y0, Y1, wid: INTEGER;
 BEGIN
 IF end <= F.org THEN F.org := F.org - (end - beg)
 ELSE
 IF beg < F.org THEN
 F.trailer.next.len := F.trailer.next.len + (F.org - beg);
 F.org := beg
 END;
 org := F.org; L := F.trailer.next; curY := F.Y + F.H - F.top - asr;
 WHILE (L # F.trailer) & (org + L.len <= beg) DO
 org := org + L.len; L := L.next; curY := curY - lsp
 END;
 IF L # F.trailer THEN
 botY := F.Y + F.bot + dsr;
 org0 := org; L0 := L; Y0 := curY;
 WHILE (L # F.trailer) & (org <= end) DO
 org := org + L.len; L := L.next; curY := curY - lsp
 END;
 Y1 := curY;
 Texts.OpenReader(R, F.text, org0); Texts.Read(R, nextCh);
 len := beg - org0; wid := Width(R, len);
 ReplConst (F.col, F, F.X + F.left + wid, Y0 - dsr, L0.wid - wid, lsp, 0);
 DisplayLine(F, L0, R, F.X + F.left + wid, Y0, len);
 Y0 := Y0 - lsp;
 IF L # L0.next THEN
 L0.next := L;
 L := L0; org := org0 + L0.len;
 WHILE L.next # F.trailer DO
 L := L.next; org := org + L.len; curY := curY - lsp
 END;
 Display.CopyBlock
 (F.X + F.left, curY + lsp - dsr, F.W - F.left, Y1 - curY,
 F.X + F.left, curY + lsp - dsr + (Y0 - Y1), 0);
 curY := curY + (Y0 - Y1);
 Display.ReplConst (F.col, F.X + F.left, F.Y, F.W - F.left, curY + lsp - (F.Y + dsr), 0);
 Texts.OpenReader(R, F.text, org); Texts.Read(R, nextCh);
 WHILE ~L.eot & (curY >= botY) DO NEW(l);
 DisplayLine(F, l, R, F.X + F.left, curY, 0);
 L.next := l; L := l; curY := curY - lsp
 END;
 L.next := F.trailer
 END
 END
 END;
 UpdateMark(F)
 END Delete;

 (*------------------message handling------------------------*)

 129

 PROCEDURE RemoveMarks (F: Frame);
 BEGIN RemoveCaret(F); RemoveSelection(F)
 END RemoveMarks;

 PROCEDURE NotifyDisplay* (T: Texts.Text; op: INTEGER; beg, end: LONGINT);
 VAR M: UpdateMsg;
 BEGIN M.id := op; M.text := T; M.beg := beg; M.end := end; Viewers.Broadcast(M)
 END NotifyDisplay;

 PROCEDURE Call* (F: Frame; pos: LONGINT; new: BOOLEAN);
 VAR S: Texts.Scanner; res: INTEGER;
 BEGIN
 Texts.OpenScanner(S, F.text, pos); Texts.Scan(S);
 IF S.class = Texts.Name THEN
 par.vwr := Viewers.This(F.X, F.Y);
 par.frame := F; par.text := F.text; par.pos := pos + S.len;
 Oberon.Call(S.s, par, new, res);
 IF res > 1 THEN
 Texts.WriteString(W, "Call error: ");
 IF res = 2 THEN
 Texts.WriteString(W, " not an obj-file or error in file")
 ELSIF res = 3 THEN
 Texts.WriteString(W, Modules.imported);
 Texts.WriteString(W, " imported with bad key from ");
 Texts.WriteString(W, Modules.importing)
 ELSIF res = 4 THEN
 Texts.WriteString(W, " not enough space")
 END;
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END
 END
 END Call;

 PROCEDURE Write* (F: Frame; ch: CHAR; fnt: Fonts.Font; col, voff: SHORTINT);
 BEGIN (*F.car # 0*)
 IF ch = 7FX THEN
 IF F.carloc.pos > F.org THEN
 Texts.Delete(F.text, F.carloc.pos - 1, F.carloc.pos);
 SetCaret(F, F.carloc.pos - 1)
 END
 ELSIF (20X <= ch) & (ch < 86X) OR (ch = 0DX) OR (ch = 9X) THEN
 KW.fnt := fnt; KW.col := col; KW.voff := voff; Texts.Write(KW, ch);
 Texts.Insert(F.text, F.carloc.pos, KW.buf);
 SetCaret(F, F.carloc.pos + 1)
 END
 END Write;

 PROCEDURE Defocus* (F: Frame);
 EGIN RemoveCaret(F)
 END Defocus;

 PROCEDURE Neutralize* (F: Frame);
 BEGIN RemoveMarks(F)
 END Neutralize;

 130

 PROCEDURE Modify* (F: Frame; id, dY, Y, H: INTEGER);
 BEGIN
 Mark(F, 0); RemoveMarks(F);
 IF id = MenuViewers.extend THEN
 IF dY > 0 THEN
 Display.CopyBlock(F.X, F.Y, F.W, F.H, F.X, F.Y + dY, 0); F.Y := F.Y + dY
 END;
 Extend(F, Y)
 ELSIF id = MenuViewers.reduce THEN
 Reduce(F, Y + dY);
 IF dY > 0 THEN Display.CopyBlock(F.X, F.Y, F.W, F.H, F.X, Y, 0); F.Y := Y END
 END;
 IF F.H > 0 THEN Mark(F, 1) END
 END Modify;

 PROCEDURE Open* (
 F: Frame; H: Display.Handler; T: Texts.Text; org: LONGINT;
 col, left, right, top, bot, lsp: INTEGER);
 VAR L: Line;
 BEGIN NEW(L);
 L.len := 0; L.wid := 0; L.eot := FALSE; L.next := L;
 F.handle := H; F.text := T; F.org := org; F.trailer := L;
 F.left := left; F.right := right; F.top := top; F.bot := bot;
 F.lsp := lsp; F.col := col; F.mark := 0; F.car := 0; F.sel := 0
 END Open;

 PROCEDURE Copy* (F: Frame; VAR F1: Frame);
 BEGIN NEW(F1);
 Open(F1, F.handle, F.text, F.org, F.col, F.left, F.right, F.top, F.bot, F.lsp)
 END Copy;

 PROCEDURE CopyOver* (F: Frame; text: Texts.Text; beg, end: LONGINT);
 VAR buf: Texts.Buffer;
 BEGIN
 IF F.car > 0 THEN
 NEW(buf); Texts.OpenBuf(buf);
 Texts.Save(text, beg, end, buf);
 Texts.Insert(F.text, F.carloc.pos, buf);
 SetCaret(F, F.carloc.pos + (end - beg))
 END
 END CopyOver;

 PROCEDURE GetSelection* (F: Frame; VAR text: Texts.Text; VAR beg, end, time: LONGINT);
 BEGIN
 IF F.sel > 0 THEN
 IF F.time > time THEN
 text := F.text; beg := F.selbeg.pos; end := F.selend.pos; time := F.time
 ELSIF F.text = text THEN
 IF (F.time < time) & (F.selbeg.pos < beg) THEN beg := F.selbeg.pos
 ELSIF (F.time > time) & (F.selend.pos > end) THEN end := F.selend.pos; time := F.time
 END
 END
 END
 END GetSelection;

 PROCEDURE Update* (F: Frame; VAR M: UpdateMsg);

 131

 BEGIN (*F.text = M.text*)
 RemoveMarks(F); Oberon.RemoveMarks(F.X, F.Y, F.W, F.H);
 IF M.id = replace THEN Replace(F, M.beg, M.end)
 ELSIF M.id = insert THEN Insert(F, M.beg, M.end)
 ELSIF M.id = delete THEN Delete(F, M.beg, M.end)
 END
 END Update;

 PROCEDURE Edit* (F: Frame; X, Y: INTEGER; Keys: SET);
 VAR M: Oberon.CopyOverMsg;
 T: Texts.Text; R: Texts.Reader; buf: Texts.Buffer;
 time, pos, beg, end: LONGINT; keysum: SET; ch: CHAR;
 BEGIN
 Oberon.DrawCursor(Oberon.Mouse, Oberon.Arrow, X, Y);
 IF X < F.X + Min(F.left, barW) THEN
 IF (0 IN Keys) OR (1 IN Keys) THEN keysum := Keys;
 REPEAT
 Input.Mouse(Keys, X, Y);
 keysum := keysum + Keys;
 Oberon.DrawCursor(Oberon.Mouse, Oberon.Arrow, X, Y)
 UNTIL Keys = {};
 IF ~(2 IN keysum) THEN
 RemoveMarks(F); Oberon.RemoveMarks(F.X, F.Y, F.W, F.H);
 IF (0 IN keysum) OR (F.Y + F.H < Y) THEN pos := 0
 ELSE pos := (F.Y + F.H - Y) * (F.text.len) DIV F.H
 END;
 RemoveMarks(F); Oberon.RemoveMarks(F.X, F.Y, F.W, F.H);
 Show(F, pos)
 ELSIF ~(0 IN keysum) THEN
 RemoveMarks(F); Oberon.RemoveMarks(F.X, F.Y, F.W, F.H);
 Show(F, F.text.len)
 END
 ELSIF 2 IN Keys THEN
 TrackLine(F, X, Y, pos, keysum);
 IF (pos >= 0) & ~(0 IN keysum) THEN
 RemoveMarks(F); Oberon.RemoveMarks(F.X, F.Y, F.W, F.H);
 Show(F, pos)
 END
 END
 ELSE
 IF 0 IN Keys THEN
 TrackSelection(F, X, Y, keysum);
 IF F.sel # 0 THEN
 IF (2 IN keysum) & ~(1 IN keysum) THEN (*delete text*)
 Oberon.PassFocus(MenuViewers.Ancestor);
 Oberon.GetSelection(T, beg, end, time);
 Texts.Delete(T, beg, end); SetCaret(F, beg)
 ELSIF (1 IN keysum) & ~(2 IN keysum) THEN (*copy to focus*)
 Oberon.GetSelection(T, beg, end, time);
 M.text := T; M.beg := beg; M.end := end;
 Oberon.FocusViewer.handle(Oberon.FocusViewer, M)
 END
 END
 ELSIF 1 IN Keys THEN
 TrackWord(F, X, Y, pos, keysum);
 IF (pos >= 0) & ~(0 IN keysum) THEN Call(F, pos, 2 IN keysum) END

 132

 ELSIF 2 IN Keys THEN
 Oberon.PassFocus(Viewers.This(F.X, F.Y)); TrackCaret(F, X, Y, keysum);
 IF F.car # 0 THEN
 IF (1 IN keysum) & ~(0 IN keysum) THEN (*copy from selection*)
 Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN
 NEW(buf); Texts.OpenBuf(buf);
 Texts.Save(T, beg, end, buf);
 Texts.Insert(F.text, F.carloc.pos, buf);
 SetCaret(F, F.carloc.pos + (end - beg))
 END
 ELSIF (0 IN keysum) & ~(1 IN keysum) THEN (*copy font*)
 Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN
 Texts.OpenReader(R, F.text, F.carloc.pos); Texts.Read(R, ch);
 Texts.ChangeLooks(T, beg, end, {0, 1, 2}, R.fnt, R.col, R.voff)
 END
 END
 END
 END
 END
 END Edit;

 PROCEDURE Handle* (F: Display.Frame; VAR M: Display.FrameMsg);
 VAR F1: Frame;
 BEGIN
 WITH F: Frame DO
 IF M IS Oberon.InputMsg THEN
 WITH M: Oberon.InputMsg DO
 IF M.id = Oberon.track THEN Edit(F, M.X, M.Y, M.keys)
 ELSIF M.id = Oberon.consume THEN
 IF F.car # 0 THEN Write(F, M.ch, M.fnt, M.col, M.voff) END
 END
 END
 ELSIF M IS Oberon.ControlMsg THEN
 WITH M: Oberon.ControlMsg DO
 IF M.id = Oberon.defocus THEN Defocus(F)
 ELSIF M.id = Oberon.neutralize THEN Neutralize(F)
 END
 END
 ELSIF M IS Oberon.SelectionMsg THEN
 WITH M: Oberon.SelectionMsg DO GetSelection(F, M.text, M.beg, M.end, M.time) END
 ELSIF M IS Oberon.CopyOverMsg THEN
 WITH M: Oberon.CopyOverMsg DO CopyOver(F, M.text, M.beg, M.end) END
 ELSIF M IS Oberon.CopyMsg THEN
 WITH M: Oberon.CopyMsg DO Copy(F, F1); M.F := F1 END
 ELSIF M IS MenuViewers.ModifyMsg THEN
 WITH M: MenuViewers.ModifyMsg DO Modify(F, M.id, M.dY, M.Y, M.H) END
 ELSIF M IS UpdateMsg THEN
 WITH M: UpdateMsg DO
 IF F.text = M.text THEN Update(F, M) END
 END
 END
 END
 END Handle;

 133

 (*creation*)

 PROCEDURE Menu (name, commands: ARRAY OF CHAR): Texts.Text;
 VAR T: Texts.Text;
 BEGIN
 NEW(T); T.notify := NotifyDisplay; Texts.Open(T, "");
 Texts.WriteString(W, name); Texts.WriteString(W, " | "); Texts.WriteString(W, commands);
 Texts.Append(T, W.buf);
 RETURN T
 END Menu;

 PROCEDURE Text* (name: ARRAY OF CHAR): Texts.Text;
 VAR T: Texts.Text;
 BEGIN NEW(T); T.notify := NotifyDisplay; Texts.Open(T, name); RETURN T
 END Text;

 PROCEDURE NewMenu* (name, commands: ARRAY OF CHAR): Frame;
 VAR F: Frame;
 BEGIN NEW(F);
 Open(F, Handle, Menu(name, commands), 0, Display.white, left DIV 4, 0, 0, 0, lsp);
 RETURN F
 END NewMenu;

 PROCEDURE NewText* (text: Texts.Text; pos: LONGINT): Frame;
 VAR F: Frame;
 BEGIN NEW(F);
 Open(F, Handle, text, pos, Display.black, left, right, top, bot, lsp);
 RETURN F
 END NewText;

BEGIN
 menuH := Fonts.Default.height + 2; barW := menuH;
 left := barW + Fonts.Default.height DIV 2; right := Fonts.Default.height DIV 2;
 top := Fonts.Default.height DIV 2; bot := Fonts.Default.height DIV 2;
 asr := Fonts.Default.maxY; dsr := -Fonts.Default.minY; lsp := Fonts.Default.height;
 selH := Fonts.Default.height; markW := Fonts.Default.height DIV 2;
 eolW := Fonts.Default.height DIV 2;
 Texts.OpenWriter(W); Texts.OpenWriter(KW);
 NEW(par)
END TextFrames.

MODULE Edit; (*JG 26.11.91*)

 IMPORT Files, Display, Viewers, MenuViewers, Oberon, Fonts, Texts, TextFrames, Printer;

 CONST
 CR = 0DX; maxlen = 32;
 StandardMenu = "System.Close System.Copy System.Grow Edit.Search Edit.Store";

 VAR
 W: Texts.Writer;
 time: LONGINT;
 M: INTEGER;
 pat: ARRAY maxlen OF CHAR;
 d: ARRAY 256 OF INTEGER;

 134

 PROCEDURE Max (i, j: LONGINT): LONGINT;
 BEGIN IF i >= j THEN RETURN i ELSE RETURN j END
 END Max;

 PROCEDURE Open*;
 VAR par: Oberon.ParList;
 T: Texts.Text; S: Texts.Scanner;
 V: Viewers.Viewer;
 X, Y: INTEGER;
 beg, end, time: LONGINT;
 BEGIN
 par := Oberon.Par;
 Texts.OpenScanner(S, par.text, par.pos); Texts.Scan(S);
 IF (S.class = Texts.Char) & (S.c = "^") OR (S.line # 0) THEN
 Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN Texts.OpenScanner(S, T, beg); Texts.Scan(S) END
 END;
 IF S.class = Texts.Name THEN
 Oberon.AllocateUserViewer(par.vwr.X, X, Y);
 V := MenuViewers.New(
 TextFrames.NewMenu(S.s, StandardMenu),
 TextFrames.NewText(TextFrames.Text(S.s), 0),
 TextFrames.menuH,
 X, Y)
 END
 END Open;

 PROCEDURE Show*;
 VAR par: Oberon.ParList;
 T, t: Texts.Text;
 R: Texts.Reader; S: Texts.Scanner;
 V: Viewers.Viewer;
 X, Y, n, i, j: INTEGER;
 pos, len, beg, end, time: LONGINT;
 buf: ARRAY 32 OF CHAR;
 name: ARRAY 35 OF CHAR;
 M: INTEGER;
 pat: ARRAY maxlen OF CHAR;
 d: ARRAY 256 OF INTEGER;

 PROCEDURE Forward (n: INTEGER);
 VAR m: INTEGER; j: INTEGER;
 BEGIN m := M - n;
 j := 0;
 WHILE j # m DO buf[j] := buf[n + j]; INC(j) END;
 WHILE j # M DO Texts.Read(R, buf[j]); INC(j) END
 END Forward;

 BEGIN
 par := Oberon.Par;
 Texts.OpenScanner(S, par.text, par.pos); Texts.Scan(S);
 IF (S.class = Texts.Char) & (S.c = "^") OR (S.line # 0) THEN
 Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN Texts.OpenScanner(S, T, beg); Texts.Scan(S) END
 END;
 IF S.class = Texts.Name THEN

 135

 i := -1; j := 0;
 WHILE S.s[j] # 0X DO
 IF S.s[j] = "." THEN i := j END;
 name[j] := S.s[j]; j := j+1
 END;
 IF i < 0 THEN name[j] := "."; i := j END;
 name[i+1] := "M"; name[i+2] := "o"; name[i+3] := "d"; name[i+4] := 0X;
 t := TextFrames.Text(name);
 IF j > i THEN (*object name specified*)
 j := i+1; M := 0;
 WHILE (M # maxlen) & (S.s[j] # 0X) DO pat[M] := S.s[j]; j := j+1; M := M+1 END;
 j := 0;
 WHILE j # 256 DO d[j] := M; INC(j) END;
 j := 0;
 WHILE j # M - 1 DO d[ORD(pat[j])] := M - 1 - j; INC(j) END;
 pos := 0; len := t.len;
 Texts.OpenReader(R, t, pos);
 Forward(M); pos := pos + M;
 LOOP j := M;
 REPEAT DEC(j) UNTIL (j < 0) OR (buf[j] # pat[j]);
 IF (j < 0) OR (pos >= len) THEN EXIT END;
 n := d[ORD(buf[M-1])];
 Forward(n); pos := pos + n
 END
 ELSE pos := 0
 END;
 Oberon.AllocateUserViewer(par.vwr.X, X, Y);
 V := MenuViewers.New(
 TextFrames.NewMenu(name, StandardMenu),
 TextFrames.NewText(t, pos-200),
 TextFrames.menuH,
 X, Y)
 END
 END Show;

 PROCEDURE Store*;
 VAR par: Oberon.ParList;
 V: Viewers.Viewer;
 Text: TextFrames.Frame;
 T: Texts.Text; S: Texts.Scanner;
 f: Files.File;
 beg, end, time, len: LONGINT;

 PROCEDURE Backup (VAR name: ARRAY OF CHAR);
 VAR res, i: INTEGER; bak: ARRAY 32 OF CHAR;
 BEGIN i := 0;
 WHILE name[i] # 0X DO bak[i] := name[i]; INC(i) END;
 bak[i] := "."; bak[i+1] := "B"; bak[i+2] := "a"; bak[i+3] := "k"; bak[i+4] := 0X;
 Files.Rename(name, bak, res)
 END Backup;

 BEGIN
 Texts.WriteString(W, "Edit.Store ");
 par := Oberon.Par;
 IF par.frame = par.vwr.dsc THEN
 V := par.vwr; Texts.OpenScanner(S, V.dsc(TextFrames.Frame).text, 0)

 136

 ELSE V := Oberon.MarkedViewer(); Texts.OpenScanner(S, par.text, par.pos)
 END;
 Texts.Scan(S);
 IF (S.class = Texts.Char) & (S.c = "^") THEN
 Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN Texts.OpenScanner(S, T, beg); Texts.Scan(S) END
 END;
 IF (S.class = Texts.Name) & (V.dsc # NIL) & (V.dsc.next IS TextFrames.Frame) THEN
 Text := V.dsc.next(TextFrames.Frame);
 TextFrames.Mark(Text, -1);
 Texts.WriteString(W, S.s); Texts.WriteLn(W);
 Texts.Append(Oberon.Log, W.buf);
 Backup(S.s);
 f := Files.New(S.s);
 Texts.Store(Text.text, f, 0, len);
 Files.Register(f);
 TextFrames.Mark(Text, 1)
 END
 END Store;

 PROCEDURE CopyFont*;
 VAR
 T: Texts.Text; R: Texts.Reader;
 V: Viewers.Viewer; F: Display.Frame;
 beg, end: LONGINT;
 X, Y: INTEGER;
 ch: CHAR;
 BEGIN
 V := Oberon.MarkedViewer(); F := V.dsc;
 X := Oberon.Pointer.X; Y := Oberon.Pointer.Y;
 LOOP
 IF F = NIL THEN EXIT END;
 IF (X >= F.X) & (X < F.X + F.W) & (Y >= F.Y) & (Y < F.Y + F.H) THEN
 IF F IS TextFrames.Frame THEN
 WITH F: TextFrames.Frame DO
 Texts.OpenReader(R, F.text, TextFrames.Pos(F, X, Y));
 Texts.Read(R, ch);
 Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN Texts.ChangeLooks(T, beg, end, {0}, R.fnt, 0, 0) END
 END
 END;
 EXIT
 END;
 F := F.next
 END
 END CopyFont;

 PROCEDURE ChangeFont*;
 VAR par: Oberon.ParList;
 T: Texts.Text; S: Texts.Scanner;
 beg, end: LONGINT;
 BEGIN
 Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN par := Oberon.Par;
 Texts.OpenScanner(S, par.text, par.pos); Texts.Scan(S);
 IF S.class = Texts.Name THEN

 137

 Texts.ChangeLooks(T, beg, end, {0}, Fonts.This(S.s), 0, 0)
 END
 END
 END ChangeFont;

 PROCEDURE ChangeColor*;
 VAR par: Oberon.ParList;
 T: Texts.Text; S: Texts.Scanner;
 col: SHORTINT; ch: CHAR;
 beg, end, time: LONGINT;
 BEGIN par := Oberon.Par;
 Texts.OpenScanner(S, par.text, par.pos); Texts.Scan(S);
 IF S.class = Texts.Int THEN col := SHORT(SHORT(S.i))
 ELSIF (S.class = Texts.Char) & (S.c = "^") & (par.frame(TextFrames.Frame).sel > 0) THEN
 Texts.OpenReader(S, par.text, par.frame(TextFrames.Frame).selbeg.pos);
 Texts.Read(S, ch); col := S.col
 ELSE col := Oberon.CurCol
 END ;
 Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN Texts.ChangeLooks(T, beg, end, {1}, NIL, col, 0) END
 END ChangeColor;

 PROCEDURE ChangeOffset*;
 VAR par: Oberon.ParList;
 T: Texts.Text; S: Texts.Scanner;
 voff: SHORTINT; ch: CHAR;
 beg, end, time: LONGINT;
 BEGIN par := Oberon.Par;
 Texts.OpenScanner(S, par.text, par.pos); Texts.Scan(S);
 IF S.class = Texts.Int THEN voff := SHORT(SHORT(S.i))
 ELSIF (S.class = Texts.Char) & (S.c = "^") & (par.frame(TextFrames.Frame).sel > 0) THEN
 Texts.OpenReader(S, par.text, par.frame(TextFrames.Frame).selbeg.pos);
 Texts.Read(S, ch); voff := S.voff
 ELSE voff := Oberon.CurOff
 END ;
 Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN Texts.ChangeLooks(T, beg, end, {2}, NIL, voff, 0) END
 END ChangeOffset;

 PROCEDURE Search*;
 VAR V: Viewers.Viewer;
 Text: TextFrames.Frame;
 T: Texts.Text; R: Texts.Reader;
 pos, beg, end, prevTime, len: LONGINT; n, i, j: INTEGER;
 buf: ARRAY 32 OF CHAR;

 PROCEDURE Forward (n: INTEGER);
 VAR m: INTEGER; j: INTEGER;
 BEGIN m := M - n;
 j := 0;
 WHILE j # m DO buf[j] := buf[n + j]; INC(j) END;
 WHILE j # M DO Texts.Read(R, buf[j]); INC(j) END
 END Forward;

 BEGIN
 V := Oberon.Par.vwr;

 138

 IF Oberon.Par.frame # V.dsc THEN V := Oberon.MarkedViewer() END;
 IF (V.dsc # NIL) & (V.dsc.next IS TextFrames.Frame) THEN
 Text := V.dsc.next(TextFrames.Frame);
 TextFrames.Mark(Text, -1);
 prevTime := time; Oberon.GetSelection(T, beg, end, time);
 IF time > prevTime THEN
 Texts.OpenReader(R, T, beg);
 i := 0; pos := beg;
 REPEAT Texts.Read(R, pat[i]); INC(i); INC(pos)
 UNTIL (i = maxlen) OR (pos = end);
 M := i;
 j := 0;
 WHILE j # 256 DO d[j] := M; INC(j) END;
 j := 0;
 WHILE j # M - 1 DO d[ORD(pat[j])] := M - 1 - j; INC(j) END
 END;
 IF Text.car > 0 THEN pos := Text.carloc.pos ELSE pos := 0 END;
 len := Text.text.len;
 Texts.OpenReader(R, Text.text, pos);
 Forward(M); pos := pos + M;
 LOOP j := M;
 REPEAT DEC(j) UNTIL (j < 0) OR (buf[j] # pat[j]);
 IF (j < 0) OR (pos >= len) THEN EXIT END;
 n := d[ORD(buf[M-1])];
 Forward(n); pos := pos + n
 END;
 IF j < 0 THEN
 TextFrames.RemoveSelection(Text);
 TextFrames.RemoveCaret(Text);
 Oberon.RemoveMarks(Text.X, Text.Y, Text.W, Text.H);
 TextFrames.Show(Text, pos - 200);
 Oberon.PassFocus(V);
 TextFrames.SetCaret(Text, pos)
 END;
 TextFrames.Mark(Text, 1)
 END
 END Search;

 PROCEDURE Locate*;
 VAR V: Viewers.Viewer;
 Text: TextFrames.Frame;
 T: Texts.Text; S: Texts.Scanner;
 beg, end, time: LONGINT;
 BEGIN
 V := Oberon.MarkedViewer();
 IF (V.dsc # NIL) & (V.dsc.next IS TextFrames.Frame) THEN
 Text := V.dsc.next(TextFrames.Frame);
 Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN
 Texts.OpenScanner(S, T, beg);
 REPEAT Texts.Scan(S) UNTIL (S.class >= Texts.Int); (*skip names*)
 IF S.class = Texts.Int THEN
 TextFrames.RemoveSelection(Text);
 TextFrames.RemoveCaret(Text);
 Oberon.RemoveMarks(Text.X, Text.Y, Text.W, Text.H);
 TextFrames.Show(Text, Max(0, S.i - 200));

 139

 Oberon.PassFocus(V);
 TextFrames.SetCaret(Text, S.i)
 END
 END
 END
 END Locate;

 PROCEDURE Recall*;
 VAR V: Viewers.Viewer;
 Menu, Main: Display.Frame;
 buf: Texts.Buffer;
 pos: LONGINT;
 BEGIN V := Oberon.FocusViewer;
 IF V IS MenuViewers.Viewer THEN
 Menu := V.dsc; Main := V.dsc.next;
 IF (Main IS TextFrames.Frame) & (Main(TextFrames.Frame).car > 0) THEN
 WITH Main: TextFrames.Frame DO
 Texts.Recall(buf);
 pos := Main.carloc.pos + buf.len;
 Texts.Insert(Main.text, Main.carloc.pos, buf);
 TextFrames.SetCaret(Main, pos)
 END
 ELSIF (Menu IS TextFrames.Frame) & (Menu(TextFrames.Frame).car > 0) THEN
 WITH Menu: TextFrames.Frame DO
 Texts.Recall(buf);
 pos := Menu.carloc.pos + buf.len;
 Texts.Insert(Menu.text, Menu.carloc.pos, buf);
 TextFrames.SetCaret(Menu, pos)
 END
 END
 END
 END Recall;

 PROCEDURE Print*;

 CONST
 textX = 160; textY = 225; botY = 100;

 VAR
 par: Oberon.ParList;
 V: Viewers.Viewer;
 Menu, Text: TextFrames.Frame;
 T, source: Texts.Text;
 R: Texts.Reader; S: Texts.Scanner;
 fnt: Fonts.Font;
 id, ch: CHAR;
 pageno: SHORTINT; listing: BOOLEAN;
 nofcopies, len, lsp, Y, topY: INTEGER;
 beg, end, time: LONGINT;

 PROCEDURE SendHeader;
 VAR pno: ARRAY 4 OF CHAR;
 BEGIN Printer.String(textX, Printer.PageHeight-125, S.s, Fonts.Default.name);
 IF pageno DIV 10 = 0 THEN pno[0] := " " ELSE pno[0] := CHR(pageno DIV 10 + 30H) END ;
 pno[1] := CHR(pageno MOD 10 + 30H); pno[2] := 0X;
 Printer.String(Printer.PageWidth-236, Printer.PageHeight-125, pno, Fonts.Default.name)

 140

 END SendHeader;

 PROCEDURE PrintUnit (source: Texts.Text; pos: LONGINT);
 VAR i: INTEGER; new: BOOLEAN;
 buf: ARRAY 200 OF CHAR;
 BEGIN Texts.WriteString(W, S.s);
 IF source.len # 0 THEN
 Texts.WriteString(W, " printing"); Texts.WriteInt(W, nofcopies, 3);
 Texts.Append(Oberon.Log, W.buf);
 lsp := Fonts.Default.height * 7 DIV 2; pageno := 0;
 SendHeader; Y := topY;
 Texts.OpenReader(R, source, pos);
 IF ~listing THEN
 REPEAT Texts.Read(R, ch);
 new := TRUE; fnt := R.fnt;
 WHILE ~R.eot & (ch # CR) DO
 i := 0;
 REPEAT buf[i] := ch; INC(i); Texts.Read(R, ch)
 UNTIL R.eot OR (ch = CR) OR (R.fnt # fnt);
 buf[i] := 0X;
 IF new THEN Printer.String(textX, Y, buf, fnt.name)
 ELSE Printer.ContString(buf, fnt.name)
 END;
 new := FALSE; fnt := R.fnt
 END;
 Y := Y - lsp;
 IF Y < botY THEN
 Printer.Page(nofcopies); INC(pageno); SendHeader; Y := topY
 END
 UNTIL R.eot
 ELSE lsp := 32;
 REPEAT Texts.Read(R, ch);
 WHILE ~R.eot & (ch # CR) DO
 i := 0;
 REPEAT buf[i] := ch; INC(i); Texts.Read(R, ch)
 UNTIL R.eot OR (ch = CR);
 buf[i] := 0X;
 Printer.String(textX, Y, buf, Fonts.Default.name)
 END;
 Y := Y - lsp;
 IF Y < botY THEN
 Printer.Page(nofcopies); INC(pageno); SendHeader; Y := topY
 END
 UNTIL R.eot
 END;
 IF Y < topY THEN Printer.Page(nofcopies) END
 ELSE Texts.WriteString(W, " not found")
 END;
 Texts.WriteLn(W);
 Texts.Append(Oberon.Log, W.buf)
 END PrintUnit;

 PROCEDURE Option;
 VAR ch: CHAR;
 BEGIN nofcopies := 1;
 IF S.nextCh = "/" THEN

 141

 Texts.Read(S, ch);
 IF (ch >= "0") & (ch <= "9") THEN nofcopies := ORD(ch) - 30H END ;
 WHILE ch > " " DO Texts.Read(S, ch) END;
 S.nextCh := ch
 END
 END Option;

 BEGIN par := Oberon.Par;
 Texts.WriteString(W, "Edit.Print"); Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf);
 Texts.OpenScanner(S, par.text, par.pos); Texts.Scan(S);
 IF S.class = Texts.Name THEN
 Printer.Open(S.s, Oberon.User, Oberon.Password);
 IF Printer.res = 0 THEN
 topY := Printer.PageHeight - textY; Texts.Scan(S);
 IF (S.class = Texts.Char) & (S.c = "%") THEN
 listing := TRUE; Printer.UseListFont(Fonts.Default.name); Texts.Scan(S)
 ELSE listing := FALSE
 END;
 IF (S.class = Texts.Char) & (S.c = "*") THEN
 Option; V := Oberon.MarkedViewer();
 IF (V.dsc IS TextFrames.Frame) & (V.dsc.next IS TextFrames.Frame) THEN
 Menu := V.dsc(TextFrames.Frame); Text := V.dsc.next(TextFrames.Frame);
 Texts.OpenScanner(S, Menu.text, 0); Texts.Scan(S);
 TextFrames.Mark(Text, -1); PrintUnit(Text.text, 0); TextFrames.Mark(Text, 1)
 END
 ELSE
 WHILE S.class = Texts.Name DO
 Option; NEW(source); Texts.Open(source, S.s); PrintUnit(source, 0);
 Texts.Scan(S)
 END;
 IF (S.class = Texts.Char) & (S.c = "^") THEN Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN Texts.OpenScanner(S, T, beg); Texts.Scan(S);
 IF S.class = Texts.Name THEN
 Option; NEW(source); Texts.Open(source, S.s); PrintUnit(source, 0)
 END
 END
 END
 END;
 Printer.Close
 ELSE
 IF Printer.res = 1 THEN Texts.WriteString(W, " no printer")
 ELSIF Printer.res = 2 THEN Texts.WriteString(W, " no link")
 ELSIF Printer.res = 3 THEN Texts.WriteString(W, " printer not ready")
 ELSIF Printer.res = 4 THEN Texts.WriteString(W, " no permission")
 END;
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END
 ELSE Texts.WriteString(W, " no printer specified");
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END
 END Print;

 PROCEDURE InitPattern;
 VAR j: INTEGER;
 BEGIN
 pat[0] := " "; M := 1; time := -1; j := 0;

 142

 WHILE j # 256 DO d[j] := M; INC(j) END
 END InitPattern;

BEGIN Texts.OpenWriter(W); InitPattern
END Edit.

 143

Copyright N.Wirth, 15.4.91 / 9.11.91

6. The Module Loader

6.1. Linking and Loading
When the execution of a command M.P is requested, module M containing procedure P must be
loaded, unless it is already loaded because a command from the same module had been executed
earlier or the module had been imported by another module before. Modules are available in the form
of so-called object files, generated by the compiler (or the assembler). The term loading refers to the
transfer of the module code from the file into main store, from where the processor fetches individual
instructions. This transfer involves also a certain amount of transformation as required by the object
file format on the one hand and the storage layout on the other. A system typically consists of many
modules, and hence loading modules also involves linking them together, in particular linking them
with already loaded modules. Before loading, references to another module's objects are relative to the
base address of this module; the linking or binding process converts them into absolute addresses.

The linking process may require a significant amount of address computations. But they are simple
enough and, if the data are organized in an appropriate way, can be executed very swiftly.
Nevertheless, and surprisingly, in many operating systems linking needs more time than compilation.
The remedy which system designers offer is a separation of linking from loading. A set of compiled
modules is first linked; the result is a linked object file with absolute addresses. The loader then merely
transfers the object file into main store.

We consider this an unfortunate proposal. Instead of trying to cure an inadequacy with the aid of an
additional processing stage and an additional tool, it is wiser to cure the malady at its core, namely to
speed up the linking process itself. Indeed, there is no separate linker in the Oberon system. The linker
and loader are integrated and fast enough to avoid any desire for pre-linking. Furthermore, the
extensibility of a system crucially depends on the possibility to link additional modules to the ones
already loaded by calls from any module. This is called dynamic loading. This is not possible with pre-
linked object files. Newly loaded modules simply refer to the loaded ones, whereas pre-linked files
lead to the presence of multiple copies of the same module code.

Evidently, the essence of linking is the conversion of relative addresses as generated by the compiler
for all external references into absolute addresses as required during program execution. There exist
two different strategies for this task.

1. External references are directly patched in the code. The object file contains a list of the locations of
all external references. It is called the fixup list.

2. A separate link table is provided with external references to be converted. The actual references
within the program code directly refer to these table entries, and only indirectly to the objects.

The advantage of the first strategy is execution speed, because all external references are direct during
program execution. The advantage of the second strategy is an expedient linking process, because there
are far fewer conversions to be performed - instead of one for every reference, only one for every
referenced object. A further advantage is that no fixup list is required; the entire compiled code
remains untouched. Also, code density is significantly increased: an external address in the code is an
index to the table (typically 8 bits) rather than a full address (typically 32 bits). A slight disadvantage
is, of course, the need for a (short) link table.

 144

Object file

imports

0

1

2

mod name

entries

0

1

2

entry offset

code

mno pno

Main store

mod name

code base

mod base

offset

adr

header

import table

entry table

code

Fig. 6.1. Linkage Information

Before proceeding, we must consider an additional complication. Assume that a module B is to be
compiled which is a client of (i.e. it imports) module A. The interface of A - in the form of a symbol
file - does not specify the entry addresses of its exported procedures, but merely specifies a unique
number (pno) for each one of them. The reason for this is that in this way the implementation of A may
be modified, causing a change of entry addresses without affecting its interface specification. And this
is a crucial property of the scheme of separate compilation of modules: changes of the implementation
of A must not necessitate the recompilation of clients (B). The consequence is that the binding of entry
addresses to procedure numbers must be performed by the linker. In order to make this possible, the
object file must contain a list (table) of its entry addresses, one for each procedure number used as
index to the table.

Similarly, the object file must contain a table of imported modules, containing their names. An external
reference in the program code then appears in the form of a pair consisting of a module number (mno)
- used as index to the import table (of modules) - and a procedure number (pno), used as index to the
entry table of this module.

Such linkage information must not only be provided in each object file, but also be present along with
each loaded module's program code, because a module to be loaded must be linkable with modules
loaded at any earlier time without reading their object files again. The linkage tables contained in the
file and in main store are shown in Fig. 6.1.

In the linking process, first the import table in the file (containing module names) is transformed into
the internal import table containing the addresses of the respective modules. Then the entry offsets are
merely copied. And finally, the code is loaded and address computations are performed either at every
location of the link table (strategy 2) or at every location in the code specified by the fixup list (strategy
1). The resulting (absolute) address of a procedure specified by mno and pno is

adr = imptab[mno].codebase + imptab[mno].entry[pno]

The module name must be available for each module, because it is needed by the loader for the
searches conducted during the construction of the import table. Procedure names are not needed, as
they have been transformed by the compiler into numbers unique for each module.

 145

For external references to variables, the same scheme might be used, namely identifying each exported
variable by an entry number (vno). The expression for its absolute address would then be given by

adr = imptab[mno].varbase + imptab[mno].entry[vno].

However, this is usually not done. Instead, the variable's offset is directly specified in the code. The
variable's absolute address is computed as

adr = imptab[mno].varbase + offset

The drawback is that modifications of a module that change a variable's address require recompilation
of all clients (because the symbol file contains the offset). This drawback is slight in practice, since
exported variables are rare and are declared at the beginning of the program text. Additions or
deletions of non- exported variables have no influence on the exported information.

6.2. Module Representation in the Oberon System
Our choice has been to use strategy 2 for handling external references. This can be justified only if the
underlying hardware reduces the inherent loss in efficiency by adequate support in the form of
addressing modes, and if thereby the gain in code density is significant. When using the NS32000
architecture, these requirements are satisfied; in particular, this architecture features a code density that
is higher than most other processor's by a factor of 1.5 - 2.5.

Tests with an alternative compiler and loader, using strategy 1 and absolute addresses for external
references produced code that was 15% longer on the average. In extreme cases with a larger number
of external calls (using 6 instead of 2 bytes of code) the length increased by as much as 20%.
Surprisingly, the data about speedup remained inconclusive.

Before proceeding, we present the layout of module information as defined by the NS32000
processor's external addressing mode

Every module has an associated module descriptor. It contains three pointers (base addresses),
referring respectively to the module's data section (sb), link table (lb) and code (pb), all of which are
part of the module block. In order to accelerate cross-module access, two processor registers are
provided. Register MOD points to the descriptor of the module currently under control, and register SB
(static base) points to its data section. These registers must be updated in every external procedure call
and on its return, i.e. whenever control passes from one module to another. The process of a call is
shown in Fig. 6.2. It is initiated by a CXP k instruction. k is the index of the link table entry of the
called procedure. At the left we show the various parts of the calling module A, at the right those of the
module containing the called procedure.

The transition from the calling to the called context can be described by the following sequence of
microcode statements (pd is to be considered as a temporary variable):

CXP: pd := M[M[MOD].lb + 4k]; (* procedure descriptor*)
 SP := SP-4; M[SP] := MOD; (* stack pointer*)
 SP := SP-4; M[SP] := PC;
 MOD := pd.mod (* module pointer*)
 PC := M[MOD].pb + pd.offset (* program counter*)
 SB := M[MOD].sb; (* static base*)

The microcode for a procedure return is

RXP: PC := M[SP]; SP := SP + 4;
 MOD := M[SP]; SP := SP + 4;
 SB := M[MOD].sb

From these programs it can be seen that a procedure call involves 6, a return 3 memory references,
which is quite considerable. Code density, however, is also remarkable: 2 bytes for call and return
each. We may compare the above program sections with the corresponding ones for the BSR and RET
instructions which are used for calls of local procedures, where no module context switch occurs. It is
evident that whenever possible, these simpler instructions should be used.

 146

MOD

A

sb

lb

pb

SB

data

links

offset mod

code

CXP k

MOD

A

sb

lb

pb

SB

links

data

code

PC PC

offset

Stack

SP SP

ret adr

A

Fig. 6.2. Module layout and external procedure call of the NS32000 processor

BSR: SP := SP-4; M[SP] := PC
 PC := PC + m

RET: PC := M[SP]; SP := SP+4

m is a parameter specifying the procedure's offset. Both instructions require a single memory reference
only. They correspond to the typical subroutine call mechanism present in most processors.

From the preceding presentation we conclude that a module block consists of three parts accessed
during program execution: the code, the global data, and the link table, and two parts accessed by the
loader while linking additional modules; the import and the entry tables. Furthermore, there exists a
descriptor with the addresses of the three primary parts, and it is logical to augment it with two
pointers referring to the import and entry tables.

Note: the descriptor is disjoint from the block, because the MOD register has only 16 bits and hence
the descriptor must be stored within the address range 0... 0FFFFH.

In fact, the module block in the Oberon System contains two additional parts, namely a table of pointer
offsets and a table of commands. The pointer offsets are used by the garbage collector. The table
contains an entry for each global pointer variable specifying its offset in the data section. Global
pointer variables are typically the roots of data structures and therefore serve as starting points of the
mark phase in the garbage collection process (see Chapter 8).

The command table is accessed when a command is selected in some text by the user. The command's
identifier must be transformed into an entry address, and this is achieved by a lookup in the module's
command table. Each entry consists of the identifier followed by the offset. The same offsets also
occur in the entry table.

 147

Descriptor

name

(64 bytes)

SB

LB

PB

BB

CB

RB

IB

size

key

refcnt

link

Block

entries

commands

pointer refs

imports

links

variables

constants

code

Fig. 6.3. Module descriptor and associated block

Both the pointer offset table and the command table must have their counterparts in the object file. The
loader merely copies them into the block. Pointers to both tables are added to the descriptor, which can
now be described in full by the following record declaration (see also Fig 6.3).

ModDesc = RECORD
 SB, LB, PB, BB, CB, RB, IB, size, key: LONGINT;
 name: ModName;
 refcnt: LONGINT;
 link: Module
 END;
Module = POINTER TO ModDesc

6.3. The Linking Loader
The loader is represented by procedure ThisMod in module Modules. This procedure accepts a name
and returns a pointer to the specified module's descriptor. It first scans the list of descriptors for the
named module. If it is not present, the module is loaded and added to the list.

When loading, the header of the respective object file is read first. It specifies the required size of the
block. Both descriptor and block are allocated by procedure Kernel.AllocBlock. First, the header
indicating the lengths of the various sections of the load file, and thereafter the import section are read.
For each import, procedure ThisMod is called recursively. Because cyclic imports are excluded,
recursion always terminates. After the loading of the imports, loading of the client proceeds by
allocating a descriptor and a block, and then reading the remaining sections of the file. Each module is
identified by its descriptor's address.

The link section contains two kinds of elements, both denoted by two integers mno and pno. The
majority stands for procedures. The loader transforms the mno, pno pairs (module and procedure
numbers) of the file's entry section into the respective procedure descriptors consisting of module
descriptor address and entry offset. The second kind of element denotes base addresses of a module's
data section. They are identified by a special value of pno (-1).

After the module has been loaded successfully, its initialisation body is executed. The corresponding
procedure descriptor consist of the module (descriptor) address and an offset of zero.

 148

MODULE Modules; (*NW 16.2.86 / 7.4.91*)
 IMPORT SYSTEM, Kernel, FileDir, Files;

 CONST ModNameLen* = 20; ObjMark = 0F8X;

 TYPE Module* = POINTER TO ModDesc;
 Command* = PROCEDURE;
 ModuleName* = ARRAY ModNameLen OF CHAR;

 ModDesc* = RECORD SB*, LB*, PB*, BB*, CB*, RB*, IB*, size*, key*: LONGINT;
 name*: ModuleName;
 refcnt*: LONGINT;
 link*: Module
 END ;

 VAR res*: INTEGER;
 importing*, imported*: ModuleName;
 loop: Command;

 PROCEDURE ReadName(VAR R: Files.Rider; VAR s: ARRAY OF CHAR; n: INTEGER);
 VAR ch: CHAR; i: INTEGER;
 BEGIN i := 0;
 REPEAT Files.Read(R, ch); s[i] := ch; INC(i)
 UNTIL ch = 0X;
 WHILE i < n DO Files.Read(R, ch); s[i] := 0X; INC(i) END
 END ReadName;

 PROCEDURE OpenFile(VAR F: Files.File; VAR name: ARRAY OF CHAR);
 VAR i: INTEGER; ch: CHAR;
 Fname: ARRAY 32 OF CHAR;
 BEGIN i := 0; ch := name[0]; (*make file name*)
 WHILE ch > 0X DO Fname[i] := ch; INC(i); ch := name[i] END ;
 Fname[i] := "."; Fname[i+1] := "O"; Fname[i+2] := "b"; Fname[i+3] := "j"; Fname[i+4] := 0X;
 F := Files.Old(Fname)
 END OpenFile;

 PROCEDURE PD(mod: Module; pc: LONGINT): LONGINT;
 BEGIN (*procedure descriptor*)
 RETURN ASH(pc, 16) + SYSTEM.VAL(LONGINT, mod)
 END PD;

 PROCEDURE ThisMod*(name: ARRAY OF CHAR): Module;
 (*search module in list; if not found, load module*)

 VAR
 mod, impmod, md: Module;
 ch: CHAR; mno, pno: SHORTINT;
 i, j: INTEGER;
 nofentries, nofimps, nofptrs, comsize, noflinks, constsize, codesize: INTEGER;
 varsize, size, key, impkey, k, p, q, pos1, pos2: LONGINT;
 init: Command;
 F: Files.File; R: Files.Rider;
 modname, impname: ModuleName;
 Fname: ARRAY FileDir.FnLength OF CHAR;
 import: ARRAY 16 OF Module;

 PROCEDURE err(n: INTEGER);
 BEGIN
 IF res = 0 THEN res := n; COPY(name, imported) END
 END err;

 149

 BEGIN res := 0; mod := SYSTEM.VAL(Module, Kernel.ModList);
 LOOP
 IF name = mod.name THEN EXIT END ;
 mod := mod.link;
 IF mod = NIL THEN EXIT END
 END ;
 IF mod = NIL THEN (*load*)
 OpenFile(F, name);
 IF F # NIL THEN
 Files.Set(R, F, 0); Files.Read(R, ch); (*header*)
 IF ch # ObjMark THEN err(2); RETURN NIL END ;
 Files.Read(R, ch);
 IF ch # "6" THEN err(2); RETURN NIL END ;
 Files.ReadBytes(R, k, 4); (*skip*)
 Files.ReadBytes(R, nofentries, 2); Files.ReadBytes(R, comsize, 2);
 Files.ReadBytes(R, nofptrs, 2); Files.ReadBytes(R, nofimps, 2);
 Files.ReadBytes(R, noflinks, 2); Files.ReadBytes(R, varsize, 4);
 Files.ReadBytes(R, constsize, 2); Files.ReadBytes(R, codesize, 2);
 Files.ReadBytes(R, key, 4); ReadName(R, modname, ModNameLen);
 i := (nofentries + nofptrs)*2 + comsize;
 pos1 := Files.Pos(R); Files.Set(R, F, pos1 + i + 3);
 INC(i, nofimps*2); k := (i MOD 4) + i;
 (*imports*) Files.Read(R, ch);
 IF ch # 85X THEN err(4); RETURN NIL END ;
 res := 0; i := 0;
 WHILE (i < nofimps) & (res = 0) DO
 Files.ReadBytes(R, impkey, 4); ReadName(R, impname, 0); Files.Read(R, ch);
 impmod := ThisMod(impname);
 IF res = 0 THEN
 IF impmod.key = impkey THEN import[i] := impmod; INC(i); INC(impmod.refcnt)
 ELSE res := 3; imported := impname; importing := modname
 END
 END
 END ;
 IF res # 0 THEN
 WHILE i > 0 DO DEC(i); DEC(import[i].refcnt) END ;
 RETURN NIL
 END ;

 pos2 := Files.Pos(R);
 size := k + noflinks*4 + constsize + codesize + varsize;
 Kernel.AllocBlock(q, p, size); mod := SYSTEM.VAL(Module, q);
 mod.size := size;
 mod.BB := p;
 mod.CB := nofentries*2 + p;
 mod.RB := comsize + mod.CB;
 mod.IB := nofptrs*2 + mod.RB;
 mod.LB := k + p;
 mod.SB := (noflinks*4 + varsize) + mod.LB;
 mod.PB := constsize + mod.SB;
 mod.refcnt := 0;
 mod.key := key;
 mod.name := modname;

 150

 (*entries*) q := mod.CB; Files.Set(R, F, pos1); Files.Read(R, ch);
 IF ch # 82X THEN err(4); RETURN NIL END ;
 WHILE p < q DO Files.Read(R, ch); SYSTEM.PUT(p, ch); INC(p) END ;

 (*commands*) q := mod.RB; Files.Read(R, ch);
 IF ch # 83X THEN err(4); RETURN NIL END ;
 WHILE p < q DO Files.Read(R, ch); SYSTEM.PUT(p, ch); INC(p) END ;

 (*pointer references*) q := mod.IB; Files.Read(R, ch);
 IF ch # 84X THEN err(4); RETURN NIL END ;
 WHILE p < q DO Files.Read(R, ch); SYSTEM.PUT(p, ch); INC(p) END ;

 i := 0;
 WHILE i < nofimps DO SYSTEM.PUT(p, import[i]); INC(p, 2); INC(i) END ;

 (*links*) Files.Set(R, F, pos2+1); p := mod.LB; q := noflinks*4 + p;
 WHILE p < q DO
 Files.Read(R, pno); Files.Read(R, mno);
 IF mno > 0 THEN md := import[mno-1] ELSE md := mod END ;
 IF pno = -1 THEN SYSTEM.PUT(p, md.SB) (*data segment entry*)
 ELSE SYSTEM.GET(pno*2 + md.BB, i);
 SYSTEM.PUT(p, PD(md, i)) (*procedure entry*)
 END ;
 INC(p, 4)
 END ;

 (*variables*) q := mod.SB;
 WHILE p < q DO SYSTEM.PUT(p, 0); INC(p) END ;

 (*constants*) q := mod.PB; Files.Read(R, ch);
 IF ch # 87X THEN err(4); RETURN NIL END ;
 WHILE p < q DO Files.Read(R, ch); SYSTEM.PUT(p, ch); INC(p) END ;

 (*code*) q := p + codesize; Files.Read(R, ch);
 IF ch # 88X THEN err(4); RETURN NIL END ;
 WHILE p < q DO Files.Read(R, ch); SYSTEM.PUT(p, ch); INC(p) END ;

 (*type descriptors*) Files.Read(R, ch);
 IF ch # 89X THEN err(4); RETURN NIL END ;
 LOOP Files.ReadBytes(R, i, 2);
 IF R.eof OR (i MOD 100H = 8AH) THEN EXIT END ;
 Files.ReadBytes(R, j, 2); (*adr*)
 SYSTEM.NEW(md, i);
 p := SYSTEM.VAL(LONGINT, md); q := p + i;
 REPEAT Files.Read(R, ch); SYSTEM.PUT(p, ch); INC(p) UNTIL p = q;
 SYSTEM.PUT(mod.SB + j, md)
 END ;

 init := SYSTEM.VAL(Command, mod); init;
 ELSE COPY(name, imported); err(1)
 END
 END ;
 RETURN mod
 END ThisMod;

 PROCEDURE ThisCommand*(mod: Module; name: ARRAY OF CHAR): Command;
 VAR i: INTEGER; ch: CHAR;
 comadr: LONGINT; com: Command;
 BEGIN com := NIL;
 IF mod # NIL THEN
 comadr := mod.CB; res := 5;

 151

 LOOP SYSTEM.GET(comadr, ch); INC(comadr);
 IF ch = 0X THEN (*not found*) EXIT END ;
 i := 0;
 LOOP
 IF ch # name[i] THEN EXIT END ;
 INC(i);
 IF ch = 0X THEN res := 0; EXIT END ;
 SYSTEM.GET(comadr, ch); INC(comadr)
 END ;
 IF res = 0 THEN (*match*)
 SYSTEM.GET(comadr, i); com := SYSTEM.VAL(Command, PD(mod, i)); EXIT
 ELSE
 WHILE ch > 0X DO SYSTEM.GET(comadr, ch); INC(comadr) END ;
 INC(comadr, 2)
 END
 END
 END ;
 RETURN com
 END ThisCommand;

 PROCEDURE unload(mod: Module; all: BOOLEAN);
 VAR p: LONGINT; k: INTEGER;
 imp: Module;
 BEGIN p := mod.IB;
 WHILE p < mod.LB DO (*scan imports*)
 SYSTEM.GET(p, k); imp := SYSTEM.VAL(Module, LONG(k));
 IF imp # NIL THEN
 DEC(imp.refcnt);
 IF all & (imp.refcnt = 0) THEN unload(imp, all) END
 END ;
 INC(p, 2)
 END ;
 Kernel.FreeBlock(SYSTEM.VAL(LONGINT, mod))
 END unload;

 PROCEDURE Free*(name: ARRAY OF CHAR; all: BOOLEAN);
 VAR mod: Module;
 BEGIN mod := SYSTEM.VAL(Module, Kernel.ModList);
 LOOP
 IF mod = NIL THEN res := 1; EXIT END ;
 IF name = mod.name THEN
 IF mod.refcnt = 0 THEN unload(mod, all); res := 0 ELSE res := 2 END ;
 EXIT
 END ;
 mod := mod.link
 END
 END Free;
 BEGIN
 IF Kernel.err = 0 THEN loop := ThisCommand(ThisMod("Oberon"), "Loop") END ;
 loop
END Modules.

The frequent use of the low-level procedures SYSTEM.GET and SYSTEM.PUT is easily justified in
base modules such as the loader or device drivers. After all, here data are transferred into untyped main
storage.

 152

The object file consists of several sections, each of which is headed by an identification byte (see Sect.
6.5). These bytes are used as a check against corrupted files. A mismatch between read and expected
check byte leads to an abortion of the loading process. The cause of the termination is recorded in the
global variable res with the following values:

0 loading completed
1 object file not available
2 referenced file is not an object file or is of wrong version
3 key mismatch
4 corrupted object file
5 command not found

When an error is detected, the names of the modules involved are recorded in the (exported) variables
imported and importing.

Procedure ThisCommand yields the procedure descriptor for the specified command by performing a
linear search of the specified module's command table.

When a module is no longer needed, it should be possible to unload it; and when it is to be replaced by
a new, perhaps corrected version, it must be unloaded. Obviously, in a hierarchy of modules, no
module must be removed before its clients are removed. A procedure for unloading must therefore
ensure that no clients exist.

For this purpose, each module descriptor is given a reference count. The field refcnt is initialized to
zero when a module is loaded, and incremented each time the module is imported by a newly loaded
client. Procedure Free checks whether or not this count is zero. Its parameter all indicates whether only
the specified module is to be unloaded, or the process is to be transitive, i.e. applied to all its imports,
too. Hence Free, or rather the local procedure unload, is recursive. We emphasize that unloading is
never automatic, but must be explicitly requested by the system's user. The global variable res records
the result of unloading:

0: unloading completed
1: module is not loaded
2: cannot be unloaded, because clients exist

Unloading a module is a tricky operation. One must make sure that no references to the unloaded
module exist in the remaining modules and data structures. Unfortunately, this is not at all easy and is
not guaranteed in the Oberon System. The violating culprits are procedure variables. If a procedure of
a module A is assigned to a variable of a module B, and if A is unloaded, the procedure variable holds
a dangling reference to the unloaded module's code block. In systems with virtual addressing (Ceres-1
and Ceres-2), the problem is solved by never reusing code addresses, i.e. by strictly sequential
allocation in virtual address space. A dangling reference then points to a not allocated page, causing an
address (NIL) trap when used. The situation is unsatisfactory, however, when code space is reused
(Ceres-3).

6.4. The Toolbox of the Loader
User commands directed to the loader are contained in module System. The box comprises the
following three commands:

System.ShowModules
System.ShowCommands modname
System.Free {modname} ~

The first command opens a viewer and provides a list of all loaded modules. The list indicates the
block length and the number of clients importing a module (the reference count).
System.ShowCommands opens a viewer and lists the commands provided by the specified module.
The commands are prefixed by the module name, and hence can immediately be activated by a mouse
click. System.Free is called in order to remove modules either to regain storage space or to replace a
module by a newly compiled version.

 153

PROCEDURE ShowModules*;
 VAR T: Texts.Text;
 V: Viewers.Viewer;
 M: Modules.Module;
 X, Y: INTEGER;
BEGIN T := TextFrames.Text("");
 Oberon.AllocateSystemViewer(Oberon.Par.vwr.X, X, Y);
 logV := MenuViewers.New(TextFrames.NewMenu("System.ShowModules", StandardMenu),
 TextFrames.NewText(T, 0), TextFrames.menuH, X, Y);
 M := SYSTEM.VAL(Modules.Module, Kernel.ModList);
 WHILE M # NIL DO
 Texts.WriteString(W, M.name); Texts.WriteInt(W, M.size, 8);
 Texts.WriteInt(W, M.refcnt, 4); Texts.WriteLn(W); M := M.link
 END;
 Texts.Append(T, W.buf)
END ShowModules;

PROCEDURE ShowCommands*;
 VAR M: Modules.Module;
 comadr, beg, end, time: LONGINT; ch: CHAR;
 T: Texts.Text;
 S: Texts.Scanner;
 V: Viewers.Viewer;
 X, Y: INTEGER;
BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
 IF (S.class = Texts.Char) & (S.c = "^") THEN
 Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN Texts.OpenScanner(S, T, beg); Texts.Scan(S) END
 END ;
 IF S.class = Texts.Name THEN
 M := Modules.ThisMod(S.s);
 IF M # NIL THEN comadr := M.CB;
 Oberon.AllocateSystemViewer(Oberon.Par.vwr.X, X, Y); T := TextFrames.Text("");
 V := MenuViewers.New(TextFrames.NewMenu("System.Commands", StandardMenu),
 TextFrames.NewText(T, 0), TextFrames.menuH, X, Y);
 LOOP SYSTEM.GET(comadr, ch); INC(comadr);
 IF ch = 0X THEN EXIT END ;
 Texts.WriteString(W, S.s); Texts.Write(W, ".");
 REPEAT Texts.Write(W, ch); SYSTEM.GET(comadr, ch); INC(comadr)
 UNTIL ch = 0X;
 Texts.WriteLn(W); INC(comadr, 2)
 END ;
 Texts.Append(T, W.buf)
 END
 END
END ShowCommands;

PROCEDURE Free1(VAR S: Texts.Scanner);
BEGIN Texts.WriteString(W, S.s); Texts.WriteString(W, " unloading");
 Texts.Append(Oberon.Log, W.buf);
 IF S.nextCh # "*" THEN Modules.Free(S.s, FALSE)
 ELSE Modules.Free(S.s, TRUE); Texts.Scan(S); Texts.WriteString(W, " all")
 END;
 IF Modules.res # 0 THEN Texts.WriteString(W, " failed") END;
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
END Free1;

 154

PROCEDURE Free*;
 VAR T: Texts.Text;
 V: Viewers.Viewer;
 beg, end, time: LONGINT;
BEGIN Texts.WriteString(W, "System.Free"); Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf);
 Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
 WHILE S.class = Texts.Name DO Free1(S); Texts.Scan(S) END ;
 IF (S.class = Texts.Char) & (S.c = "^") THEN
 Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN Texts.OpenScanner(S, T, beg); Texts.Scan(S);
 IF S.class = Texts.Name THEN Free1(S) END
 END
 END
END Free;

6.5. The Oberon Object File Format
An object file consists of a sequence of blocks, containing the various data to be loaded as described in
the preceding sections of this chapter. The file starts with an identification byte (F8), marking the file
to be an object file, and each block is headed by an identification byte. The header block contains the
module's name and key, and the number of items in the subsequent blocks. The syntax of object files is
the following:

Object File = HeaderBlock EntryBlock CommandBlock PointerBlock ImportBlock
 LinkBlock DataBlock CodeBlock TypeBlock [ReferenceBlock].
HeaderBlock = 0F8X versionCode refBlkPos:4 nofEntries:2 comSize:2 nofPtrs:2 nofImps:2
 nofLinks:2 varSize:4 codeSize:2 key:4 Name.
Entry Block = 82X {entryAdr:2}.
CommandBlock = 83X {Name entryAdr:2} 0X [0X].
PointerBlock = 84X {pointerOffset:2}.
ImportBlock = 85X {key:4 Name 0X}.
LinkBlock = 86X {procNumber moduleNumber}.
DataBlock = 87X {byte}.
CodeBlock = 88X {byte}.
TypeBlock = 89X {tdsize:2 tdadr:2 {byte}}.
ReferenceBlock = 8AX {ProcRef}.
ProcRef = 0F8X entryAdr:2 Name {LocalRef}.
LocalRef = mode form adr:4 Name.
Name = {byte} 0X.

For terminal symbols a suffix :n denotes the number of bytes used (unless it is 1).

The reference block at the end of the file is ignored by the loader, but used by the error trap routine in
order to list the values of local variables at the time of the trap. For further details see procedure Trap
in Sect. 12.9. The header block contains a reference to this block in order to allow the trap routine to
swiftly position its reader.

 155

Copyright N.Wirth, 15.4.91 / 9.11.91

7. The File System
7.1 Files
It is essential that a computer system has a facility for storing data over longer periods of time and for
retrieving the stored data. Such a facility is called a file system. Evidently, a file system cannot
accommodate all possible data types and structures that will be programmed in the future. Hence, it is
necessary to provide a simple, yet flexible enough base structure that allows any data structure to be
mapped onto this base structure (and vice-versa) in a reasonably straight-forward and efficient way.
This base structure, called file, is a sequence of bytes. As a consequence, any given structure to be
transformed into a file must be sequentialized. The notion of sequence is indeed fundamental, and it
requires no further explanation and theory. We recall that texts are sequences of characters, and that
characters are typically represented as bytes.

The sequence is also the natural abstraction of all physically moving storage media. Among them are
magnetic tapes and disks. Magnetic media have the welcome property of non-volatility and are
therefore the primary choices for storing data over longer periods of time, especially over periods
where the equipment is switched off.

A further advantage of the sequence is that its transmission between media is simple too. The reason is
that its structural information is inherent and need not be encoded and transmitted in addition to the
actual data. This implicitness of structural information is particularly convenient in the case of moving
storage media, because they impose strict timing constraints on transmission of consecutive elements.
Therefore, the process which generates (or consumes) the data must be effectively decoupled from the
transmission process that observes the timing constraints. In the case of sequences, this decoupling is
simple to achieve by dividing a sequence into subsequences which are buffered. A sequence is output
to the storage medium by alternately generating data (and filling the buffer holding the current
subsequence) and transmitting data (fetching elements from the buffer and transmitting them). The size
of the subsequences (and the buffer) depends on the storage medium under consideration: there must
be no timing constraints between accesses to consecutive subsequences.

The file is not a static data structure like the array or the record, because the length may increase
dynamically, i.e. during program execution. On the other hand, the sequence is less flexible than
general dynamic structures, because it cannot change its form, but only its length, since elements can
only be appended but not inserted. It might therefore be called a semi-dynamic structure.

The discipline of purely sequential access to a file is enforced by restricting access to calls of specific
procedures, typically read and write procedures for scanning and generating a file. In the jargon of data
processing, a file must be opened before reading or writing is possible. The opening implies the
initialization of a reading and writing mechanism, and in particular the fixing of its initial position.
Hence each (opened) file not only has a value and a length, but also a position attributed to it. If
reading must occur from several positions (still sequentially) alternately, the file is "multiply opened";
it implies that the same file is represented by several variables, each denoting a different position.

This widespread view of files is conceptually unappealing, and the Oberon file system therefore
departs from it by introducing the notion of a rider. A file simply has a value, the sequence of bytes,
and a length, the number of bytes in the sequence. Reading and writing occurs through a rider, which
denotes a position. "Multiple opening" is achieved by simply using several riders riding on the same
file. Thereby the two concepts of data structure (file) and access mechanism (rider) are clearly distinct
and properly disentangled.

Given a file f, a rider r is placed on a file by the call Files.Set (r, f, pos), where pos indicates the
position from which reading or writing is to start. Calls of Files.Read (r, x) and Files.Write (r, x)
implicitly increment the position beyond the element read or written, and the file is implicitly denoted
via the explicit parameter r, which denotes a rider. The rider has two (visible) attributes, namely r.eof
and r.res. The former is set to FALSE by Files.Set, and to TRUE when a read operation could not be

 156

performed, because the end of the file had been reached. r.res serves as a result variable in procedures
ReadBytes and WriteBytes allowing one to check for correct termination.

A file system must not only provide the concept of a sequence with its accessing mechanism, but also a
registry. This implies that files be identified, that they can be given a name by which they are
registered and retrieved. The registry or collection of registered names is called the file system's
directory. Here we wish to emphasize that the concepts of files as data structure with associated access
facilities on the one hand, and the concept of file naming and directory management on the other hand
must also be considered separately and as independent notions. In fact, in the Oberon system their
implementation underscores this separation by the existence of two modules: Files and FileDir. The
following procedures are made available. They are summarized by the interface specification
(definition) of module Files.

DEFINITION Files;
 IMPORT SYSTEM;
 TYPE File = POINTER TO Handle;
 Handle = RECORD END ;
 Rider = RECORD res: INTEGER; eof: BOOLEAN END ;

 PROCEDURE Old(name: ARRAY OF CHAR): File;
 PROCEDURE New(name: ARRAY OF CHAR): File;
 PROCEDURE Register(f: File);
 PROCEDURE Close(f: File);
 PROCEDURE Purge(f: File);
 PROCEDURE Length(f: File): LONGINT;
 PROCEDURE GetDate(f: File; VAR time, date: LONGINT);

 PROCEDURE Set(VAR r: Rider; f: File; pos: LONGINT);
 PROCEDURE Read(VAR r: Rider; VAR x: SYSTEM.BYTE);
 PROCEDURE ReadBytes(VAR r: Rider; VAR x: ARRAY OF SYSTEM.BYTE; n: LONGINT);
 PROCEDURE Write(VAR r: Rider; x: SYSTEM.BYTE);
 PROCEDURE WriteBytes(VAR r: Rider; VAR x: ARRAY OF SYSTEM.BYTE; n: LONGINT);
 PROCEDURE Pos(VAR r: Rider): LONGINT;
 PROCEDURE Base(VAR r: Rider): File;

 PROCEDURE Rename(old, new: ARRAY OF CHAR; VAR res: INTEGER);
 PROCEDURE Delete(name: ARRAY OF CHAR; VAR res: INTEGER);
END Files.

New(name) yields a new (empty) file without registering it in the directory. Old(name) retrieves the
file with the specified name, or yields NIL, if it is not found in the directory. Register(f) inserts the
name of f (specified in the call of New) in the directory. An already existing entry with this name is
replaced. Close(f) must be called after writing is completed and the file is not to be registered. Close
actually stands for "close buffers", and is implied in the procedure Register. Procedure Purge will be
explained at the end of section 7.2.

The sequential scan of a file f is programmed as shown in the following template:

f := Files.Old(name);
IF f # NIL THEN
 Files.Set (r, f, 0); Files.Read (r, x);
 WHILE ~ r.eof DO ... x ...; Files.Read(r, x) END
END

The analogous template for a purely sequential writing is:

f := Files.New(name); Files.Set(r, f, 0); ...
WHILE ... DO Files.Write (r, x); ... END
Files.Register(f)

 157

There exist two further procedures; they do not change any files, but only affect the directory.
Delete(name, res) causes the removal of the named entry from the directory. Rename(old, new, res)
causes the replacement of the directory entry old by new.

It may surprise the reader that these two procedures, which affect the directory only, are exported from
module Files instead of FileDir. The reason is that the presence of the two modules, together forming
the file system, is also used for separating the interface into a public and a private (or semi-public) part.
The definition (in the form of a symbol file) of FileDir is not intended to be freely available, but
restricted to use by system programmers. This allows the export of certain sensitive data, (such as file
headers) and sensitive procedures (such as Enumerate) without the danger of misuse by inadvertant
users.

Module Files constitutes a most important interface whose stability is utterly essential, because it is
used by almost every module programmed. During the entire time span of development of the Oberon
system, this interface had changed only once. We also note that this interface is very terse, a factor
contributing to its stability. Yet, the offered facilities have in practice over years proved to be both
necessary and sufficient.

7.2 Implementation of Files on a Random-Access Store
A file cannot be allocated as a block of contiguous storage locations, because its length is not fixed.
Neither can it be represented as a linked list of individual elements, because this would lead to
inefficient use of storage - more might be used for the links than the elements themselves. The solution
generally adopted is a compromise between the two extremes: files are represented as lists of blocks
(subsequently called sectors) of fixed length. A block is appended when the last one is filled. On the
average, each file therefore wastes half of a sector. Typical sector sizes are 0.5, 1, 2, or 4 Kbytes,
depending on the device used as store.

It immediately follows that access to an element is not as simple as in the case of an array. The primary
concern in the design of a file system and access scheme must be the efficiency of access to individual
elements while scanning the sequence, at least in the case when the next element lies within the same
sector. This access must be no more complicated than a comparison of two variables followed by an
indexed access to the file element and the incrementing of an address pointing to the element's
successor. If the successor lies in another sector, the procedure may be more involved, as transitions to
the next sector occur much less frequently.

The second most crucial design decision concerns the data structure in which sectors are organized; it
determines how a succeding sector is located. The simplest solution is to link sectors in a list. This is
acceptable if access is to be restricted to purely sequential scans. Although this would be sufficient for
most applications, it is unnecessarily restrictive for media other than purely sequential ones (tapes).
After all, it is sometimes practical to position a rider at an arbitrary point in the file rather than always
at its beginning. This is made possible by the use of an indexed sector table, typically stored as a
header in the file. The table is an array of the addresses of the file's data sectors. Unfortunately, the
length of the table needed is unknown. Choosing a fixed length for all files is controversial, because it
inevitably leads to either a limitation of file length (when chosen too small) that is unacceptable in
some applications, or to a large waste of file space (when chosen too large). Experience shows that in
practice most files are quite short, i.e. in the order of a few thousand bytes. The dilemma is avoided by
a two-level table, i.e. by using a table of tables.

The scheme chosen in Oberon is slightly more complex in order to favor short files (< 64 K bytes):
Each file header contains a table of 64 entries, each pointing to a 1K byte sector. Additionally, it
contains a table of 12 entries, the so-called extensions, each pointing to an index sector containing 256
further sector pointers. The file length is thereby limited to 64 + 12*256 sectors, or 3211264 bytes
(minus the length of the header). The chosen structure is illustrated in Fig. 7.1. sec[0] always points to
the sector containg the file header.

 158

sector 0

primary
sector
table

ext
table

data

ext sector 0

index
sector 0

points to
sectors
64 - 319

ext sector 1

index
sector 1

points to
sectors
320 - 575

points to sectors 0 - 63

Fig. 7.1. File header and extension sectors

The header contains some additional data, namely the length of the file (in bytes), its name, and date
and time of its creation. The size of the header is 352 bytes; the remaining 672 bytes of the first sector
are used for data. Hence, truly short files occupy a single sector only. The declaration of the file header
is contained in the definition of module FileDir. An abbreviated version containing the fields relevant
so far is:

FileHeader = RECORD
 leng: LONGINT;
 ext: ARRAY 12 OF SectorPointer;
 sec: ARRAY 64 OF SectorPointer
END

We now turn our attention to the implementation of file access, and first present a system that uses
main storage for the file data instead of a disk and therefore avoids the problems introduced by sector
buffering. The key data structure in this connection is the Rider, represented as a record.

Rider = RECORD
 pos: LONGINT;
 file: File;
 adr: LONGINT
END

A rider is initialised by a call Set(r, f, pos), which places the rider r on file f at position pos. From this it
is clear that the rider record must contain fields denoting the attached file and the rider's position on it.
We note that they are not exported. However, their values can be obtained by the function procedures
Pos(r) and Base(r). This allows a (hidden) representation most appropriate for an efficient
implementation of Read and Write without being unsafe.

Consider now the call Read(r, x); its task is to assign the value of the byte designated by the rider's
position to x and to advance the position to the next byte. Considering the structure by which file data
are represented, we easily obtain the following program, assuming that the position is legal, i.e. non-
negative and less than the file's length. a, b, c are local variables, HS is the size of the header (in sector
0), SS is the sector size, typically a power of 2 in order to make division efficient.

a := (r.pos + HS) DIV SS; b := (r.pos + HS) MOD SS;
IF a < 64 THEN c := r.file.sec[a]
ELSE c := r.file.ext[(a - 64) DIV 256].sec[(a - 64) MOD 256]
END ;
SYSTEM.GET(c + b, x) ; INC (r.pos)

 159

In order to gain efficiency, we use the low-level procedure GET that assigns the value at address c+b
to x. This program is reasonably short, but involves considerable address computations at every access,
and in particular at positions larger than 64 * SS. Fortunately, there exists an easy remedy, namely that
of caching the address of the current position. This explains the presence of the field adr in the rider
record. The resulting program is shown below; note that in order to avoid the addition of HS, pos is
defined to denote the genuine position, i.e. the abstract position augmented by HS.

SYSTEM.GET(r.adr, x); INC(r.adr); INC(r.pos);
IF r.pos MOD SS = 0 THEN
 m := r.pos DIV SS;
 IF m < 64 THEN r.adr := r.file.sec[m]
 ELSE r.adr := r.file.ext[(m - 64) DIV 256].sec[(m - 64) MOD 256]
 END
END

We emphasize that in all but one out of 1024 cases only three instructions and a single test are to be
executed. This improvement therefore is crucial to the efficiency of file access, and to that of the entire
Oberon System. We now present the entire file module.

MODULE MFiles; (*NW 24.8.90 / 12.10.90*)
 IMPORT SYSTEM, Kernel, FileDir;

 (*A file consists of a sequence of sectors. The first sector contains the header.
 Part of the header is the sector table, an array of addresses to the sectors.
 A file is referenced through riders each of which indicates a position.*)

 CONST
 HS = FileDir.HeaderSize;
 SS = FileDir.SectorSize;
 STS = FileDir.SecTabSize;
 XS = FileDir.IndexSize;

 TYPE File* = POINTER TO Header;
 Index = POINTER TO FileDir.IndexSector;

 Rider* =
 RECORD eof*: BOOLEAN;
 res*: LONGINT;
 file: File;
 pos: LONGINT;
 unused: File;
 adr: LONGINT;
 END ;

 Header =
 RECORD mark: LONGINT;
 name: FileDir.FileName;
 len, time, date: LONGINT;
 ext: ARRAY FileDir.ExTabSize OF Index;
 sec: FileDir.SectorTable
 END ;

 PROCEDURE Old*(name: ARRAY OF CHAR): File;
 VAR head: LONGINT;
 namebuf: FileDir.FileName;
 BEGIN COPY(name, namebuf);
 FileDir.Search(namebuf, head); RETURN SYSTEM.VAL(File, head)
 END Old;

 PROCEDURE New*(name: ARRAY OF CHAR): File;
 VAR f: File; head: LONGINT;

 160

 BEGIN f := NIL; Kernel.AllocSector(0, head);
 IF head # 0 THEN
 f := SYSTEM.VAL(File, head); f.mark := FileDir.HeaderMark;
 f.len := HS; COPY(name, f.name);
 Kernel.GetClock(f.time, f.date); f.sec[0] := head
 END ;
 RETURN f
 END New;

 PROCEDURE Register*(f: File);
 BEGIN
 IF (f # NIL) & (f.name[0] > 0X) THEN FileDir.Insert(f.name, f.sec[0]) END ;
 END Register;

 PROCEDURE Length*(f: File): LONGINT;
 BEGIN RETURN f.len - HS
 END Length;

 PROCEDURE GetDate*(f: File; VAR t, d: LONGINT);
 BEGIN t := f.time; d := f.date
 END GetDate;

 PROCEDURE Set*(VAR r: Rider; f: File; pos: LONGINT);
 VAR m: INTEGER; n: LONGINT;
 BEGIN r.eof := FALSE; r.res := 0; r.unused := NIL;
 IF f # NIL THEN
 IF pos < 0 THEN r.pos := HS
 ELSIF pos > f.len-HS THEN r.pos := f.len
 ELSE r.pos := pos+HS
 END ;
 r.file := f; m := SHORT(r.pos DIV SS); n := r.pos MOD SS;
 IF m < STS THEN r.adr := f.sec[m] + n
 ELSE r.adr := f.ext[(m-STS) DIV XS].x[(m-STS) MOD XS] + n
 END
 END
 END Set;

 PROCEDURE Read*(VAR r: Rider; VAR x: SYSTEM.BYTE);
 VAR m: INTEGER;
 BEGIN
 IF r.pos < r.file.len THEN
 SYSTEM.GET(r.adr, x); INC(r.adr); INC(r.pos);
 IF r.adr MOD SS = 0 THEN
 m := SHORT(r.pos DIV SS);
 IF m < STS THEN r.adr := r.file.sec[m]
 ELSE r.adr := r.file.ext[(m-STS) DIV XS].x[(m-STS) MOD XS]
 END
 END
 ELSE x := 0X; r.eof := TRUE
 END
 END Read;

 PROCEDURE ReadBytes*(VAR r: Rider; VAR x: ARRAY OF SYSTEM.BYTE; n: LONGINT);
 VAR src, dst, m: LONGINT; k: INTEGER;
 BEGIN m := r.pos - r.file.len + n;
 IF m > 0 THEN DEC(n, m); r.res := m; r.eof := TRUE END ;
 src := r.adr; dst := SYSTEM.ADR(x); m := (-r.pos) MOD SS;
 LOOP
 IF n <= 0 THEN EXIT END ;

 161

 IF n <= m THEN SYSTEM.MOVE(src, dst, n); INC(r.pos, n); r.adr := src+n; EXIT END ;
 SYSTEM.MOVE(src, dst, m); INC(r.pos, m); INC(dst,m); DEC(n, m);
 k := SHORT(r.pos DIV SS); m := SS;
 IF k < STS THEN src := r.file.sec[k]
 ELSE src := r.file.ext[(k-STS) DIV XS].x[(k-STS) MOD XS]
 END
 END
 END ReadBytes;

 PROCEDURE Write*(VAR r: Rider; x: SYSTEM.BYTE);
 VAR k, m, n: INTEGER; ix: LONGINT;
 BEGIN
 IF r.pos < r.file.len THEN
 m := SHORT(r.pos DIV SS); INC(r.pos);
 IF m < STS THEN r.adr := r.file.sec[m]
 ELSE r.adr := r.file.ext[(m-STS) DIV XS].x[(m-STS) MOD XS]
 END
 ELSE
 IF r.adr MOD SS = 0 THEN
 m := SHORT(r.pos DIV SS);
 IF m < STS THEN Kernel.AllocSector(0, r.adr); r.file.sec[m] := r.adr
 ELSE n := (m-STS) DIV XS; k := (m-STS) MOD XS;
 IF k = 0 THEN (*new index*)
 Kernel.AllocSector(0, ix); r.file.ext[n] := SYSTEM.VAL(Index, ix)
 END ;
 Kernel.AllocSector(0, r.adr); r.file.ext[n].x[k] := r.adr
 END
 END ;
 INC(r.pos); r.file.len := r.pos
 END ;
 SYSTEM.PUT(r.adr, x); INC(r.adr)
 END Write;

 PROCEDURE WriteBytes*(VAR r: Rider;
 VAR x: ARRAY OF SYSTEM.BYTE; n: LONGINT);
 VAR src, dst, m, ix: LONGINT;
 k, lim, h0, h1: INTEGER;
 BEGIN src := SYSTEM.ADR(x); dst := r.adr; m := (-r.pos) MOD SS;
 lim := SHORT(r.file.len DIV SS);
 LOOP
 IF n <= 0 THEN EXIT END ;
 IF m = 0 THEN
 k := SHORT(r.pos DIV SS); m := SS;
 IF k > lim THEN
 Kernel.AllocSector(0, dst);
 IF k < STS THEN r.file.sec[k] := dst
 ELSE h1 := (k-STS) DIV XS; h0 := (k-STS) MOD XS;
 IF h0 = 0 THEN (*new extension index*)
 Kernel.AllocSector(0, ix); r.file.ext[h1] := SYSTEM.VAL(Index, ix)
 END ;
 r.file.ext[h1].x[h0] := dst
 END
 ELSIF k < STS THEN dst := r.file.sec[k]
 ELSE dst := r.file.ext[(k-STS) DIV XS].x[(k-STS) MOD XS]
 END ;
 END ;
 IF n < m THEN

 162

 SYSTEM.MOVE(src, dst, n); INC(r.pos, n); r.adr := dst + n;
 IF r.pos >= r.file.len THEN r.file.len := r.pos END ;
 EXIT
 END ;
 SYSTEM.MOVE(src, dst, m); INC(r.pos, m);
 IF r.pos >= r.file.len THEN r.file.len := r.pos END ;
 INC(src, m); DEC(n, m); m := 0
 END
 END WriteBytes;

 PROCEDURE Pos*(VAR r: Rider): LONGINT;
 BEGIN RETURN r.pos - HS
 END Pos;

 PROCEDURE Base*(VAR r: Rider): File;
 BEGIN RETURN r.file
 END Base;

END MFiles.

Allocation of a new sector occurs upon creating a file (Files.New), and when writing at the end of a file
after the current sector had been filled. Procedure AllocSector yields the address of the allocated sector.
It is determined by a search in the sector reservation table for a free sector. In this table, every sector is
represented by a single bit indicating whether or not the sector is allocated. Although conceptually
belonging to the file system, this table resides within module Kernel, because for safety reasons it is
write-protected in user mode.

Deallocation of a file's sectors could occur as soon as the file is no longer accessible, neither through a
variable of any loaded module nor from the file directory. However, this moment is difficult to
determine. Therefore, the method of garbage collection is used in Oberon for the deallocation of file
space. In consideration of the fact that file space is large and sector garbage collection relatively time-
consuming, we confine this process to system initialization. It is represented by procedure FileDir.Init.
At that time, the only referenced files are those registered in the directory. Init therefore scans the
entire directory and records the sectors referenced in each file in the sector reservation table (see Sect.
7.4).

For applications where system initialization is supposed to occur very infrequently, such as for server
systems, a procedure Files.Purge is provided. Its effect is to return the sectors used by the specified file
to the pool of free sectors. Evidently, the programmer then bears the responsibility to guarantee that no
references to the purged file continue to exist. This may be possible in a closed server system, but files
should not be purged under normal circumstances, as a violation of said precondition will lead to
unpredictable disaster.

The following procedures used for allocating, deallocating, and marking sectors in the sector
reservation table are defined in module Kernel:

PROCEDURE AllocSector(hint: LONGINT; VAR sec: LONGINT); (*used in Write*)
PROCEDURE MarkSector(sec: LONGINT); (*used in Init*)
PROCEDURE FreeSector(sec: LONGINT); (*used in Purge*)

Procedure ReadBytes and WriteBytes are provided for fast transfer of sequences of bytes. The
increased speed is obtained through the use of block move instructions. In the case of ReadBytes, the
result field r.res indicates the number of bytes requested but not delivered. It is greater than zero only if
the end of the file had been reached; r.res > 0 implies r.eof. A measure of the gain in speed is indicated
by the following data. A file of 32K bytes read sequentially by (32000 calls of) Read(r, ch) takes about
0,25 s (on Ceres-3 using RAM for "disk"-sectors). The same file read in blocks of 1K bytes using
ReadBytes(r, block, 1024) takes only about 0.013 s. This amounts to a speedup factor of 18, which is
very significant.

 163

7.3 Implementation of Files on a Disk
First we recall that the organization of files as sets of individually allocated blocks (sectors) is
inherently required by the allocation considerations of dynamically growing sequences. However, if
the storage medium is a tape or a disk, there exists an additional reason for the use of blocks. They
constitute the subsequences to be individually buffered for transmission in order to overcome the
timing constraints imposed by the medium. If an adequate space utilization is to be achieved, the
blocks must not be too long. A typical size is 1, 2, or 4K bytes.

This necessity of buffering has a profound influence on the implementation of file access. The
complication arises because the abstraction of the sequence of individual bytes needs to be maintained.
The increase in complexity of file access is considerable, as can be seen by comparing the program
listings of the two respective implementations.

The first, obvious measure is to copy the file's sector table into primary store when a file is "opened"
through a call of New() or Old(). The record holding this copy is the file descriptor (called handle), and
the value f denoting the file points to this handle (instead of the actual header on disk). The descriptor
also contains the remaining information stored in the header, in particular the file's length.

If a file is read (or written) in purely sequential manner, a single buffer is appropriate for the transfer of
data. For reading, the buffer is filled by reading a sector from the disk, and bytes are picked up
individually from the buffer. For writing, bytes are deposited individually, and the buffer is written
onto disk as a whole when full. The buffer is associated with the file, and a pointer to it is contained in
the descriptor.

However, we recall that several riders may be placed on a file and be moved independently. It might be
appealing to associate a buffer with each rider. But this proposal must quickly be rejected when we
realize that several riders may be active at neighbouring positions. If these positions refer to the same
sector, which is duplicated in the riders' distinct buffers, the buffers may easily become inconsistent.
Obviously, buffers must not be associated with riders, but with the file itself. The descriptor therefore
contains the head of a list of linked buffers. Each buffer is identified by its position in the file. An
invariant of the system is that no two buffers represent the same sector.

Even with the presence of a single rider, the possibility of having several buffers associated with a file
can be advantageous, if a rider is frequently repositioned. It becomes a question of strategy and
heuristics when to allocate a new buffer. In the Oberon system, we have adopted the following
solution:

1. The first buffer is created when the file is opened (New, Old).
2. Additional buffers may be allocated when a rider is placed (or repositioned) on the file.
3. At most four buffers are connected to the same file.
4. Purely sequential movements of riders do not cause allocation of buffers.
5. Separate buffers are generated when extensions of the file's sector table need be accessed (rider

position > 64K). Each buffers the 256 sector addresses of the respective index sector.

The outlined scheme requires and is based upon the following data structures and types:

File = POINTER TO Handle;
Buffer = POINTER TO BufferRecord;
Index = POINTER TO IndexRecord;

Handle = RECORD next: File;
 aleng, bleng: INTEGER; (*file length*)
 nofbufs: INTEGER; (*no. of buffers allocated*)
 modH: BOOLEAN; (*header has been modified*)
 firstbuf:Buffer: (*head of buffer chain*)
 sechint: DiskAdr; (*sector hint*)
 name: FileDir.FileName;
 time, date: LONGINT;
 ext: ARRAY FileDir.ExTabSize OF Index;

 164

 sec: ARRAY 64 OF DiskAdr
 END;

BufferRecord = RECORD apos, lim: INTEGER; (*lim = no. of bytes*)
 mod: BOOLEAN; (*buffer has been modified*)
 next: Buffer; (*buffer chain*)
 data: FileDir.DataSector
 END;

IndexRecord = RECORD adr: DiskAdr;
 mod: BOOLEAN; (*index record has been modified*)
 sec: FileDir.IndexSector
 END;

Rider = RECORD eof: BOOLEAN; (*end of file reached*)
 res: LONGINT; (*no. of unread bytes*)
 file: File;
 apos, bpos: INTEGER; (*position*)
 buf: Buffer (*hint: likely buffer*)
 END ;

In order to increase efficiency of access, riders have been provided with a field containing the address
of the element of the rider's position. From the conditions stated above for the allocation of buffers, it
is evident that the value of this field can be a hint only. This implies that there can be no reliance on its
information. Whenever it is used, its validity has to be checked. The check consists in a comparison of
the riders' position r.apos with the hinted buffer's actual position r.buf.apos. If they differ, a buffer with
the desired position must be searched and, if not present, allocated. The advantage of the hint lies in the
fact that the hint is correct with a very high probability. The check is included in procedures Read,
ReadBytes, Write, and WriteBytes.

Some fields of the record types require additional explanations:

1. The length is stored in a "preprocessed" form, namely by the two integers aleng and bleng such that
aleng is a sector number and

length = (aleng * SS) + bleng - HS
aleng = (length + HS) DIV SS
bleng = (length + HS) MOD SS

The same holds for the form of the position in riders (apos, bpos).

2. The field nofbufs indicates the number of buffers in the list headed by firstbuf:

1 <= nofbufs <= Maxbufs.

3. Whenever data are written into a buffer, the file becomes inconsistent, i.e. the data on the disk are
outdated. The file is updated, i.e. the buffer is copied into the corresponding disk sector, whenever the
buffer is reallocated, e.g. during sequential writing after the buffer is full and is "advanced". During
sequential reading, a buffer is also advanced and reused, but needs not be copied onto disk, because it
is still consistent. Whether a buffer is consistent or not is indicated by its state variable mod (modified).
Similarly, the field modH in the file descriptor indicates whether or not the header had been modified.

4. The field sechint records the number of the last sector allocated to the file and serves as a hint to the
kernel's allocation procedure, which allocates a next sector with an address larger than the hint. This is
a measure to gain speed in sequential scans.

5. The buffer's position is specified by its field apos. Used as index in the file header's sector table, it
yields the sector corresponding to the current buffer contents. The field lim specifies the number of
bytes s stored in the buffer. Reading cannot proceed beyond this limiting index; writing beyond it
implies an increase in the file's length. All buffers except the one for the last sector are filled and
specify lim = SS.

 165

File Handle

primary
sector
table

length

nofbufs

firstbuf

date

Rider

Buffer

file

pos

buf

next

apos

lim

data

Rider

Buffer

file

pos

buf

next = NIL

apos

lim

data

f

Fig. 7.2. File f with two riders and two buffers

6. The hidden rider field buf is merely a hint to speed up localization of the concerned buffer. A hint is
likely, but not guaranteed to be correct. Its validity must be checked before use. The buffer hint is
invalidated when a buffer is reallocated and/or a rider is repositioned.

The structure of riders remains practically the same as for files using main store. The hidden field adr
is merely replaced by a pointer to the buffer covering the rider's position. A configuration of a file f
with two riders is shown in Fig 7.2.

