
The Oberon Companion

A Guide to Using and Programming Oberon System 3

André Fischer and Hannes Marais

The Oberon Companion
Copyright 1997 by André Fischer and Johannes L. Marais

All rights reserved. No parts of this book may be reproduced in any form or
by any electronic or mechanical means (including photocopying, recording,
or information storage and retrieval) without permission in writing from the
authors.

This book was written and typeset by the authors using Oberon System 3.
Errors and corrections can be reported to the authors at

Institute for Computer Systems
ETH Zentrum
CH−8092 Zürich
Switzerland

or sent by e−mail to fischer@inf.ethz.ch.

Oberon is a trademark of the ETH Zürich. All other trademarks belong to
their respective owners.

Acknowledgements

Oberon System 3 with Gadgets is the product of exhilarating and, at the
same time, hard work by many people. We would like to address our first
and heartiest thanks to Prof. N. Wirth and Prof. J. Gutknecht who designed
and implemented the original Oberon system. What started as an elegant
programming language Oberon and a minimal operating system has now
become a grown−up, mature system with powerful object−oriented
capabilities, also providing a component framework ideally suited for
further extensions and an imposant number of ready−made extensions, in
other words "applications". Note in passing, that this book was written and
typeset by the authors using Oberon System 3.

Our next warmest thanks go to several generations of assistants who have
achieved an outstanding work, most of the time under extreme time
pressure and always in search of the clearest and most adequate concepts.
From the outside it may not be quite recognizable how these smart guys are
constantly torn between diametrically opposed attitudes: that of an
engineer preparing an original, novative dissertation and that of a software
implementor writing code to be tested and mended, release after release for
several platforms as a daily down−to−earth activity. This book is no more
than just a reflection, a spin−off from a long haul teamwork by Karl Rege,
Ralph Sommerer, Josef Templ, Regis Crelier, Markus Dätwyler, Marc
Sperisen, Michael Franz, Thomas Kistler, Andreas Disteli, who have left the
team for new horizons by now, and Pieter Muller, Erich Oswald, Patrik Reali,
Patrick Saladin, Emil Zeller, who are forming the new core responsible for
the production of the latest releases including the latest, in February 1997,
which this book documents. We must emphazise that all of them have
always offered their competent advices spontaneously, for which we are very
grateful.

The section dedicated to LayLa is due to the pen of Jörg Derungs who
offered it ready on−a−plate in his diplom work.

The "commented" source code which comes together with the system is like
a cherry on the cake. With it, there might be little incentive to write a book
entitled "Undocumented System 3", but it is quite conceivable that several
users, in the search of a problem solution in their respective disciplines,
might publish articles on unexploited capabilities of Oberon System 3.

Finally, it is a pleasure to acknowledge the great help we have received from
Günther Sawitzki who provided much useful criticisms and from
Dominique Marais, Frederic Rentsch and Roland Vögeli who checked the
earlier drafts.

Chapter One

Introduction and Design Principles

1.1 Introduction

Oberon is simultaneously the name of a programming language and of a
modern operating system. The Oberon project [WG92] was started at the
Swiss Federal Institute for Technology (ETH) in 1985 by Niklaus Wirth and Jürg
Gutknecht. In addition to the software, hardware in the form of a
general−purpose computer called Ceres [Ebe87] (based on the National
Semiconductors 32000 processor family) was built to run the new operating
system. After a period of internal ETH use for education, the decision was made
to document the language and the operating system in a series of books, and
to port the Oberon system to popular computer hardware where it would run
natively or on top of the native operating system of the host. Today, the original
Oberon system is available freely for many computer architectures.

In 1991, Jürg Gutknecht continued the development of the operating system
in a newly formed Oberon System 3 group [Gut94, Mar94]. The goal was to
exploit the inherent features of Oberon to a much larger degree, upgrade the
system by a concept of persistent objects, modernize the user interface and
provide support for the ubiquitous network. In 1995, the Oberon System 3
Release 2.0 was finished. Concurrently with the development, the system was
documented with a new set of hypertext−based tools. Since then, the system
has been constantly improved and extended.

This guide forms part of the documentation effort. It is addressed to users of
the system and to programmers with Oberon language experience. The guide
covers the current state of the project and is divided into user and programmer
guides.

1.2 Design Principles

The underlying dynamic model of Oberon is extremely simple. There exists a
single process acting as a common carrier of multiple tasks. This process
repetitively interprets commands which are the entities of execution in Oberon.
Commands are atomic actions operating on the global state of the system.
Unlike customary interactive programs, they rigorously avoid direct dialogs with
the system user; in other words, the system is completely non−modal. The
following examples indicate the bandwidth covered by the concept of
command: placing the caret, inserting a character into a text, selecting a piece
of text or a visual object, deleting a selected piece of text, changing the font of a
piece of text, compiling a software module, opening a document, backing up a
sequence of files to diskette, displaying a directory, running a simulation or
some other application. We emphasize that the execution of a command
always results in non−volatile information. For example, a displayed directory is
a text that might immediately undergo further processing. Typically, commands
report the outcome of their execution in the form of an entry in the system log.
Therefore, the log provides a protocol of the current session.

Commands are initiated by input actions. Apart from a few universal
operations, every input action is connected with a displayed visual object to
which its further handling is delegated. A visual object in Oberon has a
rectangular area that can display any kind of data. Most visual objects feature a
thin frame often used for manipulating it. Any mouse−oriented input is
handled by the visual object the mouse points to. Data from the keyboard is
passed over to the current so−called focus object. An important feature of

visual objects is that they are first class citizens, which means that they are
deployed wherever required and are not bound to specific applications. As a
practical example, we can insert a visual object like a line from a graphic editor
into a text document, or vice−versa. Furthermore, we notice that command
interpretation is a highly decentralized activity in Oberon and, as such, is a
substantial contribution to what we consider as Oberon's most important
quality, namely unlimited extensibility.

Implementing a new object type is a very powerful but also quite
far−reaching method to extend the Oberon system. A more modest way to
increase the system's functionality consists of adding new commands operating
on objects of an already existing class. A more ambitious extension could be
the construction of a language compiler operating on text for example. We
shall see that Oberon's open and coherent modular architecture provides
effective support for that. Practically all system ingredients and resources are
directly accessible and usable via modular interfaces on as high a level of
abstraction as possible. This makes Oberon ideally suitable as a rapid
development environment. Commands effectively replace conventional
applications which have to be started. As commands operate on the shared
system state and can be activated directly when required, it is simple to extend
the system with new special−purpose commands. The programmer's guide will
provide more insight into this topic.

In addition to commands and visual objects, Oberon also supports
non−visual objects for storing data, and documents for making collections of
objects persistent. In fact, one of Oberon's biggest strengths is the large
collection of prefabricated persistent objects, or components as we also refer to
them. As the user can customize the system by combining objects together
interactively at run−time, we also call our components end−user objects.
End−user objects are maintained and managed in Oberon by the Gadgets
framework and toolkit.

We should deduce from the foregoing that there is no symbolic wall in
Oberon separating actual users from developers. Users are encouraged to
customize the system and tailor it to their individual needs either by modifying
the tools and graphical application interfaces delivered with the system or by
designing and implementing private commands and facilities. Little is
"hardwired" in the system. However, there are several general conventions and
existing tools, which are presented in the following user guides.

Historically text as input and output medium plays a very important role in
the Oberon system. The following chapter covers the textual user interface of the
Oberon system, whereas the chapter titled the Gadgets User Interface gives
more insight into its graphical user interface. Notice however that, from a
technical point of view, text and text documents are just special cases of
non−visual and visual objects respectively.

1.3 A tour through the chapters

Chapter 2 describes the textual user interface. It introduces the notion of
command −− a unit of operation in Oberon. The use of the text editor and of
the compiler is explained. Together, they form the principal tool for developing
new software. Several software development tools and utility programs are
described in the rest of this chapter.

Chapter 3 describes the Gadgets user interface. In the Gadgets system,
objects called "gadgets" are divided into visual gadgets and non−visual gadgets.
In many cases, visual gadgets have the duty of visualizing the non−visual
gadgets or models to which they are linked. The central topic is the interactive
composition of gadgets. The next topic is devoted to Columbus, an
indispensable GUI tool for inspecting and manipulating gadgets. Watson is an
example of a composed gadget often needed for inspecting the definitions of
modules installed on the system. A presentation of persistent objects and of
libraries complete this chapter.

Chapter 4 is devoted to the description of the gadgets delivered with the

system.
Chapter 5 explains how to program in Oberon. It starts with a description of

the module hierarchy providing a sound basis for the construction of further
system extensions. A detailed study of the text manipulation mechanisms
follows. The next topic explains Oberon's display space structure and the
hierarchy of the object types. The chapter continues with the study of the
gadgets manipulation mechanism controlled by a special message protocol. An
overview of a variety of design patterns which can be used in the construction
of new gadgets of different types concludes the chapter.

Chapter 6 introduces the reader to some of the applications included in the
system. One of them enables the construction of graphical user interfaces on
the basis of a textual description written in the LayLa layout language. The
TextPopups application facilitates the work of Oberon program developers,
helping them to locate quickly commands, document names, procedure
names and type names in source program texts.

1.4 System implementations

This system, together with its source code (under a general license agreement),
is available as freeware. The current release which this book documents is
called Oberon System 3 Release 2.2. It can be installed on various platforms,
either on top of the operating system (Windows, Linux for Intel−based PC,
MacOS for Macintosh) of the host machine or, in the case of Intel−based PCs,
as native system. The complete material for all these platforms is available on
the CD−ROM included in this book. The platform−specific hardware and
software requirements together with installation instructions are described in
readme files. Details on how to obtain the latest update for a specific platform
are given in the Appendix C.

PC Native Oberon is absolutely self−contained and makes no use of any alien
software layer on Intel−based PCs. In a way, PC Native Oberon is to the PC
what the original Oberon [WG92] was to the Ceres. For instance, it uses the
same flat file directory structure found in the original Oberon. The three other
implementations use the directory structure of their host operating system and
the concept of a path for accessing an external storage medium.

The diversity in the hardware has forced the implementors to adapt a
number of system features and functions to the host hardware characteristics.
The mouse type and the keyboard layout are of primary concern for the user
controlling the system. The Oberon system is fine−tuned toward a 3−key
mouse where a large number of functions can be activated by single mouse key
clicks and interclick combinations. Accordingly, the system description is based
on the assumption that a 3−key mouse is used. Not only have most
Macintoshes a single button mouse, but many Intel−based PCs have a
two−button mouse, so that the missing mouse keys have to be emulated by
keyboard keys. The mapping of the mouse keys is depicted in Figure 1.1. In
order to abstract the physical differences, the three mouse keys have been
named ML, MM and MR.

Systems with a
3−button mouse

ML MMMR

Point Activate Select

ML

Point Activate Select

ctrl

keys

MM MR

Macintosh systems with
a single−button mouse

ML MR

Point Select

PC systems with a
two−button mouse

Activate

Ctrl

MM

key

Figure 1.1 Mouse varieties

If you are using a PC with a two−button mouse, use the Ctrl key at the left of
the keyboard as a substitute for the missing MM key. If you are using a
Macintosh with a single button mouse, use the left control key as the MM key
and the alt key as the MR key.

Interclicking means clicking (pressing and releasing) a second mouse key at
an arbitrary time while the first key is being held down. In general, interclicking
is an efficient and versatile tool to multiply the expressiveness of the mouse. In
Oberon, interclicking is applied according to a systematic underlying pattern.
You will find out more about this pattern soon.

Chapter Two

The Basic System

2.1 Introducing theOberonUser Interface

The most remarkable difference between the Oberon user interface and other
graphical user interfaces is its philosophy of presenting the user with a large
collection of components that can be composed in arbitrary ways. Components
are the basic building blocks of the Oberon system from which everything else
is constructed. This should sound familiar to programmers well−acquainted
with object−oriented techniques. A crucial difference is however that all
components in the Oberon system are directly accessible and interactively
composable by end−users. In fact, Oberon users don't make a distinction
between pre−fabricated applications and multimedia documents: everything
can be composed interactively, and just as easily taken apart or modified at
run−time. To drive this point home, imagine reorganizing the contents of
dialog boxes in your programs to your taste − this is possible in Oberon. To
distinguish components from those used in other systems, we call our
components gadgets. Correspondingly, we call the Oberon user interface the
Gadgets System.
Once composed, collections of components need to be archived for future

use (or later modification). To this purpose Oberon introduces documents, the
storage medium for components. Documents are typically stored as files on
your computer, but also might be components composed by program or
constructed from HTML. Because of the ubiquitous use of documents and the
flexibility of component composition, we call the Oberon system a
document−based system.
The document−based nature of Oberon is immediately observed after

starting the system. Figure 2.1 illustrates the default configuration of the
display into a wider vertical user track to the left and a narrower vertical system
track to the right. Each track is further divided into rectangular viewers. Viewers
correspond to windows in other systems, and are one of the ways in which
documents are viewed in Oberon. Each viewer consists of a horizontal menu
bar at the top, and a larger viewing area at the bottom called the main frame.
The menu bar contains the name of the document viewed in the main frame
and a sequence of buttons that apply to the viewer.

Figure 2.1 The Oberon startup display

The main frame of viewers display a graphical view of a document. Often we
will refer to viewers simply as documents, because they are often seen together.
The Oberon systems uses several different types of documents to display
information. The bulk of this chapter refers to a specific document type called
text documents, which belong to a predefined class of gadgets named TextDoc.
As the name indicates, text documents contain mostly text. We say "mostly" −
because Oberon texts may contain arbitrary components that float along inside
of the text. For example, the bottom viewer in the system track of Figure 2.1
contains a number of buttons. Note that although we emphasize text
documents in this chapter, there are many other document classes that are of
completely different nature.
We refer to the arrangement of viewers and documents as the viewer system

or desktop. The configuration as sketched is called a tiled viewer system because
viewers share the screen in a tiled fashion. Oberon also supports an
overlapping viewer model, which is discussed in the following chapter. In
reality, the structure of viewers is three−dimensional. A new track may in fact
overlay one or, more generally, an integral number of existing tracks. The
original configuration will be re−established when the overlaying track is later
removed.
In order to change the size of an existing viewer, simply point with the

mouse to its menu bar, press the ML key and move the mouse up or down.
Release the key when the viewer has the desired size. You can also conveniently
move a viewer to any different place on the display screen by starting exactly as
just explained, then interclicking the MM key, dragging the mouse to the new
location, and releasing all keys there.
Text documents are often distinguished further by their content. The

top−most viewer in the system track of Figure 2.1 is called the system log, log
viewer, or simply log. Status messages that indicate how a computation was
completed are always written to the log. The bottom−most viewer in the
system track is an instance of a tool viewer, or simply tool. Tool viewers typically
collect related functions together in a set of commands. We will return to
commands in a moment. A third type of text document is shown in the user
track. This document contains prose text that describes the Oberon system.
Although we distinguish between different types of text documents according
to content, there is no intrinsic distinctions between them − they are all texts

that can be freely edited.
In principle, new viewers are allocated their position automatically using

heuristics. For example, tool viewers are opened in the system track, and
document viewers in the user track. However, you can override any automatic
allocation by first placing the marker (sometimes called pointer) at the location
where you desire the top of the new viewer to be placed. The marker is
star−shaped (*), and it is placed by moving the mouse focus to the desired
position and then hitting the F1 key.

2.2 Concept of Commands and Tools

Among the classes of possible objects to be handled by a computer system, the
class of texts plays a key role. Not only are input and output data frequently
represented as text, but also objects and commands are often identified by
their name. Text is therefore a predefined class of object in Oberon.
A tool viewer contains a list of command names (commands in short), some

of them followed by parameters. Commands in Oberon are of the written form
M.P, where M designates a module (package) and Pa procedure (operation) that
is provided by the module. A user activates a command simply by pointing at its
name with the mouse and clicking the MM key. For example, activating the
command System.Timewill result in the current time to be written to the log.
Care should be taken not to confuse commands with file names as the latter

are written in a similar manner and also appear in tool texts. Commands are
written in such a way to specify an action, for example, System.Open, whereas
file names can often be recognized by extensions like .Text, .Panel, .Modand so
forth.
More often than not, the execution of a command is parameterized. For

example, the opening of a document needs the specification of its name, as in
Desktops.OpenDoc Gadgets.Panel. Although typical, this is not by far the most
general case of a parameter specification. Some commands accept an entire list
of names following the command name and execute repeatedly for each
member of the list. The list must be terminated by a symbol other than a
name, preferably a special character that draws the attention. By convention,
Oberon uses for that purpose the tilde character "˜" which will be referred to as
list terminator. From now on, we shall use the terms parameter and parameter
list in the restricted sense of "item following the command name" and "list of
items following the command name" respectively. In principle, a text adhering
to an arbitrary syntax (understood by the command) could be passed over
equally well. Commands may even expect as parameters objects of any kind
currently existing in the system such as viewers, text selections, caret, and the
star−shaped marker.
We shall call a location or an object "marked" if it is visibly or invisibly

marked by the marker (*). The visibility of the marker is irrelevant in most
cases. As an exception, we mention the explicit allocation (or overriding of the
automatic allocation) of a viewer which requests the marker to be visible. The
marker is initially invisible and placed in the lower left corner of the display.
Some commands even allow different ways of parameter specification. For

example, if Desktops.OpenDocis called with a "↑" symbol instead of a file name
following the command name, then the file name is taken from the most
recent text selection. In general, a "↑" symbol following a command name
always refers to the current text selection.
It is noteworthy that tools are ordinary texts distinguishing themselves from

more usual texts only by their structure and contents. Oberon System 3 is
delivered with a set of standard tools which are text documents stored in files
which have been given the file extension .Toolby convention. In particular, tools
are amenable to editing operations. Looking at this differently, we recognize
that commands like Desktops.OpenDoc Explanations.Textmay well slip into a prose
text and be activated directly in place. Obviously, no limits are set to fantasy
exploiting this universal scheme of command interpretation.
One rather moderate application of the universal scheme discussed above is

the construction of interconnected texts. As a matter of fact, the set of standard
tools is structured as a tree with the System3.Toolas ancestor and the tools listed
in the System3.Toolas its descendants. We recall that the hierarchical tool system
may easily be customized on the fly by adjusting command lists (including
parameters) to personal requirements, reconfiguring the tool hierarchy,
installing new tools, or even providing on−line documentation.

2.3 Text Documents

We have stated earlier that extensibility was a key objective in the design of
Oberon. It was therefore enticing to realize also system−oriented commands as
extensions of the system core on a highest possible level in the modular
hierarchy, thereby achieving maximal flexibility. Such a strategy is particularly
appropriate for text editing. It manifests itself in the existence of an editing
package providing an extensible set of powerful editing commands. As a future
programmer of the Oberon system, you will be able to extend the existing text
editing facilities with your own special−purpose commands. Nevertheless,
several built−in commands are interpreted directly by text objects. They include
positioning the text within its viewer, placing the caret, inserting a typed
character, selecting a part of text, deleting a selected part of text, copying a
selected part of text, copying text attributes and, most importantly, executing
an arbitrary command which is specified by its name.

2.3.1 Mouse commands

Text positioning. In order to reposition the visible part of a longer text within a
viewer, move the mouse into the viewer's scrolling zone first. This is a vertical
bar along the left borderline about 5 mm in width. Now, you can scroll forward
by pressing the ML key, moving the mouse, and releasing the key when the text
line that you want to become the top line is underlined. Notice that every text
viewer shows a small crossbeam indicating the current position of the
displayed section within the entire text. You can position a text directly by
clicking the MM key at the location where you want the crossbeam to be.
Scrolling backwards is accomplished in a similar manner with the MR key. The
MM key behavior is modified by interclicking the other two keys to scroll to the
beginning or end of the text. The MM key combined with a ML key interclick
scrolls to the end of the text. The MM key combined with a MR key interclick
scrolls to the beginning of the text.

Placing the caret. If you want to place the caret, move the mouse to the desired
text, press the ML key and, while keeping it down, move the caret to the
desired position. Any subsequent characters typed on the keyboard are then
inserted at this position. The font used for typed characters depends on the
font that the character just before the caret has. On a PC, the special characters
ä, ö, ü and ß can be typed directly by pressing the CTRL key (or the ALT key for
PC Native Oberon and Windows Oberon) and a, o, u and s respectively and,
the uppercase Ä, Ö, Ü are obtained by pressing SHIFT at the same time. The
four arrow keys (left, right, up, down) are used to move the caret to the
previous or next character or text line. Once the caret is set, the Page Up and
Page Down keys are used to scroll one page up or down respectively. By default,
pressing the ENTER key results in auto−indentation. The same number of TAB
or space characters found on the previous text line is inserted on the newly
created empty line, a convenient feature when writing Oberon modules.
Unfortunately not all computer keyboards have the same keys, so some of the
keystrokes mentioned above might be mapped to other keys on your keyboard,
or might be missing completely. A platform−specific guide included with your
Oberon release provides additional details.

Selecting text. You can select a stretch of text by moving the mouse to the
desired beginning, pressing the MR key and, while holding it down, extending

or reducing the selection by moving the mouse. If you click twice at the
beginning, the selection is automatically extended to the origin of that text line.
A separate selection may be active for each displayed text section: the selection
is not unique. If several selections exist simultaneously on the display,
commands normally refer to the most recent one, or to the most recent ones.
If a piece of text is too large to be selectable within a single viewer, use [Copy]in
the menu bar to open an adjacent second viewer. Then, select the beginning of
the text entirely in one viewer and the entire end of the text in the other viewer.
The selection will then extend across viewers. Placing the caret and pressing the
right or the left cursor keys on the keyboard, will move the selection in that
viewer to the right or to the left. TAB characters are automatically inserted at
the beginning of the line or respectively removed.
There are interesting interclick variants of caret placing and text selection

that combine these marking operations effectively with text editing. But keep
this general rule in mind: any mouse−controlled operation that is currently
under execution can be nullified by interclicking all remaining mouse keys.

Copying text. If you interclick the MM key while you are placing the caret, the
most recent selection is automatically copied to the caret's position as soon as
you release the ML key. This feature is particularly convenient for copying a
specific template to several different places. Alternatively, if the caret is already
set and you click the MM key while you are selecting a piece of text, the
selected text is copied to the caret's position when you release the select key.
This option is most conveniently used in order to copy a given string to various
places.

Copying text attributes. If you interclick the MR key while you are placing the
caret, the character attributes (font, color, vertical offset) of the character just
after the caret are automatically applied to the most recent selection as soon as
you release the ML key.

Deleting text. If you click the ML key while selecting a text, the selected text is
deleted. Notice that the copy variant and the delete variant of the select
command apply also in the case of large selections involving a viewer with
multiple copies.

Activating a command. Activating a named command from within a text viewer
is generic and therefore the most general built−in operation. In order to do it,
simply point to the command's name and click the MM key or activate key. We
shall however speak of "activate key" only when the MM key is used alone
inside a gadget. Sometimes, like in a module development and testing phase, it
is important that the newest version of the module providing the desired
command is loaded before the command is actually executed. In order to force
this, interclick the ML key while pressing the MM key and pointing to the
command's name.

Opening a document. As Oberon is an example of a document−based system,
you can open documents of all types directly without knowing their associated
"applications". The conventional way of doing this is with the Desktops.OpenDoc
command. As opening a document appears so often, an interclick combination
has also been reserved for the task. Simply MM click on the document name
you want to open, and interclick with the MR key.

Nullifying a mouse command. Perhaps the easiest and most important rule to
remember is that the current action is nullified, if all remaining mouse keys are
interclicked, though not necessarily simultaneously, during the action.

Neutralize key. To remove all marks on the display, including the caret, the
marker and text selections, press the Neutralize key. The F2 key is defined as
Neutralize key for all the Oberon system implementations. In addition, a
system can be customized to recognize the ESC key as Neutralize key or as key
generating the ESC character CHR(27). By default, the ESC key is a Neutralize

key.

Command execution may lead to an error condition, which when detected
by the associated module, is reported directly to the user in the system log. If
command execution fails altogether, the system falls into a trap. A trap handler
viewer is automatically opened whenever a trap has occurred. It displays the
state of the interrupted process, including the stack of procedure activations. If
a trap appears often, and you suspect that it is related to a mistake in the
Oberon system, you can report it to the ETH developers by mailing the trap
contents. It often contains enough information to correct the fault. You may
continue your work after a trap occurs, although in some rare cases you will
have to exit the Oberon system with the command System.Quit, and to restart it
again.

The following summarizes the basic meaning of the three mouse keys. The
ML key is the point key: it is used to focus a certain location; that is, to place the
caret. The MM key is the activate key: clicking it causes the appropriate
command interpreter to be called. The MR key is the select key: it is used to
select text and other objects within a viewer.

Remark: The editing operations presented are not applicable to text only, but
are often applicable to most other visual objects too. Activating a command by
pointing at its name and clicking the activate key is a more universal operation
which applies equally to gadgets with associated commands: placing the
mouse focus on such a gadget causes the activation of the command when the
activate key is clicked.

2.3.2 Editing commands

According to Oberon's basic scheme, additional functionality is provided by the
text editing package. It contains the following three commands generally
applicable to documents and a collection of commands applicable to text
documents. The latter are described in Chapter 4 under the heading "TextDoc"
and are also listed in the TextDocs.Tooldelivered with the Oberon distribution.

Desktops.OpenDoc DocName
Desktops.OpenDoc ^
opens a document. The document name is alternatively specified by a
parameter on the command line or, if a "↑" symbol follows the command
name, by the most recent selection of a name. In order to override automatic
viewer allocation, place the marker anywhere on the screen. When a document
is opened in the user or system track, it remembers its location, a hint to where
it will be opened in future. Notice that the document menu bars change their
content according to the width of the track where they are opened, and might
vary accordingly each time the document is opened. A fresh text document can
be opened by specifying any name not matching the name of an existing file.
By convention, a text document is given a name ending with a .Textextension,
but that is not compulsory. Remember that the .Toolextension also denotes a
text document with a special meaning for the user. A document can also be
opened by interclicking the MM key and the MR key on the document name
alone.

Desktops.PrintDoc Default *
Desktops.PrintDoc Default namelist ~
prints either the marked document or all the documents named in the list on
the printer specified by the first name. Depending on your platform, the printer
name may vary, but in most cases the printer name is simply ignored. Please
check your implementation guide for more details.

Desktops.Recall
recalls the document closed most recently. The document re−appears in the

same attitude as it had when it was closed and it includes the last changes
although the document had not been saved. The exclamation point in [Store !]
will however not re−appear (See section 2.3.3).

2.3.3 Menu commands

Figure 2.2 A typical menu bar

A text document has a menu bar indicating its name and a sequence of
command buttons applicable to that text viewer. The name is normally the
name of the file in which the document is stored or the empty string for a new
document. In a few cases, it is the name of the command that opened the
viewer. The name appears in what is called a NamePlate. The NamePlate and
the buttons are examples of visual objects called gadgets. Although a
NamePlate can contain only a simple character string, most editing operations
work in the same way as those in a main editable text as is explained in
Chapter 4 under the heading "NamePlate". Thus, the name can be changed at
will and a new name can be assigned to a document before storing it using the
[Store]button. We shall be referring to a button by placing its caption text
between square brackets as in the previous example. Menu commands related
to text documents are the following:

[Close]
removes the viewer. A viewer closed by mistake can be recalled with the
command Desktops.Recall.

[Hide]
minimizes the document, whereby the meaning of minimizing depends on the
environment. When the document is placed on a desktop, the document is
removed from the desktop and its name is placed in the Finder. Otherwise, the
menu bar of the document is pulled down to the very bottom of the track,
leaving the rest of the document invisible.

[Grow]
lets the viewer grow to the size of a whole track or, if applied to a viewer
already filling a track, to the size of the whole display. The original constellation
will be re−established when the grown viewer is later closed.

[Copy]
opens a copy of the original viewer displaying the same instance of content.
This means that editing in one viewer will cause changes to be shown in both.
If you really want two different documents, you must open the document twice.

[Search]
searches for a pattern in the text. The pattern is defined by the most recent text
selection. If none exists, the previous pattern is used. Searching is started at the
position of the caret. If none exists in the marked text, searching starts at the
beginning.

[Rep]
replaces the last pattern found (located at the caret) with the latest selection.
Afterwards the following pattern is located in the text. Clicking [Rep]again will
repeat this process. In this manner, all occurrences of a pattern can be replaced
by another one under the user's control.

[RepAll]
replaces all occurrences of a pattern by another one in a single action.

[Store]

writes the document contents to the file with the name of the document
specified in the NamePlate. You may edit the name of the document directly in
its NamePlate. An exclamation point appears in the caption when the text is
modified, when a gadget is inserted or removed, but not when a gadget is
manipulated.

Not all document types feature the same constellation of menu commands
and some document types feature the following menu commands (the sytem
log for example):

[Locate]
positions the text in the marked viewer according to the position number
indicated by the most recent text selection. Leading non−numerical items in
the text selection are ignored. The position number indicates whereabout in a
source module an error was detected by the compiler. During compilation, the
compiler writes the error position numbers in the system log.

[Clear]
clears the contents of a document.

2.3.4 Fonts

Text may be written using several font families delivered with the system. Font
names are written in the form (where [] means optional):

For screen fonts: Family Size [Style] ".Scn.Fnt"
For printer fonts: Family Size [Style] ".Pr3.Fnt" (300 dpi)

The most commonly used families are the proportional fonts Oberon and
Syntax, both available in the sizes 8, 10, 12, 14, 16, 20 and 24 points (1/72
inch), and in the styles i (italic), m (medium bold) and b (bold). Oberon is a
family of typefaces that was specifically designed for the Oberon system by
Hans Meier [Caf96]. This typeface combines in a unique manner typical
elements of antiqua and modern typefaces. The Syntax typeface family was also
designed by H. Meier. The non−proportional Courier font family is available in
the sizes 8, 10 and 12 points. PC Native Oberon uses the Oberon10.Scn.Fntfont
by default. The other implementations use the Syntax10.Scn.Fntfont by default.
Tools are often written in Syntax10.Scn.Fntand titles in Syntax12i.Scn.Fnt. In most
cases you will need to work only with screen font names when creating text
documents, and the printer fonts can be ignored. On−the−fly translation is
automatically done when you print a text. If your Oberon host operating
system supports other fonts like TrueType, you will be able to use these fonts in
a similar manner.

2.3.5 Using Styles

In addition to adjusting the font, color and vertical offset of text, the text system
also supports formatting styles like left, right, center and block adjust.
Formatting is controlled by TextStyle gadgets floating inside the text. A style
influences the format of the text immediately following the style up to the next
style. When editing a text, the styles are visible and can be directly manipulated
with the mouse. When an existing text is first read and presented in a viewer,
the styles are blended out. Styles are never printed. The following commands
control the styles:

TextGadgets.NewStyle
inserts a style at the caret. The CTRL−ENTER combination is a shortcut for
inserting a style during typing. In that case all the styles are made visible. On
the Macintosh, use the num−lock key instead.

TextDocs.Controls *

TextDocs.Controls
toggles the visibility of the styles in the marked (*) or in the selected document.

A TextStyle has the shape of a long thin dotted line, the width of which
specifies the width of the text block. It is divided into two sections: the top part,
above the dotted line, controls the formatting whilst the bottom part controls
the setting of the tab stops.
The formatting section may show black rectangles at the left and right end of

the style as an indication of the current formatting style. The rectangles on each
side, called weights, are toggled on and off by pressing the MM key to the left
or the right of the center point of the style. An activated weight "pulls" the text
in that direction with the following effect:

No weights. Center adjust.
A left weight. Left adjust mode with word wrapping.
A right weight. Right adjust mode.
A weight to the left and the right. Block adjust mode.

Figure 2.3 A TextStyle gadget set to block adjust
and three tabulators

The weights can be grabbed and moved with the MM key to adjust the left and
right margin for text formatting.
Mouse commands below the dotted line control the setting of the tab stops.

They show up as small black rectangles. Tab stop positions are adjusted with
the MM key. A new tab stop is inserted at a specific position with a MM and
ML key interclick and a tab stop is removed by dragging it completely out to the
left or right of the style gadget. As tabbing does not make much sense in center
or right adjust mode, in such cases the tab stops are ignored.
Styles have an attribute to switch on page breaking or not. The Columbus

gadget inspection tool, introduced in the next chapter, explains some more
about attributes. A style with a page break attribute set shows up as a solid
instead of a dotted line.

2.3.6 The EditTools tool

Oberon's extensibility makes it easy to add functionality to existing
applications. A good example of extension is given by the EditTools tool for
influencing the text look. The EditTools commands are listed here, in addition
to being listed in the EditTools.Tooldocument:

EditTools.ChangeFamily { old => new } ~
changes the text selection in family oldto family new. A question mark in place
of oldindicates that the operation should be applied to the selection regardless
of the font family. More than one conversion can be specified in one
command. Examples are:

EditTools.ChangeFamily Syntax => Courier Arial => Times~
EditTools.ChangeFamily ? => Arial ~

EditTools.ChangeSize { old => new } ~
changes the text selection in size oldto size new. A question mark in place of old
indicates that the operation should be applied to the selection regardless of the
font size. More than one conversion can be specified in one command.
Examples are:

EditTools.ChangeSize ? => 12 ~
EditTools.ChangeSize 12 => 16 ~

EditTools.IncSize n

EditTools.IncSize -n
increases the font size of the selected text by a positive or negative number of
points.

EditTools.ChangeStyle { old => new } ~
changes the text selection in style oldto style new. Old and new can be a period
"."(for the normal typeface), i(italic), m (medium bold), b (bold). A question
mark in place of oldindicates that the operation should be applied to the
selection regardless of the font style. More than one conversion can be
specified in one command. Examples are:

EditTools.ChangeStyle ? => .
EditTools.ChangeStyle m => b

EditTools.Change { old => new } ~
changes the text selection in font oldto font new. A question mark in place of old
indicates that the operation should be applied to the selection regardless of the
font. More than one conversion can be specified in one command. An example
is:

EditTools.Change Syntax10.Scn.Fnt => Syntax12.Scn.Fnt

EditTools.ChangeVoff { old => new } ~
changes the text selection with vertical offset oldto vertical offset new. A
question mark in place of oldindicates that the operation should be applied to
the selection regardless of the vertical offset. More than one conversion can be
specified in one command. Examples are:

EditTools.ChangeVoff ? => 12 ~
EditTools.ChangeVoff 12 => 16 ~

EditTools.IncVoff n
EditTools.IncVoff -n
increases the vertical offset of the text selection by a positive or negative
number of points.

EditTools.ChangeColor { old => new } ~
changes the text selection with color oldto color new. A question mark in place
of oldindicates that the operation should be applied to the selection regardless
of the color. More than one conversion can be specified in one command.

EditTools.ShowAttrs ~
shows the attributes of the selection. If text is selected, the position of the first
characters where font transitions occur are displayed in the system log together
with the text attributes: font, color and vertical offset. If gadgets are selected,
their position together with their generator are displayed. Select such an
information line in the system log and click the menu button [Locate]to set the
caret at the corresponding position in the selected text.

Among the files that you might want to convert are MS−DOS ASCII text files
which use CR (Carriage Return), LF (Line Feed) where Oberon uses CR. The
conversion involves changing the CR/LF pairs to single CRs. If you open a text
and find that it is shown with small rectangular boxes (representing the LFs) at
the beginning of each line, you can be sure that an MS−DOS ASCII text is
involved.

EditTools.OpenAscii filename
EditTools.OpenAscii ^
opens a document viewer displaying the named MS−DOS ASCII file converted
to Oberon System 3 text.

EditTools.StoreAscii [*]
stores the marked text document as an MS−DOS ASCII file. Conversion of
Oberon text to ASCII (CR/LF) is made. Objects floating in the text are
discarded. The file name is taken from the document's NamePlate. If the

command is executed from within a document, the document itself is implied:
it need not necessarily be marked and the "*" is not required.

Among the files that you might encounter on some FTP sites are Unix ASCII
text files which use LF where Oberon uses CR. The conversion involves
changing these LFs to CRs. If you open a text and find that it is shown
interspersed with small rectangular boxes (representing the LFs), you can be
sure that a Unix ASCII text is involved.

EditTools.OpenUnix filename
EditTools.OpenUnix ^
opens a document viewer displaying the named Unix ASCII file converted to
Oberon System 3 text.

EditTools.StoreUnix [*]
stores the marked text document as a Unix ASCII file. Conversion of Oberon
text to Unix (LF) is made. Objects floating in the text are discarded. The file
name is taken from the document's NamePlate. If the command is executed
from within a document, the document itself is implied: it need not necessarily
be marked and the "*" is not required.

EditTools.StoreMac [*]
stores the marked text document as a Macintosh ASCII file. Conversion of
Oberon text to Macintosh ASCII is made. The file name is taken from the
document's NamePlate. If the command is executed from within a document,
the document itself is implied: it need not necessarily be marked and the "*" is
not required.

EditTools.RemoveObjects *
removes all objects including styles from the marked document.

EditTools.Words *
EditTools.Words @
counts the number of carriage returns, words, characters and objects in the
marked document or starting at the beginning of the most recent selection in a
document. The result is presented in the system log.

2.4 The System tool

The Systemmodule manages system−related tasks like file copying, file deleting,
module inspection, module freeing, etc. In addition to the commands listed
here, you will also find a System.Tooldocument in your Oberon distribution with
the same commands. Before we start, we must review the structure of Oberon
file names. In the simplest case, an Oberon file name consists of the letters A to
Z (upper or lower case), the digits 0 to 9, and the period ".". Oberon supports
long file names up to 32 characters in length containing more than one period.
It is very important to note that Oberon is case−sensitive!
PC Native Oberon, like the original Oberon, uses a flat file directory and does

not support subdirectories. Linux, Mac and Windows Oberon allow you to
access any file on your host file system. Consequently, further characters are
valid in file names, typically those that are used for specifying directories. For
example, on UNIX platforms, the forward slash "/" is used as a directory
separator, while on DOS platforms, the backslash "\" is used instead (in
additon to ":" as a drive specifier). The Macintosh platform uses ":" instead.
Oberon uses "/" as a directory separator and "\" as an option character for

introducing command options.

System.Open filename
System.Open ^
opens a viewer displaying the content of the named file.

System.OpenLog
opens the system log viewer. This text document shows the results of

commands and lists compiler detected errors for example. The log content is
shared between all Oberon modules.

System.CloseTrack
closes the marked track; that is, removes all viewers in this track.

System.Time
System.Time dd mm yy hh mm ss
displays the current date and time in the form dd.mm.yy hh:mm:ss. If date and
time parameters (leading zeroes may be omitted in each component)
immediately follow the command name, the command sets the date and the
time accordingly.

System.Watch
displays the amount of currently used memory resources. Memory is allocated
in a system−wide heap shared by all modules. Parts of the heap are allocated
(i.e. in use) and other parts are free.

System.Collect
initiates a subsequent garbage collection. Garbage collection is the process with
which unused memory is returned to the free part of the Oberon heap. A
garbage collector is an essential part of an extensible system; without it we
would not be able to determine when all extensions have released shared
system resources.

System.ShowModules
displays a map of all currently loaded modules. A module M contains code to
implement certain functions and is activated by executing commands in the
form M.P. For example, System.ShowModulescalls the procedure ShowModulesin
the module System, which has the task of listing all loaded modules. A module
is loaded from an object file only when it is required; that is, the first time you
execute a command in that module. For example, the compiled module code
of Systemis located in the file System.Obj(which was generated from the source
System.Modby the Oberon compiler). Once loaded, a module remains in
memory until explicitly freed.

System.ShowCommands Modname
displays a list of all commands (in other words, parameterless procedures)
exported by the named module.

System.ShowTasks
displays a list of all active background tasks.

System.State Modname
displays the global (exported) data of the named module in a viewer
"System.state".

System.Free Modlist ~
unloads every module named in the parameter list. The module names must
appear in an order which guarantees that client modules are freed first −− a
module having a client cannot be unloaded. If a module name is immediately
followed by * (an option not available in PC Native Oberon), imported
modules are also unloaded. Freeing a module is very dangerous when parts of
its code are still required, often resulting in a trap or a completely dead system.
The * option is even more dangerous and should be used with extreme care.

System.ShowLibraries
shows a list of the currently loaded libraries. Libraries are shared resources like
fonts and reusable objects.

System.FreeLibraries Liblist ~
System.FreeLibraries ^
frees shared libraries from memory. This is mostly a harmless operation as the
library will simply be loaded again when required. The garbage collector frees
libraries automatically when they are not required anymore.

System.CopyFiles { A => B } ~
System.CopyFiles ^
processes a parameter list of pairs A => B, copying each file A to B. In the case
of a "↑" following the command name, do not forget a list terminator.

System.RenameFiles { A => B } ~
System.RenameFiles ^
processes a parameter list of pairs A => B, renaming each file A to B. In the case
of a "↑" following the command name, do not forget a list terminator.

System.DeleteFiles namelist ~
System.DeleteFiles ^
deletes all files named in the list.

System.Directory template[\d]
System.Directory ^
displays the selection of all files whose names match the template specified by
the parameter. The template is a string which may contain the symbol "*" as a
wildcard. If the option \dis specified, additional information about file creation
dates and file sizes is displayed. If your platform supports multiple directories,
you can affix a directory path to the template.

System.Clear
clears the viewer in which the command is executed.

System.Quit
terminates the current Oberon session. Better to save all your files before doing
this! This is the normal way to exit Oberon. With PC Native Oberon the system
is powered off if the system can perform power management functions. If not,
the screen will become blank: power off the system − do not attempt to
continue. For other implementations the Oberon session terminates.
Alternatively, with Oberon for Windows the application can be terminated by
choosing "Close" in the application window's system menu or by using the
keyboard accelerator Alt−F4.

The following command is available for PC Native Oberon only:

System.Reboot
terminates the current Oberon session and reboots the system. Alternatively,
the usual Alt−Ctrl−Delete combination or also Ctrl−F10 may be used to reboot
the system.

The following commands are available for Linux, Mac and Windows Oberon
only:

System.CurrentDirectory
displays full path of the current sub−directory in the system log.

System.CreateDirectory dirname
creates a new sub−directory in the current directory.

System.DeleteDirectory dirname
deletes a sub−directory from the current directory.

System.ChangeDirectory path
System.ChangeDirectory ..
sets the current working directory to that specified by the path or to the parent
directory. By default, except when path names are specified, all stored and
generated files land up in the current working directory. The System.Tool
contains a gadget that displays the current working directory. You may use the
gadget to change the current working directory.

System.Get section [key]
System.Get ^

displays the value of the named key in the named section of the registry. If no
keyis specified, all keys contained in the section are listed together with their
associated values. sectionand keymay be either names or strings.

System.Set section key := [keyvalue] ~
System.Set section ^
sets the key in the named section of the registry. If necessary a new entry is
added to the section. If no keyvalueis specified, the entry for the given section
and key is removed from the registry. section, keyand keyvaluemay be either
names or strings.

Oberon is completely non−modal and often will not ask you to confirm a
dangerous action. If you are afraid of executing a dangerous command by
mistake, you can prefix it with a "!", as in !System.Quit. This will force you to
add a space between the "!" and the command before it can be executed. This
device is used in several .Tooldocuments.
The Systemmodule exports several other commands too. For example, the

commands Close, Copyand Grow, are executed from the menu bars. As these
commands are hidden behind the menu buttons, we will ignore them.

User tips:

You can load a module M with am MM key click on M.Pin a text, where P is a
procedure name of that module. If you do not know a procedure name, you
can simply use a random name, even if it is not defined in M. At the limit,
executing the command M.also produces the desired effect. This will produce
an error message "Call error: [nameXYZ] not found" (in the system log), but the
module will have been loaded anyway.
During development, it sometimes happens that a document cannot be

closed due to the fact that it is always generating a trap. In this case, use the
command System.Close *to close the offending document.

2.5 ProgramDevelopment Tools

Originally developed for teaching programming and operating systems, the
Oberon system naturally has a large selection of programming tools. Most of
these tools still use the textual user interface of Oberon, and thus fit perfectly
into this chapter. A knowledge of the programming tools is required to use the
material presented in the chapter about Oberon programming.

2.5.1 The Compiler tool

One of the most crucial parts of an extensible system is the compiler; without it
you would not be able to extend the system. The Oberon system, which is
implemented in the Oberon language, uses a fast compiler based on a portable
compiler front−end called OP2 developed at the ETH, and provides compiler
back−ends for most popular hardware architectures. This guide is not intended
to give an introduction to the Oberon language; for this we recommend
[Wir88], [RW92], [Mös93], [Mös96] and [ML97].
In principle, a compiler takes a syntactically correct source module

(conventionally with a .Modextension) and compiles it to an object file (with a
.Objextension) and a symbol file (with a .Symextension). This holds true for PC
Native Oberon. The other implementations do not generate a symbol file (see
below) but the same compiler command is used, though with different
options. The object file contains the machine code, and the symbol file
contains the definition of the module. The definition tells the world what
features clients of that module can use. The .Symfiles allow us to compile
modules separately, using exported features from imported modules without
recompiling them. The resulting run−time structure is a hierarchy of Oberon
modules, one importing (using) the other, and in reverse, one module having

other modules as clients. Oberon modules are linked together by the run−time
system when needed and they must be freed explicitely when they are not
required anymore or when they are replaced by new versions during a software
development session.
The Oberon compiler exports the Compiler.Compilecommand documented in

the Compiler.Tool:

Compiler.Compile [\options] {filename[\options]} ~
Compiler.Compile ^
Compiler.Compile @[\options]
Compiler.Compile *[\options]
compiles the indicated module(s), reporting success or failure to the system
log. In case of success, object files are generated. Compiling a sequence of
modules requires you to specify their file names in the sequence of the import
hierarchy from the bottom to the top; that is, clients of a module have to be
compiled after the module itself. This burden placed on the user can be
circumvented using the Builder tool described in the next section. The @
parameter indicates that the compiler should start the compilation process on
the current selection. This allows you to compile a module text embedded in a
text. Only the beginning of the module's text must be selected, the compiler
will search for the final "." by itself. It is allowed to include any number of valid
Oberon comments at the beginning of the selection. In a more typical
situation, you will be compiling modules directly from the text editor, and thus
use the * parameter. There is no need to store the text first unless you want to
keep it for further reference. The command accepts a list of options following a
"\" for modifying the obvious default values implied. A list of options may
appear as first parameter before the list of file names. These options apply
globally to all the compilations. Also, each file name in the parameter list may
be followed by a list of options which apply locally.
Should you change the definition of a module, i.e. the exported features, the

Oberon compiler will report an error 155, preventing you from overwriting an
existing module definition, if the compiler option \sis not used. This option
allows the compiler to change the definition of a module, a potentially
dangerous operation that can invalidate clients of the compiled module.

Na− WinLinuxMac

Basic tive
\e enable generation of extended symbol file O O O
\s enable generation of new symbol file X O O O
\u suppress compilation if up−to−date O O O
\w enable generation of warning messages X O O O

(1)
\N \N \N

Debugging
\f find text position matching selected X X X X

PC= value in a TRAP

Code optimization
\a disable code generation of ASSERT function X X X X
\n disable NIL checks X
\p disable initialization of local pointers X X X X
\t disable type checks X X X X
\v disable overflow checks X X X
\x disable index checks X X X X

Others
\d generate debugger information X
\g disable garbage collection after compilation X
\r suppress generation of detailed ref. info X

(1) Options appearing below are only valid
with \N generate native object module

Figure 2.4 Oberon compiler options

The compiler delivered with Linux, Mac and Windows Oberon System 3 can
generate two types of object files: classical native object files containing target
machine code or slim binaries [FK96] by default. Slim binaries are a new form of
object file that contain no object code at all, but portable descriptions of module
contents that makes these files completely independent of the eventual target
machine (platform independent). To drive the point home, let us stress that if
no option or only the options marked "O" are used, the modules generated by
the compiler are portable to all those platforms. In this case the compiler does
not generate separate symbol files: equivalent information is stored in the sole
object file. Object code generation is carried out on−the−fly [Fra94] by the
module loader (depending on the underlying hardware) and takes no longer
than loading traditional object files. In this system with dynamic loading, the
Object Model Interface (OMI) [Cre94] has been implemented and a
fine−grained interface consistency checking is built−in. If a module interface
modification may invalidate clients, the compiler reports an error unless the
option \sis specified. However, if a pure extension of the interface is made,
such as the insertion of a new procedure, the option \eallows the generation of
an extended symbol file. Thus, the object model allows a module to be
extended without requiring a recompilation of client modules. Clearly, if the
module interface is changed or if something is deleted from it the option \sis
required to compile successfully. When generating slim binaries, only the
options \e, \s, \uand \wcan be used. Since code generation is taking place at
load time, it can be influenced by commands as documented in the following
table (the default states appear in bold face):

Commands influencing Linux, Mac, Win

module loading portable modules

OMI.AssertOff / code generation of
OMI.AssertOn ASSERT function

OMI.RefsOff / generation of detailed
OMI.RefsOn reference information

OMI.ChecksOff / index and type checks (1)

OMI.ChecksOn and pointer initialization

(1) add NIL checks for Mac

Figure 2.5 Code generation control

The option \Ninstructs the compiler to generate native object files which are
not portable across platform boundaries. Therefore, the option \Nshould be
used only when writing an extension that uses the non−portable module
SYSTEM or the non−portable built−in SIZE function. If garbage collection is
suppressed with the option \g, compilation runs faster but might not be
completed if too much memory or too many files are used. In this case,
Oberon will trap.
The file names appearing in the parameter list of the compile command may

differ from the module names. Under Linux, Mac and Windows some source
modules are prefixed. The prefixes "Win." and "Win32." for example are used
by Oberon for Windows.

The compiler module provided for the Linux, Mac and Windows Oberon
exports an additional command:

Compiler.SetDestPath pathName
directs the compiler to store new object files in the specified sub−directory.
Remember that those ports have a directory structure.

2.5.1.1 Compiler error handling

The system log plays an important role during program development. For
example, successfully compiling a module Hello.Modwith the command:

Compiler.Compile Hello.Mod ~

results in the log:

compiling Hello 33

The number following the module name is an indication of the resulting size of
the object file. Unsuccessfully compiling a module results in log output with
approximately the following form:

compiling Hello
pos 67 err 0 undeclared identifier

A log line starting with pos indicates an error at that character position in the
source text followed by an error number and a diagnostic text. The system log
menu button [Locate]will show the error position in the marked text when the
error position (67 in this case) is selected. The complete list of error numbers
with their meaning is stored in Oberon.Textincluded with the PC Native Oberon
distribution or in OberonErrors.Textfor the other implementations.
Afterwards, activate a procedure in the module by executing M.P, where M is

the module name and P is the name of an exported parameterless procedure P.

The module will be loaded and linked automatically into the system. If you
make changes to a module, you will need to unload the previous version with
the System.Freecommand or with the shortcut MM + ML key interclick on M.P.
This works only if M has no client. The compiler will display "(in use)" after the
system log message Compiler.Compile xyz.Modwhen the module just compiled is
currently loaded in memory. This is a reminder to unload the module first.
Finally, the Builder tool, described in section 2.5.2, offers a convenient error

marking and error interpretation command: Builder.MarkErrorsand two
associated commands Builder.NextErrorand Builder.ClearErrors.

2.5.1.2 Run−time error handling

When a run−time error occurs, the system falls into a trap. There is no
interactive debugger currently available under Oberon. However, a trap handler
is automatically called. A "System.Trap" viewer is opened, displaying the state of
the interrupted process, including the entire procedure activation stack from the
initial command call to the the last procedure (M.P) in which an error condition
was detected. For example:

TRAP xy index out of range
M.P PC=12

The program counter (PC) value displayed can be used to locate the error in the
source text by recompiling, using the option \f. Under the assumption that the
module's source text appears in a viewer and that it is marked, proceed as
follows in PC Native Oberon:

1 − select the program counter value
(selecting the entire line with a double MR key click may be used as a
shortcut, the alpha string preceding the counter value is ignored)

2 − re−compile the program with Compiler.Compile *\f

The error can then easily be located at the position of the caret. The
interpretation is left to the programmer. With the other implementations, the
trap viewer text is slightly more verbose and five steps are needed to position
the caret at the error, under the same assumptions as before:

Oberon.Loop − 21 (index out of range)
PC = 00600051H (00000009H)

1 − select the program counter value between the round brackets
2 − re−compile the program with Compiler.Compile *\f
3 − the position in the source text wich corresponds to the PC value

appears in the system log
4 − select the value after pos
5 − use the [Locate]button to position the caret at pos in the source text.

How to interprete the TRAP information

Each procedure call (M.P) is followed by an enumeration, in alphabetical order,
of the procedure parameters and of the local variables with their values.
Scalars, strings (ARRAY OF CHAR) and pointers appear in clear. No information
appears for structured variables.

Example extracted from an Oberon Windows trap:

TextGadgets0.Call+ 00003D2FH
F = 00BA3F00H
ch = CHR(0)
chl = 749
cmd = ""
cw = 1024
cx = 0

cy = 0
dlink = 00B9FBA0H
i = 1
j = 3
keysum = {1}
obj = 00BA66C0H
oldcontext = 00000000H
par = 00C22AA0H
pos = 218
res = 0

corresponding to the following source text (extract):

MODULE TextGadgets0;
PROCEDURE Call* (F: Frame; pos: LONGINT; keysum: SET; dlink: Objects.Object);
VAR S: Texts.Scanner; res, i, j: INTEGER; oldcontext, obj: Objects.Object;
cx, cy, cw, chl: INTEGER; par: Oberon.ParList; A: Objects.AttrMsg;
R: Texts.Reader; ch: CHAR;
cmd: ARRAY 256 OF CHAR;

BEGIN

The practical lesson from this is that some debugging is possible by inspecting
additional local variables introduced into the procedures in development.

2.5.1.3 Trap from the keyboard

Under PC Native Oberon, Ctrl−Break hit once terminates the execution of the
current command at the next Input/Output operation. If no such operation is
encountered and the system is in a loop, hitting Ctrl−Break a second time
terminates the execution of the current command and opens a trap viewer. If
by accident, all viewers have been closed, force a trap with Ctrl−Break: the trap
viewer is opened and work can be resumed with System.Open System.Tool.
Under Windows 95 or NT, Pause terminates the execution of the current

command. If by accident, all viewers have been closed, hit the Pause key to
force a trap: the trap viewer is opened and work can be resumed with
System.Open System.Tool.
Under Windows 3.1, Oberon programs cannot be interrupted with

Ctrl−Break. The only way to stop Oberon is with Ctrl−Alt−Del or with the task
manager. Windows 3.1 might be clever enough to kill only Oberon; sometimes
it is not. Some applications, like the WWW browser, allow you to interrupt
them by pressing ESC. If the system beeps at you, a recursive trap has occured.

2.5.1.4 Practical hints onhow todevelopprograms

While developing and writing software, it is possible to at least approach
error−free programming. Of course, it takes a lot of discipline, because it
means reading the program text at least two or three times before proceeding
to its compilation or execution. It is a fact of life that programmers do not read
their texts well enough after completion, however far from it. Oberon is
certainly more readable than many other programming languages, but the
programmer himself has the greater responsibility of structuring his text to
make it readily understandable to himself and to anybody interested. All in all,
this sound attitude can save a lot of time and frustration.
Though the built−in traps normally provide enough information for

debugging run−time errors, there are further ways to combat one's mistakes. In
the first place, develop by stepwise refinement. Large chunks of new code are
cumbersome to handle and cost a lot of time in debugging. Frequent
compilation in the early phase of development helps finding syntax errors
caused by inattention. Further, Outcommands inserted at strategic places can
sometimes help a lot more than a TRAP. Such commands are not just
decorating a piece of code until the software is running as expected, but may
become integral part of the software when they appear in well−formatted
conditional sections of the code. The condition can be determined by a

BOOLEAN constant as in this module stub:

MODULE Stub;
IMPORT Out;
CONST Debug=TRUE;

PROCEDURE Any*;
VAR QueriedVarA: ARRAY 32 OF CHAR; QueriedVarB: BOOLEAN;

BEGIN
....
IF Debug THEN

Out.String("Current values: ");
Out.String(QueriedVarA);
IF QueriedVarB THEN Out.String("TRUE") ELSE Out.String("FALSE") END;
...

END;
...

END Any;

BEGIN
....

END Stub.

in which QueriedVarAand QueriedVarBare the variables to be inspected. Instead
of writing to the system log, one could choose to write to a Writer instead, with
the added advantage of allowing a customized layout of the inspected data and
with the advantage of faster execution which will quite noticeable with a high
volume data trace. Obviously, the final program version must be compiled with
debug=FALSEbut this a very little cost compared to the benefit reaped when the
module must be modified later on and tested again. The compiler will
optimize the object code anyway by removing the dead code parts. Truly
enough, the inclusion of permanent Outor Writestatements might be regarded
as cluttering what is in the eye of the writer "a well−readable source text".
In modules containing commands, it is good practice to append a list of

commands to the end of the program text. Later on, these commands can then
be exercised again and again for testing their correctness at least to some
degree.

Example:
(* Text of the module TextPopups *)
...
END TextPopups.

System.Free TextPopups ˜
TextPopups.Install
TextPopups.Remove

2.5.1.5 UsingHALT to debug

On encountering a HALT(e) statement, the enclosing program is brought to an
abnormal halt with a TRAP. The argument e is an integer constant (30 <= e <
256) whose value identifies the termination. In case of a stubborn abnormal
program termination, one may attempt to insert a HALT statement at a
strategic point thus forcing the program to reveal the status of some of its
variables before the crash. Of course, this brute force approach is not
recommendable but it may be used as an expedient for disentangling a difficult
TRAP situation.

2.5.1.6 Using assertions as a debugging tool

A citation from Niklaus Wirth [Wir73] will set the stage:

Experimental testing of programs can be used to show the presence of errors but
never to prove their absence.

Consequently, it is necessary to abstract from individual processes and to postulate
certain generally valid conditions that can be derived from the pattern of behavior.
This analytic method of testing is called program verification. In contrast to program
testing, where the individual values of variables are inspected, program verification is
concerned with the properties of the program by postulating generally valid ranges
of values and relationships among variables.

Assertions are a means to integrate program specification aspects in program
code, thereby increasing the confidence in the quality of the software.
Assertions are supported by the compiler which can recognize two forms of
assertions:

ASSERT(boolean-expression);
causes the program to terminate if the expression is FALSE.

ASSERT(boolean-expression, integer-constant);
causes the program to HALT if the expression is FALSE and is similar to the
conditional statement:

IF ˜boolean−expression THEN HALT(integer−constant) END;

The first form uses a system defined termination code is used instead of the
user defined integer-constant.

