

A PROGRAMMER’S STORY

The Life of a Computer Pioneer

PER BRINCH HANSEN

FOR CHARLES HAYDEN

Copyright c© 2004 by Per Brinch Hansen.

All rights reserved.

Per Brinch Hansen

5070 Pine Valley Drive, Fayetteville, NY 13066, USA

CONTENTS

Acknowledgments v

1 Learning to Read and Write 1938–57 1

Nobody ever writes two books – My parents – Hitler occupies
Denmark – Talking in kindergarten – A visionary teacher – The
class newspaper – “The topic” – An elite high school – Variety of
teachers – Chemical experiments – Playing tennis with a champion
– Listening to jazz – “Ulysses” and other novels.

2 Choosing a Career 1957–63 17

Advice from a professor – Technical University of Denmark –
Ørsted’s influence – Distant professors – Easter brew – Fired for
being late – International exchange student – Masers and lasers
– Radio talk — Graduation trip to Yugoslavia – An attractive
tourist guide – Master of Science – Professional goals.

3 Learning from the Masters 1963–66 35

Regnecentralen – Algol 60 – Peter Naur and Jørn Jensen – Dask
and Gier Algol – The mysterious Cobol 61 report – I join the
compiler group – Playing roulette at Marienlyst resort – Jump-
starting Siemens Cobol at Mogenstrup Inn – Negotiating salary –
Compiler testing in Munich – Naur and Dijkstra smile in Stock-
holm – The Cobol compiler is finished – Milena and I are married
in Slovenia.

4 Young Man in a Hurry 1966–70 59

Naur’s vision of datalogy – Architect of the RC 4000 computer –
Programming a real-time system – Working with Henning Isaks-
son, Peter Kraft, and Charles Simonyi – Edsger Dijkstra’s influ-
ence – Head of software development – Risking my future at Hotel
Marina – The RC 4000 multiprogramming system – I meet Edsger
Dijkstra, Niklaus Wirth, and Tony Hoare – The genius of Niels
Ivar Bech.

5 Shaping a New Field 1970–72 81

Alan Perlis invites me to spend a year at Carnegie-Mellon – Emi-
gration to America – Niklaus Wirth defines Pascal – Driving home
in a blizzard – Discussing the future of concurrent programming
in Marktoberdorf and Belfast – Alan Perlis tells stories – Mad
King Ludwig and Thomas Edison – The first modern book on
Operating System Principles.

iii

iv Contents

6 Inventing the Future 1972–76 103

Can you tell me, what is Caltech? – Sunshine and palm trees in
February – Wine-tasting with the dean – Driving across America –
A question of priority – Two baffling problems – That sounds easy
– Concurrent Pascal and Solo – Al Hartmann’s compiler – The art
of compromise – Getting a sore throat in Bombay – Returning to
Marktoberdorf – The distraction of grants – Leaving the magic
kingdom – A passion for clear thinking.

7 The End of an Era 1976–84 131

The legendary Zohrab Kaprielian – Football game at the Rose
Bowl – Creating a top department at USC – How Harvard grants
tenure – The first book on concurrent programming – Doctor tech-
nices – Surviving the executive vice president – Designing the
Edison multiprocessor for Mostek – United Technologies kills the
project – Let no man complain to me – Brush fire and mud slides
in Altadena – Magical simplicity – What we achieved.

8 Danish Interlude 1984–87 153

Student democracy and teaching in Denmark – Danish industry
uses Concurrent Pascal – Consulting for GN Corporation – Rock-
ing the boat.

9 Back in America 1987–2004 163

Distinguished professor at Syracuse – Birthday celebration in the
former Danish West Indies – Becoming an American citizen – Par-
allel scientific computing – A personal supercomputer – Parallel
cryptography – History of programming languages – The Com-
puter Pioneer Award – Final words.

Sources 181

Index 189

ACKNOWLEDGMENTS

For helpful comments on my story, I thank Len Adleman, Birger Andersen, Sven
Eriksen, Jon Fellows, Nissim Francez, Steve Goings, Sol Golomb, Christian Gram,
Jonathan Greenfield, Al Hartmann, Nils Havsteen, Charles Hayden, Niels Zeuthen
Heidam, Giorgio Ingargiola, Henning Isaksson, Konrad Jahn, Jørn Jensen, Anita
Jones, Peter Kraft, Paul Lindgreen, Aage Melbye, Peter Naur, Børge Ring, Charles
Simonyi, Leif Svalgaard, Fred Thompson, Villy Toft, Peter Villemoes, Paul Wal-
tenburg, and Bill Wulf.

My special thanks go to Charles Hayden, who helped me publish this book on
the internet, and Jim Horning, who read all the chapters. And to Børge Ring for
translating excerpts from a Dutch trip report by Edsger Dijkstra.

I am grateful for permission to quote from the following material:

The personal letters of Jonathan Fellows, Steve Goings, Al Hartmann, Charles Hayden,
Jim Horning, Giorgio Ingargiola, Anil Menon, Villy Toft, Niklaus Wirth, and Tom
Zepko.

Klasseavisen (“The class newspaper”) 1945–45, Konrad Jahn’s class at Niels Ebbesensvej
School, Frederiksberg, Denmark. (Excerpts translated from Danish by Per Brinch
Hansen.)

E. W. Dijkstra, EWD316A, Reisverslag van Edsger W. Dijkstra aan Summer School,
Marktoberdorf, juli 1971 (in Dutch). c© 1971 by Maria C. Dijkstra-Debets. (Excerpts
translated from Dutch by Børge Ring and Per Brinch Hansen.)

R. A. Maddux and H. D. Mills, Review of Per Brinch Hansen: The Architecture of Con-
current Programs. IEEE Computer 12, (May 1979), 102–103. c© 1979 IEEE.

P. Naur, Review of Per Brinch Hansen: Operating System Principles. BIT 15, 1975,
455–457. c© 1975 by BIT.

P. Naur, Notes for the official defense of Per Brinch Hansen’s Dr. technices thesis at the
Technical University of Denmark, January 23, 1978. (Excerpts translated from Danish
by Per Brinch Hansen.)

P. Naur, Unpublished review of Per Brinch Hansen: Programming a Personal Computer,
1984.

A. J. Perlis, Talk on “Computing in the fifties.” ACM National Conference. Nashville,
TN, 1981. Transcript in J. A. N. Lee (ed.), Computer Pioneers, IEEE Computer
Society Press, Los Alamito, CA, 1995, 545–556. c© 1995 IEEE.

PER BRINCH HANSEN

Syracuse University

v

1

LEARNING TO READ AND WRITE 1938–57

Nobody ever writes two books – My parents – Hitler occupies Denmark – Talking

in kindergarten – A visionary teacher – The class newspaper – “The topic” – An

elite high school – Variety of teachers – Chemical experiments – Playing tennis with

a champion – Listening to jazz – “Ulysses” and other novels.

Walking home from a Caltech party in the 1970s, I told Don Knuth that
I was working on my second book. He turned to me and said “Nobody
ever writes two books!” I should know—this is is my tenth book. It tells
the story of my professional life and my impressions of the birth of modern
programming with anecdotes about software pioneers I have known.

As a student of electrical engineering, I dreamt of making fundamental
contributions to a new field. In 1963, I graduated from the Technical Uni-
versity of Denmark without any programming experience—it was not yet
being taught. There were, as far as I remember, no textbooks available on
programming languages, compilers or operating systems. That was my main
reason for choosing to work in computing!

Over the next forty years I worked as a systems programmer in Denmark
and a computer scientist in America. I witnessed computer programming
change from an amateur activity into something resembling an engineer-
ing discipline, and was fortunate to contribute to the early development of
operating systems and concurrent programming.

In this autobiography, I trace my school years, engineering studies, and
the beginning of my career in Denmark. And I recount my exciting and frus-
trating years as a researcher at Carnegie-Mellon, Caltech, USC, University
of Copenhagen, and Syracuse University.

I wrote the book for fun. I assume you know how to use a computer
and are interested in programming. My story is mostly told in nontechnical
detail. In a few places, where the story gets a bit technical, I explain the
gist of the ideas.

Copyright c© 2004 by Per Brinch Hansen.

1

2 A Programmer’s Story

? ? ?

You may well wonder why I describe my school days in a book about my
professional life. Well, over the years, I have learned that, besides intellect,
the most valuable asset of a programmer is the ability to write clearly. Need-
less to say, I wasn’t born with a talent for writing well. But, thanks to my
teachers, I learned to write nontrivial essays in elementary school through
high school.

Now, if you don’t write really well when you graduate from high school,
you probably never will. Since I consider my writing skills to be far more
important than my engineering background, I will begin my story by telling
you how I learned to read and write.

After half a century, the memories of my childhood and youth are nat-
urally somewhat fragmentary. And, like your life, mine did not follow a
coherent script. I must also confess that some of my more “random” im-
pressions are included simply because I find them amusing—as I hope you
will too.

My parents, Jørgen Brinch Hansen and Elsebeth (née Ring), lived in
Frederiksberg, a suburb of Copenhagen, Denmark. I was born on Novem-
ber 13, 1938, and nicknamed “Busser” after a popular cartoon character.
(Americans know him as Blondie’s husband Dagwood.)

My mother was the daughter of the Danish composer Oluf Ring. She
was a charming, vivacious woman with a beautiful smile. Before marrying
my father she worked in one of the best hairdressing salons in Copenhagen.
On pictures from my childhood she is always well dressed and, even on the
beach, her hairstyle looks perfect. When I was little, she liked to go shopping
in the center of Copenhagen with me dressed in my best. I would rather
have stayed at home playing with friends, but that was not an option.

When the neighbors complained about me (as they often did) my mother
would try to hide it from my father. This was, however, impossible on the
occasion when I threw a cobblestone through a basement window across
the street. What a lovely sound that was! When my father heard about it
(and the repair costs) he spanked me and sent me to bed without dinner.
When that happened, my mother would usually sneak a sandwich into my
bedroom.

People liked my mother and found her fun to be with. In her forties she
visited Italy with her sister and brother-in-law. At an outdoor theater in
Rome, some tourists were relaxing in front of an empty stage. My mother
immediately walked up on the stage and danced across it to the applause of

1. Learning to Read and Write 1938–57 3

the audience.
My mother smoked constantly. Even when she was cooking, she held a

cigarette in her mouth and tilted her head to avoid getting smoke in her
eyes.

She also had a taste for strong coffee. I once offered to demonstrate to
my graduate student, Jon Fellows, how coffee was meant to taste. First I
made a portion of normal (weak) American coffee. After letting the coffee
drip through a second portion of ground coffee, Jon and I enjoyed a cup of
real Danish coffee. The next day he told me that his heart beat so fast he
had to lie down at home.

My father was a tall, handsome man. On pictures he often looks stern and
unsmiling. He was very intelligent, but rather silent. His mother died when
he was only nine years old. His father then married a woman who talked
incessantly. She left my father with a distaste for small talk. I suspect he
often made people feel uncomfortable.

In 1935, he graduated in civil engineering from the Technical University
of Denmark. My father apparently found one class a waste of his time.
Paperback editions of Danish textbooks had to be cut open, page by page,
before you could read them. At his oral exam in Road Construction, my
father showed his disdain for the subject by bringing an uncut (unread)
version of the professor’s textbook to the examination table. The professor
rewarded him with the extremely low grade of mdl+. This reduced my
father’s total grade point average on his diploma from ug– to mg+. (The
Danish grades, ug–, mg+, and mdl+, correspond roughly to A–, B+, and
D– in America.)

For twenty years, he worked for Christiani & Nielsen, a Danish engineer-
ing company that built harbors, docks, bridges, tunnels, airports, roads and
railways all over the world. One of his first tasks was to design procedures
for lowering nine tunnel elements to the bottom of the river Maas in Rotter-
dam, one of Europe’s most heavily trafficked waterways. At the time it was
the longest underwater tunnel in Europe. Each tunnel element, weighing
15,000 tons, was 180 feet long, 75 feet wide and 27 feet tall.

In May 1940, the German army invaded Holland. When the last tunnel
piece had been lowered in December 1940, my father returned home on one
of the last commercial flights from Rotterdam. The flight must have been
somewhat unnerving: the Germans had painted the cabin windows white to
prevent the passengers from discovering military secrets from the air.

After the war, my father became recognized as one of the world’s leading

4 A Programmer’s Story

experts in soil mechanics. In 1953, he was promoted to chief engineer at
the C&N headquarters in Copenhagen. Two years later he accepted a pro-
fessorship in Soil Mechanics and Foundation Engineering at the Technical
University of Denmark.

A Norwegian colleague wrote:

In several respects Brinch Hansen’s personality was governed by
his consistency and his requirement for a logical and rational
approach to all problems. This gave him an appearance which
could easily be interpreted by outsiders as reserved superiority.
On the contrary, those who knew him learned to appreciate his
ability to discuss frankly the facts in any problem and also his
loyal and honest character. (Bjerrum 1969)

I vividly remember when my father asked his driving instructor to demon-
strate parallel parking. My father thought it would be most convenient to do
this on our street on a Sunday afternoon. So my parents ended up practicing
this difficult maneuver right in front of our neighbors and their kids. I can
only imagine what my mother must have thought.

If my father thought something made sense, he never hesitated to take an
unpopular stand. Once he invited me to attend a talk at the Danish Academy
of Engineering. After the talk, the members voted on some proposal. While
my father voted against it, everybody else voted for it.

After a stormy marriage, my parents separated when I was sixteen years
old. This was a great tragedy for my mother who still loved him and never
had a relationship with another man. She provided a stable, loving home for
my sister and me, until she died on December 7, 1962, at age 50, a month
before I finished my engineering studies. My father died on May 27, 1969 at
age 60, the year before I emigrated to the United States.

My books on The Architecture of Concurrent Programs (1977) and Stud-
ies in Computational Science (1995) are dedicated to my parents.

? ? ?

On April 9, 1940, Hitler invaded Denmark. As a sixteen-month old child,
I watched German bombers circling low above the rooftops of Copenhagen
dropping leaflets. Since Hitler’s real target was Norway, the leaflets looked
as if the Germans were trying to save money by writing in a mixture of
Danish and Norwegian.

1. Learning to Read and Write 1938–57 5

The German occupation did not play a major role in my early childhood.
It was, after all, the only life I knew until I was seven years old. But the
war years were not so easy for my parents. Most everyday necessities were
rationed, including food, clothing, soap, and tobacco. There was a severe
shortage of fuel for electricity, heating and transportation. The Germans
imposed a curfew which forced people to stay overnight when they visited
friends and relatives in the evening.

I remember a couple of violent episodes on our street. One day, a man
was shot in front of me. The next day, I watched a street sweeper sweep a
large pool of blood into the gutter. It was rumored that the victim was shot
simultaneously from opposite ends of the street (which could not possibly
have been true, unless the assassins were suicidal). On another occasion,
a man was killed when Nazis blew up his villa in the middle of the night
across the street from our apartment building. I believe he was a member
of the resistance movement. After the war, an apartment complex, built in
his garden, was named Bomhoffs Have in his memory.

Although the Germans inflicted more inhumane suffering on other coun-
tries, many lives were lost in Denmark. During the occupation, the Germans
executed a hundred saboteurs, and sent 150 communists and 500 Jews to
concentration camps. However, the Danes helped close to 7,000 Jews escape
to Sweden on small fishing boats.

The war ended on May 4, 1945, when the German forces in Denmark
capitulated to Fieldmarshal Montgomery. Had the Russians reached the
Danish border before the English Army did, my life would have been very
different.

? ? ?

In 1944, at age 6, I went to Miss Hansen’s kindergarten on Lykkesholms Alle
in Frederiksberg. She had her own way of keeping 33 little kids reasonably
quiet. If you talked too much, you were placed on a tall chair during the
lunch break facing the other children with your mouth covered by a towel.
It doesn’t seem to have worked in my case. I still talk too much instead of
listening.

I don’t remember if we learned the alphabet in kindergarten. But I have
an early memory of crying in frustration, while my mother helped me tell
the difference between the letters h and k.

? ? ?

6 A Programmer’s Story

On September 1, 1945, I began my elementary education at Niels Ebbe-
sensvej school in Frederiksberg in a class of 39 boys. For the next five years,
we had the same teacher in all subjects. His name was Konrad Jahn. He was
the most important teacher in my life. The second week of class he promised
that we would publish a weekly newspaper, as soon as we were able to write
stories.

Two years later Mr. Jahn wrote:

About five months later, we were able to publish the first issue
of the Class Newspaper, which I immodestly believe is the first
school paper written, typed, and duplicated by [Danish] kids in
the first grade. . .By putting the greatest emphasis on Teaching
Independence, the children have now in the middle of the third
grade reached the point where they produce the paper completely
on their own.

Here are a few stories from the class newspaper (dates are shown in the
American abbreviated style—month/day/year):

– I destroyed the class newspaper, for I forgot to remove the pencil [from
inside the stencil]. So Mr. Jahn had to retype the whole paper. (Per
Just Sørensen, 1st grade, 6/12/1946)

– On Mondays we give talks, and on Fridays we also give talks. We
also watch a movie about how an engine makes a car drive, and then
Mr. Jahn asks for questions, and then one of us asked how one makes
a cow glare! (Eskild Sørensen, 2nd grade, 1/20/1947)

– Nearly every day, Per Brinch is late. And I really believe he would
like a chauffeur to drive him to school, And he also has an electric
alarmclock, and every day when he has to go to school, a wire is loose
or a tooth wheel is broken, and then he is full of stories and always
has a letter about the alarmclock, the wires, and his parents . . . In the
morning when the alarm clock rings very softly, he wakes up, and then
he is too lazy to get up. (Peter, 2nd grade, 4/12/1947)

– Yesterday we heard a talk in the basement and there were even slides
shown. And Per Brinch stood and pointed at tunnel elements all
the way across the river so the cars can drive underwater. (Erik
Michaelsen, 3rd grade, 1/8/1948)

1. Learning to Read and Write 1938–57 7

– On Easter Monday, I sat down at my uncle’s desk to write a letter to
my father and mother. Then two days later I come back to the desk,
and the letter is still there (because there was no stamp on it). The
day before I went home I go back in there, and it was still lying there.
So I threw it in the wastepaper basket. (Per Brinch, 4th grade, 1949)

In the fourth grade each of us had to write a report on how a newspaper
is produced, from the moment a journalist writes a story until the printed
newspaper is distributed. After visiting the newspaper Berlingske Tidende,
we read about The Topic (as Jahn called it), and cut pictures out of old
newspapers. The class newspaper shows that we spent 14 hours on this
project per week. I won the first prize of two kroner (roughly, a quarter)
for my final report of 60 handwritten pages with 50 illustrations. Thanks to
Mr. Jahn, I had written my first substantial report when I was eleven years
old.

I found a copy of our class newspaper dated November 13, 1949 (which
happened to be my eleventh birtday). The paper summarizes the opening
meeting of our classroom parliament. Listen to this conversation among
eleven year old boys:

– The teacher: I suggest that you elect a class council with three mem-
bers who will be responsible for keeping silence and order in the class-
room.

– Peter was elected as chair with 15 votes against Preben Møller 3, . . .
Per Brinch 1 [guess who voted for me], Klaus 1.

– Flemming: Suggests a council with six people.

– Eskild: Flemming’s proposal is the best, because six people can get
more ideas than three.

– Peter: Suggests that a new council is elected every day, so that we may
get rid of it, if we are dissatisfied.

– Gunnar Bjerge: I propose that the council is elected for one week at a
time, because otherwise we will waste too many hours.

– Kjeld: I suggest that the most intelligent should be the six members
of the council.

8 A Programmer’s Story

– Per Stockholm: I think it’s nuts that it’s always the most clever ones
who are elected for something.

– Erik N: Yes, I would like, on behalf of the class, to welcome everybody!

– Teacher: I am pleased that somebody remembers to welcome us!

We soon learned to appreciate the advantages of a democratic society. A
proposal to turn the three strongest boys into a “police force” was promptly
and soundly defeated. In fact we only agreed on two rather mild, but very
effective penalties: being asked to stand in the corner of the gym, and being
excluded from interesting lessons and meetings.

The council wanted a written declaration from Mr. Jahn regarding its
authority. So he wrote:

I hereby hand over my authority within the four walls of the class-
room to the new class council. This authority applies to the laws
of the class and regulations concerning discipline, what is to be
taught etc., but excludes everything concerning the disciplinary
rules of the school.

November 11, 1949. Signed K. Jahn

The teacher’s private thoughts: “During the lunch break the council chair
asked me to tell the class to keep quiet, so that we could eat in peace. But
it’s evident that the children have understood that I have handed over my
authority to the council, because they are noisy, like steam pouring out of a
container that has kept it bottled up!”

So it went for days. Some of us said pure nonsense, and, for many,
many days in the beginning we decided to paint the whole day long. But
Mr. Jahn insisted that a painting started one day should be finished before
you began another painting. If you know how impatient children are, you
will understand why, after some time, we asked to have lessons in writing
and arithmetic as well.

Out of this experiment came something schools and colleges rarely teach:
We gained faith in our ability to take responsibilty and make decisions. I
owe much of my ability to work independently to my early school years with
Mr. Jahn.

When I graduated in the fifth grade, he wrote the following evaluation
of me:

1. Learning to Read and Write 1938–57 9

In the elementary school, Per Brinch Hansen has shown unusual
potential. His diligence has to some extent depended on his in-
terest in the subject matter, but when the interest was there,
his achievements were exceptional (The Topic; Helping with the
school play). His written works have often been characterized by
a restless, artistic untidiness, but can be well written. Behavior:
Always extremely good. Independent and helpful.

Since Mr. Jahn was decades ahead of his time, his revolutionary ideas
were often met with skepticism from other teachers and criticism from par-
ents, whose children probably would not have done better under another
teacher.

However, my father recognized genius when he saw it. When my little
sister Eva graduated from Konrad Jahn’s class, my father and I bicycled one
evening through the dark streets of Copenhagen, visiting the homes of her
class mates, asking the parents for donations for a farewell present. On the
last day of class, my father made a short speech in front of the class and gave
Mr. Jahn a handsome leather briefcase. It was a very emotional occasion.

In 1985, I dedicated my book On Pascal Compilers “To my teacher Kon-
rad Jahn.”

? ? ?

In 1950, at the age of twelve, I was accepted by St. Jørgens Gymnasium,
an elite high school on Filippavej in Frederiksberg. For the next seven years
I obtained a thorough grounding in Languages (Danish, Swedish, English,
German, French, and Latin), History (Ancient, Medieval, and Modern), Sci-
ence (Physics, Astronomy, Chemistry, Geography, and Natural History), and
Mathematics (Algebra, Geometry, and Precalculus).

This was my first encounter with traditional education. Although my
teachers did not strike me as visionary, they were highly educated, and some
of them had written textbooks in their fields. Several of them are included
in the 1959 edition of Kraks Bl̊a Bog (“Who’s Who in Denmark”): Frode
Andersen (Physics), Morten Borup (Literature), Peter Ilsøe (History), Aage
Kampp (Geography), Jan Neiiendam (History), and Just Rahbek (Litera-
ture).

The headmaster, Peter Ilsøe, visited every class room four times a year.
He would ask each of us to come forward and receive our grade report, after
announcing our class standing to everyone. I remember him as a jovial man

10 A Programmer’s Story

in his early sixties. But he was apparently not well liked by the faculty. One
teacher turned his back to the headmaster whenever he entered the class
room and stood by the window until he left again.

Mr. Ilsøe was an interesting teacher of classic Greek history. From time
to time, he would sing short verses he had written about historical events.
This was a very effective teaching method. Fifty years later, I still remember
one of them:

Fire hundrede firti ni (In four hundred and forty nine)
Perserkrigen er forbi. (the Persian war ends.)
Perikles for styret st̊ar (Perichles runs the government)
i Athen i tyve år. (in Athens for twenty years.)

My favorite history teacher was Jan Neiiendam. He rarely asked ques-
tions about our daily assignments. Instead, he told fascinating stories about
historical figures. I remember one about the mad Danish king, Christian
7 (1766–1808), walking drunk through the streets of Copenhagen after a
visit to a woman known as “Bootie-Cathrine.” At night, the king walked
around town with her and a group of young officers, picking fights with night
watchmen and beating up girls in whorehouses.

A grey-haired woman, Edith Hintz, taught geography and handwriting.
It was not her fault that my handwriting remains illegible to this day. She
taught me a lesson I still remember. Out of boredom, I would sometimes use
my key to drill a small hole in a tree in the schoolyard. When sap started
oozing out of the hole, a biology teacher inspected the tree and declared that
it was doomed. Miss Hintz sentenced me to write one hundred times:

Drilling holes in trees is vandalism!
Drilling holes in trees is vandalism!
· · ·

The last time I saw the tree, it was still alive and doing well. So much for
expert opinion.

Our math and science teacher, Knud Steenberg Sørensen was a very
nervous man. You could not help getting nervous yourself when he quizzed
you in front of the class. If you made a mistake, he would break down crying
and shout: “You are not only getting a zero—you are getting a double-zero!”

On the last day of class before Christmas, he tried to entertain us. One
year, he asked a student to imagine an object, which he called a “half-moon
triangle.” At that age, we were not trained to reason about the abstract

1. Learning to Read and Write 1938–57 11

properties of non-existing objects. And sure enough, pretty soon, the stu-
dent and Mr. Steenberg Sørensen were both crying, and the Christmas en-
tertainment turned into harassment. Fortunately, we were saved when the
school bell rang. But that was not the end of it. When classes resumed after
New Year, the teacher called upon the same kid and continued the mental
torture for another hour.

One of my English teachers (who shall remain nameless) was a sadist.
There is no other way of describing him. In the school yard, one of the boys
had shouted his first name loudly behind his back. During our next English
lesson, the teacher asked the boy, again and again: “Who gives you the right
to call me by first name?” No matter what the kid said, the teacher slapped
him hard. This went on for a long time, while the victim cried and the rest
of us watched in horror.

In his novel The Neglected Spring, the Danish author Hans Scherfig (1940)
describes such a teacher:

And the teacher is an educated man. He has scientific interests.
He has written a fine dictionary and many editions of excellent
textbooks. He has traveled abroad and has acquired culture and
fine manners.

And the well-informed teacher has assumed responsibility for
hitting those who are late. Perhaps his job could have been
performed by a man with less scientific education. But it could
not have been performed more conscientiously.

Most of our teachers were, however, decent human beings.
Students who were late in the morning were met at the entrance to the

school by an elderly gentleman, senior master Just Rahbek. He would write
your name in his note book and sentence you to arrive fifteen minutes early
for the next three days. To me he looked like an eternal bachelor. I was
surprised recently to discover a romantic side to his life: When he was 55
years old, he married a Croatian woman, Alexandrine Sisacki, from the town
of Sisak.

As a teenager, I had a chemical laboratory in a corner of my mother’s tiny
kitchen. After school I would go downtown to Struer’s Chemical Laboratory
and buy small amounts of chemicals for experiments.

Once I tied a thread around a piece of sodium and lowered it slowly
into mercury. This produced a small explosion with yellow flames. “Run

12 A Programmer’s Story

mother!” I shouted. In the evening she complained to my father. But, in
this case, he was on my side.

My father had an odd collection of old chemistry books, including an
1855 edition of Die Schule der Chemie oder Erster Unterricht in der Chemie
versinnlicht durch einfache Experimente by Professor Julius Adolph Stőck-
hardt. It was printed in German Gothic type and was not an easy book for
a beginner.

Fortunately, my classmate Peter Schoubye had a copy of Paul Bergsøe’s
wonderful book Kemi p̊a en anden m̊ade (“Chemistry in a different way”).

On a snowy afternoon, I walked home from Peter’s apartment carrying
a testtube with a liquid we had produced. I wasn’t sure what it was I was
carrying. It was quite hot to touch and, from time to time, the stuff would
bubble up and threaten to overflow the testtube. So I would place it in a
snowdrift and wait for a few minutes, to let it cool down. The next day I
found out it was an extremely toxic substance.

When boys experiment with chemistry, the temptation to make gunpow-
der is irresistable. My father lost his hair when the gunpowder he was mak-
ing exploded in his face. His sister remembered him entering their kitchen,
moaning quietly and putting his blackened head under the water faucet.

My cousin, Ole Bak, also made gunpowder, the usual way, by mixing sul-
phur, charcoal, and potassium nitrate. Since nitrate absorbs vapor from the
air, gunpowder must be dried before it can be used. Ole got the bright idea
of drying gunpowder in his mother’s baking oven. It burned furiously, emit-
ting noxious, poisonous gasses that forced his parents to leave the kitchen
quickly and retreat to the other end of their house for several hours.

One day, Peter Schoubye’s mother called me on the phone and told me
that he had blown off one of his fingers and was in the emergency room. If I
still had any of Peter’s gunpowder, would I please throw it away. I did, and
that was the last time I experimented with explosives.

? ? ?

After graduating from junior high school in the ninth grade, I was admit-
ted to senior high in 1954. This was the first time I went to school with
girls. I spent many pleasant afternoons with my friends, Sven Gundel, Ann
Harsen, Sven Husum, Leif Christensen, Hanne Andersen, Bent Vang Olsen,
and Jørgen Albertsen. We drank tea and talked about dating, school, movies,
and books (but rarely politics).

1. Learning to Read and Write 1938–57 13

Sven Gundel had a weird sense of humor. Although we were not very
good at it, we enjoyed playing tennis. On one occasion, without telling me,
he had invited the whole class to watch us play. After a while, he asked
me: “Why don’t you play against Birgit?” So I did. Not only did she return
every shot—she hit the ball so hard I ended up playing with my back against
the fence. I had forgotten that Birgit Jensen had won a junior championship
in women’s tennis. Everybody but me thought this was very funny.

Sven’s father, Leif Gundel, was the editor-in-chief of the Danish com-
munist newspaper Land og Folk (“The nation and the people”). When we
graduated from high school, Sven gave me a copy of the official history of
the Russian communist party. I thanked him and asked wryly: “Don’t you
think I should wait for the next revised edition?”

Sven Husum and I spent countless hours playing jazz records. Listening
to jazz has remained an important part of my life during the long hours
when I study or write.

I owe my love of jazz to my uncle, Børge Ring, a well-known Danish bass
player. As a teenager, I visited Børge and his wife Nanny in Amsterdam,
where he still works as a cartoon animator. In a record store we listened to
a long-playing record with pianist Oscar Peterson and bassist Ray Brown. I
didn’t really understand why my uncle liked it. But I admired him so much
that I spent all my pocket money on that record. The appreciation came
later, when I had played it numerous times at home.

In high school I also learned to appreciate literature. (As Groucho Marx
said: “Outside of a dog, a book is man’s best friend. Inside of a dog, it’s
too dark to read.”) From my friend, Jørgen Albertsen, I borrowed Henry
Miller’s novel The Tropic of Capricorn. When our teacher, Morten Borup,
mentioned that Jacob Paludan’s Danish novel, Jørgen Stein, was the “bible”
of his generation, I held up Miller’s novel in class and said: “This is our
bible.” The old man smiled, so he must have read it too.

I read more widely than at any other time in my life. When I gradu-
ated from high school, I had, of course, read the classic works in Danish
literature—our teachers saw to that.

On my own, I read a fair amount of English and American literature (in
English): most of Graham Greene, Ernest Hermingway, and John Steinbeck.
One summer evening, I was reading Steinbeck’s East of Eden, when three
girls came to our summer cottage and asked me to join them at a local dance.
Well, I was so absorbed by the novel that I declined the invitation. You may
think I made the wrong choice. Maybe. I don’t remember who these girls

14 A Programmer’s Story

were. But I still remember Steinbeck’s gripping story.
I read Danish translations of Norwegian, Swedish, German, French, and

Italian novels; and, of course, the great Russian novels: Leo Tolstoy’s Anna
Karenina and Fyodor Dostoevsky’s The Brothers Karamazov (Time Maga-
zine once wrote: “These brothers need a keeper!”). You get the idea: I read
all the time.

James Joyce’s Ulysses was a challenge I could not resist. This 700-page
novel describes a day in the life of an advertising agent, Leopold Bloom, as
he wanders through the streets of Dublin as a modern Ulysses. It is regarded
as one of the most difficult works of fiction, embedded, as it is, in multiple
layers of meaning. Every chapter not only mirrors an episode in Homer’s epic
poem—it also centers around a place, a human organ, a science, a color, and
so on. Chapter 14, for example, corresponds to the episode of The Oxen of
the Sun—an ancient symbol of fertility. The place is a hospital, the organ is
the womb, the science is medicine, and the color is white. The chapter traces
the nine months of a pregnancy and, in parallel, the historical development
of the English language. The opening of the chapter is written in the earliest
English prose. When the child is born, Joyce switches to modern English.

Joyce plays dirty tricks with the reader. Early in the novel, Leopold
Bloom is leaving his home: “On the doorstep he felt his hip pocket for the
latchkey. Not there. In the trousers I left off. Must get it. Potato I have.”
The allusion to the potato becomes clear only 400 pages later: “Spud again
the rheumatiz? All poppycock, you’ll scuse me saying.”

As an eighteen year old I decided to climb this intellectual mountain.
Every Saturday, I spent the whole night reading one chapter of Ulysses,
writing down notes and questions. A week later, I read the same chapter
again. It took me six months to finish the novel this way.

In my final year of high school, I passed an exam, where we had six hours
to write an essay. I wrote about Ulysses from memory. A leading newspaper
published the essays of all students who got As. Since I got an A–, my essay
was not published.

Today I think Joyce misunderstood the essence of creativity. A written
work should not be a labyrinth. The genius of Isaac Newton was not to
make physics incomprehensible. On the contrary, his unique contribution
was to make it possible for others to understand what only he could describe
concisely.

I admit there is room for disagreement here. People still gather in a
Syracuse café on “Bloom’s day” (June 16) and take turns reading the last

1. Learning to Read and Write 1938–57 15

chapter of Ulysses. But I have lost my taste for difficult writing.
In June 1957, I graduated with honors from St. Jørgens Gymnasium.

I was now a broadly educated student of the arts and sciences, who had
learned to read widely and write well. It was time to choose a more narrow
path towards a professional career.

2

CHOOSING A CAREER 1957–63

Advice from a professor – Technical University of Denmark – Ørsted’s influence –

Distant professors – Easter brew – Fired for being late – International exchange

student – Masers and lasers – Radio talk — Graduation trip to Yugoslavia – An

attractive tourist guide – Master of Science – Professional goals.

There was never any doubt in my mind that I wanted to become an engineer
like my father. But what kind of engineer? I didn’t think it would be a good
idea to enter civil engineering where my father already had made a name
for himself. My choice of electrical engineering may have been influenced by
the recent popularity of television in Denmark following the coronation of
England’s Queen Elisabeth II in 1953.

In senior high school, I was usually the best student in my class. But
my chemistry experiments were just a hobby. I did not make any scientific
discoveries. And, my interest in literature did not inspire me to write original
works of art. Although I was reasonably intelligent, I was not a prodigy.

Since my mother did not have a high school education, she worried about
whether I would be able to complete an engineering education. So she per-
suaded me to call my father’s colleague, Helge Lundgren, professor of Harbor
Construction at the Technical University. “What was your final math grade
in high school?” he asked. “A−,” I answered. “Well,” he said, “then it is, of
course, impossible to say anything with certainty.” No, professor Lundgren
was not joking—he was absolutely serious. Ah well, I thought, I will just do
the best I can. So I enrolled as a student of electrical engineering.

In 1957, the Technical University was still known as Polyteknisk Lære-
anstalt (“Polytechnic University”). It was founded in 1829 at the initiative
of Hans Christian Ørsted, the Danish discoverer of electromagnetism. Since
he believed that a well-rounded engineer should master the fundamentals of
all fields of engineering, the students were called polytechnicians (from the

Copyright c© 2004 by Per Brinch Hansen.

17

18 A Programmer’s Story

Greek word poly meaning “many”). Ørsted remained the first chancellor
until his death in 1851.

I began my studies in a quadrangle of massive buildings from 1890 in
Sølvgade, not too far from downtown Copenhagen. They were situated in
a corner of the Botanical Garden, across the street from the Eastern Park
(“Østre Anlæg”). These beautiful parks were the remnants of the ramparts
around the medieval Copenhagen, which were leveled in the 1860s to make
room for the growing city.

The Technical University had no dormitories. Most students from Copen-
hagen lived at home with their parents. Students from other towns rented
rooms nearby or lived in public residence halls. Some students could not
handle the freedom of living away from home for the first time. They would
skip classes and play cards in the student cafeteria.

There was no parking lot for students. Nobody that I knew owned a
car. Like most students, I used my bicycle to get from our apartment to the
university.

Thanks to Ørsted, all engineering students took the same classes for the
first two years: Mathematics, Geometry, Physics, Chemistry, Applied Math-
ematics, Theoretical Mechanics, Structural Engineering, Material Science,
and Geometric Drawing.

By the 1950s, this noble ideal was beginning to look somewhat impracti-
cal. Even I could see that an A− in Structural Engineering did not qualify
me, as an electrical engineer, to design the transmission tower for a television
station.

Material Science was ridiculous: you had to learn a great many physical
constants by heart, such as the electric conductivity of copper with eight
decimals. (Fortunately, some of the leading digits were zeros.) Before the
written exam, I wrote all these constants on a huge sheet of paper. After
memorizing them for days on the balcony of my mother’s apartment, I passed
the exam with a B+. By the end of the summer, I had forgotten most of
them.

When you work as an engineer, you soon learn to remember the most
important constants in your field; the rest you look up when you need them.
It serves no purpose to learn them by heart as a student. My friend Niels
Zeuthen Heidam agreed that Material Science was a waste of time. As soon
as we had passed the course, we sold our textbooks and used the money to
buy rum and coke.

We were now attending lectures in a huge auditorium with a hundred

2. Choosing a Career 1957–63 19

students, or more. In the winter, the auditorium was heated by enormous
radiators covered with wooden boards. When I came late to class (as I often
did) all the seats were already occupied. The only place to sit down was on
top of a radiator. After a while, the rising heat made me drowsy. So I would
stand on the floor until my feet got tired. Then I would sit on a radiator
again, and so on.

I felt somewhat lonely among all these students I didn’t know. And the
professors were distant figures on the podium whom I never saw outside
class.

I did not attend lectures regularly. I preferred to study at home, un-
til I reached the point, where I was unable to do the homework. Then I
would borrow notes from a friend and attend the lectures until I caught
up again. Although our homework was graded by teaching assistents, their
grades served only to remind us how we were doing. Real grades were only
given for final exams at the end of the year. If you needed help, you had to
find and pay for a private tutor. I didn’t need a tutor and would eventually
graduate with a grade point average that made me number 3 of 47 students.

The technical university was undoubtedly an elite institution. It was
highly selective and demanding. It made no attempts to retain those who
dropped out. I don’t think it can be done any other way if your primary goal
is to educate competent engineers who can design reliable bridges, airplanes,
and computers. (The poor reliability of software shows that programming
is still not taught as a rigorous engineering discipline.)

The way it was taught, chemistry became dry as dust, and mathematics
became understandable, but intimidating. Erling Følner was professor of
mathematics. He married the daughter of the famous mathematician, Harald
Bohr. In the days before women’s liberation, this brought to mind the old
German saying that mathematical talent is passed from father to son-in-law.
He would walk into the auditorium, turn his back to us, and fill six huge
blackboard in minute handwritting with formulas, copied verbatim from the
textbook, and walk out again.

Judging from our textbooks, mathematicians seemed to have the ability
to see into the future. In order to prove an important result (“a theorem”)
they would often start by proving a minor result (“a lemma”), which they
would then use to prove the big one. I could not, for the life of me, under-
stand, how they could possibly have known in advance that they would need
this lemma to prove that theorem. I was so awed by this gift of foresight,
which I did not seem to have, that the thought of becoming a mathematician

20 A Programmer’s Story

never entered my mind.
Years later, I discovered that mathematicians are faking it. They do

not prove theorems the way they present them in textbooks. They fumble
with ideas, just like the rest of us, until they realize that some lemma may
simplify their proof. Then they turn around and present their results, as
if they were discovered by sleepwalking geniuses, who never make mistakes
or enter blind alleys. This orderly method of presentation is technically
correct, but misleading, since it hides a crucial insight from students: how
do mathematicians really think?

I enjoyed my physics courses on Mechanics, Thermodynamics, Light,
Electricity, Magnetism, and Quantum Theory. However, my diploma shows
that I got higher grades in Mathematics. I don’t know why.

On October 4, 1957, the Soviet Union launched Sputnik, the world’s first
artificial satellite. Weighing 184 pounds, it was about the size of a football
and carried a radio transmitter. It circled the Earth for several months.

This historic achievement gave professor Henning Højgaard Jensen a well-
come opportunity to compute the initial speed a satellite needs to escape
gravity and stay up there. On Earth, the escape velocity turns out to be
roughly 7 miles per second (about 11 km/s).

I remember professor Richard Petersen fondly. “Little P,” as we called
him, was a small, energetic man in his mid-sixties with a friendly smile.
He was the only professor I can remember, who knew the names of all his
students, no matter how large his class was. He taught applied mathematics:
probability theory, queuing theory and Laplace transforms. If that sounds
boring, let me assure you that it’s not.

Little P once made a minor mistake on the blackboard and ended up
with the wrong result. He looked at his formulas for a long time and finally
said: “Jeg har et problem med min potens.” In English this just means, “I
have a problem with my exponent.” But, in Danish, it also means “I have
a problem with my potency.” He looked puzzled when everybody burst out
laughing.

Technical drawing was boring to me. (I often tell my students: “When
you say something is boring, it is a statement about you—and not about the
subject matter.”) The instructor, Helge Christensen, demanded absolute
perfection. We were expected to draw geometric figures in India ink with an
accuracy of 1/10 of a millimeter (that is, 1/250 of an inch). My friend, Nils
Havsteen had to redraw a gateway motive (“porten”) ten times before it was
accepted. If it was tedious, it was also invaluable for future engineers. Most

2. Choosing a Career 1957–63 21

university students already possess intelligence (otherwise they wouldn’t be
there). What they lack is the professional discipline required to get minute
details right. Helge Christensen taught us that. Fifteen years later, I came to
appreciate this lesson in precision: when my first textbook was in production,
I told my publisher that the redrawing of my figures was too inaccurate and
had to be redone.

On the last day before Easter, the student cafeteria sold a strong local
beer, known as Easter brew. On that day, wise professors cancelled their
lectures. But there was always someone who forgot this. I remember a pro-
fessor who entered a lecture hall full of drunk students (I was one of them).
So the professor starts lecturing, while a hundred students talk loudly. After
a while, the professor shouts “Silence!” For a brief moment, the only sound
is that of beer bottles rolling down the steps of the auditorium. Then the
talking resumes. When an hour has passed, the students do not wait for the
professor to announce that the lecture is over. We all shout “Time’s up!”
and leave. Outside, I find a friend sleeping on the cold pavement. I wake him
up, and together we somehow make it to the street and take a taxi home.

In the spring of 1959, after two years of study, I had completed the first
half of my engineering education. I was looking forward to the second half,
where I would concentrate on electrical engineering, specializing in electron-
ics and telecommunication. These subjects were taught in an extension of
the Technical University in Østervoldgade, built around 1940.

My excellent professors included Jørgen Rybner, who, in his late fifties,
was obviously an authority on Electric Circuits and Telephony. However,
the major breakthroughs in these areas were made long before my time.

Hans Lottrup Knudsen taught a demanding (but rewarding) theoretical
course on Electromagnetic Fields and Antennas. At the oral exam, sitting
alone in front of him, without any books, I was asked to use Maxwell’s
equations to derive the radiation pattern of a linear array of antennas. Such
an arrangement has the ability to concentrate electromagnetic radiation in
a single plane.

Recent technology was also taught by Jens Rasmus Jensen (Servomech-
anisms), Per Gert Jensen (Digital Electronics) and Georg Bruun (Transistor
Electronics).

For my degree project, I used tunnel diodes, invented by Leo Esaki at
the beginning of my studies. Although I got an A−, I no longer remember
anything about it. Long after my graduation, I used to dream that the
university had just informed me that my diploma was invalid, because I had

22 A Programmer’s Story

failed to complete my project!

? ? ?

Before graduation, all students were required to complete industrial practice
working for a participating employer. The intention was to teach future
engineers to get along with workers. I worked in the machine shop of a
small company, Danish Servo Technology, owned by Søren T. Lyngsø. I
admired the professionel skill of the machinists, but my own work was trivial
beyond compare: drilling holes in aluminum boxes and cleaning machines
with kerosene. I did, however, enjoy playing pool with the workers after
hours. After a while, I left the machine shop to work in the company’s lab.
Here I designed the only electronic device in my entire career: a transistor
circuit that could detect if a weaving machine attempted to tie more than
two threads together at a time.

At night, I read books about interesting subjects outside my university
curriculum: Quantum Theory, Solid State Physics, Semiconductors, and
Signal Flow Graphs.1 But I did not get enough sleep and would often be
late for work. Mr. Lyngsø could not very well expect his workers to show up
on time, if a student did not do the same. So, eventually, he fired me. This
is the only time that has ever happened to me.

He was right, of course, but I was now in a precarious situation. The
university administrator in charge of industrial practice pointed out how
important it was for him to maintain good relations with Søren Lyngsø. He
was hesitant to recommend me to another participating employer. This was
serious, since I needed to complete my practical experience to graduate.

It turned out to be one of those unnerving moments in life, when your
situation looks hopeless, and then it turns out to be the beginning of an
unexpected piece of luck: the university decided to let me continue my in-
dustrial practice abroad as an international exchange student.

? ? ?

My father’s career in soil mechanics inspired me to look for an area that was
still in its pioneering phase. If a subject was being taught, it was probably
already too late to make fundamental contributions, I thought. Throughout

1My reading list included D. Bohm, Quantum Theory, 1951; C. Kittel, Introduction to
Solid State Physics, 1956; E. Spenke, Electronic Semiconductors, 1958; and S. J. Mason
and H. J. Zimmermann, Electronic Circuits, Signals, and Systems, 1960.

2. Choosing a Career 1957–63 23

my studies, I continued to look for something that was not yet being offered
by our professors. At the beginning of my studies, I read about television in
Frederick Terman’s classic text, Electronic and Radio Engineering (1955). A
few years later, the excitement seemed to be in transistor circuits. However,
by 1960, it was obvious to me that electronic digital computers was the
technology of the future.

My university did not offer courses about computers. Christian Rovsing,
president of the engineering students’ union (1959–60), gave me some idea
of the nature of computer programming. For three evenings, he taught a
handful of students the rules of the first programming language Fortran.

A milestone in computing, Fortran was developed by John Backus, at
IBM headquarters on Madison Avenue in New York City, and introduced
for the IBM 704 computer in April 1957. Fortran programs were written in
a notation that resembles ordinary algebra.

On the last evening of Rovsing’s short course, I said: “Christian, I un-
derstand most of what you have explained, but what does it all mean?” You
see, without access to a computer, the rules were just formalities to me,
without any connection to practical reality.

Christian Rovsing went on to a distinguished career. After graduating,
he worked a couple of years for IBM in Sweden and France, before starting
his own computer company in Denmark. In 1984 he received the IEEE

Centennial Medal.

? ? ?

So far I have written from memory supported by a few documents. At this
point, my story is supported by letters to my parents and my future wife,
Milena.

In the summer of 1961, I spent seven weeks as an international exchange
student at IBM’s Hursley Laboratory, outside Winchester in Southern Eng-
land.

On the way to Winchester, I visited London as a tourist. I traveled on a
student ticket, which I only received shortly before the train left the central
station in Copenhagen. A student representative handed me a bunch of
forms and explained that he would like me to be the guide for 75 students
traveling to London that day. In return he promised to pay my train ticket,
which sounded reasonable to me.

In the southern Danish town of Gedser, I was supposed to help students
through the passport control and board a ferry to Germany. I quickly learned

24 A Programmer’s Story

to hide my ignorance. When the students asked questions, like: “Is it far
to the train in Grossenbrode?” I would improvise: “No, only a five minute
walk from the ferry!”

The next morning, when we changed trains in Amersfoort, Holland, I
almost lost a group of Swedish girls, who just stood next to their suitcases
on the platform, while the rest of us walked decisively in the right direction.
I didn’t notice them until the conductor signaled the departure of our con-
necting train. I rushed over, picked up the nearest suitcase and got them
moving fast. We boarded the train just in time.

Rotterdam, which had been demolished by German bombers on May 14,
1940, was completely rebuilt and topped by a forest of TV antennas. The
silhuette of the enormous harbor was impressive. Behind the apartment
buildings, it extended from one end of the city to the other.

In Hook van Holland, we boarded a ferry to England on a sunny day.
Sitting on the top deck, looking at the quiet sea, I felt like Onassis on a
Mediterranean cruise.

At Liverpool station in London, I left the students in the care of a Nor-
wegian student representative and took the subway (known as the “tube”)
to Archway. My lodging was one of many similar townhouses: Nice outside,
but rather neglected inside, due to the many lodgers who had lived there.
When I arrived, there were about ten of us, all young men. The landlady,
Mrs. Sheridan, who was rather nice, understandably preferred not to spend
her time talking with lodgers.

I shared a small, unattractive room with an English batchelor, who was
interested in science and very talkative. Since my roommate went to bed
early and turned out the lights, I got up at eight in the morning and left for
the center of the city at ten.

Walking around London without any plan, I “discovered” streets and
buildings I recognized from movies and books: Oxford Street, Marble Arch,
Piccadilly Circus, Charing Cross, Trafalgar Square (full of pigeons you prac-
tically had to brush off), and Big Ben in floodlight.

At the British Museum, I was awed by the Egyptian and Assyrian collec-
tions I had read about in Carl Grimberg’s The World History (1959). How
marvelous to find an enormous exhibition hall displaying a relief showing the
Assyrian king Assurbanipal almost 4,000 years ago, on foot, killing a lion
with a dagger. To recognize details of the relief and know that the king once
stood before this monument!