MODULE Files; (*NW 11.1.86 / 22.1.91*)
 IMPORT SYSTEM, Kernel, FileDir;

 (*A file consists of a sequence of pages. The first page contains the header.
 Part of the header is the page table, an array of disk addresses to the pages.
 A file is referenced through riders each of which indicate a position.*)

CONST MaxBufs = 4;
 HS = FileDir.HeaderSize;
 SS = FileDir.SectorSize;
 STS = FileDir.SecTabSize;
 XS = FileDir.IndexSize;

 TYPE DiskAdr = LONGINT;
 File* = POINTER TO Handle;
 Buffer = POINTER TO BufferRecord;
 FileHd = POINTER TO FileDir.FileHeader;
 Index = POINTER TO IndexRecord;

 Rider* =
 RECORD eof*: BOOLEAN;
 res*: LONGINT;
 file: File;
 apos, bpos: INTEGER;
 buf: Buffer;
 unused: LONGINT
 END ;

 Handle =
 RECORD next: File;
 aleng, bleng: INTEGER;
 nofbufs: INTEGER;
 modH: BOOLEAN;
 firstbuf: Buffer;

 166

 sechint: DiskAdr;
 name: FileDir.FileName;
 time, date: LONGINT;
 unused: ARRAY 1 OF LONGINT;
 ext: ARRAY FileDir.ExTabSize OF Index;
 sec: FileDir.SectorTable
 END ;

 BufferRecord =
 RECORD apos, lim: INTEGER;
 mod: BOOLEAN;
 next: Buffer;
 data: FileDir.DataSector
 END ;

 IndexRecord =
 RECORD adr: DiskAdr;
 mod: BOOLEAN;
 sec: FileDir.IndexSector
 END ;

 (*aleng * SS + bleng = length (including header)
 apos * SS + bpos = current position
 0 <= bpos <= lim <= SS
 0 <= apos <= aleng < PgTabSize
 (apos < aleng) & (lim = SS) OR (apos = aleng) *)

 VAR root: File; (*list of open files*)

 PROCEDURE Check(VAR s: ARRAY OF CHAR;
 VAR name: FileDir.FileName; VAR res: INTEGER);
 VAR i: INTEGER; ch: CHAR;
 BEGIN ch := s[0]; i := 0;
 IF ("A" <= CAP(ch)) & (CAP(ch) <= "Z") THEN
 LOOP name[i] := ch; INC(i); ch := s[i];
 IF ch = 0X THEN
 WHILE i < FileDir.FnLength DO name[i] := 0X; INC(i) END ;
 res := 0; EXIT
 END ;
 IF ~(("A" <= CAP(ch)) & (CAP(ch) <= "Z")
 OR ("0" <= ch) & (ch <= "9") OR (ch = ".")) THEN res := 3; EXIT
 END ;
 IF i = FileDir.FnLength THEN res := 4; EXIT END ;
 END
 ELSIF ch = 0X THEN name[0] := 0X; res := -1
 ELSE res := 3
 END
 END Check;

 PROCEDURE Old*(name: ARRAY OF CHAR): File;
 VAR i, k, res: INTEGER;
 f: File;
 header: DiskAdr;
 buf: Buffer;
 head: FileHd;
 namebuf: FileDir.FileName;
 inxpg: Index;
 BEGIN f := NIL; Check(name, namebuf, res);
 IF res = 0 THEN

 167

 FileDir.Search(namebuf, header);
 IF header # 0 THEN f := root;
 WHILE (f # NIL) & (f.sec[0] # header) DO f := f.next END ;
 IF f = NIL THEN
 NEW(buf); buf.apos := 0; buf.next := buf; buf.mod := FALSE;
 head := SYSTEM.VAL(FileHd, SYSTEM.ADR(buf.data));
 Kernel.GetSector(header, head^);
 NEW(f); f.aleng := head.aleng; f.bleng := head.bleng;
 f.time := head.time; f.date := head.date;
 IF f.aleng = 0 THEN buf.lim := f.bleng ELSE buf.lim := SS END ;
 f.firstbuf := buf; f.nofbufs := 1; f.name[0] := 0X;
 f.sec := head.sec;
 k := (f.aleng + (XS-STS)) DIV XS; i := 0;
 WHILE i < k DO
 NEW(inxpg); inxpg.adr := head.ext[i]; inxpg.mod := FALSE;
 Kernel.GetSector(inxpg.adr, inxpg.sec); f.ext[i] := inxpg; INC(i)
 END ;
 WHILE i < FileDir.ExTabSize DO f.ext[i] := NIL; INC(i) END ;
 f.sechint := header; f.modH := FALSE; f.next := root; root := f
 END
 END
 END ;
 RETURN f
 END Old;

 PROCEDURE New*(name: ARRAY OF CHAR): File;
 VAR i, res: INTEGER;
 f: File;
 header: DiskAdr;
 buf: Buffer;
 head: FileHd;
 namebuf: FileDir.FileName;
 BEGIN f := NIL; Check(name, namebuf, res);
 IF res <= 0 THEN
 NEW(buf); buf.apos := 0; buf.mod := FALSE; buf.lim := HS; buf.next := buf;
 head := SYSTEM.VAL(FileHd, SYSTEM.ADR(buf.data));
 head.mark := FileDir.HeaderMark;
 head.aleng := 0; head.bleng := HS; head.name := namebuf;
 Kernel.GetClock(head.time, head.date);
 NEW(f); f.aleng := 0; f.bleng := HS; f.modH := TRUE;
 f.time := head.time; f.date := head.date;
 f.firstbuf := buf; f.nofbufs := 1; f.name := namebuf; f.sechint := 0;
 i := 0;
 REPEAT f.ext[i] := NIL; head.ext[i] := 0; INC(i) UNTIL i = FileDir.ExTabSize;
 i := 0;
 REPEAT f.sec[i] := 0; head.sec[i] := 0; INC(i) UNTIL i = STS
 END ;
 RETURN f
 END New;

 PROCEDURE UpdateHeader(f: File; VAR h: FileDir.FileHeader);
 VAR k: INTEGER;
 BEGIN h.aleng := f.aleng; h.bleng := f.bleng;
 h.sec := f.sec; k := (f.aleng + (XS-STS)) DIV XS;
 WHILE k > 0 DO DEC(k); h.ext[k] := f.ext[k].adr END
 END UpdateHeader;
 PROCEDURE ReadBuf(f: File; buf: Buffer; pos: INTEGER);

 168

 VAR sec: DiskAdr;
 BEGIN
 IF pos < STS THEN sec := f.sec[pos]
 ELSE sec := f.ext[(pos-STS) DIV XS].sec.x[(pos-STS) MOD XS]
 END ;
 Kernel.GetSector(sec, buf.data);
 IF pos < f.aleng THEN buf.lim := SS ELSE buf.lim := f.bleng END ;
 buf.apos := pos; buf.mod := FALSE
 END ReadBuf;

 PROCEDURE WriteBuf(f: File; buf: Buffer);
 VAR i, k: INTEGER;
 secadr: DiskAdr; inx: Index;
 BEGIN
 IF buf.apos < STS THEN
 secadr := f.sec[buf.apos];
 IF secadr = 0 THEN
 Kernel.AllocSector(f.sechint, secadr);
 f.modH := TRUE; f.sec[buf.apos] := secadr; f.sechint := secadr
 END ;
 IF buf.apos = 0 THEN
 UpdateHeader(f, SYSTEM.VAL(FileDir.FileHeader, buf.data)); f.modH := FALSE
 END
 ELSE i := (buf.apos - STS) DIV XS; inx := f.ext[i];
 IF inx = NIL THEN
 NEW(inx); inx.adr := 0; inx.sec.x[0] := 0; f.ext[i] := inx; f.modH := TRUE
 END ;
 k := (buf.apos - STS) MOD XS; secadr := inx.sec.x[k];
 IF secadr = 0 THEN
 Kernel.AllocSector(f.sechint, secadr);
 f.modH := TRUE; inx.mod := TRUE; inx.sec.x[k] := secadr; f.sechint := secadr
 END
 END ;
 Kernel.PutSector(secadr, buf.data); buf.mod := FALSE
 END WriteBuf;

 PROCEDURE Buf(f: File; pos: INTEGER): Buffer;
 VAR buf: Buffer;
 BEGIN buf := f.firstbuf;
 LOOP
 IF buf.apos = pos THEN EXIT END ;
 buf := buf.next;
 IF buf = f.firstbuf THEN buf := NIL; EXIT END
 END ;
 RETURN buf
 END Buf;

 PROCEDURE GetBuf(f: File; pos: INTEGER): Buffer;
 VAR buf: Buffer;
 BEGIN buf := f.firstbuf;
 LOOP
 IF buf.apos = pos THEN EXIT END ;
 IF buf.next = f.firstbuf THEN
 IF f.nofbufs < MaxBufs THEN (*allocate new buffer*)
 NEW(buf); buf.next := f.firstbuf.next; f.firstbuf.next := buf;
 INC(f.nofbufs)
 ELSE (*take one of the buffers*) f.firstbuf := buf;

 169

 IF buf.mod THEN WriteBuf(f, buf) END
 END ;
 buf.apos := pos;
 IF pos <= f.aleng THEN ReadBuf(f, buf, pos) END ;
 EXIT
 END ;
 buf := buf.next
 END ;
 RETURN buf
 END GetBuf;

 PROCEDURE Unbuffer(f: File);
 VAR i, k: INTEGER;
 buf: Buffer;
 inx: Index;
 head: FileDir.FileHeader;
 BEGIN buf := f.firstbuf;
 REPEAT
 IF buf.mod THEN WriteBuf(f, buf) END ;
 buf := buf.next
 UNTIL buf = f.firstbuf;
 k := (f.aleng + (XS-STS)) DIV XS; i := 0;
 WHILE i < k DO
 inx := f.ext[i]; INC(i);
 IF inx.mod THEN
 IF inx.adr = 0 THEN
 Kernel.AllocSector(f.sechint, inx.adr); f.sechint := inx.adr; f.modH := TRUE
 END ;
 Kernel.PutSector(inx.adr, inx.sec); inx.mod := FALSE
 END
 END ;
 IF f.modH THEN
 IF f.sec[0] = 0 THEN Kernel.AllocSector(0, f.sec[0]) END ;
 Kernel.GetSector(f.sec[0], head); UpdateHeader(f, head);
 Kernel.PutSector(f.sec[0], head); f.modH := FALSE
 END
 END Unbuffer;

 PROCEDURE Register*(f: File);
 BEGIN
 IF (f # NIL) & (f.name[0] > 0X) THEN
 Unbuffer(f); FileDir.Insert(f.name, f.sec[0]); f.next := root; root := f
 END ;
 END Register;

 PROCEDURE Close*(f: File);
 BEGIN
 IF f # NIL THEN Unbuffer(f) END ;
 END Close;

 PROCEDURE Purge*(f: File);
 VAR a, i, j, k: INTEGER;
 ind: FileDir.IndexSector;
 BEGIN
 IF f # NIL THEN a := f.aleng + 1; f.aleng := 0;
 IF a <= STS THEN i := a
 ELSE i := STS; DEC(a, i);
 j := (a-1) MOD XS; k := (a-1) DIV XS;

 170

 WHILE k >= 0 DO
 Kernel.GetSector(f.ext[k].adr, ind);
 REPEAT DEC(j); Kernel.FreeSector(ind.x[j])
 UNTIL j = 0;
 Kernel.FreeSector(f.ext[k].adr); j := XS; DEC(k)
 END
 END ;
 REPEAT DEC(i); Kernel.FreeSector(f.sec[i])
 UNTIL i = 0
 END
 END Purge;

 PROCEDURE Length*(f: File): LONGINT;
 BEGIN RETURN LONG(f.aleng)*SS + f.bleng - HS
 END Length;

 PROCEDURE GetDate*(f: File; VAR t, d: LONGINT);
 BEGIN t := f.time; d := f.date
 END GetDate;

 PROCEDURE Set*(VAR r: Rider; f: File; pos: LONGINT);
 VAR a, b: INTEGER;
 BEGIN r.eof := FALSE; r.res := 0;
 IF f # NIL THEN
 IF pos < 0 THEN a := 0; b := HS
 ELSIF pos < LONG(f.aleng)*SS + f.bleng - HS THEN
 a := SHORT((pos + HS) DIV SS); b := SHORT((pos + HS) MOD SS);
 ELSE a := f.aleng; b := f.bleng
 END ;
 r.file := f; r.apos := a; r.bpos := b; r.buf := f.firstbuf
 ELSE r.file:= NIL
 END
 END Set;

 PROCEDURE Read*(VAR r: Rider; VAR x: SYSTEM.BYTE);
 VAR buf: Buffer;
 BEGIN
 IF r.apos # r.buf.apos THEN r.buf := GetBuf(r.file, r.apos) END ;
 IF r.bpos < r.buf.lim THEN
 x := r.buf.data.B[r.bpos]; INC(r.bpos)
 ELSIF r.apos < r.file.aleng THEN
 INC(r.apos); buf := Buf(r.file, r.apos);
 IF buf = NIL THEN
 IF r.buf.mod THEN WriteBuf(r.file, r.buf) END ;
 ReadBuf(r.file, r.buf, r.apos)
 ELSE r.buf := buf
 END ;
 x := r.buf.data.B[0]; r.bpos := 1
 ELSE
 x := 0X; r.eof := TRUE
 END
 END Read;

 PROCEDURE ReadBytes*(VAR r: Rider; VAR x: ARRAY OF SYSTEM.BYTE; n: LONGINT);
 VAR src, dst, m: LONGINT; buf: Buffer;
 BEGIN dst := SYSTEM.ADR(x);
 IF LEN(x) < n THEN HALT(25) END ;
 IF r.apos # r.buf.apos THEN r.buf := GetBuf(r.file, r.apos) END ;

 171

 LOOP
 IF n <= 0 THEN EXIT END ;
 src := SYSTEM.ADR(r.buf.data.B) + r.bpos; m := r.bpos + n;
 IF m <= r.buf.lim THEN
 SYSTEM.MOVE(src, dst, n); r.bpos := SHORT(m); r.res := 0; EXIT
 ELSIF r.buf.lim = SS THEN
 m := r.buf.lim - r.bpos;
 IF m > 0 THEN SYSTEM.MOVE(src, dst, m); INC(dst, m); DEC(n, m) END ;
 IF r.apos < r.file.aleng THEN
 INC(r.apos); r.bpos := 0; buf := Buf(r.file, r.apos);
 IF buf = NIL THEN
 IF r.buf.mod THEN WriteBuf(r.file, r.buf) END ;
 ReadBuf(r.file, r.buf, r.apos)
 ELSE r.buf := buf
 END
 ELSE r.res := n; r.eof := TRUE; EXIT
 END
 ELSE m := r.buf.lim - r.bpos;
 IF m > 0 THEN SYSTEM.MOVE(src, dst, m); r.bpos := r.buf.lim END ;
 r.res := n - m; r.eof := TRUE; EXIT
 END
 END
 END ReadBytes;

 PROCEDURE NewExt(f: File);
 VAR i, k: INTEGER; ext: Index;
 BEGIN k := (f.aleng - STS) DIV XS;
 IF k = FileDir.ExTabSize THEN HALT(23) END ;
 NEW(ext); ext.adr := 0; ext.mod := TRUE; f.ext[k] := ext; i := XS;
 REPEAT DEC(i); ext.sec.x[i] := 0 UNTIL i = 0
 END NewExt;

 PROCEDURE Write*(VAR r: Rider; x: SYSTEM.BYTE);
 VAR f: File; buf: Buffer;
 BEGIN
 IF r.apos # r.buf.apos THEN r.buf := GetBuf(r.file, r.apos) END ;
 IF r.bpos >= r.buf.lim THEN
 IF r.bpos < SS THEN
 INC(r.buf.lim); INC(r.file.bleng); r.file.modH := TRUE
 ELSE f := r.file; WriteBuf(f, r.buf); INC(r.apos); buf := Buf(r.file, r.apos);
 IF buf = NIL THEN
 IF r.apos <= f.aleng THEN ReadBuf(f, r.buf, r.apos)
 ELSE r.buf.apos := r.apos; r.buf.lim := 1; INC(f.aleng); f.bleng := 1; f.modH := TRUE;
 IF (f.aleng - STS) MOD XS = 0 THEN NewExt(f) END
 END
 ELSE r.buf := buf
 END ;
 r.bpos := 0
 END
 END ;
 r.buf.data.B[r.bpos] := x; INC(r.bpos); r.buf.mod := TRUE
 END Write;

 PROCEDURE WriteBytes*(VAR r: Rider; VAR x: ARRAY OF SYSTEM.BYTE;
 n: LONGINT);
 VAR src, dst, m: LONGINT; f: File; buf: Buffer;
 BEGIN src := SYSTEM.ADR(x);

 172

 IF LEN(x) < n THEN HALT(25) END ;
 IF r.apos # r.buf.apos THEN r.buf := GetBuf(r.file, r.apos) END ;
 LOOP
 IF n <= 0 THEN EXIT END ;
 r.buf.mod := TRUE; dst := SYSTEM.ADR(r.buf.data.B) + r.bpos; m := r.bpos + n;
 IF m <= r.buf.lim THEN
 SYSTEM.MOVE(src, dst, n); r.bpos := SHORT(m); EXIT
 ELSIF m <= SS THEN
 SYSTEM.MOVE(src, dst, n); r.bpos := SHORT(m);
 r.file.bleng := SHORT(m); r.buf.lim := SHORT(m); r.file.modH := TRUE; EXIT
 ELSE m := SS - r.bpos;
 IF m > 0 THEN SYSTEM.MOVE(src, dst, m); INC(src, m); DEC(n, m) END ;
 f := r.file; WriteBuf(f, r.buf); INC(r.apos); r.bpos := 0; buf := Buf(f, r.apos);
 IF buf = NIL THEN
 IF r.apos <= f.aleng THEN ReadBuf(f, r.buf, r.apos)
 ELSE r.buf.apos := r.apos; r.buf.lim := 0; INC(f.aleng); f.bleng := 0; f.modH := TRUE;
 IF (f.aleng - STS) MOD XS = 0 THEN NewExt(f) END
 END
 ELSE r.buf := buf
 END
 END
 END
 END WriteBytes;

 PROCEDURE Pos*(VAR r: Rider): LONGINT;
 BEGIN RETURN LONG(r.apos)*SS + r.bpos - HS
 END Pos;

 PROCEDURE Base*(VAR r: Rider): File;
 BEGIN RETURN r.file
 END Base;

 PROCEDURE Delete*(name: ARRAY OF CHAR; VAR res: INTEGER);
 VAR adr: DiskAdr;
 namebuf: FileDir.FileName;
 BEGIN Check(name, namebuf, res);
 IF res = 0 THEN
 FileDir.Delete(namebuf, adr);
 IF adr = 0 THEN res := 2 END
 END
 END Delete;

 PROCEDURE Rename*(old, new: ARRAY OF CHAR; VAR res: INTEGER);
 VAR adr: DiskAdr;
 oldbuf, newbuf: FileDir.FileName;
 head: FileDir.FileHeader;
 BEGIN Check(old, oldbuf, res);
 IF res = 0 THEN
 Check(new, newbuf, res);
 IF res = 0 THEN
 FileDir.Delete(oldbuf, adr);
 IF adr # 0 THEN
 FileDir.Insert(newbuf, adr);
 Kernel.GetSector(adr, head); head.name := newbuf; Kernel.PutSector(adr, head)
 ELSE res := 2
 END
 END

 173

 END
 END Rename;

BEGIN Kernel.FileRoot := SYSTEM.ADR(root)
END Files.

Some comments concerning module Files follow.

1. After the writing of a file has been completed, its name is usually registered in the directory.
Register invokes procedure Unbuffer. It inspects the associated buffers and copies those onto disk
which had been modified. During this process, new index sectors may have to be transferred as well. If
a file is to remain anonymous and local to a module or command, i.e. is not to be registered, but merely
to be read, the release of buffers must be specified by an explicit call to Close (meaning "close
buffers"), which also invokes Unbuffer.

2. Procedure Old (and for reasons of consistency also New) deviates from the general Oberon
programming rule that an object be allocated by the calling (instead of the called) module. This rule
would suggest the statements

New(f); Files.Open(f, name)

instead of f := Files.Old(name). The justification for the rule is that any extension of the type of f could
be allocated, providing for more flexibility. And the reason for our deviation in the case of files is that,
upon closer inspection, not a new file, but only a new descriptor is to be allocated. The distinction
becomes evident when we consider that several statements f := Files.Old(name) with different f and
identical name may occur, probably in different modules. In this case, it is necessary that the same
descriptor is referenced by the delivered pointers in order to avoid file inconsistency. Each (opened)
file must have exactly one descriptor. When a file is opened, the first action is therefore to inspect
whether a descriptor of this file already exists. For this purpose, all descriptors are linked together in a
list anchored by the global variable root and linked by the descriptor field next. This measure may
seem to solve the problem of avoiding inconsistencies smoothly. However, there exists a pitfall that is
easily overlooked: all opened files would permanently remain accessible via root, and the garbage
collector could never remove a file descriptor nor its associated buffers. This would be unacceptable.
We have found no better solution to this problem than to design the garbage collector such that it
excludes this list from its mark phase.

3. Sector pointers are represented by sector numbers of type LONGINT. Actually, we use the numbers
multiplied by 29. This implies that any single-bit error leads to a number which is not a multiple of 29,
and hence can easily be detected. Thereby the crucial sector addresses are software parity checked and
are safe (against single-bit errors) even on computers without hardware parity check. The check is
performed by procedures Kernel.GetSector and Kernel.PutSector.

7.4 The File Directory
A directory is a set of pairs, each pair consisting of a name (key) and an object (here: file). It serves to
retrieve objects by their name. If efficiency matters, the directory is organized as an ordered set,
ordered according to the keys. The most frequently used structures for ordered sets are trees and hash
tables. The latter have disadvantages when the size of the set is unknown, particularly when its order of
magnitude is unknown, and when deletions occur. The Oberon system therefore uses a tree structure
for its file directory, more specifically a B-tree, which was developed especially for cases where not
individual pairs, but only sets of pairs as a whole (placed on a disk sector) can be accessed.

For a thorough study of B-trees we refer the reader to the literature [1, 2]. Here it must suffice to
specify the B-tree's principal characteristics:
1. In a B-tree of order N, each node (called page) contains m elements (pairs), where N <= m <= 2N,

except the root, where 0 <= m <= 2N.
2. A page with m elements has either 0 descendants, in which case it is called a leaf page, or m + 1

descendants.
3. All leaf pages are on the same (bottom) level.

 174

From 3. it follows that the B-tree is a balanced tree. Its height, and with it the longest path's length, has
an upper bound of, roughly, 2 * log k, where k is the number of elements and the logarithm is taken to
the base N and rounded up to the next larger integer. Its minimal height is log k taken to the base 2N.

On each page, space must be available for 2N elements and for 2N + 1 references to descendants.
Hence, N is immediately determined by the size of a page and the size of elements. In the case of the
Oberon system, names are limited to 32 characters (bytes), and the object is a reference to the
associated file (4 bytes). Each descendant pointer takes 4 bytes, and the page size is given by the sector
size (1024) minus the number of bytes needed to store m (2 bytes). Hence

N = ((1024 - 2 - 4) DIV (32 + 4 + 4)) DIV 2 = 12

A B-tree of height h and order 12 may contain the following minimal and maximal number of
elements:

height minimum maximum
1 0 24
2 25 624
3 625 15624
4 15625 390624

It follows that the height of the B-tree will never be larger than 4, if the disk has a capacity of less than
about 400 Mbyte, and assuming that each file occupies a single 1K sector. It is rarely larger than 3 in
practice.

The definition of module FileDir shows the available directory operations. Apart from the procedures
Search, Insert, Delete, and Enumerate, it contains some data definitions, and it should be considered as
the non-public part of the file system's interface.

DEFINITION FileDir;
 IMPORT SYSTEM, Kernel;
 CONST
 FnLength = 32; (*max length of file name*)
 SecTabSize = 64; (*no. of entries in primary table*)
 ExTabSize = 12;
 SectorSize = 1024;
 IndexSize = SectorSize DIV 4; (*no. of entries in index sector*)
 HeaderSize = 352;
 DirRootAdr = 29;
 DirPgSize = 24; (*max no. of elements on page*)

 TYPE
 FileName = ARRAY FnLength OF CHAR;
 SectorTable = ARRAY SecTabSize OF LONGINT;
 ExtensionTable = ARRAY ExTabSize OF LONGINT;
 EntryHandler = PROCEDURE (name: FileName; sec: LONGINT; VAR continue: BOOLEAN);

 FileHeader = RECORD (Kernel.Sector)
 mark: LONGINT;
 name: FileName;
 aleng, bleng: INTEGER;
 date, time: LONGINT;
 ext: ExtensionTable;
 sec: SectorTable;
 END ;

 IndexSector = RECORD (Kernel.Sector)
 x: ARRAY IndexSize OF LONGINT;
 END ;

 175

 DataSector = RECORD (Kernel.Sector)
 B: ARRAY SectorSize OF SYSTEM.BYTE;
 END ;

 DirEntry = RECORD
 name: FileName;
 adr, p: LONGINT;
 END ;

 DirPage = RECORD (Kernel.Sector)
 mark: LONGINT;
 m: INTEGER; (*no. of elements on page*)
 p0: LONGINT;
 e: ARRAY DirPgSize OF DirEntry;
 END ;

 PROCEDURE Search(VAR name: FileName; VAR fad: LONGINT);
 PROCEDURE Insert(VAR name: FileName; fad: LONGINT);
 PROCEDURE Delete(VAR name: FileName; VAR fad: LONGINT);
 PROCEDURE Enumerate(prefix: ARRAY OF CHAR; proc: EntryHandler);

END FileDir.

Procedures Search, Insert, and Delete represent the typical operations performed on a directory.
Efficiency of the first operation is of primary importance. But the B-tree structure also guarantees
efficient insertion and deletion, although the code for these operations is complex. Procedure
Enumerate is used to obtain excerpts of the directory. The programmer must guarantee that no
directory changes are performed by the parametric procedure of Enumerate.

As in the presentation of module Files, we first discuss a version that uses main storage rather than a
disk for the directory. This allows us to concentrate on the algorithms for handling the directory,
leaving out the additional complications due to the necessity to read pages (sectors) into main store for
selective updating and of restoring them onto disk. In particular, we point out the definitions of the
data types for B-tree nodes, called DirPage, and elements, called DirEntry. The component E.p of an
entry E points to the page in which all elements (with index k) have keys E.p.e[k].name > E.name. The
pointer p.p0 points to a page in which all elements have keys p.p0.e[k].name < p.e[0].name. We can
visualize these conditions by Fig. 7.3, where names have been replaced by integers as keys.

3 7 10

1 2 4 5 6 8 9 11 12 13 14

p

p.p0 p.e[0].p p.e[1].p p.e[2].p

Fig. 7.3. Example of a B-tree of order 2

Procedure Search starts by inspecting the root page. It performs a binary search among its elements,
according to the following algorithm. Let e[0 ... m-1] be the ordered keys and x the search argument.

L := 0; R := m;
WHILE L < R DO
 i := (L+R) DIV 2;
 IF x <= e[i] THEN R := i ELSE L := i + 1 END
END;
IF (R < m) & (x = e[R]) THEN found END

The invariant is

e[L-1] < x <= e[R]

 176

If the desired element is not found, the search continues on the appropriate descendant page, if there is
one. Otherwise the element is not contained in the tree.

Procedures insert and delete use the same algorithm for searching an element within a page. However,
they use recursion instead of iteration to proceed along the search path of pages. We recall that the
depth of recursion is at most four. The reason for the use of recursion is that it facilitates the
formulation of structural changes, which are performed during the "unwinding" of recursion, i.e. on the
return path. First, the insertion point (respectively the position of the element to be deleted) is searched,
and then the element is inserted (deleted).

Upon insertion, the number of elements on the insertion page may become larger than 2N, violating B-
tree condition 1. This situation is called page overflow. The invariant must be reestablished
immediately. It could be achieved by moving one element from either end of the array e onto a
neighbouring page. However, we choose not to do this, and instead to split the overflowing page into
two pages immediately. The process of a page split is visualized by Fig 7.4, in which we distinguish
between three cases, namely R < N, R = N, and R > N, where R marks the insertion point. a denotes
the overflowing, b the new page, and u the inserted element.

The 2N + 1 elements (2N from the full page a, plus the one element u to be inserted) are equally
distributed onto pages a and b. One element v is pushed up in the tree. It must be inserted in the
ancestor page of a. Since that page obtains an additional descendant, it must also obtain an additional
element in order to maintain B-tree rule 2.

A page split may thus propagate, because the insertion of element v in the ancestor page may require a
split once again. If the root page is full, it is split too, and the emerging element v is inserted in a new
root page containing a single element. This is the only way in which the height of a B-tree can
increase.

When an element is to be deleted, it cannot simply be removed, if it resides on an internal page. In this
case, it is first replaced by another element, namely one of the two neighbouring elements on a leaf
page, i.e. the next smaller (or next larger) element, which is always on a leaf page. In the presented
solution, the replacing element is the largest on the left subtree (see procedure del). Hence, the actual
deletion always occurs on a leaf page.

 177

A B v C

v

A u B C

A C

u

A C

A v B C

v

A B u C

Case 1: R < N

Case 2: R = N

Case 3: R > N

R N

a b

R N N

N

u = v

a b

N R

a b

R - N - 1

Fig. 7.4. Page split when inserting element u

Upon deletion, the number of elements in a page may become less than N, violating invariant 1. This
event is called page underflow. Since restructuring the tree is a relatively complicated operation, we
first try to reestablish the invariant by borrowing an element from a neighbouring page. In fact, it is
reasonable to borrow several elements, and thereby to decrease the likelyhood of an underflow on the
same page upon further deletions. The number of elements that could be taken from the neighbouring
page b is b.m - N. Hence we will borrow

k = (b.m - N + 1) DIV 2

elements. The process of page balancing then distributes the elements of the underflowing and its
neighbouring page equally to both pages (see procedure underflow).

However, if (and only if) the neighbouring page has no elements to spare, the two pages can and must
be united. This action, called page merge, places the N-1 elements from the underflowing page, the N
elements from the neighbouring page, plus one element from the ancestor page onto a single page of
size 2N. One element must be taken from the ancestor page, because that page loses one descendant
and invariant rule 2 must be maintained. The events of page balancing and merging are illustrated in
Fig 7.5. a is the underflowing page, b its neighbouring page, and c their ancestor; s is the position in
the ancestor page of (the pointer to the) underflowing page a. Two cases are distinguished, namely
whether the underflowing page is the rightmost element (s = c.m) or not (see procedure underflow).

 178

uc

s c.m

Aa

N - 1

B v Cb

k

vc

s c.m

A u Ba Cb

c

s

A u Ca

N

(b discarded)

uc

s

A v Bb Ca

N - 1

vc

Ab B u Ca

c

s

A u Cb

N

(a discarded)

Case 1: s < c.m

k > 0: balance

k = 0: merge

Case 2: s = c.m

k > 0: balance

k = 0: merge

Fig. 7.5. Page balancing and merging when deleting element

Similarly to the splitting process, merging may propagate, because the removal of an element from the
ancestor page may again cause an underflow, and perhaps a merge. The root page underflows only if
its last element is removed. This is the only way in which the B-tree's height can decrease.

MODULE BTree;
 IMPORT Texts, Oberon;

 CONST N = 3;

 TYPE Page = POINTER TO PageRec;

 Entry = RECORD
 key, data: INTEGER;
 p: Page
 END ;

 PageRec = RECORD
 m: INTEGER; (*no. of entries on page*)
 p0: Page;
 e: ARRAY 2*N OF Entry
 END ;

 VAR root: Page; W: Texts.Writer;

 179

PROCEDURE search(x: INTEGER; a: Page; VAR data: INTEGER);
 VAR i, L, R: INTEGER;
BEGIN (*a # NIL*)
 LOOP L := 0; R := a.m; (*binary search*)
 WHILE L < R DO
 i := (L+R) DIV 2;
 IF x <= a.e[i].key THEN R := i ELSE L := i+1 END
 END ;
 IF (R < a.m) & (a.e[R].key = x) THEN (*found*)
 data := a.e[R].data; EXIT
 END ;
 IF R = 0 THEN a := a.p0 ELSE a := a.e[R-1].p END ;
 IF a = NIL THEN (*not found*) EXIT END
 END
END search;

PROCEDURE insert(x: INTEGER; a: Page; VAR h: BOOLEAN; VAR v: Entry);
 (*a # NIL. Search key x in B-tree with root a; if found, increment counter.
 Otherwise insert new item with key x. If an entry is to be passed up,
 assign it to v. h := "tree has become higher"*)
 VAR i, L, R: INTEGER;
 b: Page; u: Entry;
BEGIN (*a # NIL & ~h*)
 L := 0; R := a.m; (*binary search*)
 WHILE L < R DO
 i := (L+R) DIV 2;
 IF x <= a.e[i].key THEN R := i ELSE L := i+1 END
 END ;
 IF (R < a.m) & (a.e[R].key = x) THEN (*found*) INC(a.e[R].data)
 ELSE (*item not on this page*)
 IF R = 0 THEN b := a.p0 ELSE b := a.e[R-1].p END ;
 IF b = NIL THEN (*not in tree, insert*)
 u.p := NIL; h := TRUE; u.key := x
 ELSE insert(x, b, h, u)
 END ;
 IF h THEN (*insert u to the left of a.e[R]*)
 IF a.m < 2*N THEN
 h := FALSE; i := a.m;
 WHILE i > R DO DEC(i); a.e[i+1] := a.e[i] END ;
 a.e[R] := u; INC(a.m)
 ELSE NEW(b); (*overflow; split a into a,b and assign the middle entry to v*)
 IF R < N THEN (*insert in left page a*)
 i := N-1; v := a.e[i];
 WHILE i > R DO DEC(i); a.e[i+1] := a.e[i] END ;
 a.e[R] := u; i := 0;
 WHILE i < N DO b.e[i] := a.e[i+N]; INC(i) END
 ELSE (*insert in right page b*)
 DEC(R, N); i := 0;
 IF R = 0 THEN v := u
 ELSE v := a.e[N];
 WHILE i < R-1 DO b.e[i] := a.e[i+N+1]; INC(i) END ;
 b.e[i] := u; INC(i)
 END ;
 WHILE i < N DO b.e[i] := a.e[i+N]; INC(i) END
 END ;
 a.m := N; b.m := N; b.p0 := v.p; v.p := b

 180

 END
 END
 END
END insert;

PROCEDURE underflow(c, a: Page; s: INTEGER; VAR h: BOOLEAN);
 (*a = underflowing page, c = ancestor page,
 s = index of deleted entry in c*)
 VAR b: Page;
 i, k: INTEGER;
BEGIN (*h & (a.m = N-1) & (c.e[s-1].p = a) *)
 IF s < c.m THEN (*b := page to the right of a*)
 b := c.e[s].p; k := (b.m-N+1) DIV 2; (*k = nof items available on page b*)
 a.e[N-1] := c.e[s]; a.e[N-1].p := b.p0;
 IF k > 0 THEN (*balance by moving k-1 items from b to a*) i := 0;
 WHILE i < k-1 DO a.e[i+N] := b.e[i]; INC(i) END ;
 c.e[s] := b.e[k-1]; b.p0 := c.e[s].p;
 c.e[s].p := b; DEC(b.m, k); i := 0;
 WHILE i < b.m DO b.e[i] := b.e[i+k]; INC(i) END ;
 a.m := N-1+k; h := FALSE
 ELSE (*merge pages a and b, discard b*) i := 0;
 WHILE i < N DO a.e[i+N] := b.e[i]; INC(i) END ;
 i := s; DEC(c.m);
 WHILE i < c.m DO c.e[i] := c.e[i+1]; INC(i) END ;
 a.m := 2*N; h := c.m < N
 END
 ELSE (*b := page to the left of a*) DEC(s);
 IF s = 0 THEN b := c.p0 ELSE b := c.e[s-1].p END ;
 k := (b.m-N+1) DIV 2; (*k = nof items available on page b*)
 IF k > 0 THEN i := N-1;
 WHILE i > 0 DO DEC(i); a.e[i+k] := a.e[i] END ;
 i := k-1; a.e[i] := c.e[s]; a.e[i].p := a.p0;
 (*move k-1 items from b to a, one to c*) DEC(b.m, k);
 WHILE i > 0 DO DEC(i); a.e[i] := b.e[i+b.m+1] END ;
 c.e[s] := b.e[b.m]; a.p0 := c.e[s].p;
 c.e[s].p := a; a.m := N-1+k; h := FALSE
 ELSE (*merge pages a and b, discard a*)
 c.e[s].p := a.p0; b.e[N] := c.e[s]; i := 0;
 WHILE i < N-1 DO b.e[i+N+1] := a.e[i]; INC(i) END ;
 b.m := 2*N; DEC(c.m); h := c.m < N
 END
 END
END underflow;

PROCEDURE delete(x: INTEGER; a: Page; VAR h: BOOLEAN);
 (*search and delete key x in B-tree a; if a page underflow arises,
 balance with adjacent page or merge; h := "page a is undersize"*)
 VAR i, L, R: INTEGER; q: Page;

 PROCEDURE del(p: Page; VAR h: BOOLEAN);
 VAR k: INTEGER; q: Page; (*global a, R*)
 BEGIN k := p.m-1; q := p.e[k].p;
 IF q # NIL THEN del(q, h);
 IF h THEN underflow(p, q, p.m, h) END
 ELSE p.e[k].p := a.e[R].p; a.e[R] := p.e[k];
 DEC(p.m); h := p.m < N

 181

 END
 END del;

BEGIN (*a # NIL*)
 L := 0; R := a.m; (*binary search*)
 WHILE L < R DO
 i := (L+R) DIV 2;
 IF x <= a.e[i].key THEN R := i ELSE L := i+1 END
 END ;
 IF R = 0 THEN q := a.p0 ELSE q := a.e[R-1].p END ;
 IF (R < a.m) & (a.e[R].key = x) THEN (*found*)
 IF q = NIL THEN (*a is leaf page*)
 DEC(a.m); h := a.m < N; i := R;
 WHILE i < a.m DO a.e[i] := a.e[i+1]; INC(i) END
 ELSE del(q, h);
 IF h THEN underflow(a, q, R, h) END
 END
 ELSE delete(x, q, h);
 IF h THEN underflow(a, q, R, h) END
 END
END delete;

PROCEDURE Search*(key: INTEGER; VAR data: INTEGER);
BEGIN search(key, root, data)
END Search;

PROCEDURE Insert*(key: INTEGER; VAR data: INTEGER);
 VAR h: BOOLEAN; u: Entry; q: Page;
BEGIN h := FALSE; u.data := data; insert(key, root, h, u);
 IF h THEN (*insert new base page*)
 q := root; NEW(root);
 root.m := 1; root.p0 := q; root.e[0] := u
 END
END Insert;

PROCEDURE Delete*(key: INTEGER);
 VAR h: BOOLEAN;
BEGIN h := FALSE; delete(key, root, h);
 IF h THEN (*base page size underflow*)
 IF root.m = 0 THEN root := root.p0 END
 END
END Delete;

BEGIN NEW(root); root.m := 0
END BTree.

The B-tree is also a highly appropriate structure for enumerating its elements, because during the
traversal of the tree each page is visited exactly once, and hence needs to be read (from disk) exactly
once too. The traversal is programmed by the procedure Enumerate and uses recursion. It calls the
parametric procedure proc for each element of the tree. The type of proc specifies as parameters the
name and the (address of) the enumerated element. The third parameter continue is a Boolean VAR-
parameter. If the procedure sets it to FALSE, the process of enumeration will be aborted.

Enumerate is used for obtaining listings of the names of registered files. For this purpose, the actual
procedure substituted for proc merely enters the given name in a text and ignores the address (sector
number) of the file, unless it requires special file information such as the file's size or creation date.

The set of visited elements can be restricted by specifying a string which is to be a prefix to all
enumerated names. The least name with the specified prefix is directly searched and is the name (key)

 182

of the first element enumerated. The process then proceeds upto the first element whose name does not
have the given prefix. Thereby, the process of obtaining all elements whose key has a given prefix
avoids traversal of the whole tree, resulting in a significant speedup. If the prefix is the empty string,
the entire tree is traversed.

The principle behind procedure Enumerate is shown by the following sketch, where we abstract from
the B-tree structure and omit consideration of prefixes:

PROCEDURE Enumerate(
 proc: PROCEDURE (name: FileName; adr: INTEGER; VAR continue: BOOLEAN));
 VAR continue: BOOLEAN; this: DirEntry;
BEGIN continue := TRUE; this := FirstElement;
 WHILE continue & (this # NIL) DO
 proc(this.name, this.adr, continue); this := NextEntry(this)
 END
END Enumerate

From this sketch we may conclude that during the process of traversal the tree structure must not
change, because the function NextEntry quite evidently relies on the structural information stored in the
elements of structure itself. Hence, the actions of the parametric procedure must not affect the tree
structure. Enumeration must not be used, for example, to delete a given set of files. In order to prevent
the misuse of the indispensible facility of element enumeration, the interface of FileDir is not available
to users in general.

The handling of the directory stored on disk follows exactly the same algorithms. The accessed pages
are fetched from the disk as a whole (each page fits onto a single disk sector) and stored in buffers of
type DirPage, from where individual elements can be accessed. In principle, these buffers can be local
to procedures insert and delete. A single buffer is allocated globally, namely the one used by procedure
Search. The reason for this exception is not only that iterative searching requires one buffer only, but
because procedure Files.Old and in turn Search may be called when the processor is in the supervisor
mode and hence uses the system- (instead of the user-) stack, which is small and would not
accommodate sector buffers.

Naturally, an updated page needs to be stored back onto disk. Omission of sector restoration is a
programming error that is very hard to diagnose, because some parts of the program are executed very
rarely, and hence the error may look sporadic and mistakenly be attributed to malfunctioning hardware.

MODULE FileDir; (*NW 12.1.86 / 23.8.90*)
 IMPORT SYSTEM, Kernel;
 (*File Directory is a B-tree with its root page at DirRootAdr.
 Each entry contains a file name and the disk address of the file's head sector*)

 CONST FnLength* = 32;
 SecTabSize* = 64;
 ExTabSize* = 12;
 SectorSize* = 1024;
 IndexSize* = SectorSize DIV 4;
 HeaderSize* = 352;
 DirRootAdr* = 29;
 DirPgSize* = 24;
 N = DirPgSize DIV 2;
 DirMark* = 9B1EA38DH;
 HeaderMark* = 9BA71D86H;
 FillerSize = 52;

 TYPE DiskAdr = LONGINT;
 FileName* = ARRAY FnLength OF CHAR;
 SectorTable* = ARRAY SecTabSize OF DiskAdr;
 ExtensionTable* = ARRAY ExTabSize OF DiskAdr;
 EntryHandler* = PROCEDURE (name:FileName; sec: DiskAdr; VAR continue: BOOLEAN);

 183

 FileHeader* =
 RECORD (Kernel.Sector) (*allocated in the first page of each file on disk*)
 mark*: LONGINT;
 name*: FileName;
 aleng*, bleng*: INTEGER;
 date*, time*: LONGINT;
 ext*: ExtensionTable;
 sec*: SectorTable;
 fill: ARRAY SectorSize - HeaderSize OF CHAR;
 END ;

 IndexSector* =
 RECORD (Kernel.Sector)
 x*: ARRAY IndexSize OF DiskAdr
 END ;

 DataSector* =
 RECORD (Kernel.Sector)
 B*: ARRAY SectorSize OF SYSTEM.BYTE
 END ;

 DirEntry* = (*B-tree node*)
 RECORD
 name*: FileName;
 adr*: DiskAdr; (*sec no of file header*)
 p*: DiskAdr (*sec no of descendant in directory*)
 END ;

 DirPage* =
 RECORD (Kernel.Sector)
 mark*: LONGINT;
 m*: INTEGER;
 p0*: DiskAdr; (*sec no of left descendant in directory*)
 fill: ARRAY FillerSize OF CHAR;
 e*: ARRAY DirPgSize OF DirEntry
 END ;
 PROCEDURE Search*(VAR name: FileName; VAR A: DiskAdr);
 VAR i, j, L, R: INTEGER; dadr: DiskAdr;
 a: DirPage;
 BEGIN dadr := DirRootAdr;
 LOOP Kernel.GetSector(dadr, a);
 L := 0; R := a.m; (*binary search*)
 WHILE L < R DO
 i := (L+R) DIV 2;
 IF name <= a.e[i].name THEN R := i ELSE L := i+1 END
 END ;
 IF (R < a.m) & (name = a.e[R].name) THEN
 A := a.e[R].adr; EXIT (*found*)
 END ;
 IF R = 0 THEN dadr := a.p0 ELSE dadr := a.e[R-1].p END ;
 IF dadr = 0 THEN A := 0; EXIT (*not found*) END
 END
 END Search;

 PROCEDURE insert(VAR name: FileName; dpg0: DiskAdr;
 VAR h: BOOLEAN; VAR v: DirEntry; fad: DiskAdr);
 (*h = "tree has become higher and v is ascending element"*)
 VAR ch: CHAR;

 184

 i, j, L, R: INTEGER;
 dpg1: DiskAdr;
 u: DirEntry;
 a: DirPage;
 BEGIN (*~h*) Kernel.GetSector(dpg0, a);
 L := 0; R := a.m; (*binary search*)
 WHILE L < R DO
 i := (L+R) DIV 2;
 IF name <= a.e[i].name THEN R := i ELSE L := i+1 END
 END ;
 IF (R < a.m) & (name = a.e[R].name) THEN
 a.e[R].adr := fad; Kernel.PutSector(dpg0, a) (*replace*)
 ELSE (*not on this page*)
 IF R = 0 THEN dpg1 := a.p0 ELSE dpg1 := a.e[R-1].p END ;
 IF dpg1 = 0 THEN (*not in tree, insert*)
 u.adr := fad; u.p := 0; h := TRUE; j := 0;
 REPEAT ch := name[j]; u.name[j] := ch; INC(j)
 UNTIL ch = 0X;
 WHILE j < FnLength DO u.name[j] := 0X; INC(j) END
 ELSE
 insert(name, dpg1, h, u, fad)
 END ;
 IF h THEN (*insert u to the left of e[R]*)
 IF a.m < DirPgSize THEN
 h := FALSE; i := a.m;
 WHILE i > R DO DEC(i); a.e[i+1] := a.e[i] END ;
 a.e[R] := u; INC(a.m)
 ELSE (*split page and assign the middle element to v*)
 a.m := N; a.mark := DirMark;
 IF R < N THEN (*insert in left half*)
 v := a.e[N-1]; i := N-1;
 WHILE i > R DO DEC(i); a.e[i+1] := a.e[i] END ;
 a.e[R] := u; Kernel.PutSector(dpg0, a);
 Kernel.AllocSector(dpg0, dpg0); i := 0;
 WHILE i < N DO a.e[i] := a.e[i+N]; INC(i) END
 ELSE (*insert in right half*)
 Kernel.PutSector(dpg0, a);
 Kernel.AllocSector(dpg0, dpg0); DEC(R, N); i := 0;
 IF R = 0 THEN v := u
 ELSE v := a.e[N];
 WHILE i < R-1 DO a.e[i] := a.e[N+1+i]; INC(i) END ;
 a.e[i] := u; INC(i)
 END ;
 WHILE i < N DO a.e[i] := a.e[N+i]; INC(i) END
 END ;
 a.p0 := v.p; v.p := dpg0
 END ;
 Kernel.PutSector(dpg0, a)
 END
 END
 END insert;

 PROCEDURE Insert*(VAR name: FileName; fad: DiskAdr);
 VAR oldroot: DiskAdr;
 h: BOOLEAN; U: DirEntry;
 a: DirPage;

 185

 BEGIN h := FALSE;
 insert(name, DirRootAdr, h, U, fad);
 IF h THEN (*root overflow*)
 Kernel.GetSector(DirRootAdr, a);
 Kernel.AllocSector(DirRootAdr, oldroot); Kernel.PutSector(oldroot, a);
 a.mark := DirMark; a.m := 1; a.p0 := oldroot; a.e[0] := U;
 Kernel.PutSector(DirRootAdr, a)
 END
 END Insert;

 PROCEDURE underflow(VAR c: DirPage; (*ancestor page*)
 dpg0: DiskAdr; s: INTEGER; (*insertion point in c*) VAR h: BOOLEAN); (*c undersize*)
 VAR i, k: INTEGER;
 dpg1: DiskAdr;
 a, b: DirPage; (*a := underflowing page, b := neighbouring page*)
 BEGIN Kernel.GetSector(dpg0, a);
 (*h & a.m = N-1 & dpg0 = c.e[s-1].p*)
 IF s < c.m THEN (*b := page to the right of a*)
 dpg1 := c.e[s].p; Kernel.GetSector(dpg1, b);
 k := (b.m-N+1) DIV 2; (*k = no. of items available on page b*)
 a.e[N-1] := c.e[s]; a.e[N-1].p := b.p0;
 IF k > 0 THEN
 (*move k-1 items from b to a, one to c*) i := 0;
 WHILE i < k-1 DO a.e[i+N] := b.e[i]; INC(i) END ;
 c.e[s] := b.e[i]; b.p0 := c.e[s].p;
 c.e[s].p := dpg1; DEC(b.m, k); i := 0;
 WHILE i < b.m DO b.e[i] := b.e[i+k]; INC(i) END ;
 Kernel.PutSector(dpg1, b); a.m := N-1+k; h := FALSE
 ELSE (*merge pages a and b, discard b*) i := 0;
 WHILE i < N DO a.e[i+N] := b.e[i]; INC(i) END ;
 i := s; DEC(c.m);
 WHILE i < c.m DO c.e[i] := c.e[i+1]; INC(i) END ;
 a.m := 2*N; h := c.m < N
 END ;
 Kernel.PutSector(dpg0, a)
 ELSE (*b := page to the left of a*) DEC(s);
 IF s = 0 THEN dpg1 := c.p0 ELSE dpg1 := c.e[s-1].p END ;
 Kernel.GetSector(dpg1, b);
 k := (b.m-N+1) DIV 2; (*k = no. of items available on page b*)
 IF k > 0 THEN
 i := N-1;
 WHILE i > 0 DO DEC(i); a.e[i+k] := a.e[i] END ;
 i := k-1; a.e[i] := c.e[s]; a.e[i].p := a.p0;
 (*move k-1 items from b to a, one to c*) DEC(b.m, k);
 WHILE i > 0 DO DEC(i); a.e[i] := b.e[i+b.m+1] END ;
 c.e[s] := b.e[b.m]; a.p0 := c.e[s].p;
 c.e[s].p := dpg0; a.m := N-1+k; h := FALSE;
 Kernel.PutSector(dpg0, a)
 ELSE (*merge pages a and b, discard a*)
 c.e[s].p := a.p0; b.e[N] := c.e[s]; i := 0;
 WHILE i < N-1 DO b.e[i+N+1] := a.e[i]; INC(i) END ;
 b.m := 2*N; DEC(c.m); h := c.m < N
 END ;
 Kernel.PutSector(dpg1, b)
 END
 END underflow;

 186

 PROCEDURE delete(VAR name: FileName; dpg0: DiskAdr; VAR h: BOOLEAN;
 VAR fad: DiskAdr);
 (*search and delete entry with key name; if a page underflow arises,
 balance with adjacent page or merge; h := "page dpg0 is undersize"*)

 VAR i, j, k, L, R: INTEGER;
 dpg1: DiskAdr;
 a: DirPage;

 PROCEDURE del(dpg1: DiskAdr; VAR h: BOOLEAN);
 VAR dpg2: DiskAdr; (*global: a, R*)
 b: DirPage;
 BEGIN Kernel.GetSector(dpg1, b); dpg2 := b.e[b.m-1].p;
 IF dpg2 # 0 THEN del(dpg2, h);
 IF h THEN underflow(b, dpg2, b.m, h); Kernel.PutSector(dpg1, b) END
 ELSE
 b.e[b.m-1].p := a.e[R].p; a.e[R] := b.e[b.m-1];
 DEC(b.m); h := b.m < N; Kernel.PutSector(dpg1, b)
 END
 END del;

 BEGIN (*~h*) Kernel.GetSector(dpg0, a);
 L := 0; R := a.m; (*binary search*)
 WHILE L < R DO
 i := (L+R) DIV 2;
 IF name <= a.e[i].name THEN R := i ELSE L := i+1 END
 END ;
 IF R = 0 THEN dpg1 := a.p0 ELSE dpg1 := a.e[R-1].p END ;
 IF (R < a.m) & (name = a.e[R].name) THEN
 (*found, now delete*) fad := a.e[R].adr;
 IF dpg1 = 0 THEN (*a is a leaf page*)
 DEC(a.m); h := a.m < N; i := R;
 WHILE i < a.m DO a.e[i] := a.e[i+1]; INC(i) END
 ELSE del(dpg1, h);
 IF h THEN underflow(a, dpg1, R, h) END
 END ;
 Kernel.PutSector(dpg0, a)
 ELSIF dpg1 # 0 THEN
 delete(name, dpg1, h, fad);
 IF h THEN underflow(a, dpg1, R, h); Kernel.PutSector(dpg0, a) END
 ELSE (*not in tree*) fad := 0
 END
 END delete;

 PROCEDURE Delete*(VAR name: FileName; VAR fad: DiskAdr);
 VAR h: BOOLEAN; newroot: DiskAdr;
 a: DirPage;
 BEGIN h := FALSE;
 delete(name, DirRootAdr, h, fad);
 IF h THEN (*root underflow*)
 Kernel.GetSector(DirRootAdr, a);
 IF (a.m = 0) & (a.p0 # 0) THEN
 newroot := a.p0; Kernel.GetSector(newroot, a);
 Kernel.PutSector(DirRootAdr, a) (*discard newroot*)
 END
 END
 END Delete;

 187

 PROCEDURE enumerate(VAR prefix: ARRAY OF CHAR; dpg: DiskAdr;
 proc: EntryHandler; VAR continue: BOOLEAN);
 VAR i, j, diff: INTEGER; dpg1: DiskAdr; a: DirPage;
 BEGIN Kernel.GetSector(dpg, a); i := 0;
 WHILE (i < a.m) & continue DO
 j := 0;
 LOOP
 IF prefix[j] = 0X THEN diff := 0; EXIT END ;
 diff := ORD(a.e[i].name[j]) - ORD(prefix[j]);
 IF diff # 0 THEN EXIT END ;
 INC(j)
 END ;
 IF i = 0 THEN dpg1 := a.p0 ELSE dpg1 := a.e[i-1].p END ;
 IF diff >= 0 THEN (*matching prefix*)
 IF dpg1 # 0 THEN enumerate(prefix, dpg1, proc, continue) END ;
 IF diff = 0 THEN
 IF continue THEN proc(a.e[i].name, a.e[i].adr, continue) END
 ELSE continue := FALSE
 END
 END ;
 INC(i)
 END ;
 IF continue & (i > 0) & (a.e[i-1].p # 0) THEN
 enumerate(prefix, a.e[i-1].p, proc, continue)
 END
 END enumerate;

 PROCEDURE Enumerate*(prefix: ARRAY OF CHAR; proc: EntryHandler);
 VAR b: BOOLEAN;
 BEGIN b := TRUE; enumerate(prefix, DirRootAdr, proc, b)
 END Enumerate;

 PROCEDURE Init;
 VAR k: INTEGER;
 A: ARRAY 2000 OF DiskAdr;

 PROCEDURE MarkSectors;
 VAR L, R, i, j, n: INTEGER; x: DiskAdr;
 hd: FileHeader;
 B: IndexSector;

 PROCEDURE sift(L, R: INTEGER);
 VAR i, j: INTEGER; x: DiskAdr;
 BEGIN j := L; x := A[j];
 LOOP i := j; j := 2*j + 1;
 IF (j+1 < R) & (A[j] < A[j+1]) THEN INC(j) END ;
 IF (j >= R) OR (x > A[j]) THEN EXIT END ;
 A[i] := A[j]
 END ;
 A[i] := x
 END sift;

 BEGIN L := k DIV 2; R := k; (*heapsort*)
 WHILE L > 0 DO DEC(L); sift(L, R) END ;
 WHILE R > 0 DO
 DEC(R); x := A[0]; A[0] := A[R]; A[R] := x; sift(L, R)
 END ;
 WHILE L < k DO

 188

 Kernel.GetSector(A[L], hd);
 IF hd.aleng < SecTabSize THEN j := hd.aleng + 1;
 REPEAT DEC(j); Kernel.MarkSector(hd.sec[j]) UNTIL j = 0
 ELSE j := SecTabSize;
 REPEAT DEC(j); Kernel.MarkSector(hd.sec[j]) UNTIL j = 0;
 n := (hd.aleng - SecTabSize) DIV 256; i := 0;
 WHILE i <= n DO
 Kernel.MarkSector(hd.ext[i]);
 Kernel.GetSector(hd.ext[i], B); (*index sector*)
 IF i < n THEN j := 256 ELSE j := (hd.aleng - SecTabSize) MOD 256 + 1 END ;
 REPEAT DEC(j); Kernel.MarkSector(B.x[j]) UNTIL j = 0;
 INC(i)
 END
 END ;
 INC(L)
 END
 END MarkSectors;

 PROCEDURE TraverseDir(dpg: DiskAdr);
 VAR i, j: INTEGER; a: DirPage;
 BEGIN Kernel.GetSector(dpg, a); Kernel.MarkSector(dpg); i := 0;
 WHILE i < a.m DO
 A[k] := a.e[i].adr; INC(k); INC(i);
 IF k = 2000 THEN MarkSectors; k := 0 END
 END ;
 IF a.p0 # 0 THEN
 TraverseDir(a.p0); i := 0;
 WHILE i < a.m DO
 TraverseDir(a.e[i].p); INC(i)
 END
 END
 END TraverseDir;

 BEGIN Kernel.ResetDisk; k := 0;
 TraverseDir(DirRootAdr); MarkSectors
 END Init;

BEGIN Init
END FileDir.

Oberon's file directory represents a single, ordered set of name-file pairs. It is therefore also called a
flat directory. Its internal tree structure is not visible to the outside. In contrast, some file systems use a
directory with a visible tree structure, notably UNIX. In a search, the name (key) guides the search
path; the name itself displays structure, in fact, it is a sequence of names (usually separated by slashes
or periods). The first name is then searched in the root directory, whose descendants are not files but
subdirectories. The process is repeated, until the last name in the sequence has been used (and
hopefully denotes a file).

Since the search path length in a tree increases with the logarithm of the number of elements, any
subdivision of the tree inherently decreases performance since log(m + n) < log(m) + log (n) for any m,
n > 1. It is justified only if there exist sets of elements with common properties. If these property
values are stored once, namely in the subdirectory referencing all elements with common property
values, instead of in every element, not only a gain in storage economy results, but possibly also in
accesses which depend on those properties. The common properties are typically an owner's name, a
password, and access rights (read or write protection), properties that primarily have significance in a
multi-user environment. Since Oberon was conceived explicitly as a single-user system, there is little
need for such facilities, and hence a flat directory offers the best performance with a simple
implementation.

 189

Every directory operation starts with an access to the root page. An obvious measure for improving
efficiency is to store the root page "permanently" in main store. We have chosen not to do this for four
reasons:

1. If the hardware fails, or if the computer is switched off before the root page is copied to disk, the file
directory will be inconsistent with severe consequences.

2. The root page has to be treated differently from other pages, making the program more complex.

3. Directory accesses do not dominate the computing process; hence, any improvement would hardly
be noticeable in overall system performance. The payoff for the added complexity would be small.

4. Procedure Init is called upon system initialization in order to construct the sector reservation table.
Therefore, this procedure (and the module) must be allowed to refer to the structure of a file's sector
table(s), which is achieved by placing its definitions into the module FileDir (instead of Files). Unlike
Enumerate, Init traverses the entire B-tree. The sector numbers of files delivered by TraverseDir are
entered into a buffer. When full, the entries are sorted, whereafter each file's head sector is read and the
sectors indicated in its sector table are marked as reserved. The sorting speeds up the reading of the
header sectors considerably. Nevertheless, the initialization of the sector reservation table clearly
dominates the start-up time of the computer. For a file system with 10'000 files it takes in the order of
15s to record all files.

7.5. The Toolbox of File Utilities
We conclude this Chapter with a presentation of the commands which constitute the toolbox for file
handling. These commands are contained in module System, and they serve to copy, rename, and delete
files, and to obtain excerpts of the file directory.

Procedures CopyFiles, RenameFiles, and DeleteFiles all follow the same pattern. The parameter text is
scanned for file names, and for each operation a corresponding procedure is called. If the parameter
text contains an arrow, it is interpreted as a pointer to the most recent text selection which indicates the
file name. In the cases of CopyFiles and RenameFiles which require two names for a single action, the
names are separated by "=>" indicating the direction of the copy or rename actions.

PROCEDURE CopyFile(name: ARRAY OF CHAR; VAR S: Texts.Scanner);
 VAR f, g: Files.File; Rf, Rg: Files.Rider; ch: CHAR;
BEGIN Texts.Scan(S);
 IF (S.class = Texts.Char) & (S.c = "=") THEN Texts.Scan(S);
 IF (S.class = Texts.Char) & (S.c = ">") THEN Texts.Scan(S);
 IF S.class = Texts.Name THEN
 Texts.WriteString(W, name); Texts.WriteString(W, " => "); Texts.WriteString(W, S.s);
 Texts.WriteString(W, " copying"); Texts.Append(Oberon.Log, W.buf);
 f := Files.Old(name);
 IF f # NIL THEN g := Files.New(S.s);
 Files.Set(Rf, f, 0); Files.Set(Rg, g, 0); Files.Read(Rf, ch);
 WHILE ~Rf.eof DO Files.Write(Rg, ch); Files.Read(Rf, ch) END;
 Files.Register(g)
 ELSE Texts.WriteString(W, " failed")
 END ;
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END
 END
 END
END CopyFile;

PROCEDURE CopyFiles*;
 VAR beg, end, time: LONGINT; res: INTEGER;
 T: Texts.Text;
 S: Texts.Scanner;

 190

BEGIN Texts.WriteString(W, "System.CopyFiles"); Texts.WriteLn(W);
 Texts.Append(Oberon.Log, W.buf);
 Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
 WHILE S.class = Texts.Name DO CopyFile(S.s, S); Texts.Scan(S) END ;
 IF (S.class = Texts.Char) & (S.c = "^") THEN Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN
 Texts.OpenScanner(S, T, beg); Texts.Scan(S);
 IF S.class = Texts.Name THEN CopyFile(S.s, S) END
 END
 END
END CopyFiles;

PROCEDURE RenameFile(name: ARRAY OF CHAR; VAR S: Texts.Scanner);
 VAR res: INTEGER;
BEGIN Texts.Scan(S);
 IF (S.class = Texts.Char) & (S.c = "=") THEN Texts.Scan(S);
 IF (S.class = Texts.Char) & (S.c = ">") THEN Texts.Scan(S);
 IF S.class = Texts.Name THEN
 Texts.WriteString(W, name); Texts.WriteString(W, " => "); Texts.WriteString(W, S.s);
 Texts.WriteString(W, " renaming"); Texts.Append(Oberon.Log, W.buf);
 Files.Rename(name, S.s, res);
 IF res > 1 THEN Texts.WriteString(W, " failed") END;
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END
 END
 END
END RenameFile;

PROCEDURE RenameFiles*;
 VAR beg, end, time: LONGINT; res: INTEGER;
 T: Texts.Text;
 S: Texts.Scanner;
BEGIN Texts.WriteString(W, "System.RenameFiles"); Texts.WriteLn(W);
 Texts.Append(Oberon.Log, W.buf);
 Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
 WHILE S.class = Texts.Name DO RenameFile(S.s, S); Texts.Scan(S) END ;
 IF (S.class = Texts.Char) & (S.c = "^") THEN
 Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN
 Texts.OpenScanner(S, T, beg); Texts.Scan(S);
 IF S.class = Texts.Name THEN RenameFile(S.s, S) END
 END
 END
END RenameFiles;

PROCEDURE DeleteFile (VAR name: ARRAY OF CHAR);
 VAR res: INTEGER;
BEGIN Texts.WriteString(W, name); Texts.WriteString(W, " deleting");
 Texts.Append(Oberon.Log, W.buf); Files.Delete(name, res);
 IF res # 0 THEN Texts.WriteString(W, " failed") END;
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
END DeleteFile;

PROCEDURE DeleteFiles*;
 VAR beg, end, time: LONGINT;
 T: Texts.Text;
 S: Texts.Scanner;
BEGIN Texts.WriteString(W, "System.DeleteFiles"); Texts.WriteLn(W);

 191

 Texts.Append(Oberon.Log, W.buf);
 Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
 WHILE S.class = Texts.Name DO DeleteFile(S.s); Texts.Scan(S) END ;
 IF (S.class = Texts.Char) & (S.c = "^") THEN
 Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN Texts.OpenScanner(S, T, beg); Texts.Scan(S);
 IF S.class = Texts.Name THEN DeleteFile(S.s) END
 END
 END
END DeleteFiles;

Procedure Directory serves to obtain excerpts of the file directory. It makes use of procedure
FileDir.Enumerate. The parametric procedure List tests whether or not the delivered name matches the
pattern specified by the parameter of the directory command. If it matches, the name is listed in the
text of the viewer opened in the system track. Since the pattern may contain one or several asterisks
(wild cards), the test consists of a sequence of searches of the pattern parts (separated by the asterisks)
in the file name. In order to reduce the number of calls of List, Enumerate is called with the first part of
the pattern as parameter prefix. Enumeration then starts with the least name having the specified prefix,
and terminates as soon as all names with this prefix have been scanned.

If the specified pattern is followed by an option directive "/date", then not only file names are listed,
but also the listed files' creation date and length. This requires that not only the directory sectors on the
disk are traversed, but that additionally for each listed file its header sector must be read. The two
procedures use the global variables pat and diroption.

PROCEDURE* List(name: FileDir.FileName; adr: LONGINT; VAR cont: BOOLEAN);
 VAR i0, i1, j0, j1: INTEGER; f: BOOLEAN; hp: FileDir.FileHeader;
BEGIN i0 := pos; j0 := pos; f := TRUE;
 LOOP
 IF pat[i0] = "*" THEN INC(i0);
 IF pat[i0] = 0X THEN EXIT END
 ELSE
 IF name[j0] # 0X THEN f := FALSE END;
 EXIT
 END;
 f := FALSE;
 LOOP
 IF name[j0] = 0X THEN EXIT END;
 i1 := i0; j1 := j0;
 LOOP
 IF (pat[i1] = 0X) OR (pat[i1] = "*") THEN f := TRUE; EXIT END ;
 IF pat[i1] # name[j1] THEN EXIT END;
 INC(i1); INC(j1)
 END ;
 IF f THEN j0 := j1; i0 := i1; EXIT END;
 INC(j0)
 END;
 IF ~f THEN EXIT END
 END ;
 IF f THEN
 Texts.WriteString(W, name);
 IF diroption = "d" THEN
 Kernel.GetSector(adr, hp);
 Texts.WriteString(W, " "); Texts.WriteDate(W, hp.time, hp.date);
 Texts.WriteInt(W, LONG(hp.aleng)*FileDir.SectorSize + hp.bleng - FileDir.HeaderSize, 8)
 END ;
 Texts.WriteLn(W)

 192

 END
END List;

PROCEDURE Directory*;
 VAR X, Y, i: INTEGER; ch: CHAR;
 R: Texts.Reader;
 T, t: Texts.Text;
 V: Viewers.Viewer;
 beg, end, time: LONGINT;
 pre: ARRAY 32 OF CHAR;
BEGIN Texts.OpenReader(R, Oberon.Par.text, Oberon.Par.pos); Texts.Read(R, ch);
 WHILE ch = " " DO Texts.Read(R, ch) END;
 IF (ch = "^") OR (ch = 0DX) THEN
 Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN
 Texts.OpenReader(R, T, beg); Texts.Read(R, ch);
 WHILE ch <= " " DO Texts.Read(R, ch) END
 END
 END ;
 i := 0;
 WHILE (ch > " ") & (ch # "/") DO pat[i] := ch; INC(i); Texts.Read(R, ch) END;
 pat[i] := 0X;
 IF ch = "/" THEN Texts.Read(R, diroption) ELSE diroption := 0X END;
 i := 0;
 WHILE pat[i] > "*" DO pre[i] := pat[i]; INC(i) END;
 pre[i] := 0X; pos := i;
 Oberon.AllocateSystemViewer(Oberon.Par.vwr.X, X, Y); t := TextFrames.Text("");
 V := MenuViewers.New(
 TextFrames.NewMenu("System.Directory", StandardMenu),
 TextFrames.NewText(t, 0), TextFrames.menuH, X, Y);
 FileDir.Enumerate(pre, List); Texts.Append(t, W.buf)
END Directory;

References
1. R. Bayer and E. M. McCreight. Organization and maintenance of large ordered indexes. Acta

Informatica, 1, 3, (1972), 173-189.

2. D. Comer. The ubiquiteous B-tree. ACM Comp Surveys, 11, 2, (June 1979), 121-137.

 193

Copyright N.Wirth, 14.4.91 / 10.11.91

8. Storage Layout and Management

8.1. Storage Layout and Run-time Organization
A crucial property of the Oberon System is centralized resource management. Its advantage is that
replication of management algorithms and a premature partitioning of resources are avoided. The
disadvantage is that management algorithms are fixed once and forever and remain the same for all
applications. The success of a centralized resource management therefore depends crucially on its
flexibility and its efficient implementation. This Chapter presents the scheme and the algorithms
governing main storage in the Oberon System.

The storage layout of the Oberon System is determined by the structure of code and data typical in the
use of modular, high-level programming languages, and in particular of the language Oberon. It
suggests the subdivision of storage into three areas.

1. The block space. Every module specifies procedures (code) and global (static) variables. Its
initialization part can be regarded as a procedure implicitly called after loading. Upon loading, space
must be allocated for code and data. Typically, modules contain very few or no global variables, hence
the size of the allocated space is primarily determined by the code. The combined code and data space
is called a block. Blocks are allocated in the block space.

2. The workspace (stack). Execution of every command invokes a sequence of procedures, each of
which uses (possibly zero) parameters and local variables. Since procedure calls and completions
follow a strict first-in last-out order, the stack is the uniquely suited strategy for storage allocation for
local data. Deallocation upon completion of a procedure is achieved by merely resetting the pointer
identifying the top of the stack. Since this operation is implied in appropriate machine instructions (for
returns), it costs zero execution time. Because Oberon is a single-process system, a single stack
suffices. Furthermore, after completion of a command, the stack is empty. This fact will be important
in simplifying the scheme for reclamation of dynamically allocated space.

3. The dynamic space (heap). Apart from global (static) variables, and local (stack-allocated) variables,
a program may refer to anonymous variables referenced through pointers. Such variables are allocated
truly dynamically through calls of an explicit operation (NEW). These variables are allocated in the so-
called heap. Their deallocation is "automatic", when free storage is needed and they are no longer
referenced from any of the loaded modules. This process is called garbage collection.

Unfortunately, the number of distinct spaces is larger than two. If it were two, no arbitrary size
limitation would be necessary; merely the sum of their sizes would be inherently limited by the size of
the store. In the case of three spaces, arbitrarily determined size limits are unavoidable. The presence
of an address-mapping hardware alleviates the problem, however, because the virtual address space is
so large that limits will hardly ever be reached.

Furthermore, we note that both the stack and the heap space must be genuinely allocated, i.e. any
address within the space must denote a physically present location. Hence, there is no point in making
the virtual address space of their sum larger than the entire physical store. The size of the virtual block
space then becomes the difference between virtual and physical address space. The resulting layout is
shown in Fig. 8.1. The upper end of the address space is reserved for device registers.

If address mapping is unavailable, as in the case of Ceres-3 which lacks a memory management unit,
the fixing of size limitations is unavoidable. The chosen layout for Ceres-3 is shown in Fig. 8.2; the
stack is limited to 128K bytes.

 194

Heap

Stack

Blocks

Devices

0
HeapOrg (10 000H)

HeapLimit

StackOrg

BlkPtr

BlkLimit

Fig. 8.1. Storage layout for Ceres-1 and Ceres-2

Heap

Blocks

Stack

not impl.

Devices

0
HeapOrg (10 000H)

HeapLimit

BlkPtr

BlkOrg

StackOrg

Fig. 8.2. Storage layout for Ceres-3

 195

params

locals

SP

FP

CXP

PC

MOD

params

locals

SP

FP

ENTER
locals

PC

MOD

params

locals

SP

FP

EXIT

PC

MOD

params

locals

SP

FP

RXP

locals

SP

FP

Fig. 8.3. State of stack before and after procedure call and return

The area with address range 0...FFFFH contains

1. The NIL-page (0...FFFH) which remains permanently unallocated. The purpose of this measure is
to let references via a NIL-pointer invoke addressing traps.

2. The system stack (1000H - 17FFH) which is used by interrupt routines executed in supervisor
mode, including the trap handler.

3. Allocation tables for pages and disk sectors.

4. Module descriptors (4000H - 7FFFH).

5. Blocks for the permanently resident modules of the inner core, i.e. Kernel, FileDir, Files and
Modules.

The workspace is organized in the usual fashion as a stack of procedure activation records. Its top is
denoted by the SP-Register. A second register, the so-called frame pointer FP is the anchor of the
dynamic chain of activation records. A new element is added upon procedure call in two steps. The
first step is performed after the loading of parameters by the call instruction (CXP for calls of external,
BSR for calls of local procedures). The second step is performed by the ENTER instruction which is
the first instruction of every procedure body. An activation record is removed, also in two steps, upon
procedure completion by the instructions EXIT and RXP for external or RET for local procedures. The
state of the workspace before and after these four steps is shown in Fig 8.3.

It follows that local variables are addressed relative to the FP value with negative offsets. Parameters
are addressed relative to FP with positive offsets, starting at 12 for external procedures called by a
CXP instruction, and at 8 for local procedures, where the MOD register is not pushed onto the stack by
the call instruction.

Global variables and constants (strings) are accessed via the SB register (static base). The value of this
register is automatically adjusted by the CXP and RXP instruction as well as by interrupts and traps.

8.2. Allocation of Module Blocks
As indicated in the preceding section, storage for global (static) variables, for constants, and for the
program code of modules, is allocated in the block space. Every module is represented by a single
block. In addition, each module is assigned a module descriptor containing various pointers into
sections of the block (see Chap. 6). The separation into a descriptor and a block is imposed by the
architecture of the NS32000 processor which supports module structures through its external
addressing mode. The physical separation is necessary because descriptor addresses are confined to 16
bit values and therefore cannot be managed in the same way as general, dynamic storage. This is rather
unfortunate.

 196

PTR

level 1 table

a

level 2 table

b

c

a b c

virtual address

physadr = M[M[PTR+a] + b] +c

Fig. 8.4. NS32000 virtual addressing scheme

Block management is represented by the two procedures Kernel.AllocBlock and Kernel.FreeBlock.
Implementations differ for the various models of the Ceres computer. This is because Ceres-1 and
Ceres-2 incorporate the concept of virtual storage represented by an address mapping memory
management unit (MMU), whereas Ceres-3 does not. In the former case, allocated (physical) pages are
registered in a page reservation table. The store is regarded as a set of pages, and the table contains a
single bit for each page, 0 signifying that the respective page has been allocated. Each block consists of
an integral number of pages whose size is given in the following table.

computer processir page size
Ceres-1 NS32032 512
Ceres-2 NS32532 4096
Ceres-3 NS32GX32 1024

In the case of Ceres-1 and Ceres-2, the virtual address space for blocks is so large that new blocks can
be given steadily increasing addresses without regard to any holes that may have arisen because of
released blocks. The required physical pages are obtained by simply scanning the reservation table.
Block release merely consists of marking the released pages as free in the table.

Naturally, the appropriate entries in the page tables must be marked (or reset), and possibly new page
tables need to be allocated as well. We emphasize that these operations must be performed with the
MMU switched off and with all interrupts disabled.

The NS32000 MMU architecture uses a two-stage table scheme shown in Fig 8.4. The reason is the
following: The page table must be large enough to cover the entire virtual address range. Assuming a
page size of 4 Kbytes and an address space of 4 Gbytes (32-bit addresses), no less than 220 elements
are required, resulting in a table of 4 Mbytes, which clearly is unacceptable. Using a two-level scheme,
each entry of the (primary) table points to a second-level table which itself covers a large section of the
store. In the NS32532 processor, all tables have a size of 4 Kbytes and consist of 1K (= 1024) entries.
Hence, every second-level table covers a space of 1024 * 4 Mbytes = 4 Mbytes, and therefore a first-
level page of 1K entries suffices to cover the entire virtual space of 4 Gbytes.

The disadvantage of the two stage scheme is, of course, that upon a translation cache miss not only
two, but three memory accesses are required to access a word. (For further details we refer the reader
to the literature and the processor manual).

The handling of the tables is concentrated in two internal Kernel routines for allocating and freeing
physical pages. They consist of about 75 instructions.

Of course, the need of a triple access for every memory reference is avoided by a translation cache in
the unit. Nevertheless, a decrease in performance is unavoidable for each cache miss. Furthermore, an
additional subcycle is required for every access in order to look up the cached translation table. The
Ceres-3 computer includes no MMU and address translation. As a consequence, each block must
consist of an integral number of physically adjacent pages. Holes generated by the release of blocks

 197

must be reused. We employ the simple scheme of keeping a list of holes, and of allocating a new block
in the first hole encountered that is large enough (first-fit strategy). Considering the relative
infrequency of module releases, efforts to improve the strategy are not worth the resulting added
complexity.

It is remarkable that the code for block allocation and release without virtual addressing is only
marginally more complicated than with it. (69 vs. 49 instructions). If the routines for managing page
tables are included, it becomes even simpler (69. vs. 124 instructions). The only remaining advantages
of an MMU are a better storage utilization, because no holes occur (a negligible advantage), and that
inadvertent references to unloaded modules, e.g. via installed procedures, lead to an invalid address
trap.

It is worth recalling that the concept of address mapping was introduced as a requirement for virtual
memory implemented with disks as backing store, where pages could be moved into the background in
order to obtain space for newly required pages, and could then be retrieved from disk on demand, i.e.
when access was requested. This scheme is called demand paging. It is not used in the Oberon system,
and one may fairly state that demand paging has lost its significance with the availability of large,
primary stores.

Experience in the use of Ceres leads to the conclusion that whereas address translation through an
MMU was an essential feature for multi-user operating systems, it constitutes a dispensible overkill for
single-user workstations. The fact that modern semiconductor technology made it possible to integrate
the entire translation and caching scheme into a single chip, or even into the processor itself, led to the
hiding (and ignoring) of the scheme's considerable complexity. Its side effects on execution speed are
essentially unpredictable. This makes systems with MMU virtually unusable for applications with tight
real-time constraints.

8.3. Management of Dynamic Storage
The term dynamic storage is used here for all variables that are allocated neither statically (global
variables) nor on the stack (local variables), but through invocation of the intrinsic procedure NEW.
Such variables are anonymous and are referenced exclusively via pointers. The space in which they are
allocated is called the heap.

The space allocated to such dynamic variables becomes free and reusable as soon as the last reference
to it vanishes. This event is hard, and in multiprocess systems even impossible to detect. The usual
remedy is to ignore it and instead to determine the accessibility of all allocated variables (records,
objects) only at the time when more storage space is needed. This process is then called garbage
collection.

The Oberon System does not provide an explicit deallocation procedure allowing the programmer to
signal that a variable will no longer be referenced. The first reason for this omission is that usually a
programmer would not know when to call for deallocation. And secondly, this "hint" could not be
taken as trustworthy. An erroneous deallocation, i.e. one occurring when there still exist references to
the object in question, could lead to a multiple allocation of the same space with disastrous
consequences. Hence, it appears wise to fully rely on system management to determine which areas of
the store are truly reusable.

p

tag

allocated
variable

type
descriptor

Fig. 8.5. Effect of procedure NEW(p)

Before discussing the scheme for storage reclamation, which is the primary subject of dynamic storage
management, we turn our attention to the problem of allocation, i.e. the implementation of procedure
NEW. The simplest solution is to maintain a list of free blocks and to pick the first one large enough.

 198

This strategy leads to a relatively large fragmentation of space and produces many small elements,
particularly in the first part of the list. We therefore employ a somewhat more refined scheme and
maintain five lists of available space. Four of them contain pieces of fixed size, namly 16, 32, 64, and
128 bytes. The fifth list contains pieces whose size is any multiple of 128. Procedure NEW rounds up
the requested size to the least of these values and picks the first element of the respective list. We note
that the choice of the values permits the merging of any two contiguous elements into an element of
the next list. This scheme keeps fragmentation, i.e. the emergence of small pieces in large numbers,
reasonably low with minimal effort. The body of procedure NEW consists of only 100 instructions,
and typically only a small fraction of them needs to be executed.

The statement NEW(p) is compiled into an instruction sequence assigning the address of pointer
variable p to a fixed register (R0) and the type tag to another register (R1). The type tag is a pointer to
a type descriptor containing information required by the garbage collector. This includes the size of the
space occupied and now to be allocated. The effect of NEW is the assignment of the address of the
allocated block to p, and the assignment of the tag to a prefix of the block. (see Fig. 8.5)

Note: The Oberon compiler for Ceres also features a procedure SYSTEM.NEW(p, n). It allows one to
allocate a block without a fixed type identified by a descriptor. Here the size n is placed in the block's
prefix in place of the tag. Bit 0 indicates whether bits 0-23 represent a tag or a size. Such a facility is
required because descriptors are also elements in the heap, and they lack a descriptor of the descriptor,
since the system can rely on their known structure.

In conclusion, we emphasize that this scheme makes the allocation of an object very efficient.
Nevertheless, it is considerably more costly than that of a variable explicitly declared.

We now turn to the problem of storage reclamation or garbage collection. There exist two essentially
different schemes: the reference counting and the mark-scan schemes. In the former, every object
carries a (hidden) reference count, indicating the number of existing references.

NEW(p) initializes the reference count of p^ to 1.
q := p decrements the reference count of q^ by 1, performs the assignment, then
 increments the reference count of p^ by 1. When a reference count reaches zero,
 the element is linked into the free list.

There are two disadvantages inherent in this approach. The first is the non-negligible overhead in
pointer assignments. The second is that circular data structures never become recognized as free, even
if no external references point to their elements.

The Ceres-Oberon system employs the second scheme which involves no hidden operations like the
reference counting scheme, but relies on a process initiated when free storage has become scarce and
more is needed. It consists of two phases. In the first phase, all referenced and therefore still accessible
elements are marked. In the second phase, their unmarked complement is released. The first phase is
called the mark phase, the second the scan phase. Its primary disadvantage is that the process may be
started at moments unpredictable to the system's user. During the process, the computer then appears to
be blocked. It follows that an interactive system using mark-scan garbage collection must guarantee
that the process is sufficiently fast in order to be hardly noticeable. Modern processors make this
possible, even with large main stores. Nevertheless, finding all accessible nodes in an entire computer
system within a second appears to be a formidable feat.

We recognize that the mark phase essentially is a tree traversal, or rather a forest traversal. The roots of
the trees are all named pointer variables in existence. We shall postpone the question of how these
roots are to be found, and first present a quick tutorial about tree traversal. In general, nodes of the
traversed structure may contain many pointers (branches). We shall, however, first restrict our
attention to a binary tree, because the essential problem and its solution can be explained better in this
way.

 199

p q

p.Rp.L

Fig. 8.6. Rotation of pointers

The essential problem alluded to is that of storage utilization by the traversal algorithm itself.
Typically, information about the nodes already visited must be retained, be it explicitly, or implicitly as
in the case of use of recursion. Such a strategy is plainly unacceptable, because the amount of storage
needed may become very large, and because garbage collection is typically initiated just when more
storage is unavailable. The task may seem impossible, yet a solution lies in the idea of inverting
pointers along the path traversed, thus keeping the return path open. It is embodied in the following
procedure, whose task is to traverse the tree given by the parameter root, and to mark every node.
Mark values are assumed to be initially 0. Let the data structure be defined by the types

Ptr = POINTER TO Node;
Node = RECORD m: INTEGER; L, R: Ptr END;

and the algorithm by the procedure

PROCEDURE traverse(root: Ptr);
 VAR p, q, r; Ptr;
BEGIN p := root; q := root;
 REPEAT (* p # NIL *) INC(p.m); (*mark*)
 IF p.L # NIL THEN
 r := p.L; p.L := p.R; p.R := q; q := p; p := r
 ELSE
 p.L := p.R; p.R := q; q:= NIL
 END
 UNTIL p = q
END traverse

We note that only three local variables are required, independent of the size of the tree to be traversed.
The third, r, is in fact merely an auxiliary variable to perform the rotation of values p.L, p.R, q, and p
as shown in Fig. 8.6. A snapshot of a tree traversal is shown in Fig. 8.7.

The pair p, q of pointers marks the position of the process. The algorithm traverses the tree in a left to
right, depth first fashion. When it returns to the root, all nodes have been marked.

How are these claims convincingly supported? The best way is by analyzing the algorithm at an
arbitrary node. We start with the hypothesis H that, given the initial state P, the algorithm will reach
state Q, (see Fig 8.8).

State Q differs from P by the node and its descendants B and C having been marked, and by an
exchange of p and q. We now apply the algorithm to state P, assuming that B and C are not empty. The
process is illustrated in Fig 8.9. P0 stands for P in Fig. 8.7.

Transitions P0 → P1, P2 → P3, and P4 → P5 are the direct results of applying the pointer rotation as
specified by the sequence of five assignments in the algorithm. Transitions P1 → P2 and P3 → P4
follow from the hypothesis H being applied to the states P1 and P3: subtrees are marked and p, q
interchanged. We note in passing that the node is visited three times. Progress is recorded by the mark
value which is incremented from 0 to 3.

Fig. 8.9. demonstrates that, if H holds for steps P1 → P2 and P3 → P4, then it also holds for step P0 →
P5, which visits the subtree p. Hence, it also holds for the step root → root, which traverses the entire
tree.

This proof by recursion relies on the algorithm performing correct transitions also in the case of p.L
being NIL, i.e. B being the empty tree. In this case, state P1 is skipped; the first transition is P0 → P2.

 200

0

0 0

0 0 0 0

root
original

2

1

3

3 3 3 0

q p
snapshot

Fig. 8.7. Tree traversal

L
m=0

R

B C

p

q

A
P:

L
m=3

R

B* C*

q

p

A
Q:

Fig. 8.8. Transition from state P to state Q

If p.L is again NIL, i.e. also C is empty, the next transition is P2 → P4. This concludes the
demonstration of the algorithm's correctness.

We now modify the algorithm of tree traversal to the case where the structure is not confined to a
binary tree, but may be a tree of any degree, i.e. each node may have any number n of descendants. For
practical purposes, however, we restrict n to be in the range 0 ≤ n ≤ N, and therefore may represent all
nodes by the type

Node = RECORD m, n: INTEGER;
 dsc: ARRAY N OF Node
 END

In principle, the binary tree traversal algorithm might be adopted almost without change, merely
extending the rotation of pointers from p.L, p.R, q, p to p.dsc[0], ... , p.dsc[n-1], q, p. However, this
would be an unnecessarily inefficient solution. The following is merely a more effective variant.

PROCEDURE traverse(root: Ptr);
 VAR k: INTEGER; p, q, r: Ptr;
BEGIN p := root; q := root;
 LOOP (* p # NIL*) k := p.m; INC(p.m); (*mark*)
 IF k < p.n THEN
 r := p.dsc[k];
 IF r # NIL THEN p.dsc[k] := q; q := p; p := r END
 ELSIF p = q THEN EXIT
 ELSE k := q.m - 1;
 r := q.dsc[k]; q.dsc[k] := p; p := q; q := r
 END
 END
END traverse

We note that the mark value, starting with zero (unmarked), is used as a counter of descendants already
traversed, and hence as an index to the descendant field to be processed next. The algorithm can be
applied not only to trees, but to arbitrary structures, including circular ones, if the continuation
condition k < p.n is extended to (k < p.n) & (r.m = 0). This causes a descendant that is already marked
to be skipped.

 201

L
0

R

B C

p

q

A
P0:

R

1
L

B

p

C

q

A
P1:

R

1
L

B*

q

C

p

A
P2:

L
R

2

C

p

B*

q

A
P3:

L
R

2

C*

q

B*

p

A
P4:

L
3

R

B* C*

q

p

A
P5:

Fig. 8.9. Transitions from P0 to P5, visiting node three times

L
0

R

C

p

q

A
P0:

R

1
L

C

p

q=NIL

A
P2:

Fig. 8.10. Direct transition from P0 to P2, if p.L = NIL

Oberon's garbage collector uses exactly this algorithm. The mark is included in each record's hidden
prefix. The prefix takes 4 bytes only; 3 are used for the tag or the size, one is reserved for the garbage
collector and used as mark. It follows that no record may contain more than 255 pointers. The number
n of pointers (descendants) in a record is contained in the record's type descriptor. (Records without
descriptor, generated by SYSTEM.NEW, must not contain descendants.)

Type descriptors consist of the following fields (excluding the prefix):

size in bytes, of the described type, (3 bytes)
n number of descendants in the described type (1 byte)
base a table of pointers to the descriptors of the base types (7 elements)
offsets of the descendant pointers in the described type (2 bytes each)

Type descriptors themselves have a prefix containing a mark field and the size of the descriptor, which
is at least 36 (3 bytes for size, 1 byte for n, 4 for the prefix, and 28 for the base tag table).

We emphasize that type descriptors need to be allocated in the heap. They cannot be placed among the
module's constants in the block space, although they are constants, because elements in the heap may
refer to a descriptor even after the module defining the type had been unloaded. This is the case when a

 202

structure rooted in a variable of base type T declared in a module M contains elements of an extension
T' defined in module M', after M' had been unloaded, but when M is still present.

tag

8

20

40

2 44

NIL

NIL

NIL

NIL

NIL

NIL

NIL

20 8

44

Fig. 8.11. Records with and without type descriptor

The scan phase is performed by a relatively straight-forward algorithm. The heap, i.e. the storage area
between HeapOrg and HeapLimit (the latter is a variable), is scanned element by element, starting at
HeapOrg. Elements marked are unmarked, and unmarked elements are freed by linking them into the
appropriate list of available space.

As the heap may always contain free elements, the scan phase must be able to recognize them in order
to skip them or merge them with an adjacent free element. For this purpose, the free elements are also
considered as prefixed. The prefix serves to determine the element's size and to recognize it as free due
to a special (negative) mark value. The encountered mark values and the action to be taken are:

mark value state action

= 0 unmarked collect, mark free
> 0 marked unmark
< 0 free skip or merge

8.4. The Kernel
The NS32000 processor has two distinct modes of operation, the supervisor and the user mode. The
former permits, the latter prohibits execution of certain special instructions and access to protected
parts of the store. Since we wish to make use of this protection facility for certain resource allocation
tables whose corruption would lead to disaster, access to them needs to be made in supervisor mode. It
can only be entered by a supervisor call instruction which causes a trap. There is, however, no facility
in the language Oberon for the handling of traps. The trap handler is therefore programmed in
assembler code, which also allows the expression of priviledged instructions. Module Kernel is the
collection of assembler-coded procedures executed in supervisor mode.

In passing we note that only base modules can be assembler-coded, because the assembler purposely
does not accept specification of imports. The prime justification for programming in assembler code is
the need for efficiency, mostly achieved by judicious use of the few available registers. Efficiency is
primarily important in leaf procedures, i.e. procedures that do not call upon other procedures.
Therefore it is quite appropriate to restrict the use of the assembler to leaf modules.

The procedures in the kernel can be partitioned into four groups: block management, sector
management, heap management, and miscellaneous. Furthermore, the kernel exports certain (read-
only) variables. They reflect the state of the different managers and indicate the amounts of store
already allocated.

MODULE Kernel; (*NW 11.4.86 / 12.4.91*)
 TYPE Sector* = RECORD END ;
 IntProc* = PROCEDURE;

 203

 VAR ModList*: LONGINT;
 NofPages*, NofSectors*, allocated*: LONGINT;
 StackOrg*, HeapLimit*: LONGINT;
 FileRoot*, FontRoot*: LONGINT;
 SectNo*: LONGINT;

 pc*, sb*, fp*, sp0*, sp1*, mod*, eia*: LONGINT; (*status upon trap*)
 err*, pcr*: INTEGER;

(* Block management*)
 PROCEDURE AllocBlock(VAR dadr, blkadr: LONGINT; size: LONGINT);
 PROCEDURE FreeBlock(dadr: LONGINT);

(* Heap management - garbage collector*)
 PROCEDURE GC;

(* Disk sector management*)
 PROCEDURE AllocSector(hint: LONGINT; VAR sec: LONGINT);
 PROCEDURE MarkSector(sec: LONGINT);
 PROCEDURE FreeSector(sec: LONGINT);
 PROCEDURE GetSector(src: LONGINT; VAR dest: Sector);
 PROCEDURE PutSector(dest: LONGINT; VAR src: Sector);
 PROCEDURE ResetDisk;

(* Miscellaneous*)
 PROCEDURE InstallIP(P: IntProc; chan: INTEGER);
 PROCEDURE InstallTrap(P: IntProc);
 PROCEDURE SetICU(n: CHAR);
 PROCEDURE GetClock(VAR time, date: LONGINT);
 PROCEDURE SetClock(time, date: LONGINT);
END Kernel.

Procedures GetClock and SetClock represent the interface to the real-time clock. Both time and date
are encoded as (long) integers as follows:

time = (hour*64 + min)*64 + sec
date = (year*16 + month)*32 + day

The command Watch in module System allows the user to inspect the amounts of allocated resources.

PROCEDURE Watch*;
BEGIN
 Texts.WriteString(W, "System.Watch"); Texts.WriteLn(W);
 Texts.WriteInt(W, Kernel.NofPages, 1); Texts.WriteString(W, " pages, ");
 Texts.WriteInt(W, Kernel.NofSectors, 1); Texts.WriteString(W, " sectors, ");
 Texts.WriteInt(W, Kernel.allocated, 1); Texts.WriteString(W, " bytes allocated");
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
END Watch;

 204

Copyright N.Wirth, 14.4.91 / 11.11.91

9. Device Drivers
9.1. Overview
Device drivers are procedures that constitute the immediate interface between hardware and software.
They refer to those parts of the computer hardware that are usually called peripheral. Computers
typically contain a system bus which transmits data among its different parts. Processor and memory
are considered as its internal parts; the remaining parts, such as disk, keyboard, display, etc, are
considered as external or peripheral, notwithstanding the fact that they are often contained in the same
cabinet.

Such peripheral devices are connected to the system bus via special registers (data buffers) and
transceivers (switches, buffers in the sense of digital electronics). These registers and transceivers are
addressed by the processor in the same way as memory locations - they are said to be memory-mapped
- and they constitute the hardware interface between processor bus and device. References to them are
typically confined to specific driver procedures which constitute the software interface.

Drivers are inherently hardware specific, and the justification of their existence is precisely that they
encapsulate these specifics and present to their clients an appropriate abstraction of the device.
Evidently, this abstraction must still reflect the essential characteristics of the device, but not the
details (such as e.g. the addresses of its interface registers).

Our justification to present the drivers connecting the Oberon system with the Ceres computer in detail
is on the one hand the desire for completeness. But on the other hand it is also in recognition of the fact
that their design represents an essential part of the engineering task in building a system. This part may
look trivial from a conceptual point of view; it certainly is not so in practice.

In order to reduce the number of interface types, standards have been established. The Ceres computer
also uses such interface standards, and we will concentrate on them in the following presentations. The
following devices are considered:

1. Keyboard. It is considered as a serial device delivering one byte of input data per key stroke. It is
connected by a serial line according to the RS-232 and ASCII (American Standard Code for
Information Interchange) standards. The software is contained in module Input (Sect. 9.2).

2. Mouse. The Ceres-mouse is a pointing device delivering coordinates in addition to 3 key states. For
Ceres-1 and Ceres-2, the interface is non-standard; for Ceres-3, a serial transmission is used relying on
the RS-232 standard. The software is part of module Input.

3. Display. The interface to the display is an area of memory that contains the displayed information,
one bit per pixel for the monochrome and four bits per pixel for a color display. The default size is 800
lines and 1024 dots per line. The software is module Display, which primarily consists of operations to
draw frequently occurring patterns, so-called raster-ops (see Chap. 4).

4. Disk. The disk interface of Ceres-1 and Ceres-2 is non-standard and will not be described. The
driver is contained in module Kernel. Ceres-3 operates without disk, but an optional hard disk can be
connected through the standard SCSI interface described in Sect. 9.4.

5. Diskette. The 3.5" diskette uses the same non-standard interface as the hard disk. Software: module
Diskette. This interface is not described in this book.

6. Serial line. This is the standard RS-232 serial interface allowing connections to be established
between computers and to communicate over telephone lines via modems. The software interface is
module V24 described in Sect. 9.2. Transmission rates go up to 19.2 Kbit/s.

7. Network. Ceres computers may be connected by a local area network using the RS-485 standard. It
operates with a transmission rate of 230 Kbit/s, and information is sent in packets of up to 512 bytes in

 205

the SDLC standard format. The interface software is module SCC described in Sect. 9.3; the interface
hardware is a component called Serial Communications Controller.

8. Real-time clock. A clock providing time and date is included in the Ceres computers and is used to
record the creation time and date of files. Its interface is non-standard, hardly of general interest, and
contained in module Kernel.

In all driver modules described below, procedures SYSTEM.PUT, SYSTEM.GET, and SYSTEM.BIT
are used to access the registers of the device interface. Their first parameter is a (long) integer
specifying the address of the register.

9.2. The RS-232 ASCII Standard for Keyboard and Serial Line
All models of the Ceres computer are equipped with a component called a Universal Asynchronous
Receiver and Transmitter (UART). It has an 8-bit parallel connection to the system bus, and two
external connections, one for the transmitter and one for the receiver, resulting in a duplex
transmission line. The UART performs the serialization of 8 bits upon sending and deserialization
upon receiving. The 8 bits form a short packet, also called frame, and they are augmented by a start bit
(always 1). There is no fixed time interval between consecutive packets. Therefore, transmission is
called asynchronous. However, within the packet there exists a fixed frequency and transmission is
synchronous. The clock rates of the transmitter and the receiver must therefore be the same. The start
bit is used to trigger the shift clock of the receiver. There is also a minimal time interval guaranteed
between the last bit of a packet and the start bit of the next packet. It is measured in terms of bit-times,
and one may therefore think of a number of "stop-bits" as filling this interval. Finally, the packet may
be augmented by a parity bit. The format of such a packet is shown in Fig. 9.1.

The Ceres computer uses the Signetics 2692 UART, which contains two (almost) independent line
interfaces called channels A and B. It also makes it possible to select several parameters, such as the
transmission rate, the number of data bits, of stop bits, and the type of parity check (none, even, odd).
The chosen values are stored in the UART's parameter registers. The registers of primary importance
are the data register and the status register.

When sending a byte, the processor must wait until the UART is ready. The ready state is asserted by
bit 2 in the status register. Then the data byte is loaded into the data register, thereby automatically
initiating transmission.

0

1

t

Start bit Data bits Stop bits
Fig. 9.1. ASCII character packet

For receiving a byte, one might use an analogous scheme. However, this would possibly introduce
undesireable timing constraints and dependencies. We must consider the act of receiving a byte as part
of the act of transmission, i.e. as an action intimately connected with sending a byte. Sending and
receiving must be performed at the same time. The UART itself provides some decoupling through its
data buffers. However, they contain only a single byte (or a small number of them), and it is highly
desirable to achieve greater decoupling.

This is possible by providing larger data buffers - typically on the side of the receiver - and by letting
the main processor transfer a byte into that buffer as soon as it has been received. This requires that the
processor be borrowed for a brief moment, which is achieved by a processor interrupt. No polling of
the UART status for input is necessary in this case.

Channel A of the UART is used for the keyboard (input only). It is handled by module Input, whose
interface is listed below.

DEFINITION Input;
 PROCEDURE Available(): INTEGER;
 PROCEDURE Read(VAR ch: CHAR);

 206

 PROCEDURE Mouse(VAR keys: SET; VAR x, y: INTEGER);
 PROCEDURE SetMouseLimits(w, h: INTEGER);
 PROCEDURE Time(): LONGINT;
END Input.

The function procedure Available indicates the number of characters collected in the input buffer. If its
value is greater than zero, Read delivers the next character (byte) from the buffered input stream. If no
characters are available, Read implies a delay until a character has been received.

Module Input also contains the interface to the mouse (pointing device). The hardware contains two
counters, one for the x-direction, one for the y-direction of movement. Procedure Mouse delivers the
values of these counters and the state of the three buttons (keys). The latter are represented by the set
element 0 for the right, 1 for the middle, and 2 for the left button. SetMouseLimits permits to
determine the limiting coordinate values of the rectangle into which the mouse position is mapped and
where the cursor is drawn. The position "wraps around" in both the horizontal and vertical directions.
Changing the limits is useful when several displays are to be installed which are considered to lie in the
same drawing plane, side by side.

The UART component also contains an additional counter - it is truly a multi-purpose chip - that is
incremented every 1/300 s and may serve for measuring elapsed time. The value of this counter is
delivered by procedure Time.

MODULE Input; (*NW 5.10.86 / 15.11.90 Ceres-2*)
 IMPORT SYSTEM, Kernel;

 CONST N = 32;
 MOUSE = 0FFFFB000H; UART = 0FFFFC000H; ICU = 0FFFF9000H;

 VAR MW, MH: INTEGER; (*mouse limits*)
 T: LONGINT; (*time counter*)
 n, in, out: INTEGER;
 buf: ARRAY N OF CHAR;

 PROCEDURE Available*(): INTEGER;
 BEGIN RETURN n
 END Available;

 PROCEDURE Read*(VAR ch: CHAR);
 BEGIN
 REPEAT UNTIL n > 0;
 DEC(n); ch := buf[out]; out := (out+1) MOD N
 END Read;

 PROCEDURE Mouse*(VAR keys: SET; VAR x, y: INTEGER);
 VAR u: LONGINT;
 BEGIN SYSTEM.GET(MOUSE, u);
 keys := {0,1,2} - SYSTEM.VAL(SET, u DIV 1000H MOD 8);
 x := SHORT(u MOD 1000H) MOD MW;
 y := SHORT(u DIV 10000H) MOD 819;
 IF y >= MH THEN y := 0 END
 END Mouse;

 PROCEDURE SetMouseLimits*(w, h: INTEGER);
 BEGIN MW := w; MH := h
 END SetMouseLimits;

 PROCEDURE Time*(): LONGINT;
 VAR lo, lo1, hi: CHAR; t: LONGINT;
 BEGIN
 REPEAT SYSTEM.GET(UART+28, lo); SYSTEM.GET(UART+24, hi);
 t := T - LONG(ORD(hi))*256 - ORD(lo); SYSTEM.GET(UART+28, lo1)

 207

 UNTIL lo1 = lo;
 RETURN t
 END Time;

 PROCEDURE+ KBINT;
 VAR ch: CHAR;
 BEGIN SYSTEM.GET(UART+12, ch); (*RHRA*)
 IF ch = 0FFX THEN HALT(24) END ;
 IF n < N THEN buf[in] := ch; in := (in+1) MOD N; INC(n) END
 END KBINT;

 PROCEDURE+ CTInt;
 VAR dmy: CHAR;
 BEGIN SYSTEM.GET(UART+60, dmy); (*stop timer*)
 INC(T, 0FFFFH); SYSTEM.GET(UART+56, dmy) (*restart timer*)
 END CTInt;

BEGIN MW := 1024; MH := 800;
 n := 0; in := 0; out := 0; T := 0FFFFH;
 Kernel.InstallIP(KBINT, 4); Kernel.InstallIP(CTInt, 0);
 SYSTEM.PUT(UART+16, 10X); (*ACR*)
 SYSTEM.PUT(UART+ 8, 15X); (*CRA enable*)
 SYSTEM.PUT(UART, 13X); (*MR1A, RxRdy -Int, no parity, 8 bits*)
 SYSTEM.PUT(UART, 7X); (*MR2A 1 stop bit*)
 SYSTEM.PUT(UART+ 4, 44X); (*CSRA, rate = 300 bps*)
 SYSTEM.PUT(UART+52, 14X); (*OPCR OP4 = KB and OP3 = C/T int*)
 SYSTEM.PUT(UART+28, 0FFX); (*CTLR*)
 SYSTEM.PUT(UART+24, 0FFX); (*CTUR*)
 SYSTEM.GET(UART+56, buf[0]); (*start timer*)
 SYSTEM.PUT(ICU + 4, 18X); (*clear ICU IMR and IRR bits 0*)
 SYSTEM.PUT(ICU + 4, 1CX); (*clear ICU IMR and IRR bits 4*)
END Input.

Some comments follow:

1. The fact that many properties of the UART can be parameterized leads to a longer initialization
sequence. We refrain from explaining all the details specific to the Signetics 2692 part and refer to the
pertinent device specifications. Here it may suffice to state that the RS-232 transmission for the
keyboard uses a rate of 300 bit/s, 8 bits without parity check, and 1 stop bit.

2. An interrupt handler is declared in Oberon as a parameterless procedure marked with a plus sign.
The keyboard interrupt handler KBINT receives a single character. If it is the abort character (cntl-
shift-delete), a trap is induced by the statement HALT(24). This enables the operator to interrupt a
computation when it appears to be non-terminating.

3. The keyboard buffer is designed as a circular buffer. When full, incoming characters are ignored
(except abort).

4. The UART's timer (counter) has 16 bits and is accessed in two steps, reading the high and low half
respectively. A 32 bit extension is provided in the form of variable T, which is incremented by 216
upon each timer interrupt, which occurs when the UART-counter t has reached zero. Since the UART
counter is decremented every 1/300 s, the value delivered by procedure Time is computed as T - t.

5. Before an interrupt channel can be active, three conditions must be satisfied:
1. The processor interrupt must be enabled. It normally is.
2. The interrupt mechanism of the device must be enabled.
3. The interrupt control unit (ICU) lying between devices and processor must let the respective
interrupt signal pass.

 208

The third condition is established by the last two statements of the module's initialization sequence,
one instruction being necessary for the keyboard's interrupt, one for the timer's.

6. The mouse counter values serve as coordinates for the cursor to be displayed on the screen. For this
reason, they are confined to the ranges 0 <= x < MW and 0 <= y < MH. The limit values can be set by
procedure SetMouseLimits according to the dimension (resolution) of the available display.

Channel B of the UART leads to an external RS-232 (V24) connector. This serial line is not employed
by the Oberon system and hence is freely available to the user. Its software interface is module V24.

DEFINITION V24;
 IMPORT SYSTEM;
 PROCEDURE Start(CSR, MR1, MR2: CHAR);
 PROCEDURE SetOP(s: SET);
 PROCEDURE ClearOP(s: SET);
 PROCEDURE IP(n: INTEGER): BOOLEAN;
 PROCEDURE SR(n: INTEGER): BOOLEAN;
 PROCEDURE Available(): INTEGER;
 PROCEDURE Receive(VAR x: SYSTEM.BYTE);
 PROCEDURE Send(x: SYSTEM.BYTE);
 PROCEDURE Break;
 PROCEDURE Stop;
END V24.

The channel's receiver and transmitter are started by calling procedure Start. It has three parameters
whose values are codes for the transmission clock rate the parity mode, the number of bits per byte,
and for the number of stop bits. Procedure Available denotes the number of bytes available (received)
in the input buffer. Receive delivers the next byte of the sequence, and Send dispatches the byte
specified by the parameter. SR yields the value of the specified bit in the status register, and Stop
serves to turn off both transmitter and receiver.

The Signetics 2692 dual UART's exaggerated multi-purpose nature becomes apparent at this point: in
addition to the two channels and a counter/timer, it also contains an input and an output register (7 and
8 bits respectively) with external connections (pins). On the Ceres computer, these signals are used in
various ways and must not be used by the programmer, except the following:

input: 0 DCD (data carrier detected)
 1 CTS (clear to send)
 2 DSR (data set ready)

output: 0 DTR (data terminal ready)
 1 RTS (request to send)

The meaning of these bits is derived from their use in connection with modems. Procedures SetOP and
ClearOP serve to set and clear those bits of the UART's output register (OP) which are specified in
their set parameter. Function procedure IP serves to test the specified bit in the UART's input register
(IP). And finally, procedure Break serves to apply a break signal (0 value during at least 20 ms) to the
serial line. The following table lists the principal registers of the UART.