Oberon System 3 uses the following conventions for this constant:

Precondition (100..109)

A precondition tests for the legal input to procedures, for example a parameter
must be in a certain range.

Invariant (110..119)

One may categorize invariants into loop invariants and type invariants. A loop
invariant is a condition which must be satisfied at each iteration in a loop.

Postcondition (120..129)

A postcondition verifies the outcome of the execution of a procedure.

Example

Suppose it is required to write a function Sqrtyielding the square root of x
within the tolerance tol. An implicit specification would state that the absolute
value of the difference between the square of the result resand xmust be less
than the tolerance. Using this, we then write:

ASSERT(ABS(res*res − x) <= tol, 120);

This specification is, so far, incomplete in that the valid values for xand tolhave
not been defined. REAL will be used to denote the set of all real numbers. But
this is still not enough. If Sqrtis to yield a REAL as result, then it can only find
the square root of non−negative numbers. Similarly, the tolerance must also be
non−negative. We end with:

PROCEDURE Sqrt*(x, tol: REAL): REAL;
VAR res: REAL;
BEGIN

ASSERT((x>=0) & (tol>=0), 100);
calculate the square root of x into res (* Explicit specification *)
ASSERT(ABS(res*res − x) <= tol, 120);
RETURN res

END Sqrt;

HowASSERT statements are treated by the compiler

The compiler evaluates the boolean expression of ASSERT statements with the
following outcome:
− if an expression is TRUE, the ASSERT is treated as dead code
− if an expression is FALSE, an error message (99) is logged
− if an expression cannot be evaluated at compile time, the ASSERT
statement is included as a run−time check

HowASSERT statements are controlled inOMImodules

At load time, ASSERT statements can be treated differently depending on the
prior execution of two commands:
− after the execution of OMI.AssertsOff, ASSERT calls are ignored
− after the execution of OMI.AssertsOn, the required code is generated

In contrast, HALT statements are always treated in the same fashion.
Remember that code generation is performed at load time, therefore a

module with ASSERT statements must be unloaded after the execution of an
OMI.AssertsOff / OMI.AssertsOncommand. By default, no code is generated.

InformationprovidedbyWatson

ASSERT procedures appearing in exported procedures and commands are
transformed by Watson.ShowDefinto comments of the form (at the right side):

ASSERT(param >= 10, 101); (* precondition (101): param >=10 *)
ASSERT(param >= 10, 111); (* invariant (111): param >=10 *)
ASSERT(param >= 10, 121); (* postcondition (121): param >=10 *)

2.5.1.7 Console debugging (WindowsOberon)

The Consolemodule provides a number of procedures (access the module
definition with Watson.ShowDef Console) which can be quite useful for low−level
debugging, specially of Oberon core components. Console debugging is
controlled by the Console keyword in the [System] section of the registry in the
following manner (only the first character is meaningful):

Console=
None no information is collected
Console the information is directed to a MS Windows window having a

title bar text "Oberon System 3 − Console" which is automatically
opened when Oberon is started and closed when it is quitted.

Debug the information is directed to:
− the debugger tool under Windows 95 or NT
− the AUX port under Windows 3.1

File the information is directed to a file "Oberon.Log" in the root
directory. Use the command EditTools.OpenUnix ^to view it.

2.5.2 TheBuilder tool

The Builder provides a convenient front−end to the Oberon compiler described
above. It makes sure that module texts are presented to the compiler in a
correct order, whatever the order of the file names in the parameter list. The
Buildermodule commands are documented in the Builder.Tool.

Builder.Compile [\options] namelist ~
Builder.Compile [\options] ^
Builder.Compile [\options] *
compiles the files named in the list, automatically determining the correct
compilation order of the modules. Only the modules specified are compiled.
The options are the same as those of the Compiler.Compilecommand but they
must appear as first command parameter.

Builder.Free namelist ~

Builder.Free ^
unloads every module named in the list in the correct order. Since file names
must appear in the parameter list, this command can only free modules for
which the source text is available. To unload other modules use System.Free.

Builder.InsertHierarchy namelist ~
inserts an Icon for each source text module named in the list at the caret. The
Icons are inserted in a correct order of compilation. Each Icon is captioned with
the corresponding file name and its Cmd attribute value is Desktops.OpenDoc
’#Caption ’. An example of such Icons is found in the Compiler.Panel.

Builder.MarkErrors [^]
when the selection contains an error message written by the compiler in the
system log, this command inserts an error marker in the marked text for that
message and for all of the following messages. An error marker is a special
gadget displaying the number of the error code discovered at that location in
the program text. The error message pos 111 err 4would cause to be
placed at the position 111. An MM key click on the error marker replaces the
error number by a short error description. Another click toggles it back to the
error number.

Builder.NextError
advances the caret to the next error marker. When the end of text is reached,
searching wraps around to the beginning.

Builder.ClearErrors *
removes all error markers in the marked text. Automatically performed by a
Builder.Compile *command. When the source text document is stored, the error
markers are automatically removed −− they must not be removed first.

2.6 Backup tool

Oberon provides tools for making backups of files on diskette or for some
implementations on other external storage, making it possible to exchange
Oberon files with most other computer systems as well as with other systems
on the same platform.

Backup tool for PC Native Oberon and Windows NT

The Backup tool writes and reads files in a proprietary ETH Oberon format
compatible with Ceres Oberon or in MS−DOS format on diskette.

The following commands are defined:

Backup.Directory [\d]
lists the files on the currently inserted diskette. The listing shows the Oberon
files with their long file names. If the option \d is present, additional
information about file sizes and creation dates is supplied.

Backup.WriteFiles namelist ~
Backup.WriteFiles ^
writes all files named in the list to the currently inserted diskette.

Backup.ReadFiles namelist ~
Backup.ReadFiles ^
reads all files named in the list from the currently inserted diskette.

Backup.ReadAll
reads all files from the currently inserted diskette.

Backup.DeleteFiles namelist ~
Backup.DeleteFiles ^

deletes all files named in the list from the currently inserted diskette.

Backup.SetDriveA
Backup.SetDriveB
selects the appropriate diskette drive A or B to be used by the various Backup
commands. Default is drive A.

Any diskette formatted with a standard DOS formatter may be used.
Alternatively, the following commands are provided:

Backup.Format \D
Backup.Format [\H]
formats, in the Oberon format, a 2−sided double density (\D) or a high density
(\His optional) diskette in the selected drive. This command is not available for
Windows NT.

Backup.InitOberon [volName]
initializes a formatted diskette; that is, creates an Oberon directory and writes a
volume label. volNamemay be either a name or a string. During this process, all
existing data is erased from the diskette. This is much faster than Backup.Format.
A diskette without volume label can be read on Ceres machines.

Backup.InitDOS [volName]
initializes a formatted diskette; that is, it creates an MS−DOS directory, and
writes a volume label. volNamemust be a valid MS−DOS name (fname.ftype).
During this process, all existing data is erased from the diskette.

DOSBackup tool for Windows and Macintosh

The DOSBackup tool reads and writes Oberon files on MS−DOS diskettes. This
makes it possible to exchange Oberon files with most other computer systems.
As the MS−DOS diskette file system does not support the long Oberon file
names, DOSBackup maintains a translation table called TRANS.TBL as a file on
the diskette. Files copied onto a diskette under MS−DOS are automatically
inserted into the translation table when you use DOSBackup again. On a
Macintosh, you can use this tool only if MacOS 7.5 or a tool that extends the
Mac with the capability of reading MS−DOS diskettes, such as PC Exchange for
instance, is installed.
The five first Backup commands described earlier are also valid for this

implementation, though their prefix is DOSBackup. However, the
DOSBackup.Directorycommand does not accept an option \dfor requesting
additional information about file sizes and dates. The DOSBackup.WriteFiles
command accepts an option character "%" for compressing files:

DOSBackup.WriteFiles % namelist ~
DOSBackup.WriteFiles % ̂
writes all files specified by the parameter list to the currently inserted diskette
using the LZW compression algorithm. The compressed files have a special
header which is automatically detected by the DOSBackup.ReadFilescommand for
decompressing the files.

The following commands are also defined:

DOSBackup.Init
erases all the Oberon files and the translation table file on the currently
inserted diskette. All the other DOS files stored on the diskette are not affected.

DOSBackup.SetPath path ~
sets the path for subsequent DOSBackupcommands. It can thus be used to
change the current directory on the currently inserted diskette, but this
command is specially useful to direct the backup operation to a hard disk
subdirectory as an alternative to using diskettes. Keep this in mind if you have
installed more than one Oberon System 3 on your PC.

DOSBackup does not provide a diskette formatting function. Formatting a new
diskette must be done under the underlying operating system.

The following command is available in Mac Oberon only:

DOSBackup.SetDrive
selects the appropriate diskette in the diskette drive.

Backup tool for Macintosh

The Backup tool reads and writes Oberon files from and to a diskette that has
been formatted in any of the normal Macintosh floppy diskette formats.
The five first Backupcommands described in "Backup tool for PC Native

Oberon" are also valid for this implementation.

The following command is also defined:

Backup.Eject
ejects the currently inserted diskette.

Mac Oberon offers an alternative CBackup tool writing and reading files in the
original Ceres format. The commands are the same.

Backup tool for Linux

The Backup tool reads and writes Oberon files from and to a MS−DOS
formatted diskette. Only the double density format (720KB) is currently
supported.
The five first Backupcommands described in "Backup tool for PC Native

Oberon" are also valid for this implementation.

The following commands are also defined:

Backup.SetFd0
Backup.SetFd1
selects the appropriate diskette drive 0 or 1 to be used by the various Backup
commands. Default is drive 0.

Backup.Init
initializes a formatted diskette; that is, it creates an Oberon directory. During
this process, all existing data is erased from the diskette.

2.7 Archiving tools

Oberon also provides tools for compressing multiple files into an archive, and
for exchanging files with other Oberon users via electronic mail.

Compress tool

The Compress tool allows you to compress multiple files into the same archive
using the LZSS compression technique (Note: the file format is not compatible
with the UNIX utility of the same name). The archive is portable among all
Oberon platforms. Compressed files with an .Arcextension can be opened
directly with the command Desktops.OpenDoc.

Compress.Directory Archive.Arc
Compress.Directory \d Archive.Arc
Compress.Directory ^
Compress.Directory \d ̂

opens a text viewer listing the names of the files contained in the archive. If the
archive does not yet exist, it is automatically created. If the option \dis used,
additional information is given for each file: date and time when added to the
archive, compressed size in bytes, and size in percent of the original
uncompressed file.

Compress.Add Archive.Arc namelist ~
Compress.Add Archive.Arc ^
adds all the files named in the list to an archive. If the archive does not already
exist, a new one is created.

Compress.Extract Archive.Arc namelist ~
Compress.Extract Archive.Arc ^
unpacks all the files named in the list from an archive.

Compress.ExtractAll Archive.Arc
unpacks all the files from an archive.

Compress.Delete Archive.Arc namelist ~
Compress.Delete Archive.Arc ^
deletes all the files named in the list from an archive.

Compress.Open Archive.Arc filename
Compress.Open Archive.Arc ^
unpacks a file from an archive and opens it. None of the archived files is stored
on disk.

Compress.Rename Archive.Arc { A => B }
processes a list of pairs following the archive name, renaming each file A to B in
the archive.

AsciiCoder tool

AsciiCoder can be used to encode and decode any text (including gadgets)
visible on screen as well as to encode and decode arbitrary files. The data
stream generated by encoding is fully ASCII and is apt to be sent by electronic
mail. It is always presented in a text document where it can be edited to
become a part of an e−mail message for instance. Once encoded, the resulting
text will contain the appropriate command to decode the contents again.

AsciiCoder.CodeText *
AsciiCoder.CodeText @
encodes the text of the marked viewer or the text starting at the beginning of
the most recent selection. A viewer named "AsciiCoder.CodeText" is
automatically opened. It presents the encoded data preceded by an appropriate
AsciiCoder.DecodeTextcommand.

AsciiCoder.CodeFiles namelist ~
AsciiCoder.CodeFiles ^
encodes all the files named in the list. A viewer named "AsciiCoder.CodeFiles" is
automatically opened. It presents the encoded data preceded by an appropriate
AsciiCoder.DecodeFiles namelistcommand.

AsciiCoder.DecodeText @
decodes the ASCII encoded text, starting at the beginning of the most recent
selection.

AsciiCoder.DecodeFiles @
decodes the ASCII encoded text, starting at the beginning of the most recent
selection, and writes the data to files. Existing files are not overwritten since
they are first renamed to .Bakfiles. The file names must appear at the beginning
of the selection, before the coded data.

Inserting an (optional) % between the command name and the first parameter,

will cause the data to be compressed or expanded, in addition:

AsciiCoder.CodeText % *
AsciiCoder.CodeText % @
AsciiCoder.CodeFiles % ̂
AsciiCoder.CodeFiles % ~

AsciiCoder.DecodeText % @
AsciiCoder.DecodeFiles % @

Base64 tool

Base64 can be used both to decode a Base64 encoded data stream appearing
in a viewer and to encode files. The ASCII data stream generated by encoding
can be forwarded by electronic mail. It is always presented in a text document
where it can be edited to become a part of an e−mail message.

Base64.Decode filename ^
decodes the data, starting at the beginning of the most recent selection, and
writes the data to the named file.

Base64.Decode filename ~ codedData
decodes data which follows the "˜", and writes the data to the named file.

Base64.Encode filename ~
encodes the named file. A document viewer named "Encode" is automatically
opened. It presents the encoded data, which may then be sent by e−mail.

UUDecoder tool

UUDecoder can be used to decode Unix uuencoded data.

UUDecoder.Decode namelist ~
UUDecoder.Decode ^
decodes all the files named in the list, and writes the decoded data to a file
whose name appears in the uuencoded files themselves.

UUDecoder.Decode @
decodes the data, starting at the beginning of the most recent selection, and
writes the decoded data to a file whose name appears in the uuencoded data.

UUDecoder.Decode "begin" codedData ~
decodes the data which follows the command and writes the decoded data to
a file whose name appears in the uuencoded data.

BinHex tool

BinHex can be used to decode BinHex encoded data.

BinHex.Decode filename ^
decodes the data, starting at the beginning of the most recent selection, and
writes the decoded data to the named file.

BinHex.Decode filename codedData
decodes data which follows the filename, and writes the decoded data to the
named file.

BinHex.Decode filename binHexName
decodes the binHexNamefile, and writes the decoded data to the named file.

UnZip tool

UnZip can be used to unpack zip archive files. Files with a .zipfile name
extension can be opened directly with Desktops.OpenDoc.

UnZip.Directory Archive.zip
opens a text viewer listing the names of the files in an archive.

UnZip.Open Archive.zip filename
unpacks a document and opens it. No file is written to disk.

UnZip.OpenAscii Archive.zip filename
unpacks an Ascii text and opens it.

UnZip.Extract Archive.zip namelist ~
unpacks all the files named in the list from an archive.

UnZip.ExtractAll Archive.zip
unpacks all the files from an archive.

OldFiles tool

OldFiles can be used to read files from older Oberon installations (DOS and
Win32s) using MS−DOS 8.3 file names. This tool is not available for PC Native
Oberon.

OldFiles.SetPath path ~
sets the path for subsequent OldFiles commands.

OldFiles.Directory
OldFiles.Directory \d
displays the selection of all disk files found in the current path, previously set by
an OldFiles.SetPathcommand. If the option \dis specified, additional information
about file date and time and file sizes is displayed.

OldFiles.ReadFiles { A => B } ~
processes a parameter list of pairs A => B reading each file A in the current
path, previously set by an OldFiles.SetPathcommand, and copying it to the current
directory under the name B.

OldFiles.ReadFiles namelist ~
reads the named files in the current path, previously set by an OldFiles.SetPath
command, and copies them to the current directory under the same name.

OldFiles.DeleteFiles namelist ~
deletes the named files in the current path, previously set by an OldFiles.SetPath
command.

FileUtils tool

FileUtils facilitates the backup of a load of files without naming them each
individually, as must be done with the other backup tools. This tool is not
available for PC Native Oberon.

FileUtils.Backup {\pat} srcDir destDir
copies the files found in srcDirto destDir, ignoring those files with a name
matching the patterns appearing in an option list. Each pattern must be a
string preceded by a "\".

FileUtils.FindSame [\S] { directory }
searches all the duplicate file names in the listed directories. When the option
\Sis specified, the search is extended to the Oberon search path specified in the
[System] section of the registry.

Chapter Three

The Gadgets User Interface

3.1 Introduction

The previous chapter presented the textual user interface of the Oberon system.
Although the text interface is an important part of the Oberon system, it is by
no means its only component. In Oberon, text is an example of one component
in a large collection of components. Components, or objects as they are also
called, build the run−time environment of the Oberon system. The
components of Oberon are part of a component framework called Gadgets. In
this framework, the components themselves are called gadgets too. The Oberon
user uses gadgets to write documents and to create applications. The Oberon
programmer manipulates already built gadgets under program control, or
creates new gadgets by writing Oberon modules.
Gadgets cover a large spectrum. Most of them are of a visual nature and are

seen on the display. Examples are Buttons, Scrollbars, Panels, TextGadgets,
menu bars etc. When a visual gadget is visible on the display, we say that it is
located in the display space. The display space is the data structure that forms
your Oberon display. When a visual gadget is not located in the display space,
we say that it is off screen. In contrast to the visual gadgets, the non−visual
gadgets operate behind the scenes to manipulate and store information. The
latter type of gadget we call model gadget or model, for short. It is possible to
make the hidden information of a model gadget visible by attaching it to a
visual gadget, and by placing the latter in the display space. In such a setup, the
visual gadget has to visualize the model gadget attached to it. More examples
of gadgets and how to configure them will be given in the following section.
Gadgets are examples of persistent objects. We can store them in files and

transfer copies of them across the network to other machines. In addition,
gadgets are universal. This means that they can be used wherever required. For
example, a gadget belonging logically to a drawing application (like a circle),
can be inserted into a text, a page layout program, a Panel, another graphical
editor, and can float anywhere on the display. In this sense, a gadget does not
belong to a certain application but to the system as a whole; it is a first class
citizen. In fact, the whole concept of an application is a little fuzzy in Oberon.
As gadgets are shared between everybody, it is nothing magic to take an
application belonging to somebody else, extract some gadgets that you require
from it, and use them in your own application.
To complete the picture, Oberon does not distinguish between applications

and document files. A file, like a text document, consists of persistent objects.
An application consists of objects too (perhaps ones that really do something).
In Oberon, the distinction between application and document vanishes.
Opening a document is the same as starting an application, and starting an
application is the same as opening a document. Mixing application aspects and
document aspects is allowed as well; imagine having a working application
inside an e−mail. Clearly this could be confusing if we do not clear up the
terminology as early as possible. In future, we will refer loosely to an
application as a collection of objects (perhaps divided between multiple
documents) that does something approximately the same (for example, a
bitmap or font editor application). A document is a persistent collection of
gadgets (objects or components, if you want). The normal case is for a
document to be stored in a file, although in some cases it is generated on the
fly from information located somewhere else. For example, world−wide web
(WWW) pages and file transfer servers (FTP) are also documents (active ones!)

in the Oberon world.

3.2 AGadget Classification

As mentioned earlier, gadgets are classified into visual and non−visual gadgets.
This section will give an informal overview of the gadget classification.
The visual gadgets are further divided into elementary, container, document

and camera view gadgets. As the name indicates, a visual gadget is something
you see on your Oberon display. The most abundant are elementary gadgets.
They do not contain any further gadgets themselves and thus act as leaf or
terminal gadgets in the display space. Examples of elementary gadgets are:

A Button for activating Oberon commands

A CheckBox for checking an item

A ColorPicker for changing the color of gadgets or text

A Line for drawing a graphic

A ListGadget for displaying a list of items

Chapter3.Text C A NamePlate for giving a name to a document

Chapter3.Text A TextField for entering short strings or numbers

A Scrollbar for entering a numerical value

Container gadgets, just as the name indicates, contain other visual gadgets as
direct descendants or children. Containers can be nested in each other. Thus, a
child in turn might have further children (making them indirect descendants).
The container is called the parent or direct context of its descendants. Although
each child gadget is able to edit itself independently, the container provides
additional editing functionality for groups of children. Such groups are
identified by selecting the gadgets that belong to the group. By convention, once
a gadget has been selected, the container assumes all further editing
responsibility for the selected group. Selected gadgets are identified by a white
semi−transparent selection pattern that covers them. The selected gadgets, or
more precisely, the most recently selected gadgets, are often the targets of
further processing by Oberon commands. The two most important containers
are the TextGadget and the Panel gadgets.

Figure 3.1 A TextGadget and a Panel

The prototype of a container is a Panel, a rectangular surface containing other
visual gadgets. A Panel supports operations on groups of children plus the
layout and alignment of children. The children of a Panel are organized in a
priority sequence and may overlap each other. A child keeps its priority when
moved around in a Panel and newly inserted gadgets are always placed in front.
Oberon commands put a gadget behind or in front of other gadgets. An

Organizer is an extension of Panel which imposes constraints on the placement
of its components.
A TextGadget visualizes a text and implements a text editor. Also a

TextGadget is a container and visual gadgets may float inside the text stream.
Model gadgets represent another class of gadgets. Model gadgets contain

data values useful to Oberon applications. The Gadgets system provides a set of
model gadgets that can store the basic types like INTEGER, REAL, BOOLEAN,
SET and string of the Oberon language. They are simple in structure and
behavior and cannot display themselves on the display. To visualize them, visual
or view gadgets from the elementary and from the container classes introduced
before are used. This way of arranging things is called the Smalltalk
Model−Viewer−Controller framework (MVC). The Oberon system also uses the
MVC concept, although in a slightly modified form: the viewer and the
controller are united in a single class Frames. In the MVC framework, the
model gadget contains the data displayed by the view gadget. Many view
gadgets can show the value of the same model gadget. Each view ensures that
it remains consistent with the model it represents. We say that the view is
linked to a specific model gadget. An example is a gadget constellation where a
TextField and a Scrollbar, acting as view gadgets, are both linked to the same
Integer model gadget. Behind the scenes, things are organized as in Figure 3.2.

Figure 3.2 Two visual gadgets linked to a model gadget

Changing the position of the Scrollbar causes the Integer gadget to be
updated accordingly, which in turn causes the TextField to be informed that the
value of its model has changed. The idea with the model gadget is that it can
easily be manipulated by an Oberon program without regard to how it is
visualized. The visualization of the model is updated accordingly without the
application knowing what or how many visualizations exist. This allows
application programmers to insulate code against changes made to a user
interface. Interestingly, many visual gadgets are programmed in such a way that
they can also function without a model gadget linked to them. For example,
the Scrollbars and TextFields work just as well without models. This fact gives
some insight on how models and views are implemented. Both the model and
the view contain the data to be represented, often in a format convenient for
the gadget (for example, a TextField remembers strings whereas an Integer
gadget stores INTEGERs). When one value changes, a communication protocol
between the model and the view ensures that the values, even though of
different but compatible formats, are made consistent with one another. No
updating takes place when the formats are incompatible.
The Gadgets system provides only a limited set of model gadgets; typically

application programmers add their own model gadgets to the system
depending on their needs. For example, it is sometimes useful to construct
compound models that store more than one data value The Complex gadget is
an example.
Another variant of the Model−View−Controller framework is possible in the

Gadgets system. Often you want not only to share the same model gadget, but
also to have two different camera views on the same displayable gadget.
Imagine you are editing a large drawing and you would like to see two different
parts of the same drawing at the same time. Again, the structure behind the
scenes is similar to the one above, but in this case it can be seen directly on the
display (Figure 3.3).

Figure 3.3 Two camera views of the same Panel

Here we have two different camera views onto the same Panel containing a
single Button and a Scrollbar. Changing the Panel in one view causes it to be
updated in the other as well. This is useful when you want to share the same
gadget between different applications. It is also the way icons are shared
between applications in the system.
There are many more gadgets available in the Gadgets component

framework. The interested reader is invited to browse through their
descriptions in Chapter 4.

3.3 Composing gadgets interactivelywith themouse

One of the interesting and novel aspects of gadgets is that they can be changed
in size and position, in addition to being used, from creation onwards until
they are eventually explicitly locked by the user. This is in contrast to other
systems where the user receives his user interface locked, and must "take it or
leave it". A significant part of the time spent by a user of the Gadgets system is
in organizing and building new user interfaces. This can be compared to the
user adjusting his tool texts under the textual Oberon user interface. In this
section we explain how interactive composition of gadgets is done at run−time.
All visual gadgets have a certain size or extent that they occupy on the

display. When the mouse is located inside this area, the gadget can do
whatever it pleases depending on how it was programmed by its creator.
Fortunately, gadget mouse commands often stay close to the Oberon
conventions (in the Table 3.4, mouse events are indicated by the first (mouse)
key pressed, followed by a "+" sign to indicate that an interclick follows).

Table 3.4 The Oberon mouse conventions

Key Associated action

ML Point Set the caret to mark the insertion point
ML + MM Copy to Set the caret and copy an existing selection

to the caret

MM Activate Activate command in text or in Cmd attribute
of gadget. Also manipulate gadget.

MR Select Select text/gadget or group of gadgets
MR + ML Delete Select text/gadget and delete
MR + MM Copy over Select text/gadget and copy over to caret

ML + MM + MR Nullify Nullify current mouse action

By "selection" we mean either a text selection (the selected text stretch) or a
gadget selection (the selected gadget or group of gadgets). The system keeps
track of the gadget and text selection separately and the mouse keys interclick
uses one or the other depending on the context. For example, while working
with Panels, the gadget selection is used, and while working with texts or
strings, the text selection is used. However, in some cases the most recent
gadget selection or text selection is used. Placing the caret in a gadget is called
focusing a gadget. There is only one focus active at any one time.

Some gadgets support only a subset of mouse commands. For example,
often a gadget does not support a caret, in which case mouse commands
starting on the ML key are ignored.
Most gadgets have inner areas reserved for control. These areas can be used

to resize the gadget or move it from one container to another on the display.
The control areas may be absent if the gadget cannot be moved or resized.
Most visual gadgets are rectangular in shape, and for those gadgets the control
area is a border a few pixels wide inside the edge of the gadget. Inside the
gadget, but not in the control area, the gadget does whatever it is supposed to
do (Buttons can be pushed, CheckBoxes checked, etc). In the control area, the
gadget responds to the control mouse combinations listed in Table 3.5.

Table 3.5 Mouse commands in the control area of a gadget

Key Associated action

ML Uninterpreted

MM (drag in a corner) Resize gadget

MM (drag on a side) Move gadget around in current container

MM + ML (drag on a side) Move gadget and insert in other container

(consume shallow copy)

MM + MR (drag on a side) Move gadget and insert a copy at

mouse
position (shallow copy)

MR Select gadget
MR + ML Select gadget and delete
MR + MM Select gadget and copy over to caret

Gadgets can be picked up on a side with the MM key and moved from one
position to another on the display. Movement with the MM key alone is
restricted to the current container, and may be rejected when attempting to
move the gadget completely out of its current context. Movement to another
context can be done only with an explicit consume interclick or a copy interclick.
A consume interclick initiates a consume operation, often called drag−and−drop
in popular terminology. The new container consumes the gadget and removes it
from its old container. Not only is a consume operation used to move a child
object from one container to another, but also to provide a more general
drag−and−drop facility. The consumer (called the receiver or recipient) may
interpret the consume event in different ways: it may either absorb the
consumee (which is in turn called the sender or initiator) as a descendant (like
most containers do) or it may initiate some other event. For example, a
compiler Icon may compile source text Icons that it consumes, or a trash can
Icon may delete the file gadget Icons that it consumes. Some receivers may
execute a user−defined Oberon command on a consume event. The Icon
gadget is such a receiver. The consume interclick can also be used to bring a
gadget to the front in a Panel. Whereas a consume interclick moves a gadget to
a new context, a copy inserts a copy in the new context, leaving the original at
its place. In both cases we may say that a gadget is dropped into another
location.
The MR combinations are the same as those listed in the Table 3.4.
By default, most gadgets are freely editable. Mechanisms exist that allow the

user to lock gadgets and thus prevent the user from inadvertently changing a
gadget.
Though most visual gadgets are rectangular in shape, that is fill their

bounding box completely, a few others have an irregular shape. These are
called transparent gadgets because sub−sections of their bounding box are
transparent and show what lies below them. This is particularly useful for
drawing geometric figures. The gadgets Circle, Line, Rectangle, Rectangle3D

and Spline fall in this category.

3.4 Creating new gadgets

To help users compose user interfaces interactively, a Gadgets.Panelis provided.
The command Desktops.OpenDoc Gadgets.Panelopens a Gadgets.Panel(Figure 3.6).

Figure 3.6 The Gadgets.Panel

The two ListGadgets contain the set of visual (View) and model gadgets
(Model) delivered with your Oberon system. An MM click on one of the entries
in the View list, inserts a visual gadget of that type at the caret. The caret can be
located either in a text or inside a Panel (where it shows up as a small cross).
Clicking on an entry in the Model list, links a new model gadget of that type to
the current gadget selection.
The Align Iconizer of the Gadgets.Panelallows you to control the layout and the

alignment of the selected gadgets in containers. It is usually used as a pop−up
menu but it can also be flipped with an MM key click on the switch pin located
in the top left corner.

Figure 3.7 The Align menu of the Gadgets.Panel

Alignment normally takes place relative to some imaginary line. For example,
Left alignment means that all selected gadgets must be lined up on their left
edges, the reference edge being that of the left most gadget. When gadgets are
being sized, the height or the width (or both) of the largest gadget is applied to
all gadgets. Gadgets floating in the text of a TextDoc, a TextGadget, a TextNote
or a LogDoc cannot be aligned, but sizing is possible. The commands
controlling the alignment and sizing operations are documented in the
description of the Panel gadget in Chapter 4.
The Buttons [Back]and [Front]change the display priority of the selected

gadgets. By display priority is meant which gadgets overlap others in a Panel or
in an Organizer. New gadgets are always inserted in front of other gadgets in a
container, and they keep their priority until it is explicitly changed. One
exception to this is the document gadgets presented later in this chapter; these
pop to the front when they are focused (with an ML click). To bring a gadget to

the front of the container, the consume interclick can be used as a shortcut.
The mouse focus must however remain in the same container, otherwise the
gadget may change containers unexpectedly.
Activating the [Change View]Button changes (or transforms) the selected

gadgets into a new type selected from the View list. For example, Buttons may
be changed to Checkboxes, Circles to Lines, though not every transformation is
meaningful.
Copying a gadget can be done in two different ways. A deep copy is used

when both the view and the linked model are copied. A shallow copy means
copy only the view gadget and thus have the copy display the same model as
the original. Shallow copies are always made directly with either a copy
interclick or a consume interclick introduced in the previous section.
A deep copy has to be made explicitly with the [Deep Copy]Button located in

the Gadgets.Panel. The Deep Copy command takes the selection, makes a deep
copy of it, and inserts it at the caret. Deep copies are structure−preserving,
which means that an exact duplicate of the gadget data structure is made.
The [Set Ref]Button instantiates a gadget of a type appearing in the selection

and places a Reference to this gadget in the marked (or in the selected)
RefFrame. The practical advantage of a RefFrame is that it contains a Reference
to an object irrespective of its type (visual gadget or non−visual) and of its size.
The Reference can be dragged−and−dropped or copied over to another context
just as easily as the object it represents.
Activating the [Columbus]Button opens a Columbus inspection tool. It is

discussed in section 3.6.
Finally, the [Recall]Button recalls the gadgets deleted most recently from a

Panel or an Organizer and inserts them at the caret. This operation can be
assimilated to a paste operation after a cut operation, and it may be repeated
any number of times.

3.5 Attributes

Gadgets have attributes that customize their behavior. Each attribute consists
of an attribute name and an attribute value pair. Attributes are typically used to
specify colors, captions, and commands that gadgets should execute. For
example, Buttons have an attribute called Caption that contains the caption
string that is displayed inside it. A tool called Columbus is used to inspect and
edit the attributes of a gadget. Attributes are typed; that is, the attribute type
can be enforced by the gadget to be a boolean, integer, real or string type. Each
gadget class defines its own set of attributes. In the remainder of this section,
we introduce the common attributes of gadgets.
Although most gadgets have different attributes, all of them have a common

attribute: the Name attribute, which is one of their most important attributes.
The name is used to identify or to find a gadget. Gadgets often use names to
refer to one another's attributes. In general, we refer to the attributes of gadgets
with the following syntax:

ObjectName.AttributeName

ObjectNameis the name of a gadget and AttributeNameis the name of an
attribute of that gadget. The Gadgets system employs a search strategy for
locating an object with a certain name. The scope in which the system searches
for gadgets is determined by the hierarchy of container gadgets. The current
scope is determined when a gadget executes a command (more precisely a
command attribute), and is exactly the container (or parent) in which the
gadget is located. Behind the scenes, a special message is sent to the parent to
search for the named object. This message propagates in a breadth−first
fashion from the container to all children until the named object is found.
A few visual gadgets which can function with a model gadget, can indicate

which component or field of the model gadget they are interested in. These
gadgets have a Field attribute in which the name of the model gadget's attribute
must be stored. It is thus quite possible to build a model gadget of a

compound nature (the Complex gadget for example) which can be visualized
by several different visual gadgets, each of which is displaying a different
attribute of the model it is linked to. If the Field attribute contains the empty
string, the name "Value" is assumed and the Value attribute of the model is
visualized.
Other commonly appearing attributes are the command attributes. They play

a special role when combining gadgets together in a user interface. The
command attributes specify what action should be taken when the gadget is
activated. The action is specified in the form of a command attribute string
containing an Oberon command to be executed. The command specifies a
module and procedure name to be invoked and may optionally pass
parameters to the command. Command attributes have the same syntax as the
familiar Oberon commands. Two different command attributes are particularly
often used. The first one, named Cmd attribute, contains the command to be
executed when the gadget is activated (with an MM key click). For example,
the command

Desktops.OpenDoc Test.Text

assigned to the Cmd attribute of a Button, will open the file Test.Textwhen the
Button is activated. The second one, named ConsumeCmd, contains the
command to be executed when another gadget is dropped into a gadget which
has such an attribute.
The string assigned to a command attribute may contain macro characters

that allow other attributes to be accessed, selections to be processed,
parameters to be edited, and drag−and−drop operations to be controlled.
These macros are used to combine different gadgets together and have enough
power to build graphical interfaces for text−based Oberon applications. Macro
characters are presented in section 3.8.
Another attribute that is frequently used is the Locked attribute, which allows

you to freeze user interfaces. Often you need to restrict the editability of the
documents you create. By editing is meant changing the position or size of the
gadgets in a Panel or other container. The editability of a gadget is determined
by two things. First, the gadget itself might be programmed in such a way that
it cannot be moved or resized. This is then a deliberate and inherent restriction
determined by the programmer of the gadget. Second, the context or container
of a gadget can determine if that gadget is locked or not. This implies that
when a gadget moves from one context to another, its editing behavior
changes depending on its container. A parent can lock or unlock all its direct
descendants at once; it cannot selectively lock only some of them. The locked
flag affects only the direct children of a container; you have to lock nested
containers yourself. Panel, TextGadget, Iconizer, NoteBook, Organizer, etc. are
examples of lockable gadgets.

3.6 Columbus

Columbus is a very versatile instrument that can be applied to any gadget
(visual or model) for an inspection of its identity (generator) and where
applicable, of its attributes, links, components and other properties such as the
size and relative position in a container. When applied to a specific gadget, the
tool adjusts its shape, to represent an attribute form for this gadget. Note that
this form is a document created by a program. The tool can also be used to
manage public libaries and their content.

Figure 3.8 A Columbus Attributes view

Columbus presents itself in two different "variable geometry" panel documents
(they always fit in the system track). One of them, the Columbus Panel, is used
to inspect and configure the state of objects (Figure 3.8). The other one, called
"Libraries.Panel", is used for manipulating public libraries (see section 3.11).
The Columbus Panel is opened with the command:

Columbus.Inspect ~

or by activating the [Columbus]Button in the Gadgets.Panel.
What you see in the Figure 3.8 is the Attributes view of the Panel being

inspected; this is evidenced by the little horizontal bar (representing a red LED)
in the [Attr]Button. Several other object views can be accessed via the other
Buttons which, with the exception of the [W]Button, function as radio buttons.
The value of a boolean attribute is visualized by a CheckBox, whereas the

value of an integer is visualized by a short TextField and that of a string by a
long TextField. An attribute name may have up to 32 characters.

3.6.1 Object views

[Attr]− Attributes view
This view displays the attributes of the inspected object with their values in the
Attributes section. It is the preferred view which is always presented first when
a new object is inspected. However, for a library (*.Lib), the library view is
presented first. You can change the attribute values and apply them to the
object by clicking the [Apply]Button on the right.

The New Attribute section is used for adding an attribute to the current
object. It features two TextFields: in the first one, enter an attribute's name, in
the second one, its value. To add the attribute activate the [Add]Button. An
added attribute can be removed with the [Del]Button.

This view is the starting point for an organized or an impromptu inspection
tour of the current object with excursions to other related objects or libraries.
Every step is recorded in a history stack, making it possible to regress step by

step by activating the Button. On returning to the starting point, the

Button disappears. An MM click on the Current Object reference at the top
right, will project this view again. This can be used as a shortcut to return
immediately to the Attributes view.

[Link]− Links view
This view shows the links of the inspected object in the Links section. You can
change the object links and apply them to the object with the [Apply]Button on
the right side.

Figure 3.9 A Columbus Links view

The New Link section is used for adding a link to the current object. It features
a TextField for specifying a link's name, and an empty visual reference where
you drop the object to be linked. To add the link activate the [Add]Button. An
added link can be removed with the [Del]Button.

[Coords]− Coordinates view
This Button is present only when a visual gadget is being inspected. This view
shows the X and Y coordinates of a visual gadget with respect to the upper left
corner of its container, and its width W and height H, all measured in pixels.

Figure 3.10 A Columbus Coordinates view

[Comp]− Components view
This Button is present only when a container such as NoteBook, Organizer or
Panel, is being inspected and when such a container effectively contains a
component. This view lists the components of the container gadget with their
generator procedure and a visual reference. You may inspect each reference −−
with an MM key click. You may drag a reference away to insert the referenced
object in other documents, but you can neither change nor delete such a visual
reference.

Figure 3.11 A Columbus Components view

− call Watson

Columbus gives you the opportunity to see additional descriptions of the
inspected object. These are definition files or module files. Activating this
Button calls Watson.ShowObjwith the object's generator name as parameter.

[Lib]− Library view
This Button is present only when the object inspected is bound to a public or a
private library (see section 3.11). Obviously enough, when a library is inspected,
the library view is the preferred view which is always presented first. The view
lists the objects contained in the library. The generator procedure, the reference
number, and in the case of a public library, the name in the index are displayed
for each object, together with a visual Reference. Each object can be inspected
by MM clicking its visual Reference: an Attributes view of the object is
presented. The name of the inspected public library is displayed in the top right
corner. In the case of a private library, the text is simply "(Private)". The object
which was being inspected when the library view was called is easily spotted:
look for the blue text line. If there is no current object, no line is highlighted.

[Editor]− Library editor
This Button is present only when the object inspected is bound to a public
library. With the library editor you can unload the library from memory,
cleanup freed objects from the library, store the library and perform many
other maintenance tasks in the same way as with the Libraries.Paneldescribed in
section 3.11.

3.7 InspectingModuleDefinitionswithWatson

During software development, you will often need to refer to the definitions of
modules delivered with the Oberon system. A definition module describes a
module interface and is a summary of the complete module. It contains the
declaration of the exported names which may be used by other modules. It is
also known as the public view of the module and its advantage is its textual
compactness. With this clearly defined module interface, a module can be used
without knowledge of how it is implemented.
In Oberon, it is not necessary to write down the definition of a module:

Watson takes care of extracting the best information available about a specified
module. For example, should the source text of a module be available, Watson
can scan it for so−called exported comments which it presents to the user
together with conventional module interface. An exported comment is a
program comment starting with a double "*": (** *). The comment

typically contains more information about how to use specific module features.
As the source code of a module is sometimes not available to the user, Watson
effectively goes in search of a previously generated definition file (with a .Def
extension) first. Should both the definition file and the module source be
missing, Watson searches for the module symbol file. If the latter is missing
too, Watson tries to extract information about the module from its object file.
In each step of the Watson search strategy, the amount of information Watson
finds is diminished. Watson also has some further tricks up its sleeve. To
reduce the clutter of many definition files, several definition files may be
compressed and packed into a single archive file (with a .Arcextension).
Watson can automatically extract and decompress definitions from such an
archive file.
Watson is controlled with a graphical interface accessed by executing the

command Desktops.OpenDoc Watson.Panel. It features a number of Buttons and is
controlled by the Setup Iconizer and by CheckBoxes appearing in the lower
part. It is however just as easy to use the few commands that are associated
with its control Buttons.

Show Def ↑ Show Obj ↑

Select Source

Symbol file Options

Show all details
Extend base types

Syntax10 font only

Show Def *

Def
Mod
Sym
Cmd

Auto

Formatting Options

Comments in italic

Tutorial

Show Imp ↑ Check ↑Show Exp ↑

Setup

Figure 3.12 Watson Panel

Watson presents the information it finds as hypertext. This means that
hyperlinks allow you to explore type structures and the imported modules
directly by MM clicking on the text marked in blue.

3.7.1 Watson settings

Search order:

Def Archive:

Mod file name:

Definitions.Arc

*.Mod

DMSCT

Save settings

Figure 3.13 Watson Setup

The settings are defined on the reverse side of the Setup Iconizer. Experience
has shown that the default settings provided with the system are quite
adequate in most situations. If not, the settings can be modified and saved in
Watson.Libwith the [Save settings]Button. The three TextFields have the following
meaning:

Search order: contains a string of up to five capital letters which determines
the order, from left to right, in which the various information sources are
consulted for creating a definition text. The sources are:

D an existing file (.Def) or a file contained in the archive specified
in the TextField "Def Archive".

M the text of a module in a module file or in a marked viewer.

S the symbol file (.Sym).
C the object file (.Obj). Only the module commands are shown.

Equivalent to what is obtained with System.ShowCommands.
T a tutorial text associated with the module.

The default order "DMSCT" may be changed and information sources not
explicitely specified are ignored. The set order can also be overridden with the
Select Source radio−buttons.

Def Archive: specifies the name of the archive (file) containing the definition
texts. The module definitions of the entire Oberon system (but not of the
archived applications) are delivered in the archive Definitions.Arc. This file may be
extended with the definitions of custom developed modules. Alternatively, new
separate archives may be created, but only one such archive can be searched.

Mod file name: specifies a module name filter of the form [prefix.][*[.postfix]]in
which Watson will replace the asterisk by the name specified in the Watson
command. If the system cannot find a file with the name prefix.*.postfix(or
prefix.*if the postfix is omitted), it will drop the prefix and attempt to find a file
named name.postfix(or respectively name). Without asterisk, Watson assumes a
postfix ".Mod" and the module name filter becomes prefix.name.Mod. When the
field is empty, the filter is name.Mod.
A number of Oberon modules have a prefix such as IDE in PC Native Oberon

or Win, Win32 in Oberon for Windows. Watson can produce the definition
module of almost any module on a Windows platform if this field contains
"Win." or "Win.*.Mod".

Assuming that "Sample" is the parameter of a Watson command, these
examples show which file names are searched:
Win.*.Mod2 => Win.Sample.Mod2 then Sample.Mod2
Win.* => Win.Sample then Sample
Win. => Win.Sample.Mod then Sample.Mod
*.Mod3 => Sample.Mod3
* => Sample
empty string => Sample.Mod

3.7.2 Select Source

When the radio−button "Auto" is checked (this is the default setting), the
information sources search order applies, but it can be temporarily overridden
with one of the remaining radio−buttons. The information source
corresponding to the checked radio−button is then searched first, while the
remaining sources specified in the search order follow in order.

3.7.3 FormattingOptions

When a module text in a marked viewer or in a .Mod file is used to create a
definition text, the created text may be formatted in three different forms:
− without alteration to the source module text,
− with all text appearing in Oberon10 font: Oberon10 font only is checked

(command option \p). This option overrides the Comments in italic one. The
Syntax10 font is used in the Windows, Linux and Mac implementations.
− with comments in italic (command option \i),

These two options are ignored, if a .Deffile is found first.

3.7.4 Symbol fileOptions

When symbol information extracted from a symbol file or an object file is used
to create a definition text, the created text may offer three different information

content:
− without addition,
− with all details (command option \d),
− with extended base types information (command option \x).

These two options are ignored, if a .Defor a .Modfile is found first.

3.7.5 Watson commands

The three Buttons in the first row in Figure 3.12 appear in all the different
Oberon system implementations. Each of them can activate one of the
commands described below:

[Show Def ̂]activates Watson.ShowDef ^
[Show Obj ̂]activates Watson.ShowObj ^
[Show Def *]activates Watson.ShowDef *

Watson.ShowDef ([\options] module | ̂)
Watson.ShowDef [\options] *
opens a document viewer named "module.Def" displaying the definition of the
named module. The name must be an Oberon name, of which only the first
part is used. Watson attempts to open the information sources in a predefined
search order and reports on the outcome of the search: if the requested
information is found, the name of the source is listed in the system log,
otherwise an error message "no information about ... available" appears. If the
information source is the marked viewer (*), this marked text must be a valid
Oberon program text. If it is not, the location of the error is listed in the log.
The options belong to three different categories:

1 − the information sources identified by the capital letters D, M, S, C, T in the
desired order. This order takes precedence over the search order defined in the
Watson setup. Not all sources must be explicitely named − the remaining
positions will be taken over from the setup.
Example:

Search order in Setup: DMSCT
Command parameter: \MS
Resulting search order: MSDCT

2 − the formatting options: d and x
3 − the symbol file options: i and p

Watson.ShowObj ([\options] module.object | ̂)
opens a document viewer named "module.Def" displaying the definition of the
selected object in the selected module. The parameter must contain a
two−part qualified name, where objectis the name of an object exported by
module. If that object is not found, the entire module definition is displayed. The
options are the same as those of Watson.ShowDef.

Watson.MakeDefs ([\c] {modName} ~ | ̂)
Watson.MakeDefs [\c] *
creates a definition module (.Def) for each module file (.Mod) in the list. If the
option \cis used, HTML document files (.Def.html) are created instead. If a
matching definition or HTML file already exists, it is overridden. Such a
definition module may be added to an archive of definitions (.Arc) at any time,
if it is of some importance to your installation.

Watson.ConvertDefs ({defName} ~ | ̂)
converts each definition module (.Def) named in the list into a HTML
document file (.Def.html). The definition modules to convert must be found in
the system directory or in the archive file specified in the Watson panel
settings. If a matching HTML file already exists, it is overridden.

The Watson tool delivered with Linux, Mac and Windows Oberon System 3

features three additional Buttons (second row in Figure 3.12) which can each
activate further commands:

[Show Imp ̂]activates Watson.ShowImports ^
[Show Exp ̂]activates Watson.ShowExports ^
[Check ^] activates Watson.Check ^

Watson.ShowImports ([\options] module | ̂)
opens a viewer named "module.Imp" displaying a map of all the modules
imported by the named module, and of all the exported objects in those
modules which are effectively imported. This "uses what?" request may take
some time to complete. Only the first part of a qualified module name is used.

Watson.ShowExports ([\options] module | ̂)
opens a viewer named "module.Def" displaying the definition of the named
module, in the same fashion as [Show Def ̂], but the objects exported by the
selected module which are effectively used in other modules are shown in
green. When the MM key is pressed on such a green spot, a list of modules
using the object is presented. Selecting one of the module with the mouse
cursor and releasing the MM key opens a viewer displaying the module source
text. This "where used?" request may take some time to complete. Only the
first part of a qualified module name is used.

Watson.Check ({module[*]} ~ | ̂)
Watson.Check all
opens a viewer named "Check.Out" containing an enumeration of the module
names which can be loaded. Each module name appears in red and an MM
key click on it shows its import map (Watson.ShowImports). For each module that
cannot be loaded, a message "module not found" is displayed in the system log.
The objective is to check the consistency of the named modules or of all
modules. Only the first part of qualified module names is used.

For these implementations which all use a directory structure, the module
files and the archive file to use must be found in the the current directory or in
the system search path. The meaning of "S" in the search order is then for these
implementations:

S the object file (.Obj) is searched

and not the symbol file anymore.
The formatting options in those environments refer to Syntax10 which is the

default font at installation time.

3.8 The CommandMacros

Command macros act as glue between gadgets in a user interface. Typically,
when activated, a gadget executes an Oberon command with parameters
obtained from the selection, from the attributes of a gadget itself, or from the
attributes of a gadget located in the same context. A few macro symbols in a
command attribute direct the parameter gathering task. The macros are first
expanded completely and the resulting text is passed to the executed procedure
in the normal Oberon fashion. This makes it possible to add user interfaces to
existing text−based Oberon applications. However, in the realm of the Gadgets
interface, some of this overhead can be avoided by using the special "%"
character right in front of a command. This character signals that the
command is parameterless (parameter scanning is not required), and the
called procedure is responsible for collecting additional information from the
environment. A short description of the predefined macros of the Gadgets
system follows:

Activator macro #

The activator macro returns an attribute value of the gadget that is executing
the command attribute. It is used in the form #AttrName, where AttrName is the
name of the attribute. For example, the ListGadget has an attribute Point that
contains the item that is clicked upon with the MM key (provided the gadget is
linked to a valid list model). Setting the Cmd attribute of the ListGadget to:

Desktops.OpenDoc #Point
will open the document whose name is pointed at in the ListGadget.

Lookup macro &

The lookup macro is useful when you want to pass a parameter to a command,
where the value of the parameter is the attribute value of a certain gadget. The
macro has the syntax &ObjName.AttrNameand on expansion it searches for the
object named ObjNameinside the current context, extracts its AttrNameattribute
value, and inserts this value into the command string. Take the case of a simple
application interface Panel with two components: a Button and a TextField,
which thus appear in the same context. Assume that you wish to open a text
file, whose name will appear in the TextField, by activating the Button. To
implement this, you first have to name the TextField, say TF, using Columbus.
Then, the Cmd attribute of the Button is set to:

Desktops.OpenDoc &TF.Value

A double && instructs the substitution mechanism to look for the object in the
context of the context and each additional & gives access to the next higher
level context.

Substitute macro '

The substitute macro expands to a double quote character ". It must be used
where a double quote would inhibit the substitution mechanism. An example
is given below.

Initiator macro !

When objects are consumed by another object, those being consumed are
called initiators or senders, and the consuming object is called the recipient or
receiver. This macro is used in the ConsumeCmd attribute of a visual gadget, and
gives access to the attribute values of the initiators. The consume command is
executed by the recipient. The macro takes the form !AttrNameand expands to a
list of attribute values of each object in the group of initiators. Suppose that a
source text file is represented by an Icon, and that a Filename attribute is added
to the Icon. Then, the name of the file is assigned to this new attribute. Finally,
the following string is assigned to the ConsumeCmd attribute of another Icon
representing the compiler:

Compiler.Compile !Filename ~

Now, by dropping one or several text file Icons into the compiler Icon, the
compiler will compile each file named in the list resulting from the expansion
of the parameter.

Selection macro ↑

The selection macro expands to the current selection. The macro ^AttrName
expands into a list of attribute values of all the selected objects. When no
gadget is selected, the text selection is used. The selection returned always
contains at least one whole word; if the beginning of a word is selected, the

whole word is returned as the selection. If no selection is active, the selection
macro expands to itself, the character "↑ ".

Most macros behave in a way that may seem strange at first. Macros are
identified by a special first symbol (!, &, etc.) followed by a parameter. While
expanding macros, the system needs to know when to terminate parsing the
parameter: this is either when no characters are left to be scanned (end of
string) or when a space is reached. However, when a space is reached first, the
space is not included in the expanded macro. If you want a space to be
included in the expanded text, you have to explicitly insert another space after
the first. This feature allows you to concatenate macros. For example, if
O1.Value is "Hello" and O2.Value is "World", then:

’&O1.Value &O2.Value’(one space)

will expand to "HelloWorld", while:

’&O1.Value &O2.Value’(two spaces)

will expand to "Hello World".

User defined macros

Programmers can add their own macros by identifying special symbols for
macros and by writing handlers for these new macro symbols. The mechanism
is implemented in the Attributesmodule.

MODULE Attributes;

MacroHandler =
PROCEDURE (ch: CHAR; VAR T: Reader; VAR res: Texts.Text; VAR beg:

LONGINT);

PROCEDURE AddMacro(ch: CHAR; handler: MacroHandler);

A new macro symbol is registered by calling the procedure AddMacro. The
handler is called when character ch is read using the reader/scanner, and it
must return:

res the substitution text. If NIL, no substitution was made.
beg the position in the text where reading/scanning must continue.

The macro might take parameters, that is, letters that follow immediately after
the macro symbol and which must be read and interpreted by the macro
handler using the passed Reader.

3.9 Composition Commands

So far, we have discussed how to create new gadgets and how to change their
attributes using prepared user interfaces like the Gadgets.Paneland Columbus.
There is also a textual interface with commands to perform the same tasks.
These commands are provided for the sake of completeness and need not
necessarily be used. The commands do however come in handy when creating
your own user interfaces. We will discuss these commands in this section, but
before that, we investigate how gadgets are instantiated.
A new instance of a gadget is created with an Oberon command. Let us

assume that the module M contains a procedure Pwhose task it is to create a
new instance of a certain object type. Here M.Pis called the object's new
procedure or generator. Executing the procedure M.Pcauses a new instance of
that object type to be created and initialized to a default state so that it is ready
to accept messages (i.e. it is completely functional). As the object often does

not know what to do with itself after creation, another command is needed to
display the new object (that is, if it is a displayable gadget). The module Gadgets
provides a standard interface for instantiating and inserting objects at the caret.
It has a command Insert with the following BNF syntax:

Gadgets.Insert ViewGenerator [ModelGenerator] ~

ViewGeneratordenotes the generator of the visual (view) gadget to be
instantiated. The ModelGeneratordenotes the model gadget to be linked to the
newly created gadget. The Gadgets.Insertcommand performs all that is needed
to create the view and model behind the scenes. As an example, the following
command creates a Model−View pair (consisting of a CheckBox linked to a
Boolean) and inserts the CheckBox at the caret:

Gadgets.Insert BasicGadgets.NewCheckBox BasicGadgets.NewBoolean ~

We see from the generator procedure names what types of gadget are involved.
A generator is typically named M.NewType, where NewTypeis the type of the
gadget. As mentioned before, many gadgets function both with and without
models, which explains why the ModelGeneratorparameter is optional.
If a visual gadget has been instantiated without model, it can be linked to a

model with the command:

Gadgets.Link ModelGenerator

The gadgets contained in the gadget selection are linked to the model gadget of
the type specified in the parameter. All the visual gadgets share then the same
model gadget. The same command may be used to change the linked model.
There are many generator procedures (one for each gadget type).

Remembering all of them can be difficult. The Gadgets system supports an
aliasing feature which allows you to use shorter names than those of the
generator procedures. It is for instance possible to rewrite the previous example
as:

Gadgets.Insert CheckBox Boolean ~

The registry contains a section [Aliases] which determines these aliases. Refer
to the Appendix A for more details on how to configure your Oberon system.
Each alias must appear once in a text line having the following format:

AliasName = M.P

where AliasNameidentifies an alias for the new generator procedure M.P. The
commands Gadgets.Insertand Gadgets.Linkare the principal clients of aliasing.
The Gadgetsmodule has a few more useful commands:

Gadgets.ChangeAttr attrName attrValue ~
sets the selected gadget's attribute. attrValuecan take several forms, depending
on the attribute type:

names for string attributes
Yes/No for boolean attributes
1234 for number attributes
"strings" for string attributes

Gadgets.Change ViewGenerator
changes (or transforms) the selected gadgets into a new type identified by the
ViewGeneratorparameter. An alias may be used. This command is used by the
[Change View]Button in the Gadgets.Panel.

Gadgets.Copy
makes a structure−preserving copy of the selection and inserts it at the caret.
This command is used by the [Deep Copy]Button in the Gadgets.Panel.

Gadgets.Set Obj.Attr value ~

changes the value of the attribute (Attr) of the indicated gadget (Obj). The
gadget must exist in the same context.