Another hunting scene carried the inscription: “I am Assurbanipal, king

2. Choosing a Career 1957–63 25

of the World, king of Assyria. With my strength I held, alone on foot, one
of the ferocious desert lions by the ears, and, with the help of Assur and
Ishtar, I ran my spear through it.”

My strongest impression of London was the striking contrast between
the depressing working-class neighborhoods, and the impressive center with
its beautiful buildings and multitude of monuments. A dirty city, without
the charm of Paris, but fascinating with its endless traffic and people of so
many nationalities.

The parks of London were enormous and beautifully landscaped. I
walked in Hyde Park, saw Kensington Park from a rowing boat on the Ser-
pentine, and enjoyed Green Park, close to the Queen Victoria Memorial.

The main railroad stations were huge: Paddington, Waterloo, St. Pan-
cras, Victoria station—noisier and dirtier than anything else I saw.

Winchester was completely different with a population of about 30,000,
and much cleaner than London. The town had a historical continuity without
parallel. Outside the town was a hill crowned by a gigantic rampart from the
Iron Age. Nearer the city, sections of the town wall dated back to Roman
times. Between the 9th and 13th centuries, Winchester was the capital
of England. The Danish viking king, Canute the Great (about 995–1035)
ruled here and is buried in Winchester Cathedral. “Canute had two sons,
Halfacanute and Partacanute, and two other offspring, Rathacanute and
Hardlicanute” (Sellar 1964). Two city gates from the 13th century were still
standing, and the oldest houses were from the same period. Half-timbered
houses from the 16th century were common.

I rented a room just outside town, in a former farmhouse on Andover
Road. The room was a huge improvement over the one in London: 18 by 24
feet, with a large armchair, a radio, and a view of the garden.

My landlady, Mrs. Early, was kind and helpful. The first evening, she
made me a big dinner with meat, potatoes, and bread pudding. At home,
my mother had taught me that you must eat everything on your plate.
Otherwise, your hostess will think that you don’t like her cooking. She
would have been shocked by the American habit of eating a steak, leaving
the fat on the plate. So I ate it all. Mrs. Early apparently thought that this
young man must be starved. The next day she gave me twice as much food
for dinner. Again, I did what my mother had taught me, and, with some
difficulty, ate the whole thing. On the third day I gave up, when she offered
me even more food.

In the room next to mine, her grandchild watched TV every day, for

26 A Programmer’s Story

hours. On my side of the wall, I would mostly hear gunshots and horses
neighing. I saw this as a premonition of the childhood of my future children.
When my own children grew up, we only had a TV in the living room, and
their viewing time was restricted. As far as I can tell, this discipline had no
lasting impact.

Hursley Park was a former manor with enormous oak-paneled rooms,
which IBM had turned into a research center. It was 3 miles outside Win-
chester. On my first day, I was shown around and introduced to many
people. The English struck me as incredibly helpful and charming.

I did what I could to improve my English. I listened to BBC on the radio,
read newspapers, wrote technical notes in English, and talked to technicians
during the lunch break.

Weekends I spent with a Danish engineer, named Svend, who had bought
a Volkswagen on credit (known in England as the “never-never”). After my
first week in Winchester, we drove back to London for a one-day visit.

The purpose of our trip was to see the recently opened Soviet Exhibition.
The astronaut, Juri Gargarin, had just visited England. In April 1961,
he became the first man to orbit Earth in a spacecraft. Since the British
government had no protocol for visiting astronauts, it took three weeks to
decide who should receive him.

First we went to a Russian fashion show. The models were rather hefty
by western standards, and the few party dresses looked clumsy. But the
everyday clothes looked quite attractive.

The space exhibition was located in a fantastic planetarium, where movies
where shown simultaneously on five screens, accompanied by electronic mu-
sic. Walt Disney could hardly have done it better!

The rest of the exhibition was somewhat disappointing. The huge num-
ber of visitors, mostly Asians and Africans, made it difficult to see the ex-
hibits. And there was very little written information about the machines
and instruments shown.

We stayed at the exhibition for most of the afternoon and returned to
the city in the evening. Piccadilly swarmed with people, and it was nice to
be there again. Back in Winchester, at 1 a.m., all lights were out.

A month later, Svend and I went on a three-day vacation to Cornwall.
On the way back, we visited Stonehenge, Europe’s most famous Stone Age
monument. This mysterious circle of huge stones, was built between 3000
and 1900 BC, about the time when the Egyptian pyramids were built. The
average stone, weighing about twenty-six metric tons, was about 18 feet tall.

2. Choosing a Career 1957–63 27

The original thirty stones had supported a circle of curved lintels.
Every morning, a technical assistant, named Dave, would give me a lift

from Winchester to Hursley Park. The English engineers were very relaxed.
In the morning, they would usually chat for the first half hour. At ten
o’clock, they took a coffee break and, at noon, they went to lunch. After
lunch, Dave and I might go for a long walk, or I might play chess with a
technical assistant. At three in the afternoon, there was a tea break and, at
5:30, everybody went home.

The lab was not quite what I had imagined. They did not waste time
on “unnecessary research.” They all worked on two computer projects. The
largest employed about 75 people, including 25 engineers, for several years.

My knowledge of semiconductor physics turned out to be irrelevant. If
the engineers knew what a transistor did, it didn’t interest them how it did
it. I concluded that the difference between transistor physics and computer
organization is similar to the difference between biochemistry and physiology.

The first couple of days, I was completely lost. The engineers hardly
had time to answer my questions, and I discovered that, without a certain
amount of knowledge, one cannot even ask relevant questions.

The machine, they were working on was, of course, not yet described
anywhere. So, initially, I spent most of my time at work reading about
computers. However, when the lab started assembling its computer, I was
given a necessary, but monotonous task.

The computer memory consisted of hundreds of thousands of tiny ferro-
magnetic rings (known as “cores”). Each core stored one bit of information
(a zero or a one). The cores were arranged in two-dimensional arrays with
two perpendicular wires passing through each core. A particular core was
selected by sending currents simultanously through both wires that passed
through it. The magnetic state of the selected core would then be sensed by
means of a third wire passing through all the cores.

My task was to test the memory, one bit at a time, by observing, on
an oscilloscope, how each core reacted when it was selected. Although I
performed this task carefully, my lack of enthusiasm must have been obvious.

The design team had an unusual organizational structure. It was headed
by two people: a technical leader and a management leader, who, as far
as I could tell, got along well. It was interesting to watch what happened
when the management guy took a week’s vacation: after a couple of days,
the technical leader and the rest of the engineers slowly stopped working,
waiting for the manager to come back.

28 A Programmer’s Story

In 1960, IBM became concerned that their computers were incompatible
with each other (Bashe 1986). At that time, IBM was selling eight transistor-
ized computers, six of which were incapable of executing programs written
for the others. A year later, a companywide task force recommended that
IBM create a family of compatible computers with the same architecture.
This was the beginning of the IBM/360 computers.

It was also the end of the computers developed at Hursley. I was there
the day a manager announced that the development of their small com-
puter, called SCAMP, would be stopped. This was devastating for the en-
gineers, who had put their whole effort and creativity into a project that
went nowhere. Twenty years later, the same thing happened to me, when
an American company built a multiprocessor to my specifications. But I am
getting ahead of my story.

After seven weeks, my enjoyable summer at IBM came to an end. One
of the managers wrote a report (Fig. 2.1) for IAESTE (International Asso-
ciation for the Exchange of Students for Technical Experience).

I returned to Denmark with the impression that I knew very little about
computers, but would like to dedicate my career to these miraculous ma-
chines.

Employer’s Report:

Name of Student: Brinch Hansen, Per
Period of practical experience in weeks: 7 weeks
Rate of payment per week: £7
Gross payment made to student: £50 8s. 0d.
Conduct: Excellent. Time-keeping: Good.
Observations on the student’s general aptitude:

Worked on a variety of constructional and checking jobs.
He showed himself to be a keen, intelligent, theoretician
with a more limited aptitude for practical work.

Date: 7th November, 1961. Signature: (unreadable)
On behalf of IBM World Trade Laboratories (G.B.)

Figure 2.1 The IBM manager’s report.

? ? ?

2. Choosing a Career 1957–63 29

As a student, I wrote my first technical article—about the exciting Amer-
ican inventions of the laser and the maser. Not that I felt competent to
write about it, being only a student, and not a physicist. But, even though
American technical magazines frequently mentioned the laser, and had done
so for some years, nobody else in Denmark had written about it.

The laser is able to create light 100 million times stronger than the light
on the surface on the sun. The maser, which emits microwaves instead of
light, was used, in July 1962, to amplify the extremely weak signals from
the first television satellite, Telstar.

In Niels Bohr’s classic model of the atom, electrons orbit around a nucleus
at discrete distances. When atoms absorb energy from their surroundings,
electrons jump from inner orbits with low energy to outer orbits with higher
energy. As the electrons fall back to their inner orbits, light is emitted in
discrete amounts. This spontaneous emission of light is random and diffuse in
nature. That’s why you can only focus a flashlight beam at short distances.

In 1917, Einstein predicted that light emission could be increased dra-
matically by shining light of the right frequency on atoms. If the atoms
start with a lot of electrons in their outer orbits, the presence of light starts
a chain reaction, where some atoms emit light, which then stimulates the
emission of light from other atoms, and so on, until all the atoms emit light
at practically the same time.

The stimulated emission of light, which does not occur in nature, is
the principle behind the laser. The laser uses an artificial, oblong ruby
coated with silver at both ends. When the ruby is stimulated by light,
it emits spontaneous light in all directions. The light that happens to be
reflected from the ends of the ruby will travel back and forth numerous times,
stimulating further light emission from the atoms. This creates a strong ray
of red light, which is pencil-thin and remains focussed at enormous distances.

On May 1, 1962, the monthly magazine for Danish engineers, Ingeniøren,
published my article on Maser—a new amplifier element that makes com-
munication at optical frequencies possible. (I had not yet mastered the art
of using titles of five words or less.) A professor of physics had been kind
enough to check that my derivation of Einstein’s laws of electromagnetic
radiation was correct.

I was now invited to record a popular talk on the magic ruby for the
Danish Broadcasting Service. Perhaps someone older, and more experienced
than me, ought to have done it. On the other hand, I thought, this is my
chance, and I can’t afford to pass it up.

30 A Programmer’s Story

During the recording of my talk, I was nervous and kept talking, without
breathing, until I had to stop and gasp for air. Fortunately, the radio tech-
nicians were able to remove this sound effect from the tape. On March 14,
1962, the Danish radio broadcast my program on The Red Ray of the Ruby.
Notice the alliteration, as in “James Joyce” or “Buddy Bolden’s Blues.”

The editor of the science program was very enthusiastic about my manu-
script. He called the editor of the popular science magazine, Vor Viden
(”Our Knowledge”) and encouraged him to print it. It appeared in print on
May 31 and June 14, 1963.

? ? ?

In the summer of 1962, our graduating class traveled abroad with a professor,
visiting foreign companies and relaxing before final exams. The organizing
committee consisted of Johannes Arboe Brøndum, Paul Waltenburg and me.
Paul had spent two months in Yugoslavia as an international exchange stu-
dent. His brother Carl had just married a woman, named Renata Stankovič,
from Zagreb. So we decided to invite Professor Georg Bruun to accompany
us on a graduation trip to Yugoslavia.

We traveled by train from Copenhagen to Munich, Germany, a twelve
hour journey. Whenever we had to change trains, the forty students (or so)
lined up on the platform with their luggage, while one of us ran ahead and
found out where to go from there.

After another ten hours by train through Austria, we arrived after dark
in Ljubljana, the capital of the Yugoslav republic Slovenia. At the railroad
station, we were met by two female guides and driven in an ancient, dark
bus to a student dormitory.

The next day, we were given a guided tour of a large manufacturing com-
pany, named Litostroj. Afterwards, we had the opportunity to ask questions
of the management. I remember asking: “How much does a worker and a
manager earn?” One of our guides translated the question into Slovene.
When a manager responded to my question in Slovene, there was a brief
discussion between the guide and the manager (still in Slovene). She finally
translated the answer to my question. Later, she explained to me: “When
the manager first answered your question, I told him, it will leave a bad
impression on these foreigners, if we tell them how much a manager makes.”
After some discussion, they agreed among themselves that perhaps the fig-
ures ought to be lowered. Their final answer turned out to be much lower
than anything I knew from Denmark.

2. Choosing a Career 1957–63 31

On the third day, we traveled by bus to the famous Postojna caves, south
of Ljubljana. A local tourist guide showed us a small white salamander that
lived in the caves. In heavily accented English, he explained: “The human
feesh, it valks on de ground and svims in de vater.”

I now had a chance to look more closely at one of our tourist guides from
Ljubljana. She was a small blonde woman, with the figure of a model, walk-
ing elegantly in high heeled shoes with a deliberate little twist of the instep.
Her name was Milena Hrastar. She had a master’s degree in English and
German from the University of Ljubljana. During the summer, she worked
as a tourist guide for foreign students. On our last evening in Ljubljana, I
invited her out for dinner at restaurant “Rio.”

The next morning, all of us left Ljubljana and took the train to Belgrade,
the capital of Yugoslavia. However, it was not Milena, but another guide,
named Zorka, who accompanied us.

In Belgrade we visited the wrong factory, a small place that produced
loudspeakers. The manager quickly recovered from his surprise and grace-
fully gave us a tour of the factory. When we left, professor Bruun said:
“That was today’s visit. The rest of the afternoon is off.” My friends went
to a large outdoor swimming pool, while I walked around Belgrade on my
own. I remember a poor neighborhood, where a Turk in baggy, black pants
was walking with a barrel on his shoulders.

From Belgrade we flew to Dubrovnik, on the Adriatic coast. This is
the most beautiful city I have ever seen. Inside the walls, which surround
this medieval city completely, cars were not allowed. In the evening, the
only sounds you heard on the main street, were the shuffling of feet on the
marble sidewalk, and voices echoing from the white sandstone houses.

Further north, in Split, I remember sitting in an outdoor cafe in the
middle of the ruins of the palace of the Roman emperor Diocletian. The
emperor retired to this palace on the Dalmatian coast in 305. I found it
charming that the modern inhabitants stretched clotheslines between the
antique columns and the nearby apartment buildings.

On the train to Belgrade, I discovered that I had forgotten my raincoat
in Ljubljana. That gave me an excuse to leave my friends in Zagreb, a couple
of days later, and take the morning train back to Ljubljana, where Milena
was waiting with my coat. We spent the afternoon together. After a nice
dinner at restaurant Šestica, we walked through the quiet, rainy streets to
the railroad station. The evening train from Zagreb to Munich had already
arrived at the station, and my friends were anxiously waiting for me to turn

32 A Programmer’s Story

up before the train left. They were all standing at the windows cheering when
I kissed Milena goodbye. My friends teased me, as I walked through the train
looking for my luggage (which they had taken care of). As we approached
Austria, the dark flat country of Slovenia changed into the rocky silhouettes
of the Julian Alps.

Back in Munich, I had two hours to eat breakfast, buy cigars, and send
Milena a postcard. Then the long train ride through Germany. In Hamburg:
another card for Milena, and, early in the morning, back in Copenhagen and
pretty tired.

? ? ?

In the last year of my education, my professional goals became much clearer
to me. I was very interested in the construction of computers. The few
available books, I had read, looked at computer design from the point of
view of an electronic engineer. These books explained the electronic design
of switching circuits, arithmetic units, memories and peripheral devices.2

And then I read a completely different book that described computer
organization from a programmer’s point of view.3 It was a revelation to me.

Project Stretch was an experimental supercomputer designed by IBM in
the late 1950s. Although it was a commercial failure, this ambitious effort
was a milestone in computing. The Stretch designers introduced the term
computer architecture to describe the functional aspects of a computer that
are of interest to programmers only. These aspects are independent of the
underlaying electronic circuit technology.

I had never before seen a reasoned essay on the choice of a character
set. In the 1960s, this was a problem of considerable practical importance
in computing. Inside a computer, the letters of the alphabet are represented
by numbers, as are the digits and special characters. The trouble was that
different computers used different character codes. In order to process text,
output by one computer, on another computer, you first had to replace each
character code by a different one. The problem of character incompatibility
would disappear in the late 1960s, when computer manufacturers adopted
the ASCII character set, which is now standard on all computers.

The Stretch book discussed other general issues in computer architecture:
Should computer arithmetic be decimal or binary? How should computer

2My own book collection included A. P. Speiser, Digitale Rechenanlagen, 1961; and
H. D. Huskey and G. A. Korn, Computer Handbook, 1962.

3W. Buchholz, Planning a Computer System: Project Stretch, 1962.

2. Choosing a Career 1957–63 33

instructions address their data operands? How can program execution con-
tinue during input/output operations? How can a computer execute several
programs at the same time?

I knew I wanted, someday, to be able to understand this book completely
and become a computer architect.

3

LEARNING FROM THE MASTERS 1963–66

Regnecentralen – Algol 60 – Peter Naur and Jørn Jensen – Dask and Gier Algol –

The mysterious Cobol 61 report – I join the compiler group – Playing roulette at

Marienlyst resort – Jump-starting Siemens Cobol at Mogenstrup Inn – Negotiating

salary – Compiler testing in Munich – Naur and Dijkstra smile in Stockholm – The

Cobol compiler is finished – Milena and I are married in Slovenia.

On January 31, 1963, I graduated from The Technical University of Denmark
with a master’s degree in electronic engineering. Shortly before, I started
looking for my first job as an electronic engineer:

I want to be sure I get a good job—one concerned with electronic
computers, and the main thing is not my wages, but rather that
I constantly learn something new. The question about what to
learn is quite tricky. First I wanted to learn “everything” about
computers, but lately a professor at our technical university has
convinced me that there is the danger, that I will spend my most
productive years merely trying to understand, what others have
done, without having time to contribute anything myself. So the
question comes up: When and what to specialize in? Anyhow I’m
going to have a talk with the manager at our biggest computing
center on January 3rd. (Letter to Milena, January 1, 1963.)

Actually, I did have some idea about my professional goals. I just didn’t
know, if I could pursue them in Denmark.

The only place in Denmark that developed computers was Regnecen-
tralen, a research institution under The Danish Academy of Technical Sci-
ences. In 1957, Regnecentralen completed the first Danish computer, Dask,
in an old villa on Bjerregaardsvej 5, in Valby, a suburb of Copenhagen. Built

Copyright c© 2004 by Per Brinch Hansen.

35

36 A Programmer’s Story

under the leadership of Bent Scharøe Petersen, Dask used thousands of vac-
uum tubes in its electronic circuits and tens of thousands of magnetic cores
in its memory. It executed 18,000 instructions per second.

Only one copy of Dask was built. Weighing three and a half metric tons,
it was installed in the former dining room of the villa. The oak parquet floor
had to be reinforced to support this computational monster. A large cooling
and ventilation system was installed in the basement.

The power supply of Dask emitted a sharp blue light that was visible
from the street. An elderly lady, with a vivid imagination, complained that
she felt a prickly sensation from “these electrons and atoms” whenever she
walked past the villa.

In November 1961, Regnecentralen finished a small, transistorized com-
puter, named Gier. Housed in a wardrobe-sized closet with teak paneling,
Gier looked like a piece of modern Danish furniture. It had a core store of
1024 words and a drum of 12800 words (about 5K and 60K bytes). Eventu-
ally about fifty Giers were produced.

My job interview at Regnecentralen started in the Rialto Center, a new
office building on Falkoner Alle 1, within walking distance of the apartment
I shared with my sister in Frederiksberg.

I talked briefly with the director, Niels Ivar Bech, a charming, dynamic
man, who asked me: “Where will you be in ten years?” With tongue in
cheek, I said: “In your chair!” He smiled—that was the kind of answer he
liked. Looking back, my answer was absurd. There was no chance that I
would ever be able to replace Bech’s inspired leadership. But I didn’t know
that at the time.

For the next six hours I had unscheduled meetings with various depart-
ment heads. Whenever they realized I was looking for something else, they
would suggest that I visit another department.

I spoke to Aage Melbye about administrative data processing. His people
programmed some of the most demanding computer applications. The main
problem was to update large files efficiently and reliably. Since drums and
disks were still small, the files were stored on magnetic tapes. To avoid wast-
ing computer time after a tape failure, it was necessary to include restart
facilities in these programs. A few years later, I would gain first-hand knowl-
edge of these problems, when I programmed the input/output system for the
Siemens Cobol compiler.

My next stop was the hardware group in Valby, headed by Henning
Isaksson. Two years earlier, they had finished the Gier computer. I explained

3. Learning from the Masters 1963–66 37

my interest in computer architecture and mentioned that I would prefer a
job that would constantly teach me something new. Henning made it clear
that, if he needed two flip flops, I would have to do the same thing twice.
This made sense from his point of view (but not mine). I could not have
predicted that Henning eventually would make my dream of becoming a
computer architect come true. However, on that day, he suggested that I go
back to the Rialto center and talk to the compiler group.

On the fifth floor, I met the leaders of Regnecentralen’s compiler group:
Peter Naur, a tall man with a serious expression and a full beard, and
Jørn Jensen, a short man with a friendly smile and an unruly mop of hair.
When I had explained my interest in understanding the relationship between
programming languages and computer architecture, they handed me a thick
yellow report with a devious smile and said: “Come back next week if you
understand this.” The report was entitled Cobol-1961, Report to Conference
on Data Systems Languages (U.S. Department of Defense 1961).

James Joyce would have given the Cobol 61 report high marks for un-
readability (but low marks for consistency). I did not understand a word of
it. Fortunately, nobody asked me about it when I joined Regnecentralen’s
compiler group. To Milena, I wrote: “At last I found the right thing—a
group working on advanced problems in computer languages.”

? ? ?

Peter Naur was educated as an astronomer. He joined Regnecentralen in
1959 and became heavily involved in the international development of the
programming language Algol 60.

The invention of programming languages is surely one of the most sig-
nificant milestones in the history of computing. The science writer, Isaac
Asimov (1976), put it this way:

I strongly suspect that the advance of science or any branch of
it depends upon the development of a simple and standardized
language into which its concepts can be put. Only in this manner
can one scientist understand another in his field.

Now, a programming language can only serve as a standard if it is con-
cisely defined in a language report. In practice, however, most language
definitions rely heavily on the reader’s ability to fill in gaps and remove in-
consistencies by educated guessing. I believe there is a reason for this sad
state of affairs:

38 A Programmer’s Story

The task of writing a report that defines a programming language with
complete clarity to its implementors and users may look deceptively easy
to someone who hasn’t done it before. But in reality it is one of the most
difficult intellectual tasks in the field of programming.

The programming language Algol 60 introduced recursive procedures,
block structure, scope rules, and type declarations in imperative program-
ming. It was developed by an international committee that included John
Backus (the developer of Fortran), Fritz Bauer and Klaus Samelson (who,
together, developed the stack method of expression evaluation), John Mc-
Carthy (the inventor of LISP and one of the founding fathers of artificial
intelligence), Alan Perlis (a pioneer of compiler development and the first
chair of computer science at Carnegie-Mellon), and Peter Naur (whose con-
tribution to Algol would be a landmark in computing).

Now, it is one thing to have a group of smart people sitting around a
table discussing clever ideas. It is quite another thing for these people to
describe their best ideas concisely in writing.

In 1959, at the initiative of Peter Naur, the Algol Bulletin was issued,
which served as an international forum for discussing the development of the
language. The bulletin was published by Regnecentralen.

For a meeting of the committee in January 1960, Naur prepared an un-
solicited draft of the Algol report. Throughout the draft, he used a recent
notation introduced by John Backus to define the syntax of all possible Al-
gol programs! Naur’s improvements of Backus’s notation became known as
BNF notation (or Backus-Naur form).

This was a huge step forward compared to the Fortran report, that de-
fined the programming language by examples only. The problem with this
informal method is illustrated by the old joke that “French is easy: ‘horse’
is cheval, ‘dog’ is chien,. . . and so on.”

John Backus (1981) acknowledged Naur as the driving intellectual force
behind the definition of Algol 60:

Peter Naur’s conduct of the Algol Bulletin and his incredible
preparation for that [January 1960] meeting in which Algol was
all written down already in his notebook—he changed it a little
bit in accordance with the wishes of the committee, but it was
that stuff that really made Algol 60 the language that it is, and
it wouldn’t have even come about, I don’t think, had he not done
that.

3. Learning from the Masters 1963–66 39

After seeing his draft, the committee asked Naur to be the editor of the
official Algol 60 report.1 Twelve years later, the Dutch computer scientist
Edsger Dijkstra (1972) wrote:

The famous Report on the Algorithmic Language Algol 60 is the
fruit of a genuine effort to carry abstraction a vital step further
and to define a programming language in an implementation-
independent way. . .The report gloriously demonstrated the power
of the formal method BNF, now fairly known as Backus-Naur-
Form, and the power of carefully phrased English, at least when
used by someone as brilliant as Peter Naur. I think that it is fair
to say that only very few documents as short as this have had
an equally profound influence on the computing community.

? ? ?

A computer program, written in a programming language, like Algol 60,
is just another text. You can print it and edit it, but a computer cannot
execute it as it stands. Before an Algol program can be executed, it must
be “translated” into numeric machine code for a particular computer. The
system program, that performs this translation, is called a compiler.

The small core memories of the mid 1960s made it impractical to write a
program, as large as an Algol compiler, in a programming language, such as
Fortran. Why? Because machine code generated by a Fortran compiler (or
any other compiler) occupied significantly more memory than hand-written
code. To use a small memory efficiently, a compiler had to be written in
assembly language—a cryptic notation that required a programmer to specify
each machine instruction in the code. A large program written in assembly
language usually only made sense to the person who wrote it.

After the completion of the Algol 60 report, Regnecentralen’s next chal-
lenge was to design Algol compilers for Dask and Gier. In this effort, Jørn
Jensen’s genius for machine coding would play a key role.

The American computer scientist, Alan Perlis (1981), left this impression
of Jørn:

1P. Naur (ed.), J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis,
H. Rutishauer, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden, and
M. Woodger, Report on the algorithmic language Algol 60, Communications of the ACM,
May 1960.

40 A Programmer’s Story

When the [first Bendix G-20 computer] arrived at Carnegie it
came with a full load of software: one binary load routine used
by the engineers for testing memory. That was the sole extent of
the software.

How could one build a compiler [for Perlis’s language, named
Gate] quickly? We were fortunate at that time to have with us
a visitor from Denmark, Jørn Jensen, who was with the Regne-
centralen. Jørn was a magnificent programmer.

Jensen sat at one desk; he was building the assembler. Arthur
Evans sat at another desk; he was building the parser. Harold van
Zoren sat at the third desk; he was building the code generator.
All three were being defined simultaneously.

The method of construction worked as follows. Jensen would
decide that a certain construction ought to be in assembly lan-
guage, and he would broadcast to the other two. . .When they
decided. . .what changes would be required, working in good code-
team fashion, they suspended and broadcast back to Jensen their
proposals. Jensen would drop what he was doing and start an-
other independent process. The amount of code that each wrote
turned out to be of the order of about 2,000-3,000 machine lan-
guage instructions. It turned out that at that size of code, such a
technique worked magnificently. Each of the programmers could
keep two to four processes in the air simultaneously, and changes
progressed very fast. All three parts were completed at the same
time. Jensen debugged the assembly language on the computer,
simultaneously with the debugging of the parser and the code
generator.

In June 1960, the Dutch computer scientists, Edsger Dijkstra and Jaap
Zonneveld, completed the world’s first Algol 60 compiler. At Regnecentralen,
Jørn Jensen, Toke Jensen, Per Mondrup, and Peter Naur completed an Algol
compiler for Dask in late 1961. This was followed by the much more elegant
compiler for the Gier, which Dijkstra called “a masterpiece.” To appreciate
the achievements of the Dutch and Danish software pioneers, you need to
know that there were no textbooks on compilers at the time. In 1964, Brian
Randell and Lawford John Russell would publish the first book on Algol 60
Implementation.

Regnecentralen’s second compiler implemented Algol 60 on the Gier com-
puter with a memory of only 1K words and a drum of 12K words. Inspired

3. Learning from the Masters 1963–66 41

by the Atlas computer at Manchester University in England, the run-time
system implemented “demand paging” of compiled code—without any hard-
ware support! The demand paging used the drum to simulate a “virtual
memory” that was much larger than core memory, and, in most cases, al-
most as fast.

The programs and tables of the Gier compiler occupied about 5,200 mem-
ory words. The machine programming was done almost entirely by Jørn
Jensen. It is amazing that a human being could comprehend such a large
program written in unreadable assembly language!

Gier Algol (Naur 1963a) introduced several innovations in compiler tech-
nology, which I cannot go into here. The compiler was checked by using it
to compile small Algol programs constructed specifically to ensure that each
instruction of the compiler would be executed at least once. This systematic
approach to testing made the compiler virtually error-free.

Regnecentralen planned to demonstrate Gier Algol at the IFIP Congress
in Munich, Germany, in August 1962. As luck would have it, the Gier, that
was shipped to Munich by truck, was shaken to pieces. Bech immediately
borrowed another Gier, that had already been delivered to a customer, and
sent it to Munich (again by truck).

The demonstration of Gier Algol in Munich was a success, and Regne-
centralen got a contract with Siemens to develop a Cobol compiler for the
Siemens 3003 computer.

This is where things stood, when I joined Regnecentralen’s compiler
group on March 1, 1963.

? ? ?

At Control Data Corporation in Minnesota, Seymour Craig designed the
most powerful computers of the 1960s. The CDC 1604 was a large com-
puter intended for scientific customers. It had been used to provide on-line
quotations of stock prices from the New York Stock Exchange.

In 1963, Regnecentralen acquired a CDC 1604A computer for its main
service center. Many years later, I had dinner with a former CDC executive,
who remembered Niels Ivar Bech. He had never forgotten this Dane who
traveled to the corporate headquarters in Minneapolis and tried to convince a
roomful of rugged executives to give Regnecentralen a CDC 1604A computer,
in return for a Cobol compiler—with Danish keywords! When that didn’t
work, Bech negotiated an agreement with the Danish shipbuilding yard,
Burmeister & Wain, to buy a quarter of the computer time.

42 A Programmer’s Story

Regnecentralen was a lively place. On the afternoon of March 28, 1963,
seventy people gathered in the small cafeteria at the Rialto center to cele-
brate the news of the CDC computer. An hour later, after liberal consump-
tion of the strong beer, known as Easter brew, the room was very noisy.
At dinner time, I followed this happy group of people on a tour of local
restaurants. Around midnight, I walked home with a splitting headache.

In August 1963, the CDC machine was installed in the Rialto center.
Bent Bagger and Henning Bernhard Hansen would replace the English key-
words in the CDC Cobol compiler with Danish words. The creative part of
this task was to suggest Danish terminology for data processing concepts.
Once they had settled on the terminology, the actual replacement of key-
words in the CDC compiler must have been straightforward, compared to
the task of building a complete Cobol compiler from scratch (as the compiler
group had to do).

Peter Naur was also interested in the development of computer termi-
nology. One day he entered the office, in which Paul Lindgreen and I were
working, and started talking about finding Danish words for computing.
Since computers are not just number crunchers, he felt that “computer sci-
ence” was a misnomer. He had decided to call the discipline datalogy (in
Danish: “datalogi”). The architect of Gier, Bjarner Svejgaard, would later
remark, that English may not be good Danish, but apparently a mixture of
Latin and Greek is all right.

Naur was now trying to decide what a “computer” ought to be called. In
a facetious mood, I suggested calling it a datamaton (Danish: “datamat”).
I didn’t tell Naur that my inspiration was a self-service laundry in Fred-
eriksberg, named “laundromat” (Danish: “vascomat”). On the spot, Paul
Lindgreen added the word datamatics (Danish: “datamatik”) to denote au-
tomatic data processing (Naur 1966b). (Paul Lindgreen’s recollection is that
he was the one who asked me to suggest a Danish word for a computer.)

This is the only time, I have added a new word to my own language.
For many years, everybody in Denmark called it a “datamat,” until a new
generation of PC users decided that smart people speak “Denglish.” So,
nobody says “datamat” anymore. It is now “computeren”—pronounced with
a heavy Danish accent.

? ? ?

Before I could contribute anything to a Cobol compiler, I obviously needed
to teach myself to write small computer programs.

3. Learning from the Masters 1963–66 43

One Sunday, my father wanted to invite me to the horse races, but, since
I didn’t care which horses won, I preferred to stay at home. The following
Sunday, he proposed that we try our luck at the casino. After a pleasant
dinner, we drove to the Marienlyst resort, north of Copenhagen.

At the roulette, my father followed a simple strategy for postponing the
inevitable loss of his money, by slowly increasing his bets, until he reached
the maximum amount permitted by the resort. When that happened, he
would begin another round of bets, starting with the smallest possible bet.
If he won anything, he would immediately start another round. When his
total losses exceeded the modest amount, he was prepared to lose for the
evening, he quit.

To my great surprise, I won a small amount of money that evening. The
same thing happened to me on another occasion. Of course, something must
be wrong, I thought—every roulette is designed to have only one winner
in the long run: the owner! This reminds me of the classic exchange in
the movie Never give a sucker an even break (1941): “Is this a game of
chance?” asks the patsy. “Not the way I play it!” responds the card shark.
So I decided to write an Algol program that would make the Gier act like a
roulette.

Since Gier had no operating system, I signed up for a block of time,
say 15 minutes, and had the machine all to myself. Most of the time, the
computer was idle, while I input my program text from paper tape, typed
user commands, or printed my output on the typewriter terminal.

For larger computers, the inefficiency of open shop operation inspired
computer manufacturers to develop batch processing or multiprogramming
systems. However, for the small Gier computer, the manual operation was
not a serious problem.

At first, my computer roulette was not very random: it stopped twice as
often on odd numbers as it did on even ones. But, after a while, it worked:

The other day I invited my father to Regnecentralen, because I
had succeeded in making the computer Gier play roulette. My
father was very amused indeed. The computer is connected to
a typewriter, and the roulette-program was made so, that the
computer started the performance by asking: “How many games
are you prepared to risk?” I typed: “10000 games.” Then the
computer started playing the many games, saying BZZ, BZZ. . .
for nearly three minutes. And, finally it typed: “Sorry!—you
have lost 45980 Dinars.” [For the benefit of Milena, I replaced

44 A Programmer’s Story

Danish kroner with Yugoslav dinars.] (Letter to Milena, June 6,
1963.)

Using elementary probability theory, it was easy to verify the results of my
simulation. Once I understood the exact nature of the game, I lost all interest
in playing roulette.

In my book, Programming for Everyone in Java (1999), I used roulette
simulation as a beginner’s exercise.

Milena felt that my simulation was a frivolous way of using an expensive
computer. I explained that it was an example of the Monte Carlo Method of
computing, named after the famous resort town in Monaco, which has the
world’s oldest casino.

Thirty years later, I used simulation on a supercomputer with 48 pro-
cessors to find the shortest tour through 100 cities in two minutes (Brinch
Hansen 1995). This is obviously a problem of some practical importance.
(It is also a much harder problem than roulette simulation.)

? ? ?

The programming language Cobol was designed about the same time as
Algol. At the 1978 conference on the History of Programming Languages
(HOPL), Joe Wegstein, National Bureau of Standards, commented (Cobol
Discussion 1981):

The Cobol Committee had these people from various manufac-
turers who had a lot of vested interest, and were very intense
about that sort of thing in connection with everything being
done. Whereas, the Algol Committee had a bunch of senior pro-
fessors of Europe and an oddball collection from the U.S., and—
all very temperamental and intense about mathematical aspects
of programming.

Now, Algol was designed for numeric computations. The only data struc-
tures supported by the language were tables (“arrays”) of numbers.

Cobol, on the other hand, was designed for business data processing. The
most important contribution of Cobol was the introduction of data records
and sequential files, which were needed to process data on punched cards
and magnetic tapes.

Ten years later, Niklaus Wirth combined both forms of computing by
including records and files in his Algol-like language, Pascal.

In his History of Modern Computing, Paul Ceruzzi (2003) writes:

3. Learning from the Masters 1963–66 45

Cobol became one of the first languages to be standardized to a
point where the same program could run on different computers
from different vendors and produce the same results.

Alas, this worthy goal was not reached. After completing the Siemens Cobol
compiler, Regnecentralen concluded that:

The major problem of implementation turned out to be the nu-
merous definition problems created by the vagueness of the offi-
cial Cobol report. (Brinch Hansen 1966)

Compared to Algol 60, Cobol was poorly defined. In places, where the Cobol
report was incomprehensible, Regnecentralen’s compiler group had to guess
what the intention of the Cobol committee might have been. More than
likely, other compiler groups interpreted the report differently and imple-
mented incompatible variants of the language.

A peculiar feature of Cobol was its attempt to replace well-known alge-
braic notation by verbose English: whereas you might write a/b in Algol,
this became DIVIDE A BY B in Cobol (or even DIVIDE B INTO A). This
was supposed to make it easier for managers to read programs.

At the HOPL conference, the Cobol notation provoked the following
exchanges of questions and answers:

Question: Did the participants in the original Cobol develop-
ment sincerely believe that the use of an English-like language
would enable nonprogrammers (e.g. managers) to understand
programs.

Answer: Yes. We sincerely believed managers would be able to
read the programs and that more people would find them easier
to write.

Question: Did the Cobol committee seriously believe that the
users could not handle grade school operators +,−, ×, /?

Answer: Quite seriously, there was a strong sentiment. . .that the
users did not want to use algebraic symbols in the normal course
of writing an arithmetic expression.

46 A Programmer’s Story

How can one explain that Cobol remained the most widely used program-
ming language on the planet for decades? Well, in 1960, the U.S. Depart-
ment of Defense announced that it would only use computers that supported
Cobol. That guaranteed the commercial success of Cobol—independent of
its merits!

Needless to say, the government could not dictate the opinions of com-
puter scientists:

Question: [Cobol] continues to be viewed with great disdain, as
is data processing in general, by many computer scientists. It
is rarely taught in “prestigious” computer science departments,
where it is still regarded as an abomination. Have you any com-
ments?

Answer: I think Cobol ought to be taught because there are con-
cepts in there which are important and which are useful, and
business data processing has a large significant, intellectual com-
ponent. But most of the senior key computer science people don’t
agree.

This was the programming language that Regnecentralen’s compiler group
would be responsible for implementing for Siemens in Munich.

? ? ?

Peter Naur and Jørn Jensen worked so closely together that they hardly
needed to say anything to solve a problem. I remember a discussion where
Peter was writing something on the blackboard, when Jørn suddenly said
“but Peter . . .” and immediately was interrupted with the reply “yes, of
course, Jørn.” I swear that nothing else was said. It made quite an im-
pression on me, especially since I didn’t even know what the discussion was
about in the first place.

As an electronic engineer, I was used to circuit diagrams showing resis-
tors, capacitors, and transistors. What the compiler guys did was completely
different. On the blackboard, they would illustrate their ideas with small
Algol 60 fragments. Since Algol was not a natural language for thinking
about data structures, they would also draw complicated pictures of tables
linked together in mysterious ways by arrows.

However, in truth, the Cobol compiler was progressing very slowly (if
at all). Naur and Jensen had already finished their second compiler for the

3. Learning from the Masters 1963–66 47

elegant Algol language. Now they had to do it again with a far less attractive
language. It seemed to me that their hearts were not in it.

After three months, I began to catch on. On May 23, 1963, I wrote to
Milena:

We have common meetings sometimes on Fridays, just to coordi-
nate things and settle issues of doubt. You see, the normal situa-
tion is that everyone gets a small part of the project to work on.
First, everyone will work enthusiastically for a few weeks or so,
independent of the others, but gradually the tempo slows down
for a lot of psychological reasons—some details cannot be solved,
before you know what the others are doing, and other problems
you simply close your eyes to (and put them in a drawer).

So every now and then, Peter Naur calls for a meeting to
make us face the problems. You can’t imagine, how I enjoy the
atmosphere of a group of people, who have to convince each
other, defend their views, and reach decisions.

Sometimes I get permission to work at home for several days—
mainly, when I have to write a report on what I have been doing
lately. (There are too many distracting factors at work: noise
from the street below, and the temptation to chat with the oth-
ers.) [Throughout my professional career, I would continue to do
all my writing at home.]

Well, the latest crazy and wonderful idea is, that the whole
department of some ten engineers is going to work “at home”
for one week to jump-start the project. From Monday, the 21st
of October, until Saturday, the 26th, we are moving to a small
inn [Mogenstrup Kro] in the southern part of Zealand, far away
from any big, noisy town. [Zealand, on which Copenhagen is also
situated, is the largest island in Denmark.] Each of us will have
his own small room to work in, and often we will gather for a
common discussion. In the evenings, we can walk in the woods
and get to know each other outside the office. I find it a splendid
idea.

The Mogenstrup meeting clarified many things: The Cobol compiler
would be divided into ten phases (known as “passes”). Since the Siemens
computer had no drum or disk, the compiler would use three magnetic tapes.
The compiler would be input, one pass at a time, from a system tape. The
other two tapes would be used as scratch tapes during compilation.

48 A Programmer’s Story

Pass 1 would input a Cobol program from punched cards, perform a
partial compilation and output intermediate code on one of the scratch tapes.
Pass 2 would then input the intermediate code from tape, perform another
partial compilation, and output slightly more detailed code on the other
scratch tape, and so on. In this way, the compiler passes would be loaded,
one at a time, from the system tape, while the compiled code would move
back and forth between the scratch tapes, being gradually refined. The last
pass would leave final code on a scratch tape, from which it could be loaded
and executed.

Since every pass performed a single scan of the original Cobol program
(or the intermediate code), this scheme was known as multipass compilation.
Multipass compilation made it possible to use a compiler that was much
larger than the available core memory. The compiler group had already
used multipass compilation of Algol programs on Dask and Gier.

Peter Naur and Jørn Jensen would be responsible for the overall design of
the Cobol compiler. However, in reality, Peter Villemoes became the project
leader. The design, programming, and testing of the individual passes would
be done by Sven Eriksen, Roger House, Jørn Jensen, Peter Kraft, Paul
Lindgreen, Ole Riis, Peter Villemoes, and me. Naur’s cousin, Berta Kiær,
would be our secretary.

Back in the Rialto center, my first task was to program the parser, a
compiler phase that would check if the syntax of a Cobol program (that is,
the sequence of programming symbols) was correct.

Instead of having a few basic constituents, that could be used in many
contexts (as in Algol 60), Cobol 61 consisted of a large number of unrelated
clauses, each of which required a special piece of code in each pass. This
complexity made it impractical to perform syntax analysis the same way it
was done in Gier Algol (by simulating a so-called “finite state machine”).

I invented a different method of representing the Cobol syntax by linked
lists of symbols. The parser would input a Cobol program, one symbol at
a time, and use the linked lists to check the syntax. The parser would also
erase all clauses with illegal syntax. This was my first (modest) invention in
system programming.

When it was finished, the machine code and fixed tables of the syntax
analyser occupied about 5,000 lines in assembly language—a fairly hefty
program for a beginner. Other members of the group programmed compiler
passes that were more complicated than the parser. However, after forty
years, I no longer remember exactly who did what.

3. Learning from the Masters 1963–66 49

As I mentioned earlier, assembly language is extremely difficult to un-
derstand. Even after a short vacation, you may find it difficult to remember
the meaning of your own assembly language program. I solved the problem
of program documentation by adopting a brilliant method used to document
the Gier Algol compiler: I divided each program page into two halves. The
left half defined the program in assembly language, while the right half de-
fined the same program in Algol 60. The assembler treated the Algol 60
statements as comments to be ignored. However, these comments simplified
my job tremendously, since it was fairly easy to determine if a sequence of
assembly language instructions implemented an Algol 60 statement correctly.

Now, if a program and its description are two separate documents, a
programmer may not always remember to update the description, every
time the program is modified. However, since the documentation method
combined an assembly language program and its definition in Algol 60 in one
document, it became natural for me to update both parts simultaneously.

My yearly salary of 22,900 kroner (about $3,300) was not a lot of money
in 1963. So at the end of my first year at Regnecentralen, I asked Jørn for
a raise. I told him, that I liked my job and would hate to give it up at
this point. On the other hand, I felt obliged to take the consequences of my
request—otherwise, how could I expect him to take it seriously? So I asked
him to reach a decision within a fortnight. If I got no raise, I would find
myself another job. Jørn smiled and said: “This is a viewpoint I can only
respect. I will talk to Bech and tell you, whether you will get a raise or lose
your job.”

On April 5, 1964, I wrote to Milena: “Don’t be nervous: I got my raise
the following day.”

A month later, serious testing of the Cobol compiler began. The compiler
passes were tested, one at a time, in their natural sequence (pass 1 was
debugged first, then pass 2, and so on). The compiler was tested by letting
it compile small test programs written in Cobol—a method borrowed from
Gier Algol.

The parser was the second compiler pass. When I began my tests, pass 1
had already been tested and was therefore able to compile my test programs
into correct input for pass 2. In each test run, the compiler printed the test
program, that was being compiled, followed by the output produced by pass
2. By comparing the test program and the corresponding output from the
parser, it was easy to see which symbols it handled incorrectly. I would then
correct the parser and repeat the same test case, until it worked.

50 A Programmer’s Story

You must remember, that the compiler was being programmed in one
country and tested in another. In Munich, Siemens was still testing various
aspects of the hardware. The machine was in so much demand, that we
also had to use it in the evenings and during weekends, when the Germans
went home. Let me tell you, walking towards Siemens on Hofmannstrasse
51, at 4 in the afternoon, while 10,000 workers walked the other way, was an
experience!

With our limited access to the computer, there was no opportunity to
experiment with incomplete programs. We took turns arriving in Munich
with a complete compiler pass and a set of test programs, that had already
been punched on cards and proofread in Copenhagen. The compiler passes
were so carefully planned that few (if any of them) had logical flaws. The
main purpose of our systematic testing was to remove the inevitable clerical
errors.

I continued to use this method of program development for forty years.
In my experience the combination of careful design, proof reading, and sys-
tematic testing can make programs more reliable than the hardware they
run on.

Of course, this glib description does not reveal my early frustration with
the parser, when nothing worked, and nothing was printed! The only thing
I could do in that situation, was to read the beginning of my program,
instruction by instruction, until I figured out why it produced no output.

From then on, my testing went as planned:

May 26, 1964

Dear Father—My program works! Believe me, it is an experience,
finally to work on a large computer. I have been to Yugoslavia
twice on my weekends.

Soberly yours, Per

Although I now ‘knew’ how a computer worked, I still found it unbeliev-
able that a machine would follow thousands of instructions I had written in
pencil. It is pure magic that human beings have learned to construct com-
putational processes by combining electricity, transistors, circuits, computer
architecture, assemblers, compilers, operating systems, and user programs.
If you don’t share that feeling of awe, you haven’t really understood the
miracle of computing.

3. Learning from the Masters 1963–66 51

In Munich, we stayed at Hotel Daniel, Karlsplatz 15, close to the main
railroad station. Here is a letter to Milena, mailed from the hotel on June
8, 1964:

You are quite right, we had troubles with the program. In such
a large program, there are always bound to be some errors. In
fact, we are only here to detect and correct such ‘bugs’ and it
has been quite a tricky task. But it works now, and I think I can
fly back to Copenhagen by the middle of this week. However,
first I must have some talks with the Germans about my next
program.

We are running to and from the computer all day long, from 9
in the morning till 7 in the evening. In the begining, the Germans
were a bit puzzled by our unsocial behavior: we never spent much
time chatting with them and would often criticize the way they
had designed their computer.

Last week, however, we had occasion to repair this impres-
sion. We were invited to join them in their monthly ‘lab evening’
(‘Labor-Abend’). This is an evening where they go with their
spouses to a restaurant and talk about anything but their work.
When we arrived at the outdoor restaurant in Schwabing, the
Germans had already been drinking for three hours and were in
high spirits. One shy fellow was making speeches for all the girls
at Siemens. That evening, artists exhibited their paintings by
candlelight, while a group of teenagers played guitar and sang
the blues. An endless stream of people crowded the pavement
and the outdoor restaurants.

We had several bottles of a not-so-famous white wine, labeled
‘No 1a,’ and engaged the Germans in the conversation they had
missed. The evening ended in some strange restaurant at 3 a.m.
The next day, I felt like a dying man in the computer room.

? ? ?

We were young and cocky and not always as polite to our German hosts, as
we should have been.

The Siemens 3003 had a hardware feature that was meant to prevent
its operating system from being destroyed by incorrect (or malicious) user
programs. The operating system resided in a fixed part of memory. When

52 A Programmer’s Story

you flipped a switch on the computer, it became impossible to change any
memory location within the protected area. This certainly guaranteed that
the operating system code could not be changed during program execution.

However, the computer architect had overlooked one thing: an operat-
ing system must be able to record various data about running programs to
function correctly. Since it was impossible to update memory locations in
the protected area, the operating system had to keep its variables in unpro-
tected memory locations, where they were completely at the mercy of user
programs. If programs made arbitrary changes to these locations, it would
soon crash the operating system.

In short, the so-called “memory protection” was a hacker’s dream. The
members of the compiler group knew this. When the Germans demonstrated
the machine for us, it was a favorite joke of our American programmer, Roger
House, to say: “Excuse me, you forgot to turn the protection switch on!”

? ? ?