RHRA/B receiver holding register received data
THRA/B transmitter holding reg. data to be transmitted
MR1A/B mode register 1 Rx control, parity mode and type, no. of bits per byte
MR2A/B mode register 2 channel mode, Tx control, stop bit length
CRA/B command register
CSRA/B clock select register receiver and transmitter clock rates
SRA/B status register RxRdy, TxRdy; overrun, parity, framing errors
OPCR output port configuration register
IPCR input port change register
ISR interrupt status register
IMR interrupt mask register

 209

CTUR counter/timer upper byte value
CTLR counter/timer lower byte value

MODULE V24; (*NW 18.3.89 / 19.1.91*)
 (*interrupt-driven UART channel B*)
 IMPORT SYSTEM, Kernel;

 CONST BufLen = 512;
 UART = 0FFFFC000H; ICU = 0FFFF9000H;

 VAR in, out: INTEGER;
 buf: ARRAY BufLen OF SYSTEM.BYTE;

 PROCEDURE+ Int;
 BEGIN SYSTEM.GET(UART+44, buf[in]); in := (in+1) MOD BufLen
 END Int;

 PROCEDURE Start*(CSR, MR1, MR2: CHAR);
 BEGIN in := 0; out := 0; Kernel.InstallIP(Int, 2);
 SYSTEM.PUT(UART+40, 30X); (*CRB reset transmitter*)
 SYSTEM.PUT(UART+40, 20X); (*CRB reset receiver*)
 SYSTEM.PUT(UART+36, CSR); (*CSRB clock rate*)
 SYSTEM.PUT(UART+40, 15X); (*CRB enable Tx and Rx, pointer to MR1*)
 SYSTEM.PUT(UART+32, MR1); (*MR1B, parity, nof bits*)
 SYSTEM.PUT(UART+32, MR2); (*MR2B stop bits*)
 SYSTEM.PUT(UART+20, 20X); (*IMR RxRdy Int enable*)
 SYSTEM.PUT(ICU + 4, 1AX); (*ICU IMR and IRR bit 2*)
 END Start;

 PROCEDURE SetOP*(s: SET);
 BEGIN SYSTEM.PUT(UART+56, s)
 END SetOP;

 PROCEDURE ClearOP*(s: SET);
 BEGIN SYSTEM.PUT(UART+60, s)
 END ClearOP;

 PROCEDURE IP*(n: INTEGER): BOOLEAN;
 BEGIN RETURN SYSTEM.BIT(UART+52, n)
 END IP;

 PROCEDURE SR*(n: INTEGER): BOOLEAN;
 BEGIN RETURN SYSTEM.BIT(UART+36, n)
 END SR;

 PROCEDURE Available*(): INTEGER;
 BEGIN RETURN (in - out) MOD BufLen
 END Available;

 PROCEDURE Receive*(VAR x: SYSTEM.BYTE);
 BEGIN
 REPEAT UNTIL in # out;
 x := buf[out]; out := (out+1) MOD BufLen
 END Receive;

 PROCEDURE Send*(x: SYSTEM.BYTE);
 BEGIN
 REPEAT UNTIL SYSTEM.BIT(UART+36, 2);
 SYSTEM.PUT(UART+44, x)
 END Send;

 210

 PROCEDURE Break*;
 VAR i: LONGINT;
 BEGIN SYSTEM.PUT(UART+40, 60X); i := 500000;
 REPEAT DEC(i) UNTIL i = 0;
 SYSTEM.PUT(UART+40, 70X)
 END Break;

 PROCEDURE Stop*;
 BEGIN SYSTEM.PUT(UART+20, 0); (*IMR disable Rx-Int*)
 SYSTEM.PUT(ICU + 4, 3AX) (*ICU chan 2*)
 END Stop;
END V24.

9.3. The RS-485 SDLC Standard for a Network
The Ceres/Oberon System also features a network connection. The principal differences between the
RS-232 line and the network connection are that of a point-to-point line vs. a bus with multiple taps,
and that of asynchronous vs. synchronous transmission. Asynchronous transmission as described in the
preceding section is uneconomical if transmission speeds beyond 20 Kbit/s are desired, because too
much time is wasted between consecutive bytes. Synchronous transmission improves performance, and
it is used by the Ceres computers for interconnection in a local area network.

Strictly speaking, the difference between so-called asynchronous and synchronous transmission lies in
the packet length only, because the former uses synchronicity during the transmission of each byte,
too. The price for longer packets lies in the need for more accurate clocks; clock accuracy limits packet
length, unless some encoding scheme is used to transmit the clock together with data. The RS-485 and
SDLC Standards do not specify such an encoding; the clock is not transmitted. It is fixed here to 230
Kbit/s, yielding about 30 Kbyte/s.

A direct consequence is that computation of the byte sequence and transmission of the packet cannot
be interleaved due to the strict timing constraints. Since one byte must be sent every 30 us, the data of
the entire packet must be ready before transmission is initiated.

The SDLC (Synchronous Data Link Control) standard specifies a fixed packet format of variable
length. The role of the start bit is taken by a start byte, a so-called flag. It is followed by the data bytes,
and the packet is terminated by another flag. The flag consists of 6 consecutive '1's. Hence, any
occurrence of 6 consecutive '1's must not occur within the data section. The problem is solved by the
transmitter automatically inserting and the receiver removing a zero bit after every occurrence of five
consecutive ones. If the bit following the 5 ones is not a zero, a flag was received. This zero insertion
(and deletion), as well as the pre- and postfixing of a flag, is performed automatically by the interface
hardware component SCC (Zilog 8530).

In order to detect transmission errors, the transmitter computes a cyclic redundancy code (CRC) over
the data and appends it to the data stream, just before the terminating flag. The receiver computes the
same code and compares it with the received code. If the difference is not zero, a status bit is set which
must be inspected for each received packet.

The SDLC Standard also requires that the first byte of the packet - the one after the flag - specify the
receiver's address. This is necessary, because in a network the recipient is not automatically determined
like in a point-to-point connection. Every station is therefore given a unique identification. Beyond
this, we postulate some additional properties of packets. Each packet consist of a header followed by
the data. The first 9 bytes constitute the header, of which the first is the destination address, the second
byte denotes the sender's address, and the third a packet type. It is followed by two bytes indicating the
packet length (in bytes). (The remaining four bytes are currently not used). The resulting packet
format is shown in Fig. 9.2, and it is reflected by the data type Header.

 211

data CRC

destination address

source address

packet type

data length

unused flag

Fig. 9.2. Ceres-net packet format

DEFINITION SCC;
 TYPE Header =
 RECORD valid: BOOLEAN; dadr, sadr, typ: SHORTINT;
 len: INTEGER; (*of data following header*)
 destLink, srcLink: INTEGER (*unused*)
 END ;

 PROCEDURE Start(filter: BOOLEAN);
 PROCEDURE Send(VAR head: Header; VAR buf: ARRAY OF SYSTEM.BYTE);
 PROCEDURE Available(): INTEGER;
 PROCEDURE ReceiveHead(VAR head: Header);
 PROCEDURE Receive(VAR x: SYSTEM.BYTE);
 PROCEDURE Skip(m: INTEGER);
 PROCEDURE Stop;
END SCC.

As in the case of the V24 interface, the receiver buffers the incoming data stream (without flags and
CRC). Procedure Receive picks consecutive bytes from the buffer. The number of buffered bytes is
given by procedure Available. The task of receiving is simplified by procedure ReceiveHead. It is
called when a next packet is expected. The field valid has the meaning "packet has been received and
header is valid".

Transmitter and receiver can be switched on and off by calls to procedures Start and Stop. The former
features a Boolean parameter filter with the meaning "filter out packets which are not addressed to this
station". The interface chip is capable of comparing the first header byte (destination address) with its
own station's address (stored in a register), and to discard a packet upon mismatch. An active filter is of
course the normal mode of operation, because in this mode discarded packets do not require interaction
with the computer's processor.

The SCC-driver program is, as one expects, dominated by accesses to the device's registers. The
primary function of these registers is indicated by the Table below; for further details we refer to the
controller's data sheets. It must suffice to say that registers (except the data register) are accessed in
two steps. First the register's number is sent to the control port, and thereafter its value is transferred.
(Register number and value are time-multiplexed; see procedure PUT). The following table gives an
overview of the available device registers:

Write-Registers
0 Command register
1 Transmit/receive interrupt and data transfer mode definition
2 Interrupt vector
3 Receive parameters and control
4 Transmit/receive miscellaneous parameters and modes
5 Transmit parameter and control
6 Sync characters or SDLC address field (filter)
7 Sync character or SDLC flag
8 Transmit buffer (data)
9 Master interrupt control
10 Miscellaneous transmitter/receiver control bits
11 Clock mode control

 212

12 Baud rate generator time constant (low byte)
13 Baud rate generator time constant (high byte)
14 Miscellaneous control bits
15 External/Status interrupt control

Read-Registers
0 Transmit/receive buffer status
1 Status register (errors, end of frame)
2 Interrupt vector
3 Interrupts pending
8 Received data buffer
10 Status bits

MODULE SCC; (*NW 13.11.87 / 22.8.90 Ceres-2*)
 IMPORT SYSTEM, Kernel;

 CONST BufLen = 2048;
 com = 0FFFFD008H; (*commands and status, SCC channel A*)
 dat = 0FFFFD00CH;
 DIPS = 0FFFFFC00H;
 ICU = 0FFFF9004H;
 RxCA = 0; (*R0: Rx Char Available*)
 TxBE = 2; (*R0: Tx Buffer Empty*)
 Hunt = 4; (*R0: Sync/Hunt*)
 TxUR = 6; (*R0: Tx UnderRun*)
 RxOR = 5; (*R1: Rx OverRun*)
 CRC = 6; (*R1: CRC error*)
 EOF = 7; (*R1: End Of Frame*)

 TYPE Header* =
 RECORD valid*: BOOLEAN;
 dadr*, sadr*, typ*: SHORTINT;
 len*: INTEGER; (*of data following header*)
 destLink*, srcLink*: INTEGER (*link numbers*)
 END ;

 VAR in, out: INTEGER;
 Adr: SHORTINT;
 SCCR3: CHAR;
 buf: ARRAY BufLen OF CHAR;

 PROCEDURE PUT(r: SHORTINT; x: SYSTEM.BYTE);
 BEGIN SYSTEM.PUT(com, r); SYSTEM.PUT(com, x)
 END PUT;

 PROCEDURE+ Int1;
 VAR del, oldin: INTEGER; stat: SET; dmy: CHAR;
 BEGIN SYSTEM.GET(dat, buf[in]);
 PUT(1, 0X); (*disable interrupts*)
 oldin := in; in := (in+1) MOD BufLen; del := 16;
 LOOP
 IF SYSTEM.BIT(com, RxCA) THEN del := 16;
 IF in # out THEN SYSTEM.GET(dat, buf[in]); in := (in+1) MOD BufLen
 ELSE SYSTEM.GET(dat, dmy)
 END
 ELSE SYSTEM.PUT(com, 1X); DEC(del);
 IF SYSTEM.BIT(com, EOF) & (del <= 0) OR (del <= -16) THEN EXIT END
 END
 END ;

 213

 SYSTEM.PUT(com, 1X); SYSTEM.GET(com, stat);
 IF (RxOR IN stat) OR (CRC IN stat) OR (in = out) THEN
 in := oldin (*reset buffer*)
 ELSE in := (in-2) MOD BufLen (*remove CRC*)
 END ;
 SYSTEM.PUT(com, 30X); (*error reset*)
 SYSTEM.PUT(com, 10X); (*reset ext/stat interrupts*)
 PUT(1, 8X); (*enable Rx-Int on 1st char*)
 SYSTEM.PUT(com, 20X); (*enable Rx-Int on next char*)
 PUT(3, SCCR3); (*enter hunt mode*)
 END Int1;

 PROCEDURE Start*(filter: BOOLEAN);
 BEGIN in := 0; out := 0;
 IF filter THEN SCCR3 := 0DDX ELSE SCCR3 := 0D9X END ;
 SYSTEM.GET(DIPS, Adr); Adr := Adr MOD 40H;
 Kernel.InstallIP(Int1, 1);
 PUT(9, 80X); (*reset A, disable all interrupts*)
 PUT(4, 20X); (*SDLC mode*)
 PUT(1, 0X); (*disable all interrupts*)
 PUT(2, 0X); (*interrupt vector*)
 PUT(3, SCCR3); (*8bit, hunt mode, Rx-CRC on, adr search, Rx off*)
 PUT(5, 0E1X); (*8bit, SDLC, Tx-CRC on, Tx off*)
 PUT(6, Adr); (*SDLC-address*)
 PUT(7, 7EX); (*SDLC flag*)
 PUT(9, 6X); (*master int on, no vector*)
 PUT(10, 0E0X); (*FM0*)
 PUT(11, 0F7X); (*Xtal, RxC = DPLL TxC = rate genL*)
 PUT(12, 6X); (*lo byte of rate gen: Xtal DIV 16*)
 PUT(13, 0X); (*hi byte of rate gen*)
 PUT(14, 0A0X); (*DPLL = Xtal*)
 PUT(14, 0C0X); (*FM mode*)
 PUT(3, SCCR3); (*Rx enable, enter hunt mode*)
 SYSTEM.PUT(com, 80X); (*TxCRC reset*)
 PUT(15, 0X); (*mask ext interrupts*)
 SYSTEM.PUT(com, 10X);
 SYSTEM.PUT(com, 10X); (*reset ext/status*)
 PUT(1, 0X); (*Rx-Int on 1st char off*)
 PUT(9, 0EX); (*no A reset, enable int, disable daisy chain*)
 PUT(1, 8X); (*enable Rx Int*)
 PUT(14, 21X); (*enter search mode*)
 SYSTEM.PUT(ICU, 19X); (*clear IRR and IMR bits, channel 1*)
 END Start;

 PROCEDURE SendPacket*(VAR head, buf: ARRAY OF SYSTEM.BYTE);
 VAR i, len: INTEGER;
 BEGIN head[2] := Adr;
 len := ORD(head[5])*100H + ORD(head[4]);
 LOOP (*sample line*) i := 60;
 REPEAT DEC(i) UNTIL SYSTEM.BIT(com, Hunt) OR (i = 0);
 IF i > 0 THEN (*line idle*) EXIT END ;
 i := LONG(Adr)*128 + 800; (*delay*)
 REPEAT DEC(i) UNTIL i = 0
 END ;
 Kernel.SetICU(0A2X); (*disable interrupts!*)
 PUT(5, 63X); (*RTS, send 1s*)
 PUT(5, 6BX); (*RTS, Tx enable*)

 214

 SYSTEM.PUT(com, 80X); (*reset Tx-CRC*)
 SYSTEM.PUT(dat, ORD(head[1])); (*send dest*)
 SYSTEM.PUT(com, 0C0X); (*reset underrun/EOM flag*)
 REPEAT UNTIL SYSTEM.BIT(com, TxBE);
 i := 2;
 REPEAT SYSTEM.PUT(dat, head[i]); INC(i);
 REPEAT UNTIL SYSTEM.BIT(com, TxBE)
 UNTIL i = 10;
 i := 0;
 WHILE i < len DO
 SYSTEM.PUT(dat, buf[i]); INC(i); (*send data*)
 REPEAT UNTIL SYSTEM.BIT(com, TxBE)
 END ;
 REPEAT UNTIL SYSTEM.BIT(com, TxUR) & SYSTEM.BIT(com, TxBE);
 PUT(5, 63X); (*RTS, Tx disable, send 1s*)
 i := 300;
 REPEAT DEC(i) UNTIL i = 0;
 PUT(5, 0E1X); (*~RTS*)
 PUT(1, 8X); (*enable Rx-Int on 1st char*)
 PUT(14, 21X); (*enter search mode*)
 SYSTEM.PUT(com, 20X); (*enable Rx-Int on next char*)
 PUT(3, SCCR3); (*enter hunt mode*)
 SYSTEM.PUT(ICU, 0A1X) (*enable interrupts*)
 END SendPacket;

 PROCEDURE Available*(): INTEGER;
 BEGIN RETURN (in - out) MOD BufLen
 END Available;

 PROCEDURE Receive*(VAR x: SYSTEM.BYTE);
 BEGIN
 REPEAT UNTIL in # out;
 x := buf[out]; out := (out+1) MOD BufLen
 END Receive;

 PROCEDURE ReceiveHead*(VAR head: ARRAY OF SYSTEM.BYTE);
 VAR i: INTEGER;
 BEGIN
 IF (in - out) MOD BufLen >= 9 THEN head[0] := 1; i := 1;
 REPEAT Receive(head[i]); INC(i) UNTIL i = 10
 ELSE head[0] := 0
 END
 END ReceiveHead;

 PROCEDURE Skip*(m: INTEGER);
 BEGIN
 IF m <= (in - out) MOD BufLen THEN out := (out+m) MOD BufLen ELSE out := in END
 END Skip;

 PROCEDURE Stop*;
 BEGIN PUT(9, 80X); (*reset SCCA*)
 SYSTEM.PUT(ICU, 39X); SYSTEM.PUT(ICU, 59X); (*reset IMR and IRR*)
 END Stop;

BEGIN Start(TRUE)
END SCC.

Some comments follow:

 215

1. The sequence in which individual registers are initialized is essential for correct functioning. The
lack of its specification in the part's documentation was a source of serious difficulties and headaches.

2. Some sections of the driver are very time-critical (particularly for Ceres-1). For example, after
receiving an interrupt, the first byte must be read immediately. A queue of 3 bytes in the receiver
hardware allows for enough time to disable interrupts, store the byte, and copy the buffer index (oldin)
which is used as a reset point in case of a transmission error.

3. Before sending a packet, it must be verified that the line is free by testing the so-called hunt bit. If
the line is busy, the line is polled again after a delay. The delay is influenced by the station's address,
causing all stations to have a slightly different delay. Actual collisions can only be detected by the
receiver through the CRC-check at the end of the packet.

4. After transmitting the last data byte, the line must be kept busy for transmitting CRC and flag, and
for the receiver to terminate (stop bits!). This time span is in the order of 200us, which is too short for
the timers' resolution, and hence must be programmed as a tight delay loop. The delay constant
depends on the computer's clock rate and model. This is rather unfortunate.

5. The end of a packet is indicated by the EOF bit in the SCC's status register. Unfortunately it is not
reliable. It sometimes signals the end prematurely. The situation is saved by testing a number of times
while no further data bytes arrive. The resulting program section does not appear to be very neatly
conceived; but software which fixes a hardware deficiency never does.

6. Procedure Skip serves to discard received data, namely the next m bytes. m is compared with the
stored number of bytes given by n = (in-out) MOD BufLen, in order not to "overshoot". We leave the
inclined reader to discover why the guard m <= n is correct, whereas m < n would be wrong.

9.4. A Disk Driver using the SCSI Interface
The Oberon System's procedural interface to the disk is represented by the two procedures
Kernel.GetSector and Kernel.PutSector. Their details intimately depend on the disk controller used.
Several standards have recently emerged for disk interfaces, and we therefore present one of them,
namely the one called the Small Computer Systems Interface (SCSI), which is designed with sufficient
generality to be also usable for devices other than disks, and even for fast data exchange between
computers.

The Ceres-3 computer is equipped with this interface, and hence disks (or other devices) can be
connected externally. We emphasize that SCSI constitutes a bus, and not only a point-to-point
connection. However, at most 8 partners may be interconnected.

The SCSI signal bus consist of 8 data lines (plus parity) and several control lines (namely SEL, BSY,
REQ, ACK, C/D, MSG, I/O, RST, and ATN). Hence, the 8 (or 9) bits composing a byte are
transmitted in parallel. Bytes are transmitted asynchronously, i.e. without any timing dependencies
within their sequence. This is possible with the aid of the two control signals REQ and ACK, which are
used in the following way.

In order to transmit a byte from a master to a server, the latter first waits until the master applies the
byte to the data lines and signals availability of the byte by asserting the REQ signal. The server then
samples (reads) the data lines, asserts the ACK signal, and waits until the master deasserts (resets) the
REQ signal. Finally, the server deasserts the ACK signal. The REQ signal is driven (determined) by
the master and inspected by the server, the ACK signal is driven by the server and polled by the
master. This sequence of actions is called a "handshake", and is used when transmitting a byte in either
direction (see Fig. 9.3.). In the program listed subsequently, this transmission protocol is implemented
by the two procedures Send (a sequence of n bytes) and Receive (a single byte).

 216

REQ

ACK

Data

Data sent by master Data sent by server
Fig. 9.3. The SCSI ‘handshake’

In order to perform an entire transaction, such as the reading or writing of a disk sector, the SCSI
Standard prescribes six phases (apart from neutral, or bus free). The agent starting the transaction,
usually the computer, is called initiator, and the addressee is called the target. In systems where only
one agent has the ability to act as initiator, the first action is to select a target. We recall that the SCSI
Standard defines not a line, but rather a bus; hence the targeted partner must first be notified (selected).
This selection phase is characterized by the control signal SEL being asserted, concurrently with one of
the 8 data lines. The addressed device responds by asserting the control signal BSY. In the program
listed below, the selection phase is described by procedure Select, which includes a timeout for the
case that the addressed device does not respond (or does not exist). From this point onwards, the target
acts as master, and the initiator as server.

The second phase is the command phase, in which the selected target requests, and the initiator replies
by sending a command encoded as a sequence of bytes. This phase is identified by the C/D
(command/data) signal being asserted and the MSG signal being deasserted. The command consists of
a sequence of (at least 6) bytes. The first byte is the operation code, or command byte, the remaining
ones its parameters. In the case of the target being a disk controller, the first byte is followed by 3 bytes
specifying the sector address (most significant byte first), a byte specifying the number of disk sectors
involved and a device specific byte.

If the command is acceptable to the target, the third phase is entered. This is the data phase, identified
by both C/D and MSG signals being deasserted. Hence, the initiator waits for the REQ signal being
asserted, and then tests the C/D signal. If it is not deasserted, the data phase is skipped. Otherwise, the
specified number of data bytes are transmitted.

Then follows the status phase in which the target sends status information, typically a single byte. Zero
indicates that the requested command had been completed.

The last phase is called the message phase, identified by both the C/D and MSG signals being asserted.
In this phase, a message is transmitted from the target to the initiator. It has no significance in our
application, but must be received anyway according to the rules of the Standard.

In systems where several agents have the capability to act as initiators, the danger exists that some of
them may enter the selection phase at the very same moment. The consequences would be
unpredictable. In order to avoid this unacceptable possibility, selection must be preceded by the
arbitration phase. It is noteworthy that no single, central agency is required for granting bus access to
one of the concurrent competitors. Arbitration is called distributed and proceeds as follows:

First, the initiator asserts the BSY signal and, at the same time, the data line corresponding to the
initiator's address. If within a certain time span (arbitration delay = 200ns) no data line with higher
number is asserted (by a competitor), the initiator is allowed to enter the selection phase by asserting
SEL. Otherwise BSY is deasserted to give priority to the higher ranking competitor. We now
understand the reason why only 8 instead of 28 devices can be connected to the SCSI bus; each data
line must be associated with exactly one device.

The values of the signals characterizing the various phases are given in the following table:

Phase SEL BSY C/D MSG I/O
neutral 0 0 x x x
arbitration 0 1 0 0 0
selection 1 0 0 0 0

 217

command 0 1 1 0 0
data 0 1 0 0 0/1
status 0 1 1 0 1
message 0 1 1 1 0/1

The principal interface registers and their bit assignments are shown in Fig. 9.4. The full standard
specifies further registers and facilities which are not relevant for our purpose.

1. When applying data to the bus, the ODR register is connected to the bus only if the following
conditions are met: Bit 0 (DB) in the ICR is asserted, and the phases of initiator and target match.

2. A phase match exists, if the phase signals on the bus (I/O, C/D, MSG), as determined by the target,
have the same values as are stored in the initiator's target command register. A phase mismatch is
indicated in the BSR register (PHM).

3. RST ist the reset signal, DP the data bus parity, PCK indicates a parity check, and TAR specifies
target mode of operation.

In the case of a disk drive as device (target), many commands are usually available. The ones of
concern to us are a read and a write sector command. As explained above, the first byte always
specifies the operation. It is followed by 3 bytes giving the sector number, one byte indicating the
number of consecutive sectors to be transmitted, and a zero byte.

7 0Output Data Register (ODR)

RST ACK BSY SEL ATN DB

Initiator Command Register (ICR)

TAR PCK BSY

Mode Register 2 (MR2)

REQ MSG C/D I/O

Target Command Register (TCR)

7 0Current SCSI Data (CSD)

RST BSY REQ MSG C/D I/O SEL DP

Current SCSI Bus Status (CSB)

PHM BSY ATN ACK

Bus and Status Register (BSR)

Write registers Read ports and register

Fig. 9.4. Principal SCSI registers and bit assignments

MODULE Disk; (*NW 12.4.90 / 2.10.90*)
 IMPORT SYSTEM, Kernel;

 CONST SS = 1024; devno = 0; maxSector = 102432;
 SCSI = 0FFFF8000H;
 ODR = SCSI; (*output data register*)
 CSD = SCSI; (*current SCSI data*)
 ICR = SCSI + 4; (*initiator command register*)
 MR2 = SCSI + 8; (*mode register*)
 TCR = SCSI + 12; (*target command register*)
 SER = SCSI + 16; (*select enable register*)
 CSB = SCSI + 16; (*current SCSI bus status*)
 BSR = SCSI + 20; (*bus status*)
 RPI = SCSI + 28; (*reset parity and interrupts*)

 TYPE DiskAdr = LONGINT;
 Buffer = ARRAY 256 OF LONGINT;

 VAR stat*, msg: CHAR;

 PROCEDURE Select(n: LONGINT);
 BEGIN
 REPEAT UNTIL ~SYSTEM.BIT(CSB, 6); (*~BSY*)

 218

 REPEAT UNTIL ~SYSTEM.BIT(CSB, 1); (*~SEL*)
 SYSTEM.PUT(ODR, {n}); SYSTEM.PUT(ICR, 5); (*SEL*)
 REPEAT UNTIL SYSTEM.BIT(CSB, 6) (*BSY*)
 END Select;

 PROCEDURE Receive(VAR x: CHAR);
 BEGIN
 REPEAT UNTIL SYSTEM.BIT(CSB, 5); (*REQ*)
 SYSTEM.GET(CSD, x);
 SYSTEM.PUT(ICR, 10H); (*assert ACK*)
 REPEAT UNTIL ~SYSTEM.BIT(CSB, 5); (*~REQ*)
 SYSTEM.PUT(ICR, 0); (*deassert ACK*)
 END Receive;

 PROCEDURE Send(x: CHAR);
 BEGIN
 REPEAT UNTIL SYSTEM.BIT(CSB, 5); (*REQ*)
 SYSTEM.PUT(ODR, x);
 SYSTEM.PUT(ICR, 11H); (*assert ACK*)
 REPEAT UNTIL ~SYSTEM.BIT(CSB, 5); (*REQ*)
 SYSTEM.PUT(ICR, 1) (*deassert ACK*)
 END Send;

 PROCEDURE Reset*;
 BEGIN SYSTEM.PUT(ICR, 80X); SYSTEM.PUT(TCR, 0); SYSTEM.PUT(ICR, 0);
 SYSTEM.PUT(MR2, 20X); SYSTEM.GET(RPI, stat)
 END Reset;

 PROCEDURE GetSector*(src: DiskAdr; VAR dest: Kernel.Sector);
 VAR adr, limit: LONGINT; x: CHAR;
 BEGIN INC(src, src);
 SYSTEM.GET(RPI, x); (*reset parity*) Select(devno);
 SYSTEM.PUT(TCR, 2); SYSTEM.PUT(ICR, 1);
 Send(8X); Send(CHR(src DIV 10000H)); Send(CHR(src DIV 100H)); Send(CHR(src));
 Send(2X); Send(0X);
 SYSTEM.PUT(TCR, 1); SYSTEM.PUT(ICR, 0);
 adr := SYSTEM.ADR(dest); limit := adr + SS;
 LOOP Receive(x);
 IF ~SYSTEM.BIT(CSB, 3) THEN SYSTEM.PUT(adr, x); INC(adr)
 ELSE stat := x; EXIT
 END ;
 IF adr = limit THEN Receive(stat); EXIT END
 END ;
 Receive(msg); SYSTEM.PUT(TCR, 0); SYSTEM.PUT(ICR, 0)
 END GetSector;

 PROCEDURE PutSector*(dest: DiskAdr;VAR src: Kernel.Sector);
 VAR adr, limit: LONGINT; x: CHAR;
 BEGIN INC(dest, dest); Select(devno);
 SYSTEM.PUT(TCR, 2); SYSTEM.PUT(ICR, 1);
 Send(0AX); Send(CHR(dest DIV 10000H)); Send(CHR(dest DIV 100H));
 Send(CHR(dest));
 Send(2X); Send(0X);
 SYSTEM.PUT(TCR, 0); adr := SYSTEM.ADR(src); limit := adr + SS;
 REPEAT SYSTEM.GET(adr, x); Send(x); INC(adr)UNTIL adr = limit;
 Receive(stat); Receive(msg);
 SYSTEM.PUT(TCR, 0); SYSTEM.PUT(ICR, 0)
 END PutSector;

 219

 PROCEDURE Sense*;
 VAR x: CHAR;
 BEGIN Select(devno); SYSTEM.PUT(TCR, 2); SYSTEM.PUT(ICR, 1);
 Send(3X); Send(0X); Send(0X); Send(0X); Send(0X); Send(0X);
 REPEAT Receive(stat) UNTIL SYSTEM.BIT(CSB, 3);
 Receive(msg); SYSTEM.PUT(TCR, 0); SYSTEM.PUT(ICR, 0)
 END Sense;
END Disk.

 220

Copyright N.Wirth, 27.8.91 / 12.11.91

10. The Network
10.1. Introduction
Workstations are typically, but not always, connected in a local environment by a network. There exist
two basically different views of the architecture of such nets. The more demanding view is that all
connected stations constitute a single, unified workspace (also called address-space), in which the
individual processors operate. It implies the demand that the "thin" connections between processors are
hidden from the users. At worst they might become apparent through slower data access rates between
the machines. To hide the difference between access within a computer and access between computers
is regarded primarily as a challenge to implementors.

The second, more conservative view, assumes that individual workstations are, although connected,
essentially autonomous units which exchange data infrequently. Therefore, access of data on partner
stations is initiated by explicit transfer commands. Commands handling external access are not part of
the basic system, but rather are implemented in modules that might be regarded as applications.

In the Oberon System, we adhere to this second view, and in this chapter, we describe the module Net,
which is an autonomous command module based on the network driver SCC presented in Section 9.3.
It can be activated on any station connected in a network, and all of them are treated as equals. Such a
set of loosely coupled stations may well operate in networks with moderate transmission rates and
therefore with low-cost hardware interfaces and twisted-pair wires.

An obvious choice for the unit of transferred data is the file. The central theme of this chapter is
therefore file transfer over a network. Some additional facilities offered by a dedicated server station
will be the subject of Chapter 11. The commands to be presented here are a few only: SendFiles,
ReceiveFiles, and SendMsg.

As explained in Chapter 2, Oberon is a single-process system where every command monopolizes the
processor until termination. When a command involves communication over a network, (at least) two
processors are engaged in the action at the same time. The Oberon paradigm therefore appears to
exclude such cooperation; but fortunately it does not, and the solution to the problem is quite simple.

Every command is initiated by a user operating on a workstation. For the moment we call it the master
(of the command under consideration). The addressed station - obviously called the server - must be in
a state where it recognizes the command in order to engage in its execution. Since the command -
called a request - arrives in encoded form over the network, an Oberon task represented by a handler
procedure must be inserted into the event polling loop of the system. Such a handler must have the
general form

IF event present THEN handle event END

The guard, in this case, must imply that a request was received from the network. We emphasize that
the event is sensed by the server only after the command currently under execution, if any, has
terminated. However, data arrive at the receiver immediately after they are sent by the master. Hence,
any sizeable delay is inherently inadmissible, and the Oberon metaphor once again appears to fail. It
does not fail, however, because the unavoidable, genuine concurrency of sender and receiver action is
handled within the driver module which places the data into a buffer. The driver is activated by an
interrupt, and its receiver buffer effectively decouples the partners and removes the stringent timing
constraints. All this remains completely hidden within the driver module.

10.2. The Protocol
If more than a single agent participates in the execution of a command, a convention must be
established and obeyed. It defines the set of requests, their encoding, and the sequence of data
exchanges that follow. Such a convention is called a protocol. Since in our metaphor, actions initiated
by the master and the server strictly follow each other in alternation, the protocol can be defined using
EBNF (extended Backus-Naur formalism), well-known from the syntax specification of languages.

 221

Items originating from the master will be written with normal font, those originating from the server
appear in italics.

A simple form of the ReceiveFile request is defined as follows and will be refined subsequently:

ReceiveFile = SND filename (ACK data | NAK).

Here, the symbol SND represents the encoded request that the server send the file specified by the file
name. ACK signals that the request is honoured and the requested data follow. The NAK symbol
indicates that the requested file cannot be delivered. The transaction clearly consists of two parts, the
request and the reply, one from each partner.

This simple-minded scheme fails because of the limitation of the size of each transmitted portion
imposed by the network driver. We recall that module SCC restricts the data of each packet to 512
bytes. Evidently, files must be broken up and transmitted as a sequence of packets. The reason for this
restriction is transmission reliability. The break-up allows the partner to confirm correct receipt of a
packet by returning a short acknowledgement. Each acknowledgement also serves as request for the
next packet. An exception is the last acknowledgement following the last data portion, which is
characterized by its length being less than the admitted maximum. The revised protocol is defined as

ReceiveFile = SND filename (DAT data ACK {DAT data ACK} | NAK).

We now recall that each packet as defined in Section 9.3. is characterized by a type in its header. The
symbols SND, DAT, ACK, and NAK indicate this packet type. The data portions of ACK and NAK
packets are empty.

The revised protocol fails to cope with transmission errors. Correct transmission is checked by the
driver through a cyclic redundancy check (CRC), and an erroneous packet is simple discarded. This
implies that a receiver must impose a timing constraint. If an expected packet fails to arrive within a
given time period (timeout), the request must be repeated. In our case, a request is implied by an
acknowledgement. Hence, the acknowledgement must specify whether the next (normal case) or the
previously requested (error case) packet must be sent. The solution is to attach a sequence number to
each acknowledgement and to each data packet. These numbers are taken modulo 8, although in
principle modulo 2 would suffice.

With the addition of a user identification and a password to every request, and of an alternate reply
code NPR for "no permission", the protocol reaches its final form:

ReceiveFile = SND username password filename (datastream | NAK | NPR).
datastream = DAT0 data ACK1 {DATi data ACKi+1}.

The protocol for file transmission from the master to the server is defined similarly:

SendFile = REC username password filename (ACK0 datastream | NAK | NPR).
datastream = DAT0 data ACK1 {DATi data ACKi+1}.

The third request listed above, SendMsg, does not refer to any file, but merely transmits and displays a
short message. It is included here for testing the link between two partners and perhaps for visibly
acknowledging a rendered service by the message "done", or "thank you".

SendMsg = MSG message ACK.

10.3. Station Addressing
Every packet must carry a destination address as well as the sender's address. Addresses are station
numbers. It would certainly be inconvenient for a user to remember the station number of a desired
partner. Instead, the use of symbolic names is preferred. We have become accustomed to use the
partner's initials for this purpose.

The source address is inserted automatically into packet headers by the driver. It is obtained from a dip
switch set when a computer is installed and connected. But where should the destination address come
from? From the start we reject the solution of an address table in every workstation because of the
potential inconsistencies. The concept of a centralized authority holding a name/address dictionary is

 222

equally unattractive, because of the updates required whenever a person uses a different computer.
Also, we have started from the premise to keep all participants in the network equal.

The most attractive solution lies in a decentralized name service. It is based on the broadcast facility,
i.e. the possibility to send a packet to all connected stations, bypassing their address filters with a
special destination address (-1). The broadcast is used for emitting a name request containing the
desired partner's symbolic name. A station receiving the request returns a reply to the requester, if that
name matches its own symbolic name. The requester then obtains the desired partner's address from
the source address field of the received reply. The corresponding simple protocol is:

NameRequest = NRQ partnername [NRS].

Here, the already mentioned timeout facility is indispensible. The following summarizes the protocol
developed so far:

protocol = {request}.
request = ReceiveFile | SendFile | SendMsg | NameRequest.

The overhead incurred by name requests may be reduced by using a local address dictionary. In
practice, a single entry is satisfactory. A name request is then needed whenever the partner changes.

10.4. The Implementation
Module Net is an implementation of the facilities outlined above. The program is listed below. It starts
with a number of auxiliary, local procedures. They are followed by procedure Serve which is to be
installed as an Oberon Task, and the commands SendFiles, ReceiveFiles, and SendMsg, each of which
has its counterpart within procedure Serve. At the end are the commands for starting and stopping the
server facility.

For a more detailed presentation we select procedure ReceiveFiles. It starts out by reading the first
parameter which designates the partner station from the command line. Procedure FindPartner issues
the name request, unless the partner's address has already been determined by a previous command.
The global variable partner records a symbolic name (id) whose address is stored in the destination
field of the global variable head0, which is used as header in every packet sent by procedure
SCC.SendPacket. The variable partner may be regarded as a name cache with a single entry and with
the purpose of reducing the number of issued name requests.

If the partner has been identified, the next parameter is read from the command line. It is the name of
the file to be transmitted. If the parameter has the form name0:name1, the file stored on the server as
name0.name1 is fetched and stored locally as name1. Hence, name0 serves as a prefix of the file name
on the server station.

Thereafter, the request parameters are concatenated in the local buffer variable buf. They are the user's
name and password followed by the file name. (User name and password remain unused by the server
presented here). The command package is dispatched by the call Send(SND, k, buf), where k denotes
the length of the command parameter string. Then the reply packet is awaited by calling ReceiveHead.
If the received packet's type is DAT with sequence number 0, a new file is established. Procedure
ReadData receives the data and stores them in the new file, obeying the protocol defined in Section
10.2. This process is repeated for each file specified in the list of file names in the command line.

Procedure ReceiveHead(T) receives packets and discards them until one arrives from the partner from
which it is expected. The procedure represents an input filter in addition to the one provided by the
hardware. It discriminates on the basis of the packets' source address, whereas the hardware filter
discriminates on the basis of the destination address. If no packet arrives within the allotted time T, a
type code -1 is returned, signifying a timeout.

Procedure ReceiveData checks the sequence numbers of incoming data packets (type 0 - 7). If an
incorrect number is detected, an ACK-packet with the previous sequence number is returned (type 16 -
23), requesting a retransmission. At most two retries are undertaken. This seems to suffice considering
that also the server does not accept any other requests while being engaged in the transmission of a file.

 223

The part corresponding to ReceiveFiles within procedure Serve is guarded by the condition head1.typ
= SND. Variable head1 is the recipient of headers whenever a packet is received by ReceiveHead.
First, the request's parameters are scanned. Id and pw are ignored. Then the requested file is opened. If
it exists, the transmission is handled by ReceiveData's counterpart, procedure SendData. The time limit
for receiving the next request is T1, whereas the limit of ReceiveData for receiving the next data packet
is T0. T1 is roughly T0 multiplied by the maximum number of possible (re)transmissions. Before
disengaging itself from a transaction, the sender of data waits until no further retransmission requests
can be expected to arrive. The value T0 (300) corresponds to 1s; the time for transmission of a packet
of maximum length is about 16ms.

Procedure SendFiles is designed analogously; its counterpart in the server is guarded by the condition
head1.typ = REC. The server accepts the request only if its state is unprotected (global variable
protected). Otherwise the request is negatively acknowledged with an NPR packet. We draw attention
to the fact that procedures SendData and ReceiveData are both used by command procedures as well
as by the server.

MODULE Net; (*NW 3.7.88 / 25.8.91*)
 IMPORT SCC, Files, Viewers, Texts, TextFrames, MenuViewers, Oberon;

 CONST PakSize = 512;
 T0 = 300; T1 = 1000; (*timeouts*)

 ACK = 10H; NAK = 25H; NPR = 26H; (*acknowledgements*)
 NRQ = 34H; NRS = 35H; (*name request, response*)
 SND = 41H; REC = 42H; MSG = 44H;

 VAR W: Texts.Writer;
 Server: Oberon.Task;
 head0, head1: SCC.Header;
 partner, dmy: ARRAY 8 OF CHAR;
 protected: BOOLEAN; (*write-protection*)

 PROCEDURE SetPartner(VAR name: ARRAY OF CHAR);
 BEGIN head0.dadr := head1.sadr; COPY(name, partner)
 END SetPartner;

 PROCEDURE Send(t: SHORTINT; L: INTEGER; VAR data: ARRAY OF CHAR);
 BEGIN head0.typ := t; head0.len := L; SCC.SendPacket(head0, data)
 END Send;

 PROCEDURE ReceiveHead(timeout: LONGINT);
 VAR time: LONGINT;
 BEGIN time := Oberon.Time() + timeout;
 LOOP SCC.ReceiveHead(head1);
 IF head1.valid THEN
 IF head1.sadr = head0.dadr THEN EXIT ELSE SCC.Skip(head1.len) END
 ELSIF Oberon.Time() >= time THEN head1.typ := -1; EXIT
 END
 END
 END ReceiveHead;

 PROCEDURE FindPartner(VAR name: ARRAY OF CHAR; VAR res: INTEGER);
 VAR time: LONGINT; k: INTEGER;
 BEGIN SCC.Skip(SCC.Available()); res := 0;
 IF name # partner THEN k := 0;
 WHILE name[k] > 0X DO INC(k) END ;
 head0.dadr := -1; Send(NRQ, k+1, name); time := Oberon.Time() + T1;
 LOOP SCC.ReceiveHead(head1);
 IF head1.valid THEN
 IF head1.typ = NRS THEN SetPartner(name); EXIT

 224

 ELSE SCC.Skip(head1.len)
 END
 ELSIF Oberon.Time() >= time THEN res := 1; partner[0] := 0X; EXIT
 END
 END
 END
 END FindPartner;

 PROCEDURE AppendS(VAR s, d: ARRAY OF CHAR; VAR k: INTEGER);
 VAR i: INTEGER; ch: CHAR;
 BEGIN i := 0;
 REPEAT ch := s[i]; d[k] := ch; INC(i); INC(k) UNTIL ch = 0X
 END AppendS;

 PROCEDURE AppendW(s: LONGINT; VAR d: ARRAY OF CHAR;
 n: INTEGER; VAR k: INTEGER);
 VAR i: INTEGER;
 BEGIN i := 0;
 REPEAT d[k] := CHR(s); s := s DIV 100H; INC(i); INC(k) UNTIL i = n
 END AppendW;

 PROCEDURE PickS(VAR s: ARRAY OF CHAR);
 VAR i: INTEGER; ch: CHAR;
 BEGIN i := 0;
 REPEAT SCC.Receive(ch); s[i] := ch; INC(i) UNTIL ch = 0X
 END PickS;

 PROCEDURE PickQ(VAR w: LONGINT);
 VAR c0, c1, c2: CHAR; s: SHORTINT;
 BEGIN SCC.Receive(c0); SCC.Receive(c1); SCC.Receive(c2); SCC.Receive(s);
 w := s; w := ((w * 100H + LONG(c2)) * 100H + LONG(c1)) * 100H + LONG(c0)
 END PickQ;

 PROCEDURE SendData(F: Files.File);
 VAR k: INTEGER;
 seqno: SHORTINT; x: CHAR;
 len: LONGINT;
 R: Files.Rider;
 buf: ARRAY PakSize OF CHAR;
 BEGIN Files.Set(R, F, 0); len := 0; seqno := 0;
 LOOP k := 0;
 LOOP Files.Read(R, x);
 IF R.eof THEN EXIT END ;
 buf[k] := x; INC(k);
 IF k = PakSize THEN EXIT END
 END ;
 REPEAT Send(seqno, k, buf); ReceiveHead(T1)
 UNTIL head1.typ # seqno + ACK;
 seqno := (seqno + 1) MOD 8; len := len + k;
 IF head1.typ # seqno + ACK THEN
 Texts.WriteString(W, " failed"); EXIT
 END ;
 IF k < PakSize THEN EXIT END
 END ;
 Texts.WriteInt(W, len, 7)
 END SendData;

 PROCEDURE ReceiveData(F: Files.File; VAR done: BOOLEAN);
 VAR k, retry: INTEGER;

 225

 seqno: SHORTINT; x: CHAR;
 len: LONGINT;
 R: Files.Rider;
 BEGIN Files.Set(R, F, 0); seqno := 0; len := 0; retry := 2;
 LOOP
 IF head1.typ = seqno THEN
 seqno := (seqno + 1) MOD 8; len := len + head1.len; retry := 2;
 Send(seqno + ACK, 0, dmy); k := 0;
 WHILE k < head1.len DO
 SCC.Receive(x); Files.Write(R, x); INC(k)
 END ;
 IF k < PakSize THEN done := TRUE; EXIT END
 ELSE DEC(retry);
 IF retry = 0 THEN
 Texts.WriteString(W, " failed"); done := FALSE; EXIT
 END ;
 Send(seqno + ACK, 0, dmy)
 END ;
 ReceiveHead(T0)
 END ;
 Texts.WriteInt(W, len, 7)
 END ReceiveData;

 PROCEDURE reply(msg: INTEGER);
 BEGIN
 CASE msg OF
 0:
 | 1: Texts.WriteString(W, " no link")
 | 2: Texts.WriteString(W, " no permission")
 | 3: Texts.WriteString(W, " not done")
 | 4: Texts.WriteString(W, " not found")
 | 5: Texts.WriteString(W, " no response")
 END ;
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END reply;

 PROCEDURE* Serve;
 VAR i: INTEGER;
 done: BOOLEAN; ch: CHAR;
 F: Files.File;
 pw: LONGINT;
 Id: ARRAY 10 OF CHAR;
 FileName: ARRAY 32 OF CHAR;
 BEGIN SCC.ReceiveHead(head1);
 IF head1.valid THEN
 IF head1.typ = SND THEN
 PickS(Id); PickQ(pw); PickS(FileName);
 Texts.WriteString(W, Id); Texts.Write(W, " "); Texts.WriteString(W, FileName);
 F := Files.Old(FileName);
 IF F # NIL THEN
 Texts.WriteString(W, " sending"); SetPartner(Id);
 Texts.Append(Oberon.Log, W.buf); SendData(F)
 ELSE Send(NAK, 0, dmy); Texts.Write(W, "~")
 END ;
 reply(0)
 ELSIF head1.typ = REC THEN
 PickS(Id); PickQ(pw); PickS(FileName);

 226

 IF ~protected THEN
 Texts.WriteString(W, Id); Texts.Write(W, " "); Texts.WriteString(W, FileName);
 F := Files.New(FileName);
 IF F # NIL THEN
 Texts.WriteString(W, " receiving"); SetPartner(Id);
 Texts.Append(Oberon.Log, W.buf);
 Send(ACK, 0, dmy); ReceiveHead(T0); ReceiveData(F, done);
 IF done THEN Files.Register(F) END
 ELSE Send(NAK, 0, dmy); Texts.Write(W, "~")
 END ;
 reply(0)
 ELSE Send(NPR, 0, dmy)
 END
 ELSIF head1.typ = MSG THEN i := 0;
 WHILE i < head1.len DO SCC.Receive(ch); Texts.Write(W, ch); INC(i) END ;
 Send(ACK, 0, dmy); reply(0)
 ELSIF head1.typ = NRQ THEN i := 0;
 LOOP SCC.Receive(ch); Id[i] := ch; INC(i);
 IF ch = 0X THEN EXIT END ;
 IF i = 7 THEN Id[7] := 0X; EXIT END
 END ;
 WHILE i < head1.len DO SCC.Receive(ch); INC(i) END ;
 IF Id = Oberon.User THEN SetPartner(Id); Send(NRS, 0, dmy) END
 ELSE SCC.Skip(head1.len)
 END
 END
 END Serve;

 PROCEDURE GetPar1(VAR S: Texts.Scanner);
 BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S)
 END GetPar1;

 PROCEDURE GetPar(VAR S: Texts.Scanner; VAR end: LONGINT);
 VAR T: Texts.Text; beg, tm: LONGINT;
 BEGIN Texts.Scan(S);
 IF (S.class = Texts.Char) & (S.c = "^") THEN
 Oberon.GetSelection(T, beg, end, tm);
 IF tm >= 0 THEN Texts.OpenScanner(S, T, beg); Texts.Scan(S) END
 ELSE end := Oberon.Par.text.len
 END
 END GetPar;

 PROCEDURE SendFiles*;
 VAR k: INTEGER;
 end: LONGINT;
 S: Texts.Scanner;
 F: Files.File;
 name: ARRAY 32 OF CHAR;
 buf: ARRAY 64 OF CHAR;
 BEGIN GetPar1(S);
 IF S.class = Texts.Name THEN
 FindPartner(S.s, k);
 IF k = 0 THEN
 GetPar(S, end);
 LOOP
 IF S.class # Texts.Name THEN EXIT END ;
 Texts.WriteString(W, S.s); k := 0; AppendS(S.s, name, k);

 227

 IF S.nextCh = ":" THEN (*prefix*)
 Texts.Scan(S); Texts.Scan(S);
 IF S.class = Texts.Name THEN
 name[k-1] := "."; AppendS(S.s, name, k);
 Texts.Write(W, ":"); Texts.WriteString(W, S.s)
 END
 END ;
 F := Files.Old(S.s);
 IF F # NIL THEN k := 0;
 AppendS(Oberon.User, buf, k); AppendW(Oberon.Password, buf, 4, k);
 AppendS(name, buf, k); Send(REC, k, buf); ReceiveHead(T0);
 IF head1.typ = ACK THEN
 Texts.WriteString(W, " sending"); Texts.Append(Oberon.Log, W.buf);
 SendData(F); reply(0)
 ELSIF head1.typ = NPR THEN reply(2); EXIT
 ELSIF head1.typ = NAK THEN reply(3); EXIT
 ELSE reply(5); EXIT
 END
 ELSE reply(4)
 END ;
 IF Texts.Pos(S) >= end THEN EXIT END ;
 Texts.Scan(S)
 END
 ELSE reply(1)
 END
 END
 END SendFiles;

 PROCEDURE ReceiveFiles*;
 VAR k: INTEGER; done: BOOLEAN;
 end: LONGINT;
 S: Texts.Scanner;
 F: Files.File;
 name: ARRAY 32 OF CHAR;
 buf: ARRAY 64 OF CHAR;
 BEGIN GetPar1(S);
 IF S.class = Texts.Name THEN
 FindPartner(S.s, k);
 IF k = 0 THEN
 GetPar(S, end);
 LOOP
 IF S.class # Texts.Name THEN EXIT END ;
 Texts.WriteString(W, S.s); k := 0; AppendS(S.s, name, k);
 IF S.nextCh = ":" THEN (*prefix*)
 Texts.Scan(S); Texts.Scan(S);
 IF S.class = Texts.Name THEN
 name[k-1] := "."; AppendS(S.s, name, k);
 Texts.Write(W, ":"); Texts.WriteString(W, S.s)
 END
 END ;
 k := 0; AppendS(Oberon.User, buf, k); AppendW(Oberon.Password, buf, 4, k);
 AppendS(name, buf, k); Send(SND, k, buf);
 Texts.WriteString(W, " receiving"); Texts.Append(Oberon.Log, W.buf);
 ReceiveHead(T1);
 IF head1.typ = 0 THEN
 F := Files.New(S.s);

 228

 IF F # NIL THEN
 ReceiveData(F, done);
 IF done THEN Files.Register(F); reply(0) ELSE EXIT END
 ELSE reply(3); Send(NAK, 0, dmy)
 END
 ELSIF head1.typ = NAK THEN reply(4)
 ELSIF head1.typ = NPR THEN reply(2); EXIT
 ELSE reply(5); EXIT
 END ;
 IF Texts.Pos(S) >= end THEN EXIT END ;
 Texts.Scan(S)
 END
 ELSE reply(1)
 END
 END
 END ReceiveFiles;

 PROCEDURE SendMsg*;
 VAR i: INTEGER; ch: CHAR;
 S: Texts.Scanner;
 msg: ARRAY 64 OF CHAR;
 BEGIN GetPar1(S);
 IF S.class = Texts.Name THEN
 FindPartner(S.s, i);
 IF i = 0 THEN
 Texts.Read(S, ch);
 WHILE (ch >= " ") & (i < 64) DO
 msg[i] := ch; INC(i); Texts.Read(S, ch)
 END ;
 Send(MSG, i, msg); ReceiveHead(T0);
 IF head1.typ # ACK THEN reply(3) END
 ELSE reply(1)
 END
 END
 END SendMsg;

 PROCEDURE StartServer*;
 BEGIN protected := TRUE; SCC.Start(TRUE);
 Oberon.Remove(Server); Oberon.Install(Server);
 Texts.WriteString(W, " Server started");
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END StartServer;

 PROCEDURE Unprotect*;
 BEGIN protected := FALSE
 END Unprotect;

 PROCEDURE WProtect*;
 BEGIN protected := TRUE
 END WProtect;

 PROCEDURE Reset*;
 BEGIN SCC.Start(TRUE)
 END Reset;

 PROCEDURE StopServer*;
 BEGIN Oberon.Remove(Server); Texts.WriteString(W, " Server stopped");
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END StopServer;

 229

BEGIN Texts.OpenWriter(W); NEW(Server); Server.handle := Serve
END Net.

 230

Chapter 11 Copyright N.Wirth, 27.8.91 / 15.11.91

11. A Dedicated File-distribution, Mail, and Printer Server

11.1. Concept and Structure
In a system of loosely coupled workstations it is desirable to centralize certain services. A first
example is a common file store. Even if every station is equipped with a disk for permanent data
storage, a common file service is beneficial, e.g. for storing the most recent versions of system files,
reference documents, reports, etc. A common repository avoids inconsistencies which are inevitable
when local copies are created. We call this a file distribution service.

A centralized service is also desirable if it requires equipment whose cost and service would not
warrant its acquisition for every workstation, particularly if the service is infrequently used. A prime
example of this case is a printing service.

The third case is a communication facility in the form of electronic mail. The repository of messages
must inherently be centralized. We imagine it to have the form of a set of mailboxes, one for each user
in the system. A mailbox needs to be accessible at all times, i.e. also when its owner's workstation has
been switched off.

A last example of a centralized service is a time server. It allows a station's real time clock to be
synchronized with a central clock.

In passing we point out that every user has full control over his station, including the right to switch it
on and off at any time. In contrast, the central server is continuously operational.

In this chapter, we present a set of server modules providing all above mentioned services. They rest
on the basic Oberon System without module Net (see Chapter 10). In contrast to Net, module
NetServer, which handles all network communication, contains no command procedures (apart from
those for starting and stopping it). This is because it never acts as a master. The counterparts of its
server routines reside in other modules, including (an extended version of) Net, on the individual
workstations.

Routines for the file distribution service are the same as those contained in module Net, with the
addition of permission checks based on the received user names and passwords. Routines for printing
and mail service could in principle also be included in NetServer in the same way. But considerations
of reliability and timing made this simple solution appear as unattractive. A weaker coupling in time of
data transmission and data consumption is indeed highly desirable. Therefore, data received for
printing or for dispatching into mailboxes are stored (by NetServer) into temporary files and thereafter
"handed over" to the appropriate agent, i.e. the print server or the mail server.

This data-centered interface between servers - in contrast to procedural interfaces - has the advantage
that the individual servers are independent in the sense that none imports any other. Therefore, their
development could proceed autonomously. Their connection is instead a module which defines a data
structure and associated operators for passing temporary files from one server to another. The data
structure used for this purpose is the first-in-first-out queue. We call its elements tasks, because each
one carries an objective and an object, the file to be processed. The module containing the FIFOs is
called Core. The resulting structure of the involved modules is shown in Fig. 11.1.

Fig. 11.1. includes yet another server, LineServer, and shows the ease with which additional servers
may be inserted in this scheme. They act as further sources and/or sinks for tasks, feeding or
consuming the queues contained in Core. LineServer indeed produces and consumes tasks like
NetServer. Instead of the RS-485 bus, it handles the RS-232 line which, connetced to a modem, allows
access to the server over telephone lines. We refrain from describing this module in further detail,
because in many ways it is a mirror of NetServer.

 231

NetServer LineServer PrintServer MailServer

SCC V24 Printmaps Core

Oberon

Texts

Files

Fig. 11.1. Module structure of server system

A centralized, open server calls for certain protection measures against unauthorized use. We recall
that requests always carry a user identification and a password as parameters. The server checks their
validity by examining a table of users. The respective routines and the table are contained in module
Core (see Sect. 11.5).

11.2. Electronic Mail Service
The heart of an e-mail service is the set of mailboxes stored on the dedicated, central server. Each
registered user owns a mailbox. The evidently necessary operations are the insertion of a message and
its retrieval. In contrast to customary letter boxes, however, a retrieved message need not necessarily
be removed from the box; its retrieval produces a copy. The box thereby automatically becomes a
repository, and messages can be retrieved many times. This scheme calls for an additional command
which removes a message from the box. Also, a command is needed for delivering a table of contents,
in which presumably each message is represented by an indication of its sender and time of arrival.

The mail scheme suggested above results in the following commands:

Net.Mailbox ServerName. This command fetches a table of contents of the current user's mailbox from
the specified server and displays it in a new viewer. The user's name and password must have been
registered previously by the command System.SetUser.

Net.SendMail ServerName. The text in the marked viewer is sent to the specified server. In order to be
accepted, the text must begin with at least one line beginning with "To:" and containing at least one
recipient. An example is shown in Fig. 11.2.

Net.ReceiveMail. This command is contained in the title bar (menu) of the viewer obtained when
requesting the table of contents. Prior to issuing the command, the message to be read must have been
specified by selecting a line in the table of contents in this viewer.

Net.DeleteMail. This command is also contained in the mailbox viewer's title bar. The message to be
deleted must be selected before issuing the command.

Fig. 11.2. Viewer with Mail Directory and Messages received and to be sent

The mail system presented here is primarily intended to serve as an exchange for short messages which
are typically sent, received, read, and discarded. Mailboxes are not intended to serve as long term
archives for a large and ever growing number of long pieces of text. This restrictiveness of purpose
allows to choose a reasonably simple implementation and results in an efficient, practically
instantaneous access to messages when the server is idle.

The Oberon mail server used at ETH also provides communication with external correspondents. It
connects to an external mail server which is treated as a source and a sink for messages (almost) like
other customers. Additionally, messages sent to that server need to be encoded into a standardized
format, and those received need to be decoded accordingly. The parts of module MailServer for
encoding and decoding are not described in this book. We merly divulge the fact that its design and
implementation took a multiple of the time spent on the fast, local message exchange, to which we
confine this presentation.

 232

Net NetServer

mailqueue

mailbox

MailServer
user wire

Fig. 11.3. Path of messages to and from mailbox

From the structures explained in Section 11.1. it follows that three agents are involved in the transfer
of messages from the user into a mailbox. Therefore, additions to the server system distribute over
three modules. New commands are added to module Net (see Section 10.4.); these procedures will be
listed below. Their counterparts reside in module NetServer on the dedicated computer. The third agent
is module MailServer; both are listed below in this Section. The latter handles the insertion of arriving
messages into mailboxes. The path which a message traverses for insertion and retrieval is shown in
Fig. 11.3. Rectangles with bold edges mark storage.

Communication between the master station and the dedicated server runs over the network and
therefore calls for an extension of its protocol (see Sect. 10.2.). The additions directly correspond to the
four commands given above.

MailBox = MDIR username password (datastream | NAK | NPR).
SendMail = RML username password (ACK datastream | NAK | NPR).
ReceiveMail = SML username password msgno (datastream | NAK | NPR).
DeleteMail = DML username password msgno (ACK | NAK | NPR).

The message number is taken from the selected line in the mailbox viewer. The data transmitted are
taken as (unformatted) texts. This is in contrast to file transfers, where they are taken as any sequence
of bytes. The four command procedures listed below belong in module Net; they are listed together
with the auxiliary procedures SendText and ReceiveText which closely correspond to SendData and
ReceiveData (see Sect. 10.4).

CONST MDIR = 4AH; SML = 4BH; RML = 4CH; DML = 4DH;

PROCEDURE SendText(T: Texts.Text);
 VAR k: INTEGER;
 seqno: SHORTINT; x: CHAR;
 R: Texts.Reader;
 buf: ARRAY PakSize OF CHAR;
 BEGIN Texts.OpenReader(R, T, 0); seqno := 0;
 LOOP k := 0;
 LOOP Texts.Read(R, x);
 IF R.eot THEN EXIT END ;
 buf[k] := x; INC(k);
 IF k = PakSize THEN EXIT END
 END ;
 REPEAT Send(seqno, k, buf); ReceiveHead(T1)
 UNTIL head1.typ # seqno + ACK;
 seqno := (seqno + 1) MOD 8;
 IF head1.typ # seqno + ACK THEN
 Texts.WriteString(W, " failed"); EXIT
 END ;
 IF k < PakSize THEN EXIT END
 END
 END SendText;

 PROCEDURE ReceiveText(T: Texts.Text);
 VAR k, retry: INTEGER;

 233

 seqno: SHORTINT; x: CHAR;
 BEGIN seqno := 0; retry := 2;
 LOOP
 IF head1.typ = seqno THEN
 seqno := (seqno + 1) MOD 8; retry := 2;
 Send(seqno + 10H, 0, dmy); k := 0;
 WHILE k < head1.len DO
 SCC.Receive(x); Texts.Write(W, x); INC(k)
 END ;
 Texts.Append(T, W.buf);
 IF k < PakSize THEN EXIT END
 ELSE DEC(retry);
 IF retry = 0 THEN
 Texts.WriteString(W, " failed"); Texts.WriteLn(W);
 Texts.Append(Oberon.Log, W.buf); EXIT
 END ;
 Send(seqno + 10H, 0, dmy)
 END ;
 ReceiveHead(T0)
 END
 END ReceiveText;
 PROCEDURE Mailbox*;
 VAR k, X, Y: INTEGER;
 T: Texts.Text;
 V: Viewers.Viewer;
 S: Texts.Scanner;
 buf: ARRAY 32 OF CHAR;
 BEGIN GetPar1(S);
 IF S.class = Texts.Name THEN
 FindPartner(S.s, k);
 IF k = 0 THEN
 AppendS(Oberon.User, buf, k); AppendW(Oberon.Password, buf, 4, k);
 Send(MDIR, k, buf); ReceiveHead(T1);
 IF head1.typ = 0 THEN
 T := TextFrames.Text("");
 Oberon.AllocateSystemViewer(Oberon.Par.frame.X, X, Y);
 V := MenuViewers.New(
 TextFrames.NewMenu(S.s, "System.Close Net.ReceiveMail Net.DeleteMail"),
 TextFrames.NewText(T, 0), TextFrames.menuH, X, Y);
 ReceiveText(T)
 ELSIF head1.typ = NAK THEN reply(4)
 ELSIF head1.typ = NPR THEN reply(2)
 ELSE reply(5)
 END
 ELSE reply(1)
 END
 END
 END Mailbox;

 PROCEDURE ReceiveMail*;
 VAR k, X, Y: INTEGER;
 T: Texts.Text;
 F: TextFrames.Frame;
 S: Texts.Scanner;
 V: Viewers.Viewer;
 buf: ARRAY 32 OF CHAR;

 234

 BEGIN F := Oberon.Par.frame(TextFrames.Frame);
 Texts.OpenScanner(S, F.text, 0); Texts.Scan(S); FindPartner(S.s, k);
 IF k = 0 THEN
 F := F.next(TextFrames.Frame);
 IF F.sel > 0 THEN
 Texts.OpenScanner(S, F.text, F.selbeg.pos); Texts.Scan(S);
 IF S.class = Texts.Int THEN
 k := 0; AppendS(Oberon.User, buf, k); AppendW(Oberon.Password, buf, 4, k);
 AppendW(S.i, buf, 2, k); Send(SML, k, buf); ReceiveHead(T1);
 IF head1.typ = 0 THEN
 T := TextFrames.Text("");
 Oberon.AllocateUserViewer(Oberon.Par.frame.X, X, Y);
 V := MenuViewers.New(
 TextFrames.NewMenu("Message.Text",
 "System.Close System.Copy System.Grow Edit.Store"),
 TextFrames.NewText(T, 0), TextFrames.menuH, X, Y);
 ReceiveText(T)
 ELSIF head1.typ = NAK THEN reply(4)
 ELSIF head1.typ = NPR THEN reply(2)
 ELSE reply(5)
 END
 END
 END
 ELSE reply(1)
 END
 END ReceiveMail;

 PROCEDURE SendMail*;
 VAR k: INTEGER;
 S: Texts.Scanner;
 T, M: Texts.Text;
 v: Viewers.Viewer;
 buf: ARRAY 64 OF CHAR;
 BEGIN GetPar1(S);
 IF S.class = Texts.Name THEN
 FindPartner(S.s, k);
 IF k = 0 THEN
 v := Oberon.MarkedViewer();
 IF (v.dsc # NIL) & (v.dsc.next IS TextFrames.Frame) THEN
 T := v.dsc.next(TextFrames.Frame).text;
 IF T.len < 60000 THEN
 Texts.OpenScanner(S, T, 0); Texts.Scan(S);
 IF (S.class = Texts.Name) & (S.s = "To") THEN
 M := v.dsc(TextFrames.Frame).text; Texts.OpenScanner(S, M, 0); Texts.Scan(S);
 IF S.class = Texts.Name THEN
 Texts.WriteString(W, S.s);
 AppendS(Oberon.User, buf, k); AppendW(Oberon.Password, buf, 4, k);
 Send(RML, k, buf); ReceiveHead(T1);
 IF head1.typ = ACK THEN
 Texts.WriteString(W, " mailing"); Texts.Append(Oberon.Log, W.buf);
 SendText(T); reply(0)
 ELSIF head1.typ = NPR THEN reply(2)
 ELSIF head1.typ = NAK THEN reply(3)
 ELSE reply(5)
 END
 END

 235

 ELSE reply(8)
 END
 ELSE reply(9)
 END
 END
 ELSE reply(1)
 END
 END
 END SendMail;

 PROCEDURE DeleteMail*;
 VAR k: INTEGER; ch: CHAR;
 T: Texts.Text;
 F: TextFrames.Frame;
 S: Texts.Scanner;
 buf: ARRAY 32 OF CHAR;
 BEGIN F := Oberon.Par.frame(TextFrames.Frame);
 Texts.OpenScanner(S, F.text, 0); Texts.Scan(S); FindPartner(S.s, k);
 IF k = 0 THEN
 F := F.next(TextFrames.Frame);
 IF F.sel > 0 THEN
 Texts.OpenScanner(S, F.text, F.selbeg.pos); Texts.Scan(S);
 IF S.class = Texts.Int THEN
 k := 0; AppendS(Oberon.User, buf, k); AppendW(Oberon.Password, buf, 4, k);
 AppendW(S.i, buf, 2, k); Send(DML, k, buf); ReceiveHead(T1);
 IF head1.typ = ACK THEN
 REPEAT Texts.Read(S, ch) UNTIL ch < " ";
 Texts.Delete(F.text, F.selbeg.pos, Texts.Pos(S))
 ELSIF head1.typ = NAK THEN reply(3)
 ELSIF head1.typ = NPR THEN reply(2)
 ELSE reply(5)
 END
 END
 END
 ELSE reply(1)
 END
 END DeleteMail;

We now turn our attention to the command procedures' counterparts in module NetServer listed in this
Section. In order to explain these routines, a description of their interface with the mail server and a
definition of the structure of mailboxes must precede. We begin with the simplest case, the counterpart
of SendMail. It is the part of procedure NetServer.Serve which is guarded by the condition typ = RML,
indicating a request to receive mail. As in all other services, the parameters username and password are
read and the admissibility of the request is checked. The check is performed by procedure
Core.UserNo which yields a negative number if service is to be refused. In the affirmative case,
procedure ReceiveData obtains the message and stores it on a file, which is thereafter inserted into the
mail queue as a task to be handled by the mail server at a later time. This may involve distribution of
the message into several mailboxes.

 236

last

first

n

Queue

3

uno

id

next

file

8

jg

15

hm

3

nw

NIL

Fig. 11.4. Structure of task queue

Module Core is listed in Sect. 11.5. As mentioned before, it serves as link between the various server
modules, defining the data types of the linking queues and also of mailboxes. Task queues are
represented as FIFO-lists. The descriptor of type Queue contains a pointer to the first list element used
for retrieval, and a pointer to the last element used for insertion (see Fig. 11.4.). These pointers are not
exported; instead, the next task is obtained by calling procedure Core.GetTask, and it is deleted by
Core.RemoveTask. There exist two exported variables of type Queue: MailQueue consumed by
MailServer, and PrintQueue consumed by PrintServer (see Sect. 11.3.). (In fact, we use a third queue:
LineQueue consumed by LineServer). Elements of queues are of type TaskDesc which specifies the file
representing the data to be consumed. Additionally, it specifies the user number and identification of
the task's originator. Three procedures are provided by module Core for handling task queues:

PROCEDURE InsertTask(VAR q: Queue; F: Files.File; VAR id: ARRAY OF CHAR; uno:
INTEGER);

PROCEDURE GetTask(VAR q: Queue; VAR F: Files.File; VAR id: ARRAY OF CHAR; VAR
uno: INTEGER);

PROCEDURE RemoveTask(VAR q: Queue);

The server's counterparts of the remaining mail commands access mailboxes directly. The simplicity of
the required actions - a result of a carefully chosen mailbox representation - and considerations of
efficiency do not warrant a detour via task queue and mail server.

Every mailbox is represented as a file. This solution has the tremendous advantage that no special
administration has to be introduced to handle a reserved partition of disk store for mail purposes. A
mailbox file is partitioned into three parts: the block reservation part, the directory part, and the
message part. Each part is quickly locatable, because the first two have a fixed length (32 and 31*32 =
992 bytes). The message part is regarded as a sequence of blocks (of 256 bytes), and each message
occupies an integral number of adjacent blocks. Corresponding to each block, the block reservation
part contains a single bit indicating whether or not the block is occupied by a message. Since the block
reservation part is 32 bytes long, the message part contains at most 256 blocks, i.e. 64K bytes. The
block length was chosen after an analysis of messages which revealed that the average message is less
than 500 bytes long.

The directory part consists of an array of 31 elements of type MailEntry, a record with the following
fields: pos and len indicate the index of the message's first block and the message's number of bytes;
time and date indicate the message's time of insertion, and originator indicates the message's source.
The entries are linked (field next) in chronological order of their arrival, and entry 0 serves as the list's
header. It follows that a mailbox contains at most 30 messages. An example of a mailbox state is
shown in Fig. 11.5.

 237

11000001011111101111111 . . .

Block reservation part

pos

len

time

date

orig

next

0 1 2 12 20 30

Directory part

0

12

0

8

92

10:07:12

15.02.91

Mueller

20

15

197

11:27:02

17.11.90

Templ

2

2

1150

23:41:12

06.06.91

Franz

0

0

0 2 8 15

Message part

Fig. 11.5. State of a mailbox file

MailEntry = RECORD
 pos, next: INTEGER;
 len: LONGINT;
 time, date: INTEGER;
 originator: ARRAY 20 OF CHAR
 END ;
MResTab = ARRAY 8 OF SET;
MailDir = ARRAY 31 OF MailEntry;

We are now in a position to inspect the handler for requests for message retrieval. It is guarded by the
condition typ = SML. After a validity check, the respective requestor's mailbox file is opened. The last
mailbox opened is retained by the global variable MF which acts as a single entry cache. The
associated user number is given by the global variable mailuno. Since typically several requests
involving the same mailbox follow, this measure avoids the repeated reopening of the same file.
Thereafter, a rider is directly positioned at the respective directory entry for reading the message's
length and position in the message part. The rider is repositioned accordingly, and transmission of the
message is handled by procedure SendMail.

Requests for the mailbox directory are handled by the routine guarded by the condition typ = MDIR.
The directory part must be read and converted into a text. This task is supported by various auxiliary
procedures (Append) which concatenate supplied data in a buffer for latter transmission. We
emphasize that this request does not require the reading of any other part of the file, and therefore is
very swift.

The last of the four mail service requests (DML) deletes a specified message. Removal from the
directory requires a relinking of the entries. Unused entries are marked by their len field having value
0. Also, the blocks occupied by the message become free. The block reservation part must be updated
accordingly. Further details can be examined in the following program listing.

MODULE NetServer; (*NW 15.2.90 / 22.11.91*)
 IMPORT SCC, Core, FileDir, Files, Texts, Oberon;

 CONST PakSize = 512; GCInterval = 50;
 T0 = 300; T1 = 1000; (*timeouts*)
 maxFileLen = 100000H;

 ACK = 10H; NAK = 25H; NPR = 26H; (*acknowledgements*)
 NRQ = 34H; NRS = 35H; (*name request, response*)
 SND = 41H; REC = 42H; (*send / receive request*)
 FDIR = 45H; DEL = 49H; (*directory and delete file requests*)

 238

 PRT = 43H; (*receive to print request*)
 TRQ = 46H; TIM = 47H; (*time requests*)
 MSG = 44H; NPW = 48H; (*new password request*)
 TOT = 7FH; (*timeout*)
 MDIR = 4AH; SML = 4BH; RML = 4CH; DML = 4DH;

 VAR W: Texts.Writer;
 handler: Oberon.Task;

 head0, head1: SCC.Header;
 partner: Core.ShortName;
 seqno: SHORTINT;

 K, reqcnt, mailuno: INTEGER;
 protected: BOOLEAN;
 MF: Files.File; (*last mail file accessed*)
 buf: ARRAY 1024 OF CHAR; (*used by FDIR and MDIR*)
 dmy: ARRAY 4 OF CHAR;

 PROCEDURE EOL;
 BEGIN Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END EOL;

 PROCEDURE SetPartner(VAR name: ARRAY OF CHAR);
 BEGIN head0.dadr := head1.sadr; head0.destLink := head1.srcLink;
 COPY(name, partner)
 END SetPartner;

 PROCEDURE Send(t: SHORTINT; L: INTEGER; VAR data: ARRAY OF CHAR);
 BEGIN head0.typ := t; head0.len := L; SCC.SendPacket(head0, data)
 END Send;

 PROCEDURE ReceiveHead(timeout: LONGINT);
 VAR time: LONGINT;
 BEGIN time := Oberon.Time() + timeout;
 LOOP SCC.ReceiveHead(head1);
 IF head1.valid THEN
 IF head1.sadr = head0.dadr THEN EXIT
 ELSE SCC.Skip(head1.len)
 END
 ELSIF Oberon.Time() >= time THEN head1.typ := TOT; EXIT
 END
 END
 END ReceiveHead;

PROCEDURE AppendS(VAR s, d: ARRAY OF CHAR; VAR k: INTEGER);
 VAR i: INTEGER; ch: CHAR;
 BEGIN i := 0;
 REPEAT ch := s[i]; d[k] := ch; INC(i); INC(k) UNTIL ch = 0X
 END AppendS;

 PROCEDURE AppendW(s: LONGINT; VAR d: ARRAY OF CHAR; n: INTEGER;
 VAR k: INTEGER);
 VAR i: INTEGER;
 BEGIN i := 0;
 REPEAT d[k] := CHR(s); s := s DIV 100H; INC(i); INC(k) UNTIL i = n
 END AppendW;

 PROCEDURE AppendN(x: LONGINT; VAR d: ARRAY OF CHAR; VAR k: INTEGER);
 VAR i: INTEGER; u: ARRAY 8 OF CHAR;
 BEGIN i := 0;

 239

 REPEAT u[i] := CHR(x MOD 10 + 30H); INC(i); x := x DIV 10 UNTIL x = 0;
 REPEAT DEC(i); d[k] := u[i]; INC(k) UNTIL i = 0
 END AppendN;

 PROCEDURE AppendDate(t, d: INTEGER; VAR buf: ARRAY OF CHAR; VAR k: INTEGER);
 PROCEDURE Pair(ch: CHAR; x: LONGINT);
 BEGIN buf[k] := ch; INC(k);
 buf[k] := CHR(x DIV 10 + 30H); INC(k); buf[k] := CHR(x MOD 10 + 30H); INC(k)
 END Pair;
 BEGIN
 Pair(" ", d MOD 20H); Pair(".", d DIV 20H MOD 10H); Pair(".", d DIV 200H MOD 80H);
 Pair(" ", t DIV 800H MOD 20H); Pair(":", t DIV 20H MOD 40H); Pair(":", t MOD 20H * 2)
 END AppendDate;

 PROCEDURE SendBuffer(len: INTEGER; VAR done: BOOLEAN);
 VAR i, kd, ks: INTEGER; ch: CHAR;
 BEGIN
 REPEAT Send(seqno, len, buf); ReceiveHead(T1)
 UNTIL head1.typ # seqno + 10H;
 seqno := (seqno+1) MOD 8; kd := 0; ks := PakSize;
 WHILE ks < K DO buf[kd] := buf[ks]; INC(kd); INC(ks) END ;
 K := kd; done := head1.typ = seqno + 10H
 END SendBuffer;

 PROCEDURE* AppendDirEntry(name: FileDir.FileName; adr: LONGINT;
 VAR done: BOOLEAN);
 VAR i, kd, ks: INTEGER; ch: CHAR;
 BEGIN i := 0; ch := name[0];
 WHILE ch > 0X DO buf[K] := ch; INC(i); INC(K); ch := name[i] END ;
 buf[K] := 0DX; INC(K);
 IF K >= PakSize THEN SendBuffer(PakSize, done) END
 END AppendDirEntry;

 PROCEDURE PickS(VAR s: ARRAY OF CHAR);
 VAR i, n: INTEGER; ch: CHAR;
 BEGIN i := 0; n := SHORT(LEN(s))-1; SCC.Receive(ch);
 WHILE ch > 0X DO
 IF i < n THEN s[i] := ch; INC(i) END ;
 SCC.Receive(ch)
 END ;
 s[i] := 0X
 END PickS;

 PROCEDURE PickQ(VAR w: LONGINT);
 VAR c0, c1, c2: CHAR; s: SHORTINT;
 BEGIN SCC.Receive(c0); SCC.Receive(c1); SCC.Receive(c2); SCC.Receive(s);
 w := s; w := ((w * 100H + LONG(c2)) * 100H + LONG(c1)) * 100H + LONG(c0)
 END PickQ;

 PROCEDURE PickW(VAR w: INTEGER);
 VAR c0: CHAR; s: SHORTINT;
 BEGIN SCC.Receive(c0); SCC.Receive(s); w := s; w := w * 100H + ORD(c0)
 END PickW;

 PROCEDURE SendData(F: Files.File);
 VAR k: INTEGER;
 x: CHAR;
 len: LONGINT;
 R: Files.Rider;

 240

 BEGIN Files.Set(R, F, 0); len := 0; seqno := 0;
 LOOP k := 0;
 LOOP Files.Read(R, x);
 IF R.eof THEN EXIT END ;
 buf[k] := x; INC(k);
 IF k = PakSize THEN EXIT END
 END ;
 REPEAT Send(seqno, k, buf); ReceiveHead(T1)
 UNTIL head1.typ # seqno + 10H;
 seqno := (seqno + 1) MOD 8; len := len + k;
 IF head1.typ # seqno + 10H THEN EXIT END ;
 IF k < PakSize THEN EXIT END
 END
 END SendData;
 PROCEDURE ReceiveData(F: Files.File; VAR done: BOOLEAN);
 VAR k, retry: INTEGER;
 x: CHAR;
 len: LONGINT;
 R: Files.Rider;
 BEGIN Files.Set(R, F, 0); seqno := 0; len := 0; retry := 4;
 LOOP
 IF head1.typ = seqno THEN
 seqno := (seqno + 1) MOD 8; len := len + head1.len;
 IF len > maxFileLen THEN
 Send(NAK, 0, dmy); done := FALSE; Files.Close(F); Files.Purge(F); EXIT
 END ;
 retry := 4; Send(seqno + 10H, 0, dmy); k := 0;
 WHILE k < head1.len DO
 SCC.Receive(x); Files.Write(R, x); INC(k)
 END ;
 IF k < PakSize THEN done := TRUE; EXIT END
 ELSE DEC(retry);
 IF retry = 0 THEN done := FALSE; EXIT END ;
 Send(seqno + 10H, 0, dmy)
 END ;
 ReceiveHead(T0)
 END
 END ReceiveData;

 PROCEDURE SendMail(VAR R: Files.Rider; len: LONGINT);
 VAR k: INTEGER; x: CHAR;
 buf: ARRAY PakSize OF CHAR;
 BEGIN seqno := 0;
 LOOP k := 0;
 LOOP Files.Read(R, x);
 IF k = len THEN EXIT END ;
 buf[k] := x; INC(k);
 IF k = PakSize THEN EXIT END
 END ;
 REPEAT Send(seqno, k, buf); ReceiveHead(T1)
 UNTIL head1.typ # seqno + 10H;
 seqno := (seqno + 1) MOD 8; len := len - k;
 IF head1.typ # seqno + 10H THEN EXIT END ;
 IF k < PakSize THEN EXIT END
 END
 END SendMail;

 241

 PROCEDURE* Serve;
 VAR i, j, k0, k1, n, uno: INTEGER;
 ch: CHAR; typ: SHORTINT;
 done: BOOLEAN;
 F: Files.File;
 R: Files.Rider;
 t, d, pw, npw, pos, len: LONGINT;
 Id: Core.ShortName;
 fname: Core.Name;
 mdir: Core.MailDir;
 mrtab: Core.MResTab;
 BEGIN SCC.ReceiveHead(head1);
 IF ~head1.valid THEN RETURN END ;
 typ := head1.typ;
 IF typ = SND THEN
 PickS(Id); PickQ(pw); PickS(fname); SetPartner(Id);
 IF Core.UserNo(Id, pw) >= 0 THEN
 F := Files.Old(fname);
 IF F # NIL THEN SendData(F)
 ELSE Send(NAK, 0, dmy)
 END
 ELSE Send(NPR, 0, dmy)
 END
 ELSIF typ = REC THEN
 PickS(Id); PickQ(pw); PickS(fname); SetPartner(Id);
 IF ~protected & (Core.UserNo(Id, pw) >= 0) THEN
 F := Files.New(fname);
 Send(ACK, 0, dmy); ReceiveHead(T0);
 IF head1.valid THEN
 ReceiveData(F, done);
 IF done THEN Files.Register(F) END
 END
 ELSE Send(NPR, 0, dmy)
 END
 ELSIF typ = PRT THEN
 PickS(Id); PickQ(pw); SetPartner(Id); uno := Core.UserNo(Id, pw);
 IF uno >= 0 THEN
 F := Files.New("");
 Send(ACK, 0, dmy); ReceiveHead(T0);
 IF head1.valid THEN
 ReceiveData(F, done);
 IF done THEN Files.Close(F); Core.InsertTask(Core.PrintQueue, F, Id, uno) END
 END
 ELSE Send(NPR, 0, dmy)
 END
 ELSIF typ = DEL THEN
 PickS(Id); PickQ(pw); PickS(fname); SetPartner(Id);
 IF ~protected & (Core.UserNo(Id, pw) >= 0) THEN
 Files.Delete(fname, k);
 IF k = 0 THEN Send(ACK, 0, dmy) ELSE Send(NAK, 0, dmy) END
 ELSE Send(NPR, 0, dmy)
 END
 ELSIF typ = FDIR THEN
 PickS(Id); PickQ(pw); PickS(fname); SetPartner(Id); uno := Core.UserNo(Id, pw);
 IF uno >= 0 THEN
 K := 0; seqno := 0; FileDir.Enumerate(fname, AppendDirEntry);

 242

 SendBuffer(K, done)
 ELSE Send(NPR, 0, dmy)
 END
 ELSIF typ = MDIR THEN
 PickS(Id); PickQ(pw); SetPartner(Id); uno := Core.UserNo(Id, pw);
 IF uno >= 0 THEN
 IF uno # mailuno THEN
 Core.GetFileName(uno, fname); MF := Files.Old(fname); mailuno := uno
 END ;
 K := 0; seqno := 0;
 IF MF # NIL THEN
 Files.Set(R, MF, 32); Files.ReadBytes(R, mdir, SIZE(Core.MailDir));
 i := mdir[0].next; j := 30; done := TRUE;
 WHILE (i # 0) & (j > 0) & done DO
 AppendN(i, buf, K); AppendDate(mdir[i].time, mdir[i].date, buf, K);
 buf[K] := " "; INC(K); AppendS(mdir[i].originator, buf, K);
 buf[K-1] := " "; AppendN(mdir[i].len, buf, K); buf[K] := 0DX; INC(K);
 IF K >= PakSize THEN SendBuffer(PakSize, done) END ;
 i := mdir[i].next; DEC(j)
 END
 END ;
 SendBuffer(K, done)
 ELSE Send(NPR, 0, dmy)
 END
 ELSIF typ = SML THEN (*send mail*)
 PickS(Id); PickQ(pw); PickW(n); SetPartner(Id); uno := Core.UserNo(Id, pw);
 IF uno >= 0 THEN
 IF uno # mailuno THEN
 Core.GetFileName(uno, fname); MF := Files.Old(fname); mailuno := uno
 END ;
 IF (MF # NIL) & (n > 0) & (n < 31) THEN
 Files.Set(R, MF, (n+1)*32);
 Files.ReadBytes(R, i, 2); Files.ReadBytes(R, j, 2); pos := LONG(i) * 100H;
 Files.ReadBytes(R, len, 4);
 IF len > 0 THEN Files.Set(R, MF, pos); SendMail(R, len)
 ELSE Send(NAK, 0, dmy)
 END
 ELSE Send(NAK, 0, dmy)
 END
 ELSE Send(NPR, 0, dmy)
 END
 ELSIF typ = RML THEN (*receive mail*)
 PickS(Id); PickQ(pw); SetPartner(Id); uno := Core.UserNo(Id, pw);
 IF uno >= 0 THEN
 F := Files.New("");
 Send(ACK, 0, dmy); ReceiveHead(T0);
 IF head1.valid THEN
 ReceiveData(F, done);
 IF done THEN Files.Close(F); Core.InsertTask(Core.MailQueue, F, Id, uno) END
 END
 ELSE Send(NPR, 0, dmy)
 END
 ELSIF typ = DML THEN (*delete mail*)
 PickS(Id); PickQ(pw); PickW(n); SetPartner(Id); uno := Core.UserNo(Id, pw);
 IF uno >= 0 THEN
 IF uno # mailuno THEN

 243

 Core.GetFileName(uno, fname); MF := Files.Old(fname); mailuno := uno
 END ;
 IF (MF # NIL) & (n > 0) & (n < 31) THEN
 Files.Set(R, MF, 0);
 Files.ReadBytes(R, mrtab, 32); Files.ReadBytes(R, mdir, SIZE(Core.MailDir));
 i := 0; ks := 30;
 LOOP k := mdir[i].next; DEC(ks);
 IF (k = 0) OR (ks = 0) THEN Send(NAK, 0, buf); EXIT END ;
 IF k = n THEN
 j := mdir[n].pos;
 k := SHORT((mdir[n].len + LONG(j)*100H) DIV 100H) + 1;
 REPEAT INCL(mrtab[j DIV 32], j MOD 32); INC(j) UNTIL j = k;
 mdir[n].len := 0; mdir[i].next := mdir[n].next;
 Files.Set(R, MF, 0); Files.WriteBytes(R, mrtab, 32);
 Files.WriteBytes(R, mdir, SIZE(Core.MailDir)); Files.Close(MF);
 Send(ACK, 0, dmy); EXIT
 END ;
 i := k
 END
 ELSE Send(NAK, 0, dmy)
 END
 ELSE Send(NPR, 0, dmy)
 END
 ELSIF typ = TRQ THEN
 Oberon.GetClock(t, d); SetPartner(Id); i := 0;
 AppendW(t, fname, 4, i); AppendW(d, fname, 4, i); Send(TIM, 8, fname)
 ELSIF typ = NRQ THEN i := 0;
 LOOP SCC.Receive(ch); Id[i] := ch; INC(i);
 IF ch = 0X THEN EXIT END ;
 IF i = 7 THEN Id[7] := 0X; EXIT END
 END ;
 WHILE i < head1.len DO SCC.Receive(ch); INC(i) END ;
 IF Id = Oberon.User THEN SetPartner(Id); Send(NRS, 0, dmy) END
 ELSIF typ = MSG THEN i := 0;
 WHILE i < head1.len DO SCC.Receive(ch); Texts.Write(W, ch); INC(i) END ;
 SetPartner(Id); Send(ACK, 0, dmy); EOL
 ELSIF typ = NPW THEN
 PickS(Id); PickQ(pw); uno := Core.UserNo(Id, pw);
 IF uno >= 0 THEN
 SetPartner(Id); Send(ACK, 0, dmy); ReceiveHead(T0);
 IF head1.typ = 0 THEN
 PickQ(npw); Core.SetPassword(uno, npw); Send(ACK, 0, dmy)
 ELSE Send(NAK, 0, dmy)
 END
 ELSE Send(NPR, 0, dmy)
 END
 ELSE SCC.Skip(head1.len)
 END ;
 Core.Collect
 END Serve;

 (*----------------------- Commands -------------------*)

 PROCEDURE Start*;
 VAR password: ARRAY 4 OF CHAR;
 S: Texts.Scanner;
 BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);

 244

 IF S.class = Texts.Name THEN
 Oberon.Remove(handler); Oberon.Install(handler);
 reqcnt := 0; MF := NIL; mailuno := -2;
 password[0] := 0X; Oberon.SetUser(S.s, password);
 Texts.WriteString(W, "Net started (NW 22.11.91)"); EOL
 END
 END Start;

 PROCEDURE Reset*;
 BEGIN SCC.Start(TRUE)
 END Reset;

 PROCEDURE Stop*;
 BEGIN Oberon.Remove(handler); Texts.WriteString(W, "Net stopped"); EOL
 END Stop;

 PROCEDURE Protect*;
 BEGIN protected := TRUE
 END Protect;

 PROCEDURE Unprotect*;
 BEGIN protected := FALSE
 END Unprotect;

BEGIN Texts.OpenWriter(W); NEW(handler); handler.handle := Serve
END NetServer.

In passing we note that the use of files for representing mailboxes, in combination with the file
distribution services residing on the same server station, allows anyone to access (and inspect) any
mailbox. Although we do not claim that this system provides secure protection against snooping, a
minimal effort for protection was undertaken by a simple encoding of messages in mailbox files. This
encoding is not shown in the program listings contained in this book.

One operation remains to be explained in more detail: the processing of tasks inserted into the mail
queue. It consists of the insertion of the message represented by the task's file into one or several
mailboxes. It involves the interpretation of the message's header, i.e. lines containing addresses, and
the construction of a new header containing the name of the originator and the date of insertion into the
mailbox. These actions are performed by procedures in module MailServer. Its procedure Serve is
installed as an Oberon Task, and it is guarded by the condition Core.MailQueue.n > 0, indicating that
at least one message needs to be dispatched.

The originator's name is obtained from Core.GetUserName(uno), where uno is the user number
obtained from the queue entry. The actual time is obtained from Oberon.GetClock. The form of the
new header is shown by the following example:

From: Gutknecht
At: 12.08.91 09:34:15

The received message's header is then searched for recipients. Their names are listed in header lines
starting with "To" (or "cc"). After a name has been read, the corresponding user number is obtained by
calling Core.UserNum. Then the message is inserted into the designated mailbox by procedure
Dispatch. The search for recipients continues, until a line is encountered that does not begin with "To"
(or "cc"). A negative user number indicates that the given name is not registered. In this case, the
message is returned to the sender, i.e. inserted into the mailbox of the sender. An exception is the
recipient "all" which indicates a broadcast to all registered users.

Procedure Dispatch first opens the mailbox file of the user specified by the recipient number rno. If a
mailbox exists, its block reservation part (mrtab) and its directory part (mdir) are read. Otherwise a
new, empty box is created. Then follows the search for a free slot in the directory and, if found, the
search for a sufficient number of free, adjacent blocks in the message part. The number of required
blocks is given by the message length. If either no free slot exists, or there is no large enough free

 245

space for the message part, the message is returned to the sender (identified by sno). If also this attempt
fails, the message is redirected to the postmaster (with user number 0). The postmaster is expected to
inspect his mailbox sufficiently often so that no overflow occurs. If the postmaster's mailbox also
overflows, the message is lost.

Only if all conditions for a successful completion are satisfied, is insertion begun. It starts with the
marking of blocks in the reservation table and with the insertion of the new directory information.
Table and directory are then updated on the file. Thereafter, the message with the constructed new
header is written into the message part.

MODULE MailServer; (*NW 17.4.89 / 25.8.91*)
 IMPORT Core, Files, Texts, Oberon;

 VAR W: Texts.Writer;
 handler: Oberon.Task;

 PROCEDURE Dispatch(F: Files.File; rno, sno, hdlen: INTEGER;
 VAR orig, head: ARRAY OF CHAR);
 (*insert external message (from msg) in recipient rno's mail file*)
 VAR i, j, k, h: INTEGER;
 ch: CHAR; ok: BOOLEAN;
 pos, L, bdylen, tm, dt: LONGINT;
 fname: Core.Name;
 MF: Files.File; (*destination*)
 R, Q: Files.Rider;
 mrtab: Core.MResTab;
 mdir: Core.MailDir;
 BEGIN Core.GetFileName(rno, fname); MF := Files.Old(fname);
 IF MF # NIL THEN
 Files.Set(Q, MF, 0); Files.ReadBytes(Q, mrtab, 32);
 Files.ReadBytes(Q, mdir, SIZE(Core.MailDir))
 ELSE (*create new mailbox file*)
 MF := Files.New(fname); Files.Set(Q, MF, 0); Files.Register(MF);
 mdir[0].next := 0; mrtab[0] := {4 .. 31}; i := 1;
 REPEAT mrtab[i] := {0 .. 31}; INC(i) UNTIL i = 7;
 mrtab[7] := {0 .. 29}; i := 0;
 REPEAT mdir[i].len := 0; INC(i) UNTIL i = 31
 END ;
 Files.Set(R, F, 0); bdylen := Files.Length(F);
 ok := FALSE; i := 0;
 REPEAT INC(i) UNTIL (i = 31) OR (mdir[i].len = 0);
 IF i < 31 THEN (*free slot found, now find free blocks in file*)
 j := -1;
 REPEAT INC(j);
 IF j MOD 32 IN mrtab[j DIV 32] THEN
 h := j; k := SHORT((bdylen + hdlen + 255) DIV 256) + j;
 LOOP INC(h);
 IF h = k THEN ok := TRUE; EXIT END ;
 IF (h = 256) OR ~(h MOD 32 IN mrtab[h DIV 32]) THEN j := h; EXIT END
 END
 END
 UNTIL ok OR (j >= 255)
 END ;
 IF ok THEN (*insert msg in blocks j .. k-1*)
 pos := LONG(j) * 256; mdir[i].pos := j;
 REPEAT EXCL(mrtab[j DIV 32], j MOD 32); INC(j) UNTIL j = k;
 mdir[i].len := bdylen + hdlen;
 Oberon.GetClock(tm, dt);

 246

 mdir[i].time := SHORT(tm DIV 2); mdir[i].date := SHORT(dt);
 j := 0;
 WHILE (j < 19) & (orig[j] > " ") DO mdir[i].originator[j] := orig[j]; INC(j) END ;
 mdir[i].originator[j] := 0X;
 mdir[i].next := mdir[0].next; mdir[0].next := i;
 Files.Set(Q, MF, 0); Files.WriteBytes(Q, mrtab, 32);
 Files.WriteBytes(Q, mdir, SIZE(Core.MailDir)); Files.Set(Q, MF, pos);
 j := 0;
 WHILE j < hdlen DO
 Files.Write(Q, head[j]); INC(j)
 END ;
 j := 0;
 WHILE j < bdylen DO
 Files.Read(R, ch); Files.Write(Q, ch); INC(j)
 END ;
 L := (-Files.Pos(Q)) MOD 256;
 WHILE L > 0 DO Files.Write(Q, 0); DEC(L) END ;
 Files.Close(MF)
 ELSIF (rno # sno) & (sno > 0) THEN (*return to sender*)
 Dispatch(F, sno, sno, hdlen, orig, head)
 ELSIF (rno # 0) & (sno # 0) THEN (*send to postmaster*)
 Dispatch(F, 0, sno, hdlen, orig, head)
 END
 END Dispatch;

 PROCEDURE* Serve;
 VAR i, j, sno, rno, hdlen: INTEGER;
 ch: CHAR;
 pos, dt, tm: LONGINT;
 F: Files.File; R: Files.Rider;
 Id: Core.ShortName;
 orig: Core.LongName;
 head, recip: ARRAY 64 OF CHAR;

 PROCEDURE Pair(ch: CHAR; x: LONGINT);
 BEGIN head[j] := ch; INC(j);
 head[j] := CHR(x DIV 10 + 30H); INC(j); head[j] := CHR(x MOD 10 + 30H); INC(j)
 END Pair;

 BEGIN
 IF Core.MailQueue.n > 0 THEN
 Core.GetTask(Core.MailQueue, F, Id, sno);
 Core.GetUserName(sno, orig); Oberon.GetClock(tm, dt);
 COPY("From: ", head); i := 0; j := 6;
 WHILE orig[i] > 0X DO head[j] := orig[i]; INC(i); INC(j) END ;
 head[j] := 0DX; INC(j); head[j] := "A"; INC(j); head[j] := "t"; INC(j);
 head[j] := ":"; INC(j);
 Pair(" ", dt MOD 20H); Pair(".", dt DIV 20H MOD 10H);
 Pair(".", dt DIV 200H MOD 80H);
 Pair(" ", tm DIV 1000H MOD 20H); Pair(":", tm DIV 40H MOD 40H);
 Pair(":", tm MOD 40H);
 head[j] := 0DX; hdlen := j+1;
 Files.Set(R, F, 0);
 LOOP (*next line*) pos := Files.Pos(R);
 REPEAT Files.Read(R, ch) UNTIL (ch > " ") OR R.eof;
 IF R.eof THEN EXIT END ;
 i := 0;

 247

 REPEAT recip[i] := ch; INC(i); Files.Read(R, ch) UNTIL ch <= ":";
 recip[i] := 0X;
 IF (recip # "To") & (recip # "cc") THEN EXIT END ;
 LOOP (*next recipient*)
 WHILE " " <= ch DO Files.Read(R, ch) END ;
 IF ch < " " THEN EXIT END ;
 i := 0;
 WHILE ch > " " DO recip[i] := ch; INC(i); Files.Read(R, ch) END ;
 recip[i] := 0X;
 IF recip = "all" THEN rno := Core.NofUsers();
 WHILE rno > 1 DO (*exclude postmaster*)
 DEC(rno); Dispatch(F, rno, 0, hdlen, orig, head)
 END
 ELSE rno := Core.UserNum(recip);
 IF rno < 0 THEN rno := sno END ;
 Dispatch(F, rno, sno, hdlen, orig, head)
 END ;
 IF ch = "," THEN Files.Read(R, ch) END
 END
 END ;
 Core.RemoveTask(Core.MailQueue)
 END
 END Serve;

 (*------------------------ Commands --------------------------*)

 PROCEDURE Start*;
 BEGIN Oberon.Install(handler);
 Texts.WriteString(W, "Mailer started (NW 25.8.91)");
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END Start;

 PROCEDURE State*;
 BEGIN Texts.WriteString(W, "Mail queue:"); Texts.WriteInt(W, Core.MailQueue.n, 3);
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END State;

 PROCEDURE Stop*;
 BEGIN Oberon.Remove(handler); Texts.WriteString(W, "Mailer stopped");
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END Stop;

BEGIN Texts.OpenWriter(W); NEW(handler); handler.handle := Serve
END MailServer.

Perhaps it may seem to the reader that the addition of a separate module MailServer, together with a
new Oberon Task and the machinery of the mail queue is not warranted by the relative simplicity of
the insertion operation, and that it could have been incorporated into module NetServer just as well as
message extraction. The picture changes, however, if handling of external mail is to be added, and if
access to mailboxes via other channels, such as the RS-232 line, is to be provided. The presented
solution is based on a modular structure that facilitates such extensions without change of existing
parts. External mail routines inevitably have to cope with message formats imposed by standards.
Format transformations, encoding before sending to an external server and decoding before dispatching
become necessary. Indeed, these operations have inflated module MailServer in a surprising degree.
And lastly, the queuing machinery supports the easy insertion of additional message sources and
provides a welcome decoupling and relaxation of timing constraints, particularly in the case of low-
speed transmission media such as telephone lines.

 248

11.3. Printing Service
The dedicated server machine is also used as the central printing facility for all workstations connected
by the network. On workstations, print commands are part of various tool modules of editing systems.
Examples are Edit.Print (Chapter 5), and Draw.Print (Chapter 13). Documents to be printed typically
consist of various elements such as strings of characters, lines, circles, etc. The print commands
enumerate these elements and for each element issue a call to the appropriate procedure in module
Printer, whose interface is listed in Chapter 5. These procedures then concatenate the received
information and send it to the printer server in an encoded form. The syntax of this data stream is the
following:

PrintStream = Tag {element}.
element = string | continuation | line | xline | circle | ellipse | area | font | page.
string = 0 fno x y {char}.
continuation = 1 fno {char}.
line = 2 0 x y w h.
xline = 6 0 x0 y0 x1 y1.
circle = 9 0 x y r.
ellipse = 7 0 x y a b.
area = 5 patno x y w h.
font = 3 fno fontname.
page = 4 copies.

x, y, w, h, r, a, b are position coordinates, width, height, radius, all encoded in 2 bytes. fno is a font
number, patno is the number of the dot pattern by which the rectangular area is to be filled. The page
command signals that the preceding elements form a page, and copies indicates the number of copies
to be printed.