3.10 Documents andDesktops

A document is a named collection of objects. The name identifies the
document and must be known to retrieve the document content (the object
collection it contains). Most often, the document name is the name of the file
in which the document content is stored. By specifying the document name as
parameter to the Desktops.OpenDoccommand, the document is located,
prepared and displayed in a viewer. The OpenDoccommand is applicable to
documents of all classes. Typically, in the Oberon system, we use PanelDocs,
TextDocs and bitmap documents − to mention a few. The fact that the OpenDoc
command is applicable to all document classes hints to us that a document
must be an object of some type. Indeed, we can request the document object
to load itself, store itself, or print itself on a printer.
As documents are first class objects, we can imagine that they can do more

complicated things than just loading their contents from a disk when they are
opened. In fact, many documents "generate" their contents when required and
may even require to contact a remote server to retrieve the information.
Documents are sometimes also active; while a document is being used it might
decide to update its contents. For example, we can imagine having an
electronic mailbox on a remote server presenting itself as a document. In fact,
Oberon regards the whole world as a source of documents. The network
software included in Oberon allows you to open any document identified by
the uniform resource locator (URL). As a result, file servers, discusssion groups,
and World−Wide Web (WWW) pages all appear as documents in the Oberon
system [Zel97]. This is why it is such a pleasure to browse between different
information sources with Oberon.
In fact, a document is nothing more than an advanced visual container. We

can communicate with this container and request it to load, store, print and so
on. Being a container, a document can have any number of other gadgets as
descendants. Currently, documents in the Oberon system support only a single
child (although this is not a restriction). For example, a PanelDoc contains a
single Panel as a child, and a TextDoc contains a single TextGadget as child.
Note the difference between the Panel and its container, the PanelDoc. The
Panel itself is not a document. If it were, nested Panels in the same user
interface would end up in different files on disk.
In a way, a document can be regarded as a special type of gadget wrapper. It

"wraps" additional functionality around its content. A document might also
provide useful operations on the document content; the TextDocs provide a
Search−and−Replace facility for text, for example. A document also provides for
other functions such as constructing a menu bar or generating an Icon for the
document.
Interestingly, being a true visual object itself, a document can be inserted

into other containers. It is possible to insert a PanelDoc inside a TextDoc (for
documentation purposes, for example). Opening the TextDoc will
automatically load the contents of the PanelDoc it contains. In this way, the
TextDoc will always contain the latest version of the PanelDoc, even if it is
located across the network. This embedding feature of documents brings up
the question how a document container should present itself on the display: if
it is embedded in text, we would at least want it to look presentable when
printed.
Therefore, it was decided to make documents "invisible". A document is

always as large as its child and there is no way to distinguish a PanelDoc from
the contained Panel. Most of the time, the user is however implicitly aware of
the presence of a document. Its presence can also be verified by trying to select
the document in question. Documents use a two−phase selection protocol. On
the first try, the document content is selected in the normal white selection
pattern. Selecting again selects the document in a blue selection pattern. A

third selection attempt removes the selection completely. This allows us to
select a document for adaptation by Columbus.
But where do the menu bar and the viewer of an open document come

from if the document itself is invisible? This is the task of the Desktopsmodule.
After loading a document, the Desktopsmodule creates a viewer for the
document. The viewer consists of a menu bar (generated by the document
itself for the Desktopsmodule), and of the document content itself. This gives
the desktop display system more freedom for creating appropriate viewers for a
document. The Oberon system namely supports two different document
viewing models concurrently. This is commonly referred to as the windowing
model in other systems.
When Oberon was originally developed, it supported only the tiling

organization of viewers. In that model, viewers share the screen area without
obscuring each other partially. The tiling viewer system is the default viewer
allocation strategy when starting Oberon. Later, with the development of the
Gadgets framework, it became possible for visual objects to partially overlap
each other. This resulted in the development of desktops. A desktop is a large
surface embedded in a single viewer. Typically, different desktops are used for
different tasks (they are containers). A desktop contains viewers overlapping
each other together with other visual gadgets. It also ensures that a viewer pops
to the front for use when it is focused with an ML key click inside it.
Interestingly, desktops can be stored on disk, usually in a file with a .Deskname
extension. This allows the user to remember useful configurations. The default
desktop is called Oberon.Desk. In the current Oberon implementation, the tiling
viewer system does not support this saving feature. A desktop does not have a
menu bar. Instead, commands like Store, Grow, Copy etc. are provided as freely
positionable Buttons inside the desktop itself. Like any other viewers, the
desktop location is changed by grabbing it with the ML key in an unmarked
area a few pixels high along the top edge of the desktop.
Providing two viewer systems concurrently creates the problem of deciding

where to show freshly opened viewers. A simple heuristic solves the problem:
when a viewer is opened, it is opened in the same viewing mode (tiled or in
desktop) from which the command to open the viewer was executed. This
ensures that once you start working in one model, viewers will be opened only
in that very model. As usual, you can override this placement strategy by placing
the star marker at the location where you want a viewer to appear.
After this introduction to the concept of documents and desktops of Oberon,

we discuss in more detail the commands applicable to them.

3.10.1 Desktops Commands

The Desktopsmodule is the controlling instance for all document and
desktop−related tasks. Currently the desktop system supports both overlapping
and tiled organization of viewers.
Before listing the Desktopscommands, we first have to discuss how new

documents are created. Being objects themselves, documents also have
generator procedures. Calling a generator procedure causes an empty
document of that type to be created. To distinguish between opening an
existing document and creating a new one, the Desktops.OpenDoccommand uses
a special parameter syntax. Opening an existing document involves specifying
its name. Creating a new document involves specifying its generator procedure
(or its alias) in parentheses:

Desktops.OpenDoc docname Open document called docname
Desktops.OpenDoc (Generator) Open new document with generator as

type

Instead of specifying a generator, it is also possible to open a new document by
specifying a document name which does not already exist on the system (the
search path is used). In that case the type of the new document is determined

by the name extension (see Table 3.14). By default, a TextDoc is opened.
Thus we can open a new PanelDoc with either of these two commands (the

second uses an alias):

Desktops.OpenDoc (PanelDocs.NewDoc)
Desktops.OpenDoc (PanelDoc)

Sometimes, it is useful to change a document into a different class. This
assumes that the new document class can understand the original document
format. In such a case, specify both the document name followed by the
wanted document type between parentheses:

Desktops.OpenDoc Main.html(TextDocs.NewDoc)
Desktops.OpenDoc System.Tool(PanelDocs.NewDoc)

In many cases a conversion will fail, as it would in the second example.

The Oberon system is delivered with a few document classes, summarized in
the following table. Additional classes are supported by add−on packages.

Table 3.14 The Standard document classes

Document Class Generator Procedure Alias File name ext.

Panel PanelDocs.NewDoc PanelDoc .Panel
Picture RembrandtDocs.NewDocRembrandtDoc.Pict
Text TextDocs.NewDoc TextDoc .Text, .Mod, .Tool
System Log TextDocs.NewLog LogDoc

The following class was created for Columbus only:
Columbus Columbus.NewDoc Columbus

As a conclusion to this section, we summarize the Desktopscommands:

Desktops.Open filename
Desktops.Open ^
opens the desktop stored in the named file or opens a new default one if a file
with that name does not exist.

Desktops.Grow
grows the current desktop.

Desktops.Copy
copies the current desktop.

Desktops.Close
closes the current desktop.

Desktops.Store
stores the current desktop.

Desktops.OpenDoc filename
opens a document stored in the named file. If no file with that name exists, a
new empty document is opened. The type of the new document is determined
by the name suffix used.

Desktops.OpenDoc (DocumentGenerator)
creates an empty document of the specified type.

Desktops.OpenDoc filename(DocumentGenerator)
casts the named document to a new type. The document may already exist or it
may be a new document.

Desktops.InsertDoc filename
inserts the document stored in the named file at the caret, without a menu bar.

Desktops.ReplaceDoc filename
replaces the current document from which the command was executed with
another stored in the named file. This allows to switch in−place from one
document to another.

Desktops.CloseDoc
closes the current document.

Desktops.StoreDoc
Desktops.StoreDoc *
stores the current document or the marked document in a file. The file name is
taken from the document's NamePlate.

Desktops.PrintDoc Printername namelist ~
Desktops.PrintDoc Printername *
prints all the documents named in the list or the marked document. On some
platforms the printer name is ignored and the attached printer is assumed as
print destination.

Desktops.ChangeBackdrop picture-fileName
changes the backdrop of the marked desktop. To clear the backdrop, use a
non−existing Picture file name (*.Pict) or else use Columbus.

3.11 Libraries

The Oberon system uses a technique called libraries for making objects
persistent. Documents typically use libraries to store their contents in files.
Although libraries are primarily of interest to Oberon programmers, a little
knowledge about their use is required by the Oberon user too. As long as a
gadget is not associated with any library it is free. Once a gadget belongs to a
certain library it is bound and it is made permanent by storing the whole library
to disk. The libraries are divided into two classes: private and public.
Public libraries, uniquely identifiable by name, are shared between

applications, loaded once from disk and cached in memory until they are not
needed anymore. The fonts and the Icon library are examples of public
libraries. The list of currently loaded public libraries can be shown with the
Oberon command System.ShowLibraries. Columbus also shows to which library
an inspected object belongs. Libraries can be uncached explicitly from memory
by the user, although this should be done with care; it may be that an
application depends on an object in the public library.
Private libraries, in contrast, are loaded from disk each time they are

required, are never shared or cached, and do not have a name. Often these
nameless libraries are called anonymous. They are useful to protect the
contents of a document from outside influences and are of interest only to the
programmer.
Each library has an indexing mechanism associated with it. The index stores

the names of the objects that are to be exported from the library. We shall
often refer to a public object L.Oassuming that the public library Lcontains an
object O. It is possible for an object to have an intrinsic name, that is, the value
of its Name attribute differs from the name it is allocated under in a library.
Exported names are used only in public libraries.
Public libraries are quite useful repositories of objects. The Libraries.Panelis a

convenient tool for managing public and private libraries.

Figure 3.15 The Libraries.Panel

Executing the command Desktops.OpenDoc Libraries.Panel ~opens a library Panel.
It is divided into three parts. The top part contains the Button [Directory], two
radio buttons and a ListGadget. The ListGadget will contain a list of library
names. You can choose the kind of libraries to be listed: libraries stored on disk
or libraries currently loaded in memory. Activate the [Directory]Button to see the
list of your choice.
Pick a library in the list with an MM click. The TextField Library is updated: it

shows the library which will become the target of the library management
operations controlled by the Buttons in the middle part.

[Unload]− Removes the library from memory.
[Cleanup]− Collects the unused objects and stores the library on disk.
[Store]− Stores the library on disk (the library remains cached in memory).

At the same time, the list of objects contained in the library is displayed. Each
object can be inspected by MM clicking its visual Reference at the right side. A
Columbus Panel is directly opened presenting the Attributes view of the object.

Pick an object in the list with its Name Button. The TextField Object is
updated: it shows the object which will become the target of the operations
controlled by the Buttons in the bottom part.

[Retrieve]− Inserts the object at the caret or opens it as a document (if it is a
document gadget). The three CheckBoxes at the right indicate if retrieval from
the library should involve retrieving a Reference to the object, retrieving a
Shallow Copy of it or retrieving a Deep Copy of it. The latter is selected by
default.

[Rename]− Renames the object with the specified name. All changes made to
the object will be reflected immediately to the clients of the object. The
TextField on the right is used to specify the new name.

[Install]− Inserts the object under the specified name in the library. An object

with this name is overwritten. The TextField on the right is used to specify the
name. A Reference to the object to install must be placed in the empty
RefFrame gadget first.

[Free]− Frees the selected object from the library.

Public libraries are used for a few tasks in the system. They often contain
objects needed by applications, like Icons and pre−fabricated menu bars, or a
state that needs to be made global. In the next section, we will discuss one of
these topics of particular interest to the end−user.

3.11.1 User−CustomizedMenuBars

Often, typically when working on a low−resolution display, the standard menu
bars used in the viewer system and on the desktop are too big to fit in a track,
or do not contain the menu options you want. When opening a TextDoc, the
Desktopsmodule requests a document to appear with a different menu bar in
the system track, in the user track or in the desktop, depending on where the
document viewer should be placed. The system searches for an optional public
library named TextDocs.Libwhich may contain different prefabricated menu bars
as objects. The following tables list the names that must be given to these
objects according to the situation:

Table 3.16 Customized menu bars in TextDocs.Lib

Menu TextDoc LogDoc
for

desktop DeskMenu LogDeskMenu
system track SystemMenu LogSystemMenu
user track UserMenu LogUserMenu

A similar strategy is used for constructing the menu bar for a PanelDoc:

Table 3.17 Customized menu bars in PanelDocs.Lib

Menu PanelDoc

desktop DeskMenu
system track SystemMenu
user track UserMenu

If the indicated public library object is missing, a default menu bar is
constructed. That is the case for a freshly installed Oberon system, because it is
delivered without these public libraries. The default menu bars are detailed in
the Chapter 2 and in the descriptions of LogDoc, PanelDoc and TextDoc in
Chapter 4.
All the menu objects listed (DeskMenu, SystemMenu etc.) are for use with a

display width (Display.Width) exceeding 1000 pixels. Another set of menu objects
may be constructed for use with small display units. The names of these
additional menu objects must be "DeskMenuS", "SystemMenuS",
"UserMenuS", "LogDeskMenuS", etc.
All these menu objects may easily and accurately be constructed and stored

in public libraries using the LayLa [Der96] tool described in Chapter 6. You may
of course create your own menu bars from all available gadgets. The default
ones are just simple Panel gadgets with a NamePlate and a few (command)
Button gadgets. In accordance with these defaults, it is good practice to
implement the standard Close, Hideand Growcommands in customized menus.
If the opened document should become a persistent object, also include a
Desktops.StoreDoccommand. To give the Panels a good look, you should at least
set their border width to 0 pixels. You may also add Iconizers to the menu bars

if you want pull−down (or drop−down) menus. You can use the layout tools in
the Align iconizer of the Gadgets.Panelto improve the layout of your own menus.
Also, using the Libraries.Panel, you can change the contents of the menu bars
stored in these libraries. An example of customized menu bar is given in
Chapter 6.

Chapter Four

The Standard Gadgets Reference

4.1 Introduction

In an extensible system, new components are continually being added to the
system. It is thus possible to give a snapshot only of the components supplied
with the Oberon System 3 Release 2.2 described here. This chapter lists the
most often used gadgets included in the Oberon distribution. A few of them
are superseded by better ones.
The gadget descriptions are ordered alphabetically by name. The generator

and alias for each gadget are listed, followed by a description of the gadget's
function and attributes. The attributes, with the exception of the Name
attribute (every gadget has one), are presented in the order in which they
appear, when inspected with Columbus (refer to Chapter 3). The initial (or
default) value assigned to each attribute after instantiation with a Gadgets.Insert
ViewGenerator [ModelGenerator] ~ or Gadgets.Link ModelGenerator ~ command is
specified after the attribute type between square brackets []. "[]" represents
the empty string and "[?]" means that the value is determined by the context.
When a gadget is instantiated its Name attribute contains the empty string.
Remember also, that every visual gadget can be linked to a model gadget,
though this may not be meaningful for several of them. The existence of such a
link can be revealed with Columbus and by determining whether the Model
link contains a Reference or not. The Model link is however not documented
since it is omnipresent. In addition, a few visual gadgets may be linked to
additional gadgets in the same fashion. Such links are explicitely documented.
Where relevant, commands related to the gadget are listed at the end.
With a few exceptions, all these visual and model gadgets can easily be

instantiated using the Gadgets.Panel.
Whenever the registry is mentioned, remember to refer to the Appendix A to

find out how to tailor your system profile to your personal requirements.

Figure 4.1 Visual gadgets overview

Boolean

Classification Model gadget
Generator BasicGadgets.NewBoolean
Alias Boolean

Function

A Boolean is a model gadget that stores a BOOLEAN value. Booleans function
as models of Button and CheckBox gadgets.

Attributes

Value
Boolean [FALSE] value.

Button

Classification Visual elementary gadget
Generator BasicGadgets.NewButton
Alias Button

Function

A push−button with a 3D−effect and a user−definable caption. Buttons are
pushed with the MM key. This toggles them from off (pushed out) to on
(pushed in) and vice−versa. Additionally, the Popout attribute indicates if the
Button should pop out immediately after being pressed. This attribute is
typically set when the Button activates a command. A Button may be linked to
a Boolean or to an Integer model gadget. Several Buttons and CheckBoxes can
be linked to the same Integer model gadget. They then act as radio buttons:
only Buttons with a SetVal attribute value matching that of the Integer model
are switched on. Normally, one and only one radio button in a set is "on".

Attributes

Caption
String [Button] with the text to appear on the Button. When this attribute is
set to the empty string, a visual gadget may be dropped once inside the Button.
The consumed gadget then becomes the Button's linked Look gadget.
Normally, it will be a RembrandtFrame with a Picture model gadget. Selecting a
Button so captioned and issuing the command BasicGadgets.Breakreverses the
operation (see below). The Caption string can still be changed after the Button
has consumed a gadget: the string takes precedence and masks the gadget.

Value
Boolean [FALSE] indicating the state of the Button (off or on).

Popout
Boolean [TRUE] − TRUE indicates that the Button must immediately return to
the off state after being pressed.

Led
Boolean [TRUE] − TRUE indicates that an LED must appear when the Button is
pressed.

LedColor
Integer [1] specifying the color of the LED.

Color
Integer [13] specifying the color of the Button.

SetVal
Integer [0] used in conjunction with an Integer model linked to the Button. It
indicates for which value of the Integer model, the Button should switch itself
on.

YesVal
String [] that is returned by a Button only when switched on. When off, an
empty string is returned, even though the attribute value is remembered. This
attribute is useful in conjunction with the lookup macro "&" for specifying a
command option depending on the state of the Button.

Field

String [] indicating which attribute of the linked model gadget should be
visualized. When empty, the Value attribute of the linked model gadget is used
by default.

Cmd
String [] executed as a command when the gadget is toggled or pushed.

Links

Look
The visual gadget which appears as caption. The visual gadget can be installed
only if the Caption attribute contains the empty string by drag and drop. Using
the services of Columbus, the Look gadget may be installed, changed and
removed.

Commands

BasicGadgets.SetValues
assigns a unique SetVal number to each of the selected Buttons and
CheckBoxes. Numbering is from zero onwards in their order of selection. This
command is used when creating radio buttons. The common model must be
an Integer.

BasicGadgets.Break
takes the selected Button apart, removing the linked Look gadget and inserting
it at the caret.

Calendar

Classification Visual elementary gadget, transparent
Generator Clocks.NewCalendar
Alias Calendar

Function

A calendar showing the current day of the week and the date.

Attributes

Color
Integer [15] specifying the color of the text. "Sunday" is always displayed in red,
regardless of this value.

TimeDiff
Integer [0] that sets a time difference in hours relative to the system time. May
be used to display the day of the week and the date in a different time zone.

Commands

Clocks.InsertDate
inserts the current date at the caret. The date is formatted according to the
specifications contained in the DateFormat key in the [System] section of the
registry. If the caret is positioned inside a TextDoc, a TextField, a TextGadget or
a TextNote, it is inserted as a string. If the caret is positioned inside a container
such as a Panel, a PanelDoc or a desktop, it appears as the Value attribute of a
Caption.

Remark

When the Clocksmodule is loaded, a background task is installed in the Oberon
loop. To remove the task, remove all the visual gadgets it controls from the
display space and execute a System.Free Clocks ~command.

Caption

Classification Visual elementary gadget, transparent
Generator TextFields.NewCaption
Alias Caption

Function

A Caption is a text entity used for titles or comments in Panels and other
container gadgets. A Caption may consist of multiple lines of text, but only
limited editing capabilities are provided. The keyboard focus is set with an ML
key click, the gadget is then framed in a thin rectangle but no caret is visible.
When focused, characters typed in with the keyboard are appended to the
caption text. The backspace key deletes the last character. A text stretch,
including mixed fonts and colors, may be appended to the focused Caption
with a copy interclick (copy to caret or copy over). The font and the color can
be changed using the commands listed below. This gadget is always linked to a
Text model gadget which may be replaced by another, using Columbus for
instance, but which may never be deleted.

Useful hint: A Caption may be typed directly in a Panel or in a desktop at the
caret position. It is not necessary to insert the Caption first with Gadgets.Insert
Caption ~.

Attributes

Value
String [] appearing in the Caption. Only the first 64 characters are returned.
The text may contain mixed fonts and colors. The text color is reset to black
when this attribute value is manipulated with Columbus.

Font
String [Syntax10.Scn.Fnt] specifying the font of the text. The string is assigned
the value "mixed" after a mixed font or mixed color text stretch was copied to
the Caption.

Cmd
String [] executed as a command when the gadget is clicked on with the MM
key.

Underlined
Boolean [FALSE] − TRUE indicates that the text must be underlined.

Commands

TextDocs.ChangeColor color-no
applies the color specified by the parameter to the most recently selected
Caption. The text color can also be changed with the ColorPicker. The color is
reset to black when the gadget attributes are manipulated with Columbus.

TextDocs.ChangeFont font-name
applies the font specified by the parameter to the most recently selected
Caption. The font name must be specified in full, e.g. Courier10.Scn.Fnt.

CDTracks

Classification Visual elementary gadget
Generator AudioGadgets.NewTrack
Alias none

Function

An auto−adaptive graphic with a 3D−effect for a number of numbered cells
contained between a left and a right scroll button. The cells and the scroll
buttons adjust themselves to fit on the available surface when the gadget is
resized. If the specified number of cells cannot all fit, the scroll buttons become
active (indicated by the < or > captions). Scrolling through the cells is
controlled by MM key clicks on the scroll buttons. One of the cells, identified
by the Value attribute, appears pressed. A cell also appears pressed when the
MM key is pressed or dragged on it. This gadget is used in the CDAudio.Panelfor
which it was originally designed, but can be used in any other environment too.

Attributes

Value
Integer [0] specifying the number of the cell that must appear pressed. This
value is stored in the linked Model gadget. The value "0" means "no cell pressed".

Tracks
Integer [20] specifying the number of cells to distribute on the available
surface. Cells are numbered from 1 onward. This value is stored in the linked
Tracks gadget.

Point
Integer [0] that remembers the last clicked cell (read−only).

Cmd
String [] executed as a command when the gadget is clicked on with the MM
key. In the context of the CDAudio.Panelthis attribute is assigned the value
"CDAudioPlayer.Play #Point".

Links

Tracks
Model gadget which stores the value assigned to the Tracks attribute. In the
context of the CDAudio.Panel: Reference to the Integer model named "CDTracks"
containing the number of tracks of the CD loaded in the CD−ROM device.

Commands

AudioGadgets.InsertTrack [Model-generator [Tracks-generator]]
inserts a CDTracks gadget at the caret, without linked model gadget, linked to a
Model gadget, or linked to a Model gadget and to a Tracks model gadget.

Remark

The Audio application must be installed.

CheckBox

Classification Visual elementary gadget
Generator BasicGadgets.NewCheckBox
Alias CheckBox

Function

CheckBoxes function pretty much like Buttons, except that they show a check
mark when switched on. A CheckBox may be linked to a Boolean or to an
Integer model gadget. Several CheckBoxes and Buttons can be linked to the
same Integer model gadget. They then act as radio buttons: only CheckBoxes
with a SetVal attribute value matching that of the Integer model are switched
on. Usually, one and only one radio button in a set is "on". When used as radio
buttons, Checkboxes show rectangular check marks instead.

Attributes

Value
Boolean [FALSE] indicating the state of the CheckBox (not checked or checked).

YesVal
String [] that is returned by a CheckBox only when it is switched on. When off,
Columbus does not show its value, even though it is set behind the scenes. This
attribute is useful in conjunction with the lookup macro "&" for specifying
command options depending on the state of the CheckBox.

SetVal
Integer [0] used in conjunction with an Integer model linked to the CheckBox.
It indicates for which value of the Integer model, the CheckBox should check
itself.

Field
String [] indicating which attribute of the linked model gadget should be
visualized. When empty, the Value attribute of the model gadget is used by
default.

Cmd
String [] executed as a command when the gadget is clicked on with the MM
key.

Color
Integer [14] specifying the color of the CheckBox.

Commands

BasicGadgets.SetValues
assigns a unique SetVal number to each of the selected Buttons and
CheckBoxes. Numbering is from zero onwards in their order of selection. This
command is used when creating radio buttons. The common model must be
an Integer.

Circle

Classification Visual elementary gadget, transparent
Generator BasicFigures.NewCircle
Alias Circle

Function

A circle with an adjustable radius. Selecting a Circle causes two control points
to appear, one in the center and the other on the circumference of the Circle.
Pressing the MM key on one of the control points and dragging changes the
position or the radius of the Circle which takes its final shape when the key is
released.

Attributes

Color
Integer [15] specifying the color of the Circle. If the Circle is filled, the color also
applies to the interior. The color can also be changed with the ColorPicker.

Width
Integer [1] specifying the width in pixels of the Circle.

Pattern
Integer [0] specifying in which pattern the Circle is to be drawn. If the Circle is
filled, the pattern also applies to the interior. Patterns, which are exported by
the module Printer3, are numbered from 0 to 8:

0 1 2 3 4

5 6 7 8

The value 0 (no pattern) and invalid values are mapped to the value 5
corresponding to a pattern named "solid".

Closed
Boolean [FALSE] − not interpreted.

Filled
Boolean [FALSE] − TRUE indicates that the Circle must be filled. If so, the filled
part has the color specified by the Color attribute and the pattern specified by
the Pattern attribute.

Cmd
String [] executed as a command when the gadget is clicked on with the MM
key.

Clock

Classification Visual elementary gadget, transparent
Generator Clocks.NewClock
Alias Clock

Function

An analogue clock with hour and minute hands, showing the current time.

Attributes

Color
Integer [15] specifying the color of the Clock.

TimeDiff
Integer [0] that sets a time difference in hours relative to the system time. May
be used to display the time in a different time zone.

Commands

Clocks.InsertTime
inserts the current time at the caret. The time is formatted according to the
specifications contained in the TimeFormat key in the [System] section of the
registry. If the caret is positioned inside a TextDoc, a TextField, a TextGadget or
a TextNote, it is inserted as a string. If the caret is positioned inside a container
such as a Panel, a PanelDoc or a desktop, it appears as the Value attribute of a
Caption. Refer to the TimeStamp gadget for details on the time format.

Remark

See Calendar.

ColorPicker

Classification Visual elementary gadget
Generator ColorTools.NewColorPicker
Alias ColorPicker

Function

A ColorPicker shows the current color palette entries of the system. The colors
are listed from left to right, top to bottom, from color index 0 to the number of
colors available. Pressing the MM key on the ColorPicker pops up a menu from
which a color can be selected. When the key is released, this color is then
applied to the most recent selection, either text, gadget or group of gadgets
which have a Color attribute, by virtue of the value assigned by default to the
Cmd attribute (see below). The color attribute of a selected text piece can also
be changed by copying the text attributes of another character, with a ML + MR
key interclick. However, the typeface and the vertical offset attributes of the
character chosen are also copied. The ColorPicker does a finer grain change.

Attributes

Colors
String [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15] that specifies the first 16 indices
shown by the ColorPicker. It defaults to the first colors 0 to 15 in the color
palette.

Col
Integer [15] that remembers the last picked color.

Cmd
String [ColorTools.ChangeColor #Col ˜] executed as a command when a color
is picked.

Commands

ColorTools.ChangeColor col-no
changes the color of the selection to the specified color. This command is both
applicable to the text and gadget selections. In the case of a gadget, the Color
attribute is assigned a new value.

ColorWell

Classification Visual elementary gadget
Generator ColorWells.NewColorWell
Alias ColorWell

Function

A ColorWell stores a current color value. The color value runs from 0 to the
number of colors available. This gadget is typically linked to an Integer model
gadget, though it may quite well be used without a model. A drag−and−drop
operation allows dropping the current color onto another visual gadget having
a Color attribute. In case the color of a gadget is controlled by an attribute with
another name, the TargetAttr can be used.
Pressing the ML key on a ColorWell activates a ColorPicker with which a

color can be picked directly. While dragging on the key, the color positioned
under the mouse focus is highlighted. This color becomes the current color
when the key is released.

Attributes

Color
Integer [0] that stores the current color.

Cmd
String [] executed as a command when the gadget is clicked on with the MM
key. In order to change the color attribute of a selected text piece, one can
assign the value "ColorTools.ChangeColor #Color ˜" to this attribute.

Field
String [] indicating which attribute of the linked model gadget should be
visualized. When empty, the Value attribute of the linked model gadget is used
by default.

TargetAttr
String [] indicating which attribute must be changed when a drag−and−drop
operation is performed. The value of this gadget's Color attribute is assigned to
the named attribute of the consuming gadget. For example, to change the
background color of a Scrollbar, the value "BackColor" must be specified.
When empty, the default name is "Color". The named attribute does not even
have to control a color.

Remark

The Leonardo application must be installed.

Columbus

Classification Visual document gadget
Generator Columbus.NewDoc
Alias Columbus

Function

Columbus is an extension of a PanelDoc containing a single Columbus Panel. It
is opened with the commands Desktops.OpenDoc (Columbus)or Columbus.Inspect, or
with the [Columbus]button in the Gadgets.Panel. It appears with a menu bar
containing buttons captioned [Close], [Hide]and [Grow]. The function of the [Hide]
button is explained in the Finder commands. Clicking the [] button in an
existing Columbus Panel for inspecting another object or library re−uses the
Panel and returns it to an attribute view or library view as described below, that
is, no new document is opened. Refer to the detailed description in Chapter 3.

Implementation restriction: Columbus cannot have attributes and it cannot be
named, though the NamePlate contains "Objects.Panel". Also, it can neither be
saved nor inserted at the caret with Gadgets.Insert Columbus.

Commands

Columbus.Inspect *
Columbus.Inspect ~
Columbus.Inspect L.O
opens a Columbus Panel in the Attributes view of the target object to inspect.
The latter may be the marked frame, the frame selected most recently, the
name L.Oof an object in a public library L or a name contained in the most
recent selection. If no target is found, an empty Columbus is opened. The first
version of this command using the marker (*) is of great utility to inspect a
marked component in a locked container (in which the components cannot be
selected). When the parameter value specifies the name of a library, a
Columbus Panel in the Library view is opened.

Complex

Classification Model gadget
Generator Complex.New
Alias Complex

Function

Complex is a compound model gadget representing a complex number.

Attributes

Real
real [0] value representing the real part of the complex number.

Imag
real [0] value representing the imaginary part of the complex number.

Rho
real [0] value representing the polar vector length of the complex number.

Phi
real [0] value representing the polar angle in radians of the complex number.

CurrentDirectory

Classification Model gadget
Generator Directories.NewDrv
Alias CurrentDirectory

Function

A CurrentDirectory gadget stores the current directory path the system is using.
This model gadget is typically visualized by a TextField gadget.

Attributes

Value
String [?] value representing the current directory path. An empty string is
returned in PC Native Oberon.

Commands

System.ChangeDirectory path
System.ChangeDirectory ..
sets the current directory either to that specified by pathor to the parent (..)
directory.

Remark

When the Directoriesmodule is loaded, a background task is installed in the
Oberon loop. To remove the task, remove all the gadgets it controls from the
display space and execute a System.Free Directories ~command.

Example

Insert a directory indicator at the caret with the command:

 Gadgets.Insert TextField CurrentDirectory ~

By assigning the string System.ChangeDirectory #Valueto the Cmd attribute of the
TextField gadget, the TextField can also be used to change the current directory.
An example can be found in the System.Tool.

CurrentLoad

Classification Model gadget
Generator Gages.NewLoad
Alias CurrentLoad

Function

A CurrentLoad model gadget calculates the current workload of the Oberon
system. The workload is estimated from the frequency at which the system
obtains control in the Oberon loop. This model gadget is typically visualized by
a Scope gadget.

Attributes

Value
Integer [?] value representing the current workload. It has no scale.

Remark

When the Gagesmodule is loaded, a background task is installed in the Oberon
loop. To remove the task, remove all the gadgets it controls from the display
space and execute a System.Free Gages ~command.

Example

Insert a load indicator at the caret with the command:

 Gadgets.Insert Scope CurrentLoad ~

Dag

Classification Model gadget
Generator ListDags.New
Alias Dag

Function

A Dag stores strings organized as a directed acyclic graph. The list may contain
duplicates or not. This model gadget is typically used as a model by a
ListGadget.

Attributes

Unique
Boolean [FALSE] − TRUE indicates that no duplicate items are allowed on a
level.

Commands

See ListGadget.

DigitalClock

Classification Visual elementary gadget, transparent
Generator Clocks.NewDigiClock
Alias DigitalClock

Function

A digital clock showing the current time in hours and minutes.

Attributes

Color
Integer [0] specifying the color of the DigitalClock's text.

TimeDiff
Integer [0] that sets a time difference in hours relative to the system time. May
be used to display the time in a different time zone.

Commands

Clocks.InsertTime
inserts the current time at the caret. The time is formatted according to the
specifications contained in the TimeFormat key in the [System] section of the
registry. If the caret is positioned inside a TextDoc, a TextField, a TextGadget or
a TextNote, it is inserted as a string. If the caret is positioned inside a container
such as a Panel, a PanelDoc or a desktop, it appears as the Value attribute of a
Caption.

Remark

See Calendar.

Directory

Classification Model gadget
Generator Directories.New
Alias Directory

Function

A Directory stores strings organized as a tree representing the structure of the
computer's external storage. It is typically visualized by a DirList or a ListGadget
gadget.

Attributes

Mask
String [*] used as a mask for selecting the list items. The only wildcard
character allowed in the mask is the "*".

RootDir
String [] determining the path for selecting the list items.

Commands

See ListGadget.

Remark

See CurrentDirectory.

DirectoryView

Classification Visual elementary gadget
Generator Directories.NewDirList
Alias DirectoryView

Function

A DirList is designed to visualize a Directory. It features the same properties and
the same attributes as a ListGadget, except that it displays fancy icons
representing the external storage devices and folders. These icons are created
from Picture gadgets provided in the public library Symbols.Lib.

Attributes, Links and Commands

See ListGadget.

Remark

See CurrentDirectory.

EventTimer

Classification Model gadget
Generator Gages.NewLap
Alias EventTimer

Function

This model gadget calculates how long the execution of commands takes, by
measuring the time during which the system obtains control in the Oberon
loop. Only events longer than half a second are measured.

Attributes

Value
Integer [?] value measuring the elapsed time in milliseconds.

Remark

See CurrentLoad.

Example

Insert an EventTimer at the caret with the command:

 Gadgets.Insert TextField EventTimer ~

Finder

Classification Visual elementary gadget
Generator Finder.NewFrame
Alias Finder

Function

A Finder is used to quickly find a document among the many documents piled
in a desktop and to place it on top of all others, open and ready. Moving the
mouse focus to the Finder and pressing the MM key opens the Finder showing
a list of document names from which one can be selected. When the MM key
is released, the selected document is brought to the front of the desktop and
the Finder is closed. An open document that is partially visible can also be
brought to the front by a simple ML click.

The Finder has three parts: the top part lists the names of the open documents
(in blue), the middle part lists the minimized documents (in green) and the
bottom part lists the documents contained in the [FinderTemplates] section of
the registry. The names of open and minimized documents are taken from
their NamePlates. The names include the full path specification and they are
preceded by an ideogram representing the document type. A document having
an empty NamePlate appears as "Untitled document".

The names in the three parts have an order. In the list of open documents, the
document placed on back of the desktop appears first, while the document
placed in front appears last. The name order in the second list is determined by
the system. In the last list, the names appear in the order of their appearance in
the [FinderTemplates] section, which may be customized at will. Each entry in
the section must appear in a text line with the following format:

Name = documentName | documentType

e.g. Gadgets = Gadgets.Panelor new Text=(TextDocs.NewDoc) for an untitled TextDoc.

Finally, if several desktops share the display, their respective Finders, if any, will
also share the unique [FinderTemplates] section, but will display different open
and minimized document name lists.

In the Oberon for Windows, Linux and Mac versions, one may drop any open
document from the desktop on the Finder: this document is then added to the
[FinderTemplates] section and to the last part of the Finder.

Commands

Finder.Minimize
minimizes the document in which the command is executed, whereby the
meaning of minimizing depends on the environment. When the document is
placed on a desktop, the document is removed from the desktop and its name
is placed in the Finder. If no Finder can be found on the desktop, nothing
happens. In the tiled viewer system, the menu bar of the document is pulled
down to the very bottom of the track, leaving the rest of the document
invisible. This command is used in the [Hide]button found in most menu bars.

Finder.UpdateTemplates
reads the [FinderTemplates] section of the registry again. This command is
used after an update of the registry in the current session.

Histogram

Classification Visual elementary gadget
Generator Histogram.NewFrame
Alias none

Function

A Histogram displays a chart of the previous values of the model gadget linked
to it. The exact behavior depends on the setting of the Histogram attributes. By
default, the Histogram uses the first values to determine an appropriate
histogram geometry, and adapts to new values as the model gadget changes.

Attributes

adaptive
Boolean [TRUE] − TRUE indicates that the Histogram operates in learning
mode. FALSE indicates that the Histogram parameters are not adapted.

moving
Boolean [FALSE] − TRUE indicates that the Histogram shows a moving plot of
the recent values. FALSE indicates that the Histogram will accumulate all
previous observations.

suspended
Boolean − TRUE indicates that the Histogram does not accumulate new values.

DoResetCounts
Boolean [FALSE] − Used to control the Histogram. TRUE indicates that the
value remains unchanged, but all Histogram counts are reset to zero.

DoResetAll
Boolean [FALSE] − Used to control the Histogram. TRUE indicates that the
value remains unchanged, but all Histogram geometry parameters and counts
are reset to zero.

NrObs, TooSmall, TooLarge, NaNs
Integers showing the global Histogram counts. These attributes should not be
set directly. They may however be reset using DoResetCounts.

Min, Max, CellWidth, nrCells
Reals resp. integers defining the global Histogram geometry. These attributes
should only be set directly when Histogram action is suspended. They may
however be reset using DoResetAll. DoResetAll resets the Histogram counts.

LogTransform
Boolean [FALSE] − TRUE forces a logarithm transformation of the model
values. Changing this value forces a DoResetAll.

Diff
Boolean [FALSE] − TRUE forcing to take differences of the (possibly
transformed) model values. Changing this value forces a DoResetAll.

Example

Insert a Histogram at the caret with the command:

 Gadgets.Insert Histogram.NewFrame ModelGenerator ~

Insert a Histogram at the caret showing differences between subsequent values
of the linked model gadget with the command:

 Gadgets.Insert Histogram.NewDiffFrame ModelGenerator ~

To insert a Histogram in suspended state, use the generators
Histogram.NewSuspendedFrame or Histogram.NewSuspendedDiffFrame.

Icon

Classification Visual elementary gadget, transparent (superseded by Finder)
Generator Icons.NewIcon
Alias Icon

Function

An Icon provides a caption for the linked Model gadget it visualizes. When it is
instantiated, an Icon has no model. At this stage, a visual gadget may be
dropped inside it, but once only. Normally, the dropped gadget is a
RembrandtFrame with a Picture model gadget. Instead of dropping a gadget
into an empty Icon, the Icon attribute may be used to set the linked Model
gadget to visualize. Selecting such an Icon and issuing the command Icons.Break
reverses the operation (see below). An Icon created with the Icons.InsertIcon
command is a "minimized" version of the original stored document. It occupies
little space on a desktop and the stored document can be re−opened with a
simple MM key click, by virtue of the value assigned to its Cmd attribute. Icons
can consume other gadgets and they are otherwise very flexible. An example is
given in section 3.8.

Using the [Hide]button to minimize a document and a Finder to insert it back
on the desktop, represents a different approach: an already opened document
and not a stored document re−appears on the desktop.

Attributes

Caption
String [Icon] containing the Icon caption text. Executing the command
Icons.InsertIconassigns a new value to this attribute.

Icon
String [] used to set the linked Model gadget to visualize. The string is the
name of a visual object O located in a public library L (notation L.O). A library
Icons.Libof RembrandtFrames is provided for this purpose. The Libraries.Panelis
used to investigate the content of this library.

Cmd
String [] executed as a command when the gadget is clicked on with the MM
key. The string is typically a command of the form Desktops.OpenDoc ’#Caption ’for
opening the document named in the Caption attribute. Executing the
command Icons.InsertIconassigns that value to this attribute.

ConsumeCmd
String [] executed as a command when a gadget or a group of gadgets is
dropped inside the Icon. The originals of the dropped gadgets (or initiators)
remain in place. This command is executed only when the Icon has a linked
Model gadget. No command is executed the first time a gadget is dropped. The
command string will usually contain an initiator macro "!".

Commands

Icons.Break
takes the selected Icon apart, removing the linked Model gadget and inserting it
at the caret.

Icons.InsertIcon
creates an Icon for the marked document and inserts it at the caret. The
Caption attribute is set to the document name, the Cmd attribute is assigned
the string Desktops.OpenDoc ’#Caption ’ and the linked Model Gadget is set
according to the document type. For example, if it is used with a document
"Work.Text", the Icon Icons.Textis extracted from Icons.Lib.

Iconizer

Classification Visual container gadget
Generator Icons.NewIconizer
Alias Iconizer

Function

An Iconizer is used to build various types of menus. It is a flip−card, with a
gadget on each side of the card. A switch pin is located in the top left corner of
the Iconizer. Clicking on this pin with the MM key, flips the Iconizer between
its two sides. Initially, the Iconizer has no links and the two "empty" sides can
be distinguished by their captions "Closed" and "Open". On each side, a visual
gadget may be dropped, but once only. The dropped gadget then becomes the
side's linked gadget (Open or Closed) which is viewed by this side. The two sides
can be distinguished by the cross on the switch pin of the "Open" side. By
setting the attributes, Iconizers can be changed into different types of pop−up
menus. When building a menu, the "Closed" side represents the menu, and the
"Open" side represents the menu items themselves.

Attributes

Popup
Boolean [FALSE] − TRUE indicates that the Iconizer functions as a pop−up
menu when the MM key is clicked. When the Menu attribute is set to FALSE,
the "Open" side gadget will pop−up and will track the mouse until the key is
released. As an example, in this state an item can be picked directly from a
TextGadget or a TextNote contained in the "Open" side of the Iconizer. An
example is given below.

Menu
Boolean [FALSE] − Together with the Popup attribute, the Menu attribute
allows you to make pop−up menus. When the menu is popped up, a menu
item may be selected. The menu item is any text piece located in the "Open"
side of the card that contains a Cmd attribute. The Cmd of the selection will be
executed when the mouse key is released. In this mode, the closed side of the
Iconizer cannot be edited anymore.

FixedViews
Boolean [TRUE] − TRUE indicates that the two sides of the card are displayed at
their default positions. Otherwise, the two sides may be located at different
positions in the current parent context. Moving one side of the card does not
affect the position of the other.

Pin
Boolean [TRUE] − TRUE indicates that the switch pin must be visible. When set
to FALSE, the Iconizer can be flipped only by executing the command Icons.Flip
from within it, or with the help of Columbus. Also, when set to FALSE, the
Popup attribute could be set to TRUE to be able to access the "Open" side
temporarily. The menu on that side is well protected, whatever the value of the
Locked attribute.

Locked
Boolean [FALSE] − TRUE indicates that the Iconizer cannot be edited or resized.

Links

Closed and Open
The visual gadgets appearing on the two sides of this gadget.

Commands

Icons.Break
takes the selected Iconizer apart, removing the visual gadget appearing on both
sides and inserting them at the caret if it is set.

Icons.Flip
flips the Iconizer when executed from within it.

Example

A typical Iconizer is constructed with a Panel as its Closed link and a TextNote
(or a TextGadget, a Panel, etc.) as its Open link. The Panel has a Caption in it for
the title of the pop−up menu, and the TextNote contains a list of commands or
file names. The Iconizer attributes are set to: Popup = TRUE, Menu = FALSE,
FixedViews = TRUE, Pin = FALSE. In the case of file names, the Cmd attribute of
the TextNote must contain a command, such as Desktops.OpenDoc #Pointfor
example, as dictated by the application.

Closed side Open side

This kind of pop−up menu is very useful in tool texts and is even more
compact than an alternative implementation based on TextHyperlinks. The
Programming.Toolcontains a few examples of such menus in Iconizers, with a
visible switch pin though.
The following module comes in handy to maintain menu texts in such

Iconizers:

MODULE IconizerEdit;

IMPORT Attributes, Display, Gadgets, Links, Oberon, Objects, Out, Texts, TextGadgets0;

VAR w: Texts.Writer;

(* Copy selected Iconizer menu for editing: IconizerEdit.EditMenu.
The "Closed" side may contain several components, one of them may be a Caption. *)

PROCEDURE EditMenu*;
VAR obj1, obj2: Objects.Object; time: LONGINT; name, cmd: ARRAY 32 OF CHAR;

t: Texts.Text; f: Display.Frame;
BEGIN

Gadgets.GetSelection(obj1, time);
IF (time >= 0) & (obj1 # NIL) THEN

Attributes.GetString(obj1, "Gen", name);
IF name = "Icons.NewIconizer" THEN

Links.GetLink(obj1, "Closed", obj2);
IF (obj2 # NIL) & (obj2 IS Display.Frame) THEN

name := "";
f := obj2(Display.Frame).dsc; (* first child *)
WHILE f # NIL DO

Attributes.GetString(f, "Gen", name);
IF name = "TextFields.NewCaption" THEN

Attributes.GetString(f, "Value", name); f := NIL
ELSE

name := ""; f := f.next
END

END
END;
Links.GetLink(obj1, "Open", obj2);
IF (obj2 # NIL) & (obj2 IS TextGadgets0.Frame) THEN

obj2 := Gadgets.Clone(obj2, TRUE);
WITH obj2: TextGadgets0.Frame DO

obj2.state0 := obj2.state0 +
{TextGadgets0.sizeadjust, TextGadgets0.grow, TextGadgets0.shrink}

END;
NEW(t); Texts.Open(t, "");
Texts.WriteString(w, "IconizerEdit.MakeMenu ");
Texts.Write(w, 22X); Texts.WriteString(w, name); Texts.Write(w, 22X);
Texts.Write(w, " ");
Attributes.GetString(obj2, "Cmd", cmd);
Texts.Write(w, 22X); Texts.WriteString(w, cmd); Texts.Write(w, 22X);
Texts.WriteLn(w);
Texts.WriteObj(w, obj2); Texts.WriteLn(w);
Texts.Append(t, w.buf);
Oberon.OpenText("", t, 200, 200)

ELSE Out.String("no text"); Out.Ln
END

ELSE Out.String("not an Iconizer"); Out.Ln
END

ELSE Out.String("no selection"); Out.Ln
END

END EditMenu;

(* Make a new Iconizer with a Caption "name" and a TextNote obj as third parameter.
The string "cmd" is to be assigned to the TextNote.
IconizerEdit.MakeMenu "caption" "cmd" obj *)

PROCEDURE MakeMenu*;
CONST W = 64; H = 25;
VAR name, cmd: ARRAY 64 OF CHAR; s: Texts.Scanner; obj1, obj2, obj3: Objects.Object;
BEGIN

Texts.OpenScanner(s, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(s);
IF s.class = Texts.String THEN

COPY(s.s, name); Texts.Scan(s);
IF s.class = Texts.String THEN

COPY(s.s, cmd); Texts.Scan(s);
IF s.class = Texts.Object THEN

obj1 := Gadgets.CreateObject("Iconizer");
Attributes.SetBool(obj1, "Popup", TRUE);
Attributes.SetBool(obj1, "Pin", FALSE);
Gadgets.ModifySize(obj1(Display.Frame), W, H);
obj2 := Gadgets.Clone(s.obj, TRUE); (* open contents *)
Attributes.SetString(obj2, "Cmd", cmd);
Links.SetLink(obj1, "Open", obj2);
obj2 := Gadgets.CreateObject("Panel"); (* closed contents *)
Gadgets.ModifySize(obj2(Display.Frame), W, H);
obj3 := Gadgets.CreateObject("Caption");
Attributes.SetString(obj3, "Value", name);
Gadgets.Consume(obj2(Gadgets.Frame), obj3(Gadgets.Frame), 8, −18);
Attributes.SetBool(obj2, "Locked", TRUE);
Links.SetLink(obj1, "Closed", obj2);
Gadgets.Integrate(obj1)

ELSE Out.String("no gadget"); Out.Ln
END

END
END

END MakeMenu;

BEGIN
Texts.OpenWriter(w)

END IconizerEdit.

Integer

Classification Model gadget
Generator BasicGadgets.NewInteger
Alias Integer

Function

An Integer is a model gadget that stores a LONGINT value. It may be visualized
by TextFields, Scrollbars, Sliders, Buttons or ProgressMeters. When linked to a
set of Buttons or CheckBoxes (or a mixture of Buttons and CheckBoxes), these
gadgets function as radio buttons. In this case, each Button and CheckBox
should be assigned a unique integer value stored in their respective SetVal
attributes. This can be conveniently done with the command
BasicGadgets.SetValues. A Button or CheckBox is "on" when its assigned integer
value corresponds to the Integer gadget value.

Attributes

Value
Integer [0] value.

LCD

Classification Visual elementary
Generator AudioGadgets.NewLCD
Alias none

Function

An auto−adaptive LCD display with a 3D−effect. The LCD segments are green
and the background is black. The LCD segments adjust themselves to fit on the
available surface when the gadget is resized. This gadget is used in the
CDAudio.Panelfor which it was originally designed, but can be used in any other
environment too.

Attributes

Value
Positive integer [0] value displayed.

Digits
Integer [2] specifying the number of digits to display. The displayed value is
right−adjusted and left−padded with zeros or left−truncated depending on the
current Value.

Width
Integer [3] specifying the width in pixels of the LCD segments.

Border
Integer [2] specifying the width of the 3D border surrounding the gadget.

Remark

The Audio application must be installed.

Line

Classification Visual elementary gadget, transparent
Generator BasicFigures.NewLine
Alias Line

Function

A line or polygonal line. Selecting a Line causes control points to appear at the
line joints. The control points can be adjusted by dragging on the MM key. The
Line takes its final shape when the MM key is released. While dragging a
control point, an MR key interclick inserts an additional control point, whereas
an ML key interclick deletes that control point.

Attributes

Color
Integer [15] specifying the color of the Line. If the Line is filled, the color also
applies to the interior. The color can also be changed with a ColorPicker.

Width
Integer [1] specifying the width in pixels of the Line.

Pattern
Integer [0] specifying in which pattern the Line is to be drawn. If the Line is
filled, the pattern also applies to the interior. Patterns are numbered from 0 to
8. Refer to the Pattern attribute of Circle.

Closed
Boolean [FALSE] − TRUE indicates that the two end points of the Line should
be joined.

Filled
Boolean [FALSE] − TRUE indicates that the Line must be filled. If so, an open
polygonal line appears closed, and the filled part has the color specified by the
Color attribute and the pattern specified by the Pattern attribute.

Cmd
String [] executed as a command when the gadget is clicked on with the MM
key.

List

Classification Visual elementary gadget (superseded by ListGadget)
Generator Lists.NewList
Alias List

Function

A List presents strings in list−like fashion. The list may be sorted or unsorted,
and it may have a scrollbar or not. Copying strings into the List is done by
focusing the List with an ML key click, and then copying text into it using a
right + middle keys interclick. The MR key is used to select list entries. The
normal interclick combinations to delete and copy over text from text gadgets
apply. Lists support a quick search facility: first focus the list, then type the first
few characters of the string entry to jump directly to that entry. Press RETURN
to restart the search process. The MM key is used to pick items from the list.
While the MM key is dragged, the list will scroll up and down if the mouse
focus is moved above and below the extent of the gadget. This gadget is always
linked to a Text model gadget which may be replaced by another, using
Columbus for instance, but which may never be deleted. The List gadget is an
earlier development, now replaced by a ListGadget / ListModel pair. It should
no longer be used.

Attributes

Scrollbar
Boolean [TRUE] − TRUE indicates that a scrollbar must be included.

Sorted
Boolean [TRUE] − TRUE indicates that the list must be alphabetically sorted. No
duplicate entries are allowed in a sorted list.

Sel
The currently selected items (read−only).

Point
String [] pointed at, just before the Cmd is executed. It is often used by the
Cmd attribute itself (read−only).

Cmd
String [] executed as a command when a List item is clicked on with the MM
key.

Commands

Lists.Directory "pattern" ObjName
searches the current directory and inserts a list of all the file names that match
the pattern, into the List named ObjName. The only wildcard character allowed in
the pattern is "*".

Lists.Diskette "pattern" ObjName
searches the currently selected diskette and inserts a list of all the file names
that match the pattern, into the List named ObjName. The only wildcard

character allowed in the pattern is "*". This command is not implemented on
all ports of the system.

Lists.Library "lib" ObjName
searches the library liband inserts a list of all the object names into the list
named ObjName.

ListGadget

Classification Visual elementary gadget
Generator ListGadgets.NewFrame
Alias ListGadget

Function

A ListGadget is designed to visualize list models. At the present time, four list
model gadgets are offered: ListModel, Tree, Dag and Directory. Depending on
the model chosen, this visual gadget displays different properties. The
combination of a ListGadget and a ListModel represents the simplest case,
which is very much the same as a List gadget.

Whatever the model is, a list is focused with an ML key click, which places the
caret (denoted here by a horizontal line) immediately under the closest list
item or at the top of an empty list. Drag on the ML key up or down, above and
below the extent of the list window, to scroll through the list. The scrolling
speed can be controlled by changing the vertical distance between the
ListGadget and the mouse focus: the greater the distance, the faster the
scrolling. This is handy for long lists. Alternatively, a long focused list can be
explored quickly with the help of the keyboard keys:

− Home go to the top of the list
− End go to the end
− PageDown the bottom item appears at the top
− PageUp the top item appears at the bottom
− Cursor up move up one line
− Cursor down move down one line.

Copying string(s) into the list is done in one of the two classical Oberon ways:
− by focusing the ListGadget first, and then copying a selected text to it
(MR + MM keys interclick), or
− by selecting a text stretch first and copying the selection at the caret in
the list (ML + MM keys interclick).

If the attributes Sorted and Unique of the model list are such that the list is
unsorted and contains duplicates, the copied items are inserted after the caret.

The MR key is used to select list items. Here also, dragging on the MR key
scrolls through the list. Multiple adjacent items are selected in that way, if
allowed by the MultiSel attribute. Finally, the items to select must not be
adjacent, when the ExtendSel attribute is set to TRUE. The normal interclick
combinations to delete and copy over text from or to text gadgets apply.

The MM key is used to pick an item from the list. Here again, dragging on the
MM key scrolls through the list.

When the model linked to a ListGadget is a Tree or a Dag, the displayed model
features a few specialities denoted by an arrow pointing to the right or an
arrow pointing down. The right arrow indicates that the item contains a
collection of hidden sub−items. An MM click on the arrow causes the hidden
sub−items to be inserted in the list after the arrowed line. The sub−list is
indented to the right by the amount of pixels specified in the TabSize attribute.

At the same time, the arrow changes its shape to a down arrow. Another click
on the arrow returns the display to its former look. The mouse click sensitive
area can be extended to the entire item line when the ExpOnPoint attribute is
set to TRUE. A sub−list is constructed in the following manner: select any
number of adjacent items as a group, or even several such groups in a focused
list and hit the keyboard cursor key −>. The selected item group(s) become
sub−items of the item which precedes them. That item, respectively items,
is/are thus arrowed. To remove a sub−list, select any number of items in a
focused list and hit the keyboard cursor key <−. The selected items are placed at
the same level as the item which precedes them, i.e. their root items. That item
thus loses its arrow. Finally, the command specified in the Cmd attribute is not
executed when clicking on an arrowed item, when the ExpOnPoint attribute is
set to TRUE.

For visualizing a Directory model gadget, one may also use a DirList which
displays fancy icons for representing the external storage devices and folders.

Attributes

TabSize
Integer [10] specifying the indenting space of sub−items in pixels. This attribute
has no meaning when a ListModel gadget is linked to this gadget.

BackCol
Integer [14] specifying the color of the list background.

TextCol
Integer [15] specifying the color of the list items.

PointCol
Integer [15] specifying the color of the list items which have been pointed at
with an MM key click.

InclPath
Boolean [FALSE] − TRUE indicates that the full tree path is created when an
item is copied to a text. The path components are separated by "/", the path
data is enclosed in double quotes and ends with a carriage return.

MultiSel
Boolean [TRUE] − TRUE indicates that multiple list items may be selected by
dragging on the MR key.

ExtendSel
Boolean [FALSE] − TRUE indicates that the selection can be extended to
non−adjacent list items by pressing the ALT−key while clicking with the MR key.

ExpOnPoint
Boolean [TRUE] − FALSE indicates that only the right arrow, or down arrow as
the case might be, is mouse clicks sensitive. TRUE indicates that the entire item
line is sensitive. In that case, the string in the Cmd attribute is not executed as a
command when the item is arrowed.

Locked
Boolean [FALSE] − TRUE indicates that no new item can be added to the list.

Font
String [Syntax10.Scn.Fnt] specifying the font of the list items.

Cmd
String [] executed as a command when the gadget is clicked on with the MM
key. The four read−only attributes may be used in conjunction with an activator
macro "#" in this string.

The following attributes are read−only attributes:

Point
String pointed at with the MM key. It may be used with the activator macro "#"
in the Cmd attribute.

Sel
String of the first list item selected. It may be used with the activator macro "#"
in the Cmd attribute.

PointKey
Unique key (integer) of the model item corresponding to the item pointed at
with the MM key. It may be used with the activator macro "#" in the Cmd
attribute.

SelKey
Unique key (integer) of the model item corresponding to the first list item
selected. It may be used with the activator macro "#" in the Cmd attribute.

Links

VPos
Reference to the model gadget whose Value attribute represents the first item
shown in the list.

VRange
Reference to the model gadget whose Value attribute represents the number of
lines in a list (read only).

HPos
Reference to the model gadget whose Value attribute represents the first indent
shown in the list.

HRange
Reference to the model gadget whose Value attribute represents the number of
indents (read only).

For all these links, the model value is interpreted as an integer value, though
the model may be an Integer, a Real or a String.

Commands

ListGadgets.InsertVScrollList ListGadget model ~
inserts a ListGadget, with a vertical Scrollbar on its right side, at the caret. The
inserted gadget is in reality a composite construction based on an Organizer
with two components: a ListGadget and a Scrollbar. Each of these components
is decorated with a Constraints attribute.

ListGadgets.InsertHVScrollList ListGadget model ~
inserts a ListGadget, with a vertical Scrollbar on its right side and a horizontal
Scrollbar on the lower side, at the caret. The inserted gadget is in reality a
composite construction based on an Organizer with three components: a
ListGadget and two Scrollbars. Each of these components is decorated with a
Constraints attribute.

Directories.Directory [\p] "mask" ObjName
finds all the file names in the current directory that match a specified mask and
inserts them in a list model gadget (ListModel, Tree or Dag) named ObjNamein
the current context. If the option \pis specified, the file names are prefixed with
their relative path in the current directory. When the Directories module is
loaded, a background task is installed in the Oberon loop: refer to the remark
under CurrentDirectory.

Example

The module TextPopupsuses this gadget, linked to a ListModel. See description
in section 6.2.

ListModel

Classification Model gadget
Generator ListModels.NewList
Alias ListModel

Function

A ListModel stores items in a linear fashion. The list items may be sorted or
unsorted and the list may contain duplicates or not. This model gadget is
typically used as a model by a ListGadget. Such a combination has the same
properties as a List.

Attributes

Sorted
Boolean [FALSE] − TRUE indicates that the list items are sorted.

Unique
Boolean [FALSE] − TRUE indicates that no duplicate list items are allowed.

Commands

See ListGadget.

LogDoc

Classification Visual document gadget
Generator TextDocs.NewLog
Alias LogDoc

Function

A text document (see TextDoc) displaying the system log. If it is opened with
the command Desktops.OpenDoc (LogDoc), it appears with a menu bar containing
buttons [Close], [Hide], [Grow], [Copy], [Locate]and [Clear]. The button [Clear]empties
the log. The button [Locate]is used for locating selected syntax errors reported
by the compiler in the system log inside the marked module source text. The
function of the [Hide]button is explained in the Finder commands. This gadget
is always linked to a TextGadget model gadget.

Attributes

DocumentName
String [System.Log] specifying the name of the document. This string appears
in the NamePlate of the document.

Commands

See TextDoc.

MemoryUsed

Classification Model gadget
Generator Gages.NewMem
Alias MemoryUsed

Function

A MemoryUsed model gadget contains an up−to−date indication of how much
of the Oberon heap is currently being used.