Once in a while, the computer broke down, leaving us with a perfect excuse
to relax:

Last friday, our computer broke down completely, so we have
had a quiet weekend without any work whatsoever. It is very
hot in Munich, so yesterday we took a trip to the countryside to
a small mountain lake, where we ate a tremendous dinner. Af-
terwards, we rented a rowing boat and drifted around the lake.
Our ‘real’ work has been delayed quite a bit by repeated com-
puter failures, so I will probably have to stay here at least an-
other week. Not that I mind, since time passes easily in a city
like Munich: we go to the theater and concerts, and eat mostly
in ‘foreign’ restaurants—Chinese, Hungarian, Bosnian, Russian,
Spanish, and Italian. (Letter to my father, June 11, 1964)

Breakfast was included in our hotel bill, and Siemens gave us a free
lunch. Since Regnecentralen allowed us to spend a fixed daily amount for
meals, we had plenty left for sumptuous dinners around town. We became
connoisseurs of Munich’s restaurant scene, and knew, for example, which of
the two Russian restaurants was the best one. I soon learned that putting
on weight is much easier than losing it again (which I never did).

? ? ?

3. Learning from the Masters 1963–66 53

On August, 21, 1964, I presented my first scientific paper at the NordSAM

conference in Stockholm, Sweden. It described a method that made the
evaluation of logical expressions slightly faster during the execution of a
compiled Cobol program.

A logical expression of the form [if] a greater b and less c . . ., is
evaluated in three steps: (1) First, check if it is true (or false) that a is
greater than b; (2) Then, check if it is it is true (or false) that a is less
than c; (3) Finally, check if both conditions turned out to be true (or not).
Since the greater and less relations are evaluated before the and relation,
greater and less are said to be operators of higher priority than and.

However, if it turns out in step 1 that a is not greater than b, then step 2
is superfluous, and can be skipped. That was the whole idea behind my code
optimization.

To me, this was an elegant compilation technique. But, looking back, I
don’t think it served any practical purpose. Before you go to the trouble of
optimizing compiled code, you should conduct an experiment to find out, if
it has any measurable effect. Otherwise, you are just increasing the size of
your compiler for no good reason.

I cannot imagine that the efficiency of business data processing will ever
depend on the speed at which a computer evaluates logical expressions. How-
ever, this minor optimization (which I do not claim to have invented) would
later be included as a language feature in C and Java.

Today, it is still common for programmers to confidently recommend
a method, because “it is faster” than another one—without offering any
performance measurements to document the magnitude of the improvement.

Anyhow, here I was at my first computer conference lecturing in English
to an international audience that included Peter Naur and Edsger Dijkstra.
I was very encouraged to see both of them smiling broadly during my pre-
sentation. Afterwards, I discovered why: In my talk, I constantly said “the
priority of this operator is higher than the priority of that one.” Since En-
glish was not my native language, I mispronounced the word “higher” as
“hi-ger” (with a hard “g” as in “good”). Everytime I did that, Naur and
Dijkstra smiled.

? ? ?

My most difficult programming task was to write the input/output proce-
dures for files stored on punched cards, magnetic tapes, and line printer

54 A Programmer’s Story

forms. This file system would be used during the execution of compiled
Cobol programs.

Each tape station was about the size of a small closet. While a tape
was being read or written, it moved from one reel across a magnetic head to
another reel. To prevent the fast moving tape from breaking during frequent
starts and stops, it also moved through two vacuum chambers, which held
enough loose tape to absorb the forces of acceleration and deceleration.

The tape stations on the Siemens computer were rather unreliable. Jørn
Jensen witnessed a faulty tape station jam a tape by rewinding both reels
at the same time! Dust particles on the tape caused transient input/output
errors. I handled these by transferring the same block of data again. This
could, of course, have been done simply by backspacing over the last block
and reading (or writing) it again. Instead I backspaced ten blocks—enough
to move the bad block into the nearest vacuum chamber, where the air
current would blow the dust off the tape. I would then upspace nine blocks
and transfer the same block again.

A more serious problem was the permanent errors caused by spots of
missing oxide on the tape. The only thing you could do with a bad spot was
to ignore it and write the same block again after the spot. To facilitate error
recovery, each block was output with a block number and a block length.
A block that did not have the correct number and expected length during
input was assumed to be a bad spot and was skipped.

When Jørn Jensen first told Siemens about the need to extend data
blocks on user tapes with two additional words, they would not agree to
this. And who could blame them. It would be a major problem for Siemens
to ask its customers to adopt a new tape format, that would make their
existing tapes unreadable.

I then asked Jørn to tell the Germans that Regnecentralen could not be
responsible for the reliability of tape input/output, unless they agreed to our
proposal. That did it! They agreed, and the tapes worked fine.

Peter Villemoes had developed the techniques for dealing with tape errors
during compilation. However, the more general file system I was writing for
the execution of Cobol programs, posed additional challenges.

Compiled Cobol programs were supposed to run in a core memory of 8K
words only. When a program opened a file, it was assigned a buffer space in
memory. To make the best use of the small memory, the buffer space was
reclaimed, when the file was closed. Over time, the memory ended up being
full of active buffers separated by gaps of unused space left behind by closed

3. Learning from the Masters 1963–66 55

files. If a buffer space could not be found for a new file, the gaps between
the buffers were closed by moving all the buffers to one end of the memory.

The trickiest feature was probably the ability to restart a Cobol program
from a previous point of execution, after a hardware failure. At regular in-
tervals, my input/output procedures would stop the running program briefly
and output restart data on a tape. When the hardware had been fixed, the
most recent restart data were used to instruct the operator to mount the
same tapes, one at a time. The tapes would then automatically move to
the same spots, where they had been, when the restart data were written,
and the computation would resume, as if nothing had happened. This was
fun—and awesome—to watch!

I regard the run-time filing system as my graduation project from the
compiler group. I now understand that it was really a small operating sys-
tem, I had programmed. However, in the mid 1960s, the dividing line be-
tween language implementation and operating systems was still not clearly
understood.

? ? ?

After a total effort of 15 man-years, Regnecentralen delivered a complete
Cobol implementation of 39,000 instructions to Siemens in July 1965. We
had used about 600 hours of computer time to assemble and test the system.
In human time, it took about 45 minutes to program each instruction and
less than 1 minute to test it.

The Siemens Cobol compiler was eight times faster than the fastest Amer-
ican compiler evaluated by the Bureau of Ships (Siegel 1962). After a basic
input/output time of 45 sec, our compiler translated a Cobol program at the
rate of 250 cards per minute, generating final machine code.

When the compiler was completed, Sven Eriksen joined Siemens in Mu-
nich and became responsible for maintaining the compiler. He was incredibly
well organized. We mailed every compiler change to him as a deck of punched
cards with a separate test program to verify that the correction worked. He
kept the punched cards of our original Cobol implementation, and all sub-
sequent modifications, in chronological order in a card filing cabinet.

About a year after the delivery of the Cobol system, a user reported
that my filing system did not work correctly. Since Siemens had modified
the Cobol system in places, it could have been a nightmare for me to travel
to Munich and determine what the error was and who was responsible for
correcting it.

56 A Programmer’s Story

Instead I asked Eriksen to reestablish the compiler exactly as it was a
year ago. He was able to do that, and demonstrate that the customer’s
program worked under the original file system, we had delivered. That got
me off the hook and left Siemens with the problem of figuring out, what they
had done wrong after the delivery.

I wonder, how many software developers today treat system updates in
the same professional manner?

? ? ?

Peter Naur encouraged Roger House, whose native language was English,
to write a paper about the Cobol compiler. Since this idea got nowhere, I
wrote the paper with helpful comments from Roger. It was published in the
Scandinavian journal BIT in 1966.

Today, few people (if any) have access to the Cobol compiler for the
Siemens 3003 computer. But anyone, who is interested, can still read about
it in BIT. In the long run, it seems to me, the most important aspect of
programming is the description of interesting ideas in readable papers. The
programs themselves are merely useful by-products of this effort. Besides
intellect, the most valuable asset of a programmer is the ability to write
clearly! Needless to say, this viewpoint is not popular among students, who
prefer free-style “coding” without the burden of documentation.

? ? ?

Before joining Regnecentralen in 1963, I met Milena in Slovenia. During my
trips to Munich over the next two years, I visited her ten times. This was
the most romantic episode in my life. On March 27, 1965, we were married
in the townhall of Ljubljana.

The compiler group sent us a telegram with amusing comments on the
wisdom of marrying (Fig. 3.1).

3. Learning from the Masters 1963–66 57

27 3 65

milena and per brinch hansen
hotel belvedere
izola istria

lucky test berta stop
no protest riis stop
poor you but yet gerda kraft stop
lucky you lindgreen stop
and all that jazz diane stop
mondrup toke johansen stop
believe us it is not too bad roger and jeanne stop
a challenge but worth it naur stop
a huge gratulation from the absent guys

Figure 3.1 Wedding telegram from the compiler group.

4

YOUNG MAN IN A HURRY 1966–70

Naur’s vision of datalogy – Architect of the RC 4000 computer – Programming

a real-time system – Working with Henning Isaksson, Peter Kraft, and Charles

Simonyi – Edsger Dijkstra’s influence – Head of software development – Risking my

future at Hotel Marina – The RC 4000 multiprogramming system – I meet Edsger

Dijkstra, Niklaus Wirth, and Tony Hoare – The genius of Niels Ivar Bech.

I was fortunate to start my programming career at Regnecentralen. For
almost three years, I had participated in the design, programming, testing,
and documentation of a large compiler. I knew it was time to leave the
compiler group and try something else. Niels Ivar Bech had something in
mind—but I had other ideas.

In a brilliant paper, Peter Naur (1966a) viewed compilation as a gen-
eral data processing problem that involves more fundamental programming
methods, which he felt should be taught as part of a core of computer science.
At a time, when compiler contruction was still regarded as a fundamental
subject in its own right, Naur’s insight was ahead of its time.

In 1966, Bech invited me to join a working group consisting of Peter
Naur, Christian Gram, Henning Bernhard Hansen, Jens Hald, and Alan
Wessel. Their goal was to develop a systematic text on datalogy (as Naur
called it). This was an exciting idea—but it was not mine. My answer to
Bech was honest: “Thank you, but I prefer to wait until I am writing my
own book.”

Naur (1968) proceeded to outline a complete core course on computer
science based on fundamental principles. His vision of computer science was
published in the same year as Donald Knuth’s famous Volume 1 of The Art
of Computer Programming (1968).

For various reasons, the working group never finished its ambitious project
(although parts of it was published in Danish). A short English version of
the complete text was published in 1974, with Peter Naur as the only author.

Copyright c© 2004 by Per Brinch Hansen.

59

60 A Programmer’s Story

? ? ?

After my three-year apprenticeship at Regnecentralen, Milena and I were
talking about living abroad for a while. After my graduation, IBM had
encouraged me to keep in touch, in case I would be interested, after some
years, in working at one of their labs in Sweden, England, or the United
States. That sounded promising after my enjoyable experience at the IBM

Hursley Laboratory in the summer of 1961.
Henning Isaksson had asked Niels Ivar Bech for a systems programmer

for quite some time. Since I was thinking of leaving anyhow, Bech suggested
that I might join Isaksson’s hardware group in Valby.

In the Polish city of Pulawy, the Danish engineering company, Haldor
Topsøe, was designing the largest fertilizer plant in Europe. The company
signed a contract with Regnecentralen to deliver a small computer with
data logging software. The system was supposed to demonstrate that the
plant satisfied the specifications guaranteed by Topsøe, and would also help
management with maintenance of the plant.

From the beginning, Henning and I viewed the Pulawy-project as an
opportunity to develop Regnecentralen’s third computer. However, Bech
did not see it that way. He strongly encouraged Henning to use the recent
CDC 1700 computer. Bech was not known for cautious decisions. On this
occasion, he may have been influenced by Regnecentralen’s reorganization
in 1964 as a limited company with shareholders.

Henning finally said: “Look, if we use CDC software in our process con-
trol programs, our customers will expect us to help them with the problems
of software, that we have not developed.” This argument persuaded Bech
that we would be better off developing our own process control computer.
He remembered only too well how Regnecentralen had been forced to use
Fortran on its large CDC 1604 computer, because the Algol compiler from
Control Data turned out to be unreliable (Isaksson 1976). In 1978, I gave
the same answer, when the chairman of Mostek Corporation asked me, if I
thought it would be a good idea to put an IBM mainframe computer on a
chip.

Now, if something has a name, it obviously must exist. My favorite
example is the medical term “essential hypertension.” With a name like
that, who could doubt that medical doctors know, what they are talking
about. On the contrary, if doctors don’t have a clue about the cause of
hypertension, they call it “essential.” So, although Gier’s successor was
still on the drawing board, we needed a name for it. The natural choice

4. Young Man in a Hurry 1966–70 61

would have been calling it the RC 3. However, Regnecentralen was already
marketing the RC 3000, a special-purpose device for data conversion. So I
suggested calling the new computer the RC 4000, since “who would buy an
RC 3 for a million kroner, when you can buy an RC 3000 for a lot less?” So
RC 4000 it was.

? ? ?

Henning was an efficient manager and very pleasant to work for. At my
request, he persuaded Bech to let Peter Kraft join us from the compiler
group. Peter was an experienced programmer who had learned his craft
during the Gier Algol project. Of average height, with a receding hairline
and large, dark-rimmed glasses, his face was usually lit up by a brilliant smile.
We worked well together, perhaps because he provided a calming influence
on my own forceful personality. The hardware engineer, Villy Toft, wrote
this portrait of Peter:

Cheerful, humourous and positive, he had a constructive ap-
proach to problem solving, unhampered by potential problems.
A gifted problem solver with an analytical talent, who showed
no signs of stress, he worked quietly and calmly with other mem-
bers of the group as a catalyst and inspirator. His modesty gave
him a tendency to downplay his own achievements, even though
others valued them highly.

Most of us should be so lucky to be remembered like that!
When it became obvious that Peter and I would need another program-

mer, Bech sent us a Hungarian teenager! At age 14, Charles Simonyi wrote
his first program for a huge Russian Ural II computer in Budapest, where
his father was professor of electrical engineering. He desperately wanted to
leave his communist country and emigrate to the United States. During a
demonstration of the Gier in Budapest, Charles met Bech, who offered him
a one-year job in Denmark. After completing high school, he left Hungary
in the summer of 1966 and came to Denmark without an education. He
was 17 years old, had a Beatles haircut and spoke limited English with a
Hungarian accent. When he heard a Caravelle jet outside, he would open
the window, stick his head out, and shout: “Vonderful Caravelle.” At the
end of the Pulawy project, Charles had saved enough money to go to Cal-
ifornia. At Berkeley, he paid for tuition by working as a programmer in

62 A Programmer’s Story

the university computing center. After graduating in 1972, he joined Xerox
Palo Alto Research Center, where his former professor, Butler Lampson, and
others were pioneering personal computing on Alto personal computers with
graphic interfaces, mice, laser printers, and ethernets. For the Alto, Butler
and Charles designed Bravo, the first graphic text editor. When Simonyi
joined Microsoft in 1981, he brought his knowledge of Bravo and turned
it into Microsoft Word. Today, Charles is a member of the U.S. National
Academy of Engineering. He is also very rich.

? ? ?

Before Simonyi joined us, Peter Kraft and I had already defined the archi-
tecture of the RC 4000, and the prototype for Pulawy was being assembled
in a small lab right below our office.

With 1K words of memory only (about 5K bytes), the Gier computer had
been designed for clever handcoding of compact machine code. Experienced
programmers had been known to stare for days at small fragments of the
Gier Algol compiler, trying to figure out what Jørn Jensen’s code was doing.

However, by 1965, it seemed safe to predict that, by the end of the decade,
most programs would be written in high-level languages for computers with
large memories. Most machine code would then be generated by compilers
(and not by programmers).

When programmers write compact code, they take advantage of all kinds
of programming tricks. It is not so easy to write a compiler that does the
same kind of optimization. From a compiler writer’s point of view, the
ideal computer should have a systematic instruction set that makes code
generation straightforward (but not necessarily optimal). Faster processors
and larger memories would soon make this approach practical.

In defining the instruction set of the RC 4000, our goal was to simplify
program compilation (instead of hand-coding). Whereas most computers
had several instruction formats, the RC 4000 would have only one. This
meant that any instruction could use the full set of addressing modes.

Every instruction defined an operation between a memory location and
a register. However, by addressing the registers as the first four words of
memory, you could operate on any pair of registers. It was even possible to
jump to a register and execute its value as an instruction. This feature was
used to autoload an initial program into an empty memory.

The basic addressing modes were extended by an instruction, called Mod-
ify Next Address, which used its own address to increment the address part

4. Young Man in a Hurry 1966–70 63

of the next instruction. (The operation changed only the effective address
of the next instruction but left its displacement field unchanged.) This in-
struction made it possible to use any memory location as an index register.
A sequence of these instructions could modify an instruction with the sum
of several registers or perform multiple-levels of indirect adressing.

Since the hardware and software engineers lived in different worlds, I
faced the problem of describing the architecture in a formal language that
made sense to both groups. Although pictures with informal explanations
were helpful, they could not always convey the finer details accurately.

I settled the issue by using Algol 60 as a hardware definition language.
Before the computer was built, I wrote a reference manual that defined the
instruction set completely by an Algol program. This program simulated the
execution of RC 4000 machine code using simple and indexed variables to
represent hardware registers and memory locations. It defined how operands
were addressed in memory, and how arithmetic results were computed, bit
by bit, with overflow detection. It also defined the instruction fetch cycle,
the memory protection system, the interrupt system, and the function of the
power-on and reset keys.

Peter Kraft still remembers that if we discussed some aspect of the ar-
chitecture, which at first looked like a detail only, I would often go home
and work throughout the night, revising and rewriting the description of the
architecture one more time.

Inspired by my use of Algol 60 as a hardware definition language, one
of Isaksson’s engineers, Allan Giese, extended Algol and used it to describe
the internal structure of the RC 4000 (the microprogram).

At some point, Niels Ivar Bech called a meeting with Christian Gram,
Jørn Jensen, Peter Naur, Bjarner Svejgaard, Henning Isaksson and me to
discuss the proposed RC 4000 architecture. This was a valuable opportunity
to benefit from the comments of Regnecentralen’s senior people. It was also
a “final exam” I had to pass, before Isaksson would get the green light to
build the machine.

In preparation for the meeting, I distributed a detailed draft of the
RC 4000 reference manual. At the meeting, the architecture was accepted
without much discussion. I may have learned something from Naur’s per-
formance in the Algol 60 committee. It may also have helped that I had
seventeen years of experience in writing essays.

This was a group of people who (quite correctly) insisted on concise
writing. I still chuckle when I remember what Christian Gram said at that

64 A Programmer’s Story

meeting, almost forty years ago. In my draft, I wrote, ”A special autoload
instruction is used for initial program loading.” Christian’s response was:
”All instructions are special.” Bingo!

In April 1967, Regnecentralen published the first official edition of my
RC 4000 Computer Reference Manual. Two years later, Christian Gram
extended the manual with complete definitions of floating-point arithmetic
(Brinch Hansen 1969b). At that point, it was no doubt the only reference
manual in the world that made it possible for programmers to predict the
result, bit by bit, of dividing two non-normalized floating-point numbers!

? ? ?

I don’t mean to drag you through the details of fertilizer production and
real-time programming. But I would like you to understand the gist of what
we did, since this was my first encounter with a major revolution in computer
programming that became the focus of my professional work for thirty years:
concurrent or parallel programming—the art of making a computer execute
several programs at the same time.

The three units of the Pulawy plant produced ammonia, nitric acid, and
ammonium nitrate. The plant was operated manually under supervision of
the RC 4000 prototype, which had a core memory of 4K words (about 12K
bytes), but no drum or disk.

John Saietz, a chemical engineer from Haldor Topsøe, worked with Peter
Kraft to specify the process control tasks:

The RC 4000 would count the production of fertilizer and the consump-
tion of electricity by sampling digital signals from bag-filling devices and
kilowatt-hour meters every second. Every five minutes, the computer would
input about 350 analog measurements of pressures, temperatures, and ma-
terial flow rates, checking that they remained within certain alarm limits.
Every hour, two snapshots of the plant operation would be printed, listing
some 550 analog measurements. When one shift of workers was replaced by
another, the machine would print a report of material balances showing the
production and energy consumption over the past eight hours.

Topsøe also wanted the operators to be able to make the computer per-
form some tasks more frequently, when units of the plant were being restarted
after repair.

It was now up to us to translate the chemical engineer’s specification into
real-time control software.

4. Young Man in a Hurry 1966–70 65

Ignoring for the moment the engineering details of fertilizer production, a
programmer might summarize the project as follows: a small computer has to
perform a fixed number of cyclical tasks with frequencies determined by plant
operators. These tasks must be able to share data tables and input/output
devices (including an analog/digital converter and various printing devices).

It seemed natural to write a separate program for each control task.
However, we could not expect to fulfill the real-time requirements by exe-
cuting one task program at a time: two task programs might need to be
started at the same time, and the time required for a single execution of a
task program might also be longer than the time interval between successive
executions of other task programs.

Ideally, we would have liked to be able to run task programs in paral-
lel. However, since the computer could only execute one instruction at a
time, we had to settle for a pseudo-parallel mode of execution, known as
multiprogramming.

Four hundred times a second, an electronic timer interrupted the running
task program and transfered control to a scheduling program, known as the
monitor. The monitor then resumed the execution of another task program
for 2.5 msec, and so on. In this way, the computer was shared cyclically
among the active tasks.

The use of clock interrupts to simulate concurrent execution of programs
was pionered on the Atlas computer by Tom Kilburn and David Howarth
(1961). Multiprogramming is still the principle behind time-sharing operat-
ing systems (such as Unix or Windows).

Switching a single computer among multiple tasks is similar to a waiter
(the computer) serving several tables (the tasks). As long as the waiter only
spends a fraction of his time at each table, most of the customers will be
able to eat at the same time.

In the Pulawy system, each task used only a few percent of the computer
time. The rest of the time, the tasks would wait for slow peripheral devices.
As soon as a task started waiting for the completion of input/output, the
monitor switched to another task. So although the tasks never executed
instructions simultaneously, the typewriters would nevertheless print at the
same time.

In our real-time system, we needed some form of synchronization to pre-
vent several tasks from using the same printer (or data table) at the same
time. But what kind of synchronization?

The early multiprogramming systems were programmed in assembly lan-

66 A Programmer’s Story

guage without any conceptual foundation. The slightest programming mis-
take could make these systems behave in a completely erratic manner that
made program testing nearly impossible.

A common synchronization technique at the time was to suspend a task
in a queue until it was resumed by another task. The trouble was that
resumption had no effect if the queue was empty. This happened if resump-
tion was attempted before a task was suspended. (This pitfall reminds me
of a mailman who throws away your letters if you are not at home when he
attempts to deliver them!)

This mechanism was unreliable because it made a seemingly innocent
assumption about the relative timing of parallel events: A task must never
attempt to resume another task that is not suspended.

Since the Pulawy operators could change the frequencies of individual
tasks (and even stop some of them indefinitely), we could not make any
assumptions about the relative (or absolute) speeds of the tasks. Time-
dependent event queues would have been a disastrous choice for our real-
time system. Around 1965 IBM’s PL/I language included event queues of
this kind. Surprisingly, the suspend and resume primitives are also included
in the recent Java language.

Regnecentralen had no experience with multiprogramming. Fortunately,
Edsger Dijkstra was kind enough to send me a copy of his 1965 monograph
Cooperating Sequential Processes, with a personal dedication: “Especially
made for graceful reading!” (I still have it.) One of the great works in
computer programming, this masterpiece laid the conceptual foundation for
concurrent programming.

It began by making the crucial assumption about speed independence:

We have stipulated that processes should be connected loosely;
by this we mean that apart from the (rare) moments of explicit
intercommunication, the individual processes themselves are to
be regarded as completely independent of each other. In particu-
lar, we disallow any assumption about the relative speeds of the
different processes. [In Dijkstra’s terminology, individual tasks
were known as processes.]

Dijkstra proceeded to illustrate how concurrent processes can synchronize
themselves correctly by sending timing signals through semaphore variables
(as he called them).

4. Young Man in a Hurry 1966–70 67

Using semaphores, I was able to program the RC 4000 real-time monitor
in only 400 words of memory, leaving 3,700 words for the data logging tasks
that would be implemented by Peter Kraft and Charles Simonyi.

To reduce the size of the task programs, Peter and Charles defined a
special-purpose computer that made it easy to write compact code for the
complicated engineering computations. The code for this computer was
executed by a small interpreter written in RC 4000 machine code. Such
a machine, implemented in software (rather than hardware), is known as an
“abstract machine.” (In the 1980s, interpreted code would also be used in the
first versions of the Microsoft Word and Excel programs for the Macintosh
computers.)

Interpreted code has also been a marvelous tool for language implemen-
tation. The idea of letting a compiler generate code for an abstract machine
tailored to a programming language goes back (at least) to LISP in the early
1960s. A major advantage of interpreted code is that it is “portable”— it
can run on any computer, if you reprogram the interpreter in the machine
code of the target machine. In the 1970s, abstract machines would be used
to implement portable compilers for Pascal and Concurrent Pascal. Twenty
years later, the same technique would be used to make the Java language
“platform-independent.”

Now back to the RC 4000 real-time system. The final system occupied
98 percent of the 4K word memory. How was it possible to predict the size
of the software that precisely? Well, John Saietz simply gave us a list of
desirable features that could be omitted, if necessary. We just kept adding
more of these until the memory was full.

At the NordSAM conference in Oslo, Norway, on June 13, 1967, Peter
Kraft presented two papers, written by me, on the RC 4000 computer and
its real-time control system (Brinch Hansen 1967a, 1967b). According to
Electronic News:

Some 400 representatives from the Scandinavian countries par-
ticipated in NordSAM 67. . .The RC 4000 system developed by
A/S Regnecentralen of Copenhagen, a general-purpose computer
especially suited for real-time control, was held up as perhaps the
most promising development for international markets. (July 10,
1967)

In the same month, Regnecentralen began installing the RC 4000 proto-
type and its real-time system in Poland. The communist government was

68 A Programmer’s Story

responsible for construction of the plant. Unfortunately, under Wladislaw
Gomulka’s regime, efficiency was not a top priority. When Villy Toft and
Peter Kraft arrived in Pulawy, the computer room still left something to
be desired: it had neither doors nor electricity. It required patience and
diplomacy to get the room finished. However, a week later, these problems
had been fixed, and the installation could begin. The final operational tests
of the plant and its real-time datalogging system took place in the spring of
1968.

Later, I heard that the Polish government had not built enough railroad
capacity in Pulaway, and was unable to ship the fertilizer as fast as it was
being produced to prevent it from piling up. While I cannot confirm this
story, I do know Villy had to deal with mice and rats, who ate the backplane
wiring and relieved themselves on the circuit boards.

Strangely enough, I never visited the chemical plant in Poland, probably
because I didn’t like flying. I did travel once by train from Copenhagen
to a meeting in Warsaw, enjoying warm tea from a samovar in the rear of
the train. Returning through East Germany, I saw armed border guards
using huge mirrors to look under the train for refugees trying to escape the
communist regime.

? ? ?

In June 1967, I returned from Regnecentralen’s hardware group in Valby to
the Rialto Center as head of RC 4000 software development. From Aage
Melbye’s group, Peter Kraft and I were joined by Christian Gram, who
would define floating-point arithmetic and numerical procedures, and by
Søren Lauesen, who would be responsible for developing an Algol compiler.

I was now officially in charge of more projects than I could hope to par-
ticipate in. However, it still seemed important to me to continue doing, what
I enjoyed most—designing and documenting systems programs. I therefore
decided to head an operating system group consisting of Jørn Jensen, Peter
Kraft, Søren, and me.

In Pulawy, we had tailored a small real-time system to the specific needs
of a single customer. We were now hoping to develop a more general monitor
program for the RC 4000. It remained to be seen what kind of generality we
were looking for.

First we proposed a system with fixed memory partitions for simulta-
neous execution of three programs, with runtimes of the order of seconds,

4. Young Man in a Hurry 1966–70 69

minutes, and hours, respectively. But, we soon realized that this ad hoc
system was not a “general” solution to anything.

Finally, I went to Bech and said: “Look, we aren’t getting anywhere. Is
it all right with you if Jørn, Søren, Peter, and I stay at a country inn for
a weekend?” Bech immediately agreed (he had done the same thing when
Regnecentralen’s Cobol project had come to a standstill).

I wanted us to discuss the software issues in depth in cozy surroundings
to give ourselves one last chance. We had already agreed that we would
either return with new ideas or give up and settle for copying the best ideas
we could find elsewhere.

How on earth did I have the nerve, at age 29, to gamble my career on
a single weekend? Never underestimate the power of the dreams of youth
(and its blissful ignorance of “the real world”)!

Anyhow, on October 28, 1967, we checked in at Hotel Marina by the
seashore, north of Copenhagen. We talked for two days, drank coffee with
French cognac, and enjoyed fine dinners. One evening, Jørn and I saw a
black-and-white western at a local movie theater—just what we needed to
relax after intense discussions.

And it worked! The thought of returning to Regnecentralen without new
ideas was simply unacceptable to us. Out of that weekend came the first
seminal ideas for the RC 4000 multiprogramming system.

Over the next four months, our discussions moved beyond known con-
cepts to the cutting edge of operating system design. I will not attempt
to describe how our ideas slowly emerged in daily discussions (I remember
some, but not all, of it). Instead I will explain how one thing led to another
until everything fit together nicely. Just keep in mind that our conclusions
did not emerge nearly as orderly as I present them here.

Regnecentralen was already using computers for software development
and business data processing. The Pulawy project added real-time appli-
cations to this mix. Unfortunately, real-time software is often unique for
each application. And, Regnecentralen simply did not have enough system
programmers to develop a different operating system for each RC 4000 in-
stallation.

To avoid that trap, we had to look at operating systems in a new way.
Computer manufacturers were still developing different operating systems
for batch processing, time-sharing, and real-time scheduling. Our hope was
to develop a monitor program that would provide the necessary mechanisms
to implement all forms of multiprogramming.

70 A Programmer’s Story

Regnecentralen’s main service center updated large files on magnetic
tapes. Early on, we decided to simplify the operator’s task in such an in-
stallation. Instead of using device numbers, programs would refer to tapes
by device-independent names. This convention would allow an operator to
mount a tape on any available unit and give it a temporary name.

From Dijkstra, we had learned to regard the execution of a program
as a sequential process. Now, when you think about it, a sequence of in-
put/output operations on a magnetic tape is also a sequential process. This
insight led us to regard program execution and input/output as different
kinds of processes—we called them internal and external processes.

Since we had already decided to assign names to peripheral devices, it
was more or less inevitable that we would also end up giving names to
internal processes. The beauty of this idea was that programs could refer
to processes by their names without knowing where in memory they were
located.

We still had to deal with the problem of process synchronization. Sema-
phores were not robust enough for our purposes. If a program used
semaphores incorrectly, it could crash any operating system. Instead, the
monitor would implement a reliable form of message passing. When one pro-
cess sent a message to another process, the message was copied inside the
monitor and linked to a message queue associated with the receiver. The
memory protection guaranteed that the message would remain intact until
it had been safely delivered to the receiver.

So we now had named processes communicating by messages. You didn’t
have to be a genius to suggest that it would be a neat idea to let internal
processes request input/output by sending messages to external processes.
The monitor would, of course, have to maintain a message queue for each
device.

However, since an input/output operation could fail, it would be neces-
sary to return an acknowledgment to the process that sent a command to a
device. The way we handled this problem was elegant (but not so obvious).
In the end, every communication with a peripheral device consisted of an
exchange of a message and an answer between an internal process and an
external process. Devices received input/output commands as messages and
returned acknowledgments as answers. Needless to say, we soon decided to
let internal processes communicate the same way.

Every communication could now be viewed as a procedure call from one
process to another: a message identified the procedure and supplied its input

4. Young Man in a Hurry 1966–70 71

parameters; the corresponding answer returned the results of the procedure
call. In distributed systems, this form of communication is now known as
remote procedure calls.

Our final idea was to let internal processes form a tree structure in mem-
ory. In this tree, every process would function as the operating system for
its children, who, in turn, would control their own children, and so forth.
The leaves of the tree would be user processes. The idea of running several
operating systems at the same time is, of course, beautiful, but who needs
it? Over the years, I have learned not to worry about such questions. If
an idea is elegant, you will, sooner or later, find an (unexpected) use for
it. The generality of a process tree does, for example, provide an orderly
way of switching between different operating systems. It also enables you to
test a new operating system on top of an old one, which is a lot easier than
developing it on an empty machine.

In February 1968, before programming the system, I described our design
philosophy, which drastically generalized the concept of an operating system:

The system has no built-in assumptions about program schedul-
ing and resource allocation; it allows any program to initiate
other programs in a hierarchal manner. Thus, the system pro-
vides a general frame[work] for different scheduling strategies,
such as batch processing, multiple console conversation, real-time
scheduling, etc. [Here I obviously meant “processes” rather than
“programs.”]

The RC 4000 multiprogramming system was not a complete operating
system, but a small kernel upon which operating systems for different pur-
poses could be built in an orderly manner The kernel provided the basic
mechanisms for creating a tree of parallel processes that communicated by
messages.

This radical idea was probably the most important contribution of the
RC 4000 system to operating system technology. If the kernel concept seems
obvious today, it is only because it has passed into the general stock of
knowledge about system design. According to the IEEE Computer Society
(2002):

The RC 4000 multiprogramming system introduced the now-
standard concept of an operating system kernel and the sepa-
ration of policy and mechanism in operating system design. The

72 A Programmer’s Story

microkernels and remote procedure calls used in modern operat-
ing systems can trace their roots back to the RC 4000 system.

A well-documented reliable version of the RC 4000 multiprogramming
system was running in the spring of 1969. At that point, I described it in a
5-page journal paper.1 I then used this paper as an outline of the 160-page
system manual by expanding each section of the paper.2

? ? ?

Regnecentralen built several operating systems on top of the RC 4000 kernel.
Some of them used dynamic swapping of processes between main memory
and backing storage. As usual, the kernel only provided a mechanism for
doing this, but left the policy of how and when it was used to an operating
system. The latter would ask the kernel to stop a running process and
its descendants temporarily. The operating system would then output the
memory image of the process to a backing store, and use the same memory
segment to reload the image of another process, that had been stopped
earlier. The operating system would then ask the kernel to restart that
process and its descendants.

In the early 1970s, Regnecentralen developed RC 4000 software for two
Danish power plants, Vestkraft and Nordkraft. Villy Toft was again the
system installation manager. Working with Niels Nedergaard from Vestkraft,
Peter Kraft and Otto Vinter designed a process control system that combined
real-time tasks with swapping of Algol programs running as background jobs.
Later Regnecentralen’s Einar Mossin joined forces with Peter and Niels in
designing and programming a real-time system for Nordkraft. One of the
challenges here was to record the avalance of alarms, that occurs when the
plant is close to a breakdown.

I hired a student, Leif Svalgaard, who became so absorbed in program-
ming the RC 4000 for a Danish Weather Bureau, that he forgot to take his
final exam. Leif wrote an operating system that received data and plotted
weather maps in real-time. This operating system coexisted with another
one that used swapping to perform scientific computations in parallel. Ac-
cording to Leif: “The RC 4000 kernel made all this safe, efficient, and easy,

1P. Brinch Hansen, The nucleus of a multiprogramming system, Communications of
the ACM 13, April 1970.

2P. Brinch Hansen, RC 4000 Computer Software: Multiprogramming System, Regne-
centralen, Copenhagen, Denmark, April 1969.

4. Young Man in a Hurry 1966–70 73

allowing us to concentrate on meteorological problems instead of fighting the
operating system.”

Søren Lauesen (1975) described an ambitious operating system designed
to handle batch processing, remote job entry, time sharing, jobs generated
internally by other jobs, as well as process control simultaneously. It used
over a hundred parallel activities, one for every peripheral device and job
process. Since the RC 4000 multiprogramming system was limited to 23 con-
current processes, the “Boss 2” system (as it was called) simulated another
level of multiprogramming inside a single RC 4000 process. The additional
processes were known as “coroutines” (a programming concept that goes
back to the early 1960s). Using induction, Søren proved that his system was
deadlock-free and guaranteed to complete any request for service. It was
implemented and tested by four to six people over a period of two years:

When we started the Boss 2 design, we knew that the RC 4000
software was extremely reliable. In a university environment,
the system typically ran under the simple [manual] operating
system for three months without crashes. . .The crashes present
were possibly due to transient hardware errors . . .During the first
year of operation, the [Boss 2] system typically ran for weeks
without crashes. Today it seems to be error free.

? ? ?

My descriptions of the RC 4000 multiprogramming system caught the at-
tention of leading computer scientists in Europe and America.

The accolade was a letter from Edsger Dijkstra, professor at the Tech-
nological University of Eindhoven in the Netherlands:

I would like to express my gratitude and admiration for the man-
ual of the multiprogramming system for the RC 4000. It is ad-
mirable! You wrote “We present our system as a systematic and
practical solution. . .” and I have the feeling that you are fully
right in doing so: it strikes me as a convincing demonstration
that it is worthwhile to do a clean job and that it pays to be
elegant. My appreciation is equally divided between what the
manual describes and the way in which you have described it: it
was a pleasure to read it! (Letter from Edsger Dijkstra, August
1, 1969).

74 A Programmer’s Story

After receiving a copy of the RC 4000 multiprogramming system manual,
the Swiss computer scientist, Niklaus Wirth, wrote:

I am much impressed by the clarity of the multiple process con-
cept, and even more so by the fact that a computer manufacturer
adopts it as the basis of one of its products. I have come to the
same conclusion with regard to semaphores, namely that they
are not suitable for higher level languages. Instead, the natural
synchronization events are exchanges of message. (Letter from
Niklaus Wirth, July 14, 1969)

For almost forty years, Wirth developed innovative programming lan-
guages, such as Euler, Algol W, PL 360, Pascal, Modula, Modula-2, and
Oberon. When I first met him, he had returned from Stanford, after ten
years in Canada and the United States, and was now an assistant professor
at the ETH (The Federal Institute of Technology) in Zurich, Switzerland.

At a meeting at the ETH, two years before “Algol” became synonymous
with Algol 60, European and American computer scientists had outlined an
earlier version, called Algol 58. In May 1968, when the ETH celebrated the
Tenth Anniversary of Algol 58, I was invited to participate in a panel discus-
sion on operating systems. The panel, chaired by Niklaus Wirth, consisted of
Alfred Schai (Switzerland), Michael Griffith (France), Brian Randell (Eng-
land), Edsger Dijkstra (The Netherlands), Hans Rudolf Wiehle (Germany),
and me (Denmark). About 50 computer scientists attended the discussion in
an auditorium with terrible acoustics that made it difficult to hear anything.
I don’t remember much about the meeting, except that I met Niklaus Wirth
for the first time.

In August 1968, Peter Naur, Paul Lindgreen, Søren Lauesen and I at-
tended the IFIP Congress in Edinburgh. Tony Hoare, the inventor of the
famous Quicksort algorithm, presented a paper on data structures in a two-
level store. In the lobby of his hotel, he listened patiently, while I explained
the concepts behind our multiprogramming system.

The small group of Danes at IFIP 68 soon became regulars at the con-
ference bar. If I showed up early, the bartender would say: “Your friends
are not here yet.” Here I met David Howarth, the designer of the Atlas
supervisor that pioneered multiprogramming and demand paging. After ex-
plaining that the Scots drink their best whisky and export the rest, David
introduced me to Crawford’s Five Star whisky. Sure enough, when I asked
for this de luxe whisky in a liquor store in London, the owner explained that
he, unfortunately, only carried Crawford’s Three Star.

4. Young Man in a Hurry 1966–70 75

1968 was also the year in which the first Nato Conference on Software
Engineering was held in Garmisch, Germany. Dijkstra (1999) viewed this as
a turning point in the history of computer programming:

It was there and then that the so-called “Software Crisis” was
admitted and the condition was created under which program-
ming as such could become a topic of academic interest. The
latter, not surprisingly, turned programming from an intuitive
activity into a formal one.

In October 1969 I attended the 2nd Nato Conference on Software En-
gineering in Rome, Italy (Naur 1969). About sixty people from eleven
countries attended. Looking like a Who’s Who in Programming, the list
of participants included: Fritz Bauer, Bob Barton, Edsger Dijkstra, Tony
Hoare, Butler Lampson, Roger Needham, Alan Perlis, Brian Randell, John
Reynolds, Doug Ross, Jules Schwartz, Christopher Strachey, Niklaus Wirth,
and Mike Woodger.

Niklaus Wirth’s working paper on “The programming language Pascal
and its design criteria” was my introduction to the first secure programming
language that was powerful enough to implement its own compiler.

Edsger Dijkstra talked about “Structured Programming.” This method
of stepwise programming boils down to breaking a program into small ab-
stract programs that can be divided further, until you reach a level of detail
supported by the programming language. At that point, you turn around
and combine the small, final pieces into a complete program. The method is
similar to the mathematician’s way of dividing a theorem into lemmas that
can be verified separately and then used to prove the theorem.

What I remember most clearly is Butler Lampson from the Berkeley
Computer Corporation. Butler talked like a machine gun. For those who
don’t know Butler: The rate of human speech is measured in “millilamp-
sons.” Butler is the only one who has reached the absolute limit of “1
lampson.”

? ? ?

Years ago, I wrote an autobiographical sketch, entitled “The programmer
as a young dog” (Brinch Hansen 1976d), about my time at Regnecentralen.
The title was inspired by James Joyce’s “A portrait of the artist as a young
man” and Dylan Thomas’s “Portrait of the artist as a young dog.” When

76 A Programmer’s Story

I showed it to my colleague, Skip Mattson, at Syracuse University, he said:
“I would like to know more about your Danish boss.” All right then, I will
tell you what I know about him.

Niels Bech was born in 1920 in Lemvig, a small Danish town in Northern
Jutland. As a child and youth, he would stutter helplessly when he tried to
pronounce the combination of an “s” and a “b” in his name. He invented
the middle name, Ivar, to be able to say his own name. Growing up in a
small, provincial city, he must have been at the receiving end of many cruel
jokes.

Bech was a tall guy. At a movie theater in his hometown, a man be-
hind him repeatedly asked him to sit down. Finally, Bech had enough—he
stood up and turned around to show how tall he really was. At that point,
somebody shouted: “My God, now he is standing on the seat!”

After the completion of Dask in 1957, Niels Ivar Bech became managing
director of Regnecentralen. When I first met him, he was 43 years old. A
man of many contradictions, he did not hesitate to make bold decisions that
put his tiny company at financial risk. Yet, because he was afraid of taking
exams at the university, he never completed a higher education.

He trusted his coworkers implicitly and let them pursue their own ideas
with minimal intervention. He even tolerated that his hardware development
groups, headed by Bent Scharøe Petersen and Henning Isaksson, used dif-
ferent standards of documentation. However, to achieve his goals, he would
sometimes bypass his group managers. Bech’s underground style of man-
aging through unofficial channels was known as “moling.” On his fiftieth
birthday, his staff gave him a stuffed mole in a glass cage.

Sometimes, Bech’s moling worked brilliantly. One of Scharøe Petersen’s
electronic engineers, Kurt Henning Andersen, wanted to develop the world’s
fastest tape reader, using an electronic buffer to stop the paper tape gradu-
ally without breaking it. Scharøe did not support the idea, correctly pointing
out that Regnecentralen had no expertise in the development of electrome-
chanical devices. However, when Bech heard about the idea, he gave Kurt
enough money to develop the paper tape reader in his own kitchen. When
the RC 2000 paper tape reader was presented in the fall of 1963, it read
paper tape at the unbelievable rate of 2,000 char/sec. With a speed of 15
feet/sec, the tape emerged from the reader like exhaust from a jet plane dur-
ing take-off, and landed in a waste basket eight feet away. Over a ten-year
period, Regnecentralen sold about 1,200 RC 2000s.

But Bech’s interference could also be frustrating. At a meeting with a

4. Young Man in a Hurry 1966–70 77

potential customer, he once asked me how long it would take to finish the
Algol compiler for the RC 4000. My realistic estimate was twelve months.
That was not the answer Bech wanted to hear. So he turned to Jørn Jensen
and asked him: “Don’t you think we can do it in six months?” Taking the
hint, Jørn said “Sure, we can.” It made me angry that Bech undermined my
credibility as software manager in front of a customer. As it turned out, it
took eighteen months to finish the compiler.

In the end, I believe that Bech’s unorthodox management style limited
Regnecentralen’s potential for future growth. His moling worked when Reg-
necentralen was small. But, eventually, he would have needed a growing
staff of professional managers, who would not have tolerated his habit of
bypassing them, whenever he found it convenient to do so.

However, in all other aspects, Bech was an inspiring leader. His directive
for the RC 4000 software development was rather amazing. His only request
to me was: “I need something new in multiprogramming!”

In my opinion Niels Ivar Bech was somewhat of a gambler and show-
man. He could rarely resist the temptation to do the unexpected. I once
participated in a negotiation between Bech and a customer about the sale
of an RC 4000 in the middle of a noisy discotheque. Perhaps it is true that
unconventional acts rarely succeed in business (we did not sell a machine
that evening), but they almost always work in research.

Research is gambling at the highest level. A cautious effort only leads
to uninteresting results. A research director must have a sense of which
problem to attack next and the courage to give his collaborators the freedom
to solve it without imposing narrow constraints. The talent for inspiring his
associates to create new things of world-wide renown was one that Bech
possessed in the highest degree. Once you have known a leader with this
intellectual courage, it is quite depressing to realize how extremely rare this
quality is.

Niels Ivar Bech was a dreamer in the most creative sense of the word.
His time scale was longer than the one I adopted as a young, impatient
engineer. I found it unreasonable that he gave some of his associates time
to write textbooks on computer science, without considering how this would
influence the immediate needs of the company. That was short-sighted of
me. While Bech gave younger colleagues the chance to create new things,
he gave his senior people the opportunity to lay the foundation of computer
science education in Denmark.

Denmark has made four world-class contributions to computer technol-

78 A Programmer’s Story

ogy: the Algol 60 report, the Gier Algol compiler, the RC 2000 paper tape
reader, and the RC 4000 multiprogramming system. Each of these products
combined radically new ideas, which were years ahead of their time (and
therefore could not be motivated by an immediate “need”). Without Niels
Ivar Bech’s brilliant sense of innovation, a small Danish company could prob-
ably not have attracted so many outstanding young engineers and be at the
cutting edge of programming technology for more than a decade.

Bech’s drive and vision went far beyond his job at Regnecentralen. From
1959, he was instrumental in organizing the Nordic Symposiums on Comput-
ing, known as NordSAM. In 1960, he became one of the founding members
of the International Federation for Information Proccessing (IFIP). For his
contributions to IFIP, Bech received the Silver Core Award in 1974.

The decision to publish a Scandinavian journal of computing was made
over a glass of beer in Bech’s office in 1960. Bech provided economic support
and offered to let Regnecentralen handle the administration and distribution.
The first issue of the journal BIT gave readers the following choice:

1. Yes, I want to subscribe.
2. No, I do not hesitate. Put me on your subscription list.
3. I don’t know of any good reason why I should not subscribe.

From its start, Peter Naur served as co-editor of BIT. His seminal papers
on the Gier Algol compiler, elimination of go to statements, type checking,
program assertions (“general snapshots”), and modular programming (“ac-
tion clusters”) all appeared in BIT. Naur’s paper on Go to statements and
good Algol style (1963b) appeared five years before Dijkstra’s more widely
publicized Go to statements considered harmful (1968a).

My early papers on the Siemens Cobol compiler, the RC 4000 architec-
ture and the real-time system at Pulawy were also published in BIT.

During the cold war, American companies were not allowed to sell com-
puters in Eastern Europe. This gave Bech a unique opportunity to sell
Regnecentralen’s equipment in Poland, Czechoslovakia, Hungary, Bulgaria,
Rumania, East Germany, and Yugoslavia.

If a communist country was short on western currency, Bech was not
above a little horse trading (seriously). On one occasion he apparently de-
livered computer equipment to Poland in return for a shipment of horseflesh,
which he somehow managed to sell in Denmark.

His boundless energy and visionary thinking made it inevitable that some
of his efforts would meet resistance. Around 1960, the Technical University
of Denmark and the National Engineering and Science Foundation (Statens

4. Young Man in a Hurry 1966–70 79

teknisk-videnskabelige fond) recommended that the government support the
use of Gier computers for research and education at Danish universities. This
idea was successfully opposed by Willy Olsen, manager of the government’s
own computing center, Datacentralen, opened in 1959 at the initiative of
Viggo Kampmann, minister of finance. I once asked Kampmann, who was
married to my father’s cousin, why he supported the creation of Datacen-
tralen. He said he thought competition would be good for Regnecentralen.
Willy Olsen, apparently, did not share Kampmann’s belief in competition.

Throughout the 1960s, Bech tried unsuccessfully to persuade Scandina-
vian computer manufacturers to merge. Once, Bent Scharøe Petersen and I
accompanied him to a meeting with DataSaab in Linkőping, Sweden. That
evening, we returned to Copenhagen on a tiny airplane, flying through a
blizzard with zero visibility. Sitting in front with the pilot, Scharøe men-
tioned that we had lost all radio contact. That did not seem to worry Bech
in the least.

On another flight in Bulgaria, passengers started screaming and praying
when an engine caught fire. The story goes that Bech calmly ordered beer
for everybody.

Towards the end of the 1960s, it became increasingly clear that the pi-
oneering era of the Danish computer industry was coming to an end. In
1970, I left Regnecentralen and moved to the United States. At that time,
Niels Ivar Bech was already showing signs of illness. Since then I only saw
him briefly at the IFIP 71 Congress in Milena’s hometown, Ljubljana, in
Slovenia.