The print stream is transmitted to the server as a sequence of packets. The data received by calls of the
print procedures are stored in a local buffer until the size of a packet is reached. Every print command
must first establish the connection with the server by a call of Printer.Open. Furthermore, it must
indicate page breaks by calling Printer.Page, and it must terminate with a call of Printer.Close.
Evidently, the formatting of the document to be printed is the duty of the respective editor's print
command. Module Printer, listed below, merely handles the encoding, buffering, and transmission.

MODULE Printer; (*NW 27.6.88 / 11.3.91*)
 IMPORT SYSTEM, Input, SCC;

 CONST maxfonts = 16;
 PakSize = 512; Broadcast = -1;
 T0 = 300; T1 = 1200;
 ACK = 10H; NAK = 25H;
 NRQ = 34H; NRS = 35H;
 PRT = 43H; NPR = 26H; TOT = 7FH;

 VAR res*: INTEGER; (*0 = done, 1 = not done*)
 PageWidth*, PageHeight*: INTEGER;
 nofonts: INTEGER;
 seqno: SHORTINT;
 head0: SCC.Header; (*sender*)
 head1: SCC.Header; (*receiver*)
 in: INTEGER;
 PrinterName: ARRAY 10 OF CHAR;
 fontname: ARRAY maxfonts, 32 OF CHAR;
 buf: ARRAY PakSize OF SYSTEM.BYTE;

 PROCEDURE ReceiveHead;
 VAR time: LONGINT;
 BEGIN time := Input.Time() + T0;

 249

 LOOP SCC.ReceiveHead(head1);
 IF head1.valid THEN
 IF head1.sadr = head0.dadr THEN EXIT ELSE SCC.Skip(head1.len) END
 ELSIF Input.Time() >= time THEN head1.typ := TOT; EXIT
 END
 END
 END ReceiveHead;

 PROCEDURE FindPrinter(VAR name: ARRAY OF CHAR);
 VAR time: LONGINT;
 id: ARRAY 10 OF CHAR;
 BEGIN head0.typ := NRQ; head0.dadr := Broadcast; head0.len := 10;
 head0.destLink := 0; COPY(name, id); id[8] := 6X; id[9] := 0X;
 SCC.Skip(SCC.Available()); SCC.SendPacket(head0, id); time := Input.Time() + T1;
 LOOP SCC.ReceiveHead(head1);
 IF head1.valid THEN
 IF head1.typ = NRS THEN head0.dadr := head1.sadr; res := 0; EXIT
 ELSE SCC.Skip(head1.len)
 END
 ELSIF Input.Time() >= time THEN res := 1; EXIT
 END
 END
 END FindPrinter;

 PROCEDURE SendPacket;
 BEGIN head0.typ := seqno; head0.len := in;
 REPEAT SCC.SendPacket(head0, buf); ReceiveHead;
 UNTIL head1.typ # seqno + ACK;
 seqno := (seqno+1) MOD 8;
 IF head1.typ # seqno + ACK THEN res := 1 END
 END SendPacket;

 PROCEDURE Send(x: SYSTEM.BYTE);
 BEGIN buf[in] := x; INC(in);
 IF in = PakSize THEN SendPacket; in := 0 END
 END Send;

 PROCEDURE SendInt(k: INTEGER);
 BEGIN Send(SHORT(k MOD 100H)); Send(SHORT(k DIV 100H))
 END SendInt;

 PROCEDURE SendBytes(VAR x: ARRAY OF SYSTEM.BYTE; n: INTEGER);
 VAR i: INTEGER;
 BEGIN i := 0;
 WHILE i < n DO Send(x[i]); INC(i) END
 END SendBytes;

 PROCEDURE SendString(VAR s: ARRAY OF CHAR);
 VAR i: INTEGER;
 BEGIN i := 0;
 WHILE s[i] > 0X DO Send(s[i]); INC(i) END ;
 Send(0)
 END SendString;

 PROCEDURE Open*(VAR name, user: ARRAY OF CHAR; password: LONGINT);
 BEGIN nofonts := 0; in := 0; seqno := 0; SCC.Skip(SCC.Available());
 IF name # PrinterName THEN FindPrinter(name) ELSE res := 0 END ;
 IF res = 0 THEN
 SendString(user); SendBytes(password, 4);

 250

 head0.typ := PRT; head0.len := in; SCC.SendPacket(head0, buf); in := 0;
 ReceiveHead;
 IF head1.typ = ACK THEN Send(0FCX) (*printfileid*)
 ELSIF head1.typ = NPR THEN res := 4 (*no permission*)
 ELSE res := 2 (*no printer*)
 END
 END
 END Open;

 PROCEDURE ReplConst*(x, y, w, h: INTEGER);
 BEGIN Send(2); Send(0);
 SendInt(x); SendInt(y); SendInt(w); SendInt(h)
 END ReplConst;

 PROCEDURE fontno(VAR name: ARRAY OF CHAR): SHORTINT;
 VAR i, j: INTEGER;
 BEGIN i := 0;
 WHILE (i < nofonts) & (fontname[i] # name) DO INC(i) END ;
 IF i = nofonts THEN
 IF nofonts < maxfonts THEN
 COPY(name, fontname[i]); INC(nofonts);
 Send(3); Send(SHORT(i)); j := 0;
 WHILE name[j] >= "0" DO Send(name[j]); INC(j) END ;
 Send(0)
 ELSE i := 0
 END
 END ;
 RETURN SHORT(i)
 END fontno;

 PROCEDURE UseListFont*(VAR name: ARRAY OF CHAR);
 VAR i: INTEGER;
 listfont: ARRAY 10 OF CHAR;
 BEGIN listfont := "Gacha10l"; i := 0;
 WHILE (i < nofonts) & (fontname[i] # name) DO INC(i) END ;
 IF i = nofonts THEN
 COPY(name, fontname[i]); INC(nofonts);
 Send(3); Send(SHORT(i)); SendBytes(listfont, 9)
 END ;
 END UseListFont;

 PROCEDURE String*(x, y: INTEGER; VAR s, fname: ARRAY OF CHAR);
 VAR fno: SHORTINT;
 BEGIN fno := fontno(fname); Send(1); Send(fno); SendInt(x); SendInt(y); SendString(s)
 END String;

 PROCEDURE ContString*(VAR s, fname: ARRAY OF CHAR);
 VAR fno: SHORTINT;
 BEGIN fno := fontno(fname); Send(0); Send(fno); SendString(s)
 END ContString;

 PROCEDURE ReplPattern*(x, y, w, h, col: INTEGER);
 BEGIN Send(5); Send(SHORT(col)); SendInt(x); SendInt(y); SendInt(w); SendInt(h)
 END ReplPattern;

 PROCEDURE Line*(x0, y0, x1, y1: INTEGER);
 BEGIN Send(6); Send(0); SendInt(x0); SendInt(y0); SendInt(x1); SendInt(y1)
 END Line;

 251

 PROCEDURE Circle*(x0, y0, r: INTEGER);
 BEGIN Send(9); Send(0); SendInt(x0); SendInt(y0); SendInt(r)
 END Circle;

 PROCEDURE Ellipse*(x0, y0, a, b: INTEGER);
 BEGIN Send(7); Send(0); SendInt(x0); SendInt(y0); SendInt(a); SendInt(b)
 END Ellipse;

 PROCEDURE Picture*(x, y, w, h, mode: INTEGER; adr: LONGINT);
 VAR a0, a1: LONGINT; b: SHORTINT;
 BEGIN Send(8); Send(SHORT(mode));
 SendInt(x); SendInt(y); SendInt(w); SendInt(h);
 a0 := adr; a1 := LONG((w+7) DIV 8) * h + a0;
 WHILE (a0 < a1) & (res = 0) DO SYSTEM.GET(a0, b); Send(b); INC(a0) END
 END Picture;

 PROCEDURE Page*(nofcopies: INTEGER);
 BEGIN Send(4); Send(SHORT(nofcopies))
 END Page;

 PROCEDURE Close*;
 BEGIN SendPacket;
 WHILE nofonts > 0 DO DEC(nofonts); fontname[nofonts, 0] := " " END
 END Close;

BEGIN PageWidth := 2336; PageHeight := 3425; in := 0; PrinterName[0] := 0X
END Printer.

Module Printer acts as master of the communication. Its partner is module NetServer. The syntax of a
print request is almost identical to that for sending a file:

PrintStream = PRT username password (ACK datastream | NAK | NPR).
datastream = DAT0 data ACK1 {DATi data ACKi+1}.

The server routine handling the print request is guarded by the condition typ = PRT (see NetServer
above), and it is almost the same as that for handling requests to receive a file. But instead of
registering the received file, the file is inserted into Core.PrintQueue.

The printing tasks are extracted from the queue by a handler in module PrintServer, which constitutes
an Oberon Task guarded by the condition Core.PrintQueue.n > 0, i.e. which becomes active, if the
queue of print tasks is not empty. The server to be described here operates a laser printer capable of
printing about 10 pages per minute. The shortest printing task therefore takes at least 6 seconds. Since
every command in the Oberon System is inherently non-interruptible, a printing task must evidently be
broken up into parts, if unacceptably long suspension of all other services is to be avoided. This is
achieved by breaking up the printing process into phases and by returning control to the Oberon
scheduler after each phase.

The processing of a page consists of two parts: First, the elements of the print stream are read and
interpreted, resulting in their representation as a dot raster in a page map. Then the raster is transmitted
to the printer while the page is printed. During the second part, the computer's processor is disengaged;
the transfer is handled by direct memory access under printer control. Only the first part, which is
typically much less time-consuming, requires the processor, which therefore is available to accept and
interpret other requests during the second part. The printing process of a document is described by four
phases, whose possible sequencing is shown by a control flow diagram in Fig. 11.6.

 252

PickTask

ProcessPage

PrintPage

WaitCompleted

none

Fig. 11.6. Phases of printing process

Each of the four phases is represented by a handler procedure, one of which is installed as Oberon Task
at any time. Whenever a phase terminates, the handler installs its selected successor. The raster is
generated in the ProcessPage phase by procedures defined in module Printmaps whose interface is
listed below.

DEFINITION Printmaps; (*NW 9.7.89 / 17.11.90*)
 VAR Pat*: ARRAY 10 OF LONGINT;
 PROCEDURE Map*(): LONGINT;
 PROCEDURE ClearPage*;
 PROCEDURE CopyPattern*(pat: LONGINT; X, Y: INTEGER);
 PROCEDURE ReplPattern*(pat: LONGINT; X, Y, W, H: INTEGER);
 PROCEDURE ReplConst*(X, Y, W, H: INTEGER);
 PROCEDURE Dot*(x, y: LONGINT);
END Printmaps.

These raster operations are very similar to those of module Display (see Chap. 4). They refer to the
printer's bitmap rather than the displays', and they feature neither a mode nor a color parameter. For
rastering characters, the same font file format is used as for the display.

MODULE PrintServer; (*NW 17.4.89 / 25.8.91*)
 IMPORT SYSTEM, Core, Display, Printmaps, Files, Fonts, Texts, Oberon;

 CONST maxFnt = 32; N = 20; (*max dim of splines*)
 PR0 = 0FFF600H;
 proff = 0; prdy = 1; sbusy = 2; end = 3; (*printer status*)
 BMwidth = 2336; BMheight = 3425;

 TYPE RealVector = ARRAY N OF REAL;
 Poly = RECORD a, b, c, d, t: REAL END ;
 PolyVector = ARRAY N OF Poly;

 VAR W: Texts.Writer;
 handler: Oberon.Task;

 uno, nofcopies, nofpages: INTEGER;
 PR: Files.Rider; (*print rider*)
 font: ARRAY maxFnt OF Fonts.Font;

 PROCEDURE circle(x0, y0, r: LONGINT);
 VAR x, y, u: LONGINT;
 BEGIN u := 1 - r; x := r; y := 0;
 WHILE y <= x DO

 253

 Printmaps.Dot(x0+x, y0+y); Printmaps.Dot(x0+y, y0+x);
 Printmaps.Dot(x0-y, y0+x); Printmaps.Dot(x0-x, y0+y);
 Printmaps.Dot(x0-x, y0-y); Printmaps.Dot(x0-y, y0-x);
 Printmaps.Dot(x0+y, y0-x); Printmaps.Dot(x0+x, y0-y);
 IF u < 0 THEN INC(u, 2*y+3) ELSE INC(u, 2*(y-x)+5); DEC(x) END ;
 INC(y)
 END
 END circle;

 PROCEDURE ellipse(x0, y0, a, b: LONGINT);
 BEGIN ...
 END ellipse;

 PROCEDURE^ ProcessPage;
 PROCEDURE^ PrintPage;
 PROCEDURE^ WaitForCompletion;

 PROCEDURE Terminate;
 VAR i: INTEGER;
 BEGIN Core.RemoveTask(Core.PrintQueue); i := 0;
 REPEAT font[i] := NIL; INC(i) UNTIL i = maxFnt (*release fonts*)
 END Terminate;

 PROCEDURE Append(src: ARRAY OF CHAR;
 VAR dst: ARRAY OF SYSTEM.BYTE; VAR k: INTEGER);
 VAR i: INTEGER; ch: CHAR;
 BEGIN i := 0;
 REPEAT ch := src[i]; dst[k] := ch; INC(i); INC(k) UNTIL ch = 0X
 END Append;

 PROCEDURE* PickTask;
 VAR F: Files.File;
 Id: Core.ShortName;
 tag: CHAR;
 BEGIN
 IF (Core.PrintQueue.n > 0) & ~SYSTEM.BIT(PR0, proff)
 & SYSTEM.BIT(PR0, prdy) THEN
 Core.GetTask(Core.PrintQueue, F, Id, uno); nofpages := 0;
 Files.Set(PR, F, 0); Files.Read(PR, tag);
 IF tag = 0FCX THEN handler.handle := ProcessPage
 ELSE Texts.WriteString(W, Id); Texts.WriteString(W, " not a print file");
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf); Terminate
 END
 END
 END PickTask;

 PROCEDURE ProcessPage;
 VAR i, x, y, w, h, x0, x1, y0, y1: INTEGER;
 a, a0, a1: LONGINT;
 d, u: INTEGER;
 typ, sp: SHORTINT;
 ch: CHAR;
 fnt: Fonts.Font;
 fname: Core.Name;

 PROCEDURE String;
 VAR ch: CHAR;
 dx, x0, y0, w, h: INTEGER;
 fnt: Fonts.Font;

 254

 pat: LONGINT;
 BEGIN fnt := font[sp MOD maxFnt];
 IF (x >= 0) & (y >= 0) & (fnt # NIL) & (y + fnt.height < BMheight) THEN
 LOOP Files.Read(PR, ch);
 IF ch = 0X THEN EXIT END ;
 Display.GetChar(fnt.raster, ch, dx, x0, y0, w, h, pat);
 IF (x + x0 + w <= BMwidth) & (h > 0) THEN
 Printmaps.CopyPattern(pat, x+x0, y+y0)
 END ;
 INC(x, dx)
 END
 END
 END String;

 BEGIN Printmaps.ClearPage;
 LOOP Files.Read(PR, typ);
 IF PR.eof THEN
 Core.IncPageCount(uno, nofpages); Terminate; handler.handle := PickTask; EXIT
 END ;
 Files.Read(PR, sp);
 IF typ = 0 THEN String
 ELSIF typ = 1 THEN
 Files.ReadBytes(PR, x, 2); Files.ReadBytes(PR, y, 2); String
 ELSIF typ = 2 THEN
 Files.ReadBytes(PR, x, 2); Files.ReadBytes(PR, y, 2);
 Files.ReadBytes(PR, w, 2); Files.ReadBytes(PR, h, 2);
 IF x < 0 THEN INC(w, x); x := 0 END ;
 IF x+w > BMwidth THEN w := BMwidth - x END ;
 IF y < 0 THEN INC(h, y); y := 0 END ;
 IF y+h > BMheight THEN h := BMheight - y END ;
 Printmaps.ReplConst(x, y, w, h)
 ELSIF typ = 3 THEN
 i := 0;
 REPEAT Files.Read(PR, fname[i]); INC(i) UNTIL fname[i-1] < "0";
 DEC(i); Append(".Pr3.Fnt", fname, i);
 fnt := Fonts.This(fname);
 IF fnt = Fonts.Default THEN fnt := Fonts.This("Syntax10.Pr3.Fnt") END ;
 font[sp MOD maxFnt] := fnt
 ELSIF typ = 4 THEN
 nofcopies := sp; handler.handle := PrintPage; EXIT
 ELSIF typ = 5 THEN (*shaded area*)
 IF (sp < 0) OR (sp > 9) THEN sp := 2 END ;
 Files.ReadBytes(PR, x, 2); Files.ReadBytes(PR, y, 2);
 Files.ReadBytes(PR, w, 2); Files.ReadBytes(PR, h, 2);
 IF x < 0 THEN INC(w, x); x := 0 END ;
 IF x+w > BMwidth THEN w := BMwidth - x END ;
 IF y < 0 THEN INC(h, y); y := 0 END ;
 IF y+h > BMheight THEN h := BMheight - y END ;
 Printmaps.ReplPattern(Printmaps.Pat[sp], x, y, w, h)
 ELSIF typ = 6 THEN (*line*)
 Files.ReadBytes(PR, x0, 2); Files.ReadBytes(PR, y0, 2);
 Files.ReadBytes(PR, x1, 2); Files.ReadBytes(PR, y1, 2);
 w := ABS(x1-x0); h := ABS(y1-y0);
 IF h <= w THEN
 IF x1 < x0 THEN u := x0; x0 := x1; x1 := u; u := y0; y0 := y1; y1 := u END ;
 IF y0 <= y1 THEN d := 1 ELSE d := -1 END ;

 255

 u := (h-w) DIV 2;
 WHILE x0 < x1 DO
 Printmaps.Dot(x0, y0); INC(x0);
 IF u < 0 THEN INC(u, h) ELSE INC(u, h-w); INC(y0, d) END
 END
 ELSE
 IF y1 < y0 THEN u := x0; x0 := x1; x1 := u; u := y0; y0 := y1; y1 := u END ;
 IF x0 <= x1 THEN d := 1 ELSE d := -1 END ;
 u := (w-h) DIV 2;
 WHILE y0 < y1 DO
 Printmaps.Dot(x0, y0); INC(y0);
 IF u < 0 THEN INC(u, w) ELSE INC(u, w-h); INC(x0, d) END
 END
 END
 ELSIF typ = 7 THEN (*ellipse*)
 Files.ReadBytes(PR, x, 2); Files.ReadBytes(PR, y, 2);
 Files.ReadBytes(PR, w, 2); Files.ReadBytes(PR, h, 2);
 ellipse(x, y, w, h)
 ELSIF typ = 8 THEN (*picture*)
 Files.ReadBytes(PR, x, 2); Files.ReadBytes(PR, y, 2);
 Files.ReadBytes(PR, w, 2); Files.ReadBytes(PR, h, 2);
 ...
 ELSIF typ = 9 THEN (*circle*)
 Files.ReadBytes(PR, x, 2); Files.ReadBytes(PR, y, 2);
 Files.ReadBytes(PR, w, 2); circle(x, y, w)
 ELSE Texts.WriteString(W, " error in print file at");
 Texts.WriteInt(W, Files.Pos(PR), 6); Texts.WriteInt(W, typ, 5);
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf);
 Terminate; handler.handle := PickTask; EXIT
 END
 END
 END ProcessPage;

 PROCEDURE PrintPage;
 BEGIN
 IF SYSTEM.BIT(PR0, prdy) THEN
 SYSTEM.PUT(PR0, Printmaps.Map()); handler.handle := WaitForCompletion;
 REPEAT UNTIL SYSTEM.BIT(PR0, end)
 END
 END PrintPage;

 PROCEDURE WaitForCompletion;
 BEGIN
 IF ~SYSTEM.BIT(PR0, end) THEN
 DEC(nofcopies); INC(nofpages);
 IF nofcopies > 0 THEN handler.handle := PrintPage; DEC(nofcopies)
 ELSE handler.handle := ProcessPage
 END
 END
 END WaitForCompletion;

 (*------------------------ Commands -------------------------*)

 PROCEDURE Start*;
 BEGIN
 IF ~SYSTEM.BIT(PR0, proff) THEN
 handler.handle := PickTask;
 Oberon.Remove(handler); Oberon.Install(handler);

 256

 Texts.WriteString(W, "Printer started (NW 25.8.91)")
 ELSE Texts.WriteString(W, "Printer off")
 END ;
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END Start;

 PROCEDURE State*;
 VAR s: SHORTINT;
 BEGIN Texts.WriteString(W, "Printer Queue:"); Texts.WriteInt(W, Core.PrintQueue.n, 4);
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END State;

 PROCEDURE Reset*;
 BEGIN; handler.handle := PickTask;
 END Reset;

 PROCEDURE Stop*;
 BEGIN Oberon.Remove(handler); Texts.WriteString(W, "Printer stopped");
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END Stop;

BEGIN Texts.OpenWriter(W); NEW(handler)
END PrintServer.

11.4. Miscellaneous Services
There exist a few additional services that are quite desirable under the presence of a central facility,
and at the same time easy to include. They are briefly described in this section.

The set of commands of the file distribution service is augmented by Net.DeleteFiles and
Net.Directory, allowing the remote deletion of files and inspection of the server's directory. The
command procedures are listed below and must be regarded as part of module Net (Sect. 10.4). They
communicate with their counterparts in module NetServer (Sect. 11.2.) according to the following
protocol:

DeleteFile = DEL username password filename (ACK | NAK | NPR).
Directory = FDIR username password prefix (datastream | NAK | NPR).

The directory request carries a prefix; it uses procedure FileDir.Enumerate to obtain all file names
starting with the specified prefix. Thereby the search can be limited to the relevant section of the
directory.

 PROCEDURE DeleteFiles*;
 VAR k: INTEGER;
 S: Texts.Scanner;
 buf: ARRAY 64 OF CHAR;
 BEGIN GetPar1(S);
 IF S.class = Texts.Name THEN
 FindPartner(S.s, k);
 IF k = 0 THEN
 LOOP Texts.Scan(S);
 IF S.class # Texts.Name THEN EXIT END ;
 k := 0; AppendS(Oberon.User, buf, k); AppendW(Oberon.Password, buf, 4, k);
 AppendS(S.s, buf, k); Send(DEL, k, buf);
 Texts.WriteString(W, S.s); Texts.WriteString(W, " remote deleting");
 ReceiveHead(T1);
 IF head1.typ = ACK THEN reply(0)
 ELSIF head1.typ = NAK THEN reply(3)
 ELSIF head1.typ = NPR THEN reply(2); EXIT
 ELSE reply(5); EXIT

 257

 END
 END
 ELSE reply(1)
 END
 END
 END DeleteFiles;

 PROCEDURE Directory*;
 VAR k, X, Y: INTEGER;
 T: Texts.Text;
 V: Viewers.Viewer;
 buf: ARRAY 32 OF CHAR;
 S: Texts.Scanner;
 BEGIN GetPar1(S);
 IF S.class = Texts.Name THEN
 FindPartner(S.s, k);
 IF k = 0 THEN
 Texts.Scan(S);
 IF S.class = Texts.Name THEN (*prefix*)
 AppendS(Oberon.User, buf, k); AppendW(Oberon.Password, buf, 4, k);
 AppendS(S.s, buf, k); Send(FDIR, k, buf); ReceiveHead(T1);
 IF head1.typ = 0 THEN
 T := TextFrames.Text("");
 Oberon.AllocateSystemViewer(Oberon.Par.frame.X, X, Y);
 V := MenuViewers.New(
 TextFrames.NewMenu("Net.Directory", "System.Close Edit.Store"),
 TextFrames.NewText(T, 0), TextFrames.menuH, X, Y);
 ReceiveText(T)
 ELSIF head1.typ = NAK THEN reply(4)
 ELSIF head1.typ = NPR THEN reply(2)
 ELSE reply(5)
 END
 END
 ELSE reply(1)
 END
 END
 END Directory;

Since requests to the server are always guarded by a password, a facility is necessary to set and change
the password stored by the server. The respective command is Net.SetPassword, and its handler in the
server is guarded by the condition typ = NPW. The corresponding protocol is

NewPassword = NPW username oldpassword
(ACK DAT newpassword (ACK | NAK) | NAK | NPR).

 PROCEDURE SetPassword*;
 VAR k: INTEGER; oldpw: LONGINT;
 S: Texts.Scanner;
 buf: ARRAY 64 OF CHAR;
 BEGIN GetPar1(S);
 IF S.class = Texts.Name THEN
 FindPartner(S.s, k);
 IF k = 0 THEN Texts.Scan(S);
 IF S.class = Texts.String THEN
 AppendS(Oberon.User, buf, k); AppendW(Oberon.Password, buf, 4, k);
 Send(NPW, k, buf); ReceiveHead(T1);
 IF head1.typ = ACK THEN
 k := 0; Oberon.SetUser(Oberon.User, S.s); AppendW(Oberon.Password, buf, 4, k);

 258

 Send(0, 4, buf); ReceiveHead(T0);
 IF head1.typ = ACK THEN reply(7) ELSE reply(3) END
 ELSIF head1.typ = NPR THEN reply(2)
 ELSE reply(3)
 END
 END
 ELSE reply(1)
 END
 END
 END SetPassword;

Finally, procedure Net.GetTime allows the workstation's real time clock to be adjusted to that of the
central server. The protocol is

GetTime = TRQ TIM time date.

 PROCEDURE GetTime*;
 VAR t, d: LONGINT; res: INTEGER;
 S: Texts.Scanner;
 BEGIN GetPar1(S);
 IF S.class = Texts.Name THEN
 FindPartner(S.s, res);
 IF res = 0 THEN
 Send(TRQ, 0, dmy); ReceiveHead(T1);
 IF head1.typ = TIM THEN
 PickQ(t); PickQ(d); Oberon.SetClock(t, d); reply(6)
 END
 ELSE reply(1)
 END
 END
 END GetTime;

In concluding we summarize the entire protocol specification below. The combined server facility,
comprising file distribution, electronic mail, printing, and time services is operating on a Ceres-1
computer (1 Mips) with a 2 MByte store, of which half is used by the printer's bitmap.

Summary of Protocol:
protocol = {request}.
request = ReceiveFile | SendFile | DeleteFile | Directory |
 MailBox | SendMail | ReceiveMail | DeleteMail |
 PrintStream | SendMsg | NameRequest | NewPassword | GetTime.
ReceiveFile = SND username password filename (datastream | NAK | NPR).
datastream = DAT0 data ACK1 {DATi data ACKi+1}.
SendFile = REC username password filename (ACK0 datastream | NAK | NPR).
datastream = DAT0 data ACK1 {DATi data ACKi+1}.
DeleteFile = DEL username password filename (ACK | NAK | NPR).
Directory = FDIR username password prefix (datastream | NAK | NPR).
MailBox = MDIR username password (datastream | NAK | NPR).
SendMail = RML username password (ACK datastream | NAK | NPR).
ReceiveMail = SML username password msgno (datastream | NAK | NPR).
DeleteMail = DML username password msgno (ACK | NAK | NPR).
PrintStream = PRT username password (ACK datastream | NAK | NPR).
SendMsg = MSG message ACK.
NameRequest = NRQ partnername [NRS].
NewPassword = NPW username oldpassword
 (ACK DAT newpassword (ACK | NAK) | NAK | NPR).
GetTime = TRQ TIM time date.

 259

11.5. User Administration
It appears to be a universal law that centralization inevitably calls for an administration. The
centralized mail and printing services make no exception. The typical duties of an administration are
accounting and protection against misuse. It has to ensure that rendered services are counted and that
no unauthorized user is taking advantage of the server. An additional duty is often the gathering of
statistical data. In our case, accounting plays a very minor role, and the reason for the existence of the
administration presented here is primarily protection.

We distinguish between two kinds of protection. The first is protection of the server's resources in
general, the second is that of individual users' resources from being accessed by others. Whereas in the
first case some validation of a user's identification might suffice, the second case requires the
association of personal resources with user names. In any case, the central server must store data for
each member of the set of registered users. Specifically, it must be able to check the admissibility of a
user's request on the basis of stored information.

Evidently, a protection administration is similar in purpose and function to a lock. Quite regularly,
locks are subjected to attempts of breaking them, and locksmiths are subjected to attempts of being
outwitted. The race between techniques of breaking locks and that of better countermeasures is well
known, and we do not even try to make a contribution to it. Our design is based on the premise that the
Oberon Server operates in a harmonious environment. Nevertheless, a minimal amount of protection
machinery was included. It raises the amount of effort required for breaking protection to a level which
is not reached when curiosity alone is the motivation.

The data about users is held in a table in module Core. As was mentioned earlier, Core acts as
connector between the various servers by means of task queues. Its second purpose is to provide the
necessary access to user data via appropriate procedures.

In the simplest solution, each table entry would contain a user name only. For each request, the
administration would merely test for the presence of the request's user name in the table. A significant
step towards safe protection is the introduction of a password in addition to the user name. In order that
a request be honoured, not only must the name be registered, but the delivered and the stored password
must match. Evidently, abusive attempts would aim at recovering the stored passwords. Our solution
lies in storing an encoded password. The command System.SetUser, which asks for a user
identification and a password, immediately encodes the password, and the original is stored nowhere.
The encoding algorithm is such that it is difficult to construct a corresponding decoder.

The mail service requires a third attribute in addition to identification and encoded password: the user's
name as it is used for addressing messages. Identification typically consists of the user's initials; for the
name we suggest the full last name of the user and discourage cryptic abbreviations.

The printing service makes an accounting facility desirable. A fourth field in each user table entry
serves as a count for the number of printed pages. As a result, there are four fields: id, name, password,
and count. The table is not exported, but only accessible via procedures. Core is a good example of a
resource hiding module. The program is listed below, and a few additional comments follow here.

Procedures UserNo(id) and UserNum(name) yield the table index of the identified user; it is called
user number and is used as a short encoding for recipients and senders within the mail server. In other
servers, the number is merely used to check a request's validity.

The user information must certainly survive any intermission of server operation, be it due to software,
hardware, or power failure. This requires that a copy of the user information is held on backup store
(disk). The simplest solution would be to use a file for this purpose. But this would indeed make
protection too vulnerable: files can be accessed easily, and we have refrained from introducing a file
protection facility. Instead, the backup of the user information is held on a few permanently reserved
sectors on the server machine, which are inaccessible to the file system.

MODULE Core; (*NW 17.4.89 / 6.1.90*)
 IMPORT Kernel, Files;

 260

 CONST
 UTsize = 64; (*max nof registered users*)
 UTsec0 = ; (*adr of user table on disk*)
 UTsec1 = ;

 TYPE
 ShortName* = ARRAY 8 OF CHAR;
 LongName* = ARRAY 16 OF CHAR;
 Name* = ARRAY 32 OF CHAR;

 MailEntry* = RECORD
 pos*, next*: INTEGER;
 len*: LONGINT;
 time*, date*: INTEGER;
 originator*: ARRAY 20 OF CHAR
 END ;

 MResTab* = ARRAY 8 OF SET;
 MailDir* = ARRAY 31 OF MailEntry;

 User = RECORD
 id: ShortName;
 name: LongName;
 password, count: LONGINT
 END ;

 SectorBuf = RECORD (Kernel.Sector)
 u: ARRAY 32 OF User
 END ;

 Task = POINTER TO TaskDesc;

 TaskDesc = RECORD
 file: Files.File;
 uno, class: INTEGER;
 name: ShortName;
 next: Task
 END ;

 Queue = RECORD n*: INTEGER;
 first, last: Task
 END ;

 VAR PrintQueue*, MailQueue*: Queue;
 NUsers: INTEGER;
 UT: ARRAY UTsize OF User;

 PROCEDURE RestoreUsers*;
 VAR i: INTEGER; SB: SectorBuf;
 BEGIN i := 0; Kernel.GetSector(UTsec0, SB);
 WHILE (i < 32) & (SB.u[i].id[0] > 0X) DO UT[i] := SB.u[i]; INC(i) END ;
 IF i = 32 THEN
 Kernel.GetSector(UTsec1, SB);
 WHILE (i < 64) & (SB.u[i-32].id[0] > 0X) DO UT[i] := SB.u[i-32]; INC(i) END
 END ;
 NUsers := i
 END RestoreUsers;

 PROCEDURE BackupUsers*;
 VAR i: INTEGER; SB: SectorBuf;
 BEGIN i := NUsers;

 261

 IF i >= 32 THEN
 IF i < 64 THEN SB.u[i-32].id[0] := 0X END ;
 WHILE i > 32 DO DEC(i); SB.u[i-32] := UT[i] END ;
 Kernel.PutSector(UTsec1, SB)
 END ;
 IF i < 32 THEN SB.u[i].id[0] := 0X END ;
 WHILE i > 0 DO DEC(i); SB.u[i] := UT[i] END ;
 Kernel.PutSector(UTsec0, SB)
 END BackupUsers;

 PROCEDURE Uno(VAR id: ShortName): INTEGER;
 VAR i: INTEGER;
 BEGIN i := 0;
 WHILE (i < NUsers) & (UT[i].id # id) DO INC(i) END ;
 RETURN i
 END Uno;

 PROCEDURE NofUsers*(): INTEGER;
 BEGIN RETURN NUsers
 END NofUsers;

 PROCEDURE UserNo*(VAR id: ShortName; pw: LONGINT): INTEGER;
 VAR i: INTEGER; (* -1 = user is protected or not registered*)
 BEGIN i := Uno(id);
 IF (i = NUsers) OR (UT[i].password # pw) & (UT[i].password # 0) THEN i := -1 END ;
 RETURN i
 END UserNo;

 PROCEDURE UserNum*(VAR name: ARRAY OF CHAR): INTEGER;
 VAR i, j: INTEGER;
 BEGIN i := 0;
 LOOP
 IF i = UTsize THEN i := -1; EXIT END ;
 j := 0;
 WHILE (j < 4) & (CAP(name[j]) = CAP(UT[i].name[j])) DO INC(j) END ;
 IF j = 4 THEN EXIT END ;
 INC(i)
 END ;
 RETURN i
 END UserNum;

 PROCEDURE GetUserName*(uno: INTEGER; VAR name: LongName);
 BEGIN name := UT[uno].name
 END GetUserName;

 PROCEDURE GetFileName*(uno: INTEGER; VAR name: ARRAY OF CHAR);
 VAR i: INTEGER; ch: CHAR;
 BEGIN i := 0;
 LOOP ch := UT[uno].name[i];
 IF ch = 0X THEN EXIT END ;
 name[i] := ch; INC(i)
 END ;
 name[i] := "."; name[i+1] := "M"; name[i+2] := "a"; name[i+3] := "i"; name[i+4] := "l";
 name[i+5] := 0X
 END GetFileName;

 PROCEDURE GetUser*(uno: INTEGER; VAR id: ShortName; VAR name: LongName;
 VAR count: LONGINT; VAR protected: BOOLEAN);
 BEGIN id := UT[uno].id; name := UT[uno].name; count := UT[uno].count;

 262

 protected := UT[uno].password # 0
 END GetUser;

 PROCEDURE InsertUser*(VAR id: ShortName; VAR name: LongName);
 VAR i: INTEGER;
 BEGIN i := Uno(id);
 IF (i = NUsers) & (i < UTsize-1) THEN
 UT[i].id := id; UT[i].name := name; INC(NUsers)
 END
 END InsertUser;

 PROCEDURE DeleteUser*(VAR id: ShortName);
 VAR i: INTEGER;
 BEGIN i := Uno(id);
 IF i < NUsers THEN DEC(NUsers);
 WHILE i < NUsers DO UT[i] := UT[i+1]; INC(i) END
 END
 END DeleteUser;

 PROCEDURE ClearPassword*(VAR id: ShortName);
 BEGIN UT[Uno(id)].password := 0
 END ClearPassword;

 PROCEDURE SetPassword*(uno: INTEGER; npw: LONGINT);
 BEGIN UT[uno].password := npw; BackupUsers
 END SetPassword;

 PROCEDURE IncPageCount*(uno: INTEGER; n: LONGINT);
 BEGIN INC(UT[uno].count, n); BackupUsers
 END IncPageCount;

 PROCEDURE SetCounts*(n: LONGINT);
 VAR i: INTEGER;
 BEGIN i := 0;
 WHILE i < NUsers DO UT[i].count := n; INC(i) END
 END SetCounts;

 PROCEDURE PurgeUsers*(n: INTEGER);
 BEGIN NUsers := 0
 END PurgeUsers;

 PROCEDURE InsertTask*(VAR Q: Queue; F: Files.File;
 VAR id: ARRAY OF CHAR; uno: INTEGER);
 VAR T: Task;
 BEGIN NEW(T); T.file := F; COPY(id, T.name); T.uno := uno; T.next := NIL;
 IF Q.last # NIL THEN Q.last.next := T ELSE Q.first := T END ;
 Q.last := T; INC(Q.n)
 END InsertTask;

 PROCEDURE GetTask*(VAR Q: Queue; VAR F: Files.File;
 VAR id: ShortName; VAR uno: INTEGER);
 BEGIN (*Q.first # NIL*)
 F := Q.first.file; id := Q.first.name; uno := Q.first.uno
 END GetTask;

 PROCEDURE RemoveTask*(VAR Q: Queue);
 BEGIN (*Q.first # NIL*)
 Files.Purge(Q.first.file); Q.first := Q.first.next; DEC(Q.n);
 IF Q.first = NIL THEN Q.last := NIL END
 END RemoveTask;

 263

 PROCEDURE Reset(VAR Q: Queue);
 BEGIN Q.n := 0; Q.first := NIL; Q.last := NIL
 END Reset;

 PROCEDURE Collect*;
 VAR n: LONGINT;
 BEGIN
 IF Kernel.allocated > 300000 THEN Kernel.GC END
 END Collect;

BEGIN RestoreUsers; Reset(PrintQueue); Reset(MailQueue); Reset(LineQueue)
END Core.

Apart from procedures and variables constituting the queuing mechanism for tasks, the procedures
exported from module Core all belong to the administration, and they can be divided into two
categories. The first category contains the procedures used by the three servers presented in this
Chapter, and they are UserNo, UserNum, IncPageCount, SetPassword, GetUserName and
GetFileName. The second category consists of the procedures NofUsers and GetUser for inspecting
table entries, and InsertUser, DeleteUser, ClearPassword, ClearCounts, and Init for making changes
to the table.

The client of the latter category is a module Users which is needed by the human administrator of the
server facility.

MODULE Users; (*NW 2.2.89 / 25.8.91*)
 IMPORT Texts, Viewers, Oberon, MenuViewers, TextFrames, Core;

 CONST TAB = 9X;
 VAR W: Texts.Writer;

 PROCEDURE List*;
 VAR x, y, i: INTEGER;
 protected: BOOLEAN;
 count: LONGINT;
 T: Texts.Text;
 V: Viewers.Viewer;
 id: Core.ShortName; name: Core.LongName;
 BEGIN i := 0; T := TextFrames.Text("");
 Oberon.AllocateUserViewer(Oberon.Par.frame.X, x, y);
 V := MenuViewers.New(
 TextFrames.NewMenu("Users.Text", "System.Close Edit.Store"),
 TextFrames.NewText(T, 0), TextFrames.menuH, x, y);
 WHILE i < Core.NofUsers() DO
 Core.GetUser(i, id, name, count, protected);
 Texts.WriteInt(W, i, 4); Texts.Write(W, TAB);
 IF protected THEN Texts.Write(W, "#") END ;
 Texts.WriteString(W, id); Texts.Write(W, TAB); Texts.WriteString(W, name);
 Texts.WriteInt(W, count, 8); Texts.WriteLn(W); INC(i)
 END ;
 Texts.Append(T, W.buf)
 END List;

 PROCEDURE Insert*;
 VAR id: Core.ShortName; name: Core.LongName; S: Texts.Scanner;
 BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
 IF S.class = Texts.Name THEN
 COPY(S.s, id); Texts.Scan(S);
 IF S.class = Texts.Name THEN
 COPY(S.s, name); Core.InsertUser(id, name); Core.BackupUsers
 END

 264

 END
 END Insert;

 PROCEDURE Delete*;
 VAR id: Core.ShortName; S: Texts.Scanner;
 BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
 IF S.class = Texts.Name THEN
 COPY(S.s, id); Core.DeleteUser(id); Core.BackupUsers
 END
 END Delete;

 PROCEDURE ClearPassword*;
 VAR id: Core.ShortName; S: Texts.Scanner;
 BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
 IF S.class = Texts.Name THEN
 COPY(S.s, id); Core.ClearPassword(id); Core.BackupUsers
 END
 END ClearPassword;

 PROCEDURE ClearCounts*;
 BEGIN Core.SetCounts(0); Core.BackupUsers
 END ClearCounts;

 PROCEDURE Init*;
 VAR id: Core.ShortName; name: Core.LongName; S: Texts.Scanner;
 BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos);
 Core.PurgeUsers(0);
 LOOP Texts.Scan(S);
 IF S.class # Texts.Name THEN EXIT END ;
 COPY(S.s, id); Texts.Scan(S);
 IF S.class # Texts.Name THEN EXIT END ;
 COPY(S.s, name); Core.InsertUser(id, name)
 END ;
 Core.BackupUsers
 END Init;

BEGIN Texts.OpenWriter(W)
END Users.

The reader may at this point wonder why a more advanced concept of administration has not been
chosen, which would allow the human administrator to operate the server remotely. A quick analysis
of the consequences of this widely used approach reveals that a substantial amount of additions to our
system would be required. The issue of security and protection would become inflated into dimensions
that are hardly justified for our local system. The first consequence would be a differentiation among
levels of protection. The administrator would become a so-called super-user with extra priviledges,
such as changing the user table. And so the game of trying to break the protection measures starts to
become an interesting challenge.

We have resisted the temptation to introduce additional complexity. Instead, we assume that physical
access to the server station is reserved to the administrator. Naturally, module Users and in particular
the symbol file of Core do not belong to the public domain. In concluding, we may point out that the
impossibility of activating users' programs on the server station significantly reduces the possibilities
for inflicting damage from the exterior.

 265

Copyright N.Wirth, 5.8.91 / 15.11.91

12. The Compiler

12.1. Introduction
The compiler is the primary tool of the system builder. It therefore plays a prominent role in the
Oberon System, although it is not part of the basic system. Instead, it constitutes a tool module - an
application - with a single command: Compile. It translates program texts into machine code.
Therefore, it is as a program inherently machine-dependent; it acts as the interface between source
language and target computer.

In order to understand the process of compilation, the reader needs to be familiar with the source
language Oberon and with the target computer, the NS-32000 processor architecture. For both the
reader is referred to the literature [1].

The language is defined as an infinite set of sequences of symbols taken from the language's
vocabulary. It is described by a set of equations called syntax. Each equation defines a syntactic
construct, or more precisely, the set of sequences of symbols belonging to that construct. It specifies
how that construct is composed of other syntactic constructs. The meaning of programs is defined in
terms of semantic rules governing each such construct.

Compilation of a program text proceeds by analyzing the text and thereby decomposing it recursively
into its constructs according to the syntax. When a construct is identified, code is generated according
to the semantic rule associated with the construct. The components of the identified construct supply
parameters for the generated code.

It follows that we distinguish between two kinds of actions: analyzing steps and code generating steps.
In a rough approximation we may say that the former are source language dependent and target
computer independent, whereas the latter are source language independent and target computer
dependent. Although reality is somewhat more complex, the module structure of this compiler clearly
reflects this division. The tool module Compiler is primarily dedicated to syntactic analysis. Upon
recognition of a syntactic construct, an appropriate procedure is called from one of the code generator
modules.

Oberon program texts are regarded as sequences of symbols rather than sequences of characters.
Symbols themselves, however, are sequences of characters. We refrain from explaining the reasons for
this distinction, but mention that apart from special characters and pairs such as +, &, <=, also
identifiers, numbers, and strings are classified as symbols. Furthermore, certain capital letter sequences
are symbols, such as IF, END, etc. Each time the syntax analyzer (parser) proceeds to read the next
symbol, it does this by calling procedure Get, which constitutes the so-called scanner residing in
module OCS (for Oberon Compiler Scanner). It reads from the source text as many characters as are
needed to recognize the next symbol.

In passing we note that the scanner alone reflects the definition of symbols in terms of characters,
whereas the parser is based on the notion of symbols only. The scanner implements the abstraction of
symbols. The recognition of symbols within a character sequence is called lexical analysis.

Ideally the recognition of any syntactic construct, say A, consisting of subconstructs, say B1, B2, ... ,
Bn, leads to the generation of code that depends only on (1) the semantic rules associated with A, and
(2) on (attributes of) B1, B2, ... , Bn. If this condition is satisfied, the construct is said to be context-
free, and if all constructs of a language are context-free, then also the language is context-free. Syntax
and semantics of Oberon adhere to this rule, although with a significant exception. This exception is
embodied by the notion of declarations. The declaration of an identifier, say x, attaches permanent
properties to x, such as the fact that x denotes a variable and that its type is T. These properties are
"invisible" when parsing a statement containing x, because the declaration of x is not also part of the
statement. The "meaning" of identifiers is thus inherently context-dependent.

 266

Context-dependence due to declarations is the immediate reason for the use of a global data structure
which represents the declared identifiers and their properties (attributes). Since this concept stems from
early assemblers where identifiers (then called symbols) were registered in a linear table, the term
symbol table tends to persist for this structure, although in this compiler it is considerably more
complex than an array. Basically, it grows during the processing of declarations, and it is searched
while expressions and statements are processed. Procedures for building and for searching are
contained in module OCT.

A complication arises from the notion of exports and imports in Oberon. Its consequence is that the
declaration of an identifier x may be in a module, say M, different from where x is referenced. If x is
exported, the compiler includes x together with its attributes in the symbol file of the compiled module
M. When compiling another module which imports M, that symbol file is read and its data are
incorporated into the symbol table. Procedures for reading and writing symbol files are contained in
module OCT, and no other module relies on information about the structure of symbol files.

The syntax is precisely and rigorously defined by a small set of syntactic equations. As a result, the
parser is a reasonably perspicuous and short program. Unfortunately, the target computer's instruction
set is complex, and as a result the program for generating code is much longer and more difficult to
comprehend. This is particularly pronounced in the case of a CISC computer such as the NS-32000.
Nevertheless, its instruction set is comparatively regular.

Unlike the parser which is fully contained in a single module, code generating procedures are
distributed over three modules with the goal of keeping their sizes within reasonable limits (1000
lines). Procedures within module OCE are called mainly when parsing expressions. Apart from
generating the corresponding code, the procedures perform the checks for type consistency of
operands, and they compute the attributes of the processed construct. As they select the appropriate
instructions, they directly reflect the instruction set of the target computer. Procedures in module OCH
are of the same nature; they are primarily called when parsing statements instead of expressions.

The final production of code is performed by procedures in module OCC. They are typically called
from OCE and OCH. In analogy with the scanner transforming character sequences into symbols,
OCC-procedures transform (abstract) instructions into sequences of bits. Hence, this module reflects
the binary encoding of instructions, i.e. the target computer's instruction formats.

The resulting module structure of the compiler is shown in Fig. 12.1 in a slightly simplified manner. In
reality OCS is imported by all other modules due to their need for procedure OCS.Mark. This,
however, will be explained later.

12.2. Code Patterns

Before it is possible to understand how code is generated, one needs to know which code is generated.
In other words, we need to know the goal before we find the way leading to the goal. A fairly concise
description of this goal is possible due to the structure of the language. As explained before, semantics
are attached to each individual syntactic construct, independent of its context. Therefore, it suffices to
list the expected code - instead of an abstract semantic rule - for each syntactic construct.

As a prerequisite to understanding the resulting instructions and in particular their parameters, we need
to know where declared variables are stored, i.e. which are their addresses. This compiler uses the
straight-forward scheme of sequential allocation of consecutively declared variables. An address is a
pair consisting of a base address (in a register) and an offset. Global variables are allocated in the
module's data section and the respective base address register is SB (see Chapter 6). Local variables
are allocated in a procedure activation record on the stack; the respective base register is FP. Offsets
are negative integers.

 267

Compiler

Parser

OCE

Instruction selection

OCH

Instruction selection

OCS

scanner

OCC

Code generation

OCT

Table handling

Texts Oberon Files

Fig. 12.1. Compiler’s module structure

The amount of storage needed for a variable (called its size) is determined by the variable's type. The
sizes of basic types are prescribed by the target computer's data representation. The following holds for
the NS processor:

Type No. of bytes

SHORTINT, CHAR, BOOLEAN 1
INTEGER 2
LONGINT, REAL, SET, POINTER, PROCEDURE 4
LONGREAL 8

The size of an array is the size of the element type multiplied by the number of elements. The size of a
record is the sum of the sizes of its fields.

A complication arises due to so-called alignment. By alignment is meant the adjustment of an address
to a multiple of the variable's size. Alignment is performed for variable addresses as well as for record
field offsets. The motivation for alignment is the avoidance of double memory references for variables
being "distributed" over two adjacent words. Proper alignment enhances processing speed quite
significantly. Variable allocation using alignment is shown by the example in Fig. 12.2

We note in passing that a reordering of the four variables avoids the occurrence of unused bytes, as
shown in Fig. 12.3.

Before embarking on a discussion of various code patterns, we briefly present the most important
addressing modes of the processor. d0 and d1 are integers, so-called displacements or offsets. Rn
denotes a general purpose register (0 ≤ n < 8), SB the register holding the Static Base address of global
data, and FP the register holding the Frame Pointer, i.e. the base address of data local to procedures.
Parameters of branch instructions denote jump distances from the instruction's own location (PC-
relative).

addressing mode assembler notation resulting address

register indirect d0(Rn) R[n] + d0
 d0(FP) FP + d0
 d0(SB) SB + d0
memory indirect d1(d0(FP)) Mem[FP + d0] + d1
 d1(d0(SB)) Mem[SB + d0] + d1
indexed adr[Rx:W] adr + 2*Rx
top of stack TOS SP, represents push and pop operations
immediate n n = operand

 268

x

b

ch k

-12

-8

-4

ch

k

b

x

-1

-3 ⇒ -4

-5

-9 ⇒ -12

VAR ch: CHAR; k: INTEGER; b: BOOLEAN; x: REAL

Fig. 12.2. Alignment of variables

x

ch b k

-8

-4

ch

b

k

x

-1

-2

-4

-8

VAR ch: CHAR; b: BOOLEAN; k: INTEGER; x: REAL

Fig. 12.3. Improved order of variables

Assignment of constants. The variables used in this example are global; their base register is SB. Each
assignment results in a single instruction. The constant is embedded within the instruction and uses the
immediate addressing mode. If the destination operand occupies more bytes than the source operand,
sign extension is included (MOVX). For integers in the range -8 ... 7 special instructions with shorter
encoding are used (MOVQ).

MODULE Pattern1;
 VAR ch: CHAR; -1
 i: SHORTINT; -2
 j: INTEGER; -4
 k: LONGINT; -8
 x: REAL; -12
 s: SET; -16
BEGIN 0 ENTER 00 0
 ch := "0"; 3 MOVB 48 -1(SB)
 i := 10; 7 MOVB 10 -2(SB)
 j := 1000; 11 MOVW 1000 -4(SB)
 k := 0; 16 MOVQD 0 -8(SB)
 x := 1.5; 19 MOVF 3FC00000 -12(SB)
 s := {0, 5, 8}; 27 MOVD 00000121 -16(SB)
 j := j; 34 MOVW -4(SB) -4(SB)
 k := i; 38 MOVXBD -2(SB) -8(SB)
 k := j; 43 MOVXWD -4(SB) -8(SB)
 x := j 48 MOVWF -4(SB) -12(SB)
END Pattern1. 53 EXIT 00
 55 RXP 0

Simple expressions: The result of an expression containing operators is always stored in a register
before it is assigned to a variable or used in another operation. This is necessary in the general case for
machines with two-operand instructions. It follows furthermore from the concept of context-free
processing: the code for x+y, for example, is the same regardless of whether x := x+y or z := x+y is
parsed, although the former could be represented by a single instruction on a two-address machine,
whereas the latter cannot.

Registers for intermediate results are allocated sequentially in the orders R7, R6, ... , R0, and F6, F4,
F2, F0, the latter for floating-point operands. Integer multiplication and division by powers of 2 are
represented by fast, arithmetic shifts (ASH). Similarly, the modulus by a power of 2 is obtained by
masking off leading bits (BIC). The operations of set union, difference, and intersection are
represented by logical operations (OR, BIC, AND).

 269

MODULE Pattern2;
 VAR i, j: INTEGER; -2, -4
 k, n: LONGINT; -8, -12
 x, y: REAL; -16, -20
 s, t, u: SET; -24, -28, -32
BEGIN 0 ENTER 00 0
 i := (i + 1) * (i - 1); 3 MOVW -2(SB) R7
 6 ADDQW 1 R7
 8 MOVW -2(SB) R6
 11 ADDQW -1 R6
 13 MULW R6 R7
 16 MOVW R7 -2(SB)
 k := ABS(k) DIV 17; 19 ABSD -8(SB) R7
 23 DIVD 17 R7
 30 MOVD R7 -8(SB)
 k := 8*n; 33 MOVD -12(SB) R7
 36 ASHD 3 R7
 40 MOVD R7 -8(SB)
 k := n DIV 2; 43 MOVD -12(SB) R7
 46 ASHD -1 R7
 50 MOVD R7 -8(SB)
 k := n MOD 16; 53 MOVD -12(SB) R7
 56 BICD FFFFFFF0 R7
 62 MOVD R7 -8(SB)
 x := -y / (x-1.5); 65 MOVF -16(SB) F6
 69 SUBF 3FC00000 F6
 76 MOVF -20(SB) F4
 80 DIVF F6 F4
 83 NEGF F4 F2
 86 MOVF F2 -16(SB)
 k := ENTIER(x); 90 FLOORFD -16(SB) R7
 94 MOVD R7 -8(SB)
 s := s + t * u 97 MOVD -28(SB) R7
 100 ANDD -32(SB) R7
 103 MOVD -24(SB) R6
 106 ORD R7 R6
 108 MOVD R6 -24(SB)
END Pattern2. 111 EXIT 00
 113 RXP 0

Indexed variables: References to elements of arrays make use of the indexed addressing mode. The
index must be present in a register. It is loaded by a CHECK instruction which, apart from transferring
the index value (with sign extension), also checks whether the index is within the bounds specified in
the array's declaration. The subsequent flag instruction causes a trap, if the index lies outside the
bounds. The bounding values are stored in the module's constant area and are addressed with base SB
and with a positive offset.

If the reference is to an element of a multi-dimensional array (matrix), its address computation
involves the INDEX instruction. The address of an element A[ik-1, ... , i1, i0] of a k-dimensional array A
with lengths nk-1, ... , n1, n0 is

adr(A) + ((... ((ik-1 * nk-2) + ik-2) * nk-3 + ...) * n1 + i1) * n0 + i0

The instruction INDEX r, a, b computes r := r*(a-1) + b. The address of a designator with k indices
can therefore be computed by k-1 successive INDEX instructions. If all indices are constants, the above
polynomial is evaluated by the compiler. The resulting code then consists of a single instruction only.

 270

MODULE Pattern3;
 VAR i, j, k, n: INTEGER; -2, -4, -6, -8
 a: ARRAY 10 OF INTEGER; -28
 b: ARRAY 10 OF LONGINT; -68
 x: ARRAY 10, 10 OF INTEGER; -268
 y: ARRAY 10, 10, 10 OF INTEGER; -2268
BEGIN 0 ENTER 00 0
 k := a[i]; 3 CHECKW R7 0(SB) -2(SB)
 8 FLAG
 9 MOVW -28(SB)[R7:W] -6(SB)
 n := a[5]; 14 MOVW -18(SB) -8(SB)
 b[i] := 0; 18 CHECKW R7 4(SB) -2(SB)
 23 FLAG
 24 MOVQD 0 -68(SB)[R7:D]
 x[i, j] := 2; 29 CHECKW R7 8(SB) -2(SB)
 34 FLAG
 35 CHECKW R6 12(SB) -4(SB)
 40 FLAG
 41 INDEXW R7 9 R6
 46 MOVQW 2 -268(SB)[R7:W]
 y[i, j, k] := 3; 51 CHECKW R7 16(SB) -2(SB)
 56 FLAG
 57 CHECKW R6 20(SB) -4(SB)
 62 FLAG
 63 INDEXW R7 9 R6
 68 CHECKW R5 24(SB) -6(SB)
 73 FLAG
 74 INDEXW R7 9 R5
 79 MOVQW 3 -2268(SB)[R7:W]
 y[3, 4, 5] := 6 84 MOVQW 6 -1578(SB)
END Pattern3. 88 EXIT 00
 90 RXP 0

index bounds: 0 0, 9; 0, 9; 0, 9; 0, 9; 0, 9; 0, 9; 0, 9

Record fields and pointers: Fields of records are accessed by computing the sum of the record's (base)
address and the field's offset. If the record variable is statically declared, the sum is computed by the
compiler. In the case of a dynamically allocated variable, the base is given by the pointer through
which the variable is referenced, and the addition is included in the indirect addressing mode. (An
operand of the form d1(d0(SB)) denotes the address Mem[SB+d0] + d1). Dynamic allocation,
expressed by the statement NEW(p), is represented by the three instructions

ADDR p, R0
MOVD dsc, R1
SVC 0

where dsc denotes the descriptor of the variable's type (see Pattern 13). The supervisor call assigns the
address of the allocated variable to p. NIL is represented by 0.

MODULE Pattern4;
 TYPE Ptr = POINTER TO Node;
 Node = RECORD num: INTEGER; 0
 name: ARRAY 8 OF CHAR; 2
 next: Ptr 12
 END ;
 VAR p, q: Ptr; -4, -8

 271

BEGIN 0 ENTER 00 0
 NEW(p); 3 ADDRD -4(SB) R0
 6 MOVD 4(SB) R1
 9 SVC 0
 NEW(q); 11 ADDRD -8(SB) R0
 14 MOVD 4(SB) R1
 17 SVC 0
 p.num := 6; 19 MOVQW 6 0(-4(SB))
 p.name[7] := "0"; 23 MOVB 48 9(-4(SB))
 p.next := q; 28 MOVD -8(SB) 12(-4(SB))
 p.next.next := NIL 33 MOVD 12(-4(SB)) R7
 37 MOVQD 0 12(R7)
END Pattern4. 40 EXIT 00
 42 RXP 0

Boolean expressions, If-, While-, and Repeat statements: Conditional statements imply that parts of
them are skipped. This is done by the use of branch instructions whose operand specifies the distance
of the branch. The instructions refer to the condition-register as an implicit operand. Its value is
determined by a preceding instruction, typically a compare or a bit-test instruction.

The Boolean operators & and OR are purposely not defined as total functions, but rather by the
equations

p & q = if p then q else FALSE
p OR q = if p then TRUE else q

Consequently, Boolean operators must be translated into branches too. Evidently, branches stemming
from if statements and branches stemming from Boolean operators should be merged, if possible. The
resulting code therefore does not necessarily mirror the structure of the if statement directly, as can be
seen from the code in Pattern5. We must conclude that code generation for Boolean expressions
differs in some aspects from that for arithmetic expressions.

The example of Pattern5 is also used to exhibit the code resulting from the standard procedures INC,
DEC, INCL, and EXCL. These procedures provide an opportunity to use shorter code in those cases
where a single two-operand instruction suffices, i.e. when one of the arguments is identical with the
destination.

MODULE Pattern5;
 VAR x: INTEGER; s: SET; -2, -8
BEGIN 0 ENTER 00 0
 IF x = 0 THEN 3 CMPQW 0 -2(SB)
 6 BNE 6
 INC(x) 9 ADDQW 1 -2(SB)
 END ;
 IF (x >= 0) & (x < 100) THEN 12 CMPQW 0 -2(SB)
 15 BGT 14
 18 CMPW 100 -2(SB)
 23 BLE 6
 DEC(x) 26 ADDQW -1 -2(SB)
 END ;
 IF ODD(x) OR (x IN s) THEN 29 TBITB 0 -2(SB)
 33 BFS 10
 36 TBITW -2(SB) -8(SB)
 40 BFC 10
 INCL(s, 4) 43 ORD 00000010 -8(SB)
 END ;
 IF x < 0 THEN 50 CMPQW 0 -2(SB)
 53 BLE 13

 272

 EXCL(s, 0) 56 BICD 00000001 -8(SB)
 63 BR 46
 ELSIF x < 10 THEN 66 CMPW 10 -2(SB)
 71 BLE 13
 EXCL(s, 1) 74 BICD 00000002 -8(SB)
 81 BR 28
 ELSIF x < 100 THEN 84 CMPW 100 -2(SB)
 89 BLE 13
 EXCL(s, 2) 92 BICD 00000004 -8(SB)
 ELSE 99 BR 10
 EXCL(s, 3) 102 BICD 00000008 -8(SB)
 END
END Pattern5. 109 EXIT 00
 111 RXP 0

MODULE Pattern6;
 VAR i: INTEGER;
BEGIN 0 ENTER 00 0
 i := 0; 3 MOVQW 0 -2(SB)
 WHILE i < 10 DO 6 CMPW 10 -2(SB)
 11 BLE 8
 INC(i) 14 ADDQW 1 -2(SB)
 END ; 17 BR -11
 REPEAT DEC(i) 19 ADDQW -1 -2(SB)
 UNTIL i = 0 22 CMPQW 0 -2(SB)
 25 BNE -6
END Pattern6. 27 EXIT 00
 29 RXP 0

Case statements serve to select a statement sequence from a set of cases according to an index value.
Selection is represented by a direct branch to the selected case; the CASE instruction takes the branch
distance from a table using the indexed addressing mode. We conclude from the following code that
missing cases yield a table entry leading to a trap instruction (BPT 16). The table of offsets is located
in the module's area for constants.

MODULE Pattern7;
 VAR i: INTEGER; s: SET; -2, -8
BEGIN 0 ENTER 00 0
 CASE i OF 3 CHECKW R7 0(SB) -2(SB)
 9 BFS 58
 12 CASEW 4(SB)[R7:W]
 0: s := {0, 31} 17 MOVD 80000001 -8(SB)
 24 BR 45
 | 1: s := {1, 30} 27 MOVD 40000002 -8(SB)
 34 BR 35
 | 2: s := {2, 29} 37 MOVD 20000004 -8(SB)
 44 BR 25
 | 4: s := {4, 27} 47 MOVD 08000010 -8(SB)
 54 BR 15
 | 5: s := {5, 26} 57 MOVD 04000020 -8(SB)
 64 BR 5
 67 BPT 16
 END
END Pattern7. 69 EXIT 00
 71 RXP 0

 273

index bounds: 0 0, 5
branch offset array: 4 5, 15, 25, 55, 35, 45

Procedures: Procedure bodies are surrounded by an ENTER and an EXIT instruction. They set and
reset the values of the SP and FP registers (see Chapter 6). The latter holds the address of the
procedure activation record on the stack. The (second) parameter of the ENTER instruction indicates
the space taken by variables local to the procedure, rounded up to the next multiple of 4. Procedures
(which are not exported) end with a RET instruction; its parameter indicates the space taken by
parameters, which are addressed with positive offsets relative to the FP register.

Calls (within a module) use the BSR instruction. Parameters are pushed onto the stack prior to the BSR
using the TOS addressing mode. Every parameter occupies at least 4 bytes (or a multiple thereof). In
the case of value parameters the value is loaded, and in the case of VAR-parameters, the variable's
address.

MODULE Pattern8; 0 ENTER 00 0
 VAR i: INTEGER; 3 BR 22

 PROCEDURE P(x: INTEGER; VAR y: INTEGER);
 VAR z: INTEGER;
 BEGIN 8 ENTER 00 4
 z := x; 12 MOVW 12(FP) -2(FP)
 y := z 16 MOVW -2(FP) 0(8(FP))
 END P; 21 EXIT 00
 23 RET 8

BEGIN P(5, i) 25 MOVQD 5 TOS
 27 ADDRD -2(SB) TOS
 30 BSR -22
END Pattern8. 32 EXIT 00
 34 RXP 0

Function procedures are handled in exactly the same manner as proper procedures, except that a result
specified by a RETURN statement is returned in register R0 or F0. If the function is called in an
expression at a place where intermediate results are held in registers, these values are put onto the stack
before the call, and they are restored after it, using SAVE and RESTORE instructions. (The BPT 17
instruction occurs at the end of each function procedure and guards against erroneous functions
without executed RETURN statement).

MODULE Pattern9; 0 ENTER 00 0
 VAR x: REAL; 3 BR 39

 PROCEDURE F(x: REAL): REAL;
 BEGIN 8 ENTER 00 0
 x := F(x * 0.5); 12 MOVF 8(FP) F6
 16 MULF 3F000000 F6
 23 MOVF F6 TOS
 26 BSR -18
 28 MOVF F0 8(FP)
 RETURN x 32 MOVF 8(FP) F0
 END F; 36 EXIT 00
 38 RET 4
 40 BPT 17

BEGIN x := F(F(10.0)) 42 MOVF 41200000 TOS
 49 BSR -41
 51 MOVF R0 TOS

 274

 54 BSR -46
 56 MOVF F0 -4(SB)
END Pattern9. 60 EXIT 00
 62 RXP 0

Dynamic array parameters are passed by loading a descriptor on the stack, regardless of whether they
are value- or VAR- parameters. The descriptor consists of the actual variable's address and its index
bounds (the lower bound always being 0). In the case of n-dimensional arrays, n bound pairs are
required.

If the dynamic array is called by value, a copy of its value is made after procedure entry. The length is
computed by incrementing the upper bound and dividing the sum by the array element size using a
shift instruction, yielding the number of elements to be copied (R7). The copies are pushed onto the
stack in a tight loop using the ACB instruction (Add, Compare, Branch). Thereafter, the address of the
array in the descriptor is replaced by the address of the copy (SP).

Elements of dynamic arrays are accessed like those of static arrays using the CHECK instruction for
loading the index into a register. Even when the index is a constant, the check cannot be performed by
the compiler. The LEN function obtains the length from the upper bound, and by adding 1 to it.

MODULE Pattern10; 0 ENTER 00 0
 3 BR 94
 VAR a: ARRAY 10 OF CHAR; -10
 b: ARRAY 4, 8 OF INTEGER; -76

 PROCEDURE P0(x: ARRAY OF CHAR);
 VAR k: LONGINT;
 BEGIN 8 ENTER 00 4
 12 MOVD 12(FP) R7
 15 ADDQD 4 R7
 17 ASHD -2 R7
 21 MOVD 8(FP) R6
 24 MOVD -4(R6)[R7:D] TOS
 28 ACBD -1 R7 -4
 31 ADDRD 0(SP) 8(FP)
 k := LEN(x) 35 MOVD 12(FP) R7
 38 ADDQD 1 R7
 40 MOVD R7 -4(FP)
 END P0; 43 EXIT 00
 45 RET 8

 PROCEDURE P1(VAR x: ARRAY OF CHAR);
 BEGIN 47 ENTER 00 0
 x[1] := "0" 51 CHECKW R7 12(FP) 0001
 57 FLAG
 58 MOVB 48 0(8(FP))[R7:B]
 END P1; 64 EXIT 00
 66 RET 8

 PROCEDURE P2(VAR x: ARRAY OF ARRAY OF INTEGER);
 VAR i, j: INTEGER;
 BEGIN 68 ENTER 00 4
 x[i, j] := 3 72 CHECKW R7 16(FP) -2(FP)
 77 FLAG
 78 CHECKW R6 12(FP) -4(FP)
 83 FLAG
 84 INDEXW R7 12(FP) R6

 275

 88 MOVQW 3 0(8(FP))[R7:W]
 END P2; 93 EXIT 00
 95 RET 12

BEGIN P0(a); 97 MOVD 0(SB) TOS
 100 ADDRD -10(SB) TOS
 103 BSR -95
 P1(a); 106 MOVD 0(SB) TOS
 109 ADDRD -10(SB) TOS
 112 BSR -65
 P0("ABCDE") 115 MOVQD 5 TOS
 117 ADDRD 12(SB) TOS
 120 BSR -112
 P2(b) 123 MOVD 4(SB) TOS
 126 MOVD 8(SB) TOS
 129 ADDRD -76(SB) TOS
 133 BSR -65
END Pattern10. 136 EXIT 00
 138 RXP 0

index bounds and constants: 0 0, 9; 0, 3; 0, 7
 12 "ABCDE"

Nested procedures: Whereas global and local variables are addressed using SB and FP as bases, the
variables at intermediate levels are addressed by descending along the static chain in the stack. This is
the case, if a variable x is referenced from a procedure Q which is local to another procedure P with
local x. An element of the static chain is established when a local procedure is called; it denotes the
address of the activation record of the procedure in which the calling procedure is declared locally. It is
omitted, if the calling procedure is global, because then the environment is based on SB. The SB
register may be regarded as an optimization feature for access of global variables built into the
processor architecture.

Access to a variable local to the procedure immediately surrounding the procedure accessing the
variable uses the indirect addressing mode. When the level difference between accessed variable and
accessor is greater than 1, several instructions are required for descending along the chain. This,
however, rarely occurs.

MODULE Pattern11; 0 ENTER 00 0
 VAR u: INTEGER; 3 BR 62

 PROCEDURE P; 8 ENTER 00 4
 VAR x: INTEGER; 12 BR 44

 PROCEDURE Q; 15 ENTER 00 4
 VAR y: INTEGER; 19 BR 28

 PROCEDURE R; 22 ENTER 00
 VAR z: INTEGER;
 BEGIN u := z + y + x 26 MOVW -2(FP) R7
 29 ADDW -2(8(FP)) R7
 33 MOVD 8(8(FP)) R6
 37 ADDW -2(R6) R7
 40 MOVW R7 -2(SB)
 END R; 43 EXIT 00
 45 RET 4

 BEGIN R 47 ADDRD 0(FP) TOS static chain

 276

 50 BSR -28
 END Q; 52 EXIT 00
 54 RET 4

 BEGIN Q 56 ADDRD 0(FP) TOS static chain
 59 BSR -44
 END P; 61 EXIT 00
 63 RET 0

BEGIN P 65 BSR -57
END Pattern11. 67 EXIT 00
 69 RXP 0

External variables and procedures: When a procedure is imported from another module, its address is
unavailable to the compiler. Instead, the procedure is identified by a number obtained from the
imported module's symbol file. For calling an external procedure, the CXP instruction is generated
instead of BSR (see Chapter 6). Its parameter is an index to the calling module's link table. The table
entry contains the base address of the referenced module's descriptor and the procedure's offset in the
module's code. These values are computed by the loader from a module number and the procedure's
number, which are supplied by the compiler in the header of the object file (see Chapter 6). An RXP
instruction instead of RET terminates exported procedures.

Imported variables are referenced using the external addressing mode. Their offset is added to the base
address of the data area of the imported module which is contained in the link table. If n modules are
imported, the first n entries of the table contain the respective base addresses. Hence, the first
parameter of an external address is the module number, the second the offset.

In the following example, modules Pattern12a and Pattern12b both export a procedure and a variable.
They are referenced from the importing module Pattern12c. The first two entries of the link table are
data entries (indicated by the special value 255), the remaining entries refer to external procedures and
their indices appear as parameters of CXP instructions.

MODULE Pattern12a; 0 ENTER 00 0
 VAR k*: INTEGER; 3 BR 16

 PROCEDURE P*; 8 ENTER 00 0
 BEGIN k := 1 12 MOVQW 1 -2(SB)
 END P; 15 EXIT 00
 17 RXP 0

END Pattern12a. 19 EXIT 00
 21 RXP 0

entry: 1, 8

MODULE Pattern12b; 0 ENTER 00 0
 VAR x*: REAL; 3 BR 18

 PROCEDURE P*; 8 ENTER 00 0
 BEGIN x := 1 12 MOVBF 1 -4(SB)
 END P; 17 EXIT 00
 19 RXP 0

END Pattern12b. 21 EXIT 00
 23 RXP 0

entry: 1, 8

 277

MODULE Pattern12c;
 IMPORT Pattern12a, Pattern12b;

 VAR i: INTEGER; x: REAL;
BEGIN 0 ENTER 00 0
 i := Pattern12a.k; 3 MOVW EXT(1)-2 -2(SB)
 x := Pattern12b.x; 8 MOVF EXT(2)-4 -8(SB)
 Pattern12a.P; 14 CXP 3
 Pattern12b.P 16 CXP 4
END Pattern12c. 18 EXIT 00
 20 RXP 0

imports: 0 Pattern12a
 1 Pattern12b

links (data: mno, 255):
 1 1, 255
 2 2, 255
 (proc: mno, pno):
 3 1, 1
 4 2, 1

Record extensions with pointers: Fields of a record type R1, which is declared as an extension of a
type R0, are simply appended to the fields of R0, i.e. their offsets are greater than those of the fields of
R0. When a record is statically declared, its type is known by the compiler. If the record is referenced
via a pointer, however, this is not the case. A pointer bound to a base type R0 may well refer to a
record of an extension R1 of R0. Type tests (and type guards) allow to test for the actual type. This
requires that a type can be identified at the time of program execution. Because the language defines
name equivalence instead of structural equivalence of types, a type may be identified by a number. We
use the address of a unique type descriptor for this purpose. Therefore, type tests consist of a simple
address comparison which is very fast. Type descriptors are generated by the loader, and their address,
called type tag, is stored in the module's area for constants. The type of a (dynamically allocated)
variable is stored as a prefix to the record (with offset -4).

A type descriptor contains - in addition to information stored for use by the garbage collector - a table
of tags of all base types. If, for instance, a type R2 is an extension of R1 which is an extension of R0,
the descriptor of R2 contains the tags of R1 and R0 as shown in Fig. 12.4. The table has a fixed
number of 7 entries.

size

pointer
offsets

0

4

8

R2

size

R1

size

R0

Fig. 12.4. Type descriptors

A type guard p(T) is equivalent to the statement

IF ~(p IS T) THEN HALT(18) END

but appears within variable designators. (Evidently, a single-byte instruction similar to FLAG, trapping
on inequality would be useful in place of the instruction pair BEQ 4, BPT 18).

MODULE Pattern13; 0 ENTER 00 0
 TYPE
 P0 = POINTER TO R0;
 P1 = POINTER TO R1;

 278

 P2 = POINTER TO R2;
 R0 = RECORD x: INTEGER END ;
 R1 = RECORD (R0) y: INTEGER END ;
 R2 = RECORD (R1) z: INTEGER END ;
 VAR
 p0: P0; -4
 p1: P1; -8
 p2: P2; -12
BEGIN 3 MOVD 4(SB) 4(4(SB))
 8 MOVD 8(SB) 8(8(SB))
 13 MOVD 4(SB) 4(8(SB))
 p0.x := 0; 18 MOVQW 0 0(-4(SB))
 p1.y := 1; 22 MOVQW 1 4(-8(SB))
 p0(P1).y := 2; 26 MOVD -4(-4(SB)) R7
 30 CMPD 4(R7) 4(SB)
 34 BEQ 4
 36 BPT 18
 38 MOVQW 2 4(-4(SB))
 p0(P2).z := 3; 42 MOVD -4(-4(SB)) R7
 46 CMPD 8(R7) 8(SB)
 50 BEQ 4
 52 BPT 18
 54 MOVQW 3 8(-4(SB))
 IF p1 IS P2 THEN 58 MOVD -4(-8(SB)) R7
 62 CMPD 8(R7) 8(SB)
 66 BNE 7
 p0 := p2 69 MOVD -12(SB) -4(SB
 END
END Pattern13. 73 EXIT 00
 75 RXP 0

Type tags at 0, 4, 8 (SB)

Record extensions as VAR parameters: Records occurring as VAR-parameters may also require a type
test at program execution time. This is because VAR-parameters effectively constitute hidden pointers.
Type tests and type guards on VAR-parameters are handled in the same way as for variables
referenced via pointers, with a slight difference, however. Statically declared record variables may be
used as actual parameters, and they are not prefixed by a type tag. Therefore, the tag has to be supplied
together with the variable's address when the procedure is called, i.e. when the actual parameter is
established. Record structured VAR-parameters therefore consist of address and type tag. This is
similar to dynamic array descriptors consisting of address and bounds.

The following example also exhibits a record assignment, in fact a projection of R1 onto R0. It is
represented by a single instruction which moves multiple bytes (MOVM). Its last parameter is the
number of bytes to be copied minus 1.

MODULE Pattern14; 0 ENTER 00 0
 TYPE 3 BR 30
 R0 = RECORD a, b, c: LONGINT END ;
 R1 = RECORD (R0) x, y: LONGINT END ;
 VAR
 r0: R0; -12
 r1: R1; -32

 PROCEDURE P(VAR r: R0); 8 ENTER 00 0
 BEGIN r.a := 1; 12 MOVQD 1 0(8(FP))
 r(R1).x := 2 16 CMPD 4(12(FP)) 4(SB)

 279

 21 BEQ 4
 23 BPT 18
 25 MOVQD 2 12(8(FP))
 END P; 29 EXIT 00
 31 RET 8

BEGIN 33 MOVD 4(SB) 4(4(SB))
 r0 := r1; 38 MOVMB -32(SB) -12(SB) 11
 P(r1) 44 MOVD 4(SB) TOS
 47 ADDRD -32(SB) TOS
 50 BSR -42
END Pattern14. 52 EXIT 00
 54 RXP 0

Type tags at 0, 4 (SB)

Set elements: This last code pattern exhibits the construction of sets. If the specified elements are
constants, the set value is computed by the compiler (see Pattern7). Otherwise, sequences of move and
shift instructions are used. Since shift instructions do not check whether the shift count is within
sensible bounds, the results are unpredictable, if elements outside the range 0 .. 31 are involved.

MODULE Pattern15;
 VAR s: SET; i, j: INTEGER; -4, -6, -8
BEGIN 0 ENTER 00 0
 s := {i}; 3 MOVQD 1 R7
 5 LSHD -6(SB) R7
 9 MOVD R7 -4(SB)
 s := {0 .. i}; 12 MOVQD -2 R7
 14 LSHD -6(SB) R7
 18 COMD R7 R7
 21 MOVD R7 -4(SB)
 s := {i .. 27}; 24 MOVQD -1 R7
 26 LSHD -6(SB) R7
 30 BICD F0000000 R7
 36 MOVD R7 -4(SB)
 s := {i .. j}; 39 MOVQD -1 R7
 41 LSHD -6(SB) R7
 45 MOVQD -2 R6
 47 LSHD -8(SB) R6
 51 BICD R6 R7
 53 MOVD R7 -4(SB)
 INCL(s, i) 56 MOVQD 1 R7
 58 LSHD -6(SB) R7
 62 ORD R7 -4(SB)
END Pattern15. 65 EXIT 00
 67 RXP 0

12.3. Internal Data Structures and Interfaces
In Section 12.1 it was explained that declarations inherently constitute context-dependence of the
translation process. Although parsing still proceeds on the basis of a context-free syntax and relies on
contextual information only in a few isolated instances, information provided by declarations affects
the generated code significantly. During the processing of declarations, their information is transferred

 280

into the "symbol table", a data structure of considerable complexity, from where it is retrieved for the
generation of code.

This dynamic data structure is defined in module OCT in terms of two record types called Object and
Struct (see Def of OCT). These types pervade all other modules with the exception of the scanner.
They are therefore explained before further details of the compiler are discussed.

For each declared identifier an instance of type Object is generated. The record holds the identifier and
the properties associated with the identifier given in its declaration. Since Oberon is a statically typed
language, every object has a type. It is represented in the record by its typ field, which is a pointer to a
record of type Struct. Since many objects may be of the same type, it is appropriate to record the type's
attributes only once and to refer to them via a pointer. The properties of type Struct will be discussed
below.

The kind of object which a table entry represents is indicated by the field mode. Its values are denoted
by declared integer constants: Var indicates that the entry describes a variable, Con a constant, Fld a
record field, Ind a VAR-parameter, and xProc a procedure. Different kinds of entries carry different
attributes. A variable or a parameter carries an address, a constant has a value, a record field has an
offset, and a procedure has an entry address, a list of parameters, and a result type. For each kind the
introduction of an extended record type would seem advisable. This was not done, however, for three
reasons. First, the compiler was first formulated in (a subset of) Modula-2 which does not feature type
extension. Second, not making use of type extensions would make it simpler to translate the compiler
into other languages for porting the language to other computers. And third, all extensions were known
at the time the compiler was planned. Hence extensibility provided no argument for the introduction of
a considerable variety of types. The simplest solution lies in using the multi-purpose fields a0, a1, a2,
and dsc for variant-specific attributes. For example, a0 holds an address for variables, parameters, and
procedures, an offset for record fields, and a value for constants.

The definition of a type yields a record of type Struct, regardless of whether it occurs within a type
declaration, in which case also a record of type Object (mode = Typ) is generated, or in a variable
declaration, in which case the type remains anonymous. All types are characterized by a form and a
size. A type is either a basic type or a constructed type. In the latter case it refers to one or more other
types. Constructed types are arrays, records, pointers, and procedural types. The attribute form refers to
this classification. Its value is an integer allowing the use of case statements for an efficient
discrimination.

Just as different object kinds are characterized by different attributes, different forms have different
attributes. Again, the introduction of extensions of type Struct was avoided. Instead, some of the fields
of type Struct remain unused in some cases, such as for basic types, and others are used for form-
specific attributes. For example, the attribute BaseTyp refers to the element type in the case of an array,
to the result type in the case of a procedural type, to the type to which a pointer is bound, or to the base
type of a (extended) record type. The attribute link refers to the parameter list in the case of a
procedural type, or to the list of fields in the case of a record type.

As an example, consider the following declarations. The corresponding data structure is shown in Fig.
12.5. For details, the reader is referred to the program listing of module OCT and the respective
explanations.

CONST N = 100;
TYPE Ptr = POINTER TO Rec;
 Rec = RECORD n: INTEGER; p, q: Ptr END ;
VAR k: INTEGER;
 a: ARRAY N OF INTEGER;
PROCEDURE P(x: INTEGER): INTEGER;

Only entries representing constructed types are generated during a compilation. An entry for each basic
type is established by the compiler's initialization. It consists of an Object holding the standard type's
identifier and a Struct indicating its form, denoted by one of the values Byte, Bool, Char, SInt, Int,
LInt, Real, LReal, or Set. The object records of the basic types are anchored in global pointer variables
(which actually should be regarded as constants).

 281

N Con

100

Ptr Typ

Rec Typ

k Var

-2

a Var

-204

P LProc

adr

NIL

Pointer

4

Array

200

NIL 100

x Var

8

NIL

name mode

a0 typ

next dsc

Object

Record

12 NIL

0

form

size BaseTyp

strobj n link

Struct

n Fld

0

p Fld

4

q Fld

8

NIL

Int

2

inttyp

Fig. 12.5. Internal representation of declarations

Not only are entries created upon initialization for basic types, but also for all standard procedures.
Therefore, every compilation starts out with a symbol table reflecting all standard, pervasive identifiers
and the objects they stand for.

We now return to the subject of Objects. Whereas objects of basic modes (Con, Var, Ind, Fld, Typ,
xProc, and Mod) directly reflect declared identifiers and constitute the context in which statements and
expressions are compiled, compilations of expressions typically generate anonymous entities of
additional, non-basic modes. Such entities reflect selectors, factors, terms, etc., i.e. constituents of
expressions and statements. As such, they are of a transitory nature and hence are not represented by
records allocated on the heap. Instead, they are represented by record variables local to the processing
procedures and are therefore allocated on the stack. Their type is called Item and is a slight variation of
the type Object.

Let us assume, for instance, that a term x*y is parsed. This implies that the operator and both factors
have been parsed already. The factors x and y are represented by two variables of type Item of Var
mode. The resulting term is again described by an item, and since the product is transitory, i.e. has
significance only within the expression of which the term is a constituent, it is to be held in a
temporary location, in a register. In order to express that an item is located in a register, a new, non-
basic mode Reg is introduced.

Effectively, all non-basic modes reflect the target computer's architecture, in particular its addressing
modes. The more addressing modes a computer offers, the more item modes are needed to represent
them. The additional item modes and their corresponding addressing modes used in the compiler of the
NS-32000 processor are:

VarX indexed mode
IndX indirect, indexed mode

 282

Reg direct register mode
RegI indirect register mode
RegX indirect, indexed register mode
Stk stack mode (TOS)
Coc condition code mode
Abs absolute mode

The use of the types Object, Item, and Struct for the various modes and forms, and the meaning of their
attributes are explained in the following tables:

Objects: Items:

 mode a0 a1 dsc | lev a0 a1 a2 obj

0 Undef |
1 Var adr | lev adr obj
2 VarX | lev adr RX
3 Ind adr | lev adr off
4 IndX | lev adr off RX
5 RegI | R off
6 RegX | R off RX
7 Abs | adr
8 Con val | val val
 | sadr leng (strings)
9 Stk | (stack)
10 Coc | CC Tjmp Fjmp (condition code)
11 Reg | R
12 Fld off | off obj
13 Typ | mno tadr obj
14 LProc adr pars | adr obj (local procedure)
15 XProc pno Ladr pars | mno pno Ladr obj (external procedure)
16 SProc fno | fno (standard procedure)
17 CProc cno pars | cno obj (code procedure)
18 IProc pno Ladr | adr Ladr obj (interrupt procedure)
19 Mod mno key | mno obj
20 Head lev psize |

Structures:

 form BaseTyp link mno n adr
--
13 Pointer PBaseTyp
14 rocTyp ResTyp param
15 Array ElemTyp mno nofel bounds
16 DynArr ElemTyp
17 Record BaseTyp fields mno descr

Items have an attribute called lev which is part of the address of the item. Positive values denote the
level of nesting of the procedure in which the item is declared; lev = 0 implies a global object.
Negative values indicate that the object is imported from the module with number -lev.

The three types Object, Item, and Struct are defined in the interface of module OCT, which also
contains procedures for accessing the symbol table. Insert serves to register a new identifier, and it
returns a pointer to the allocated record. Find returns the pointer to the object whose name equals the
global scanner variable OCS.name, and the level of the identified object.

Procedure Import serves to read the specified symbol file and to enter its identifier in the symbol table
(mode = Mod). FindImport retrieves an object with a name given by OCS.name from a previously

 283

imported module. Finally, Export generates the symbol file of the compiled module, containing
descriptions of all objects and structures marked for export.

DEFINITION OCT; (*Table handler*)
 TYPE
 Object = POINTER TO ObjDesc;
 Struct = POINTER TO StrDesc;
 ObjDesc = RECORD
 dsc, next: Object;
 typ: Struct;
 a0, a1: LONGINT;
 a2: INTEGER;
 mode: SHORTINT;
 marked: BOOLEAN;
 name: ARRAY 32 OF CHAR;
 END ;

 StrDesc = RECORD
 form, n, mno, ref: INTEGER;
 size, adr: LONGINT;
 BaseTyp: Struct;
 link, strobj: Object;
 END ;

 Item = RECORD
 mode, lev: INTEGER;
 a0, a1, a2: LONGINT;
 typ: Struct;
 obj: Object;
 END ;

 VAR topScope: Object;
 undftyp, bytetyp, booltyp, chartyp, sinttyp, inttyp, linttyp, realtyp, lrltyp,
 settyp, stringtyp, niltyp, notyp: Struct;
 nofGmod: INTEGER;
 GlbMod: ARRAY 24 OF Object;

 PROCEDURE Init;
 PROCEDURE Close;
 PROCEDURE FindImport (mod: Object; VAR res: Object);
 PROCEDURE Find (VAR res: Object; VAR level: INTEGER);
 PROCEDURE FindField (typ: Struct; VAR res: Object);
 PROCEDURE Insert (VAR name: ARRAY OF CHAR; VAR res: Object);
 PROCEDURE OpenScope (level: INTEGER);
 PROCEDURE CloseScope;
 PROCEDURE Import (VAR name, self, FileName: ARRAY OF CHAR);
 PROCEDURE Export (VAR name, FileName: ARRAY OF CHAR;
 VAR newSF: BOOLEAN; VAR key: LONGINT);
END OCT.

Before embarking on a presentation of the compiler's main module, the parser, an overview of its
remaining modules is given in the form of their interfaces. The reader is invited to refer to them when
studying the parser.

The interface of the scanner (OCS) is simple; its chief constituent is procedure Get. Each call yields the
next symbol from the source text, identified by an integer. Global variables represent attributes of the
read symbol in certain cases. If a number was read, numtyp indicates its type and intval, realval, or
lrlval specify the numeric value. If an identifier or a string was read, name holds the ASCII values of
the characters read.

 284

Procedure Mark serves to generate a diagnostic output indicating an error number and the scanner's
current position in the source text. The procedure is located in the scanner, because only the scanner
has access to its current position. Mark is called from all other modules.

DEFINITION OCS; (*Scanner*)
 IMPORT Texts;
 VAR numtyp: INTEGER;
 intval: LONGINT;
 realval: REAL;
 lrlval: LONGREAL;
 scanerr: BOOLEAN;
 name: ARRAY 128 OF CHAR;

 PROCEDURE Mark (n: INTEGER);
 PROCEDURE Get (VAR sym: INTEGER);
 PROCEDURE Init (source: Texts.Text; pos: LONGINT);
END OCS.

Module OCE contains the procedures for code selection and type consistency checking for
expressions. The names of these procedures clearly indicate the respective constructs for which code is
to be selected; a few additional explanations may nevertheless be helpful.

SetIntType is called to identify the exact numeric type of an item denoting a constant; the type depends
on the value's magnitude. TypeTest is called to process a type test or a type guard. Set0 constructs a
singleton set item consisting of the element specified by the second parameter y, and Set1 constructs a
set with elements y to z. MOp and Op process constituents of expressions with monadic and dyadic
operators respectively. And finally StPar1, StPar2, StPar3, and StFct process calls of standard
procedures and functions generating in-line code.

DEFINITION OCE;
 IMPORT OCT;
 VAR inxchk: BOOLEAN;

 PROCEDURE SetIntType (VAR x: OCT.Item);
 PROCEDURE AssReal (VAR x: OCT.Item; y: REAL);
 PROCEDURE AssLReal (VAR x: OCT.Item; y: LONGREAL);
 PROCEDURE Index (VAR x, y: OCT.Item);
 PROCEDURE Field (VAR x: OCT.Item; y: OCT.Object);
 PROCEDURE DeRef (VAR x: OCT.Item);
 PROCEDURE TypTest (VAR x, y: OCT.Item; test: BOOLEAN);
 PROCEDURE In (VAR x, y: OCT.Item);
 PROCEDURE Set0 (VAR x, y: OCT.Item);
 PROCEDURE Set1 (VAR x, y, z: OCT.Item);
 PROCEDURE MOp (op: INTEGER; VAR x: OCT.Item);
 PROCEDURE Op (op: INTEGER; VAR x, y: OCT.Item);
 PROCEDURE StPar1 (VAR x: OCT.Item; fctno: INTEGER);
 PROCEDURE StPar2 (VAR p, x: OCT.Item; fctno: INTEGER);
 PROCEDURE StPar3 (VAR p, x: OCT.Item; fctno: INTEGER);
 PROCEDURE StFct (VAR p: OCT.Item; fctno, parno: INTEGER);
END OCE.

Procedures for processing statements are contained in module OCH. Assignments and procedure calls
are processed by procedures Assign, PrepCall, Call, and Param. Procedures Enter, Result, and Return
generate the code at the beginning and the end of procedure bodies.

If, while, repeat, and loop statements involve branches around the code of their constituents.
Procedures FJ (forward jump), CFJ (conditional forward jump), BJ (backward jump), CBJ
(conditional backward jump), and LFJ (long forward jump) serve to issue such branches. Finally,
CaseIn and CaseOut generate code for case statements. CaseIn emits an indexed branch instruction
using an address table generated by CaseOut.

 285

DEFINITION OCH;
 IMPORT OCT;
 TYPE LabelRange = RECORD low, high, label: INTEGER END ;

 PROCEDURE Trap (n: INTEGER);
 PROCEDURE CompareParLists (x, y: OCT.Object);
 PROCEDURE Assign (VAR x, y: OCT.Item; param: BOOLEAN);
 PROCEDURE FJ (VAR loc: INTEGER);
 PROCEDURE CFJ (VAR x: OCT.Item; VAR loc: INTEGER);
 PROCEDURE BJ (loc: INTEGER);
 PROCEDURE CBJ (VAR x: OCT.Item; loc: INTEGER);
 PROCEDURE LFJ (VAR loc: INTEGER);
 PROCEDURE PrepCall (VAR x: OCT.Item; VAR fpar: OCT.Object);
 PROCEDURE Param (VAR ap: OCT.Item; f: OCT.Object);
 PROCEDURE Call (VAR x: OCT.Item);
 PROCEDURE Enter (mode: SHORTINT; pno: LONGINT; VAR L: INTEGER);
 PROCEDURE CopyDynArray (adr: LONGINT; typ: OCT.Struct);
 PROCEDURE Result (VAR x: OCT.Item; typ: OCT.Struct);
 PROCEDURE Return (mode: INTEGER; psize: LONGINT);
 PROCEDURE CaseIn (VAR x: OCT.Item; VAR L0, L1: INTEGER);
 PROCEDURE CaseOut (L0, L1, L2, L3, n: INTEGER; VAR tab: ARRAY OF LabelRange);
END OCH.

 286

12. 4. The Parser
The main module, Compiler, constitutes the parser. Its single command Compile - at the end of the
program listing - identifies the source text according to the Oberon command conventions. It then calls
procedure CompilationUnit with the identified source text as parameter. The command forms are:

Compiler.Compile * The source text is contained in the marked viewer.
Compiler.Compile ^ The most recent selection identifies the name of the source file.
Compiler.Compile @ The most recent selection identifies the beginning of the source text.
Compiler.Compile f0 f1 ... ~ f0, f1, ... are the names of source files.

File names and the characters * ^ and @ may be followed by an option specification /s, /x, /t. Option s
enables the compiler to overwrite an existing symbol file, thereby invalidating clients. Option x
suppresses index checks, and option t suppresses type guards.

The parser is designed according to the proven method of top-down, recursive descent parsing with a
look-ahead of a single symbol. The last symbol read is represented by the global variable sym.
Syntactic entities are mirrored by procedures of the same name. Their goal is to recognize the specified
construct in the source text. The start symbol and corresponding procedure is CompilationUnit. The
principal parser procedures are shown in Fig. 12.6., which also exhibits their calling hierarchy. Loops
in the diagram indicate recursion in the syntactic definition. (Procedure qualident is omitted; it is called
from many other procedures).

The rule of parsing strictly based on a single-symbol look-ahead and without reference to context is
violated in three places. The prominent violation occurs in statements. If the first symbol of a statement
is an identifier, the decision of whether an assignment or a procedure call is to be recognized is based
on contextual information, namely the mode of the object denoted by the identifier. The second
violation occurs in qualident; if the identifier x preceding the period denotes a module, it is recognized
together with the subsequent identifier as a qualified identifier. Otherwise x supposedly denotes a
record variable. The third violation is made in procedure selector; if an identifier is followed by a left
parenthesis, the decision of whether a procedure call or a type guard is to be recognized is again made
on the basis of contextual information, namely the mode of the identified object.

A fairly large part of the program is devoted to the discovery of errors. Not only should they be
properly diagnosed. A much more difficult requirement is that the parsing process should continue on
the basis of a good guess about the structure that the text should most likely have. The parsing process
must continue with some assumption and possibly after skipping a short piece of the source text.
Hence, this aspect of the parser is mostly based on heuristics. Incorrect assumptions about the nature of
a syntactic error lead to secondary error diagnostics. There is no way to avoid them. A reasonably good
result is obtained by the fact that procedure OCS.Mark inhibits an error report, if it lies less than 10
characters ahead of the last one. Also, the language Oberon is designed with the property that most
large constructs begin with a unique symbol, such as IF, WHILE, CASE, RECORD, etc. These
symbols facilitate the recovery of the parsing process in the erroneous text. More problematic are open
constructs which neither begin nor end with key symbols, such as types, factors, and expressions.
Relying on heuristics, the source text is skipped up to the first occurrence of a symbol which may
begin a construct that follows the one being parsed. The employed scheme may not be the best
possible, but it yields quite acceptable results and keeps the amount of program devoted to the
handling of erroneous texts within justifiable bounds.

 287

CompilationUnit

Block

ProcedureDeclaration StatSeq
Type

CaseLabelList

ConstExpressionRecordType ArrayType

ProcType

FormalParameters

FormalType

Expression

SimpleExpression

Term

Factor

ActualParameters

Sets

Element

StPrCall selector

Fig. 12.6. Parser procedure hierarchy

Whereas the parser delegates type consistency checking and code generation to procedures mainly
encapsulated in modules OCE and OCH, the processing of declarations is mostly handled by the
routines which parse. Thereby an unjustifiably large number of very short procedures is avoided.
However, the strict target-computer independence of the parser is lost. Information about variable
allocation strategy including alignment, and about the sizes of basic types is used in the parser module.
Whereas the former violation is harmless, because the allocation strategy is hardly controversial, the
latter case constitutes a genuine target-dependence embodied in a number of explicitly declared
constants. Mostly these constants are contained in the respective type definitions, represented by
records of type Struct initialized by OCT. The following procedures allocate objects and generate
elements of the symbol table:

Block Object(Con), Object(Typ), Object(Var)
ProcedureDeclaration Object(xProc)
FormalParameters Object(Var), Object(Ind)
OCT.Import Object(Mod)
RecordType Object(Fld), Struct(Record)
ArrayType Struct(Array)
ProcType Struct(ProcTyp)
Type Struct(Pointer)
FormalType Struct(DynArr)

The language Oberon proper specifies only one kind of procedure. This compiler provides some
variants, partly for reasons provided by the computer's instruction set. The compiler requests a
specifier in the form of a single character following the symbol PROCEDURE for these variants,
similar to the arrow (^) in the case of forward declarations. The variants are denoted by different
modes in their descriptors:

 288

1. Procedures which are to be assigned to variables must be marked with an asterisk (unless they are
exported). This causes the compiler to treat them like external procedures (RXP at the end), such that
they can be called uniformly with a CXPD instruction. Here mode = XProc.

2. The specifier "-" indicates that the procedure is called by an SVC instruction. (Note that supervisor
calls are exclusively handled by the Kernel. Hence, the Oberon text declares a procedure heading
only, followed by an empty body.) Here mode = CProc.

3. The specifier "+" indicates that the parameterless procedure is to be used as an interrupt handler. Its
last instruction is RETT. Here mode = IProc.

An inherently nasty subject is the treatment of forward references in a single-pass compiler. In Oberon,
there are two such cases:

1. Forward declarations of procedures. They are explicitly specified by ^ following the symbol
PROCEDURE. The compiler processes the heading in the normal way and as an external procedure,
assuming its body to be missing. When later in the text the full declaration is encountered, it must be
properly associated with the already existing entry in the symbol table. Therefore, for every
procedure declaration the table is first searched. If the given identifier is found and denotes a
procedure (with address 0), the association is established and the parameter lists are compared by
procedure OCH.CompareParameters. Otherwise a multiple definition of the same identifier is
present.

2. Forward declarations of pointer types present a more difficult case, because there exists no explicit
indication that a forward reference is present and that no undefined identifier should be diagnosed. If
in a pointer declaration the base type (to which the pointer is bound) is not found in the symbol table,
a forward reference is therefore assumed automatically. Entries for both the pointer type and its base
type are generated (see procedure Type). The premature entry of type Object containing the name of
the base type and with mode = Undef is connected with the pointer type through its link field. When
later in the text a declaration of a record or an array type is encountered with the same identifier, the
forward entry is recognized and the proper link is established (see procedure Block).

For both cases, the compiler checks for undefined forward references when the current declaration
scope is closed. For procedures this occurs at the end of compilation (procedure OCC.OutCode),
because only global procedures can be declared forward. For pointer types the check is performed at
the end of the declaration sequence; procedure Block invokes CheckUndefPointerTypes.

A with statement

WITH x: T1 DO StatSeq END

states that within the statement sequence x is to be considered to be of type T1, which is presumably
some extension of the type T0 of which x is declared. Compilation of the with statement results in a
regional type guard which verifies this assertion, i.e. whether x indeed refers to an object of type T1.
The with statement represents the singular case where a symbol table entry - the type of x - is modified
during compilation. When the end of the with statement is reached, the change must be reverted.