Attributes

Value
Integer [?] value representing the memory usage in bytes.

Remark

See CurrentLoad.

Example

Insert a memory monitor at the caret with:

 Gadgets.Insert TextField MemoryUsed ~

NamePlate

Classification Visual elementary gadget
Generator NamePlates.NewNamePlate
Alias NamePlate

Function

A NamePlate shows the name of the document in the document menu bar or
the name of the desktop when located inside one. The name is the string value
found in the DocumentName attribute of a document gadget. Most editing
operations work in the same way as those in a main editable text: the name
may be changed and a text stretch may be selected, deleted or copied. Placing
the caret is however a little different depending on the environment: if the
document is placed on a desktop, the caret is placed with an ML key click
anywhere in the NamePlate, whereas if the document is placed in a track, the
mouse has to point at the very bottom of it.

PC Native Oberon does not have a directory system. Consequently, the
document name appears alone.

In Linux, Mac and Windows Oberon, the document name is followed by the
full path name of the document, which is however often not completely visible.
To view the remaining text, place the caret in the NamePlate and scroll right or
left with the corresponding keyboard cursor keys. An MM key click on the
gadget causes the full name to appear in the system log, by virtue of the default
value assigned to the Cmd attribute (see below).

Attributes

Value
String [?] indicating the name of a document.

Cmd
String [Out.Echo '#Value'] executed as a command when the gadget is clicked
on with the MM key.

Navigator

Classification Visual elementary gadget
Generator Navigators.NewNavigator
Alias Navigator

Function

An Oberon desktop, for example Oberon.Desk, is 2 x 2 times the size of the
display screen: normally only the top left quadrant is visible. A Navigator is a
miniature representation of the four quadrants: the currently visible one is
always shown in black whereas the three remaining ones show the silhouettes
of the objects dropped on the desktop. A Navigator allows accessing all four
quadrants of a desktop: clicking with the MM key on any quadrant, makes it
visible. Gadgets can be moved (or copied) to the neighbouring quadrants as
usual by dragging (and clicking) them across the fictitious boundary line. All
quadrants display the navigator in the same absolute position on the display
screen. The top left corner of the display is a very convenient location for it.
Navigators can be used only in desktops; outside desktops they are inactive.

Whereas a Finder can be used to quickly find a document among the many
documents piled in the visible part of a desktop, the navigator can be
advantageously used to segregate those many documents into up to four
application oriented quadrants: this is an entirely arbitrary subdivision left to
the user's appreciation and taste. In the realm of program development it
seems fairly obvious to elect to use one quadrant for managing source text
documents and another for compiling and running programs. Remember that
a system log may be opened in each quadrant.

An alternative approach is to use different desktops instead of using several
quadrants in a single desktop.

NoteBook

Classification Visual container gadget
Generator NoteBooks.New
Alias NoteBook

Function

A NoteBook organizes a heterogenous collection of visual gadgets as pages of a
notebook. When it is instantiated, a NoteBook contains no page. Any visual
gadget, except a transparent one, can be inserted into the NoteBook by
dropping it inside the top part. Each additional gadget is inserted on a new
page at the end. The top part of the NoteBook shows the name of the current
page: it is the Name attribute of the visual gadget appearing on the page. Two
arrowed buttons allow turning the pages forward or backward. All the pages
have the same size and resizing a single page resizes all the other pages
accordingly. A page can be removed by moving it to a different location out of
the NoteBook or with a delete interclick.

Attributes

Locked
Boolean [FALSE] − TRUE indicates that pages cannot be resized or removed,
and no new page can be added.

Commands

NoteBooks.Show {"First" | "Last" | "Previous" | "Next" | "page-name" }
pages to the indicated page of the book in the current context. This command
must be executed somewhere inside the NoteBook itself.

NoteBooks.Show notebook-name {"First" | "Last" | "Previous" | "Next" | "page-name" }
pages to the indicated page of the named book, that is, the book in the current
context identified by notebook-name.

Organizer

Classification Visual container gadget
Generator Organizers.NewPanel
Alias Organizer

Function

An Organizer is a Panel extended with a simple constraint solver to reorder the
children automatically when the Organizer is changed in size. The constraint
system [Car86] is based on virtual wires: four wires are strung between the four
sides of a descendant and the edges of the Organizer. The horizontal sides of
the child gadget are attached to the top or bottom edges, and the vertical sides
to the left or right edges. The lengths of the four wires are given as four
numbers in the Constraints string attribute of the child. Positive numbers string
the wire "outward" and negative numbers "over" the gadget. That is:

Gadgets.ChangeAttr Constraints "10 20 30 40" ~

sets constraints on the selected child, where the left side of the gadget is 10
pixels from the left edge of the Organizer, the top side 20 pixels from the top
edge, the right side 30 pixels from the right edge, and the bottom side 40 pixels
from the bottom edge. Thus the sequence of numbers are left, top, right, and
bottom wire distances. Changing the 20 to −20 attaches the top side of the
gadget 20 pixels from the bottom edge. TestOrganizer.Panelis an example
including an Organizer.

Attributes and Links

See Panel.

Commands

Organizers.Exchange
flips the marked Organizer between an Organizer and a Panel. Constraints
attributes assigned to contained gadgets remain in existence.

Also refer to the commands of PanelDoc.

Outline

This is the folded text.

Classification Visual elementary gadget
Generator Outlines.New
Alias Outline

Function

An Outline, which functions inside a text only, implements a way to fold text
and gadgets enclosed between two arrows away into the gadget. When folded,
the Outline is a black rectangle. An MM click on a folded Outline "unfolds" its
content between the arrows. The two arrowed parts of an unfolded Outline are
themselves Outlines. The left part has the same attributes as the folded
Outline. Text and gadgets in an unfolded Outline may be freely edited and
Outlines may recursively contain other Outlines to any depth. An MM click on
one of the two arrows folds the text back into the Outline: an interesting device
for presenting detail or explanatory information without overloading a main
text. Be cautious however, deleting an arrowed Outline may prevent an Outline
from being folded again. Note that the text editing commands "search",
"replace", "replace all" , etc. do not operate on folded text, and that the
compiler cannot compile the text contained in folded Outlines. You first need
to unfold them all (refer to the commands below).

Attributes

Cmd
String [] executed as a command when the gadget is clicked on with the MM
key. A different command string may be assigned to the two parts of an
unfolded Outline.

Commands

Outlines.Insert
embeds the most recent selection in a folded Outline, or if no selection exists,
inserts an empty Outline at the caret in a text.

Outlines.Collapse *
Outlines.Collapse
collapses all Outlines, including the nested ones, in the marked text document
(*) or in the text document in which it is executed.

Outlines.Expand *
Outlines.Expand
expands all Outlines, including the nested ones, in the marked text document
(*) or in the text document in which it is executed.

Outlines.Replace
replaces the text stretch previously searched with an Outlines.Searchcommand
with the selection in the document. If the searched text pattern is found in an
Outline, it is expanded first.

Outlines.ReplaceAll
replaces all instances of the text stretch previously searched with an
Outlines.Searchcommand with the selection in the document. If the searched
text patterns are found in Outlines, they are expanded.

Outlines.Search *
Outlines.Search
searches for the selected text stretch, starting at the caret in a document or if
the caret is not set, from the beginning of the marked text document (*) or

document in which it is executed. If the text pattern is found in an Outline, it is
expanded.

Panel

Classification Visual container gadget
Generator Panels.NewPanel
Alias Panel

Function

A Panel is like a sheet of paper on which gadgets are organized in a
two−dimensional fashion. The gadgets contained inside are called the direct
descendants or children of that Panel, and the Panel itself the children's father,
context or container. As Panels are gadgets too, Panels may appear inside
Panels, nested to any depth. They support operations on groups of gadgets plus
the layout and alignment of children. The children of a Panel are organized in a
priority sequence and may overlap each other. A child keeps its priority when
moved around in a Panel and newly inserted gadgets are always placed in front.
Oberon commands put a gadget behind or in front of other gadgets. The
simplest way to bring a gadget to the front is to pick it up and consume it with
an MM + ML key interclick. A snapping grid allows easy positioning of children.
The grid is not visible and the grid spacing is adjusted with the GridSnap
attribute. Children can be aligned to the same base line, height, size, or width,
or organized vertically and horizontally. Operations on Panels can be performed
with the tools provided in the Gadgets.Panel. Behind the scene, these tools use
the command Panels.Alignand other commands described below.

Panels use the normal mouse conventions:

An ML key click inside a Panel sets the caret. Combined with an MM key
interclick, a shallow copy of the selection is placed at the caret.

An MM key click on a child gadget activates it. Use the MM key inside the
border to pick up a Panel and move it around dragging on the key. The border
is not visible but its width is adjusted with the Border attribute.

An MR key click on a child selects it. Dragging on the MR key in a free area
causes a spanning rectangle to appear for selecting several gadgets at the same
time. All the gadgets entirely contained in the rubber−banding rectangle are
selected when the key is released, and they can then be edited as a group. An
MR key drag followed by an ML key interclick deletes all the selected gadgets.
An MR key drag followed by an MM key interclick makes a shallow copy of the
selection and copies it over to the caret position. An MR key click in a free area
of the Panel clears the selection. An MR key click inside the border of a Panel
selects it. Another click deselects it.

Key Associated action

ML Point Set the caret to mark the insertion point.
ML + MM Copy to Set the caret and copy an existing selection

to the caret.

MM Activate Activate or manipulate a child: depends
on the child type and on the mouse focus.

MM + ML Bring the focused child to the front.

MR Select Select child or group of children.
MR + ML Delete Select child(ren) and delete.
MR + MM Copy over Select child(ren) and copy over to caret.

ML + MM + MR Nullify Nullify current mouse action.

A Panel can be converted to an Organizer, an extension of a Panel, with the
Organizers.Exchangecommand. This works on a PanelDoc too.

Attributes

Color
Integer [13] specifying the background color of the Panel. The color of a Panel
can also be changed with the ColorPicker. If the gadget is linked to a backdrop
picture, it takes precedence over the color.

Border
Integer [2] specifying the width in pixels of the clipping area around the edge of
the panel. Children are clipped when placed overlapping this area. This value
does not influence the look of the Panel border. Use the attribute Flat for that
purpose.

GridSnap
Integer [2] specifying the snapping grid spacing in pixels. The grid is not visible.

Flat
Boolean [FALSE] − FALSE indicates that the gadget must be surrounded by a
3D border.

Texture
Boolean [FALSE] − TRUE indicates that, if a backdrop picture has been installed
with a Panels.ChangeBackdropcommand, it should fill the whole panel
background as a texture. When the value FALSE is assigned, the picture is
placed in the upper left corner of the Panel.

Locked
Boolean [FALSE] − TRUE indicates that the Panel's content cannot be edited.

Links

Picture
Reference to the backdrop picture which is installed, changed or removed with
the Panels.ChangeBackdropcommand.

Commands

Panels.Recall
recalls the gadgets deleted most recently and inserts them at the caret.

Panels.ToFront
brings the selected gadgets to the front of the Panel.

Panels.ToBack
puts the selected gadgets to the back of the Panel.

Panels.ChangeBackdrop picture-fileName
changes the backdrop of the selected Panels. To clear the backdrop, use a
non−existing Picture file name or else use Columbus. See also Picture.

Panels.Align type
aligns the selected gadgets along an imaginary reference line or resizes them.
For example, in a Left alignment all selected gadgets must be lined up on their
left edges, the reference edge being that of the left most gadget. The following

alignment types are available:

top to common top border
bottom to common bottom border
left to common left border
right to common right border
vertical in a vertical fashion
horizontal in a horizontal fashion
width to the same width
height to the same height
size to the same size
verticalcentercentered on a common vertical line
horizontalcentercentered on a common horizontal line

When the parameter is width, heightor size, the largest dimension of the selected
gadgets is applied to all of them.

Organizers.Exchange
flips the marked Panel between an Organizer and a Panel. Constraints attributes
assigned to contained gadgets remain in existence.

Also refer to the commands of PanelDoc.

PanelDoc

Classification Visual document gadget
Generator PanelDocs.NewDoc
Alias PanelDoc

Function

A PanelDoc is a document containing a single Panel or Organizer. If it is
opened with the command Desktops.OpenDoc (PanelDoc), it appears with a menu
bar containing buttons captioned [Close], [Hide], [Grow]and [Store]. The function of
the [Hide]button is explained in the Finder commands. The document may be
given a name and can be saved in a file with that name.

Attributes

DocumentName
String specifying the name of the document. This string appears in the
NamePlate of the document.

Commands

PanelDocs.AppendPanel L.O
inserts a pre−fabricated component (Panel or Organizer) L.Oat the bottom of
an existing container (Panel or Organizer). The command must be executed in
the context of the container. This effect is obtained by inserting a gadget which
has a Cmd attribute, a Button for example, in the container. Then, the
command is assigned as an attribute value. When the gadget is activated, the
object L.Ois appended. This operation can be undone in two ways by executing
one of the two commands described below.

PanelDocs.RemovePanel
removes a component (Panel or Organizer) from its context (Panel or
Organizer). The command must be executed in the context of the component
itself. This effect is obtained by inserting a gadget which has a Cmd attribute in
the component. Then, the command is assigned as attribute value. When the
gadget is activated, the component is removed.

PanelDocs.DetachPanel
removes a component (Panel or Organizer) from its context (Panel or
Organizer) and opens a separate PanelDoc that contains it. The command
must be executed in the context of the component itself. This effect is obtained
by inserting a gadget which has a Cmd attribute in the component. Then, the
command is assigned as an attribute value. When the gadget is activated, the
component is removed.

Rembrandt.Paneland Leonardo.Paneluse these three commands.

Desktops.Recall
recalls the document closed most recently.

Picture

Classification Model object
Generator Pictures.NewPicture
Alias Picture

Function

A Picture is a model object containing a colored bitmap visualized by a
RembrandtFrame to which it is linked as a model. It has no attributes at all,
and no further attribute can be attached to it. A picture editor called
Rembrandt is included in the system to edit such bitmaps.

Attributes

Implementation restriction: Picture gadgets cannot be named or have
attributes.

ProgressMeter

Classification Visual elementary gadget, transparent
Generator ProgressMeters.NewFrame
Alias ProgressMeter

Function

Display a meter showing the value of a linked model gadget, e.g. an Integer or a
Real. This visual gadget typically visualizes the Integer model gadget named
"Progress" located in the NetDocs.Liblibrary provided for this purpose. A
ProgressMeter having that gadget as a model shows the progress of a data
transfer over the network interface. An example is found in the HyperDocs.Panel.

Attributes

Value
Integer [0] specifying the current value of the meter. This value is normally
stored in a linked Model gadget.

Min
Integer [0] specifying the minimum value of the meter.

Max
Integer [100] specifying the maximum value of the meter.

Color
Integer [1] specifying the color index of the measured Value.

Step
Integer [20] specifying the interval at which graduations must appear.

Marks
Boolean [TRUE] − TRUE indicates that graduation marks must appear at the
interval specified in Step.

Labels
Boolean [TRUE] − TRUE indicates that graduation values must appear at the
interval specified in Step.

Field
String [] indicating which attribute of the linked model gadget should be
visualized. When empty, the Value attribute of the linked model gadget is used
by default.

Real

Classification Model gadget
Generator BasicGadgets.NewReal
Alias Real

Function

A Real is a model gadget that stores a LONGREAL value.

Attributes

Value
Real [0] value.

Rectangle

Classification Visual elementary gadget, transparent
Generator BasicFigures.NewRect
Alias Rectangle

Function

A rectangle, possibly filled. Selecting a Rectangle causes two diagonally opposite
control points to appear. The control points can be adjusted by dragging on the
MM key. The Rectangle takes its final shape when the MM key is released.

Attributes

Color
Integer [15] specifying the color of the Rectangle. If the Rectangle is filled, the
color also applies to the interior. The color can also be changed with the
ColorPicker.

Width
Integer [1] specifying the width in pixels of the Rectangle.

Pattern
Integer [0] specifying in which pattern the perimeter line is to be drawn. If the
Rectangle is filled, the pattern also applies to the interior. Patterns are
numbered from 0 to 8. Refer to the Pattern attribute of Circle.

Closed
Boolean [FALSE] − not interpreted.

Filled
Boolean [FALSE] − TRUE indicates that the Rectangle must be filled. If so, the
filled part has the color specified by the Color attribute and the pattern specified
by the Pattern attribute.

Cmd
String [] executed as a command when the gadget is clicked on with the MM
key.

Rectangle3D

Classification Visual elementary gadget, transparent
Generator BasicFigures.NewRect3D
Alias Rectangle3D

Function

A rectangle with a 3D−effect, possibly filled. Selecting a Rectangle3D causes
two diagonally opposite control points to appear. The control points can be
adjusted by dragging on the MM key. The rectangle takes its final shape when
the key is released.

Attributes

See Rectangle.

Reference

Classification Model gadget
Generator RefGadgets.NewReference
Alias Reference

Function

A reference to any object which is an extension of Objects.Object. This model
gadget is visualized by a RefFrame gadget.

RefFrame

Classification Visual elementary gadget
Generator RefGadgets.NewFrame
Alias RefFrame

Function

A RefFrame (also called visual reference gadget) provides a frame for visualizing a
Reference to any object of type Objects.Object. This frame can have three
different representations:

− when it does not refer to an object,

− when it refers to a visual gadget,

− when it refers to a model gadget.

The practical advantage of this gadget is that it contains a Reference to an
object irrespective of its type (visual gadget or model) and of its size. The
Reference can be dragged−and−dropped or copied over to another context just
as easily as the object it represents.

A visual reference can be changed either by dropping a visual gadget into its
frame or by copying over a selected visual gadget. Alternatively, a reference
from another reference can be dropped or copied over with the same effect.
When a reference is changed by such a user interaction, it will execute the
command specified in the ConsumeCmd attribute. To remove the reference use
a delete interclick on the reference. If a model reference is dropped on a visual
gadget, the reference becomes a model of it. Like most other visual gadgets, a
reference may execute a command when clicked on. This gadget is used in
Columbus for which it was originally designed, but can be used in any other
environment too.

Attributes

Cmd
String [] executed as a command when the gadget is clicked on with the MM
key.

ConsumeCmd
String [] executed as a command when a gadget is dropped inside the
RefFrame and when the Reference is deleted with a delete interclick.

Locked
Boolean [FALSE] − TRUE indicates that the RefFrame refuses 'drop', 'copy over'
and 'delete' actions.

Drag
Boolean [TRUE] − TRUE indicates that the reference may be dragged away.

Links

Value
Reference to the object represented.

Commands

RefGadgets.Create generator
creates a new object and sets the Value link of an existing destination RefGadget
which is either the selected or the marked or the executor gadget.

RembrandtDoc

Classification Visual document gadget
Generator RembrandtDocs.NewDoc
Alias RembrandtDoc

Function

A picture document containing a single RembrandtFrame gadget. When the
document is opened with the command Desktops.OpenDoc (RembrandtDoc), it
appears with a menu bar containing buttons captioned [Close], [Hide], [Grow],
[Copy], [+], [-]and [Store]. The button [+]magnifies the selection, or the entire
picture if there is no selection. A magnification of 4, 7, 10, 13 and 16 is
obtained by clicking the button repeatedly, a maximum of 5 times. This makes
it very easy to retouch pictures pixel−wise. The button [-]reduces the entire
picture. It may be clicked a maximum of 5 times in succession until the original
size is restored, and not beyond. The function of the [Hide]button is explained in
the Finder commands. The contained Picture can be edited with the tools
provided in the Rembrandt.Panel. RembrandtDocs are usually stored in files having
a file name extension ".Pict". The Oberon system can also read other graphical
files such as GIF or JPEG files. The [PictureConverters] section of the registry
contains a list of acceptable file formats.

Attributes

DocumentName
String specifying the name of the document. This string appears in the
NamePlate of the document.

Commands

Desktops.Recall
recalls the document closed most recently.

RembrandtFrame

Classification Visual elementary gadget
Generator Rembrandt.New
Alias none

Function

A RembrandtFrame provides a frame for visualizing a single Picture model
gadget. The Picture model gadget may be replaced by another one, using
Columbus for instance, but it may never be deleted.

Attributes

Color
Integer [14] specifying the color index of the background.

Cmd
String [] executed as a command when the gadget is locked and clicked on
with the MM key.

Locked
Boolean [FALSE] − TRUE indicates that the contained Picture cannot be edited,
but it can be scaled by rezising the frame. When the gadget is unlocked, the
Picture returns to its original size.

Border
Boolean [TRUE] − TRUE indicates that the gadget must be surrounded by a
3D−border.

Scope

Classification Visual elementary gadget
Generator Gages.NewFrame
Alias Scope

Function

A Scope is a bar chart of the previous values of the model gadget linked to it.
The model must be an Integer. A new vertical bar is added to the right when
the model is updated. When the chart fills the Scope, the bar chart scrolls to
the left as new vertical bars are added. The minimum and the maximum value
observed in the visible portion of the chart are displayed on the left. The Scope
adjusts its scale automatically.

Remark

See CurrentLoad.

Example

Insert a load monitor at the caret with the command:

 Gadgets.Insert Scope CurrentLoad ~

Scrollbar

Classification Visual elementary gadget
Generator Scrollbars.New
Alias Scrollbar

Function

A Scrollbar visualizes a continuous range of values from which the user can
select by adjusting the Scrollbar's knob position with the MM key. If arrow
boxes are used, the knob can also be adjusted by MM key clicks on these
arrows. Keeping this key pressed, also adjusts it repeatedly until the key is
released. It can be linked to String, Integer or Real gadgets. The String must
represent a numerical value. It is typically used in combination with a
ListGadget.

Attributes

Min
Integer [0] specifying the minimum value of the attribute Value. Alternatively,
this value can be stored in a linked Min gadget.

Max
Integer [100] specifying the maximum value of the attribute Value.
Alternatively, this value can be stored in a linked Max gadget.

Value
Integer [50] specifying the current value of the Scrollbar. This value is normally
stored in a linked Model gadget.

StepSize
Integer [1] specifying by how many units the current value must be
incremented or decremented by MM key clicks on the arrow boxes, if present,
or by dragging the knob with the MM key. Alternatively, this value can be
stored in a linked Step gadget.

BackColor
Integer [14] specifying the color of the background.

Field
String [] indicating which attribute of the linked model gadget should be
visualized. When empty, the Value attribute of the linked Model gadget is used.

Cmd
String [] executed as a command after the knob's position was changed.

Vertical
Boolean [TRUE] − TRUE indicates that the Scrollbar is upright.

ArrowBoxes
Boolean [TRUE] − TRUE indicates that the Scrollbar must be decorated with
MM key sensitive arrow boxes at its extremities.

HeavyDrag
Boolean [FALSE] − TRUE indicates that the model gadget linked to the
Scrollbar is updated at the same time as the knob is moved. FALSE indicates
that the model gadget is updated only when the mouse key is released. This is
relevant in the case where multiple views of the model exist in the display
space.

Links

Min
Reference to the model gadget whose Value attribute is used as the Min value.

Max
Reference to the model gadget whose Value attribute is used as the Max value.

Step
Reference to the model gadget whose Value attribute is used as theStep value.

For all these links the model value is interpreted as an integer value, though the
model may be an Integer, a Real or a String.

ScrollView

Classification Visual elementary gadget
Generator ScrollViews.NewView
Alias ScrollView

Function

A ScrollView is a View which can be fitted with a horizontal or a vertical
Scrollbar or both according to its attribute values.

Attributes

HScrollBar
Boolean [TRUE] − TRUE indicates that a horizontal Scrollbar is used.

VScrollBar
Boolean [TRUE] − TRUE indicates that a vertical Scrollbar is used.

Set

Classification Model gadget
Generator SetGadgets.NewSet
Alias Set

Function

A Set is a model gadget that stores a 32−bit set. It is normally visualized by a
SetFrame gadget, but also a TextField, a Slider, a Button, a CheckBox or a group
of them may be linked to it.

Attributes

String
String [{}] representing a 32−bit set (Oberon language notation).

Value
Integer [0] representation of the 32−bit set in the String attribute.

SetFrame

Classification Visual elementary gadget
Generator SetGadgets.NewFrame
Alias SetFrame

Function

A SetFrame provides a frame for visualizing a set. It is most frequently linked to
a Set model gadget, but an Integer or a String (representing a set in the Oberon
language notation) may also be used. Any bit can be included (indicated by a
vertical bar) or excluded by MM key clicking on its placeholder. The least
significant bit is at the left in position 0.

Attributes

Value
Integer [0] representation of the 32−bit set visualized. This value is normally
stored in a linked Model gadget.

String
String [{}] representing a 32−bit set (Oberon language notation).

Field
String [] indicating which attribute of the linked model gadget should be
visualized. When empty, the Value attribute of the linked model gadget is used
by default.

Cmd
String [] executed as a command when the gadget is clicked on with the MM
key.

Sisiphus

Classification Visual elementary gadget
Generator Sisiphus.New
Alias Sisiphus

Function

An animated cartoon representing a walking man called Sisiphus. An MM key
click on a Sisiphus activates a screen saver which can be interrupted by pressing
the Neutralize key.

Attributes

Color
Integer [14] specifying the background color of Sisiphus. The color can also be
changed with the ColorPicker.

Age
Integer [0] specifying the age of the gadget. It counts how many times the
gadget has been updated by the background task.

Commands

Sisiphus.Sync
synchronizes the selected Sisiphus gadgets and resets their age to 0.

Remark

When the Sisiphusmodule is loaded, a background task is installed in the
Oberon loop. To remove the task, remove all Sisiphus gadgets it controls from
the display space and execute a System.Free Sisiphus ~command.

Slider

Classification Visual elementary gadget (superseded by Scrollbar)
Generator BasicGadgets.NewSlider
Alias Slider

Function

A Slider visualizes a continuous range of values from which the user can make
a selection by adjusting the Slider's knob position with the MM key. It can be
linked to a String, Integer or Real model gadget. The Slider is an earlier
development, now replaced by the Scrollbar. It should no longer be used.

Attributes

Min
Integer [0] specifying the minimum value of the attribute Value.

Max
Integer [100] specifying the maximum value of the attribute Value.

Value
Integer [50] specifying the current value of the Slider. This value is normally
stored in a linked Model gadget.

Field
String [] indicating which attribute of the linked model gadget should be
visualized. When empty, the Value attribute of the linked model gadget is used
by default.

Cmd
String [] executed as a command after the knob's position was changed.

Spline

Classification Visual elementary gadget, transparent
Generator BasicFigures.NewSpline
Alias Spline

Function

A spline, possibly filled. Selecting a Spline causes control points to appear at the
line joints. The control points can be adjusted by dragging on the MM key. The
Spline takes its final shape when the MM key is released. While dragging a
control point, an MR key interclick inserts an additional control point, whereas
an ML key interclick deletes that control point.

Attributes

Color
Integer [15] specifying the color of the Spline. If the Spline is filled, the color
also applies to the interior. The color can also be changed with the ColorPicker.

Width
Integer [1] specifying the width in pixels of the Spline.

Pattern
Integer [0] specifying in which pattern the Spline is to be drawn. If the Spline is
filled, the pattern also applies to the interior. Patterns are numbered from 0 to
8. Refer to the Pattern attribute of Circle.

Closed
Boolean [FALSE] − TRUE indicates that the two end points of the Spline should
be joined.

Filled
Boolean [FALSE] − TRUE indicates that the Spline must be filled. If so, an open
Spline appears closed, and the filled part has the color specified by the Color
attribute and the pattern specified by the Pattern attribute.

Cmd
String [] executed as a command when the gadget is clicked on with the MM
key.

String

Classification Model gadget
Generator BasicGadgets.NewString
Alias String

Function

A String is a model gadget that stores a string value of up to 64 characters. It is
usually visualized by a TextField. If the string represents a set in the Oberon
language notation, it may be visualized by a SetFrame.

Attributes

Value
String [] value.

Text

Classification Model object
Generator Texts.New
Alias Text

Function

Text is the abstract data type used for manipulating text in the Oberon system.
Texts can be of (practically) unlimited length, and contain font, color, and
vertical offset information. Gadgets can float inside a text stream. Texts are not
true gadgets and can have no attributes, except the Name attribute. More about
text can be found in Chapter 2 describing the textual user interface of Oberon.

TextDoc

Classification Visual document gadget
Generator TextDocs.NewDoc
Alias TextDoc

Function

A TextDoc is a document containing a single TextGadget. If it is opened with
the command Desktops.OpenDoc (TextDoc), it appears with a menu bar containing
buttons captioned [Close], [Hide], [Grow], [Copy], [Search], [Rep], [RepAll]and [Store].
The [Search]button searches for the selected text stretch in the text. Each time
the [Search]button is pressed, the caret advances to the next location in the text
where the pattern appears. When the end of text is reached, the searching
wraps around to the beginning of the text. The [Rep]button replaces the last
searched pattern with the current text selection and the caret then advances to
the next occurrence of the searched pattern. Repeatedly pressing the [Rep]
button replaces all the following occurrences of the search pattern. A
replacement can be skipped by pressing the [Search]button as many times as
required. At any time the [Rep]button can be pressed to start replacing
occurrences of the search pattern. The [RepAll]button is not present when the
document is opened in the system track. The function of the [Hide]button is
explained in the Finder commands.

Attributes

DocumentName
String specifying the name of the document. This string appears in the
NamePlate of the document.

Commands

TextDocs.ChangeColor color-no
applies the color specified by the parameter to the most recent text selection.
Colors are numbered 0 to 255. For example, white is 0, red is 1, green is 2, blue
is 3 and black is 15. The color can also be changed with the ColorPicker.

TextDocs.ChangeFont font-name
applies the font specified by the parameter to the most recent text selection.
The font name has to be specified in full, e.g. Courier10.Scn.Fnt. The default font
is Oberon10.Scn.Fnt for PC Native Oberon. For other implementations, the
default font is defined in the [System] section of the registry. If it is not defined
there, Syntax10.Scn.Fnt is used.

TextDocs.ChangeOffset pixels
applies the vertical offset specified by the parameter to the most recent text
selection. The offset is specified in number of pixels. Positive numbers make
text super−scripts, and negative numbers make sub−scripts.

TextDocs.Clear
clears the content of a document (often used in menu bars).

TextDocs.Controls *
TextDocs.Controls
toggles the visibility of the text control gadgets, that is, TextHyperlinks and
TextStyles, in the marked (*) or in the selected document. TextStyles which
have their Pagebreak attribute set on are always visible.

TextDocs.Locate
locates the compiler error in the marked text document. The compiler error
position must be selected.

TextDocs.PrintSetup [\Hon | \Hoff] [\Pon | \Poff]
controls the printing of headers and page numbers, displaying the new setup in
the system log. If any of the parameters is missing, the current setup is
displayed.

TextDocs.Recall
inserts the most recently deleted piece of text at the position of the caret. The
same text can be recalled many times, until another piece of text is deleted, the
Backspace key is pressed or the Delete key is pressed.

TextDocs.Replace
replaces the previously searched text stretch with the selection (used in the [Rep]
Button of menu bars).

TextDocs.ReplaceAll
replaces all instances of the previously searched text stretch with the selection
in the document (used in the [RepAll]Button of menu bars).

TextDocs.Search
searches the selected text stretch in the document in which the command is
executed (used in the [Search]Button of menu bars). Differences in the text
attributes font, color and vertical offset are ignored.

TextDocs.Search "string"
searches the specified string in the document in which the command is
executed. Differences in the text attributes font, color and vertical offset are
ignored.

TextDocs.SearchColor
searches a specified color in a text document. Select a text stretch first. The
color to search is the color of the first character in the stretch. Then, set the
caret in the text and execute the command. The text stretch with the specified
color appears selected and the caret is set at the end of it.

TextDocs.SearchDiff
TextDocs.SearchDiff \w
compares two open documents and searches the first difference between
them, starting at the selection in the last two selected texts. The first position
where a difference is found will be selected. The \woption regards sequences of
white spaces (blanks, TAB characters or CR characters) as a single space.

TextDocs.Show M.word
TextDocs.Show ^
opens a TextDoc displaying the text of module M, with the caret positioned at
the first occurrence of the specified word, provided the source text file M.Mod is
available. Otherwise, an empty document is opened. If wordis not found, the
text is positioned at the beginning and the caret is not set.

Desktops.PrintDoc Default *
Desktops.PrintDoc Default file-list ~
prints a document on the printer specified by the first name. Either the marked
document or a list of document names are accepted as parameters. Depending
on your platform, the printer name might vary, but in most cases the printer
name is simply ignored. Please check your implementation guide for more
details.

Desktops.Recall
recalls the document closed most recently.

In addition, a large palette of text editing commands is provided by the
EditTools tool described in Chapter 2.

TextField

Classification Visual elementary gadget
Generator TextFields.NewTextField
Alias TextField

Function

A TextField allows the editing of a single line of text. A TextField can be linked
to Integer, Real, Set, String, or compatible model gadgets. It can be used to
visualize the String attribute of a Set in Oberon set notation. Full Oberon−like
text editing capabilities are available for TextFields. The caret or focus point is
set with an ML key click and selections are processed with the MR key. A
TextField enters a temporary, local editing mode during editing. During this
time the frame of the TextField seems to pop out from the screen. If part of the
text is not visible, scrolling to the left or to the right is possible with the
corresponding keyboard cursor keys. While in editing mode, changes made to
the contained text string are not immediately reflected in the model gadget
linked to the TextField. As soon as the cursor is removed or when the CR key is
pressed, the local editing mode is left and the model and view are made
consistent. The previous value (if still available from the model gadget) is
restored in the TextField when the Neutralize key is pressed. When TextFields
are linked to model gadgets other than the string model gadget, a value
conversion will take place to the same format as the model gadget. In some
cases, a conversion is not possible, resulting in a default value being shown
depending on the exact nature of the model gadget. When multiple TextFields
are located in the same container, the TAB key advances the caret from one
TextField to the next. Setting the caret and pressing the left and right arrow
keys scrolls the contained text horizontally when the content is wider than the
width of the TextField.

Attributes

Value
String [] value of the TextField. This value is norammly stored in a linked Model
gadget.

Color
Integer [14] specifying the color of the TextField. The color can also be changed
with the ColorPicker.

Field
String [] indicating which attribute of the linked model gadget should be
visualized. When empty, the Value attribute of the linked model gadget is used
by default.

Cmd
String [] executed as a command when the gadget is focused and the RETURN
key is hit.

TextGadget

Classification Visual container gadget
Generator TextGadgets.New
Alias TextGadget

Function

A TextGadget visualizes a Text model and implements a text editor. Texts may
contain visual gadgets floating along in the text. A scrollbar with a small
crossbeam on the left allows you to scroll forward or backward in the text. The
ML key scrolls the underlined text line to the top of the gadget (scroll forward)
and the MR key scrolls the underlined text line to the bottom of the gadget
(scroll backward). The MM key is used to position absolutely in a text. An MM
+ ML key interclick scrolls to the end of the text, while an MM + MR key
interclick scrolls to the beginning of the text. When users are typing text, the
text scrolls up to show what is being typed. A more detailed description of
using and editing text can be found in the chapter on the textual user interface.
The Text model gadget may be replaced by another one, using Columbus for
instance, but it may never be deleted. Selected gadgets can be resized using the
Gadgets.Panel.

Attributes

Color
Integer [14] specifying the color of the background. The color can also be
changed with the ColorPicker.

Flat
Boolean [FALSE] − FALSE indicates that the gadget must be surrounded by a
3D border.

Point
String [] containing the last word clicked on with the MM key. The value of
this attribute can be used by the Cmd attribute (read−only).

Locked
Boolean [FALSE] − TRUE indicates that the gadget's direct descendant cannot
be edited. The components themselves remain unlocked and can be
manipulated.

Cmd
String [] executed as a command when clicking on a word with the MM key.
Since the Point attribute contains the Oberon name or string that was clicked
on, a command string such as Desktops.OpenDoc #Pointwill open the document
whose name is clicked on.

Commands

See TextDoc.

TextHyperlink

Classification Visual elementary gadget, transparent
Generator TextGadgets.NewControl
Alias TextHyperlink

Function

A TextHyperlink is a text control gadget. The visibility of the TextHyperlink
gadgets is toggled with the TextDocs.Controlscommand. A TextHyperlink contains
an Oberon command to be executed when the colored piece of text located
immediately in front and delimited by a blank at its left is activated with an
MM key click. That piece of text can be activated independently of the visibility
of the TextHyperlink but the color of the text must differ from black (15). The
Cmd attribute value is typically Desktops.OpenDoc docuNameor Desktops.ReplaceDoc
docuName, but any other suitable command string may be used. To edit this
field, make the gadget visible first and then click on it with the MM key: a
Columbus Panel is opened automatically, allowing an easy editing of the
command.

Attributes

Cmd
String [] executed as a command when the colored text in front of the
TextHyperlink is clicked on with the MM key. The TextHyperlink must not
necessarily be visible.

Commands

TextDocs.Controls *
TextDocs.Controls
toggles the visibility of the text control gadgets, that is, TextHyperlinks and
TextStyles, in the marked (*) or in the selected document.

Example

TextHyperlinks are used extensively by the many .Tooldocuments supplied.

TextNote

Classification Visual container gadget
Generator TextGadgets.NewNote
Alias TextNote

Function

A TextNote is a TextGadget without a scrollbar. A TextNote will adjust itself in
size depending on the size of the text it contains. More details about text
editing can be found in the chapter on the textual user interface. This gadget is
often used as a memo pad or post−it note. Sometimes they are used as the
pages of a NoteBook. Alternatively, they are used in pop−up menus as an
alternative to a list. TextNotes may be colored to enhance their presentation.

Attributes and Commands

See TextGadget.

TextStyle

Classification Visual elementary gadget, transparent
Generator TextGadgets.NewStyleProc
Alias TextStyle

Function

A TextStyle is a text control gadget that influences the formatting of text. The
visibility of style gadgets is toggled with the TextDocs.Controlscommand. They
have the shape of a thin horizontal dotted line with black weights at the end. A
style can be inserted at the caret with the TextGadgets.NewStylecommand, or by
pressing CTRL−ENTER. In that case all the styles are made visible. On the
Macintosh, use the num−lock key instead. The style is divided into two
sections: the top part, above the dotted line, controls the formatting whilst the
bottom part controls the setting of tab stops. MM key clicks above the dotted
line are as follows: when pressing and dragging on the area the black weights
occupy, the left border and the formatting width can be specified; clicking next
to the weight (but not on top of it), switches the weight on and off. The
weights pull the left and right text ends of a text line to them. Left, right, block
and center adjust can be selected in this way:

A left weight. Left adjust mode with word wrapping.
A right weight. Right adjust mode.
A weight to the left and the right. Block adjust mode.
No weights. Center adjust.

A new tab stop is inserted with an MM + ML key interclick when the mouse
focus is positioned below the dotted line. The tab stop shows up as small black
rectangle and can be moved by dragging on the MM key. Tab stops are
removed by dragging them completely out of the TextStyle to the left or to the
right. All these adjustments can be made more comfortably than with the
mouse, by assigning values to the attributes Tabs, Left and Width with the help
of Columbus. As tabbing does not make much sense in center or right adjust
mode, in such cases the tab stops are not visible. Copying a stretch of text
always makes a copy of the gadgets contained in that stretch (TextStyles are
gadgets too). The Pagebreak attribute is used to specify if a page break should
be inserted before the style when printing. Styles that cause a page break are
shown with a solid instead of a dotted line. When a TextStyle is named and
placed in a public library, it can be re−used many times in the same document
or even in different documents, which is very handy for creating a uniformly
formatted document. The Libraries.Paneloffers three ways to retrieve a TextStyle
(or any other gadget) from a public library: a reference, a shallow copy or a
deep copy. The most general and most flexible approach is to retrieve it by
reference. In that manner, the format of the document(s) in which it is used
can be modified by simply changing the attributes of the (master) TextStyle
stored in the public library. These TextStyles are easily recognizable by the label
at the right end: libraryName.TextStyleName.

Attributes

Pagebreak
Boolean [FALSE] − TRUE indicates that a page break must be inserted at this
text position during printing. Styles with this flag set are shown as a solid line
and are always visible in the text.

WYSIWYG
Boolean [FALSE] − TRUE indicates that when the document is printed the

printout corresponds to the display representation. Otherwise, only printer
metrics are used.

Adjust
Boolean [TRUE] − TRUE indicates that the printout must be adjusted to the
printer frame.

Tabs
String [] of integers delimited by commas, specifying the position of the tab
stops in pixels. A maximum of 32 tab stops can be set. The tabs are not visible
in center or right adjust mode.

Left
Integer [0] specifying the position of the left end in pixels.

Width
Integer specifying the width of the TextStyle in pixels.

Commands

TextDocs.Controls *
TextDocs.Controls
toggles the visibility of the text control gadgets, that is, TextHyperlinks and
TextStyles in the marked (*) or in the selected document. TextStyles which
have their Pagebreak attribute set on are always visible.

TextGadgets.NewStyle
inserts a style at the caret.

Example

TextStyles are used extensively by the many .Tooldocuments supplied.

TimeStamp

Classification Visual elementary gadget, transparent
Generator TimeStamps.New
Alias TimeStamp

Function

When a TimeStamp is inserted at the caret, it shows the current date and time.
If it appears in a document, it is updated when the document is stored to disk.
Consequently, when the document is opened the TimeStamp shows the date
and time the document was last stored. The date and the time are formatted
according to the specifications contained in the DateFormat and the
TimeFormat keys in the [System] section of the registry.

Attributes

Color
Integer [15] specifying the color of the time stamp. The color can also be
changed with the ColorPicker.

Font
String [Syntax10.Scn.Fnt] specifying the font of the text.

Tree

Classification Model gadget
Generator ListModels.NewTree
Alias Tree

Function

A Tree stores strings in a tree fashion (lists of lists). The list items may be sorted
or unsorted and the list may contain duplicates or not. This model gadget is
typically used as a model by a ListGadget.

Attributes

Sorted
Boolean [FALSE] − TRUE indicates that the list items are sorted on a level.

Unique
Boolean [FALSE] − TRUE indicates that no duplicate list items are allowed on a
level.

Commands

See ListGadget.

View

Classification Visual camera view gadget
Generator Views.NewView
Alias View

Function

A View acts as a camera displaying a single visual gadget or document. The
visual gadget is linked to the View as a model gadget and it can not be
un−linked with Columbus. A visual gadget may be dropped in an empty View,
but once only. The viewed gadget can be removed by moving it to a different
location out of the View or with a delete interclick. Each View has a certain
viewpoint of the thing it displays (camera angle). This feature is useful when
the viewed gadget has a rigid size exceeding the size of the View. The viewpoint
can be changed by picking up the viewed gadget by pressing the MM key on its
border and moving it to a new location. Should the border be invisible because
the gadget is too big, an invisible area in the top left corner of the view can be
used to grab and move the viewed gadget. The gadget's bounding box will
appear as a rectangle showing the size and relative position of the gadget. Refer
also to the ScrollView which is a View with optional horizontal and vertical
Scrollbars.

Chapter Five

The Programmer's Guide

5.1 Introduction

Programming with the Oberon system involves extending the Oberon
run−time environment. The reader familiar with programming will equate
programming with writing a program. Once completed, the program is run.
The program requests input data, does some calculation, and then outputs the
result. This may happen many times until the program terminates and releases
the resources it used.
In Oberon, there are no programs. Programs are relics of the days when

computers had little memory and other resources. Programs wait in line until
the user decides to execute them. After termination, the program removes itself
from memory to make space for the next program. Communication between
different programs running at different times takes place by storing a message in
non−volatile storage (a file for example). Today however, computers have more
memory and programs routinely run concurrently with each other. This is
called multi−tasking. The computer resources are shared between all running
programs. Unfortunately, communication between different programs has not
progressed much further than in the earlier days of batch processing, which
makes the cooperation and integration of different programs a difficult task.
The reason for this state of affairs can be traced back to the technology used

for writing programs. If a program were unsafe, that is, doing the wrong thing, it
could damage the integrity of the system, and thus negatively influence the
other programs running on the computer. Most of today's programming
languages allow the programmer to write (knowingly or unknowingly)
programs that crash the system when run. Rather than solving the problem at
its root (i.e. the bad programs), software systems started using the concept of
memory protection. Using memory protection, a program is encapsulated in a
"shield", preventing other programs from damaging it. Sadly enough, a memory
protection shield also prevents easy communication with a program, thus
hindering integration and cooperation between different programs.
In contrast, the Oberon system is an example of an open and extensible

system. Open means that a high level of cooperation, integration and re−use of
code between applications is practised. Extensible means that anybody can add
a new part to the Oberon system. This new part might be using a part
somebody else added, or might be used itself by another part added later. To
achieve this flexibility, Oberon does away with programs completely. Instead,
Oberon provides two concepts: modules and type safety.

Modules. An Oberon module contains (part of) the executable program
code of an Oberon application. Modules are typically much smaller than
programs, and an application often consists of more than one module. The
modules of all activated Oberon applications share the memory of the Oberon
system. There are no barriers between modules of different applications. Once
loaded into memory, a module normally remains there until the computer is
switched off. A module X may use (or re−use) the code contained in other
modules A, B, C, etc. We say that module X imports modules A, B, C, and that
module X is a client of modules A, B and C. Because a module is always visible
to other modules (when in an import relationship), a large level of code or
module re−use is possible. That means that applications can share useful
modules between each other. For example, the Oberon system provides
modules for managing text, bitmaps, data compression, network
communication like file transfer and e−mail. These and other modules are

often shared between different applications. The set of modules loaded into
memory form the module hierarchy. The Oberon module hierarchy is a directed
acyclic graph (DAG), in other words, no recursive imports are allowed.
But how do modules get into the computer memory in the first place? The

Oberon system contains a module loader that can dynamically load and link a
module into the running system. All imported modules are loaded
automatically if they are not loaded into memory already. Instead of running a
program, Oberon allows you to execute a command located in a module. A
command is nothing more than a procedure located in a specific module, that
is, a command M.Presults in procedure P of module M being called. Thus,
executing a command will result in a module being loaded into the system
(from disk) by the module loader. The module typically remains in memory
until the computer is shut down or until it is freed explicitly by the user.

Type safety. To prevent a module from corrupting the system, a danger in
such an open arrangement, the Oberon programming language provides type
safety. Type safety guarantees that a module cannot do bad things (by mistake
or on purpose) to the system and to other modules. This is accomplished by a
strong typing system in the Oberon language, and by checking the correct use
of modules by the Oberon compiler. Each module provides additional
functionality to the Oberon system, the use of which is determined by the
module's interface or definition. The interface of a module tells us what
components of a module are visible to the outside world (i.e. to the other
modules in the system).
We say that these components are exported from the module. Type safety

ensures that only these components and nothing more can be accessed by
client modules. This allows the Oberon programmer to hide implementation
details behind module interfaces and so ensure that private data structures can
not be altered from outside the module. The value of type safety should not be
underestimated. It protects the system and the programmer in a world of
hundreds of cooperating but also at times menacing modules.
How do modules communicate with each other? As expected, one module

can call the exported procedures of other modules directly. Another powerful
technique is to share data structures between modules. In Oberon, all
dynamically allocated memory is shared by modules in the so−called heap. Type
safety ensures that only valid references to memory allocated on the heap are
passed as pointers from one module to another. In fact, this is the basis of
much of the run−time behavior of the Oberon system. We can imagine the
heap to be a large database of collective data. Activating a command causes a
module to transform data in the database, the result of which is again inserted
into the database. This is a powerful way for applications to communicate
directly without barriers, and even for applications to influence each other. As
an example we can write a module containing a command that colors all the
occurrences of the word "and" in a text document in red − simply by directly
accessing the abstract text data type of a text document. In a similar way, we
can add new functionality to all Oberon applications.
In conclusion, it should now be clear that Oberon has an advantage over

other systems when it comes to integrating different applications with each
other, protecting the system from the user (or the user against himself),
supporting the ordered re−use of code, and constructing applications rapidly
from prefabricated building blocks. The remainder of this chapter will enable
you to do so yourself.

5.2 TheModule Hierarchy

Learning to program the Oberon system involves studying the Oberon module
hierarchy. From the modules themselves, you will learn the run−time structure
of the system (i.e. the contents of the heap). There are lots of modules in the
Oberon system and getting to know them all at once is not recommended. It is
best to start with the easier modules and then work yourself up to the more

difficult ones. Depending on your needs, you might not even need to learn how
to build more complicated modules with the system − most of them are
already available and can just be used "as is". If you fall into this category, the
bulk of this chapter can be ignored, and you can concentrate on the
programming of commands that manipulate existing components of the
system. For this purpose, the examples provided later in this chapter are
invaluable.
First, we discuss the larger structure of the system. The Oberon modules can

be conceptually divided into the inner core, the outer core, the object core, the
text system, the gadget core, the gadget catalog and the document catalog. The
inner core is responsible for memory management, file management, and
module loading. The outer core additionally provides device drivers for display,
printer, keyboard, mouse, network etc. Other parts of the outer core provide
viewer management and task and event dispatching. The distinction between
inner core and outer core is rather artificial. The inner core is the minimum
part of the system that needs to be present to boot Oberon. It is consequently
always present and statically linked into a boot image. The outer core contains
other important parts of the system.
The object core contains the Oberon persistent object manager, whilst the

text system contains the font and text machinery. The gadget core provides the
basis of the Gadgets component framework on top of which the remainder of
the system is built. The gadgets catalog refers to the set of modules
implementing the different gadgets. In the same manner, the document
catalog refers to the modules of the different document classes. The remainder
of the modules are typically command modules, that is, modules that have no
clients and provide the commands the user sees. A command module mostly
consists of parameterless procedures (commands). Each command module
typically has a tool text, summarizing the usage of its commands, associated
with it; for example, the Systemmodule has an associated text System.Tool. More
graphically oriented modules have associated user interface panels.
The Figure 5.1 shows an extract of the Oberon module hierarchy. This import

diagram shows modules as rectangular boxes with lines showing the import
relationship. An import diagram is read from the bottom to the top, the upper
modules being the clients of the modules below. We will be discussing these
modules in the remainder of the section, but first we summarize the
functionality of some important modules. Note that this list is not exhaustive.
Depending on the underlying hardware and software platform, some
additional modules might be included in the inner core. Often a set of modules
to interface with the underlying operating system are included. Their source
text modules are typically named according to the operating system in use
(Windows, Macintosh, Linux, etc).

Kernel

Files

Modules

Objects

FileDir

Input

Display

Texts

Oberon

System

ViewersFonts

Outer core

Inner core

Figure 5.1 Extract of the Oberon Module Hierarchy

Furthermore, a single large module is sometimes split into two smaller
modules for the sake of simpler management. In such a case, a "0" is appended
to the name of the lower of the two modules in the import hierarchy. For
example, TextGadgetsis split in modules TextGadgets0and TextGadgets. To be
more explicit, we might add that TextGadgets0implements the base
functionality of an editor whereas TextGadgetsis an extension of such an editor.
In this case the two modules are tightly coupled and should logically be
regarded as a single module.
The remainder of this chapter gives examples how to use the Oberon

modules. These examples should be studied in conjunction with the module
definitions.

Summary of the Oberon Module Hierarchy

Module Name Purpose

Inner Core
Kernel Memory management and garbage collection
Disk Disk driver (PC Native only)
FileDir File directory support
Files File handling
Modules Oberon module loader and command execution

Outer Core
Display Display driver
Printer Printer driver
Input Timer, keyboard and mouse driver
V24 RS−232 serial communication port driver
Pictures Bit mapped graphics handling
Reals Floating point number support
Math Mathematical functions for REALs
MathL Mathematical functions for LONGREALs

Viewers Implementation of Viewers of the display system
Oberon Event handling and task dispatching
System Command module with system related functions
Configuration Configuration control at system startup

Object Core
Objects Persistent object and library manager

Text System
Fonts Font loader
Texts Abstract data type implementation for texts
Out Standard text output routines
In Standard text input routines

Gadget Core
Display3 Clipped display routines
Printer3 Clipped printing routines
Effects Special effects like rubber banding, cursors, menus.
Attributes Attribute handling routines for gadgets
Links Link handling routines for gadgets
Gadgets Toolbox routines for implementing gadgets

Gadget Catalog
BasicGadgets Implementation of gadgets like Boolean, Integer,

Button, Slider, etc.
TextFields Implementation of Captions and TextFields
Icons Implementation of Icons and Iconizers
ListGadgets Implementation of list gadgets
Panels Implementation of Panels
TextGadgets Implementation of a text editor
Rembrandt The bitmap editor gadget
... and several more modules implementing

other gadgets

Document Catalog
Documents Toolbox for implementing documents
Desktops Manager of the overlapping display system
TextDocs Implementation of text documents
PanelDocs Implementation of panel documents
RembrandtDocs Bit map editor toolkit
... and so on for other document classes

5.3 Procedure Calls, Input andOutput

Before examining some modules of the Oberon system, we have to understand
how modules are typically used. Each module adds some functionality to the
Oberon system and can be used either by client modules that import the
module or by users who execute commands of that module.

Static Procedure Calls. Writing an Oberon module in the Oberon language
involves importing other modules using the IMPORTstatement (and thus
making the module a client of the imported module). Importing makes the
exported features of the imported module accessible to the programmer. This
allows the programmer to access the exported global variables, types and
procedures of the module. Typically, communication between the importing
and imported module is realized by calling procedures of the imported module
and passing parameters. This link is statically defined when the importing
module is compiled and is correct according to the rules of type safety. For
example, the called procedures may manipulate abstract data types like
bitmaps, texts and the like.

From the user's standpoint, using a module involves calling exported
commands of a module. A command is an exported procedure with no formal
parameters. Suppose we have the following module, which writes a message to
the system log text using module Out:

MODULE Hello;

IMPORT Out;

PROCEDURE World*;
BEGIN

Out.String("Hello,world!");Out.Ln()
END World;

END Hello.

Hello.World

The asterisk marking ("*") of procedure Worldindicates that it is an exported
procedure. In addition, the lack of formal parameters indicates that it is a
command. This implies that the procedure Worldof module Hellocan be called
directly with an MM key click on the string Hello.Worldwritten somewhere on
the Oberon display. This can be likened to you the user "importing" the module
Hello, and calling World:

MODULE User;

IMPORTHello;

PROCEDURE MyAction*;
BEGIN Hello.World
END MyAction;

END User.

Of course, the latter module does not exist, not even in the mind of the user, as
users do not think about making modules when they execute commands! It
does however illustrate quite well that executing a command is nothing more
than calling a procedure. Modules that export lots of commands are called
command modules, and are seldom imported by other modules.

Dynamic Procedure Calls. Suppose that we have the strings "Hello" and
"World", and want to execute the corresponding command. This is the
situation a typical text editor is faced with when a user clicks with the MM key
on a string displayed on the screen, as the text editor knows only about texts
(and thus strings). The solution is to request the module loader in module
Modulesto locate the correct procedure, which can then be called:

MODULE DynamicCall;

IMPORT Modules;

PROCEDURE DoIt*;
VAR mod: Modules.Module; P: Modules.Command;
BEGIN

mod := Modules.ThisMod("Hello"); (* load module, if not already loaded. *)
P := Modules.ThisCommand(mod, "World"); (* locate command. *)
P (* and execute command. *)

END DoIt;

END DynamicCall.

A few things should be observed. First, we are using module Modulesto do
some work for us. This is done by statically calling procedures and using the
types of that module. To find out exactly what the module Modules(and also
Out, which we met earlier) can do for us, we look up its definition. There we see
that type Modules.Commandis a PROCEDURE, and thus Pcan be called directly. In
the remainder of this chapter, we will assume that you look up the definition
of modules we use in our examples without prompting you as we are doing
now. If you are working in front of the computer, the definition is as far away
as activating Watson (Chapter 2).
A second observation is that module DynamicCalldoes not import the module

Hello; the command has been activated dynamically. As the called module lies
typically higher up in the module hierarchy than the calling module, an up−call
is involved. There are other examples of "calling up" in the module hierarchy.

A few more comments on the module Hello. The system log is a model
object of type Texts.Text. The content of the log text is automatically shown in
the log viewer which is opened when the system is started. Module Outoffers a
comprehensive set of procedures for writing (in reality "appending") text
stretches to the log, without a need to know how text is maintained and
managed by the system. Writing a string (Out.String) and a carriage return
(Out.Ln) are only two examples. Putting the other procedures to work is
straightforward.

Parameter Passing. Typically, when statically calling an imported procedure,
parameters are passed. But how are text parameters passed to commands? We
know already that most Oberon commands have parameters that are written
following the command in the form of a text stream. By convention, the text
parameters are passed from the caller (or client) to the callee by temporarily
assigning them to a global variable (which will be discuss later). Thus the caller
(the text editor, for example), puts a pointer to the text parameter in this global
variable and uses module Modulesto call the command. The called command
picks up the parameters from the global variable and processes them; simple
but effective.
To get beginners started as soon as possible with Oberon, the scanning of

command parameters is however hidden or covered by a module called In. That
is, the whole process of parameter passing that happens behind the scenes, is
hidden from us (until the next section, at least). This is illustrated by Example1
which sums up a series of numbers:

MODULE Example1;
IMPORT In,Out;

PROCEDURE Sum*;
VAR x, total: REAL;

BEGIN
total := 0;
In.Open; (* Initialize parameter scanning. *)
In.Real(x); (* Scan a REAL parameter into x. *)
WHILE In.Done DO (* Was a REAL really encountered? *)

total := total + x;
In.Real(x) (* Try scanning the next number. *)

END;
Out.String("The total is "); Out.Real(total, 10);
Out.Ln

END Sum;

END Example1.

This example expects the parameters to be summed to be written as follows:

Example1.Sum 4 8 1AFH 4.0E2~

Note the "˜' which ends the parameter list. Not being a numeric value, In.Doneis
false after scanning "˜", and thus the summing loop is terminated. (Did you
already take a look at the definition of In?)
In.Realdelivers the next REAL value, resulting from the conversion of a textual

stream of digits. All other procedures in module Inhave similar properties.