In 1971, Bech was fired by Regnecentralen’s board of directors. I don’t
know why he was dismissed. In his dealings with business leaders and gov-
ernment employees, he probably had the misfortune of thinking big among
people who were not used to thinking big. Since he was decades ahead of his
time, Bech undoubtedly would have found some of his board members short-
sighted. They, in turn, would almost certainly have found him unrealistic
(as I did, on the occasion when Bech told me that his goal was “to push IBM

back into the Atlantic Ocean”). Perhaps, in the words of Vartan Gregorian,
“He did not and could not serve people he did not respect, especially those
who were political hacks, men without integrity, mission or vision, empty
suits.” Who knows?

On July 25, 1975, he died of a heart attack at age 55. With Niels Ivar
Bech’s death, Denmark lost its leading role in the development of program-
ming technology. Four years later, Regnecentralen ceased to exist. However,

80 A Programmer’s Story

by then it hardly mattered. Bech had already made a lasting contribution to
his country by training the first generation of computer pioneeers and lay-
ing the groundwork for computer science education in Denmark. Over the
years, a number of Regnecentralen’s senior people became faculty members
at Danish universities: Peter Naur, Aage Melbye, Ole Møller, Poul Sveistrup,
Christian Andersen, Henning Isaksson, Henning Bernhard Hansen, Christian
Gram, Peter Kraft, Søren Lauesen, Paul Lindgreen, and I (for a short time).

Those of us, who were privileged to start our careers under Bech’s vision-
ary leadership, will always remember Regnecentralen as the lost paradise.

In 1983, I dedicated my book, Programming a Personal Computer, to
the memory of Niels Ivar Bech.

? ? ?

My years at Regnecentralen were some of the happiest years of my profes-
sional life. I had worked in compilers, computer architecture, and operating
systems. And I had met four computer scientists, who would influence my
future work: Peter Naur, Edsger Dijkstra, Niklaus Wirth, and Tony Hoare.

It was time to move on. I was now planning to go abroad and write the
first systematic textbook on operating system principles.

5

SHAPING A NEW FIELD 1970–72

Alan Perlis invites me to spend a year at Carnegie-Mellon – Emigration to America

– Niklaus Wirth defines Pascal – Driving home in a blizzard – Discussing the future

of concurrent programming in Marktoberdorf and Belfast – Alan Perlis tells stories

– Mad King Ludwig and Thomas Edison – The first modern book on Operating

System Principles.

Alan Perlis was an early pioneer in the development of programming lan-
guages and compilers. He was involved in the definition of the programming
languages Algol 58 and Algol 60. In a retrospective talk, he said (Perlis
1981):

One of the things we learned about computing in the 1950s was
that there are no bounds to the subject. It cannot be put into a
tidy receptacle. Everywhere that computing has been embedded
in some other discipline, it has not flowered. Computing is not
part of electrical engineering; it is not part of mathematics; it
is not part of industrial administration. Computing belongs to
itself. The reason this is the computer age is precisely because
of that.

In 1962, Perlis was forty years old and director of the computation center
at Carnegie Institute of Technology in Pittsburgh. He believed that “the
programming and using of computers deserve an early appearance in the
university curriculum for the educated man.” At an MIT symposium on
“Computers and the World of the Future,” he added (Perlis 1962):

Perhaps I may have been misunderstood as to the purpose of my
proposed first course in programming. It is not to teach people
how to program a specific computer, nor is it to teach some new

Copyright c© 2004 by Per Brinch Hansen.

81

82 A Programmer’s Story

language. The purpose of a course in programming is to teach
people how to construct and analyze processes. I know of no
other course that the student gets in his first year in a university
which has this as its sole purpose.

Today, when every department of computing and engineering offers pro-
gramming courses, it may be difficult to appreciate just how farsighted Perlis
was—until you realize that he took it for granted that every student of the
arts and sciences eventually would be required to take such a course. Forty
years later, that still hasn’t happened.

In 1965, Carnegie Tech became one of the first universities to create a
graduate department of computer science. Alan Perlis, Allen Newell, and
Herbert Simon were the driving forces behind the establishment of computer
science as an independent discipline at Carnegie.

The appointment of the visionary MIT professor, Joseph Carl Robnett
Licklider, as director of information processing research at ARPA (The Ad-
vanced Research Projects Agency at the US Department of Defense) was a
major piece of luck for Carnegie Tech. Licklider selected MIT and Carnegie
as the first two ARPA centers of excellence. While MIT would develop time-
sharing, Carnegie would have complete freedom to explore the fundamentals
of computing. I cannot think of any other country and research agency that
would distribute government funds in such an informal way.

Of course, money by itself does not explain how Carnegie was able to
establish one of the finest schools of computer science in the world (Perlis
1981):

I think computers have flowered in this country because of our
national style of accomplishing things. This country has always
supported enterpreneurial activities—people who have ideas and
are willing to sweat to bring them out. Computers flower in such
an environment. . .The Soviet Union, having a large centralized
society, needs computers much worse than we do. Yet they are
totally unable to produce them, totally unable to apply them in
anywhere near the profusion that we find here. They have the
wrong kind of society for the instrument they most badly need.

Perlis was the founding editor of Communications of the ACM, a past
president of the Association for Computing Machinery, and now the first
chair of computer science at Carnegie. His administrative tasks cannot have

5. Shaping a New Field 1970–72 83

left him much time for concentrated intellectual work. Apart from Peter
Naur’s Algol 60 report I find few references to his work in textbooks.

Alan was completely bald and had no eyebrows. He looked (and was)
extremely intelligent. He was immensely charming with an endless supply
of anecdotes and jokes. And highly original in his thinking. They said that
if a student met him in the elevator, Al would propose several thesis topics
on the spot. The trouble was that only one of them was worth pursuing and
the student had no idea which one that might be.

His faculty and students loved him. At parties they would gather around
him and listen to his anecdotes and words of wisdom. He was famous for his
wise and amusing sayings (Perlis 1982):

– Syntactic sugar causes cancer of the semicolon.

– In the long run every program becomes rococo—then rubble.

– Simplicity does not precede complexity, but follows it.

– Structured Programming supports the law of the excluded muddle.

– A LISP programmer knows the value of everything, but the cost of
nothing.

– Fools ignore complexity. Pragmatists suffer it. Some can avoid it.
Geniuses remove it.

– When we write programs that “learn,” it turns out we do and they
don’t.

– Because of its vitality, the computing field is always in desperate need
of new cliches: Banality soothes our nerves.

– Editing is a rewording activity.

He had sound advice on how to deal with university administration
(Perlis 1981):

My attitude has always been that, if you are right, the adminis-
trators will accede to your wishes. I haven’t been disappointed.
By and large, administrators are always looking for people to tell
them what they ought to be doing, rather than being confronted
with a decision that they have to make on which they have no

84 A Programmer’s Story

information with which to make that decision, so the natural
technique is to postpone or form another committee. Instead,
one really ought to go to them and say, “Do this because it’s
right.”

Alan Perlis reminded me of Niels Ivar Bech. Both of them were visionary
thinkers and brilliant leaders, who were ahead of their time in recognizing the
need for research and education in computing. Like Bech at Regnecentralen,
Perlis’s mission in life was to create a place where creative people could
flourish.

In an interview after Perlis’s death, in 1990, Allen Newell said: “People
would go to conferences and listen to every word he said, because every
time he talked about a topic, he was absolutely right about the way it
should be. That’s why he was the first Turing Award winner. Not at all for
any technical contribution, really, but because he epitomized the nature of
computer science.”

? ? ?

Dijkstra’s first doctoral student, Arie Nicolaas Habermann, was a former
math teacher in the Netherlands. In 1968, after receiving his PhD, Nico
joined the computer science department at Carnegie-Mellon University (as
it was now called).

At the Technological University of Eindhoven (THE) in the Netherlands,
he had participated in the implementation of Dijkstra’s famous THE mul-
tiprogramming system. This system consisted of several “program layers,”
which gradually transformed the physical machine into an ideal abstract
machine for multiprogramming. The program layers could be designed and
tested one at a time.

At a time, when the term “software crisis” was coined to describe the
sad state of operating systems, Dijkstra (1968b) made a startling claim:

We have found that it is possible to design a refined multipro-
gramming system in such a way that its logical soundness can
be proved a priori and its implementation can admit exhaus-
tive testing. The only errors that showed up during testing were
trivial coding errors . . . the resulting system is guaranteed to be
flawless.

5. Shaping a New Field 1970–72 85

Dijkstra proved that the THE system was deadlock-free. (A deadlock is
a situation in which concurrent processes wait indefinitely for events that
will never occur.) In his thesis, Habermann extended Dijkstra’s proof to a
layered system with any number of levels.

I first met Nico at the NordSAM conference in Stockholm, Sweden, in
August 1964. Over the years, we kept in contact. Like his thesis advisor,
Edsger Dijkstra, he was well aware of the RC 4000 multiprogramming sys-
tem. On January 2, 1969, he invited me to visit Perlis’s department at
Carnegie-Mellon:

It is my pleasure to invite you officially to spend some time during
the spring in Pittsburgh and to visit our department. We would
like you to spend about two weeks with us, during which we
expect you to tell us about your work.

I arrived in Pittsburgh in March 1970 and stayed with Nico, his wife
Marta, and their children, Eveline, Irene, Marianne, and Frits. Every morn-
ing, Nico and I drove in his Volkswagen from the suburb of Mount Lebanon
to the university in Schenley Park.

In a classroom at Carnegie, I lectured on the RC 4000 multiprogramming
system. The audience of about 30 people included Alan Perlis, Gordon Bell,
Bill Wulf, and, of course, Nico. Among the graduate students, I remember
Anita Jones and Rudy Krutar.

During my visit, I mentioned that I was planning to spend a year abroad
writing a textbook on operating systems. Perlis immediately said: “I am as
greedy as the next man—why don’t you write it at Carnegie?” Since Nico
was also planning to write such a book, we agreed to make it a joint effort.

A month later Perlis sent me an official invitation to spend a year in
Pittsburgh (Fig. 5.1). As you can tell, he could charm your socks off! This
letter would change my life dramatically.

? ? ?

On November 1, 1970, Milena and I left Denmark with our children, Mette
(age 4) and Thomas (age 3), and traveled to Pittsburgh on a Lufthansa
707 jetplane. In Mount Lebanon, we rented a small house on 603 Oxford
Boulevard. Our rented furniture included a sofa stuffed with sawdust that
slowly accumulated on the floor. Upstairs, we slept on mattresses on the
floor.

86 A Programmer’s Story

Carnegie-Mellon University
Department of Computer Science
Schenley Park
Pittsburgh, Pennsylvania 15213

April 17, 1970

Civ.ing. Per Brinch Hansen
Hostrups Have 32/6
1954 Copenhagen V
Denmark

Dear Per:

With this letter I should like to formally invite you to spend
either 10 months or 12 months as a research associate in the
Department of Computer Science. It is my understanding
that you would like to commence on or about October 1, 1970,
and this is perfectly satisfactory with the department.

The salary will be $15,000 for 10 months or $18,000 for
12 months. Furthermore, the department agrees to pay 1/2 of
your reasonable traveling expenses from Copenhagen to
Pittsburgh and return.

We are pleased to make this offer since the talent and
experience you would provide would be of great value to the
research program of this department. Furthermore, the
department is pleased that a person of your exceptional
ability will be collaborating with members of our faculty
in important research to further our understanding of the
nature of complex computer operating systems.

Please keep me informed of the progress in your application
for visa so that we may provide whatever assistance is
needed from this end.

Needless to say the entire faculty is looking forward to
having you with us this coming school year.

Sincerely yours,

Dr. Alan J. Perlis, Head
Department of Computer Science

Figure 5.1 Invitation from Alan Perlis.

5. Shaping a New Field 1970–72 87

From Marcus Motor downtown, I bought a new Volvo for $3,400. In
Denmark, where sales taxes doubled the price of a car, this was considered
a large car. But, in America our neighbors referred to it as “your cute little
car” and Perlis offered the opinion that “it rides like a truck.” It turned out
to be a lemon that stalled if you tried to turn left at a traffic signal. To avoid
this in the middle of heavy traffic, I would drive around the block turning
right three times instead.

In Denmark the kids attended a nursery school that did not teach reli-
gion. When I asked Perlis, who was Jewish, for advice on how to chose a
similar one in Pittsburgh, he suggested putting them in a Jewish nursery
school. We took his advice and it worked out well.

It was a lonely time for Milena. Her H-4 visa did not permit her to work
in America. When I was at work and the children at nursery school, she was
alone in the house without a car.

? ? ?

After the first visit to America, I began outlining my book and collect papers
on operating systems from Regnecentralen’s excellent library. As soon as I
started writing, it became clear that I needed a programming language to
express operating system functions concisely without unnecessary trivia. I
began using Pascal, which had a much richer set of data structures than
Algol 60. Niklaus Wirth had just published the Pascal report, while three
of his coworkers completed the first compiler (for the CDC 6600 computer).
In hindsight, my choice of Pascal was an inspired gamble. I had no way of
knowing whether this new language would ever be widely available and used
for teaching!

The idea of writing the book jointly with Nico Habermann turned out
to be a grave mistake. At Regnecentralen, I was used to an atmosphere
of frank, critical discussion. If I thought Nico’s ideas were problematic, I
would tell him so. Habermann was equally critical of my approach. He
hated Pascal with a passion and would eventually write a scathing criticism
of the language, which the editor of Acta Informatica asked him to tone down
(Habermann 1973). He had a point—in its lack of conciseness, the Pascal
report was a step backwards compared to Peter Naur’s brilliant Algol 60
report. Nevertheless, the language features of Pascal were (in my opinion)
a significant contribution to programming language design.

Coming from the Netherlands, Nico must have felt under great pressure
to live up to the expectations of a leading department in a foreign country.

88 A Programmer’s Story

Throughout his academic career, he would remain true to the high standards
of software design he had learned from Dijkstra. However, as a PhD student
he naturally stood in Dijkstra’s shadow. When he joined Carnegie as a visit-
ing researcher, Nico was 36 years old. His challenge was to start independent
research at an age when most research careers already have peaked.

I, on the other hand, had already had some success with the RC 4000
project. Whereas Habermann had to teach and advise students, I had all
the time in the world to work on my book. I made rapid progress, and he
did not. Eventually, the pressure became too much for him, and one day, he
left my house in a huff. The next day, I was extremely relieved to find that
Perlis reacted calmly to the news of our breakup: “We are going to need
many books on operating systems. Nico and you should write two separate
books on the subject.”

? ? ?

I admired the way American computer scientists kept themselves informed
about ongoing research at other universities and research centers. When
I started working at Carnegie-Mellon, I was immediately invited to give
seminars at leading universities and research centers:

Toronto (November 30, 1970).
Princeton (December 16, 1970).
IBM Research Center (March 1, 1971).
Cornell (April 12, 1971).
MIT (May 17, 1971).
Berkeley (October 13, 1971).
Michigan (December 13, 1971).

These talks not only gave me a chance to meet leading computer scientists,
they were also an opportunity for Milena and me to drive with our children
around the eastern part of North America.

In Toronto I met members of the Sue operating system group: Rick
Holt, Jim Horning, and Dennis Tsichritzis. They were building an operating
system, named Sue, for the IBM 360 computers using Dijkstra’s layered
approach.

This was our first visit to Niagara Falls. “Niagara” is an American Indian
word meaning “thundering waters.” Every second, 350,000 gallons of water
flow over the 2,300 feet wide falls and crash some 180 feet below. During the

5. Shaping a New Field 1970–72 89

day, it is truly one of the natural wonders of the world. I was less enchanted
by the view at night, when the falls are illuminated by floodlights in pink,
green and white.

One evening we were driving home from a visit (I don’t remember which
one) to Boston. As we reached Interstate 80 in Pennsylvania, it started
snowing heavily as dark fell. This highway runs east-west in the Allegheny
Mountains. I should have noticed that there was a reason why truck drivers
were leaving the highway, one by one. Although we were now alone on this
snowy road, I continued stubbornly. At one point, the snow fell so heavily
that I had to roll down the front window and wipe the windshield manually
while I was driving. After driving 600 miles, we reached Pittsburgh early in
the morning. Later, I read that people froze to death every year when their
cars got stuck in the snowy mountains.

? ? ?

In the summer of 1971, I attended two scientific meetings in Europe that
would have a deep influence on my work. The first one was the International
Summer School on Program Structures and Fundamental Concepts of Pro-
gramming, July 19–30. It was organized by Professor Fritz Bauer, Technical
University of Munich. The meeting was held in Marktoberdorf, a small town
in Southern Germany. I was one of seven invited speakers:

– Rudy Bayer, On the Structure of Data and Application Problems.

– Per Brinch Hansen, Operating System Principles.

– Edsger Dijkstra, Hierarchical Organization of Sequential Processes.

– Tony Hoare, Proof of Programs.

– Alan Perlis, Conversational Languages.

– John Reynolds, Lattice Theoretic Models for Programming Language
Definition.

– Niklaus Wirth, The Representation, Implementation and Application
of Fundamental Concepts of Programming.

Over the course of the Summer School, each of us gave about ten lectures.
The 100 (or so) participants had submitted applications to attend and were

90 A Programmer’s Story

selected by the directors of the Summer School. The speakers attended every
lecture and participated in the lively discussion. After dinner in the local
Hotel Sepp, the lecturers and students would continue the discussion over a
glass of beer.

In my recollections of the Summer School I have included some of Dijk-
stra’s (1971b) impressions of the speakers (translated from Dutch).

With deep insight, Dijkstra (1971a) explained his layered approach to
operating system design in greater detail. He also demonstrated how to
prove the correctness of fundamental algorithms with semaphores. He intro-
duced and solved the scheduling problem of the “dining philosophers,” which
poses subtle dangers of deadlock and unfairness —described in flamboyant
terminology as “deadly embrace” and “starvation.” (A scheduling policy is
“unfair” if it consistently favors some processes over others.)

In his lectures, Hoare presented his method for formal verification of
sequential programs. This was still unfamiliar territory to me. I remember
Tony asking me how I would prove the correctness of concurrent programs
with message communication. I had no idea what he meant by the question.

Among the speakers, C. A. R. Hoare undoubtedly stole the show:
He spoke every morning after breakfast. (He had asked to speak
“early.” However, instead of lecturing at the beginning of the
Summer School, he ended up being the first speaker every day!)
He talked about axiomatising the current concepts of program-
ming. The interesting thing was that he not only combined this
with correctness proofs of programs but also with elements of
programming languages. It was further commendable to observe
that he expressed many reservations about the limitations of his
subject: he made it clear that, in all sorts of cases he did not
regard it as realistic to supply a formal correctness proof. Sort
of like “If you are challenged to supply a correctness proof, you
should be able to do that, but it is not something you should do
all the time.”

Niklaus Wirth described Pascal and explained how his group succeeded
in writing the first compiler in Pascal and making it compile itself:

During the first week, N. Wirth from Zurich spoke for eight hours
about his creation, the programming language Pascal. . .The Pas-
cal implementation is a beautiful work that confirms my impres-
sion of him as one of Europe’s most competent programmers.

5. Shaping a New Field 1970–72 91

The Pascal compiler was first written in Pascal. It was then in
a couple of weeks translated by hand into a low-level language.
Two weeks after they first gained access to the [CDC 6600] com-
puter, the Pascal compiler compiled itself.

Dijkstra gave a mixed review of my performance:

The status of Pascal was not only enhanced by Hoare’s experi-
ment with axiomatization—Hoare has played an important role
in the Pascal draft—but also because Per Brinch Hansen used it
to describe operating system principles. In the past year, Brinch
Hansen has. . .worked on a book about “Operating System Prin-
ciples” which he summarized in his talks. The text was fine, but
was not well presented. As a speaker he is a bit monotonous,
and he did not feel at ease: it obviously bothered him that he
had to borrow so much from me and appeared in his search for
his own position somewhat argumentative.

That was not quite right. I admired Dijkstra and was delighted to acknowl-
edge his fundamental ideas. I was simply an inexperienced speaker who felt
nervous about lecturing in English to an audience that included some of the
world’s leading computer scientists. When I returned to Marktoberdorf two
years later, my beginner’s problems had disappeared.

Perlis was in fine form. During one of his lectures, he told a hilarious
story about a guy, who wanted to be buried in his Cadillac. As the car with
the dead man was lowered into the enormous grave, one mourner said to
another: “Man, that’s living!”

The contrast between the rigorous scientist, Edsger Dijkstra, and the
easygoing Alan Perlis was striking:

I found the great Alan J. Perlis very poor. He speaks with in-
credible ease if not to say bluff; his jokes are the most carefully
prepared part of his presentation, and it is a pleasure to lis-
ten to him, as long as you don’t listen too carefully to what
he says. Unfortunately, part of his audience did just that. . .His
actual subject was LCC, a conversational language developed
at Carnegie-Mellon. But this was especially difficult to defend
in this company, since it flies in the face of the ideas of program
structuring preached by Wirth, Hoare and me. . .I have never seen

92 A Programmer’s Story

him so insecure; perhaps it had to do with his departure from
Carnegie-Mellon the previous week to join Yale University. . .and
start a new life. Professionally he did not make a good impres-
sion.

In the interest of fairness, I can’t resist quoting another epigram by Perlis:

When a professor insists that computer science is X but not Y,
have compassion for his graduate students.

Over the years, it became a tradition at the Summer Schools to visit
Neuschwanstein Castle, built in the style of a Medieval castle by King Ludwig
II of Bavaria (1845–86). (Cinderella’s castle in Disneyland is a small replica
of Neuschwannstein.) In 1864, Ludvig became king at the age of 18. This
shy young man tended to neglect the affairs of state in the capital Munich,
preferring instead to live in the Alps, where he spent a fortune building
castles. Eventually, a group of politicians decided to have the king declared
insane and replace him by his uncle. However, the doctors who declared
Ludvig to be mentally ill never examined him. On Sunday, June 13, 1886,
the king was found drowned in Starnberg Lake. Walking through his castle, I
was looking at a massive, handcarved wooden horse sleigh, when it suddenly
struck me: In 1882, this romantic dreamer was building a fairy tale castle,
while Edison was demonstrating his electric light in Munich, 50 miles away!

? ? ?

The Marktoberdorf Summer School was followed by a Seminar on Operat-
ing Systems Techniques held at the Queen’s University in Belfast, Northern
Ireland, between August 30 and September 3. The speakers included some
of England’s leading operating system designers. David Hartley gave a reap-
praisal of the Atlas I system, which had pioneered multiprogramming ten
years earlier. Sandy Fraser and Roger Needham spoke about the Atlas II
system (known as Titan). Tony Hoare and his coworker Mike McKeag pre-
sented survey papers on various aspects of operating systems. And I outlined
my operating system text again (Brinch Hansen 1971).

The threat of terrorist bombings had discouraged several contributors,
including Dijkstra, from attending the seminar. At the time, bombings
were frequent in downtown Belfast. In my hotel room, I heard several faint
explosions at night. During a presentation at the seminar, a female student
entered the small lecture room, put her briefcase on the floor and left the

5. Shaping a New Field 1970–72 93

room. I thought she might have left it there to go to the bathroom. But
Tony immediately rushed over, looked inside the briefcase, picked it up and
ran after her. I remember thinking: “He is awfully nosy.” Then it dawned
on me that he was worried she might be a terrorist trying to blow us up.
On another occasion, we were driving in a tourbus outside the city when
the radio warned listeners not to be worried about sonic booms that might
occur that day during a testflight of the Concorde supersonic plane. The
bus erupted in nervous laughter.

At an official reception in the City Hall, we were all waiting in line
to shake hands with The Right Honourable Lord Mayor of Belfast. I was
impressed by his technique: as soon as the mayor grabbed my hand, he
pulled me forward to keep the line moving.

At the final banquet, I was seated next to Tony Hoare. After welcoming
everybody he sat down, and I looked forward to a relaxing dinner conver-
sation after a long day of discussions. However, as soon as he sat down,
Tony started writing on a paper napkin, saying to me: “Let P be a process
which satisfies the following condition. . .” I remember thinking: Let this be
a lesson to anyone who doesn’t realize that the leaders of their field never
take a break—they think all the time, and, if you don’t do the same, you
will never be one of them.

In Marktoberdorf and Belfast, Tony and I discussed the future of pro-
gramming languages. The trend was clear. Since 1960, high-level program-
ming languages had replaced machine coding in one application after an-
other: scientific computing (Fortran and Algol 60), business data processing
(Cobol), and compiler design (Pascal). It was obvious to us that the next
challenge was to invent programming notation for concurrent programs.

Now, in order to cooperate on common tasks, concurrent processes must
be able to exchange data and timing signals through shared variables in
memory. From the beginning, operating system designers recognized that
multiprogramming will not work unless operations on shared data structures
take place strictly one at a time. The reason is obvious: To understand
what happens when, say, a process sorts an array, you have to assume that
the sorting takes place without interference from other processes. If other
processes can make arbitrary changes to the same array, while it is being
sorted, it would indeed be a miracle if it ever ends up being sorted.

This is known as the mutual exclusion problem. In the RC 4000 multi-
programming system, we solved it by the well-known technique of disabling
interrupts during the execution of monitor procedures. This guaranteed

94 A Programmer’s Story

that the computer would never interrupt an indivisible operation once it
was started.

Dijkstra had shown how to implement these critical sections (as he called
them) using semaphores. (Hoare would rename them critical regions.) How-
ever, if semaphores are omitted or used incorrectly, concurrent processes
will interfere with one another in time-dependent ways that depend on the
relative speeds of the processes. And those speeds can be influenced by com-
pletely unrelated factors, such as the speed at which terminal users respond
to messages, or the occasional delays when printers run out of paper. Ev-
ery time, you execute a time-dependent program, it will produce different
results—even if the input is the same. It behaves like a universe in which
Newton’s laws have been replaced by random, unpredictable events. Since
you cannot reproduce the output of such a program, it is often impossible
to locate time-dependent programming errors by testing.

At the Belfast symposium, Hoare (1971) presented a first attempt to
extend programming languages with abstract notation for process synchro-
nization. He proposed that the error-prone semaphores should be replaced
by language notation that would enable a compiler to recognize shared vari-
ables and check that they are used inside critical regions only.

Since it is awkward to talk about notation without showing it, I will
yield to temptation and show you what he did. Take, for example, a mailbox
that can transmit one integer at a time from one process to another. In a
Pascal-like notation, the mailbox is declared as a shared data record with
two components—a message slot of type integer and a boolean indicating
whether the mailbox currently is empty or not:

var mailbox: shared record
slot: integer; empty: boolean

end;

A sending process waits until the mailbox is empty before putting a message
into the mailbox:

with mailbox when empty do
begin slot := message; empty := false end

A receiving process waits until the mailbox is non-empty before removing a
message from the mailbox:

with mailbox when not empty do
begin received := slot; empty := true end

5. Shaping a New Field 1970–72 95

Hoare’s notation suppresses implementation details (such as the synchro-
nization mechanism and scheduling policy used) and shows only the essence
of the problem: sending and receiving are critical regions on the shared mail-
box. Since these operations are delayed until the mailbox is in a suitable
state (empty or full), I named them conditional critical regions.

Hoare’s paper was as an eye-opener for me: It was my introduction to
the difficult art of language design. The idea of preventing time-dependent
errors by compile-time checking struck me as magical at a time when mul-
tiprogramming systems relied exclusively on run-time checking of variable
access.

I had already received an earlier draft of Hoare’s paper and had used
conditional critical regions in my own book manuscript. However, at the
Belfast symposium, I expressed some reservations from a software designer’s
point of view (Brinch Hansen 1971):

The conceptual simplicity of simple and conditional critical re-
gions is achieved by ignoring the sequence in which waiting pro-
cesses enter these regions. This abstraction is unrealistic for
heavily used resources. In such cases, the operating system must
be able to identify competing processes and control the schedul-
ing of resources among them. This can be done by means of a
monitor—a set of shared procedures which can delay and activate
individual processes and perform operations on shared data.

In his presentation, Hoare responded to my criticism (Discussions 1971):

As a result of discussions with Brinch Hansen and Dijkstra,
I feel that this proposal is not suitable for operating system
implementation. . .My proposed method encourages the program-
mer to ignore the question of which of several outstanding re-
quests for a resource should be granted.

Hoare’s proposal was based on the programming style used in Dijk-
stra’s THE system, where critical regions were scattered throughout the
program text. At Marktoberdorf, Dijkstra briefly outlined an alternative
model, where a shared variable and its critical regions were combined into
a separate process, known as a “secretary.” This server process would own
the shared variable and execute the critical regions on request from client
processes.

96 A Programmer’s Story

Dijkstra had implemented his multiprogramming system as cooperating
processes communicating through shared variables in unprotected memory.
From his point of view, the idea of combining shared variables and critical
regions into server processes was a new approach to resource scheduling.

However, this idea was obvious to the designers of the RC 4000 mul-
tiprogramming system, based as it was, on a paradigm of processes with
disjoint memories communicating through messages only. There was simply
no other way of using the RC 4000 system!

The secretary concept, which Dijkstra sketched informally, had already
been used since 1969 in the RC 4000 system under the name of a “conversa-
tional process” (Brinch Hansen 1969a). This was a server process that could
be in the middle of conversations with several client processes at the same
time. In the RC 4000 system, the basic operating system was a conversa-
tional process that spawned other processes in response to messages from
operator consoles. If the basic system temporarily was unable to honor a
request, it would postpone the action by delaying its receipt of the message.
In the meantime, it would serve other clients. Since it was impossible to pre-
dict when the system would respond to a request, a conversational process
was an early example of the use of nondeterministic communication.

Dijkstra may well have been influenced by my RC 4000 manual, which
explained the purpose and use of conversational processes. Mike McKeag
(1972–73) would demonstrate the similarity of these ideas by using the RC

4000 message primitives to outline simple secretaries for the well-known syn-
chronization problems, known as the “bounded buffer,” the “dining philoso-
phers,” and the “readers and writers.”

Be that as it may. The important thing was that a resource manager was
a well-known programming technique in the form of a basic monitor, invoked
by supervisor calls, or a conversational process (a “secretary”), invoked by
message passing. Our future efforts would be focussed on extending pro-
gramming languages with an elegant notation for this monitor concept (as I
called it).

? ? ?

I now returned to Carnegie-Mellon to finish my book. Today, when all
operating system texts cover the same material, it may look like a well-
defined task. But I had no models to imitate. It wasn’t even obvious to me,
what the sequence of chapters should be. To write the first systematic book
on operating systems I would have to shape the field.

5. Shaping a New Field 1970–72 97

The implementation techniques of operating systems were reasonably
well understood in the late 1960s. But most systems were too large and
poorly described to be studied in detail. All of them were written either in
assembly language or in sequential programming languages extended with
assembly language features. Most of the literature on operating systems
emphasized low-level implementation details of particular systems rather
than general concepts. The terminology was unsystematic and incomplete.

Before the invention of abstract concurrent programming, it was im-
practical to include algorithms in operating system descriptions. Technical
writers mixed informal prose with unstructured flowcharts and complicated
pictures of linked lists and state transitions.

In 1971, when I had been working on my book for almost a year, the
National Academy of Engineering summarized the state of affairs at the
time:

The subject of computer operating systems, if taught at all, is
typically a descriptive study of some specific operating system,
with little attention being given to emphasizing the relevant basic
concepts and principles. To worsen matters, it has been difficult
for most university departments to develop a new course stressing
operating systems principles. . .There are essentially no suitable
textbooks on the subject. The best source material is found in
technical papers that frequently are hard to locate, understand,
or correlate. (Cosine Report 1971)

Indeed! I still remember one instance of the slow, methodical task of
trying to make sense of the available sources. From Regnecentralen’s excel-
lent library I brought a one-foot high stack of photocopies of papers that
included descriptions of memory allocation techniques used in various sys-
tems. In our house in Pittsburgh, I read all of it and eliminated half of it
as poorly written or of minor interest. Then I read the remaining half again
and cut that in half, and so on, until I finally had reduced it to a dozen
papers. At that point, my mind was so saturated with the subject that I
began to see a reasonable pattern for my chapter on memory management.

By the time I outlined my book in Belfast, I had written drafts of half of
the eight chapters. And, I had reached the conclusion that operating systems
are not radically different from other programs. They are just large programs
based on the principles of a more fundamental subject: parallel programming.

Starting from a concise definition of the purpose of an operating system,
I divided the subject into five major areas. First, I presented the principles of

98 A Programmer’s Story

parallel programming as the essence of operating systems. Then I described
processor management, memory management, scheduling algorithms and
resource protection as techniques for implementing parallel processes.

I defined operating system concepts by abstract algorithms written in
Pascal extended with a notation for structured multiprogramming. My (unim-
plemented) programming notation included concurrent statements, sema-
phores, conditional critical regions, message buffers, and monitors. These
programming concepts are now discussed in all operating system texts.

The book includes a concise vocabulary of operating system terminology,
which is used consistently throughout the text. The vocabulary includes the
following terms:

concurrent processes, processes that overlap in time; concurrent
processes are called disjoint if each of them only refers to pri-
vate data; they are called interacting if they refer to common
data.

synchronization, a general term for any constraint on the order in
which operations are carried out; a synchronization rule can, for
example, specify the precedence, priority, or mutual exclusion in
time of operations.

monitor, a common data structure and a set of meaningful operations
on it that exclude one another in time and control the synchroniza-
tion of concurrent processes.

? ? ?

In the spring of 1972 it was show time! I sent my finished manuscript to
Karl Karlstrom, the famous computer science editor at Prentice-Hall, who
asked Jim Horning, University of Toronto, what he thought of it. On May
1, Jim answered:

Dear Karl:
This is a preliminary report on Operating System Principles

by Per Brinch Hansen, that I am reading with great interest. I
think you should definitely try to get the book, and to give it the
speedy publication which Brinch Hansen wants.

This is a good book, perhaps even a great book, better than
anything I have seen on operating systems. Its style and clar-
ity makes it suitable for third-year undergraduate students, yet
it is sufficiently comprehensive for use in a graduate course. I

5. Shaping a New Field 1970–72 99

have not noted any technical errors, and remarkably few errors
of presentation.

I am eager to see the book come out soon, but not at the cost
of cutting corners. This book will be around for a long time, and
it should be handsomely done.

Jim Horning

Eleven days later, I signed a publishing agreement. I also sent complete
copies of the manuscript to Edsger Dijkstra and Tony Hoare.

In July 1973, Prentice-Hall published Operating System Principles
(Brinch Hansen 1973a), and I was again invited to lecture at the Summer
School in Marktoberdorf. This time, Dijkstra (1973) wrote:

Personal reasons prevented M. Griffiths of Grenoble from speak-
ing as scheduled, but we were lucky in having Per Brinch Hansen
(California Institute of Technology) as a substitute. He went
through the highlights of his recently published book “Operat-
ing System Principles” and he did that much, much better than
two years ago, when he covered the same material in a very bi-
ased and even aggressive manner. Now he gave a neat, balanced
survey. It is a pity that he has a very monotonous voice; it is re-
ally soporific and now I cannot even read one of his publications
without hearing it.

Two years later, Peter Naur reviewed my book. Please, forgive me for
indulging myself. It was, after all, Peter who had shown me that computer
programming should be guided by sound principles and clear writing. In
BIT 15 (1975), he wrote:

It would be improper not to start this review with a warning: the
reviewer is biased in favour of this book. In fact as mentioned in
several remarks in the book, the work and attitude embodied in it
have been influenced positively by the work with projects around
1964 for which your present reviewer was partially responsible.
Your reviewer is unable to suppress a feeling of joy that the seeds
sown at that time have borne this book as its fruit.

It needs hardly to be said that the subject of this book, oper-
ating systems, are complex constructions. They are the outcome
of the efforts of computer designers and programmers to apply

100 A Programmer’s Story

their powerful tools to their own central problem: to control the
use of computers in a flexible and efficient manner. True to its
title, this book is a deliberate attempt to get to grips with this
complexity through a concentration on principles. For this reason
the book addresses the advanced reader, who is already familiar
with at least some of the existing operating systems. In fact, the
general character of the problem is not described in depth, but
merely reviewed in the 22 pages of chapter 1.

The presentation is generally at a very high level of clarity,
and gives evidence of deep insight. In pursuing his principal aim,
the establishment of a coherent set of basic principles for the field,
the author is highly successful. The principles are supported
by algorithms written in Pascal, extended where necessary with
carefully described primitives. Close attention is paid to the
thorny question of terminology. The main terms used in the text
are explained in a vocabulary at the end of the book.

As said explicitly in the introduction, the book presents one
man’s view of the subject. Thus, in particular, only one actual
system, the RC 4000 multiprogramming system, is described in
detail. Even so the author is very open to the ideas of others,
and the text is scattered with references to work of others. The
author must also be credited that he is able to maintain a crit-
ica1 attitude even to his own insight and solutions. Thus the
discussion of the RC 4000 multiprogramming system ends with
a detailed critical review of both advantages and disadvantages
of the system. As a whole the book is not of the kind that is
designed to provide the complete, closed basis for a course, but
rather of the kind that tries to open the student’s mind to the
open ends, the unsolved problems, and the divergence of views,
as expressed in other literature.

In summary, this book treats the problems lying within its
limitations with deep insight, a keen sense of underlying, general
principles, and excellent clarity of exposition. It will be suit-
able for use in advanced computer science education and for the
systems programmer and research worker. Highly recommended.

Peter Naur

Believe it, or not, while writing my first book, it never occurred to me
that I had any competition in this country of 250 million people. Once more,

5. Shaping a New Field 1970–72 101

youthful ignorance worked to my advantage. A year after my book came out,
there were already several other texts on operating systems. Now, of course,
there must be hundreds. Over the years, Karlstrom contracted with foreign
publishers to translate my book into Japanese (1976), German (1977), Czech
(1979), Polish (1979), and Serbo-Croatian (1982).

6

INVENTING THE FUTURE 1972–76

Can you tell me, what is Caltech? – Sunshine and palm trees in February – Wine-

tasting with the dean – Driving across America – A question of priority – Two

baffling problems – That sounds easy – Concurrent Pascal and Solo – Al Hartmann’s

compiler – The art of compromise – Getting a sore throat in Bombay – Returning

to Marktoberdorf – The distraction of grants – Leaving the magic kingdom – A

passion for clear thinking.

After the completion of my operating system book, it was time to decide
whether we should return to Europe or stay in the United States. One day,
I received a long-distance phone call from Pasadena in Southern California.
The caller said: “This is Gilbert McCann from Caltech. Would you be
interested in being interviewed for a faculty position?” There was a long
pause at the other end of the phone when I answered: “Certainly, but can
you tell me, what is Caltech?”

California Institute of Technology is probably America’s most demand-
ing college of science and engineering. With about 900 undergraduates, 900
graduates and 300 faculty, it has one professor for every three undergradu-
ates. The students are among the top 1% in the nation. Some of them are
handpicked by professors who visit high-schools around the country.

Caltech has had a major effect on the aerospace industry in Southern
California. The Jet Propulsion Laboratory, America’s first center for space
research, is staffed and managed by Caltech. After a flight of 380 million
kilometers in 167 days, the Mariner 9 spacecraft was placed in orbit around
Mars on November 13, 1971. By the end of June 1972, it had taken over
7,000 pictures and mapped the entire surface of the planet.

In his yearly report for 1971/72, Caltech president Harold Brown wrote:
“Our traditions and capabilities at Caltech are strongly focussed on the most
fundamental matters, at the leading edge of knowledge in each discipline.

Copyright c© 2004 by Per Brinch Hansen.

103

104 A Programmer’s Story

Few of us would be at Caltech if we did not believe that such efforts are of
surpassing value.” I remember one professor telling me, “If MIT is working
on something, we are not interested. Caltech cannot do everything. So we
concentrate on areas in which we are unique.” This philosophy has certainly
paid off. In the first century of the Nobel Prize, 27 Nobel laureates have
been associated with Caltech.

Caltech students are famous for their imaginative pranks. California
Boulevard divides the campus into two parts. To walk across it, you have to
push a button on a traffic signal and wait for a green light. On one occasion,
students unscrewed the light cover, put the green glass at the top and the red
one at the bottom of the signal. Drivers now had to get out of their cars and
push the button to get a (brief) green signal. During rush hour, a mile-long
line of cars moved at snail’s pace. Since the city administration knew that
Caltech students are very intelligent, they assumed that the wiring of the
signal had been changed in some way. So they sent an electrician over to
check it out. He was very puzzled when he couldn’t find anything wrong—
until a Caltech student walked up to him and said: “Excuse me, I thought
the red light was supposed to be on top of the green one.” Great ideas are
often simple!

On “Ditch Day,” Caltech seniors ditch their classes and vanish from
campus. Any senior found on campus risks being caught and tied to a tree
with duct-tape. Senior students have secured their doors in elaborate ways.
Underclass students must then try to get past these “stacks” and into the
seniors’ rooms. In one memorable instance, a senior had filled his room
completely with an enormous water balloon. When some students cut a
hole in the balloon, a flood of water swept them down the corridor.

? ? ?

It was my luck to arrive at Caltech just as they were starting up a department
of Information Science. In September 1971, Caltech dedicated the Jorgensen
Laboratory for information and computer science. The building was a gift
of Earle M. Jorgensen, a Trustee of the Institute since 1957, and his wife.
An elite institution like Caltech, financed by wealthy donors, would (unfor-
tunately) be unthinkable in most European countries, due to the prevailing
egalitarian attitudes and high levels of taxation.

On Wednesday, February 16, 1972, at 4 p.m., I gave a seminar at Caltech
on “Structured multiprogramming.”1 I described conditional critical regions

1P. Brinch Hansen, Structured multiprogramming. Communications of the ACM 15,

6. Inventing the Future 1972–76 105

and explained how they waste unpredictable amounts of processing time by
reevaluating boolean conditions until they are true. I then showed how
to eliminate this inefficiency by extending a programming language with
queuing variables, which give the programmer complete control of process
scheduling within conditional critical regions. This idea became an essential
ingredient of the future monitor notation.

My trip to Southern California was a welcome break from the winter in
Pittsburgh. I enjoyed walking around Caltech in February, without a coat,
looking at the palm trees and the beautiful San Gabriel mountains, a few
miles north of Pasadena.

Two days later, I was invited to a wine-tasting dinner at the Athenaeum,
Caltech’s magnificent faculty club, built in Mediterranean style with beauti-
ful landscaping and tennis courts. This elegant building was also a gift from
private donors. The first formal dinner, in February 1931, was attended
by three Nobel Prize winners: Albert Einstein, Robert Millikan and Albert
Michelson.

The wine-tasting was held in a large, oak-panelled dining room. My
host was the sixty-year old Francis Clauser, the charming chairman of the
Division of Engineering and Applied Science. He had done brilliant research
in aeronautics and was a member of the National Academy of Engineering.
During the dinner, we tasted German white wines and California red wines
from Caltech’s private wine cellar. The wines were discussed by the wine
chairman, professor Harold Wayland.

Within a month, Caltech obtained letters of recommendation for me from
Tony Hoare (Belfast), Don Knuth (Stanford), Butler Lampson (Xerox Parc),
Roger Needham (Cambridge), Alan Perlis (Carnegie-Mellon), and Niklaus
Wirth (ETH Zurich).

In March 1972, I was invited to visit Caltech again, this time with Milena
and our two small children. At the Los Angeles Airport, Caltech’s private
limousine was waiting for us. When the driver saw Milena’s winter coat,
he said “You won’t be needin’ that here, Ma’m!” After driving thirty miles
north on the Harbor and Pasadena Freeways, we reached Colorado Boulevard
in Pasadena, where Caltech had reserved a motel room for us.

In the evening, Gilbert McCann and his wife Betty took us out to dinner
at a family restaurant. I remember Betty asking me: “Isn’t it a handicap not
to have a PhD?” I looked surprised and said: ”No, I don’t think so.” The
only degree offered by the Technical University of Denmark was a five-year

July 1972.

106 A Programmer’s Story

Master’s. I still have reservations about the PhD. It seems to me, that it is
not a good idea to ask young people to spend some of their most creative
years taking more courses, passing final exams, and doing research that fits
into the ideas (and grants) of their professors.

The Caltech physicist, Richard Feynman, was even more blunt about his
role as a PhD advisor (Gleick 1992):

I do not like to suggest a problem and suggest a method for its
solution and feel responsible after the student is unable to work
out the problem by the suggested method. . .What happens is
that I find that I do not suggest any method that I do not know
will work and the only way I know it works is by having tried it
out at home previously, so I find the old saying that “A Ph.D.
thesis is research done by a professor under particularly trying
circumstances” is for me the dead truth.

Back at Carnegie-Mellon, I wrote a letter informing family and friends
that “California Institute of Technology has offered me a faculty position as
an Associate Professor of Computer Science. . .I have now accepted this offer
and will start working [at Caltech] on July 1.”

? ? ?

Our trip across the United States and our life in California are described in
Christmas letters to family and friends. We left Pittsburgh on June 1 and
drove 3,100 miles (about 5,000 km) across America to Los Angeles. First,
we went to Montreal, where I chaired a session on the design of operating
systems at the Canadian Computer Conference. On the way, we got a last
glimpse of Niagara Falls. From then on, we drove west through the states of
Quebec, Ontario, Michigan, Illinois, Iowa, South Dakota, Wyoming, Utah,
Nevada and California. Fifteen days in a row we traveled west, every evening
towards a radiant sunset.

South Dakota made the greatest impression. Badlands: desert-like rock
formations eroded by rivers below the surrounding flat country for millions
of years. Mount Rushmore, where Gutzon Borglum, son of a Danish immi-
grant, carved 60-feet tall sculptures of George Washington, Thomas Jeffer-
son, Abraham Lincoln, and Theodore Roosevelt on a granite mountain. The
day we left Mount Rushmore, a dam collapsed, flooding the entire area and
killing many people.

6. Inventing the Future 1972–76 107

South Dakota is right in the middle of the old Wild West. This is where
Buffalo Bill came from, and the Sioux Indians still live here. In Custer State
Park we went by Jeep to see a flock of buffalos on the prairie. In Deadwood
City we were shown around the Broken Boot gold mine by an old man who
remembered both Calamity Jane and Wild Bill Hickock from his childhood.
On Boot Hill, high above the city, we found their tombstones.

Yellowstone National Park in Wyoming is larger than Delaware and
Rhode Island combined. It has an incredible collection of natural wonders
in one place: hot springs, geysers, waterfalls, mountains and lakes. At one
point, Milena got out of the car to photograph a black bear sitting beside
the road. The bear didn’t like that, so she had to run back to the car. Inside
the park, we stayed overnight in a five-story alpine lodge.

The next day, we headed south, through the Grand Teton National Park.
In Salt Lake City, Utah, we saw the Mormon Temple with the statue of Christ
by the Danish sculptor, Bertel Thorvaldsen. In Salt Lake City, we bought a
brand new set of radial tires, guaranteed for 40,000 miles. Sixty miles later,
we had a flat tire in the middle of the Great Salt Desert. After mounting a
worn-down spare, we crawled though Nevada until we reached Reno where
we bought another tire (which later was punctured in Los Angeles).

In San Francisco, I wanted to show my family the Golden Gate bridge.
But as we drove across it in the late afternoon the fog drifted in from the
ocean and hid everything. We now drove south along the Pacific Ocean
on the Cabrillo Highway though Monterey, portrayed in Steinbeck’s novels.
Finally we reached Los Angeles.

At Caltech we were met by a lady who handed us the key to a house we
could live in over the summer. It was a white, two-story house on Boulder
Road in the suburb of Altadena. On the second floor, a covered balcony
extended from one end of the house to the other.

Two days later, I flew back to the east coast in four hours to lecture on
the RC 4000 multiprogramming system at a Summer Institute of Computer
Science at University of Maryland.

Greater Los Angeles: 8 million people in one place. Two murders a day
and several thousand robberies. Brilliant weather (if you dare to breathe
the air). The wind from the ocean blows the smog from downtown towards
Pasadena, where the mountains stop it. Sometimes you could not see the
Sierra Madre mountains, a few miles north of Caltech.

On the positive side, Southern California had so many attractions for
the children: Los Angeles Zoo, Universal Studios, Magic Mountain, Farmers

108 A Programmer’s Story

Market, Knott’s Berry Farm, Lion Country Safari, Marineland, Japanese
Village, Busch Gardens, La Brea Tar Pits, Mount Wilson Observatory (and
its Skyline Park with llamas, deer, goats and turkeys), the Queen Mary (the
world’s largest ocean liner), Disneyland, and, of course, the ocean beaches.

? ? ?

At age 27, Gilbert McCann earned a PhD in electrical engineering from Cal-
tech. As a graduate student, a two-million-volt stroke from a surge generator
paralyzed all his outer nerves and muscles for 24 hours and damaged one of
his eyes permanently.

During World War II, he designed an analog computer that made it
possible to shoot down most of the German V-1 rockets when they reached
the coast of England. After the war, he became a faculty member at Caltech
and started building a huge analog computer. By the 1950s, McCann’s lab
served every aircraft company in America and Europe. When the workload
became too much for Caltech to handle, they spun off a commercial company,
Computer Engineering Associates, with McCann as the largest shareholder.

When I met him in 1972, he was sixty years old. His manners were some-
what brusque. Since Americans habitually abbreviate first names (which we
don’t in Denmark), I wasn’t sure what to call him. So I asked him: “Do you
want me to call you Gilbert or McCann?” In an annoyed tone, he answered
“I respond to either,” which was not very helpful to me.

In his efforts to dominate his department, McCann could be ruthless
towards faculty members whose research and financial support were inde-
pendent of his own. This was obvious in his relationship with professor Fred
Thompson, who had been the most promising student of the famous logi-
cian Alfred Tarski. At Caltech, Fred made a truly courageous gamble on the
future of computing by working on the problem of using English for human
interaction with computers. After several years of hard work, he had finished
a software system in assembly language for a particular computer. At that
crucial stage, McCann used his influence to support an offer from IBM to
replace that computer with another one that was unable to execute Fred’s
program. Years of programming were wasted and Fred had to start all over
again.

? ? ?