MODULE Compiler; (*NW 7.6.87 / 16.3.91*)
 IMPORT Texts, Files, TextFrames, Viewers, Oberon, OCS, OCT, OCC, OCE, OCH;

 CONST NofCases = 128; MaxEntry = 64; ModNameLen = 20;
 RecDescSize = 8; AdrSize = 4; ProcSize = 4; PtrSize = 4;
 XParOrg = 12; LParOrg = 8; LDataSize = 2000H;

 (*symbol values*)
 times = 1; slash = 2; div = 3; mod = 4;
 and = 5; plus = 6; minus = 7; or = 8; eql = 9;
 neq = 10; lss = 11; leq = 12; gtr = 13; geq = 14;
 in = 15; is = 16; arrow = 17; period = 18; comma = 19;
 colon = 20; upto = 21; rparen = 22; rbrak = 23; rbrace = 24;
 of = 25; then = 26; do = 27; to = 28; lparen = 29;
 lbrak = 30; lbrace = 31; not = 32; becomes = 33; number = 34;

 289

 nil = 35; string = 36; ident = 37; semicolon = 38; bar = 39;
 end = 40; else = 41; elsif = 42; until = 43; if = 44;
 case = 45; while = 46; repeat = 47; loop = 48; with = 49;
 exit = 50; return = 51; array = 52; record = 53; pointer = 54;
 begin = 55; const = 56; type = 57; var = 58; procedure = 59;
 import = 60; module = 61;

 (*object and item modes*)
 Var = 1; Ind = 3; Con = 8; Fld = 12; Typ = 13;
 LProc = 14; XProc = 15; SProc = 16; CProc = 17; IProc = 18; Mod = 19;

 (*structure forms*)
 Undef = 0; Pointer = 13; ProcTyp = 14; Array = 15; DynArr = 16; Record = 17;
 intSet = {4 .. 6}; labeltyps = {3 .. 6};

 VAR W: Texts.Writer;
 sym, entno: INTEGER;
 newSF: BOOLEAN;
 LoopLevel, ExitNo: INTEGER;
 LoopExit: ARRAY 16 OF INTEGER;

 PROCEDURE^ Type(VAR typ: OCT.Struct);
 PROCEDURE^ FormalType(VAR typ: OCT.Struct);
 PROCEDURE^ Expression(VAR x: OCT.Item);
 PROCEDURE^ Block(VAR dsize: LONGINT);

 PROCEDURE CheckSym(s: INTEGER);
 BEGIN
 IF sym = s THEN OCS.Get(sym) ELSE OCS.Mark(s) END
 END CheckSym;

 PROCEDURE qualident(VAR x: OCT.Item);
 VAR mnolev: INTEGER; obj: OCT.Object;
 BEGIN (*sym = ident*)
 OCT.Find(obj, mnolev); OCS.Get(sym);
 IF (sym = period) & (obj # NIL) & (obj.mode = Mod) THEN
 OCS.Get(sym); mnolev := SHORT(-obj.a0);
 IF sym = ident THEN
 OCT.FindImport(obj, obj); OCS.Get(sym)
 ELSE OCS.Mark(10); obj := NIL
 END
 END ;
 x.lev := mnolev; x.obj := obj;
 IF obj # NIL THEN
 x.mode := obj.mode; x.typ := obj.typ; x.a0 := obj.a0; x.a1 := obj.a1
 ELSE OCS.Mark(0); x.mode := Var;
 x.typ := OCT.undftyp; x.a0 := 0; x.obj := NIL
 END
 END qualident;

 PROCEDURE ConstExpression(VAR x: OCT.Item);
 BEGIN Expression(x);
 IF x.mode # Con THEN
 OCS.Mark(50); x.mode := Con; x.typ := OCT.inttyp; x.a0 := 1
 END
 END ConstExpression;

 PROCEDURE NewStr(form: INTEGER): OCT.Struct;
 VAR typ: OCT.Struct;
 BEGIN NEW(typ);

 290

 typ.form := form; typ.mno := 0; typ.size := 4; typ.ref := 0;
 typ.BaseTyp := OCT.undftyp; typ.strobj := NIL; RETURN typ
 END NewStr;

 PROCEDURE CheckMark(VAR mk: BOOLEAN);
 BEGIN OCS.Get(sym);
 IF sym = times THEN
 IF OCC.level = 0 THEN mk := TRUE ELSE mk := FALSE; OCS.Mark(47) END ;
 OCS.Get(sym)
 ELSE mk := FALSE
 END
 END CheckMark;

 PROCEDURE CheckUndefPointerTypes;
 VAR obj: OCT.Object;
 BEGIN obj := OCT.topScope.next;
 WHILE obj # NIL DO
 IF obj.mode = Undef THEN OCS.Mark(48) END ;
 obj := obj.next
 END
 END CheckUndefPointerTypes;

 PROCEDURE RecordType(VAR typ: OCT.Struct);
 VAR adr, size: LONGINT;
 fld, fld0, fld1: OCT.Object;
 ftyp, btyp: OCT.Struct;
 base: OCT.Item;
 BEGIN adr := 0; typ := NewStr(Record); typ.BaseTyp := NIL; typ.n := 0;
 IF sym = lparen THEN
 OCS.Get(sym); (*record extension*)
 IF sym = ident THEN
 qualident(base);
 IF (base.mode = Typ) & (base.typ.form = Record) THEN
 typ.BaseTyp := base.typ; typ.n := base.typ.n + 1; adr := base.typ.size
 ELSE OCS.Mark(52)
 END
 ELSE OCS.Mark(10)
 END ;
 CheckSym(rparen)
 END ;
 OCT.OpenScope(0); fld := NIL; fld1 := OCT.topScope;
 LOOP
 IF sym = ident THEN
 LOOP
 IF sym = ident THEN
 IF typ.BaseTyp # NIL THEN
 OCT.FindField(typ.BaseTyp, fld0);
 IF fld0 # NIL THEN OCS.Mark(1) END
 END ;
 OCT.Insert(OCS.name, fld); CheckMark(fld.marked); fld.mode := Fld
 ELSE OCS.Mark(10)
 END ;
 IF sym = comma THEN OCS.Get(sym)
 ELSIF sym = ident THEN OCS.Mark(19)
 ELSE EXIT
 END
 END ;

 291

 CheckSym(colon); Type(ftyp); size := ftyp.size; btyp := ftyp;
 WHILE btyp.form = Array DO btyp := btyp.BaseTyp END ;
 IF btyp.size >= 4 THEN INC(adr, (-adr) MOD 4)
 ELSIF btyp.size = 2 THEN INC(adr, adr MOD 2)
 END ;
 WHILE fld1.next # NIL DO
 fld1 := fld1.next; fld1.typ := ftyp; fld1.a0 := adr; INC(adr, size)
 END
 END ;
 IF sym = semicolon THEN OCS.Get(sym)
 ELSIF sym = ident THEN OCS.Mark(38)
 ELSE EXIT
 END
 END ;
 typ.size := (-adr) MOD 4 + adr; typ.link := OCT.topScope.next;
 CheckUndefPointerTypes; OCT.CloseScope
 END RecordType;

 PROCEDURE ArrayType(VAR typ: OCT.Struct);
 VAR x: OCT.Item; f, n: INTEGER;
 BEGIN typ := NewStr(Array); ConstExpression(x); f := x.typ.form;
 IF f IN intSet THEN
 IF (x.a0 > 0) & (x.a0 <= MAX(INTEGER)) THEN n := SHORT(x.a0)
 ELSE n := 1; OCS.Mark(63)
 END
 ELSE OCS.Mark(51); n := 1
 END ;
 typ.n := n; OCC.AllocBounds(0, n-1, typ.adr);
 IF sym = of THEN
 OCS.Get(sym); Type(typ.BaseTyp)
 ELSIF sym = comma THEN
 OCS.Get(sym); ArrayType(typ.BaseTyp)
 ELSE OCS.Mark(34)
 END ;
 typ.size := n * typ.BaseTyp.size
 END ArrayType;

 PROCEDURE FormalParameters(VAR resTyp: OCT.Struct; VAR psize: LONGINT);
 VAR mode: SHORTINT;
 adr, size: LONGINT; res: OCT.Item;
 par, par1: OCT.Object; typ: OCT.Struct;
 BEGIN par1 := OCT.topScope; adr := 0;
 IF (sym = ident) OR (sym = var) THEN
 LOOP
 IF sym = var THEN OCS.Get(sym); mode := Ind ELSE mode := Var END ;
 LOOP
 IF sym = ident THEN
 OCT.Insert(OCS.name, par); OCS.Get(sym); par.mode := mode
 ELSE OCS.Mark(10)
 END ;
 IF sym = comma THEN OCS.Get(sym)
 ELSIF sym = ident THEN OCS.Mark(19)
 ELSIF sym = var THEN OCS.Mark(19); OCS.Get(sym)
 ELSE EXIT
 END
 END ;
 CheckSym(colon); FormalType(typ);

 292

 IF mode = Ind THEN (*VAR param*)
 IF typ.form = Record THEN size := RecDescSize
 ELSIF typ.form = DynArr THEN size := typ.size
 ELSE size := AdrSize
 END
 ELSE size := (-typ.size) MOD 4 + typ.size
 END ;
 WHILE par1.next # NIL DO
 par1 := par1.next; par1.typ := typ; DEC(adr, size); par1.a0 := adr
 END ;
 IF sym = semicolon THEN OCS.Get(sym)
 ELSIF sym = ident THEN OCS.Mark(38)
 ELSE EXIT
 END
 END
 END ;
 psize := psize - adr; par := OCT.topScope.next;
 WHILE par # NIL DO INC(par.a0, psize); par := par.next END ;
 CheckSym(rparen);
 IF sym = colon THEN
 OCS.Get(sym); resTyp := OCT.undftyp;
 IF sym = ident THEN qualident(res);
 IF res.mode = Typ THEN
 IF res.typ.form <= ProcTyp THEN resTyp := res.typ ELSE OCS.Mark(54) END
 ELSE OCS.Mark(52)
 END
 ELSE OCS.Mark(10)
 END
 ELSE resTyp := OCT.notyp
 END
 END FormalParameters;

 PROCEDURE ProcType(VAR typ: OCT.Struct);
 VAR psize: LONGINT;
 BEGIN typ := NewStr(ProcTyp); typ.size := ProcSize;
 IF sym = lparen THEN
 OCS.Get(sym); OCT.OpenScope(OCC.level); psize := XParOrg;
 FormalParameters(typ.BaseTyp, psize); typ.link := OCT.topScope.next;
 OCT.CloseScope
 ELSE typ.BaseTyp := OCT.notyp; typ.link := NIL
 END
 END ProcType;

 PROCEDURE HasPtr(typ: OCT.Struct): BOOLEAN;
 VAR fld: OCT.Object;
 BEGIN
 IF typ.form = Pointer THEN RETURN TRUE
 ELSIF typ.form = Array THEN RETURN HasPtr(typ.BaseTyp)
 ELSIF typ.form = Record THEN
 IF (typ.BaseTyp # NIL) & HasPtr(typ.BaseTyp) THEN RETURN TRUE END ;
 fld := typ.link;
 WHILE fld # NIL DO
 IF (fld.name = "") OR HasPtr(fld.typ) THEN RETURN TRUE END ;
 fld := fld.next
 END
 END ;

 293

 RETURN FALSE
 END HasPtr;

 PROCEDURE SetPtrBase(ptyp, btyp: OCT.Struct);
 BEGIN
 IF (btyp.form = Record) OR (btyp.form = Array) & ~HasPtr(btyp.BaseTyp) THEN
 ptyp.BaseTyp := btyp
 ELSE ptyp.BaseTyp := OCT.undftyp; OCS.Mark(57)
 END
 END SetPtrBase;

 PROCEDURE Type(VAR typ: OCT.Struct);
 VAR lev: INTEGER; obj: OCT.Object; x: OCT.Item;
 BEGIN typ := OCT.undftyp;
 IF sym < lparen THEN OCS.Mark(12);
 REPEAT OCS.Get(sym) UNTIL sym >= lparen
 END ;
 IF sym = ident THEN qualident(x);
 IF x.mode = Typ THEN typ := x.typ;
 IF typ = OCT.notyp THEN OCS.Mark(58) END
 ELSE OCS.Mark(52)
 END
 ELSIF sym = array THEN
 OCS.Get(sym); ArrayType(typ)
 ELSIF sym = record THEN
 OCS.Get(sym); RecordType(typ); OCC.AllocTypDesc(typ); CheckSym(end)
 ELSIF sym = pointer THEN
 OCS.Get(sym); typ := NewStr(Pointer); typ.link := NIL; typ.size := PtrSize;
 CheckSym(to);
 IF sym = ident THEN OCT.Find(obj, lev);
 IF obj = NIL THEN (*forward ref*)
 OCT.Insert(OCS.name, obj); typ.BaseTyp := OCT.undftyp;
 obj.mode := Undef; obj.typ := typ; OCS.Get(sym)
 ELSE qualident(x);
 IF x.mode = Typ THEN SetPtrBase(typ, x.typ)
 ELSE typ.BaseTyp := OCT.undftyp; OCS.Mark(52)
 END
 END
 ELSE Type(x.typ); SetPtrBase(typ, x.typ)
 END
 ELSIF sym = procedure THEN
 OCS.Get(sym); ProcType(typ)
 ELSE OCS.Mark(12)
 END ;
 IF (sym < semicolon) OR (else < sym) THEN OCS.Mark(15);
 WHILE (sym < ident) OR (else < sym) & (sym < begin) DO
 OCS.Get(sym)
 END
 END
 END Type;

 PROCEDURE FormalType(VAR typ: OCT.Struct);
 VAR x: OCT.Item; typ0: OCT.Struct; a, s: LONGINT;
 BEGIN typ := OCT.undftyp; a := 0;
 WHILE sym = array DO
 OCS.Get(sym); CheckSym(of); INC(a, 4)
 END ;

 294

 IF sym = ident THEN qualident(x);
 IF x.mode = Typ THEN typ := x.typ;
 IF typ = OCT.notyp THEN OCS.Mark(58) END
 ELSE OCS.Mark(52)
 END
 ELSIF sym = procedure THEN OCS.Get(sym); ProcType(typ)
 ELSE OCS.Mark(10)
 END ;
 s := a + 8;
 WHILE a > 0 DO
 typ0 := NewStr(DynArr); typ0.BaseTyp := typ;
 typ0.size := s-a; typ0.adr := typ0.size-4; typ0.mno := 0; typ := typ0; DEC(a, 4)
 END
 END FormalType;

 PROCEDURE selector(VAR x: OCT.Item);
 VAR fld: OCT.Object; y: OCT.Item;
 BEGIN
 LOOP
 IF sym = lbrak THEN OCS.Get(sym);
 LOOP
 IF (x.typ # NIL) & (x.typ.form = Pointer) THEN OCE.DeRef(x) END ;
 Expression(y); OCE.Index(x, y);
 IF sym = comma THEN OCS.Get(sym) ELSE EXIT END
 END ;
 CheckSym(rbrak)
 ELSIF sym = period THEN OCS.Get(sym);
 IF sym = ident THEN
 IF x.typ # NIL THEN
 IF x.typ.form = Pointer THEN OCE.DeRef(x) END ;
 IF x.typ.form = Record THEN
 OCT.FindField(x.typ, fld); OCE.Field(x, fld)
 ELSE OCS.Mark(53)
 END
 ELSE OCS.Mark(52)
 END ;
 OCS.Get(sym)
 ELSE OCS.Mark(10)
 END
 ELSIF sym = arrow THEN
 OCS.Get(sym); OCE.DeRef(x)
 ELSIF (sym = lparen) & (x.mode < Typ) & (x.typ.form # ProcTyp) THEN
 OCS.Get(sym);
 IF sym = ident THEN
 qualident(y);
 IF y.mode = Typ THEN OCE.TypTest(x, y, FALSE)
 ELSE OCS.Mark(52)
 END
 ELSE OCS.Mark(10)
 END ;
 CheckSym(rparen)
 ELSE EXIT
 END
 END
 END selector;

 295

 PROCEDURE IsParam(obj: OCT.Object): BOOLEAN;
 BEGIN RETURN (obj # NIL) & (obj.mode <= Ind) & (obj.a0 > 0)
 END IsParam;

 PROCEDURE ActualParameters(VAR x: OCT.Item; fpar: OCT.Object);
 VAR apar: OCT.Item; R: SET;
 BEGIN
 IF sym # rparen THEN
 R := OCC.RegSet;
 LOOP Expression(apar);
 IF IsParam(fpar) THEN
 OCH.Param(apar, fpar); fpar := fpar.next
 ELSE OCS.Mark(64)
 END ;
 OCC.FreeRegs(R);
 IF sym = comma THEN OCS.Get(sym)
 ELSIF (lparen <= sym) & (sym <= ident) THEN OCS.Mark(19)
 ELSE EXIT
 END
 END
 END ;
 IF IsParam(fpar) THEN OCS.Mark(65) END
 END ActualParameters;
 PROCEDURE StandProcCall(VAR x: OCT.Item);
 VAR y: OCT.Item; m, n: INTEGER;
 BEGIN m := SHORT(x.a0); n := 0;
 IF sym = lparen THEN OCS.Get(sym);
 IF sym # rparen THEN
 LOOP
 IF n = 0 THEN Expression(x); OCE.StPar1(x, m); n := 1
 ELSIF n = 1 THEN Expression(y); OCE.StPar2(x, y, m); n := 2
 ELSIF n = 2 THEN Expression(y); OCE.StPar3(x, y, m); n := 3
 ELSE OCS.Mark(64); Expression(y)
 END ;
 IF sym = comma THEN OCS.Get(sym)
 ELSIF (lparen <= sym) & (sym <= ident) THEN OCS.Mark(19)
 ELSE EXIT
 END
 END ;
 CheckSym(rparen)
 ELSE OCS.Get(sym)
 END ;
 OCE.StFct(x, m, n)
 ELSE OCS.Mark(29)
 END
 END StandProcCall;
 PROCEDURE Element(VAR x: OCT.Item);
 VAR e1, e2: OCT.Item;
 BEGIN Expression(e1);
 IF sym = upto THEN
 OCS.Get(sym); Expression(e2); OCE.Set1(x, e1, e2)
 ELSE OCE.Set0(x, e1)
 END ;
 END Element;

 PROCEDURE Sets(VAR x: OCT.Item);
 VAR y: OCT.Item;

 296

 BEGIN x.typ := OCT.settyp; y.typ := OCT.settyp;
 IF sym # rbrace THEN
 Element(x);
 LOOP
 IF sym = comma THEN OCS.Get(sym)
 ELSIF (lparen <= sym) & (sym <= ident) THEN OCS.Mark(19)
 ELSE EXIT
 END ;
 Element(y); OCE.Op(plus, x, y) (*x := x+y*)
 END
 ELSE x.mode := Con; x.a0 := 0
 END ;
 CheckSym(rbrace)
 END Sets;

 PROCEDURE Factor(VAR x: OCT.Item);
 VAR fpar: OCT.Object; gR, fR: SET;
 BEGIN
 IF sym < lparen THEN OCS.Mark(13);
 REPEAT OCS.Get(sym) UNTIL sym >= lparen
 END ;
 IF sym = ident THEN
 qualident(x); selector(x);
 IF x.mode = SProc THEN StandProcCall(x)
 ELSIF sym = lparen THEN
 OCS.Get(sym); OCH.PrepCall(x, fpar);
 OCC.SaveRegisters(gR, fR, x); ActualParameters(x, fpar);
 OCH.Call(x); OCC.RestoreRegisters(gR, fR, x);
 CheckSym(rparen)
 END
 ELSIF sym = number THEN
 OCS.Get(sym); x.mode := Con;
 CASE OCS.numtyp OF
 1: x.typ := OCT.chartyp; x.a0 := OCS.intval
 | 2: x.a0 := OCS.intval; OCE.SetIntType(x)
 | 3: x.typ := OCT.realtyp; OCE.AssReal(x, OCS.realval)
 | 4: x.typ := OCT.lrltyp; OCE.AssLReal(x, OCS.lrlval)
 END
 ELSIF sym = string THEN
 x.typ := OCT.stringtyp; x.mode := Con;
 OCC.AllocString(OCS.name, x); OCS.Get(sym)
 ELSIF sym = nil THEN
 OCS.Get(sym); x.typ := OCT.niltyp; x.mode := Con; x.a0 := 0
 ELSIF sym = lparen THEN
 OCS.Get(sym); Expression(x); CheckSym(rparen)
 ELSIF sym = lbrak THEN
 OCS.Get(sym); OCS.Mark(29); Expression(x); CheckSym(rparen)
 ELSIF sym = lbrace THEN OCS.Get(sym); Sets(x)
 ELSIF sym = not THEN
 OCS.Get(sym); Factor(x); OCE.MOp(not, x)
 ELSE OCS.Mark(13); OCS.Get(sym); x.typ := OCT.undftyp; x.mode := Var; x.a0 := 0
 END
 END Factor;
 PROCEDURE Term(VAR x: OCT.Item);
 VAR y: OCT.Item; mulop: INTEGER;
 BEGIN Factor(x);

 297

 WHILE (times <= sym) & (sym <= and) DO
 mulop := sym; OCS.Get(sym);
 IF mulop = and THEN OCE.MOp(and, x) END ;
 Factor(y); OCE.Op(mulop, x, y)
 END
 END Term;

 PROCEDURE SimpleExpression(VAR x: OCT.Item);
 VAR y: OCT.Item; addop: INTEGER;
 BEGIN
 IF sym = minus THEN OCS.Get(sym); Term(x); OCE.MOp(minus, x)
 ELSIF sym = plus THEN OCS.Get(sym); Term(x); OCE.MOp(plus, x)
 ELSE Term(x)
 END ;
 WHILE (plus <= sym) & (sym <= or) DO
 addop := sym; OCS.Get(sym);
 IF addop = or THEN OCE.MOp(or, x) END ;
 Term(y); OCE.Op(addop, x, y)
 END
 END SimpleExpression;

 PROCEDURE Expression(VAR x: OCT.Item);
 VAR y: OCT.Item; relation: INTEGER;
 BEGIN SimpleExpression(x);
 IF (eql <= sym) & (sym <= geq) THEN
 relation := sym; OCS.Get(sym);
 IF x.typ = OCT.booltyp THEN OCE.MOp(relation, x) END ;
 SimpleExpression(y); OCE.Op(relation, x, y)
 ELSIF sym = in THEN
 OCS.Get(sym); SimpleExpression(y); OCE.In(x, y)
 ELSIF sym = is THEN
 IF x.mode >= Typ THEN OCS.Mark(112) END ;
 OCS.Get(sym);
 IF sym = ident THEN
 qualident(y);
 IF y.mode = Typ THEN OCE.TypTest(x, y, TRUE) ELSE OCS.Mark(52) END
 ELSE OCS.Mark(10)
 END
 END
 END Expression;
 PROCEDURE ProcedureDeclaration;
 VAR proc, proc1, par: OCT.Object;
 L1: INTEGER;
 mode: SHORTINT; body: BOOLEAN;
 psize, dsize: LONGINT;
 BEGIN dsize := 0; proc := NIL; body := TRUE;
 IF (sym # ident) & (OCC.level = 0) THEN
 IF sym = times THEN mode := XProc
 ELSIF sym = arrow THEN (*forward*) mode := XProc; body := FALSE
 ELSIF sym = plus THEN mode := IProc
 ELSIF sym = minus THEN mode := CProc; body := FALSE
 ELSE mode := LProc; OCS.Mark(10)
 END ;
 OCS.Get(sym)
 ELSE mode := LProc
 END ;
 IF sym = ident THEN

 298

 IF OCC.level = 0 THEN OCT.Find(proc1, L1) ELSE proc1 := NIL END;
 IF (proc1 # NIL) & (proc1.mode = XProc)&(OCC.Entry(SHORT(proc1.a0)) = 0) THEN
 (*there exists a corresponding forward declaration*)
 IF mode = LProc THEN mode := XProc END ;
 NEW(proc); CheckMark(proc.marked)
 ELSE
 IF proc1 # NIL THEN OCS.Mark(1); proc1 := NIL END ;
 OCT.Insert(OCS.name, proc); CheckMark(proc.marked);
 IF proc.marked & (mode = LProc) THEN mode := XProc END ;
 IF mode = LProc THEN proc.a0 := OCC.pc
 ELSIF mode # CProc THEN
 IF entno < MaxEntry THEN proc.a0 := entno; INC(entno)
 ELSE proc.a0 := 1; OCS.Mark(226)
 END
 END
 END ;
 proc.mode := mode; proc.typ := OCT.notyp; proc.dsc := NIL; proc.a1 := 0;
 INC(OCC.level); OCT.OpenScope(OCC.level);
 IF (mode = LProc) & (OCC.level = 1) THEN psize := LParOrg
 ELSE psize := XParOrg
 END ;
 IF sym = lparen THEN
 OCS.Get(sym); FormalParameters(proc.typ, psize); proc.dsc := OCT.topScope.next
 END ;
 IF proc1 # NIL THEN (*forward*)
 OCH.CompareParLists(proc.dsc, proc1.dsc);
 IF proc.typ # proc1.typ THEN OCS.Mark(118) END ;
 proc := proc1; proc.dsc := OCT.topScope.next
 END ;
 IF mode = CProc THEN
 IF sym = number THEN proc.a0 := OCS.intval; OCS.Get(sym)
 ELSE OCS.Mark(17)
 END
 END ;
 IF body THEN
 CheckSym(semicolon); OCT.topScope.typ := proc.typ;
 OCT.topScope.a1 := mode*10000H + psize; (*for RETURN statements*)
 OCH.Enter(mode, proc.a0, L1); par := proc.dsc;
 WHILE par # NIL DO
 (*code for dynamic array value parameters*)
 IF (par.typ.form = DynArr) & (par.mode = Var) THEN
 OCH.CopyDynArray(par.a0, par.typ)
 END ;
 par := par.next
 END ;
 Block(dsize); proc.dsc := OCT.topScope.next; (*update*)
 IF proc.typ = OCT.notyp THEN OCH.Return(proc.mode, psize)
 ELSE OCH.Trap(17)
 END ;
 IF dsize >= LDataSize THEN OCS.Mark(209); dsize := 0 END ;
 OCC.FixupWith(L1, dsize); proc.a2 := OCC.pc;
 IF sym = ident THEN
 IF OCS.name # proc.name THEN OCS.Mark(4) END ;
 OCS.Get(sym)
 ELSE OCS.Mark(10)
 END

 299

 END ;
 DEC(OCC.level); OCT.CloseScope
 END
 END ProcedureDeclaration;

 PROCEDURE CaseLabelList(LabelForm: INTEGER;
 VAR n: INTEGER; VAR tab: ARRAY OF OCH.LabelRange);
 VAR x, y: OCT.Item; i, f: INTEGER;
 BEGIN
 IF ~(LabelForm IN labeltyps) THEN OCS.Mark(61) END ;
 LOOP ConstExpression(x); f := x.typ.form;
 IF f IN intSet THEN
 IF LabelForm < f THEN OCS.Mark(60) END
 ELSIF f # LabelForm THEN OCS.Mark(60)
 END ;
 IF sym = upto THEN
 OCS.Get(sym); ConstExpression(y);
 IF (y.typ.form # f) & ~((f IN intSet) & (y.typ.form IN intSet)) THEN OCS.Mark(60)
 END ;
 IF y.a0 < x.a0 THEN OCS.Mark(63); y.a0 := x.a0 END
 ELSE y := x
 END ;
 (*enter label range into ordered table*) i := n;
 IF i < NofCases THEN
 LOOP
 IF i = 0 THEN EXIT END ;
 IF tab[i-1].low <= y.a0 THEN
 IF tab[i-1].high >= x.a0 THEN OCS.Mark(62) END ;
 EXIT
 END ;
 tab[i] := tab[i-1]; DEC(i)
 END ;
 tab[i].low := SHORT(x.a0); tab[i].high := SHORT(y.a0);
 tab[i].label := OCC.pc; INC(n)
 ELSE OCS.Mark(213)
 END ;
 IF sym = comma THEN OCS.Get(sym)
 ELSIF (sym = number) OR (sym = ident) THEN OCS.Mark(19)
 ELSE EXIT
 END
 END
 END CaseLabelList;

PROCEDURE StatSeq;
 VAR fpar: OCT.Object; xtyp: OCT.Struct;
 x, y: OCT.Item; L0, L1, ExitIndex: INTEGER;

 PROCEDURE CasePart;
 VAR x: OCT.Item; n, L0, L1, L2, L3: INTEGER;
 tab: ARRAY NofCases OF OCH.LabelRange;
 BEGIN n := 0; L3 := 0;
 Expression(x); OCH.CaseIn(x, L0, L1); OCC.FreeRegs({});
 CheckSym(of);
 LOOP
 IF sym < bar THEN
 CaseLabelList(x.typ.form, n, tab);
 CheckSym(colon); StatSeq; OCH.FJ(L3)

 300

 END ;
 IF sym = bar THEN OCS.Get(sym) ELSE EXIT END
 END ;
 L2 := OCC.pc;
 IF sym = else THEN
 OCS.Get(sym); StatSeq; OCH.FJ(L3)
 ELSE OCH.Trap(16)
 END ;
 OCH.CaseOut(L0, L1, L2, L3, n, tab)
 END CasePart;

 BEGIN
 LOOP
 IF sym < ident THEN OCS.Mark(14);
 REPEAT OCS.Get(sym) UNTIL sym >= ident
 END ;
 IF sym = ident THEN
 qualident(x); selector(x);
 IF sym = becomes THEN
 OCS.Get(sym); Expression(y); OCH.Assign(x, y, FALSE)
 ELSIF sym = eql THEN
 OCS.Mark(33); OCS.Get(sym); Expression(y); OCH.Assign(x, y, FALSE)
 ELSIF x.mode = SProc THEN
 StandProcCall(x);
 IF x.typ # OCT.notyp THEN OCS.Mark(55) END
 ELSE OCH.PrepCall(x, fpar);
 IF sym = lparen THEN
 OCS.Get(sym); ActualParameters(x, fpar); CheckSym(rparen)
 ELSIF IsParam(fpar) THEN OCS.Mark(65)
 END ;
 OCH.Call(x);
 IF x.typ # OCT.notyp THEN OCS.Mark(55) END
 END
 ELSIF sym = if THEN
 OCS.Get(sym); Expression(x); OCH.CFJ(x, L0); OCC.FreeRegs({});
 CheckSym(then); StatSeq; L1 := 0;
 WHILE sym = elsif DO
 OCS.Get(sym); OCH.FJ(L1); OCC.FixLink(L0);
 Expression(x); OCH.CFJ(x, L0); OCC.FreeRegs({});
 CheckSym(then); StatSeq
 END ;
 IF sym = else THEN
 OCS.Get(sym); OCH.FJ(L1); OCC.FixLink(L0); StatSeq
 ELSE OCC.FixLink(L0)
 END ;
 OCC.FixLink(L1); CheckSym(end)
 ELSIF sym = case THEN
 OCS.Get(sym); CasePart; CheckSym(end)
 ELSIF sym = while THEN
 OCS.Get(sym); L1 := OCC.pc;
 Expression(x); OCH.CFJ(x, L0); OCC.FreeRegs({});
 CheckSym(do); StatSeq; OCH.BJ(L1); OCC.FixLink(L0);
 CheckSym(end)
 ELSIF sym = repeat THEN
 OCS.Get(sym); L0 := OCC.pc; StatSeq;
 IF sym = until THEN

 301

 OCS.Get(sym); Expression(x); OCH.CBJ(x, L0)
 ELSE OCS.Mark(43)
 END
 ELSIF sym = loop THEN
 OCS.Get(sym); ExitIndex := ExitNo; INC(LoopLevel);
 L0 := OCC.pc; StatSeq; OCH.BJ(L0); DEC(LoopLevel);
 WHILE ExitNo > ExitIndex DO
 DEC(ExitNo); OCC.fixup(LoopExit[ExitNo])
 END ;
 CheckSym(end)
 ELSIF sym = with THEN
 OCS.Get(sym); x.obj := NIL; xtyp := NIL;
 IF sym = ident THEN
 qualident(x); CheckSym(colon);
 IF sym = ident THEN qualident(y);
 IF y.mode = Typ THEN
 IF x.obj # NIL THEN
 xtyp := x.typ; OCE.TypTest(x, y, FALSE); x.obj.typ := x.typ
 ELSE OCS.Mark(130)
 END
 ELSE OCS.Mark(52)
 END
 ELSE OCS.Mark(10)
 END
 ELSE OCS.Mark(10)
 END ;
 CheckSym(do); OCC.FreeRegs({}); StatSeq; CheckSym(end);
 IF xtyp# NIL THEN x.obj.typ := xtyp END
 ELSIF sym = exit THEN
 OCS.Get(sym); OCH.FJ(L0);
 IF LoopLevel = 0 THEN OCS.Mark(45)
 ELSIF ExitNo < 16 THEN LoopExit[ExitNo] := L0; INC(ExitNo)
 ELSE OCS.Mark(214)
 END
 ELSIF sym = return THEN OCS.Get(sym);
 IF OCC.level > 0 THEN
 IF sym < semicolon THEN
 Expression(x); OCH.Result(x, OCT.topScope.typ)
 ELSIF OCT.topScope.typ # OCT.notyp THEN OCS.Mark(124)
 END ;
 OCH.Return(SHORT(OCT.topScope.a1 DIV 10000H), SHORT(OCT.topScope.a1))
 ELSE (*return from module body*)
 IF sym < semicolon THEN Expression(x); OCS.Mark(124) END ;
 OCH.Return(XProc, XParOrg)
 END
 END ;
 OCC.FreeRegs({});
 IF sym = semicolon THEN OCS.Get(sym)
 ELSIF (sym <= ident) OR (if <= sym) & (sym <= return) THEN OCS.Mark(38)
 ELSE EXIT
 END
 END
 END StatSeq;

 PROCEDURE Block(VAR dsize: LONGINT);
 VAR typ, forward: OCT.Struct;

 302

 obj, first: OCT.Object;
 x: OCT.Item;
 L0: INTEGER;
 adr, size: LONGINT;
 mk: BOOLEAN;
 id0: ARRAY 32 OF CHAR;
 BEGIN adr := -dsize; obj := OCT.topScope;
 WHILE obj.next # NIL DO obj := obj.next END ;
 LOOP
 IF sym = const THEN
 OCS.Get(sym);
 WHILE sym = ident DO
 COPY(OCS.name, id0); CheckMark(mk);
 IF sym = eql THEN OCS.Get(sym); ConstExpression(x)
 ELSIF sym = becomes THEN OCS.Mark(9); OCS.Get(sym); ConstExpression(x)
 ELSE OCS.Mark(9)
 END ;
 OCT.Insert(id0, obj); obj.mode := SHORT(x.mode);
 obj.typ := x.typ; obj.a0 := x.a0; obj.a1 := x.a1; obj.marked := mk;
 CheckSym(semicolon)
 END
 END ;
 IF sym = type THEN
 OCS.Get(sym);
 WHILE sym = ident DO
 typ := OCT.undftyp; OCT.Insert(OCS.name, obj); forward := obj.typ;
 obj.mode := Typ; obj.typ := OCT.notyp; CheckMark(obj.marked);
 IF sym = eql THEN OCS.Get(sym); Type(typ)
 ELSIF (sym = becomes) OR (sym = colon) THEN
 OCS.Mark(9); OCS.Get(sym); Type(typ)
 ELSE OCS.Mark(9)
 END ;
 obj.typ := typ;
 IF typ.strobj = NIL THEN typ.strobj := obj END ;
 IF forward # NIL THEN (*fixup*) SetPtrBase(forward, typ) END ;
 CheckSym(semicolon)
 END
 END ;
 IF sym = var THEN
 OCS.Get(sym);
 WHILE sym = ident DO
 OCT.Insert(OCS.name, obj); first := obj; CheckMark(obj.marked); obj.mode := Var;
 LOOP
 IF sym = comma THEN OCS.Get(sym)
 ELSIF sym = ident THEN OCS.Mark(19)
 ELSE EXIT
 END ;
 IF sym = ident THEN
 OCT.Insert(OCS.name, obj); CheckMark(obj.marked); obj.mode := Var
 ELSE OCS.Mark(10)
 END
 END ;
 CheckSym(colon); Type(typ); size := typ.size;
 IF size >= 4 THEN DEC(adr, adr MOD 4)
 ELSIF size = 2 THEN DEC(adr, adr MOD 2)
 END ;

 303

 WHILE first # NIL DO
 first.typ := typ; DEC(adr, size); first.a0 := adr; first := first.next
 END ;
 CheckSym(semicolon)
 END
 END ;
 IF (sym < const) OR (sym > var) THEN EXIT END ;
 END ;
 CheckUndefPointerTypes;
 IF OCC.level = 0 THEN OCH.LFJ(L0) ELSE OCH.FJ(L0) END ;
 WHILE sym = procedure DO
 OCS.Get(sym); ProcedureDeclaration; CheckSym(semicolon)
 END ;
 IF OCC.level = 0 THEN OCC.fixupL(L0); OCC.InitTypDescs
 ELSE OCC.fixupC(L0)
 END ;
 IF sym = begin THEN OCS.Get(sym); StatSeq END ;
 dsize := (adr MOD 4) - adr; CheckSym(end)
 END Block;

PROCEDURE CompilationUnit(source: Texts.Text; pos: LONGINT);
 VAR L0: INTEGER; ch: CHAR;
 time, date, key, dsize: LONGINT;
 modid, impid, FName: ARRAY 32 OF CHAR;

 PROCEDURE MakeFileName(VAR name, FName: ARRAY OF CHAR;
 ext: ARRAY OF CHAR);
 VAR i, j: INTEGER; ch: CHAR;
 BEGIN i := 0;
 LOOP ch := name[i];
 IF ch = 0X THEN EXIT END ;
 FName[i] := ch; INC(i)
 END ;
 j := 0;
 REPEAT ch := ext[j]; FName[i] := ch; INC(i); INC(j)
 UNTIL ch = 0X
 END MakeFileName;

 BEGIN entno := 1; dsize := 0; LoopLevel := 0; ExitNo := 0;
 OCC.Init; OCT.Init; OCS.Init(source, pos); OCS.Get(sym);
 Texts.WriteString(W, " compiling ");
 IF sym = module THEN OCS.Get(sym) ELSE OCS.Mark(16) END ;
 IF sym = ident THEN
 Texts.WriteString(W, OCS.name); Texts.Append(Oberon.Log, W.buf);
 L0 := 0; ch := OCS.name[0];
 WHILE (ch # 0X) & (L0 < ModNameLen-1) DO
 modid[L0] := ch; INC(L0); ch := OCS.name[L0]
 END ;
 modid[L0] := 0X;
 IF ch # 0X THEN OCS.Mark(228) END ;
 OCT.OpenScope(0); OCS.Get(sym);
 CheckSym(semicolon); OCH.Enter(Mod, 0, L0);
 IF sym = import THEN
 OCS.Get(sym);
 LOOP
 IF sym = ident THEN
 COPY(OCS.name, impid); OCS.Get(sym);

 304

 MakeFileName(impid, FName, ".Sym");
 IF sym = becomes THEN OCS.Get(sym);
 IF sym = ident THEN
 MakeFileName(OCS.name, FName, ".Sym"); OCS.Get(sym)
 ELSE OCS.Mark(10)
 END
 END ;
 OCT.Import(impid, modid, FName)
 ELSE OCS.Mark(10)
 END ;
 IF sym = comma THEN OCS.Get(sym)
 ELSIF sym = ident THEN OCS.Mark(19)
 ELSE EXIT
 END
 END ;
 CheckSym(semicolon)
 END ;
 IF ~OCS.scanerr THEN
 OCC.SetLinkTable(OCT.nofGmod+1);
 Block(dsize); OCH.Return(XProc, 12);
 IF sym = ident THEN
 IF OCS.name # modid THEN OCS.Mark(4) END ;
 OCS.Get(sym)
 ELSE OCS.Mark(10)
 END ;
 IF sym # period THEN OCS.Mark(18) END ;
 IF ~OCS.scanerr THEN
 Oberon.GetClock(time, date); key := (date MOD 4000H) * 20000H + time;
 MakeFileName(modid, FName, ".Sym");
 OCT.Export(modid, FName, newSF, key);
 IF newSF THEN Texts.WriteString(W, " new symbol file") END ;
 IF ~OCS.scanerr THEN
 MakeFileName(modid, FName, ".Obj");
 OCC.OutCode(FName, modid, key, entno, dsize);
 Texts.WriteInt(W, OCC.pc, 6); Texts.WriteInt(W, dsize, 6)
 END
 END
 END ;
 OCT.CloseScope
 ELSE OCS.Mark(10)
 END;
 OCC.Close; OCT.Close;
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END CompilationUnit;

 PROCEDURE Compile*;
 VAR beg, end, time: LONGINT;
 T: Texts.Text;
 S: Texts.Scanner;
 v: Viewers.Viewer;

 PROCEDURE Options;
 VAR ch: CHAR;
 BEGIN
 IF S.nextCh = "/" THEN
 LOOP Texts.Read(S, ch);
 IF ch = "x" THEN OCE.inxchk := FALSE

 305

 ELSIF ch = "t" THEN OCC.typchk := FALSE
 ELSIF ch = "s" THEN newSF := TRUE
 ELSE S.nextCh := ch; EXIT
 END
 END
 END
 END Options;

 BEGIN OCE.inxchk := TRUE; OCC.typchk := TRUE; newSF := FALSE;
 Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
 IF S.class = Texts.Char THEN
 IF S.c = "*" THEN
 v := Oberon.MarkedViewer();
 IF (v.dsc # NIL) & (v.dsc.next IS TextFrames.Frame) THEN
 Options; CompilationUnit(v.dsc.next(TextFrames.Frame).text, 0)
 END
 ELSIF S.c = "^" THEN
 Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN
 Texts.OpenScanner(S, T, beg); Texts.Scan(S);
 IF S.class = Texts.Name THEN
 Options; Texts.WriteString(W, S.s); NEW(T); Texts.Open(T, S.s);
 IF T.len # 0 THEN CompilationUnit(T, 0)
 ELSE Texts.WriteString(W, " not found");
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END
 END
 END
 ELSIF S.c = "@" THEN
 Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN Options; CompilationUnit(T, beg) END
 END
 ELSE NEW(T);
 WHILE S.class = Texts.Name DO
 Options; Texts.WriteString(W, S.s); Texts.Open(T, S.s);
 IF T.len # 0 THEN CompilationUnit(T, 0)
 ELSE Texts.WriteString(W, " not found");
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END ;
 Texts.Scan(S)
 END
 END ;
 Oberon.Collect(0)
 END Compile;

BEGIN Texts.OpenWriter(W);
 Texts.WriteString(W, "Compiler NW 1.8.91"); Texts.WriteLn(W);
 Texts.Append(Oberon.Log, W.buf)
END Compiler.

12.5. The Scanner
The scanner embodies the lexicographic definitions of the language, i.e. the definition of abstract
symbols in terms of characters. The scanner's substance is procedure Get, which scans the source text
and, for each call, identifies the next symbol. It is most important that this process be as efficient as
possible. Therefore, use of a case statement is made to discriminate the various classes of characters,
and to recognize letters indicating the presence of an identifier (or reserved word), and digits signalling

 306

the presence of a number. Also, the scanner recognizes comments and skips them. The global variable
ch stands for the last character read.

A sequence of letters and digits may either denote an identifier or a key word. In order to determine
which is the case, a search is made in a table containing all key words for each would-be identifier.
This table is organized as a hash-table for reasons of efficiency. The hash function is the sum of all
characters' ordinal numbers plus the number of them, modulo the table size. At most two comparisons
suffice to detect the presence of a key word. The hash table is initialized when the compiler is loaded.

The presence of a digit signals a number. Procedure Number first scans the subsequent digits (and
letters) and stores them in a buffer. This is necessary, because hexadecimal numbers are denoted by the
postfix letter H (rather than a prefix character). The postfix letter X specifies that the digits denote a
character.

There exists a single case where a look-ahead of a single character does not suffice to identify the next
symbol. When a sequence of digits is followed by a period, this period may either be the decimal point
of a real number, or it may be the first element of a range symbol (..). Fortunately, the problem can be
solved locally as follows: If, after reading digits and a period, a second period is present, the number
symbol is returned, and the look-ahead variable ch is assigned the special value 7FX. A subsequent call
of Get then delivers the range symbol. Otherwise the period after the digit sequence belongs to the
(real) number.

MODULE OCS; (*NW 7.6.87 / 20.12.90*)
 IMPORT Files, Reals, Texts, Oberon;

 (* symbols:
0 1 2 3 4
 0 | null * / DIV MOD
 5 | & + - OR =
 10 | # < <= > >=
 15 | IN IS ^ . ,
 20 | : ..)] }
 25 | OF THEN DO TO (
 30 | [{ ~ := number
 35 | NIL string ident ; |
 40 | END ELSE ELSIF UNTIL IF
 45 | CASE WHILE REPEAT LOOP WITH
 50 | EXIT RETURN ARRAY RECORD POINTER
 55 | BEGIN CONST TYPE VAR PROCEDURE
 60 | IMPORT MODULE eof *)

 CONST KW = 43; (*size of hash table*)
 maxDig = 32;
 maxInt = 7FFFH;
 maxShInt = 7FH;
 maxExp = 38; maxLExp = 308;
 maxStrLen = 128;

 (*name, numtyp, intval, realval, lrlval are implicit results of Get*)
 VAR numtyp* : INTEGER; (* 1 = char, 2 = integer, 3 = real, 4 = longreal*)
 intval* : LONGINT;
 realval*: REAL;
 lrlval* : LONGREAL;
 scanerr*: BOOLEAN;
 name* : ARRAY maxStrLen OF CHAR;
 R: Texts.Reader;
 W: Texts.Writer;
 ch: CHAR; (*current character*)

 307

 lastpos: LONGINT; (*error position in source file*)
 i: INTEGER;
 keyTab : ARRAY KW OF
 RECORD symb, alt: INTEGER; id: ARRAY 12 OF CHAR END;

 PROCEDURE Mark*(n: INTEGER);
 VAR pos: LONGINT;
 BEGIN scanerr := TRUE; pos := Texts.Pos(R);
 IF lastpos + 10 < pos THEN
 Texts.WriteLn(W); Texts.WriteString(W, " pos");
 Texts.WriteInt(W, pos, 6); Texts.WriteString(W, " err");
 Texts.WriteInt(W, n, 4); Texts.Append(Oberon.Log, W.buf); lastpos := pos
 END
 END Mark;

 PROCEDURE String(VAR sym: INTEGER);
 VAR i: INTEGER;
 BEGIN i := 0;
 LOOP Texts.Read(R, ch);
 IF ch = 22X THEN EXIT END ;
 IF ch < " " THEN Mark(3); EXIT END ;
 IF i < maxStrLen-1 THEN name[i] := ch; INC(i) ELSE Mark(212); i := 0 END
 END ;
 Texts.Read(R, ch);
 IF i = 1 THEN sym := 34; numtyp := 1; intval := ORD(name[0])
 ELSE sym := 36; name[i] := 0X (*string*)
 END
 END String;

 PROCEDURE Identifier(VAR sym: INTEGER);
 VAR i, k: INTEGER;
 BEGIN i := 0; k := 0;
 REPEAT
 IF i < 31 THEN name[i] := ch; INC(i); INC(k, ORD(ch)) END ;
 Texts.Read(R, ch)
 UNTIL (ch < "0") OR ("9" < ch) & (CAP(ch) < "A") OR ("Z" < CAP(ch));
 name[i] := 0X;
 k := (k+i) MOD KW; (*hash function*)
 IF (keyTab[k].symb # 0) & (keyTab[k].id = name) THEN sym := keyTab[k].symb
 ELSE k := keyTab[k].alt;
 IF (keyTab[k].symb # 0) & (keyTab[k].id = name) THEN sym := keyTab[k].symb
 ELSE sym := 37 (*ident*)
 END
 END
 END Identifier;

 PROCEDURE Hval(ch: CHAR): INTEGER;
 VAR d: INTEGER;
 BEGIN d := ORD(ch) - 30H; (*d >= 0*)
 IF d >= 10 THEN
 IF (d >= 17) & (d < 23) THEN DEC(d, 7) ELSE d := 0; Mark(2) END
 END ;
 RETURN d
 END Hval;

 PROCEDURE Number;
 VAR i, j, h, d, e, n: INTEGER;
 x, f: REAL;

 308

 y, g: LONGREAL;
 lastCh: CHAR; neg: BOOLEAN;
 dig: ARRAY maxDig OF CHAR;

 PROCEDURE ReadScaleFactor;
 BEGIN Texts.Read(R, ch);
 IF ch = "-" THEN neg := TRUE; Texts.Read(R, ch)
 ELSE neg := FALSE;
 IF ch = "+" THEN Texts.Read(R, ch) END
 END ;
 IF ("0" <= ch) & (ch <= "9") THEN
 REPEAT e := e*10 + ORD(ch)-30H; Texts.Read(R, ch)
 UNTIL (ch < "0") OR (ch >"9")
 ELSE Mark(2)
 END
 END ReadScaleFactor;

 BEGIN i := 0;
 REPEAT dig[i] := ch; INC(i); Texts.Read(R, ch)
 UNTIL (ch < "0") OR ("9" < ch) & (CAP(ch) < "A") OR ("Z" < CAP(ch));
 lastCh := ch; j := 0;
 WHILE (j < i-1) & (dig[j] = "0") DO INC(j) END ;
 IF ch = "." THEN Texts.Read(R, ch);
 IF ch = "." THEN lastCh := 0X; ch := 7FX END
 END ;
 IF lastCh = "." THEN (*decimal point*)
 h := i;
 WHILE ("0" <= ch) & (ch <= "9") DO (*read fraction*)
 IF i < maxDig THEN dig[i] := ch; INC(i) END ;
 Texts.Read(R, ch)
 END ;
 IF ch = "D" THEN
 y := 0; g := 1; e := 0;
 WHILE j < h DO y := y*10 + (ORD(dig[j])-30H); INC(j) END ;
 WHILE j < i DO g := g/10; y := (ORD(dig[j])-30H)*g + y; INC(j) END ;
 ReadScaleFactor;
 IF neg THEN
 IF e <= maxLExp THEN y := y / Reals.TenL(e) ELSE y := 0 END
 ELSIF e > 0 THEN
 IF e <= maxLExp THEN y := Reals.TenL(e) * y ELSE y := 0; Mark(203) END
 END ;
 numtyp := 4; lrlval := y
 ELSE x := 0; f := 1; e := 0;
 WHILE j < h DO x := x*10 + (ORD(dig[j])-30H); INC(j) END ;
 WHILE j < i DO f := f/10; x := (ORD(dig[j])-30H)*f + x; INC(j) END ;
 IF ch = "E" THEN ReadScaleFactor END ;
 IF neg THEN
 IF e <= maxExp THEN x := x / Reals.Ten(e) ELSE x := 0 END
 ELSIF e > 0 THEN
 IF e <= maxExp THEN x := Reals.Ten(e) * x ELSE x := 0; Mark(203) END
 END ;
 numtyp := 3; realval := x
 END
 ELSE (*integer*)
 lastCh := dig[i-1]; intval := 0;
 IF lastCh = "H" THEN

 309

 IF j < i THEN
 DEC(i); intval := Hval(dig[j]); INC(j);
 IF i-j <= 7 THEN
 IF (i-j = 7) & (intval >= 8) THEN DEC(intval, 16) END ;
 WHILE j < i DO intval := Hval(dig[j]) + intval * 10H; INC(j) END
 ELSE Mark(203)
 END
 END
 ELSIF lastCh = "X" THEN
 DEC(i);
 WHILE j < i DO
 intval := Hval(dig[j]) + intval*10H; INC(j);
 IF intval > 0FFH THEN Mark(203); intval := 0 END
 END
 ELSE (*decimal*)
 WHILE j < i DO
 d := ORD(dig[j]) - 30H;
 IF d < 10 THEN
 IF intval <= (MAX(LONGINT) - d) DIV 10 THEN intval := intval*10 + d
 ELSE Mark(203); intval := 0
 END
 ELSE Mark(2); intval := 0
 END ;
 INC(j)
 END
 END ;
 IF lastCh = "X" THEN numtyp := 1 ELSE numtyp := 2 END
 END
 END Number;
 PROCEDURE Get*(VAR sym: INTEGER);
 VAR s: INTEGER; xch: CHAR;
 PROCEDURE Comment; (* do not read after end of file *)
 BEGIN Texts.Read(R, ch);
 LOOP
 LOOP
 WHILE ch = "(" DO Texts.Read(R, ch);
 IF ch = "*" THEN Comment END
 END ;
 IF ch = "*" THEN Texts.Read(R, ch); EXIT END ;
 IF ch = 0X THEN EXIT END ;
 Texts.Read(R, ch)
 END ;
 IF ch = ")" THEN Texts.Read(R, ch); EXIT END ;
 IF ch = 0X THEN Mark(5); EXIT END
 END
 END Comment;

 BEGIN
 LOOP (*ignore control characters*)
 IF ch <= " " THEN
 IF ch = 0X THEN ch := " "; EXIT
 ELSE Texts.Read(R, ch)
 END
 ELSIF ch > 7FX THEN Texts.Read(R, ch)
 ELSE EXIT
 END

 310

 END ;
 CASE ch OF (* " " <= ch <= 7FX *)
 " " : s := 62; ch := 0X (*eof*)
 | "!", "$", "%", "'", "?", "@", "\", "_", "`": s := 0; Texts.Read(R, ch)
 | 22X : String(s)
 | "#" : s := 10; Texts.Read(R, ch)
 | "&" : s := 5; Texts.Read(R, ch)
 | "(" : Texts.Read(R, ch);
 IF ch = "*" THEN Comment; Get(s)
 ELSE s := 29
 END
 | ")" : s := 22; Texts.Read(R, ch)
 | "*" : s := 1; Texts.Read(R, ch)
 | "+" : s := 6; Texts.Read(R, ch)
 | "," : s := 19; Texts.Read(R, ch)
 | "-" : s := 7; Texts.Read(R, ch)
 | "." : Texts.Read(R, ch);
 IF ch = "." THEN Texts.Read(R, ch); s := 21 ELSE s := 18 END
 | "/" : s := 2; Texts.Read(R, ch)
 | "0".."9": Number; s := 34
 | ":" : Texts.Read(R, ch);
 IF ch = "=" THEN Texts.Read(R, ch); s := 33 ELSE s := 20 END
 | ";" : s := 38; Texts.Read(R, ch)
 | "<" : Texts.Read(R, ch);
 IF ch = "=" THEN Texts.Read(R, ch); s := 12 ELSE s := 11 END
 | "=" : s := 9; Texts.Read(R, ch)
 | ">" : Texts.Read(R, ch);
 IF ch = "=" THEN Texts.Read(R, ch); s := 14 ELSE s := 13 END
 | "A".."Z": Identifier(s)
 | "[" : s := 30; Texts.Read(R, ch)
 | "]" : s := 23; Texts.Read(R, ch)
 | "^" : s := 17; Texts.Read(R, ch)
 | "a".."z": Identifier(s)
 | "{" : s := 31; Texts.Read(R, ch)
 | "|" : s := 39; Texts.Read(R, ch)
 | "}" : s := 24; Texts.Read(R, ch)
 | "~" : s := 32; Texts.Read(R, ch)
 | 7FX : s := 21; Texts.Read(R, ch)
 END ;
 sym := s
 END Get;

 PROCEDURE Init*(source: Texts.Text; pos: LONGINT);
 BEGIN
 ch := " "; scanerr := FALSE; lastpos := -8;
 Texts.OpenReader(R, source, pos)
 END Init;

 PROCEDURE EnterKW(sym: INTEGER; name: ARRAY OF CHAR);
 VAR j, k: INTEGER;
 BEGIN j := 0; k := 0;
 REPEAT INC(k, ORD(name[j])); INC(j)
 UNTIL name[j] = 0X;
 k := (k+j) MOD KW; (*hash function*)
 IF keyTab[k].symb # 0 THEN
 j := k;
 REPEAT INC(k) UNTIL keyTab[k].symb = 0;

 311

 keyTab[j].alt := k
 END ;
 keyTab[k].symb := sym; COPY(name, keyTab[k].id)
 END EnterKW;

BEGIN i := KW;
 WHILE i > 0 DO
 DEC(i); keyTab[i].symb := 0; keyTab[i].alt := 0
 END ;
 keyTab[0].id := "";
 EnterKW(27, "DO"); EnterKW(44, "IF"); EnterKW(15, "IN"); EnterKW(16, "IS");
 EnterKW(25, "OF"); EnterKW(8, "OR"); EnterKW(40, "END"); EnterKW(4, "MOD");
 EnterKW(35, "NIL"); EnterKW(58, "VAR"); EnterKW(41, "ELSE"); EnterKW(50, "EXIT");
 EnterKW(26, "THEN"); EnterKW(49, "WITH"); EnterKW(52, "ARRAY");
 EnterKW(55, "BEGIN"); EnterKW(56, "CONST"); EnterKW(42, "ELSIF");
 EnterKW(43, "UNTIL"); EnterKW(46, "WHILE"); EnterKW(53, "RECORD");
 EnterKW(47, "REPEAT"); EnterKW(51, "RETURN"); EnterKW(59, "PROCEDURE");
 EnterKW(28, "TO"); EnterKW(3, "DIV"); EnterKW(48, "LOOP"); EnterKW(57, "TYPE");
 EnterKW(60, "IMPORT"); EnterKW(61, "MODULE"); EnterKW(54, "POINTER");
 Texts.OpenWriter(W)
END OCS.

12.6. Searching the Symbol Table, and Symbol Files
The symbol table constitutes the context in which statements and expressions are parsed. Each
procedure establishes a scope of visibility of local identifiers. The records registering identifiers
belonging to a scope are linked as a linear list. Procedures for generating and searching the lists are
contained in module OCT. If a new identifier is to be added, procedure Insert first searches the list, and
if the identifier is already present, a double definition is diagnosed. Otherwise the new element is
appended, thereby preserving the order given by the source text.

Procedures, and therefore also scopes, may be nested. Each scope is represented by the list of its
declared identifiers, and the list of the currently visible scopes are again connected as a list. Procedure
OpenScope appends an element and procedure CloseScope removes it. The list of scopes is anchored in
the global variable topScope, and it is treated like a stack. It consists of elements of type Object, each
one being the header (mode = Head) of the list of declared entities. A snapshot of a symbol table is
shown in Fig. 12.6. It is taken when the following declarations are parsed and when the statement S is
reached.

VAR x: INTEGER;

PROCEDURE P(u: INTEGER);
BEGIN ... END P;

PROCEDURE Q(v: INTEGER);
 PROCEDURE R(w: INTEGER);
 BEGIN S END R;
BEGIN ... END Q;

A search of an identifier proceeds first through the scope list, and for each header its list of object
records is scanned. This mirrors the scope rule of the language and guarantees that if several entities
carry the same identifier, the most local one is selected. The linear list of objects represents the
simplest implementation by far. A tree structure would in many cases be more efficient for searching,
and would therefore seem more recommendable. Experiments have shown, however, that the gain in
speed is marginal. The reason is that the lists are typically quite short. The superiority of a tree
structure becomes manifest only when a large number of global objects is declared. We emphasize that
when a tree structure is used for each scope, the linear lists must still be present, because the order of
declarations is sometimes relevant in interpretation, e.g. in parameter lists.

 312

Head

Head

Head

NIL

w Var

NIL

v Var

x Var

R LProc

NIL

P LProc

u Var

NIL

name mode

dsc next

Object

Q LProc

NIL

topScope

Fig. 12.7. Snapshot of a symbol table

Not only procedures, but also record types establish their own local scope. The list of record fields is
anchored in the type record's field link, and it is searched by procedure FindField. If a record type R1
is an extension of R0, then R1's field list contains only the fields of the extension proper. The base type
R0 is referenced by the BaseTyp field of R1. Hence, a search for a field may have to proceed through
the field lists of an entire sequence of record base types.

The major part of module OCT is devoted to input and output of symbol files. A symbol file is a
linearized form of an excerpt of the symbol table containing descriptions of all exported (marked)
objects. All exports are declared in the global scope. Procedure Export traverses the list of global
objects and transfers them into the symbol file.

The major problem is to find an appropriate representation of pointers which must be converted to a
form which is free of absolute addresses. The only pointers of relevance here are those referring to
types, i.e. records of type Struct. The solution lies in assigning a unique reference number to each
occurring type. Since efficiency of importing has priority over efficiency of exporting, these reference
numbers should never constitute forward references, i.e. the definition of a reference must precede its
occurence in the file. This consideration determines the method employed when exporting an object's
type.

A type's reference number is recorded in the field ref. Its initial value 0 signals that the type has not yet
been exported. When an identifier is to be exported and its type's reference is 0, the export of the type
(Struct) precedes that of the identifier (Object), which therefore always refers to its type by a backward
reference (see procedures OutObjs and OutStr). The first byte of every object's description in the file
indicates its mode, and the first byte of every type's description indicates its form. The second byte is
in both cases the type's reference number. Mode and form numbers are disjoint, thereby allowing an
efficient identification of the next element in the file.

The structure of a symbol file is defined by the following syntax. Terminal symbols take one byte,
unless specified otherwise by ": len". The following terminal symbols are mode and form specifiers or
reference numbers for basic types with fixed values:

Con =1, Typ = 2, Var = 4, XProc = 5, CProc = 7, Pointer = 8, ProcTyp = 9, Array = 10,
DynArr = 11, Record = 12, ParList = 13, ValPar = 14, VarPar = 15, FldList = 16,
Fld = 17, HPtr = 18, Fixup = 19, Mod = 22. Byte = 1, Bool = 2, Char = 3, SInt = 4,
Int = 5, LInt = 6, Real =7, LReal = 8, Set = 9, String = 10, Nil = 11, NoTyp = 12.

SymbolFile = SymTag modAnchor {element}.
modAnchor = Mod key:4 name.

element = Con constant
 | Typ ref modno name

 313

 | (Var | Fld) ref offset:2 name
 | (ValPar | VarPar) ref offset:4 name
 | ParList {element} (XProc ref pno | CProc ref len code) name
 | Pointer ref mno
 | ParList {element} ProcTyp ref mno
 | Array ref mno size:4 bndadr:2 nofel:4
 | DynArr ref mno size:4 lenoff:2
 | FldList {element} Record ref mno size:4 dscadr:2
 | HPtr offset:4
 | Fixup ref ref
 | modAnchor.

constant = (Byte | Bool | Char | SInt) val name
 | Int val:2 name
 | (LInt | Real | Set) val:4 name
 | LReal val:8 name
 | String name name
 | Nil name.

name = {char} 0X.

A procedure description with mode specifier XProc (or CProc) and a procedural type description with
form specifier ProcTyp are preceded by a parameter list. The list is headed by the specifier ParList.
Similarly, a record type description with form specifier Record is preceded by the list of field
descriptions. This list is headed by the specifier FldList.

The specifier HPtr (in a field list) denotes a field with a pointer type. The field name itself is not
exported; it is hidden. The reason for its occurrence in the symbol file is the following: If an extension
of this record type is declared, a corresponding type descriptor is constructed. This descriptor must
contain the offsets of all pointer fields for use by the garbage collector. Pointers inherited from the base
type must not be missing.

The specifier Fixup mirrors a forward reference in a pointer type declaration. When reading a symbol
file, it triggers a fixup of the base type in the respective pointer type (see procedure Import).

Objects exported from some module M0 may refer in their declaration to some other module M1
imported by M0. It would be unacceptable, if the import of M0 would then also require the import of
M1, i.e. imply the automatic reading of M1's symbol file. It would trigger a chain reaction of imports
that must be avoided. Fortunately, such a chain reaction can be avoided by making symbol files self-
contained, i.e. by including in every symbol file the description of entities that stem from other
modules. Such entities are always types.

The inclusion of types imported from other modules seems simple enough to handle: type descriptions
must include a reference to the module from which the type was imported. This reference is a module
number (mno); the name and key of the respective module is given by its anchor which, when read,
causes a new entry in the array LocMod of imported modules (see procedure Import). However, there
exists one additional complication that cannot be ignored. Consider a module M0 importing a variable
x from a module M1. Let the type T of x be defined in module M2. Also, assume M0 to contain a
variable y of type M2.T. Evidently, x and y are of the same type, and the compiler must recognize this
fact. Hence, when importing M1 during compilation of M0, the imported element T must not only be
registered in the symbol table, but it must also be recognized as being identical to the T already
imported from M2 directly. It is rather fortunate that the language definition specifies equivalence of
types on the basis of names rather than structure, because it allows type tests at execution time to be
implemented by a simple address comparison.

The measures to be taken to satisfy the new requirements are as follows:

1. Every type element in a symbol file is given a module number referring to a module anchor. Before
a type description is emitted to the file, its module anchor is emitted, unless this had been done
previously on another occasion.

 314

2. If a type to be exported has a name and stems from another, imported module, then also an element
with specifier Typ is emitted. The name is obtained from the respective Object in the symbol table
accessed via the type descriptor's strobj field. (This is the only reason for the presence of this field.
Anonymous types are characterized by strobj = NIL).

3. When importing a module, it must be checked whether or not the module is already present, either in
full or in part. And when a type is imported, its presence must also be checked. If it already exists,
the new structure entry is made to refer to the already existing type entry (struct[s] := ob0.next.typ,
see procedure Import).

There is yet another hurdle to be overcome. Types may be given several names; consider a (exported)
type T1 to be declared as T1 = T0. In this case, a type element named T1 must be emitted referring by
its reference number to the structural element associated with T0 and emitted before (see procedure
OutObjs). The following sample program may help the reader to understand the structure of symbol
files and the way they are generated. It is followed by a listing of the corresponding symbol file in a
decoded form.

MODULE Sample;
 CONST N* = 100;
 TYPE Ptr0* = POINTER TO Rec0;
 Rec0* = RECORD x, y: INTEGER END ;
 Rec1* = RECORD (Rec0) z: LONGINT END ;
 Ptr1* = Ptr0;
 VAR a*: ARRAY N OF Rec0;
 PROCEDURE P*(x: REAL; p: Ptr1): INTEGER;
 BEGIN END P;
END Sample.

Mod key = 6E08D9E9 name = Sample
Con ref = 4 val = 100 name = N
Pointer ref = 16 base ref = 0 mno = 0
Typ ref = 16 mno = 0 name = Ptr0

Record ref = 17 base ref = 12 mno = 0 size = 4 adr = 0
Typ ref = 17 mno = 0 name = Rec0

Record ref = 18 base ref = 17 mno = 0 size = 8 adr = 4
Typ ref = 18 mno = 0 name = Rec1
Typ ref = 16 mno = 0 name = Ptr1
Array ref = 19 elem ref = 17 mno = 0 size = 400 adr = 8 nofel = 100
Var ref = 19 adr = -400 name = a

ValPar ref = 7 adr = 16 name = x
ValPar ref = 16 adr = 12 name = p
XProc ref = 5 pno = 1 name = P
Fixup ref = 16 ref = 17

After a symbol file has been generated, it is compared with the file from a previous compilation of the
same module, if one exists. Only if the two files differ and if the compiler's s-option is enabled, is the
old file replaced by the new version. The comparison is made by comparing byte after byte without
consideration of the file's structure. This somewhat crude approach was chosen because of its
simplicity and yielded good results in practice.

MODULE OCT; (*NW 28.5.87 / 5.3.91*)
 IMPORT Files, OCS;

 CONST maxImps = 24; SFtag = 0FAX; firstStr = 16;
 maxStr = 80; maxUDP = 16; maxMod = 24; maxParLev = 6;
 PtrSize = 4; ProcSize = 4; NotYetExp = 0;
 (*object modes*)
 Var = 1; Ind = 3; Con = 8; Fld = 12; Typ = 13;

 315

 XProc = 15; SProc = 16; CProc = 17; Mod = 19; Head = 20;
 (*structure forms*)
 Undef = 0; Byte = 1; Bool = 2; Char = 3; SInt = 4; Int = 5; LInt = 6;
 Real = 7; LReal = 8; Set = 9; String = 10; NilTyp = 11; NoTyp = 12;
 Pointer = 13; ProcTyp = 14; Array = 15; DynArr = 16; Record = 17;

TYPE
 Object* = POINTER TO ObjDesc;
 Struct* = POINTER TO StrDesc;

 ObjDesc* = RECORD
 dsc*, next*: Object;
 typ*: Struct;
 a0*, a1*: LONGINT;
 a2*: INTEGER;
 mode*: SHORTINT;
 marked*: BOOLEAN;
 name*: ARRAY 32 OF CHAR;
 END ;

 StrDesc* = RECORD
 form*, n*, mno*, ref*: INTEGER;
 size*, adr*: LONGINT;
 BaseTyp*: Struct;
 link*, strobj*: Object
 END ;

 Item* = RECORD
 mode*, lev*: INTEGER;
 a0*, a1*, a2*: LONGINT;
 typ*: Struct;
 obj*: Object
 END ;

 VAR topScope*: Object;
 undftyp*, bytetyp*, booltyp*, chartyp*, sinttyp*, inttyp*, linttyp*,
 realtyp*, lrltyp*, settyp*, stringtyp*, niltyp*, notyp*: Struct;
 nofGmod*: INTEGER; (*nof imports*)
 GlbMod*: ARRAY maxImps OF Object;

 universe, syslink: Object;
 strno, udpinx: INTEGER; (*for export*)
 nofExp: SHORTINT;
 SR: Files.Rider;
 undPtr: ARRAY maxUDP OF Struct;

 PROCEDURE Init*;
 BEGIN topScope := universe; strno := 0; udpinx := 0; nofGmod := 0
 END Init;

 PROCEDURE Close*;
 VAR i: INTEGER;
 BEGIN Files.Set(SR, NIL, 0); i := 0;
 WHILE i < maxImps DO GlbMod[i] := NIL; INC(i) END
 END Close;

 PROCEDURE FindImport*(mod: Object; VAR res: Object);
 VAR obj: Object;
 BEGIN obj := mod.dsc;
 WHILE (obj # NIL) & (obj.name # OCS.name) DO obj := obj.next END ;

 316

 IF (obj # NIL) & (obj.mode = Typ) & ~obj.marked THEN obj := NIL END ;
 res := obj
 END FindImport;

 PROCEDURE Find*(VAR res: Object; VAR level: INTEGER);
 VAR obj, head: Object;
 BEGIN head := topScope;
 LOOP obj := head.next;
 WHILE (obj # NIL) & (obj.name # OCS.name) DO obj := obj.next END ;
 IF obj # NIL THEN level := SHORT(head.a0); EXIT END ;
 head := head.dsc;
 IF head = NIL THEN level := 0; EXIT END
 END ;
 res := obj
 END Find;

 PROCEDURE FindField*(typ: Struct; VAR res: Object);
 VAR obj: Object;
 BEGIN (*typ.form = Record*)
 LOOP obj := typ.link;
 WHILE (obj # NIL) & (obj.name # OCS.name) DO obj := obj.next END ;
 IF obj # NIL THEN EXIT END ;
 typ := typ.BaseTyp;
 IF typ = NIL THEN EXIT END
 END ;
 res := obj
 END FindField;

 PROCEDURE Insert*(VAR name: ARRAY OF CHAR; VAR res: Object);
 VAR obj, new: Object;
 BEGIN obj := topScope;
 WHILE (obj.next # NIL) & (obj.next.name # name) DO obj := obj.next END ;
 IF obj.next = NIL THEN NEW(new);
 new.dsc := NIL; new.next := NIL; COPY(name, new.name); obj.next := new; res := new
 ELSE res := obj.next;
 IF obj.next.mode # Undef THEN OCS.Mark(1) END
 END
 END Insert;

 PROCEDURE OpenScope*(level: INTEGER);
 VAR head: Object;
 BEGIN NEW(head);
 head.mode := Head; head.a0 := level; head.typ := NIL;
 head.dsc := topScope; head.next := NIL; topScope := head
 END OpenScope;

 PROCEDURE CloseScope*;
 BEGIN topScope := topScope.dsc
 END CloseScope;

 (*---------------------- import ------------------------*)

 PROCEDURE ReadInt(VAR i: INTEGER);
 BEGIN Files.ReadBytes(SR, i, 2)
 END ReadInt;

 PROCEDURE ReadXInt(VAR k: LONGINT);
 VAR i: INTEGER;
 BEGIN Files.ReadBytes(SR, i, 2); k := i
 END ReadXInt;

 317

 PROCEDURE ReadLInt(VAR k: LONGINT);
 BEGIN Files.ReadBytes(SR, k, 4)
 END ReadLInt;

 PROCEDURE ReadId(VAR id: ARRAY OF CHAR);
 VAR i: INTEGER; ch: CHAR;
 BEGIN i := 0;
 REPEAT Files.Read(SR, ch); id[i] := ch; INC(i)
 UNTIL ch = 0X
 END ReadId;

 PROCEDURE Import*(VAR name, self, FileName: ARRAY OF CHAR);
 VAR i, j, m, s, class: INTEGER; k: LONGINT;
 nofLmod, strno, parlev, fldlev: INTEGER;
 obj, ob0: Object;
 typ: Struct;
 ch, ch1, ch2: CHAR;
 si: SHORTINT;
 xval: REAL; yval: LONGREAL;
 SymFile: Files.File;
 modname: ARRAY 32 OF CHAR;
 LocMod: ARRAY maxMod OF Object;
 struct: ARRAY maxStr OF Struct;
 lastpar, lastfld: ARRAY maxParLev OF Object;

 PROCEDURE reversedList(p: Object): Object;
 VAR q, r: Object;
 BEGIN q := NIL;
 WHILE p # NIL DO
 r := p.next; p.next := q; q := p; p := r
 END ;
 RETURN q
 END reversedList;

 BEGIN nofLmod := 0; strno := firstStr;
 parlev := -1; fldlev := -1;
 IF FileName = "SYSTEM.Sym" THEN
 Insert(name, obj); obj.mode := Mod; obj.dsc := syslink;
 obj.a0 := 0; obj.typ := notyp
 ELSE SymFile := Files.Old(FileName);
 IF SymFile # NIL THEN
 Files.Set(SR, SymFile, 0); Files.Read(SR, ch);
 IF ch = SFtag THEN
 struct[Undef] := undftyp; struct[Byte] := bytetyp;
 struct[Bool] := booltyp; struct[Char] := chartyp;
 struct[SInt] := sinttyp; struct[Int] := inttyp;
 struct[LInt] := linttyp; struct[Real] := realtyp;
 struct[LReal] := lrltyp; struct[Set] := settyp;
 struct[String] := stringtyp; struct[NilTyp] := niltyp; struct[NoTyp] := notyp;
 LOOP (*read next item from symbol file*)
 Files.Read(SR, ch); class := ORD(ch);
 IF SR.eof THEN EXIT END ;
 CASE class OF
 0: OCS.Mark(151)
 | 1..7: (*object*) NEW(obj); m := 0;
 Files.Read(SR, ch); s := ORD(ch); obj.typ := struct[s];
 CASE class OF
 1: obj.mode := Con;

 318

 CASE obj.typ.form OF
 2,4: Files.Read(SR, si); obj.a0 := si
 | 1,3: Files.Read(SR, ch); obj.a0 := ORD(ch)
 | 5: ReadXInt(obj.a0)
 | 6,7,9: ReadLInt(obj.a0)
 | 8: ReadLInt(obj.a0); ReadLInt(obj.a1)
 | 10: ReadId(obj.name); OCS.Mark(151)
 | 11: (*NIL*)
 END
 |2,3: obj.mode := Typ; Files.Read(SR, ch); m := ORD(ch);
 IF obj.typ.strobj = NIL THEN obj.typ.strobj := obj END;
 obj.marked := class = 2
 |4: obj.mode := Var; ReadLInt(obj.a0)
 |5,6,7: IF class # 7 THEN obj.mode := XProc; Files.Read(SR, ch)
 ELSE obj.mode := CProc;
 Files.Read(SR, ch); Files.Read(SR, ch); Files.Read(SR, ch)
 END ;
 obj.a0 := ORD(ch); obj.a1 := 0; (*link adr*)
 obj.dsc := reversedList(lastpar[parlev]); DEC(parlev)
 END ;
 ReadId(obj.name); ob0 := LocMod[m];
 WHILE (ob0.next # NIL)&(ob0.next.name # obj.name) DO
 ob0 := ob0.next
 END ;
 IF ob0.next = NIL THEN ob0.next := obj; obj.next := NIL (*insert object*)
 ELSIF obj.mode = Typ THEN struct[s] := ob0.next.typ
 END
 | 8..12: (*structure*)
 NEW(typ); typ.strobj := NIL; typ.ref := 0;
 Files.Read(SR, ch); typ.BaseTyp := struct[ORD(ch)];
 Files.Read(SR, ch); typ.mno := SHORT(LocMod[ORD(ch)].a0);
 CASE class OF
 8: typ.form := Pointer; typ.size := PtrSize; typ.n := 0
 | 9: typ.form := ProcTyp; typ.size := ProcSize;
 typ.link := reversedList(lastpar[parlev]); DEC(parlev)
 | 10: typ.form := Array; ReadLInt(typ.size);
 ReadXInt(typ.adr); ReadLInt(k); typ.n := SHORT(k)
 | 11: typ.form := DynArr; ReadLInt(typ.size); ReadXInt(typ.adr)
 | 12: typ.form := Record; ReadLInt(typ.size); typ.n := 0;
 typ.link := reversedList(lastfld[fldlev]); DEC(fldlev);
 IF typ.BaseTyp = notyp THEN typ.BaseTyp := NIL; typ.n := 0
 ELSE typ.n := typ.BaseTyp.n + 1
 END ;
 ReadXInt(typ.adr) (*of descriptor*)
 END ;
 struct[strno] := typ; INC(strno)
 | 13: (*parameter list start*)
 IF parlev < maxParLev-1 THEN INC(parlev); lastpar[parlev] := NIL
 ELSE OCS.Mark(229)
 END
 | 14, 15: (*parameter*)
 NEW(obj);
 IF class = 14 THEN obj.mode := Var ELSE obj.mode := Ind END ;
 Files.Read(SR, ch); obj.typ := struct[ORD(ch)];
 ReadXInt(obj.a0); ReadId(obj.name);
 obj.dsc := NIL; obj.next := lastpar[parlev]; lastpar[parlev] := obj

 319

 | 16: (*start field list*)
 IF fldlev < maxParLev-1 THEN INC(fldlev); lastfld[fldlev] := NIL
 ELSE OCS.Mark(229)
 END
 | 17: (*field*)
 NEW(obj); obj.mode := Fld; Files.Read(SR, ch);
 obj.typ := struct[ORD(ch)]; ReadLInt(obj.a0);
 ReadId(obj.name); obj.marked := TRUE;
 obj.dsc := NIL; obj.next := lastfld[fldlev]; lastfld[fldlev] := obj
 | 18: (*hidden pointer field*)
 NEW(obj); obj.mode := Fld; ReadLInt(obj.a0);
 obj.name := ""; obj.typ := notyp; obj.marked := FALSE;
 obj.dsc := NIL; obj.next := lastfld[fldlev]; lastfld[fldlev] := obj
 | 19: (*hidden procedure field*)
 ReadLInt(k)
 | 20: (*fixup pointer typ*)
 Files.Read(SR, ch); typ := struct[ORD(ch)];
 Files.Read(SR, ch1);
 IF typ.BaseTyp = undftyp THEN typ.BaseTyp := struct[ORD(ch1)] END
 | 21, 23, 24: OCS.Mark(151); EXIT
 | 22: (*module anchor*)
 ReadLInt(k); ReadId(modname);
 IF modname = self THEN OCS.Mark(49) END;
 i := 0;
 WHILE (i < nofGmod) & (modname # GlbMod[i].name) DO INC(i) END ;
 IF i < nofGmod THEN (*module already present*)
 IF k # GlbMod[i].a1 THEN OCS.Mark(150) END ;
 obj := GlbMod[i]
 ELSE NEW(obj);
 IF nofGmod < maxImps THEN GlbMod[nofGmod] := obj; INC(nofGmod)
 ELSE OCS.Mark(227)
 END ;
 obj.mode := NotYetExp; COPY(modname, obj.name);
 obj.a1 := k; obj.a0 := nofGmod; obj.next := NIL
 END ;
 IF nofLmod < maxMod THEN LocMod[nofLmod] := obj; INC(nofLmod)
 ELSE OCS.Mark(227)
 END
 END
 END (*LOOP*) ;
 Insert(name, obj);
 obj.mode := Mod; obj.dsc := LocMod[0].next;
 obj.a0 := LocMod[0].a0; obj.typ := notyp
 ELSE OCS.Mark(151)
 END
 ELSE OCS.Mark(152) (*sym file not found*)
 END
 END
 END Import;

 (*---------------------- export ------------------------*)
 PROCEDURE WriteByte(i: INTEGER);
 BEGIN Files.Write(SR, CHR(i))
 END WriteByte;

 320

 PROCEDURE WriteInt(i: LONGINT);
 BEGIN Files.WriteBytes(SR, i, 2)
 END WriteInt;

PROCEDURE WriteLInt(k: LONGINT);
 BEGIN Files.WriteBytes(SR, k, 4)
 END WriteLInt;

 PROCEDURE WriteId(VAR name: ARRAY OF CHAR);
 VAR ch: CHAR; i: INTEGER;
 BEGIN i := 0;
 REPEAT ch := name[i]; Files.Write(SR, ch); INC(i)
 UNTIL ch = 0X
 END WriteId;

 PROCEDURE^ OutStr(typ: Struct);
 PROCEDURE OutPars(par: Object);
 BEGIN WriteByte(13);
 WHILE (par # NIL) & (par.mode <= Ind) & (par.a0 > 0) DO
 OutStr(par.typ);
 IF par.mode = Var THEN WriteByte(14) ELSE WriteByte(15) END ;
 WriteByte(par.typ.ref); WriteInt(par.a0); WriteId(par.name); par := par.next
 END
 END OutPars;

 PROCEDURE OutFlds(fld: Object; adr: LONGINT; visible: BOOLEAN);
 BEGIN
 IF visible THEN WriteByte(16) END ;
 WHILE fld # NIL DO
 IF fld.marked & visible THEN
 OutStr(fld.typ); WriteByte(17); WriteByte(fld.typ.ref);
 WriteLInt(fld.a0); WriteId(fld.name)
 ELSIF fld.typ.form = Record THEN OutFlds(fld.typ.link, fld.a0 + adr, FALSE)
 ELSIF (fld.typ.form = Pointer) OR (fld.name = "") THEN
 WriteByte(18); WriteLInt(fld.a0 + adr)
 END ;
 fld := fld.next
 END
 END OutFlds;

 PROCEDURE OutStr(typ: Struct);
 VAR m, em, r: INTEGER; btyp: Struct; mod: Object;
 BEGIN
 IF typ.ref = 0 THEN
 m := typ.mno; btyp := typ.BaseTyp;
 IF m > 0 THEN mod := GlbMod[m-1]; em := mod.mode;
 IF em = NotYetExp THEN
 GlbMod[m-1].mode := nofExp; m := nofExp; INC(nofExp);
 WriteByte(22); WriteLInt(mod.a1); WriteId(mod.name)
 ELSE m := em
 END
 END;
 CASE typ.form OF
 Undef .. NoTyp:
 | Pointer: WriteByte(8);
 IF btyp.ref > 0 THEN WriteByte(btyp.ref)
 ELSE WriteByte(Undef);
 IF udpinx < maxUDP THEN undPtr[udpinx] := typ; INC(udpinx)

 321

 ELSE OCS.Mark(224)
 END
 END ;
 WriteByte(m)
 | ProcTyp: OutStr(btyp); OutPars(typ.link);
 WriteByte(9); WriteByte(btyp.ref); WriteByte(m)
 | Array: OutStr(btyp);
 WriteByte(10); WriteByte(btyp.ref); WriteByte(m);
 WriteLInt(typ.size); WriteInt(typ.adr); WriteLInt(typ.n)
 | DynArr: OutStr(btyp);
 WriteByte(11); WriteByte(btyp.ref); WriteByte(m);
 WriteLInt(typ.size); WriteInt(typ.adr)
 | Record:
 IF btyp = NIL THEN r := NoTyp
 ELSE OutStr(btyp); r := btyp.ref
 END ;
 OutFlds(typ.link, 0, TRUE); WriteByte(12); WriteByte(r); WriteByte(m);
 WriteLInt(typ.size); WriteInt(typ.adr)
 END ;
 IF typ.strobj # NIL THEN
 IF typ.strobj.marked THEN WriteByte(2) ELSE WriteByte(3) END;
 WriteByte(strno); WriteByte(m); WriteId(typ.strobj.name)
 END ;
 typ.ref := strno; INC(strno);
 IF strno > maxStr THEN OCS.Mark(228) END
 END
 END OutStr;

 PROCEDURE OutObjs;
 VAR obj: Object;
 f: INTEGER; xval: REAL; yval: LONGREAL;
 BEGIN obj := topScope.next;
 WHILE obj # NIL DO
 IF obj.marked THEN
 IF obj.mode = Con THEN
 WriteByte(1); f := obj.typ.form; WriteByte(f);
 CASE f OF
 Undef:
 | Byte, Bool, Char, SInt: WriteByte(SHORT(obj.a0))
 | Int: WriteInt(SHORT(obj.a0))
 | LInt, Real, Set: WriteLInt(obj.a0)
 | LReal: WriteLInt(obj.a0); WriteLInt(obj.a1)
 | String: WriteByte(0); OCS.Mark(221)
 | NilTyp:
 END;
 WriteId(obj.name)
 ELSIF obj.mode = Typ THEN
 OutStr(obj.typ);
 IF (obj.typ.strobj # obj) & (obj.typ.strobj # NIL) THEN
 WriteByte(2); WriteByte(obj.typ.ref); WriteByte(0); WriteId(obj.name)
 END
 ELSIF obj.mode = Var THEN
 OutStr(obj.typ); WriteByte(4);
 WriteByte(obj.typ.ref); WriteLInt(obj.a0); WriteId(obj.name)
 ELSIF obj.mode = XProc THEN
 OutStr(obj.typ); OutPars(obj.dsc); WriteByte(5);

 322

 WriteByte(obj.typ.ref); WriteByte(SHORT(obj.a0)); WriteId(obj.name)
 ELSIF obj.mode = CProc THEN
 OutStr(obj.typ); OutPars(obj.dsc); WriteByte(7);
 WriteByte(obj.typ.ref); WriteByte(2); WriteByte(226);
 WriteByte(SHORT(obj.a0)); WriteId(obj.name)
 END
 END ;
 obj := obj.next
 END
 END OutObjs;

 PROCEDURE Export*(VAR name, FileName: ARRAY OF CHAR;
 VAR newSF: BOOLEAN; VAR key: LONGINT);
 VAR i: INTEGER;
 ch0, ch1: CHAR;
 oldkey: LONGINT;
 typ: Struct;
 oldFile, newFile: Files.File;
 oldSR: Files.Rider;
 BEGIN newFile := Files.New(FileName);
 IF newFile # NIL THEN
 Files.Set(SR, newFile, 0); Files.Write(SR, SFtag); strno := firstStr;
 WriteByte(22); WriteLInt(key); WriteId(name); nofExp := 1;
 OutObjs; i := 0;
 WHILE i < udpinx DO
 typ := undPtr[i]; OutStr(typ.BaseTyp); undPtr[i] := NIL; INC(i);
 WriteByte(20); (*fixup*)
 WriteByte(typ.ref); WriteByte(typ.BaseTyp.ref)
 END ;
 IF ~OCS.scanerr THEN
 oldFile := Files.Old(FileName);
 IF oldFile # NIL THEN (*compare*)
 Files.Set(oldSR, oldFile, 2); Files.ReadBytes(oldSR, oldkey, 4);
 Files.Set(SR, newFile, 6);
 REPEAT Files.Read(oldSR, ch0); Files.Read(SR, ch1)
 UNTIL (ch0 # ch1) OR SR.eof;
 IF oldSR.eof & SR.eof THEN (*equal*) newSF := FALSE; key := oldkey
 ELSIF newSF THEN Files.Register(newFile)
 ELSE OCS.Mark(155)
 END
 ELSE Files.Register(newFile); newSF := TRUE
 END
 ELSE newSF := FALSE
 END
 ELSE OCS.Mark(153)
 END
 END Export;

 (*------------------------ initialization ------------------------*)
 PROCEDURE InitStruct(VAR typ: Struct; f: INTEGER);
 BEGIN NEW(typ); typ.form := f; typ.ref := f; typ.size := 1
 END InitStruct;

 PROCEDURE EnterConst(name: ARRAY OF CHAR; value: INTEGER);
 VAR obj: Object;
 BEGIN Insert(name, obj); obj.mode := Con; obj.typ := booltyp; obj.a0 := value
 END EnterConst;

 323

 PROCEDURE EnterTyp(name: ARRAY OF CHAR; form,
 size: INTEGER; VAR res: Struct);
 VAR obj: Object; typ: Struct;
 BEGIN Insert(name, obj);
 NEW(typ); obj.mode := Typ; obj.typ := typ; obj.marked := TRUE;
 typ.form := form; typ.strobj := obj; typ.size := size;
 typ.mno := 0; typ.ref := form; res := typ
 END EnterTyp;

 PROCEDURE EnterProc(name: ARRAY OF CHAR; num: INTEGER);
 VAR obj: Object;
 BEGIN Insert(name, obj); obj.mode := SProc; obj.typ := notyp; obj.a0 := num
 END EnterProc;

BEGIN topScope := NIL; InitStruct(undftyp, Undef); InitStruct(notyp, NoTyp);
 InitStruct(stringtyp, String); InitStruct(niltyp, NilTyp); OpenScope(0);
 (*initialization of module SYSTEM*)
 EnterProc("LSH", 22); EnterProc("ROT", 23); EnterProc("ADR", 9);EnterProc("OVFL",15);
 EnterProc("GET", 24); EnterProc("PUT", 25); EnterProc("BIT", 26); EnterProc("VAL", 27);
 EnterProc("NEW", 28); EnterProc("MOVE",30); EnterProc("CC", 2);
 EnterTyp("BYTE", Byte, 1, bytetyp);
 syslink := topScope.next; universe := topScope; topScope.next := NIL;

 EnterTyp("CHAR", Char, 1, chartyp); EnterTyp("SET", Set, 4, settyp);
 EnterTyp("REAL", Real, 4, realtyp); EnterTyp("INTEGER", Int, 2, inttyp);
 EnterTyp("LONGINT", LInt, 4, linttyp); EnterTyp("LONGREAL", LReal, 8, lrltyp);
 EnterTyp("SHORTINT", SInt, 1, sinttyp); EnterTyp("BOOLEAN", Bool, 1, booltyp);
 EnterProc("INC", 16); EnterProc("DEC", 17); EnterConst("FALSE", 0);
 EnterConst("TRUE", 1); EnterProc("HALT", 0); EnterProc("NEW", 1);
 EnterProc("ABS", 3); EnterProc("CAP", 4); EnterProc("ORD", 5);
 EnterProc("ENTIER", 6); EnterProc("SIZE", 7); EnterProc("ODD", 8);
 EnterProc("MIN", 10); EnterProc("MAX", 11); EnterProc("CHR", 12);
 EnterProc("SHORT", 13); EnterProc("LONG", 14); EnterProc("INCL", 18);
 EnterProc("EXCL", 19); EnterProc("LEN", 20); EnterProc("ASH", 21);
EnterProc("COPY", 29)
END OCT.

12.7. Code Selection
The procedures which determine the selection of instructions corresponding to the various syntactic
constructs are contained in modules OCE and OCH. They reflect the two-address nature of the target
computer's architecture. If, for example, a simple expression consisting of two terms and an add
operator is recognized, procedure Op is invoked, the first parameter specifying addition, and the other
two denoting the operands. The sum, representing the simple expression, is assigned to and thereby
replaces the first argument (x := x+y), mirroring the computer's two-address instruction (ADDW y, x).

By code selection we understand the determination of operation codes, of operand length codes, and of
addressing modes. The actual code generation is delegated to module OCC. For example, the
instruction ADDW y, x is selected in procedure OCE.Op which calls the generating procedure
OCC.PutF4(0+1, x, y), where 0 is the opcode for ADDi, 1 is the length code for integers, and x and y
are parameters of type Item describing the operands. Op would, e.g., select another instruction, if y
denoted a small constant, say 3, instead of a variable; its selection would be ADDQW 3, x. Actual
generation is then achieved by calling OCC.PutF2(12+1, y.a0, x), where 12 is the opcode of ADDQi
and y.a0 has the value 3.

Let us dwell somewhat longer on the above example. As explained before, during the evaluation of an
expression no declared variable may change its value. Therefore, the sum cannot be stored in the
location of variable x. In order to prevent this from happening, the destination operand is chosen to be

 324

a temporary, auxiliary variable allocated in a register. Because the first argument and the result are the
same in a two-address instruction, the argument must be transferred into the register before addition.
Hence, the resulting code sequence is

MOVW x, r
ADDW y, r

where r stands for the mentioned register. Register allocation is done by procedure OCC.GetReg,
which selects a free register and returns an Item with mode = Reg, which is one of the intermediate
modes generated only during evaluation of expressions.

If the operands of an expression are integer constants, the specified operation is performed by the
compiler, the result is represented by the result-item, and no instructions are generated. This feature
concerns all arithmetic operations in procedure Op and sign inversion in procedure MOp.

Note: Overflow tests are not included in the program listing, but merely indicated by a comment. They
can be programmed in a computer-independent form as shown here for addition:

IF x < 0 THEN
 IF (y < 0) & (x < min-y) THEN overflow ELSE sum := x+y END
ELSE
 IF (y > 0) & (x > max-y) THEN overflow ELSE sum := x+y END
END

Direct evaluation of expressions is also performed for negation of Boolean operands and for set union.
The latter is implicitly invoked in the construction of sets. For instance, the constant set {0, 2} is
computed as {0}+{2}. Constant expressions are not evaluated for real values. One reason is that this
rare and avoidable case hardly justifies the additional complexity of the compiler, the other that
overflow traps for floating-point operations cannot be suppressed.

The principal code selection procedures for expressions are listed below together with an abstract
notation for their action.

Index(x, y) x := x[y]
Field(x, y) x := x.y
DeRef(x) x := x^
TypTest(x, y, TRUE) x := x IS y
TypTest(x, y, FALSE) x := x(y)
In(x, y) x := x IN y
Set0(x, y) x := {y}
Set1(x, y, z) x := {y .. z}
MOp(op, x) x := op y
Op(op, x, y) x := x op y

Some of these procedures generate items with intermediate modes other than the Reg-mode mentioned
above. Before we explain the various mode transitions which items may undergo, we list the additional
item modes, indicating how the resulting operand address is specified by the item-record's attributes
a0, a1, and a2.

mode resulting address addressing mode

Var a0 direct mode
VarX a0 + s*Reg[a2] indexed mode
Ind Mem[a0] + a1 indirect mode
IndX Mem[a0] + a1 + s*Reg[a2] indexed indirect mode
RegI Reg[a0] + a1 register indirect mode
RegX Reg[a0] + a1 + s*Reg[a2] indexed register indirect mode

s denotes a scale factor selected according to the type of operands (s = 1, 2, 4, or 8).

It is the goal of a good compiler to make use of all addressing modes offered by the computer, thereby
avoiding the emission of unnecessary instructions for address computation. This requires that

 325

applicability of complex addressing modes is detected, and that instructions for address computations
are not emitted before it is established that the situation cannot be handled with one of the available
addressing modes. Procedures Index, Field, and DeRef contain the necessary case analyses. The mode
transitions performed are listed below.

1. Index(x, y), x is static array

mode transition of x instruction emitted construct

Var → VarX array variable
Ind → IndX array, VAR-parameter
RegI → RegX dereferenced array
VarX → VarX INDEX indexed array (matrix)
IndX → IndX INDEX indexed matrix parameter
RegX → RegX INDEX dereferenced array (matrix)

Procedure Index also emits an index bound check (CHECKW, FLAG), if the compiler's index
checking option is enabled. If the index y denotes a constant, the indexed variable's address is
computed and no mode transition takes place.

Dynamic array parameters are treated similarly. Indirect addressing via descriptor is necessary even if
the array is called by value. Bound checks cannot be performed by the compiler, even if the index is a
constant.

2. Index(x, y), x is dynamic array

mode transition of x instruction emitted construct

Var → IndX dynamic array
Ind → IndX dynamic array, VAR-parameter
RegI → RegX dereferenced array
IndX → IndX INDEX indexed matrix VAR-parameter
RegX → RegX INDEX dereferenced array (matrix)

3. Field(x, y)

mode transition of x instruction emitted construct

Var → Var add field offset to record adr
Ind → Ind add field offset to record adr
RegI → RegI increment field offset
others → RegI ADDR offset becomes field offset

4. DeRef(x)

mode transition of x instruction emitted construct

Var -> Ind reference via pointer
others -> RegI ADDR offset := 0

The DeRef procedure is called from Compiler.selector. The call may be due to an explicit
dereferencing operator (^), or it may be due to a field designator p.f or an array designator p[i],
if p denotes a pointer. Note that the transition Var → Ind is inapplicable in the case of external
access, because the processor lacks an indirect external addressing mode.

Boolean expressions, and in particular comparisons, give rise to yet another intermediate item mode:
the condition code mode Coc. This mode signifies that the operand's value is held in the condition code
register in encoded form. Consider, for example, the expression x < y, which is translated into the
single instruction CMPi y, x. The resulting Boolean item assumes the Coc-mode, and its attribute a0
indicates that the value FALSE is obtained by an Scond (or Bcond) instruction with a0 as its condition
mask. The a0 attribute depends on the relation (<) specified.

 326

The cases of Boolean conjunction and disjunction are more intricate. As mentioned before, these
operations must be represented by conditional jumps rather than explicit AND and OR instructions.
For example, the expression

(x <= y) & (y < z)

yields the instruction sequence

 CMPi y, x
L BLT ?
 CMPi z, y

and the result item with Coc-mode and a0 reflecting the relation < . In addition to the attribute a0, the
attribute a1 identifies the location L of the BLT instruction, which performs a branch, if y < x, i.e. ~(x
<= y). The first two instructions are emitted by procedure MOp called from Compiler.Term, the last
one by Op (also called from Term).

Similarly, the expression

(x = 1) OR (y = 3)

yields the instruction sequence

 CMPQi 1, x
L BEQ ?
 CMPQi 3, y

and the result item with Coc-mode and a0 reflecting the relation = . The branch location L is specified
by attribute a2 (instead of a1), because the branch is taken when the first comparison yields TRUE
(instead of FALSE).

The more general cases of expressions p & q & ... & z and p OR q OR ... OR z yield sets of conditional
branches that are to be taken, if the expression value is FALSE or TRUE respectively. The locations of
these branches are recorded in a list, the so-called F-list or T-list respectively; its head is recorded by
the attribute a1 (or a2), and the links are embedded in the code in place of the branch addresses, which
will be inserted when the jump destinations are known.

The most general case requires the presence of both the F-list and the T-list simultaneously. It is
exemplified by the following expression:

(a < b) & (c < d) OR (e < f) & (g < h)

which is represented by the instructions

 CMPi b, a
 BLE L1
 CMPi d, c
L0 BGT ?
L1 CMPi f, e
L2 BLE ?
 CMPi h, g

The F-list of the resulting item contains the single element L2, and the T-list the single element L0. For
more details, the reader is referred to the listing of module OCE below; the construction of the lists and
the substitution of links by the branch offsets is handled by procedures in module OCC. In passing we
note that Boolean expressions also occur in if, while, and repeat statements, where the branch targets
are known only after the entire statement has been processed.

A fairly sizeable amount of program is devoted to the seemingly harmless concept of type inclusion. It
is a relaxation of the strict requirement of type equality of operands in an expression. Because,
however, the computer's instructions strictly require that both operands be of the same type, they have
to be preceded by conversion instructions in cases of "mixed expressions". We refrain from going into
details and merely mention that implicit conversions of integers are handled by MOVXij instructions

 327

implying sign extension, and those involving floating-point operands by MOVif and MOVFL
instructions.

An even much larger part of module OCE is devoted to standard procedures and functions. Calls of
them do not generate subroutine instructions, but rather in-line code. Therefore, each standard
procedure represents an individual case, and they have little in common. Some procedures, namely
SIZE, ADR, MIN, MAX, CHR, SHORT, LEN, CC, and VAL may not even generate any instructions.
The three procedures StPar1, StPar2, and StPar3 are each devoted to the handling of one parameter.
Typically, instructions are emitted after the last parameter is recognized.