5.4 Texts

As most readers probably noticed while studying module In, this technique of
scanning parameters is not very robust since the programmer has to assume
that the correct parameters are passed to the command. A more reliable way of
scanning parameters is implemented behind the scenes of module In, the
investigation of which also reveals the "parameter scratchpad" introduced
before. Also, module Outhides the complexity of writing text to the log, which
is implemented behind the scenes with lower level modules.
To understand what the modules Inand Outdo, we need to introduce to two

further modules, namely Textsand Oberon. Module Textsdefines an abstract
data type that manages text streams. Module Oberonhas a few system−wide
tasks, one of which involves managing the previously mentioned global variable
which is called Oberon.Par. Oberon.Paris a RECORD containing a reference to the
parameter text (Oberon.Par.text), to the starting position in that text
(Oberon.Par.pos), and diverse other fields describing the environment in which
the command was executed. The parameter text starts at the position
Oberon.Par.posin the text, with the first character in a text having position zero.
Further study of the component Scannerin module Textsshows that it is useful
for scanning parameters. It parses the associated text for tokens. While parsing,
white spaces (i.e. blanks, TAB characters and RETURN characters) are skipped.
The same example can now be rewritten without the use of module In, by
replacing it with a Scanner:

MODULE Example2;
IMPORT Oberon,Out, Texts;

PROCEDURE Sum*;
VAR total: REAL;

S: Texts.Scanner;
BEGIN

total := 0;

(* Open a Scanner at the starting position of the parameter. *)
Texts.OpenScanner(S,Oberon.Par.text,Oberon.Par.pos);
Texts.Scan(S); (* Scan first parameter. *)
WHILE (S.class=Texts.Int)OR (S.class=Texts.Real)DO

IF S.class=Texts.Int THEN
total := total + S.i

ELSE
total := total + S.x

END;
Texts.Scan(S) (* Scan next parameter. *)

END;

Out.String("The total is "); Out.Real(total, 10); Out.Ln
END Sum;

END Example2.

Example2.Sum 4 8 1AFH 4.0E2~

The field classof the scanner tells us what was scanned; that is, it identifies the
type of the scanned symbol. Depending on its type, the scanned value must be
retrieved from a different scanner field.
In fact, module Textsprovides much more than Scanners. In Example2, we still

used module Outfor writing output to the log, but Outis easily replaced with a
Writer. Writers are used for efficiently creating large amounts of text. Module
Outuses a Writer "behind the scenes" to write its output to the system log. A
typical example of using a Writer is the following:

MODULE Example3;
IMPORT Oberon, Texts;
VAR W: Texts.Writer;

PROCEDURE Time*;
VAR time, date: LONGINT;

BEGIN
Oberon.GetClock(time,date);
Texts.WriteString(W, "Thedateand timeare ");
Texts.WriteDate(W, time, date);
Texts.WriteLn(W);
Texts.Append(Oberon.Log,W.buf) (* Append W's text buffer to the log *)

END Time;

BEGIN Texts.OpenWriter(W) (* Initialize Writer at module load time. *)
END Example3.

Example3.Time

Usually, only one shared writer is declared per module. The text written to a
Writer is temporarily kept in the writer's buffer W.buf. Then, the writer's buffer
is appended (Texts.Append) to a text and subsequently cleared in the operation
(a side effect). Further writing to the Writer starts filling up the buffer again
until it is cleared again. There is practically no limit to the size of a buffer or a
text. Finally, notice how the system log is represented by a global variable called
Oberon.Logof type Texts.Text.

The Text selection. The text selection is an integral part of the Oberon
system. The current text selection is the text stretch last selected by the user.
More than one selection may be visible, but only the most recently selected
stretch (according to system time) is important to us. The procedure
Oberon.GetSelectionreturns the required information on the latest selection: the
text itself, the starting and the ending position of the selection, and the time
(according to Oberon.Time) when the selection was made. To obtain the latest
selection, Oberon.GetSelectionbroadcasts a special message to all the text editors
active in the system to return their selection. At the moment though, the exact
behavior can be ignored.
What can we do with the selection? We already know about the

Texts.Scanner, so we can use it to scan for tokens in the selection. We can also
use a Texts.Readerto read through the selection character by character. Readers
are new in our discussion, so we present an example of a Reader calculating
some statistics about the selection:

MODULE Example4;
IMPORT Oberon, Texts;
VAR W: Texts.Writer;

PROCEDURE Count*;
VAR T: Texts.Text;

beg, end, time: LONGINT;
letters, digits, others: INTEGER;
ch: CHAR;
R: Texts.Reader;

BEGIN
Oberon.GetSelection(T, beg, end, time);
IF time >= 0 THEN (* is a selection present? *)

letters := 0; digits := 0; others := 0;
Texts.OpenReader(R, T, beg); (* start reading at position beg in text T. *)
Texts.Read(R, ch);
WHILE beg < end DO

CASE ch OF
"A" .. "Z", "a" .. "z": INC(letters);
| "0" .. "9": INC(digits)

ELSE INC(others)
END;
INC(beg);
Texts.Read(R, ch)

END;

Texts.WriteString(W, "# digits = "); Texts.WriteInt(W, digits, 10);
Texts.WriteLn(W);

Texts.WriteString(W, "# letters = "); Texts.WriteInt(W, letters, 10);
Texts.WriteLn(W);

Texts.WriteString(W, "# others = "); Texts.WriteInt(W, others, 10);
Texts.WriteLn(W);

Texts.Append(Oberon.Log, W.buf)
END

END Count;

BEGIN Texts.OpenWriter(W)
END Example4.

Since the selection is always a valid text stretch (starting at the character
position begand ending just before character position end), we do not have to
be concerned about reading past the end of the text. If Oberon.GetSelectionfails to
find a selected text stretch, the timefield contains a negative value. Each text T
has T.lencharacters, and when the reader R reads the T.len'th character, the
boolean flag R.eotindicates that the end of the text has been reached. The
condition beg < endcan be replaced by ~R.eotto read past the end of the
selection right up to the end of the text containing the selection.

Opening a text viewer. How do texts get on the display anyway? Usually, an
end−user opens a text file by executing a Desktops.OpenDoccommand. We can
open a text file also under program control with the following module:

MODULE Example5;
IMPORT Oberon, Texts;

PROCEDURE Open*;
VAR

S: Texts.Scanner;
T: Texts.Text;
beg, end, time: LONGINT;

BEGIN
Texts.OpenScanner(S,Oberon.Par.text,Oberon.Par.pos);
Texts.Scan(S);
IF (S.class = Texts.Char) & (S.c = "↑") THEN

Oberon.GetSelection(T, beg, end, time);
IF time >= 0 THEN (* is a selection present? *)

Texts.OpenScanner(S, T, beg);
Texts.Scan(S)

END
END;
IF S.class = Texts.Name THEN (* was a valid file name scanned? *)

NEW(T); Texts.Open(T, S.s);
Oberon.OpenText(S.s, T, 250, 200)

END
END Open;

END Example5.

This module is invoked with

Example5.Open Example4.Mod~

or

Example5.Open ^[the name of a text file is selected]

to open the text file whose name is passed as a parameter (and scanned with
the scanner above). During parameter scanning, we explicitly test for the case
when a "↑" is used as a parameter. In this case, we have to re−open the scanner
on the current text selection, as Oberon command conventions indicate. The
statement NEW(T)creates an empty text descriptor on the heap, which is
subsequently filled with text by Texts.Open(T, S.s).S.scontains the name of the
file from where the text is retrieved. Should we require an empty text instead
(i.e. one containing no characters), we should replace the latter with
Texts.Open(T, ""). The procedure Oberon.OpenTextpresents the text T in a text
document ready for editing. The first argument to Oberon.OpenTextis the title of
the document, followed by the text to be displayed and the width and height in
pixels of the viewer. The latter is regarded as a hint to the system where to
open the text document viewer. For example, should the width be wider than
the system track, the system will open the viewer in the user track. Hint: the
width ratio of the user and the system tracks is 5 to 3.
Multiple calls to Oberon.OpenTextwith the same text Tas parameter will create

a fresh viewer in each case, and that each will be displaying the same text.
Thus, changes made in one text document will be reflected in the others
automatically. We say that the viewers are the view components, and the text T
is the model component. On the other hand, multiple executions of
Example5.Opencreate fresh viewers displaying separate texts.

Retrieving the marked text. Once a text is displayed by a text document,
how can we get back to the text itself again? By convention, Oberon requires
the user to mark the intended text with the star marker ("*") which is set by
hitting the F1 key on the keyboard when the mouse focus is located inside the
document's viewer. A helper procedure Oberon.MarkedTextreturns the marked
text.

MODULE Example6;
IMPORT Fonts,Oberon, Texts;

PROCEDURE Highlight*;
VAR T: Texts.Text; fnt: Fonts.Font;
BEGIN

T :=Oberon.MarkedText(); (* get marked text *)
IF T # NIL THEN (* was a text found? *)

fnt :=Fonts.This("Syntax10m.Scn.Fnt");
Texts.ChangeLooks(T, 0, T.len, {0}, fnt, 0, 0) (* change font of entire text *)

END
END Highlight;

END Example6.

Example6.Highlight

In this example we introduce fonts. Font management is done under control of
the Fontsmodule. In the present case, Fonts.Thisloads a 10 point Syntax screen
font, which is then applied to the whole text T (characters 0 to T.len) with
Texts.ChangeLooks. ChangeLookscan also be used to change the color and the
vertical offset of a text stretch. More details can be found in the definition of
Texts.
Before continuing our examples for manipulating texts, we need to cover

some necessary theory first. The following two sections introduce the display
space, messages and broadcasting.

5.5 TheDisplay Space

In earlier chapters, the display space was introduced. In essence, the display
space is a data structure containing visual and non−visual objects. The visual
objects, called frames, are the gadgets such as documents, Buttons, Scrollbars,
etc. you see on the display. The non−visual objects are the model gadgets
linked to these gadgets. We should emphasize here the abstract nature of the
display space we are referring to. The display space should not be confused
with the geometrical space of the display screen. To understand the display
space, we have to discuss the nature of the single elements of the display space,
and the nature of the connections between them.

The type hierarchy. Before going into detail about the structure of the
display space, we first investigate the type hierarchy of the visual and
non−visual objects. All visual objects are extensions of the type Display.Frame. In
turn, each frame is an extension of a more basic type called Objects.Object. The
non−visual objects are also extensions of Objects.Object, but not of Display.Frame.

Objects.Object

Display.Frame
Non−visual Objects

Visual Objects

Figure 5.2 The Object type hierarchy

The lines of Figure 5.2 show the type extension relationship between objects.
To simplify the programming of gadgets, two further base types form the basis
of the visual and model gadgets. These two types, Gadgets.Frameand

Gadgets.Objectare extensions of Display.Frameand Objects.Objectrespectively. Thus
when programming gadgets, we are faced with the type hierarchy depicted in
Figure 5.3.

Objects.Object

Display.Frame

Model Gadgets

Visual Gadgets

Gadgets.Frame

Gadgets.Object

Figure 5.3 Base system / Gadgets system relationship

The double horizontal line of Figure 5.3 signifies a split between the base
system and the Gadgets system. There is a good reason for emphasizing this
split. The base system provides the mininum for implementing a framework of
components. The Gadgets system "fills in" part of the functionality in this
framework, that is, it adds rules and user interface conventions. Theoretically,
we can imagine yet another type of user interface system built on the same
base but implementing a different type of user interface framework. In fact, the
textual user interface of the Oberon system is such a framework which existed
before the development of the Gadgets system. This also illustrates that such a
dichotomy turns out useful for guaranteeing compatibility with older
applications, as both gadgets−enabled and older applications are different
aspects of the same underlying object model.
Before continuing with the display space structure, it is informative to show

the type definitions of Objects.Objectand Display.Frame, although the meaning of
several of the RECORD fields is not obvious yet, and thus partially hidden:

Handler = PROCEDURE (obj: Object; VAR M: ObjMsg);

Object = POINTER TO ObjDesc;
ObjDesc = RECORD

... some more fields ...
handle: Handler (* Message handler. *)

END;

Frame = POINTER TO FrameDesc;
FrameDesc = RECORD (Objects.ObjDesc)

next, dsc: Frame;
X, Y, W, H: INTEGER

END;

The definition of Objectreveals that each object has a message handler, which is
responsible for interpreting the messages that are sent to it. Furthermore, we
see that frames are type extensions of objects with the additional fields next,
dsc, X, Y, W and H, which are described in the next paragraph.

The Display space structure. Frames have a location and a size: the record
fields F.Xand F.Ycontain the position of the frame F, and the record fields F.W
and F.Hits width and height. When a frame is located in the display space, it is
always nested in another frame. The situation can be clarified in the following
way, but for the sake of simplicity we shall confine the description to the tiled
display space model used by the textual interface. The display itself is a large
(imaginary) frame that covers the whole display surface. It has the location (0,

0) and size (Display.Widthand Display.Height). (By the way, the origin of the Oberon
display is in the bottom left corner, in contrast to many other systems.) This
"root" frame is divided into two tracks, the user and the system tracks. Each
track is a frame nested or contained in the root frame. The tracks are further
divided into viewers, which are frames too (nested in their respective tracks).
Each viewer is divided into two further frames, the menu bar frame and the
main frame. The main frame might for instance contain a text editor frame.
Inside this text editor frame we have the text itself, and possibly further frames
signifying the visual objects that "float" in the text. These frames might contain
further frames, and so on to any nesting depth.

Display Root

User Track System Track

Viewer

Viewer

Viewer

Menu Frame TextGadget

...

...

NamePlate Button

...

Panel

Button
...

Figure 5.4 Example structure of the display space

The nested nature of the display space is extremely important in the system
and should be well understood. Figure 5.4 gives a diagrammatic view of the
situation. Frames containing other frames as children are called container
gadgets. Frames not containing any further frames are elementary gadgets. Each
parent frame is completely responsible for its direct descendant frames and
thus indirectly responsible for its indirect descendants. By convention, the
"nested" structure of the display space is defined by the two fields dscand next
of Display.Frame. The dscfield of a container points to the first child of that
container, and is the start of a list of direct descendants linked by the nextfield.
The following code fragment shows how the children of a container F are
traversed:

PROCEDURE Traverse (F: Display.Frame);
VAR f: Display.Frame;
BEGIN

f := F.dsc;
WHILE f # NIL DO

... do something with f ...
f := f.next

END
END Traverse;

Remark. The property of parental control dictates which of these fields a
frame may modify when receiving a message. A frame F is allowed to change its
own F.dscrecord field and the nextfields of its direct descendants. But a frame
should never change its own nextfield. This property also requires that you
should never interfere with the dsc−nextlist of a container; although visible to
the outside world, it is under complete control of the container itself. Later, we
explain how external influences can be applied to containers.

A further complication of the display space is the location of model gadgets.

We already know that frames can possibly have a model linked to them. The
visual gadgets, for example, reserve a field called objto refer to a model gadget.
As many frames can refer to the same model object, the use of these fields
"close" the structure of the display space at the bottom (Figure 5.5). The
general structure of the display space is that of a directed acyclic graph (DAG).
In this Figure we have a Panel floating in two TextGadgets: the Panel containing
a Button and a CheckBox both linked to a Boolean model.

Viewer

Menu Frame Text Gadget

...
Panel

Button

...

CheckBox

Boolean model

Text Model

Text Gadget

Viewer

...

...

Figure 5.5 Example structure of the display space with model objects

In our previous explanation, we mentioned that the location of a frame F in the
display space is determined by the record fields F.Xand F.Y. We have to specify
exactly what this means in the context of the display space. By convention, F.X
and F.Yare the relative coordinates of a frame in its parent (i.e. container)
frame. As the Figure 5.6 illustrates, the X and Y fields of a frame measure the
offset of its bottom−left corner relative to the top−left corner of its parent
frame. Since the Oberon display origin is in the left bottom corner of the
display, the Y offset of a gadget is always a negative number. This setup
provides the best efficiency when calculating the coordinates of a gadget.

Container frame

Child frame F

Child frame G
F.Y

F.X

G.X

G.Y

0,0 Display origin

Figure 5.6 Frame coordinate system

We should mention that a parent frame clips away those parts of its children

which lie outside the rectangle of the parent. The relative coordinates of a
frame in a container allow us to move that container and all its descendants
directly by modifying only the relative coordinates of the parent in its own
container.

5.6 Messages andBroadcasting

Now that the structure of the display space has been presented in detail, we
can discuss how objects (everything extended from Objects.Object) communicate
with each other in the display space. Recall that every object in the Oberon
system has a message handler, responsible for "handling" the messages sent to
that object. There exists a large number of message types. For example, there
are messages to request an object to make a copy of itself, to store itself to a
file, to display or print itself, and so on. However, not every message is
applicable to all objects. For example, model gadgets, that is, non−visual
objects, do not understand a "display yourself" message.
Messages are divided into classes. For the moment, we mention two

important ones: object messages and frame messages. Object messages are those
messages that all objects must respond to. This class consists of a very small
collection of messages like "copy yourself", "store yourself" and so on. Frame
messages are those messages that frames respond to. That class includes ones
like "display yourself, "print yourself" and "move your position".
Objects might not understand some of the messages sent to them. Why

would we send a message to an object if it does not understand it anyway? The
answer lies in the display space. Let us take the example of multiple text
documents showing the same text (evoked in Example5). We already know
that when we change the contents of a text (using module Texts), each text
document displaying it is magically updated. Behind the scenes this is solved by
a special message protocol between the text document (a view) and the text
object (a model). This protocol is "special" in that only text documents and text
objects are aware of it; they are "insiders", so to say.

Model−view consistency. Let us trace what happens when a character is
inserted into a text or more correctly from a programming standpoint, when a
text buffer is inserted into a text. The user of module Textsdoes this with a call
to Texts.Insert. Behind the scenes, Texts.Inserthas to inform all the text
documents displaying the text that a change has taken place. Now, by
convention, texts do not know what text document(s) they are attached to. The
only possibility left open to the text is to broadcast a "text T has changed"
message to all objects in the display space. Since text documents are listening
to messages of the type "text Thas changed" (where T is the text they are linked
to), they can update themselves when this broadcast message is received. The
broadcast functions in the following manner. First, the message is sent to the
display root. As the root does not understand the message (because it knows
nothing about texts), the only logical thing it can do is to forward the message
to the tracks it contains, in the hope that these can have something to do with
the message. However, the tracks are just as clueless, and are forced to forward
the message to the viewers they contain. The same thing happens again, so
each viewer forwards the message to its (two) sub−frames. The message thus
travels through the entire display space in a depth−first way. Luckily, the text
documents located in the display space understand the message, and can
update the display with the character typed (which is specified in the message
by indicating the part of the text that has changed).
This is the general scheme Oberon uses to inform views that a model has

changed. If no view is interested in the model that has changed, the message
travels through the whole display space without effect.

Types of broadcast. In reality, there are two types of broadcasts: true
broadcast and directed broadcast. True broadcasts reach all frames in the display
space. Directed broadcasts are addressed to a certain destination frame in the

display space. This might sound a little paradoxical. Why do we need to
broadcast a message into the display space if we know the frame that should
receive it? Why not simply send the message directly to the intended frame
(without going through the display root, tracks, viewers etc)? Although several
reasons exist (one of them related to the Oberon display model), only one
reason will be mentioned here. As messages travel in the display space from
the root frame to track, to viewer, and so on, at any point a container frame can
make a decision if it wants to handle, ignore, change or forward a message.
Thus a frame can influence the messages its descendants "see". This is again the
all important property of parental control. Should a parent frame not control
the message a child frame sees, the child might "misbehave". Parental control
might force a child frame to move itself only in a restricted way in a container;
or prevent a child frame from deleting itself.

Terminating a broadcast. Under certain circumstances, it is necessary to
terminate a broadcast early. This is typically the case when it is known that no
further frame could have an interest in the message. Thus, Oberon provides a
way to invalidate a message. An invalidated message is not forwarded by
containers, thus terminating the broadcast abruptly.

5.7 AMessage Protocol

After this excursion into the display space, messages and broadcast, we
continue with our examples for manipulating texts. These examples are
generally applicable to other objects too. To communicate with a text editor
frame located somewhere in the display space, we have to send messages to it.
These messages are related to the visual aspects of the text, such as the caret or
the selection. In general, we can say that each type of visual gadget responds to
messages. Often, a frame responds not only to a single message protocol but
also to a set of message protocols. For example, the text editor−like frames (in
module TextFrames) respond to the text message protocol, in addition to the
protocol for objects (object messages) and for frames (frame messages). We
need to know only that text editor frames respond to the text message
protocol, but we do not have to import the text editor modules. This allows
somebody to create a new text editor frame at a later point in time without
invalidating existing modules. In short, the examples below function with all text
editors, future and past.

Messages as first class citizens. In contrast to nearly all other systems,
messages in Oberon usually are statically allocated RECORDs that is, RECORDs
that are temporarily allocated on the activation stack. A message is sent to an
object by passing it as a VAR parameter to the message handler of that object. A
speciality of Oberon is that type extension is applied also to message RECORDs.
The base message type is defined in module Objects:

ObjMsg = RECORD
stamp: LONGINT;
dlink: Object

END;

stampand dlinkare administrative fields which we shall ignore for the moment.
Frame messages are needed to communicate with (text editor) frames and
additional information must be supplied to these frames. The frame message
type extension is defined in module Display:

FrameMsg = RECORD (Objects.ObjMsg)
F: Frame;
x, y: INTEGER;
res: INTEGER

END;

Except for the F field of the FrameMsg, let us further ignore the other message

fields. The F field of a message specifies the target frame of a directed
broadcast. When it is set to NIL, no target is specified and a true broadcast is
involved.
Finally, the messages of the text frame protocol are, in turn, extensions of

FrameMsg. Let us take a look at one of them, the CaretMsg, which is defined in
module Oberonand which is used to manipulate the text caret remotely:

CaretMsg = RECORD (Display.FrameMsg)
id: INTEGER; (* get, set, reset *)
car: Display.Frame; (* Destination frame, returned text editor frame. *)
text: Texts.Text; (* Text represented by car. *)
pos: LONGINT (* Caret position. *)

END;

Abstractly, we see from the discussion above that Oberon uses a type extension
hierarchy for messages too. This allows us to extend the message protocols of
objects without changing or recompiling the whole system. Before proceeding
with the text message protocol, we illustrate the message hierarchy in Figure
5.7.

Objects.ObjMsg

Display.FrameMsg

Text frame
msg protocol

Base message
protocols

Other fram
protocols

Oberon.CaretMsg
Oberon.SelectMsg

...

...

Figure 5.7 Extract of the Message type hierarchy

Reminder. The introduction of the message type hierarchy illustrates the
importance of hierarchies in the Oberon system. At the start of this chapter, we
investigated the module hierarchy, which forms the basis of code re−use in the
Oberon system. In the introduction to the display space, we got to know the
object type extension hierarchy (for reusing and extending object classes), and
the display hierarchy of container/child and model/view relationships between
objects (the run−time system organization). Now, we have just become
acquainted with the message hierarchy that defines the protocols used to
communicate with objects. Later, we will describe another hierarchy that
organizes "templates" of pre−configured objects.
This hierarchical system organization is important since it forms the basis of

an extensible system. Let us summarize what we would like to extend and how
we do it in Oberon. To extend the code of the system, we write a new module
that uses (i.e. imports) existing modules. To extend an object with new
functionality, we make a sub−type (or class) of that object. To extend the
run−time system with functionality, we insert an object in the display space. To
extend the way we communicate with objects, we add new message protocols
to the message type hierarchy.

To communicate with a text editor and thus manipulate its caret, we need to
define a CaretMsg, fill out the RECORD fields of the CaretMsgmessage correctly,
and then broadcast the message into the display space. The general scheme of
declaring, filling out and broadcasting a message is illustrated by the following
code fragment:

PROCEDURE DoIt;
VAR M: Oberon.CaretMsg; (* define message *)
BEGIN

(* fill out the message fields *)
M.F := ... ;
M.id := ... ;

(* Broadcast the message *)
Display.Broadcast(M)

(* ... process return values ... *)
END DoIt;

The Example7in the next section will offer a practical application of this scheme.
To use messages in the Oberon system a programmer requires a knowledge

of how the message fields are interpreted by their receivers. The fields of the
object and display messages have a fixed meaning, and their semantics will be
explained together with the following example. We now review the meaning of
the individual fields of the CaretMsg(the first six fields belong to the base
message types Objects.ObjMsgand Display.FrameMsg):

stamp A time stamp set by the Display.Broadcastprocedure to indicate
the time the message was broadcast. Time, in this sense,
is simply a counter incremented each time a message is broadcast.

dlink A pointer to the object that forwarded the message to the sender.
F The destination frame in the display space for which this message

is intended. A NIL value indicates that the message is addressed to
all frames in the display space.

x, y The absolute screen coordinates of the container frame of the
receiver.

res A number that indicates if the message is valid or not. Invalid
messages are not forwarded further in the display space (termina−
ted broadcast). An invalid message has a resvalue of zero or
more. Display.Broadcast automatically sets resto a negative value
before the message is broadcast.

id A message selector specifying which sub−operation the destination
frame must complete. In this case we can either set the caret,
retrieve the current caret position, or reset, i.e. remove, the caret.

car When idis set to get,the carfield returns the frame that contains
the caret (after the message broadcast).

text Either the text model of the frame that contains the caret when
id = get(textand carare consistent), or the text of the destination
frame otherwise.

pos The caret position in the text of the destination frame or of the
returned frame.

After this introduction, a short discussion of the message fields is in order.
First, as user/sender of messages, fields like stamp, dlink, x, and y are of

secondary importance as they are updated automatically while the message
travels through the display space. These fields need not be filled in before
broadcasting a message. The only fields that are of interest to us at the moment
are F(the destination frame) and the four fields of the CaretMsgitself.
Second, the semantics of fields change depending on the message selector id.

In some cases, the fields of the CaretMsgare out parameters, and sometimes
they are in parameters. Out parameters deliver results from the destination
frame(s) to the message broadcaster or sender. The parameter values are
available in the message RECORD itself after the message broadcast. In
parameters are used to pass parameters from the sender to the destination
frame.

id Meaning of the fields

get Message broadcast to all frames, thus F := NIL.

car, out parameter with the frame that has the caret (if any).
text, out parameter with the text model of carthat has the caret.
pos, out parameter with the position of the caret in text.

set Message broadcast to a specific frame, thus F := someFrame.
car, in parameter with the frame F where to set the caret.
text, in parameter with the text model of car.
pos, in parameter with the position of the caret in text.

reset Message broadcast to a specific frame, thus F := someFrame.
car, in parameter with the frame F where to reset the caret.
text, in parameter with the text model of car.
pos, ignored.

The description also shows that a frame might be displaying more than one
text at the same time, and we should specify which of these texts are meant.
This generality is however seldom used in the Oberon system (but might be in
the future). Consequently, in the set and reset cases, the textfield is mostly
redundant but it is checked for correctness anyway.
Finally, observe that the meaning of some fields of the base message types

have not been explained completely yet (dlinkand stamp, in particular); this
explanation will be deferred till later.

The SelectMsg. This message of the text frame protocol controls the text
selection. Our knowledge of messages in general can now be easily applied to
the SelectMsg, which is also defined in module Oberon:

SelectMsg = RECORD (Display.FrameMsg)
id: INTEGER; (* get, set, reset *)
time: LONGINT; (* Time of the selection. *)
sel: Display.Frame; (* Destination frame, returned frame. *)
text: Texts.Text; (* Text represented by sel. *)
beg, end: LONGINT (* Text stretch of the selection. *)

END;

Most of the fields should look familiar from comparison with the definition of
the CaretMsg. Instead of car, selindicates the frame containing the selection. The
timefield specifies the (true) time of the selection (not to be confused with the
message time stamp), while begand endspecify the extent of the text selection.
Otherwise, most of the principles of the CaretMsgapply to the SelectMsg. In
particular, the SelectMsgis also always broadcast.

The ConsumeMsg. This text frame protocol message controls the insertion
of a text stretch at the caret and is also defined in module Oberon:

ConsumeMsg = RECORD (Display.FrameMsg)
text: Texts.Text; (* Text to be inserted. *)
beg, end: LONGINT (* Text stretch to be inserted. *)

END;

The RecallMsg. This text frame protocol message controls the insertion of a
last deleted text stretch at the caret and is also defined in module Oberon:

RecallMsg = RECORD (Display.FrameMsg)
END;

5.8 Text Protocol Examples

Font Search Tool. Our next objective is to write a command which searches
a text for a specified font, starting at the current position of the caret, and to
re−position the caret after the first character in that font. The search starts at
the caret, if set. The font name is the sole command parameter. To aid the
understanding, we should mention that the libfield of a Reader R is a pointer to
the font of the last character read.

MODULE Example7;

IMPORT Display, Oberon, Out, Texts;

PROCEDURE SearchFont*;
VAR ch: CHAR; C: Oberon.CaretMsg;

R: Texts.Reader; S: Texts.Scanner;
BEGIN

Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos);
Texts.Scan(S);
IF S.class = Texts.Name THEN

C.id :=Oberon.get; C.F :=NIL; C.car :=NIL; C.text :=NIL;
Display.Broadcast(C); (* get caret position *)
IF C.text#NIL THEN

Texts.OpenReader(R, C.text, C.pos);
Texts.Read(R, ch);
WHILE ˜R.eot & (R.lib.name # S.s) DO Texts.Read(R, ch) END;
IF ˜R.eot THEN

C.id :=Oberon.set; C.F :=C.car; C.pos :=Texts.Pos(R);
Display.Broadcast(C)

ELSE
Out.String("Font not found"); Out.Ln

END
ELSE

Out.String("No caret set"); Out.Ln
END

END
END SearchFont;

END Example7.

The module can be activated with:

Example7.SearchFont Syntax10.Scn.Fnt

Finding at which position in a text the caret is set, is done by broadcasting a
CaretMsg, with the carfield set to NIL, to all the documents in the display space. If
a caret is found, we read through the text with a Reader until the font is found.
The font descriptor has a name field (R.lib.name) containing the font name. If the
WHILE loop terminates before reaching the end of the text, we know that we
were successful, and we can set the caret again. Setting the caret outside the
visible part of the text on the display will scroll the text automatically, so that
the caret position becomes visible. After broadcasting the first caret message,
the fields carand textare already initialized for the second caret message
broadcast.

Insert text Tool. This example makes use of the messages described earlier
to insert a text stretch at the caret. The first command copies the selection to
the caret via a buffer and terminates by selecting the copied text. The second
one copies the selection to the caret using a ConsumeMsg. The third one inserts
the last deleted text stretch using a RecallMsg.

MODULE Example8;

IMPORT Display, Oberon, Out, Texts;

PROCEDURE CopySelection*;
VAR T: Texts.Text; B: Texts.Buffer; beg, end, time: LONGINT;

C:Oberon.CaretMsg; S:Oberon.SelectMsg;
BEGIN

Oberon.GetSelection(T, beg, end, time);
(* This procedure, which is provided with the system, does indeed

broadcast a SelectMsg. Its implementation is equivalent to:

S.id := Oberon.get; S.F := NIL; S.time := −1; S.text := NIL;
Display.Broadcast(S);
T := S.text; beg := S.beg; end := S.end; time := S.time

*)
IF time >= 0 THEN

NEW(B);
Texts.OpenBuf(B);

Texts.Save(T, beg, end, B); (* make a copy of the selection in buffer B *)
C.id :=Oberon.get; C.F :=NIL; C.car :=NIL; C.text :=NIL;
Display.Broadcast(C); (* get caret position *)
IF C.text#NIL THEN

Texts.Insert(C.text, C.pos, B); (* insert the selection at the caret *)
S.id :=Oberon.set;
S.F :=C.car; S.sel := C.car; S.text :=C.text; S.time :=−1;
S.beg :=C.pos; S.end :=C.pos+ (end−beg);
Display.Broadcast(S);

ELSE Out.String("No caret set"); Out.Ln
END

ELSE Out.String("No selection."); Out.Ln
END

END CopySelection;

PROCEDURE CopyToCaret*;
VAR T: Texts.Text; beg, end, time: LONGINT;

C:Oberon.ConsumeMsg;
BEGIN

Oberon.GetSelection(T, beg, end, time);
IF time >= 0 THEN

C.F := NIL; C.text := T; C.beg := beg; C.end := end;
Display.Broadcast(C)

END
END CopyToCaret;

PROCEDURE Recall*;
(* The same functionality is provided by the command TextDocs.Recall *)

VAR R:Oberon.RecallMsg;
BEGIN

R.F := NIL; Display.Broadcast(R)
END Recall;

END Example8.

Example8.CopySelection

Example8.CopyToCaret

Example8.RecallYou have to delete a text stretch before using this
command otherwise nothing happens.

In all cases, the caret is automatically repositioned after the last character
inserted.

5.9 Introducing Gadgets

In our discussions so far, we have discussed not only how to use texts but also
how the system is structured (typing and run−time organization) and how to
communicate with frames in the display space (message broadcasting). This is
already enough background knowledge to explore gadget manipulation as the
next topic. By gadget manipulation we mean creating, destroying, inserting,
changing etc. gadgets that already exist. In the user guide you learned how to
manipulate gadgets interactively with the mouse and Columbus. This section
explains how gadgets are manipulated under program control.

The Gadget types. Earlier it was mentioned that gadgets are extensions of
Objects.Objectand Display.Frame. The gadget extension of Display.Frameis called a
visual gadget, and the gadget extension of Objects.Objectis called a model gadget.
We now take a look at the corresponding types in module Gadgets:

(* Base type of the model gadgets *)
Object = POINTER TO ObjDesc;
ObjDesc = RECORD (Objects.ObjDesc)

attr: Attributes.Attr; (* Attribute list. Private variable. *)
link: Links.Link; (* Link list. Private variable. *)

END;

(* Base type of the visual gadgets *)
Frame = POINTER TO FrameDesc;
FrameDesc = RECORD (Display.FrameDesc)

attr: Attributes.Attr; (* Attribute list. Private variable. *)
link: Links.Link; (* Link list. Private variable. *)
state: SET;
mask: Display3.Mask;

(* Cached display mask. Can be NIL to indicate no/invalid mask. *)
obj: Objects.Object; (* Model object, if any. *)

END;

Both types export a field attrand a field linkwhich will be described later on (cf.
Decorations). Furthermore, the visual gadgets have a statefield containing four
boolean flags with information about the gadget state, a maskfield that
remembers the visible area of the gadget (for display clipping purposes), and a
pointer called objto the model gadget attached to the visual gadget (if any).
These fields are only of interest when programming new gadgets. The selected
flag indicates if the gadget is selected, the lockedsize flag indicates if the width
and the height of the gadget is constant, the lockedcontents flag locks all the
children of the gadget against further editing and the transparent flag indicates
if the gadget has a transparent background.
We now focus on what gadgets are available and how to manipulate them.

We pick a gadget we would like to use from the Standard Gadgets Reference,
find out what its generator procedure is, and use this information to find the
module that implements this gadget. Then we use Watson to retrieve the
module definition with the types and operations of that gadget. After doing
this, we have enough information to use that gadget.
We select two standard gadgets, Integer and Slider, for further study. These

gadgets have generators BasicGadgets.NewIntegerand BasicGadgets.NewSlider
respectively, implying that both of them are implemented in the same module
BasicGadgets. Using Watson, we can extract the definitions of these two gadgets
from their module:

Integer = POINTER TO IntegerDesc;
IntegerDesc = RECORD (Gadgets.ObjDesc)

val: LONGINT; (* current value *)
END;

Slider = POINTER TO SliderDesc;
SliderDesc = RECORD (Gadgets.FrameDesc)

min, max, val: LONGINT; (* Minimum, maximum and current value *)
END;

We immediately infer from their base types that a model and a visual gadget
are involved. Each gadget has some local fields storing LONGINT values. Before
doing any manipulation, we have either to create new instances of these
gadgets or to locate already existing gadgets of these types, for example in a
user interface Panel.

Attributes. Each gadget class typically defines several instance variables, some
of which, called attributes, are distinguished from other instance variables by
being visible and modifiable at run−time by the end−user using Columbus.
Attributes are properties of gadget instances that define their state,
representation and behavior. Each attribute has a name and a typed value.
Allowed types are string (ARRAY OF CHAR), LONGINT, REAL, LONGREAL CHAR,
BOOLEAN and SET, a subset of the Oberon language elementary types. The
accessibility of attributes by the end−user places a responsability on the
programmer of the class to "export" only those internal details of a gadget that
can easily be understood and that can be of possible use to the Oberon user.

Creating new instances of gadgets. There are quite a few ways of creating
an instance of a gadget under module control. As the name generator
indicates, simply calling the generator procedure creates a new gadget instance
of that type. This is also the way the Gadgets.Panelcreates a new gadget (with the

help of module Modules). The trick to know is that a generator always assigns
the newly created gadget to the global variable called Objects.NewObj, from
where the caller is expected to pick it up:

IMPORT BasicGadgets, Objects;

PROCEDURE CreateSlider;
VAR S: BasicGadgets.Slider;
BEGIN

BasicGadgets.NewSlider;
S :=Objects.NewObj(BasicGadgets.Slider);

(* and set fields directly *)
S.val := 0; S.min := 0; S.max := 1000

END CreateSlider;

A type guard is required to make sure that an object of the right type is
assigned to the local variable S. However, a gadget is not located in the display
space just after creating it − it is said to be off−screen. It must be inserted into
the display space explicitly, as indicated later. While in this off−screen state, we
may manipulate the fields of a gadget directly as is done in the example,
although this is not a recommended practice.
For the curious, we now illustrate how NewSliderworks. This is also the way

to create a Slider without calling the generator procedure:

IMPORT BasicGadgets;

PROCEDURE CreateSlider;
VAR S: BasicGadgets.Slider;
BEGIN

NEW(S); BasicGadgets.InitSlider(S); (* allocate and initialize *)

(* and set fields directly *)
S.val := 0; S.min := 0; S.max := 1000

END CreateSlider;

In this case, we have to allocate an own Slider with NEWand then initialize it. By
convention, for each gadget we have a corresponding InitXprocedure, where X is
the type of the gadget. The task of the InitXprocedure is to install the message
handler of the gadget and to initialize its RECORD fields to a consistent state.
Afterwards, it is ready for use.
There is however a problem with the approach above: we are using the

module BasicGadgetsby importing it directly. This makes an extremely strong
coupling between our new code and module BasicGadgets. Should module
BasicGadgetschange in future, we might have to recompile or even adjust our
module too. In Oberon, however, we can use gadgets without importing them.
This idea plays an important role in an extensible system and will be observed
many times in the remainder of the book. The trick is to use a special
procedure called Gadgets.CreateObjectto create a gadget from the generator
string:

IMPORT Gadgets;

PROCEDURE CreateSlider;
VAR obj: Objects.Object;
BEGIN

obj := Gadgets.CreateObject("BasicGadgets.NewSlider")
END CreateSlider;

Behind the scenes, Gadgets.CreateObjectuses the module loader to load and
execute the generator procedure of a gadget, and thus avoids importing a
gadget implementation directly.
At this point, the attentive reader will be wondering how we can access the
private RECORD fields of the Slider without importing module BasicGadgets,
and without defining a variable of type BasicGadgets.Slider. The answer is found
in the special attribute message. This message is used by Columbus to inspect

and change the state of gadgets.

Attribute Handling. The attribute mechanism, which was introduced in
Chapter 3, has two aspects. First, a message mechanism is used to set, retrieve
and enumerate the attributes of a gadget. This is the interface or the "outside"
of a gadget. Second, a gadget is responsible for storing attributes internally. This
is the implementation or the "inside" of a gadget. From the outside, the actual
implementation or storage of the gadget attributes is not visible. As users of the
gadget, we are only interested in the attribute interface to a gadget and not in
how it is implemented (more about the implementation is found in the
sections about programming a gadget).
In a similar fashion to Texts.Scanner, the attribute mechanism uses a single

RECORD message type to pass attributes of a selection of basic Oberon types:

AttrMsg = RECORD (Objects.ObjMsg)
id: INTEGER; (* get, set or enum. *)
Enum: PROCEDURE (name: ARRAY OF CHAR);

(* Called by object to enumerate attribute names. *)
name: Name; (* Name of the attribute to be set or retrieved (ARRAY OF CHAR).

*)
res: INTEGER; (* Return result: < 0 no response, >= 0 action completed. *)
class: INTEGER; (* Attribute class (Inval, Int, Real, LongReal, Char, Bool or

String). *)
i: LONGINT;
x: REAL;
y: LONGREAL;
c: CHAR;
b: BOOLEAN;
s: ARRAY 64 OF CHAR

END;

Again we observe a message selector idthat determines whether we want to
read, to write or to enumerate attributes. After sending an attribute message, a
zero or positive resvalue indicates that the message was handled successfully
by the receiving object. The AttrMsgand all messages of the base object protocol
(defined in module Objects) are sent directly to an object, and is not broadcast
into the display space. This involves calling the message handler of an object
directly. Here is how to get or retrieve the Value attribute of an Integer gadget:

PROCEDURE Example*;
VAR obj: Objects.Object; M: Objects.AttrMsg;
BEGIN

obj := Gadgets.CreateObject("BasicGadgets.NewInteger");

M.id := Objects.get;
M.name := "Value"; (* attribute to be retrieved *)
M.res := −1; (* init result code *)
obj.handle(obj, M); (* direct message send *)

IF M.res >= 0 THEN (* success ? *)
Out.String("The Value attribute of the Integer is ");
IF M.class = Objects.String THEN Out.String(M.s)
ELSIF M.class = Objects.Int THEN Out.Int(M.i, 0)
ELSE

Out.String("(Unknown type)")
END

ELSE
Out.String("Object did not understand the message")

END;
Out.Ln

END Example;

This example illustrates a few things. First, a direct send to a gadget involves
calling the handler of an object directly and passing the object itself as the first
parameter and the message as a second parameter. In general, a typical
message send has the structure:

x.handle(x, M)

where M is the message and x is the destination object. Verify the type of
Objects.Handlerwith Watson to assure yourself of this fact. If we did not pass the
receiving object as first parameter, there would be no way for a message
handler to find out which object it is bound to.
After the message is sent, the resfield indicates if the gadget was able to

return the requested attribute. If it did return succesfully, the classfield
indicates the type of the attribute and in which field corresponding to that type
the attribute value is returned. That is, an attribute of type string is returned in
field M.s, whereas an attribute of type integer is returned in M.i, and so forth.
Setting or writing an attribute involves doing the operation above in reverse:

PROCEDURE Example*;
VAR obj: Objects.Object; M: Objects.AttrMsg;
BEGIN

obj := Gadgets.CreateObject("BasicGadgets.NewInteger");

M.id := Objects.set;
M.name := "Value"; (* attribute to be written *)
M.class := Objects.Int; (* type of the attribute *)
M.i := 42;
M.res := −1; (* init result code *)
obj.handle(obj, M); (* direct message send *)

IF M.res >= 0 THEN (* success ? *)
Out.String("Attribute was set")

ELSE
Out.String("Attribute could not be set")

END;
Out.Ln

END Example;

The situation where a user tries to set an attribute with the wrong type, for
example when assigning an existing string attribute to an integer value, is
worth some consideration. According to the ground rules of object orientation,
the exact behavior depends on the object handling the message. It could either
try to convert the integer into a string representation or simply refuse the
operation, but we would never know for sure without inspecting the
description of the gadget. A related point is what happens when an attribute is
set that does not exist at the time the message is sent. In the current
implementation this is often regarded as a combined create and set operation.
This behavior hints at the fact that the attributes of a gadget can be a dynamic
and growing set of attributes. The alert reader will suspect that the attrfield of
gadgets must provide the solution.
The only other selector value of the attribute message is enumused for

enumerating the gadget attributes. This is done by passing a call−back
procedure to the gadget, which then dutifully calls the call−back for each
attribute it has:

PROCEDURE MyCallback (name: ARRAY OF CHAR);
BEGIN

Out.String("Gadget has an attribute called ");
Out.String(name);
Out.Ln

END MyCallBack;

PROCEDURE Example*;
VAR obj: Objects.Object; M: Objects.AttrMsg;
BEGIN

obj := Gadgets.CreateObject("BasicGadgets.NewInteger");

M.id := Objects.enum;
M.Enum := MyCallback;
M.res := −1; (* init result code *)
obj.handle(obj, M) (* direct message send *)

END Example;

As suspected, this is the mechanism Columbus uses to figure out which

attributes a gadget has.
At this point it is instructional to illustrate how to manipulate the Integer

gadget (or for that matter any other gadget) directly without the attribute
message. This is of course a valid option for the programmer, except that a
strong dependency on an Integer object is then created. This implies that a
change to a different type of gadget is not possible without rewriting some
code. As will be shown later in the manipulation of gadgets in a user interface,
this would result in an unneeded type dependency between program code and
a user interface.

IMPORT BasicGadgets, Gadgets, Objects;

PROCEDURE Example*;
VAR obj: Objects.Object;
BEGIN

obj := Gadgets.CreateObject("BasicGadgets.NewInteger");
WITH obj: BasicGadgets.Integer DO

obj.val := obj.val + 1
END

END BasicGadgets;

Locating a gadget in the display space. Manipulating existing gadgets in
the display space is the basis of all applications created with the Gadgets
system. Once a gadget is located in the display space, we can manipulate it
either directly by reading and setting its record fields (a strong dependency) or
indirectly by using the attribute mechanism (a weak dependency). How do we
locate a gadget?
There are essentially three ways of locating gadgets: by position, by state (the

current gadget selection), or by name.
Given a certain X, Y position on the display, we can ask exactly what gadget is

located at that position. By convention, such a position is picked with the star
marker. The definition of the module Oberonreveals that the marker's
coordinates are Oberon.Pointer.X, Oberon.Pointer.Yand that the procedure
Oberon.MarkedFramereturns the marked frame. This knowledge leads to the
following program fragment:

MODULE Example9;
IMPORT Display, Oberon, Objects, Out;

PROCEDURE Info* (obj: Objects.Object);
VAR A: Objects.AttrMsg;
BEGIN

A.id := Objects.get; A.name := "Gen"; A.res := −1;
obj.handle(obj, A); (* Retrieve the generator procedure name *)
Out.String(A.s); Out.Ln

END Info;

PROCEDURE Locate*;
VAR F: Display.Frame;
BEGIN

F :=Oberon.MarkedFrame();
Info(F)

END Locate;

END Example9.

As we already know that communication with the display space is through
message broadcasting, the procedure Oberon.MarkedFramemakes us suspect that
a message broadcast must be hidden behind it. In fact, the Display.LocateMsg
does the job for us.

LocateMsg = RECORD (FrameMsg)
loc: Frame; (* Result. *)
X, Y: INTEGER; (* Absolute location. *)
u, v: INTEGER (* Relative coordinates in loc. *)

END;

This message is broadcast to locate the frame positioned at the absolute
coordinates X, Y on the display. Here is the implementation copied from the
module Oberon.

(** Returns the star (F1) marked frame. *)
PROCEDURE MarkedFrame*(): Display.Frame;

VAR L: Display.LocateMsg;
BEGIN

L.loc := NIL; L.X := Pointer.X; L.Y := Pointer.Y; L.F := NIL; L.res := −1;
Display.Broadcast(L);
RETURN L.loc

END MarkedFrame;

The L.locfield returns the frame located at the position L.X, L.Y, and the L.u, L.v
fields return the relative position of L.X, L.Yinside the located frame.
Now that the gadget is located by its frame, all that remains is to identify it.

This is best done by the name of its generator procedure found in the Gen
attribute as is done in the Infoprocedure. This procedure is exported because it
will be used again in further examples. Knowingly, the attribute message
returns a collection of basic Oberon types from which to select. Thus a cautious
programmer would surely include some test of the result field resand of the
classfield before proceeding with writing the attribute value to the log. In fact,
the necessary test and type conversion are supplied by a collection of
procedures found in module Attributes. The following modified Example9makes
use of one of them:

MODULE Example9bis;
IMPORT Attributes, Display, Oberon, Out;

PROCEDURE Locate*;
VAR F: Display.Frame; generator: ARRAY 32 OF CHAR;
BEGIN

F := Oberon.MarkedFrame();
Attributes.GetString(F, "Gen", generator);
Out.String(generator)

END Locate;

END Example9bis.

The procedures which take care of preparing and issuing an attibute message
follow the pattern:

GetType(obj: Objects.Object; name: ARRAY OF CHAR; VAR x: T);
for retrieving the value xof an attribute namefrom an object obj, and converting
it to type T. The following conversions are performed:

Type T Attribute classes converted

Int LONGINT Int, String, Real, LongReal
Real REAL Real, String, LongReal, Int
LongReal LONGREAL LongReal, String, Real, Int
Bool BOOLEAN Bool, String, Char
String ARRAY OF CHAR String, Int, Bool, Real, LongReal, Bool

Assigning a new value to an attribute is possible with the corresponding "Set"
procedures:

SetType(obj: Objects.Object; name: ARRAY OF CHAR; x: T);

for setting the value of an attribute namein an object obj, and converting the
type T to the attribute class understood by the object. The same conversions are
performed.
We shall soon see that the name of a gadget, that is, the value of its Name

attribute, is of central importance. This remark comes right in time to mention
two procedures of the Gadgetsmodule that serve the purpose of setting and
retrieving the Name attribute under program control:

GetObjName (obj: Objects.Object; VAR name: ARRAY OF CHAR);
NameObj (obj: Objects.Object; name: ARRAY OF CHAR);

The second way of locating a gadget in the display space is by state, finding
out whether a gadget is selected or not. Just as the module Textsprovides a
procedure for obtaining the current text selection, the module Gadgetsprovides
a way to find the gadget selection, or more correctly the frame selection.
Whereas the text selection just consisted of a text with a starting and ending
position, the gadget selection might consist of a set of gadgets. How is such a
set returned? So far, we have not mentioned some fields defined in the base
type Objects.Object.

Object = POINTER TO ObjDesc;
ObjDesc = RECORD

stamp: LONGINT; (* Time stamp of last message processed by object. *)
dlink, (* Next object in the message thread. *)
slink: Object; (* Next object in a list of objects. *)
lib: Library; ref: INTEGER; (* Library and reference number of object. *)
handle: Handler (* Message handler. *)

END;

One of them, called slink, strings objects together in a list, allowing us to visit
them by following the chain. There is no restriction on the type of objects
included in such a list. Accordingly, when requesting the current gadget
selection, a list of frames is returned. By convention, the selection can consist
only of children of one and the same container. This means that two different
"threads" are maintained for each container. The dsc-nextthread contains all the
children, whereas the slinkthread contains only the selected children of the
container.
Here is a procedure to display the generator procedure names of the selected

gadget(s):

MODULE Example10;

IMPORT Gadgets, Objects, Example9;

PROCEDURE Locate*;

VAR obj: Objects.Object; time: LONGINT;
BEGIN

Gadgets.GetSelection(obj, time);
IF time >= 0 THEN

WHILE obj # NIL DO
Example9.Info(obj);
obj := obj.slink

END
END

END Locate;

END Example10.

There is one caveat though. The slinkis such a useful mechanism for stringing
objects together that it is used for more than one purpose. Although the s in
slinksuggests "selection link" at first glance, it really stands for static link. This
relates to the fact that the slinkchain is valid only for the periods between
message broadcasts that use the chain. It would be even better to say
"temporary" instead of static, to be quite correct: a programmer should thus
never assume that the slinkchain remains intact for an indefinite period of time.
A container typically builds the slinkchain when requested, by traversing its
children and checking whether they are selected or not, and inserting them
into the chain accordingly. A gadget is selected when the constant
Gadgets.selectedis a member of the statefield of a gadget.
As expected, Gadgets.GetSelectionis implemented by a message broadcast:

PROCEDURE GetSelection* (VAR objs: Objects.Object; VAR time: LONGINT);
VAR SM: Display.SelectMsg;
BEGIN time := −1; objs := NIL;

SM.id := Display.get; SM.F := NIL;
SM.sel := NIL; SM.obj := NIL; SM.time := −1;
Display.Broadcast(SM);
IF (SM.time >= 0) & (SM.obj # NIL) THEN

time := SM.time; objs := SM.obj
END

END GetSelection;

In a way similar to that in which the Oberon.SelectMsgcontrols the text
selection, the Display.SelectMsgcontrols the selection of gadgets. The objfield
points to a selected object. Further selected objects in the same container
follow in a chain which extends from there. The selfield points to the
containing frame.

SelectMsg = RECORD (FrameMsg)
id: INTEGER; (* get, set, reset. *)
time: LONGINT; (* Time of the selection. *)
sel: Frame; (* Parent of selection. *)
obj: Objects.Object (* List of objects involved. *)

END;

The third way of locating a gadget in the display space is by name. Although
we discuss this technique last, it is definitely the most popular and useful way.
Locating a gadget by name involves broadcasting an Objects.FindMsginto the
display space. As each gadget receives the FindMsg, it checks whether the object
requested matches its name, and returns itself accordingly. Whereas most
other broadcasted messages travel in a depth−first fashion through the display
space, the FindMsgdoes a breadth−first traversal. This means that the "nearest"
gadget from the root of the display space is located.

FindMsg = RECORD (ObjMsg)
name: Name;
obj: Object (* Result object, if found. *)

END;

Unfortunately, the find technique as sketched here is flawed. The reason is
that a user might decide to open the same document twice, thus the named
gadget in the document appears twice in the display space. Although separate

gadget instances are involved, they have the same name, and are thus difficult
to separate. To eliminate the name ambiguity we have to determine where in
the display space the search must start, in other words, at what "virtual" root.
Typically, such a root is the document instance from where a command is
executed. The situation can be clarified as follows.
Suppose a document D contains a gadget named X. Opening D twice results

in two viewers (D1 and D2), each with an instance of gadget X. We
immediately have the problem of separating the two X's (X1 and X2) from each
other. Which of these is meant?
In principle, the user of one of the documents D decides which X is meant.

For example, clicking on a button in D1 means the X of document D1 (thus
selecting D1 as search context), or clicking on a button in D2 means the X of
document D2 (thus selecting D2 as search context). In fact, the scheme used is
slightly more general than this. First, the search context or virtual root is
determined not only by clicking on a button in a document, but also by
executing any command from a user interface element in a document. More
concretely, executing a command from a user interface involves executing the
Cmd or ConsumeCmd attribute of a gadget manipulated. Second, the direct
container of the gadget executing the command is used as search context, not
the document. This allows a fine−grained searching capability and allows a
document to contain multiple containers with descendants having the same
name. Before a gadget executes a command, it deposits a reference to its direct
container in the global variable Gadgets.context. This variable specifies the search
context and is used in the following manner to locate a gadget in that context:

MODULE Example11;
IMPORT BasicGadgets, Gadgets, Objects, Out, Example9;

PROCEDURE Locate*;
VAR obj: Objects.Object;
BEGIN

obj := Gadgets.FindObj(Gadgets.context, "Test");
IF (obj # NIL) & (obj IS BasicGadgets.CheckBox) THEN

WITH obj: BasicGadgets.CheckBox DO
IF obj.val THEN Out.String("The CheckBox is checked.")
ELSE Out.String("The CheckBox is not checked.")
END

END
ELSE Out.String("Test not found.")
END;
Out.Ln; Out.String("Executor: ");
Example9.Info(Gadgets.executorObj);
Out.Ln

END Locate;

END Example11.

This example assumes that a gadget named "Test" exists in the context of the
command executed. This situation is easily built interactively by inserting a
CheckBox and a Button into a Panel, naming the CheckBox "Test" and adding
the command Example11.Locateto the Button.
Additional global variables of the Gadgetsmodule contain references to

objects that are of interest when executing a command from a user interface.
Among those variables, we may cite Gadgets.executorObjwhich is a reference to
the gadget that executed the command.
As suspected, Gadgets.FindObjis just a convenient front−end for a message

send:

PROCEDURE FindObj (context: Objects.Object; name: ARRAY OF CHAR):
Objects.Object;

VAR obj: Objects.Object; M: Objects.FindMsg;
BEGIN

obj := NIL;
IF context # NIL THEN (* search by find message *)

M.obj := NIL; COPY(name, M.name); context.handle(context, M);
obj := M.obj

END;

RETURN obj
END FindObj;

In our example, a strong and unneeded dependency was created on a
CheckBox gadget. There are two solutions in this case. First, we can program a
cascade of IF statements to check the type of the found object. In an extensible
system you will however have to keep updating the IF statements when new
gadgets become part of the system. A better solution, used in the next example,
would be to retrieve, update and then set the Value attribute using the AttrMsg
mechanism instead of importing a specific gadget. Completion of this exercise
will quickly illustrate that programming without dependencies can result in
blown up code sequences. In this case we would have to take into account that
attributes are typed too. This is an unfortunate side effect of statically typed
programming languages. In the pragmatic world, most Gadgets programmers
make some tradeoff between complete generality and tight user interface
coupling.

Display Updates. Only one ingredient is missing before you can link an
application module to its user interface. We already know how to locate a
gadget in the display space (using one of three techniques), and how to read
and change its attributes and RECORD fields (by AttrMsgor directly). What is
missing now is a way to redisplay a gadget should the value of one of its
attributes have changed. More specifically, we have to redisplay a gadget should
a changed attribute have an influence on the visual representation of a gadget.
This does not happen automatically when we change a setting in the gadget
and for a good reason: should we change several attributes at the same time,
an immediate update would cause an unneeded display flickering as the gadget
would be redisplayed each time. Thus, by convention, the instance responsible
for changing a gadget has also the responsibility of updating the display when
all changes have been completed. A display update is trivially accomplished by a
call to Gadgets.Update:

MODULE Example12;
IMPORT Attributes, Gadgets, Objects;

PROCEDURE Update*;
VAR obj: Objects.Object; val: BOOLEAN;
BEGIN

obj := Gadgets.FindObj(Gadgets.context, "Test");
IF obj # NIL THEN

Attributes.GetBool(obj, "Value", val);
Attributes.SetBool(obj, "Value", ˜val);
Gadgets.Update(obj)

END
END Update;

END Example12.

Behind the scenes, one of two messages is broadcast into the display space
by Gadgets.Update. In our case, we are manipulating a visual gadget directly, so it
suffices to broadcast a Display.DisplayMsg

DisplayMsg = RECORD (FrameMsg)
device: INTEGER; (* screen, printer *)
id: INTEGER; (* full, area, contents. *)
u, v, w, h: INTEGER (* Area to be restored. *)

END;

to redisplay our gadget:

PROCEDURE MyFrameUpdate (obj: Display.Frame);
VAR D: Display.DisplayMsg;
BEGIN

D.device := Display.screen;
D.id := Display.full;
D.F := obj;
Display.Broadcast(D)

END MyFrameUpdate;

In this code fragment the message is broadcast in a directed way to the
frame. The idfield is set to a value Display.full, which requests a complete
redisplay.
More generally, the DisplayMsgunifies the functions of displaying and printing

a gadget in a single message. The screenvariant is a request to a visual gadget
to display itself either completely (variant full), or to display a rectangular area of
itself (variant area). In the latter case, the area u, v, w, h inside the destination
frame is redrawn. As usual, the u and v coordinates are relative to the top−left
corner of the destination gadget, thus v is negative. The printervariant requests a
gadget to print a display approximation or snapshot of itself on the printer
(variant full), or to print its data contents (variant contents). This can be a
multi−page document, as for example in the case of a text document.
We might also be manipulating a model gadget in the display space, which

as a non−visual object, cannot respond to a DisplayMsg. In this case, we have to
introduce a new message, as explained in the following section.