In 1961, Fernando Corbató pioneered timesharing at MIT. Ten years later,
computing at Caltech was still a cumbersome affair based on old-fashioned

6. Inventing the Future 1972–76 109

batch processing. First, you used a noisy machine, the size of a small desk,
to punch your program on IBM cards. Then you carried your deck of cards
to the neighboring Booth Center for Computing, and gave it to an operator
behind a counter. Several hours later, you walked back to the center and
picked up your punched cards and printed output from one of the small
“pigeonholes” arranged alphabetically by user names.

The overriding concern was to keep Caltech’s mainframe computer run-
ning efficiently with as little human intervention as possible. You were not
allowed anywhere near the computer equipment. Operators collected decks
of punched cards from users and used a small computer to input a batch of
jobs from punched cards to a magnetic tape. This tape was then mounted
on a tape station connected to the mainframe computer. The jobs were now
input and run one at a time in their order of appearance on the tape. The
running jobs output data on another tape. The output tape was moved to
a small computer and printed on a line printer. While the mainframe com-
puter executed a batch of jobs, the small computers simultaneously printed
a previous output tape and produced the next input tape. The final task of
the operators was to separate the printed output manually and place it in
the correct pidgeonholes.

Batch processing was severely limited by the sequential nature of mag-
netic tapes and early computers. Although tapes could be rewound, they
were only efficient when they were accessed sequentially. And most comput-
ers could only execute one program at a time. It was therefore necessary to
run a complete batch of jobs at a time and print the output in “first-come,
first-served” order.

To reduce the computer time that was lost while operators changed mag-
netic tapes on the mainframe computer, it was essential to batch many jobs
on the same tape. Unfortunately, large batches greatly increased service
times from the users’ point of view. It would typically take hours (or even
a day or two) before you received the output of a single job. If the job
involved a program compilation, the only output for that day might be an
error message caused by a misplaced semicolon!

On campus there was an economic conflict between students, who needed
to compile and run small programs with reasonable turn-around times to
meet their deadlines for homework, and researchers, who ran large compu-
tations supported by research grants. The compromise adopted was to run
large jobs at night or on weekends.

McCann directed the computing center for seven years. In his alloca-

110 A Programmer’s Story

tion of computer time for research, he apparently favored some faculty over
others. Finally, a group of well-funded faculty went to the chairman of en-
gineering and threatened to buy computer time outside campus, unless he
replaced McCann, which he did.

? ? ?

I posed no threat to McCann’s power and found him quite supportive of my
work at Caltech. His main interest was now using computers to study the
nervous system of the fly. He left it to younger faculty, including Giorgio
Ingargiola and me, to develop academic courses.

Giorgio spoke English with a pronounced Italian accent interrupted fre-
quently by an infectious laugh. His office was next door to mine. At noon,
we would walk across the sunny campus and enjoy lunch at the Athenaeum.
He taught a course on formal models of computation and directed a pro-
gramming laboratory with student projects.

Caltech had a trimester system. In the first trimester, I taught struc-
tured programming, followed by compiler design in the second trimester, and
ending with operating systems in the third trimester. These courses could
be taken by students from any department. The enrollment in each course
was 60–70 students, which was a large class at Caltech. I enjoyed teaching
these smart kids, who raised many questions in class and often came up to
me after class to continue our discussions.

The Caltech students published a booklet with candid comments about
the teaching abilities of the faculty. About one professor, they wrote: “He
obviously knows his stuff, and so would you—if only you could stay awake
in his class!” They described my courses as “An easy way to get an A” (a
viewpoint not shared by many students at Syracuse University).

My experience at Regnecentralen had taught me that professional pro-
gramming is not a form of unsystematic trial-and-error. You need to think
deeply until you understand exactly what you want your program to do.
Before you compile a program for the first time, you should proofread it for
logical consistency. And before you run it, you need to prepare a systematic
testcase with output that demonstrates that every line of the program has
been executed.

In this view of programming, thinking time is much more important
than computer time. Programming takes place at a desk away from any
computer. Today, when I see faculty and students spending hours at com-
puter terminals, I wonder: Are they really thinking deeply, or are they just
typing? Modern computing has turned us into amateur typists.

6. Inventing the Future 1972–76 111

Thirty years ago, when we had to use batch processing with slow turn-
around, the idea of using the computer as little as possible made all the more
sense to me. In those days, students needed written permission from their
instructors to set up personal accounts with limited amounts of computer
time. To encourage my students to think more and compute less, I gave
them less computer time than they needed to complete the compiler project.
When their accounts ran out, I gave them 50 percent more, then 25 percent
and so on.

At one point, Francis Clauser informed me that my well-intentioned pol-
icy had the unexpected side-effect of making some students “borrow” com-
puter time from the accounts of other students. This was a clear violation of
Caltech’s Honor Code which states that no member of the community shall
take unfair advantage of any other member of the community. As soon as
I heard that, I sacrificed my miserly approach and gave everybody as much
computer time as they needed.

The Honor Code gave us all remarkable freedom. You could, for example,
tell students to go home and solve exercise 2.2.6.8 in Knuth’s book on “Fun-
damental Algorithms”—without looking in the answers section! However,
human nature being what it is, it was not easy for students to live up to the
Honor Code. A survey showed that while most of them strongly supported
the Honor Code, few were prepared to turn in their friends for violating it.

? ? ?

In the spring of 1972 I read about the class concept invented by the Norwe-
gians Ole-Johan Dahl and Kristen Nygaard for their programming language
Simula 67. Although Simula was not a concurrent programming language,
it inspired me in the following way: So far I had thought of a monitor as a
program module that defines all operations on a single data structure. From
Simula I learned to regard a program module as the definition of a class of
data structures accessed by the same procedures.

This was a moment of truth for me. Within a few days I wrote a chapter
on resource protection for my operating system book. I proposed to represent
monitors by shared classes. My book included a single monitor for a message
buffer. Figure 1 shows it in a slightly simplified form. The shared class is a
program module that combines three things: (1) the data representation of
a message buffer, (2) the send and receive procedures, which define the only
possible operations on a buffer, and (3) a statement that defines the initial
buffer state as empty.

112 A Programmer’s Story

shared class buffer =
slot: integer; empty: boolean;

procedure send(message: integer)
begin

await empty;
slot := message;
empty := false;

end;

procedure receive(var message: integer);
begin

await not empty;
message := slot;
empty := true;

end;

begin empty := true end;

Figure 6.1 The first monitor notation.

The key idea is that processes only have indirect access to the variables
of the shared class. They can call the send and receive procedures, which
operate on the buffer variables, but they do not have direct access to these
variables. This scope rule has an important implication for program reli-
ability: Once you have programmed and tested a shared class, it remains
correct, and cannot easily be corrupted by other parts of the program.

A shared class is a notation that explicitly restricts the operations on a
shared data structure and enables a compiler to check that these restrictions
are obeyed. It also indicates that all operations on a particular instance
must be executed as critical regions. In short, a shared class is a monitor
type. My decision to use await statements in the first monitor proposal was
a matter of taste. I might just as well have used the queuing variables, which
I had proposed in 1972.

? ? ?

In the spring of 1972, I had sent Tony Hoare a copy of my book manuscript
which included my monitor concept. Six month later, he submitted a paper

6. Inventing the Future 1972–76 113

on “A structured paging system,” which was published in the fall of 1973,
one month after the publication of my book. In this paper, Hoare used
my shared classes and queuing variables, with minor changes, to outline an
unimplemented demand paging system.

As an engineer, I had serious reservations about this paper. Nobody can
have confidence in a theoretical specification of something as complicated as
a demand-paging system—unless the validity of the model has been tested in
an actual implementation. At Regnecentralen I had defined the instruction
set of the RC 4000 computer completely by an Algol 60 program. Had we
not built this computer, my hardware specification would have remained an
unpublished, academic exercise.

On a personal level, I was surprised and hurt to find that, instead of
citing my book as the original published source of the monitor concept,
Hoare thanked me (and others) vaguely “for ideas, discussion, inspiration,
and criticism on points too numerous to recall.” When I pointed out that this
was unacceptable, he acknowledged my invention of monitors in a tutorial,
published in the following year (Hoare 1974a). However, the damage had
been done, and, for years, people would continue to call them “Hoare’s
monitors.”

Looking back, it was, of course, naive of me to publish the monitor
concept in a textbook, instead of a professional journal. But I was young
and idealistic and felt that my first book should include at least one original
idea. It did not occur to me that researchers rarely look for original ideas in
undergraduate textbooks.

At that point, I considered it premature to write a tutorial on the monitor
concept. My professional standards were deeply influenced by Naur and
Jensen’s Gier Algol compiler, Dijkstra’s THE multiprogramming system,
Regnecentralen’s RC 4000 multiprogramming system, and Wirth’s Pascal
compiler. Every one of these systems had been implemented before it was
described in a professional journal. Since this was my standard of software
research, I decided to implement monitors before writing more about them.

? ? ?

At Caltech, I started thinking about defining a programming language with
concurrent processes and monitors. To reduce the effort, I decided to include
these concepts in an existing sequential language. Pascal was an obvious
choice for me, since I had used the language in my operating system book. I
named the new language Concurrent Pascal. Apart from that, nothing else
was obvious.

114 A Programmer’s Story

With a notation for monitors now in hand, you would think it would be
easy to include it in Pascal. I had no idea of how to do this. I remember
sitting in my garden in Altadena, day after day, staring at a blank piece of
paper and feeling like a complete failure.

I faced two baffling problems for the first time: (1) how can you make
a concurrent programming language secure from time-dependent behavior
by using extensive compilation checks and minimal run-time checks? (2)
When concurrent processes terminate, is it possible to reclaim and reuse
their memory spaces without resorting to slow “garbage collection?” It took
me almost two years to find reasonable solutions to the first problem and
make compromises that enabled me to ignore the second one.

In September 1973, I sent Mike McKeag “a copy of a preliminary work-
ing document that describes my suggestions for an extension of Pascal with
concurrent processes and monitors.” This is the earliest evidence of Concur-
rent Pascal. In April 1974, I distributed a report on “Concurrent Pascal: a
programming language for operating system design.”

Concurrent Pascal extends Pascal with program modules defining mon-
itor, process, and class types. (Since class types are related to sequential
rather than concurrent programming, I will ignore them here.)

The monitor shown in Fig. 6.2 defines a single-slot buffer as a new data
type. If a process tries to receive a message from an empty buffer, the
monitor delays that process in a queuing variable. When another process
sends a message through the same buffer, the monitor immediately continues
the execution of the delayed process within the receive procedure. The
process that performs the continue operation automatically returns from
the send procedure. This context switch ensures mutual exclusion of monitor
calls. Sending is similar to receiving.

Figure 6.3 defines a (trivial) process type that copies an endless stream
of integers from one buffer to another.

The syntax clearly shows that each module defines a data structure and
all the possible operations on it. The compiler must check that (1) every
process and monitor only refers to its own variables; (2) processes interact
through monitor procedures only; and (3) processes do not deadlock by
calling monitors recursively (either directly or indirectly).

I now understood what I was doing. One day the president of Caltech,
Harold Brown, came to my office and asked me to explain my research. After
listening for half an hour, he said, “That sounds easy.” I agreed because that
was how I felt at the time. Caltech sure was different! This was the only time

6. Inventing the Future 1972–76 115

type buffer =
monitor
slot: integer; empty: boolean;
sender, receiver: queue;

procedure entry send(message: integer);
begin

if not empty then delay(sender);
slot := message;
continue(receiver);

end;

procedure entry receive(var message: integer);
begin

if empty then delay(receiver);
message := slot;
continue(sender);

end;

begin empty := true end;

Figure 6.2 A monitor type.

in my life, I had the opportunity to discuss my research with a university
president.

? ? ?

More than anyone else, Gordon Bell was the driving force behind the mini-
computer revolution. At Digital Equipment Corporation, he was the main
architect of the PDP 11, the first minicomputer that was powerful enough
to support modern programming languages. When I first met him, he was
spending a sabbatical year at Carnegie-Mellon. By 1975, as vice president
of engineering at DEC, Gordon and his team had designed the 32-bit VAX

computer, which became the standard computer for science and engineer-
ing. In 1983 he started Encore Computer, which built the Encore Multimax,
a multiprocessor that I would later use for parallel programming at Syra-
cuse University. In 1991, president George Bush awarded Gordon Bell the
National Medal of Technology.

116 A Programmer’s Story

type copyprocess =
process(inp, out: buffer);
value: integer;
begin

cycle
inp.receive(inp, value);
out.send(out, value);

end
end;

Figure 6.3 A process type.

In 1970, when the first PDP 11s were delivered, over 170,000 were sold.
At Caltech, McCann acquired a PDP 11/45 for his lab. Since it cost only a
fraction of a mainframe computer, it was operated in open shop mode (just
like Regnecentralen’s Gier computer had been).

I had already made Pascal available for students on Caltech’s mainframe
computer. In this effort, I was assisted by Robert Deverill, a professional
programmer working for McCann. At the time, no minicomputer supported
Pascal. So we had to program the Concurrent Pascal compiler in Pascal and
test it on Caltech’s mainframe computer before moving it laboriously to the
PDP 11.

An early six-pass compiler was never released. Although it worked per-
fectly, I found it too complicated. Each pass was written by a different
student who had difficulty understanding the rest of the compiler.

From June through September 1974 my first PhD student, Al Hartmann,
wrote another Concurrent Pascal compiler. His goal was to be able to com-
pile small operating systems on a PDP 11/45 with at least 32 K bytes of
memory and a slow, removable disk (about two feet in diameter). The com-
piler was divided into seven passes to fit into the small memory. It consisted
of 8,300 lines written in Pascal and could be completely understood by one
person. Systematic testing of the compiler took three months, from October
through December 1974.

The Concurrent Pascal compiler was used from January 1975 without
problems. It was described in Hartmann’s PhD thesis (1975), later published
as a monograph.

In another month Al Hartmann derived a compiler for a Pascal subset,

6. Inventing the Future 1972–76 117

which we called Sequential Pascal (Brinch Hansen 1975b). On the PDP 11,
it compiled the largest pass of the Concurrent Pascal compiler in 3 min. The
compilation speed was limited mostly by the slow disk.

The Concurrent Pascal compiler generated code for a simple machine tai-
lored to the language. I borrowed this idea from a portable Pascal compiler
distributed by Wirth’s group (Nori 1974). My main concern was to simplify
code generation. The portability of Concurrent Pascal was just a useful
by-product of this decision. Twenty years later, the Java language would
resurrect the idea of “platform-independent” concurrent programs. Unfor-
tunately, Java replaced the secure monitor concept of Concurrent Pascal
with insecure shortcuts (Brinch Hansen 1999b).

The Concurrent Pascal machine was simulated by a kernel of 8 K bytes
written in assembly language. The kernel multiprogrammed the PDP 11/45
processor among concurrent processes and executed them using an efficient
technique known as threaded code (Bell 1973). It also performed basic in-
put/output from a typewriter, a disk, a magnetic tape, a line printer, and a
card reader.

I defined the kernel in Pascal (extended with classes). Tom Zepko, a
Caltech undergraduate, helped Bob Deverill hand-translate the kernel into
assembly language for the PDP 11. It was completed in January 1975 and
described in a report (Brinch Hansen 1975d).

The programming tricks of assembly language were impossible in Concur-
rent Pascal: there were no typeless memory words, registers, and addresses
in the language. The programmer was not even aware of the existence of
physical processors and interrupts. The language was so secure that concur-
rent processes ran without any form of memory protection.

In defining Concurrent Pascal, I made major compromises to make pro-
gram execution as efficient as possible on a minicomputer that could only
address two small memory segments simultaneously: (1) All procedures were
non-recursive, (2) All processes, monitors, and classes existed forever, and
(3) All processes and monitors were activated by an initial process.

These compromises made memory allocation trivial. The first rule en-
abled the compiler to determine the memory requirements of each module.
The first two rules made static memory allocation possible. The third rule
made it possible to combine the kernel, the program code, and all monitor
variables into a single memory segment that was included in the address
space of every process. This prevented fragmentation of the limited address
space and made monitor calls almost as fast as simple procedure calls.

118 A Programmer’s Story

By putting simplicity and efficiency first we undoubtedly lost generality.
But the psychological effect of these compromises was phenomenal. Suddenly
an overwhelming task seemed manageable.

? ? ?

In January 1975, Milena and I traveled to India. The United Nations had
donated funds for the country to open a center of software research and
acquire a large computer at the Tata Institute of Fundamental Research in
Bombay. To celebrate this event, a conference was organized for all com-
puter science teachers in the country. Bill Wulf from Carnegie-Mellon, Rod
Burstall from the University of Edinburgh, and I were invited to lecture.

Since Bombay is on the opposite side of the globe, we broke the long flight
from Los Angeles in half by stopping overnight in Frankfurt, Germany. In
Bombay we stayed at the famous Taj Mahal hotel. The place was swarming
with international guests: oil sheiks in white garments with golden stripes,
Indian women in colorful saris, Japanese tourists—and us. The hotel had
French, Indian, and Chinese restaurants, as well as some sort of cafeteria.
In addition there was room service twenty-four hours a day.

The first couple of days, I ate Indian breakfasts. Since I couldn’t read
the menu, I started from the top and ordered a new dish every morning. A
typical dish consisted of some very spicy curry balls. After a few days, I had
to stop this diet and see the hotel’s doctor about my sore throat.

Right outside our luxury hotel, the poor were sleeping on the pavement.
It was difficult to accept that small children of the same age as our children
were running ahead of us begging.

After a week of lecturing, all of us flew to Aurangabad to see the famous
Ajanta caves—a row of temples cut into massive rock centuries ago. Later,
Milena and I traveled inland to Hyderabad and visited a company that
produced a minicomputer similar to the PDP 11. I noticed that most of
their peripheral devices came from communist countries in Eastern Europe.
When we returned to our hotel room after dinner and turned on the lights,
an army of well-fed cockroaches scampered under the bed. We called room
service and they sent an employee who sprayed the room with kerosene.
That night we slept with the lights on, breathing the smelly fumes.

At Caltech, I had an Indian graduate student, named Sriram Udupa.
One evening, Milena and I visited his family in Bombay. They were orthodox
Brahmins. They served rice and thin fine bread on tin plates covered with
palm leaves. We sat in a circle on the floor and ate with our fingers, since

6. Inventing the Future 1972–76 119

Brahmins regard knives and forks as unclean. The dinner was intended
for the men and their sons only. The women served and watched us eat.
However, they made an exception for Milena and allowed her to eat with us.
It was all very dignified and made a deep impression.

After the conference in Bombay, Milena and I flew to New Delhi and
on to Agra to see the famed Taj Mahal mausoleum, built by the Mogul
emperor Shah Jahan (1592–1666) for his favorite wife, Mumtaz Mahal. The
only thing we did that day was sit in the park in front of this master piece
built of white marble with inlaid semiprecious stones. To me, Taj Mahal
was as unique as Michelangelo’s sculptures in Florence, Italy—one of those
rare miracles, which human beings create once every five hundred years. In
the basement under the building there was a marble casket with a big hole
in the lid. The small detail that was missing was the 160-carat Kohinoor
diamond, which an Indian prince gave England’s Queen Victoria. It is now
part of the British crown jewels.

The Taj Mahal reminded me of one of my favorite quotes (Bronowski
1973):

The most powerful drive in the ascent of man is his pleasure in
his own skill. He loves to do what he does well and, having done
it well, he loves to do it better. You see it in his science. You see
it in the magnificence with which he carves and builds, the loving
care, the gaiety, the effrontery. The monuments are supposed to
commemorate kings and religions, heroes, dogmas, but in the
end the man they commemorate is the builder.

In spite of the exotic sights, it was depressing to visit India after growing
up in a Scandinavian welfare state. Right outside the Taj Mahal, there
was a small, stinking village. They said that American pilots slept in their
airplanes in Calcutta to avoid seeing the hell, which was called life there.
And Bombay smelled like a garbage dump everywhere (even inside the Taj
Mahal hotel). Life seemed depressing even for the well-educated middle class
of engineers and researchers we met.

After another stop in Frankfurt we returned home to our children, who
had enjoyed staying with friends and never missed us.

? ? ?

After returning to Caltech, I wrote three model operating systems in Con-
current Pascal to evaluate the language. The modular concurrency had a
dramatic (and unexpected) impact on my style of programming.

120 A Programmer’s Story

It was the first time I had programmed in a language that enabled me
to divide programs into modules that could be programmed and tested sep-
arately. The creative part was clearly the initial selection of modules and
the combination of modules into hierarchical structures. The programming
of each module was often trivial. I soon adopted the rule that each module
should consist of no more than one page of text. This discipline made pro-
grams far more readable and reliable than traditional programs that operate
on global data structures.

In May 1975 I finished the Solo system, a single-user operating system
for the development of Concurrent and Sequential Pascal programs on a
PDP 11/45. The operating system was written in Concurrent Pascal. All
other programs, including the Concurrent and Sequential Pascal compilers,
were written in Sequential Pascal. The heart of Solo was a job process that
compiled and ran programs stored on a removable user disk. Two additional
processes performed input and output simultaneously. System commands
enabled the user to replace Solo with any other Concurrent Pascal program
stored on disk, or to restart Solo again. Al Hartmann had already written
the compilers. I wrote the operating system and its utility programs in three
months. Wolfgang Franzen measured and improved the performance of the
disk allocation algorithm.

The Solo system was the first major example of a concurrent program
consisting of processes, monitors, and classes (Brinch Hansen 1975c). It en-
abled us to use Sequential and Concurrent Pascal on the PDP 11/45 without
going through the cumbersome batch processing at Caltech’s computing cen-
ter.

At Regnecentralen we had used the RC 4000 computer to implement pro-
cess control programs for a chemical plant, two power plants, and a weather
bureau. These real-time applications had one thing in common: each was
unique in its software requirements. Consequently the programs were ex-
pensive to develop.

When the cost of a large program cannot be shared by many users, the
only practical way of reducing cost is to give process control engineers a
high-level language for concurrent programming. I illustrated this point by
means of a real-time scheduler, which had been programmed in assembly
language at Regnecentralen. I now reprogrammed the same scheduler in
Concurrent Pascal.

The real-time scheduler executed a fixed number of task processes with
frequencies chosen by an operator. I wrote it in three days. It took 3 hours

6. Inventing the Future 1972–76 121

of machine time to test it systematically. Writing a description took another
couple of days. So the whole program was developed in less than a week
(Brinch Hansen 1975e).

At the end of 1975 I wrote a job-stream system that compiled and ex-
ecuted short Pascal programs input from a card reader and output on a
line printer. Input, execution, and output took place simultaneously using
buffers stored on a disk. A user job was preempted if its compilation and
execution time exceeded 1 minute. I designed, programmed, and tested the
system in 10 days. When the system was finished, it ran short jobs contin-
uously at the speed of the line printer (Brinch Hansen 1976a).

Each model operating system was a Concurrent Pascal program of about
1,000 lines of text divided into 15–25 modules. A module was roughly one
page of text (50–60 lines) with about 5 procedures of 10–15 lines each (Ta-
ble 1).

Table 1 Model operating systems.

Solo Job Real
stream time

Lines 1,300 1,400 600
Modules 23 24 13
Lines/module 57 58 46
Procedures/module 5 4 4
Lines/procedure 11 15 12

These examples showed that it was possible to build nontrivial concurrent
programs from very simple modules that could be studied page by page
(Brinch Hansen 1977).

Compared to assembly language, Concurrent Pascal reduced my pro-
gramming effort by an order of magnitude and made concurrent programs
so simple that a software journal could publish the entire 1,300 lines of the
Solo program text (Brinch Hansen 1975c).

I tested the modules of a concurrent program one at a time starting with
those that did not depend on other modules. In each test run, the initial
process was replaced by a short test process that called the top module and
made it execute all its statements at least once. When a module worked,
another one was tested on top of it.

Dijkstra had used a similar procedure to test the THE multiprogramming
system, which was written in assembly language. However, Concurrent Pas-

122 A Programmer’s Story

cal made bottom-up testing secure. The compilation checks of access rights
ensured that new (untested) modules could not make old (tested) modules
fail. My experience was that a well-designed concurrent program of one
thousand lines required a couple of compilations followed by one test run
per module. And then it worked (Brinch Hansen 1977).

? ? ?

In his book, “Advice to a Young Scientist,” the Nobel Laureate Peter Medaw-
ar (1979) wrote:

Ever since Bacon’s day experimentation has been thought to
be so deeply and so very necessarily a part of science that ex-
ploratory activities that are not experimental are often denied
the right to be classified as sciences at all.

Unfortunately, this obvious requirement has often been ignored in aca-
demic research on software design. In a guest editorial introducing the Solo
papers, I commented on the sad state of my profession (Brinch Hansen
1976c):

It is not uncommon for a computer scientist to make a proposal
without testing whether it is any good in practice. After spending
3 days writing up the monitor proposal and 3 years implementing
it, I can very well understand this temptation. It is perhaps
also sometimes a human response to the tremendous pressure on
university professors to get funding and recognition fast.

Nevertheless, we must remember that only one thing counts
in engineering: Does it work?. . .What would we think of math-
ematicians if most of their papers contained conjectures only?
Sometimes an educated guess can be a great source of inspira-
tion. But we must surely hope that the editors of computer
journals will reject most proposals until they have been tried at
least experimentally.

There was no doubt in my mind, that it was essential to put monitors to
a realistic test before I could recommend them as a proven tool for software
engineering. That was the whole purpose of developing Concurrent Pascal
and Solo.

6. Inventing the Future 1972–76 123

In July 1975, I described Concurrent Pascal and Solo at the International
Summer School in Marktoberdorf, Germany. After presenting our system,
that had been working for three months, I found it odd to hear Tony Hoare
present an outline of an unimplemented operating system, which would be
published in the proceedings of the Summer School (Hoare 1976b).

The first operating system written in Concurrent Pascal (called Deamy)
was used only to evaluate the expressive power of the language and was
never built (Brinch Hansen 1974a). The second one (called Pilot) was used
for several months but was too slow. They were described in internal working
documents only.

In a collection of his best papers, Hoare (1989) wrote:

The ultimate test of an idea, and the one that deserves the most
trust, is when it has been applied successfully in some important
project. . .These more substantial tests have always been left to
my readers.

He was apparently looking for a “royal road” to software research that would
save him from being personally involved in the completion of his “model op-
erating system.” It would be another four years before Hoare’s coworkers
completed their own monitor language, Pascal Plus (Welsh 1979). They
never developed an operating system in Pascal Plus capable of compiling
and executing real programs. None of this detracts from Hoare’s accom-
plishments as a theoretician. But as a software developer, he was obviously
not in the same class as Peter Naur, Edsger Dijkstra, and Niklaus Wirth.

In a paper on programming languages for real-time control, Tony Hoare
(1976a) had this to say about Concurrent Pascal:

This is one of the few successful extensions of Pascal, and includes
well structured capabilities for parallel processing, for exclusion
and for synchronization. It was tested before publication in the
construction of a small operating system, which promises well
for its suitability for real-time programming. Although it does
not claim to offer a final solution of the problem it tackles, it is
an outstanding example of the best of academic research in this
area.

At Marktoberdorf, Bill Wulf talked about his Hydra operating system,
which used run-time checking of access rights (called “capabilities”). In a
summary of the Summer School, Dijkstra (1975) wrote:

124 A Programmer’s Story

Bill Wulf (Carnegie Mellon) and Per Brinch Hansen (Cal.Tech.)
reported both on their development projects (the Hydra system
and a pilot model to try out the applicability of Concurrent Pas-
cal, respectively). Both gave eight lectures, and it was a pity that
their subject were so similar: sometimes all the details became
rather boring and the relative importance of operating system
design became overstressed.

I remember thinking, has Dijkstra forgotten that it was his development
of a working system that gave us confidence in the ideas behind the THE
multiprogramming system?

Alas, by 1975 Dijkstra had already formed the dogmatic opinion that
programming is a mathematical discipline in which there is no place for
concise informal reasoning supported by other means of documentation, such
as pictures, “operational” explanations (as he called them), and systematic
test cases. He was no longer interested in programs that were too large to be
proven mathematically correct. (This pretty much ruled out any program
of more than a couple of pages).

However, Niklaus Wirth was not in doubt about what we had done:

I thank you very much for sending me the two reports on Con-
current Pascal and on the Solo operating system. They are truly
encouraging and describe solid engineering progress. This is ex-
tremely refreshing after the large heaps of papers that flood the
literature and which only present new, abstract ideas, and usu-
ally make things more complicated than they were before. May I
ask you to kindly send me a second copy of these valuable reports
for our library. (Letter from Wirth, October 14, 1975.)

? ? ?

I have always regarded research proposals as a distraction from my work.
By the time I get a small grant, I have already done so much work, that
I hardly need the money! The problem is that funding agencies cannot
afford to admit that awarding research grants is like active management of
investment funds: program directors like to believe that they are making
rational choices, but in reality they just take turns being lucky!

Most professors will never make a major discovery. So why do we grant
them tenure? Because we have no way of knowing which ones will make the

6. Inventing the Future 1972–76 125

fundamental contributions! So we gamble on all of them. And, if only one
in ten researchers change their fields, it is still an excellent investment from
society’s point of view. That’s the reality of research. However, if funding
agencies respected this fact, they would have to award grants on a random
basis. Since it is difficult to acknowledge this inconvenient truth, the charade
begins: faculty members make promises, they know they can’t keep. And
funding agencies shy away from the lone inventor and express a preference
for grandiose “multi-disciplinary” research involving several departments (or
even universities).

As a new faculty member at Caltech, I had applied for a grant, but was
unsuccessful. One anonymous reviewer wrote: “What the world needs is
parallel computers, not parallel languages!” When Tony Hoare visited me in
January 1974, I asked him “what’s wrong with my research proposal?” He
looked at it and gave me some worldly advice: “Instead of saying that your
ideas are a great improvement over those of professor X, why don’t you say:
This work builds on the foundation established by professor X.” I followed
his advice and, in September 1974, was awarded a grant of $71,200 by the
National Science Foundation. Of course, by then I had already worked on
Concurrent Pascal for two years without external support and would finish
the research in another nine months.

I used some of the money to pay McCann for computer time on the
PDP 11/45. Towards the end of my project, I decided to cut my computer
time in half. The next day, McCann’s secretary, Evelyn Johnson, informed
me that McCann had just doubled the hourly rate for computing. However,
that is the only time I personally felt that McCann misused his power. I
am grateful to him for letting me use a minicomputer that made my work
accessible thoughout the world.

At Caltech we prepared a distribution tape with the source text and
portable code of the Solo system, including the Concurrent and Sequential
Pascal compilers. The system reports were supplemented by implementation
notes (Brinch Hansen 1976b).

I used part of my grant to hire a secretary, named Barbara. For the
job interview, she wore a dress, high heels, and war paint. As soon as she
reported to work, she wore jeans, like everybody else. By the spring of
1976, she had distributed the system to 75 companies and 100 universities
in 21 countries: Australia, Austria, Belgium, Canada, Denmark, Finland,
France, Germany, Great Britain, Holland, India, Ireland, Italy, Japan, Nor-
way, South Africa, the Soviet Union, Spain, Sweden, Switzerland, and the

126 A Programmer’s Story

United States.
We charged around $100 to pay for the expenses of shipping the system

tape and manuals. After a while, we had accumulated a small surplus. When
I left Caltech, a check for this amount was issued to NSF. In response, the
program director wrote: “You are supposed to spend our money—not return
it!”

? ? ?

Shortly after my arrival at Caltech, Robert Cannon replaced Francis Clauser
as chairman of engineering and applied science. He would move computer
science at Caltech in a new direction and end McCann’s dominance of the
field.

Bob Cannon wanted to know how Caltech could become unique in com-
puting. So he put together a committee that included Carver Mead (Applied
Physics), Herb Keller (Applied Mathematics), John Pierce (former Head of
Bell Labs and inventor of the communications satellite), Gilbert McCann
and me (Information Science). He met with us regularly and kept asking
the same question: “Where is the gold buried in computing?”

At our suggestion, he invited leading computer scientists from other uni-
versities to meet with the committee at Caltech. The visitors included John
McCarthy (creator of the programming language LISP), Ivan Sutherland (a
pioneer in computer graphics), and (at my suggestion) Tony Hoare. Mead
and Sutherland hit it off immediately and started traveling around the coun-
try asking researchers the same question as Bob Cannon. They came back
and told Cannon: “VLSI technology is the future of computing!” Carver
Mead predicted that by 2001 transistor sizes would shrink by a factor of
100, and he was absolutely right.

In 1976, Caltech hired Sutherland to lead computer science at Caltech.
Only then did Cannon deal with the political problem of McCann: He in-
formed McCann that the Jorgenson Laboratory would now house two sepa-
rate departments, named Bioinformation Systems (headed by McCann) and
Computer Science (headed by Sutherland).

As an untenured faculty member I was now caught in the middle of a
power struggle that was beyond my control. Carver Mead would indeed
put Caltech at the cutting edge in hardware technology and would eventu-
ally receive the National Medal of Technology in a White House ceremony.
Unfortunately, as far as I could tell, he had absolutely no appreciation of

6. Inventing the Future 1972–76 127

modern programming. He believed that programming, as we knew it then,
would become superfluous once you could put a million transistors on a chip.

As soon as Mead and Sutherland decided to concentrate on VLSI technol-
ogy, Caltech was no longer interested in the fundamental ideas of program-
ming explored by Dijkstra, Hoare, Wirth, and me. Under those circum-
stances, I considered it professional suicide to apply for tenure at Caltech.
After five exciting years, I decided to leave the magic kingdom in Pasadena.
On April 30, 1976, I submitted my letter of resignation to Bob Cannon
(Fig. 6.4).

? ? ?

When I left Caltech, I was 38 years old and had just completed some of
my best work. In a historical paper (Brinch Hansen 1993), my colleague,
Giorgio Ingargiola, described his impression of me at Caltech:

You had this tremendous clarity about what you were doing in
concurrency and languages; you made restrictive choices usually
on the basis of efficiency (you list a number of such choices in your
paper). You stated something like “start with as few and simple
mechanisms as possible; add later only if it becomes necessary.”

At least in your discussions and lectures, you built programs
from English statements, making explicit the invariants and re-
fining these statements, usually not modifying them, until the
program was done.

I was amazed at how slowly you developed code when lectur-
ing, and, by contrast, how fast you got debugged running code
for the Concurrent Pascal compiler, and for various concurrent
programs and the Solo OS.

You had very little interest in computer science topics outside
of the area in which you were doing research. You made polite
noises, you indicated interest, but your span of attention was
minimal.

My PhD student, Al Hartmann, contributed this amusing portrait:

There are really two histories interwoven in this paper—the his-
tory of the development of concurrent modular programming,
and the history of one man’s ruthless quest for simplicity in de-
sign and programming. The former topic is indifferent to whether

128 A Programmer’s Story

California Institute of Technology
Information Science 286-80
Pasadena, California 91125

30 April 1976

Dr. Robert H. Cannon, Jr.
Division Chairman
Engineering and Applied Science
Caltech 104-44

Dear Bob,

I have decided to leave Caltech as an Associate Professor of
Computer Science on August 31, 1976.

Computer Science at Caltech is now changing completely as
indeed it should. I am sure that Ivan Sutherland will give
Caltech strength in computer applications.

To make an outstanding contribution to computer engineering
you will, of course also need some of the most creative minds
in computer design, programming, and theory.

Although the Computer Science Committee initially declined
to make offers to three of the most outstanding computer
scientists: Tony Hoare, Edsger Dijkstra, and Niklaus Wirth,
I hope that you eventually will reconsider this decision. The
combination of any one of them and myself would have given
Caltech a strength in programming that would have been
unequaled anywhere else.

I have enjoyed working with Caltech students for the past
four years. Together we have developed the first abstract
programming language for Concurrent programming. It has
now been distributed to about 60 companies and 85 univer-
sities throughout the worId.

I will be very pleased to serve on the Computer Science
Program Committee until I leave campus.

Yours sincerely,

Per Brinch Hansen
Associate Professor of Computer Science

Figure 6.4 My resignation letter.

6. Inventing the Future 1972–76 129

one chooses to develop concurrency mechanisms for greater ex-
pressive power and more complex functionality, or, as you have
chosen, to radically shorten and simplify the design of common
concurrent systems. The Solo operating system is downright
primitive in the sparseness of its features, representing a counter-
cultural current against ever-increasing operating system com-
plexity. Your style and taste in programming run almost counter
to the second law of thermodynamics, that all closed systems
tend towards increasing entropy and disorder.

In a world of Brinch Hansens (which may exist in some paral-
lel dimension to ours), all systems tend towards reduced entropy
over time and toward a blissful state of ultimate simplicity. Each
new release of the operating system for one’s personal worksta-
tion is smaller than the previous release, consumes fewer system
resources, runs faster on simpler hardware, provides a reduced
set of easier to use features than the last release, and carries a
lower price tag. Hardware designers espousing the same philos-
ophy produce successive single-chip microprocessors with expo-
nentially declining transistor counts from generation to genera-
tion, dramatically shrinking die sizes, and reducing process steps
by resorting to fewer, simpler device types. No one would need
to “invent” RISC computing in this world, since reduced feature
sets would be an inexorable law of nature.

The Concurrent Pascal project had a profound influence on Tom Zepko:

Part of the history you describe is an important part of my own
history. At the time I was involved with Concurrent Pascal, I
was an undergraduate and not so much concerned with the con-
ceptual significance of the language as with learning how to build
a language system from the ground up. I got the practical expe-
rience I wanted by working on the Concurrent Pascal compiler,
the threaded code interpreter, and the operating system kernel.
I have continued to do this same kind of work for the last fifteen
years.

The concepts behind the Concurrent Pascal, the evolution of
the ideas as you describe them, are clearer to me now than they
were as a student. The needs you were addressing do require
some years of experience to appreciate. But even as a student,

130 A Programmer’s Story

some things left a lasting impression. What I learned from you,
beyond specific programming techniques, is what I can only de-
scribe as a passion for clear thinking. This was obvious in the way
you approached program design, and it was obviously the driving
force behind the design of the Concurrent Pascal language.

Some of the ideas embodied in Concurrent Pascal were radical
at the time. That they seem less so now is a tribute to the trail-
blazing nature of your work. Your approach to programming
and to language design now has many advocates. Structured
programming, modular design, strong typing, data encapsula-
tion, and so on, are all considered essential elements of modern
programming and have found their way into a wide variety of
languages. I’m thankful to have played a part in this work.

Although I did not seek tenure at Caltech, I still treasure a Christmas
card from my student, Bart Locanthi, that simply said: “Being my teacher
is a tenured position.”

7

THE END OF AN ERA 1976–84

The legendary Zohrab Kaprielian – Football game at the Rose Bowl – Creating

a top department at USC – How Harvard grants tenure – The first book on con-

current programming – Doctor technices – Surviving the executive vice president

– Designing the Edison multiprocessor for Mostek – United Technologies kills the

project – Let no man complain to me – Brush fire and mud slides in Altadena –

Magical simplicity – What we achieved.

In the fall of 1975, I started looking for a permanent job as a tenured pro-
fessor. I was encouraged to apply for a new professorship in datalogy at the
Technical University of Denmark, but the deadline was too short for Milena
and me to decide to fold our tent and return to Europe.

I visited universities in Washington, Utah, California, Colorado, Wiscon-
sin, North Carolina, New York and Ontario. At each university, I stayed for
two days, gave a talk and spent the rest of the time meeting individually
with local faculty members and joining them for lunch and dinner. These
were interesting, but exhausting trips since I was constantly being evaluated
by my peers.

At the beginning of 1976, these universities received letters of recom-
mendation from Edsger Dijkstra, Don Knuth, Butler Lampson, Bill Lynch,
Harlan Mills, Peter Naur, John Reynolds, and Niklaus Wirth. Of the five
offers I received, I chose the University of Southern California (USC) in
downtown Los Angeles.

After living in rented houses for five years, Milena and I had finally
bought an idyllic ranch house in Altadena. My decision to join USC was
heavily influenced by our desire to stay in Altadena and create a home of
our own where our children could grow up.

At the time, computer science at USC was just a program in electrical
engineering. The tenured faculty consisted of Seymour Ginsburg, an early

Copyright c© 2004 by Per Brinch Hansen.

131

132 A Programmer’s Story

pioneer in formal languages, and Ellis Horowitz, who was becoming a prolific
writer of textbooks. In addition, there were a few assistant professors. With
such a small faculty, USC had a unique opportunity to develop a first-rate
department from scratch. But, to do that, they would need new leadership.
The program was headed by Jack Munushian, one of the nicest people I ever
met. However, as a professor of material science, he was not an effective
leader of computer science.

Before accepting an offer from USC, I met with the legendary Zohrab
Kaprielian, who had turned USC into a major research institution. Ka-
prielian joined electrical engineering in 1958. After four years, he became
chairman of electrical engineering. By 1970, he was dean of engineering,
and, two years later, promoted to senior vice president. Shortly thereafter,
he became executive vice president of the university.

Every time Kaprielian was promoted to higher office, he kept all his pre-
vious positions. When I first met him, he was in his early fifties and was
clearly in charge of the university. Solomon Golomb, professor of electrical
engineering at USC, commented on the five levels of administration between
himself and the president of the university: “All of them were Zohrab Ka-
prielian. We operated on the principle of one man, one vote, and Kaprielian
was the one man who had the one vote.”

Kaprielian’s visionary leadership showed what Regnecentralen’s Niels
Ivar Bech might have achieved if he had lived in the United States. But, in
contrast to Bech, Kaprielian was a ruthless politician who made many en-
imies, which didn’t seem to bother him (as they say in Washington, “If you
want a friend in this town, get a dog!”). I remember an instance, where a
delegation of university administrators and senior faculty from USC visited
China. One of the participants was the head of the university’s news bureau.
For some reason, this small office was not controlled by Kaprielian. As soon
as the plane left Los Angeles International Airport, Kaprielian announced
that he had “reorganized” the news bureau. From now on, it would work
directly under his office. When the plane landed in Beijing many hours later,
the announcement had already appeared in the Los Angeles Times, and it
was too late for the former head to do anything about it.

In 1968, Kaprielian pioneered distance-education by establishing an in-
structional television network under Jack Munushian’s leadership. The broad-
casting of lectures via television made it possible for engineers to complete
graduate class work at the corporate offices of Hughes Aircraft and other
companies. Today, USC broadcasts over one hundred engineering courses

7. The End of an Era 1976–84 133

by satellite and internet webcast to 1,000 graduate students.
Kaprielian had an uncanny talent for recognizing opportunity and mak-

ing fast decisions. In 1972, he was approached by Keith Uncapher, who was
director of the computer science division at RAND Corporation in Santa
Monica. His research on packet-switching led to the military’s Arpanet and
then the Internet. He was now trying to create a university-based research
institute in Southern California. The University of California at Los Ange-
les (UCLA) told him it would take 18 months to work out a deal. However,
Kaprielian jumped at the chance, and, within a week, Uncapher was able to
start the Information Sciences Institute (ISI) at USC.

My meeting with Kaprielian took place in his large office, which was
kept in semi-darkness by heavy drapes. He was a short man who looked
supremely confident, with a smile that was both friendly and slightly devious.
He spoke so softly that you had to be very quiet to hear what he said. He
asked what it would take to make me join USC. He immediately offered me
a tenured position as full professor of computer science and agreed to fund a
minicomputer lab with a PDP 11/55 computer, so I could continue my work
with Concurrent Pascal without interruption.

He would have preferred to let computer science continue for a while as
a program headed by his friend Munushian. However, under that scenario,
I could not see USC becoming a national leader. He then agreed to let my
appointment coincide with the establishment of a computer science depart-
ment chaired by me. The department would be housed in a new building
financed by Henry Salvatori, a prominent Southern California industrialist.
At the end of my fifteen minute meeting with Kaprielian, I came away with
a promise of two endowed chairs and fifteen professorships for computer
science.

On September 1, 1976, I started working at USC. Walking around cam-
pus with my son during the Christmas break, we met Kaprielian, who gave
us two tickets to the New Year’s college football game at the Rose Bowl
Stadium in Pasadena, which seated 100,000 spectators. At that time, these
tickets were selling for $100 each on the street. My ten-year old son, Thomas,
who had grown up with American football, loved every minute of the game,
as we watched the USC “Trojans” defeat the Michigan “Wolverines” 14–
7. As a young man in Denmark, I enjoyed watching soccer and tennis on
TV. But I didn’t have a clue about the rules of American football. To me it
looked like each team first stuck their heads together and shouted something.
Then the two teams proceeded to tackle each other and fall. The cycle of

134 A Programmer’s Story

shouting and stumbling then started all over. Having an inquisitive nature,
I asked my son what was going on. Thomas, who was embarrassed by his
ignorant immigrant father, studiously ignored me. Twenty years later, he
gave me “The Complete Idiot’s Guide to Understanding Football.” I strug-
gled bravely with it before giving up. You have to grow up with a sport to
appreciate the subtleties of the game.

It was now up to Ginsburg, Horowitz, and me to create a top department.
Although we were hardly Caltech, I decided to act as if we were. I am sure
my colleagues thought I was nuts when I said that “North America is too
small a continent for our recruiting!”

We started systematic recruiting of new faculty by asking leading depart-
ments in the United States and Europe to name their best PhD students.
Based on letters of recommendation from their advisors, we invited perhaps
five out of twenty candidates to visit USC and give seminars about their
research and be interviewed by the faculty. We then asked the dean (who,
of course, was Kaprielian) to send offers to one or two candidates.

By talking to colleagues at other universities, we got a clear idea that all
of us were competing for the same top candidates. The department spent
years selecting faculty candidates in this time-consuming fashion. Most of
them, of course, accepted offers from universities like Stanford, MIT, and
Berkeley. Nevertheless, there were limits to how many positions these few
universities had to offer. As long as USC tried a little harder than other
departments, we would usually hire one person per year.

I remember calling Tony Hoare at Queen’s University in Belfast, who
recommended one of his research associates, Nissim Francez. With Hoare
and others, he had done research on the semantics of concurrency. He would
eventually publish a book about the tricky question of fair scheduling of
concurrent processes. In 1977, Nissim became an assistant professor at USC.
He is now a professor at the Technion in Israel.

In 1980, we were fortunate to attract Len Adleman, who was an assistant
professor at MIT. In 2002, Rivest, Shamir, and Adleman received the Turing
Award for their invention of the RSA cryptosystem.

At one point, we offered one of our endowed chairs to Zohar Manna,
who was being considered for tenure at Stanford. My senior colleagues felt
that we had no chance of attracting him to USC. My response was that that
was for him to tell us! So, we wined and dined Zohar, who turned us down
when Stanford offered him tenure. I believe I was correct in assuming that
Zohar would add to our reputation by telling his colleagues to watch these

7. The End of an Era 1976–84 135

ambitious guys at USC.
Now, hiring first-rate people is difficult enough. But evaluating them

for tenure is even harder. If you start promoting weak researchers, you will
some day find that most of your faculty belong to this category. Once that
happens, a department has no future. Unproductive researchers naturally
judge other researchers by their own standards and often see outstanding
researchers as a threat to their own local reputation and influence. So average
researchers have a tendency to hire and promote other researchers of the
same kind.

To avoid falling into that trap, we did not consider anybody for tenure
unless they had letters of recommendation from the top ten people in the
world in their field. During the first seven years, we only promoted one
assistant professor. In the same period, we probably hired ten others who
left the department without tenure.

One of our assistant professors—I will call him Joe—was a difficult pro-
motion case. His PhD thesis had attracted international attention. However,
at the end of his term as assistant professor, his thesis still remained his best
work. Since we had hired him based on his PhD work, I did not think we
should also grant him tenure for the same ideas. My decision to deny Joe
tenure upset Ginsburg and Horowitz, who felt that he met the standards of
tenure at USC and did not want to vote against a friend they had known
for several years. The human conflict between friendship and professional
standards often prevents faculty from reaching tenure decisions that are in
the best interest of the university.

Towards the end of my years at USC, I learned how Harvard deals with
this dilemma. Sometime in 1983, I received a letter from Henry Rosovsky,
the renowned dean of Arts and Sciences at Harvard University, inviting me to
serve on an ad hoc committee to advise president Derek Bok on a proposed
tenure appointment in Computer Science. The department had already ob-
tained letters from leading computer scientists ranking the candidate as one
of the top specialists in the world. As an experienced dean, Rosovsky (1990)
knew “all too well that departments frequently present a somewhat mis-
leading impression of enthusiasm and unanimity. . .Private and confidential
letters [from each member of the departmental committee] provide a superb
check on the extravagances of official case statements.”

The ad hoc committee, chaired by president Bok, included dean Rosovsky
and two faculty members from other departments at Harvard. I was invited
as one of three computer scientists from other universities. At the ad hoc

136 A Programmer’s Story

meeting, members of Harvard’s computer science department faced the com-
mittee, one at a time, for about half an hour each. Prior to the meeting, the
identities of the panel members had been kept confidential.

According to dean Rosovsky, “It is not at all unusual for positive wit-
nesses to turn slighly negative under the stress of interrogation.” When I
was there, Derek Bok asked each witness the same question: “Is the candi-
date, in your opinion, a major intellect?” The witnesses were obviously well
prepared to answer questions about the significance of the candidate’s work.
However, when asked this embarrassing question by Harvard’s president, ev-
ery one of them admitted that he was not a major intellect. During lunch,
Derek Bok asked each of us to offer his or her personal advice. The final
decision was his. In this case, he denied the department’s recommendation
of tenure.

Dean Rosovsky makes it clear why Harvard succeeds where lesser uni-
versities fail: “Few, if any university presidents play as great a role in the
appointment process. Harvard’s Derek Bok considers this role to be the most
important and interesting part of his work. It is the most direct way for him
to control the quality of the faculty. . .We seek the best scholar-teachers, and
if they happen to have abominable personalities, why then we claim joyfully
to suffer in the name of learning.”