MODULE OCE; (*NW 7.6.87 / 5.3.91*)
 IMPORT SYSTEM, OCS, OCT, OCC;

 CONST (*instruction format prefixes*)
 F6 = 4EH; F7 = 0CEH; F9 = 3EH; F11 = 0BEH;
 (*frequent operation codes: 5C, 5D, 5F = MOVQi, 14, 15, 17 = MOVi, 27 = ADDR*)

 (*object and item modes*)
 Var = 1; VarX = 2; Ind = 3; IndX = 4; RegI = 5;
 RegX = 6; Abs = 7; Con = 8; Stk = 9; Coc = 10;
 Reg = 11; Fld = 12; Typ = 13;

 (*structure forms*)
 Undef = 0; Byte = 1; Bool = 2; Char = 3; SInt = 4; Int = 5; LInt = 6;
 Real = 7; LReal = 8; Set = 9; String = 10; NilTyp = 11; NoTyp = 12;
 Pointer = 13; ProcTyp = 14; Array = 15; DynArr = 16; Record = 17;

 VAR inxchk*: BOOLEAN;
 log: INTEGER; (*side effect of mant*)
 lengcode: ARRAY 18 OF INTEGER;
 intSet, realSet: SET;

 PROCEDURE inverted(x: LONGINT): LONGINT;
 BEGIN (*inverted sense of condition code*)
 IF ODD(x) THEN RETURN x-1 ELSE RETURN x+1 END
 END inverted;

 PROCEDURE load(VAR x: OCT.Item);
 VAR y: OCT.Item;
 BEGIN
 IF x.mode < Reg THEN
 y := x; OCC.GetReg(x);
 IF (y.mode = Con) & (-8 <= y.a0) & (y.a0 <= 7) THEN
 OCC.PutF2(lengcode[x.typ.form] + 5CH, y.a0, x)
 ELSE OCC.PutF4(lengcode[x.typ.form] + 14H, x, y)
 END
 ELSIF x.mode > Reg THEN OCS.Mark(126)
 END
 END load;

 PROCEDURE loadX(VAR x: OCT.Item);
 VAR y: OCT.Item;
 BEGIN
 IF x.mode <= Reg THEN
 y := x; OCC.GetReg(x);
 IF (y.mode = Con) & (-8 <= y.a0) & (y.a0 <= 7) THEN
 OCC.PutF2(5FH, y.a0, x)
 ELSE OCC.Put(F7, lengcode[x.typ.form] + 1CH, x, y) (*MOVXiD*)
 END
 ELSIF x.mode > Reg THEN OCS.Mark(126)

 328

 END
 END loadX;

 PROCEDURE loadF(VAR x: OCT.Item);
 VAR y: OCT.Item;
 BEGIN
 IF x.mode < Reg THEN
 y := x; OCC.GetFReg(x); OCC.Put(F11, lengcode[x.typ.form] + 4, x, y) (*MOVf*)
 ELSIF x.mode > Reg THEN OCS.Mark(126)
 END
 END loadF;

 PROCEDURE loadB(VAR x: OCT.Item); (*Coc-Mode*)
 VAR L0, L1: LONGINT;
 BEGIN
 IF (x.a1 = 0) & (x.a2 = 0) THEN
 L0 := x.a0; OCC.GetReg(x); OCC.PutF2(3CH, L0, x)
 ELSE OCC.PutF0(inverted(x.a0)); OCC.PutWord(x.a2); L0 := OCC.pc - 2;
 OCC.FixLink(x.a1); OCC.GetReg(x); OCC.PutF2(5CH, 1, x);
 OCC.PutF0(14); L1 := OCC.pc; OCC.PutWord(0);
 OCC.FixLink(L0); OCC.PutF2(5CH, 0, x); OCC.fixup(L1)
 END
 END loadB;

 PROCEDURE loadAdr(VAR x: OCT.Item);
 VAR y: OCT.Item;
 BEGIN
 IF x.mode < Con THEN
 y := x; OCC.GetReg(x);
 IF (y.mode = Ind) & (y.a1 = 0) THEN y.mode := Var; OCC.PutF4(17H, x, y)
 ELSE OCC.PutF4(27H, x, y); x.a1 := 0
 END ;
 x.mode := RegI; x.obj := NIL
 ELSE OCS.Mark(127)
 END
 END loadAdr;

 PROCEDURE setCC(VAR x: OCT.Item; cc: LONGINT);
 BEGIN
 x.typ := OCT.booltyp; x.mode := Coc; x.a0 := cc; x.a1 := 0; x.a2 := 0
 END setCC;

 PROCEDURE cmp(L: INTEGER; VAR x, y: OCT.Item);
 BEGIN
 IF (y.mode = Con) & (y.a0 <= 7) & (y.a0 >= -8) THEN
 OCC.PutF2(L+1CH, y.a0, x) (*CMPQi*)
 ELSE OCC.PutF4(L+4, x, y) (*CMPi*)
 END
 END cmp;

 PROCEDURE add(L: INTEGER; VAR x, y: OCT.Item);
 BEGIN
 IF (y.mode = Con) & (y.a0 <= 7) & (y.a0 >= -8) THEN
 OCC.PutF2(L+0CH, y.a0, x) (*ADDQi*)
 ELSE OCC.PutF4(L, x, y) (*ADDi*)
 END
 END add;

 329

 PROCEDURE sub(L: INTEGER; VAR x, y: OCT.Item);
 BEGIN
 IF (y.mode = Con) & (y.a0 <= 8) & (y.a0 >= -7) THEN
 OCC.PutF2(L+0CH, -y.a0, x) (*ADDQi*)
 ELSE OCC.PutF4(L+20H, x, y) (*SUBi*)
 END
 END sub;

 PROCEDURE mant(x: LONGINT): LONGINT; (*x DIV 2^log*)
 BEGIN log := 0;
 IF x > 0 THEN
 WHILE ~ODD(x) DO x := x DIV 2; INC(log) END
 END ;
 RETURN x
 END mant;

 PROCEDURE SetIntType*(VAR x: OCT.Item);
 VAR v: LONGINT;
 BEGIN v := x.a0;
 IF (-80H <= v) & (v <= 7FH) THEN x.typ := OCT.sinttyp
 ELSIF (-8000H <= v) & (v <= 7FFFH) THEN x.typ := OCT.inttyp
 ELSE x.typ := OCT.linttyp
 END
 END SetIntType;

 PROCEDURE AssReal*(VAR x: OCT.Item; y: REAL);
 BEGIN SYSTEM.PUT(SYSTEM.ADR(x.a0), y)
 END AssReal;

 PROCEDURE AssLReal*(VAR x: OCT.Item; y: LONGREAL);
 BEGIN SYSTEM.PUT(SYSTEM.ADR(x.a0), y)
 END AssLReal;

 PROCEDURE Index*(VAR x, y: OCT.Item);
 VAR f, n: INTEGER; i: LONGINT;
 eltyp: OCT.Struct; y1, z: OCT.Item;
 BEGIN f := y.typ.form;
 IF ~(f IN intSet) THEN OCS.Mark(80); y.typ := OCT.inttyp END ;
 IF x.typ = NIL THEN HALT(80) END ;
 IF x.typ.form = Array THEN
 eltyp := x.typ.BaseTyp; n := x.typ.n;
 IF eltyp = NIL THEN HALT(81) END ;
 IF y.mode = Con THEN
 IF (0 <= y.a0) & (y.a0 < n) THEN i := y.a0 * eltyp.size
 ELSE OCS.Mark(81); i := 0
 END ;
 IF x.mode = Var THEN INC(x.a0, i)
 ELSIF (x.mode = Ind) OR (x.mode = RegI) THEN INC(x.a1, i); x.obj := NIL
 ELSE loadAdr(x); x.a1 := i
 END
 ELSE
 IF inxchk THEN (*z = bound descr*)
 z.mode := Var; z.a0 := x.typ.adr; z.lev := -x.typ.mno;
 IF y.mode = Reg THEN y1 := y ELSE OCC.GetReg(y1) END ;
 IF f = SInt THEN OCC.Put(F7, 10H, y1, y); y := y1 END ; (*MOVXBW*)
 OCC.Put(0EEH, SHORT(y1.a0)*8+1, y, z); OCC.PutF1(0D2H) (*CHECK, FLAG*)
 ELSE
 IF f = LInt THEN load(y) ELSE loadX(y) END ;

 330

 y1 := y
 END ;
 f := x.mode;
 IF x.mode = Var THEN x.mode := VarX; x.a2 := y1.a0
 ELSIF x.mode = Ind THEN x.mode := IndX; x.a2 := y1.a0
 ELSIF x.mode = RegI THEN x.mode := RegX; x.a2 := y1.a0
 ELSIF x.mode IN {VarX, IndX, RegX} THEN
 z.mode := Con; z.typ := OCT.inttyp;
 z.a0 := (x.typ.size DIV eltyp.size) - 1;
 OCC.Put(2EH, SHORT(x.a2)*8+5, y1, z) (*INDEX*)
 ELSE loadAdr(x); x.mode := RegX; x.a1 := 0; x.a2 := y1.a0
 END
 END ;
 x.typ := eltyp
 ELSIF x.typ.form = DynArr THEN
 IF inxchk THEN
 z.mode := Var; z.a0 := x.a0 + x.typ.adr; z.lev := x.lev;
 IF y.mode = Reg THEN y1 := y ELSE OCC.GetReg(y1) END ;
 IF f = SInt THEN
 IF y.mode = Con THEN y.typ := OCT.inttyp
 ELSE OCC.Put(F7, 10H, y1, y); y := y1
 END
 END ;
 OCC.Put(0EEH, SHORT(y1.a0)*8+1, y, z); OCC.PutF1(0D2H) (*CHECK, FLAG*)
 ELSE
 IF f = LInt THEN load(y) ELSE loadX(y) END ;
 y1 := y
 END ;
 IF x.mode IN {Var, Ind} THEN x.mode := IndX; x.a2 := y1.a0
 ELSIF x.mode = RegI THEN x.mode := RegX; x.a2 := y1.a0
 ELSIF x.mode IN {IndX, RegX} THEN
 z.mode := Var; z.a0 := x.a0 + x.typ.adr; z.lev := x.lev;
 OCC.Put(2EH, SHORT(x.a2)*8+5, y1, z) (*INDEX*)
 ELSE loadAdr(x); x.mode := RegX; x.a1 := 0; x.a2 := y1.a0
 END ;
 x.typ := x.typ.BaseTyp
 ELSE OCS.Mark(82)
 END
 END Index;

 PROCEDURE Field*(VAR x: OCT.Item; y: OCT.Object);
 BEGIN (*x.typ.form = Record*)
 IF (y # NIL) & (y.mode = Fld) THEN
 IF x.mode = Var THEN INC(x.a0, y.a0)
 ELSIF (x.mode = Ind) OR (x.mode = RegI) THEN INC(x.a1, y.a0)
 ELSE loadAdr(x); x.mode := RegI; x.a1 := y.a0
 END ;
 x.typ := y.typ; x.obj := NIL
 ELSE OCS.Mark(83); x.typ := OCT.undftyp; x.mode := Var
 END
 END Field;

 PROCEDURE DeRef*(VAR x: OCT.Item);
 BEGIN
 IF x.typ.form = Pointer THEN
 IF (x.mode = Var) & (x.lev >= 0) THEN x.mode := Ind
 ELSE load(x); x.mode := RegI

 331

 END ;
 x.typ := x.typ.BaseTyp; x.obj := OCC.wasderef
 ELSE OCS.Mark(84)
 END ;
 x.a1 := 0
 END DeRef;

 PROCEDURE TypTest*(VAR x, y: OCT.Item; test: BOOLEAN);

 PROCEDURE GTT(t0, t1: OCT.Struct; varpar: BOOLEAN);
 VAR t: OCT.Struct; xt, tdes, p: OCT.Item;
 BEGIN
 IF t0 # t1 THEN t := t1;
 REPEAT t := t.BaseTyp UNTIL (t = NIL) OR (t = t0);
 IF t # NIL THEN x.typ := y.typ;
 IF OCC.typchk OR test THEN xt := x;
 IF varpar THEN xt.mode := Ind; xt.a0 := x.a0+4
 ELSIF (x.mode = Var) & (x.lev >= 0) THEN
 xt.mode := Ind; xt.a1 := -4; load(xt); xt.mode := RegI
 ELSE load(xt); p := xt; p.mode := RegI; p.a1 := -4;
 OCC.PutF4(17H, xt, p); (*MOVD -4(xt), xt *) xt.mode := RegI
 END ;
 xt.a1 := t1.n * 4; tdes.mode := Var; tdes.lev := -t1.mno; tdes.a0 := t1.adr;
 OCC.PutF4(7, tdes, xt); (*CMPD*)
 IF ~test THEN
 OCC.PutF0(0); OCC.PutDisp(4); OCC.PutF1(0F2H); OCC.PutByte(18)
 ELSE setCC(x, 0)
 END
 END
 ELSE OCS.Mark(85);
 IF test THEN x.typ := OCT.booltyp END
 END
 ELSIF test THEN setCC(x, 14)
 END
 END GTT;

 BEGIN
 IF x.typ.form = Pointer THEN
 IF y.typ.form = Pointer THEN
 GTT(x.typ.BaseTyp, y.typ.BaseTyp, FALSE)
 ELSE OCS.Mark(86)
 END
 ELSIF (x.typ.form = Record) & (x.mode = Ind) & (x.obj # NIL) &
 (x.obj # OCC.wasderef) & (y.typ.form = Record) THEN
 GTT(x.typ, y.typ, TRUE)
 ELSE OCS.Mark(87)
 END
 END TypTest;

 PROCEDURE In*(VAR x, y: OCT.Item);
 VAR f: INTEGER;
 BEGIN f := x.typ.form;
 IF (f IN intSet) & (y.typ.form = Set) THEN
 IF y.mode = Con THEN load(y) END ;
 OCC.PutF4(lengcode[f]+34H, y, x); setCC(x, 8) (*TBITi*)
 ELSE OCS.Mark(92); x.mode := Reg
 END ;

 332

 x.typ := OCT.booltyp
 END In;

 PROCEDURE Set0*(VAR x, y: OCT.Item);
 VAR one: LONGINT;
 BEGIN x.mode := Reg; x.a0 := 0; x.typ := OCT.settyp;
 IF y.typ.form IN intSet THEN
 IF y.mode = Con THEN x.mode := Con;
 IF (0 <= y.a0) & (y.a0 < 32) THEN one := 1; x.a0 := SYSTEM.LSH(one, y.a0)
 ELSE OCS.Mark(202)
 END
 ELSE OCC.GetReg(x); OCC.PutF2(5FH, 1, x); OCC.Put(F6, 17H, x, y) (*LSHD*)
 END
 ELSE OCS.Mark(93)
 END
 END Set0;

 PROCEDURE Set1*(VAR x, y, z: OCT.Item);
 VAR s: LONGINT;
 BEGIN x.mode := Reg; x.a0 := 0; x.typ := OCT.settyp;
 IF (y.typ.form IN intSet) & (z.typ.form IN intSet) THEN
 IF y.mode = Con THEN
 IF (0 <= y.a0) & (y.a0 < 32) THEN
 y.typ := OCT.settyp; s := -1; y.a0 := SYSTEM.LSH(s, y.a0);
 IF z.mode = Con THEN
 x.mode := Con;
 IF (y.a0 <= z.a0) & (z.a0 < 32) THEN s := -2; x.a0 := y.a0-SYSTEM.LSH(s, z.a0)
 ELSE OCS.Mark(202); x.a0 := 0
 END
 ELSIF y.a0 = -1 THEN
 OCC.GetReg(x); OCC.PutF2(5FH, -2, x); OCC.Put(F6, 17H, x, z);
 OCC.Put(F6, 37H, x, x) (*LSHD, COMD*)
 ELSE OCC.GetReg(x); OCC.PutF4(17H, x, y); OCC.GetReg(y);
 OCC.PutF2(5FH, -2, y); OCC.Put(F6, 17H, y, z); OCC.PutF4(0BH, x, y)
 END
 ELSE OCS.Mark(202)
 END
 ELSE OCC.GetReg(x); OCC.PutF2(5FH, -1, x); OCC.Put(F6, 17H, x, y);
 IF z.mode = Con THEN
 IF (0 <= z.a0) & (z.a0 < 32) THEN
 y.typ := OCT.settyp; y.mode := Con; s := -2; y.a0 := SYSTEM.LSH(s, z.a0)
 ELSE OCS.Mark(202)
 END
 ELSE OCC.GetReg(y); OCC.PutF2(5FH, -2, y); OCC.Put(F6, 17H, y, z) (*LSHD*)
 END ;
 OCC.PutF4(0BH, x, y) (*BICD*)
 END
 ELSE OCS.Mark(93)
 END
 END Set1;

 PROCEDURE MOp*(op: INTEGER; VAR x: OCT.Item);
 VAR f, L: INTEGER; a: LONGINT; y: OCT.Item;
 BEGIN f := x.typ.form;
 CASE op OF
 5: (*&*)
 IF x.mode = Coc THEN

 333

 OCC.PutF0(inverted(x.a0)); OCC.PutWord(x.a2);
 x.a2 := OCC.pc-2; OCC.FixLink(x.a1)
 ELSIF (x.typ.form = Bool) & (x.mode # Con) THEN
 OCC.PutF2(1CH, 1, x); setCC(x, 0);
 OCC.PutF0(1); OCC.PutWord(x.a2); x.a2 := OCC.pc-2; OCC.FixLink(x.a1)
 ELSIF x.typ.form # Bool THEN
 OCS.Mark(94); x.mode := Con; x.typ := OCT.booltyp; x.a0 := 0
 END
 | 6: (*+*)
 IF ~(f IN intSet + realSet) THEN OCS.Mark(96) END
 | 7: (*-*)
 y := x; L := lengcode[f];
 IF f IN intSet THEN
 IF x.mode = Con THEN x.a0 := -x.a0; SetIntType(x)
 ELSE OCC.GetReg(x); OCC.Put(F6, L+20H, x, y) (*NEGi*)
 END
 ELSIF f IN realSet THEN
 OCC.GetFReg(x); OCC.Put(F11, L+14H, x, y) (*NEGf*)
 ELSIF f = Set THEN OCC.GetReg(x); OCC.Put(F6, 37H, x, y) (*COMD*)
 ELSE OCS.Mark(97)
 END
 | 8: (*OR*)
 IF x.mode = Coc THEN
 OCC.PutF0(x.a0); OCC.PutWord(x.a1); x.a1 := OCC.pc-2;
 OCC.FixLink(x.a2)
 ELSIF (x.typ.form = Bool) & (x.mode # Con) THEN
 OCC.PutF2(1CH, 1, x); setCC(x, 0);
 OCC.PutF0(0); OCC.PutWord(x.a1); x.a1 := OCC.pc-2; OCC.FixLink(x.a2)
 ELSIF x.typ.form # Bool THEN
 OCS.Mark(95); x.mode := Con; x.typ := OCT.booltyp; x.a0 := 1
 END
 | 9 .. 14: (*relations*)
 IF x.mode = Coc THEN loadB(x) END
 | 32: (*~*)
 IF x.typ.form = Bool THEN
 IF x.mode = Coc THEN x.a0 := inverted(x.a0);
 a := x.a1; x.a1 := x.a2; x.a2 := a
 ELSE OCC.PutF2(1CH, 0, x); setCC(x, 0)
 END
 ELSE OCS.Mark(98)
 END
 END
 END MOp;

 PROCEDURE convert1(VAR x: OCT.Item; typ: OCT.Struct);
 VAR y: OCT.Item; op: INTEGER;
 BEGIN
 IF x.mode # Con THEN
 y := x;
 IF typ.form = Int THEN op := 10H
 ELSE op := lengcode[x.typ.form] + 1CH
 END;
 IF x.mode < Reg THEN OCC.GetReg(x) END ;
 OCC.Put(F7, op, x, y) (*MOVij*)
 END ;

 334

 x.typ := typ
 END convert1;

 PROCEDURE convert2(VAR x: OCT.Item; typ: OCT.Struct);
 VAR y: OCT.Item;
 BEGIN y := x; OCC.GetFReg(x); (*MOVif*)
 OCC.Put(F9, lengcode[typ.form]*4 + lengcode[x.typ.form], x, y); x.typ := typ
 END convert2;

 PROCEDURE convert3(VAR x: OCT.Item);
 VAR y: OCT.Item;
 BEGIN y := x;
 IF x.mode < Reg THEN OCC.GetFReg(x) END ;
 OCC.Put(F9, 1BH, x, y); x.typ := OCT.lrltyp (*MOVFL*)
 END convert3;

 PROCEDURE Op*(op: INTEGER; VAR x, y: OCT.Item);
 VAR f, g, L: INTEGER; p, q, r: OCT.Struct;

 PROCEDURE strings(): BOOLEAN;
 BEGIN RETURN
 ((((f=Array) OR (f=DynArr)) & (x.typ.BaseTyp.form=Char)) OR (f=String)) &
 ((((g=Array) OR (g=DynArr)) & (y.typ.BaseTyp.form=Char)) OR (g=String))
 END strings

 PROCEDURE CompStrings(cc: INTEGER; Q: BOOLEAN);
 VAR z: OCT.Item;
 BEGIN z.mode := Reg; z.a0 := 2;
 IF f = DynArr THEN OCC.DynArrAdr(z, x)
 ELSE OCC.PutF4(27H, z, x)
 END ;
 z.a0 := 1;
 IF g = DynArr THEN OCC.DynArrAdr(z, y)
 ELSE OCC.PutF4(27H, z, y)
 END ;
 z.a0 := 0; OCC.PutF2(5FH, -1, z); (*MOVQD -1, R0*)
 z.a0 := 4; OCC.PutF2(5FH, 0, z); (*MOVQD 0, R4*)
 OCC.PutF1(14); OCC.PutF1(4); OCC.PutF1(6); (*CMPSB 6*)
 IF Q THEN (*compare also with zero byte*)
 OCC.PutF0(9); OCC.PutDisp(5); (*BFC*)
 z.mode := RegI; z.a0 := 2; z.a1 := 0; OCC.PutF2(1CH, 0, z) (*CMPQB*)
 END ;
 setCC(x, cc)
 END CompStrings

 PROCEDURE CompBool(cc: INTEGER);
 BEGIN
 IF y.mode = Coc THEN loadB(y) END ;
 OCC.PutF4(4, x, y); setCC(x, cc)
 END CompBool;

 BEGIN
 IF x.typ # y.typ THEN
 g := y.typ.form;
 CASE x.typ.form OF
 Undef:
 | SInt: IF g = Int THEN convert1(x, y.typ)
 ELSIF g = LInt THEN convert1(x, y.typ)
 ELSIF g = Real THEN convert2(x, y.typ)

 335

 ELSIF g = LReal THEN convert2(x, y.typ)
 ELSE OCS.Mark(100)
 END
 | Int: IF g = SInt THEN convert1(y, x.typ)
 ELSIF g = LInt THEN convert1(x, y.typ)
 ELSIF g = Real THEN convert2(x, y.typ)
 ELSIF g = LReal THEN convert2(x, y.typ)
 ELSE OCS.Mark(100)
 END
 | LInt: IF g = SInt THEN convert1(y, x.typ)
 ELSIF g = Int THEN convert1(y, x.typ)
 ELSIF g = Real THEN convert2(x, y.typ)
 ELSIF g = LReal THEN convert2(x, y.typ)
 ELSE OCS.Mark(100)
 END
 | Real: IF g = SInt THEN convert2(y, x.typ)
 ELSIF g = Int THEN convert2(y, x.typ)
 ELSIF g = LInt THEN convert2(y, x.typ)
 ELSIF g = LReal THEN convert3(x)
 ELSE OCS.Mark(100)
 END
 | LReal: IF g = SInt THEN convert2(y, x.typ)
 ELSIF g = Int THEN convert2(y, x.typ)
 ELSIF g = LInt THEN convert2(y, x.typ)
 ELSIF g = Real THEN convert3(y)
 ELSE OCS.Mark(100)
 END
 | NilTyp: IF g # Pointer THEN OCS.Mark(100) END
 | Pointer: IF g = Pointer THEN
 p := x.typ.BaseTyp; q := y.typ.BaseTyp;
 IF (p.form = Record) & (q.form = Record) THEN
 IF p.n < q.n THEN r := p; p := q; q := r END;
 WHILE (p # q) & (p # NIL) DO p := p.BaseTyp END;
 IF p = NIL THEN OCS.Mark(100) END
 ELSE OCS.Mark(100)
 END
 ELSIF g # NilTyp THEN OCS.Mark(100)
 END
 | ProcTyp: IF g # NilTyp THEN OCS.Mark(100) END
 | Array, DynArr, String:
 | Byte, Bool, Char, Set, NoTyp, Record: OCS.Mark(100)
 END
 END ;
 f := x.typ.form; g := y.typ.form; L := lengcode[f];

 CASE op OF
 1: IF f IN intSet THEN (***)
 IF (x.mode = Con) & (y.mode = Con) THEN (*ovfl test missing*)
 x.a0 := x.a0 * y.a0; SetIntType(x)
 ELSIF (x.mode = Con) & (mant(x.a0) = 1) THEN
 x.a0 := log; x.typ := OCT.sinttyp;
 load(y); OCC.Put(F6, L+4, y, x); (*ASHi*) x := y
 ELSIF (y.mode = Con) & (mant(y.a0) = 1) THEN
 y.a0 := log; y.typ := OCT.sinttyp;
 load(x); OCC.Put(F6, L+4, x, y) (*ASHi*)
 ELSE load(x); OCC.Put(F7, L+20H, x, y) (*MULi*)

 336

 END
 ELSIF f IN realSet THEN
 loadF(x); OCC.Put(F11, 30H+L, x, y) (*MULf*)
 ELSIF f = Set THEN
 load(x); OCC.PutF4(2BH, x, y) (*ANDD*)
 ELSIF f # Undef THEN OCS.Mark(101)
 END
 | 2: IF f IN realSet THEN (*/*)
 loadF(x); OCC.Put(F11, 20H+L, x, y) (*DIVf*)
 ELSIF f IN intSet THEN
 convert2(x, OCT.realtyp); convert2(y, OCT.realtyp);
 OCC.Put(F11, 21H, x, y) (*DIVF*)
 ELSIF f = Set THEN
 load(x); OCC.PutF4(3BH, x, y) (*XORD*)
 ELSIF f # Undef THEN OCS.Mark(102)
 END
 | 3: IF f IN intSet THEN (*DIV*)
 IF (x.mode = Con) & (y.mode = Con) THEN
 IF y.a0 # 0 THEN x.a0 := x.a0 DIV y.a0; SetIntType(x)
 ELSE OCS.Mark(205)
 END
 ELSIF (y.mode = Con) & (mant(y.a0) = 1) THEN
 y.a0 := -log; y.typ := OCT.sinttyp;
 load(x); OCC.Put(F6, L+4, x, y) (*ASHi*)
 ELSE load(x); OCC.Put(F7, L+3CH, x, y) (*DIVi*)
 END
 ELSIF f # Undef THEN OCS.Mark(103)
 END
 | 4: IF f IN intSet THEN (*MOD*)
 IF (x.mode = Con) & (y.mode = Con) THEN
 IF y.a0 # 0 THEN x.a0 := x.a0 MOD y.a0; x.typ := y.typ
 ELSE OCS.Mark(205)
 END
 ELSIF (y.mode = Con) & (mant(y.a0) = 1) THEN
 y.a0 := ASH(-1, log); load(x); OCC.PutF4(L+8, x, y) (*BICi*)
 ELSE load(x); OCC.Put(F7, L+38H, x, y) (*MODi*)
 END
 ELSIF f # Undef THEN OCS.Mark(104)
 END
 | 5: IF y.mode # Coc THEN (*&*)
 IF y.mode = Con THEN
 IF y.a0 = 1 THEN setCC(y, 14) ELSE setCC(y, 15) END
 ELSIF y.mode <= Reg THEN OCC.PutF2(1CH, 1, y); setCC(y, 0)
 ELSE OCS.Mark(94); setCC(y, 0)
 END
 END ;
 IF x.mode = Con THEN
 IF x.a0 = 0 THEN OCC.FixLink(y.a1); OCC.FixLink(y.a2); setCC(y, 15) END ;
 setCC(x, 0)
 END;
 IF y.a2 # 0 THEN x.a2 := OCC.MergedLinks(x.a2, y.a2) END ;
 x.a0 := y.a0; x.a1 := y.a1
 | 6: IF f IN intSet THEN (*+*)
 IF (x.mode = Con) & (y.mode = Con) THEN
 INC(x.a0, y.a0); SetIntType(x) (*ovfl test missing*)
 ELSE load(x); add(L, x, y)

 337

 END
 ELSIF f IN realSet THEN
 loadF(x); OCC.Put(F11, L, x, y) (*ADDf*)
 ELSIF f = Set THEN
 IF (x.mode = Con) & (y.mode = Con) THEN x.a0 := SYSTEM.VAL
 (LONGINT, SYSTEM.VAL(SET, x.a0) + SYSTEM.VAL(SET, y.a0))
 ELSE load(x); OCC.PutF4(1BH, x, y) (*ORD*)
 END
 ELSIF f # Undef THEN OCS.Mark(105)
 END
 | 7: IF f IN intSet THEN (*-*)
 IF (x.mode = Con) & (y.mode = Con) THEN
 DEC(x.a0, y.a0); SetIntType(x) (*ovfl test missing*)
 ELSE load(x); sub(L, x, y)
 END
 ELSIF f IN realSet THEN
 loadF(x); OCC.Put(F11, 10H+L, x, y) (*SUBf*)
 ELSIF f = Set THEN load(x); OCC.PutF4(0BH, x, y) (*BICD*)
 ELSIF f # Undef THEN OCS.Mark(106)
 END
 | 8: IF y.mode # Coc THEN (*OR*)
 IF y.mode = Con THEN
 IF y.a0 = 1 THEN setCC(y, 14) ELSE setCC(y, 15) END
 ELSIF y.mode <= Reg THEN OCC.PutF2(1CH, 1, y); setCC(y, 0)
 ELSE OCS.Mark(95); setCC(y, 0)
 END
 END ;
 IF x.mode = Con THEN
 IF x.a0 = 1 THEN OCC.FixLink(y.a1); OCC.FixLink(y.a2); setCC(y, 14) END ;
 setCC(x, 0)
 END ;
 IF y.a1 # 0 THEN x.a1 := OCC.MergedLinks(x.a1, y.a1) END ;
 x.a0 := y.a0; x.a2 := y.a2
 | 9: IF f IN {Undef, Char..LInt, Set, NilTyp, Pointer, ProcTyp} THEN
 cmp(L, x, y); setCC(x, 0)
 ELSIF f IN realSet THEN OCC.Put(F11, 8+L, x, y); setCC(x, 0)
 ELSIF f = Bool THEN CompBool(0)
 ELSIF strings() THEN CompStrings(0, TRUE)
 ELSE OCS.Mark(107)
 END
 |10: IF f IN {Undef, Char..LInt, Set, NilTyp, Pointer, ProcTyp} THEN
 cmp(L, x, y); setCC(x, 1)
 ELSIF f IN realSet THEN OCC.Put(F11, 8+L, x, y); setCC(x, 1)
 ELSIF f = Bool THEN CompBool(1)
 ELSIF strings() THEN CompStrings(1, TRUE)
 ELSE OCS.Mark(107)
 END
 |11: IF f IN intSet THEN cmp(L, x, y); setCC(x, 6)
 ELSIF f = Char THEN cmp(0, x, y); setCC(x, 4)
 ELSIF f IN realSet THEN OCC.Put(F11, 8+L, x, y); setCC(x, 6)
 ELSIF strings() THEN CompStrings(4, FALSE)
 ELSE OCS.Mark(108)
 END
 |12: IF f IN intSet THEN cmp(L, x, y); setCC(x, 13)
 ELSIF f = Char THEN cmp(0, x, y); setCC(x, 11)
 ELSIF f IN realSet THEN OCC.Put(F11, 8+L, x, y); setCC(x, 13)

 338

 ELSIF strings() THEN CompStrings(11, TRUE)
 ELSE OCS.Mark(108)
 END
 |13: IF f IN intSet THEN cmp(L, x, y); setCC(x, 12)
 ELSIF f = Char THEN cmp(0, x, y); setCC(x, 10)
 ELSIF f IN realSet THEN OCC.Put(F11, 8+L, x, y); setCC(x, 12)
 ELSIF strings() THEN CompStrings(10, TRUE)
 ELSE OCS.Mark(108)
 END
 |14: IF f IN intSet THEN cmp(L, x, y); setCC(x, 7)
 ELSIF f = Char THEN cmp(0, x, y); setCC(x, 5)
 ELSIF f IN realSet THEN OCC.Put(F11, 8+L, x, y); setCC(x, 7)
 ELSIF strings() THEN CompStrings(5, FALSE)
 ELSE OCS.Mark(108)
 END
 END
 END Op;

 PROCEDURE StPar1*(VAR x: OCT.Item; fctno: INTEGER);
 VAR f, L: INTEGER; s: LONGINT; y: OCT.Item;
 BEGIN f := x.typ.form;
 CASE fctno OF
 0: (*HALT*)
 IF (f = SInt) & (x.mode = Con) THEN
 IF x.a0 >= 20 THEN OCC.PutF1(0F2H); OCC.PutByte(x.a0) (*BPT*)
 ELSE OCS.Mark(218)
 END
 ELSE OCS.Mark(217)
 END ;
 x.typ := OCT.notyp
 | 1: (*NEW*) y.mode := Reg;
 IF f = Pointer THEN
 y.a0 := 0; OCC.PutF4(27H, y, x);
 x.typ := x.typ.BaseTyp; f := x.typ.form;
 IF x.typ.size > 7FFF80H THEN OCS.Mark(227)
 ELSIF f = Record THEN
 y.a0 := 1; x.mode := Var; x.lev := -x.typ.mno;
 x.a0 := x.typ.adr; OCC.PutF4(17H, y, x);
 OCC.PutF1(0E2H); OCC.PutByte(0) (*SVC 0*)
 ELSIF f = Array THEN
 y.a0 := 2; x.a0 := x.typ.size; x.mode := Con; x.typ := OCT.linttyp;
 OCC.PutF4(17H, y, x); OCC.PutF1(0E2H); OCC.PutByte(1) (*SVC 1*)
 ELSE OCS.Mark(111)
 END
 ELSE OCS.Mark(111)
 END ;
 x.typ := OCT.notyp
 | 2: (*CC*)
 IF (f = SInt) & (x.mode = Con) THEN
 IF (0 <= x.a0) & (x.a0 < 16) THEN setCC(x, x.a0) ELSE OCS.Mark(219) END
 ELSE OCS.Mark(217)
 END
 | 3: (*ABS*) y := x; L := lengcode[f];
 IF f IN intSet THEN
 OCC.GetReg(x); OCC.Put(F6, 30H+L, x, y) (*ABSi*)
 ELSIF f IN realSet THEN

 339

 OCC.GetFReg(x); OCC.Put(F11, 34H+L, x, y) (*ABSf*)
 ELSE OCS.Mark(111)
 END
 | 4: (*CAP*) y.mode := Con; y.typ := OCT.chartyp; y.a0 := 5FH;
 IF f = Char THEN load(x); OCC.PutF4(28H, x, y) (*ANDB*)
 ELSE OCS.Mark(111); x.typ := OCT.chartyp
 END
 | 5: (*ORD*)
 IF (f = Char) OR (f = Byte) THEN (*MOVZBW*)
 IF x.mode # Con THEN y := x; OCC.GetReg(x); OCC.Put(F7, 14H, x, y) END
 ELSE OCS.Mark(111)
 END ;
 x.typ := OCT.inttyp
 | 6: (*ENTIER*)
 IF f IN realSet THEN
 y := x; OCC.GetReg(x); OCC.Put(F9, lengcode[f]*4 + 3BH, x, y) (*FLOORfD*)
 ELSE OCS.Mark(111)
 END ;
 x.typ := OCT.linttyp
 | 7: (*SIZE*)
 IF x.mode = Typ THEN x.a0 := x.typ.size
 ELSE OCS.Mark(110); x.a0 := 1
 END ;
 x.mode := Con; SetIntType(x)
 | 8: (*ODD*)
 IF f IN intSet THEN
 y.mode := Con; y.typ := OCT.sinttyp; y.a0 := 0; OCC.PutF4(34H, x, y) (*TBITB 0*)
 ELSE OCS.Mark(111)
 END ;
 setCC(x, 8)
 | 9: (*ADR*)
 IF f = DynArr THEN y := x; OCC.GetReg(x); OCC.DynArrAdr(x, y)
 ELSE loadAdr(x); x.mode := Reg
 END ;
 x.typ := OCT.linttyp
 | 10: (*MIN*)
 IF x.mode = Typ THEN x.mode := Con;
 CASE f OF
 Bool, Char: x.a0 := 0
 | SInt: x.a0 := -80H
 | Int: x.a0 := -8000H
 | LInt: x.a0 := 80000000H
 | Real: x.a0 := 0FF7FFFFFH
 | LReal: x.a0 := 0FFFFFFFFH; x.a1 := 0FFEFFFFFH
 | Set: x.a0 := 0; x.typ := OCT.inttyp
 | Undef, NilTyp .. Record: OCS.Mark(111)
 END
 ELSE OCS.Mark(110)
 END
 | 11: (*MAX*)
 IF x.mode = Typ THEN x.mode := Con;
 CASE f OF
 Bool: x.a0 := 1
 | Char: x.a0 := 0FFH
 | SInt: x.a0 := 7FH
 | Int: x.a0 := 7FFFH

 340

 | LInt: x.a0 := 7FFFFFFFH
 | Real: x.a0 := 7F7FFFFFH
 | LReal: x.a0 := 0FFFFFFFFH; x.a1 := 7FEFFFFFH
 | Set: x.a0 := 31; x.typ := OCT.inttyp
 | Undef, NilTyp .. Record: OCS.Mark(111)
 END
 ELSE OCS.Mark(110)
 END |
 | 12: (*CHR*)
 IF ~(f IN {Undef, Byte, SInt, Int, LInt}) THEN OCS.Mark(111) END ;
 IF (x.mode = VarX) OR (x.mode = IndX) THEN load(x) END ;
 x.typ := OCT.chartyp
 | 13: (*SHORT*)
 IF f = LInt THEN (*range test missing*)
 IF (x.mode = VarX) OR (x.mode = IndX) THEN load(x)
 ELSIF x.mode = Con THEN SetIntType(x);
 IF x.typ.form = LInt THEN OCS.Mark(203) END
 END ;
 x.typ := OCT.inttyp
 ELSIF f = LReal THEN (*MOVLF*)
 y := x; OCC.GetFReg(x); OCC.Put(F9, 16H, x, y); x.typ := OCT.realtyp
 ELSIF f = Int THEN (*range test missing*)
 IF (x.mode = VarX) OR (x.mode = IndX) THEN load(x)
 ELSIF x.mode = Con THEN SetIntType(x);
 IF x.typ.form # SInt THEN OCS.Mark(203) END
 END ;
 x.typ := OCT.sinttyp
 ELSE OCS.Mark(111)
 END
 | 14: (*LONG*)
 IF f = Int THEN convert1(x, OCT.linttyp)
 ELSIF f = Real THEN convert3(x)
 ELSIF f = SInt THEN convert1(x, OCT.inttyp)
 ELSIF f = Char THEN
 y := x; OCC.GetReg(x); OCC.Put(F7, 18H, x, y); x.typ := OCT.linttyp (*MOVZBD*)
 ELSE OCS.Mark(111)
 END
 | 15: (*OVFL*)
 IF (f = Bool) & (x.mode = Con) THEN (*BICPSRB 10H*)
 OCC.PutF1(7CH); OCC.PutF1(SHORT(x.a0)*2 + 0A1H); OCC.PutF1(10H)
 ELSE OCS.Mark(111)
 END ;
 x.typ := OCT.notyp
 | 16,17: (*INC DEC*)
 IF x.mode >= Con THEN OCS.Mark(112)
 ELSIF ~(f IN intSet) THEN OCS.Mark(111)
 END
 | 18,19: (*INCL EXCL*)
 IF x.mode >= Con THEN OCS.Mark(112)
 ELSIF x.typ # OCT.settyp THEN OCS.Mark(111); x.typ := OCT.settyp
 END
 | 20: (*LEN*)
 IF (f # DynArr) & (f # Array) THEN OCS.Mark(131) END
 | 21: (*ASH*)
 IF f = LInt THEN load(x)
 ELSIF f IN intSet THEN loadX(x); x.typ := OCT.linttyp

 341

 ELSE OCS.Mark(111)
 END
 | 22, 23: (*LSH ROT*)
 IF f IN {Char, SInt, Int, LInt, Set} THEN load(x) ELSE OCS.Mark(111) END
 | 24,25,26: (*GET, PUT, BIT*)
 IF (f IN intSet) & (x.mode = Con) THEN x.mode := Abs
 ELSIF f = LInt THEN
 IF (x.mode = Var) & (x.lev >= 0) THEN x.mode := Ind; x.a1 := 0
 ELSE load(x); x.mode := RegI; x.a1 := 0
 END
 ELSE OCS.Mark(111)
 END
 | 27: (*VAL*)
 IF x.mode # Typ THEN OCS.Mark(110) END
 | 28: (*SYSTEM.NEW*)
 IF (f = Pointer) & (x.mode < Con) THEN
 y.mode := Reg; y.a0 := 0; OCC.PutF4(27H, y, x);
 ELSE OCS.Mark(111)
 END
 | 29: (*COPY*)
 IF (((f=Array) OR (f=DynArr)) & (x.typ.BaseTyp.form = Char))
 OR (f = String) THEN
 y.mode := Reg; y.a0 := 1;
 IF f = DynArr THEN OCC.DynArrAdr(y, x)
 ELSE OCC.PutF4(27H, y, x)
 END
 ELSE OCS.Mark(111)
 END
 | 30: (*MOVE*)
 IF f = LInt THEN y.mode := Reg; y.a0 := 1; OCC.PutF4(17H, y, x)
 ELSE OCS.Mark(111)
 END
 END
 END StPar1;

PROCEDURE StPar2*(VAR p, x: OCT.Item; fctno: INTEGER);
 VAR f, L: INTEGER; y, z: OCT.Item; typ: OCT.Struct;
 BEGIN f := x.typ.form;
 IF fctno < 16 THEN OCS.Mark(64); RETURN END ;
 CASE fctno OF
 16, 17: (*INC DEC*)
 IF x.typ # p.typ THEN
 IF (x.mode = Con) & (x.typ.form IN intSet) THEN x.typ := p.typ
 ELSE OCS.Mark(111)
 END
 END ;
 L := lengcode[p.typ.form];
 IF fctno = 16 THEN add(L, p, x) ELSE sub(L, p, x) END ;
 p.typ := OCT.notyp
 | 18: (*INCL*)
 Set0(y, x); OCC.PutF4(1BH, p, y); p.typ := OCT.notyp (*ORD*)
 | 19: (*EXCL*)
 Set0(y, x); OCC.PutF4(0BH, p, y); p.typ := OCT.notyp (*BICD*)
 | 20: (*LEN*)
 IF (x.mode = Con) & (f = SInt) THEN

 342

 L := SHORT(x.a0); typ := p.typ;
 WHILE (L > 0) & (typ.form IN {DynArr, Array}) DO
 typ := typ.BaseTyp; DEC(L)
 END;
 IF (L # 0) OR ~(typ.form IN {DynArr, Array}) THEN OCS.Mark(132)
 ELSE
 IF typ.form = DynArr THEN
 p.mode := Var; p.typ := OCT.linttyp; INC(p.a0, typ.adr);
 load(p); OCC.PutF2(0FH, 1, p) (* ADDQD 1, p *)
 ELSE p := x; p.a0 := typ.n; SetIntType(p)
 END
 END
 ELSE OCS.Mark(111)
 END
 | 21, 22, 23: (*ASH LSH ROT*)
 IF f IN intSet THEN
 IF fctno = 21 THEN L := 4 ELSIF fctno = 22 THEN L := 14H ELSE L := 0 END ;
 IF (x.mode = VarX) OR (x.mode = IndX) THEN load(x) END ;
 x.typ := OCT.sinttyp; OCC.Put(F6, lengcode[p.typ.form]+L, p, x)
 ELSE OCS.Mark(111)
 END
 | 24: (*GET*)
 IF x.mode >= Con THEN OCS.Mark(112)
 ELSIF f IN {Undef..LInt, Set, Pointer, ProcTyp} THEN
 OCC.PutF4(lengcode[f]+14H, x, p)
 ELSIF f IN realSet THEN OCC.Put(F11, lengcode[f]+4, x, p) (*MOVf*)
 END ;
 p.typ := OCT.notyp
 | 25: (*PUT*)
 IF f IN {Undef..LInt, Set, Pointer, ProcTyp} THEN OCC.PutF4(lengcode[f]+14H, p, x)
 ELSIF f IN realSet THEN OCC.Put(F11, lengcode[f]+4, p, x) (*MOVf*)
 END ;
 p.typ := OCT.notyp
 | 26: (*BIT*)
 IF f IN intSet THEN OCC.PutF4(lengcode[f] + 34H, p, x) (*TBITi*)
 ELSE OCS.Mark(111)
 END ;
 setCC(p, 8)
 | 27: (*VAL*)
 x.typ := p.typ; p := x
 | 28: (*SYSTEM.NEW*)
 y.mode := Reg; y.a0 := 2;
 IF f = LInt THEN OCC.PutF4(17H, y, x)
 ELSIF f = Int THEN OCC.Put(F7, 1DH, y, x) (*MOVXWD*)
 ELSIF f = SInt THEN OCC.Put(F7, 1CH, y, x) (*MOVXBD*)
 ELSE OCS.Mark(111)
 END ;
 OCC.PutF1(0E2H); OCC.PutByte(1); (*SVC 1*)
 p.typ := OCT.notyp
 | 29: (*COPY*)
 IF ((f = Array) OR (f = DynArr)) & (x.typ.BaseTyp.form = Char) THEN
 y.mode := Reg; y.a0 := 2; y.a1 := 0;
 IF f = DynArr THEN p := x; OCC.DynArrAdr(y, x); y.a0 := 0;
 p.mode := Var; INC(p.a0, p.typ.adr); OCC.PutF4(17H, y, p)
 ELSE OCC.PutF4(27H, y, x); y.a0 := 0;
 p.mode := Con; p.typ := OCT.inttyp; p.a0:= x.typ.size-1;

 343

 OCC.Put(F7, 19H, y, p); (*MOVZWD*)
 END;
 y.a0 := 4; OCC.PutF2(5FH, 0, y); (*MOVQD*)
 OCC.PutF1(14); OCC.PutF1(0); OCC.PutF1(6); (*MOVSB*)
 y.mode := RegI; y.a0 := 2; OCC.PutF2(5CH, 0, y) (*MOVQB*)
 ELSE OCS.Mark(111)
 END ;
 p.typ := OCT.notyp
 | 30: (*MOVE*)
 IF f = LInt THEN y.mode := Reg; y.a0 := 2; OCC.PutF4(17H, y, x)
 ELSE OCS.Mark(111)
 END
 END
 END StPar2;

 PROCEDURE StPar3*(VAR p, x: OCT.Item; fctno: INTEGER);
 VAR f: INTEGER; y: OCT.Item;
 BEGIN f := x.typ.form;
 IF fctno = 30 THEN (*MOVE*)
 y.mode := Reg; y.a0 := 0;
 IF f = Int THEN OCC.Put(F7, 1DH, y, x)
 ELSIF f = SInt THEN OCC.Put(F7, 1CH, y, x)
 ELSIF f = LInt THEN OCC.PutF4(17H, y, x)
 ELSE OCS.Mark(111)
 END ;
 OCC.PutF1(14); OCC.PutF1(0); OCC.PutF1(0); p.typ := OCT.notyp (*MOVSB*)
 ELSE OCS.Mark(64)
 END
 END StPar3;

 PROCEDURE StFct*(VAR p: OCT.Item; fctno, parno: INTEGER);
 BEGIN
 IF fctno >= 16 THEN
 IF (fctno = 16) & (parno = 1) THEN (*INC*)
 OCC.PutF2(lengcode[p.typ.form]+0CH, 1, p); p.typ := OCT.notyp
 ELSIF (fctno = 17) & (parno = 1) THEN (*DEC*)
 OCC.PutF2(lengcode[p.typ.form]+0CH, -1, p); p.typ := OCT.notyp
 ELSIF (fctno = 20) & (parno = 1) THEN (*LEN*)
 IF p.typ.form = DynArr THEN
 p.mode := Var; INC(p.a0, p.typ.adr); p.typ := OCT.linttyp;
 load(p); OCC.PutF2(0FH, 1, p) (*ADDQD 1 p*)
 ELSE p.mode := Con; p.a0 := p.typ.n; SetIntType(p)
 END
 ELSIF (parno < 2) OR (fctno = 30) & (parno < 3) THEN OCS.Mark(65)
 END
 ELSIF parno < 1 THEN OCS.Mark(65)
 END
 END StFct;

BEGIN intSet := {SInt, Int, LInt}; realSet := {Real, LReal}; lengcode[Undef] := 0;
 lengcode[Byte] := 0; lengcode[Bool] := 0; lengcode[Char] := 0; lengcode[SInt] := 0;
 lengcode[Int] := 1; lengcode[LInt] := 3; lengcode[Real] := 1; lengcode[LReal] := 0;
 lengcode[Set] := 3; lengcode[String] := 0; lengcode[NilTyp] := 3; lengcode[ProcTyp] := 3;
 lengcode[Pointer] := 3; lengcode[Array] := 1; lengcode[DynArr] := 1; lengcode[Record] := 1
END OCE.

 344

Module OCH contains the procedures for code selection and type consistency checking corresponding
to statements: assignment, procedure calls, and structured control statements. Procedure Assign
discriminates between the various types of the destination variable with a case statement. It is called
both for proper assignments (~param) and for the passing of value parameters (param). In the latter
case, the addressing mode of the destination is TOS; the parameter is pushed onto the stack. Automatic
length extension is used, if the operand length is 1 or 2, resulting in proper alignment for all
parameters.

Assignments of arrays and records is achieved by a block move instruction (MOVMB, if the size is at
most 16, MOVSB otherwise, see procedure MoveBlock). If the destination is an indirectly referenced
record, i.e. if it is either a VAR-parameter or a dereferenced variable, an implicit type guard is
necessary. Consider a record type R0 and its extension R1. Let the destination be either a VAR-
parameter r0 of type R0, or p^ where p is a pointer bound to R0, and let variable r1 be of type R1. Then
the assignment r0 := r1 is acceptable only if the actual destination is of type R0, but not if it happens
to be some extension of R0 (not necessarily R1). This condition must be guarded by an implicitly
inserted guard. This is an example of a case where an apparently simple and basic concept such as type
extension produces unexpected side-effects and complications.

Assignments to dynamic arrays as a whole are not permitted by the rules of the language. However,
actual parameters corresponding to a formal parameter declared as a dynamic array called by value
may be arrays, dynamic arrays, or strings. Since this implicit assignment is handled by procedure
Assign, it must handle the case by constructing an appropriate array descriptor. The descriptor consists
of the actual parameter's address and its index bounds. The latter is pushed onto the stack first. In the
case of a string, its length minus 1 yields the upper bound, and the lower bound of 0 is implied by
extending the upper bound to 4 bytes (see procedure DynArrBnd).

Assignment of procedures to variables (and parameters) of a procedural type is handled by
constructing a procedure descriptor and assigning it to the destination. The descriptor consists of a
module descriptor address and an entry offset. Also, the check for type compatibility is fairly complex
in this case, because the language admits structural equivalence instead of name equivalence, which is
necessary because the type of a declared procedure bears no name. Therefore, both result type and
parameter types must be checked for compatibility. This is done by procedure CompareParameters
and involves the parameters' types and mode. This procedure is also invoked in the case of forward
declarations (see Compiler.ProcedureDeclaration).

Procedures PrepCall, Param, and Call are used to select code for procedure calls. The first checks that
the item properly denotes a procedure and delivers its formal parameter list. Param scans the
parameters, one per invocation, and delegates its handling to Assign in the case of value parameters;
otherwise the address of the actual parameter is pushed onto the stack. In the case of dynamic arrays
and records, a descriptor is formed containing, in addition to the address, the array's length or the
record's base type tag. The latter is used by type guards and type tests. And finally, procedure Call
selects the appropriate branch instruction, namely BSR for local, CXP for external, CXPD for
indirectly called, and SVC for code procedures.

The CXP instruction requires as parameter an index to the module's link table. The indexed entry holds
a descriptor identifying the procedure (see Chapter 6). The table entry is established when the compiler
encounters a call of the procedure for the first time, and the index is then stored as a1 attribute in the
procedure's symbol table entry by procedure OCC.LinkAdr.

Procedures Enter, CopyDynArray, Result, and Return select the instructions for the prolog and epilog
of procedure bodies. The prolog typically consists of an ENTER instruction, the epilog of an EXIT
instruction followed by RET for local and RXP for external procedures (see code patterns).

Procedures FJ, CFJ, BJ, CBJ, and LFJ are called for conditional and repetitive constructs and generate
jumps. F stands for forward, B for backward, C for conditional, and L for long jump. FJ, CFJ, and LFJ
assign the location of the generated branch to their loc parameter to be used for a later address fixup.

Procedures CaseIn and CaseOut process case statements. A case statement represents, in contrast to a
cascaded conditional statement, a single, indexed branch. CaseIn generates this indexed branch
instruction together with an instruction to test the index bounds. CaseOut is called when the end of the

 345

case statement is reached and the addresses of the individual cases are known and therefore the branch
table can be constructed. A fixup of the indexed branch instruction is unavaoidable. The address of the
trap instruction is assigned to cases that remained undefined.

MODULE OCH; (*NW 7.6.87 / 15.2.91*)
 IMPORT OCS, OCT, OCC;

 CONST (*instruction format prefixes*)
 F6 = 4EH; F7 = 0CEH; F9 = 3EH; F11 = 0BEH;

 (*object and item modes*)
 Var = 1; VarX = 2; Ind = 3; IndX = 4; RegI = 5;
 RegX = 6; Abs = 7; Con = 8; Stk = 9; Coc = 10;
 Reg = 11; Fld = 12; LProc = 14; XProc = 15;
 CProc = 17; IProc = 18; Mod = 19;

 (*structure forms*)
 Undef = 0; Byte = 1; Bool = 2; Char = 3; SInt = 4; Int = 5; LInt = 6;
 Real = 7; LReal = 8; Set = 9; String = 10; NilTyp = 11; NoTyp = 12;
 Pointer = 13; ProcTyp = 14; Array = 15; DynArr = 16; Record = 17;

 TYPE LabelRange* = RECORD low*, high*: INTEGER; label*: INTEGER END ;
 VAR lengcode: ARRAY 18 OF INTEGER;

 PROCEDURE setCC(VAR x: OCT.Item; cc: LONGINT);
 BEGIN x.typ := OCT.booltyp; x.mode := Coc; x.a0 := cc; x.a1 := 0; x.a2 := 0
 END setCC;

 PROCEDURE AdjustSP(n: LONGINT);
 BEGIN (*ADJSPB n*)
 IF n <= 127 THEN OCC.PutF3(-5A84H); OCC.PutByte(n)
 ELSE OCC.PutF3(-5A83H); OCC.PutWord(n)
 END
 END AdjustSP;

 PROCEDURE move(L: INTEGER; VAR x, y: OCT.Item);
 BEGIN
 IF (y.mode = Con) & (y.a0 <= 7) & (y.a0 >= -8) THEN
 OCC.PutF2(L+5CH, y.a0, x) (*MOVQi*)
 ELSE OCC.PutF4(L+14H, x, y) (*MOVi*)
 END
 END move;

 PROCEDURE load(VAR x: OCT.Item);
 VAR y: OCT.Item;
 BEGIN
 IF x.mode # Reg THEN
 y := x; OCC.GetReg(x); move(lengcode[x.typ.form], x, y)
 END
 END load;

 PROCEDURE moveBW(VAR x, y: OCT.Item);
 BEGIN
 IF (y.mode = Con) & (y.a0 <= 7) & (y.a0 >= -8) THEN
 OCC.PutF2(5DH, y.a0, x)
 ELSE OCC.Put(F7, 10H, x, y) (*MOVXBW*)
 END
 END moveBW;

 PROCEDURE moveBD(VAR x, y: OCT.Item);
 BEGIN

 346

 IF (y.mode = Con) & (y.a0 <= 7) & (y.a0 >= -8) THEN
 OCC.PutF2(5FH, y.a0, x)
 ELSE OCC.Put(F7, 1CH, x, y) (*MOVXBD*)
 END
 END moveBD;

 PROCEDURE moveWD(VAR x, y: OCT.Item);
 BEGIN
 IF (y.mode = Con) & (y.a0 <= 7) & (y.a0 >= -8) THEN
 OCC.PutF2(5FH, y.a0, x)
 ELSE OCC.Put(F7, 1DH, x, y) (*MOVXWD*)
 END
 END moveWD;

 PROCEDURE Leng(VAR x: OCT.Item; L: LONGINT);
 VAR y: OCT.Item;
 BEGIN
 IF L <= 7 THEN OCC.PutF2(5FH, L, x) (*MOVQD*)
 ELSE y.mode := Con; y.a0 := L; (*MOVZBD*)
 IF L <= 255 THEN y.typ := OCT.sinttyp; OCC.Put(F7, 18H, x, y)
 ELSE y.typ := OCT.inttyp; OCC.Put(F7, 19H, x, y)
 END
 END
 END Leng;

 PROCEDURE MoveBlock(VAR x, y: OCT.Item; s: LONGINT; param: BOOLEAN);
 VAR L: INTEGER; z: OCT.Item;
 BEGIN
 IF s > 0 THEN
 IF param THEN
 s := (s+3) DIV 4 * 4; AdjustSP(s)
 END ;
 IF s <= 16 THEN
 OCC.Put(F7, 0, x, y); OCC.PutDisp(s-1) (*MOVMB*)
 ELSE
 z.mode := Reg; z.a0 := 1; OCC.PutF4(27H, z, y); (*ADDR y,R1*)
 z.a0 := 2; OCC.PutF4(27H, z, x); z.a0 := 0; (*ADDR x,R2*)
 IF s MOD 4 = 0 THEN L := 3; s := s DIV 4
 ELSIF s MOD 2 = 0 THEN L := 1; s := s DIV 2
 ELSE L := 0
 END ;
 Leng(z, s);
 OCC.PutF1(14); OCC.PutByte(L); OCC.PutByte(0) (*MOVS*)
 END
 END
 END MoveBlock;

 PROCEDURE DynArrBnd(ftyp, atyp: OCT.Struct; lev: INTEGER;
 adr: LONGINT; varpar: BOOLEAN);
 VAR f, s: INTEGER; x, y, z: OCT.Item;
 BEGIN (* ftyp.form = DynArr *)
 x.mode := Stk; y.mode := Var;
 IF varpar & (ftyp.BaseTyp = OCT.bytetyp) THEN
 IF atyp.form # DynArr THEN Leng(x, atyp.size-1)
 ELSE y.lev := lev; y.a0 := adr + atyp.adr; y.typ := OCT.linttyp;
 atyp := atyp.BaseTyp;
 IF atyp.form # DynArr THEN
 IF atyp.size > 1 THEN

 347

 z.mode := Con; z.typ := OCT.linttyp; z.a0 := atyp.size;
 load(y); OCC.Put(F7, 23H, y, z); (* MULD z, Ry *)
 z.mode := Con; z.typ := OCT.linttyp; z.a0 := atyp.size-1;
 IF z.a0 < 8 THEN OCC.PutF2(0FH, z.a0, y) (* ADDQD size-1, Ry
*)
 ELSE OCC.PutF4(3, y, z) (* ADDD size-1, Ry *)
 END
 END
 ELSE load(y); OCC.PutF2(0FH, 1, y);
 REPEAT z.mode := Var; z.lev := lev; z.a0 := atyp.adr + adr; z.typ := OCT.linttyp;
 load(z); OCC.PutF2(0FH, 1, z); (* ADDQD 1, Rz *)
 OCC.Put(F7, 23H, y, z); (* MULD Rz, Ry *)
 atyp := atyp.BaseTyp
 UNTIL atyp.form # DynArr;
 IF atyp.size > 1 THEN
 z.mode := Con; z.typ := OCT.linttyp; z.a0 := atyp.size;
 OCC.Put(F7, 23H, y, z) (* MULD z, Ry *)
 END ;
 OCC.PutF2(0FH, -1, y) (* ADDQD -1, Ry *)
 END ;
 OCC.PutF4(17H, x, y) (* MOVD apdynarrlen-1, TOS *)
 END
 ELSE
 LOOP f := atyp.form;
 IF f = Array THEN y.lev := -atyp.mno; y.a0 := atyp.adr
 ELSIF f = DynArr THEN y.lev := lev; y.a0 := atyp.adr + adr
 ELSE OCS.Mark(66); EXIT
 END ;
 OCC.PutF4(17H, x, y); ftyp := ftyp.BaseTyp; atyp := atyp.BaseTyp;
 IF ftyp.form # DynArr THEN
 IF ftyp # atyp THEN OCS.Mark(67) END ;
 EXIT
 END
 END
 END
 END DynArrBnd;

 PROCEDURE Trap*(n: INTEGER);
 BEGIN OCC.PutF1(0F2H); OCC.PutByte(n) (*BPT n*)
 END Trap;

 PROCEDURE CompareParLists*(x, y: OCT.Object);
 VAR xt, yt: OCT.Struct;
 BEGIN
 WHILE x # NIL DO
 IF y # NIL THEN
 xt := x.typ; yt := y.typ;
 WHILE (xt.form = DynArr) & (yt.form = DynArr) DO
 xt := xt.BaseTyp; yt := yt.BaseTyp
 END ;
 IF x.mode # y.mode THEN OCS.Mark(115)
 ELSIF xt # yt THEN
 IF (xt.form = ProcTyp) & (yt.form = ProcTyp) THEN
 CompareParLists(xt.link, yt.link)
 ELSE OCS.Mark(115)
 END
 END ;

 348

 y := y.next
 ELSE OCS.Mark(116)
 END ;
 x := x.next
 END ;
 IF (y # NIL) & (y.mode <= Ind) & (y.a0 > 0) THEN OCS.Mark(117) END
 END CompareParLists;

 PROCEDURE Assign*(VAR x, y: OCT.Item; param: BOOLEAN);
 VAR f, g, L, u: INTEGER; s, vsz: LONGINT;
 p, q: OCT.Struct;
 xp, yp: OCT.Object;
 tag, tdes: OCT.Item;
 BEGIN f := x.typ.form; g := y.typ.form;
 IF x.mode = Con THEN OCS.Mark(56) END ;
 CASE f OF
 Undef, String:
 | Byte: IF g IN {Undef, Byte, Char, SInt} THEN
 IF param THEN moveBD(x, y) ELSE move(0, x, y) END
 ELSE OCS.Mark(113)
 END
 | Bool: IF param THEN u := 3 ELSE u := 0 END ;
 IF y.mode = Coc THEN
 IF (y.a1 = 0) & (y.a2 = 0) THEN OCC.PutF2(u+3CH, y.a0, x)
 ELSE
 IF ODD(y.a0) THEN OCC.PutF0(y.a0-1) ELSE OCC.PutF0(y.a0+1) END ;
 OCC.PutWord(y.a2); y.a2 := OCC.pc-2;
 OCC.FixLink(y.a1); OCC.PutF2(u+5CH, 1, x);
 OCC.PutF0(14); L := OCC.pc; OCC.PutWord(0);
 OCC.FixLink(y.a2); OCC.PutF2(u+5CH, 0, x); OCC.fixup(L)
 END
 ELSIF g = Bool THEN
 IF y.mode = Con THEN OCC.PutF2(u+5CH, y.a0, x)
 ELSIF param THEN OCC.Put(F7, 18H, x, y) (*MOVZBD*)
 ELSE OCC.PutF4(14H, x, y)
 END
 ELSE OCS.Mark(113)
 END
 | Char, SInt:
 IF g = f THEN
 IF param THEN moveBD(x, y) ELSE move(0, x, y) END
 ELSE OCS.Mark(113)
 END
 | Int: IF g = Int THEN
 IF param THEN moveWD(x, y) ELSE move(1, x, y) END
 ELSIF g = SInt THEN
 IF param THEN moveBD(x, y) ELSE moveBW(x, y) END
 ELSE OCS.Mark(113)
 END
 | LInt: IF g = LInt THEN move(3, x, y)
 ELSIF g = Int THEN moveWD(x, y)
 ELSIF g = SInt THEN moveBD(x, y)
 ELSE OCS.Mark(113)
 END
 | Real: IF g = Real THEN OCC.Put(F11, 5, x, y)
 ELSIF (SInt <= g) & (g <= LInt) THEN OCC.Put(F9, lengcode[g]+4, x, y)

 349

 ELSE OCS.Mark(113)
 END
 | LReal: IF g = LReal THEN OCC.Put(F11, 4, x, y)
 ELSIF g = Real THEN OCC.Put(F9, 1BH, x, y)
 ELSIF (SInt <= g) & (g <= LInt) THEN OCC.Put(F9, lengcode[g], x, y)
 ELSE OCS.Mark(113)
 END
 | Set: IF g = f THEN move(3, x, y) ELSE OCS.Mark(113) END
 | Pointer:
 IF x.typ = y.typ THEN move(3, x, y)
 ELSIF g = NilTyp THEN OCC.PutF2(5FH, 0, x)
 ELSIF g = Pointer THEN
 p := x.typ.BaseTyp; q := y.typ.BaseTyp;
 IF (p.form = Record) & (q.form = Record) THEN
 WHILE (q # p) & (q # NIL) DO q := q.BaseTyp END ;
 IF q # NIL THEN move(3, x, y) ELSE OCS.Mark(113) END
 ELSE OCS.Mark(113)
 END
 ELSE OCS.Mark(113)
 END
 | Array: s := x.typ.size;
 IF x.typ = y.typ THEN MoveBlock(x, y, s, param)
 ELSIF (g = String) & (x.typ.BaseTyp = OCT.chartyp) THEN
 s := y.a1; vsz := x.typ.n; (*check length of string*)
 IF s > vsz THEN OCS.Mark(114) END ;
 IF param THEN
 vsz := (vsz+3) DIV 4 - (s+3) DIV 4;
 IF vsz > 0 THEN AdjustSP(vsz*4) END
 END ;
 MoveBlock(x, y, s, param)
 ELSE OCS.Mark(113)
 END
 | DynArr: s := x.typ.size;
 IF param THEN (*formal parameter is open array*)
 IF (g = String) & (x.typ.BaseTyp.form = Char) THEN Leng(x, y.a1-1)
 ELSIF y.mode >= Abs THEN OCS.Mark(59)
 ELSE DynArrBnd(x.typ, y.typ, y.lev, y.a0, FALSE)
 END ;
 IF g = DynArr THEN OCC.DynArrAdr(x, y)
 ELSE OCC.PutF4(27H, x, y)
 END
 ELSE OCS.Mark(113)
 END
 | Record: s := x.typ.size;
 IF x.typ # y.typ THEN
 IF g = Record THEN
 q := y.typ.BaseTyp;
 WHILE (q # NIL) & (q # x.typ) DO q := q.BaseTyp END ;
 IF q = NIL THEN OCS.Mark(113) END
 ELSE OCS.Mark(113)
 END
 END ;
 IF OCC.typchk & ~param &
 (((x.mode = Ind) OR (x.mode = RegI)) & (x.obj = OCC.wasderef) (* p^ := *)
 OR (x.mode = Ind) & (x.obj # NIL) & (x.obj # OCC.wasderef)) THEN
 tag := x; tdes.mode := Var; tdes.lev := -x.typ.mno; tdes.a0 := x.typ.adr;

 350

 IF x.obj = OCC.wasderef THEN tag.a1 := - 4
 ELSE tag.mode := Var; INC(tag.a0, 4)
 END;
 OCC.PutF4(7, tdes, tag); (* CMPD tag, tdes *)
 OCC.PutF0(0); OCC.PutDisp(4); (* BEQ continue *)
 OCC.PutF1(0F2H); OCC.PutByte(19) (* BPT 19 *)
 END ;
 MoveBlock(x, y, s, param)
 | ProcTyp:
 IF (x.typ = y.typ) OR (y.typ = OCT.niltyp) THEN OCC.PutF4(17H, x, y)
 ELSIF (y.mode = XProc) OR (y.mode = IProc) THEN
 (*procedure y to proc. variable x; check compatibility*)
 IF x.typ.BaseTyp = y.typ THEN
 CompareParLists(x.typ.link, y.obj.dsc);
 IF y.a1 = 0 THEN
 y.a1 := OCC.LinkAdr(-y.lev, y.a0); y.obj.a1 := y.a1
 END ;
 y.mode := Var; y.lev := SHORT(-y.a1); y.a0 := 0;
 OCC.PutF4(27H, x, y) (*LXPD*)
 ELSE OCS.Mark(118)
 END
 ELSIF y.mode = LProc THEN OCS.Mark(119)
 ELSE OCS.Mark(111)
 END
 | NoTyp, NilTyp: OCS.Mark(111)
 END
 END Assign;

 PROCEDURE FJ*(VAR loc: INTEGER);
 BEGIN OCC.PutF0(14); OCC.PutWord(loc); loc := OCC.pc-2
 END FJ;

 PROCEDURE CFJ*(VAR x: OCT.Item; VAR loc: INTEGER);
 BEGIN
 IF x.typ.form = Bool THEN
 IF x.mode # Coc THEN OCC.PutF2(1CH, 1, x); setCC(x, 0) END
 ELSE OCS.Mark(120); setCC(x, 0)
 END ;
 IF ODD(x.a0) THEN OCC.PutF0(x.a0-1) ELSE OCC.PutF0(x.a0+1) END ;
 loc := OCC.pc; OCC.PutWord(x.a2); OCC.FixLink(x.a1)
 END CFJ;

 PROCEDURE BJ*(loc: INTEGER);
 BEGIN OCC.PutF0(14); OCC.PutDisp(loc - OCC.pc + 1)
 END BJ;

 PROCEDURE CBJ*(VAR x: OCT.Item; loc: INTEGER);
 BEGIN
 IF x.typ.form = Bool THEN
 IF x.mode # Coc THEN OCC.PutF2(1CH, 1, x); setCC(x,0) END
 ELSE OCS.Mark(120); setCC(x, 0)
 END ;
 IF ODD(x.a0) THEN OCC.PutF0(x.a0-1) ELSE OCC.PutF0(x.a0+1) END ;
 OCC.PutDisp(loc - OCC.pc + 1);
 OCC.FixLinkWith(x.a2, loc); OCC.FixLink(x.a1)
 END CBJ;

 351

 PROCEDURE LFJ*(VAR loc: INTEGER);
 BEGIN OCC.PutF0(14); OCC.PutWord(-4000H); OCC.PutWord(0); loc := OCC.pc-4
 END LFJ;

 PROCEDURE PrepCall*(VAR x: OCT.Item; VAR fpar: OCT.Object);
 BEGIN
 IF (x.mode = LProc) OR (x.mode = XProc) OR (x.mode = CProc) THEN
 fpar := x.obj.dsc
 ELSIF (x.typ # NIL) & (x.typ.form = ProcTyp) THEN
 fpar := x.typ.link
 ELSE OCS.Mark(121); fpar := NIL; x.typ := OCT.undftyp
 END
 END PrepCall;

 PROCEDURE Param*(VAR ap: OCT.Item; f: OCT.Object);
 VAR q: OCT.Struct; fp, tag: OCT.Item;
 BEGIN fp.mode := Stk; fp.typ := f.typ;
 IF f.mode = Ind THEN (*VAR parameter*)
 IF ap.mode >= Con THEN OCS.Mark(122) END ;
 IF fp.typ.form = DynArr THEN
 DynArrBnd(fp.typ, ap.typ, ap.lev, ap.a0, TRUE);
 IF ap.typ.form = DynArr THEN OCC.DynArrAdr(fp, ap)
 ELSE OCC.PutF4(27H, fp, ap)
 END
 ELSIF (fp.typ.form = Record) & (ap.typ.form = Record) THEN
 q := ap.typ;
 WHILE (q # fp.typ) & (q # NIL) DO q := q.BaseTyp END ;
 IF q # NIL THEN
 IF (ap.mode = Ind) & (ap.obj # NIL) & (ap.obj # OCC.wasderef) THEN
 (*actual par is VAR-par*) ap.mode := Var; ap.a0 := ap.a0 + 4;
 OCC.PutF4(17H, fp, ap); ap.a0 := ap.a0 - 4; OCC.PutF4(17H, fp, ap)
 ELSIF ((ap.mode = Ind) OR (ap.mode = RegI)) & (ap.obj = OCC.wasderef) THEN
 (*actual par is p^*) ap.a1 := - 4; OCC.PutF4(17H, fp, ap);
 IF ap.mode = Ind THEN ap.mode := Var ELSE ap.mode := Reg END;
 OCC.PutF4(17H, fp, ap)
 ELSE
 tag.mode := Var; tag.lev := -ap.typ.mno; tag.a0 := ap.typ.adr;
 OCC.PutF4(17H, fp, tag); OCC.PutF4(27H, fp, ap)
 END
 ELSE OCS.Mark(111)
 END
 ELSIF (ap.typ = fp.typ) OR ((fp.typ.form = Byte)&(ap.typ.form IN {Char, SInt})) THEN
 IF (ap.mode = Ind) & (ap.a1 = 0) THEN (*actual var par*)
 ap.mode := Var; OCC.PutF4(17H, fp, ap)
 ELSE OCC.PutF4(27H, fp, ap)
 END
 ELSE OCS.Mark(123)
 END
 ELSE Assign(fp, ap, TRUE)
 END
 END Param;

 PROCEDURE Call*(VAR x: OCT.Item);
 VAR stk, sL: OCT.Item;
 BEGIN
 IF x.mode = LProc THEN
 IF x.lev > 0 THEN

 352

 sL.mode := Var; sL.typ := OCT.linttyp; sL.lev := x.lev; sL.a0 := 0;
 stk.mode := Stk; OCC.PutF4(27H, stk, sL) (*static link*)
 END ;
 OCC.PutF1(2); OCC.PutDisp(x.a0 - OCC.pc + 1) (*BSR*)
 ELSIF x.mode = XProc THEN
 IF x.a1 = 0 THEN
 x.a1 := OCC.LinkAdr(-x.lev, x.a0); x.obj.a1 := x.a1
 END ;
 OCC.PutF1(22H); OCC.PutDisp(SHORT(x.a1)) (*CXP*)
 ELSIF (x.mode < Con) & (x.typ # OCT.undftyp) THEN (*CXPD*)
 OCC.PutF2(7FH, 0, x); x.typ := x.typ.BaseTyp
 ELSIF x.mode = CProc THEN
 OCC.PutF1(0E2H); OCC.PutByte(x.a0) (*SVC n*)
 ELSE OCS.Mark(121)
 END
 (*function result is marked when restoring registers*)
 END Call;

 PROCEDURE Enter*(mode: SHORTINT; pno: LONGINT; VAR L: INTEGER);
 BEGIN
 IF mode # LProc THEN OCC.SetEntry(SHORT(pno)) END ;
 OCC.PutF1(82H); (*ENTER*)
 IF mode = IProc THEN OCC.PutByte(0C0H) ELSE OCC.PutByte(0) END ;
 IF mode # Mod THEN L := OCC.pc; OCC.PutWord(0) ELSE OCC.PutByte(0) END
 END Enter;

 PROCEDURE CopyDynArray*(adr: LONGINT; typ: OCT.Struct);
 VAR size, ptr, m2, tos: OCT.Item; add: SHORTINT;

 PROCEDURE DynArrSize(typ: OCT.Struct);
 VAR len: OCT.Item;
 BEGIN
 IF typ.form = DynArr THEN DynArrSize(typ.BaseTyp);
 len.mode := Var; len.lev := OCC.level; len.typ := OCT.linttyp;
 len.a0 := adr + typ.adr; load(len);
 IF (size.mode # Con) OR (size.a0 # 1) THEN
 IF add = 4 THEN OCC.PutF2(0FH, 1, size) END; (* ADDQD 1, size *)
 OCC.PutF2(0FH, 1, len); add := 3; (* ADDQD 1, len *)
 OCC.Put(F7, 23H, len, size) (* MULD size, len *)
 ELSE add := 4
 END;
 size := len
 ELSE size.mode := Con; size.typ := OCT.linttyp; size.a0 := typ.size
 END
 END DynArrSize;

 BEGIN add := 3;
 DynArrSize(typ); (* load total byte size of dyn array *)
 OCC.PutF2(0FH, add, size); (* ADDQD 3 or 4, size *)
 m2.mode := Con; m2.typ := OCT.sinttyp;
 m2.a0 := -2; OCC.Put(F6, 7, size, m2); (* ASHD -2, size *)
 ptr.mode := Var; ptr.lev := OCC.level; ptr.typ := OCT.linttyp;
 ptr.a0 := adr; load(ptr);
 ptr.mode := RegX; ptr.a1 := -4; ptr.a2 := size.a0; tos.mode := Stk;
 OCC.PutF4(17H, tos, ptr); (* loop: MOVD -4(ptr)[size:D], TOS *)
 OCC.PutF2(4FH, -1, size); OCC.PutDisp(-4); (* ACBD -1, size, loop *)
 OCC.PutF3(-31D9H); OCC.PutDisp(0); OCC.PutDisp(adr); (* ADDR 0(SP),
adr(FP) *)

 353

 OCC.FreeRegs({})
 END CopyDynArray;

 PROCEDURE Result*(VAR x: OCT.Item; typ: OCT.Struct);
 VAR res: OCT.Item;
 BEGIN res.mode := Reg; res.typ := typ; res.a0 := 0;
 Assign(res, x, FALSE)
 END Result;

 PROCEDURE Return*(mode: INTEGER; psize: LONGINT);
 BEGIN OCC.PutF1(92H); (*EXIT*)
 IF mode = LProc THEN
 OCC.PutByte(0); OCC.PutF1(12H); OCC.PutDisp(psize-8) (*RET*)
 ELSIF mode = XProc THEN
 OCC.PutByte(0); OCC.PutF1(32H); OCC.PutDisp(psize-12) (*RXP*)
 ELSIF mode = IProc THEN
 OCC.PutByte(3); OCC.PutF1(42H); OCC.PutDisp(0) (*RETT 0*)
 END
 END Return;

 PROCEDURE CaseIn*(VAR x: OCT.Item; VAR L0, L1: INTEGER);
 VAR f: INTEGER; r, x0, lim: OCT.Item;
 BEGIN f := x.typ.form;
 IF f # Int THEN
 IF f = Char THEN
 x0 := x; OCC.GetReg(x); OCC.Put(F7, 14H, x, x0) (*MOVZBW*)
 ELSIF f = SInt THEN
 x0 := x; OCC.GetReg(x); OCC.Put(F7, 10H, x, x0) (*MOVXBW*)
 ELSIF f # LInt THEN OCS.Mark(125)
 END ;
 f := Int
 END ;
 IF (x.mode IN {VarX, IndX, RegX}) OR
 (x.mode # Reg) & (x.lev > 0) & (x.lev < OCC.level) THEN
 x0 := x; OCC.GetReg(x); OCC.PutF4(15H, x, x0) (*MOVW*)
 END ;
 L0 := OCC.pc+3; (*fixup loc for bounds adr*)
 lim.mode := Var; lim.typ := OCT.inttyp; lim.lev := 0; lim.a0 := 100H;
 OCC.GetReg(r); OCC.Put(0EEH, SHORT(r.a0)*8 + 1, x, lim); (*CHECK*)
 OCC.PutF0(8); OCC.PutWord(0); L1 := OCC.pc; (*BFS*)
 lim.mode := VarX; lim.a2 := r.a0; OCC.PutF2(7DH, 14, lim) (*CASE*)
 END CaseIn;

 PROCEDURE CaseOut*(L0, L1, L2, L3, n: INTEGER;
 VAR tab: ARRAY OF LabelRange);
 VAR i, j, lim: INTEGER; k: LONGINT;
 BEGIN (*generate jump table*)
 IF n > 0 THEN OCC.AllocBounds(tab[0].low, tab[n-1].high, k)
 ELSE (*no cases*) OCC.AllocBounds(1, 0, k)
 END ;
 j := SHORT(k);
 OCC.FixupWith(L0, j); (*bounds address in check*)
 OCC.FixupWith(L1-2, L2-L1+3); (*out of bounds jump addr*)
 OCC.FixupWith(L1+3, j+4); (*jump address to table*)
 i := 0; j := tab[0].low;
 WHILE i < n DO
 lim := tab[i].high;
 WHILE j < tab[i].low DO

 354

 OCC.AllocInt(L2-L1); INC(j) (*else*)
 END ;
 WHILE j <= lim DO
 OCC.AllocInt(tab[i].label-L1); INC(j)
 END ;
 INC(i)
 END ;
 OCC.FixLink(L3)
 END CaseOut;

BEGIN lengcode[Undef] := 0;
 lengcode[Byte] := 0; lengcode[Bool] := 0; lengcode[Char] := 0; lengcode[SInt] := 0;
 lengcode[Int] := 1; lengcode[LInt] := 3; lengcode[Real] := 1; lengcode[LReal] := 0;
 lengcode[Set] := 3; lengcode[String] := 0; lengcode[NilTyp] := 3; lengcode[ProcTyp] := 3;
 lengcode[Pointer] := 3; lengcode[Array] := 1; lengcode[DynArr] := 1; lengcode[Record] := 1
END OCH.

12.8. Code Generation
The subject of this Section is module OCC which generates code in binary form. Its procedures are
inherently target architecture dependent. The details are of much less general interest than the parts of
the compiler presented so far, and we therefore keep explanations reasonably short. Nevertheless, a
brief summary of the NS-32000 architecture's instruction formats will be given below in order to
enable the reader to understand the principal routines of OCC. The presented architecture is of the
CISC class with a fairly elaborate set of instructions (of which only a part is used by the compiler) and
addressing modes. However, it features a commendable regularity. For example, all addressing modes
are equally applicable independent of the particular instruction.

The NS-32000 instruction stream is byte-oriented, i.e. every instruction consists of a number of bytes.
The first 1, 2, or 3 bytes constitute the instruction code including address mode specifiers. They are
followed by additional bytes depending on the addressing modes used. These bytes specify addresses
(called displacements, because they are relative to a base address held in a register), constants, or index
registers. We first present the various formats of the leading instruction bytes, the so-called basic
instruction. The fields dst and src are the address mode specifiers for destination and source operands,
and they will be explained below.

Format 0 cond 1010
4 0

Bcond

Format 1 op 0010 0 BSR 3 RXP 7 RESTORE D FLAG
1 RET 4 RETT 8 ENTER E SVC
2 CXP 6 SAVE 9 EXIT F BPT

Format 2 dst val op 11 i
11 7 4 2 0

0 ADDQi 3 Scand 5 MOVQi
1 CMPQi 4 ACBi

Format 3 dst op 11111 i 0 CXPD A ADISPi E CASE

Format 4 dst src op i
11 6 2 0

0 ADDi 6 ORi A ANDi
1 CMPi 8 SUBi D TBITi
2 BICi 9 ADDR E XORi
5 MOVi

Format 6 dst src op i 4E 0 ROTi 8 NEGi
1 ASHi C ABSi
5 LSHi D COMi

 355

Format 7 dst src op i CE 0 MOVMi 8 MULi
4 MOVXBW E MODi
5 MOVZBW F DIVi
7 MOVXiD

Format 8 dst src reg 001 EE

dst src reg 101 2E

CHECKW

INDEXW

Format 9 dst src op fi 3E 0 MOVif 3 MOVFL
2 MOVLF 7 FLOORfi

Format 11 dst src op 0f BE 0 ADDf 5 NEGf
1 MOVf 8 DIVf
2 CMPf C MULf
4 SUBf D ABSf

The dst and src fields specify an addressing mode m as follows; d0 and d1 are displacements:

m operand address mode

0 - 7 operand = R[m] register direct
8 - 15 R[m-8] register indirect
16 Mem[FP+d0]+d1 indirect, base FP
18 Mem[SB+d0]+d1 indirect, base SB
20 immediate
21 d0 absolute
22 EXT(d0)+d1 external
23 SP TOS
24 FP+d0 base FP
26 SB+d0 base SB
28 - 31 indexed, scale factor 1, 2, 4, 8

The basic instruction bytes containing the opcode and the address specifiers are followed by the
operand bytes in the order shown below from right to left. The operand fields may contain one or two
displacement values, or an immediate value, or they may be missing alltogether.

implied
dst

disp/imm
src

disp/imm
dst

index
src

index src dst op

Index bytes are present only if an indexed mode is specified. They indicate the register holding the
index value, and the mode to be used in the basic address computation. Some instructions contain
additional, implied operands.

mode reg
3 0

Displacements are length-encoded as follows (the values are stored as signed integers in most-
significant byte first order, contrary to the little-endian representation of integers used by this
processor):

0 value
6 0

0
10 value

13 0

0 1
11 value

29 0

0 1 2 3
Instructions are generated by procedures PutF0, PutF1, PutF2, PutF3, PutF4, and Put(F), depending
on the format required. Procedures PutByte and PutWord are used to append immediate operands, and
PutDisp to encode and insert displacements. Instructions, immediate values, and displacements are
inserted in the array code, a global variable. This solution strictly limits the size of modules, but allows
for easy fixup of (branch) addresses and is very efficient, because it avoids the use of dynamic
allocation.

 356

Similarly, the global arrays constant, entry, and link hold constants, entry addresses of exported
procedures, and links for imports. Constants are inserted by procedures AllocInt, AllocString,
AllocTypDesc, and AllocBounds. Entry addresses are recorded by procedure SetEntry, and links are
inserted by procedure LinkAdr. Various fixup procedures handle the insertion of branch displacements
for forward jumps. SaveRegisters and RestoreRegisters are called for saving and restoring registers
(holding intermediate results) before and after a call of a function procedure within an expression.

An object file is generated at the end of a module's compilation by procedure OutCode. For a
description of the object file format the reader is referred to Chapter 6. First, the symbol table's global
scope is scanned for pointer variables and command procedures. Then the header is written and the
various tables used by the loader, containing entry addresses, commands, pointers, imports, and links.
Then follows the table of global constants, then the code, and finally type descriptor information used
by the loader to generate and allocate type descriptors on the heap.

After the actual object file data, a part is appended which is called reference block. It is ignored by the
loader, but is used in the case of traps during execution of a program for generating a "post-mortem
dump" in symbolic form (see Sect. 12.9). For this purpose, the reference block contains the names of
variables and procedures together with their addresses. The information is obtained by a full traversal
of the symbol table. (Note that only variables of basic, unstructured type and short character arrays are
included).

At least one detail about the implementation of module OCC is worth mentioning. It concerns the
generation of code for two-address instructions (procedures PutF4 and Put). Due to the rather
complicated ordering of operand fields following a basic instruction, it is impossible to first emit an
operation code, and then to let it be followed by the two operands. Not only are the address specifiers
of both operands contained in the basic instruction bytes, but both index bytes (if any) precede all
displacements. Therefore, all parts of both operand's specifications must be available before any
emission can take place. The solution chosen is to use two local variables dst and src of type Argument
representing the encoded forms of operands, which is computed by procedure Operand from a given
Item. After this computation, the basic instruction bytes are emitted, followed by the operand bytes.
The latter is done by procedure PutArg. One cannot help but feel that the prescribed instruction format
is not exactly the optimal choice.