PROCEDURE MyModelUpdate (obj: Display.Frame);
VAR M: Gadgets.UpdateMsg;
BEGIN

M.obj := obj; M.F := NIL;
Display.Broadcast(M)

END MyModelUpdate;

Here it is important to note that a true broadcast is used and that M.objspecifies
the model gadget that has changed.

Manipulating model gadgets. Earlier, we used Gadgets.FindObjto find a
gadget in the display space. The same Gadgets.FindObjcan also be used to locate
a named model gadget in the display space, and just as before, we can
manipulate the state of that model gadget. A call to Gadgets.Updateis then used
to broadcast a Gadgets.UpdateMsginto the display space to indicate that the
model has changed its value, and that each view depending on this model
should update its representation accordingly:

MODULE Example13;
IMPORT Attributes, Gadgets, Objects;

PROCEDURE Increment*;
VAR obj: Objects.Object; val: LONGINT;
BEGIN

obj := Gadgets.FindObj(Gadgets.context, "Counter");
IF obj # NIL THEN

Attributes.GetInt(obj, "Value", val);
Attributes.SetInt(obj, "Value", (val + 1));
Gadgets.Update(obj)

END
END Increment;

END Example13.

Thus, depending on the type of the gadget that has changed (model or visual),
a Gadgets.UpdateMsgor a Display.DisplayMsgis broadcast into the display space
(hidden in Gadgets.Update). The reader will notice that the Texts.UpdateMsgis an
analogue of Gadgets.UpdateMsgin the text sub−system of Oberon.
In general, it is a better idea to manipulate model gadgets rather than visual

gadgets in a user interface. The reason is that your application module is
insulated against model representation changes (i.e. a new view for an existing
model) in the user interface.

Manipulation of gadgets in the display space. Typically, user interfaces are
constructed interactively using the Gadgets.Panel. In some cases however, we
need to construct them by program. This requires mechanisms for inserting,
deleting and moving gadgets in the display space.
A straightforward way to add a gadget to the display space is to request it to

be inserted at the current caret position. This moves the gadget from off−screen
to on−screen:

MODULE Example14;
IMPORT Gadgets, Objects;

PROCEDURE Insert*;
VAR obj: Objects.Object;
BEGIN

obj := Gadgets.CreateObject("BasicGadgets.NewButton");
Gadgets.Integrate(obj)

END Insert;

END Example14.

Gadgets.Integrateis a convenient front−end for hiding the message broadcast
that happens behind the scenes:

PROCEDURE Integrate (obj: Objects.Object);
VAR C: Display.ConsumeMsg;
BEGIN

IF obj # NIL THEN
C.id := Display.integrate;
C.obj := obj; C.F := NIL;
Display.Broadcast(C)

END
END Integrate;

The Display.ConsumeMsgis a general mechanism for adding gadgets to the display
space.

ConsumeMsg = RECORD (FrameMsg)
id: INTEGER; (* Drop, integrate. *)
u, v: INTEGER; (* Relative coordinates in destination when drop. *)
obj: Objects.Object (* List of objects to be consumed *)

END;

This message comes in two varieties. The integrate mechanism inserts a gadget
at the caret (if any), and the drop mechanism inserts a gadget at a specific
relative position u, v in a specific gadget. The following example shows how to
insert a gadget exactly at the star marker:

MODULE Example15;
IMPORT Display, Gadgets, Oberon;

PROCEDURE Drop*;
VAR F: Display.Frame; u, v: INTEGER;

C: Display.ConsumeMsg;
BEGIN

Gadgets.ThisFrame(Oberon.Pointer.X, Oberon.Pointer.Y, F, u, v);

C.F := F;
C.id := Display.drop;
C.obj := Gadgets.CreateObject("BasicGadgets.NewButton");
C.u := u; C.v := v; (* relative position in container *)
Display.Broadcast(C)

END Drop;

END Example15.

In this example, notice how the relative coordinates of the star marker inside
the located gadget are used as the position of the inserted gadget. An
interesting question is what happens if a programmer tries to insert a gadget
into an elementary gadget. Again the concept of parental control, or parental
eavesdropping comes to our rescue. The container of the elementary gadget can
monitor the ConsumeMsg, and determine if the child actually did consume the
gadget (M.res >= 0). If not, the container can take the gadget for itself, causing it
to appear overlapping the elementary gadget.
The ConsumeMsgalso allows you to insert more than one gadget into the

display space. As explained before, the slinkfield is used to link all gadgets
together. Here is an example of its use:

MODULE Example16;
IMPORT Display, Gadgets, Oberon, Objects;

PROCEDURE Drop*;
VAR F: Display.Frame; u, v: INTEGER;

C: Display.ConsumeMsg; obj, obj1: Objects.Object;
BEGIN

Gadgets.ThisFrame(Oberon.Pointer.X, Oberon.Pointer.Y, F, u, v);

obj := Gadgets.CreateObject("BasicGadgets.NewCheckBox");
obj1 := Gadgets.CreateObject("BasicGadgets.NewButton");
obj1(Gadgets.Frame).X := obj(Gadgets.Frame).W + 10; (* position it *)

obj.slink := obj1; (* link gadgets together *)
C.F := F;
C.id := Display.drop;
C.obj := obj;
C.u := u; C.v := v;
Display.Broadcast(C)

END Drop;

END Example16.

The setting of the X coordinate of the second gadget prevents both gadgets
from being inserted on top of each other. The list of gadgets in the slinkchain
forms a local coordinate system where the relative position between gadgets is
maintained in their new container.

Removing a gadget from the display space uses the removevariant of the
Display.ControlMsg:

MODULE Example17;
IMPORT Display, Oberon;

PROCEDURE Remove*;
VAR F: Display.Frame; R: Display.ControlMsg;
BEGIN

F := Oberon.MarkedFrame();
R.id := Display.remove; R.F := F;

Display.Broadcast(R)
END Remove;

END Example17.

The Display.ControlMsgunifies two unrelated functions in a single message. The
removevariant removes the destination gadget from the display space. The
restoreand suspendvariants are of informational nature, as sketched below.

ControlMsg = RECORD (FrameMsg)
id: INTEGER (* Remove, suspend, restore. *)

END;

To remove many gadgets from the display space, the destination frame is
interpreted as the head of the list of slinkconnected frames to be removed. This
is a break in style as the destination frame is interpreted as a list. After
removing the necessary children, the container updates its display
representation. The suspendvariant warns that all frames from the destination
downwards in the display space will be temporarily removed from the display
space: only those frames located in the display space receive message
broadcasts. The restorevariant informs the gadget that it is about to be reached
by broadcast again, allowing it to re−synchronize with its model.
Finally, it remains for us to specify how to change the location of a gadget;

there are two possibilities. First, a gadget can be moved from one container to
another in a drag−and−drop fashion. This is accomplished with a remove from
the old container followed by a consume into the new container, with the
messages introduced before. Second, a gadget may change its position (or size)
inside the same container with the Display.ModifyMsg.

ModifyMsg = RECORD (FrameMsg)
id: INTEGER; (* Reduce, extend, move. *)
mode: INTEGER; (* Modes display, state. *)
dX, dY, dW, dH: INTEGER; (* Change from old coordinates (delta). *)
X, Y, W, H: INTEGER (* New coordinates. *)

END;

The following example shows how to move the selected gadget a number of
pixels to the right:

MODULE Example18;
IMPORT Display, Gadgets, Objects;

PROCEDURE Move*;
VAR F: Objects.Object; time: LONGINT; M: Display.ModifyMsg;
BEGIN

Gadgets.GetSelection(F, time);
IF time >= 0 THEN

WITH F: Display.Frame DO
M.F := F; M.id := Display.move; M.mode := Display.display;
M.X := F.X + 10; M.Y := F.Y; M.W := F.W; M.H := F.H;

M.dX := M.X − F.X; M.dY := M.Y − F.Y;
M.dW := M.W − F.W; M.dH := M.H − F.H;
Display.Broadcast(M)

END
END

END Move;

END Example18.

The RECORD fields of the ModifyMsghave the following meaning:

id Either Display.move, Display.extend, or Display.reduce. Display.move
requests a translation, whereas Display.extendand Display.reduce
request a translation or change in size (in the Gadgets system
both options are regarded the same).

mode staterequests an update of coordinates whereas
displayrequests an update of coordinates and an immediate
redisplay of the gadget.

X, Y, W, H New relative location and size of the gadget inside its container.
dX, dY, dW, dH Change from previous coordinates (must be set).

The mode field allows optimization of a move operation. In the
implementation above, the gadget is moved immediately after the message
broadcast. If we had to move a thousand gadgets this could take unnecessary
time for each update. When we set the modeflag to Display.state, however, the
gadget is moved but not displayed immediately. A call to Gadgets.Updatethen
updates the container of the gadget in one go:

MODULE Example19;
IMPORT Display, Gadgets, Objects;

PROCEDURE Move*;
VAR SM: Display.SelectMsg; M: Display.ModifyMsg; obj: Objects.Object;
BEGIN

SM.id := Display.get; SM.F := NIL; SM.sel := NIL; SM.obj := NIL;
SM.time := −1;
Display.Broadcast(SM);

IF SM.time >= 0 THEN
obj := SM.obj;
WHILE obj # NIL DO

M.F := obj(Display.Frame);
M.id := Display.move; M.mode := Display.state;
M.X := M.F.X + 10; M.Y := M.F.Y; M.W := M.F.W; M.H := M.F.H;

M.dX := M.X − M.F.X; M.dY := M.Y − M.F.Y;

M.dW := M.W − M.F.W; M.dH := M.H − M.F.H;
Display.Broadcast(M);

obj := obj.slink
END;
Gadgets.Update(SM.sel)

END
END Move;

END Example19.

This example illustrates how the Display.SelectMsgis used to return the parent
of the selection (SM.sel). A call to Gadgets.GetSelectionis not possible here as it
does not return the parent.

Link Handling. Recall that gadgets have attributes that configure their state
and behavior. The attribute message (Objects.AttrMsg) allows us to inspect and
manipulate attributes. When a gadget is located in the display space though, a
gadget also knows about gadgets in its vicinity, for example its brother, or its
model. This knowledge is made explicit with links. A link is a one−way
connection between a gadget and its "friends" (i.e. the other gadgets that it
knows about). The "Model" link of a gadget, for example, is a connection to the
gadget's model (if any). Links, like attributes, have names. Every visual visual
gadget for example has a Model link. Some other links might be "decorations"
that are added to a gadget. The analogue message to the Objects.AttrMgis the
Objects.LinkMsg. It has the following definition:

LinkMsg = RECORD (Objects.ObjMsg)
id: INTEGER; (* get, set or enum. *)
Enum: PROCEDURE (name: ARRAY OF CHAR);

(* Called by object to enumerate link names. *)
name: Name; (* Link name. *)
res: INTEGER; (* Return result: < 0 = no response, >= 0 action completed. *)
obj: Object (* Value of the link to be set, or link result. *)

END;

The message is used to set, retrieve and enumerate links between objects. As
the LinkMsghas a similar behavior to the AttrMsg, we won't go into details about
it. However, the classfield is absent, since only objects can be set or retrieved.
Although each gadget has an objfield in which the object to be set or retrieved
as a link is passed, this field is not exclusively used as reference to the gadgets
model. This is in accordance with the principle of complete control that a
gadget may possess; it may manage its own internal state as it sees fit. The
latter prerogative forces us to use the link message to build or inspect the
structures existing between gadgets. The primary usage of the link message is
to either inspect or set the model of a gadget. Gadgets.CreateViewModel, for
instance, uses it to create a view/model pair in one go.
Module Linksprovides a more convenient procedural interface for setting and

getting links which hide the messaging mechanism:

GetLink(obj: Objects.Object; name: ARRAY OF CHAR; VAR ob1: Objects.Object);
SetLink(obj: Objects.Object; name: ARRAY OF CHAR; ob1: Objects.Object);

Decorations. Experience shows that it is often useful to "attach" new
attributes to objects that the objects did not originally define. The attached
attributes live with the predefined attributes and are usually ignored by the
object itself, as it would not know what to do with them. A similar facility of
attaching links also exists, enabling the user or programmer to connect objects
to others. Just as for attributes the object is not aware of links that have been
attached to it. The types Gadgets.Objectand Gadgets.Frame, introduced at the
beginning of this section, export a field attrthat references an abstract data
structure that keeps track of these attributes. The same holds true for the
common field linkthat manages the link data structure.

The Attribute Scanner. We shall now make a small digression to discuss a

useful tool that simplifies the scanning of text parameters. Technically it has
little to do with gadgets, except that it is delivered as a part of the Gadgets
system to expand the macro characters of commands executed by gadgets.
Module Attributesprovides a Scanner very similar to that of module Texts. The

Texts.Scannerhas already been introduced earlier in this chapter, so the general
behavior of the Attributes.Scannercan be inferred directly. The attribute scanner
has some useful features that distinguish it from the text scanner. First, the
attribute scanner can also scan objects that float in the parameter text. For
these a new scanner class called Attributes.Objis introduced. The scanned object
is returned in the objfield of the scanner. Second, the attribute scanner expands
macro characters appearing in commands directly as the text is scanned. The
most useful feature is the automatic expansion of the text selection macro
character "↑". The attribute scanner automatically replaces ↑ with the selection.
In this case, the selection is more precisely defined as the text stretch starting at
the first selected character and ending at the first whitespace character past the
end of the selection, that is, the last word is automatically included. The use of
the attribute scanner is recommended, since it eliminates the need to test
explicitly for a "↑" as a parameter. Compare the next example with Example5
written earlier using the Texts.Scanner:

MODULE Example20;
IMPORT Attributes, Oberon, Texts;

PROCEDURE Open*;
VAR S:Attributes.Scanner;

T: Texts.Text;
BEGIN

Attributes.OpenScanner(S,Oberon.Par.text,Oberon.Par.pos);
Attributes.Scan(S);
IF S.class = Attributes.Name THEN (* was a valid file name scanned? *)

NEW(T); Texts.Open(T, S.s);
Oberon.OpenText(S.s, T, 250, 200)

END
END Open;

END Example20.

Example20.Open Example4.Mod˜
Example20.Open ↑

How to find objects in text. Gadgets floating in text can be detected in two
different ways. First, using the attribute scanner which recognizes objects as
belonging to the class Attributes.Obj, among other things. Second, and somewhat
more efficiently, using a Finder which detects exclusively objects. It is thus quite
easy to hop from object to object, ignoring the surrounding text.

MODULE Example21;
IMPORT Attributes, Oberon, Objects, Texts, Example9;

PROCEDURE ScanObjects*;
VAR S: Attributes.Scanner;
BEGIN

Attributes.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos);
Attributes.Scan(S);
WHILE ˜S.eot DO

IF S.class = Attributes.Obj THEN
Example9.Info(S.o)

END;
Attributes.Scan(S)

END
END ScanObjects;

PROCEDURE FindObjects*;
VAR F: Texts.Finder; obj: Objects.Object;
BEGIN

Texts.OpenFinder(F, Oberon.Par.text, Oberon.Par.pos);
Texts.FindObj(F, obj);
WHILE ˜F.eot & (obj # NIL) DO

Example9.Info(obj);

Texts.FindObj(F, obj)
END

END FindObjects;

END Example21.

Example21.ScanObjects ˜
Example21.FindObjects ˜

Gadget Construction. In general, the creation of new gadgets with
Gadgets.CreateObj, the changing of attributes with Objects.AttrMsg, and the
construction of links with Objects.LinkMsg, are enough to build interesting gadget
constellations. However, many Gadgets system modules provide procedures to
glue gadgets together. For example, the Iconizer gadgets provide a way of
creating an Iconizer out of the two "cards" appearing on each side of it (see the
description in the Standard Gadgets Reference). Now, take a look at a complete
example for building little pop−up menus. It shows all the features of the
Gadgets system we have described so far, including the use of exported
comments (an exported comment statement has the form (** ... *)).

MODULE Popups; (* jm 14.11.94 *)

(**
This is an example program to show how you can combine gadgets
together by program control. The same effect can also be obtained
completely interactively with the graphical user interface.

Insert a popup at the caret with the command:

Popups.Insert "My menu"

The module builds a small popup menu from a Panel with a
descriptive text on one side, and a TextNote on the other side. The
Iconizer can be opened in−place and text entered inside the
TextNote. You may also change the "Cmd" attribute of the TextNote
to directly open what you click on with:

Gadgets.ChangeAttr Cmd "Desktops.OpenDoc #Point" ˜

Note: There is one problem though: should the command be
executed from a TRAP viewer, the popup will not close again.

*)

IMPORT
Attributes, Display, Gadgets, Icons, Oberon, Objects, Panels,
TextFields, TextGadgets, Texts;

PROCEDURE InsertFrame (F, f: Display.Frame; u, v: INTEGER);
VAR C: Display.ConsumeMsg;
BEGIN

C.id := Display.drop; C.F := F; C.obj := f; C.u := u; C.v := v; C.res := −1; C.dlink := NIL;
F.handle (F, C)

END InsertFrame;

PROCEDURE Build* (desc: ARRAY OF CHAR; T: Texts.Text; W, H: INTEGER):
Objects.Object;
VAR F: Icons.Iconizer; close: Panels.Panel; open: TextGadgets.Frame;

caption: TextFields.Caption; t: Texts.Text;
BEGIN

NEW (close); Panels.InitPanel (close);
close.W := W; close.H := H;

Attributes.StrToTxt (desc, t);
NEW (caption); TextFields.InitCaption (caption, t);

IF caption.W + 20 >= close.W THEN close.W := caption.W + 20 END;

InsertFrame (close, caption, close.W − caption.W − 5, −close.H + 3);

Attributes.SetBool (close, "Locked", TRUE);
NEW (open); TextGadgets.Init (open, T, TRUE);

NEW (F); Icons.MakeIconizer (F, close, open);
Attributes.SetBool (F, "Popup", TRUE);
RETURN F

END Build;

PROCEDURE Insert*;
VAR S: Attributes.Scanner; T: Texts.Text;
BEGIN

Attributes.OpenScanner (S, Oberon.Par.text, Oberon.Par.pos);
Attributes.Scan (S);
IF (S.class = Attributes.Name) OR (S.class = Attributes.String) THEN

NEW (T); Texts.Open (T, "");
Gadgets.Integrate (Build (S.s, T, 60, 25))

END
END Insert;

END Popups.

We suggest that you use the commented module definitions to trace exactly
what happens in the example above. Of course, the program is not strictly
needed; everything that this program does can be done interactively or with the
help of a LayLa description as is shown in Chapter 6.

Copying Objects. Although it might seem a harmless operation at first sight,
copying an object is definitely not a simple thing. This is because only the
object knows how to copy itself and at the same time an object does not have
complete knowledge of the data structure it finds itself in. This conflict
between local and global knowledge makes it difficult to make an exact copy of
a complicated data structure.
Both shallow and deep copies are initiated by sending an Objects.CopyMsgto

the root object of the data structure to be copied:

CopyMsg = RECORD (Objects.ObjMsg)
id: INTEGER; (* Copy style: Objects.deep or Objects.shallow. *)
obj: Object (* Result of the copy operation. *)

END;

The receiver returns a copy of itself in the objfield of the message. To
implement a deep copy, a receiver container forwards the CopyMsgto its
children, which in turn return copies of themselves, which are then inserted
into the newly created container.
When the data structure being copied is a tree, the technique above works

well. We have however to make special provision for the case when the data
structure is a DAG or a graph; that is, the recursively propagated CopyMsgarrives
through two or more paths at the same object, which promptly makes two or
more copies of itself (although only one copy should be made, of course). The
solution is to distinguish between the first time and the remainder of the times
an object receives the CopyMsgby using the message time stamp. Should an
object receive the CopyMsga second time, it returns the copy it made the first
time. Only in this way can perfect deep copies be guaranteed. For the moment
though we can ignore the exact behavior of an object on the CopyMsg; more
important to know is that the message time stamp should be set correctly
when a deep copy is to be made.
The following example makes a deep copy of the selection, inserting the

result at the caret:

PROCEDURE Copy*;
VAR M: Display.SelectMsg; p, nl: Objects.Object; time: LONGINT;

C: Objects.CopyMsg;
BEGIN

Gadgets.GetSelection(p, time);
IF time > 0 THEN

nl := NIL;
Objects.Stamp(C); (* set the message time stamp *)
WHILE p # NIL DO

C.id := Objects.deep; p.handle(p, C);
C.obj.slink := nl; nl := C.obj;

p := p.slink
END;
Gadgets.Integrate(p)

END;
END Copy;

We keep in nla reference to the last copied gadget to link it to the next gadget
copied. Also notice how all the instances of CopyMsgsent have the same time
stamp. This procedure is exactly what is provided by Gadgets.Copywhich frees
the programmer from setting up an Objects.CopyMsg.

The Message Thread. We have discussed so far how to create gadgets,
manipulate them and copy them. All of these operations have a direct relation
to the display space. Truly, the exact structure of the display space is hidden
from the gadget programmer, as each container takes the responsibility for its
children, and we should never interfere from the outside directly in the matters
of a container. Instead, we should broadcast messages to influence gadgets in
the display space. Also not mentioned explicitly so far is that a child seldom
knows in what container it is located (i.e. there is no direct back pointer). This
is an important design decision in the Gadget system, and forms the basis of
the complete integration property of gadgets.
The lack of knowledge a gadget has about the display space it is located in,

sometimes conspires against us. In some cases, a gadget should at least know
the container it is located in (to find its siblings using the FindMsg), and in less
frequent cases the document it is located in. In principle, a gadget needs to
know about all its ancestors right up to the display space root, but admittedly
in practice it will seldom be the case. Since an object obtains control only when
a message is sent to it, and most often, through a message broadcast, is suffices
to "remember" the path that a message travelled to reach it. This we call the
message thread.
The message thread is a list of objects (often visual gadgets) through which a

message travelled through the display space to reach a gadget. The list is
constructed in a backwards fashion from the receiver to its container, then to
the container of that container and so on all the way up to the display root at
the top. As a gadget knows that it received a message, the gadget itself must
not be inserted into the message thread; the message thread thus starts at the
container of the receiver. The start of the message thread is passed inside of the
message itself; this is the function of the dlinkfield which points to the container
of the message receiver. The thread continues through the dlinkfield of the
Objects.Objectbase type. The following example shows how to visit all the
ancestors of a gadget in turn:

MODULE Example22;
IMPORT Gadgets, Objects, Example9;

PROCEDURE ShowThread*;
VAR obj: Objects.Object;
BEGIN

obj := Gadgets.context;
WHILE obj # NIL DO

Example9.Info(obj); obj := obj.dlink
END

END ShowThread;

END Example22.

We use Gadgets.contextas the starting point of the message thread. This global
variable is set when a gadget executes a command, and is exactly the dlinkvalue
of the InputMsgthat caused the command to be executed in the first place
(when you clicked on the gadget). The exact behavior of the InputMsgis
discussed in the section on programming visual gadgets.

5.10 Persistency and Libraries

Files. The prerequisite for persistent objects is a file system; the objects have
to be written to a file in order not to disappear forever when the machine is
switched off. Thus, before we can introduce the persistency mechanism of
Oberon, we have to introduce the Oberon file system and its two unique
features.
First, a distinction is made between a file (a potentially infinite collection of

bytes) and the way that file is accessed. The latter is called a Rider. The rider
access mechanism can be set to a certain location in the file (offset from the
beginning of the file), from where data can be read or written, advancing the
rider forward by one position for each byte read or written. More than one
rider can be positioned on the same file, each rider having potentially a
different position. During reading, the rider sets an end−of−file flag when the
end of the file is reached. Writing beyond the end of a file with a rider enlarges
the file.
The second unique feature is that files can be anonymous (nameless) in

Oberon. In fact, a newly created file does not appear in the file directory under
its name until it is explicitly registered. The separation of a file and its location
(directory) provides two interesting possibilities to the Oberon programmer. It
is possible to write temporary data to an anonymous file without making the
file visible to any other Oberon module. The atomic nature of the register
operation allows a file to appear suddenly in the directory, possibly replacing a
file in a flash. When an open named file is suddenly deleted by another
module, the file becomes anonymous, but it is still possible to access it without
fear of an unexpected system behavior. Unregistered anonymous files are
simply deleted from disk when they are not used anymore.
The Oberon Filesmodule provides the interface to the Oberon file system. To

ensure portability of documents between all Oberon platforms, the Files
module provides a way to store the basic types of the Oberon programming
language in a machine independent way. The types Fileand Riderare the only
exported types of the Files module:

TYPE
File = POINTER TO Handle;
Rider = RECORD

eof: BOOLEAN; (* Rider has reached the end of the file. *)
res: LONGINT; (* Rider operation result code. *)

END;

Note that the file representation is hidden; Files.Handleis not exported. The
following functions allow us to open or to create a file:

(* Open an existing file. The same file descriptor is returned if a file is opened
multiple times. *)

PROCEDURE Old (name: ARRAY OF CHAR): File;

(* Creates a new file with the specified name. The same file descriptor is not returned
with multiple calls to New with the same file name (this results in multiple copies of a
file with the same name. i.e. the files are not registered in the directory). *)

PROCEDURE New (name: ARRAY OF CHAR): File;

From now on, the examples will be presented as "no frills" texts
concentrating on the essential but nevertheless offering "bare−bone" workable
modules and procedures. Usable implementations would require the
construction of conditional statements testing and acting on conditions such as
"is this string a valid name?", "does this file exist already?", "is the caret set?", "is
there a selection?", etc. The examples are offered as workable solutions under
the express condition that the rules dictated by the programs are adhered to. If
not, a trap is around the corner.

The following example module shows how to set a rider and how to read
and write data using the rider. This is a typical example of how to access files:

MODULE Example23;
IMPORT Files, Oberon, Texts, RandomNumbers;
VAR F:Files.File;R: Files.Rider;

S: Texts.Scanner; W: Texts.Writer;
i, max: LONGINT; res: INTEGER; r: REAL;

PROCEDURE StoreData*;
BEGIN

Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
F :=Files.Old(S.s);
IF F = NIL THEN (* the file does not exist, a new file is created *)

F :=Files.New(S.s);
Files.Set(R, F, 0)

ELSE (* the file exists already, data is appended *)
Files.Set(R, F, Files.Length(F))

END;
i := 0; max := ENTIER(RandomNumbers.Uniform() * 10);
WHILE i < max DO

Files.WriteReal(R,RandomNumbers.Uniform()); INC(i)
END;
Files.Register(F)

END StoreData;

PROCEDURE ProcessFile*;
BEGIN

Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
F := Files.Old(S.s);
Files.Set(R, F, 0);
Files.ReadReal(R, r);
WHILE ˜R.eof DO

(* *)
Files.ReadReal(R, r)

END
END ProcessFile;

PROCEDURE StoreTemp*;
BEGIN

F :=Files.New("");
Files.Set(R, F, 0);
i := 0; max := ENTIER(RandomNumbers.Uniform() * 10);

WHILE i < max DO
Files.WriteReal(R,RandomNumbers.Uniform()); INC(i)

END;
(* Files.Register(F); DoNOT register *)

Files.Set(R, F, 0)
(* Process the file as shown in ProcessFile ... *)

END StoreTemp;

PROCEDURE RenameFile*;
VAR oldName: ARRAY 64 OF CHAR;
BEGIN

Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
COPY(S.s, oldName);
Texts.Scan(S);
Files.Rename(oldName, S.s, res)

END RenameFile;

PROCEDURE DeleteFile*;
BEGIN

Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
Files.Delete(S.s, res)

END DeleteFile;

END Example23.

Example23.StoreData Test− Create the file and store data in it,
if it already exists append some data

Example23.ProcessFile Test− Process the file
Example23.RenameFile Test testNew− Rename the file Test to TestNew
Example23.DeleteFile Test− Delete the file

Example23.StoreTemp− Create a temporary file and process it from the start

A temporary file is created with Files.Newand is never registered. Its name may
be the empty string "". The disk space is reclaimed at the time of the next
session. When a file is deleted or renamed, we recommend the handling of the
res(result code) be expanded to cope with possible error situations.
The description above provides enough knowledge for simple file operations.

There are however several other operations; these can be studied in the Files
definition and won't be repeated here.

How to store and load text from a file.

MODULE Example24;
IMPORT Display, Files, Oberon, Texts;
VAR F: Files.File; R: Files.Rider; S: Texts.Scanner; W: Texts.Writer;

PROCEDURE StoreText*;
VAR beg, end, time, len: LONGINT; T, TS: Texts.Text; B: Texts.Buffer;
BEGIN

Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
Oberon.GetSelection(TS, beg, end, time); (* get the selection *)
F := Files.New(S.s);
Files.Set(R, F, 0);
NEW(B); Texts.OpenBuf(B);
Texts.Save(TS, beg, end, B); (* copy the selection to the buffer B *)
NEW(T); Texts.Open(T, "");
Texts.Append(T, B);
Texts.Store(T, F, Files.Pos(R), len);
Files.Register(F);
Files.Close(F);

END StoreText;

PROCEDURE LoadText*;
VAR T: Texts.Text; C: Oberon.CaretMsg; B: Texts.Buffer;

len: LONGINT; ch: CHAR;
BEGIN

Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
F := Files.Old(S.s);
Files.Set(R, F, 0);
C.id := Oberon.get; C.F := NIL; C.car := NIL; C.text := NIL;

Display.Broadcast(C); (* where is the caret? *)
NEW(T);
Files.Read(R, ch); (* Read the 1−byte block identifier. *)
IF ch = Texts.TextBlockId THEN (* It must be a text block *)

Texts.Load(T, F, Files.Pos(R), len);
NEW(B); Texts.OpenBuf(B);
Texts.Save(T, 0, T.len, B);
Texts.Insert(C.text, C.pos, B)

END
END LoadText;

END Example24.

Example24.StoreText Test1- The selected text is stored in Test1.
Example24.LoadText Test1 ~

The store and the load processes are asymmetric: at load time, the rider must
be positioned after the first byte, that is the block identifier which was written
by the store procedure.

Introductory technical background information on libraries. Although it is
possible to store a single gadget in a file (for example a container without its
children), the most often used case is to store a collection of gadgets like a
document. To store and then later reload a gadget collection to and from a disk
file requires two problems to be solved.
First, we have to store the data belonging to each gadget, for example the

value field of a TextField or of a Slider. Preferably the data format must be
organized in such a way that we can read the data into a different Oberon
implementation independent of byte ordering. Since the Filesmodule provides
a platform−independent way to store multi−byte basic types, the solution is
already present.
The second and more difficult aspect is to store the relationships (references)

between gadgets in a document. We have to keep track of the model
connected to a view, or of the children of a container, so that a load results in
exactly the same structure as was stored (this is similar to making a deep copy
of a gadget). At run−time, references between objects in the heap are by
memory addresses, in other words a pointer from one object to another
contains the address of the referenced object. As we cannot influence the
address at which an object is allocated, we cannot store addresses to a file; the
address would be invalid as soon as we try to load the objects from the file. The
solution to this problem is to use a different format for storing pointers.
Converting to and from POINTER notation to this format is called pointer
swizzling.
The idea is quite simple. Before storing a data structure, each object in that

data structure is given a number. Instead of storing the address of a reference,
we can store the number of the referenced object. At load time we need a way
to convert the number read back into a pointer. Of course, this scheme could
use the address as the reference number, although in practice the magnitude of
pointer addresses makes it impractical. During loading, a reference number can
be converted into a POINTER only if the referenced object has already been
created. This suggests two requirements of our storage scheme: there is a
partial ordering between objects during storing and loading, and we need
auxiliary data structures to keep track of POINTERs and reference numbers.
These two problems are solved in Oberon by introducing libraries, and a
two−phase store and load protocol.

Libraries. In essence, a library is a dynamically growing array of objects and
the reference number of an object is nothing else than the index of that object
in a library. A more formal definition of a library can thus be given: a library is
an abstract class whose instances are collections of objects. Within the scope of
a library, reference numbers identify objects uniquely and invariantly. The
action of binding an object to a library gives it a reference number. Once objects
are bound to a library, they can be made permanent by storing the whole library
contents on disk. Both loading and storing of libraries is built in a standard way

into module Objects. Unbound objects are called free.
Libraries provide a useful mechanism to organize a collection of objects. We

can imagine functions that pick selected gadgets straight from the library
according to reference number. This idea is incorporated into the Oberon
system by creating two types of libraries: private and public. Private libraries are
used by applications only for persistent data structures. They are unnamed,
hence are also dubbed anonymous, and are typically hidden somewhere in the
data files of an application. Public libraries by contrast are used as general
object repositories. Public libraries are named and are stored in files with the
extension .Lib. Whereas private libraries can be loaded multiple times into
memory (each library having different object instances), public libraries are
loaded when demanded and then cached in memory until not used anymore.
That is, loading a public library with the same name twice, returns the same
library each time.
Each object knows its library and reference number:

Object = POINTER TO ObjDesc;
ObjDesc = RECORD

stamp: LONGINT; (* Time stamp of last message processed by object. *)
dlink, (* Next object in the message thread. *)
slink: Object; (* Next object in a list of objects. *)
lib: Library; ref: INTEGER; (* Library and reference number of object. *)
handle: Handler (* Message handler. *)

END;

A free object has a NIL value in the libfield. Here follows a partial definition of a
library as found in module Objects:

Library = POINTER TO LibDesc;
LibDesc = RECORD

name: Name; (* name of the library. Private library when "", else public library. *)
dict: Dictionary; (* Object names. *)
maxref: INTEGER; (* Highest reference number used in library. *)

(* Return a free reference number. *)
GenRef: PROCEDURE (L: Library; VAR ref: INTEGER);

(* Return the object with the indicated reference number. *)
GetObj: PROCEDURE (L: Library; ref: INTEGER; VAR obj: Object);

(* Insert an object under the indicated reference number. *)
PutObj: PROCEDURE (L: Library; ref: INTEGER; obj: Object);

(* Free object with indicated reference number. *)
FreeObj: PROCEDURE (L: Library; ref: INTEGER);

END

To allow the extension of libraries, the four procedures listed above are defined
as methods (procedure variables of Objects.LibDesc). At this moment it is enough
to know that an object will bind itself to a library when we send the
Objects.BindMsgto it:

BindMsg = RECORD (Objects.ObjMsg)
lib: Library (* Library where object should be bound. *)

END;

A container gadget forwards the BindMsgto its children and a visual gadget
linked to a model gadget forwards the BindMsgto the model so that they are
bound to the same library. The implementation of the BindMsgtypically looks as
follows (and is an auxiliary procedure in module Gadgetswhich makes use of
the methods GenRef and PutObj defined above):

PROCEDURE BindObj (obj: Objects.Object; lib: Objects.Library);
VAR ref: INTEGER;
BEGIN

IF lib # NIL THEN
IF (obj.lib = NIL) OR (obj.lib.name[0] = 0X) & (obj.lib # lib) THEN

lib.GenRef(lib, ref);

IF ref >= 0 THEN
lib.PutObj(lib, ref, obj);

END
END

END
END BindObj;

In general, it is irrelevant in what type of library (public or private) objects are
located. As a rule, each object is a member of at most one library and an object
belonging to a public library cannot be rebound to any other library, whereas
an object belonging to a private library can be rebound to another private or
public library. The IF statement ensures the binding rules: the object to bind
must be free or may be bound already to another private library.
At this stage, it is not essential to know how objects store references to each

other when stored inside a library; we will discuss this when we describe
programming new gadgets. For the moment, we show how to store a selected
gadget into a library which is then stored in a file and how to load it back from
there and insert it at the caret:

MODULE Example25;
IMPORT Files, Gadgets, Oberon, Objects, Texts;
VAR F: Files.File; R: Files.Rider; S: Texts.Scanner;

PROCEDURE StoreGadget*;
VAR B: Objects.BindMsg;

time, len: LONGINT; obj: Objects.Object;
BEGIN

Gadgets.GetSelection(obj, time);
IF time >= 0 THEN

Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
F := Files.New(S.s);
Files.Set(R, F, 0);
NEW(B.lib);Objects.OpenLibrary(B.lib);
obj.handle(obj, B); (* bind the object to the library *)
Files.WriteInt(R, obj.ref); (* Note the reference number *)
Objects.StoreLibrary(B.lib, F, Files.Pos(R), len);
Files.Register(F)

END
END StoreGadget;

PROCEDURE LoadGadget*;
VAR obj: Objects.Object; L: Objects.Library;

ref: INTEGER; len: LONGINT; ch: CHAR;
BEGIN

Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
F := Files.Old(S.s);
Files.Set(R, F, 0);
NEW(L);Objects.OpenLibrary(L);
Files.ReadInt(R, ref); (* Obtain the object reference number. *)
Files.Read(R, ch); (* Skip the 1−byte block identifier. *)
Objects.LoadLibrary(L, F, Files.Pos(R), len);
L.GetObj(L, ref, obj);
Gadgets.Integrate(obj)

END LoadGadget;

END Example25.

Example25.StoreGadget Test1
Example25.LoadGadget Test1 ~

The two procedures LoadLibraryand StoreLibraryof module Objects load and
store a library from and to a file. The library is positioned at pos in file F and has
a length len. The bound objects and dictionary are packaged inside the extent
[pos, pos+len) of the file. The first procedure requests each of the objects to
read their contents from the file and the second to write their contents to the
file using a Rider. The two requests are combined in the Objects.FileMsgwith
variants loadand store.

FileMsg = RECORD (ObjMsg)
id: INTEGER; (* load or store *)
len: LONGINT; (* Length of the object data on loading. *)
R: Files.Rider (* Rider with which to load or store data. *)

END;

The FileMsgwhich is used behind the scene, passes a Files.Riderto the object
which should store or read data.

Dictionaries. We already know that an object can be given a name, which is
used to find the object in a user interface made of a collection of gadgets. A
similar (but not the same) idea is used to locate objects in a public library.
Since the exact reference number of an object in a public library might change
due to editing of the library (which can be done using the Libraries.Panel), we
must be careful when noting and storing references to public objects. To guard
against such unexpected changes, we can associate a name (a string) with a
reference number in the library. Using that given name, we can then retrieve
the reference number from the dictionary, which is finally used to locate the
object itself. The collection of (name, reference number) pairs of a public
library is called a dictionary and is realized as an abstract type connected to a

library. Note that we do not say that a dictionary name is associated with an
object in a public library; just the name and the corresponding reference
number are remembered. Of course, from the reference number in the
dictionary we can retrieve the object having that reference number. In effect we
are creating another way to name an object (a public object, to be precise). It is
important to realize that this name is not the same as the name of the object.
The latter is an attribute of an object. Thus the name of an object can differ
from the public name of the object.

The maintenance of the (reference, name) dictionary pairs is performed
using the following primitives of module Objects:

(* Associate a name with a reference number. *)
PROCEDURE PutName (VAR D: Dictionary; key: INTEGER; name: ARRAY OF CHAR);

(* Get name associated with a key/reference number. *)
PROCEDURE GetName (VAR D: Dictionary; key: INTEGER; VAR name: ARRAY OF

CHAR);

(* Given an object name, return the object reference number from the dictionary. *)
PROCEDURE GetRef (VAR D: Dictionary; name: ARRAY OF CHAR; VAR ref: INTEGER);

Dictionaries have been designed in such a way that they can be used for
another purpose too. The main idea is to use them also as repositories of often
used strings; these strings are called atoms and are associated with negative
reference numbers, which are then called keys. That explains why the second
parameter of two of the above procedures is named "key" instead of "ref" as
would be expected. This feature is used to reduce the file size of libraries, but at
the same time it does complicate the dictionary interface a little bit. For the
moment, it is of little interest to us. The following procedure in the module
Objects is used to obtain a key for an atom. Note the analogy with the method
GenRef mentioned earlier.

(* Allocate a key (any integer < 0) to a name. *)
PROCEDURE GetKey (VAR D: Dictionary; name: ARRAY OF CHAR; VAR key:

INTEGER);

The maintenance of the (key, atom) dictionary pairs is performed using the
three primitives defined above.

Public Gadgets. As explained in the previous paragraph, the dictionary
mechanism allows us to name objects in public libraries. These objects are
called public objects. By convention, we refer to a public object in the form L.O,
where L is the library name and O is the object name (dictionary name). Public
objects have the useful property of having only one instance at any time in the
system. This is an effect of public libraries being loaded only once and then
cached. This makes public objects predestined to be shared between Oberon
applications. Perhaps the most often used library is the Icons.Lib; it contains
numerous pictures representing useful icons. Libraries are used also to store
the menu bars that documents typically use. In concept, a hierarchy of public
libraries can be imagined, each object using objects in other libraries. The
library hierarchy has an analogue in the module hierarchy, where one libary
imports another library. In practice though, the library hierarchy is flat with only
one level, although nothing prevents you from using them in the more general
way.
Just as we can locate a named object in a user interface, so we can locate a

public object specified in L.Onotation using the procedure Gadgets.FindPublicObj.
This procedure has the following implementation:

PROCEDURE FindPublicObj (name: ARRAY OF CHAR): Objects.Object;
VAR obj: Objects.Object; libname, objname: ARRAY 64 OF CHAR;

i, j, k, ref: INTEGER; lib: Objects.Library;
BEGIN

obj := NIL; i := 0; j := 0;
WHILE (name[i] # ".") & (name[i] # 0X) DO libname[j] := name[i]; INC(j); INC(i)

END;
IF name[i] = 0X THEN RETURN NIL END;
libname[j] := 0X; k := j; INC(i); j := 0;
WHILE (name[i] # " ") & (name[i] # 0X) DO objname[j] := name[i]; INC(j); INC(i)
END;
objname[j] := 0X;
libname[k] := "."; libname[k+1] := "L"; libname[k+2] := "i"; libname[k+3] := "b";
libname[k+4] := 0X;
lib := Objects.ThisLibrary(libname);
IF lib # NIL THEN

Objects.GetRef(lib.dict, objname, ref);
IF ref # MIN(INTEGER) THEN lib.GetObj(lib, ref, obj) END

END;
RETURN obj

END FindPublicObj;

As can be seen, the biggest task is to take the name L.Oapart to load the library
L.Libusing Objects.ThisLibrary. Objects.ThisLibrary searches for the library in the
public library cache first, and loads the public library from the disk file L.Libif it
is not there yet.

In conclusion, we show how to insert a newly created object into a public
library "Test.Lib" and name it "Pluto", and how to find it again under the name
"Test.Pluto" with Gadgets.FindPublicObj. If the library does not already exist, it is
automatically created when Objects.ThisLibraryis executed.

MODULE Example26;
IMPORT Gadgets, Oberon, Objects, Texts;
VAR S: Texts.Scanner; L: Objects.Library; obj: Objects.Object;

B: Objects.BindMsg; C: Objects.CopyMsg;

PROCEDURE MakePublic*;
BEGIN

Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos);
Texts.Scan(S);
L := Objects.ThisLibrary(S.s);
obj := Gadgets.CreateObject("Panels.NewPanel");
B.lib := L;
obj.handle(obj, B);
Texts.Scan(S);
Objects.PutName(L.dict, obj.ref, S.s);
L.Store(L) (* Optional: make the addition persistent. *)

END MakePublic;

PROCEDURE GetPublic*;
BEGIN

Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos);
Texts.Scan(S);
obj := Gadgets.FindPublicObj(S.s);
C.id := Objects.deep; Objects.Stamp(C);
obj.handle(obj, C);
Gadgets.Integrate(C.obj)

END GetPublic;

END Example26.

Example26.MakePublic Test.Lib Pluto
Example26.GetPublic Test.Pluto

5.11 ProgrammingNewGadgets

Proficient programmers will often notice that they require a special gadget
implementation for a special−purpose application. It might also be the case
that the new gadget required should function approximately like an existing
gadget with a few exceptions. The programmer must thus choose either to
program a new gadget from scratch or to extend an existing gadget. Different
skill levels are required depending on the classification of the programmed
component as model, elementary, container, camera−view or document

gadget. For example, model gadgets are easier to program than elementary
visual gadgets, which are easier to program than a visual gadget that contains
other gadgets.
Extensive experience has shown that programming gadgets involves applying

a set of standard design patterns. A design pattern in Oberon is a proposal how
to solve a specific class of problems. In the most concrete form, a design
pattern is a skeletal piece of source code that is copied and then modified for
own purposes. This is a typical "fill in the blank" approach adopted by
component frameworks. One does not start from scratch when programming
a gadget, but some kind of prepared skeleton is already available. This allows
programmers to create a partially functional gadget in no time at all. Most
importantly, it allows them to develop objects incrementally by only adding
features to things that already work. Surprisingly large parts of most gadgets are
always the same and can thus be shared by most gadgets. They may be treated
as skeletons with no blanks to fill in. Using design patterns or reusing code
saves memory and simplifies programming. In more general terms, design
patterns are guidelines for building software. They are intended to be general
enough to be reused in many situations.
The supporting examples make use of these generally applicable design

patterns in the development of new gadgets. Though the design patterns are
easily recognizable, most examples contain noticeable variations suggesting
that there is still ample room left for creativity by programmers with their own
ideas. By combining design patterns in innovative ways, you can quickly create
new patterns that are robust and easily understood.

5.11.1 Gadget structure and implementation steps

A component consists of a type definition, message definitions, procedures to
copy and initialize an object, and the ubiquitous message handler. Here is an
outline of the typical module structure required for implementing an object
MyObject:

MODULE Example;
IMPORT Objects;

TYPE
MyObject* = POINTER TO MyObjectDesc;
MyObjectDesc* = RECORD (Objects.Object);

(* extended fields *)
END;

MyMsg* = RECORD (Objects.ObjMsg)
(* message arguments *)

END;

PROCEDURE Copy* (VAR F: Objects.CopyMsg; from, to: MyObject);
(* Copy fields of from to to *)

PROCEDURE Handler* (F: Objects.Object; VAR M: Objects.ObjMsg);
(* Message handler *)

PROCEDURE Init* (obj: MyObj); (* install message handler *)
BEGIN

obj.handle := Handler;
(* initialize own fields *)

END Init;

PROCEDURE New*; (* Component generator *)
VAR obj: MyObject;
BEGIN

NEW(obj); Init(obj); Objects.NewObj := obj
END New;

END Example.

Two internal views of objects are possible, namely that of the implementer of

the component intending to create a new object from scratch and that of a
person who wants to extend an existing base object class. The primary and
probably most arduous task of the implementer is the implementation of the
message handler. Depending on the class of object, different message types are
to be handled. The simplest objects respond only to the object messages
whereas the visual objects respond to both the object messages and the frame
messages.
To extend a component, you must export at least the object type, the

message handler as well as the Copyand Initprocedures of the base object. If
this condition is not fulfilled, other programmers will not be able to extend
your new components. The object extension must watch out that calling the Init
procedure of the base object is done before initializing the extension and that
the correct message handler is written over that of the base object class. Often
the base type is Gadgets.Objectfor model gadgets, and Gadgets.Framefor visual
gadgets. These base types (or better said classes) implement the standard
functionality for model and visual gadgets respectively. This suggests the
following implementation steps for a new gadget:

0. choose an existing gadget type as a base,
1. extend it with instance variables,
2. create a new message type or extend an existing one,
3. create a generator procedure,
4. create an initialization procedure,
5. create a message handler.

In many circumstances some of these steps may not be required at all, thus
easing the construction exercise quite a bit.

5.11.2 Defaultmessage handling

Even though module Objectsdefines the AttrMsg, BindMsg, CopyMsg, FileMsg, FindMsg
and LinkMsgit does not provide any support for handling these messages. In a
similar manner, module Displaydefines the set of frame messages but does not
provide further support for handling them. Some aspects of these messages
have consequently been factored out into default message handlers. Handlers
for extensions of Gadgets.Objectand Gadgets.Frameare provided in module
Gadgets. The handlers are called Gadgets.objecthandleand Gadgets.framehandle
respectively. A custom designed message handler must pass control to the
default handlers, and messages not understood by this message handler should
be passed to the default message handler for interpretation. The following
paragraphs state the default handling of the object messages by
Gadgets.objecthandleand Gadgets.framehandle.

AttrMsg − The default handling includes the universal Name attribute of a
gadget and the management of the attached attributes.

BindMsg − The default handling binds the object and all the objects that
the attached links reference. This is done in the BindObjectprocedure which
was described in the section on libraries.

CopyMsg − The default handling creates a copy of an object and copies
the fields belonging to the base types, that is, handle and attributes. This
is done in the CopyObjectprocedure.

FileMsg − The default handling stores or loads the fields of the base
types. An object should always read exactly as many bytes as it had written
previously.

FindMsg − The default handling checks if the searched for object match
self, and should this be the case, return itself.

LinkMsg − The default handling involves the handling of links that have
been attached to a gadget. The type Gadgets.Framecontains a field objthat
refers to the model of the gadget and is seen as a link called "Model" by
clients.

The following paragraphs state the default handling of the frame messages by
Gadgets.framehandle.

Display.ConsumeMsg − The default handling consists in executing the
command in the ConsumeCmd attribute if the gadget has one.

Display.ControlMsg − The default handling forwards the message to the
gadget's model.

Display.DisplayMsg − The default handling draws a rectangular mask.

Display.LocateMsg − The default handling locates the marked gadget by
its frame coordinates, width and height.

Display.ModifyMsg − The default handling includes changing the
relative position or the size of a child in a container. This is done in the
Adjustprocedure.

Display.SelectMsg − The default handling consists in changing the state
field of a gadget from selected to not selected or vice−versa. Containers
typically interpret pressing the MR key as selecting/deselecting a gadget.

Oberon.InputMsg − This message is so special that it and its handling
deserves a special description.

The input message Oberon.InputMsg

InputMsg = RECORD (Display.FrameMsg)
id: INTEGER; (* consume, track *)
keys: SET; (* Mouse buttons. *)
X, Y: INTEGER; (* Mouse position. *)
ch: CHAR; (* Character typed. *)
fnt: Fonts.Font; (* Font of typed character. *)
col, voff: SHORTINT (* Color and vertical offset of typed character. *)

END;

The input message delivers mouse (variant track) and keyboard events (variant
consume) to the display space. It is repeatedly broadcast into the display space by
the Oberon.Loopfor each input event. Here resides a particularity of the message:
the input message is interpreted by the handler which so to speak "consumes"
it. All its fields are out parameters. Normally, a programmer does not write a
piece of code sending out such a message. In the case of a mouse event, the
fields X and Y indicate the absolute mouse position (cursor hotspot) and keys
the mouse key state (which mouse buttons are pressed). The mouse keys are
numbered 0, 1, 2 for right, middle, and left respectively. The display space
normally forwards this message only to the frame located at position X, Y on
the display. In the case of a keyboard event, the ASCII keycode is contained in
the ch field (check the description of module Inputfor special keycodes). The
fields fnt, coland voffgive information about the requested font, color index and
vertical offset in pixels.
The default handling of mouse events is contained in the procedure

Gadgets.Trackframegiven below:

PROCEDURE TrackFrame* (F: Display.Frame; VAR M: Oberon.InputMsg);
VAR keys: SET; x, y, w, h: INTEGER; R: Display3.Mask;
BEGIN

WITH F: Frame DO
IF ˜(selected IN F.state) & (middle IN M.keys) THEN

(* only when not selected and middle key *)
x := M.x + F.X; y := M.y + F.Y; w := F.W; h := F.H;

IF InActiveArea(F, M) THEN
(* usable areas, corner, sides may be part, TRUE if locked *)
IF HasCmdAttr(F, "Cmd") THEN

MakeMask(F, x, y, M.dlink, R);
Effects.TrackHighlight(R, keys, M.X, M.Y, x, y, w, h);
IF InActiveArea(F, M) & (keys = {1}) THEN

ExecuteAttr(F(Frame), "Cmd", M.dlink, NIL, NIL)
END;
M.res := 0

ELSIF ˜IsLocked(F, M.dlink) THEN MoveFrame(F, M)
ELSE Oberon.DrawCursor(Oberon.Mouse, Effects.Arrow, M.X, M.Y)
END

ELSIF Effects.InCorner(M.X, M.Y, x, y, w, h) & ˜(lockedsize IN F.state) THEN
SizeFrame(F, M)

ELSIF Effects.InBorder(M.X, M.Y, x, y, w, h) OR
Effects.InCorner(M.X, M.Y, x, y, w, h) THEN

MoveFrame(F, M)
ELSE Oberon.DrawCursor(Oberon.Mouse, Effects.Arrow, M.X, M.Y)
END

ELSE Oberon.DrawCursor(Oberon.Mouse, Effects.Arrow, M.X, M.Y)
END

END
END TrackFrame;

Only the MM key is handled. Once selected, a gadget does not respond to
mouse events; the parent takes control of these events. When the mouse is
located in a corner, the gadget is resized. When the mouse is located in the
border around the gadget, the gadget is moved.
We suggest that you exercise this behavior with a Clock gadget inserted into

a Panel. The final touch can be given by using Columbus to add a Cmd attribute
to the Clock and by assigning the value "System.Time" to this attribute.

5.11.3 The class inheritance design pattern

Class inheritance means using an existing type by exchanging only the message
handler. This technique can be used only if the new gadget does not have own
instance variables, and has the advantage that the type hierarchy is "flatter". The
immediate consequence is that the steps 1 and 2 in the list of activities above is
not required and that step 4 may also be left out, unless the initialization
provided by the base object is not suitable.
As an example, we suggest creating a new class of "seek buttons" equipped

with the functionality to seek sequentially through an audio file of unknown
size. Clearly, a "pop−up" Button can be envisaged as first approximation
assuming that a delta displacement could be initiated by the execution of a
command hidden in its Cmd attribute. But on second thought, progress
through the file would be controlled by an unpredictably large number of
Button clicks. A better approach would be to allow the execution of such a
command as long as the Button is pressed. The following source text produces
the desired effect:

MODULE SeekButtons;
IMPORT BasicGadgets, Display, Display3, Gadgets, Input, Oberon, Objects;
CONST middle = 1;

PROCEDURE Handler* (F: Objects.Object; VAR M: Objects.ObjMsg);
VAR x, y, w, h: INTEGER; Q: Display3.Mask; keysum: SET;

BEGIN
WITH F: BasicGadgets.Button DO

IF M IS Oberon.InputMsg THEN
WITH M: Oberon.InputMsg DO

IF (M.F = NIL) OR (M.F = F) THEN
IF (M.id = Oberon.track) & (M.keys = {middle}) &

Gadgets.InActiveArea(F, M) THEN

(* calculate the gadget's absolute display coordinates *)
x := M.x + F.X; y := M.y + F.Y; w := F.W; h := F.H;

Gadgets.MakeMask(F, x, y, M.dlink, Q);

Display3.Rect3D(Q, Display3.topC, Display3.bottomC,
x+1, y+1, w−2, h−2, 1, Display.invert);

keysum := M.keys;
REPEAT

Input.Mouse(M.keys, M.X, M.Y);
Gadgets.ExecuteAttr(F, "Cmd", M.dlink, NIL, NIL);
keysum := keysum + M.keys

UNTIL M.keys = {};
Display3.Rect3D(Q, Display3.topC, Display3.bottomC,

x+1, y+1, w−2, h−2, 1, Display.invert);
M.res := 0

ELSE BasicGadgets.ButtonHandler(F, M)
END

END
END

ELSIF M IS Objects.AttrMsg THEN
WITH M: Objects.AttrMsg DO

IF (M.id = Objects.get) & (M.name = "Gen") THEN
M.class := Objects.String; M.s := "SeekButtons.New"; M.res := 0

ELSE BasicGadgets.ButtonHandler(F, M)
END

END
ELSE BasicGadgets.ButtonHandler(F, M)
END

END
END Handler;

PROCEDURE New*;
VAR obj: BasicGadgets.Button;

BEGIN
NEW(obj); BasicGadgets.InitButton(obj); obj.handle := Handler; Objects.NewObj

:= obj
END New;

END SeekButtons.

The generator procedure New instantiates and initializes a standard Button and
replaces the handler by a new one. The first important function of this handler
is to supply the value of the Gen attribute on a "get" request in an AttrMsg. This is
essential for Columbus and for loading the gadget from disk. This function will
be omnipresent in the construction of new gadgets. The second and only other
function of the handler is to react to an MM key sollicitation differently than a
standard Button. When the MM key is pressed in the "active" area of the
Button, this visual gadget must redraw itself to appear pressed with a 3D effect
until the key is released. For this purpose:

1 − the gadget's absolute display coordinates are calculated. Earlier in the
discussion about the display space structure, we learned that F.Xand F.Yare the
relative coordinates of a frame in its parent frame and that F.Yis negative. The
absolute coordinates of the parent's top−left corner are returned in M.x and
M.y by the system. Hence the local variables x, y, w and h are set to the
absolute display coordinates of the visual gadget for later use in the message
handler,
2 − the display mask Q is calculated (see below),
3 − the drawing primitive Display3.Rect3Dis used.

As long as the key is pressed, the handler queries which key is pressed and
executes the command contained in the Cmd attribute. Behind the scene,
ExecuteAttrsends an Objects.AttrMsgto retrieve the attribute. Then, the Button
must again redraw itself to appear as a popped up Button. Since nothing can
have changed in the display space in the mean time, the same mask is used.
Apart fom this, the handler dutifully forwards all other messages to the Button
handler which is equipped with all the remaining functionality required.

Display masks

The procedure Gadgets.MakeMaskperforms the calculation of the display mask Q
through which the gadget must draw itself. The mask generation is hidden

from gadget programmers, but its mechanism deserves a special description.
The imaging model of Gadgets is based on rectangles and drawing is
performed with masks. As the calculation of a display mask can be an
expensive process, the Gadgets framework adopts a demand−driven approach
for generating masks. Each and every visual gadget has its own display mask
cached in its maskfield: it specifies which parts of the gadget are visible, but at
any one instant, a gadget has either a valid display mask, or it it has no mask at
all. During editing operations in the display space, the visible part to draw may
change due to new gadgets overlapping the gadget. When a modification is
applied to a gadget's shape, its mask is dropped by a process called invalidating.
Only when a gadget wants to draw itself, it requests a new display mask by
calling Gadgets.MakeMaskto activate the mask generation process. This strategy
means that a gadget can operate for long periods of time without a valid mask,
at least until it wants to draw something on the display.
Mask calculation is a service a container provides for its children. A call to to

this service sometimes finds a gadget without a valid mask. In that case, a
Display3.UpdateMaskMsg, with the destination set to the gadget frame identified by
the Ffield is broadcast into the display space.