Five years before my visit to Harvard, I had already reached the same
conclusion as the bestselling author Nevil Shute, who started a small airplane
manufacturing company, named Airspeed, in the 1930s. In his fascinating
“Autobiography of an Engineer” (1954), he writes:

I would divide the senior executives of the engineering world
into two categories, the starters and the runners, the men with
a creative instinct who can start a new venture and the men
who can run it to make it show a profit. They are very seldom
combined in the same person. . .I was a starter and useless as a
runner.

When it became evident that we were on the right track towards becoming
first-rate, I discovered that I did not much like the administrative aspects of
my job. I wanted to do research instead of meeting the mother of a promising
high-school senior from Pasadena. And my strong desire to chart the future
course of the department undoubtedly made me insensitive to the personal
agendas of some of my colleagues.

7. The End of an Era 1976–84 137

In 1978 I stepped down as department head. Two years later, a survey
conducted by the National Research Council in 1980 ranked computer sci-
ence at USC as one of the top ten departments in the country in terms of
reputation and faculty publications. Our reputation was based on the opin-
ions of 5,000 faculty members at 228 universities (Computerworld 1983).

Seymour Ginsburg said that the main effect of my tenure as the first chair
had been to raise the standards of the department and make bold decisions.
As long as I was in charge, he was a strong supporter of my relentless drive
for success. He was then in his early fifties and had been at USC for ten years.
He had the highest possible standards in his research. In private, he would
make surprisingly sharp observations about his colleagues. I remember him
saying: “Professor X can’t tell the difference between the great and near-
great.” Ginsburg was not interested in succeeding me as department chair.
He was content to influence the department as a gray eminence behind the
scenes. When I stepped down, he supported a succession of acting chairs of
less and less academic stature and vision.

Over the years, USC dropped to a still respectable position in the second
rank of computer science departments.

? ? ?

Before joining USC, I had developed the programming language Concurrent
Pascal at Caltech. I knew the time was now ripe for a book on the principles
of abstract parallel programming. My second book, The Architecture of
Concurrent Programs, included the complete text of the model operating
systems I had written in Concurrent Pascal (Brinch Hansen 1977). Thanks to
my editor, Karl Karlstrom, it was also translated and published in Japanese
(1980) and German (1981).

The mathematician Harlan Mills, who was well-known for his efforts to
introduce structured programming at IBM, and his associate Roy Maddux
studied my book carefully. In a review they wrote (Maddux 1979):

This is, as far as we know, the first book published on concur-
rent programming. Previously, this topic has been included in
books on operating systems, a closely related but different sub-
ject. Books on operating systems usually consist of a survey of
such topics as processor allocation, memory management, inter-
rupts, I/O, file systems, process synchronization, batch and mul-
tiprogramming systems, scheduling, deadlock, and protection.

138 A Programmer’s Story

Even after reading several books of this nature, the reader is
left feeling that he has been exposed to a number of complex
problems yet has learned very little about designing and imple-
menting even a modest operating system. If you have shared
these feelings with us, you will welcome Brinch Hansen’s most
recent book.

I agree with this criticism of operating system texts. Over the years they
have often been reduced to the level of “Popular Mechanics.” By making
such superficial courses “required,” universities have a convenient excuse
to lower their standards and attract marginal students. I finally stopped
teaching the subject ten years ago.

Maddux and Mills were particularly pleased with the Solo system:

Here, an entire operating system is visible, with every line of
program open to scrutiny. There is no hidden mystery, and after
studying such extensive examples, the reader feels that he could
tackle similar jobs and that he could change the system at will.
Never before have we seen an operating system shown in such
detail and in a manner so amenable to modification.

In conclusion, they wrote:

The book cannot be called a textbook; it is, rather, a thorough
technical monograph that requires sustained concentration. The
importance of Concurrent Pascal as the first language for con-
current programming makes the effort worthwhile.

While the book was still in production, I submitted the manuscript to my
alma mater, the Technical University of Denmark, as a thesis for the Doctor
Technices degree. This Danish degree (which requires no course work) is
awarded about once a year to a researcher who has moved engineering and
applied science a significant step forward.

After twenty years in civil engineering, my father, Jørgen Brinch Hansen,
earned the Dr. techn. degree in 1953. He was then chief engineer at the
internationally known engineering firm, Christiani & Nielsen. His doctoral
thesis, Earth Pressure Calculation, developed the first generally applicable
method for the solution of most earth pressure problems in practice.

Now, a quarter of a century later, it was my turn. In September 1976,
the Technical University appointed a committee to read my thesis. The com-
mittee consisted of three distinguished Scandinavian professors of computer

7. The End of an Era 1976–84 139

science: Ole-Johan Dahl (University of Oslo), Christian Gram (Technical
University of Denmark), and Peter Naur (University of Copenhagen). Seven
months later, they submitted a five-page evaluation to the university recom-
mending that it be accepted for the defense of the technical doctoral degree.

In January 1977, I satisfied one of the official requirements for the degree
by asking Prentice Hall to ship 200 copies of the thesis to the Technical
University, for general distribution to various places (I have no idea where
they went).

The leading Danish newspapers, Berlingske Tidende and Politiken, in-
terviewed me about the practical significance of my work and announced
the time and place of the official defense of my thesis. This event took place
on January 23, 1978, in the largest auditorium at the Technical University
of Denmark. It began at 2 p.m. and lasted about four hours. The Swedish
computer magazine Data wrote (February 1, 1978):

All [three opponents, Dahl, Gram, and Naur] gave the doctoral
candidate an extremely positive reception. In the auditorium,
where no less than 400 people were present, the spirit of Niels
Ivar Bech seemed to be present, while his associates engaged in
discussion at a higher level. (English translation by me.)

Each opponent gave a summary and evaluation of my thesis. In his
remarks, Peter Naur said:

The text is characterized by great clarity and convincing argu-
ments. In my opinion, it culminates in the description of the
Solo operating system, the job stream problem, and the real-
time scheduler. In these chapters, the description proceeds flu-
ently with an apparent ease that is quite overwhelming. Here,
above all, Per Brinch Hansen demonstrates his mastery. Every-
thing looks so easy, as it always does in the hands of the master.
For those who will attempt to do the same, it will probably turn
out to be fraught with problems and traps, but as a source of in-
spiration, these sections will be of enormous value. For the work
as a whole, the significance of these sections is that they demon-
strate the value of the new programming language concepts they
are based on. The discussion of these new concepts [monitor and
process types] must also be praised for its convincing clarity.

140 A Programmer’s Story

So far, so good. However, as an opponent, Naur was also expected to
point out weaknesses of my thesis. It was not by chance that he focussed on
the definition of the programming language Concurrent Pascal. He said:

I see that on page 245 you define a process type as a form of data
type, while on page 236 you define a data type as a set of values.
Can you tell me in what sense a process is a set of values?

I was well aware that my first language report was the weakest part of
my work. Since I have always made it a rule never to defend the indefensible,
I turned to Peter and said:

The English computer scientist Tony Hoare once said that the Al-
gol 60 report, which you wrote, was a considerable improvement
over its successors. Well, my report is one of the successors.

Everybody laughed and Peter smiled saying: “You got it!”
It would be another seven years before Tony Hoare (1985) introduced a

mathematical model which identifies a process with all the possible sequences
of actions (known as “traces”) in which it can participate. In 1974, Roy
Campbell and Nico Habermann had introduced an early notation, called
“path expressions,” for this idea.

If I had to single out an event that marked the peak of my research career,
it would be that day in 1978 when I became the first computer scientist to
receive the Dr. techn. degree. I was then 39 years old and had worked at
the cutting edge of operating systems and concurrent programming for ten
years. Never again would I have a similar streak of luck.

In most instances, scientific creativity peaks around age forty. Nobody
knows why it should be so. In his study of Genius, Creativity, and Leader-
ship, Simonton (1984) suggests that “True creativity demands the right com-
bination of enthusiasm and experience. . .Enthusiasm tends to peak rather
early in life and then steadily decline, whereas experience gradually increases
with age. . .Thus the age-40 floruit is a consequence of this uniquely balanced
juxtaposition of youth’s rapture and maturity’s sagacity.”

Speaking of honors: When I joined USC, Kaprielian offered me an en-
dowed chair. I didn’t think that my first act as department head should
be to accept an honor for myself. So I suggested that he offer it to Sey-
mour Ginsburg. In the spring of 1978, Ginsburg became the first Fletcher
Jones Professor of Computer Science. Kaprielian, who was not used to being
turned down, never offered me another endowed chair.

7. The End of an Era 1976–84 141

Three years later, the new president of USC, James Zumberge, removed
Kaprielian from his position as executive vice president. Driving home from
a New Year’s party, Kaprielian suffered a fatal heart attack and crashed
through the living room of a house in Beverly Hills. The following year,
on September 15, 1982, I was named the first Henry Salvatori Professor of
Computer Science at USC.

My last act as chair of computer science was to nominate Tony Hoare for
an honorary doctorate at USC. My colleagues would have preferred to honor
an American computer scientist, but, since I was the chair, they went along
with my nomination. In 1979, Hoare became the first computer scientist to
be awarded the degree of Doctor of Sciences Honoris Causa by an American
University.

? ? ?

In 1978, L. J. Sevin, chairman of Mostek Corporation in Dallas, and one
of his young engineers, Steve Goings, paid me a visit at USC. Mostek was
then the world’s largest manufacturer of semiconductor memories. Goings,
who had read my book, “The Architecture of Concurrent Programs,” had
suggested to L.J. that they should meet with me to discuss what Mostek
should be doing in computing.

Mostek predicted that VLSI technology soon would make it possible to
put an IBM/360 mainframe computer on a single chip! So L.J. wanted to
know if I thought it would be a good idea for Mostek to develop such a
powerful chip. As far as I could see, the problem was not the chip, but the
notoriously unreliable IBM software that would run on it. Once they had
sold a large number of System/360 microprocessors, I feared their customers
would expect them to correct errors in OS/360—a task that taxed even the
expertise of IBM itself.

At the 1969 Nato Conference on Software Engineering, Martin Hopkins,
IBM, admitted that, “We face a fantastic problem in big systems. For in-
stance, in OS/360 we have about 1000 errors in each release and this number
seems to be reasonably constant.”

In a letter to me, thirty years later, Dijkstra wrote:

I always felt that IBM’s inability to make a decent operating sys-
tem for its own hardware played a significant role in the recogni-
tion of the “software crisis” in 1968. In that sense, OS/360 has
been significant.

142 A Programmer’s Story

Before our meeting, Steve Goings had already told L. J. Sevin that he
did not think there was much future in designing chips that emulate obsolete
computer architectures:

I urged that we abandon the IBM emulator, and create a micro-
processor that could work effectively in a multiprocessor archi-
tecture, and provide for more direct support of high level pro-
gramming languages. Further, we needed the help of top level
software engineers in the field, He asked me if I had anyone in
mind. My reponse was, “I do not know him personally, but I
have a high regard for the publications of Per Brinch Hansen.”
(Letter from Steve Goings, July 19, 2004.)

That is when they decided to see me. During our conversation, I said, “While
you are here, I would like to tell you about an inexpensive multiprocessor I
have proposed.”

A multiprocessor consists of identical processors that run in parallel and
communicate through common memory. The challenge is to make sure that
the common memory does not become a serious bottleneck for the proces-
sors. When Bill Wulf and Gordon Bell (1972) developed their pioneering
C.mmp multiprocessor at Carnegie-Mellon, they made the bold decision of
making every memory location accessible to every processor. They did this
by connecting sixteen PDP 11 minicomputers to sixteen independent mem-
ory modules via a crossbar switch. Since a switch that connects n processors
to n memory modules has a hardware complexity of order n2, this is a rather
expensive solution.

What I outlined was a simpler multiprocessor with two to ten micro-
processors. The processors would have their own local memories and would
share a single common memory (Brinch Hansen 1978b). This architecture
was intended for dedicated real-time applications programmed in a language
with concurrent processes and monitors. Each processor and its local mem-
ory would be dedicated to the execution of a single process. The processes
would communicate by means of monitors stored in the common memory.

Since a monitor only performs one operation at a time, it is per definition
a bottleneck in a concurrent program. To make a concurrent program as fast
as possible, a wise programmer will make sure that each process spends most
of its time accessing its own code and local variables and uses as little time
as possible inside monitors. If that assumption was correct, it would make
sense to replace the crossbar switch with a single common memory module.

7. The End of an Era 1976–84 143

This would make the complexity of the multiprocessor proportional to the
number of processors.

While I was explaining all of that, L. J. Sevin looked immensely bored.
When I was finished, he turned to Goings and said: “I think we ought to
build his machine!”

In the fall of 1978, Mostek started a research project managed by Steve
Goings. As project consultant, I would be responsible for designing a con-
current programming language and a multiprocessor architecture tailored to
the language. A team of Mostek engineers, headed by Nick Matelan, would
be responsible for the hardware implementation. Several times a year, Go-
ings, Matelan, and I would spend a weekend at the Pasadena Hilton Hotel
discussing technical details.

My first task was to develop a concurrent programming language, named
Edison, which included concurrent statements and conditional critical re-
gions. It was as powerful as the combination of Pascal and Concurrent
Pascal, but much simpler (Brinch Hansen 1981). At my suggestion, Mostek
signed a consulting agreement with Peter Naur to review my definition of
Edison. Naur made almost no comments about my choice and design of
language features. His main concern was the clarity of the language report.
I would write a complete draft of the report and Naur would then point out
what the weaknesses were and suggest broadly how they might be removed
in my next draft. Between January 1979 and September 1980, I wrote four
versions of the Edison report from scratch. About the second version, Naur
wrote (Brinch Hansen 1981):

The report is a vast improvement over the previous version in
clarity, consistency, and completeness. The remaining weak-
nesses, described below in detail, are to a large extent concerned
merely with finer matters of conceptual clarity.

After this pleasant introduction, he went on to enumerate 79 conceptual
problems. The writing of the Edison report was far more difficult and time
consuming than the selection of language features and the design of the first
compiler.

A key element in the development of the Edison multiprocessor was our
decision from the beginning to define the function of every piece of hardware
by an equivalent Edison program. Such a description was far more precise
than a mixture of circuit diagrams, timing examples and prose. Not only
could an Edison algorithm be subject to compile-time checking of consis-
tency, but it could also be tested on an existing computer. More importantly,

144 A Programmer’s Story

Edison would serve as a formal specification language that was understood
by both hardware and software engineers.

In the spring and summer of 1979, I wrote a report (revised after dis-
cussions with Nick Matelan) that defined the multiprocessor architecture by
Edison algorithms. These algorithms closely mirrored the exchange of data
and signals that took place in interactions between processors, memories,
busses, peripheral devices, and arbiters. We also specified how to build a
distributed system as a cluster of multiprocessors.

The specification of hardware by means of algorithms was not yet widely
used in the computer industry and certainly not for something as complex
as a multiprocessor with a hierarchy of bus lines. Our Edison algorithms en-
abled the hardware engineers to discover several logical errors in my original
proposals of buslines before the circuits were implemented. In at least one
case, they also made a hardware designer realize that an intermittent error
in a circuit design was caused by his deviation from my Edison specification
of what the circuit was supposed to do.

In a letter to me, Matelan wrote: “We got a 4-node Edison multiproces-
sor working, Monday morning, May 12 [1980].” During the summer, I wrote
the first Edison compiler in Edison and tested it on a PDP 11/55 com-
puter at USC. When I demonstrated this compiler for Mostek in November,
L. J. Sevin agreed buy it for $100,000. However, before I had a chance to see
the multiprocessor or sell my compiler, United Technologies bought Mostek
and cancelled the multiprocessor project. Many years later, Steve Goings
told me that the technical documents for the Edison project disappeared on
that unfortunate occasion.

A few years ago, I discovered that Nick Matelan had started his own
company, Flexible Computer Corporation, which developed a multiproces-
sor called the Flex/32. Since Matelan (1985) neither acknowledged Mostek
nor me, it is difficult to say how much this machine owed to the Edison
multiprocessor. At one point, Purdue had a 7-processor Flex configuration,
while a 20-processor machine was installed at the NASA Langley Research
Center in Virginia. Matelan’s company no longer exists.

At the beginning of the Edison multiprocessor project, L. J. Sevin told
me that Mostek was funding a dozen research projects that gambled on
future computer technology. He expected most of them to fail. Even though
nothing came of our project, I am glad I met L.J. who always thought big.
During a dinner at a Dallas restaurant, he asked if I would be interested in
starting a software research center for Mostek. “Can I do it anywhere in the

7. The End of an Era 1976–84 145

world?” I asked. “We hope you will do it in Texas,” he said, “but, if you
prefer, you can also build it in Denmark.” I said I would need to think about
it before I gave up my tenured university position. L.J. responded with the
immortal words, “Let no man complain to me about the size of his balls!”

In the end, L.J. did all right. When United Technologies bought Mostek,
he joined a venture capital partnership and invested his money in a little-
known manufacturer of PCs named Compaq. Steve Goings did some con-
sulting work for L.J. The first day he walked into this new business, L.J. in-
troduced him around and said, “Steve is a pioneer. You can always tell who
the pioneers are. They are the ones with all the arrows in their backs.”

? ? ?

Our one-story house on 1351 Pleasant Ridge, Altadena, was located at the
top of a steep street in the foothills of the Sierra Madre mountains, at the
entrance to a steep, narrow canyon covered with oak trees and brush. The
house was built in Spanish style with hardwood floors and beam ceilings. The
living room was dominated by a large fireplace embedded in a brick wall.
It had full-length floor-to-ceiling windows facing south. On the opposite
wall, sliding doors led to a covered patio facing the canyon. After we had
furnished it with pine furniture and rya rugs, our home looked like a cozy
hunting cabin. On a clear night, we had a panoramic view of the endless
carpet of lights in Pasadena and beyond. On a smoggy day, it looked as if
we lived above the clouds.

Our patio was like a zoo with frogs, lizards, rabbits, hummingbirds, and
a small pond with Japanese koi fish. Sometimes a deer would come all the
way down from the canyon, and at night packs of coyotes would howl nearby
in the mountains. One evening, Milena went to bed without closing the
screen door to the patio. I found her sleeping while a tarantula the size of
a child’s hand was crawling on the floor. Although they look dangerous,
tarantulas are fairly harmless and won’t bite if you leave them alone. Their
painful bite is apparently no worse than a bee sting.

We were much more concerned about the rattlesnakes that occasionally
found their way into our garden looking for water and mice. The previous
owner was a doctor who kept snake serum in his refrigerator. He said, “Don’t
worry about snakes—the kids always spot them first!” And he was right,
they did. Before getting into my car in the garage, I always knelt down
to see if a rattler was hiding under the car. I killed several small ones by
cutting their heads off with a shovel. However, when I found a big rattler,

146 A Programmer’s Story

as thick as my arm, on the driveway, I called the fire department. The fire
fighters drove up to our house in a huge fire engine with flashing lights and
sirens on, killed the snake and cut the rattle off as a present to my son.

Although we learned to live with the snakes, I could never get used to
the black widows—the poisonous spiders that were found throughout the
house, in our potted plants, behind book shelves, and underneath our beds.
Fortunately, none of us was ever bitten by one.

The most dramatic event we experienced in Southern California was a
natural catastrophy that nearly ruined us and almost killed me. (However,
as the Danes say, “nearly” and “almost” never threw anybody off his horse.)

Sometime in September 1979, children set fire to a trash can several miles
from our home. This started the largest brush fire in the area in forty years.
The mountains were covered with dry vegetation that burns like torches.
When it starts burning, there isn’t much anyone can do other than waiting
until it burns itself out.

Our house was completely surrounded by brush that grew right down to
the edge of the patio. On the first day of the fire, we saw smoke rising above
the mountains east of our house. During the night, the flames reached the
top of the mountains and started creeping down towards the homes of our
neighbors. Soon the whole mountain side was burning with a faint crackle
lighting the terrain with a deep red color. It was both beautiful and cozy
unless you lived right next to it.

The next day, the fire slowly burned away from us and moved up into
a large canyon that was separated from our small canyon by a mountain
ridge. In the middle of the night I woke up and saw, for the first time, the
sun rising in the north with a shiny glow high up in our canyon.

On the morning of the third day, the fire was burning through our canyon
towards our house. For several days, the air above Los Angeles had been
stagnant making the air pollution worse and worse. However, since the
fire burned downhill in the still air, it moved relatively slowly. Late in
the afternoon, the fire reached our property. On this quiet day, it was no
problem for the firefighters to prevent it from spreading to our house. Two
fire fighters spent the night in lawn chairs in our driveway, guarding a tree
that, if it were to catch fire, would explode and burn like a torch.

When it was finally contained, the brush fire had destroyed 30,000 acres
and had occupied 3,000 fire fighters for a week. Where our house had been
surrounded by green hillsides we saw only scorched ridges covered with soil
and gravel.

7. The End of an Era 1976–84 147

In California, it often rains for days in December and January, as storms
move in from the Pacific. Where we lived, most of the runoff water from
the hills had been stopped by brush and tree roots before it reached the
bottom of our canyon. However, when it rained heavily, some water would
flow through a small storm drain under our house. This storm drain was
owned by the county who was responsible for maintaining it.

However, since the mountains were now stripped of vegetation and cov-
ered with debris, it was a virtual certainty that our house would be destroyed
by mudslides during heavy rain. The only hope of saving the house was to
build a deflector wall that would direct the debris flow across the patio con-
tinuing past the garage and through the driveway onto the street (Fig. 7.1).
But we were unable to find an engineering firm that would help us calculate
the dimensions of such a wall. The consulting firm of Alderman, Swift &
Lewis described their main concern:

Figure 7.1 Debris flow in Altadena.

Because of the location of your house, patio and garage, it would
be necessary for a diversion wall to alter the direction of flow
nearly 90 degrees in a very short distance. Unlike clear flow, de-
bris flow cannot be diverted this quick. As a result, the diversion
wall may be topped.

Two professors of civil engineering at USC volunteered to help us for free

148 A Programmer’s Story

without any guarantees. In the meantime I started calling local building
contractors and discovered again that none of them were willing to take the
risk of being sued. I finally found a Danish bricklayer, Knud Balling, who
put me in contact with an American builder, Ed Sylvis. With no contract
other than a handshake I agreed to pay this man and his Mexican crew on
an hourly basis, without knowing in advance what it would end up costing.

Since there was no time left to worry about minor details, such as a
building permit, we decided to call our wall a “timber and pipe fence.”
When it was finished in late November, it was 150 feet long and 6 feet tall.
It was built of 2×6-inch lumber bolted to fifty 12 foot steel posts with a
diameter of 6 inches, embedded in six feet of reinforced concrete. After I
gave it several coats of dark red paint, it didn’t look all that bad. However,
we were still listed by the police as one of a dozen families who would need
to be evacuated to save our lives during a big storm. In the last forty years,
such storms had typically occurred twice a year.

Nothing happened in December. But in January 1980 it started raining
for days. Early one morning, Milena was driving home after taking the
children to school, when the house suddenly started shaking, as if a large
helicopter was hovering right above it. From the bedroom window, I saw
that our red wall suddenly had turned grey on the side facing the house. I
ran outside in the rain. On the other side of the wall, an avalanche of mud
and boulders from the canyon had piled up close to the top of the wall and
was flowing through our driveway and down the steep Rubio Vista Drive
into the gardens of a dozen other homes. Milena called from the local police
station and told me that she was unable to drive up the street.

Although the Flood Control District had no funds to build our wall, they
were still technically responsible for keeping their tiny (useless) storm drain
open. They used this as an official excuse to send one of their bulldozers and
an army of dump trucks to prepare us for the next storm. For twenty four
hours, the bulldozer and the trucks worked continuously to remove debris
behind the wall.

The storm had dumped two inches of rain. While this went on, an
even bigger storm (which occurs about once every three years) was moving
towards Southern California from the Pacific. Students and faculty from
USC came to our house and piled hundreds of sandbags around the house
inside the wall, while three carpenters covered all doors and windows with
plywood. At lunch time, I went to the drive-in entrance of Burger King and
casually ordered “20 whoppers, please.”

7. The End of an Era 1976–84 149

The next morning, January 11, the headline on the frontpage of the
Pasadena Star-News read “Altadenans may evacuate.” The article included
two photos showing how “Altadenan Per Brinch Hansen readies for rain”
while “Storm clouds hang over L.A. as seen from Pleasantridge Drive in
Altadena.” According to Bill Hardy of the Flood Control District, “If any
house in Altadena is in danger, it is 1351 Pleasant Ridge, which is directly
in the mouth of a gorge.”

We now got four inches of rain, and again the wall held up. This hap-
pened several times over the next four months. When a big storm was fore-
cast, we spent the night in a motel, while flood control workers protected
our property against looters. When spring finally came, we had survived the
worst rainy season in ten years. In May, we were able to remove the plywood
and half-rotten sandbags and let the daylight into our rooms. After some
minor repair, the house looked as good as new.

Had we not built the wall, I would almost certainly have been killed in
the ruins of our house during the first mudslide and my family would have
been ruined. When the wall was finished, Milena and I cooked steaks on
the patio for Ed Sylvis and his crew. Over a beer, I said to Ed: “You knew
I was completely at your mercy—how come you didn’t take advantage of
me?” He answered: “I can always make more money, but I can only lose my
reputation once!”

? ? ?

While these natural catastrophies threatened our home, the pioneering era
of concurrent programming was coming to an end. It is time to look at what
we had achieved.

In the first survey paper on concurrent programming I had cited 11 pa-
pers only, written by four researchers. None of them described a concur-
rent programming language (Brinch Hansen 1973b). The development of
monitors and Concurrent Pascal started a wave of research in concurrent
programming languages. Fifteen years later, there were close to 20 moni-
tor languages and 100 languages for distributed computing (Brinch Hansen
1993, Bal 1989).

Two of my former Ph.D. students recalled their experience of working
with Concurrent Pascal at USC (Brinch Hansen 1993):

Jon Fellows: The beauty of the structures you created using
Concurrent Pascal created an aura of magical simplicity. While

150 A Programmer’s Story

working with my own programs and those of other graduate stu-
dents, I soon learned that ordinary, even ugly, programs could
also be written in Concurrent Pascal. . . My current feeling is
that the level of intellectual effort required to create a beautiful
program structure cannot be reduced by programming language
features, but that these features can more easily reveal a pro-
gram’s beauty to others who need to understand it.

Charles Hayden: I think the significance of the system was . . .
that one could provide a protected environment for concurrent
programming—a high-level language environment which could
maintain the illusion that there was no “machine” level. It was
remarkable that through compile time restrictions and virtual
machine error checking . . . you could understand the program
behavior by looking at the Pascal, not at the machine’s registers
and memory. It was remarkable that the machine could retain its
integrity while programs were being developed, without hardware
memory protection.

In the fall of 1981, when Microsoft had just implemented DOS in assem-
bly language for the first IBM Personal Computer, my students and I had
already used high-level languages for seven years to write portable single-
user operating systems for minis and micros, and had published the complete
program text of some of these systems. Charles Hayden wrote no less than
three operating systems on his own: a single-user system, a multiuser system,
and another one with a Unix-style I/O system.

During the summer of 1981, I tested a single-user operating system for
a PDP 11/23 microcomputer, written in the programming language Edison.
The Edison system was able to compile itself and its compiler in 56K bytes
of memory using two 8-inch floppy diskettes of 250K bytes each as the only
form of backing store.

In the fall of 1982, I moved the Edison system to the IBM PC by rewriting
a kernel of 4K bytes in assembly language. The Edison-PC system compiled
itself in a 64K byte memory using dual 51

4 -inch floppy diskettes.
In 1983, I published a book about the Edison system, entitled Program-

ming a Personal Computer. According to Peter Naur (1984):

In this book the author carries through an entirely fresh attack
on the problem of programming language and operating system

7. The End of an Era 1976–84 151

design, the incentive being the availability of microcomputers.
Within the compass of the 388 pages of the book, the author
manages to present in every detail: Edison, a new programming
language suitable for concurrent programming; Edison system,
an operating system; Edison code, an intermediate language de-
signed to be suitable as intermediary between Edison and the
machine languages of microcomputers; Alva, an assembly lan-
guage for PDP 11 computers specially designed for supporting
Edison; the complete programs for implementing each of these
languages and systems; extensive discussions of the argument
that lie behind the designs adopted throughout. While most of
the detailed argumentation of the presentation is found similarly
in the author’s earlier work, the new development serves as a con-
vincing demonstration of the power of the principles and methods
employed in solving a problem having basically new constraints,
those of a microcomputer.

It was now obvious to any casual observer that a programming revolution
had taken place in programming languages and operating systems.

Looking back, what am I most proud of? The answer is simple: We
did something that had not been done before! We demonstrated that it
is possible to write nontrivial concurrent programs exclusively in a secure
programming language.

In retrospect, the monitor concept was the first example of object-oriented
concurrent programming (although I never used that term). However, the
particular paradigm we chose (monitors) was a detail only. The important
thing was to discover if it was possible to add a new dimension to program-
ming languages: modular concurrency.

Every revolution in programming language technology introduces ab-
stract programming concepts for a new application domain. Fortran and
Algol 60 were the first abstract languages for numerical computation. Pas-
cal was used to implement its own compiler. Simula 67 introduced the class
concept for simulation.

Before Concurrent Pascal it was not known whether operating systems
could be written in secure programming languages without machine-depen-
dent features. The discovery that this was indeed possible for small operating
systems and real-time systems was far more important (I think) than the
introduction of monitors.

Monitors made process communication abstract and secure. That was,

152 A Programmer’s Story

of course, a breakthrough in the art of concurrent programming. However,
the monitor concept was a detail in the sense that it was only one possible
solution to the problem of making communication secure. Today we have
three major communication paradigms: monitors, remote procedures, and
message passing.

The development of abstract language notation for concurrent program-
ming started in 1971. Fifteen years later Judy Bishop (1986) concluded:

It is evident that the realm of concurrency is now firmly within
the ambit of reliable languages and that future designs will pro-
vide for concurrent processing as a matter of course.

So passed an exciting era.

8

DANISH INTERLUDE 1984–87

Student democracy and teaching in Denmark – Danish industry uses Concurrent

Pascal – Consulting for GN Corporation – Rocking the boat.

After fourteen years in America I suffered a first-class attack of homesickness
for Denmark. I had written the book on operating systems that was my
original reason for coming to the United States. And, through my work in
operating systems and concurrent programming, I had fulfilled my dream of
making fundamental contributions to a new field. As Americans say, “Been
there—done that!” Now what?

At this point in my life, I longed to return to Denmark and continue
the life I had left behind. If you think I was deceiving myself, why, you are
absolutely right. But did I listen to reason? Nope, I just had to go back
and discover for myself that my lost youth was indeed, well, lost. Milena,
who had no wish to leave the United States, was surprisingly understanding.
She told our children, Mette and Thomas: “Dad is unhappy. He has to get
Denmark out of his system.” Looking back, I find it unforgiveable that I
turned their lives upside down, just as my son was close to graduating from
high school, and my daughter was ready to start her university education.

In the fall of 1983, I applied for a new professorship in datalogy at the
University of Copenhagen. Danish universities do not ask for confidential let-
ters of recommendation from colleagues at other universities. Instead I was
asked to submit copies of my best books and papers to an ad hoc commit-
tee consisting of professors Peter Naur and Peter Johansen from University
of Copenhagen and Kees Koster from the Catholic University of Nijmegen,
The Netherlands. After studying my work for four months, the commit-
tee submitted a six page summary of my career and scientific contributions
recommending that I be appointed to the vacant professorship.

In an egalitarian society like Denmark, you were constantly aware, as
Vartan Gregorian put it, “that people think they are equal, and that whether

Copyright c© 2004 by Per Brinch Hansen.

153

154 A Programmer’s Story

or not that is accurate is irrelevant.” All professors received the same salary
independent of their achievements and the terms of their appointments were
not negotiable.

Nevertheless, I had one concern before I was ready to accept a position
in Denmark: At USC I had recently created a personal computer lab with
40 IBM PCs that enabled me to teach a course in which students wrote
single-user operating systems in the programming language Edison. Would
it be possible for me to establish a smaller PC lab at the University of
Copenhagen?

Since I was used to negotiating directly with high-level administrators
in the United States, I wrote a letter to Bertel Haarder, Danish minister of
education, asking for his help in providing funds for a handful of IBM PCs.
During a visit to Denmark, I also met him privately. Haarder, who after all
was a politician, promised to find money for the PCs.

I soon learned that bypassing the normal channels of communication
just isn’t done at Danish universities. On April 27, 1984, the following item
appeared in the newspaper Politiken (translated into English by me):

Gets job in spite of concerns. This summer the Institute of Data-
logy at University of Copenhagen (DIKU) will increase the num-
ber of professors from two to three. The favorite for the position
is one of the leaders of the international world of computing,
dr. techn. Per Brinch Hansen. He is currently professor of com-
puter science at University of Southern California.

The 45-year old Danish engineer is number one on the insti-
tute’s confidential list of preferred applicants. . .However, it raised
some concern at DIKU, when Per Brinch Hansen as a condition
for his appointment practically demanded that the institute make
six IBM computers of a specific type available. DIKU, which has
one of them, now plans to acquire two more in the immediate
future and three more later on.

In 1978, the internationally known Danish computer scientist
wrote—as the first in the world—a doctoral thesis about the
special problems posed by computer programs that execute many
tasks at the same time.

Further down on the institute’s list are people from DIKU’s
present staff.

Three months later, I received official notification that “We, Margrethe
the Second, Queen of Denmark, by the grace of God, makes it known that We

8. Danish Interlude 1984–87 155

hereby, from August 1, 1984, appoint professor, doctor technices Per Brinch
Hansen, who is a Danish citizen, as professor with permanent appointment.”

DIKU was a child of the student uprising in the late 1960s. For gener-
ations, every university department had been headed by a single professor
who had the final say in all matters concerning curriculum, examinations, re-
search, and appointments. Inspired by the student riots in the United States
and France, Danish students and instructors staged demonstrations in the
spring of 1968, shouting “Down with the tyranny of professors,” “Student
participation NOW,” and “Research for the people.”

Everybody agreed that something had to be done. The politicians, who
knew how to count votes, were well aware that the number of students far
exceeded the number of professors. In May 1970, the Danish parliament
passed a new Statute of Administration (“styrelsesloven”). From now on,
every university department would be governed by a council (“institutr̊ad”)
with equal representation of teachers, students, and staff members.

In 1969, Peter Naur became the first Danish professor of computer sci-
ence (“datalogy”). The following year, associate professor Edda Sveinsdottir
became the first democratically elected head of DIKU. The new department
couldn’t have made a better choice: Edda, who was friendly and helpful,
attacked problems with boundless energy. Her innovative research in three-
dimensional scanning of the brain (“computerized tomography”) and Peter
Naur’s pioneering work in compiler development helped establish DIKU’s
tradition as a center of applied computer science. In 1987, Edda became
professor of datalogy at Roskilde University.

In my time, DIKU’s council consisted of sixty teachers, students, and
staff members. Once a month, the council met for a couple of hours. Con-
sequently, every teacher had only a couple of minutes to express personal
opinions about departmental issues and had only one of sixty votes, inde-
pendent of personal ability and achievements. Since teachers tended to vote
as individuals, students often prevailed by voting unanimously.

When a group of people have the right to decide anything in democratic
fashion, they naturally concentrate on problems they understand and ignore
less familiar issues. At one departmental meeting, the discussion centered
around problems with our printing office, the sun shades in the cafeteria,
the reliability of the elevator, the use of office space, and the absence of
teachers from these meetings “which they are obliged to attend.” Under the
new system of governance, the focus of discussion was no longer innovative
teaching and research, but job satisfaction.

156 A Programmer’s Story

My first impression was that a handful of teachers did interesting re-
search, while the majority were unproductive. Looking through the Science
Citation Index for the previous five years, I found that worldwide only one
third of our faculty was cited in the works of other researchers.

As the Harvard dean, Henry Rosovsky (1990), has pointed out “Not
everything is improved by making it more democratic:”

The limiting case exists in some European universities where the
practice of “parity” was born in the 1960s. Power over virtually
all decisions came to be equally shared between students, fac-
ulty, and employees—and not infrequently the government. The
educational results have been disastrous. Academic standards
declined and a sense of mission was lost.

However, Edda Sveinsdottir felt that the endless discussions, that were
necessary to resolve even minor issues, were worthwhile because they often
led to decisions that everyone could live with. Personally, I found it point-
less to listen to student representatives, who had never done research, but
nevertheless believed that the problems of society could be solved by trying
to control the unpredictable nature of research. If people had told Thomas
Edison what to do, he might have invented a faster telegraph key instead of
the electric light.

Needless to say, the reality did not always resemble the politically correct
utopia. When I suggested to my colleagues that I would like to revise the
operating system course completely, their immediate reaction was “Please
don’t! If we change even one course, the militant students will use that as
an excuse to demand a revision of the entire curriculum.” In the end, I
simply had to accept that the Danes had developed an educational system
that valued cooperation and peace of mind more than individual pursuit of
excellence.

It was a joy to teach Danish undergraduates. It would, of course, be
unfair to compare them to Caltech students. But, thanks to the excellent
Danish high schools, they were, on the whole, better prepared than most
American undergraduates at USC or Syracuse University.

With the help of an army of teaching assistants (TAs), I taught a course
on compiler design for a class with over 200 students. In the days before
email, it was impractical for me to help that many students individually.
Instead I selected my student, Birger Andersen, to be my chief TA. Birger,
who is now Associate Professor at the Copenhagen University College of

8. Danish Interlude 1984–87 157

Engineering, gave me feedback from 15 regular TAs, each of whom was
responsible for helping 15 students. This arrangement worked fine. Although
the TAs were well-meaning, their democratic desire to be involved in all
decisions was annoying to someone who had twenty years of experience in
compiler design. My indirect communication with TAs, through Birger,
saved me from having weekly discussions with fifteen people about my choice
of textbook and philosophy of teaching.

I used my own textbook, with the modest title Brinch Hansen on Pascal
Compilers (1985), to explain how a Pascal compiler works. Each student
then used Pascal to write a complete compiler for a small programming lan-
guage. The compiler project was divided into six phases, each corresponding
to a chapter in the textbook. After reading a chapter, the students were
ready to program the corresponding part of the project.

After one of my lectures, three female students came up to me and said:
“Thanks for an interesting lecture—it happens so rarely.” Before I could ask
for their names, they walked away. Twenty years later, I still remember this
nice compliment.

? ? ?

While I was still in Southern California, I heard that Danish universities
began using Concurrent Pascal as soon as it became available from Caltech.
But I didn’t know it was also being used by high-tech companies, such as
Brüel & Kjær, Elbau, GNT-Automatic, and ITT Standard Electric Kirk.
The widespread use of Concurrent Pascal in Denmark was partly due to
DIKU’s requirement that every student had to solve a non-trivial program-
ming problem for a company before graduating.

On November 6, 1985, I participated in a one-day conference on “Con-
current Pascal—Perspectives and Experience” at the Eremitage Hotel in
Lyngby. The meeting was arranged by the Center for Electronics (Elektro-
nikcentralen) and the Association for Microprocessor Electronics” (SMT).
The fifty attendants represented thirty companies and research centers. I
opened the conference with a talk on “Edison—the successor of Concurrent
Pascal.”

Risto Petersen described Elbau’s use of Concurrent Pascal in dedicated
microprocessor systems for farmers, dentists, and foundries.

Niels Holm Pedersen summarized Brüel & Kjærs experience using Con-
current Pascal to program electronic measurement instruments. On the
morning of the conference, the newspaper Berlingske Tidende published an

158 A Programmer’s Story

interview with Niels and me under the headline: “Industry and academia
speak the same language.”

Richard Whiffen, president of the company Enertec in Pennsylvania, gave
an interesting talk about a Concurrent Pascal subset for microcomputers,
called mCP. A version delivered to McDonnell Douglas in St. Louis was used
to produce a digital flight controller for the F15 Eagle aircraft. The original
compiler from Caltech was able to determine the memory requirement of
any Concurrent Pascal program before it was executed. As Whiffen pointed
out: Knowing that it was impossible to get a memory overflow in a fighter
jet flying at twice the speed of sound was comforting to the pilot!

? ? ?

During a preliminary visit to Copenhagen, I had lunch with René Tang
Jespersen, chairman of the GN Corporation, to discuss the possibility of
consulting for him.

GN was the last remnant of the Great Northern Telegraph Company
established in 1869 by the Danish Titan of industry, Carl Frederik Tiet-
gen (1829–1901). On October 20, 1871, the Danish frigate “Tordenskiold”
landed one end of a telegraph cable in Deepwater Bay, Hongkong. The other
end would be landed in Shanghai. By 1894, the telegraph cables of Great
Northern extended from England across Scandinavia and Russia to Japan
and China. Tietgen was also a driving force behind Danish banking (Privat-
banken, 1857), shipping (Det forenede Dampskibsselskab, 1866), and sugar
production (De danske Sukkerfabrikker, 1872).

The telegraph was the first invention that made it possible to reach people
quickly anywhere in the world. Since you paid for every word you sent,
telegrams were usually brief and to the point—even in emergencies. When
the Danish brig “Ane” was shipwrecked near Laguna de Terminos in the
Gulf of Mexico on the morning of February 13, 1871, my great-grandfather’s
brother, Captain Peter Brinch, sent the following telegram (in English) to
his family on the Danish island of Fanø:

ane wrecked near laguna stop crew saved

A hundred years later, war and revolution had reduced Tietgen’s global
empire to a handful of small, innovative companies, which included GN Bat-
teries, GN Danavox, GN Data, GN Elmi, GN Netcom, and GN Telematic.

My meeting with Tang Jespersen took place in Great Northern’s cor-
porate headquarters on Kongens Nytorv, opposite the Royal Theater. The

8. Danish Interlude 1984–87 159

building was crowned by a “statue of liberty” (named Electra), who held
a light globe that was turned on at night. René had worked ten years for
the computer manufacturer Honeywell in Scandinavia and Belgium. After a
hectic life as director of finance and administration for Honeywell Europe, he
returned to Denmark as vice president of GN. When I met him in Novem-
ber 1983, we were both 45 years old. During our lunch, he offered me a
three-year contract as an independent advisor to GN’s board of directors.

In August 1984, Ernst Hede, president of GN Elmi, introduced me to one
of his young engineers, Anders Raasted, who was in charge of an interesting
project. They were developing a multicomputer in a briefcase that would
be used to measure the reliability of telephone lines. The briefcase would
be connected to one end of a telephone line and left alone for weeks trans-
mitting test signals down the line. At the other end of the line, a second
briefcase would receive the signals and return them to the first briefcase,
which would collect data about the frequency of transmission errors. Tele-
phone technicians would be able to inspect the measurements at any time
without interrupting the real-time data collection.

Elmi asked me to design a special-purpose operating system with parallel
processes for this real-time application. As I started working on the problem,
the number of parallel activities soon reached a point where I found myself
unable to write a clear description of what I was doing. So I asked Raasted
to be patient while I designed yet another parallel programming language
for real-time design.

I had already invented parallel programming languages which included
monitors (Concurrent Pascal, 1975), remote procedure calls (Distributed
processes, 1978), and conditional critical regions (Edison, 1981). This time
I used a minimal subset of Pascal to design a secure parallel language,
named Joyce (Brinch Hansen 1987a, 1987c). The new language was based on
Hoare’s idea of communicating sequential processes (CSP) which exchange
messages through synchronous channels without automatic buffering. Joyce
removed a major limitation of CSP by introducing parallel recursion in the
form of processes that spawn copies of themselves.

To experiment with the new language, I developed a portable implemen-
tation of Joyce on an IBM PC (Brinch Hansen, 1987b). This was apparently
the first recursive CSP language implemented on a computer. The Joyce
compiler checked that parallel processes never referred to the same variables.
This was essential since the multicomputer would consist of microprocessors
without shared memory. The compiler also checked that every message sent

160 A Programmer’s Story

from one process to another was received in a variable of the same data
type as the message itself. This turned out to be one of the most frequently
detected programming errors in my Joyce programs.

My next step was to use Joyce to simulate a simplified version of Elmi’s
real-time system. Working with Raasted’s group, I defined the process struc-
ture and communication patterns of the actual real-time system. I then
wrote a Joyce program with the same number of processes and communica-
tion channels. My Joyce model was, of course, greatly simplified. The circuit
board that generated test signals was represented by a ten-line process that
sent a sequence of integers through an output channel. Transmission errors
were simulated by occasionally outputting the wrong values. Other processes
simulated a real-time clock, a simple filing system that collected measure-
ments, and a console used by technicians to inspect selected measurements.

This Joyce program was an executable model of the real-time system that
could be studied and tested by programmers to reveal systemwide flaws, such
as deadlocks, in the process structure. Today, this design method would be
considered an example of “rapid prototyping.”

Using my Joyce program as a model, Elmi was able to fill in the missing
details and implement the final software product as a set of Pascal programs
running in parallel. It turned out to be the first time Elmi had delivered a
new product to its customers ahead of schedule.

? ? ?

Returning to Denmark was not as easy for me as I had thought. In C. P.
Snow’s novel “Last Things,” a Jewish tycoon, Azik Schiff remarks that “com-
ing to England as an exile, he had felt one irremovable strain: you had to
think consciously about actions which, in your own country, you performed
as instinctively as breathing.”

I had the same experience when I lived in America. Now, many years
later, I had it again in Denmark. At DIKU it was definitely not kosher for
the faculty to have close ties to industry. This taboo surprised me since I had
grown up in Copenhagen with a father, who had worked both in industry as
a civil engineer and in academia as a professor of engineering. I remember
an instance where DIKU had agreed to let IBM borrow our PCs for use in
a summer course for unemployed people. My colleagues were horrified when
I proposed to ask IBM in return to let us borrow one of their newest work
stations.

8. Danish Interlude 1984–87 161

On January 1, 1985, as the first Danish computer scientist, I was elected a
Fellow of The Institute of Electrical and Electronics Engineers “For contribu-
tions to concurrent programming and operating systems.” IBM graciously
agreed to host the event and serve refreshments for the audience. At the
award ceremony I demonstrated my Edison system for the IBM PC on a
huge screen display at the IBM auditorium in Lyngby. I don’t remember
what my colleagues thought of this untraditional arrangement.

On another occasion, I rocked the boat as chair of a faculty committee
that considered one of DIKU’s PhD candidates for an assistant professor-
ship. For obvious reasons, leading American universities rarely hire their
own graduates. PhDs who have studied in the same department for years
are not likely to move it in a new direction and risk offending their former
advisors and their colleagues.

By the Danish rules of the game, my committee was only supposed to
answer one question: Is the candidate minimally qualified to become an
assistant professor? Instead, I asked my colleagues if they thought this
appointment would improve the department in any way. Caught by surprise,
they agreed with me that he should not be appointed. It caused a stink
when the rest of the faculty heard what happened. They had all taken it for
granted that he would be appointed. After that, I was viewed as someone
who threatened the harmony of the department.

I regard Denmark as one of the most civilized countries on Earth with
its low rates of poverty and crime, universal health care, and free education.
To pay for this level of welfare, Danes pay extremely high taxes (my income
taxes were 2/3 of my salary). I still consider that an acceptable price to pay
for a just society.

The computer scientist, Alan Perlis, told me an amusing story about
the difference between American and Danish mentality. During a visit to
Regnecentralen, he asked my boss, Niels Ivar Bech, to show him a slum area
in Copenhagen. So Bech drove him to a neighborhood that was poor by
Danish standards. However, when they got there, Perlis said: “Niels Ivar,
this is not a slum—where are the slums of Copenhagen?” Bech answered:
“If we had any, this is where they would be!”

Like so many other foreigners, Milena and I found Americans to be some
of the nicest and most hospitable people you can imagine. Shortly after we
moved to Southern California, two of our neighbors, Eileen and Bob Harder,
invited us over for Thanksgiving dinner. This openness towards strangers is
rare in Denmark, where most people stick to their own friends.

162 A Programmer’s Story

Foreigners, who live in Denmark, have often described how difficult it is to
find close friends among the Danes. When I worked for Regnecentralen, one
of my colleagues was a young American, named Roger House, who married
a Danish women, named Jeanne. After a couple of years, Roger returned to
the United States. On his last day at Regnecentralen, he quietly asked us:
“How come none of you ever invited me to your homes?” We looked at him
and said: “But we didn’t think you would be interested!”

After our return to Denmark, Milena and I discovered that we were no
longer part of the circle of our former friends. They were happy to come to
our return party—but few of them invited us back. Those who did had no
interest in our stories about life in America. This feeling of alienation is the
price you pay for leaving your country in search of adventure: in the end
you don’t belong in either country—but you have lived an exciting life. So
be it!

8

DANISH INTERLUDE 1984–87

Student democracy and teaching in Denmark – Danish industry uses Concurrent

Pascal – Consulting for GN Corporation – Rocking the boat.

After fourteen years in America I suffered a first-class attack of homesickness
for Denmark. I had written the book on operating systems that was my
original reason for coming to the United States. And, through my work in
operating systems and concurrent programming, I had fulfilled my dream of
making fundamental contributions to a new field. As Americans say, “Been
there—done that!” Now what?

At this point in my life, I longed to return to Denmark and continue
the life I had left behind. If you think I was deceiving myself, why, you are
absolutely right. But did I listen to reason? Nope, I just had to go back
and discover for myself that my lost youth was indeed, well, lost. Milena,
who had no wish to leave the United States, was surprisingly understanding.
She told our children, Mette and Thomas: “Dad is unhappy. He has to get
Denmark out of his system.” Looking back, I find it unforgiveable that I
turned their lives upside down, just as my son was close to graduating from
high school, and my daughter was ready to start her university education.