MODULE OCC; (*NW 30.5.87 / 16.3.91*)
 IMPORT Files, OCS, OCT;

 CONST CodeLength = 18000; LinkLength = 250;
 ConstLength = 3500; EntryLength = 64;
 CodeLim = CodeLength - 100;
 MaxPtrs = 64; MaxRecs = 32; MaxComs = 40; MaxExts = 7;
 (*instruction format prefixes*)
 F6 = 4EH; F7 = 0CEH; F9 = 3EH; F11 = 0BEH;

 (*object and item modes*)
 Var = 1; VarX = 2; Ind = 3; IndX = 4; RegI = 5;
 RegX = 6; Abs = 7; Con = 8; Stk = 9; Coc = 10;
 Reg = 11; Fld = 12; Typ = 13; LProc = 14; XProc = 15;
 SProc = 16; CProc = 17; IProc = 18; Mod = 19; Head = 20;

 (*structure forms*)
 Undef = 0; Byte = 1; Bool = 2; Char = 3; SInt = 4; Int = 5; LInt = 6;
 Real = 7; LReal = 8; Set = 9; String = 10; NilTyp = 11; NoTyp = 12;
 Pointer = 13; ProcTyp = 14; Array = 15; DynArr = 16; Record = 17;

 TYPE Argument =
 RECORD form, gen, inx: INTEGER;
 d1, d2: LONGINT
 END ;

 357

 VAR pc*, level*: INTEGER;
 wasderef*: OCT.Object;
 typchk*: BOOLEAN;
 RegSet*, FRegSet: SET;
 lnkx, conx, nofptrs, nofrec: INTEGER;
 PtrTab: ARRAY MaxPtrs OF LONGINT;
 RecTab: ARRAY MaxRecs OF OCT.Struct;
 constant: ARRAY ConstLength OF CHAR;
 code: ARRAY CodeLength OF CHAR;
 link: ARRAY LinkLength OF INTEGER;
 entry: ARRAY EntryLength OF INTEGER;

 PROCEDURE GetReg*(VAR x: OCT.Item);
 VAR i: INTEGER;
 BEGIN i := 7; x.mode := Reg;
 LOOP IF ~(i IN RegSet) THEN x.a0 := i; INCL(RegSet,i); EXIT END ;
 IF i = 0 THEN x.a0 := 0; OCS.Mark(215); EXIT ELSE DEC(i) END ;
 END
 END GetReg;

 PROCEDURE GetFReg*(VAR x: OCT.Item);
 VAR i: INTEGER;
 BEGIN i := 6; x.mode := Reg;
 LOOP IF ~(i IN FRegSet) THEN x.a0 := i; INCL(FRegSet,i); EXIT END ;
 IF i = 0 THEN x.a0 := 0; OCS.Mark(216); EXIT ELSE i := i-2 END
 END
 END GetFReg;

 PROCEDURE FreeRegs*(r: SET);
 BEGIN RegSet := r; FRegSet := {}
 END FreeRegs;

 PROCEDURE AllocInt*(k: INTEGER);
 BEGIN
 IF conx < ConstLength-1 THEN
 constant[conx] := CHR(k); INC(conx);
 constant[conx] := CHR(k DIV 100H); INC(conx)
 ELSE OCS.Mark(230); conx := 0
 END
 END AllocInt;

 PROCEDURE AllocString*(VAR s: ARRAY OF CHAR; VAR x: OCT.Item);
 VAR i: INTEGER; ch: CHAR;
 BEGIN INC(conx, (-conx) MOD 4); i := 0;
 REPEAT ch := s[i]; INC(i);
 IF conx >= ConstLength THEN OCS.Mark(230); conx := 0 END ;
 constant[conx] := ch; INC(conx)
 UNTIL ch = 0X;
 x.lev := 0; x.a0 := conx - i; x.a1 := i
 END AllocString;

 PROCEDURE AllocBounds*(min, max: INTEGER; VAR adr: LONGINT);
 BEGIN INC(conx, (-conx) MOD 4); adr := conx;
 AllocInt(max); AllocInt(min)
 END AllocBounds;

 PROCEDURE PutByte*(x: LONGINT);
 BEGIN code[pc] := CHR(x); INC(pc)
 END PutByte;

 358

 PROCEDURE PutWord*(x: LONGINT);
 BEGIN code[pc] := CHR(x DIV 100H); INC(pc); code[pc] := CHR(x); INC(pc)
 END PutWord;

 PROCEDURE PutDbl(x: LONGINT);
 VAR i: INTEGER;
 BEGIN i := -32;
 REPEAT INC(i, 8); code[pc] := CHR(ASH(x, i)); INC(pc) UNTIL i = 0
 END PutDbl;

 PROCEDURE PutDisp*(x: LONGINT);
 BEGIN
 IF x < 0 THEN
 IF x >= -40H THEN code[pc] := CHR(x+80H); INC(pc)
 ELSIF x >= -2000H THEN PutWord(x+0C000H)
 ELSE PutDbl(x)
 END
 ELSIF x < 40H THEN code[pc] := CHR(x); INC(pc)
 ELSIF x < 2000H THEN PutWord(x+8000H)
 ELSE PutDbl(x - 40000000H)
 END
 END PutDisp;

 PROCEDURE PutArg(VAR z: Argument);
 BEGIN
 CASE z.form OF
 0: IF z.inx = 1 THEN code[pc] := CHR(z.d1); INC(pc)
 ELSIF z.inx = 2 THEN PutWord(z.d1)
 ELSIF z.inx = 4 THEN PutDbl(z.d1)
 ELSE PutDbl(z.d2); PutDbl(z.d1)
 END
 | 1: PutDisp(z.d1)
 | 2, 5:
 | 3, 6: PutDisp(z.d1)
 | 4, 7: PutDisp(z.d1); PutDisp(z.d2)
 END
 END PutArg;

 PROCEDURE PutF3*(op: INTEGER);
 BEGIN code[pc] := CHR(op); INC(pc); code[pc] := CHR(op DIV 100H); INC(pc)
 END PutF3;

 PROCEDURE Operand(VAR x: OCT.Item; VAR z: Argument);
 VAR F: INTEGER;

 PROCEDURE downlevel(VAR gen: INTEGER);
 VAR n, op: INTEGER; b: OCT.Item;
 BEGIN GetReg(b); n := level - x.lev; gen := SHORT(b.a0) + 8;
 op := SHORT(b.a0)*40H - 3FE9H;
 IF n = 1 THEN PutF3(op); PutDisp(8); (*MOVD 8(FP) Rb*)
 ELSE PutF3(op - 4000H); PutDisp(8); PutDisp(8); (*MOVD 8(8(FP)) Rb*)
 WHILE n > 2 DO DEC(n);
 PutF3((SHORT(b.a0)*20H + SHORT(b.a0))*40H + 4017H); PutDisp(8)
 END
 END ;
 END downlevel;

 PROCEDURE index;
 VAR s: LONGINT;

 359

 BEGIN s := x.typ.size;
 IF s = 1 THEN z.gen := 1CH
 ELSIF s = 2 THEN z.gen := 1DH
 ELSIF s = 4 THEN z.gen := 1EH
 ELSIF s = 8 THEN z.gen := 1FH
 ELSE z.gen := 1CH; PutByte(F7); PutByte(x.a2 MOD 4 * 40H + 23H);
 PutByte(x.a2 DIV 4 + 0A0H); PutWord(0); PutWord(s) (*MUL r s*)
 END ;
 END index;

 BEGIN F := x.mode;
 CASE x.mode OF
 Var: IF x.lev = 0 THEN
 z.gen := 1AH; z.d1 := x.a0; z.form := 3
 ELSIF x.lev < 0 THEN (*EXT*)
 z.gen := 16H; z.d1 := -x.lev; z.d2 := x.a0; z.form := 4
 ELSIF x.lev = level THEN
 z.gen := 18H; z.d1 := x.a0; z.form := 3
 ELSIF x.lev+1 = level THEN
 z.gen := 10H; z.d1 := 8; z.d2 := x.a0; z.form := 4
 ELSE downlevel(z.gen); z.d1 := x.a0; z.form := 3
 END
 | Ind: IF x.lev = 0 THEN
 z.gen := 12H; z.d1 := x.a0; z.d2 := x.a1; z.form := 4
 ELSIF x.lev = level THEN
 z.gen := 10H; z.d1 := x.a0; z.d2 := x.a1; z.form := 4
 ELSE downlevel(z.gen);
 PutF3((z.gen*20H + z.gen-8)*40H + 17H); PutDisp(x.a0);
 z.d1 := x.a1; z.form := 3
 END
 | RegI: z.gen := SHORT(x.a0)+8; z.d1 := x.a1; z.form := 3
 | VarX: index;
 IF x.lev = 0 THEN
 z.inx := 1AH; z.d1 := x.a0; z.form := 6
 ELSIF x.lev < 0 THEN (*EXT*)
 z.inx := 16H; z.d1 := -x.lev; z.d2 := x.a0; z.form := 7
 ELSIF x.lev = level THEN
 z.inx := 18H; z.d1 := x.a0; z.form := 6
 ELSIF x.lev+1 = level THEN
 z.inx := 10H; z.d1 := 8; z.d2 := x.a0; z.form := 7
 ELSE downlevel(z.inx); z.d1 := x.a0; z.form := 6
 END ;
 z.inx := z.inx*8 + SHORT(x.a2)
 | IndX: index;
 IF x.lev = 0 THEN
 z.inx := 12H; z.d1 := x.a0; z.d2 := x.a1; z.form := 7
 ELSIF x.lev = level THEN
 z.inx := 10H; z.d1 := x.a0; z.d2 := x.a1; z.form := 7
 ELSE downlevel(z.inx);
 PutF3((z.inx*20H + z.inx-8)*40H + 17H); PutDisp(x.a0);
 z.d1 := x.a1; z.form := 6
 END ;
 z.inx := z.inx * 8 + SHORT(x.a2)
 | RegX: index; z.inx := SHORT((x.a0+8)*8 + x.a2); z.d1 := x.a1; z.form := 6
 | Con: CASE x.typ.form OF
 Undef, Byte, Bool, Char, SInt:

 360

 z.gen := 14H; z.inx := 1; z.d1 := x.a0; z.form := 0
 | Int: z.gen := 14H; z.inx := 2; z.d1 := x.a0; z.form := 0
 | LInt, Real, Set, Pointer, ProcTyp, NilTyp:
 z.gen := 14H; z.inx := 4; z.d1 := x.a0; z.form := 0
 | LReal:
 z.gen := 14H; z.inx := 8; z.d1 := x.a0; z.d2 := x.a1; z.form := 0
 | String:
 z.gen := 1AH; z.d1 := x.a0; z.form := 3
 END
 | Reg: z.gen := SHORT(x.a0); z.form := 2
 | Stk: z.gen := 17H; z.form := 2
 | Abs: z.gen := 15H; z.form := 1; z.d1 := x.a0
 | Coc, Fld .. Head: OCS.Mark(126); x.mode := Var; z.form := 0
 END
 END Operand;

 PROCEDURE PutF0*(cond: LONGINT);
 BEGIN code[pc] := CHR(cond*10H + 10); INC(pc)
 END PutF0;

 PROCEDURE PutF1*(op: INTEGER);
 BEGIN code[pc] := CHR(op); INC(pc)
 END PutF1;

 PROCEDURE PutF2*(op: INTEGER; short: LONGINT; VAR x: OCT.Item);
 VAR dst: Argument;
 BEGIN Operand(x, dst);
 code[pc] := CHR(SHORT(short) MOD 2 * 80H + op); INC(pc);
 code[pc] := CHR(dst.gen*8 + SHORT(short) MOD 10H DIV 2);
 INC(pc);
 IF dst.form > 4 THEN code[pc] := CHR(dst.inx); INC(pc) END ;
 PutArg(dst)
 END PutF2;

 PROCEDURE PutF4*(op: INTEGER; VAR x, y: OCT.Item);
 VAR dst, src: Argument;
 BEGIN Operand(x, dst); Operand(y, src);
 code[pc] := CHR(dst.gen MOD 4 * 40H + op); INC(pc);
 code[pc] := CHR(src.gen*8 + dst.gen DIV 4); INC(pc);
 IF src.form > 4 THEN code[pc] := CHR(src.inx); INC(pc) END ;
 IF dst.form > 4 THEN code[pc] := CHR(dst.inx); INC(pc) END ;
 PutArg(src); PutArg(dst)
 END PutF4;

 PROCEDURE Put*(F, op: INTEGER; VAR x, y: OCT.Item);
 VAR dst, src: Argument;
 BEGIN Operand(x, dst); Operand(y, src); code[pc] := CHR(F); INC(pc);
 code[pc] := CHR(dst.gen MOD 4 * 40H + op); INC(pc);
 code[pc] := CHR(src.gen*8 + dst.gen DIV 4); INC(pc);
 IF src.form > 4 THEN code[pc] := CHR(src.inx); INC(pc) END ;
 IF dst.form > 4 THEN code[pc] := CHR(dst.inx); INC(pc) END ;
 PutArg(src); PutArg(dst)
 END Put;

 PROCEDURE AllocTypDesc*(typ: OCT.Struct); (* typ.form = Record *)
 BEGIN INC(conx, (-conx) MOD 4); typ.mno := 0; typ.adr := conx;
 IF typ.n > MaxExts THEN OCS.Mark(233)
 ELSIF nofrec < MaxRecs THEN
 PtrTab[nofptrs] := conx; INC(nofptrs);

 361

 RecTab[nofrec] := typ; INC(nofrec);
 AllocInt(0); AllocInt(0)
 ELSE OCS.Mark(223)
 END
 END AllocTypDesc;

 PROCEDURE InitTypDescs*;
 VAR x, y: OCT.Item; i: INTEGER; typ: OCT.Struct;
 BEGIN
 x.mode := Ind; x.lev := 0; y.mode := Var; i := 0;
 WHILE i < nofrec DO typ := RecTab[i]; INC(i); x.a0 := typ.adr;
 WHILE typ.BaseTyp # NIL DO (*initialization of base tag fields*)
 x.a1 := typ.n * 4; y.lev := -typ.mno; y.a0 := typ.adr; PutF4(17H, x, y);
 typ := typ.BaseTyp
 END
 END
 END InitTypDescs;

 PROCEDURE SaveRegisters*(VAR gR, fR: SET; VAR x: OCT.Item);
 VAR i, r, m: INTEGER; t: SET;
 BEGIN t := RegSet;
 IF x.mode IN {Reg, RegI, RegX} THEN EXCL(RegSet, x.a0) END ;
 IF x.mode IN {VarX, IndX, RegX} THEN EXCL(RegSet, x.a2) END ;
 gR := RegSet; fR := FRegSet;
 IF RegSet # {} THEN
 i := 0; r := 1; m := 0;
 REPEAT
 IF i IN RegSet THEN INC(m, r) END ;
 INC(r, r); INC(i)
 UNTIL i = 8;
 PutF1(62H); PutByte(m)
 END ;
 RegSet := t - RegSet; i := 0;
 WHILE FRegSet # {} DO
 IF i IN FRegSet THEN
 PutF1(F11); PutF3(i*800H + 5C4H); EXCL(FRegSet, i)
 END ;
 INC(i, 2)
 END
 END SaveRegisters;

 PROCEDURE RestoreRegisters*(gR, fR: SET; VAR x: OCT.Item);
 VAR i, r, m: INTEGER; y: OCT.Item;
 BEGIN RegSet := gR; FRegSet := fR; i := 8;
 (*set result mode*) x.mode := Reg; x.a0 := 0;
 IF (x.typ.form = Real) OR (x.typ.form = LReal) THEN
 IF 0 IN fR THEN GetFReg(y); Put(F11, 4, y, x); x.a0 := y.a0 END ;
 INCL(FRegSet, 0)
 ELSE
 IF 0 IN gR THEN GetReg(y); PutF4(17H, y, x); x.a0 := y.a0 END ;
 INCL(RegSet, 0)
 END ;
 WHILE fR # {} DO
 DEC(i, 2);
 IF i IN fR THEN
 PutF1(F11); PutF3(i*40H - 47FCH); EXCL(fR, i)
 END

 362

 END ;
 IF gR # {} THEN
 i := 8; r := 1; m := 0;
 REPEAT DEC(i);
 IF i IN gR THEN INC(m, r) END ;
 INC(r, r)
 UNTIL i = 0;
 PutF1(72H); PutF1(m)
 END
 END RestoreRegisters;

 PROCEDURE DynArrAdr*(VAR x, y: OCT.Item); (* x := ADR(y) *)
 VAR l, z: OCT.Item;
 BEGIN
 WHILE y.typ.form = DynArr DO (* index with 0 *)
 IF y.mode = IndX THEN
 l.mode := Var; l.a0 := y.a0 + y.typ.adr; l.lev := y.lev;
 (* l = actual dimension length - 1 *)
 z.mode := Con; z.a0 := 0; z.typ := OCT.inttyp;
 Put(2EH, SHORT(y.a2)*8+5, z, l) (* INDEXW inxreg, l, 0 *)
 END;
 y.typ := y.typ.BaseTyp
 END;
 IF (y.mode = Var) OR (y.mode = Ind) & (y.a1 = 0) THEN
 y.mode := Var; PutF4(17H, x, y) (* MOVD *)
 ELSE PutF4(27H, x, y); x.a1 := 0 (* ADDR *)
 END
 END DynArrAdr;

 PROCEDURE Entry*(i: INTEGER): INTEGER;
 BEGIN RETURN entry[i]
 END Entry;

 PROCEDURE SetEntry*(i: INTEGER);
 BEGIN entry[i] := pc
 END SetEntry;

 PROCEDURE LinkAdr*(m: INTEGER; n: LONGINT): INTEGER;
 BEGIN
 IF lnkx >= LinkLength THEN OCS.Mark(231); lnkx := 0 END ;
 link[lnkx] := m*100H + SHORT(n); INC(lnkx); RETURN lnkx-1
 END LinkAdr;

 PROCEDURE SetLinkTable*(n: INTEGER);
 BEGIN (*base addresses of imported modules*) lnkx := 0;
 WHILE lnkx < n DO link[lnkx] := lnkx*100H + 255; INC(lnkx) END
 END SetLinkTable;

 PROCEDURE fixup*(loc: LONGINT); (*enter pc at loc*)
 VAR x: LONGINT;
 BEGIN x := pc - loc + 8001H;
 code[loc] := CHR(x DIV 100H); code[loc+1] := CHR(x)
 END fixup;

 PROCEDURE fixupC*(loc: LONGINT);
 VAR x: LONGINT;
 BEGIN x := pc+1 - loc;
 IF x > 3 THEN
 IF x < 2000H THEN

 363

 code[loc] := CHR(x DIV 100H + 80H); code[loc+1] := CHR(x)
 ELSE OCS.Mark(211)
 END
 ELSE DEC(pc, 3)
 END
 END fixupC;

 PROCEDURE fixupL*(loc: LONGINT);
 VAR x: LONGINT;
 BEGIN x := pc+1 - loc;
 IF x > 5 THEN
 code[loc+2] := CHR(x DIV 100H); code[loc+3] := CHR(x)
 ELSE DEC(pc, 5)
 END
 END fixupL;

 PROCEDURE FixLink*(L: LONGINT);
 VAR L1: LONGINT;
 BEGIN
 WHILE L # 0 DO
 L1 := ORD(code[L])*100H + ORD(code[L+1]);
 fixup(L); L := L1
 END
 END FixLink;

 PROCEDURE FixupWith*(L, val: LONGINT);
 VAR x: LONGINT;
 BEGIN x := val MOD 4000H + 8000H;
 IF ABS(val) >= 2000H THEN OCS.Mark(208) END ;
 code[L] := CHR(x DIV 100H); code[L+1] := CHR(x)
 END FixupWith;

 PROCEDURE FixLinkWith*(L, val: LONGINT);
 VAR L1: LONGINT;
 BEGIN
 WHILE L # 0 DO
 L1 := ORD(code[L])*100H + ORD(code[L+1]);
 FixupWith(L, val+1 - L); L := L1
 END
 END FixLinkWith;
 PROCEDURE MergedLinks*(L0, L1: LONGINT): LONGINT;
 VAR L2, L3: LONGINT;
 BEGIN (*merge chains of the two operands of AND and OR *)
 IF L0 # 0 THEN L2 := L0;
 LOOP L3 := ORD(code[L2])*100H + ORD(code[L2+1]);
 IF L3 = 0 THEN EXIT END ;
 L2 := L3
 END ;
 code[L2] := CHR(L1 DIV 100H); code[L2+1] := CHR(L1);
 RETURN L0
 ELSE RETURN L1
 END
 END MergedLinks;

 PROCEDURE Init*;
 VAR i: INTEGER;
 BEGIN pc := 0; level := 0; lnkx := 0; conx := 0; nofptrs := 0; nofrec := 0;
 RegSet := {}; FRegSet := {}; i := 0;

 364

 REPEAT entry[i] := 0; INC(i) UNTIL i = EntryLength
 END Init;

 PROCEDURE OutCode*(VAR name, progid: ARRAY OF CHAR;
 key: LONGINT; entno: INTEGER; datasize: LONGINT);
 CONST ObjMark = 0F8X;
 VAR ch: CHAR; f, i, m: INTEGER;
 K, s, s0, refpos: LONGINT;
 nofcom, comsize, align: INTEGER;
 obj: OCT.Object;
 typ: OCT.Struct;
 ObjFile: Files.File;
 out: Files.Rider;
 ComTab: ARRAY MaxComs OF OCT.Object;

 PROCEDURE W(n: INTEGER);
 BEGIN Files.Write(out, CHR(n)); Files.Write(out, CHR(n DIV 100H))
 END W;

 PROCEDURE WriteName(VAR name: ARRAY OF CHAR; n: INTEGER);
 VAR i: INTEGER; ch: CHAR;
 BEGIN i := 0;
 REPEAT ch := name[i]; Files.Write(out, ch); INC(i) UNTIL ch = 0X;
 WHILE i < n DO Files.Write(out, 0X); INC(i) END
 END WriteName;

 PROCEDURE FindPtrs(typ: OCT.Struct; adr: LONGINT);
 VAR fld: OCT.Object; btyp: OCT.Struct;
 i, n, s: LONGINT;
 BEGIN
 IF typ.form = Pointer THEN
 IF nofptrs < MaxPtrs THEN PtrTab[nofptrs] := adr; INC(nofptrs)
 ELSE OCS.Mark(222)
 END
 ELSIF typ.form = Record THEN
 btyp := typ.BaseTyp;
 IF btyp # NIL THEN FindPtrs(btyp, adr) END ;
 fld := typ.link;
 WHILE fld # NIL DO
 IF fld.name # "" THEN FindPtrs(fld.typ, fld.a0 + adr)
 ELSIF nofptrs < MaxPtrs THEN PtrTab[nofptrs] := fld.a0 + adr; INC(nofptrs)
 ELSE OCS.Mark(222)
 END ;
 fld := fld.next
 END
 ELSIF typ.form = Array THEN
 btyp := typ.BaseTyp; n := typ.n;
 WHILE btyp.form = Array DO n := btyp.n * n; btyp := btyp.BaseTyp END ;
 IF (btyp.form = Pointer) OR (btyp.form = Record) THEN
 i := 0; s := btyp.size;
 WHILE i < n DO FindPtrs(btyp, i*s + adr); INC(i) END
 END
 END
 END FindPtrs;

 PROCEDURE PtrsAndComs;
 VAR obj, par: OCT.Object; u: INTEGER;
 BEGIN obj := OCT.topScope.next;

 365

 WHILE obj # NIL DO
 IF obj.mode = XProc THEN par := obj.dsc;
 IF entry[SHORT(obj.a0)] = 0 THEN OCS.Mark(129)
 ELSIF (obj.marked) & (obj.typ = OCT.notyp) &
 ((par = NIL) OR (par.mode > 3) OR (par.a0 < 0)) THEN (*command*)
 u := 0;
 WHILE obj.name[u] > 0X DO INC(comsize); INC(u) END ;
 INC(comsize, 3);
 IF nofcom < MaxComs THEN ComTab[nofcom] := obj; INC(nofcom)
 ELSE OCS.Mark(232); nofcom := 0; comsize := 0
 END
 END
 ELSIF obj.mode = Var THEN
 FindPtrs(obj.typ, obj.a0)
 END ;
 obj := obj.next
 END
 END PtrsAndComs;

 PROCEDURE OutRefBlk(first: OCT.Object; pc: INTEGER; name: ARRAY OF CHAR);
 VAR obj: OCT.Object;
 BEGIN obj := first;
 WHILE obj # NIL DO
 IF obj.mode IN {LProc, XProc, IProc} THEN
 OutRefBlk(obj.dsc, obj.a2, obj.name)
 END ;
 obj := obj.next
 END ;
 Files.Write(out, 0F8X); Files.WriteBytes(out, pc, 2); WriteName(name, 0);
 obj := first;
 WHILE obj # NIL DO
 IF (obj.mode = Var) OR (obj.mode = Ind) THEN
 f := obj.typ.form;
 IF (f IN {Byte .. Set, Pointer})
 OR (f = Array) & (obj.typ.BaseTyp.form = Char) THEN
 Files.Write(out, CHR(obj.mode)); Files.Write(out, CHR(f));
 Files.WriteBytes(out, obj.a0, 4); WriteName(obj.name, 0)
 END
 END ;
 obj:= obj.next
 END
 END OutRefBlk;

 BEGIN (*OutCode*) ObjFile := Files.New(name);
 IF ObjFile # NIL THEN
 Files.Set(out, ObjFile, 0);
 WHILE pc MOD 4 # 0 DO PutF1(0A2H) END ; (*NOP*)
 INC(conx, (-conx) MOD 4);
 nofcom := 0; comsize := 1;
 PtrsAndComs; align := comsize MOD 2; INC(comsize, align);
 (*header block*)
 Files.Write(out, ObjMark); Files.Write(out, "6"); W(0); W(0);
 W(entno); W(comsize); W(nofptrs); W(OCT.nofGmod);
 W(lnkx); Files.WriteBytes(out, datasize, 4); W(conx); W(pc);
 Files.WriteBytes(out, key, 4); WriteName(progid, 20);
 (*entry block*)
 Files.Write(out, 82X); Files.WriteBytes(out, entry, 2*entno);

 366

 (*command block*)
 Files.Write(out, 83X);
 i := 0; (*write command names and entry addresses*)
 WHILE i < nofcom DO
 obj := ComTab[i]; WriteName(obj.name, 0); W(entry[obj.a0]); INC(i)
 END ;
 Files.Write(out, 0X);
 IF align > 0 THEN Files.Write(out, 0FFX) END ;
 (*pointer block*)
 Files.Write(out, 84X); i := 0;
 WHILE i < nofptrs DO
 IF PtrTab[i] < -4000H THEN OCS.Mark(225) END ;
 Files.WriteBytes(out, PtrTab[i], 2); INC(i)
 END ;
 (*import block*)
 Files.Write(out, 85X); i := 0;
 WHILE i < OCT.nofGmod DO
 obj := OCT.GlbMod[i];
 Files.WriteBytes(out, obj.a1, 4); WriteName(obj.name, 0); Files.Write(out, 0X);
 INC(i)
 END ;
 (*link block*)
 Files.Write(out, 86X); Files.WriteBytes(out, link, 2*lnkx);
 (*data block*)
 Files.Write(out, 87X); Files.WriteBytes(out, constant, conx);
 (*code block*)
 Files.Write(out, 88X); Files.WriteBytes(out, code, pc);
 (*type block*)
 Files.Write(out, 89X); i := 0;
 WHILE i < nofrec DO
 typ := RecTab[i]; s := typ.size + 4; m := 4; s0 := 16;
 WHILE (m > 0) & (s > s0) DO INC(s0, s0); DEC(m) END ;
 IF s > s0 THEN s0 := (s+127) DIV 128 * 128 END ;
 nofptrs := 0; FindPtrs(typ, 0);
 s := nofptrs*2 + (MaxExts+1)*4; Files.WriteBytes(out, s, 2); (*td size*)
 Files.WriteBytes(out, typ.adr, 2); (*td adr*)
 K := LONG(nofptrs)*1000000H + s0; Files.WriteBytes(out, K, 4);
 K := 0; m := 0;
 REPEAT Files.WriteBytes(out, K, 4); INC(m) UNTIL m = MaxExts;
 m := 0;
 WHILE m < nofptrs DO
 Files.WriteBytes(out, PtrTab[m], 2); INC(m)
 END ;
 INC(i)
 END ;
 (*ref block*)
 refpos := Files.Pos(out); Files.Write(out, 8AX);
 OutRefBlk(OCT.topScope.next, pc, "$$");
 Files.Set(out, ObjFile, 2); Files.WriteBytes(out, refpos, 4);
 IF ~OCS.scanerr THEN Files.Register(ObjFile) END
 ELSE OCS.Mark(153)
 END
 END OutCode;

PROCEDURE Close*;
 VAR i: INTEGER;

 367

 BEGIN i := 0;
 WHILE i < MaxRecs DO RecTab[i] := NIL; INC(i) END
 END Close;

BEGIN NEW(wasderef)
END OCC.

12.9. A Facility for Symbolic Debugging
The facility described in this section is in fact not part of the compiler, but it is nevertheless intimately
coupled with it through the definition of storage layout. This facility is used in the case of an abnormal
command termination to generate a text displaying the state of the computation. The state is
represented by the chain of activated procedures and by their local variables at the time of the
termination. Because the current values of the variables are displayed in the same form as used in the
source program (i.e. in symbolic rather than encoded form), such a facility is usually called a symbolic
debugger. It is present in the form of a command procedure Trap which, however, is not available as a
user-activatable command, but rather is invoked by the system whenever an abnormal program
condition occurs. Specifically, the procedure is defined in module System and is installed in a
procedure variable in module Kernel.

When a trap occurs, various register values are stored in exported variables of the kernel. Kernel.err
indicates the trap number (as defined by the processor). Here we list only the more frequently
occurring traps:

2 Address trap typically reference via NIL pointer
3 Floating-point trap overflow
6 Division by zero
7 Flag trap invalid index
13 Integer trap (or invalid index) overflow
18 Type guard failure

As an example, let us consider the following command:

PROCEDURE Q(multiplier, count: INTEGER);
 VAR sum: LONGINT; ch: CHAR;
BEGIN sum := 1234567; ch := "Q"; Q(multiplier*100, count+1)
END Q;

PROCEDURE Trap*;
 VAR s: ARRAY 32 OF CHAR;
BEGIN s := "This command should never terminate!"); Q(1, 0)
END Trap;

The following is the text generated and displayed in a trap viewer after an attempt to multiply caused
arithmetic overflow:

TRAP 13 FP = 002FFDD0 PC = 00443053
Demo.Q
 multiplier = 10000
 count = 2
 sum = 1234567
 ch = Q
Demo.Q
 multiplier = 100
 count = 1
 sum = 1234567
 ch = Q
Demo.Q
 multiplier = 1
 count = 0
 sum = 1234567
 ch = Q

 368

Demo.Trap
 msg = "This command never terminates!"
Oberon.Call
TextFrames.Call
TextFrames.Edit
TextFrames.Handle
MenuViewers.Handle
Oberon.Loop
Modules.$$

In order to identify the currently activated procedures and to list their local variables and current
values, the trap routine must not only have free access to the stack, where these values are allocated,
but must be able to rely on information about the mapping of source program to stored code. In fact,
this mapping has to be reversed. The relevant information is contained in the reference part of each
module's object file. It is the last part of an object file and is ignored by the loader. In order to enable
quick access, bytes 2-5 indicate the position of the reference part.

The reference part is generated by procedure OutRefBlk, which is local to OCC.OutCode. It generates
an entry in the reference part of the object file for each procedure and some of its local variables. Since
procedures may be nested, OutRefBlk is recursive. For procedures, their name and offset in the code
section of the module's block is indicated, for variables their name, offset address, and type (form). The
syntax of the reference part is

ReferencePart = {procedure}.
procedure = 0F8X offset:2 name {procedure | variable}.
variable = form:1 mode:1 offset:4 name.
name = {character} 0X.

Module bodies are treated like procedures; in place of a name stands "$$". Markers with value F8X
serve to distinguish procedure entries from those of variables. form stands for one of the following
values:

2 BOOLEAN 6 LONGINT 13 POINTER
3 CHAR 7 REAL 14 Procedure type
4 SHORTINT 8 LONGREAL 15 Character array type
5 INTEGER 9 SET

Structured variables are not included with the exception of short character arrays which take the form
of strings. mode assumes one of the values:

1 directly addressed 3 indirectly addressed (VAR parameter)

The implementation of the process of generating the desired information can be studied in detail in the
subsequent program listing. Procedure System.Trap first identifies the head of the dynamic chain of
procedure activation records. This value is held in register FP and is now indicated by Kernel.fp. The
location of the trap is specified by Kernel.pc, and the module containing the malfunctioning procedure
is specified by Kernel.mod. Now this procedure needs to be identified. This is accomplished by
accessing the respective module's object file, whose name is found in the module descriptor. The file's
reference part is scanned until a procedure is found in whose range the indicated value pc (the trap
location) lies. If found, the procedure name is listed and its list of local variables is scanned. For each
one of them, the name is read from the reference part and listed in the trap text, and its offset is read in
order to obtain its current value from the stack and to list it in the format appropriate for the indicated
form.

Trap then proceeds through the chain of procedure activation records, and for each record repeats this
process. The scanning of local variables is performed by procedure Locals, whose parameter specifies
the base address of the respective activation record.

 PROCEDURE Locals(VAR R: Files.Rider; base: LONGINT);
 VAR adr, val: LONGINT;
 sval, form: SHORTINT;
 ch, mode: CHAR;

 369

 ival, i: INTEGER;
 rval: REAL;
 lrval: LONGREAL;
 BEGIN Texts.WriteLn(W); Files.Read(R, mode);
 WHILE ~R.eof & (mode < 0F8X) DO
 Files.Read(R, form); Files.ReadBytes(R, adr, 4);
 Texts.WriteString(W, " "); Files.Read(R, ch);
 WHILE ch > 0X DO Texts.Write(W, ch); Files.Read(R, ch) END ;
 Texts.WriteString(W, " = "); INC(adr, base);
 IF mode = 3X THEN SYSTEM.GET(adr, adr) (*indirect*) END ;
 CASE form OF
 2: (*BOOL*) SYSTEM.GET(adr, sval);
 IF sval = 0 THEN Texts.WriteString(W, "FALSE")
 ELSE Texts.WriteString(W, "TRUE")
 END
 | 1,3: (*CHAR*) SYSTEM.GET(adr, ch);
 IF (" " <= ch) & (ch <= "~") THEN Texts.Write(W, ch)
 ELSE Texts.WriteHex(W, ORD(ch)); Texts.Write(W, "X")
 END
 | 4: (*SINT*) SYSTEM.GET(adr, sval); Texts.WriteInt(W, sval, 1)
 | 5: (*INT*) SYSTEM.GET(adr, ival); Texts.WriteInt(W, ival, 1)
 | 6: (*LINT*) SYSTEM.GET(adr, val); Texts.WriteInt(W, val, 1)
 | 7: (*REAL*) SYSTEM.GET(adr, rval); Texts.WriteReal(W, rval, 14)
 | 8: (*LREAL*) SYSTEM.GET(adr, lrval); Texts.WriteLongReal(W, lrval, 21)
 | 9, 13, 14: (*SET, POINTER*)
 SYSTEM.GET(adr, val); Texts.WriteHex(W, val); Texts.Write(W, "H")
 | 15: (*String*) i := 0; Texts.Write(W, 22X);
 LOOP SYSTEM.GET(adr, ch);
 IF (ch < " ") OR (ch >= 90X) OR (i = 32) THEN EXIT END ;
 Texts.Write(W, ch); INC(i); INC(adr)
 END ;
 Texts.Write(W, 22X)
 END;
 Texts.WriteLn(W); Files.Read(R, mode)
 END
 END Locals;

 PROCEDURE* Trap;
 VAR V: Viewers.Viewer;
 RefFile: Files.File;
 R: Files.Rider;
 fp, pc, refpos, dmy: LONGINT;
 ch, mode: CHAR;
 X, Y, i: INTEGER;
 mod, curmod: Modules.Module;
 name: Modules.ModuleName;
 BEGIN
 IF ~trapped THEN (*global variable as guard against recursive traps*)
 trapped := TRUE; T := TextFrames.Text("");
 Oberon.AllocateSystemViewer(0, X, Y);
 V := MenuViewers.New(TextFrames.NewMenu("System.Trap", StandardMenu),
 TextFrames.NewText(T, 0), TextFrames.menuH, X, Y);
 IF V.state > 0 THEN
 fp := Kernel.fp; pc := Kernel.pc; curmod := NIL;
 mod := SYSTEM.VAL(Modules.Module, Kernel.mod MOD 10000H);
 Texts.WriteString(W, "TRAP "); Texts.WriteInt(W, Kernel.err, 1);

 370

 Texts.WriteString(W, " FP ="); Texts.WriteHex(W, fp);
 Texts.WriteString(W, " PC ="); Texts.WriteHex(W, pc);
 IF Kernel.err = 2 THEN
 Texts.WriteString(W, " EIA ="); Texts.WriteHex(W, Kernel.eia)
 ELSIF Kernel.err = 20 THEN
 Texts.WriteString(W, " sect ="); Texts.WriteHex(W, Kernel.SectNo)
 END ;
 Texts.WriteLn(W);
 LOOP Texts.WriteString(W, mod.name); Texts.Append(T, W.buf);
 IF mod # curmod THEN
 (*load obj file*) i := 0;
 WHILE mod.name[i] > 0X DO name[i] := mod.name[i]; INC(i) END ;
 name[i] := "."; name[i+1] := "O"; name[i+2] := "b"; name[i+3] := "j";
 name[i+4] := 0X; RefFile := Files.Old(name);
 IF RefFile = NIL THEN curmod := NIL; Texts.WriteLn(W)
 ELSE curmod := mod; Files.Set(R, RefFile, 2);
 Files.ReadBytes(R, refpos, 4); Files.Set(R, RefFile, refpos); Files.Read(R, ch);
 IF ch = 8AX THEN INC(refpos)
 ELSE curmod := NIL; Texts.WriteInt(W, pc - mod.PB, 7); Texts.WriteLn(W)
 END
 END
 END ;
 IF curmod # NIL THEN (*find procedure*)
 Files.Set(R, RefFile, refpos);
 LOOP Files.Read(R, ch);
 IF R.eof THEN EXIT END ;
 IF ch = 0F8X THEN (*start proc*)
 Files.ReadBytes(R, i, 2);
 IF pc < mod.PB + i THEN EXIT END;
 REPEAT Files.Read(R, ch) UNTIL ch = 0X; (*skip name*)
 ELSIF ch < 0F8X THEN (*skip object*)
 Files.Read(R, ch); Files.ReadBytes(R, dmy, 4);
 REPEAT Files.Read(R, ch) UNTIL ch = 0X; (*skip name*)
 END
 END ;
 IF ~R.eof THEN
 Texts.Write(W, "."); Files.Read(R, ch);
 WHILE ch > 0X DO Texts.Write(W, ch); Files.Read(R, ch) END ;
 Texts.Append(T, W.buf); Locals(R, fp)
 END
 END ;
 SYSTEM.GET(fp+4, pc); SYSTEM.GET(fp, fp);
 IF fp >= Kernel.StackOrg THEN EXIT END ;
 mod := SYSTEM.VAL(Modules.Module, Kernel.ModList);
 (*find module of next procedure*)
 WHILE (mod # NIL) &
 ((pc < mod.PB) OR (mod.size + mod.BB <= pc)) DO
 mod := mod.link
 END ;
 IF mod = NIL THEN EXIT END
 END ;
 Texts.Append(T, W.buf)
 END ;
 trapped := FALSE
 END
 END Trap;

 371

The trap routine is operating in the supervisor mode and uses the supervisor stack. Therefore, it also
operates correctly in the case of a stack overflow. We assume that it does itself not cause another trap,
except if it causes heap overflow due to its output operations. The global state variable trapped
prevents the occurrence of a recursive trap. After termination of the trap handler, control returns to the
kernel and the stack is reset.

A fringe benefit of having procedure Locals available is that also global variables of a module can be
listed in the same way. Command procedure System.State serves precisely this purpose. The name of
the module to be inspected is provided as parameter, and the relevant module descriptor is obtained by
searching the list of module descriptors headed by Kernel.ModList. The base address of the area
representing the global variables is given by the module's static base mod.SB.

 PROCEDURE OutState (VAR name: ARRAY OF CHAR; t: Texts.Text);
 VAR mod: Modules.Module;
 refpos: LONGINT;
 ch: CHAR; X, Y, i: INTEGER;
 F: Files.File; R: Files.Rider;
 BEGIN
 Texts.WriteString(W, name); mod := SYSTEM.VAL(Modules.Module, Kernel.ModList);
 WHILE (mod # NIL) & (mod.name # name) DO mod := mod.link END ;
 IF mod # NIL THEN
 i := 0;
 WHILE (i < 28) & (name[i] > 0X) DO INC(i) END ;
 name[i] := "."; name[i+1] := "O"; name[i+2] := "b"; name[i+3] := "j"; name[i+4] := 0X;
 F := Files.Old(name);
 IF F # NIL THEN
 Texts.WriteString(W, " SB ="); Texts.WriteHex(W, mod.SB);
 Files.Set(R, F, 2); Files.ReadBytes(R, refpos, 4); Files.Set(R, F, refpos+1);
 LOOP Files.Read(R, ch);
 IF R.eof THEN EXIT END ;
 IF ch = 0F8X THEN
 Files.ReadBytes(R, i, 2); Files.Read(R, ch);
 IF ch = "$" THEN Files.Read(R, ch); Files.Read(R, ch); EXIT END ;
 REPEAT Files.Read(R, ch) UNTIL ch = 0X (*skip name*)
 ELSIF ch < 0F8X THEN (*skip object*)
 Files.Read(R, ch); Files.Read(R, ch); Files.Read(R, ch);
 REPEAT Files.Read(R, ch) UNTIL ch = 0X; (*skip name*)
 END
 END ;
 IF ~R.eof THEN Locals(R, mod.SB) END
 ELSE Texts.WriteString(W, ".Obj not found")
 END
 ELSE Texts.WriteString(W, " not loaded")
 END ;
 Texts.WriteLn(W); Texts.Append(t, W.buf)
 END OutState;

 PROCEDURE State*;
 VAR T: Texts.Text;
 S: Texts.Scanner;
 V: Viewers.Viewer;
 beg, end, time: LONGINT;
 BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
 IF S.class = Texts.Name THEN
 Oberon.AllocateSystemViewer(Oberon.Par.vwr.X, X, Y);
 T := TextFrames.Text("");
 V := MenuViewers.New(TextFrames.NewMenu("System.State", StandardMenu),

 372

 TextFrames.NewText(T, 0), TextFrames.menuH, X, Y);
 OutState(S.s, T)
 END
 END State;

 373

Copyright N.Wirth, 20.4.91 / 20.11.91

13. A Graphics Editor

13.1. History and Goal
The origin of graphics systems as they are in use at this time was intimately tied to the advent of the
high-resolution bit-mapped display and of the mouse as pointing device. The author's first contact with
such equipment dates back to 1976. The Alto computer at the Xerox Palo Alto Research Center is
justly termed the first workstation featuring those characteristics. The designer of its first graphics
package was Ch. Thacker who perceived the usefulness of the high-resolution screen for drawing and
processing schematics of electronic circuits. This system was cleverly tailored to the needs
encountered in this activity, and it was remarkable in its compactness and effectiveness due to the lack
of unnecessary facilities. Indeed, its acronym was SIL, for Simple ILlustrator.

After careful study of the used techniques, the author designed a variant, programmed in Modula-2
(instead of BCPL) for the PDP-11 Computer, thereby ordering and exhibiting the involved data
structures more explicitly. In intervals of about two years, that system was revised and grew gradually
into the present Draw system. The general goal remained a simple line drawing system: emphasis was
placed on a clear structure and increase of flexibility through generalization of existing rather than
indiscriminate addition of new features.

In the history of this evolution, three major transitions can be observed. The first was the move from a
single "window", the screen, to multiple windows including windows showing different excerpts of the
same graphic. This step was performed on the Lilith computer which resembled the Alto in many
ways. The second major transition was the application of the object-oriented style of programming,
which allowed the addition of new element types to the basic system, making it extensible. The third
step concerned the proper integration of the Draw system with Oberon's text system. The last two steps
were performed using Oberon and the Ceres computer.

We refrain from exhibiting this evolution and merely present the outcome, although the history might
be an interesting reflection of the evolution of programming techniques in general, containing many
useful lessons. We stress the fact, however, that the present system rests on a long history of
development, during which many features and techniques were introduced and later discarded or
revised. The size of the system's description is a poor measure of the effort that went into its
construction; deletion of program text sometimes marks bigger progress than addition.

The goal of the original SIL program was to support the design of electronic circuit diagrams.
Primarily, SIL was a line drawing system. This implies that the drawings remain uninterpreted.
However, in a properly integrated system, the addition of modules containing operators that interpret
the drawings is a reasonably straight-forward proposition. In fact, the Oberon system is ideally suited
for such steps, particularly due to its command facility.

At first, we shall ignore features specially tailored to circuit design. The primary one is a macro facility
to be discussed in a later chapter.

The basic system consists of the modules Draw, GraphicFrames, and Graphics. These modules
contain the facilities to generate and handle horizontal and vertical lines, text captions, and macros.
Additional modules serve to introduce other elements, such as rectangles and circles, and the system is
extensible, i.e. further modules may be introduced to handle further types of elements.

13.2. A Brief Guide to Oberon's Line Drawing System
In order to provide the necessary background for the subsequent description of the Draw system's
implementation, a brief overview is provided in the style of a user's guide. It summarizes the facilities
offered by the system and gives an imp ression of its versatility.

The system called Draw serves to prepare line drawings. They contain lines, text captions, and other
items, and are displayed in graphic viewers (more precisely: in menu viewers' graphic frames). A

 374

graphic viewer shows an excerpt of the drawing plane, and several viewers may show different parts of
a drawing. The most frequently used commands are built-in as mouse clicks and combinations of
clicks. Additional commands are selectable from texts, either in viewer menus (title bars) or in the text
called Draw.Tool. Fig. 13.1. shows the display with two graphic viewers at the left and the draw tool
text at the right. The mouse buttons have the following principal functions whenever the cursor lies in
a graphic frame:

left: draw / set caret middle: move / copy right: select

A mouse command is identified (1) by the key k0 pressed initially, (2) by the initial position P0 of the
cursor, (3) by the set of pressed keys k1 until the last one is released, and (4) the cursor position P1 at
the time of release.

13.2.1. Basic Commands

The command Draw.Open opens a new viewer and displays the graph with the name given as
parameter. We suggest that file names use the extension Graph.

Drawing a line. In order to draw a horizontal or vertical line from P0 to P1, the left key is pressed with
the cursor at P0 and, while the key is held, the mouse and cursor is moved to P1. Then the key is
released. If P0 and P1 differ in both their x and y coordinates, the end point is adjusted so that the line
is either horizontal or vertical.

Writing a caption. First the cursor is positioned where the caption is to appear. Then the left key is
clicked, causing a crosshair to appear. It is called the caret. Then the text is typed. Only single lines of
texts are accepted. The DEL key may be used to retract characters (backspace).

Selecting. Most commands require the specification of operands, and many implicitly assume the
previously selected elements - the selection - to be their operands. A single element is selected by
pointing at it with the cursor and then clicking the right mouse button. This also causes previously
selected elements to be deselected. If the left key is also clicked, their selection is retained. This action
is called an interclick. To select several elements at once, the cursor is moved from P0 to P1 while the
right key is held. Then all elements lying within the rectangle with diagonally opposite corners at P0
and P1 are selected. Selected lines are displayed as dotted lines, selected captions (and macros) by
inverse video mode. A macro is selected by pointing at its lower left corner. The corner is called
sensitive area.

Moving. To move (displace) a set of elements, the elements are first selected and then the cursor is
moved from P0 to P1 while the middle key is held. The vector from P0 to P1 specifies the movement
and is called the displacement vector. P0 and P1 may lie in different viewers displaying the same
graph. Small displacements may be achieved by using the keyboard's cursor keys.

Copying. Similarly, the selected elements may be copied (duplicated). In addition to pressing the
middle key while indicating the displacement vector, the left key is interclicked. The copy command
may also be used to copy elements from one graph into another graph by moving the cursor from one
viewer into another viewer displaying the destination graph. A text caption may be copied from a text
frame into a graphic frame and vice-versa. There exist two ways to accomplish this: 1. First the caret is
placed at the destination position, then the text is selected and the middle key is interclicked. 2. First
the text is selected, then the caret is placed at the destination position and the middle key is
interclicked.

Shifting the plane. You may shift the entire drawing plane behind the viewer by specifying a
displacement vector pressing the middle button (like in a move command) and interclicking the right
button.

The following table shows a summary of the mouse actions:

left draw line
left (no motion) set caret
left + middle copy selected caption to caret
left + right set secondary caret

 375

middle move selection
middle + left copy selection
middle + right shift drawing plane

right select area
right (no motion) select object
right + middle copy caption to caret
right + left select without deselection

13.2.2. Menu Commands

The following commands are displayed in the menu (title bar) of every graphic viewer. They are
activated by being pointed at and by clicking the middle button.

Draw.Delete The selected elements are deleted.
Draw.Store The drawing is written as file with the name shown in the title bar.
 The original file is renamed by appending ".Bak".

The two viewers in Fig. 13.1. display different parts of the same graphic. The second view was
obtained from the generic System.Copy command and a subsequent shift of the drawing plane..

13.2.3. Further Commands

The following commands are listed in the text Draw.Tool, but may appear in any text.

Draw.Store name The drawing in the marked viewer is stored as a file with the specified name.
Draw.Print Server * The drawing in the marked viewer is printed by the named print server.
Draw.Print Server filename1 filename2 ... ~. The named files are printed.

The subsequent commands change attributes of drawing elements, such as line width, text font, and
color, and they apply to the most recent selection.

Draw.SetWidth w default = 1, 0 < w < 7.
Draw.ChangeFont fontname
Draw.ChangeColor c
Draw.ChangeWidth w (0 < w < 7)

The ChangeColor command either take a color number in the range 1 .. 15 or a string as parameter. It
serves to copy the color from the selected character (see Draw.Tool).

A few actions are initiated by control characters from the keyboard. They apply to the focus viewer.

DEL Selected elements are deleted
Cursor characters Move selection by 1 unit in the indicated direction
No Scrll Redraw
Cntl / No Scrll Reset origin and redra

13.2.4. Macros

A macro is a (small) drawing that can be identified as a whole and be used as an element within a
(larger) drawing. Macros are typically stored in collections called libraries, from where they can be
selected and copied individually.

Draw.Macro lib mac The macro mac is selected from the library named lib and inserted in the
drawing at the caret's position.

An example for the use of macros is drawing electronic circuit diagrams. The basic library file
containing frequently used TTL components is called TTL0.Lib, and a drawing showing its elements is
called TTL0.Graph.

13.2.5. Rectangles

Rectangles can be created as individual elements. They are frequently used for framing sets of
elements. Rectangles consist of four lines which are selectable as a unit. The attribute commands

 376

Draw.SetWidth, System.SetColor, Draw.ChangeWidth, and Draw.ChangeColor also apply to
rectangles. Rectangles are selected by pointing at their lower right corner and are created by the
following steps:

1. The caret is placed where a corner of the new rectangle is to lie.
2. A secondary caret is placed where the opposite corner is to lie (left + right).
3. The command Rectangles.Make is activated.

Rectangles may be filled with a shade pattern. The shade is specified as a number s (0 # s # 9).

Rectangles.SetShade s default = 0: no shading

By pointing at its lower right corner and clicking the middle button, a rectangle's corner may be
dragged, thereby resizing the rectangle

13.2.6. Oblique Lines, Circles, and Ellipse

Further graphic elements are (oblique) lines, circles, and ellipses. The sensitive area of circles and
ellipses is at their lowest point. They are created by the following steps:

Lines: 1. The caret is placed where the starting point is to lie.
 2. A secondary caret is placed at the position of the end.
 3. The command Curves.MakeLine is activated.

Circles: 1. The caret is placed where the center is to lie.
 2. A secondary caret is placed. Its horizontal distance from the first caret specifies the radius.
 3.The command Curves.MakeCircle is activated.

Ellipses: 1. The caret is placed where the center is to lie.
 2. A second caret is placed. Its horizontal distance from the first caret specifies one axis.
 3. A third caret is placed. Its vertical distance from the first caret specifies the other axis.
 4. The command Curves.MakeEllipse is activated.

13.2.7. Spline Curves

Spline curves are created by the following steps:

1. The caret is placed where the starting point is to lie.
2. Secondary carets are placed at the spline's fixed points (at most 20).
3. The command Splines.MakeOpen or Splines.MakeClosed is activated.

13.2.8. Constructing New Macros

A new macro is constructed and inserted in the library lib under the name mac as follows:

1. All elements which belong to the new macro are selected.
2. The caret is placed at the lower left corner of the area to be spanned by the macro.
3. A secondary caret is placed at the upper right corner of the area to be spanned by the macro.
4. The command Draw.MakeMacro lib mac is activated.

An existing macro can be decomposed (opened) into its parts as follows:

1. The macro is selected.
2. The caret is placed at the position where the decomposition is to appear.
3. The command Draw.OpenMacro is activated.

The command Draw.StoreLibrary lib file stores the library lib on the specified file. Only the macros
presently loaded are considered as belonging to the library. If one wishes to add some macros to an
existing library file, all of its elements must first be loaded. This is best done by opening a graph
containing all macros of the desired library file.

13.3. The Core and its Structure

 377

Like a text, a graphic consists of elements, subsequently to be called objects. Unlike a text, which is a
sequence of elements, a graphic is an unordered set of objects. In a text, the position of an element
need not be explicitly indicated (stored); it is recomputed from the position of its predecessor each time
it is needed, for example for displaying or selecting an element. In a graphic, each object must carry its
position explicitly, as it is independent of any other object in the set. This is an essential difference,
requiring a different treatment and much more storage space for an equal number of objects.

Although this is an important consideration in the choice of a representation of a data structure, the
primary determinants are the kind of objects to be included, and the set of operations to be applied to
them. Here SIL set a sensible starting point. To begin with, there exist only two kinds of objects,
namely straight, horizontal and vertical lines, and short texts for labelling lines, called captions. It is
surprising how many useful task can be fulfilled with only these two types of objects.

The typical operations to be performed on objects are creating, drawing, moving, copying, and erasing.
Those performed on a graphic are inserting, searching, and deleting an object. For the operations on
objects, data indicating an object's position (and possibly color), its length and width in the case of
lines, and the character string in the case of captions suffice. For the operations on the graphic, some
data structure representing the set of objects must be chosen. Without question, a dynamic structure is
most appropriate, and it requires the addition of some linking fields to the record representing an
object. Without further deliberation, and with the idea that graphics to be handled with this system
contain hundreds rather than tens of thousands of objects, we chose the simplest solution, the linear
list. A proper modularization in connection with information hiding will make it possible to alter this
choice without affecting client modules.

Although in general the nature of a user interface should not influence the representation chosen for the
abstract data structure, we need to take note of the manner in which parameters of certain operations
are denoted. It is, for example, customary in interactive graphics systems to select the objects to which
an operation is to apply before invoking that operation. Their selection is reflected in their visual
appearance in some way, and gives the user an opportunity to verify the selection (and to change it, if
necessary) before applying the operation (such as deletion). For an object to be selectable means that it
must record a state (selected/unselected). We note that it is important that this state is reflected by
visual appearance.

As a consequence, the property selected is added to every object record. We now specify the data types
representing lines and captions as follows and note that both types must be extensions of the same base
type in order to be members of one and the same data structure.

TYPE Object = POINTER TO ObjectDesc;
 ObjectDesc = RECORD
 x, y, w, h, col: INTEGER;
 selected: BOOLEAN;
 next: Object
 END ;

 Line = POINTER TO LineDesc;
 LineDesc = RECORD (Object) END ;

 Caption = POINTER TO CaptionDesc
 CaptionDesc = RECORD (Object)
 pos, len: INTEGER
 END

Selection of a single element is typically achieved by pointing at the object with mouse and cursor.
Selection of a set of objects is achieved by specifying a rectangular area, implying selection of all
objects lying within it. In both cases, the search for selected elements proceeds through the linked list
and relies on the position and size stored in each object's descriptor. As a consequence, the rule was
adopted that every object not only specify a position through its coordinates x, y, but also the
rectangular area within which it lies (width w, height h). It is thus easy to determine whether a given
point identifies an object, as well as whether an object lies fully within a rectangular area.

 378

In principle, each caption descriptor carries the sequence of characters (string) representing the caption.
The simplest realization would be an array structured field, limiting the length of captions to some
fixed, predetermined value. First, this is highly undesirable (although used in early versions of the
system). And second, texts carry attributes (color, font). It is therefore best to use a global "scratch
text", and to record a caption by the position and length of the string in this immutable text.

A procedure drawGraphic to draw all objects of a graphic now assumes the following form:

PROCEDURE drawObj(obj: Object);
BEGIN
 IF obj IS Line THEN drawLine(obj(Line))
 ELSIF obj IS Caption THEN drawCaption(obj(Caption))
 ELSE (*other object types, if any*)
 END
END drawObj;

PROCEDRE drawGraphic(first: Object);
 VAR obj: Object;
BEGIN obj := first;
 WHILE obj 9 NIL DO drawObj(obj); obj := obj.next END
END drawGraphic

The two procedures typically are placed in different modules, one containing operations on objects, the
other those on graphics. Here the former is the service module, the latter the former's client. Procedures
for, e.g, copying elements, or determining whether an object is selectable, follow the same pattern as
drawGraphic.

This solution has the unpleasant property that all object types are anchored in the base module. If any
new types are to be added, the base module has to be modified (and all clients are to be - at least -
recompiled). The object-oriented paradigm eliminates this difficulty by inverting the roles of the two
modules. It rests on binding the operations pertaining to an object type to each object individually in
the form of procedure-typed record fields as shown in the following sample declaration:

ObjectDesc = RECORD
 x, y, w, h, col: INTEGER; selected: BOOLEAN;
 draw: PROCEDURE (obj: Object);
 write: PROCEDURE (obj: Object; VAR R: Files.Rider);
 next: Object
 END

The procedure drawGraphic is now formulated as follows:

PROCEDURE drawGraphic(first: Object);
 VAR obj : Object;
BEGIN obj := first;
 WHILE obj 9 NIL DO obj.draw(obj); obj := obj.next END
END drawGraphic;

The individual procedures - in object-oriented terminology called methods - are assigned to the record's
fields upon its creation. They need no further discrimination of types, as this role is assumed by the
assignment of the procedures upon their installation. We note here that the procedure fields are never
changed; they assume the role of constants rather than variables associated with each object.

This example exhibits in a nutshell the essence of object-oriented programming, extensibility as its
purpose and the procedure-typed record field as the technique.

The given solution, as it stands, has the drawback that each object (instance, variable) contains several
procedures (of which three are listed), and therefore leads to a storage requirement that should be
avoided. Furthermore, it defines once and for all the number of operations applicable to objects, and
also their parameters and result types. A different approach with the same underlying principle
removes these drawbacks. It employs a single installed procedure which itself discriminates among the

 379

operations according to different types of parameters. The parameters of the preceding solution are
merged into a single record called a message. The unified procedure is called a handler, and messages
are typically extensions of a single base type (Msg).

TYPE Msg = RECORD END;
 DrawMsg = RECORD (Msg) END;
 WriteMsg = RECORD (Msg) R: Files.Rider END ;

 ObjectDesc = RECORD
 x, y, w, h, col: INTEGER; selected: BOOLEAN;
 handle: PROCEDURE (obj: Object; VAR M: Msg);
 next: Object
 END ;

PROCEDURE Handler (obj: Object; VAR M: Msg);
 (*this procedure is assigned to the handle field of every line object*)
BEGIN
 IF M IS DrawMsg THEN drawLine(obj(Line))
 ELSIF M IS WriteMsg THEN writeLine(obj(Line), M(WriteMsg).R)
 ELSE ...
 END
END ;

PROCEDURE drawGraphic(first: Objec; VAR M: Msg);
 VAR obj: Object;
BEGIN obj := first;
 WHILE obj 9 NIL DO obj.handle(obj, M); obj := obj.next END
END drawGraphics

In the present system, a combination of the two schemes presented so far is used. It eliminates the need
for individual method fields in each object record as well as the cascaded IF statement for
discriminating among the message types. Yet it allows further addition of new methods for later
extensions without the need to change the object's declaration. The technique used is to include a
single field (called do) in each record (analogous to the handler). This field is a pointer to a method
record containing the procedures declared for the base type. At least one of them uses a message
parameter, i.e. a parameter of record structure that is extensible.

TYPE Method = POINTER TO MethodDesc;
 Msg = RECORD END;
 Context = RECORD END;

 Object = POINTER TO ObjectDesc;
 ObjectDesc = RECORD
 x, y, w, h, col: INTEGER; selected: BOOLEAN;
 do: Method; next: Object
 END;

MethodDesc = RECORD
 new: Modules.Command;
 copy: PROCEDURE (obj, to: Object);
 draw, handle: PROCEDURE (obj: Object; VAR M: Msg);
 selectable: PROCEDURE (obj: Object; x, y: INTEGER): BOOLEAN;
 read: PROCEDURE (obj: Object; VAR R: Files.Rider; VAR C: Context);
 write: PROCEDURE (obj: Object; cno: SHORTINT;
 VAR R: Files.Rider; VAR C: Context);
 print: PROCEDURE (obj: Object; x, y: INTEGER)
 END

A single method instance is generated when a new object type is created, typically in the initialization
sequence of the concerned module. When a new object is created, a pointer to this record is assigned to

 380

the do field of the new object descriptor. A call then has the form obj.do.write(obj, R). This example
exhibits the versatility of Oberon's type extension and procedure variable features very well, and it
does so without hiding the data structures involved in a dispensible, built-in run-time mechanism.

The foregoing deliberations suggest the system's modular structure shown in Fig. 13.3.:

Object

Graph, Method

Lines

Line

Captions

Caption

Graphics

Fig. 13.3. Clients of module Graphics

The modules in the top row implement the individual object types' methods, and additionally provide
commands, in particular Make for creating new objects. The base module specifies the base types and
procedures operating on graphics as a whole.

Our system, however, deviates from this scheme somewhat for several reasons:

1. Implementation of the few methods requires relatively short programs for the basic objects.
Although a sensible modularization is desirable, we wish to avoid an atomization, and therefore
merge parts that would result in tiny modules with the base module.

2. The elements of a graphic refer to fonts used in captions and to libraries used in macros. The writing
and reading procedures therefore carry a context constisting of fonts and libraries as an additional
parameter. Routines for mapping a font (library) to a number according to a given context on output,
and a number to a font (library) on input are contained in module Graphics.

3. In the design of the Oberon System, a hierarchy of four modules has proven to be most appropriate:

0. Module with base type handling the abstract data structure.
1. Module containing procedures for the representation of objects in frames (display handling).
2. Module containing the primary command interpreter and connecting frames with a viewer.
3. A command module scanning command lines and invoking the appropriate interpreters.

The module hierarchy of the Draw System is here shown together with its analogy of the Text System:

3. Command Scanner Draw Edit
2. Viewer Handler MenuViewers MenuViewers
1. Frame Handler GraphicFrames TextFrames
0. Base Graphics Texts

As a result, module Graphics does not only contain the base type Object, but also its extensions Line
and Caption. Their methods, however, are defined in GraphicFrames, if they refer to frames (e.g.
draw), and in Graphics otherwise.

So far, we have discussed operations on individual objects and the structure resulting from the desire to
be able to add new object types without affecting the base module. We now turn our attention briefly
to operations on graphics as a whole. They can be grouped into two kinds, namely operations involving
a graphic as a set, and those applying to the selection, i.e. to a subset only.

The former kind consists of procedures Add, which inserts a new object, Draw, which traverses the set
of objects and invokes their drawing methods, ThisObj, which searches for an object at a given
position, SelectObj, which marks an object to be selected, SelectArea, which identifies all objects lying
within a given rectangular area and marks them, Selectable, a Boolean function, and Enumerate, which

 381

applies the parametric procedure handle to all objects of a graphic. Furthermore, the procedures Load,
Store, Print, and WriteFile belong to this kind.

The set of operations applying to selected objects only consist of the following procedures: Deselect,
DrawSel (drawing the selection according to a specified mode), Change (changing certain attributes of
selected objects like width, font, color), Move, Copy, CopyOver (copying from one graphic into
another), and finally Delete. Also, there exists the important procedure Open which creates a new
graphic, either loading a graphic stored as a file, or generating an empty graphic.

The declaration of types and procedures that have emerged so far are summarized in the following
excerpt of the module's interface definition.

DEFINITION Graphics; (*excerpt*)
 IMPORT Files, Fonts, Texts, Modules, Display;

 CONST NameLen = 16;

 TYPE Graph = POINTER TO GraphDesc;
 GraphDesc = RECORD sel: Object; time: LONGINT END ;

 Object = POINTER TO ObjectDesc;
 Method = POINTER TO MethodDesc;

 ObjectDesc = RECORD
 x, y, w, h, col: INTEGER;
 selected, marked: BOOLEAN;
 do: Method
 END ;

 Name = ARRAY NameLen OF CHAR;
 Msg = RECORD END ;
 Context = RECORD END ;

 MethodDesc = RECORD module, allocator: Name;
 new: Modules.Command;
 copy: PROCEDURE (obj, to: Object);
 draw, handle: PROCEDURE (obj: Object; VAR msg: Msg);
 selectable: PROCEDURE (obj: Object; x, y: INTEGER): BOOLEAN;
 raed: PROCEDURE (obj: Object; VAR R: Files.Rider; VAR C: Context);
 write: PROCEDURE (obj: Object; cno: SHORTINT;
 VAR R: Files.Rider; VAR C: Context);
 print: PROCEDURE (obj: Object; x, y: INTEGER);
 END ;

 Line = POINTER TO LineDesc;
 LineDesc = RECORD (ObjectDesc) END ;

 Caption = POINTER TO CaptionDesc;
 CaptionDesc = RECORD (ObjectDesc) pos, len: INTEGER END ;

 WidMsg = RECORD (Msg) w: INTEGER END ;
 ColorMsg = RECORD (Msg) col: INTEGER END ;
 FontMsg = RECORD (Msg) fnt: Fonts.Font END ;

 VAR new: Object;
 width, res: INTEGER;
 T: Texts.Text;
 LineMethod, CapMethod, MacMethod: Method;

 PROCEDURE Add (G: Graph; obj: Object);
 PROCEDURE Draw (G: Graph; VAR M: Msg);
 PROCEDURE ThisObj (G: Graph; x, y: INTEGER): Object;
 PROCEDURE SelectObj (G: Graph; obj: Object);

 382

 PROCEDURE SelectArea (G: Graph; x0, y0, x1, y1: INTEGER);
 PROCEDURE Enumerate (G: Graph; handle:

PROCEDURE (obj: Object; VAR done: BOOLEAN));

 PROCEDURE Deselect (G: Graph);
 PROCEDURE DrawSel (G: Graph; VAR M: Msg);
 PROCEDURE Change (G: Graph; VAR M: Msg);
 PROCEDURE Move (G: Graph; dx, dy: INTEGER);
 PROCEDURE Copy (Gs, Gd: Graph; dx, dy: INTEGER);
 PROCEDURE Delete (G: Graph);

 PROCEDURE FontNo (VAR W: Files.Rider; VAR C: Context; fnt: Fonts.Font): SHORTINT;
 PROCEDURE WriteObj (VAR W: Files.Rider; cno: SHORTINT; obj: Object);
 PROCEDURE Store (G: Graph; VAR W: Files.Rider);
 PROCEDURE WriteFile (G: Graph; name: ARRAY OF CHAR);
 PROCEDURE Print (G: Graph; x0, y0: INTEGER);
 PROCEDURE Font (VAR R: Files.Rider; VAR C: Context): Fonts.Font;
 PROCEDURE Load (G: Graph; VAR R: Files.Rider);
 PROCEDURE Open (G: Graph; name: ARRAY OF CHAR);
END Graphics.

13.4. Displaying Graphics
The base module Graphics defines the representation of a set of objects in terms of a data structure.
The particulars are hidden and allow the change of structural representation by an exchange of this
module without affecting its clients. The problems of displaying a graphic on a screen or a printed page
are not handled by this module; they are delegated to the client module GraphicFrames, which defines
a frame type for graphics which is an extension of Display.Frame, just like TextFrames.Frame is an
extension of Display.Frame. In contrast to text frames, however, a graphic instead of a text is associate
with it.

FrameDesc = RECORD (Display.Frame)
 graph: Graphics.Graph;
 Xg, Yg, X1, Y1, x, y, col: INTEGER;
 marked, ticked: BOOLEAN;
 mark: LocDesc
 END

Every frame specifies its coordinates X, Y within the display area, its size by the attributes W (width)
and H (height), and its background color col. Just as a frame represents a (rectangular) section of the
entire screen, it also shows an excerpt of the drawing plane of the graphic. The coordinate origin need
coincide with neither the frame origin nor the display origin. The frame's position relative to the
graphic plane's origin is recorded in the frame descriptor by the coordinates Xg, Yg.

The additional, redundant attributes x, y, X1, Y1 are given by the following invariants, and they are
recorded in order to avoid their frequent recomputation.

X1 = X + W, Y1 = Y + H
x = X + Xg, y = Y1 + Yg

X and Y (and hence also X1 and Y1) are changed when a viewer is modified, i.e. when the frame is
moved or resized. Xg and Yg are changed when the graph's origin is moved within a frame. The
meaning of the various values is illustrated in Fig. 13.4.

As a consequence, the display coordinates u, v of an object z of a graph displayed in a frame f are
computed as

u = z.x + f.x, v = z.y + f.y

 383

Display origin

Frame origin

Graph origin

(X,Y)

(x,y)

(X1,Y1)

W

H

(Xg,Yg)

Fig. 13.4. Frame and graph coordinates

In order to determine whether an object z lies within a frame f, the following expression must hold:

(f.X <= u) & (u + z.w <= f.X1) & (f.Y <= v) & (v + z.h <= f.Y1)

The record field marked indicates whether or not the frame contains a caret. Its display position is
recorded in the field called mark. A frame may contain several (secondary) carets; they form a list of
location descriptors.

When an object is displayed (drawn), its state must be taken into consideration in order to provide
visible user feedback. The manner in which selection is indicated, however, may vary among different
object types. This can easily be realized, because every object (type) is associated with an individual
drawing procedure. The following visualizations of selection have been chosen:

Selected lines are shown in a grey tone (raster pattern).
Selected captions are shown with "inverse video".

Change of state is a relatively frequent operation, and if possible a complete repainting of the involved
objects should be avoided for reasons of efficiency. Therefore, procedures for drawing an object are
given a mode parameter, in addition to the obvious object and frame parameters. The parameters are
combined into the message record of type DrawMsg.

DrawMsg = RECORD (Graphics.Msg)
 f: Frame;
 mode, x, y, col: INTEGER
 END

The meaning of the mode parameter's four possible values are the following:

mode = 0: draw object according to its state,
mode = 1: draw reflecting a transition from normal to selected state,
mode = 2: draw reflecting a transition from selected to normal state,
mode = 3: erase.

In the case of captions, for instance, the transitions are indicated by simply inverting the rectangular
area covered by the caption. No rewriting of the captions' character patterns is required.

A mode parameter is also necessary for reflecting object deletion. First, the selected objects are drawn
with mode indicating erasure. Only afterwards are they removed from the graphic's linked list.

Furthermore, the message parameter of the drawing procedure contains two offsets x and y. They are
added to the object's coordinates, and their significance will become apparent in connection with
macros. The same holds for the color parameter.

 384

The drawing procedures are fairly straight-forward and use the four basic raster operations of module
Display. The only complication arises from the need to clip the drawing at the frame boundaries. In the
case of captions, a character is drawn only if it fits into the frame in its entirety. The raster operations
do not test (again) whether the indicated position is valid.

At this point we recall that copies of a viewer (and its frames) can be generated by the System.Copy
command. Such copies display the same graphic, but possibly different excerpts of them. When a
graphic is changed by an insertion, deletion, or any other operation, at a place that is visible in several
frames, all affected views must reflect the change. A direct call to a drawing procedure indicating a
frame and the change does therefore not suffice. Here again, the object-oriented style solves the
problem neatly: In place of a direct call a message is broadcast to all frames, the message specifying
the nature of the required updates.

The broadcast is performed by the general procedure Viewers.Broadcast(M). It invokes the handlers of
all viewers with the parameter M. The viewer handlers either interpret the message or propagate it to
the handlers of their subframes. Procedure obj.handle is called with a control message as parameter
when pointing at the object and clicking the middle mouse button. This allows control to be passed to
the handler of an individual object.

The definition of module GraphicFrames is summarized by the following interface:

DEFINITION GraphicFrames;
 IMPORT Display, Graphics;

 TYPE Frame = POINTER TO FrameDesc;

 Location = POINTER TO LocDesc;
 LocDesc = RECORD
 x, y: INTEGER;
 next: Location
 END ;

 FrameDesc = RECORD (Display.FrameDesc)
 graph: Graphics.Graph;
 Xg, Yg, X1, Y1, x, y, col: INTEGER;
 marked, ticked: BOOLEAN;
 mark: LocDesc
 END ;

 (*mode = 0: draw according to selected, 1: normal -> selected,
 2: selected -> normal, 3: erase*)

 DrawMsg = RECORD (Graphics.Msg)
 f: Frame;
 x, y, col, mode: INTEGER
 END ;

 CtrlMsg = RECORD (Graphics.Msg)
 f: Frame; res: INTEGER
 END

 PROCEDURE Restore (F: Frame);
 PROCEDURE Focus (): Frame;
 PROCEDURE Selected (): Frame;
 PROCEDURE This(x, y: INTEGER): Frame;
 PROCEDURE Draw (F: Frame);
 PROCEDURE Erase (F: Frame);
 PROCEDURE DrawObj (F: Frame; obj: Graphics.Object);
 PROCEDURE EraseObj (F: Frame; obj: Graphics.Object);
 PROCEDURE Handle (F: Frame; VAR msg: Graphics.Msg);
 PROCEDURE Defocus (F: Frame);

 385

 PROCEDURE Deselect (F: Frame);
 PROCEDURE Macro (VAR Lname, Mname: ARRAY OF CHAR);
 PROCEDURE New (graph: Graphics.Graph; X, Y, col: INTEGER; ticked: BOOLEAN): Frame;
END GraphicFrames.

Focus and Selected identify the graphic frame containing the caret, or containing the latest selection.
Draw, Erase, and Handle apply to the selection of the specified frame's graphic. And New generates a
frame displaying the specified graphic with an origin given by coordinates X and Y.

13.5. The User Interface
Although the display is the prime constituent of the interface between the computer and its user, we
chose the title of this chapter for a presentation primarily focussed on the computer's input, i.e. on its
actions instigated by the user's handling of keyboard and mouse, the editing operations. The design of
the user interface plays a decisive role in a system's acceptance by users. There is no fixed set of rules
which determine the optimal choice of an interface. Many issues are a matter of subjective judgement,
and all too often convention is being mixed up with convenience. Nevertheless, a few criteria have
emerged as fairly generally accepted.

We base our discussion on the premise that input is provided by a keyboard and a mouse, and that
keyboard input is essentially to be reserved for textual input. The critical issue is that a mouse - apart
from providing a cursor position - allows to signal actions by the state of its keys. Typically, there are
far more actions than there are keys. Some mice feature a single key only, a situation that we deem
highly unfortunate. There are, however, several ways to "enrich" key states:

1. Position. Key states are interpreted depending on the current position of the mouse represented by
the cursor. Typically, interpretation occurs by the handler installed in the viewer covering the cursor
position, and different handlers are associated with different viewer types. The handler chosen for
interpretation may even be associated with an individual (graphic) object and depend on that object's
type.

2. Multiple clicks. Interpretation may depend on the number of repeated clicks (of the same key),
and/or on the duration of clicks.

3. Interclicks. Interpretation may depend on the combination of keys depressed until the last one is
released. This method is obviously inapplicable for single-key mice.

Apart from position dependence, we have quite successfully used interclicks. A ground rule to be
observed is that frequent actions should be triggered by single-key clicks, and only variants of them
should be signalled by interclicks. The essential art is to avoid overloading this method.

Less frequent operations may as well be triggered by textual commands, i.e. by pointing at the
command word and clicking the middle button. Even for this kind of activation, Oberon offers two
variations:

1. The command is listed in a menu (title bar). This solution is favoured when the respective viewer is
itself a parameter to the command, and it is recommended when the command is reasonably
frequent, because the necessary mouse movement is relatively short.

2. The command lies elsewhere, typically in a viewer containing a tool text.

Lastly, we note that any package such as Draw is integrated within an entire system together with other
packages. Hence it is important that the rules governing the user interfaces of the various packages do
not differ unnecessarily, but that they display common ground rules and a common design
"philosophy". Draw's conventions were, as far as possible and sensible, adapted to those of the text
system. The right key serves for selection, the left for setting the caret, and the middle key for
activating general commands, in this case moving and copying the entire graphic. Inherently, drawing
involves certain commands that cannot be dealt with in the same way as for texts. A character is
created by typing on the keyboard; a line is created by dragging the mouse while holding the left key.
Interclicks left-middle and right-middle are treated in the same way as in the text system (copying a
caption from the selection to the caret), and this is not surprising, because text and graphics are

 386

properly integrated, i.e. captions can be copied from texts into graphics and vice-versa. Using different
conventions depending on whether the command was activated by pointing at the caption within a text
frame or within a graphics frame would be confusing indeed.

13.6. Macros
For many applications it is indispensible that certain sets of objects may be named and used as objects
themselves. Such a named subgraph is called a macro. A macro thus closely mirrors the sequence of
statements in a program text that is given a name and can be referenced from within other statements:
the procedure. The notion of a graphic object becomes recursive, too. The facility of recursive objects
is so fundamental that it was incorporated in the base module Graphics as the third class of objects.

Q0’
Q1’
Q2’
Q3’
Q4’
Q5’
Q6’
Q7’

E’ E E’

S1

S2

S3

Fig. 13.5. Macros and their components

Its representation is straight-forward: in addition to the attributes common to all objects, a field is
provided storing the head of the list of elements which constitute the macro. In the present system, a
special node is introduced representing the head of the element list. It is of type MacHeadDesc and
carries also the name of the macro and the width and height of the rectangle covering all elements.
These values serve to speed up the selection process, avoiding their recomputation by scanning the
entire element list.

The recursive nature of macros manifests itself in recursive calls of display procedures. In order to
draw a macro, drawing procedures of the macro's element types are called (which may be macros
again). The coordinates of the macro are added to the coordinates of each element, which function as
offsets. The color value of the macro, also a field of the parameter of type DrawMsg, overrides the
colors of the elements. This implies that macros always appear monochrome.

An application of the macro facility is the design of schematics of electronic circuits. Circuit
components correspond to macros. Most components are represented by a rectangular frame and by
labelled connectors (pins). Some of the most elementary components, such as gates, diodes, transistors,
resistors, and capacitors are represented by standardized symbols. Such symbols, which may be
regarded as forming an alphabet of electronic circuit diagrams, are appropriately provided in the form
of a special font, i.e. a collection of raster patterns. Three such macros are shown in Fig. 13.5, together
with the components from which they are assembled. The definitions of the data types involved are:

Macro = POINTER TO MacroDesc;
MacroDesc = RECORD (ObjectDesc) mac: MacHead END ;

MacHead = POINTER TO MacHeadDesc;
MacHeadDesc = RECORD name: Name;
 w, h: INTEGER; lib: Library
 END ;
 Library = POINTER TO LibraryDesc;
LibraryDesc = RECORD name: Name END

Procedure DrawMac(mh, M) displays the macro with head mh according to the draw message
parameter M which specifies a frame, a position within the frame, a display mode, and an overriding
color.

In the great majority of applications, macros are not created by their user, but are rather provided from
another source, in the case of electronic circuits typically by the manufacturer of the components
represented by the macros. As a consequence, macros are taken from a collection (inappropriately)
called a library. In our system, a macro is picked from such a collection by a call to procedure

 387

ThisMac, which takes a library and a macro name as parameters. The command Draw.Macro inserts
the specified macro at the place of the caret, as is to be expected.

At last, we mention that selection of a macro is visualized by inverting the color over the entire
rectangular area covered by the macro. This emphasizes the fact that the macro constitutes an object as
a whole.

The design of new macros is a relatively rare activity. They are used rather like characters of a font; the
design of new macros and fonts is left to the specialist. Nevertheless, it was decided to incorporate the
tools necessary for macro design in the basic system. These tools consist of a few procedures only:
MakeMac integrates all elements lying within a specified rectangular area into a new macro. OpenMac
reverses this process by disintegrating the macro into its parts. InsertMac inserts a specified macro into
a library. NewLib creates a new, empty library, and StoreLib generates a library file containing all
macros currently loaded into the specified library. The details of these operations may be examined in
the program listings provided later in this Chapter.

13. 7. Object Classes
Although surprisingly many applications can be covered satisfactorily with the few types of objects
and the few facilities described so far, it is nevertheless expected that a modern graphics system allow
the addition of further types of objects. The emphasis lies here on the word addition instead of change.
New facilities are to be providable by the inclusion of new modules without requiring any kind of
adjustment, not even recompilation of the existing modules. In practice, their source code would quite
likely not be available. It is the triumph of the object-oriented programming technique that this is
elegantly possible. The means are the extensible record type and the procedure variable, features of the
programming language, and the possibility to load modules on demand from statements within a
program, a facility provided by the operating environment.

We call, informally, any extension of the type Object a class. Hence, the types Line, Caption, and
Macro constitute classes. Additional classes can be defined in other modules importing the type
Object. In every such case, a set of methods must be declared and assigned to a variable of type
MethodDesc. They form a so-called method suite. Every such module must also contain a procedure,
typically a command, to generate a new instance of the new class. This command, likely to be called
Make, assigns the method suite to the do field of the new object.

This successful decoupling of additions from the system's base suffices, almost. Only one further link
is unavoidable: When a new graphic, containing objects of a class not defined in the system's core, is
loaded from a file, then that class must be identified, the corresponding module with its handlers must
be loaded - this is called dynamic loading - and the object must be generated (allocated). Because the
object in question does not already exist at the time when reading the object's attribute values, the
generating procedure cannot possibly be installed in the very same object, i.e. it cannot be a member of
the method suite. We have chosen the following solution to this problem:

1. Every new class is implemented in the form of a module, and every class is identified by the module
name. Every such module contains a command whose effect is to allocate an object of the class, to
assign the message suite to it, and to assign the object to the global variable Graphics.new.

2. When a graphics file is read, the class of each object is identified and a call to the respective
module's allocation procedure delivers the desired object. The call consists of two parts: a call to
Modules.ThisMod, which may cause the loading of the respctive class module M, and a call of
Modules.ThisCommand. Then the data of the base type Object are read, and lastly the data of the
extension are read by a call to the class method read.

The following may serve as a template for any module defining a new object class X:

MODULE Xs;
 IMPORT Files, Printer, Oberon, Graphics, GraphicFrames;

 TYPE X* = POINTER TO XDesc;
 XDesc = RECORD (Graphics.ObjectDesc)

 388

 (*additional data fields*)
 END ;

 VAR method: Graphics.Method;

 PROCEDURE New*;
 VAR x: X;
 BEGIN NEW(x); x.do := method; Graphics.new := x
 END New;

 PROCEDURE* Copy(obj, to: Graphics.Object);
 BEGIN to(X)^ := obj(X)^
 END Copy;

 PROCEDURE* Draw(obj: Graphics.Object; VAR msg: Graphics.Msg);
 BEGIN ...
 END Draw;

 PROCEDURE* Selectable(obj: Graphics.Object; x, y: INTEGER): BOOLEAN;
 BEGIN ...
 END Selectable;

 PROCEDURE* Handle(obj: Graphics.Object; VAR msg: Graphics.Msg);
 BEGIN
 IF msg IS Graphics.ColorMsg THEN obj.col := msg(Graphics.ColorMsg).col
 ELSIF msg IS ... THEN ...
 END
 END Handle;

 PROCEDURE* Read(obj: Graphics.Object; VAR W: Files.Rider; VAR C: Context);
 BEGIN (*read X-specific data*)
 END Write;

 PROCEDURE* Write(obj: Graphics.Object; cno: SHORTINT;
 VAR W: Files.Rider; VAR C: Context);
 BEGIN Graphics.WriteObj(W, cno, obj); (*write X-specific data*)
 END Write;

 PROCEDURE* Print(obj: Graphics.Object; x, y: INTEGER);
 BEGIN (*output object using routines of module Printer*)
 END Print;

 PROCEDURE Make*; (*command*)
 VAR x: X; F: GraphicFrames.Frame;
 BEGIN F := GraphicFrames.Focus();
 IF F # NIL THEN
 GraphicFrames.Deselect(F);
 NEW(x); x.x := F.mark.x - F.x; x.y := F.mark.y - F.y; x.w := ... ; x.h := ... ;
 x.col := Oberon.CurCol; x.do := method;
 GraphicFrames.Defocus(F); Graphics.Add(F.graph, x); GraphicFrames.DrawObj(F, x)
 END
 END Make;

BEGIN NEW(method); method.module := "Xs"; method.allocator := "New";
 method.copy := Copy; method.draw := Draw; method.selectable := Selectable;
 method.handle := Handle; method.read := Read; method.write := Write; method.print := Print
END Xs.

We wish to point out that also the macro and library facilities are capable of integrating objects of new
classes, i.e. of types not occurring in the declarations of macro and library facilities. The complete

 389

interface definition of module Graphics is obtained from its excerpt given in Sect. 13.3, augmented by
the declarations of types and procedures in Sect. 13.6. and 13.7.

13.8. The Implementation

13.8.1. Module Draw

Module Draw is a typical command module whose exported procedures are listed in a tool text. Its task
is to scan the text containing the command for parameters, to check their validity, and to activate the
corresponding procedures, which primarily are contained in modules Graphics and GraphicFrames.
The most prominent among them is the Open command. It generates a new viewer containing two
frames, namely a text frame serving as menu, and a graphic frame.

We emphasize at this point that graphic frames may be opened and manipulated also by other modules
apart from Draw. In particular, document editors that integrate texts and graphics - and perhaps also
other entities - would refer to Graphics and GraphicFrames directly, but not make use of Draw which,
as a command module, should not have clients.

MODULE Draw; (*NW 29.6.88 / 22.11.91*)
 IMPORT Files, Fonts, Viewers, Printer, Texts, Oberon,
 TextFrames, MenuViewers, Graphics, GraphicFrames;

 VAR W: Texts.Writer;

 (*Exported commands:
 Open, Delete,
 SetWidth, ChangeColor, ChangeWidth, ChangeFont,
 Store, Print
 Macro, OpenMacro, MakeMacro, LoadLibrary, StoreLibrary*)

 PROCEDURE Open*;
 VAR X, Y: INTEGER;
 beg, end, t: LONGINT;
 G: Graphics.Graph;
 V: Viewers.Viewer;
 text: Texts.Text;
 S: Texts.Scanner;
 BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
 IF (S.class = Texts.Char) & (S.c = "^") THEN
 Oberon.GetSelection(text, beg, end, t);
 IF t >= 0 THEN Texts.OpenScanner(S, text, beg); Texts.Scan(S) END
 END ;
 IF S.class = Texts.Name THEN
 NEW(G); Graphics.Open(G, S.s);
 Oberon.AllocateUserViewer(Oberon.Par.vwr.X, X, Y);
 V := MenuViewers.New(
 TextFrames.NewMenu(S.s,
 "System.Close System.Copy System.Grow Draw.Delete Draw.Store"),
 GraphicFrames.New(G, 0, 0, 0, TRUE), TextFrames.menuH, X, Y)
 END
 END Open;

 PROCEDURE Delete*;
 VAR F: GraphicFrames.Frame;
 BEGIN
 IF Oberon.Par.frame = Oberon.Par.vwr.dsc THEN
 F := Oberon.Par.vwr.dsc.next(GraphicFrames.Frame);
 GraphicFrames.Erase(F); Graphics.Delete(F.graph)

 390

 END
 END Delete;

 PROCEDURE SetWidth*;
 VAR S: Texts.Scanner;
 BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
 IF (S.class = Texts.Int) & (S.i > 0) & (S.i < 7) THEN Graphics.width := SHORT(S.i) END
 END SetWidth;

 PROCEDURE ChangeColor*;
 VAR ch: CHAR;
 CM: Graphics.ColorMsg;
 S: Texts.Scanner;
 BEGIN
 IF Oberon.Par.frame(TextFrames.Frame).sel > 0 THEN
 Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.frame(TextFrames.Frame).selbeg.pos);
 Texts.Read(S, ch); CM.col := S.col
 ELSE Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
 IF S.class = Texts.Int THEN CM.col := SHORT(S.i) ELSE CM.col := S.col END
 END ;
 GraphicFrames.Change(GraphicFrames.Selected(), CM)
 END ChangeColor;

 PROCEDURE ChangeWidth*;
 VAR WM: Graphics.WidMsg;
 S: Texts.Scanner;
 BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
 IF S.class = Texts.Int THEN
 WM.w := SHORT(S.i); GraphicFrames.Change(GraphicFrames.Selected(), WM)
 END
 END ChangeWidth;
 PROCEDURE ChangeFont*;
 VAR FM: Graphics.FontMsg;
 S: Texts.Scanner;
 BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
 IF S.class = Texts.Name THEN
 FM.fnt := Fonts.This(S.s);
 IF FM.fnt # NIL THEN GraphicFrames.Change(GraphicFrames.Selected(), FM) END
 END
 END ChangeFont;

 PROCEDURE Backup (VAR name: ARRAY OF CHAR);
 VAR res, i: INTEGER; ch: CHAR;
 bak: ARRAY 32 OF CHAR;
 BEGIN i := 0; ch := name[0];
 WHILE ch > 0X DO bak[i] := ch; INC(i); ch := name[i] END ;
 IF i < 28 THEN
 bak[i] := "."; bak[i+1] := "B"; bak[i+2] := "a"; bak[i+3] := "k"; bak[i+4] := 0X;
 Files.Rename(name, bak, res)
 END
 END Backup;

 PROCEDURE Store*;
 VAR par: Oberon.ParList; S: Texts.Scanner;
 Menu: TextFrames.Frame; G: GraphicFrames.Frame;
 v: Viewers.Viewer;
 BEGIN par := Oberon.Par;
 IF par.frame = par.vwr. dsc THEN

 391

 Menu := par.vwr.dsc(TextFrames.Frame); G := Menu.next(GraphicFrames.Frame);
 Texts.OpenScanner(S, Menu.text, 0); Texts.Scan(S);
 IF S.class = Texts.Name THEN
 Texts.WriteString(W, S.s); Texts.WriteString(W, " storing");
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf);
 Backup(S.s); Graphics.WriteFile(G.graph, S.s)
 END
 ELSE
 Texts.OpenScanner(S, par.text, par.pos); Texts.Scan(S);
 IF S.class = Texts.Name THEN
 v := Oberon.MarkedViewer();
 IF (v.dsc # NIL) & (v.dsc.next IS GraphicFrames.Frame) THEN
 G := v.dsc.next(GraphicFrames.Frame);
 Texts.WriteString(W, S.s); Texts.WriteString(W, " storing");
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf);
 Backup(S.s); Graphics.WriteFile(G.graph, S.s)
 END
 END
 END
 END Store;

 PROCEDURE Print*;
 VAR nofcopies: INTEGER;
 S: Texts.Scanner;
 G: Graphics.Graph;
 V: Viewers.Viewer;

 PROCEDURE Copies;
 VAR ch: CHAR;
 BEGIN nofcopies := 1;
 IF S.nextCh = "/" THEN
 Texts.Read(S, ch);
 IF (ch >= "0") & (ch <= "9") THEN nofcopies := ORD(ch) - 30H END ;
 WHILE ch > " " DO Texts.Read(S, ch) END ;
 S.nextCh := ch
 END
 END Copies;

 BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
 IF S.class = Texts.Name THEN
 Printer.Open(S.s, Oberon.User, Oberon.Password);
 IF Printer.res = 0 THEN
 Texts.Scan(S);
 WHILE S.class = Texts.Name DO
 Texts.WriteString(W, S.s); Copies; Graphics.Open(G, S.s);
 IF Graphics.res = 0 THEN
 Texts.WriteString(W, " printing");
 Texts.WriteInt(W, nofcopies, 3); Texts.Append(Oberon.Log, W.buf);
 Graphics.Print(G, 0, Printer.PageHeight-128); Printer.Page(nofcopies)
 ELSE Texts.WriteString(W, " not found")
 END ;
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf); Texts.Scan(S)
 END ;
 IF (S.class = Texts.Char) & (S.c = "*") THEN
 Copies; V := Oberon.MarkedViewer();
 IF (V.dsc # NIL) & (V.dsc.next IS GraphicFrames.Frame) THEN
 Texts.OpenScanner(S, V.dsc(TextFrames.Frame).text, 0);

 392

 Texts.Scan(S);
 IF S.class = Texts.Name THEN
 Texts.WriteString(W, S.s); Texts.WriteString(W, " printing");
 Texts.WriteInt(W, nofcopies, 3); Texts.Append(Oberon.Log, W.buf);
 Graphics.Print(V.dsc.next(GraphicFrames.Frame).graph, 0, Printer.PageHeight-128);
 Printer.Page(nofcopies)
 END
 END
 END ;
 Printer.Close
 ELSIF Printer.res = 1 THEN Texts.WriteString(W, " no printer")
 ELSIF Printer.res = 2 THEN Texts.WriteString(W, " no link")
 ELSIF Printer.res = 3 THEN Texts.WriteString(W, " bad response")
 ELSIF Printer.res = 4 THEN Texts.WriteString(W, " no permission")
 END
 END ;
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END Print;

 PROCEDURE Macro*;
 VAR S: Texts.Scanner;
 T: Texts.Text;
 time, beg, end: LONGINT;
 Lname: ARRAY 32 OF CHAR;
 BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
 IF S.class = Texts.Name THEN
 COPY(S.s, Lname); Texts.Scan(S);
 IF (S.class = Texts.Char) & (S.c = "^") THEN
 Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN Texts.OpenScanner(S, T, beg); Texts.Scan(S) END
 END ;
 IF (S.class = Texts.Name) OR (S.class = Texts.String) THEN
 GraphicFrames.Macro(Lname, S.s)
 END
 END
 END Macro;

 PROCEDURE OpenMacro*;
 VAR F: GraphicFrames.Frame; sel: Graphics.Object;
 BEGIN F := GraphicFrames.Selected();
 IF F # NIL THEN
 sel := F.graph.sel;
 IF (sel # NIL) & (sel IS Graphics.Macro) THEN
 GraphicFrames.Deselect(F);
 Graphics.OpenMac(sel(Graphics.Macro).mac, F.graph, F.mark.x - F.x, F.mark.y - F.y);
 GraphicFrames.Draw(F)
 END
 END
 END OpenMacro;

 PROCEDURE MakeMacro*;
 VAR new: BOOLEAN;
 F: GraphicFrames.Frame;
 S: Texts.Scanner;
 Lname: ARRAY 32 OF CHAR;

 PROCEDURE MakeMac;
 VAR x0, y0, x1, y1, w, h: INTEGER;

 393

 mh: Graphics.MacHead;
 L: Graphics.Library;
 BEGIN
 L := Graphics.ThisLib(Lname, FALSE);
 IF L = NIL THEN L := Graphics.NewLib(Lname) END ;
 x0 := F.mark.x; y0 := F.mark.y; x1 := F.mark.next.x; y1 := F.mark.next.y;
 w := ABS(x1-x0); h := ABS(y1-y0);
 IF x0 < x1 THEN x0 := x0 - F.x ELSE x0 := x1 - F.x END ;
 IF y0 < y1 THEN y0 := y0 - F.y ELSE y0 := y1 - F.y END ;
 mh := Graphics.MakeMac(F.graph, x0, y0, w, h, S.s);
 Graphics.InsertMac(mh, L, new)
 END MakeMac;

 BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
 IF S.class = Texts.Name THEN
 COPY(S.s, Lname); Texts.Scan(S);
 IF (S.class = Texts.Name) OR (S.class = Texts.String) & (S.len <= 8) THEN
 F := GraphicFrames.Focus();
 IF (F # NIL) & (F.graph.sel # NIL) THEN
 MakeMac; Texts.WriteString(W, S.s);
 IF new THEN Texts.WriteString(W, " inserted in ")
 ELSE Texts.WriteString(W, " replaced in ")
 END ;
 Texts.WriteString(W, Lname); Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END
 END
 END
 END MakeMacro;

 PROCEDURE LoadLibrary*;
 VAR S: Texts.Scanner; L: Graphics.Library;
 BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
 IF S.class = Texts.Name THEN
 L := Graphics.ThisLib(S.s, TRUE);
 Texts.WriteString(W, S.s); Texts.WriteString(W, " loaded");
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END
 END LoadLibrary;

 PROCEDURE StoreLibrary*;
 VAR i: INTEGER; S: Texts.Scanner; L: Graphics.Library;
 Lname: ARRAY 32 OF CHAR;
 BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
 IF S.class = Texts.Name THEN i := 0;
 WHILE S.s[i] >= "0" DO Lname[i] := S.s[i]; INC(i) END ;
 Lname[i] := 0X;
 L := Graphics.ThisLib(Lname, FALSE);
 IF L # NIL THEN
 Texts.WriteString(W, S.s); Texts.WriteString(W, " storing");
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf); Graphics.StoreLib(L, S.s)
 END
 END
 END StoreLibrary;

BEGIN Texts.OpenWriter(W)
END Draw.

13.8.2. Module GraphicFrames

 394

Module GraphicFrames contains all routines concerned with displaying, visualizing graphic frames
and their contents, i.e. graphics. It also contains the routines for creating new objects of the base
classes, i.e. lines, captions, and macros. And most importantly, it specifies the appropriate frame
handler which interprets input actions and thereby defines the user interface. The handler discriminates
among the following message types:

1. Update messages. According to the id field of the message record, either a specific object or the
entire selection of a graphic are drawn according to a mode. The case id = 0 signifies a restoration of
the entire frame including all objects of the graphic.

2. Selection, focus, and position queries. They serve for the identification of the graphic frame
containing the latest selection, containing the caret (mark) or the indicated position. In order to
identify the latest selection, the time is recorded in the graph descriptor whenever a new selection is
made or when new objects are inserted.

3. Input messages. They originate from the central loop of module Oberon and indicate either a mouse
action (track message) or a keyboard event (consume message).

4. Control messages from Oberon. They indicate that all marks (selection, caret, star) are to be
removed (neutralize), or that the focus has to be relinquished (defocus).

5. Selection, copy, and copy-over messages from Oberon. They constitute the interface between the
graphics and the text system, and make possible identification and copying of captions between
graphic and text frames.

6. Modify messages from MenuViewers. They indicate that a frame has to be adjusted in size and
position because a neighbouring viewer has been reshaped, or because its own viewer has been
repositioned

7. Display messages. They originate from procedure InsertChar and handle the displaying of single
characters when a caption is composed (see below).

The frame handler receiving a consume message interprets the request through procedure InsertChar
(except for cursor and restore characters), and receiving a track message through procedure Edit. If no
mouse key is depressed, the cursor is simply drawn, and thereby the mouse is tracked. Instead of the
regular arrow, a crosshair is used as cursor pattern. Thereby immediate visual feedback is provided to
indicate that now mouse actions are interpreted by the graphics handler (instead of, e.g., a text
handler). Such feedback is helpful when graphic frames appear not only in a menuviewer, but as
subframes of a more highly structured document frame.

Procedure Edit first tracks the mouse while recording further key activities (interclicks) until all keys
are released. The subsequent action is determined by the perceived key clicks. The actions are (the
second key denotes the interclick):

keys = left set caret, if mouse was not moved, draw new line otherwise,
keys = left, middle copy text selection to caret position
keys = left, right set secondary caret (mark)
keys = middle move selection
keys = middle, left copy selection
keys = middle, right shift origin of graph
keys = right select (either object, or objects in area)
keys = right, middle copy selected caption to caret position

When copying or moving a set of selected objects, it must be distinguished between the cases where
the source and the destination graphics are the same or are distinct. In the former case, source and
destination positions may lie in the same or in different frames.

Procedure InsertChar handles the creation of new captions. The actual character string is appended to
the global text T, and the new object records its position within T and its length.

A complication arises because the input process consists of as many user actions as there are
characters, and because other actions may possibly intervene between the typing. It is therefore

 395

unavoidable to record an insertion state, which is embodied by the global variable newcap. When a
character is typed, and newcap = NIL, then a new caption is created consisting of the single typed
character. Subsequent typing results in appending characters to the string (and newcap). The variable is
reset to NIL, when the caret is repositioned. The DEL character is interpreted as a backspace by
procedure DeleteChar.

Since the caption being generated may be visible simultaneously in several frames, its display must be
handled by a message. For this reason, the special message DispMsg is introduced, and as a result, the
process of character insertion turns out to be a rather complex action. To avoid even further
complexity, the restriction is adopted that all characters of a caption must use the same attributes (font,
color).