UpdateMaskMsg = RECORD (Display.FrameMsg)
END;

All containers monitor the message, checking if it is addressed to one of their
children. Should one of their own children be involved, its mask is calculated.
Finally, a Display3.OverlapMsgis sent directly to the child, informing it that its new
mask has been calculated. In the example, it is returned in Q.

OverlapMsg = RECORD (Display.FrameMsg)
M: Mask; (** Use NIL to indicate to a frame that its current mask is

invalid. *)
END;

To prevent numerous UpdateMaskMsgfrom being broadcast when many
children have invalid masks, a container automatically recalculates all invalid
masks of its children when the first UpdateMaskMsgarrives. This is under the
assumption that if one child requires a mask, the others will do as well in the
near future.
In our example, we are constructing a elementary visual gadget and therefore

the existence of the two messages in question remains concealed in the
Gadgets.MakeMaskprocedure. However, the two messages play a role in the
construction of a container gadget.

5.11.4 Themodel gadget design pattern (interface inheritance)

Interface inheritance involves extending an existing type with new instance
variables. In this section, we take a look at programming simple objects,
typically model gadgets. Although the programming of model gadgets is not so
spectacular as programming visual gadgets, the knowledge gained from
programming them is directly applicable to programming visual objects. It is
thus important to understand what follows.
Here is an example of a model gadget Reminderhiding a text of up to 128

characters that may be attached to a document. When a document having
such an attachment is opened in a viewer, the Reminder's text is presented in the
system log. Reminderis a direct extension of Gadgets.Objectwith a single instance
variable msg. Creating the generator and the Initprocedures is straightforward,
but the handler which recognizes three classical object messages and a yet
unencountered message type is more elaborate than the handler described
earlier.
The AttrMsghandling is reduced to its minimum, just like in the previous

example. No provision is made for getting, setting or enumerating the msgfield.
Consequently, this field cannot be inspected or manipulated with Columbus: it
is set only by the Initprocedure when the gadget is instantiated. It is interesting

to meet here a rare case where a gadget hides instance variables from the
outside world by not "advertizing" them through the enumeration procedure.
The CopyMsghandling creates a new object instance and copies the handler and
all the instance variables to the new object. The FileMsghandling stores all the
instance variables to a file or loads them from a file. The rest of the
serialization/deserialization of the object is done by the handler of the base
object. The last message processed by the handler is defined in module Gadgets
and was created specially for supporting attachments:

CmdMsg = RECORD (Objects.ObjMsg)
cmd: ARRAY 128 OF CHAR;

(* Information to be passed, command to be executed; result returned. *)
res: INTEGER (* result code *)

END;

When a document is opened, the string "PREPARE" is assigned to the cmdfield
of a CmdMsgwhich is then broadcast to all the objects linked to the document.
If one of these objects happens to be a Reminder, the object's handler sends the
content of the msgfield to the log as specified earlier. This will be explained in
the section on programming documents.

MODULE Reminders; (* jm 1.11.95 *)

(** Example of an object attached to a document. The object remembers
a message that is displayed in the log when the document is opened. *)

IMPORT Attributes, Documents, Files, Gadgets, Oberon, Objects, Out;

TYPE
Reminder* = POINTER TO ReminderDesc;
ReminderDesc* = RECORD (Gadgets.ObjDesc)

msg*: ARRAY 128 OF CHAR
END;

PROCEDURE Copy*(VAR M: Objects.CopyMsg; from, to: Reminder);
BEGIN

Gadgets.CopyObject(M, from, to);
to.msg := from.msg

END Copy;

PROCEDURE Handler* (obj: Objects.Object; VAR M: Objects.ObjMsg);
VAR obj0: Reminder;

BEGIN
WITH obj: Reminder DO

IF M IS Objects.AttrMsg THEN
WITH M: Objects.AttrMsg DO

IF (M.id = Objects.get) & (M.name = "Gen") THEN
M.class := Objects.String; COPY("Reminders.New", M.s); M.res := 0

ELSE Gadgets.objecthandle(obj, M)
END

END
ELSIF M IS Objects.CopyMsg THEN

WITH M: Objects.CopyMsg DO
IF M.stamp = obj.stamp THEN M.obj := obj.dlink (* copy msg arrives

again *)
ELSE (* first time copy message arrives *)

NEW(obj0); obj.stamp := M.stamp; obj.dlink := obj0; Copy(M, obj,
obj0);

M.obj := obj0
END

END
ELSIF M IS Objects.FileMsg THEN

WITH M: Objects.FileMsg DO
IF M.id = Objects.store THEN Files.WriteString(M.R, obj.msg)
ELSIF M.id = Objects.load THEN Files.ReadString(M.R, obj.msg)
END;
Gadgets.objecthandle(obj, M)

END
ELSIF M IS Gadgets.CmdMsg THEN (* executed when the document is opened

*)
WITH M: Gadgets.CmdMsg DO

IF M.cmd = "PREPARE" THEN
Out.String("Reminder: "); Out.String(obj.msg); Out.Ln

ELSE Gadgets.objecthandle(obj, M)
END

END
ELSE Gadgets.objecthandle(obj, M)
END

END
END Handler;

PROCEDURE Init* (obj: Reminder; msg: ARRAY OF CHAR);
BEGIN obj.handle := Handler; COPY(msg, obj.msg)
END Init;

PROCEDURE New*;
VAR obj: Reminder;

BEGIN NEW(obj); Init(obj, ""); Objects.NewObj := obj
END New;

(** Attach a reminder to a document. *)
PROCEDURE Attach*;

VAR D: Documents.Document; R: Attributes.Reader; ch: CHAR; obj: Reminder;
s: ARRAY 128 OF CHAR; i: INTEGER; M: Objects.LinkMsg;

BEGIN
D := Documents.MarkedDoc();
IF D # NIL THEN

Attributes.OpenReader(R, Oberon.Par.text, Oberon.Par.pos);
Attributes.Read(R, ch);
i := 0;
WHILE ˜R.eot & (ch # "˜") & (i < LEN(s) − 1) DO

s[i] := ch; INC(i);
Attributes.Read(R, ch)

END;
s[i] := 0X;
NEW(obj); Init(obj, s);
M.id := Objects.set; M.name := "Reminder"; M.obj := obj; M.res := −1;
D.handle(D, M);
IF M.res >= 0 THEN Out.String(" done") ELSE Out.String(" failed") END; Out.Ln

END
END Attach;

END Reminders.

Here are two examples of short messages that may be attached to a document:
Meeting on Thursday ~
The Align button does not work ~

The command Reminders.Attach ^ reads up to 128 characters from the
selection until a "˜" or end of text and assigns this string to the msgfield of a
Remindergadget which is then linked to the marked document.
The message handler is a simple cascade of IF statements to determine the

message type. As soon as the message type is determined, the message fields
are opened up for access with the WITH statement. The receiver object is
always passed as a first parameter to the message handler (named objhere).
This message passing scheme is quite general and is applicable to objects that
are not of type Objects.Objecttoo. If needed, you can create a new object type
and a message hierarchy independent of the Gadget system. What you gain by
extending your objects from Objects.Objectis compatibility with the Gadgets
system. If you do this, you also have additional responsibilities though: your
object should at least respond to the object messages.
An earlier discussion introduced the problems of making a structure

preserving deep copy of a part of the display space. As each object knows best
how to copy itself, we are forced to forward the CopyMsgto each member of a
complicated data structure so that that member may copy itself. As the global
structure of an object data structure is not known, we have to reckon with the
case when two more objects forward the same copy message to the same
object. Using the message time stamp, we can uniquely identify if a copy
message arrives twice at the same object. This is the goal of the standard
handling of the copy message. The first time the copy message arrives, we

make a copy of the object, remember the time stamp, and cache a reference to
the copy returned in the dlinkfield of the object. If the time stamp indicates that
the copy message arrives a second time (or more), we simply return a reference
to the copy we made earlier. This behavior is standard for all objects, so that
the IF statement executed on receiving the copy message never changes.
Instead, we define a copy procedure to copy the fields of the type extension we
introduce ourselves. As suspected, the call to Gadgets.CopyObject, copies the fields
of the Gadgets.Object.
To conclude the discussion of the example, we may add that typical gadgets

introduce new messages (implementation step 3) for communicating with
them. These are often defined in the module where the gadget type is defined,
although there is no strong reason to do so. In this example, the message is
defined in module Gadgets.

5.11.5 The visual gadget design pattern (interface inheritance)

The next example demonstrates the stepwise implementation of a visual
gadget, a direct extension of Gadgets.Frame. We may categorize this new
construction as "atomic" gadget in opposition to a visual container gadget.

Creating a new visual gadget as extension of an existing gadget type:

TYPE
Frame* = POINTER TO FrameDesc;
FrameDesc* = RECORD (Gadgets.FrameDesc)

col*: INTEGER (* new instance variable *)
END;

Creating a generator and an initialization procedure:

(* needed to make further extensions of the gadget *)
PROCEDURE Init* (F: Frame);
BEGIN

F.W := 50; F.H := 50; (* only need to specify the width and the height *)
F.col := 1; (* initialize instance variable *)
F.handle := Handle (* install message handler *)

END Init;

PROCEDURE New*;
VAR F: Frame;

BEGIN
NEW(F); Init(F);
Objects.NewObj := F (* global variable to return the generated gadget *)

END New;

Creating a message handler for frame messages and object messages:

PROCEDURE Handle* (F: Objects.Object; VAR M: Objects.ObjMsg);
VAR x, y, w, h: INTEGER;

BEGIN
WITH F: Frame DO

IF M IS Display.FrameMsg THEN
WITH M: Display.FrameMsg DO

IF (M.F = NIL) OR (M.F = F) THEN (* message addressed to this frame *)
(* calculate the gadget's absolute display coordinates *)
x := M.x + F.X; y := M.y + F.Y; w := F.W; h := F.H;

(* test and handle the frame message − Later on we shall see
that the message may addressed to a particular device. *)

ELSE (* message not for this frame, forward it. *)
END

END
ELSIF M IS Objects.AttrMsg THEN ... (* handle object messages *)
ELSIF M IS Objects.CopyMsg THEN ...
ELSIF M IS Objects.FileMsg THEN ...
ELSE Gadgets.framehandle(F, M) (* delegate to default handler *)
END

END

END Handle;

We save unnecessary work by testing the destination frame F as soon as
possible for a true broadcast or a directed send to this gadget.

Adding an Objects.FileMsghandling:

ELSIF M IS Objects.FileMsg THEN
WITH M: Objects.FileMsg DO

IF M.id = Objects.store THEN Files.WriteInt(M.R, F.col)
ELSIF M.id = Objects.load THEN Files.ReadInt(M.R, F.col)
END;
Gadgets.framehandle(F, M)

END

Gadgets.framehandleis called to store the fields of the base type. It is advisable to
write a version code and to check it again on loading. This version code
determines the data format that follows. The reason for this is quite simple. It
is seldom that a gadget is finished; continual tweaking of the functionality
eventually leads to a change of file format even though the gadget has been
released long ago. To prevent the gadgets stored in the old format from
becoming unloadable, we can always ensure that a gadget reads all the formats
that it once wrote in its lifetime, but always writes the latest and actual format.
The following example illustrates the principle:

CONST
VersionNo = 2; ModName = "Skeleton";

....
ELSIF M IS Objects.FileMsg THEN

WITH M: Objects.FileMsg DO
IF M.id = Objects.store THEN

Files.WriteNum(R, VersionNo);
Files.WriteInt(M.R, F.col)

ELSIF M.id = Objects.load THEN
Files.ReadNum(M.R, ver);
IF ver = VersionNo THEN

Files.ReadInt(M.R, F.col)
ELSIF ver = 1 THEN

...
ELSE

Texts.WriteString(W, "Version "); Texts.WriteInt(W, VersionNo, 3);
Texts.WriteString(W, " of ");
Texts.WriteString(W, ModName);
Texts.WriteString(W, " cannot read version "); Texts.WriteInt(W, ver,

3);
Texts.WriteLn(W);
Texts.Append(Oberon.Log, W.buf);
HALT(99)

END
END;
Gadgets.framehandle(F, M)

END

Copying a gadget:

PROCEDURE Copy* (VAR M: Objects.CopyMsg; from, to: Frame);
BEGIN

to.col := from.col; (* copy own instance variables *)
Gadgets.CopyFrame(M, from, to) (* copy base variables *)

END Copy;

called from within the message handler (this code fragment is standard):

VAR F1: Frame;
...
ELSIF M IS Objects.CopyMsg THEN

WITH M: Objects.CopyMsg DO
IF M.stamp = F.stamp THEN M.obj := F.dlink (*non−first arrival*)
ELSE (*first arrival*)

NEW(F1); F.stamp := M.stamp; F.dlink := F1;
Copy(M, F, F1); M.obj := F1

END
END

The gadget visualization part is also a standard code fragment:

PROCEDURE Handle* (F: Objects.Object; VAR M: Objects.ObjMsg);
VAR x, y, w, h: INTEGER; Q: Display3.Mask;
BEGIN

WITH F: Frame DO
IF M IS Display.FrameMsg THEN

WITH M: Display.FrameMsg DO
IF (M.F = NIL) OR (M.F = F) THEN (* message addressed to this frame *)

x := M.x + F.X; y := M.y + F.Y; w := F.W; h := F.H;

IF M IS Display.DisplayMsg THEN
WITH M: Display.DisplayMsg DO
IF M.device = Display.screen THEN
IF (M.id = Display.full) OR (M.F = NIL) THEN
Gadgets.MakeMask(F, x, y, M.dlink, Q); (* create display mask

*)
Restore(F, Q, x, y, w, h)

ELSIF M.id = Display.area THEN
Gadgets.MakeMask(F, x, y, M.dlink, Q); (* create display mask

*)
Display3.AdjustMask(Q, x+M.u, y+h−1 + M.v, M.w, M.h); (* clip

mask *)
Restore(F, Q, x, y, w, h)
END

ELSIF M.device = Display.printer THEN Print(F, M)
END

END

The procedure Gadgets.MakeMaskhides the calculation of the display mask Q
through which a gadget must draw itself. MakeMaskis passed the absolute
coordinates and the message thread, hence the visual gadget can request this
calculation on receiving any frame message. When M.id is set to full, the entire
frame is restored. Otherwise, the rectangular area u, v, w, h inside the
destination frame is is to be redrawn and the mask is adjusted by clipping it.

Restore is defined as:

PROCEDURE Restore (F: Frame; Q: Display3.Mask; x, y, w, h: INTEGER);
(* x and y are the absolute display coordinates of the mask *)

BEGIN
(* use clipped primitives in Display3 to draw the gadget *)
Display3.ReplConst(Q, F.col, x, y, w, h, Display.replace);

(* standard selection style *)
IF Gadgets.selected IN F.state THEN

Display3.FillPattern(Q, Display3.white, Display3.selectpat,
x, y, x, y, w, h, Display.paint)

END
END Restore;

The drawing primitive Display3.ReplConstdraws the gadget through the mask
calculated earlier. When the selectedflag is contained in the F.statefield, the
gadget shows itself in a white semi−translucent pattern. The attribute handling
is also a standard code pattern:

...
ELSIF M IS Objects.AttrMsg THEN Attributes(F, M(Objects.AttrMsg))

with Attributesdefined as:

PROCEDURE Attributes (F: Frame; VAR M: Objects.AttrMsg);
BEGIN

IF M.id = Objects.get THEN (* retrieve an attribute *)
IF M.name = "Gen" THEN (* generator attribute *)

M.class := Objects.String;

COPY("Skeleton.New", M.s); (* must cite the generator procedure ! *)
M.res := 0

ELSIF M.name = "Color" THEN
M.class := Objects.Int; M.i := F.col; M.res := 0

ELSIF M.name = "Cmd" THEN
Gadgets.framehandle(F, M);
IF M.res < 0 THEN (* no such attribute, simulate empty string attribute *)

M.class := Objects.String; M.s := ""; M.res := 0
END

ELSE Gadgets.framehandle(F, M)
END

ELSIF M.id = Objects.set THEN (* set an attribute *)
IF (M.name = "Color") & (M.class = Objects.Int) THEN

F.col := SHORT(M.i); M.res := 0
ELSE Gadgets.framehandle(F, M)
END

ELSIF M.id = Objects.enum THEN (* To advertize attributes to Columbus *)
M.Enum("Color"); M.Enum("Cmd");
Gadgets.framehandle(F, M)

END
END Attributes;

It is mandatory to handle of the attribute classes and to set the resfield
correctly.

The code pieces above have been put together for inspection and for further
experimentation in Skeleton.Mod. This module contains some further typical code
patterns for handling mouse input and printing.

MODULE Skeleton (*JM/ JG 26.7.94*);
IMPORT Display, Display3, Effects, Files, Gadgets, Oberon, Objects, Printer, Printer3;
CONST red = 1; middle = 1;

TYPE
Frame* = POINTER TO FrameDesc;
FrameDesc* = RECORD (Gadgets.FrameDesc)

col*: INTEGER
END;

(* To save memory we can use the framehandler to allocate the "Cmd" attribute
only when one exists. We have however to simulate an attribute if
none really exists (see the handling of "Cmd" in the "get" part below)

*)
PROCEDURE Attributes (F: Frame; VAR M: Objects.AttrMsg);
BEGIN

IF M.id = Objects.get THEN
IF M.name = "Gen" THEN

M.class := Objects.String; COPY("Skeleton.New", M.s); M.res := 0
ELSIF M.name = "Color" THEN

M.class := Objects.Int; M.i := F.col; M.res := 0
ELSIF M.name = "Cmd" THEN

Gadgets.framehandle(F, M);
IF M.res < 0 THEN (* no such attribute, simulate one *)

M.class := Objects.String; M.s := ""; M.res := 0
END

ELSE Gadgets.framehandle(F, M)
END

ELSIF M.id = Objects.set THEN
IF (M.name = "Color") & (M.class = Objects.Int) THEN

F.col := SHORT(M.i); M.res := 0
ELSE Gadgets.framehandle(F, M)
END

ELSIF M.id = Objects.enum THEN
M.Enum("Color"); M.Enum("Cmd"); Gadgets.framehandle(F, M)

END
END Attributes;

PROCEDURE Restore (F: Frame; Q: Display3.Mask; x, y, w, h: INTEGER);
BEGIN

Display3.ReplConst(Q, F.col, x, y, w, h, Display.replace);
IF Gadgets.selected IN F.state THEN

Display3.FillPattern(Q, Display3.white, Display3.selectpat,
x, y, x, y, w, h, Display.paint)

END
END Restore;

PROCEDURE Print (F: Frame; VAR M: Display.DisplayMsg);
VAR Q: Display3.Mask;

PROCEDURE P (x: INTEGER): INTEGER;
BEGIN RETURN SHORT(x * LONG(10000) DIV Printer.Unit)
END P;

BEGIN
Gadgets.MakePrinterMask(F, M.x, M.y, M.dlink, Q);
Printer3.ReplConst(Q, F.col, M.x, M.y, P(F.W), P(F.H), Display.replace)

END Print;

PROCEDURE Copy* (VAR M: Objects.CopyMsg; from, to: Frame);
BEGIN to.col := from.col; Gadgets.CopyFrame(M, from, to)
END Copy;

PROCEDURE Handle* (F: Objects.Object; VAR M: Objects.ObjMsg);
VAR x, y, w, h: INTEGER; F1: Frame; Q: Display3.Mask; keysum: SET;

BEGIN
WITH F: Frame DO

IF M IS Display.FrameMsg THEN
WITH M: Display.FrameMsg DO

IF (M.F = NIL) OR (M.F = F) THEN (* message addressed to this frame *)
x := M.x + F.X; y := M.y + F.Y; w := F.W; h := F.H;
IF M IS Display.DisplayMsg THEN

WITH M: Display.DisplayMsg DO
IF M.device = Display.screen THEN

IF (M.id = Display.full) OR (M.F = NIL) THEN
Gadgets.MakeMask(F, x, y, M.dlink, Q);
Restore(F, Q, x, y, w, h)

ELSIF M.id = Display.area THEN
Gadgets.MakeMask(F, x, y, M.dlink, Q);
Display3.AdjustMask(Q, x + M.u, y + h − 1 + M.v, M.w, M.h);
Restore(F, Q, x, y, w, h)

END
ELSIF M.device = Display.printer THEN Print(F, M)
END

END
ELSIF M IS Oberon.InputMsg THEN

WITH M: Oberon.InputMsg DO
IF (M.id = Oberon.track) & Gadgets.InActiveArea(F, M) &

(M.keys = {middle}) THEN
Gadgets.MakeMask(F, x, y, M.dlink, Q);
Oberon.RemoveMarks(x, y, w, h);
Display3.ReplConst(Q, Display3.FG, x, y, w, h, Display.invert);
keysum := M.keys;
REPEAT

Effects.TrackMouse(M.keys, M.X, M.Y, Effects.PointHand);
keysum := keysum + M.keys

UNTIL M.keys = {};
Oberon.RemoveMarks(x, y, w, h);
Display3.ReplConst(Q, Display3.FG, x, y, w, h, Display.invert);
IF keysum = {middle} THEN

Gadgets.ExecuteAttr(F, "Cmd", M.dlink, NIL, NIL)
END;
M.res := 0

ELSE Gadgets.framehandle(F, M)
END

END
ELSE Gadgets.framehandle(F, M)
END

END
END

ELSIF M IS Objects.AttrMsg THEN Attributes(F, M(Objects.AttrMsg))
ELSIF M IS Objects.CopyMsg THEN

WITH M: Objects.CopyMsg DO
IF M.stamp = F.stamp THEN M.obj := F.dlink (*non−first arrival*)
ELSE (*first arrival*)

NEW(F1); F.stamp := M.stamp; F.dlink := F1;
Copy(M, F, F1); M.obj := F1

END

END
ELSIF M IS Objects.FileMsg THEN

WITH M: Objects.FileMsg DO
IF M.id = Objects.store THEN Files.WriteInt(M.R, F.col)
ELSIF M.id = Objects.load THEN Files.ReadInt(M.R, F.col)
END;
Gadgets.framehandle(F, M)

END
ELSE Gadgets.framehandle(F, M)
END

END
END Handle;

PROCEDURE Init* (F: Frame);
BEGIN F.W := 50; F.H := 50; F.col := red; F.handle := Handle
END Init;

PROCEDURE New*;
VAR F: Frame;

BEGIN NEW(F); Init(F); Objects.NewObj := F
END New;

END Skeleton.

The printing primitives provided by the Printer3module, a twin module of
Display3, are used in the Printprocedure. The gadget mask calculated first by
Gadgets.MakePrinterMask. Printer3uses the same mask descriptors as Display3but
expects all coordinates to be specified in printer coordinates (often 300dpi).

5.11.6 The singleton design pattern

Both the visual and model gadgets of a user interface are stored in files on disk.
The system allows you to open the same file many times and thus create
multiple identical instances of the same gadgets. There are however cases
where only one instance of a gadget is required, for example a gadget to store
the time of day, or the sound track being played on an attached CD player.
Such singleton gadgets are possible only in conjunction with model gadgets. In
essence, each time the generator of a singleton gadget is called, the same
gadget is returned.

MODULE Timer;
IMPORT BasicGadgets, Objects;

VAR time: BasicGadgets.Integer; (* can be of any type *)

PROCEDURE Handler* (obj: Objects.Object; VAR M: Objects.ObjMsg);
BEGIN

IF M IS Objects.AttrMsg THEN
WITH M: Objects.AttrMsg DO

IF (M.id = Objects.get) & (M.name = "Gen") THEN
M.class := Objects.String; COPY("Timer.NewTimer", M.s); M.res := 0

ELSE BasicGadgets.IntegerHandler(obj, M)
END

END
ELSIF M IS Objects.CopyMsg THEN

WITH M: Objects.CopyMsg DO M.obj := time END
ELSE BasicGadgets.IntegerHandler(obj, M)
END

END Handler;

PROCEDURE NewTimer*;
BEGIN (* return the only instance *)

Objects.NewObj := time
END NewTimer;

BEGIN (* allocate gadget on loading *)
NEW(time); BasicGadgets.InitInteger(time); time.handle := Handler

END Timer.

Notice how much of the behavior is inherited, by class inheritance, from the
BasicGadgets.Integerand how the same object is returned each time a CopyMsgis
received.

5.11.7 The container gadget design pattern

Container gadgets contain other gadgets as descendants or children. Due to the
dsc-nextconnection of descendants, a child can belong only to one parent. In
comparison to elementary or "leaf" gadgets, containers have additional duties:

1. forwarding of unprocessed messages to descendants,
2. monitoring some of the messages sent to the descendants,
3. generating display masks for each descendant,
4. passing the correct display coordinates to descendants and
5. ensuring that the message thread from the display root to the

descendants remains intact.

A container has full control over all its descendants. This means that when we
ignore the messages sent directly to a gadget (normally those defined in the
Objectsmodule), all messages for descendants are delegated through the parent
to the children, and the parent container has the right to pass through or even
modify the messages. This is the consequence of filtering the message down
from the display root in a hierarchical fashion to the containers and their
descendants.
The source code pieces used in the description are extracted from a complete

Portraitsmodule which appears at the end of this section. The module
implements a container Portrait with a single component. When the gadget is
instantiated, a Skeleton gadget is automatically installed as the component.
The Skeleton acts as a sentinel indicating an empty Portrait. Another Skeleton
may be dropped inside the Portrait, any number of times, to replace the
contained Skeleton. Any visual gadget, including a transparent one, can also be
dropped inside the container to replace the Skeleton, but only once. The
component dropped inside or the sentinel Skeleton cannot be deleted, but
either of them can be removed by moving it to another context. When this
happens, a fresh sentinel Skeleton immediately fills the gap. This assumption
allows the construction of a bare minimum solution requiring a source code
text of reasonable size.

The message handler of a typical container is structured as follows:

PROCEDURE Handle* (F: Objects.Object; VAR M: Objects.ObjMsg);
VAR x, y, w, h: INTEGER;

BEGIN
WITH F: Portrait DO

IF M IS Display.FrameMsg THEN
WITH M: Display.FrameMsg DO

IF (M.F = NIL) OR (M.F = F) THEN (* message for this gadget *)
x := M.x + F.X; y := M.y + F.Y; w := F.W; h := F.H;

(* test and handle the frame messages *)
ELSE (* message perhaps for content *)

IF message for a child THEN
... handle message for child

ELSE ToContent(F, M.x + F.X, M.y + F.Y, M)
END

END
END

ELSIF M IS Objects.anyMsg THEN
... handle object messages

END
END

END Handle;

where "message for a child" determines if M.F(the message destination) is a

child of F by traversing the dsc-nextchain, and ToContentdelegates the message
to each child in turn as follows:

(* x, y is the absolute display coordinates of the bottom−left corner of the container
F *)

PROCEDURE ToContent (F: Portrait; x, y: INTEGER; VAR M: Display.FrameMsg);
VAR Mdlink, Fdlink: Objects.Object; tx, ty: INTEGER;
BEGIN
tx := M.x; ty := M.y; (* store old message origin *)
M.x := x; M.y := y + F.H − 1; (* update message origin *)

F.dlink := M.dlink; M.dlink := F; F.dsc.handle(F.dsc, M); (* store message thread
data *)

F.dlink := M.dlink; M.dlink := F; (* update the message thread *)

F.dsc.handle(F.dsc, M); (* forward message *)

F.dlink := Fdlink; M.dlink := Mdlink; (* restore message thread data *)
M.x := tx; M.y := ty (* restore old message origin *)

END ToContent;

The origin of the message must be changed before it is forwarded as a frame
message travels through the display space. When ToContentis called, x and y
contain the absolute coordinates of the bottom−left corner of the container
but the coordinates of the top−left corner must be forwarded, hence the
addition of the frame height to the current frame position.
More efficient implementations are obtained by restructuring the handler, in

particular by creating a special forwarding procedure to forward messages to all
descendants. If this is not sufficient, the handling of the message thread can be
removed. Although many steps are required to forward a message, this very
seldom forms a bottleneck. More typically, bottlenecks are caused by the
multitude of type tests required to determine the message type.
A container must calculate the masks of its descendants from its own mask.

The implementation for a container containing a single gadget is given here:

(* Inform a gadget of its new mask *)
PROCEDURE SetMask (F: Display.Frame; Q: Display3.Mask);
VAR M: Display3.OverlapMsg;
BEGIN

M.M := Q; (* set mask *)
M.x := 0; M.y := 0; M.F := F; M.dlink := NIL; M.res := −1;

(* initialize rest of the message fields *)
F.handle(F, M)

END SetMask;

PROCEDURE SetContentMask (F: Portrait);
VAR Q: Display3.Mask;
BEGIN
IF F.mask = NIL THEN (* Portrait has no mask, so invalidate mask of the child *)

SetMask(F.dsc, NIL)
ELSE

Display3.Copy(F.mask, Q); (* make a copy of the container's mask *)
Q.x := 0; Q.y := 0; (* reset the mask origin *)
Display3.Intersect(Q, F.dsc.X, F.dsc.Y, F.dsc.W, F.dsc.H);

(* intersect with the relative coordinates of the child *)

Q.x := −F.dsc.X; Q.y := −(F.dsc.Y + F.dsc.H − 1);
(* move the mask origin into the coordinate system of the child *)

Display3.Shift(Q);
(* and translate the mask by Q.x, Q.y into the coordinate system of the child

*)
SetMask(F.dsc, Q)

END
END SetContentMask;

In the handler, we also have to check if the descendant requires a new mask:

IF M IS Display3.UpdateMaskMsg THEN
WITH M: Display3.UpdateMaskMsg DO

IF M.F = F.dsc THEN SetContentMask(F)
ELSE ToContent(F, M.x + F.X, M.y + F.Y, M) (* don't forget to forward it *)

END
END

or if the container itself obtains a new mask:

IF M IS Display3.OverlapMsg THEN
WITH M: Display3.OverlapMsg DO

F.mask := M.M; SetContentMask(F)
END

Should a container be restored onto the display, the child must be displayed
accordingly. Again for a single descendant, we have:

PROCEDURE Restore
(F: Portrait; Q: Display3.Mask; x, y, w, h: INTEGER; VAR M: Display.DisplayMsg);

VAR N: Display.DisplayMsg;

PROCEDURE ClipAgainst (VAR x, y, w, h: INTEGER; x1, y1, w1, h1: INTEGER);
VAR r, t, r1, t1: INTEGER;
BEGIN

r := x + w − 1; r1 := x1 + w1 − 1; t := y + h − 1; t1 := y1 + h1 − 1;
IF x < x1 THEN x := x1 END; IF y < y1 THEN y := y1 END;
IF r > r1 THEN r := r1 END; IF t > t1 THEN t := t1 END;
w := r − x + 1; h := t − y + 1;

END ClipAgainst;

BEGIN
... restore the display areas belonging to F

IF M.id = Display.area THEN (* only a rectangular area update *)
N.F := F.dsc; N.u := M.u; N.v := M.v; N.w := M.w; N.h := M.h;

(* in coordinate system of container *)
ClipAgainst(N.u, N.v, N.w, N.h, F.dsc.X, F.dsc.Y, F.dsc.W, F.dsc.H);

(* clip to child location *)
DEC(N.u, border); INC(N.v, border)

(* and translate to child coordinate system *)
END;

... restore the background before displaying a transparent gadget
IF Gadgets.transparent IN F.dsc(Gadgets.Frame).state THEN
Display3.ReplConst(Q, Display3.groupC, x + border, y + border,
w − 2*border, h − 2*border, Display.replace)

END;
.....

ToContent(F, x, y, N);

... standard selection follows
IF Gadgets.selected IN F.state THEN ...

Display3.FillPattern(Q, Display3.white, Display3.selectpat, x, y, x, y, w, h,
Display.paint)

END
END Restore;

In the last two examples, a conversion of the coordinate system of the parent to
that of the child takes place.

When a child is removed:

PROCEDURE RemoveObj (obj: Display.Frame);
VAR M: Display.ControlMsg;
BEGIN M.id := Display.remove; M.F := obj; Display.Broadcast(M)
END RemoveObj;

the handler must process the Display.ControlMsg:

ELSIF M IS Display.ControlMsg THEN
WITH M: Display.ControlMsg DO

IF (M.id = Display.remove) & (M.F = F.dsc) THEN
Skeleton.New; PutObj(F, Objects.NewObj(Display.Frame))

ELSE ToContent(F, M.x + F.X, M.y + F.Y, M)
END

END

In this solution, removing the child can never realy succeed: a Sekeleton
immediately takes its place. This is done on purpose to simplify the solution.

The handler must detect when a new child is inserted, removing the current
child first. In the suggested solution, any visual gadget which is not a Skeleton
will refuse to leave its place to another. This restriction can be lifted by omitting
to test the condition F.dsc IS Skeleton.Frame. The correct coordinate handling is
missing in the following code fragment:

ELSIF M IS Display.ConsumeMsg THEN
WITH M: Display.ConsumeMsg DO

IF (M.id = Display.drop) & (M.F = F.dsc) & (F.dsc IS Skeleton.Frame) THEN
RemoveObj(M.obj(Display.Frame));
PutObj(F, M.obj(Display.Frame));
M.res := 0

ELSE ToContent(F, M.x + F.X, M.y + F.Y, M)
END

END

A container also has to handle the Display.LocateMsgthat determines what is
located at a certain position of the display:

ELSIF M IS Display.LocateMsg THEN
WITH M: Display.LocateMsg DO

IF (M.loc = NIL) & Effects.Inside(M.X, M.Y, x, y, w, h) THEN
ToContent(F, x, y, M);
IF M.loc = NIL THEN (* no descendant hit *)

M.loc := F;
M.u := M.X − x; M.v := M.Y − (y + h − 1);

(* calculate the relative coordinates of the hit point *)
M.res := 0

END
END

END

The container may exercise parental control over mouse events signaled by an
InputMsg. As soon as the mouse enters into the area a gadget (in this case a
Skeleton) occupies on the screen, it starts to receive mouse events. It is
completely up to the gadget to do whatever it pleases with these events. If the
component simply delegates the handling of mouse events to the default
handler Gadgets.framehandleand because that handler only processes MM key
events, no response is given to MR and ML key events. In that case, the parent
can take control of the mouse (here MR key events) or even prevent the mouse
events from arriving at a child at all. A question arises out of this, namely who
is responsible for handling certain events. In effect, a division of responsability
is required; an example illustrates why this is necessary. When the user selects
several gadgets in a container and wants to move them around as a whole, a
single child does not know about the other selected gadgets and therefore the
group editing operations are the responsability of the container and not of the
children. A first approximation would be for the container not to let the
selected child obtain mouse events and directly take control of editing. A more
refined way is to have the child defer mouse operations under certain
circumstances to the parent. This level of co−operation between parent and
child gives the child some additional possibilities for controlling interactions.

ELSIF M IS Oberon.InputMsg THEN
WITH M: Oberon.InputMsg DO
IF (M.id = Oberon.track) & ˜(Gadgets.selected IN F.state) THEN
IF Effects.Inside(M.X, M.Y, x + border, y + border,
w − 2*border, h − 2*border) THEN
ToContent(F, x, y, M);
(* Only the MM key is handled by the default handler. *)
IF (M.res < 0) & (M.keys = {0}) THEN
(* No response from child, container exercises parental control
of MR key events. *)
TrackSelectChild(F, M, F.dsc)

END

Through the procedure TrackSelectChild, the container controls the selection and
deselection of the component on recognizing simple MR key clicks. An MR +
MM key interclick copies the component over to the caret as usual.

The other way to copy a gadget is by selecting it first and then to copy it to the
caret with an ML + MM key interclick. This mouse action causes a
Display.SelectMsgto be broadcast through the display space in order to get the
most recent gadget selection. This message must also be processed by the
handler which has the duty to inform the sender on the selection time of the
component relatively to the other objects selected present in the display space.
The selection of the component must be stored in a field of the container F.time
in the first place. The second thing to do is to assign the current Oberon.Time()to
this field when the component is selected (but not when it is selected and
copied). There remains to the handler to decide whether the component was
selected more recently than all other objects visited by the SelectMsg or not.

ELSIF M IS Display.SelectMsg THEN
WITH M: Display.SelectMsg DO
IF M.id = Display.get THEN
ToContent(F, x, y, M);

IF (F.time > M.time) & (Gadgets.selected IN F.dsc(Gadgets.Frame).state)
THEN

M.time := F.time; M.obj := F.dsc ; M.sel := F
END

ELSE Gadgets.framehandle(F, M)
END

END

When the child is selected, the user may want to clear all selections with the
Esc key. In this case, an Oberon.ControlMsgwith an id=neutralizeis broadcast. Here is
how the handler sends a resetrequest to the selected child:

ELSIF M IS Oberon.ControlMsg THEN
WITH M: Oberon.ControlMsg DO
ToContent(F, x, y, M);
IF M.id = Oberon.neutralize THEN
IF Gadgets.selected IN F.dsc(Gadgets.Frame).state THEN
SM.id := Display.reset; SM.F := F.dsc; SM.sel := F; SM.res := −1;
F.dsc.handle(F.dsc, SM); Gadgets.Update(F.dsc)
END

END
END

In addition, a container has to intercept the Display.Modifymessage sent to its
descendants, and update itself accordingly.
As the whole process above is rather complicated to realize for containers

with multiple descendants and all optimizations possible, the source text
fragments have been written so that they can easily be extended with specific
behavior. The NoteBook gadget is a container which may have any number of
components or none at all. Seldom will you have to write new containers
completely from scratch. Here follows the complete Portraitsmodule text:

MODULE Portraits; (*JM/ JG 26.7.94*)
IMPORT Display, Display3, Effects, Gadgets, Oberon, Objects, Skeleton;
CONST border = 4;

TYPE
Portrait = POINTER TO PortraitDesc;
PortraitDesc = RECORD (Gadgets.FrameDesc)
time*: LONGINT (* time of selection *)

END;

PROCEDURE SetMask (F: Display.Frame; Q: Display3.Mask);
VAR M: Display3.OverlapMsg;
BEGIN M.M := Q; M.x := 0; M.y := 0; M.F := F; M.dlink := NIL; M.res := −1;
F.handle(F, M)

END SetMask;

PROCEDURE SetContentMask (F: Portrait);
VAR Q: Display3.Mask;

BEGIN
IF F.mask = NIL THEN SetMask(F.dsc, NIL)
ELSE Display3.Copy(F.mask, Q); Q.x := 0; Q.y := 0;
Display3.Intersect(Q, F.dsc.X, F.dsc.Y, F.dsc.W, F.dsc.H);
Q.x := −F.dsc.X; Q.y := −(F.dsc.Y + F.dsc.H − 1); Display3.Shift(Q);
SetMask(F.dsc, Q)

END
END SetContentMask;

PROCEDURE ToContent (F: Portrait; x, y: INTEGER; VAR M: Display.FrameMsg);
VAR Mdlink, Fdlink: Objects.Object; tx, ty: INTEGER;

BEGIN
tx := M.x; ty := M.y;
M.x := x; M.y := y + F.H − 1;
Fdlink := F.dlink; Mdlink := M.dlink;
F.dlink := M.dlink; M.dlink := F; F.dsc.handle(F.dsc, M);
F.dlink := Fdlink; M.dlink := Mdlink;
M.x := tx; M.y := ty

END ToContent;

PROCEDURE Modify (F: Portrait; VAR M: Display.ModifyMsg);
VAR N: Display.ModifyMsg;

BEGIN
N.id := Display.extend; N.F := F.dsc; N.mode := Display.state;
N.X := border; N.Y := −M.H + 1 + border;
N.W := M.W − 2 * border; N.H := M.H − 2 * border;
N.dX := N.X − F.dsc.X; N.dY := N.Y − F.dsc.Y;
N.dW := N.W − F.dsc.W; N.dH := N.H − F.dsc.H;
N.x := 0; N.y := 0; N.res := −1; Objects.Stamp(N);
F.dsc.handle(F.dsc, N);
Gadgets.framehandle(F, M)

END Modify;

PROCEDURE ModifyContent (F: Portrait; VAR M: Display.ModifyMsg);
VAR N: Display.ModifyMsg;

BEGIN
IF M.stamp # F.stamp THEN F.stamp := M.stamp;
N.id := Display.extend; N.F := F; N.mode := Display.display;
N.X := F.X + M.dX; N.Y := F.Y + M.dY;
N.W := M.W + 2 * border; N.H := M.H + 2 * border;
N.dX := N.X − F.X; N.dY := N.Y − F.Y;
N.dW := N.W − F.W; N.dH := N.H − F.H;
Display.Broadcast(N)

END
END ModifyContent;

PROCEDURE Restore (F: Portrait; Q: Display3.Mask; x, y, w, h: INTEGER; VAR M:
Display.DisplayMsg);
VAR N: Display.DisplayMsg;

PROCEDURE ClipAgainst (VAR x, y, w, h: INTEGER; x1, y1, w1, h1: INTEGER);
VAR r, t, r1, t1: INTEGER;

BEGIN
r := x + w − 1; r1 := x1 + w1 − 1; t := y + h − 1; t1 := y1 + h1 − 1;
IF x < x1 THEN x := x1 END; IF y < y1 THEN y := y1 END;
IF r > r1 THEN r := r1 END; IF t > t1 THEN t := t1 END;
w := r − x + 1; h := t − y + 1;

END ClipAgainst;

BEGIN
Display3.Rect3D(Q, Display3.topC, Display3.bottomC, x, y, w, h, 1, Display.replace);
Display3.Rect(Q, Display3.groupC, Display.solid, x + 1, y + 1, w − 2, h − 2, border − 2,
Display.replace);

Display3.Rect3D(Q, Display3.bottomC, Display3.topC,
x + border − 1, y + border − 1, w − (border − 1) * 2, h − (border − 1) * 2, 1,
Display.replace);

IF M.id = Display.area THEN
N.F := F.dsc; N.u := M.u; N.v := M.v; N.w := M.w; N.h := M.h;
ClipAgainst(N.u, N.v, N.w, N.h, F.dsc.X, F.dsc.Y, F.dsc.W, F.dsc.H);
DEC(N.u, border); INC(N.v, border)

END;

IF Gadgets.transparent IN F.dsc(Gadgets.Frame).state THEN
Display3.ReplConst(Q, Display3.groupC, x + border, y + border,
w − 2*border, h − 2*border, Display.replace)

END;
N.device := M.device; N.id := M.id; N.F := F.dsc; N.dlink := M.dlink; N.res := −1;
Objects.Stamp(N); ToContent(F, x, y, N);
IF Gadgets.selected IN F.state THEN
Display3.FillPattern(Q, Display3.white, Display3.selectpat, x, y, x, y, w, h,
Display.paint)

END
END Restore;

PROCEDURE Copy* (VAR M: Objects.CopyMsg; from, to: Portrait);
VAR N: Objects.CopyMsg;

BEGIN
Gadgets.CopyFrame(M, from, to);
N.id := Objects.shallow; Objects.Stamp(N);
from.dsc.handle(from.dsc, N); to.dsc := N.obj(Gadgets.Frame)

END Copy;

PROCEDURE Attributes (F: Portrait; VAR M: Objects.AttrMsg);
BEGIN
IF (M.id = Objects.get) & (M.name = "Gen") THEN
M.s := "Portraits.New"; M.class := Objects.String; M.res := 0

ELSE Gadgets.framehandle(F, M)
END

END Attributes;

PROCEDURE RemoveObj (obj: Display.Frame);
VAR M: Display.ControlMsg;

BEGIN M.id := Display.remove; M.F := obj; Display.Broadcast(M)
END RemoveObj;

PROCEDURE PutObj (F: Portrait; obj: Display.Frame);
VAR M: Display.ModifyMsg;

BEGIN
F.dsc := obj; SetMask(F.dsc, NIL);
M.id := Display.extend; M.mode := Display.display; M.F := F;
M.X := F.X; M.Y := F.Y;
M.W := F.dsc.W + border * 2; M.H := F.dsc.H + border * 2;
M.dX := M.X − F.X; M.dY := M.Y − F.Y;
M.dW := M.W − F.W; M.dH := M.H − F.H;
Display.Broadcast(M)

END PutObj;

PROCEDURE TrackSelectChild (F: Portrait; VAR M: Oberon.InputMsg; child:
Display.Frame);
VAR S: Display.SelectMsg; keysum: SET; C: Objects.CopyMsg;
BEGIN

IF Gadgets.selected IN child(Gadgets.Frame).state THEN S.id := Display.reset
ELSE S.id := Display.set
END;
S.F := child; S.sel := F; S.res := −1; Display.Broadcast(S);
Gadgets.Update(child);
keysum := {};
REPEAT

Effects.TrackMouse(M.keys, M.X, M.Y, Effects.Arrow); keysum := keysum + M.keys;
UNTIL M.keys = {};
IF (keysum = {0, 1}) & (S.id = Display.set) THEN (* MR copy to focus *)

Objects.Stamp(C);
C.id := Objects.shallow; C.obj := NIL; child.handle(child, C);
IF C.obj # NIL THEN Gadgets.Integrate(C.obj) END

ELSE F.time := Oberon.Time()
END;
M.res := 0

END TrackSelectChild;

PROCEDURE Handle* (F: Objects.Object; VAR M: Objects.ObjMsg);
VAR x, y, w, h: INTEGER; F1: Portrait; Q: Display3.Mask; obj: Objects.Object;

SM: Display.SelectMsg;
BEGIN
WITH F: Portrait DO
IF M IS Display.FrameMsg THEN
WITH M: Display.FrameMsg DO

IF (M.F = NIL) OR (M.F = F) THEN
x := M.x + F.X; y := M.y + F.Y; w := F.W; h := F.H;
IF M IS Display.DisplayMsg THEN
WITH M: Display.DisplayMsg DO
IF M.device = Display.screen THEN
IF (M.id = Display.full) OR (M.F = NIL) THEN
Gadgets.MakeMask(F, x, y, M.dlink, Q);
Restore(F, Q, x, y, w, h, M)

ELSIF M.id = Display.area THEN
Gadgets.MakeMask(F, x, y, M.dlink, Q);
Display3.AdjustMask(Q, x + M.u, y + h − 1 + M.v, M.w, M.h);
Restore(F, Q, x, y, w, h, M)

END
ELSIF M.device = Display.printer THEN
END

END
ELSIF M IS Oberon.InputMsg THEN
WITH M: Oberon.InputMsg DO
IF (M.id = Oberon.track) & ˜(Gadgets.selected IN F.state) THEN
IF Effects.Inside(M.X, M.Y, x + border, y + border,
w − 2*border, h − 2*border) THEN
ToContent(F, x, y, M);
(* If child does not respond, the container may exercise parental control
of mouse events. In this case, of MR key events. *)

IF (M.res < 0) & (M.keys = {0}) THEN
TrackSelectChild(F, M, F.dsc)

END
ELSE Gadgets.framehandle(F, M)
END

ELSE Gadgets.framehandle(F, M)
END

END
ELSIF M IS Oberon.ControlMsg THEN
WITH M: Oberon.ControlMsg DO
ToContent(F, x, y, M);
IF M.id = Oberon.neutralize THEN
IF Gadgets.selected IN F.dsc(Gadgets.Frame).state THEN
SM.id := Display.reset; SM.F := F.dsc; SM.sel := F; SM.res := −1;
F.dsc.handle(F.dsc, SM); Gadgets.Update(F.dsc)
END

END
END

ELSIF M IS Display.ModifyMsg THEN Modify(F, M(Display.ModifyMsg))
ELSIF M IS Display.LocateMsg THEN
WITH M: Display.LocateMsg DO
IF (M.loc = NIL) & Effects.Inside(M.X, M.Y, x, y, w, h) THEN
ToContent(F, x, y, M);
IF M.loc = NIL THEN
M.loc := F; M.u := M.X − x; M.v := M.Y − (y + h − 1); M.res := 0

END
END

END
ELSIF M IS Display3.OverlapMsg THEN
WITH M: Display3.OverlapMsg DO
F.mask := M.M; SetContentMask(F)

END
ELSIF M IS Display.SelectMsg THEN
WITH M: Display.SelectMsg DO
IF M.id = Display.get THEN
ToContent(F, x, y, M);

IF (F.time > M.time) & (Gadgets.selected IN F.dsc(Gadgets.Frame).state)
THEN

M.time := F.time; M.obj := F.dsc ; M.sel := F
END

ELSE Gadgets.framehandle(F, M)
END

END
ELSIF M.F # NIL THEN Gadgets.framehandle(F, M)
ELSE ToContent(F, x, y, M)
END

ELSE (* message perhaps for content *)
IF M IS Display3.UpdateMaskMsg THEN
WITH M: Display3.UpdateMaskMsg DO
IF M.F = F.dsc THEN SetContentMask(F)

ELSE ToContent(F, M.x + F.X, M.y + F.Y, M)
END

END
ELSIF M IS Display.ControlMsg THEN
WITH M: Display.ControlMsg DO
IF (M.id = Display.remove) & (M.F = F.dsc) THEN
Skeleton.New; PutObj(F, Objects.NewObj(Display.Frame))

ELSE ToContent(F, M.x + F.X, M.y + F.Y, M)
END

END
ELSIF M IS Display.ModifyMsg THEN
IF M.F = F.dsc THEN ModifyContent(F, M(Display.ModifyMsg))
ELSE ToContent(F, M.x + F.X, M.y + F.Y, M)
END

ELSIF M IS Display.ConsumeMsg THEN
WITH M: Display.ConsumeMsg DO
IF (M.id = Display.drop) & (M.F = F.dsc) & (F.dsc IS Skeleton.Frame) THEN
RemoveObj(M.obj(Display.Frame));
PutObj(F, M.obj(Display.Frame));
M.res := 0

ELSE ToContent(F, M.x + F.X, M.y + F.Y, M)
END

END
ELSE ToContent(F, M.x + F.X, M.y + F.Y, M)
END

END
END

ELSIF M IS Objects.AttrMsg THEN Attributes(F, M(Objects.AttrMsg))
ELSIF M IS Objects.BindMsg THEN
F.dsc.handle(F.dsc, M); Gadgets.framehandle(F, M)

ELSIF M IS Objects.CopyMsg THEN
WITH M: Objects.CopyMsg DO
IF M.stamp = F.stamp THEN M.obj := F.dlink (*non−first arrival*)
ELSE (*first arrival*)
NEW(F1); F.stamp := M.stamp; F.dlink := F1; Copy(M, F, F1); M.obj := F1

END
END

ELSIF M IS Objects.FileMsg THEN
WITH M: Objects.FileMsg DO
IF M.id = Objects.store THEN
Gadgets.WriteRef(M.R, F.lib, F.dsc)

ELSIF M.id = Objects.load THEN
Gadgets.ReadRef(M.R, F.lib, obj);
IF (obj # NIL) & (obj IS Gadgets.Frame) THEN F.dsc := obj(Gadgets.Frame)
ELSE Skeleton.New; F.dsc := Objects.NewObj(Gadgets.Frame)
END

END;
Gadgets.framehandle(F, M)

END
ELSE Gadgets.framehandle(F, M)
END

END
END Handle;

PROCEDURE New*;
VAR F: Portrait;

BEGIN
NEW(F); F.handle := Handle; F.W := 50; F.H := 50;
Skeleton.New; F.dsc := Objects.NewObj(Display.Frame);
Objects.NewObj := F

END New;

END Portraits.

5.11.8 The document design pattern

A document is a container gadget with a single descendant. A TextDoc contains
a TextGadget, a PanelDoc contains a Panel, a RembrandtDoc contains a
RembrandtFrame etc. The document gadget provides a file name, a storage
mechanism, an icon, and has the capability of generating a menu bar.
Programming a new document normally involves class inheritance, that is, the

document handler is exchanged and no type extension is made. A document
has a generator procedure to generate an empty instance of that document
type. In addition, two methods for loading and storing, implement the
persistency mechanism. These two methods should not be confused with the
FileMsg, which in this case stores nothing more than the document name, an
attribute of the document.
A document can either be stored locally on disk, be present on remote

machines, or be generated on the fly at load time. Locally stored documents
often use the newer Oberon document format, which prepends a standard
header to the document file:

0F7X 7X "Generator string" X Y W H (document content follows)

This header contains the generator of the loading document instance. The X
Y W H fields are used for determining a preferred position and size on the
display, and can be copied to the document coordinates. This is visible in the
Load and Store methods defined below.
Compatibility with documents in the existing document formats is obtained

by defining a lookup table consisting of (generator, file extension) pairs.
Remote documents are identified using uniform resource locators (URL)
known from the world−wide web. The appropriate document generators are
defined in a lookup table consisting of (generator, URL format) pairs, where
URL format is "http", "ftp" etc. The tables of (generator, file extension) and
(generator, URL format) pairs are managed by the Documentsmodule. For
testing purposes, the tables can be extended by adding entries to the file
Oberon.Textfor Native Oberon or to the Registry for the other Oberon
implementations. This file is parsed once the Documents module is loaded.
The DocumentSkeletonmodule implements a trivial example of document

containing a Panel, only the color of which is stored. The meaning of the piece
of code in bold typeface is explained later.

MODULE DocumentSkeleton; (* jm 25.10.93 *)
IMPORT Attributes, Desktops, Display, Documents, Files, Gadgets,

Links, Oberon, Objects, Texts, ColorDriver;
CONST Menu = "Desktops.StoreDoc[Store] DocumentSkeleton.Cycle[Cycle]";

VAR W: Texts.Writer;

PROCEDURE Cycle*;
VAR doc: Documents.Document; F: Gadgets.Frame; col: LONGINT;

BEGIN
doc := Desktops.CurDoc(Gadgets.context);
IF (doc # NIL) & (doc.dsc IS Gadgets.Frame) THEN

F := doc.dsc(Gadgets.Frame);
Attributes.GetInt(F, "Color", col);
Attributes.SetInt(F, "Color", (col + 1) MOD 4);
Gadgets.Update(F)

END
END Cycle;

PROCEDURE NextColor (doc: Documents.Document; col: INTEGER);
VAR F: Gadgets.Frame;

BEGIN
F := doc.dsc(Gadgets.Frame);
Attributes.SetInt(F, "Color", col);
Gadgets.Update(F)

END NextColor;

PROCEDURE Load (D: Documents.Document);
VAR
obj: Objects.Object;
tag, x, y, w, h, col: INTEGER;
name: ARRAY 64 OF CHAR; F: Files.File; R: Files.Rider; ch: CHAR;
CM: Gadgets.CmdMsg;

BEGIN
obj := Gadgets.CreateObject("Panels.NewPanel");
WITH obj: Gadgets.Frame DO

x := 0; y := 0; w := 250; h := 200; col := 1; (* default *)

F := Files.Old(D.name);
IF F # NIL THEN

Files.Set(R, F, 0);
Files.ReadInt(R, tag);
IF tag = Documents.Id THEN

Files.ReadString(R, name);
Files.ReadInt(R, x); Files.ReadInt(R, y); Files.ReadInt(R, w); Files.ReadInt(R,

h);

Files.Read(R, ch);
IF ch # 0F7X THEN (* attachments *)

Documents.LoadAttachments(R, D.attr, D.link);
IF D.link # NIL THEN

CM.cmd := "PREPARE"; CM.res := −1; CM.dlink := D;
Objects.Stamp(CM);

Links.Broadcast(D.link, CM)
END;
Files.ReadInt(R, col)

END
END

ELSE (* COPY("DefaultName", D.name) *)
END;
D.X := x; D.Y := y; D.W := w; D.H := h;
Attributes.SetInt(obj, "Color", col);
Documents.Init(D, obj)

END
END Load;

PROCEDURE Store (D: Documents.Document);
VAR obj: Gadgets.Frame; F: Files.File; R: Files.Rider; col: LONGINT;

BEGIN
obj := D.dsc(Gadgets.Frame);
Texts.WriteString(W, "Store "); Texts.Append(Oberon.Log, W.buf);
IF D.name # "" THEN

F := Files.New(D.name);
IF F = NIL THEN HALT(99) END;

Files.Set(R, F, 0);
Files.WriteInt(R, Documents.Id); Files.WriteString(R,

"DocumentSkeleton.NewDoc");
Files.WriteInt(R, D.X); Files.WriteInt(R, D.Y);
Files.WriteInt(R, D.W); Files.WriteInt(R, D.H);

IF (D.attr # NIL) OR (D.link # NIL) THEN (* attachments *)
Documents.StoreAttachments(R, D.attr, D.link)

END;
Attributes.GetInt(obj, "Color", col);
Files.WriteInt(R, SHORT(col));
Files.Register(F);
Texts.Write(W, 22X); Texts.WriteString(W, D.name); Texts.Write(W, 22X)

ELSE Texts.WriteString(W, "[Untitled document]")
END;
Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)

END Store;

PROCEDURE Handler (D: Objects.Object; VAR M: Objects.ObjMsg);
BEGIN

WITH D: Documents.Document DO
IF M IS Objects.AttrMsg THEN

WITH M: Objects.AttrMsg DO
IF M.id = Objects.get THEN

IF M.name = "Gen" THEN
M.class := Objects.String; M.s := "DocumentSkeleton.NewDoc"; M.res

:= 0
ELSIF M.name = "Adaptive" THEN

M.class := Objects.Bool; M.b := FALSE; M.res := 0
ELSIF M.name = "Icon" THEN

M.class := Objects.String; M.s := "Icons.Tool"; M.res := 0
ELSE Documents.Handler(D, M)
END

ELSE Documents.Handler(D, M)
END

END

ELSIF M IS Objects.LinkMsg THEN
WITH M: Objects.LinkMsg DO

IF (M.id = Objects.get) & (M.name = "DeskMenu") THEN
M.obj := Gadgets.CopyPublicObject("TestMenus.DeskMenu", TRUE);
IF M.obj = NIL THEN M.obj := Desktops.NewMenu(Menu) END;
M.res := 0

ELSIF (M.id = Objects.get) & (M.name = "SystemMenu") THEN
M.obj := Gadgets.CopyPublicObject("TestMenus.DeskMenu", TRUE);
IF M.obj = NIL THEN M.obj := Desktops.NewMenu(Menu) END;
M.res := 0

ELSIF (M.id = Objects.get) & (M.name = "UserMenu") THEN
M.obj := Gadgets.CopyPublicObject("TestMenus.DeskMenu", TRUE);
IF M.obj = NIL THEN M.obj := Desktops.NewMenu(Menu) END;
M.res := 0

ELSE Documents.Handler(D, M)
END

END
ELSIF M IS ColorDriver.ColorMsg THEN

NextColor(D, M(ColorDriver.ColorMsg).col)
ELSIF M IS Display.DisplayMsg THEN

WITH M: Display.DisplayMsg DO
IF (M.device = Display.printer) & (M.id = Display.contents) & (D.dsc # NIL)

THEN
(* print *)

ELSE Documents.Handler(D, M)
END

END
ELSE Documents.Handler(D, M)
END

END
END Handler;

PROCEDURE NewDoc*;
VAR D: Documents.Document;

BEGIN
NEW(D); D.Load := Load; D.Store := Store; D.handle := Handler;
D.W := 250; D.H := 200; Objects.NewObj := D

END NewDoc;

BEGIN Texts.OpenWriter(W)
END DocumentSkeleton.