In the fall of 1983, I applied for a new professorship in datalogy at the
University of Copenhagen. Danish universities do not ask for confidential let-
ters of recommendation from colleagues at other universities. Instead I was
asked to submit copies of my best books and papers to an ad hoc commit-
tee consisting of professors Peter Naur and Peter Johansen from University
of Copenhagen and Kees Koster from the Catholic University of Nijmegen,
The Netherlands. After studying my work for four months, the commit-
tee submitted a six page summary of my career and scientific contributions
recommending that I be appointed to the vacant professorship.

In an egalitarian society like Denmark, you were constantly aware, as
Vartan Gregorian put it, “that people think they are equal, and that whether

Copyright c© 2004 by Per Brinch Hansen.

153

154 A Programmer’s Story

or not that is accurate is irrelevant.” All professors received the same salary
independent of their achievements and the terms of their appointments were
not negotiable.

Nevertheless, I had one concern before I was ready to accept a position
in Denmark: At USC I had recently created a personal computer lab with
40 IBM PCs that enabled me to teach a course in which students wrote
single-user operating systems in the programming language Edison. Would
it be possible for me to establish a smaller PC lab at the University of
Copenhagen?

Since I was used to negotiating directly with high-level administrators
in the United States, I wrote a letter to Bertel Haarder, Danish minister of
education, asking for his help in providing funds for a handful of IBM PCs.
During a visit to Denmark, I also met him privately. Haarder, who after all
was a politician, promised to find money for the PCs.

I soon learned that bypassing the normal channels of communication
just isn’t done at Danish universities. On April 27, 1984, the following item
appeared in the newspaper Politiken (translated into English by me):

Gets job in spite of concerns. This summer the Institute of Data-
logy at University of Copenhagen (DIKU) will increase the num-
ber of professors from two to three. The favorite for the position
is one of the leaders of the international world of computing,
dr. techn. Per Brinch Hansen. He is currently professor of com-
puter science at University of Southern California.

The 45-year old Danish engineer is number one on the insti-
tute’s confidential list of preferred applicants. . .However, it raised
some concern at DIKU, when Per Brinch Hansen as a condition
for his appointment practically demanded that the institute make
six IBM computers of a specific type available. DIKU, which has
one of them, now plans to acquire two more in the immediate
future and three more later on.

In 1978, the internationally known Danish computer scientist
wrote—as the first in the world—a doctoral thesis about the
special problems posed by computer programs that execute many
tasks at the same time.

Further down on the institute’s list are people from DIKU’s
present staff.

Three months later, I received official notification that “We, Margrethe
the Second, Queen of Denmark, by the grace of God, makes it known that We

8. Danish Interlude 1984–87 155

hereby, from August 1, 1984, appoint professor, doctor technices Per Brinch
Hansen, who is a Danish citizen, as professor with permanent appointment.”

DIKU was a child of the student uprising in the late 1960s. For gener-
ations, every university department had been headed by a single professor
who had the final say in all matters concerning curriculum, examinations, re-
search, and appointments. Inspired by the student riots in the United States
and France, Danish students and instructors staged demonstrations in the
spring of 1968, shouting “Down with the tyranny of professors,” “Student
participation NOW,” and “Research for the people.”

Everybody agreed that something had to be done. The politicians, who
knew how to count votes, were well aware that the number of students far
exceeded the number of professors. In May 1970, the Danish parliament
passed a new Statute of Administration (“styrelsesloven”). From now on,
every university department would be governed by a council (“institutr̊ad”)
with equal representation of teachers, students, and staff members.

In 1969, Peter Naur became the first Danish professor of computer sci-
ence (“datalogy”). The following year, associate professor Edda Sveinsdottir
became the first democratically elected head of DIKU. The new department
couldn’t have made a better choice: Edda, who was friendly and helpful,
attacked problems with boundless energy. Her innovative research in three-
dimensional scanning of the brain (“computerized tomography”) and Peter
Naur’s pioneering work in compiler development helped establish DIKU’s
tradition as a center of applied computer science. In 1987, Edda became
professor of datalogy at Roskilde University.

In my time, DIKU’s council consisted of sixty teachers, students, and
staff members. Once a month, the council met for a couple of hours. Con-
sequently, every teacher had only a couple of minutes to express personal
opinions about departmental issues and had only one of sixty votes, inde-
pendent of personal ability and achievements. Since teachers tended to vote
as individuals, students often prevailed by voting unanimously.

When a group of people have the right to decide anything in democratic
fashion, they naturally concentrate on problems they understand and ignore
less familiar issues. At one departmental meeting, the discussion centered
around problems with our printing office, the sun shades in the cafeteria,
the reliability of the elevator, the use of office space, and the absence of
teachers from these meetings “which they are obliged to attend.” Under the
new system of governance, the focus of discussion was no longer innovative
teaching and research, but job satisfaction.

156 A Programmer’s Story

My first impression was that a handful of teachers did interesting re-
search, while the majority were unproductive. Looking through the Science
Citation Index for the previous five years, I found that worldwide only one
third of our faculty was cited in the works of other researchers.

As the Harvard dean, Henry Rosovsky (1990), has pointed out “Not
everything is improved by making it more democratic:”

The limiting case exists in some European universities where the
practice of “parity” was born in the 1960s. Power over virtually
all decisions came to be equally shared between students, fac-
ulty, and employees—and not infrequently the government. The
educational results have been disastrous. Academic standards
declined and a sense of mission was lost.

However, Edda Sveinsdottir felt that the endless discussions, that were
necessary to resolve even minor issues, were worthwhile because they often
led to decisions that everyone could live with. Personally, I found it point-
less to listen to student representatives, who had never done research, but
nevertheless believed that the problems of society could be solved by trying
to control the unpredictable nature of research. If people had told Thomas
Edison what to do, he might have invented a faster telegraph key instead of
the electric light.

Needless to say, the reality did not always resemble the politically correct
utopia. When I suggested to my colleagues that I would like to revise the
operating system course completely, their immediate reaction was “Please
don’t! If we change even one course, the militant students will use that as
an excuse to demand a revision of the entire curriculum.” In the end, I
simply had to accept that the Danes had developed an educational system
that valued cooperation and peace of mind more than individual pursuit of
excellence.

It was a joy to teach Danish undergraduates. It would, of course, be
unfair to compare them to Caltech students. But, thanks to the excellent
Danish high schools, they were, on the whole, better prepared than most
American undergraduates at USC or Syracuse University.

With the help of an army of teaching assistants (TAs), I taught a course
on compiler design for a class with over 200 students. In the days before
email, it was impractical for me to help that many students individually.
Instead I selected my student, Birger Andersen, to be my chief TA. Birger,
who is now Associate Professor at the Copenhagen University College of

8. Danish Interlude 1984–87 157

Engineering, gave me feedback from 15 regular TAs, each of whom was
responsible for helping 15 students. This arrangement worked fine. Although
the TAs were well-meaning, their democratic desire to be involved in all
decisions was annoying to someone who had twenty years of experience in
compiler design. My indirect communication with TAs, through Birger,
saved me from having weekly discussions with fifteen people about my choice
of textbook and philosophy of teaching.

I used my own textbook, with the modest title Brinch Hansen on Pascal
Compilers (1985), to explain how a Pascal compiler works. Each student
then used Pascal to write a complete compiler for a small programming lan-
guage. The compiler project was divided into six phases, each corresponding
to a chapter in the textbook. After reading a chapter, the students were
ready to program the corresponding part of the project.

After one of my lectures, three female students came up to me and said:
“Thanks for an interesting lecture—it happens so rarely.” Before I could ask
for their names, they walked away. Twenty years later, I still remember this
nice compliment.

? ? ?

While I was still in Southern California, I heard that Danish universities
began using Concurrent Pascal as soon as it became available from Caltech.
But I didn’t know it was also being used by high-tech companies, such as
Brüel & Kjær, Elbau, GNT-Automatic, and ITT Standard Electric Kirk.
The widespread use of Concurrent Pascal in Denmark was partly due to
DIKU’s requirement that every student had to solve a non-trivial program-
ming problem for a company before graduating.

On November 6, 1985, I participated in a one-day conference on “Con-
current Pascal—Perspectives and Experience” at the Eremitage Hotel in
Lyngby. The meeting was arranged by the Center for Electronics (Elektro-
nikcentralen) and the Association for Microprocessor Electronics” (SMT).
The fifty attendants represented thirty companies and research centers. I
opened the conference with a talk on “Edison—the successor of Concurrent
Pascal.”

Risto Petersen described Elbau’s use of Concurrent Pascal in dedicated
microprocessor systems for farmers, dentists, and foundries.

Niels Holm Pedersen summarized Brüel & Kjærs experience using Con-
current Pascal to program electronic measurement instruments. On the
morning of the conference, the newspaper Berlingske Tidende published an

158 A Programmer’s Story

interview with Niels and me under the headline: “Industry and academia
speak the same language.”

Richard Whiffen, president of the company Enertec in Pennsylvania, gave
an interesting talk about a Concurrent Pascal subset for microcomputers,
called mCP. A version delivered to McDonnell Douglas in St. Louis was used
to produce a digital flight controller for the F15 Eagle aircraft. The original
compiler from Caltech was able to determine the memory requirement of
any Concurrent Pascal program before it was executed. As Whiffen pointed
out: Knowing that it was impossible to get a memory overflow in a fighter
jet flying at twice the speed of sound was comforting to the pilot!

? ? ?

During a preliminary visit to Copenhagen, I had lunch with René Tang
Jespersen, chairman of the GN Corporation, to discuss the possibility of
consulting for him.

GN was the last remnant of the Great Northern Telegraph Company
established in 1869 by the Danish Titan of industry, Carl Frederik Tiet-
gen (1829–1901). On October 20, 1871, the Danish frigate “Tordenskiold”
landed one end of a telegraph cable in Deepwater Bay, Hongkong. The other
end would be landed in Shanghai. By 1894, the telegraph cables of Great
Northern extended from England across Scandinavia and Russia to Japan
and China. Tietgen was also a driving force behind Danish banking (Privat-
banken, 1857), shipping (Det forenede Dampskibsselskab, 1866), and sugar
production (De danske Sukkerfabrikker, 1872).

The telegraph was the first invention that made it possible to reach people
quickly anywhere in the world. Since you paid for every word you sent,
telegrams were usually brief and to the point—even in emergencies. When
the Danish brig “Ane” was shipwrecked near Laguna de Terminos in the
Gulf of Mexico on the morning of February 13, 1871, my great-grandfather’s
brother, Captain Peter Brinch, sent the following telegram (in English) to
his family on the Danish island of Fanø:

ane wrecked near laguna stop crew saved

A hundred years later, war and revolution had reduced Tietgen’s global
empire to a handful of small, innovative companies, which included GN Bat-
teries, GN Danavox, GN Data, GN Elmi, GN Netcom, and GN Telematic.

My meeting with Tang Jespersen took place in Great Northern’s cor-
porate headquarters on Kongens Nytorv, opposite the Royal Theater. The

8. Danish Interlude 1984–87 159

building was crowned by a “statue of liberty” (named Electra), who held
a light globe that was turned on at night. René had worked ten years for
the computer manufacturer Honeywell in Scandinavia and Belgium. After a
hectic life as director of finance and administration for Honeywell Europe, he
returned to Denmark as vice president of GN. When I met him in Novem-
ber 1983, we were both 45 years old. During our lunch, he offered me a
three-year contract as an independent advisor to GN’s board of directors.

In August 1984, Ernst Hede, president of GN Elmi, introduced me to one
of his young engineers, Anders Raasted, who was in charge of an interesting
project. They were developing a multicomputer in a briefcase that would
be used to measure the reliability of telephone lines. The briefcase would
be connected to one end of a telephone line and left alone for weeks trans-
mitting test signals down the line. At the other end of the line, a second
briefcase would receive the signals and return them to the first briefcase,
which would collect data about the frequency of transmission errors. Tele-
phone technicians would be able to inspect the measurements at any time
without interrupting the real-time data collection.

Elmi asked me to design a special-purpose operating system with parallel
processes for this real-time application. As I started working on the problem,
the number of parallel activities soon reached a point where I found myself
unable to write a clear description of what I was doing. So I asked Raasted
to be patient while I designed yet another parallel programming language
for real-time design.

I had already invented parallel programming languages which included
monitors (Concurrent Pascal, 1975), remote procedure calls (Distributed
processes, 1978), and conditional critical regions (Edison, 1981). This time
I used a minimal subset of Pascal to design a secure parallel language,
named Joyce (Brinch Hansen 1987a, 1987c). The new language was based on
Hoare’s idea of communicating sequential processes (CSP) which exchange
messages through synchronous channels without automatic buffering. Joyce
removed a major limitation of CSP by introducing parallel recursion in the
form of processes that spawn copies of themselves.

To experiment with the new language, I developed a portable implemen-
tation of Joyce on an IBM PC (Brinch Hansen, 1987b). This was apparently
the first recursive CSP language implemented on a computer. The Joyce
compiler checked that parallel processes never referred to the same variables.
This was essential since the multicomputer would consist of microprocessors
without shared memory. The compiler also checked that every message sent

160 A Programmer’s Story

from one process to another was received in a variable of the same data
type as the message itself. This turned out to be one of the most frequently
detected programming errors in my Joyce programs.

My next step was to use Joyce to simulate a simplified version of Elmi’s
real-time system. Working with Raasted’s group, I defined the process struc-
ture and communication patterns of the actual real-time system. I then
wrote a Joyce program with the same number of processes and communica-
tion channels. My Joyce model was, of course, greatly simplified. The circuit
board that generated test signals was represented by a ten-line process that
sent a sequence of integers through an output channel. Transmission errors
were simulated by occasionally outputting the wrong values. Other processes
simulated a real-time clock, a simple filing system that collected measure-
ments, and a console used by technicians to inspect selected measurements.

This Joyce program was an executable model of the real-time system that
could be studied and tested by programmers to reveal systemwide flaws, such
as deadlocks, in the process structure. Today, this design method would be
considered an example of “rapid prototyping.”

Using my Joyce program as a model, Elmi was able to fill in the missing
details and implement the final software product as a set of Pascal programs
running in parallel. It turned out to be the first time Elmi had delivered a
new product to its customers ahead of schedule.

? ? ?

Returning to Denmark was not as easy for me as I had thought. In C. P.
Snow’s novel “Last Things,” a Jewish tycoon, Azik Schiff remarks that “com-
ing to England as an exile, he had felt one irremovable strain: you had to
think consciously about actions which, in your own country, you performed
as instinctively as breathing.”

I had the same experience when I lived in America. Now, many years
later, I had it again in Denmark. At DIKU it was definitely not kosher for
the faculty to have close ties to industry. This taboo surprised me since I had
grown up in Copenhagen with a father, who had worked both in industry as
a civil engineer and in academia as a professor of engineering. I remember
an instance where DIKU had agreed to let IBM borrow our PCs for use in
a summer course for unemployed people. My colleagues were horrified when
I proposed to ask IBM in return to let us borrow one of their newest work
stations.

8. Danish Interlude 1984–87 161

On January 1, 1985, as the first Danish computer scientist, I was elected a
Fellow of The Institute of Electrical and Electronics Engineers “For contribu-
tions to concurrent programming and operating systems.” IBM graciously
agreed to host the event and serve refreshments for the audience. At the
award ceremony I demonstrated my Edison system for the IBM PC on a
huge screen display at the IBM auditorium in Lyngby. I don’t remember
what my colleagues thought of this untraditional arrangement.

On another occasion, I rocked the boat as chair of a faculty committee
that considered one of DIKU’s PhD candidates for an assistant professor-
ship. For obvious reasons, leading American universities rarely hire their
own graduates. PhDs who have studied in the same department for years
are not likely to move it in a new direction and risk offending their former
advisors and their colleagues.

By the Danish rules of the game, my committee was only supposed to
answer one question: Is the candidate minimally qualified to become an
assistant professor? Instead, I asked my colleagues if they thought this
appointment would improve the department in any way. Caught by surprise,
they agreed with me that he should not be appointed. It caused a stink
when the rest of the faculty heard what happened. They had all taken it for
granted that he would be appointed. After that, I was viewed as someone
who threatened the harmony of the department.

I regard Denmark as one of the most civilized countries on Earth with
its low rates of poverty and crime, universal health care, and free education.
To pay for this level of welfare, Danes pay extremely high taxes (my income
taxes were 2/3 of my salary). I still consider that an acceptable price to pay
for a just society.

The computer scientist, Alan Perlis, told me an amusing story about
the difference between American and Danish mentality. During a visit to
Regnecentralen, he asked my boss, Niels Ivar Bech, to show him a slum area
in Copenhagen. So Bech drove him to a neighborhood that was poor by
Danish standards. However, when they got there, Perlis said: “Niels Ivar,
this is not a slum—where are the slums of Copenhagen?” Bech answered:
“If we had any, this is where they would be!”

Like so many other foreigners, Milena and I found Americans to be some
of the nicest and most hospitable people you can imagine. Shortly after we
moved to Southern California, two of our neighbors, Eileen and Bob Harder,
invited us over for Thanksgiving dinner. This openness towards strangers is
rare in Denmark, where most people stick to their own friends.

162 A Programmer’s Story

Foreigners, who live in Denmark, have often described how difficult it is to
find close friends among the Danes. When I worked for Regnecentralen, one
of my colleagues was a young American, named Roger House, who married
a Danish women, named Jeanne. After a couple of years, Roger returned to
the United States. On his last day at Regnecentralen, he quietly asked us:
“How come none of you ever invited me to your homes?” We looked at him
and said: “But we didn’t think you would be interested!”

After our return to Denmark, Milena and I discovered that we were no
longer part of the circle of our former friends. They were happy to come to
our return party—but few of them invited us back. Those who did had no
interest in our stories about life in America. This feeling of alienation is the
price you pay for leaving your country in search of adventure: in the end
you don’t belong in either country—but you have lived an exciting life. So
be it!

9

BACK IN AMERICA 1987–2004

Distinguished professor at Syracuse – Birthday celebration in the former Danish

West Indies – Becoming an American citizen – Parallel scientific computing – A

personal supercomputer – Parallel cryptography – History of programming lan-

guages – The Computer Pioneer Award – Final words.

After the first year in Denmark, Milena and I knew that our family now
belonged in the United States. Our children did not feel at home in Den-
mark. In May 1986, our daughter Mette announced that she was going
back, no matter what! From then on, things happened quickly. The Ameri-
can Embassy in Copenhagen informed me that our residence permits (known
as “green cards”) had expired. We would only be allowed to return if we
obtained new immigrant visas by the end of the year and returned to the
United States no later than April 1987.

I immediately called Syracuse University (SU), in Central New York,
where I knew the computer scientist John Reynolds, and asked if it would
be possible to appoint me as full professor within two months—a process
that normally takes six months. In September, Milena and I flew to Syracuse
where I gave a talk. While Milena looked at houses, I met with the academic
vice chancellor, Gershon Vincow, and the faculty of the School of Computer
and Information Science. Two weeks later, the interim dean, Ernie Sibert,
offered me an appointment as distinguished professor, an honorary title that
had only been bestowed on two other professors at the university.

By February 1987, all four of us had returned to America. Milena and I
moved into a white colonial on 5070 Pine Valley Drive in the small village
of Fayetteville, a short drive from the university. In our backyard we have
a large swimming pool (27 by 60 feet). The house lies in a beautiful valley
surrounded by tree-topped hills. The unfenced lawns with trees make the
neighborhood look like a park.

Copyright c© 2004 by Per Brinch Hansen.

163

164 A Programmer’s Story

Syracuse is a city of about 160,000 people in the center of New York
state, a five-hour drive from New York City. Until the 1920s the 363-mile
long Erie Canal, extending from the Hudson river at Albany to Lake Erie at
Buffalo, passed through downtown Syracuse. The climate is similar to the
Danish one with tons of snow during the winter and plenty of rain during
the spring and summer. The story goes that a Syracuse professor missed the
summer one year—it fell on a Tuesday, and he was out of town.

After moving to the East Coast, we spent many vacations in the Car-
ibbean. In November 1988, Milena and I celebrated our 50th birthdays
in the U.S. Virgin Islands. We stayed a week at the Morningstar Beach
Club on St Thomas. From 1666 to 1917, these islands were known as the
Danish West Indies until the United States bought them from Denmark for
25 million dollars. Since the US is not supposed to have colonies, the islands
now have the status of “unincorporated territory.” In Charlotte Amalie
you can still see Jørgen Iversen’s Red Fort (1680), built by the first Danish
settlers near King’s Wharf, the Governor’s House (1747) on Kongens Gade,
and the Lutheran Church (1820) on Nørregade. Every day, cruise ships
arrive at the West Indian Company Dock, and the tourists all head for the
duty-free shops on Dronningens Gade.

One day we took the ferry from Redhook Bay to Cruz Bay, the only town
on St. John, and hired a tour guide to drive us along Kongevejen through
the tropical forest to Coral Bay, where King June and his last followers killed
themselves after killing 76 whites and destroying 48 plantations during the
slave rebellion in 1733. At Annaberg Plantation, the ruins of a Danish sugar
mill, built in the 1780s, have been partially restored. On the north shore are
some of the most beautiful beaches in the Caribbean.

We flew by seaplane to St. Croix. On the way from Christiansted to Fred-
eriksted we walked through St. George Village, a tropical garden, landscaped
around the ruins of a plantation, built by Governor General Peter Oxhold
around 1815. The Whim Greathouse is another plantation, from 1803, com-
pletely restored with mahogany furniture and crystal chandeliers. Near the
pier in Frederiksted lies Fort Frederik, completed in 1776. Here Governor von
Scholten liberated the slaves on July 3, 1848. In Christiansted, we saw the
Governor’s Residence, Fort Christian, and the Danish Scale House. These
yellow-and-white buildings reminded me of the old houses in Frederiksberg,
Denmark.

Four years later, on May 19, 1992, I took the oath of citizenship of the
United States at the Onondaga County Courthouse in Syracuse.

9. Back in America 1987–2004 165

? ? ?

In the 1980s, the early programming problems of operating systems surfaced
again in parallel scientific computing (also known as computational science):
there was a serious need for machine-independent programming languages
and algorithms. To understand this challenge, I spent five years writing
portable parallel programs for typical programs in science and engineering.

As a first step, my student Anand Rangachari and I moved the parallel
programming language Joyce from an IBM PC to an Encore Multimax 320, a
multiprocessor with 18 processors and 128 Mbytes of shared memory (Brinch
Hansen 1989). This machine was designed a few years before I joined SU.
It was owned and operated by the Northeast Parallel Architectures Center
(NPAC) at Syracuse University.

The only valid reason for using parallel programming in scientific com-
puting is to tackle problems that require more computing power than you
can get from a single processor. From that point of view, our experiments
with the Multimax were somewhat academic. The Joyce compiler generated
portable code which was interpreted by a kernel of 2,300 lines written in as-
sembly language. In theory, the multiprocessor had the potential of making
programs eighteen times faster. However, most of the potential speedup was
wasted by the portable code, which was an order of magnitude slower than
machine code.

Nevertheless, I learned a great deal from this first experiment about the
problems of implementing a parallel programming language on a multipro-
cessor. The main decision issues were: (1) load balancing—the number of
process scheduling queues required to balance the computational load evenly
among the processors, (2) synchronous communication—the implementation
details of processes exchanging messages through unbuffered channels, and
(3) mutual exclusion—the number of software locks needed to prevent mul-
tiple processors from accessing the same queue or channel at the same time
(without slowing the processors unnecessarily down). We settled these issues
by performance measurements (Brinch Hansen 1988).

The Achilles heel of the multiprocessor concept was the empirical obser-
vation by Intel cofounder Gordon Moore (1979) that the density of integrated
circuits had doubled every year since 1958. Moore’s law predicted that by
1992 you would be able to buy 1,000 processors for the same price as 10 pro-
cessors in 1985. And, since nobody believed that a shared memory machine
could support that many processors efficiently, multiprocessor architectures
appeared to have no future. The catch phrase at the time was that “multi-

166 A Programmer’s Story

processors do not scale up.”
One way out of this dilemma was to give up the simple idea of a multi-

processor with shared memory in favor of a multicomputer with distributed
memory. Such a parallel architecture consists of a bunch of microcomputers,
each with its own local memory. The processor nodes communicate by send-
ing messages to their nearest neighbors only through communication links.
Each link is a “point-to-point” connection between exactly two nodes. The
removal of the bottleneck created by shared memory greatly increased the
performance of parallel computers. However, the occasional need to route
some messages though a sequence of intermediate nodes made multicomput-
ers far more difficult to program than multiprocessors. So simplicity was
sacrificed for performance—what else is new in computing? This compro-
mise has, I believe, doomed computational science to remain an extremely
difficult form of programming for experts only.

While we were experimenting with multiprocessing, the possibility of
multicomputing had already been explored by a Caltech group headed by
physicist Geoffrey Fox and computer scientist Charles Seitz. Together, they
pioneered a new parallel architecture known as the hypercube (Seitz 1985).

Let me explain what a hypercube is: In each corner of a cube, you place
a microcomputer with its own memory. Then you turn each edge of the
cube into a communication link that connects two processor nodes. This
gives you a cube architecture in which each of the eight nodes can exchange
messages with its three nearest neighbors only.

If you link each node in a cube with the corresponding node in another
cube, you obtain a hypercube architecture with sixteen processors. And, if
you link two of these hypercubes in the same manner, you get a hypercube
with 32 nodes, and so on. The key insight is that whenever you double the
number of processors, the increase in the number of communication links is
only proportional to the previous number of processors. So, as microproces-
sors become cheaper, a hypercube scales nicely without letting the number
of links grow out of bounds.

By October 1983 Chuck Seitz had constructed a 64-processor hypercube
at Caltech. The message communication was handled by a slow software
kernel, known somewhat grandiosely as the Crystaline Operating System,
“although,” as Geoffrey Fox pointed out, “it was never really an operating
system.” This parallel machine was no academic toy. From the beginning,
Fox (1988) used the Cosmic Cube (as it was called) to solve substantial
computational problems in science and engineering.

9. Back in America 1987–2004 167

In 1985, before leaving Denmark, I was instrumental in obtaining fund-
ing for DIKU’s first parallel computer, an Intel iPSC hypercube with 32
microcomputers. At the time, this machine was only the third of its kind
acquired by European research institutions.

Although I recognized the invention of inexpensive supercomputers as a
major breakthrough, I was never enamored of hypercube architectures. I felt
that hypercube algorithms would be dominated by the problem of mapping
problem-oriented process configurations onto a hypercube. That prediction
turned out to be true, I think.

Parallel programs were often written in traditional programming lan-
guages, such as Fortran or C, extended with subroutines for parallelism.
To my taste these programs were difficult to read and lacked the beauty
that scientists expect of their own research. I was convinced that the most
important task in computational science was to make the programming of
parallel computers easier. This was, in my opinion, even more important
than increasing computational power, and I felt that we should be prepared
to sacrifice some performance to solve the programming problem.

At a Supercomputing Conference in Boston in May 1988, I looked (in
vain) for the ideal parallel architecture of the future. Such a machine should,
in my opinion, (1) use general-purpose microcomputers, (2) be expandable
from tens to thousands of processors, (3) support different processor con-
figurations (pipelines, trees, matrices, and so on) in a transparent manner,
(4) handle process creation, communication, and termination by machine
instructions that are only an order of magnitude slower than memory ref-
erences, and (5) automatically balance the computational load among and
route messages between the processors.

The first requirement ruled out NPAC’s Connection Machine, in which
64,000 synchronous processors executed identical processes in lock step (Hillis
1985). The second one excluded multiprocessors. The third condition made
hypercubes unsuitable. The only architecture that satisfied the first four
requirements was a multicomputer known as the Meiko Computing Surface.
No parallel computer satisfied the fifth condition.

In the summer of 1988, I traveled to Bristol, England, to visit Inmos and
Meiko. At the Inmos research center, I met David May, the architect of the
T800 transputer chip, a 32 bit VLSI microprocessor with 64 bit floating-
point arithmetic. Four on-chip links enabled the transputer to exchange
messages with four other transputers.

All programming of the transputer was done in the parallel programming

168 A Programmer’s Story

language occam, which David May had based on Hoare’s Communicating Se-
quential Processes (CSP). This language made it possible to define parallel
processes that communicate by messages. Direct communication between
two connected transputers was very fast (a few microseconds). Process cre-
ation and termination were also hardware operation. The transputer could
switch from one occam process to another in 1 microsecond. There was no
other processor like it in the world!

A group of Inmos employees had formed a small company, named Meiko,
to build a multicomputer with transputer nodes. On my last day in Bristol,
July 8, 1988, I had dinner with the chairman of Meiko, Miles Chesney. My
appointment letter at SU specified that the university “will further purchase
computer equipment as needed for your work in an amount not greater than
$100,000.” For that amount of money, Miles was prepared to sell me a Com-
puting Surface with 20 transputers and 40 Mbytes of distributed memory. I
told him that 20 transputers would not add anything new to my research in
computational science, since I had already used a multiprocessor at NPAC

with 18 processors. I would need at least 40 transputers to make multicom-
puter programming interesting. On the other hand, I had no problem with
reducing the memory of each transputer to 1 Mbyte only. I also offered to
make a Computing Surface at SU available to Meiko for demonstrations to
potential American customers.

Being a risk taker, I asked Miles Chesney to leave a message at my
hotel the next morning informing me if he was be willing to offer me a 40-
node system for my money. If that was unacceptable, I would fly home
empty-handed and look for another machine (although I could not think of
any worthy alternative). When I woke up the next morning, there was a
message from Miles accepting my request.

Back in Syracuse the university hosted an inaugural symposium in March
1989 to celebrate the opening of its new Center for Science and Technology.
The themes of the symposium were parallel computers, neural networks, and
intelligent systems. It was organized by Alan Robinson and me from Syra-
cuse University together with Michael Arbib from the University of Southern
California. On that occasion, the three of us were awarded the Chancellor’s
Medal for Outstanding Achievement. The nine invited speakers included
Ralph Gomery from IBM, who reviewed the evolution of computing, David
May from Inmos, who discussed the possibility of designing general-purpose
parallel computers, and Geoffrey Fox from Caltech, who described major
applications of parallel supercomputers. As the first speaker, I described

9. Back in America 1987–2004 169

“The nature of parallel programming” without going into technical details
(Brinch Hansen 1990).

In July, a Computing Surface was installed at SU right next to my office.
It had 48 transputers, each with 1 Mbyte of memory. The transputers were
linked by a switching network that could be reconfigured before program
execution. After two months of initial problems with hardware, software,
and documentation, I was able to run a trivial occam program that sorted
65,536 integers on 31 transputers. I was now ready to experiment with
parallel scientific programs (Brinch Hansen 1995).

Although I knew nothing about numerical analysis, I thought that par-
allel solution of linear equations would be a useful programming exercise for
a beginner. I chose the problem for the following reason: When a pipeline
with p processors solves n linear equations, the parallel computer time for
the numerical computation is of the order of n3/p. A computer scientist
would say that the numeral computation requires O(n3/p) time, while the
input/output of the equations takes O(n2) time. If the problem size n is large
compared to the machine size p, the relative overhead of processor communi-
cation is negligible. The high ratio of computation to communication makes
the problem ideal for efficient parallel computing.

A colleague recommended Householder reduction as an attractive method
for solving linear equations on a parallel computer. The main strength of
the method is its unconditional numerical stability (Householder 1958). The
more familiar Gaussian elimination is faster but requires a dynamic rear-
rangement of the equations, known as pivoting, which complicates a parallel
program somewhat.

Unfortunately, I could not find a well-written, understandable explana-
tion of Householder’s method. Most textbooks on numerical analysis pro-
duced the so-called “Householder matrix” like a rabbit from a magician’s
top hat without explaining why it is defined the way it is. At that point,
I stopped writing parallel programs and concentrated on sequential House-
holder reduction. After several frustrating weeks I was able to write a tutorial
on Householder reduction. Two pages were sufficient to explain the purpose
and derive the equation for Householder’s matrix. I then explained the com-
putational rules for Householder reduction and illustrated the method by a
numerical example and a Pascal program.

I was beginning to think that others might have the same difficulty un-
derstanding this fundamental computation. So I submitted the tutorial to a
journal that published it (Brinch Hansen 1992). One reviewer wrote that he

170 A Programmer’s Story

“found the presentation far superior to the several descriptions I have seen
in numerical analysis books.” I quote this review not just because I like it,
but because it was my first lesson about computational science: In order
to understand a computation, I must first explain it to myself by writing a
tutorial that includes a complete sequential program.

After studying parallel programming for 25 years it was not difficult for
me to program a Householder pipeline in occam for the Computing Surface.
To achieve approximate load-balancing, the pipeline was folded three times
across an array of transputers, so that each transputer executed four pipeline
processes. The folded pipeline solved 1000 equations on 45 transputers in
87 sec. The Computing Surface made the computation 32 times faster than
it would have been on a single transputer. I was able to derive an elegant
formula that predicted the parallel run time accurately as a function of the
number of equations solved, the number of transputers used, and the number
of times the pipeline was folded.

My next exercise was to compute the trajectories of n particles that inter-
act by gravitation only. I considered the n-body problem to be particularly
challenging on a parallel computer since it involves interactions among all
the particles in each computational step. This means that every processor
must communicate, directly or indirectly, with every other processor. My
description of an n-body pipeline included a brief summary of Newton’s laws
of gravitation and a Pascal program for sequential n-body simulation.

It was a complete surprise for me to discover that the sequential Pascal
programs for Householder reduction and n-body simulation had practically
identical control structures. I suddenly understood that both of them are
instances of the same programming paradigm: Each algorithm solves an all-
pairs problem—a computation on every possible subset consisting of two ele-
ments chosen from a set of n elements. I did not find this insight mentioned
in any textbook on numerical analysis or computational physics.

I now discarded both parallel algorithms and started all over. This time
I programmed a general pipeline algorithm for all-pairs computations. This
program was a parallel implementation of the common control structure. It
provided a mechanism for performing the same operation on every pair of
elements chosen from an array of n elements without specifying what the
elements represent and how they “interact” pairwise.

I then turned the all-pairs pipeline into a Householder pipeline by using
a few data types and procedures from the sequential Householder program.
This transformation of the parallel program was completely mechanical and

9. Back in America 1987–2004 171

required no understanding of Householder’s method. A similar transforma-
tion turned the all-pairs pipeline into an n-body pipeline.

On August 24, 1984, I made the following entry in the computer log
book: “At midnight, I used 31 transputers to simulate 10,000 gravitational
bodies in 47 sec/step!”

I had now found my research theme: I would explore the use of pro-
gramming paradigms in parallel programming. In programming, the word
“paradigm” is often used with a general (but vague) connotation, such as
“the high level methodologies that we recognize as common to many of our
effective algorithms.” I used the term in a more narrow (but precise) sense:
A programming paradigm is a class of algorithms that solve different prob-
lems but have the same control structure.

This was the beginning of my studies in computational science from the
point of view of a computer scientist. I followed the advice of Geoffrey
Fox to “use real hardware to solve real problems with real software.” But,
where the Caltech group concentrated on scientific applications for their own
sake, I used them as realistic case studies to illustrate the use of structured
programming in computational science.

In addition to all-pairs computations, I developed paradigms for tu-
ple multiplication, divide-and-conquer, Monte Carlo trials and cellular au-
tomata. For each paradigm I wrote a general program that defined the com-
mon control structure. Such a program is sometimes called an algorithmic
skeleton, a generic program, or a program template.

From a general parallel program I derived two or more model programs
that illustrated the use of the paradigm to solve specific problems. A general
program includes a few unspecified data types and procedures that vary
from one application to another. A model program is obtained by replacing
these data types and procedures with the corresponding data types and
procedures from a sequential program that solves a specific problem. The
essence of the programming methodology is that a model program has a
parallel component that implements a paradigm and a sequential component
for a specific application. The clear separation of the issues of parallelism
and the details of application is essential for writing model programs that
are easy to understand.

My own model programs solved typical problems in science and engi-
neering: linear equations, n-body simulation, matrix multiplication, short-
est paths in graphs, sorting, fast Fourier transforms, simulated annealing,
primality testing, Laplace’s equation, and forest fire simulation.

172 A Programmer’s Story

I ran these parallel programs on a Computing Surface configured as a
pipeline, a tree, a cube, or a matrix of transputers.

? ? ?

I now turned my attention to the RSA cryptosystem,where large primes play
an essential role in the encoding and decoding of messages (Rivest 1978). A
user chooses two large random primes. These primes are used to compute
a public encoding key and a secret decoding key. Both keys include the
product of the primes. The user can receive encoded messages from anyone
who knows the public key. But only the user (who knows the secret key)
can decode the messages.

The crucial assumption is that it is feasible to generate large primes using
a computer, but there is no known algorithm for finding the prime factors of
large composite numbers in reasonable amounts of computer time. If that
ever becomes possible, you will be able to break the code by factoring the
public product of the secret primes.

At the time, the RSA cryptosystem was believed to be secure for keys of
150 decimal digits. The simplest way to find a 150-digit prime is to generate
150 random digits at a time, until you discover a prime. The probability that
a 150-digit number is a prime is about 1 in 150 ln10. You must therefore
expect to test about 350 numbers for primality before you find a prime.
(Half of these tests can be skipped if you only examine odd numbers.)

So, the generation of primes is reduced to the problem of testing the
primality of random numbers. Unfortunately, it is not feasible to determine
whether or not a 150-digit integer is a prime by examining all the 1075

possible divisors (a truly astronomic number). The Miller–Rabin algorithm
tests the same integer many times using different random numbers (Rabin
1980). If any one of the trials shows that a number is composite, then this
is the correct answer. However, if all trials fail to prove that a number
is composite, then it is almost certainly prime. The probability that the
algorithm gives the wrong answer after, say, 40 trials is less than 10−24.

This is far less than the probability of a computer error. A computer
that performs one million operations per second, with the same probability
of failure per operation, will fail once in thirty billion years. That is roughly
the age of the universe since the Big Bang.

The advantage of using a multicomputer for primality testing is obvious.
When the same random number has been broadcast to every processor, the
trials can be performed simultaneously without any communication between

9. Back in America 1987–2004 173

the processors. Consequently, the processor efficiency is very close to 1 for
non-trivial problems.

I programmed the Miller–Rabin algorithm in occam and used the Com-
puting Surface to perform 40 tests of a 160-digit random number simultane-
ously on 40 transputers.

For the primality testing, I had to program multiple-length arithmetic.
Most computers limit integer arithmetic to 32–64 bits, corresponding to
8–17 decimal digits. A larger integer must be represented by an array of
digits, each occupying a single machine word. The arithmetic operations on
multiple-length integers are serial operations that imitate paper-and-pencil
operations.

I thought it would be easy to find a textbook that includes a simple algo-
rithm for multiple-length division with a complete explanation. Much to my
surprise, I was unable to find such a book. I ended up spending weeks on this
“well-known” problem and finally wrote a tutorial that includes a complete
Pascal algorithm (Brinch Hansen 1994). I mention this unexpected difficulty
to illustrate what happens when a standard algorithm is not published as a
well-structured program in an executable language.

Inspired by my use of a programming paradigm for primality testing,
my student, Jonathan Greenfield, explored the development of distributed
generic algorithms for RSA cryptography. He defined abstract algorithms
in a variant of the parallel programming language Joyce. These algorithms
were rewritten in the implementation language occam and tested on the
Meiko Computing Surface. His PhD thesis was an appealing combination
of the theory and practice of parallel computing. From the point of view
of a computer scientist, it was an amazing feat to recognize five different
aspects of the same application as instances of two simple paradigms for
parallel computing. In addition, Jonathan’s thesis was well-written and
easy to understand. It was published as a volume in the Springer-Verlag
Lecture Notes in Computer Science (Greenfield 1993)—a rare honor for a
PhD student.

It had been fun to enter an interdisciplinary field, refresh my memory
of mathematics and physics I learned as an undergraduate, study numerical
analysis, and teach myself the art of multicomputer programming.

My one serious criticism of computational science was that it largely
ignored the issue of precision and clarity in parallel programming that is
essential for the education of future scientists. A written explanation is not
an algorithm. A graph of computational steps is not an algorithm. A picture

174 A Programmer’s Story

of a systolic array is not an algorithm. A mathematical formula is not an
algorithm. A program outline written in non-executable “pseudocode” is
not an algorithm. And, a complicated “code” that is difficult to understand
will not do either.

Subtle algorithms must be presented in their entirety as well-structured
programs written in readable, executable programming languages. This was
my main reason for publishing model programs for computational science.
I felt that the study of programming paradigms provides an architectural
vision of parallel scientific computing.

My fifth book, Studies in Computational Science: Parallel Programming
Paradigms was published in 1995. I wish I could say that this work influenced
the way people program parallel computers, but—with the possible exception
of my students—I don’t think it did.

A graduate student, Anil Menon (1995), left this impression of my course
on multicomputer programming:

Over the last ten years, I’ve studied under many teachers and
taken many courses. Dr. Brinch Hansen’s course was unlike no
other. He was interested in solving problems in parallel. I had
no idea, even after five earlier courses, that it was so difficult. He
took seven to eight different problems and showed by means of a
series of beautiful and elegant programs, how one would go about
writing parallel programs. His insights were often remarkable, for
example, his deep idea that process structures were the correct
way to reason and work with parallel processing, just as data
structures are the key to sequential processing. Or the time he
told us about the importance of constraints in the design process.

Perhaps the conviction always evident in his presentation
came from the fact that these programs were his own, and not
copied off some standard book. Even now it mystifies me to some
extent how he could reduce a really complex program to a series
of subprograms each no more than a dozen lines, the whole piece
elegantly connected.

The course was especially enjoyable because Dr. Brinch Han-
sen is a character. He’s passionate, outspoken, opinionated and
intolerant of anything less than perfection. What a relief it was
to find a professor who wasn’t afraid to voice what he really felt
about issues in computer science. None of that cowardly “on
the one hand. . .on the other hand” balance with which the meek

9. Back in America 1987–2004 175

evade making choices. He was as opinionated about the state of
NPAC, as he was about his language SuperPascal. I could go on
and on: His rare sense of history, the remarkable perceptiveness
with which he’d transform one problem into another etc. But
perhaps the great physicist, Feynman put it best (though in a
different context): “To do physics,” he said, “you gotta have
style”. I believe it’s true of computer science as well. Dr. Brinch
Hansen does parallel programming in style, and for one great
semester it was my privilege to learn by example.

? ? ?

I have always felt that professionals should study the history of their own
field for the enjoyment and insight it gives. In 1978 and 1993, I attended two
ACM conferences, which became milestones in the History of Programming
Languages. The first conference (HOPL-I) covered the major languages
of the 1960s (Wexelblat 1981). The program committee selected thirteen
languages that had been in use for at least ten years, had significant influence,
and were still in use. Each paper was presented by a pioneer who had played
a key role in the development of the language. The following presentations
were of special interest to me:

APL (Ken Iverson)
Algol (Alan Perlis and Peter Naur)
Basic (Tom Kurtz)
Cobol (Jean Sammet)
Fortran (John Backus)
LISP (John McCarthy)
PL/I (George Radin)
Simula (Ole-Johan Dahl and Kristen Nygaard)

On this occasion, Ole-Johan Dahl, Peter Naur, Alan Perlis and his wife
Sydelle visited us in Altadena.

The second conference (HOPL-II) focussed on programming languages
of the 1970s which “had significant influence on the theory or practice of
computing” (Bergin 1996). This time the languages and speakers included:

Ada (Bill Whitaker)
C (Dennis Ritchie)
C++ (Bjarne Stroustrup)

176 A Programmer’s Story

CLU (Barbara Liskov)
Concurrent Pascal (Per Brinch Hansen)
Pascal (Niklaus Wirth)
Prolog (Alain Colmerauer and Philippe Roussel)
Smalltalk (Alan Kay)

The organizers set high technical and editorial standards. Historian Mike
Mahony reviewed all the papers. Each author also worked with a technical
expert who reviewed the various drafts. My own paper on “Monitors and
Concurrent Pascal: A personal history” went through six drafts over a period
of fifteen months.

In a “no holds barred” panel discussion, the following exchange took
place (Bergin 1997):

Per Brinch Hansen: I’m going to sit down, since you have
already answered my question which is, “Is there a future for
insecure, low-level languages like C, and huge, incomprehensible
languages like Ada?” But, I wish to make a less loaded comment,
which is that there may be differences of style between program-
ming languages, but there ought to be some common idea of the
minimal requirements, so we can all agree that we are looking at
a programming language. And I think that’s part of the problem.

If you look at physics, for example, I would say that a the-
ory ought to satisfy at least three requirements and so should a
programming language. First, a notation, which is what a pro-
gramming language is, is supposed to enable you to express a
theory of computation, not necessarily a mathematical theory
(although that would be ideal), but theories can also be helpful
if they are informal, as in geology. In any programming lan-
guage, you will recognize a set of abstractions that are machine-
independent, but at a certain point those concepts break down.
If you have overflowing arithmetic, your results become meaning-
less; and that goes for every one of them, that they only apply
under certain conditions, which should be stated in the language
manual. The requirement that a language should be secure is the
simple requirement that a compiler and a computer should tell
you, when the programming concepts break down. If we can’t
agree on that being a minimum requirement for all programming
languages, then I think we are just using the same word for con-

9. Back in America 1987–2004 177

venience to denote things that have very little in common. By
that definition, C is not a programming language.

The second requirement is that a theory in physics must be
simple. If a Niels Bohr can’t comprehend it, or a [Richard] Feyn-
man, then a committee of physicists won’t be able to master it
either. That boils down to the simple requirement that language
manuals must be short, concise, and so must their compilers. By
that definition, Ada is not a programming language. [laughter]

The third requirement was illustrated by the German physi-
cist, [Wolfgang] Pauli, who once said to Bohr, ”I have a crazy
theory, you are going to like it!” To which Bohr responded: “It
is not crazy enough!”

When I look at this conference, I do see a certain sameness
in what we have done. Apart from these obvious violations of
what programming languages should be, there is precious little
difference between Fortran and Concurrent Pascal. They are
mostly the same thing: x becomes x+1. To me, it is not terribly
interesting which languages will win, because that appears to be
a study for sociologists, rather than computer scientists. What I
like are the crazy paradigms we have seen, and there are two of
those: Prolog and Smalltalk.

So I leave you with this question: Can we agree that a pro-
gramming language must represent a theory of computation, that
compilers and computers must check if the assumptions behind
the abstractions apply when we run our programs, that the man-
uals must be short, and that the ideas must be crazy?

Dennis Ritchie: Could you please repeat the question? [laugh-
ter] I know what the question is. Is there a place for, in particu-
lar, C? Well, my guess is that there will not be any more signifi-
cant low level languages—in other words, the niche is occupied—
maybe that’s just hoping. I guess the other response is that you
have even stricter criteria than Jean [Sammet], whose criteria for
considering what a language is, I think, are already too strict.

Niklaus Wirth: Is there any agreement among the four of
you on the minimum requirements for us to call something a
programming language other than the fact that it can change
bits in a computer?

178 A Programmer’s Story

Dennis Ritchie: Are you kidding? [laughter] No, of course,
there is no agreement. That is the point. [laughter]

Bill Whitaker: In particular, we didn’t agree with YOU!
[laughter]

Alan Kay: I don’t know, I think he hit it right on the head—I
like the crazy part.

To understand what was going on here, I will quote what the biologist
Francis Crick (1988) wrote about another “soft” science:

[The work] tended to fall into a number of somewhat separate
schools, each of which was rather reluctant to quote the work of
the others. This is usually characteristic of a subject that is not
producing any definite conclusions. (Philosophy and theology
might be good examples.)

? ? ?

On May 8, 2002, I was awarded the IEEE Computer Pioneer medal “For
pioneering development in operating systems and concurrent programming
exemplified by work on the RC 4000 multiprogramming system, monitors,
and Concurrent Pascal.” In my acceptance speech (borrowing liberally from
my own writing), I said (Brinch Hansen 2002):

It is an unexpected pleasure for me to receive the first major
award for the work I did from 1965 to 1975. I must confess, I
was beginning to feel like Duke Ellington, who once said, “Fate
doesn’t want me to be famous too young.” So, I thank the IEEE

Computer Society for honoring me and making this speech neces-
sary. And, I thank my friend, Jonathan Greenfield, for his tireless
efforts in nominating me for the Computer Pioneer Award.

Now, you should not for a minute imagine that I knew what I
was doing as a young programmer. On two occasions, the work,
you are honoring me for, almost came to nothing.

In 1963, I graduated from the Technical University of Den-
mark without any programming experience (it was not yet being
taught). There were (as far as I remember) no textbooks avail-
able on programming languages, compilers or operating systems.

9. Back in America 1987–2004 179

With this background, I began my career as a systems pro-
grammer with Regnecentralen in Copenhagen. At age 29, I be-
came head of software development for the RC 4000 computer.
The senior manager of Regnecentralen, Niels Ivar Bech, gave
me only one directive: “I need something new in multiprogram-
ming!”

After a while, Jørn Jensen, Søren Lauesen, and I realized
that we had no original ideas about multiprogramming. So, I
told Bech: “We aren’t getting anywhere. Is it all right with
you if Jørn, Søren, and I spend a weekend at a country inn?” I
wanted to give us one last chance. We had already agreed that
we would either return with new ideas or give up and copy the
best ideas we could find elsewhere. Bech immediately agreed (he
had done the same thing when Regnecentralen’s Cobol compiler
project had come to a standstill).

It worked! The thought of returning to Regnecentralen with-
out new ideas was simply unacceptable to us. Out of that week-
end came the first ideas for the RC 4000 multiprogramming sys-
tem, which introduced the now-standard concept of an operating
system kernel.

Since 1970, I have been a computer scientist in the United
States. While writing my textbook on operating system prin-
ciples, I invented the monitor notation, which combines process
synchronization with object-oriented programming.