MODULE GraphicFrames; (*NW 18.4.88 / 22.11.91*)
 IMPORT Display, Viewers, Input, Fonts, Texts, Graphics, Oberon, MenuViewers;

 CONST (*update message ids*)
 restore = 0;
 drawobj = 1; drawobjs = 2; drawobjd = 3;
 drawnorm = 4; drawsel = 5; drawdel = 6;

 markW = 5;

 TYPE
 Frame* = POINTER TO FrameDesc;
 Location* = POINTER TO LocDesc;

 LocDesc* = RECORD
 x*, y*: INTEGER;
 next*: Location
 END ;

 FrameDesc* = RECORD (Display.FrameDesc)
 graph*: Graphics.Graph;
 Xg*, Yg*: INTEGER; (*pos rel to graph origin*)
 X1*, Y1*: INTEGER; (*right and upper margins*)
 x*, y*, col*: INTEGER; (*x = X + Xg, y = Y + Yg*)
 marked*, ticked*: BOOLEAN;
 mark*: LocDesc
 END ;

 DrawMsg* = RECORD (Graphics.Msg)
 f*: Frame;
 x*, y*, col*, mode*: INTEGER
 END ;

 CtrlMsg* = RECORD (Graphics.Msg)
 f*: Frame; res*: INTEGER
 END ;

 UpdateMsg = RECORD (Display.FrameMsg)
 id: INTEGER;
 graph: Graphics.Graph;
 obj: Graphics.Object
 END ;

 SelQuery = RECORD (Display.FrameMsg)
 f: Frame; time: LONGINT
 END ;

 FocusQuery = RECORD (Display.FrameMsg)
 f: Frame
 END ;

 396

 PosQuery = RECORD (Display.FrameMsg)
 f: Frame; x, y: INTEGER
 END ;

 DispMsg = RECORD (Display.FrameMsg)
 x1, y1, w: INTEGER;
 pat: Display.Pattern;
 graph: Graphics.Graph
 END ;

 VAR Crosshair*: Oberon.Marker;
 newcap: Graphics.Caption;
 DW, DH, CL: INTEGER;
 W: Texts.Writer;

 (*Exported procedures:
 Restore, Focus, Selected, This, Draw, Erase,
 DrawObj, EraseObj, Change, Defocus, Deselect, Macro, New*)

 PROCEDURE Restore*(F: Frame);
 VAR M: DrawMsg; x, y, col: INTEGER;
 BEGIN F.X1 := F.X + F.W; F.Y1 := F.Y + F.H;
 F.x := F.X + F.Xg; F.y := F.Y1 + F.Yg; F.marked := FALSE; F.mark.next := NIL;
 IF F.X < CL THEN col := Display.black ELSE col := F.col END ;
 Oberon.RemoveMarks(F.X, F.Y, F.W, F.H);
 Display.ReplConst(col, F.X, F.Y, F.W, F.H, 0);
 IF F.ticked THEN
 y := F.Yg MOD 16 + F.Y1 - 16;
 WHILE y >= F.Y DO (*draw ticks*)
 x := F.Xg MOD 16 + F.X;
 WHILE x < F.X1 DO Display.Dot(Display.white, x, y, 0); INC(x, 16) END ;
 DEC(y, 16)
 END
 END ;
 M.f := F; M.x := F.x; M.y := F.y; M.col := 0; M.mode := 0; Graphics.Draw(F.graph, M)
 END Restore;

 PROCEDURE Focus*(): Frame;
 VAR FQ: FocusQuery;
 BEGIN FQ.f := NIL; Viewers.Broadcast(FQ); RETURN FQ.f
 END Focus;

 PROCEDURE Selected*(): Frame;
 VAR SQ: SelQuery;
 BEGIN SQ.f := NIL; SQ.time := 0; Viewers.Broadcast(SQ); RETURN SQ.f
 END Selected;

 PROCEDURE This*(x, y: INTEGER): Frame;
 VAR PQ: PosQuery;
 BEGIN PQ.f := NIL; PQ.x := x; PQ.y := y; Viewers.Broadcast(PQ); RETURN PQ.f
 END This;

 PROCEDURE Draw*(F: Frame);
 VAR UM: UpdateMsg;
 BEGIN UM.id := drawsel; UM.graph := F.graph; Viewers.Broadcast(UM)
 END Draw;

 PROCEDURE DrawNorm(F: Frame);
 VAR UM: UpdateMsg;

 397

 BEGIN UM.id := drawnorm; UM.graph := F.graph; Viewers.Broadcast(UM)
 END DrawNorm;

 PROCEDURE Erase*(F: Frame);
 VAR UM: UpdateMsg;
 BEGIN UM.id := drawdel; UM.graph := F.graph; Viewers.Broadcast(UM)
 END Erase;

 PROCEDURE DrawObj*(F: Frame; obj: Graphics.Object);
 VAR UM: UpdateMsg;
 BEGIN UM.id := drawobj; UM.graph := F.graph; UM.obj := obj; Viewers.Broadcast(UM)
 END DrawObj;

 PROCEDURE EraseObj*(F: Frame; obj: Graphics.Object);
 VAR UM: UpdateMsg;
 BEGIN UM.id := drawobjd; UM.graph := F.graph; UM.obj := obj; Viewers.Broadcast(UM)
 END EraseObj;

 PROCEDURE Change*(F: Frame; VAR msg: Graphics.Msg);
 BEGIN
 IF F # NIL THEN Erase(F); Graphics.Handle(F.graph, msg); Draw(F) END
 END Change;

 PROCEDURE FlipMark(x, y: INTEGER);
 BEGIN
 Display.ReplConst(Display.white, x-7, y, 15, 1, 2);
 Display.ReplConst(Display.white, x, y-7, 1, 15, 2)
 END FlipMark;

 PROCEDURE Defocus*(F: Frame);
 VAR m: Location;
 BEGIN newcap := NIL;
 IF F.marked THEN
 FlipMark(F.mark.x, F.mark.y); m := F.mark.next;
 WHILE m # NIL DO FlipMark(m.x, m.y); m := m.next END ;
 F.marked := FALSE; F.mark.next := NIL
 END
 END Defocus;

 PROCEDURE Deselect*(F: Frame);
 VAR UM: UpdateMsg;
 BEGIN
 IF F # NIL THEN
 UM.id := drawnorm; UM.graph := F.graph; Viewers.Broadcast(UM);
 Graphics.Deselect(F.graph)
 END
 END Deselect;

 PROCEDURE Macro*(VAR Lname, Mname: ARRAY OF CHAR);
 VAR x, y: INTEGER;
 F: Frame;
 mac: Graphics.Macro; mh: Graphics.MacHead;
 L: Graphics.Library;
 BEGIN F := Focus();
 IF F # NIL THEN
 x := F.mark.x - F.x; y := F.mark.y - F.y;
 L := Graphics.ThisLib(Lname, FALSE);
 IF L # NIL THEN
 mh := Graphics.ThisMac(L, Mname);
 IF mh # NIL THEN

 398

 Deselect(F); Defocus(F);
 NEW(mac); mac.x := x; mac.y := y; mac.w := mh.w; mac.h := mh.h;
 mac.mac := mh; mac.do := Graphics.MacMethod; mac.col := Oberon.CurCol;
 Graphics.Add(F.graph, mac); DrawObj(F, mac)
 END
 END
 END
 END Macro;

 PROCEDURE CaptionCopy(F: Frame;
 x1, y1: INTEGER; T: Texts.Text; beg, end: LONGINT): Graphics.Caption;
 VAR ch: CHAR;
 dx, w, x2, y2, w1, h1: INTEGER;
 cap: Graphics.Caption;
 pat: Display.Pattern;
 R: Texts.Reader;
 BEGIN Texts.Write(W, 0DX);
 NEW(cap); cap.len := SHORT(end - beg);
 cap.pos := SHORT(Graphics.T.len)+1; cap.do := Graphics.CapMethod;
 Texts.OpenReader(R, T, beg); Texts.Read(R, ch); W.fnt := R.fnt; W.col := R.col; w := 0;
 cap.x := x1 - F.x; cap.y := y1 - F.y + R.fnt.minY;
 WHILE beg < end DO
 Display.GetChar(R.fnt.raster, ch, dx, x2, y2, w1, h1, pat);
 INC(w, dx); INC(beg); Texts.Write(W, ch); Texts.Read(R, ch)
 END ;
 cap.w := w; cap.h := W.fnt.height; cap.col := W.col;
 Texts.Append(Graphics.T, W.buf); Graphics.Add(F.graph, cap); RETURN cap
 END CaptionCopy;

 PROCEDURE SendCaption(cap: Graphics.Caption);
 VAR M: Oberon.CopyOverMsg;
 BEGIN
 M. text := Graphics.T; M.beg := cap.pos; M.end := M.beg + cap.len; Viewers.Broadcast(M)
 END SendCaption;

 PROCEDURE Edit(F: Frame; x0, y0: INTEGER; k0: SET);
 VAR obj: Graphics.Object;
 x1, y1, w, h, t, pos: INTEGER;
 beg, end, time: LONGINT;
 k1, k2: SET; ch: CHAR;
 mark, newmark: Location;
 T: Texts.Text;
 Fd: Frame;
 G: Graphics.Graph;
 CM: CtrlMsg;
 name: ARRAY 32 OF CHAR;

 PROCEDURE NewLine(x, y, w, h: INTEGER);
 VAR line: Graphics.Line;
 BEGIN NEW(line); line.col := Oberon.CurCol; line.x := x - F.x; line.y := y - F.y;
 line.w := w; line.h := h; line.do := Graphics.LineMethod; Graphics.Add(G, line)
 END NewLine;

 BEGIN k1 := k0; G := F.graph;
 IF k0 = {1} THEN
 obj := Graphics.ThisObj(G, x0 - F.x, y0 - F.y);
 IF (obj # NIL) & ~obj.selected THEN
 CM.f := F; CM.res := 0; obj.do.handle(obj, CM);

 399

 IF CM.res # 0 THEN (*done*) k0 := {} END
 END
 END ;
 REPEAT Input.Mouse(k2, x1, y1); k1 := k1 + k2;
 DEC(x1, (x1-F.x) MOD 4); DEC(y1, (y1-F.y) MOD 4);
 Oberon.DrawCursor(Oberon.Mouse, Crosshair, x1, y1)
 UNTIL k2 = {};
 Oberon.FadeCursor(Oberon.Mouse);
 IF k0 = {2} THEN (*left key*)
 w := ABS(x1-x0); h := ABS(y1-y0);
 IF k1 = {2} THEN
 IF (w < 7) & (h < 7) THEN (*set mark*)
 IF (x1 - markW >= F.X) & (x1 + markW < F.X1) &
 (y1 - markW >= F.Y) & (y1 + markW < F.Y1) THEN
 Defocus(F); Oberon.PassFocus(Viewers.This(F.X, F.Y));
 F.mark.x := x1; F.mark.y := y1; F.marked := TRUE; FlipMark(x1, y1)
 END
 ELSE (*draw line*) Deselect(F);
 IF w < h THEN
 IF y1 < y0 THEN y0 := y1 END ;
 NewLine(x0, y0, Graphics.width, h)
 ELSE
 IF x1 < x0 THEN x0 := x1 END ;
 NewLine(x0, y0, w, Graphics.width)
 END ;
 Draw(F)
 END
 ELSIF k1 = {2, 1} THEN (*copy selection to caret mark*)
 Deselect(F); Oberon.GetSelection(T, beg, end, time);
 IF time >= 0 THEN DrawObj(F, CaptionCopy(F, x1, y1, T, beg, end)) END
 ELSIF k1 = {2, 0} THEN
 IF F.marked THEN (*set secondary mark*)
 NEW(newmark); newmark.x := x1; newmark.y := y1; newmark.next := NIL;
 FlipMark(x1, y1); mark := F.mark.next;
 IF mark = NIL THEN F.mark.next := newmark ELSE
 WHILE mark.next # NIL DO mark := mark.next END ;
 mark.next := newmark
 END
 END
 END
 ELSIF k0 = {1} THEN (*middle key*)
 IF k1 = {1} THEN (*move*)
 IF (x0 # x1) OR (y0 # y1) THEN
 Fd := This(x1, y1); Erase(F);
 IF Fd = F THEN Graphics.Move(G, x1-x0, y1-y0)
 ELSIF (Fd # NIL) & (Fd.graph = G) THEN
 Graphics.Move(G, (x1-Fd.x-x0+F.x) DIV 4 * 4, (y1-Fd.y-y0+F.y) DIV 4 * 4)
 END ;
 Draw(F)
 END
 ELSIF k1 = {1, 2} THEN (*copy*)
 Fd := This(x1, y1);
 IF Fd # NIL THEN DrawNorm(F);
 IF Fd = F THEN Graphics.Copy(G, G, x1-x0, y1-y0)
 ELSE Deselect(Fd);
 Graphics.Copy(G, Fd.graph, (x1-Fd.x-x0+F.x) DIV 4 * 4, (y1-Fd.y-y0+F.y) DIV 4 * 4)

 400

 END ;
 Draw(Fd)
 END
 ELSIF k1 = {1, 0} THEN (*shift graph origin*)
 INC(F.Xg, x1-x0); INC(F.Yg, y1-y0); Restore(F)
 END
 ELSIF k0 = {0} THEN (*right key: select*)
 newcap := NIL;
 IF (ABS(x0-x1) < 7) & (ABS(y0-y1) < 7) THEN
 IF ~(2 IN k1) THEN Deselect(F) END ;
 obj := Graphics.ThisObj(G, x1 - F.x, y1 - F.y);
 IF obj # NIL THEN
 Graphics.SelectObj(G, obj); DrawObj(F, obj);
 IF (k1 = {0, 1}) & (obj IS Graphics.Caption) THEN
 SendCaption(obj(Graphics.Caption))
 END
 END
 ELSE Deselect(F);
 IF x1 < x0 THEN t := x0; x0 := x1; x1 := t END ;
 IF y1 < y0 THEN t := y0; y0 := y1; y1 := t END ;
 Graphics.SelectArea(G, x0 - F.x, y0 - F.y, x1 - F.x, y1 - F.y); Draw(F)
 END
 END
 END Edit;

 PROCEDURE NewCaption(F: Frame; col: INTEGER; font: Fonts.Font);
 BEGIN Texts.Write(W, 0DX);
 NEW(newcap); newcap.x := F.mark.x - F.x; newcap.y := F.mark.y - F.y + font.minY;
 newcap.w := 0; newcap.h := font.height; newcap.col := col;
 newcap.pos := SHORT(Graphics.T.len + 1); newcap.len := 0;
 newcap.do := Graphics.CapMethod; Graphics.Add(F.graph, newcap); W.fnt := font
 END NewCaption;

 PROCEDURE InsertChar(F: Frame; ch: CHAR);
 VAR w1, h1: INTEGER; DM: DispMsg;
 BEGIN DM.graph := F.graph;
 Display.GetChar(W.fnt.raster, ch, DM.w, DM.x1, DM.y1, w1, h1, DM.pat);
 DEC(DM.y1, W.fnt.minY);
 IF newcap.x + newcap.w + DM.w + F.x < F.X1 THEN
 Viewers.Broadcast(DM); INC(newcap.w, DM.w); INC(newcap.len); Texts.Write(W, ch)
 END ;
 Texts.Append(Graphics.T, W.buf)
 END InsertChar;

 PROCEDURE DeleteChar(F: Frame);
 VAR w1, h1: INTEGER; ch: CHAR; pos: LONGINT;
 DM: DispMsg; R: Texts.Reader;
 BEGIN DM.graph := F.graph;
 IF newcap.len > 0 THEN
 pos := Graphics.T.len; Texts.OpenReader(R, Graphics.T, pos-1); (*backspace*)
 Texts.Read(R, ch);
 IF ch >= " " THEN
 Display.GetChar(R.fnt.raster, ch, DM.w, DM.x1, DM.y1, w1, h1, DM.pat);
 DEC(newcap.w, DM.w); DEC(newcap.len); DEC(DM.y1, R.fnt.minY);
 Viewers.Broadcast(DM); Texts.Delete(Graphics.T, pos-1, pos)
 END

 401

 END
 END DeleteChar;

 PROCEDURE GetSelection(F: Frame; VAR text: Texts.Text; VAR beg, end, time: LONGINT);
 VAR obj: Graphics.Object;
 BEGIN obj := F.graph.sel;
 IF (obj # NIL) & (obj IS Graphics.Caption) & (F.graph.time >= time) THEN
 WITH obj: Graphics.Caption DO beg := obj.pos; end := obj.pos + obj.len END ;
 text := Graphics.T; time := F.graph.time
 END
 END GetSelection;

 PROCEDURE* Handle(G: Display.Frame; VAR M: Display.FrameMsg);
 VAR i: LONGINT; ch: CHAR;
 x, y: INTEGER;
 DM: DispMsg; dM: DrawMsg;
 G1: Frame;

 PROCEDURE move(G: Frame; dx, dy: INTEGER);
 VAR M: UpdateMsg;
 BEGIN Defocus(G); Oberon.FadeCursor(Oberon.Mouse);
 M.id := drawdel; M.graph := G.graph; Viewers.Broadcast(M);
 Graphics.Move(G.graph, dx, dy); M.id := drawsel; Viewers.Broadcast(M)
 END move;

 BEGIN
 WITH G: Frame DO
 IF M IS Oberon.InputMsg THEN
 WITH M: Oberon.InputMsg DO
 IF M.id = Oberon.track THEN
 x := M.X - (M.X - G.x) MOD 4; y := M.Y - (M.Y - G.y) MOD 4;
 IF M.keys # {} THEN Edit(G, x, y, M.keys)
 ELSE Oberon.DrawCursor(Oberon.Mouse, Crosshair, x, y)
 END
 ELSIF M.id = Oberon.consume THEN
 IF M.ch = 7FX THEN
 IF newcap # NIL THEN DeleteChar(G)
 ELSE Oberon.FadeCursor(Oberon.Mouse);
 Defocus(G); Erase(G); Graphics.Delete(G.graph)
 END
 ELSIF M.ch = 91X THEN Restore(G)
 ELSIF M.ch = 93X THEN G.Xg := -1; G.Yg := 0; Restore(G) (*reset*)
 ELSIF M.ch = 0C1X THEN move(G, 0, 1)
 ELSIF M.ch = 0C2X THEN move(G, 0, -1)
 ELSIF M.ch = 0C3X THEN move(G, 1, 0)
 ELSIF M.ch = 0C4X THEN move(G, -1, 0)
 ELSIF (M.ch >= 20X) & (M.ch <= 86X) THEN
 IF newcap # NIL THEN InsertChar(G, M.ch)
 ELSIF G.marked THEN
 Defocus(G); Deselect(G);
 NewCaption(G, M.col, M.fnt); InsertChar(G, M.ch)
 END
 END
 END
 END
 ELSIF M IS UpdateMsg THEN
 WITH M: UpdateMsg DO
 IF M.graph = G.graph THEN

 402

 dM.f := G; dM.x := G.x; dM.y := G.y; dM.col := 0;
 CASE M.id OF
 restore: Restore(G)
 | drawobj: dM.mode := 0; M.obj.do.draw(M.obj, dM)
 | drawobjs: dM.mode := 1; M.obj.do.draw(M.obj, dM)
 | drawobjd: dM.mode := 3; M.obj.do.draw(M.obj, dM)
 | drawsel: dM.mode := 0; Graphics.DrawSel(G.graph, dM)
 | drawnorm: dM.mode := 2; Graphics.DrawSel(G.graph, dM)
 | drawdel: dM.mode := 3; Graphics.DrawSel(G.graph, dM)
 END
 END
 END
 ELSIF M IS SelQuery THEN
 WITH M: SelQuery DO
 IF (G.graph.sel # NIL) & (M.time < G.graph.time) THEN
 M.f := G; M.time := G.graph.time
 END
 END
 ELSIF M IS FocusQuery THEN
 IF G.marked THEN M(FocusQuery).f := G END
 ELSIF M IS PosQuery THEN
 WITH M: PosQuery DO
 IF (G.X <= M.x) & (M.x < G.X1) & (G.Y <= M.y) & (M.y < G.Y1) THEN
 M.f := G
 END
 END
 ELSIF M IS DispMsg THEN
 DM := M(DispMsg);
 x := G.x + newcap.x + newcap.w; y := G.y + newcap.y;
 IF (DM.graph = G.graph) & (x >= G.X) & (x + DM.w < G.X1)
 & (y >= G.Y) & (y < G.Y1) THEN
 Display.CopyPattern(Oberon.CurCol, DM.pat, x + DM.x1, y + DM.y1, 2);
 Display.ReplConst(Display.white, x, y, DM.w, newcap.h, 2)
 END
 ELSIF M IS Oberon.ControlMsg THEN
 WITH M: Oberon.ControlMsg DO
 IF M.id = Oberon.neutralize THEN
 Oberon.RemoveMarks(G.X, G.Y, G.W, G.H); Defocus(G);
 DrawNorm(G); Graphics.Deselect(G.graph)
 ELSIF M.id = Oberon.defocus THEN Defocus(G)
 END
 END
 ELSIF M IS Oberon.SelectionMsg THEN
 WITH M: Oberon.SelectionMsg DO GetSelection(G, M.text, M.beg, M.end, M.time) END
 ELSIF M IS Oberon.CopyMsg THEN
 Oberon.RemoveMarks(G.X, G.Y, G.W, G.H); Defocus(G);
 NEW(G1); G1^ := G^; M(Oberon.CopyMsg).F := G1
 ELSIF M IS MenuViewers.ModifyMsg THEN
 WITH M: MenuViewers.ModifyMsg DO G.Y := M.Y; G.H := M.H; Restore(G) END
 ELSIF M IS Oberon.CopyOverMsg THEN
 WITH M: Oberon.CopyOverMsg DO
 IF G.marked THEN
 DrawObj(G, CaptionCopy(G, G.mark.x, G.mark.y, M.text, M.beg, M.end))
 END
 END
 END

 403

 END
 END Handle;

 (*------------------- Methods -----------------------*)

 PROCEDURE* DrawLine(obj: Graphics.Object; VAR M: Graphics.Msg);
 (*M.mode = 0: draw according to state,
 = 1: normal -> selected,
 = 2: selected -> normal,
 = 3: erase*)
 VAR x, y, w, h, col: INTEGER; f: Frame;
 BEGIN
 WITH M: DrawMsg DO
 x := obj.x + M.x; y := obj.y + M.y; w := obj.w; h := obj.h; f := M.f;
 IF (x+w > f.X) & (x < f.X1) & (y+h > f.Y) & (y < f.Y1) THEN
 IF x < f.X THEN DEC(w, f.X-x); x := f.X END ;
 IF x+w > f.X1 THEN w := f.X1-x END ;
 IF y < f.Y THEN DEC(h, f.Y-y); y := f.Y END ;
 IF y+h > f.Y1 THEN h := f.Y1-y END ;
 IF M.col = Display.black THEN col := obj.col ELSE col := M.col (*macro*) END ;
 IF (M.mode = 0) & obj.selected OR (M.mode = 1) THEN
 Display.ReplPattern(col, Display.grey2, x, y, w, h, 0)
 ELSIF M.mode = 3 THEN Display.ReplConst(Display.black, x, y, w, h, 0) (*erase*)
 ELSE Display.ReplConst(col, x, y, w, h, 0)
 END
 END
 END
 END DrawLine;

 PROCEDURE* DrawCaption(obj: Graphics.Object; VAR M: Graphics.Msg);
 VAR x, y, dx, x0, x1, y0, y1, w, h, w1, h1, col: INTEGER;
 f: Frame;
 ch: CHAR; pat: Display.Pattern; fnt: Fonts.Font;
 R: Texts.Reader;
 BEGIN
 WITH M: DrawMsg DO
 x := obj.x + M.x; y := obj.y + M.y; w := obj.w; h := obj.h; f := M.f;
 IF (f.X <= x) & (x <= f.X1) & (f.Y <= y) & (y+h <= f.Y1) THEN
 IF x+w > f.X1 THEN w := f.X1-x END ;
 Texts.OpenReader(R, Graphics.T, obj(Graphics.Caption).pos); Texts.Read(R, ch);
 IF M.mode = 0 THEN
 IF ch >= " " THEN
 IF M.col = Display.black THEN col := obj.col ELSE col := M.col (*macro*) END ;
 fnt := R.fnt; x0 := x; y0 := y - fnt.minY;
 LOOP
 Display.GetChar(fnt.raster, ch, dx, x1, y1, w1, h1, pat);
 IF x0+x1+w1 <= f.X1 THEN Display.CopyPattern(col, pat, x0+x1, y0+y1, 1)
 ELSE EXIT
 END ;
 INC(x0, dx); Texts.Read(R, ch);
 IF ch < " " THEN EXIT END
 END ;
 IF obj.selected THEN Display.ReplConst(Display.white, x, y, w, h, 2) END
 END
 ELSIF M.mode < 3 THEN Display.ReplConst(Display.white, x, y, w, h, 2)
 ELSE Display.ReplConst(Display.black, x, y, w, h, 0)
 END

 404

 END
 END
 END DrawCaption;

 PROCEDURE* DrawMacro(obj: Graphics.Object; VAR M: Graphics.Msg);
 VAR x, y, w, h: INTEGER;
 f: Frame; M1: DrawMsg;
 BEGIN
 WITH M: DrawMsg DO
 x := obj.x + M.x; y := obj.y + M.y; w := obj.w; h := obj.h; f := M.f;
 IF (x+w > f.X) & (x < f.X1) & (y+h > f.Y) & (y < f.Y1) THEN
 M1.x := x; M1.y := y;
 IF x < f.X THEN DEC(w, f.X-x); x := f.X END ;
 IF x+w > f.X1 THEN w := f.X1-x END ;
 IF y < f.Y THEN DEC(h, f.Y-y); y := f.Y END ;
 IF y+h > f.Y1 THEN h := f.Y1-y END ;
 IF M.mode = 0 THEN
 M1.f := f; M1.col := obj.col; M1.mode := 0;
 Graphics.DrawMac(obj(Graphics.Macro).mac, M1);
 IF obj.selected THEN Display.ReplConst(Display.white, x, y, w, h, 2) END
 ELSIF M.mode < 3 THEN Display.ReplConst(Display.white, x, y, w, h, 2)
 ELSE Display.ReplConst(Display.black, x, y, w, h, 0)
 END
 END
 END
 END DrawMacro;

 PROCEDURE New*(graph: Graphics.Graph; X, Y, col: INTEGER; ticked: BOOLEAN): Frame;
 VAR G: Frame;
 BEGIN NEW(G); G.graph := graph; G.Xg := X; G.Yg := Y; G.col := col; G.marked := FALSE;
 G.mark.next := NIL; G.ticked := ticked; G.handle := Handle; RETURN G
 END New;

 PROCEDURE* DrawCrosshair(x, y: INTEGER);
 BEGIN
 IF x < CL THEN
 IF x < markW THEN x := markW ELSIF x > DW THEN x := DW - markW END
 ELSE
 IF x < CL + markW THEN x := CL + markW
 ELSIF x > CL + DW THEN x := CL + DW - markW
 END
 END ;
 IF y < markW THEN y := markW ELSIF y > DH THEN y := DH - markW END ;
 Display.CopyPattern(Display.white, Display.cross, x - markW, y - markW, 2)
 END DrawCrosshair;

BEGIN DW := Display.Width - 8; DH := Display.Height - 8; CL := Display.ColLeft;
 Crosshair.Draw := DrawCrosshair; Crosshair.Fade := DrawCrosshair; Texts.OpenWriter(W);
 Graphics.LineMethod.draw := DrawLine; Graphics.CapMethod.draw := DrawCaption;
 Graphics.MacMethod.draw := DrawMacro
END GraphicFrames.

13.8.3. Module Graphics

The preceding presentations of the interface definitions have explained the framework of the graphics
system and set the goals for their implementation. We recall that the core module Graphics handles the
data structures representing sets of objects without reliance on the specifications of individual objects.

 405

Even the structural aspects of the object sets are not fixed by the interface. Several solutions, and hence
several implementations are imaginable.

Here we present the simplest solution for representing an abstract, unordered set: the linear, linked list.
It is embodied in the object record's additional, hidden field next. Consequently, a graphic is
represented by the head of the list, and the type GraphDesc obtains the hidden field first (see listing of
Graphics). In addition, the descriptor contains the exported field sel denoting a selected element, and
the field time indicating the time of its selection. The latter is used to determine the most recent
selection in various viewers.

Additional data structures become necessary through the presence of macros and classes. Macros are
represented by the list of their elements, like graphics. Their header is of type MacHeadDesc in
analogy to GraphDesc. In addition to a macro's name, width, and height, it contains the field first,
pointing to the list's first element, and the field lib, referring to the library from which the macro stems.

A library descriptor is similarly structured: In addition to its name, the field first points to the list of
elements (macros) of the library, which are themselves linked through the field next. Fig. 15.6. shows
the data structure containing two libraries. It is anchored in the global variable FirstLib.

Libraries are permanently stored as files. It is evidently unacceptable that file access be required upon
every reference to a macro, e.g. each time a macro is redrawn. Therefore a library is loaded into
primary store, when one of its elements is referenced for the first time. Procedure ThisMac searches the
data structure representing the specified library and locates the header of the requested macro.

We emphasize that the structures employed for macro and library representation remain hidden from
clients, just like the structure of graphics remains hidden within module Graphics. Thus, none of the
linkage fields of records (first, next, sel) are exported from the base module. This measure retains the
possibility to change the structural design decisions without affecting the client modules. But partly it
is also responsible for the necessity to include macros in the base module.

”Lib1”

first

next

”Lib2”

first

next

first

next

next

first first

next

next

first

next

first first

LibraryDesc

MacHeadDesc

ObjectDesc

FirstLib

Fig. 13.6. Data structure for libraries and macros

 406

A large fraction of module Graphics is taken up by procedures for reading and writing files
representing graphics and libraries. They convert their internal data structure into a sequential form and
vice-versa. This would be a rather trivial task, were it not for the presence of pointers referring to
macros and classes. These pointers must be converted into descriptions that are position-independent,
such as names. The same problem is posed by fonts (which are also represented by pointers).

Evidently, the replacement of every pointer by an explicit name would be an uneconomical solution
with respect to storage space as well as speed of reading and writing. Therefore, pointers to fonts and
libraries - themselves represented as files - are replaced by indices to font and library dictionaries.
These dictionaries establish a context and are constructed while a file is read. They are used only
during this process and hence are local to procedure Load (or Open). For classes, a dictionary listing
the respective allocation procedures is constructed in order to avoid repeated calls to determine the
pertinent allocator.

When a graphics file is generated by procedure Store, local dictionaries are constructed of fonts,
libraries, and classes of objects that have been written onto the file. Upon encountering a caption, a
macro, or any element whose font, library, or class is not contained in the respective dictionary, a pair
consisting of index and name is emitted to the file, thereby assigning a number to each name. These
pairs are interspersed within the sequence of object descriptions.

When the graphic file is read, these pairs trigger insertion of the font, library, or class in the respective
dictionary, whereby the name is converted into a pointer to the entity, which is obtained by a loading
process embodied by procedures Fonts.This, ThisLib, and ThisClass. Both the Load and Store
procedures traverse the file only once. The files are self-contained in the sense that all external
quantities are represented by their names. The format of a graphics file is defined in Extended BNF
syntax as follows:

file = tag stretch.
stretch = {item} -1.
item = 0 0 fontno fontname | 0 1 libno libname | 0 2 classno classname allocname |
 1 data | 2 data fontno string | 3 data libno macname | classno data extension.
data = x y w h color.

All class numbers are at least 4; the values 1, 2, and 3 are assigned to lines, captions, and macros. x, y,
w, h, and color are two-byte integer attributes of the base type Object.

The same procedures are used for loading and storing a library file. In fact, Load and Store read and
write a file stretch representing a sequence of elements which is terminated by a special value (-1). In a
library file each macro corresponds to a stretch, and the terminator is followed by values specifying the
macro's overall width, height, and its name. The structure of library files is defined by the following
syntax:

libfile = libtag {macro}.
macro = stretch w h name.

The first byte of each element is a class number within the context of the file and identifies the class to
which the element belongs. An object of the given class is allocated by calling the class' allocation
procedure, which is obtained from the class dictionary in the given context. The class number is used
as dictionary index. The presence of the required allocation procedure in the dictionary is guaranteed
by the fact that a corresponding index/name pair had preceded the element in the file.

The encounter of such a pair triggers the loading of the module specifying the class and its methods.
The name of the pair consists of two parts: the first specifies the module in which the class is defined,
and it is taken as the parameter of the call to the loader (see procedure ThisClass). The second part is
the name of the relevant allocation procedure which returns a fresh object to variable Graphics.new.
Thereafter, the data defined in the base type Object are read.

Data belonging to an extension follow those of the base type, and they are read by the extension's read
method. This part must always be headed by a byte specifying the number of bytes which follow. This
information is used in the case where a requested module is not present; it indicates the number of
bytes to be skipped in order to continue reading further elements.

 407

A last noteworthy detail concerns the Move operation which appears as surprisingly complicated,
particularly in comparison with the related copy operation. The reason is our deviation from the
principle that a graphics editor must refrain from an interpretation of drawings. Responsible for this
deviation was the circumstance that the editor was at first primarily used for the preparation of circuit
diagrams. They suggested the view that adjoining, perpendicular lines be connected. Consequently, the
horizontal or vertical displacement of a line was to preserve connections. Procedure Move must
therefore identify all connected lines, and subsequently extend or shorten them.

MODULE Graphics; (*NW 21.12.89 / 3.2.92*)
 IMPORT Files, Modules, Display, Fonts, Printer, Texts, Oberon;

 CONST NameLen* = 16; GraphFileId = 0F9X; LibFileId = 0FDX;

 TYPE
 Graph* = POINTER TO GraphDesc;
 Object* = POINTER TO ObjectDesc;
 Method* = POINTER TO MethodDesc;

 Line* = POINTER TO LineDesc;
 Caption* = POINTER TO CaptionDesc;
 Macro* = POINTER TO MacroDesc;

 ObjectDesc* = RECORD
 x*, y*, w*, h*, col*: INTEGER;
 selected*, marked*: BOOLEAN;
 do*: Method;
 next, dmy: Object
 END ;

 Msg* = RECORD END ;
 WidMsg* = RECORD (Msg) w*: INTEGER END ;
 ColorMsg* = RECORD (Msg) col*: INTEGER END ;
 FontMsg* = RECORD (Msg) fnt*: Fonts.Font END ;
 Name* = ARRAY NameLen OF CHAR;

 GraphDesc* = RECORD
 time*: LONGINT;
 sel*, first: Object
 END ;

 MacHead* = POINTER TO MacHeadDesc;
 MacExt* = POINTER TO MacExtDesc;
 Library* = POINTER TO LibraryDesc;

 MacHeadDesc* = RECORD
 name*: Name;
 w*, h*: INTEGER;
 ext*: MacExt;
 lib*: Library;
 first: Object;
 next: MacHead
 END ;

 LibraryDesc* = RECORD
 name*: Name;
 first: MacHead;
 next: Library
 END ;

 MacExtDesc* = RECORD END ;

 408

 Context* = RECORD
 nofonts, noflibs, nofclasses: INTEGER;
 font: ARRAY 10 OF Fonts.Font;
 lib: ARRAY 4 OF Library;
 class: ARRAY 10 OF Modules.Command
 END;

 MethodDesc* = RECORD
 module*, allocator*: Name;
 new*: Modules.Command;
 copy*: PROCEDURE (from, to: Object);
 draw*, handle*: PROCEDURE (obj: Object; VAR msg: Msg);
 selectable*: PROCEDURE (obj: Object; x, y: INTEGER): BOOLEAN;
 read*: PROCEDURE (obj: Object; VAR R: Files.Rider; VAR C: Context);
 write*: PROCEDURE (obj: Object; cno: SHORTINT;
 VAR R: Files.Rider; VAR C: Context);
 print*: PROCEDURE (obj: Object; x, y: INTEGER)
 END ;

 LineDesc* = RECORD (ObjectDesc)
 END ;

 CaptionDesc* = RECORD (ObjectDesc)
 pos*, len*: INTEGER
 END ;

 MacroDesc* = RECORD (ObjectDesc)
 mac*: MacHead
 END ;

 VAR new*: Object;
 width*, res*: INTEGER;
 T*: Texts.Text; (*captions*)
 LineMethod*, CapMethod*, MacMethod* : Method;

 FirstLib: Library;
 W, TW: Texts.Writer;

 PROCEDURE Add*(G: Graph; obj: Object);
 BEGIN obj.marked := FALSE; obj.selected := TRUE; obj.next := G.first;
 G.first := obj; G.sel := obj; G.time := Oberon.Time()
 END Add;

 PROCEDURE Draw*(G: Graph; VAR M: Msg);
 VAR obj: Object;
 BEGIN obj := G.first;
 WHILE obj # NIL DO obj.do.draw(obj, M); obj := obj.next END
 END Draw;

 PROCEDURE ThisObj*(G: Graph; x, y: INTEGER): Object;
 VAR obj: Object;
 BEGIN obj := G.first;
 WHILE (obj # NIL) & ~obj.do.selectable(obj, x ,y) DO obj := obj.next END ;
 RETURN obj
 END ThisObj;

 PROCEDURE SelectObj*(G: Graph; obj: Object);
 BEGIN
 IF obj # NIL THEN obj.selected := TRUE; G.sel := obj; G.time := Oberon.Time() END
 END SelectObj;

 409

 PROCEDURE SelectArea*(G: Graph; x0, y0, x1, y1: INTEGER);
 VAR obj: Object; t: INTEGER;
 BEGIN obj := G.first;
 IF x1 < x0 THEN t := x0; x0 := x1; x1 := t END ;
 IF y1 < y0 THEN t := y0; y0 := y1; y1 := t END ;
 WHILE obj # NIL DO
 IF (x0 <= obj.x) & (obj.x + obj.w <= x1) & (y0 <= obj.y) & (obj.y + obj.h <= y1) THEN
 obj.selected := TRUE; G.sel := obj
 END ;
 obj := obj.next
 END ;
 IF G.sel # NIL THEN G.time := Oberon.Time() END
 END SelectArea;

 PROCEDURE Enumerate*(G: Graph;
 handle: PROCEDURE (obj: Object; VAR done: BOOLEAN));
 VAR obj: Object; done: BOOLEAN;
 BEGIN done := FALSE; obj := G.first;
 WHILE (obj # NIL) & ~done DO handle(obj, done); obj := obj.next END
 END Enumerate;

 (*----------------procedures operating on selection -------------------*)

 PROCEDURE Deselect*(G: Graph);
 VAR obj: Object;
 BEGIN obj := G.first; G.sel := NIL; G.time := 0;
 WHILE obj # NIL DO obj.selected := FALSE; obj := obj.next END
 END Deselect;

 PROCEDURE DrawSel*(G: Graph; VAR M: Msg);
 VAR obj: Object;
 BEGIN obj := G.first;
 WHILE obj # NIL DO
 IF obj.selected THEN obj.do.draw(obj, M) END ;
 obj := obj.next
 END
 END DrawSel;

 PROCEDURE Handle*(G: Graph; VAR M: Msg);
 VAR obj: Object;
 BEGIN obj := G.first;
 WHILE obj # NIL DO
 IF obj.selected THEN obj.do.handle(obj, M) END ;
 obj := obj.next
 END
 END Handle;

 PROCEDURE Move*(G: Graph; dx, dy: INTEGER);
 VAR obj, ob0: Object; x0, x1, y0, y1: INTEGER;
 BEGIN obj := G.first;
 WHILE obj # NIL DO
 IF obj.selected & ~(obj IS Caption) THEN
 x0 := obj.x; x1 := obj.w + x0; y0 := obj.y; y1 := obj.h + y0;
 IF dx = 0 THEN (*vertical move*)
 ob0 := G.first;
 WHILE ob0 # NIL DO
 IF ~ob0.selected & (ob0 IS Line) & (x0 <= ob0.x)
 & (ob0.x <= x1) & (ob0.w < ob0.h) THEN
 IF (y0 <= ob0.y) & (ob0.y <= y1) THEN

 410

 INC(ob0.y, dy); DEC(ob0.h, dy); ob0.marked := TRUE
 ELSIF (y0 <= ob0.y + ob0.h) & (ob0.y + ob0.h <= y1) THEN
 INC(ob0.h, dy); ob0.marked := TRUE
 END
 END ;
 ob0 := ob0.next
 END
 ELSIF dy = 0 THEN (*horizontal move*)
 ob0 := G.first;
 WHILE ob0 # NIL DO
 IF ~ob0.selected & (ob0 IS Line) & (y0 <= ob0.y)
 & (ob0.y <= y1) & (ob0.h < ob0.w) THEN
 IF (x0 <= ob0.x) & (ob0.x <= x1) THEN
 INC(ob0.x, dx); DEC(ob0.w, dx); ob0.marked := TRUE
 ELSIF (x0 <= ob0.x + ob0.w) & (ob0.x + ob0.w <= x1) THEN
 INC(ob0.w, dx); ob0.marked := TRUE
 END
 END ;
 ob0 := ob0.next
 END
 END
 END ;
 obj := obj.next
 END ;
 obj := G.first; (*now move*)
 WHILE obj # NIL DO
 IF obj.selected THEN INC(obj.x, dx); INC(obj.y, dy) END ;
 obj.marked := FALSE; obj := obj.next
 END
 END Move;

 PROCEDURE Copy*(Gs, Gd: Graph; dx, dy: INTEGER);
 VAR obj: Object;
 BEGIN obj := Gs.first;
 WHILE obj # NIL DO
 IF obj.selected THEN
 obj.do.new; obj.do.copy(obj, new); INC(new.x, dx); INC(new.y, dy);
 obj.selected := FALSE; Add(Gd, new)
 END ;
 obj := obj.next
 END ;
 new := NIL
 END Copy;

 PROCEDURE Delete*(G: Graph);
 VAR obj, pred: Object;
 BEGIN G.sel := NIL; obj := G.first;
 WHILE (obj # NIL) & obj.selected DO obj := obj.next END ;
 G.first := obj;
 IF obj # NIL THEN
 pred := obj; obj := obj.next;
 WHILE obj # NIL DO
 IF obj.selected THEN pred.next := obj.next ELSE pred := obj END ;
 obj := obj.next
 END
 END
 END Delete;

 411

 (* ---------------------- File I/O ------------------------ *)

 PROCEDURE ReadInt*(VAR R: Files.Rider; VAR x: INTEGER);
 VAR c0: CHAR; s1: SHORTINT;
 BEGIN Files.Read(R, c0); Files.Read(R, s1); x := s1; x := x * 100H + ORD(c0)
 END ReadInt;

 PROCEDURE ReadLInt*(VAR R: Files.Rider; VAR x: LONGINT);
 VAR c0, c1, c2: CHAR; s3: SHORTINT;
 BEGIN Files.Read(R, c0); Files.Read(R, c1); Files.Read(R, c2); Files.Read(R, s3);
 x := s3; x := ((x * 100H + LONG(c2)) * 100H + LONG(c1)) * 100H + LONG(c0)
 END ReadLInt;

 PROCEDURE ReadString*(VAR R: Files.Rider; VAR s: ARRAY OF CHAR);
 VAR i: INTEGER; ch: CHAR;
 BEGIN i := 0;
 REPEAT Files.Read(R, ch); s[i] := ch; INC(i) UNTIL ch = 0X
 END ReadString;

 PROCEDURE ReadObj(VAR R: Files.Rider; obj: Object);
 BEGIN ReadInt(R, obj.x); ReadInt(R, obj.y);
 ReadInt(R, obj.w); ReadInt(R, obj.h); ReadInt(R, obj.col)
 END ReadObj;

 PROCEDURE WriteInt*(VAR W: Files.Rider; x: INTEGER);
 BEGIN Files.Write(W, CHR(x)); Files.Write(W, CHR(x DIV 100H))
 END WriteInt;

 PROCEDURE WriteLInt*(VAR W: Files.Rider; x: LONGINT);
 BEGIN Files.Write(W, CHR(x)); Files.Write(W, CHR(x DIV 100H));
 Files.Write(W, CHR(x DIV 10000H)); Files.Write(W, CHR(x DIV 1000000H))
 END WriteLInt;

 PROCEDURE WriteString*(VAR W: Files.Rider; VAR s: ARRAY OF CHAR);
 VAR i: INTEGER; ch: CHAR;
 BEGIN i := 0;
 REPEAT ch := s[i]; INC(i); Files.Write(W, ch) UNTIL ch = 0X
 END WriteString;

 PROCEDURE WriteObj*(VAR W: Files.Rider; cno: SHORTINT; obj: Object);
 BEGIN Files.Write(W, cno); WriteInt(W, obj.x); WriteInt(W, obj.y);
 WriteInt(W, obj.w); WriteInt(W, obj.h); WriteInt(W, obj.col)
 END WriteObj;

 (* ---------------------- Storing ----------------------- *)

 PROCEDURE WMsg(s0, s1: ARRAY OF CHAR);
 BEGIN Texts.WriteString(W, s0); Texts.WriteString(W, s1);
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END WMsg;

 PROCEDURE InitContext(VAR C: Context);
 BEGIN C.nofonts := 0; C.noflibs := 0; C.nofclasses := 4;
 C.class[1] := LineMethod.new; C.class[2] := CapMethod.new; C.class[3] := MacMethod.new
 END InitContext;

 PROCEDURE FontNo*(VAR W: Files.Rider; VAR C: Context; fnt: Fonts.Font): SHORTINT;
 VAR fno: SHORTINT;
 BEGIN fno := 0;
 WHILE (fno < C.nofonts) & (C.font[fno] # fnt) DO INC(fno) END ;
 IF fno = C.nofonts THEN
 Files.Write(W, 0); Files.Write(W, 0); Files.Write(W, fno);

 412

 WriteString(W, fnt.name); C.font[fno] := fnt; INC(C.nofonts)
 END ;
 RETURN fno
 END FontNo;

 PROCEDURE StoreElems(VAR W: Files.Rider; VAR C: Context; obj: Object);
 VAR cno: INTEGER;
 BEGIN
 WHILE obj # NIL DO
 cno := 1;
 WHILE (cno < C.nofclasses) & (obj.do.new # C.class[cno]) DO INC(cno) END ;
 IF cno = C.nofclasses THEN
 Files.Write(W, 0); Files.Write(W, 2); Files.Write(W, SHORT(cno));
 WriteString(W, obj.do.module); WriteString(W, obj.do.allocator);
 C.class[cno] := obj.do.new; INC(C.nofclasses)
 END ;
 obj.do.write(obj, SHORT(cno), W, C); obj := obj.next
 END ;
 Files.Write(W, -1)
 END StoreElems;

 PROCEDURE Store*(G: Graph; VAR W: Files.Rider);
 VAR C: Context;
 BEGIN InitContext(C); StoreElems(W, C, G.first)
 END Store;

 PROCEDURE WriteFile*(G: Graph; name: ARRAY OF CHAR);
 VAR F: Files.File; W: Files.Rider; C: Context;
 BEGIN F := Files.New(name); Files.Set(W, F, 0); Files.Write(W, GraphFileId);
 InitContext(C); StoreElems(W, C, G.first); Files.Register(F)
 END WriteFile;

 PROCEDURE Print*(G: Graph; x0, y0: INTEGER);
 VAR obj: Object;
 BEGIN obj := G.first;
 WHILE obj # NIL DO obj.do.print(obj, x0, y0); obj := obj.next END
 END Print;

 (* ---------------------- Loading ------------------------ *)

 PROCEDURE ThisClass*(VAR module, allocator: ARRAY OF CHAR): Modules.Command;
 VAR mod: Modules.Module; com: Modules.Command;
 BEGIN mod := Modules.ThisMod(module);
 IF mod # NIL THEN
 com := Modules.ThisCommand(mod, allocator);
 IF com = NIL THEN WMsg(allocator, " unknown") END
 ELSE WMsg(module, " not available"); com := NIL
 END ;
 RETURN com
 END ThisClass;

 PROCEDURE Font*(VAR R: Files.Rider; VAR C: Context): Fonts.Font;
 VAR fno: SHORTINT;
 BEGIN Files.Read(R, fno); RETURN C.font[fno]
 END Font;

 PROCEDURE^ ThisLib*(VAR name: ARRAY OF CHAR; replace: BOOLEAN): Library;

 PROCEDURE LoadElems(VAR R: Files.Rider; VAR C: Context; VAR obj: Object);
 VAR cno, len, k: SHORTINT;

 413

 name, name1: ARRAY 32 OF CHAR;
 BEGIN obj := NIL; Files.Read(R, cno);
 WHILE ~R.eof & (cno >= 0) DO
 IF cno = 0 THEN
 Files.Read(R, cno); Files.Read(R, k); ReadString(R, name);
 IF cno = 0 THEN C.font[k] := Fonts.This(name)
 ELSIF cno = 1 THEN C.lib[k] := ThisLib(name, FALSE)
 ELSE ReadString(R, name1); C.class[k] := ThisClass(name, name1)
 END
 ELSIF C.class[cno] # NIL THEN
 C.class[cno]; ReadObj(R, new);
 new.selected := FALSE; new.marked := FALSE; new.next := obj; obj := new;
 new.do.read(new, R, C)
 ELSE Files.Set(R, Files.Base(R), Files.Pos(R) + 10);
 Files.Read(R, len); Files.Set(R, Files.Base(R), Files.Pos(R) + len)
 END ;
 Files.Read(R, cno)
 END ;
 new := NIL
 END LoadElems;

 PROCEDURE Load*(G: Graph; VAR R: Files.Rider);
 VAR C: Context;
 BEGIN G.sel := NIL; InitContext(C); LoadElems(R, C, G.first)
 END Load;

 PROCEDURE Open*(G: Graph; name: ARRAY OF CHAR);
 VAR tag: CHAR;
 F: Files.File; R: Files.Rider; C: Context;
 BEGIN G.first := NIL; G.sel := NIL; G.time := 0; F := Files.Old(name);
 IF F # NIL THEN
 Files.Set(R, F, 0); Files.Read(R, tag);
 IF tag = GraphFileId THEN InitContext(C); LoadElems(R, C, G.first); res := 0
 ELSE res := 1
 END
 ELSE res := 2
 END
 END Open;

 (* --------------------- Macros / Libraries ----------------------- *)

 PROCEDURE ThisLib*(VAR name: ARRAY OF CHAR; replace: BOOLEAN): Library;
 VAR i, j: INTEGER; ch: CHAR;
 L: Library; mh: MacHead;
 F: Files.File; R: Files.Rider; C: Context;
 Lname, Fname: ARRAY 32 OF CHAR;
 BEGIN L := FirstLib; i := 0;
 WHILE name[i] >= "0" DO Lname[i] := name[i]; INC(i) END ;
 Lname[i] := 0X;
 WHILE (L # NIL) & (L.name # Lname) DO L := L.next END ;
 IF (L = NIL) OR replace THEN
 (*load library*) j := 0;
 WHILE name[j] > 0X DO Fname[j] := name[j]; INC(j) END ;
 IF i = j THEN
 Fname[j] := "."; Fname[j+1] := "L"; Fname[j+2] := "i"; Fname[j+3] := "b"; INC(j, 4)
 END ;
 Fname[j] := 0X; F := Files.Old(Fname);
 IF F # NIL THEN

 414

 WMsg("loading ", name); Files.Set(R, F, 0); Files.Read(R, ch);
 IF ch = LibFileId THEN
 IF L = NIL THEN
 NEW(L); COPY(Lname, L.name); L.next := FirstLib; FirstLib := L
 END ;
 L.first := NIL; InitContext(C);
 WHILE ~R.eof DO
 NEW(mh); LoadElems(R, C, mh.first);
 ReadInt(R, mh.w); ReadInt(R, mh.h); ReadString(R, mh.name);
 mh.lib := L; mh.next := L.first; L.first := mh;
 END
 ELSE L := NIL; WMsg(name, " bad library")
 END
 ELSE WMsg(name, " not found")
 END
 END ;
 RETURN L
 END ThisLib;

 PROCEDURE NewLib*(VAR Lname: ARRAY OF CHAR): Library;
 VAR L: Library;
 BEGIN NEW(L); COPY(Lname, L.name); L.first := NIL;
 L.next := FirstLib; FirstLib := L; RETURN L
 END NewLib;

 PROCEDURE StoreLib*(L: Library; VAR Fname: ARRAY OF CHAR);
 VAR mh: MacHead;
 F: Files.File; W: Files.Rider;
 C: Context;
 BEGIN F := Files.New(Fname); Files.Set(W, F, 0); Files.Write(W, LibFileId);
 InitContext(C); mh := L.first;
 WHILE mh # NIL DO
 WriteInt(W, mh.w); WriteInt(W, mh.h); WriteString(W, mh.name);
 StoreElems(W, C, mh.first); mh := mh.next
 END
 END StoreLib;

 PROCEDURE RemoveLibraries*;
 BEGIN FirstLib := NIL
 END RemoveLibraries;

 PROCEDURE ThisMac*(L: Library; VAR Mname: ARRAY OF CHAR): MacHead;
 VAR mh: MacHead;
 BEGIN mh := L.first;
 WHILE (mh # NIL) & (mh.name # Mname) DO mh := mh.next END ;
 RETURN mh
 END ThisMac;

 PROCEDURE OpenMac*(mh: MacHead; G: Graph; x, y: INTEGER);
 VAR obj: Object;
 BEGIN obj := mh.first;
 WHILE obj # NIL DO
 obj.do.new; obj.do.copy(obj, new); INC(new.x, x); INC(new.y, y); new.selected := TRUE;
 Add(G, new); obj := obj.next
 END ;
 new := NIL
 END OpenMac;

 415

 PROCEDURE DrawMac*(mh: MacHead; VAR M: Msg);
 VAR elem: Object;
 BEGIN elem := mh.first;
 WHILE elem # NIL DO elem.do.draw(elem, M); elem := elem.next END
 END DrawMac;

 PROCEDURE MakeMac*(G: Graph; x, y, w, h: INTEGER;
 VAR Mname: ARRAY OF CHAR): MacHead;
 VAR obj, last: Object; mh: MacHead;
 BEGIN obj := G.first; last := NIL;
 WHILE obj # NIL DO
 IF obj.selected THEN
 obj.do.new; obj.do.copy(obj, new); new.next := last; new.selected := FALSE;
 DEC(new.x, x); DEC(new.y, y); last := new
 END ;
 obj := obj.next
 END ;
 NEW(mh); mh.w := w; mh.h := h; mh.first := last; mh.ext := NIL;
 COPY(Mname, mh.name); new := NIL; RETURN mh
 END MakeMac;

 PROCEDURE InsertMac*(mh: MacHead; L: Library; VAR new: BOOLEAN);
 VAR mh1: MacHead;
 BEGIN mh.lib := L; mh1 := L.first;
 WHILE (mh1 # NIL) & (mh1.name # mh.name) DO mh1 := mh1.next END ;
 IF mh1 = NIL THEN
 new := TRUE; mh.next := L.first; L.first := mh
 ELSE
 new := FALSE; mh1.w := mh.w; mh1.h := mh.h; mh1.first := mh.first
 END
 END InsertMac;

 (* ---------------------------- Line Methods -----------------------------*)

 PROCEDURE* NewLine;
 VAR line: Line;
 BEGIN NEW(line); new := line; line.do := LineMethod
 END NewLine;

 PROCEDURE* CopyLine(src, dst: Object);
 BEGIN dst.x := src.x; dst.y := src.y; dst.w := src.w; dst.h := src.h; dst.col := src.col
 END CopyLine;

 PROCEDURE* HandleLine(obj: Object; VAR M: Msg);
 BEGIN
 IF M IS WidMsg THEN
 IF obj.w < obj.h THEN
 IF obj.w <= 7 THEN obj.w := M(WidMsg).w END
 ELSIF obj.h <= 7 THEN obj.h := M(WidMsg).w
 END
 ELSIF M IS ColorMsg THEN obj.col := M(ColorMsg).col
 END
 END HandleLine;

 PROCEDURE* LineSelectable(obj: Object; x, y: INTEGER): BOOLEAN;
 BEGIN
 RETURN (obj.x <= x) & (x < obj.x + obj.w) & (obj.y <= y) & (y < obj.y + obj.h)
 END LineSelectable;

 416

 PROCEDURE* ReadLine(obj: Object; VAR R: Files.Rider; VAR C: Context);
 BEGIN
 END ReadLine;

 PROCEDURE* WriteLine(obj: Object; cno: SHORTINT;
 VAR W: Files.Rider; VAR C: Context);
 BEGIN WriteObj(W, cno, obj)
 END WriteLine;

 PROCEDURE* PrintLine(obj: Object; x, y: INTEGER);
 VAR w, h: INTEGER;
 BEGIN w := obj.w * 2; h := obj.h * 2;
 IF w < h THEN h := 2*h ELSE w := 2*w END ;
 Printer.ReplConst(obj.x * 4 + x, obj.y *4 + y, w, h)
 END PrintLine;

 (* ---------------------- Caption Methods ------------------------ *)

 PROCEDURE* NewCaption;
 VAR cap: Caption;
 BEGIN NEW(cap); new := cap; cap.do := CapMethod
 END NewCaption;

 PROCEDURE* CopyCaption(src, dst: Object);
 VAR ch: CHAR; R: Texts.Reader;
 BEGIN
 WITH src: Caption DO
 WITH dst: Caption DO
 dst.x := src.x; dst.y := src.y; dst.w := src.w; dst.h := src.h; dst.col := src.col;
 dst.pos := SHORT(T.len + 1); dst.len := src.len;
 Texts.Write(TW, 0DX); Texts.OpenReader(R, T, src.pos);
 Texts.Read(R, ch); TW.fnt := R.fnt;
 WHILE ch > 0DX DO Texts.Write(TW, ch); Texts.Read(R, ch) END
 END
 END ;
 Texts.Append(T, TW.buf)
 END CopyCaption;

 PROCEDURE* HandleCaption(obj: Object; VAR M: Msg);
 VAR dx, x1, dy, y1, w, w1, h1, len: INTEGER;
 pos: LONGINT;
 ch: CHAR; pat: Display.Pattern; fnt: Fonts.Font;
 R: Texts.Reader;
 BEGIN
 IF M IS FontMsg THEN
 fnt := M(FontMsg).fnt; w := 0; len := 0; pos := obj(Caption).pos;
 Texts.OpenReader(R, T, pos); Texts.Read(R, ch); dy := R.fnt.minY;
 WHILE ch > 0DX DO
 Display.GetChar(fnt.raster, ch, dx, x1, y1, w1, h1, pat);
 INC(w, dx); INC(len); Texts.Read(R, ch)
 END ;
 INC(obj.y, fnt.minY-dy); obj.w := w; obj.h := fnt.height;
 Texts.ChangeLooks(T, pos, pos+len, {0}, fnt, 0 , 0)
 ELSIF M IS ColorMsg THEN obj.col := M(ColorMsg).col
 END
 END HandleCaption;

 PROCEDURE* CaptionSelectable(obj: Object; x, y: INTEGER): BOOLEAN;
 BEGIN

 417

 RETURN (obj.x <= x) & (x < obj.x + obj.w) & (obj.y <= y) & (y < obj.y + obj.h)
 END CaptionSelectable;

 PROCEDURE* ReadCaption(obj: Object; VAR R: Files.Rider; VAR C: Context);
 VAR ch: CHAR; fno: SHORTINT; len: INTEGER;
 BEGIN obj(Caption).pos := SHORT(T.len + 1); Texts.Write(TW, 0DX);
 Files.Read(R, fno); TW.fnt := C.font[fno]; len := 0; Files.Read(R, ch);
 WHILE ch > 0DX DO Texts.Write(TW, ch); INC(len); Files.Read(R, ch) END ;
 obj(Caption).len := len; Texts.Append(T, TW.buf)
 END ReadCaption;

 PROCEDURE* WriteCaption(obj: Object; cno: SHORTINT;
 VAR W: Files.Rider; VAR C: Context);
 VAR ch: CHAR; fno: SHORTINT;
 TR: Texts.Reader;
 BEGIN Texts.OpenReader(TR, T, obj(Caption).pos); Texts.Read(TR, ch);
 fno := FontNo(W, C, TR.fnt);
 WriteObj(W, cno, obj); Files.Write(W, fno);
 WHILE ch > 0DX DO Files.Write(W, ch); Texts.Read(TR, ch) END ;
 Files.Write(W, 0X)
 END WriteCaption;

 PROCEDURE* PrintCaption(obj: Object; x, y: INTEGER);
 VAR fnt: Fonts.Font;
 i: INTEGER; ch: CHAR;
 R: Texts.Reader;
 s: ARRAY 128 OF CHAR;
 BEGIN Texts.OpenReader(R, T, obj(Caption).pos); Texts.Read(R, ch);
 fnt := R.fnt; DEC(y, fnt.minY*4); i := 0;
 WHILE ch >= " " DO s[i] := ch; INC(i); Texts.Read(R, ch) END ;
 s[i] := 0X;
 IF i > 0 THEN Printer.String(obj.x*4 + x, obj.y*4 + y, s, fnt.name) END
 END PrintCaption;

 (* ---------------------- Macro Methods ------------------------ *)

 PROCEDURE* NewMacro;
 VAR mac: Macro;
 BEGIN NEW(mac); new := mac; mac.do := MacMethod
 END NewMacro;

 PROCEDURE* CopyMacro(src, dst: Object);
 BEGIN dst.x := src.x; dst.y := src.y; dst.w := src.w; dst.h := src.h;
 dst.col := src.col; dst(Macro).mac := src(Macro).mac
 END CopyMacro;

 PROCEDURE* HandleMacro(obj: Object; VAR M: Msg);
 BEGIN
 IF M IS ColorMsg THEN obj.col := M(ColorMsg).col END
 END HandleMacro;

 PROCEDURE* MacroSelectable(obj: Object; x, y: INTEGER): BOOLEAN;
 BEGIN
 RETURN (obj.x <= x) & (x <= obj.x + 8) & (obj.y <= y) & (y <= obj.y + 8)
 END MacroSelectable;

 PROCEDURE* ReadMacro(obj: Object; VAR R: Files.Rider; VAR C: Context);
 VAR lno: SHORTINT; name: ARRAY 32 OF CHAR;
 BEGIN Files.Read(R, lno);

 418

 ReadString(R, name); obj(Macro).mac := ThisMac(C.lib[lno], name)
 END ReadMacro;

 PROCEDURE* WriteMacro(obj: Object; cno: SHORTINT;
 VAR W1: Files.Rider; VAR C: Context);
 VAR ch: CHAR; lno: SHORTINT; TR: Texts.Reader;
 BEGIN lno := 0;
 WITH obj: Macro DO
 WHILE (lno < C.noflibs) & (obj.mac.lib # C.lib[lno]) DO INC(lno) END ;
 IF lno = C.noflibs THEN
 Files.Write(W1, 0); Files.Write(W1, 1); Files.Write(W1, lno);
 WriteString(W1, obj.mac.lib.name); C.lib[lno] := obj.mac.lib; INC(C.noflibs)
 END ;
 WriteObj(W1, cno, obj); Files.Write(W1, lno); WriteString(W1, obj.mac.name)
 END
 END WriteMacro;

 PROCEDURE* PrintMacro(obj: Object; x, y: INTEGER);
 VAR elem: Object; mh: MacHead;
 BEGIN mh := obj(Macro).mac;
 IF mh # NIL THEN elem := mh.first;
 WHILE elem # NIL DO
 elem.do.print(elem, obj.x*4 + x, obj.y*4 + y); elem := elem.next
 END
 END
 END PrintMacro;

 PROCEDURE* Notify(T: Texts.Text; op: INTEGER; beg, end: LONGINT);
 BEGIN
 END Notify;

BEGIN Texts.OpenWriter(W); Texts.OpenWriter(TW); width := 1;
 NEW(T); Texts.Open(T, ""); T.notify := Notify;
 NEW(LineMethod); LineMethod.new := NewLine; LineMethod.copy := CopyLine;
 LineMethod.selectable := LineSelectable; LineMethod.handle := HandleLine;
 LineMethod.read := ReadLine; LineMethod.write := WriteLine; LineMethod.print := PrintLine;
 NEW(CapMethod); CapMethod.new := NewCaption; CapMethod.copy := CopyCaption;
 CapMethod.selectable := CaptionSelectable; CapMethod.handle := HandleCaption;
 CapMethod.read := ReadCaption; CapMethod.write := WriteCaption; CapMethod.print :=
PrintCaption;
 NEW(MacMethod); MacMethod.new := NewMacro; MacMethod.copy := CopyMacro;
 MacMethod.selectable := MacroSelectable; MacMethod.handle := HandleMacro;
 MacMethod.read := ReadMacro; MacMethod.write := WriteMacro; MacMethod.print :=
PrintMacro
END Graphics.

13.9. Rectangles and Curves

13.9.1. Rectangles

In this section, we present two extensions of the basic graphics system which introduce new classes of
objects. The first implements rectangles which are typically used for framing a set of objects. They are,
for example, used in the representation of electronic components (macros, see Fig. 15.2). Their
implementation follows the scheme presented at the end of chapter 15.7 and is reasonably straight-
forward, considering that each rectangle merely consists of four lines. Additionally, a background
raster may be specified.

 419

One of the design decisions occurring for every new class concerns the way to display the selection. In
this case we chose, in contrast to the cases of captions and macros, not inverse video, but a small
square dot in the lower right corner of the rectangle.

The data type Rectangle contains two additional fields: lw indicates the line width, and vers specifies
the background pattern.

In spite of the simplicity of the notion of rectangles, their drawing method is more complex than might
be expected. The reason is that drawing methods are responsible for appropriate clipping at frame
boundaries. In this case, some of the component lines may have to be shortened, and some may
disappear altogether.

Procedure Handle provides an example of a receiver of a control message. It is activated as soon as the
middle mouse button is pressed, in contrast to other actions, which are initiated after the release of all
buttons. Therefore, this message allows for the implementation of actions under control of individual
handlers interpreting further mouse movements. In this example, the action serves to change the size of
the rectangle, namely by moving its lower left corner.

MODULE Rectangles; (*NW 25.2.90 / 1.2.92*)
 IMPORT Display, Files, Input, Printer, Texts, Oberon, Graphics, GraphicFrames;

 TYPE Rectangle* = POINTER TO RectDesc;

 RectDesc* = RECORD (Graphics.ObjectDesc)
 lw*, vers*: INTEGER
 END ;

 VAR method*: Graphics.Method;
 shade: INTEGER;

 PROCEDURE New*;
 VAR r: Rectangle;
 BEGIN NEW(r); r.do := method; Graphics.new := r
 END New;

 PROCEDURE* Copy(src, dst: Graphics.Object);
 BEGIN dst(Rectangle)^ := src(Rectangle)^
 END Copy;

 PROCEDURE mark(col, x, y: INTEGER);
 BEGIN Display.ReplConst(col, x-4, y, 4, 4, 0)
 END mark;

 PROCEDURE* Draw(obj: Graphics.Object; VAR M: Graphics.Msg);
 VAR x, y, w, h, lw, col: INTEGER; s: SET; f: GraphicFrames.Frame;

 PROCEDURE draw(col: INTEGER);
 BEGIN
 IF 0 IN s THEN Display.ReplConst(col, x, y, w, lw, 0) END ;
 IF 1 IN s THEN Display.ReplConst(col, x+w-lw, y, lw, h, 0) END ;
 IF 2 IN s THEN Display.ReplConst(col, x, y+h-lw, w, lw, 0) END ;
 IF 3 IN s THEN Display.ReplConst(col, x, y, lw, h, 0) END
 END draw;

 BEGIN
 WITH M: GraphicFrames.DrawMsg DO
 x := obj.x + M.x; y := obj.y + M.y; w := obj.w; h := obj.h; f := M.f;
 lw := obj(Rectangle).lw; s := {0..3};
 IF x+w < f.X THEN s := {}
 ELSIF x < f.X THEN DEC(w, f.X-x); x := f.X; EXCL(s, 3)
 END ;
 IF x >= f.X1 THEN s := {}

 420

 ELSIF x+w > f.X1 THEN w := f.X1-x; EXCL(s, 1)
 END ;
 IF y+h < f.Y THEN s := {}
 ELSIF y < f.Y THEN DEC(h, f.Y-y); y := f.Y; EXCL(s, 0)
 END ;
 IF y >= f.Y1 THEN s := {}
 ELSIF y+h > f.Y1 THEN h := f.Y1-y; EXCL(s, 2)
 END ;
 IF s # {} THEN
 IF M.col = Display.black THEN col := obj.col ELSE col := M.col END ;
 IF M.mode = 0 THEN
 draw(col);
 IF obj.selected THEN mark(Display.white, x+w-lw, y+lw) END ;
 IF obj(Rectangle).vers # 0 THEN
 Display.ReplPattern(col, Display.grey0, x, y, w, h, 1)
 END
 ELSIF M.mode = 1 THEN mark(Display.white, x+w-lw, y+lw)
 ELSIF M.mode = 2 THEN mark(Display.black, x+w-lw, y+lw)
 ELSIF obj(Rectangle).vers = 0 THEN
 draw(Display.black); mark(Display.black, x+w-lw, y+lw)
 ELSE Display.ReplConst(Display.black, x, y, w, h, 0)
 END
 END
 END
 END Draw;

 PROCEDURE* Selectable(obj: Graphics.Object; x, y: INTEGER): BOOLEAN;
 BEGIN
 RETURN (obj.x + obj.w - 4 <= x) & (x <= obj.x + obj.w) & (obj.y <= y) & (y <= obj.y + 4)
 END Selectable;

 PROCEDURE* Handle(obj: Graphics.Object; VAR M: Graphics.Msg);
 VAR x0, y0, x1, y1, dx, dy: INTEGER; k: SET;
 BEGIN
 IF M IS Graphics.WidMsg THEN obj(Rectangle).lw := M(Graphics.WidMsg).w
 ELSIF M IS Graphics.ColorMsg THEN obj.col := M(Graphics.ColorMsg).col
 ELSIF M IS GraphicFrames.CtrlMsg THEN
 WITH M: GraphicFrames.CtrlMsg DO
 WITH obj: Rectangle DO
 M.res := 1; x0 := obj.x + obj.w + M.f.x; y0 := obj.y + M.f.y;
 mark(Display.white, x0 - obj.lw, y0 + obj.lw);
 REPEAT Input.Mouse(k, x1, y1);
 DEC(x1, (x1-M.f.x) MOD 4); DEC(y1, (y1-M.f.y) MOD 4);
 Oberon.DrawCursor(Oberon.Mouse, GraphicFrames.Crosshair, x1, y1)
 UNTIL k = {};
 mark(Display.black, x0 - obj.lw, y0 + obj.lw);
 IF (x0 - obj.w < x1) & (y1 < y0+ obj.h) THEN
 GraphicFrames.EraseObj(M.f, obj);
 dx := x1 - x0; dy := y1 - y0;
 INC(obj.y, dy); INC(obj.w, dx); DEC(obj.h, dy);
 GraphicFrames.DrawObj(M.f, obj)
 END
 END
 END
 END
 END Handle;

 421

 PROCEDURE* Read(obj: Graphics.Object; VAR R: Files.Rider; VAR C: Graphics.Context);
 VAR w, v, len: SHORTINT;
 BEGIN Files.Read(R, len); Files.Read(R, w); Files.Read(R, v);
 obj(Rectangle).lw := w; obj(Rectangle).vers := v
 END Read;

 PROCEDURE* Write(obj: Graphics.Object; cno: SHORTINT;
 VAR W: Files.Rider; VAR C: Graphics.Context);
 BEGIN Graphics.WriteObj(W, cno, obj); Files.Write(W, 2);
 Files.Write(W, SHORT(obj(Rectangle).lw)); Files.Write(W, SHORT(obj(Rectangle).vers))
 END Write;

 PROCEDURE* Print(obj: Graphics.Object; x, y: INTEGER);
 VAR w, h, lw, s: INTEGER;
 BEGIN INC(x, obj.x * 4); INC(y, obj.y * 4); w := obj.w * 4; h := obj.h * 4;
 lw := obj(Rectangle).lw * 2; s := obj(Rectangle).vers;
 Printer.ReplConst(x, y, w, lw);
 Printer.ReplConst(x+w-lw, y, lw, h);
 Printer.ReplConst(x, y+h-lw, w, lw);
 Printer.ReplConst(x, y, lw, h);
 IF s > 0 THEN Printer.ReplPattern(x, y, w, h, s) END
 END Print;

 PROCEDURE Make*; (*command*)
 VAR x0, x1, y0, y1: INTEGER;
 R: Rectangle;
 G: GraphicFrames.Frame;
 BEGIN G := GraphicFrames.Focus();
 IF (G # NIL) & (G.mark.next # NIL) THEN
 GraphicFrames.Deselect(G);
 x0 := G.mark.x; y0 := G.mark.y; x1 := G.mark.next.x; y1 := G.mark.next.y;
 NEW(R); R.col := Oberon.CurCol;
 R.w := ABS(x1-x0); R.h := ABS(y1-y0);
 IF x1 < x0 THEN x0 := x1 END ;
 IF y1 < y0 THEN y0 := y1 END ;
 R.x := x0 - G.x; R.y := y0 - G.y;
 R.lw := Graphics.width; R.vers := shade; R.do := method;
 Graphics.Add(G.graph, R);
 GraphicFrames.Defocus(G); GraphicFrames.DrawObj(G, R)
 END
 END Make;

 PROCEDURE SetShade*;
 VAR S: Texts.Scanner;
 BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
 IF S.class = Texts.Int THEN shade := SHORT(S.i) END
 END SetShade;

BEGIN shade := 0; NEW(method);
 method.module := "Rectangles"; method.allocator := "New";
 method.new := New; method.copy := Copy; method.draw := Draw;
 method.selectable := Selectable; method.handle := Handle;
 method.read := Read; method.write := Write; method.print := Print
END Rectangles.

13.9.2. Oblique Lines, Circles, and Ellipses

The second extension is module Curves. It introduces three new kinds of objects: lines which are not
necessarily horizontal or vertical, circles, and ellipses (with horizontal and vertical axes). All are

 422

considered to be variants of the same type Curve, the variant being specified by the field kind of the
object record. Selection is again indicated by a small, square dot at the end of a line and at the lowest
point of a circle or an ellipse.

In order to avoid computations involving floating-point numbers and to increase efficiency, Bresenham
algorithms are used. The algorithm for a line defined by bx - ay = 0 (for b ≤ a) is summarized by the
following statements:

x := 0; y := 0; h := (b – a) DIV 2;
WHILE x <= a DO Dot(x, y);
 IF h <= 0 THEN INC(h, b) ELSE INC(h, b-a); INC(y) END ;
 INC(x)
END

The Bresenham algorithm for a circle given by the equation x2 + y2 = r2 is:

x := r; y := 0; h := 1-r;
WHILE y <= x DO Dot(x, y);
 IF h < 0 THEN INC(h, 2*y + 3) ELSE INC(h, 2*(y-x)+5); DEC(x) END ;
 INC(y)
END

MODULE Curves; (*NW 8.11.90 / 1.2.91*)
 IMPORT Display, Files, Printer, Oberon, Graphics, GraphicFrames;

 TYPE Curve* = POINTER TO CurveDesc;

 CurveDesc* = RECORD (Graphics.ObjectDesc)
 kind*, lw*: INTEGER
 END ;

 (*kind: 0 = up-line, 1 = down-line, 2 = circle, 3 = ellipse*)

 VAR method*: Graphics.Method;

 PROCEDURE dot(f: GraphicFrames.Frame; col: INTEGER; x, y: LONGINT);
 BEGIN
 IF (f.X <= x) & (x < f.X1) & (f.Y <= y) & (y < f.Y1) THEN Display.Dot(col, x, y, 0) END
 END dot;

 PROCEDURE mark(f: GraphicFrames.Frame; col, x, y: INTEGER);
 BEGIN
 IF (f.X <= x) & (x+4 < f.X1) & (f.Y <= y) & (y+4 < f.Y1) THEN
 Display.ReplConst(col, x, y, 4, 4, 0)
 END
 END mark;

 PROCEDURE line(f: GraphicFrames.Frame; col: INTEGER; x, y, w, h, d: LONGINT);
 VAR x1, y1, u: LONGINT;
 BEGIN
 IF h < w THEN
 x1 := x+w; u := (h-w) DIV 2;
 IF d = -1 THEN INC(y, h) END ;
 WHILE x < x1 DO
 dot(f, col, x, y); INC(x);
 IF u < 0 THEN INC(u, h) ELSE INC(u, h-w); INC(y, d) END
 END
 ELSE y1 := y+h; u := (w-h) DIV 2;
 IF d = -1 THEN INC(x, w) END ;
 WHILE y < y1 DO
 dot(f, col, x, y); INC(y);

 423

 IF u < 0 THEN INC(u, w) ELSE INC(u, w-h); INC(x, d) END
 END
 END
 END line;

 PROCEDURE circle(f: GraphicFrames.Frame; col: INTEGER; x0, y0, r: LONGINT);
 VAR x, y, u: LONGINT;
 BEGIN u := 1 - r; x := r; y := 0;
 WHILE y <= x DO
 dot(f, col, x0+x, y0+y); dot(f, col, x0+y, y0+x); dot(f, col, x0-y, y0+x);
 dot(f, col, x0-x, y0+y);
 dot(f, col, x0-x, y0-y); dot(f, col, x0-y, y0-x); dot(f, col, x0+y, y0-x); dot(f, col, x0+x, y0-y);
 IF u < 0 THEN INC(u, 2*y+3) ELSE INC(u, 2*(y-x)+5); DEC(x) END ;
 INC(y)
 END
 END circle;

 PROCEDURE ellipse(f: GraphicFrames.Frame; col: INTEGER; x0, y0, a, b: LONGINT);
 VAR x, y, y1, aa, bb, d, g, h: LONGINT;
 BEGIN aa := a*a; bb := b*b;
 h := (aa DIV 4) - b*aa + bb; g := (9*aa DIV 4) - 3*b*aa + bb; x := 0; y := b;
 WHILE g < 0 DO
 dot(f, col, x0+x, y0+y); dot(f, col, x0-x, y0+y); dot(f, col, x0-x, y0-y); dot(f, col, x0+x, y0-y);
 IF h < 0 THEN d := (2*x+3)*bb; INC(g, d)
 ELSE d := (2*x+3)*bb - 2*(y-1)*aa; INC(g, d + 2*aa); DEC(y)
 END ;
 INC(h, d); INC(x)
 END ;
 y1 := y; h := (bb DIV 4) - a*bb + aa; x := a; y := 0;
 WHILE y <= y1 DO
 dot(f, col, x0+x, y0+y); dot(f, col, x0-x, y0+y); dot(f, col, x0-x, y0-y); dot(f, col, x0+x, y0-y);
 IF h < 0 THEN INC(h, (2*y+3)*aa) ELSE INC(h, (2*y+3)*aa - 2*(x-1)*bb); DEC(x) END ;
 INC(y)
 END
 END ellipse;

 PROCEDURE New*;
 VAR c: Curve;
 BEGIN NEW(c); c.do := method; Graphics.new := c
 END New;

 PROCEDURE* Copy(src, dst: Graphics.Object);
 BEGIN dst(Curve)^ := src(Curve)^
 END Copy;

 PROCEDURE* Draw(obj: Graphics.Object; VAR M: Graphics.Msg);
 VAR x, y, w, h, col: INTEGER; f: GraphicFrames.Frame;
 BEGIN
 WITH M: GraphicFrames.DrawMsg DO
 x := obj.x + M.x; y := obj.y + M.y; w := obj.w; h := obj.h; f := M.f;
 IF M.col = Display.black THEN col := obj.col ELSE col := M.col END ;
 IF (x < f.X1) & (f.X <= x+w) & (y < f.Y1) & (f.Y <= y+h) THEN
 IF obj(Curve).kind = 0 THEN (*up-line*)
 IF M.mode = 0 THEN
 IF obj.selected THEN mark(f, Display.white, x, y) END ;
 line(f, col, x, y, w, h, 1)
 ELSIF M.mode = 1 THEN mark(f, Display.white, x, y)
 ELSIF M.mode = 2 THEN mark(f, Display.black, x, y)

 424

 ELSE mark(f, Display.black, x, y); line(f, Display.black, x, y, w, h, 1)
 END
 ELSIF obj(Curve).kind = 1 THEN (*down-line*)
 IF M.mode = 0 THEN
 IF obj.selected THEN mark(f, Display.white, x, y+h) END ;
 line(f, col, x, y, w, h, -1)
 ELSIF M.mode = 1 THEN mark(f, Display.white, x, y+h)
 ELSIF M.mode = 2 THEN mark(f, Display.black, x, y+h)
 ELSE mark(f, Display.black, x, y+h); line(f, Display.black, x, y, w, h, -1)
 END
 ELSIF obj(Curve).kind = 2 THEN (*circle*)
 w := w DIV 2;
 IF M.mode = 0 THEN
 IF obj.selected THEN mark(f, Display.white, x+w, y-4) END ;
 circle(f, col, x+w, y+w, w)
 ELSIF M.mode = 1 THEN mark(f, Display.white, x+w, y-4)
 ELSIF M.mode = 2 THEN mark(f, Display.black, x+w, y-4)
 ELSE mark(f, Display.black, x+w, y-4); circle(f, Display.black, x+w, y+w, w)
 END
 ELSIF obj(Curve).kind = 3 THEN (*ellipse*)
 w := w DIV 2; h := h DIV 2;
 IF M.mode = 0 THEN
 IF obj.selected THEN mark(f, Display.white, x+w, y-4) END ;
 ellipse(f, col, x+w, y+h, w, h)
 ELSIF M.mode = 1 THEN mark(f, Display.white, x+w, y-4)
 ELSIF M.mode = 2 THEN mark(f, Display.black, x+w, y-4)
 ELSE mark(f, Display.black, x+w, y-4); ellipse(f, Display.black, x+w, y+h, w, h)
 END
 END
 END
 END
 END Draw;

 PROCEDURE* Selectable(obj: Graphics.Object; x, y: INTEGER): BOOLEAN;
 VAR xm, y0, w, h: INTEGER;
 BEGIN
 IF obj(Curve).kind <= 1 THEN (*line*)
 w := obj.w; h := obj.h;
 IF obj(Curve).kind = 1 THEN y0 := obj.y + h; h := -h ELSE y0 := obj.y END ;
 RETURN
 (obj.x <= x) & (x < obj.x + w) & (ABS(LONG(y-y0)*w - LONG(x-obj.x)*h) < w*4)
 ELSE (*circle or ellipse*)
 xm := obj.w DIV 2 + obj.x;
 RETURN (xm - 4 <= x) & (x <= xm + 4) & (obj.y - 4 <= y) & (y <= obj.y + 4)
 END
 END Selectable;

 PROCEDURE* Handle(obj: Graphics.Object; VAR M: Graphics.Msg);
 BEGIN
 IF M IS Graphics.ColorMsg THEN obj.col := M(Graphics.ColorMsg).col END
 END Handle;

 PROCEDURE* Read(obj: Graphics.Object; VAR R: Files.Rider; VAR C: Graphics.Context);
 VAR len: SHORTINT;
 BEGIN Files.Read(R, len); Graphics.ReadInt(R, obj(Curve).kind);
 Graphics.ReadInt(R, obj(Curve).lw)
 END Read;

 425

 PROCEDURE* Write(obj: Graphics.Object; cno: SHORTINT;
 VAR W: Files.Rider; VAR C: Graphics.Context);
 BEGIN Graphics.WriteObj(W, cno, obj);
 Files.Write(W, 4); Graphics.WriteInt(W, obj(Curve).kind);
 Graphics.WriteInt(W, obj(Curve).lw)
 END Write;

 PROCEDURE* Print(obj: Graphics.Object; x, y: INTEGER);
 VAR x0, y0: INTEGER;
 BEGIN
 IF obj(Curve).kind = 0 THEN
 x0 := obj.x * 4 + x; y0 := obj.y * 4 + y;
 Printer.Line(x0, y0, obj.w * 4 + x0, obj.h * 4 + y0)
 ELSIF obj(Curve).kind = 1 THEN
 x0 := obj.x * 4 + x; y0 := obj.y * 4 + y;
 Printer.Line(x0, obj.h * 4 + y0, obj.w * 4 + x0, y0)
 ELSIF obj(Curve).kind = 2 THEN
 Printer.Circle((obj.x*2 + obj.w)*2 + x, (obj.y*2 + obj.h)*2 + y, obj.w*2)
 ELSE
 Printer.Ellipse((obj.x*2 + obj.w)*2 + x, (obj.y*2 + obj.h)*2 + y, obj.w*2, obj.h*2)
 END
 END Print;

 PROCEDURE MakeLine*; (*command*)
 VAR x0, x1, y0, y1: INTEGER;
 c: Curve;
 G: GraphicFrames.Frame;
 BEGIN G := GraphicFrames.Focus();
 IF (G # NIL) & (G.mark.next # NIL) THEN
 GraphicFrames.Deselect(G);
 x0 := G.mark.x; y0 := G.mark.y; x1 := G.mark.next.x; y1 := G.mark.next.y;
 NEW(c); c.col := Oberon.CurCol;
 c.w := ABS(x1-x0); c.h := ABS(y1-y0); c.lw := Graphics.width;
 IF x0 <= x1 THEN c.x := x0;
 IF y0 <= y1 THEN c.kind := 0; c.y := y0 ELSE c.kind := 1; c.y := y1 END
 ELSE c.x := x1;
 IF y1 < y0 THEN c.kind := 0; c.y := y1 ELSE c.kind := 1; c.y := y0 END
 END ;
 DEC(c.x, G.x); DEC(c.y, G.y); c.do := method;
 Graphics.Add(G.graph, c);
 GraphicFrames.Defocus(G); GraphicFrames.DrawObj(G, c)
 END
 END MakeLine;

 PROCEDURE MakeCircle*; (*command*)
 VAR x0, y0, r: INTEGER;
 c: Curve;
 G: GraphicFrames.Frame;
 BEGIN G := GraphicFrames.Focus();
 IF (G # NIL) & (G.mark.next # NIL) THEN
 GraphicFrames.Deselect(G);
 x0 := G.mark.x; y0 := G.mark.y; r := ABS(G.mark.next.x-x0);
 IF r > 4 THEN
 NEW(c); c.x := x0 - r - G.x; c.y := y0 - r - G.y; c.w := 2*r+1; c.h := c.w;
 c.kind := 2; c.col := Oberon.CurCol;
 c.lw := Graphics.width; c.do := method;
 Graphics.Add(G.graph, c);

 426

 GraphicFrames.Defocus(G); GraphicFrames.DrawObj(G, c)
 END
 END
 END MakeCircle;

 PROCEDURE MakeEllipse*; (*command*)
 VAR x0, y0, a, b: INTEGER;
 c: Curve;
 G: GraphicFrames.Frame;
 BEGIN G := GraphicFrames.Focus();
 IF (G # NIL) & (G.mark.next # NIL) & (G.mark.next.next # NIL) THEN
 GraphicFrames.Deselect(G);
 x0 := G.mark.x; y0 := G.mark.y;
 a := ABS(G.mark.next.x-x0); b := ABS(G.mark.next.next.y - y0);
 IF (a > 4) & (b > 4) THEN
 NEW(c); c.x := x0 - a - G.x; c.y := y0 - b - G.y; c.w := 2*a+1; c.h := 2*b+1;
 c.kind := 3; c.col := Oberon.CurCol;
 c.lw := Graphics.width; c.do := method;
 Graphics.Add(G.graph, c);
 GraphicFrames.Defocus(G); GraphicFrames.DrawObj(G, c)
 END
 END
 END MakeEllipse;

BEGIN NEW(method); method.module := "Curves"; method.allocator := "New";
 method.new := New; method.copy := Copy; method.draw := Draw;
 method.selectable := Selectable; method.handle := Handle;
 method.read := Read; method.write := Write; method.print := Print
END Curves.

 427

Copyright N.Wirth, 30.8.91 / 22.11.91

14. Building and Maintenance Tools

14.1 The Startup Process
An aspect usually given little attention in system descriptions is the process of how a system is started.
Its choice, however, is itself an interesting and far from trivial design consideration and will be
described here in some detail. Moreover, it directly determines the steps in which a system is
developed from scratch, mirroring the steps in which it builds itself up from a bare store to an
operating body.

The startup process typically proceeds in several stages, each of them bringing further facilities into
play, raising the system to a higher level towards completion. The term for this strategy is
bootstrapping or, in modern computer jargon, booting.

Stage 1 is initiated when power is switched on or when the reset button is pressed and released. To be
precise, power-on issues a reset signal to all parts of the computer and holds it for a certain time.
Pushing the reset button therefore appears like a power-on without power having been switched off.
Release of the reset signal causes the processor to start the so-called boot loader. This program resides
in a read-only store (ROM) and hence is always present, even on a "bare" machine. It loads data into
memory, which are interpreted as code in Stage 2. In order to keep the boot loader as simple as
possible - remember that it is burnt into ROM on every workstation and therefore cannot be changed
without considerable effort - the format of its data must be simple. We have chosen the following
structure, which had never to be changed during the entire development effort of the Oberon System
because of both its simplicity and generality:

BootFile = {block}.
block = size:4 address:4 {byte}.

The address of the last block, distinguished by size = 0, is interpreted as the address of the starting
point of Stage 2. The size of the boot loader on Ceres is about 250 bytes.

The source of the boot data is typically a fixed location on the disk. In our case, the data occupy less
than a single track, which is therefore called the boot track and remains permanently reserved.

The data loaded in Stage 1 are interpreted as code in Stage 2, representing modules Kernel, FileDir,
Files, and Modules, which are said to constitute the inner core of the system. Control is transferred to
module Kernel's initialization part. First, the processor's base address registers are initialized, then the
chain of free module descriptors is formed. This is followed by the initialization of the required virtual
address pages on machines which feature a memory management unit. Interrupt table and interrupt
control unit (ICU) are initialized, and finally the initialization parts of the remaining three modules are
executed, the last one being Modules. Note that only a single device driver is contained in the inner
core: the disk driver in module Kernel.

The presence of Modules implies that the regular loader is available for the further build-up of the
system. Module Files is present in the inner core, because it is imported by Modules, and FileDir
because it is imported by Files. The initialization of module FileDir constructs the sector reservation
table by recording all files registered in the file directory. This process requires the traversal of the
entire directory and the reading of all file headers. It can be regarded as the garbage collection process
of disk sectors. The initialization part of Modules contains the statement

M := ThisMod("Oberon")

which causes loading of module Oberon and with it automatically of all modules imported by Oberon.
This constitutes Stage 3 of the boot process. In particular, Stage 3 loads and initializes the display,
keyboard and mouse drivers, as well as the display, text, and font machinery. It terminates with the
initialization of module Oberon itself, which contains the statement

M := Modules.ThisMod("System")

 428

It initiates Stage 4 of the boot process and completes the system by loading the first tool module. The
initialization of System opens a viewer for the log and one for a tool text. In addition to System,
modules MenuViewers and TextFrames are loaded, because they are imported by System. The modules
loaded so far form the outer core. In passing we note that also the default font and the text System.Tool
are needed in Stage 4. After completion of Stage 4, control returns to the statements

P := ThisCommand(M, "Loop"); P

in the initialization part of Modules. Thereby control enters the central loop of the Oberon System for
polling input events. Normal operation has begun.

Let us summarize the prerequisites for the four stages:

0. The bootloader must reside in the ROM
1. The boot file must reside on the boot track of the disk.
2. The modules of the outer core must reside in the file system.

These conditions are usually met. But they are not satisfied, if either a new, bare machine is present, or
if the disk store is defective. In these cases, the prerequisites must be established with, of course, the
aid of suitable tools. The tools needed for the case of the bare machine or the incomplete file store are
called building tools, those required in the case of defects are called maintenance tools.

14.2. Building Tools
Building Tools allow to establish the three preconditions for the boot process on a bare machine.
Condition 0 requires an assembler for programming the boot loader, and a so-called ROM-
programmer, typically an external device connected by an RS-232 (V24) link. We will not discuss
these tools any further. Condition 1 requires a tool to compose the boot file, and one to load it onto the
boot track. Condition 2 requires a tool which establishes a file directory and is able to load files. The
tool which creates the boot file is called a boot linker; this module was given the name Boot. The tool
which has the capability to load the boot track and to load files is module Oberon0.

There remains the important question of how Oberon0 is loaded onto a bare machine. A partial answer
is: by a boot process consisting of Stages 1 and 2 only, using a boot file in which module Modules is
replaced by Oberon0. But this does not suffice. The key facility is a boot loader that admits an external
source as alternative to the disk's boot track. As alternative source we use (the boot track of) the
diskette. The selection of the source is determined by a switch. It makes the use of I/O devices apart
from the diskette driver during the boot phase avoidable. The initiation rite for a bare machine then
consists of the following steps:

1. Select the alternative boot source by the appropriate switch setting.
2. Reset. The boot file is read and Oberon0 is started.
3. Invoke the command which reads all files from the diskette, (which supposedly holds all files

needed for the outer core).
4. Reset the switch and boot again. This initiates the regular boot process.

A more modern solution would be to select the network as alternate boot file source. We rejected this
option in order to keep net access routines outside the ROM, in order to keep the startup of a computer
independent of the presence of a server, and also in consideration of the fact that there exist machines
which operate in a stand-alone mode. As it turns out, the need for the alternative boot file source arises
very rarely.

The boot linker is almost identical to the module loader, with the exception that object code is not
deposited in newly allocated blocks, but in a fixed buffer which is finally output to form the boot file.
Its name is supplied as second parameter to the command Boot.Link. The first parameter specifies the
module which is the top of the hierarchy forming the inner core

Boot.Link Modules Ceres2.Boot
Boot.Link Oberon0 Ceres2.Boot0

 429

The boot file consists of four blocks (see Section 14.1.). The first block contains the module
descriptors (see Chapter 6) for the modules of the inner core. The second block consists of their code
and global data sections. The third block contains the lengths of the first two blocks. The fourth block
specifies the start address of Kernel. The load addresses of the first three blocks are fixed constants in
the Boot program (4000H, 8000H, 0).

From the description of the start-up process for a bare machine given above, module Oberon0 must
first initialize the file directory and then load all files contained on a boot diskette. We have chosen to
extend Oberon0 into a much more versatile tool. This was not merely clever foresight, but is due to
Oberon0's emergence from the development process of the Oberon System which, naturally, included
a considerable amount of error detection and correction [1]. Oberon0 therefore contains a genuine
command interpreter. There exist commands for inspecting memory areas, disk sectors, for inspecting
the file directory, and even for loading modules. The presence of a command interpreter requires input
(keyboard) and output (display) facilities. They were kept to a bare minimum and encapsulated in
module IO.

DEFINITION IO;
 PROCEDURE Read (VAR ch: CHAR);
 PROCEDURE WriteLn;
 PROCEDURE Write (ch: CHAR);
 PROCEDURE WriteString (s: ARRAY OF CHAR);
 PROCEDURE WriteHex (x: LONGINT);
 PROCEDURE WriteInt (x, n: LONGINT);
END IO.

The command interpreter is a simple loop, accepting commands specified by a single letter followed
by parameters which are either hexadecimal numbers or names. User-friedliness was not attributed any
importance at this point, and it would indeed be unjustified. We refrain from elaborating on further
details and concentrate on providing a list of available commands. This should give the reader an
impression of the capabilities of this tool module for system initiation and for error searching.

r name read file from diskette
w name write file to diskette
d name delete file from diskette
z read all files contained on diskette
e ennumerate diskette files
!i initialize diskette directory
!f format diskette

E enumerate file directory
D name delete file
N name0 name1 rename file

M name load and initialize module
C name call command
O load Oberon and call Loop

a address display memory block (256 bytes) in hex
A address display memory block (256 bytes) as characters
k number display disk sector in hex
K number display disk sector as characters
l clear display
? list available commands
t get time and date from real time clock
T time date set real time clock
!B name load file onto boot track
!Y initialize bad sector file
!1 initialize file directory

 430

All these additional commands give Oberon0 the character of a maintenance tool. In particular, the
possibility to read individual files from the diskette allows recovery when a file required in stages 3 or
4 of the boot process has been corrupted. The O-command allows to detect at which point the process
fails. Nevertheless, the original purpose of Oberon0 is to initiate a bare machine through commands !1,
!B, and z.

14.3. Maintenance Tools
An important prerequisite for Stage 2 (and the following stages) in the boot process has not been
mentioned above. Recall that the initialization of module FileDir constructs the disk sector reservation
table in the Kernel from information contained on the disk. Obviously, its prerequisite is an intact,
consistent file directory. A single unreadable, corrupted file directory or file header sector lets this
process fail, and booting becomes impossible. To cope with this (fortunately rare) situation, a
maintenance tool has been designed: module DiskCheck. It is included in a special boot file generated
by the command

Boot.Link DiskCheck Ceres2.CheckBoot

DiskCheck is organized similarly to Oberon0 as a simple command interpreter, but it imports only
Kernel and IO. Hence, booting involves only Stages 1 and 2 without any access to the disk. Operating
DiskCheck requires care and knowledge of the structure of the file system (Chapter 7). The available
commands are the following; those that write on the disk are guarded by an exclamation mark.

r n read sector n into sector buffer, display hex
R n read sector n into sector buffer, display as characters
e n read extended index sector n into sector buffer
!W write sector buffer
d n read directory sector n into dir buffer
!D write dir buffer
h n read header sector into Header buffer
!H write header buffer
x n read track containing sector n into track buffer
!Y format track
!Z write track buffer

S m, n insert sector n as header address of entry m in dir buffer
s m, n insert sector n in entry m of sector table in header buffer
L n set file length in header buffer to n
i adr val insert val at adr in sector buffer
f name read header sector of named file into header buffer
q n find all files of which sector n is part
c check consistency of files and directory
b n add faulty sector to bad sector table
l clear display
Q reset disk drive
? list available commands

!0 n clear sector n (write zeroes)
!1 initialize file directory
!2 initialize bad sector table
!? read all disk sectors and record faulty sectors
!* format disk

Sectors are always read into a buffer, namely the sector buffer, the directory buffer, the header buffer,
or the track buffer, and the number of the sector in the respective buffer is retained. Changes are made
on the data stored in the respective buffer, which is displayed after each reading or change in an
appropriately decoded format. Every change must be confirmed, because only a writing command
transfers the buffered data to the disk.

 431

The typical handling of the occurence of a corrupted sector in a file consists of the following steps:

1. The track containing the unreadable sector is read (x).
2. The track is reformatted (!Y).
3. The track is restored (!Z). (the faulty sector data are lost)
4. The track is reread (x) and the steps are repeated, if the condition persists.
5. If, after several tries, the sector cannot be corrected, the file must be removed. In order to make a

directory traversal possible without changing the directory data, the corresponding entry is changed
(S). The simplest way is to set it equal to its neighbouring entry, thereby introducing an
inconsistency (double reference) which must be corrected by deleting the file as soon as the Oberon
System is operational.

6. An unrecoverably faulty sector must be made unreferenceable. This is done by appending it to a file
called BadSectors, which is inherently unreadable, but which lets its sectors be marked as used in the
initialization process of the sector reservation table in Boot Stage 2. A sector is appended to this file
by command b.

7. When the Oberon System is available again, the recovered files must be either deleted or inspected
and, if possible, corrected.

Program DiskCheck must be extremely robust. No data read can be assumed to be correct, no index can
be assumed to lie within its declared bounds, no sector number can be assumed to be valid, and no
directory or header page may be assumed to have the expected format. Guards and error diagnostics
take a prominent place. Because any program failure must be prevented, no use is made of disk
procedures provided by the Kernel. They are reprogrammed with additional guards and status
reporting.

Whereas a faulty, unreadable sector in a file in the worst case leads to the loss of that file, a fault in a
sector carrying a directory page is quite disastrous. Not only because the files referenced from that
page, but also those referenced from descendant pages become inaccessible. A fault in the root page
even causes the loss of all files. The catastrophe is of such proportions, that measures should be taken
even if the case is very unlikely. After all, it may happen, and it indeed has occurred.

The only way to recover files that are no longer accessible from the directory is by scanning the entire
disk. In order to make a search at all possible, every file header carries a mark field that is given a
fixed, constant value. It is very unlikely, but not entirely impossible, that data sectors which happen to
have the same value at the location corresponding to that of the mark, may be mistaken to be headers.

The tool performing such a scan is called Scavenger. It is, like DiskCheck a simple command
interpreter, and a boot file is created by

Boot.Link Scavenger Ceres2.ScavBoot

The available commands are

s n Scan the first n sectors and collect headers
d Display names of collected files
W Build new directory
l Clear display
? Show available commands

During the scan, a new directory is gradually built up in primary store. Sectors marked as headers are
recorded by their name and creation date. The scavenger is the reason for recording the file name in the
header, although it remains unused there by the Oberon System. Recovery of the date is essential,
because several files with the same name may be found. If one is found with a newer creation date, the
older entry is overwritten.

Command W transfers the new directory to the disk. For this purpose, it is necessary to have free
sectors available. These have been collected during the scan: both old directory sectors (identified by a
directory mark similar to the header mark) and overwritten headers are used as free locations.

 432

The scavenger has proven its worth on more than one occasion. Its main drawback is that it may
rediscover files that had been deleted. The deletion operation by definition affects only the directory,
but not the file. Therefore, the header carrying the name remains unchanged and is discovered by the
scan. All in all, however, it is a small deficiency.

Reference

1. N. Wirth. Designing a System from Scratch. Structured Programming, 1, (1989), 11-19.

 433

A. Ten Years After: From Objects to Components
In practice, the design of the Oberon runtime model as described in Chapters 3, 4 and 5 proved to be
basically flawless and sustainable. However, later developments gradually revealed some unused
potential. The main shortcoming was the absence of a generic object type that would serve as an
abstract root of the entire Oberon object hierarchy. As a remedy, we later added a module called
Objects and two abstract types Object and Library, from that we then derived some previously
independent types via type extension. Figure A.1 depicts the resulting type hierarchy. This simple
extension of the Oberon kernel had an amazingly beneficial effect, and it allowed us to develop a
substantial evolution of the original Oberon system, including

• A generic persistence mechanism for objects
• A generalized notion of text as sequence of arbitrary objects
• A fully hierarchic component framework
• An advanced graphical user interface (GUI) called Gadgets

Figure A.5 at the end of this Chapter shows the modular structure of the evolutionary Oberon system.
In the following Sections we briefly discuss the rationale behind it and illustrate its use.

Figure A1 The Oberon Type Hierarchy

A.1. Object Libraries
In Oberon, the model of persistent objects is defined by a single module called Objects that exports
two abstract concepts represented by the types Object and Library.

An object library is an indexed collection of objects (instances of objects to be precise). A library is
either public or private (to some host). Public libraries are named and accessible from any authority in
the system. For example, the member object O of the public library L can be referenced invariantly by
its qualified name L.O. Figure A.2 further shows that object libraries can refer to each other. In their
entirety, they build a hierarchy that, in a sense, is dual to the system’s module hierarchy. Private
libraries are anonymous and encapsulated in some higher authority, typically in a document. This case
is also depicted in Figure A.2.

 434

Figure A.2 The Dual Hierarchies of Object Libraries and Modules

Object libraries are used in Oberon to manage persistent objects. Essentially they serve two different
purposes:

• Presenting logically connected groups of objects as indexed collections
• Providing generic support for serialization and de-serialization of object representations.

Serialization/ de-serialization are used to externalize and internalize persistent objects to
and from persistent store or the network.

The functional interface of object libraries comprises a variety of operations for retrieving, adding and
removing objects (at runtime) and for storing and loading the contents of the library to and from a
sequential file.

Objects are typically (recursively) composed of components and represented internally as a graph of
linked nodes. From this it follows that the algorithms for externalizing and internalizing objects must
be generic enough to serialize and de-serialize any arbitrary dynamically linked heterogeneous data
structure. It is therefore interesting to study these algorithms in some detail.

 435

For the sake of simplicity, we assume a simple, all-or-nothing storing/ loading scheme. Notice,
however, that the definition of type Library allows different implementations of its functional interface
such as, for example, a smart partial storing/ loading strategy in combination with buffering.

The Generic Externalization Algorithm

This is a two-pass process that relies on a (recursive) binding phase followed by the actual storing phase:

Bind (object) = begin
 for all components of object do Bind(component) end;
 if object unbound then assign index to object end
end

Store (library) = begin
 for all objects in library do Bind(current object) end;
 for all indexes in library do
 with object for this index do
 store generator;
 (*) store main node where pointers are replaced with indexes
 end
 end
end

The statement marked (*) cannot be executed by a universal library method, because the internal structure of an object
is unknown to the library. Instead, an instance method call is needed.

The Generic Internalization Algorithm

This is again a two-pass process:

Load (library) = begin
 for index := 0 to max do load generator; generate main node end;
 for index := 0 to max do
 (*) load main node where indexes are replaced with pointers
 end
end

The marked statement must again be implemented as an instance method call. Further notice that indexes in object
nodes might refer to different libraries and therefore might lead to a recursive loading process.

Let us now leave the discussion of libraries for a moment and turn to objects. On the level of definition, objects are
abstract (or ”virtual”) and have no concrete functionality. However, any participating object is expected to implement a
basic predefined message protocol that, in a sense, defines the framework of persistent objects in Oberon. In analogy
with the familiar concept of a hardware bus, we could call this architecture a software bus: Participating components
simply plug in by implementing the predefined message protocol.

This is a short overview of the set of predefined message types:

• Bind Message: Used to bind objects to a given library. More precisely, if we call loose any object that is
either unbound or bound to an anonymous library, the Bind message requires the recipient and all its loose
components to bind themselves.

• File Message: Used to externalize and internalize objects to and from a sequential file.

• Attribute Message: Object attributes are specified by their name and their value (typically a string or a
number). Using the Attribute Message, attributes can be added, and their value can be retrieved or
changed. Gen and Name are predefined attributes. They specify the object's generator (a procedure) and
its intrinsic identifier respectively.

• Link Message: Used to create and retrieve named links to other objects. Allows “wiring” of components
at run time.

 436

• Find Message: Used to locate and retrieve a component by its name within the scope of the recipient.

• Copy Message: Used to create an exact copy (clone) of the recipient. In the case of a composite original
object, we distinguish between shallow copies and deep copies. While shallow copies still refer to the
components of the original object, deep copies consist of fresh copies of the components of the original
object.

A.2. Frames as Visual Objects
From Chapter 4 we know a very important concrete class of objects: Frames on the display screen. Frames are visual
objects because they are assumed to provide functionality for some visual representation within a rectangular area on
the screen (or printer). Typically, a frame represents a view of some model object and comes with a built-in controller,
typically an interpreter for interactions. In other words, a typical frame combines the VC components of the MVC
scheme.

From a technical point of view, frames are instances of type Frame that in turn is an extension of the base type Object.
In summary, frames in Oberon are visual persistent objects that are expected to obey the basic message protocol plus a
set of special frame messages controlling their display. The set of frame messages comprises requests to display
oneself, to change one’s state (visible or invisible), size or location, to consume an other object or some text caption, to
return selected contents, to mark itself as selected and to update consistency with the underlying model.

In a sense, it is natural to regard the display area itself as a global visual container that is hierarchically composed of
smaller containers or objects. This view has some interesting consequences. First, as depicted in Figure A.3, it leads to
a coherent extension of the hierarchical structure of the tiling Oberon display screen whose first two levels represent
(vertical) tracks and (horizontal) viewers respectively.

A second consequence of the hierarchical structure of the display space is the option of a message passing scheme that
obeys strict parental control. Because every visual object is a possibly indirect component of the display space,
messages directed to any visual object can simply be sent to the global display space, with an implicit forwarding
obligation to its components. The exact forwarding strategy depends on the kind of message. A target-oriented strategy
is used if the message is directed to some specific object in the display space (the target), while a broadcast strategy is
used in cases of an unknown final recipient or an unknown set of final recipients. A typical application of the broadcast
strategy is update view requests sent by model objects, with the substantial benefit of dispensing models from the
burden of keeping track of their views (for example in the form of call-back lists).

The two forwarding strategies are similar in the sense that both are context-oriented. However, they are different in
detail. While the broadcast strategy simply spreads the message in the display space, the target-oriented forwarding
strategy aims at passing down the message along the path leading to the desired target object. We should clarify that the
strategy of forwarding messages down the display hierarchy is part of the extended message protocol that is
compulsory for all members of the display space.

Let us now track a message that is traveling through the display space and finally arriving at its destination. We know
that, in the moment of its arrival, the message has passed the entire context, step by step. We can draw benefits of this
fact in two respects: (a) Any context-oriented processing can be done incrementally and (b) context-dependent message
handling is possible. Typical uses of (a) are accumulation of relative coordinates and computation of overlapping
masks in the context of a visual object. A typical use of (b) is visual objects showing a different behavior in a developer
context and in a user context.

A possible complication arises from the fact that we allow views of views, so-called camera views, see again Figure
A.3. As a consequence, paths may join in the display space, and we can no longer assert its tree-structure. In
combination with a context-oriented forwarding strategy, this may lead to errors due to possibly undetected multiple
arrivals of a message at the same object. For example, a copy message arriving twice at a shared component of a
composite object could lead to the creation of two different copies of this component. In order to avoid problems of this
kind, messages are time-stamped in Oberon, and recipients in the display space are requested to detect multiple arrivals
of one and the same message by comparing time-stamps.

 437

Figure A.3 The Oberon Display Space Hierarchy

We can best summarize the comprehensive rules of message handling and message passing in the display space by
presenting a rough sketch of a message handler:

Handle message M received by frame F =
 save pointer to context in F; update context pointer in M;
 if timestamp of M then backup timestamp in F then
 save timestamp in F;
 accumulate coordinates in M;
 if target frame of M = F then (*target frame is me*) handle M
 else
 if target frame of M = NIL then (*broadcast*) handle M end;
 while more descendants do
 pass M to next descendant
 end
 end
 else special handling in new context
 end
end

 438

In reality, message handling is slightly more intricate because (for the sake of optimization) recipients may decide to
(early) terminate the handling of a message and to stop any further propagation.

We now briefly come back to a remark that we made in an earlier Chapter on the value of open object interfaces. As we
can easily see, any context-oriented forwarding strategy in fact requires open object interfaces. The reason is that
intermediate stations on the message paths must be able to pass through (and even to preprocess) messages of a
possibly unknown type such as, for example, update-view requests for exotic components.

A.3. Embedded Objects
We can distinguish two kinds of containers for objects: (a) Container objects and (b) text. Obviously, case (a) is
subsumed under the hierarchical concept of composite objects that culminates in the construct of the global display
space. For case (b), a different but no less elegant solution exists. Let us first recall Oberon's original text model. An
Oberon text is a sequence of attributed characters or, slightly simplified, a sequence of pairs (character code, font).

The key idea of our solution is now a shift of emphasis in the interpretation of the font attribute. By simply
reinterpreting font as a collection of characters, we arrive at a view of text as a sequence of pairs (character code,
collection of characters). It is now a small step from “collection of characters” to “collection of objects” or “object
library”. With this, our generalized texts are now sequences of pairs (index, object library), that is sequences of general
objects. Depending on the kind of library, an embedded object is either public (and possibly contained in other
documents as well) or private to the containing text. Typical examples of non-character objects are pictures, formulae
and arbitrary visual objects. However, completely other kinds of non-visual embedded objects are conceivable, for
example formatting controls and links.

A.4. Gadgets
Gadgets in Oberon are objects that serve as elements of a graphical user interface (GUI). Visual gadgets come in great
variety, ranging from simple buttons, checkboxes, sliders, text fields, lists, icons etc. to more complex elements such as
pictures, line graphics, control panels, texts and entire desktops. In addition, there exist non-visual model gadgets like
Boolean, Integer, Real etc. Some gadgets feature a title bar with an integrated name plate and a number of buttons.
They are called documents and are considered autonomous entities that can be stored under their name and reloaded in
an arbitrary context. The desktop itself is a document, which demonstrates that documents may (recursively) contain
other documents as elements. Figure A.4 shows a snapshot of a Gadgets desktop.

The set of built-in gadgets may easily be extended by programming custom gadgets. The complexity of custom gadgets
is quite essentially determined by their structure. Container-gadgets like panels are an order of magnitude more
complex than atomic gadgets like buttons, lists and bar diagrams. This is not surprising, because container gadgets
must be able to manage content objects of any arbitrary type. Their message handlers must properly implement parental
control including message propagation to contents and, in addition, they must be prepared for feedback requests by
contents (for example, if a content object is requested to expand).

The Gadgets tool is used to create and compose gadgets interactively. It is itself a gadget (a document) that contains
two lists and some buttons. The lists expose an extensive collection of predefined visual gadgets and model gadgets
respectively. In addition, the Gadgets tool provides other useful support for the interactive construction such as
automatic alignment in regularly laid-out panels and view-model connections with built-in consistency. For example, a
text field and a slider could be connected to one and the same Real type model, or three sliders red, green, blue could
be connected to a Color model.

The Inspector tool is a very versatile instrument that can be applied to any gadget (visual or model) for an inspection of
its identity, attributes and properties. When applied to a specific gadget, the tool immediately adjusts its shape, so to
represent an attribute form for this gadget. Note that attribute forms are again documents, this time created
programmatically, however.

 439

Figure A.4 The Oberon Gadgets GUI Desktop

In some cases (such as in the case of adaptive attribute forms just discussed), the interactive method for the
construction of gadgets is inapplicable or at least inappropriate, and a descriptive approach would be preferable.
Construction by programming is possible but is not particularly convenient. A much better solution consists of a
suitable layout scripting language and a corresponding interpreter.

Here is an example of a scripted composition in functional programming style:

(LIB GUI
 (FRAME MediaPanel (OBJ Panels.NewPanel)
 (Volume (OBJ BasicGadgets.NewInteger (Value 100)))
 (Brightness (OBJ BasicGadgets.NewInteger (Value 200)))
 (GRID 2:50 1:* @ 1:25% 1:50% 1:25%) (PAD 2 @ 2)
 (FRAME (POS 1 @ 1) (OBJ TextFields.NewCaption) (Value "Brightness"))
 (FRAME (POS 1 @ 2) (OBJ BasicGadgets.NewSlider)
 (Max 255) (Model Brightness) (Cmd "Movie.SetBright #Value Movie")
)
 (FRAME (POS 1 @ 3) (OBJ TextFields.NewTextField)
)
)
)

 440

Figure A5 The Oberon Module Hierarchy