At California Institute of Technology my goal was to develop
a concurrent programming language with monitors. You would
think it would be easy for me to extend Pascal with monitors.
But I had no idea of how to do this. I remember sitting in my
garden in Altadena, day after day, staring at a blank piece of
paper and feeling like a complete failure. It took me two years
to find reasonable solutions to most of the problems and make
compromises which enabled me to ignore the most thorny issues.

In 1974, I distributed a description of the programming lan-
guage Concurrent Pascal. I now understood what I was doing.
One day the Caltech president, Harold Brown, came to my office
and asked me to explain my research. After listening for half an
hour, he said, “That sounds easy.” I agreed because that was
how I felt at the time. So, in the end, things turned out all right.

180 A Programmer’s Story

Let me conclude by quoting the biologist Francis Crick: “It’s
true that by blundering about we stumbled on gold, but the fact
remains that we were looking for gold.”

Thank you for your attention.

? ? ?

I am now sixty-six years old and close to retirement. My adult children
left home many years ago after graduating from Syracuse University. My
wife, Milena, received her second master’s degree from SU and started a new
career as a public librarian in Onondaga County.

I have been fortunate to live the creative life I dreamt of as a young man.
It would have been easier for my family and colleagues, if I had been a more
patient man, but you don’t get to chose your temperament (or gifts for that
matter).

I will end this programmer’s story on a philosophical note by quoting
Albert Einstein:

In the light of knowledge attained, the happy achievement seems
almost a matter of course, and any intelligent student can grasp
it without too much trouble. But the years of anxious search-
ing in the dark, with their intense longing, their alternations
of confidence and exhaustion, and the final emergence into the
light—only those who have experienced it can understand it.

Life has been good.

SOURCES

Asimov, I. 1976. Science, Numbers, and I. Ace Books, New York.

Backus, J. W. 1981. Question and answer session on Algol 60. In Wexelblat (1981), 162.

Bal, H. E., Steiner, J. G., and Tanenbaum, A. S. 1989. Programming languages for
distributed computing systems. ACM Computing Surveys 21, (September), 261–322.

Bashe, C. J., Johnson, L. R., Palmer, J. H., and Pugh, E. W. 1986. IBM’s Early Comput-
ers. The MIT Press, Cambridge, MA.

Bell, J .R. 1973. Threaded code. Communications of the ACM 16, 6 (June), 370–372.

Bergin, T. J., and Gibson, R. G. (eds.) 1996. History of Programming Languages II. ACM
Press, NY.

Bergin, T. J. (ed.) 1997. HOPL II—Closing panel. ACM SIGPLAN Notices 32, 9
(September), 15–37.

Bishop, J. 1986. Data Abstraction in Programming Languages. Addison-Wesley, Reading,
MA.

Bjerrum, L. B. 1969. Jørgen Brinch Hansen, 1909–1969. Géotechnique 19, 3 (September).

Bohm, D. 1951. Quantum Theory. Prentice-Hall, Englewood Cliffs, NJ.

Brinch Hansen, P. 1961–68. Letters to my parents and wife.

Brinch Hansen, P. 1962. Maser—et nyt forstærkerelement der muliggør kommunikation
ved optiske frekvenser. (“Maser—a new amplifier element that makes communication
at optical frequencies possible.”) Ingeniøren, (May).

Brinch Hansen, P. 1963. Rubinens røde straale. (“The red ray of the ruby”) Vor Viden,
(May–June), 545–555 and 577–583.

Brinch Hansen, P. 1964. An optimal compilation of Boolean Expressions in Cobol 61.
NordSAM 64, Stockholm, Sweden (August).

Brinch Hansen, P., and House, R. 1966. The Cobol compiler for the Siemens 3003. BIT 6,
1, 1–23.

Brinch Hansen, P. 1967a. The logical structure of the RC 4000 computer. BIT 7, 3,
191–199.

Brinch Hansen, P. 1967b. The RC 4000 real-time control system at Pulawy. BIT 7, 4,
279–288.

Brinch Hansen, P. 1968. The structure of the RC 4000 monitor. Regnecentralen, Copen-
hagen, Denmark (February).

Brinch Hansen, P. 1969a. RC 4000 Computer Software: Multiprogramming System. Reg-
necentralen, Copenhagen, Denmark, (April).

Brinch Hansen, P. 1969b. RC 4000 Computer Reference Manual. Regnecentralen, Copen-
hagen, Denmark, (June).

Brinch Hansen, P. 1970. The nucleus of a multiprogramming system, Communications of
the ACM 13, 4 (April), 238-241, 250.

Copyright c© 2004 by Per Brinch Hansen.

181

182 A Programmer’s Story

Brinch Hansen, P. 1971. An outline of a course on operating system principles. In
C. A. R. Hoare and R. H. Perrott (eds.) 1972, Operating Systems Techniques, Proceed-
ings of a Seminar at Queen’s University, Belfast, Northern Ireland, August–September
1971, Academic Press, New York, 29–36.

Brinch Hansen, P. 1972. Structured multiprogramming. Communications of the ACM 15,
7 (July), 574–578.

Brinch Hansen, P. 1973a. Operating System Principles. Prentice-Hall, Englewood Cliffs,
NJ, (July).

Brinch Hansen, P. 1973b. Concurrent programming concepts. ACM Computing Surveys
5, 4 (December), 223–245.

Brinch Hansen, P. 1974a. Deamy—a structured operating system. Information Science,
California Institute of Technology, Pasadena, CA, (May).

Brinch Hansen, P. 1974b. The programming language Concurrent Pascal, Information Sci-
ence, California Institute of Technology, Pasadena, CA, (November). Revised version
in IEEE Transactions on Software Engineering 1, 2 (June 1975), 199–207.

Brinch Hansen, P. 1975a. Concurrent Pascal report. Information Science, California
Institute of Technology, Pasadena, CA, (June).

Brinch Hansen, P., and Hartmann, A. C. 1975b. Sequential Pascal report. Information
Science, California Institute of Technology, Pasadena, CA, (July).

Brinch Hansen, P. 1975c. The Solo operating system. Information Science, California
Institute of Technology, Pasadena, CA, (June–July). Also in Software—Practice and
Experience 6, 2 (April–June 1976), 141–200.

Brinch Hansen, P. 1975d. Concurrent Pascal machine. Information Science, California
Institute of Technology, Pasadena, CA, (October).

Brinch Hansen, P. 1975e. A real-time scheduler. Information Science, California Institute
of Technology, Pasadena, CA, (November).

Brinch Hansen, P. 1976a. The job stream system. Information Science, California Institute
of Technology, Pasadena, CA, (January).

Brinch Hansen, P. 1976b. Concurrent Pascal implementation notes. Information Science,
California Institute of Technology, Pasadena, CA.

Brinch Hansen, P. 1976c. Innovation and trivia in program engineering. Guest Editorial,
Software—Practice and Experience 6, 2 (April-June), 139–140.

Brinch Hansen, P. 1976d. The programmer as a young dog. In Sveistrup (1976), 65–68
(In Danish). Also in P. Brinch Hansen 1996, The Search for Simplicity: Essays in
Parallel Programming. IEEE Computer Society Press, Los Alamitos, CA, 142–156 (In
English).

Brinch Hansen, P. 1977. The Architecture of Concurrent Programs. Prentice-Hall, Engle-
wood Cliffs, NJ, (July).

Brinch Hansen, P. 1978a. Distributed processes: a concurrent programming concept.
Communications of the ACM 21, 11 (November), 934–941.

Brinch Hansen, P. 1978b. Multiprocessor architectures for concurrent programs. ACM 78
Conference, Washington, DC, December, 317–323.

Brinch Hansen, P. 1981. Three papers on the programming language Edison. Software—
Practice and Experience 11, 4 (April), 325–414.

Brinch Hansen, P. 1983. Programming a Personal Computer. Prentice Hall, Englewood
Cliffs, NJ, (April).

Sources 183

Brinch Hansen, P. 1985. Brinch Hansen on Pascal Compilers. Prentice Hall, Englewood
Cliffs, NJ, (August).

Brinch Hansen, P. 1987a. Joyce—a programming language for distributed systems. Soft-
ware—Practice and Experience 17, 1 (January), 29–50.

Brinch Hansen, P. 1987b. A Joyce implementation. Software—Practice and Experience
17, 4 (April), 267–276.

Brinch Hansen, P. 1987c. The Joyce language report. Software—Practice and Experience
19, 6 (June), 553–579.

Brinch Hansen, P., and Rangachari, A. 1988. Joyce performance on a multiprocessor.
School of Computer and Information Science, Syracuse University, Syracuse, NY,
(September).

Brinch Hansen, P. 1989. A multiprocessor implementation of Joyce. Software—Practice
and Experience 19, 6 (June), 579–592.

Brinch Hansen, P. 1990. The nature of parallel programming. In M. A. Arbib and
J. A. Robinson (eds.), Natural and Artificial Parallel Computation, The MIT Press,
Cambridge, MA, 31–46.

Brinch Hansen, P. 1992. Householder reduction of linear equations. ACM Computing
Surveys 24, 2 (June), 185–194.

Brinch Hansen, P. 1993. Monitors and Concurrent Pascal: a personal history. 2nd ACM
Conference on the History of Programming Languages, (April), Cambridge, MA.

Brinch Hansen, P. 1994. Multiple-length division revisited: A tour of the minefield.
Software—Practice and Experience 24, 6 (June), 579–601.

Brinch Hansen, P. 1995. Studies in Computational Science: Parallel Programming Para-
digms. Prentice Hall, Englewood Cliffs.

Brinch Hansen, P. 1999a. Programming for Everyone in Java. Springer-Verlag, New York.

Brinch Hansen, P. 1999b. Java’s insecure parallelism. SIGPLAN Notices 34, 4 (April),
38–45.

Brinch Hansen, P. 2002. IEEE Computer Pioneer Award: Acceptance speech. IEEE
Annals of the History of Computing 24, 4 (October–December), 56.

Bronowski, J. 1973. The Ascent of Man. Little, Brown and Company, Boston, MA.

Buchholz, W. (ed.) 1962. Planning a Computer System: Project Stretch. Mc-Graw Hill,
New York.

Campbell, R. H., and Habermann, A. N. 1974. The specification of process synchroniza-
tion by path expressions. Lecture Notes in Computer Science 16, Springer-Verlag,
Heidelberg, Germany, 89–102.

Ceruzzi, P. E. 2003. A Modern History of Computing, 2nd edition. The MIT Press,
Cambridge, MA.

Cobol Discussion 1981. Question and answer session on Cobol. In Wexelblat (1981),
263–276.

Computerworld 1983. Stanford gets top grade in grad school poll. (January 24), 22.

Corbató, F. J., Merwin-Daggett, M., and Daley, R. C. 1962. An experimental time-sharing
system. Spring Joint Computer Conference 21, 1962, 335–344.

Cosine Committee 1971. An Undergraduate Course on Operating Systems Principles.
Commission on Education, National Academy of Engineering, Washington, DC, (June).

Crick, F. 1988. What Mad Pursuit: A Personal View of Scientific Discovery. Basic Books.

184 A Programmer’s Story

Dijkstra, E. W. 1965. Cooperating sequential processes. Technological University, Eind-
hoven, The Netherlands, (September).

Dijkstra, E. W. 1968a. Go to statements considered harmful.Communications of the ACM
11, 3 (March), 147–148.

Dijkstra, E. W. 1968b. The structure of the THE multiprogramming system. Communi-
cations of the ACM 11, 5 (May), 341–346.

Dijkstra, E. W. 1971a. Hierarchical ordering of sequential processes. In C. A. R. Hoare and
R. H. Perrott (eds.) 1972, Operating Systems Techniques, Proceedings of a Seminar
at Queen’s University, Belfast, Northern Ireland, August–September 1971. Academic
Press, New York, 72–93.

Dijkstra, E. W. 1971b. Reisverslag van Edsger W. Dijkstra aan Summer School, Markto-
berdorf, juli 1971 (in Dutch).

Dijkstra, E. W. 1972. The humble programmer. Communications of the ACM 15, 10
(October), 859–866.

Dijkstra, E. W. 1973. Summer School Munich, July 25 to August 4. In E. W. Dijkstra
1982. Selected Writings on Computing: A Personal Perspective. Springer-Verlag, New
York.

Dijkstra, E. W. 1975. Summer School Marktoberdorf, August.

Dijkstra, E. W. 1999. Computing science: achievements and challenges. ACM Symposium
on Applied Computing, (March), San Antonio, TX.

Discussions 1971. Discussions of conditional critical regions and monitors. In C. A. R.
Hoare and R. H. Perrott (eds.) 1972, Operating Systems Techniques, Proceedings of
a Seminar at Queen’s University, Belfast, Northern Ireland, August–September 1971.
Academic Press, New York, 100–113.

Fox, G. C., Johnson, M. A., Lyzenga, G. A., Otto, S. W., Salmon, J. K. and Walker,
D. W. 1988. Solving Problems on Concurrent Processors, Vol. I, Prentice Hall, Engle-
woods, NJ.

Gleick, J. 1992. Genius—The Life and Science of Richard Feynman. Pantheon Books,
New York.

Greenfield, J. S. 1993. Distributed programming with cryptography applications. PhD
thesis, Computer and Information Science, Syracuse University, Syracuse, NY, (De-
cember). Also in Lecture Notes in Computer Science 870, (1994), Springer-Verlag,
New York.

Gregorian, V. 2003. The Road to Home: My Life and Times. Simon & Schuster, New
York.

Grimberg, C. 1959. Verdenshistorien. (“The World History”). Politikens Forlag, Copen-
hagen, Denmark (in Danish).

Habermann, A. N. 1973. Critical comments on the programming language Pascal. Acta
Informatica 3, 47–57.

Hartmann, A. .C. 1975. A Concurrent Pascal compiler for minicomputers. PhD thesis,
Information Science, California Institute of Technology, Pasadena, CA, (September).
Also in Lecture Notes in Computer Science 50, (1977), Springer-Verlag. New York.

Hillis, W. D. 1985. The Connection Machine. MIT Press, Cambridge, MA.

Hoare, C. A. R. 1969. An axiomatic basis for computer programming. Communication of
the ACM 12, 10 (October), 576–580, 583.

Sources 185

Hoare, C. A. R. 1971. Towards a theory of parallel programming. In C. A. R. Hoare and
R. H. Perrott (eds.) 1972, Operating Systems Techniques, Proceedings of a Seminar
at Queen’s University, Belfast, Northern Ireland, August–September 1971, Academic
Press, New York, 61–71.

Hoare, C. A. R. 1973. A structured paging system. Computer Journal 16, (August),
209–214.

Hoare, C. A. R. 1974a. Monitors: an operating system structuring concept. Communica-
tions of the ACM 17, 10 (October), 549–557.

Hoare, C. A. R. 1974b. Hints on programming language design. In Computer Systems
Reliability, C. Bunyan (ed.), Infotech International, Berkshire, England, 505–534.

Hoare, C. A. R. 1976a. Hints on the design of a programming language for real-time
command and control. In Real-time Software: International State of the Art Report,
J.P. Spencer (ed.), Infotech International, Berkshire, England, 685–699.

Hoare, C. A. R. 1976b. The structure of an operating system. Lecture Notes in Computer
Science 46, F. L. Bauer and K. Samelson (eds.), 242–265. Springer-Verlag, New York.

Hoare, C. A. R. 1985. Communicating Sequential Processes. Prentice Hall, Englewood
Cliffs, NJ.

Hoare, C. A. R., and C. B. Jones (eds.) 1989. Essays in Computing Science. Prentice
Hall, New York.

Householder, A. S. 1958. Unitary triangularization of a nonsymmetric matrix. Journal of
the ACM 5, 339–342.

Huskey, H. D., and Korn, G. A. (eds.) 1962. Computer Handbook. McGraw-Hill, New
York.

IEEE Computer Society 2002. Brochure describing Per Brinch Hansen’s Computer Pioneer
Award.

Isaksson, H. 1976. Fra Gier til RC 4000 (“From Gier to RC 4000”). In Sveistrup (1976),
57–64 (in Danish).

Joyce, J. 1937. Ulysses. The Bodley Head, London, England.

Kilburn, T., Payne, R. B., and Howarth, D. J. 1961. The Atlas supervisor. National
Computer Conference 20, 279–294.

Kittel, C. 1956. Introduction to Solid State Physics. John Wiley, New York.

Klasseavisen (“The class newspaper”) 1945–49. Konrad Jahn’s class, Niels Ebbesensvej
School, Frederiksberg, Denmark (in Danish).

Knuth, D. E. 1968. The Art of Computer Programming. Vol. 1. Fundamental Algorithms.
Addison-Wesley, Reading, MA.

Kraks Bl̊a Bog (“Who’s Who in Denmark”) 1959. Kraks Legat, Nytorv 17, Copenhagen,
Denmark (in Danish).

Lauesen, S. 1975. A large semaphore based operating system. Communications of the
ACM 18, 7 (July), 377–389.

McKeag, R. M. 1972–73. A survey of system structures & synchronization techniques.
Department of Computer Science, The Queen’s University of Belfast, Belfast, Northern
Ireland (October 1972), with Supplement (January 1973).

Maddux, R. A., and Mills, H. D. 1979. Review of Per Brinch Hansen: The Architecture
of Concurrent Programs. IEEE Computer 12, (May), 102–103.

Mason, S. J., and Zimmermann, H. J. 1960. Electronic Circuits, Signals, and Systems.
John Wiley, New York.

186 A Programmer’s Story

Matelan, N. 1985. The Flex/32 multicomputer. IEEE/ACM Symposium on Computer
Architecture. Boston, MA, (June), 209–213.

Medawar, P. B. 1979. Advice to a Young Scientist. Harper & Row, New York.

Menon, A. 1995. Unpublished student evaluation of professor Brinch Hansen’s course on
multicomputer programming at Syracuse University, (March).

Moore, G. 1979. VLSI: some fundamental challenges. IEEE Spectrum, (April), 30–37.

Naur, P. (ed.), Backus, J. W., Bauer, F. L., Green, J., Katz, C., McCarthy, J., Perlis, A. J.,
Rutishauer, H., Samelson, K., Vauquois, B., Wegstein, J. H., van Wijngaarden, A., and
Woodger, M. 1960. Report on the algorithmic language Algol 60. Communications of
the ACM 3, 5 (May), 299–314.

Naur, P. 1963a. The design of the Gier Algol compiler. BIT 3, 2–3, 124–140 & 145–66.

Naur, P. 1963b. Go to statements and good Algol style. BIT 3, 3, 204–208.

Naur, P. 1966a. Program translation viewed as a general data processing problem. Com-
munications of the ACM 9, 3 (March), 176–179.

Naur, P. 1966b. The science of datalogy: Letter to the editor. Communications of the
ACM 9, 7 July, 485.

Naur, P. 1968. Datalogy, the science of data and data processes and its place in education.
IFIP Congress 68, vol. II, 1383–1387.

Naur, P., and Randell, B. (eds.) 1969. Software Engineering. Nato Science Committee,
(October), Brussels, Belgium.

Naur, P. 1974. Concise Survey of Computer Methods. Petrocelli/Charter, New York.

Naur, P. 1975. Review of Per Brinch Hansen: Operating System Principles. BIT 15,
455–457.

Naur, P., Johansen, P., and Koster, C. H. A. Koster 1984. Recommendation to University
of Copenhagen regarding the appointment of a new professor in datalogy.

Nori, K. V., Ammann, U., Jensen, K., and Naegeli, H. H. 1974. The Pascal P compiler:
implementation notes. Institut für Informatik, ETH, Zurich, Switzerland, (December).

Ostenfeld, C. (ed.) 1976. Christiani & Nielsen: The Danish Pioneers of Reinforced Con-
crete. Polyteknisk Forlag, Lyngby, Denmark.

Perlis, A. J. 1962. The computer in the university. In M. Greenberger (ed.), Computers
and the World of the Future. The MIT Press, Cambridge, MA, 180–217.

Perlis, A. J. 1981. Talk on “Computing in the fifties.” ACM National Conference.
Nashville, TN. Transcript in J. A. N. Lee (ed.), Computer Pioneers, IEEE Computer
Society Press, Los Alamito, CA, 1995, 545–556.

Perlis, A. J. 1982. Epigrams on programming. ACM SIGPLAN Notices 9, (September),
7–13.

Rabin, M. O. 1980. Probabilistic algorithms for testing primality. Journal of Number
Theory 12, 128–138.

Randell, B., and Russell, L. J. 1964. Algol 60 Implementation. Academic Press, New York.

Rivest, R. L., Shamir, A. and Adleman, L. M. 1978. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM 21, 120–126.

Rosovsky, H. 1990. The University: An Owner’s Manual. W. W. Norton & Company,
New York.

Scherfig, H. 1940. Det Forsømte For̊ar. (“The Neglected Spring”). Gyldendal, Copen-
hagen, Denmark (in Danish).

Seitz, C. L. 1985. The Cosmic Cube. Communications of the ACM 28, (January), 22–23.

Sources 187

Sellar, W. C., and Yeatman, R. J. 1964. 1066 and All That. Penguin Books, Ham-
mondsworth, Middlesex, England.

Shute, N. 1954. Slide Rule: The Autobiography of an Engineer. Ballantine Books, New
York.

Siegel, M., and Smith, A. E. 1962. Interim report on Bureau of Ships Cobol evaluation
program. Communications of the ACM 5, (May).

Simonton, D. K. 1984. Genius, Creativity, and Leadership. Harvard University Press,
Cambridge, MA.

Snow, C. P. 1970. Last Things. Charles Scribner’s Sons, New York.

Speiser, A. P. 1961. Digitale Rechenanlagen. Springer-Verlag, Berlin, Germany.

Spenke, E. 1958. Electronic Semiconductors. McGraw-Hill, New York.

Sveistrup, P., Naur, P., Hansen, H. B., and Gram, C. (eds.) 1976. Niels Ivar Bech—en
epoke i edb-udviklingen i Danmark. (“Niels Ivar Bech—An Era in the Development of
Electronic Data Processing in Denmark”). Data, Copenhagen, Denmark (mostly in
Danish).

Terman, F. E. 1955. Electronic and Radio Engineering. McGraw-Hill, New York, 1955.

U. S. Department of Defense 1961. Cobol-1961, Report to Conference on Data Systems
Languages. Washington, DC.

Welsh, J., and Bustard, D. W. 1979. Pascal-Plus—another language for modular multi-
programming. Software—Practice and Experience 9, 11 (November), 947–957.

Wexelblat, R. L. (ed.) 1981. History of Programming Languages. Academic Press, New
York.

Wulf, W. A., and Bell C. G. 1972. C.mmp—a multiprocessor. Fall Joint Computer
Conference, 765–777.

INDEX

Abstract machine, 67, 84
Ada language, 175–177
Adleman, Leonard, 134
Albertsen, Jørgen, 12–13
Algol 58 Anniversary, 74
Algol 60 language, 38, 151, 175
Algol compilers, 39–41
Algol W language, 74
Alto personal computer, 62
Andersen, Birger, 156–157
Andersen, Christian, 80
Andersen, Frode, 9
Andersen, Hanne, 12
Andersen, Kurt Henning, 76
APL language, 175
Arbib, Michael, 168
Architecture of Concurrent Programming, The,

4, 137–140
ARPA, 82
Assembly language, 39, 49
Atlas computer and supervisor, 41, 74
Await statement, 112

Backus, John, 23
BNF notation of, 38–39
HOPL conference, at, 175
Naur’s contribution to Algol 60, on, 38

Bagger, Bent, 42
Bak, Ole (cousin), 12
Balling, Knud, 148
Basic language, 175
Basic monitors, 96
Batch processing, Caltech, at, 108–109
Bauer, Friedrich (Fritz), 89
Bayer, Rudolph, 89
Bech, Niels Ivar, birth of, 76

childhood and youth of, 76
death of 79
fired as director, 79
first impression of, 36
horse trading of, 78
IFIP, founding member of, 78
IFIP Silver Core Award of, 78
middle name, invents, 76
NordSAM conferences, organizes, 78

Pulawy project, on, 60
portrait of, 75–80
stuttering of, 76
unorthodox management style of, 76–77

Belfast Symposium, 89–96
Bell, Gordon, 85, 115, 142
Bishop, Judy, 152
BIT (Scandinavian journal of computing),

78
Bjerge, Gunnar, 7
Bohr, Harald, 19
Bok, Derek, 135–136
Borup, Morten, 13
Boss 2 system, 73
Bravo editor, 62
Brinch Hansen, Elsebeth (mother, née Ring),

1–4
Brinch Hansen, Eva (sister), 9
Brinch Hansen, Jørgen (father), 1–4, 9

Doctor technices degree of, 138
inspiration of, 22
making gunpowder, 12

Brinch Hansen, Mette (daughter), 85, 163,
180

Brinch Hansen, Milena (wife, née Hrastar),
23, 131, 180
Caltech, visits, 105
Denmark, in, 153
India, in, 118–119
Pittsburgh, in, 85–85
Syracuse, in, 163–164

Brinch Hansen on Pascal
Compilers, 157

Brinch Hansen, Per,
Ada language, on, 176–177
Algol 58 Anniversary, at, 74
alienation of foreigners, on, 161
all-pairs computation of, 170–171
America, in, 81–152, 163–180
American citizenship of, 164
American football, on, 133–133
American hospitality, on, 161
Architecture of Concurrent Programs, The,

137–140

189

190 A Programmer’s Story

Bech, Niels Ivar, meets 36
Belfast symposium, at, 92–96
birth of, 1
Brinch Hansen on Pascal compilers by,

157
brushfire and mudslides, facing, 145–149
California Institute of Technology, at

103–130
Caribean vacations of, 164
Carnegie-Mellon University, at, 85–89
Chancellor’s medal, awarded, 168
chemical experiments of, 11–12
Chesney, Miles, negotiating with, 168
childhood friends of, 6–8
C language, on, 176–177
Cobol file system, programs, 53–55
computational science of, 165–175

criticism of, 173–174
computer architecture, on, 32–33
computer science chair at USC, 134–137
Computing Surface, programs, 167–175
Concurrent Pascal, invents, 113–115
conditional critical regions, on, 95
consulting for GNT, 158–160
consulting for Mostek, 141–145
crazy ideas, on, 177
Danish students, on, 156–157
datamaton, invents the term, 42
Denmark, in, 1–80, 153–162
Dijkstra, Edsger, and, 91, 99, 124
Distinguished Professor, named, 163
division algorithm of, 173
Doctor technices degree of, 138–141
drinking Easter brew, 21, 42
driving across America, 106–108
Edison language, invents, 143–144
Edison multiprocessor architecture, designs,

142–144
education of, early, 6–15
England, in, 23–28
fired for being late, 22
first computer program of, 43
first major report by, 7
first technical paper by, 29
future wife, meets, 31–32
Ginsburg, Seymour, on, 137
graduation of, 35
Haarder, Bertel, meets, 154
Habermann, Nico, on, 85, 87–88
Hartmann, Al, on, 127–128
Harvard tenure committee, advisor to,

135–136
Head of RC 4000 software development,

as, 68–75
Henry Salvatori Professor, named, 141

high-school education of, 9–15
history of computing, on, 175–78
Hoare, Tony, and, 74, 123
HOPL II conference, at, 176–178
IBM Hursley Laboratory, at, 26–28
IEEE Computer Pioneer medal,

awarded, 178
IEEE Fellow, elected as, 161
India, in, 118–119
industrial student practice of, 22
Ingargiola, Giorgio, on, 127
international exchange student, as, 22–28
Joyce, James, Ulysses, on, 14
Joyce language, invents, 159–160
Kaprielian, Zohrab, on, 132
kindergarten, in, 5
language reports, on, 37–38. 177
languages as theories of computation, on,

177
Lasers and Masers, essays and radio talk

by, 29–30
late-night studying of, 22
London, in, 24–26
love of jazz and literature, 13
McCann, Gilbert, on, 108
magic of naming, the, on 60–61
Marktoberdorf Summer Schools, at,

89–92, 99, 123–124
Menon, Anil, on, 174–175
monitor notation, invents, 111–115
Munich, in, 50–57
Naur, Peter, and Jensen, Jørn, meets, 39
negotiates salary, 49
Neuschwanstein Castle, at, 92
nominates Tony Hoare for honorary

doctorate, 141
NordSAM conferences, at, 53, 85
operating system courses, on, 138
Operating System Principles by, 87–101
parallel scientific computation of, 165–175
parents of, 1–4
Pascal language, on, 87
Perlis, Alan, on, 83–84
PhD students, on, 105–106
professional discipline, on, 21
program descriptions, on, 56
Programming a Personal Computer by,

150–151
programming language requirements, on,

176–177
program optimization, on, 53
queuing variables of, 114
rapid prototyping, on, 160
RC 4000 computer architecture, designs,

62–64

Index 191

RC 4000 multiprogramming system,
describes, 72–73

RC 4000 real time system, designs, 61, 67
Regnecentralen, at, 35–80
research, on, 77, 113
research proposals, on, 124–126
“secretary” concept of Edsger Dijkstra,

on, 96
secure programming languages, on,

176–177
Siemens Cobol, working on, 46–57
simplicity, on, 177
Slovenia, in, 30–31, 56–57
Solo operating system of, 120
Structured multiprogramming by, 104–105
student democracy, on, 155–156
student travel guide, as 23–24
Studies in Computational Science by, 174
Syracuse University, at, 163–180
teaching, at Caltech, 110–111
teaching mathematics, on, 19–20
Technical University of Denmark, at,

17–33
temperament of, 180
tenure standards of, 135, 161
The nature of parallel programming by,

169
tunnel diode project of, 21
University of Copenhagen, at, 153–162
University of Southern California, at,

131–152
wedding of, 56–57
Winchester, in, 25–26
writing, on, 1–4
Yugoslavia, in, 30–32
Zepko, Tom, on, 129–130

Brinch Hansen, Thomas (son), 85, 133–134,
163, 180

British Museum, 24–25
Brøndum, Johannes Arboe, 30
Brown, Harold, 103–104, 114–115
Bruun, Georg, 21, 30–31
Burstall, Rod, 118
Business data processing, 44

California Institute of Technology (Caltech)
103–130

batch processing at, 108–109
computer science at, 104, 108, 110,

126–127
Honor Code of, 111
student pranks at, 104

Campbell, Roy, 140
Cannon, Robert, 126–128
Canute the Great (King of Denmark and

England), 25
Carnegie-Mellon University, 81–89
CDC 1604 computer, 41–42, 60
Ceruzzi, Paul, 44–45
Christensen, Helge, 20–21
Christensen, Leif, 12
C language, 175–178
C++ language, 175
Class newspaper, 6–8
Clauser, Francis, 105, 111
CLU language, 176
C.mmp multiprocessor, 142
Cobol compiler project, 41–56

Bureau of Ships, evaluated by, 55
compilation speed of, 55
compiler passes of, 47–50
file system of, 53–55
paper on, 56
parser of, 48
program documentation of, 49
programming effort of, 55
restart feature of, 55
size of, 55
system updates, handling of, 55-56
testing of, 49–50

Cobol language, 37, 44–45
Colmerauer, Alain, 176
Communications of the ACM, 82
Compilation checks

critical regions, of, 94–95
Joyce language, in, 159–160
monitors, of, 111–112, 114

Compilers, 39
multipass structure of, 47–50

Compiler testing, 41
Computer architecture, 32–33
Computing Surface, 167–175
Concurrent Pascal language, 113–115

abstract machine of, 117
compiler of, 116–117
compromises in, 117
contributions of, 151–152
Danish industry uses, 157–158
Hoare, Tony, on, 123
Job-stream system in, 121
kernel of, 117–118
history of, 176
McDonnell Douglas, uses, 158
microcomputer subset mCP, 158
model operating systems in, 119–124
modular programming in, 114, 119–121
PDP 11 implementation of, 116–118
portable implementation of, 117
processes in, 114–115
program testing in, 121–122

192 A Programmer’s Story

Real-time scheduler in, 120–121
report on, 114
system distribution of, 125–126
Wirth, Niklaus, on, 124

Concurrent programming, 64
Conditional critical regions, 94–96, 104–105

Brinch Hansen, Per, on, 95
Edison language, in, 143

Connection machine, 167
Control Data Corporation (CDC), 41
“Conversational process,” 96
Cooperating Sequential Processes, 66–67
Corbató, Fernando, 108
Coroutines, in Boss 2 system, 73
Cosmic Cube, 166
Critical regions, 94–96

monitors, in, 112
semaphores, using, 94

Crystaline operating system, 166

Dahl, Ole-Johan, 111, 139, 175
Danish Servo Technology, 22
Dask Algol compiler, 40
Dask computer, 35–36
Datalogy, datamaton, and datamatics, 42
David May, 167–168
Deadlock prevention, in Boss 2 system, 73

in THE multiprogramming system, 85
Demand paging, 41, 74
Deverill, Robert, 116–117
Digital Equipment Corporation (DEC), 115
Dijkstra, Edsger, 131

Algol 58 Anniversary, at, 74
Algol 60 compiler, first, 40
Brinch Hansen, Per, and, 91, 123–124
Cooperating Sequential Processes by,

66–67
goto statments, on, 78
Hoare, Tony, on, 90
IBM OS/360, on, 141
Naur’s Algol 60 report, on, 39
Perlis, Alan, on, 91–92
program correctness, on, 84–85
RC 4000 multiprogramming system, on,

73
“secretary” concept of, 95–96
semaphores, introduces, 66
software crisis, on, 75
speed independence, on, 66
structured programming, invents, 75
THE multiprogramming system of, 84–85
Wirth, Niklaus, on, 90–91
Wirth’s Pascal compiler, on, 90–91
Wulf, Bill, on, 123–124

DIKU see Institute of Datalogy

Early school democracy, 8–9
Easter Brew (“P̊aske bryg”), 21, 42
Edison compiler, 144
Edison language, 143–144
Edison multiprocessor, architecture defined

in Edison language, 143–144
United Technologies cancels project, 144

Edison system, for microcomputers,
150–151

Einstein, Albert, 29, 180
Elisabeth II (Queen of England), 17
Encore Multimax computer, 115, 165
Eriksen, Sven, 48, 55–56
Euler language, 74
Event queues, insecure, 66

Fellows, Jonathan, 149–150
Feynman, Richard, PhD students, on, 105
Flex/32 multiprocessor, 144
Følner, Erling, 19
Fortran language, 23, 38, 151
Fox, Geoffrey, 166, 168, 171
Francez, Nissim, 134
Franzen, Wolfgang, 120
Fraser, Alexander (Sandy), 92

Gargarin, Juri, 26
Generic programs, 171
Gier computer, 36

Algol compiler of, 40
hand coding of, 62
open shop operation of, 43

Giese, Allan, 63
Ginsburg, Seymour, 131–132, 134–135

Brinch Hansen, Per, on, 137
Fletcher Jones Professor, named, 140

Goings, Stephen, 141–143, 145
Golomb, Solomon, 132
Gomory, Ralph, 168
Gram, Christian, 59, 63–64, 80, 139
Great Northern Telegraph Company (GNT),

158–160
Greenfield, Jonathan, 173, 178
Griffith, Michael, 74
Gundel, Leif, 13
Gundel, Sven, 12–13

Haarder, Bertel, 154
Haarder, Bob and Eileen, 161
Habermann, Arie Nicolas (Nico), 84–85,

87–88, 140
Pascal language, on, 87

Hald, Jens, 59
Hansen, Henning Bernhard, 42, 59, 80
Harsen, Ann, 12

Index 193

Hartley, David, 92
Hartmann, Alfred, 116–117

Brinch Hansen, Per, on, 127–128
Harvard University, tenure appointments at,

135–136
Havsteen, Nils, 20
Hayden, Charles, 150
Hede, Ernst, 159
Heidam, Niels Zeuthen, 18
Hintz, Edith, 10
History of Programming Languages

Conferences, see HOPL and HOPL II
Hoare, Charles Anthony Richard (Tony), 105,

134
Belfast Symposium, at, 89–90
Brinch Hansen, Per, on, 111–112, 123
Caltech, visits, 125–126
Concurrent Pascal, on, 123
conditional critical regions of, 94–96
CSP concept of, 159
Dijkstra, Edsger, on, 90
honorary doctorate at USC, receives, 141
IFIP 68 Conference, at, 74
Markoberdorf Summer Schools, at, 89–90
monitor tutorials by, 112–113
Naur’s Algol 60 report, on, 140

Holt, Rick, 88
Hopkins, Martin, 141
HOPL conference, 44–46, 175
HOPL II conference, 175–178
Horning, James, 88

Operating System Principles, on, 98–99
Horowitz, Ellis, 132, 134–135
Hotel Marina, meeting at, 69
House, Roger, 48, 56, 162
Howarth, David, 65, 74
Hrastar, Milena (future wife), 31–32

student travel guide, as, 30–32
Husum, Sven, 12–13
Hydra operating system, 124
Hypercube computers, 166–167

IBM/360 computers, 28
IBM 704 computer, 23
IBM Hursley Laboratory, 23, 26–28
IBM OS/360, 141
IBM Personal Computer, 150, 154, 159
IBM Project Stretch, 32
IBM SCAMP computer, 28
IFIP 68 Conference, 74
Ilsøe, Peter, 9–10
Information Sciences Institute (ISI), 133
Ingargiola, Giorgio, 110

Brinch Hansen, Per, on, 127
Inmos, 167–168

Institute of Datalogy (DIKU), 153–161
Interpreted code, defined, 67
Isaksson, Henning, 36, 60–61, 63, 80
Iverson, Ken, 175

Jahn, Konrad, 6–9
Java language, 117
Jensen, Birgit, 13
Jensen, Henning Højgaard, 20
Jensen, Jens Rasmus, 21
Jensen, Jørn, 63

clever handcoding of, 62
first impression of, 37
Perlis, Alan, on, 39–40

Jensen, Per Gert, 21
Jensen, Toke, 40
Johansen, Peter, 153
Jones, Anita, 85
Joyce, James, 14
Joyce language, 159–160

Kampmann, Viggo, 79
Kampp, Aage, 9
Kaprielian, Zohrab, 132–133

death of, 141
Golomb, Sol, on, 132
negotiating with, 132–133

Karlstrom, Karl, 98
Kay, Alan, 176
Keller, Herbert, 126
Kernel, of operating system, 71–72
Kilburn, Tom, 65
Kiær, Berta, 48
Knudsen, Hans Lottrup, 21
Knuth, Donald, 1, 105, 111, 131

Art of Computer Programming, The,
by, 59

Koster, C. H. A. (Kees), 153
Kraft, Peter, 48, 72, 80

RC 4000 computer architecture, designs,
62–64

RC 4000 prototype, installs, 68
RC 4000 real time system, designs, 61
Toft, Villy, on, 61

Krutar, Rudy, 85
Kurtz, Thomas, 175

Lampson, Butler, 62, 75, 105, 131
Lasers, 29
Lauesen, Søren, 68–69, 73–74, 80
Licklider, Joseph Carl Robnett, 82
Lindgreen, Paul, 48, 74, 80

datamatics, invents the term, 42
Liskov, Barbara, 176
LISP language, 175

194 A Programmer’s Story

Load balancing, 165
Locanthi, Bart, 130
Ludwig II (King of Bavaria), 92
Lundgren, Helge, 17
Lynch, William, 131
Lyngsøe, Søren T., 22

McCann, Gilbert, 105–106, 125
background and personality of, 108
Head of computing center, as, 109–109
invites Per Brinch Hansen to Caltech,

103–106
loses influence, 109–110, 126
PDP 11 computer of, 116

McCarthy, John, 126, 175
Machine code, see Assembly language
McKeag, Michael, 92, 96, 114
Maddux, Roy, 137–138
Magnetic tapes, error recovery of, 54–55
Mahoney, Michael, 176
Mainframe computers, 109, 116
Manna, Zohar, 134
Margrethe II (Queen of Denmark), 154–155
Marktoberdorf, Summer Schools in, 89–92,

99, 123–124
Masers, 29
Matelan, Nicholas, 143–145
Mattson, Harold (Skip), 76
Mead, Carver, 126–127
Meiko, 168
Meiko Computing Surface, 167–175
Melbye, Aage, 36, 80
Memory protection, 51–52, 117
Menon, Anil, 174–175
Message passing, 70–72
Michaelsen, Erik, 6
Microcomputers, 150–151
Miller-Rabin algorithm, 172–173
Mills, Harlan, 131

Architecture of Concurrent Programs, The,
reviews, 137–138

Minicomputers, 115
Model programs, 171
Modula and Modula-2 languages, 74
Møller, Ole, 80
Møller, Preben, 7
Modular programming, 114, 119–120, 151
Mondrup, Per, 40
Monitor program, in RC 4000

multiprogramming system, 65
Monitors,

Await statements in, 112
Concurrent Pascal, in, 113–115
Edison multiprocessor, in, 142–143
object-oriented programming, as, 151–152

queuing variables in, 114
Shared classes as, 111–112

Monitors and Concurrent Pascal:
A personal history, 176

Monte Carlo method, 44
Moore, Gordon, 165
Mossin, Einar, 72
Multicomputers, 159, 166–175
Multipass compilation, 47–50
Multiple-lenth division, 173
Multiprocessors, 115, 142–145, 165–166
Multiprogramming, 65, 74
Munushian, Jack, 132
Mutual exclusion problem, 93

Nato Conferences on Software Engineering,
75

Naur, Peter, 63, 131, 153
Algol 60 report of, 38–39
Architecture of Concurrent Programs, The,

reviews, 139–140
BIT, contributions to, 78
BNF notation of, 38–39
compilation, on, 59
compiler testing method of, 41
datalogy, invents the term, 42

vision of, 59
Edison language report, on, 143
first impression of, 37
goto statements, on, 78
HOPL conference, at, 175
Operating System Principles, reviews,

99–100
Programming a Personal Computer,

reviews, 150–151
University of Copenhagen, at, 80, 155

Nedergaard, Niels, 72
Needham, Roger, 92, 105
Neiiendam, Jan, 9–10
Newell, Alan, 82

Perlis, Alan, on, 84
Northeast Parallel Architectures Center

(NPAC), 165
Nucleus of a multiprogramming system, The,

72
Numeric computation, 44
Nygaard, Kristen, 111, 175

Oberon language, 74
Object-oriented concurrent programming, 151
occam language, 168
Olsen, Bent Vang, 12
Olsen, Willy, 79
On Pascal Compilers, 9
Open shop operation, 43, 116

Index 195

Operating System Principles, 87–101
Operating system terminology, 98
Ørsted, Hans Christian, 17–18

Parallel programming, see Concurrent
programming,

Parallel recursion, 159
Pascal compiler, Dijkstra, Edsger, on, 90–91
Pascal language, 44, 75, 87, 176,
Pascal Plus language, 123
Path expressions, 140
PDP 11 computers, 115–116
Pedersen, Niels Holm, 157–158
Perlis, Alan,

America and the Soviet Union, on, 82
invites Per Brinch Hansen to Carnegie-

Mellon, 85–86
computing, on, 81
death of, 84
Dijkstra, Edsger, on, 91–92
epigrams on programming of, 83, 92
HOPL conference, at, 175
Jensen, Jørn, on, 39–40
Marktoberdorf Summer School, at, 91
programming course, purpose of, 81–82
story telling of, 91
university administrators, on, 83

Perlis, Sydelle, 175
Petersen, Bent Scharøe, 36
Petersen, Richard (“Little P”), 20
Petersen, Risto, 157
Piece, John, 126
PL/I language, 66, 175
PL 360 language, 74
Portable code, 67

Concurrent Pascal implementation, in,
117

Joyce implementation, in, 159–160
Primality testing, 172
Processes,

Concurrent Pascal, in, 114–115
load balancing of, 165
RC 4000 multiprogramming system, in,

70–71
trace model of, 140

Programming a Personal Computer, 80,
150–151

Programming for Everyone in Java, 44
Programming paradigms, 170–172
Program testing,

Concurrent Pascal programs, of, 121–122
Cobol compiler, of, 49–50
THE multiprogramming system, of,

121–122
Prolog language, 176

Pulawy project, 60–68

Raasted, Anders, 159–160
Radin, George, 175
Rahbek, Just, 9, 11
Randell, Brian, 40, 74
Rangachari, Anand, 165
RC 2000 paper tape reader, 76, 78
RC 3000 data converter, 61
RC 4000 computer, 60–68

architecture of defined in Algol 60, 63
floating-point arithmetic of, 64
instruction format of, 62–63
prototype of, 64, 68
RC 4000 Computer: Reference Manual,

64
RC 4000 multiprogramming system, 68–74

“conversational processes” in, 96
design of, 68–72
Dijkstra, Edsger, on, 73
kernel of, 71–72
paper and manual about, 72–73
process concept of, 70–71
process swapping in, 72–73
RC 4000 Computer Software:

Multiprogramming System, 72–73
reliability of, 73
remote procedure calls in, 70–71
separation of policy and mechanism in,

origin of, 71–72
server processes in, 96
system kernel of, 71
Wirth, Niklaus on, 74

RC 4000 real time systems,
fertilizer plant, for, 64–68
power plants, for, 72
weather bureau, for, 72–73

Regnecentralen (RC), Denmark, 35–80
ceases to exist, 79
compiler group of, 37
Danish universities, and, 79–80
Pulawy project, at, 60–68
RC 2000 paper tape reader of, 76, 78
RC 3000 data converter of, 61
RC 4000 computer of, 60–74

Remote procedure calls, 71–72
Resource managers, 96
Reynolds, John, 131, 163
Riis, Ole, 48
Ring, Børge (uncle), 13
Ring, Oluf (grandfather), 2
Ritchie, Dennis, 175–178
Robinson, Alan, 168
Rosovsky, Henry, 135–136, 156
Roulette simulation, 43–44

196 A Programmer’s Story

Roussel, Philippe, 176
Rovsing, Christian, 23
RSA cryptosystem, 134, 172–173
Russell, Lawford John, 40
Rybner, Jørgen, 21

Saitz, John, 64
Salvatori, Henry, 133
Sammet, Jean, 175, 177
Schai, Alfred, 74
Schoubye, Peter, 12
“Secretary” concept, 95–96
Seitz, Charles (Chuck), 166
Semaphores, 66–67

error prone nature of, 70, 94
mutual exclusion using, 94

Separation of policy and mechanism, 71–72
Sequential Pascal language, 116–117
Sevin, L. J., 141, 143–145
Shared classes, 111–112
Siemens Cobol compiler, 41–57
Siemens 3003 computer, 41

magnetic tape files, 54
memory protection of, 51

Simon, Herbert, 82
Simonyi, Charles,

Microsoft, at, 62
Microword Word, designs, 62
RC 4000 real time system, programs,

61–62
Regnecentralen, at, 61
Xerox Parc, at, 62

Simula 67 language, 111
Simula language, 175
Smalltalk language, 176
Software crisis, 75
Solo operating system, 120

Maddux, Roy, and Mills, Harlan, on, 138
Naur, Peter, on, 139–140
Wirth, Niklaus, on, 124

Sørensen, Eskild, 6
Sørensen, Knud Steenberg, 10–11
Sørensen, Per Just, 6
Soviet Exhibition in London, 26
Speed independence, 66
Sputnik, 20
Stankovič, Renata, 30
Stimulated light emission, 29
Stockholm, Per, 8
Stonehenge, 26
Stroustrup, Bjarne, 175
Structured multiprogramming, 98, 104–105
Structured programming, 75
Student democracy in Denmark, 155–157
Studies in Computational Science, 4, 174

Sutherland, Ivan, 126–127
Svalgaard, Leif, 72–73
Sveinsdottir, Edda, 155–156
Sveistrup, Poul, 80
Svejgaard, Bjarner, 42, 63
Sylvis, Edward, 148–149
Synchronization, 65–66

Await statements, using, 112
compilation checks of, 94–95
conditional critical regions, using, 94–96
message passing, using, 70–72
monitors, using, 111–115
queuing variables, using, 104–105, 114
semaphores, using, 66–67, 94
server processes, using, 95–96
speed independence of, 66–67
synchronous channels, using, 159
time-dependent errors of, 66
time-independence of, 94

Syracuse University (SU), 163–180
System kernel, extensible, 71–72

Tang Jespersen, René, 158–159
Tata Institute of Fundamental Research, 118
Telstar, 29
THE multiprogramming system, 84–85

programming style in, 95–96
testing of, 121–122

Thompson, Frederick, 108
Toft, Villy, 72, 68
Topsøe, Haldor, 60
Transputers, 167–168
Traveling Salesperson problem, 44
Tsichritzis, Dennis, 88

Udupa, Sriram, 118
Ulysses, 14
Uncapher, Keith, 133
United Technologies, 144–145
University of Southern California (USC),

131–152

VAX computer, 115
Villemoes, Peter, 48, 54
Vincow, Gershon, 163
Vinter, Otto, 72
VLSI microprocessors, 167–168
VLSI technology, 126–127

Waltenburg, Carl, 30
Waltenburg, Paul, 30
Wegstein, Joe, 44
Wessel, Alan, 59
Whiffen, Richard, 158
Whitaker, William, 175, 178

Index 197

Wiehle, Hans Rudolf, 74
Winchester, England, 25–26
Wirth, Niklaus, 44, 105, 131

Algol 58 Anniversary, at, 74
Concurrent Pascal and Solo, on, 124
Dijkstra, Edsger, on, 90–91
HOPL II conference, at, 176
innovative languages of, 74
Markoberdorf Summer School, at, 89–90
Pascal language, invents, 75
Pascal report of, 87
programming language requirements, on,

177
RC 4000 multiprogramming system, on,

74
World War II, 3–5
Wulf, William, 85, 118

C.mmp multiprocessor of, 142
Hydra operating system of, 124

Zepko, Tom, 117
Brinch Hansen, Per, on, 129–130

Zonneveld, Jaap, Algol 60 compiler, first, 40