Desktops.OpenDoc (DocumentSkeleton.NewDoc)

The generator procedure generates an empty instance of Documents.Documentand
installs the load and store methods and the handler which are all typical in
document modules. The document possesses two "read−only" attributes
Adaptive and Icon. The Adaptive attribute set to FALSE in the present case
indicates that a fixed size camera−view of the document will be presented.
When the value TRUE is returned, the document will adapt its size to that of
the viewer. Also when the viewer is resized, the document is resized. Normally,
a TextDoc or a LogDoc are adaptive, whereas a PanelDoc or a Columbus
document are not adaptive. The Icon attribute indicates what public object
should be regarded as its pictorial icon representation. The document should
return a string attribute in the form L.O, where L identifies the public library,
and O the object in that library. The gadget identified this way is then packed by
the desktop inside an Icon gadget in a Finder gadget or when Desktops.MakeIcon
command is executed.
Each document requires a menu bar with commands associated with the

document type when opened with Desktops.OpenDoc. This menu bar is gathered
from the links "DeskMenu", "SystemMenu" and "UserMenu" when the
command is executed. The menu can be constructed with the procedure
Dekstops.NewMenuor can be taken from a public library. The string given as
parameter in the procedure must contain a sequence of Oberon commands. By
immediately following a menu command with a word in square brackets, that
word will be used as the menu bar button caption. A typical menu string might
look as follows:

"MyDoc.Search[Search] MyDoc.Save[Store]"

In the example given, the menu string appears in the Menuconstant and that
menu is indeed used as long as no TestMenus public library exists. The
Desktops.NewMenuprocedure automatically adds the Buttons [Close], [Hide]and
[Grow]and a NamePlate to the menu bar.
For more flexibility, documents may also define their own menu bars by

"exporting" them as public objects from a public library. The public library
should contain three menu bars for the Desktop, System track and User track
respectively. These menus should have the names "DeskMenu", "SystemMenu"
and "UserMenu" respectively. For example, the text documents have such a
library (called "TextDocs.Lib"). When the library is missing, the default menu
bars are used. Programmers must add support for this feature in their
Document handlers. The desktop uses the LinkMsgto request the document to
return its menu bar. You should always return a deep copy of the menu bar
from the library. It is best to lock the menu bars and to set the Panel's Border
attribute to 0. The menu bar can have any height and content.
The example document supports attachments, a concept which has been

introduced and used earlier in this chapter.

5.11.9 Defining a newmessage type

Up to now we have been exploiting the message collection belonging to the
standard Oberon distribution. Creating an ad−hoc message was listed among
the implementation steps for a new gadget. The following ColorDriverintroduces
a new message type ColorMsgand provides the capability to change the color of
all the open documents having DocumentSkeleton.NewDocas generator. To this
effect the handler must be capable of interpreting the message: the program
modifications appear in bold typeface in the source text of DocumentSkeleton.

MODULE ColorDriver;
IMPORT Display;
TYPE

ColorMsg* = RECORD (Display.FrameMsg)
col*: INTEGER

END;
VAR Color: INTEGER;

PROCEDURE NextCol*;
VAR M: ColorMsg;
BEGIN

Color := (Color + 1) MOD 4;
M.F := NIL; M.col := Color; Display.Broadcast(M)

END NextCol;

BEGIN Color := 1
END ColorDriver.NextCol

The color could also be controlled by a background task by replacing the
ColorDrivermodule by:

MODULE ColorDriver;
IMPORT Display, Input, Modules, Oberon;
TYPE

ColorMsg* = RECORD (Display.FrameMsg)
col*: INTEGER

END;
VAR Color: INTEGER; task : Oberon.Task;

PROCEDURE ColorTask(me: Oberon.Task);
VAR M: ColorMsg;
BEGIN

Color := (Color + 1) MOD 4;
M.F := NIL; M.col := Color; Display.Broadcast(M);
me.time := Input.Time() + Input.TimeUnit * 3

END ColorTask;

PROCEDURE Cleanup;

BEGIN
Oberon.Remove(task)

END Cleanup;

BEGIN
Color := 1;
NEW(task); task.handle := ColorTask; task.safe := TRUE; Oberon.Install(task);
Modules.InstallTermHandler(Cleanup)

END ColorDriver.

The background task is immediately activated when a document is opened,
because this module is imported and thus automatically loaded. This example
also shows how the task can be correctly removed (Cleanup) when a
command System.Free ColorDriveris executed.

5.11.10 The camera view design pattern

Camera views are programmed in practically the same way as container
gadgets. Here only the differences will be sketched. Camera views have to be
type extensions of Gadgets.Viewand should preferably reference their contents
through the objfield in Gadgets.Frameinstead of the dscfield typically used for
containers. The extension of Gadgets.Viewis required so that the display masks
of the camera view descendants are calculated correctly. For the same reason a
special message forwarding strategy, encapsulated in the Gadgetsmodule, has
to be used:

PROCEDURE ToModel(F: Frame; x, y: INTEGER; VAR M: Display.FrameMsg);
VAR obj: Display.Frame;

BEGIN
IF (F.obj # NIL) & (F.obj IS Display.Frame) THEN

obj := F.obj(Display.Frame);
M.x := ... ; M.y := ...;
Gadgets.Send(F, x, y, obj, M)

END
END ToModel;

The mask handling for the camera view content can be simplified by not taking
the camera view mask into account when updating the mask of the content.
Instead, the camera view should create a mask for the content in such a way
that the content is completely visible. The Gadgets.MakeMaskprocedure
automatically clips the mask of a gadget to the masks of the camera views
through which it is visible.
An example of a simple camera view gadget can be found in the ViewSkeleton

module.

MODULE ViewSkeleton; (* jt, 13.12.94 *)
IMPORT Display, Display3, Fonts, Gadgets, Oberon, Objects;
TYPE

Frame* = POINTER TO FrameDesc;
FrameDesc* = RECORD (Gadgets.ViewDesc)

(* view is adjusted to model size, no border *)
END;

PROCEDURE ToModel (F: Frame; x, y: INTEGER; VAR M: Display.FrameMsg);
VAR obj: Display.Frame;

BEGIN
IF (F.obj # NIL) & (F.obj IS Display.Frame) THEN

obj := F.obj(Display.Frame);
M.x := x − obj.X; M.y := y + F.H − (obj.Y + obj.H);
Gadgets.Send(F, x, y, obj, M)

END
END ToModel;

PROCEDURE Restore (F: Frame; x, y: INTEGER; dlink: Objects.Object);
VAR R: Display3.Mask; M: Display.DisplayMsg;

BEGIN
Gadgets.MakeMask(F, x, y, dlink, R); (* simplified *)
IF F.obj = NIL THEN

Display3.ReplConst(R, Display3.green, x, y, F.W, F.H, Display.replace);
Display3.String(R, Display3.FG, x + 3, y + 3, Fonts.Default,

"empty view", Display3.replace)
ELSE

M.device := Display.screen; M.id := Display.full; M.F := NIL;
M.dlink := dlink; M.res := −1; ToModel(F, x, y, M)

END ;
IF Gadgets.selected IN F.state THEN

Display3.FillPattern(R, Display3.blue, Display3.selectpat,
x, y, x, y, F.W, F.H, Display3.paint)

END
END Restore;

PROCEDURE Adjust (F: Frame; X, Y, W, H: INTEGER);
VAR MM: Display.ModifyMsg;

BEGIN
MM.F := F; MM.mode := Display.display;
MM.dX := X − F.X; MM.dY := Y − F.Y; MM.dW := W − F.W; MM.dH := H − F.H;
MM.X := X; MM.Y := Y; MM.W := W; MM.H := H;
Display.Broadcast(MM)

END Adjust;

PROCEDURE Consume (F: Frame; x, y: INTEGER; VAR M: Display.ConsumeMsg);
VAR f: Objects.Object; CM: Display.ControlMsg;

BEGIN f := M.obj;
IF (M.id = Display.drop) & (M.F = F) & (F.obj = NIL) & (f IS Gadgets.Frame) THEN

WITH f: Gadgets.Frame DO
f.slink := NIL;
CM.id := Display.remove; CM.F := f; Display.Broadcast(CM);
F.obj := f; f.X := 0; f.Y := 0; f.mask := NIL;
F.state := f.state*{Gadgets.transparent};
Adjust(F, F.X + M.u, F.Y + F.H − 1 + M.v, f.W, f.H); M.res := 0

END
ELSE ToModel(F, x, y, M)
END;

END Consume;

PROCEDURE UpdateMask (F: Frame; x, y: INTEGER; VAR M:
Display3.UpdateMaskMsg);

VAR R: Display3.Mask; O: Display3.OverlapMsg;
BEGIN

IF M.F = F.obj THEN
NEW(R); Display3.Open(R);
Display3.Add(R, 0, −F.obj(Display.Frame).H+1,

F.obj(Display.Frame).W, F.obj(Display.Frame).H);
O.F := F.obj(Display.Frame); O.x := 0; O.y := 0; O.M := R; O.res := −1;
O.dlink := NIL; ToModel(F, x, y, O); M.res := 0

ELSIF M.F = F THEN
NEW(F.mask); Display3.Open(F.mask);
Display3.Add(F.mask, 0, −F.H+1, F.W, F.H);
F.mask.x := 0; F.mask.y := 0

ELSE ToModel(F, x, y, M)
END

END UpdateMask;

PROCEDURE FrameHandler* (F: Objects.Object; VAR M: Objects.ObjMsg);
VAR x, y, u, v: INTEGER; F0: Frame;

BEGIN
WITH F: Frame DO

IF M IS Objects.AttrMsg THEN
WITH M: Objects.AttrMsg DO

IF (M.id = Objects.get) & (M.name = "Gen") THEN
M.s := "ViewSkeleton.NewFrame"; M.class := Objects.String; M.res := 0

ELSE Gadgets.framehandle(F, M)
END

END
ELSIF M IS Objects.CopyMsg THEN

WITH M: Objects.CopyMsg DO
IF M.stamp = F.stamp THEN M.obj := F.dlink
ELSE

NEW(F0); F.stamp := M.stamp; F.dlink := F0;
Gadgets.CopyFrame(M, F, F0); F0.border := F.border; M.obj := F0

END
END

ELSIF M IS Objects.FileMsg THEN Gadgets.framehandle(F, M)
ELSIF M IS Objects.BindMsg THEN Gadgets.framehandle(F, M)
ELSIF M IS Objects.LinkMsg THEN Gadgets.framehandle(F, M)
ELSIF M IS Objects.FindMsg THEN Gadgets.framehandle(F, M)
ELSIF M IS Display.FrameMsg THEN

WITH M: Display.FrameMsg DO
x := M.x + F.X; y := M.y + F.Y;
u := M.x; v := M.y; (* save *)
IF M IS Display.DisplayMsg THEN

WITH M: Display.DisplayMsg DO
IF M.device = Display.screen THEN

IF (M.F = NIL) OR (M.F = F) THEN Restore(F, x, y, M.dlink)
ELSE ToModel(F, x, y, M)
END

ELSIF M.device = Display.printer THEN
END

END
ELSIF M IS Display.ConsumeMsg THEN

Consume(F, x, y, M(Display.ConsumeMsg))
ELSIF M IS Gadgets.UpdateMsg THEN

WITH M: Gadgets.UpdateMsg DO
IF M.obj = F.obj THEN Restore(F, x, y, M.dlink)
ELSE ToModel(F, x, y, M)
END

END
ELSIF M IS Oberon.InputMsg THEN

WITH M: Oberon.InputMsg DO
IF F.obj # NIL THEN ToModel(F, x, y, M)
ELSE Gadgets.framehandle(F, M)
END

END
ELSIF M IS Oberon.ControlMsg THEN ToModel(F, x, y, M)
ELSIF M IS Display.LocateMsg THEN Gadgets.framehandle(F, M)
ELSIF M IS Display.SelectMsg THEN

Gadgets.framehandle(F, M) (* should be more elaborate *)
ELSIF M IS Display.ModifyMsg THEN

WITH M: Display.ModifyMsg DO
IF M.F = F THEN Gadgets.framehandle(F, M)
ELSIF M.F = F.obj THEN

ToModel(F, x, y, M); Adjust(F, F.X + M.dX, F.Y + M.dY, M.W, M.H)
ELSE ToModel(F, x, y, M)
END

END
ELSIF M IS Display.ControlMsg THEN

IF (M(Display.ControlMsg).id = Display.remove) & (M.F = F.obj) THEN
F.obj := NIL; Gadgets.Update(F)

END
ELSIF M IS Display3.OverlapMsg THEN Gadgets.framehandle(F, M);
ELSIF M IS Display3.UpdateMaskMsg THEN

UpdateMask(F, x, y, M(Display3.UpdateMaskMsg))
ELSE ToModel(F, x, y, M)
END;
M.x := u; M.y := v (* restore *)

END
ELSIF F.obj # NIL THEN F.obj.handle(F.obj, M)
END

END
END FrameHandler;

PROCEDURE InitFrame* (F: Frame);
BEGIN F.W := 100; F.H := 100; F.border := 0; F.handle := FrameHandler
END InitFrame;

PROCEDURE NewFrame*;
VAR F: Frame;

BEGIN NEW(F); InitFrame(F); Objects.NewObj := F;
END NewFrame;

END ViewSkeleton.

Gadgets.Insert ViewSkeleton.NewFrame ˜

5.11.11 Further perspectives

This concludes our discussion of gadgets programming. The code of the
examples presented is included in the Oberon release:

− Skeleton.Mod: a simple visual gadget
− Portraits.Mod: a simple container gadget
− DocumentSkeleton.Mod: a document gadget containing a Panel
− ViewSkeleton.Mod: a camera view gadget

In addition, the source code of existing gadgets, which is also included in this
release, constitutes an invaluable reference from where to collect ideas on how
to implement Gadgets. Advanced readers might also be interested in
understanding the motivations behind some of the design and implementation
decisions made during the development of the Gadgets system. For those, the
full text of the thesis which emanated from this development [Mar96] is
included on the CD−ROM.

Chapter Six

Applications and Examples

6.1 Introduction

In this chapter, we present:

− an application of interest to graphical user interface designers,
− an application for assisting software developers in their daily work,
− the complete source code of an application serving as yet another example,
− an overview of the applications delivered with the system.

6.2 Composing Gadgetswith the Layout Language LayLa

LayLa is a functional layout language for constructing arbitrarily complex
gadgets. The gadgets can be placed at specific x− and y−coordinates or can be
arranged automatically in containers. Layouts saved as text files can be reused
in new layout texts.

Each text describes one object. Such a description is a list enclosed in
parentheses. The list type is defined by its first element, the operator. The
following elements are the operator's arguments which can be lists themselves.
All characters between "{" and "}" are comments. Comments may be nested.

Example:

(HLIST Panel
(LAYOUT (SET border 8))

{ a border of 8 pixels in width must be left free of components }
(ATTR (SET Locked TRUE))
(NEW Button

(LAYOUT (SET w 50) (SET h 20))
(ATTR (SET Caption "Open") (SET Cmd "Desktops.OpenDoc &File.Value"))

)
(NEW TextField (ATTR (SET Name "File")))

)

The outermost list consists of the operator "HLIST" and its arguments "Panel",
"(LAYOUT ...)", "(ATTR ...)", "(NEW Button ...)" and "(NEW TextField ...)". All
these arguments except for "Panel" are lists too.

6.2.1 SimpleObjects: NEW

A new object is generated with the operator NEW. The first argument of NEW
is a generator of the form Module.NewProceduredefining the object type. Usually
the alias is used instead.

The subsequent arguments are: the list of layout parameters with the
operator LAYOUT, the list of attributes with the operator ATTR (or ATTRIBUTES)
and the list of links with the operator LINKS. Each of these operators takes as
arguments assignment lists of the form (SET name val). In a list of layout
parameters the parameter name is set to val, in a list of attributes, the attribute
name is set to val, and in a list of links the object val is inserted as link name.

A simple object has the following layout parameters (the type "Size" is
explained in section 6.1.1.4)

name type description default
w Size gadget width the width and height set in the generator

h Size gadget height or [1] for virtual objects

Example:

(NEW BasicGadgets.NewButton { <− or NEW Button }
(LAYOUT (SET w 50)) { <− or w=50 }
(ATTR (SET Caption "Guide") (SET Cmd "Desktops.OpenDoc LayLa.Guide.Text"))

)

6.2.1.1 Syntactic Sugar

"(SET name val)" can be written as "name=val". Also the operator LAYOUT is
optional. Thus, (LAYOUT (SET name1 val1) (SET name1 val2)) can be
shortened to (name1 = val1 name2 = val2).

6.2.1.2 VirtualObjects: VIRTUAL

If you don't want to build a new container for a list or a table, or if you want
some blank space (e.g. an empty cell in a table), then you need virtual objects.
A virtual object is generated with the generator VIRTUAL. VIRTUAL as an
argument (not as a generator) stands short for (NEW VIRTUAL (LAYOUT (SET
w []) (SET h []))) or also (NEW VIRTUAL (w=[] h=[])).

Example:

(HLIST Panel (border=4 dist=0)
(NEW Button (h=[]) (ATTR Caption="One"))
(NEW VIRTUAL (w=10))
(VLIST VIRTUAL (sameSize=TRUE dist=0)

(NEW Button (ATTR Caption="Two"))
VIRTUAL
(NEW Button (ATTR Caption="Three"))

)
)

6.2.1.3 Using Public LibraryObjects: SCOPY,DCOPY and L.O

SCOPY makes a shallow copy and DCOPY a deep copy of a public object. The
first argument is the object's name of the form L.O. The following arguments
are, as for the operator NEW, the list of layout parameters, the list of attributes
and the list of links. A public object L.Omay be used also directly in an
argument of a list of links.

Example:

(VLIST Panel (border=10 hjustify=CENTER)
(NEW Icon (w=50 h=50)

(ATTR Caption="Diskette")
(LINKS Model=Icons.Diskette2)

)
(SCOPY LayLaTest.Slider (w=75 h=15))

)

6.2.1.4 Size

The width "w" and the height "h" of a gadget are of the type:

Size = [(Integer | "DEFAULT")] "[" [Integer] "]" | Integer.

When no width or no height value is specified, these values are assigned by the
generator. DEFAULT may also be used instead.
"[" [Integer] "]" is called the expansion factor. When it is omitted, 0 is assumed,
meaning that the gadget has a fixed width or height (w=50 is the same as
w=50[0]). When it is simply "[]", 1 is assumed ([] is equivalent to [1]). For a
virtual object, the expansion factor is assumed to be [].

Example:

w=50 [3] : Here 50 is the minimal width of the gadget and 3 the expansion
factor. This means that the gadget gets at least 50 pixels wide. If the gadget is
located in a wider container, the gadget is expanded according to the
expansion factor value. The expansion factor's function is best shown with an
example:

(HLIST Panel (w=120 dist=0 vjustify=CENTER)
(NEW Button (w=30[]))
(NEW TextField (w=[2]))

)

Since "Button" has the expansion factor 1 and "TextField" has the expansion
factor 2, "TextField" gets twice as wide as "Button" and both expand to occupy
the full width of 120 pixels in a 1 to 2 ratio.

(HLIST Panel (w=120 dist=0 vjustify=CENTER)
(NEW Button (w=50[]))
(NEW TextField (w=[2]))

)

If "TextField" was twice as wide as "Button" here, "Button" would become
smaller than its minimal size. However, "Button" is at least 50 pixels wide, and
"TextField" gets only the remaining 70 pixels. "Button" starts to grow only when
"Panel" is more than 150 pixels wide (and the size of "TextField" is twice the
size of "Button").

The expansion factor of a row or of a column in a container (see below) is
the largest expansion factor of all the gadgets in that row or respectively
column. The expansion factor in a row is zero, if any gadget inside the row has
a fixed width. The expansion factor in a column is zero, if any gadget inside the
column has a fixed height.

6.2.2 Containers

The operators HLIST, VLIST, TABLE and PLACE generate containers. Each of
these operators defines a particular way of inserting the components. As with
simple objects, the first argument is the generator, followed by the list of layout
parameters, the list of attributes and the list of links. The description of the
components, which may be simple objects or containers, terminates the
argument list.

The default width and height of a container are as big as the bounding box
of its components plus the border defined by the container's layout parameters:

name type description default
hborder Integer left and right border size 0
vborder Integer top and bottom border size 0
border Integer border size 0

6.2.2.1 Lists: VLIST andHLIST

VLIST inserts components in a vertical list and HLIST inserts components in a
horizontal list. Besides the vborder, hborder and border parameters introduced
above, these operators accept further layout parameters:

name type description default
hdist Integer horizontal distance between components 5

ignored in VLIST
vdist Integer vertical distance between components 5

ignored in HLIST
dist Integer common value for hdist and vdist 5
sameWidthBoolean TRUE: all components are made as wide as the widest FALSE
sameHeight Boolean TRUE: all
components are made as high as the highest FALSE

sameSize Boolean common value for sameWidth and sameHeight FALSE
hgrid STATIC STATIC: all columns are made as wide as the widest DYNAMIC

DYNAMIC (not the components themselves)
vgrid see hgrid STATIC: all rows are made as high as the highest DYNAMIC
grid see hgrid common value for hgrid and vgrid DYNAMIC
hjustify LEFT the components are placed at the left LEFT

RIGHT at the right
CENTER in the middle (horizontal placement)

vjustify TOP the components are placed at the top BOTTOM
BOTTOM at the bottom
CENTER in the middle (vertical placement)

The hjustify and vjustify parameter values assigned to a container can be
overridden locally by a component with:

name type description default
hjustifyMe = hjustify overrides the hjustify of this gadget's container hjustify
vjustifyMe = vjustify overrides the vjustify of this gadget's container vjustify

Example:

(HLIST Panel (border=5 vjustify=TOP hgrid=STATIC)
(NEW Button)
(NEW List)
(NEW Button (vjustifyMe=CENTER hjustifyMe=CENTER))
(NEW TextGadget)
(NEW Button)

)

6.2.2.2 Tables: TABLE

TABLE inserts components row−wise in a horizontally oriented table (HOR),
and column−wise in a vertically oriented table (VER). The number of rows in a
horizontally oriented table is determined by counting the components to align
in each row (cols). Equally, the number of columns in a vertically oriented table
is determined automatically. The layout parameters of VLIST and HLIST also
apply to TABLE and are extended by:

name type description default
orientation HOR horizontally oriented table HOR

VERT vertically oriented table
cols Integer number of columns (ignored in VERT table) 1
rows Integer number of rows (ignored in HOR table) 1

6.2.2.3 Breaking the Formatting of Tables: SPANundBREAK

The formatting of tables can be broken with SPAN and BREAK. (SPAN rows cols
Object) reserves rows rows and cols columns for the object Object.

If the components are inserted row−wise, (BREAK Object) replaces the
distance to the following row with the single object Object. The next
component of the table appears at the beginning of the next line. In a vertically
oriented table, BREAK replaces the distance to the next column with the single
object Object. If the table is empty except for a BREAK, the container is made
empty. SPAN and BREAK can also be used in lists generated with the operators
VLIST and HLIST.

Example:

(TABLE Panel (border=8 cols=3)
(ATTR Locked=TRUE)
(BREAK (HLIST Panel (border=8) (NEW Caption (ATTR Value="Break 1"))))
(NEW Button (ATTR Caption = "1"))
(SPAN 2 1 (NEW Button (w=[1] h=[1]) (ATTR Caption = "2")))
(NEW Button (ATTR Caption = "3"))

(NEW Button (ATTR Caption = "4"))
(NEW Button (ATTR Caption = "5"))
(NEW Button (ATTR Caption = "6"))
VIRTUAL
(NEW Button (ATTR Caption = "7"))
(BREAK (HLIST Panel (h=44 w=[1] border=8)

(NEW Caption (vjustifyMe=CENTER) (ATTR Value="Break 2"))
(NEW Button (hjustifyMe=RIGHT) (ATTR Caption="hello"))

))
(NEW Button (ATTR Caption = "8"))
(NEW Button (ATTR Caption = "9"))
(BREAK (HLIST Panel (border=8) (NEW Caption (ATTR Value="Break 3"))))

)))

which results in: Break 1

1

2

3

4 5

6 7

Break 2 hello

8 9

Break 3

6.2.2.4 Placing the Components byHand: PLACE

Experience has shown that ordering components in horizontal or vertical lists
or in tables covers all practical needs required for designing containers.
However, in very special cases, components can be placed "by hand" in a
container using the PLACE operator, though such non−regular ordering is not
recommended. The position at which PLACE inserts a component in a
container is defined by a vector specified in the component itself. The vector's
origin is the lower left corner of the container. The size of the border is
automatically taken into account. The position of the lower left corner of the
component is specified by two further layout parameters:

name type description default
x Integer x−coordinate 0
y Integer y−coordinate 0

Example:

(PLACE Panel
(border = 5) { without syntactic sugar: (LAYOUT (SET border 5)) }
(ATTR Locked=TRUE) { (ATTRIBUTES (SET Locked TRUE)) }
(NEW List (y=30 w=70 h=100))
(NEW Button (x=80 y=80 (SET w 60) h=20) (ATTR Caption="Press Me"))

)

6.2.3 Configurations: CONFIG

CONFIG defines values and objects which can be used repeatedly inside a LayLa
description. For example, you can define an Integer object and use it in two
gadgets as a shared model in LINKS lists.

The last argument of the CONFIG operator is the object to construct; all the
other arguments are definitions of the form (DEF name value), where value is
optional. name can be used in subsequent definitions and also in the object to

construct. For example, if value is an object and name is used twice, the same
object is inserted twice. This can cause serious problems and should be done in
LINKS lists only!

If value is an object, (NEW name) makes a deep copy of value. In this context,
no list of layout parameters, list of attributes or list of links may appear.
However, if value is a configuration, its definition can be modified by means of
a parameter list starting with the operator PARAMS. This parameter list is an
additional argument of the operator NEW. The operator PARAMS, like
LAYOUT, is optional.

Example:

(CONFIG
(DEF IntGadget { The value of IntGadget is a configuration }

(CONFIG
(DEF Int (NEW Integer (ATTR Value=25))) { The value of Int is an object

}
(VLIST VIRTUAL (dist=0)

(NEW Slider (w=100 h=20) (LINKS Model=Int))
(NEW TextField (w=100 h=20) (LINKS Model=Int))

)
)

)
(HLIST Panel (border=10 dist=10)

(NEW IntGadget)
(NEW IntGadget (PARAMS Int = (NEW Integer (ATTR Value=75))))

)
)

6.2.4 Reusing Layouts: INCLUDE

INCLUDE reads the file whose name is given as the first argument and inserts it
in the text. If the object in this file is a configuration, parameters can be passed
to it as a second argument.

Example:

(CONFIG
(DEF int1 (NEW Integer (ATTR Value=75)))
(HLIST Panel (border=8)

(VLIST VIRTUAL (border=4)
(NEW Slider (w=100 h=20) (LINKS Model=int1))
(NEW TextField (w=100 h=20) (LINKS Model=int1)))

(INCLUDE LayLa.Include.Config (PARAMS (SET int int1) (SET MyBorder 4)))
(INCLUDE LayLa.Include.Config (MyBorder=4))

)
)

6.2.5 LayLa tool

The LayLa tool interprets a description text written in the LayLa language, glues
gadgets together and inserts these gadgets in the display space or in a public
library. The interpreter is written in basic Oberon, without the need for defining
new object extensions requiring new messages and handlers.

The LayLa.Insertcommand inserts a gadget at the caret. The gadget is
constructed according to the description supplied.

LayLa.Insert ^
reads the description starting at the most recent selection.

LayLa.Insert *
reads the description from marked text.

LayLa.Insert @ fileName

reads the description from the named file.

LayLa.Insert descriptionText
reads the description which follows the command.

In the same fashion:

LayLa.OpenAsDoc ^
LayLa.OpenAsDoc *
LayLa.OpenAsDoc @ fileName
LayLa.OpenAsDoc descriptionText
reads the description and places the new gadget in an unnamed PanelDoc,
even if the top−most container is VIRTUAL.

LayLa.AddToLibrary L.O ̂
LayLa.AddToLibrary L.O *
LayLa.AddToLibrary L.O @ fileName
LayLa.AddToLibrary L.O descriptionText
reads the description and inserts it into the library L under the name O. If an
object with that name already exists, it is replaced. The object's Name attribute
is assigned the value O. If the top−most container is VIRTUAL, only the first
gadget is inserted.

Most Panel documents delivered with this release have been constructed using
the LayLa tool.

6.2.6 LayLaDescriptionDebugging

The LayLa parser issues an error message in the Oberon log when it detects an
error. Here is an example:

pos 179 err SET operator expected

Very much like for an Oberon compiler error, the log line starting with pos
indicates an error at approximately that character position in the description,
followed by an error indication. To set the caret at that position, mark the
description text, select the entire error line and use the [Locate]button in the log
menu bar.

The parser's function is to detect syntactical errors only. It does not recognize
all semantical errors.

6.2.7 CustomizedMenuBar Example

Customized menu bars may be created for the various document classes
provided with the system (refer to Chapter 3). The following LayLa description
text mimics the default menu bars. Use the LayLa.AddToLibrarycommand to
store your own creations in the ad−hoc public libraries under the correct
names.

LayLa.AddToLibrary TextDocs.SystemMenu ^
LayLa.Insert ^

(CONFIG
(DEF BW 39) { Button width }
(DEF BH 18) { Button height }
(DEF BW2 80) { Button width in Panel }
(DEF Popup

(NEW Iconizer (w=BW h=16)
(ATTR Popup=TRUE Pin=FALSE)
(LINKS

Closed=(HLIST Panel (w=BW h=16 hjustify=CENTER)
(NEW Caption (ATTR Value="Menu")))

Open=(NEW TextNote) { later replaced by a Panel }
)

)
)
(HLIST Panel (border=0 dist=0 w=384 h=21 vjustify=CENTER) (ATTR Border=0)

(NEW NamePlate (w=110 h=20))
(NEW Button (w=BW h=BH) (ATTR Caption="Close" Cmd="Desktops.CloseDoc"))
(NEW Button (w=BW h=BH) (ATTR Caption="Hide" Cmd="Finder.Minimize"))
(NEW Button (w=BW h=BH) (ATTR Caption="Grow" Cmd="Desktops.Grow"))
(NEW DigitalClock (w=BW h=BH))
(NEW Popup)

)
)

This menu bar features three classical Buttons, a DigitalClock and a pop−up
menu implemented in an Iconizer (refer to the description in Chapter 4). It is
not possible to further define the menu text under LayLa. To proceed with the
implementation of the TextNote one has to use the Libraries.Paneland
Columbus.

1 − Select the (CONFIG line
2 − Execute the LayLa command to add the defined object to the ad hoc library
3 − Open the Libraries.Panel
4 − Display the Directory of libraries in Memory
5 − MM click on the library name (in the example TextDocs)
6 − MM click on the object name (in the example SystemMenu)
7 − MM click on "Reference"
8 − Set the caret at any convenient place and retrieve the object
9 − Edit the pop−up menu with Columbus
10 − Store the library

The new customized menu bar is ready for use.
To get around the difficulty of finalizing the text in the TextNote (or

TextGadget) one can choose to place a Panel on the "Open" side with the
advantage that the construction can be finalized with the help of LayLa.

Open=(VLIST Panel (w=84 hjustify=CENTER vjustify=TOP vdist=1 border=1)
(ATTR Locked=TRUE)

(NEW Button (w=BW2 h=BH)
(ATTR Caption="SearchDiff ↑↑" Cmd="TextDocs.SearchDiff \w"))

(NEW Button (w=BW2 h=BH)
(ATTR Caption="RecallText" Cmd="TextDocs.Recall"))

(NEW Button (w=BW2 h=BH)
(ATTR Caption="RecallDoc" Cmd="Desktops.Recall"))

(NEW Button (w=BW2 h=BH)
(ATTR Caption="Columbus" Cmd="Columbus.Inspect ˜"))

(NEW Button (w=BW2 h=BH)
(ATTR Caption="Count *" Cmd="EditTools.Words *"))

(NEW Button (w=BW2 h=BH)
(ATTR Caption="Controls *" Cmd="TextDocs.Controls *"))

(NEW Button (w=BW2 h=BH)
(ATTR Caption="DeleteObjs *" Cmd="EditTools.RemoveObjects *"))

(NEW Button (w=BW2 h=BH)
(ATTR Caption="OpenMod ↑" Cmd="TextDocs.Show ↑"))

(NEW Button (w=BW2 h=BH)
(ATTR Caption="OpenUnix ↑" Cmd="EditTools.OpenUnix ↑"))

(NEW Button (w=BW2 h=BH)
(ATTR Caption="OpenAscii ↑" Cmd="EditTools.OpenAscii ↑"))

(NEW Button (w=BW2 h=BH)
(ATTR Caption="StoreUnix" Cmd="EditTools.StoreUnix"))

(NEW Button (w=BW2 h=BH)
(ATTR Caption="StoreAscii" Cmd="EditTools.StoreAscii"))

)

Since the entire menu bar is based on a Panel, one can infer that it is quite
feasible to reshape the conventional menu bars provided to one's wildest
compositions whilst limited by one's own imagination.

6.3 The TextPopups tool

The module TextPopupsuses the ListGadget, linked to a ListModel, to display a
simple popup menu of Oberon commands, document names, procedure
names and type names in TextDocs. This facility is particularly interesting for
Oberon software developers: it allows rapid access to text pieces of interest in a
source text. The popup menu is controlled by a menu description stored in the
TextPopups.Textfile which may be edited and customized at will. When a new
system is installed, this file contains the following text:

[Mod]
Compiler.Compile *
Compiler.Compile *\f
Compiler.Compile *\s
Analyzer.Analyze *
−−−−−−−−−−−−−−−−−−−−
<5 Recent Files>
−−−−−−−−−−−−−−−−−−−−
<Procedures>

[Text]
TextDocs.SearchDiff \w
−−−−−−−−−−−−−−−−−−−−
<5 Recent Files>

[Tool]
<5 Recent Files>

The text is divided into sections identified by the suffix of the document names
to which the specifications must apply. The previous text contains three
sections. A section may contain the following optional elements:

− an enumeration of Oberon commands
− <i any text> where i is an integer specifying a number of file names

The "Recent Files" used above is nothing more than a user hint.
− <Procedures>
− <Types>
− a separation line "−−−−−−−−−−−−−"

The menu pops up when the MM key is pressed, but only if the mouse focus is
positioned outside of text or positioned on a space, a carriage return or a tab.
The mouse focus is then automatically positioned approximately in the menu
middle. The menu items are made of Oberon commands, the names of the i
last document names recently opened (the most recent appears on top),
procedure names alphabetically ordered and type names also ordered.
Dragging on the MM key places the focus on other menu items which are
underlined. When the key is released, if the focus is on a:

− command: the command is executed
− file name: the corresponding document is opened
− procedure name: the text is re−positioned to make the name visible
− type name: the text is re−positioned to make the name visible.

Commands defined in TextPopups.Mod

TextPopups.Install
activates the facility. It is convenient to add this command on a line in the
Configuration.Textfile (or in the System.InitCommands section of the PC Native
Oberon Oberon.Textfile).

TextPopups.Remove
removes the facility without unloading the module.

6.4 The ColorSystem tool

Figure 6.1 The ColorSystem

The ColorSystem tool is provided for editing the color palette, for saving a
palette to a palette file and for loading a palette from a file. You edit the current
color palette from the ColorSystem.Panel. The tool uses the RGB method for
defining the colors that appear on the computer monitor. For that purpose, it
calls the central procedures Display.GetColorand Display.SetColorexported by the
Displaymodule. A number of colors are preset and cannot be modified. This
number varies with the platform. When Oberon is started, the palette is set by
loading the Default.Palfile.

MODULE ColorSystem (*JM/ JG 10.8.94/JM 27.4.95*);

IMPORT Desktops, Display, Display3, Documents, Effects, Files, Gadgets,
Input, Oberon, Objects, Out, Printer, Printer3, Strings, Texts;

TYPE
Color* = POINTER TO ColorDesc;
ColorDesc* = RECORD (Gadgets.ObjDesc)
col*: INTEGER

END;

Frame* = POINTER TO FrameDesc;
FrameDesc* = RECORD (Gadgets.FrameDesc)
col*: INTEGER;

END;

VAR NC, SC: INTEGER;

PROCEDURE HandleObj* (obj: Objects.Object; VAR M: Objects.ObjMsg);
VAR obj1: Color; red, green, blue: INTEGER;

BEGIN
WITH obj: Color DO
IF M IS Objects.AttrMsg THEN
WITH M: Objects.AttrMsg DO
IF M.id = Objects.get THEN
IF M.name = "Gen" THEN
M.class := Objects.String; COPY("ColorSystem.NewObj", M.s); M.res := 0

ELSIF M.name = "col" THEN M.class := Objects.Int; M.i := obj.col; M.res := 0
ELSIF M.name = "red" THEN Display.GetColor(obj.col, red, green, blue);

M.class := Objects.Int; M.i := red; M.res := 0
ELSIF M.name = "green" THEN Display.GetColor(obj.col, red, green, blue);
M.class := Objects.Int; M.i := green; M.res := 0

ELSIF M.name = "blue" THEN Display.GetColor(obj.col, red, green, blue);
M.class := Objects.Int; M.i := blue; M.res := 0

ELSE Gadgets.objecthandle(obj, M)
END

ELSIF M.id = Objects.set THEN
IF M.name = "col" THEN obj.col := SHORT(M.i); M.res := 0
ELSIF M.name = "red" THEN Display.GetColor(obj.col, red, green, blue);
IF M.class = Objects.String THEN Strings.StrToInt(M.s, M.i) END;
Display.GetColor(obj.col, red, green, blue);
Display.SetColor(obj.col, SHORT(M.i), green, blue); M.res := 0

ELSIF M.name = "green" THEN Display.GetColor(obj.col, red, green, blue);
IF M.class = Objects.String THEN Strings.StrToInt(M.s, M.i) END;
Display.GetColor(obj.col, red, green, blue);
Display.SetColor(obj.col, red, SHORT(M.i), blue); M.res := 0

ELSIF M.name = "blue" THEN Display.GetColor(obj.col, red, green, blue);
IF M.class = Objects.String THEN Strings.StrToInt(M.s, M.i) END;
Display.GetColor(obj.col, red, green, blue);
Display.SetColor(obj.col, red, green, SHORT(M.i)); M.res := 0

ELSE Gadgets.objecthandle(obj, M)
END

ELSIF M.id = Objects.enum THEN
M.Enum("col"); M.Enum("red"); M.Enum("green"); M.Enum("blue");
Gadgets.objecthandle(obj, M)

END
END

ELSIF M IS Objects.CopyMsg THEN
WITH M: Objects.CopyMsg DO
IF M.stamp = obj.stamp THEN M.obj := obj.dlink (* copy msg arrives again *)
ELSE (* first time copy message arrives *)
NEW(obj1); obj.stamp := M.stamp; obj.dlink := obj1;
obj1.handle := obj.handle; obj1.col := obj.col;
M.obj := obj1

END
END

ELSE Gadgets.objecthandle(obj, M)
END

END
END HandleObj;

PROCEDURE NewObj*;
VAR obj: Color;
BEGIN
NEW(obj); obj.handle := HandleObj; obj.col := Display.FG; Objects.NewObj := obj

END NewObj;

PROCEDURE LoadColors*;
VAR obj: Objects.Object; M: Objects.AttrMsg;
T: Texts.Text; S: Texts.Scanner;
f: Files.File; R: Files.Rider;
beg, end, time: LONGINT;
col: INTEGER; red, green, blue: CHAR;

BEGIN
M.id := Objects.get; M.name := "Value";
obj := Gadgets.FindObj(Gadgets.context, "PalName");
obj.handle(obj, M);
IF (M.id # Objects.String) OR (M.s[0] = 0X) THEN
Oberon.GetSelection(T, beg, end, time);
IF time >= 0 THEN
Texts.OpenScanner(S, T, beg); Texts.Scan(S); COPY(S.s, M.s)

END
END;
f := Files.Old(M.s); Files.Set(R, f, 0);
IF f # NIL THEN col := 0;
REPEAT
Files.Read(R, red); Files.Read(R, green); Files.Read(R, blue);
Display.SetColor(col, ORD(red), ORD(green), ORD(blue));
INC(col)

UNTIL col = NC
END

END LoadColors;

PROCEDURE StoreColors*;
VAR obj: Objects.Object; M: Objects.AttrMsg;
T: Texts.Text; S: Texts.Scanner;
f: Files.File; R: Files.Rider;
beg, end, time: LONGINT;
col: INTEGER; red, green, blue: INTEGER;

BEGIN
M.id := Objects.get; M.name := "Value";
obj := Gadgets.FindObj(Gadgets.context, "PalName");
obj.handle(obj, M);
IF (M.class # Objects.String) OR (M.s[0] = 0X) THEN
Oberon.GetSelection(T, beg, end, time);
IF time >= 0 THEN
Texts.OpenScanner(S, T, beg); Texts.Scan(S); COPY(S.s, M.s)

END
END;
IF M.s # "" THEN
Out.String("ColorSystem.StoreColors ");
f := Files.New(M.s); Files.Set(R, f, 0);
IF f # NIL THEN col := 0;
REPEAT
Display.GetColor(col, red, green, blue);
Files.Write(R, CHR(red));
Files.Write(R, CHR(green));
Files.Write(R, CHR(blue));
INC(col)

UNTIL col = NC
END;
Files.Register(f);
Out.String(M.s); Out.Ln

END
END StoreColors;

PROCEDURE HandleAttributes (F: Frame; VAR M: Objects.AttrMsg);
BEGIN
IF M.id = Objects.get THEN
IF M.name = "Gen" THEN
M.class := Objects.String; COPY("ColorSystem.NewFrame", M.s); M.res := 0

ELSIF M.name = "Color" THEN
M.class := Objects.Int; M.i := F.col; M.res := 0

ELSE Gadgets.framehandle(F, M)
END

ELSIF M.id = Objects.set THEN
IF M.name = "Color" THEN
IF M.class = Objects.Int THEN
F.col := SHORT(M.i); M.res := 0

END
ELSE Gadgets.framehandle(F, M);
END

ELSIF M.id = Objects.enum THEN
M.Enum("Color"); M.Enum("Cmd"); Gadgets.framehandle(F, M)

END
END HandleAttributes;

PROCEDURE Restore (F: Frame; Q: Display3.Mask; x, y, w, h: INTEGER);
VAR model: Color; col, i, j, xcur, ycur, wfld, hfld, wmarg, hmarg: INTEGER;

BEGIN
model := F.obj(Color);
Display3.ReplConst(Q, F.col, x, y, w, h, Display.replace);
wfld := (w − (SC + 1)*2) DIV SC; wmarg := (w − SC*(wfld + 2) − 2) DIV 2;
hfld := (h − (SC + 1)*2) DIV SC; hmarg := (h − SC*(hfld + 2) − 2) DIV 2;
col := 0; j := 0; ycur := y + hmarg + 2;
REPEAT i := 0; xcur := x + wmarg + 2;
REPEAT
Display3.ReplConst(Q, col, xcur, ycur, wfld, hfld, Display.replace); INC(col);
INC(i); xcur := xcur + wfld + 2

UNTIL i = SC;
INC(j); ycur := ycur + hfld + 2

UNTIL j = SC;
i := model.col MOD SC; j := model.col DIV SC;
Display3.Rect(Q, Display.FG, Display.solid,
x + wmarg + i*(wfld + 2), y + hmarg + j*(hfld + 2), wfld + 4, hfld + 4, 2,
Display.invert);

IF Gadgets.selected IN F.state THEN

Display3.FillPattern(Q, Display3.white, Display3.selectpat, x, y, x, y, w, h,
Display.paint)

END
END Restore;

PROCEDURE Print (F: Frame; VAR M: Display.DisplayMsg);
VAR Q: Display3.Mask;

PROCEDURE P (x: INTEGER): INTEGER;
BEGIN RETURN SHORT(x * LONG(10000) DIV Printer.Unit)
END P;

BEGIN
Gadgets.MakePrinterMask(F, M.x, M.y, M.dlink, Q);
Printer3.ReplConst(Q, F.col, M.x, M.y, P(F.W), P(F.H), Display.replace)

END Print;

PROCEDURE Copy* (VAR M: Objects.CopyMsg; from, to: Frame);
BEGIN to.col := from.col; Gadgets.CopyFrame(M, from, to)
END Copy;

PROCEDURE SelectColor (F: Frame; VAR M: Oberon.InputMsg; Q: Display3.Mask;
x, y, w, h: INTEGER);

VAR model: Color; keysum: SET;
i, j, k, l, x0, y0, w0, h0, wfld, hfld, wmarg, hmarg, col: INTEGER;

BEGIN
model := F.obj(Color);
wfld := (w − (SC + 1)*2) DIV SC; wmarg := (w − SC*(wfld + 2) − 2) DIV 2;
hfld := (h − (SC + 1)*2) DIV SC; hmarg := (h − SC*(hfld + 2) − 2) DIV 2;
x0 := x + wmarg; y0 := y + hmarg; w0 := wfld + 2; h0 := hfld + 2;
keysum := M.keys;
REPEAT
i := (M.X − x0) DIV w0; j := (M.Y − y0) DIV h0;
IF i < 0 THEN i := 0 ELSIF i >= SC THEN i := SC − 1 END;
IF j < 0 THEN j := 0 ELSIF j >= SC THEN j := SC − 1 END;
col := i + j*SC;
IF (model.col < 0) OR (col # model.col) THEN
Oberon.FadeCursor(Oberon.Mouse);
IF model.col >= 0 THEN
k := model.col MOD SC; l := model.col DIV SC;
Display3.Rect(Q, Display.FG, Display.solid, x0 + k*w0, y0 + l*h0, w0 + 2, h0 + 2,
2, Display.invert)

END;
Display3.Rect(Q, Display.FG, Display.solid, x0 + i*w0, y0 + j*h0, w0 + 2, h0 + 2, 2,
Display.invert);
model.col := col

END;
Oberon.DrawCursor(Oberon.Mouse, Oberon.Mouse.marker, M.X, M.Y);
Input.Mouse(M.keys, M.X, M.Y);
keysum := keysum + M.keys

UNTIL M.keys = {};
Oberon.RemoveMarks(x, y, w, h);
Gadgets.Update(model)

END SelectColor;

PROCEDURE HandleFrame* (F: Objects.Object; VAR M: Objects.ObjMsg);
VAR x, y, w, h: INTEGER; F1: Frame; Q: Display3.Mask;

BEGIN
WITH F: Frame DO
IF M IS Display.FrameMsg THEN
WITH M: Display.FrameMsg DO
IF (M.F = NIL) OR (M.F = F) THEN (* message addressed to box *)
x := M.x + F.X; y := M.y + F.Y; w := F.W; h := F.H;
IF M IS Display.DisplayMsg THEN
WITH M: Display.DisplayMsg DO
IF M.device = Display.screen THEN
IF (M.id = Display.full) OR (M.F = NIL) THEN
Gadgets.MakeMask(F, x, y, M.dlink, Q);
Restore(F, Q, x, y, w, h)

ELSIF M.id = Display.area THEN
Gadgets.MakeMask(F, x, y, M.dlink, Q);
Display3.AdjustMask(Q, x + M.u, y + h − 1 + M.v, M.w, M.h);
Restore(F, Q, x, y, w, h)

END

ELSIF M.device = Display.printer THEN Print(F, M)
END

END
ELSIF M IS Oberon.InputMsg THEN
WITH M: Oberon.InputMsg DO
IF (M.id = Oberon.track) & Gadgets.InActiveArea(F, M) & (M.keys # {}) THEN
Gadgets.MakeMask(F, x, y, M.dlink, Q);
Oberon.RemoveMarks(x, y, w, h);
SelectColor(F, M, Q, x, y, w, h);
M.res := 0

ELSE Gadgets.framehandle(F, M)
END

END
ELSIF M IS Oberon.ControlMsg THEN Gadgets.framehandle(F, M)
ELSIF M IS Display.ModifyMsg THEN Gadgets.framehandle(F, M)
ELSIF M IS Display.SelectMsg THEN Gadgets.framehandle(F, M)
ELSIF M IS Display.ConsumeMsg THEN Gadgets.framehandle(F, M)
ELSE Gadgets.framehandle(F, M)
END

END
END

ELSIF M IS Objects.AttrMsg THEN HandleAttributes(F, M(Objects.AttrMsg))
ELSIF M IS Objects.FileMsg THEN
WITH M: Objects.FileMsg DO Gadgets.framehandle(F, M) END

ELSIF M IS Objects.CopyMsg THEN
WITH M: Objects.CopyMsg DO
IF M.stamp = F.stamp THEN M.obj := F.dlink (* msg arrives again *)
ELSE (* first time msg arrives *)
NEW(F1); F.stamp := M.stamp; F.dlink := F1;
Copy(M, F, F1); M.obj := F1

END
END

ELSE Gadgets.framehandle(F, M)
END

END
END HandleFrame;

PROCEDURE NewFrame*;
VAR F: Frame;
BEGIN
NEW(F); F.W := 50; F.H := 50; F.col := Display.FG; F.handle := HandleFrame;
NewObj; F.obj := Objects.NewObj; Objects.NewObj := F

END NewFrame;

BEGIN
IF Display.Depth(0) >= 8 THEN NC := 256; SC := 16
ELSE NC := 16; SC := 4
END

END ColorSystem.

6.5 TheOberon System3Applications Collection

Oberon System 3 is delivered with a collection of applications which are either
already installed or, for the majority of them, contained in archives (application
packages).

6.5.1 PCNativeOberonApplications

All the applications are contained in one package compressed with Compress.
It suffices to install this package to install all the applications.

Application name Description

ASCIITab ASCII table gadget
Backdrops Wallpaper generator
Calc Simple calculator
Coco Scanner and parser generator
CUSeeMe CUSeeMe video receiver (requires Net)

Diff Text difference tool
Dim3 3D−engine
EditKeys Keyboard macro utility for TextGadgets
Find String searcher
FontEditor Oberon raster font editor
Games A collection of games: Asteroids, Freecell, MineSweeper,

Scramble, Shanghai, Sokoban, Solitaire, Spider, Tetris
Hex Binary file editor
Histogram Histogram gadget (see Chapter 4)
HPCalc RPN calculator
HTML Simple text to HTML converter
LayLa Layout language (see section 6.1)
LayoutPanels LayoutPanels with formatting constraints
LPRPrinter Remote (LPR) printer utility (requires Net)
Magnifier Pixel magnifier
PictConverters Picture format converters
RX Regular expression searcher
Snapshot Makes snapshot of gadget, viewer, document, screen
Sort Line−based sorter
Sound Sound and CD tool (Soundblaster)
TextPopups Popup menu for TextDocs (see section 6.2)
V24Terminal Simple V24 terminal
WTS V4 text to System 3 text converter

6.5.2 Oberon System3 forWindowsApplications

Application packages can be installed by executing the Installer tool command:
Installer.Install archivename [Script] ~

This command automatically processes the archive according to the
specifications contained in the script file named in the parameter list. The
specifications may instruct the Installer to compile the source code files, to
generate definition files (.Def) and to copy application related files. A script file
named Install.Script, included in each archive, is used by default. If you do not
have a standard Oberon directory layout, you may specifiy your sub−directories
in the registry section [Installer]. The standard setting is:

[Installer]
SYSTEM := C:/Oberon/System ; system files
OBJ := C:/Oberon/Obj ; compiled obj files
SRC := C:/Oberon/Src ; source code files
APPS := C:/Oberon/Apps ; miscellaneous application files and packages
DOCU := C:/Oberon/Docu ; tutorials and other documentation files

Archive file (.Arc) Description

ASCIITab ASCII table gadget
Backdrops Wallpaper generator
Calc Simple calculator
Coco Scanner and parser generator
Diff Text difference tool
Dim3 3D−engine
EditKeys Keyboard macro utility for TextGadgets
FileUtils A file backup tool (see section 2.7)
Find String searcher
Games A collection of games: Asteroids, Freecell, MineSweeper,

Scramble, Shanghai, Sokoban, Solitaire, Spider, Tetris
Hex Binary file editor
Histogram Histogram gadget (see Chapter 4)
HPCalc RPN calculator
HTML Simple text to HTML converter
JuiceCDK Juice Authoring Toolkit

LayLa Layout Language (see section 6.1)
LayoutPanels LayoutPanels with formatting constraints
Leonardo A tool for drawing illustrations
Log Another Out module
LPRPrinter Remote (LPR) printer utility
Magnifier Pixel magnifier
MultiMail Send e−mail with MIME attachments
OldFiles Reads Oberon files from DOS and Win32s Systems

(see section 2.7)
PictConverters Picture format converters
Pr2Fnt Printer fonts in 200 dpi resolution (not an application)
Pr6Fnt Printer fonts in 600 dpi resolution (not an application)
PS Picture to Postscript converter
RX Regular expression searcher
Sort Line−based sorter
TextPopups Popup menu for TextDocs (see section 6.2)
V24Terminal Simple V24 terminal
Win.Audio CDAudioPlayer, FileAudioPlayer, Mixer and other tools
Win32.Backup Ceres and PC Native Oberon Backup
Win.CUSM CUSeeMe video receiver
Win.FontTools Oberon raster font editor,

Converter to Windows FON resources
Win.ODBC ODBC Interface
Win.Snapshot Makes snapshot of gadget, viewer, document, screen
WTS V4 text to System 3 text converter

6.5.3 Oberon System3 for Linux andMacintoshApplications

The applications are installed in the same manner as Windows applications.
The applications are those listed in section 6.5.2, but a few of them are not
available:

Dim3, FileUtils, OldFiles, V24Terminal and all the Win* applications.

Appendix A

Configuring the System

A.1 Introduction

A personal computer needs to be configured and tailored to a given
environment and to a personal profile. For this purpose, special tools are
available in Oberon. They are described in the following sections separately for
each implementation. Further platform−dependent details must be obtained
from the specific installation guides.

A.2 PCNativeOberon

For PC Native Oberon, the configuration tool is a simple text called Oberon.Text
that can be edited freely. The configuration data is structured according to a
simple, self−explanatory and recursive syntax whose formal definition in EBNF
(Extended Backus Naur Form) is as follows:

Configuration = Group.
Group = { Entry } { Token }.
Entry = [Name "="] Value.
Value = Token | "{" Group "}".
Token = any token from Texts.Scanner, where "{" and "}" must occur pairwise.

Example:

{ The Oberon Configuration Text }

System = {
InitCommands = {

{ System.OpenLog }
{ System.Open System.Tool }

}
}

Printer = {
Resolution = 300
Layout = {

Width = {210 mm}
Height = {297 mm}

}
}

NetSystem = {
Hosts = {

Domain = { "domain", "" }
DNS1 = { "", "" }

}
NewsFont=Courier10.Scn.Fnt

}

SLIP = {
Host = { "<slipserver>" }
Init = { COM1 19200 }
Dial = {

"ATZ"
10 "OK"
"ATD <phonenumber>"
60 "CONNECT"
10 "login:"

USER
20 "password"
PASSWORD
20 "enabled"
START }

}

For programmed access to Oberon.Texta single procedure Oberon.OpenScanner
in combination with the standard text scanning facility suffices.

PROCEDURE OpenScanner (VAR S: Texts.Scanner; entry: ARRAY OF CHAR);

This procedure is used within programs to position the text scanner at any
desired entry in the Oberon.Text. It takes two parameters, a scanner and an entry
name, where the name actually denotes a path and may be arbitrarily nested by
qualification.

For example, the name Printer.Layout.Widthpositions the scanner to the width
specification "210 mm" and SLIP.Dialpositions it to the dial−in code sequence.

Note that this concept of system configuration is open in many senses. Not
only can new entries be added freely but the local syntax of entries (within
group braces "{" "}") is completely open as well. Also note that there are a few
low−level configuration data that are used on levels below the text system and
therefore cannot make use of it in the mentioned way. For these cases (that
users never have to care about) a low−level extension of the above explained
mechanism is provided. It is based on a set of pairs (name, value) that are
stored in some initial part of the boot file.

A.2 Oberon System3 forWindows

The registry provides a consistent interface for programs to store configuration
data. The data is organized in a two−level hierarchy. The first level is called
"section", the second level is called "key". The registry serves to associate a value
with a (section, key) pair and its data has the format:

[Section1]
Key1=Value1
Key2=Value

[Section2]
Key1=Value
...

For Windows 95, 98 and NT, the registry data is kept in the Windows registry
under the key:

HKEY_CURRENT_USER/Software/Oberon System 3/Release 2.x/

The registry data is accessed when Oberon is started.
This data can be accessed and maintained by the user in various ways. The

first and most expeditive way is by executing the commands System.Getand
System.Set(described in Chapter 2) to retrieve and respectively update the
registry data. Second, using the IniEdit.Panel, a graphical user interface for
maintaining that data.

Third, with the commands provided by the RegistryToolsmodule for storing and
loading the Oberon specific registry data in a file, which can be edited as an
ASCII file in Oberon. The name of the registry file is the user's choice. Such a
file Oberon.regis delivered with the system for prompting the system after its
installation without user intervention.

RegistryTools.Version
Display software and version information for the currently running version.
Example:

Software: Oberon System 3
Version: Release 2.3

RegistryTools.Store [\V version] filename
Store all the entries in
[HKEY_CURRENT_USER\Software\<software>\<version>] in the named registry
file. By default, the registry data of the currently running version is stored. To
store the data of another version use the V option. This file is best edited after
opening it with EditTools.OpenAsciiand after that it should be stored back with
EditTools.StoreAscii.Such a file can serve as backup copy.

Example: RegistryTools.Store \V "Release 2.21" old.reg ~

RegistryTools.Load [\V version] filename
Load the registry entries in the named registry file to
[HKEY_CURRENT_USER\Software\<software>\<version>]. By default the
registry of the currently running version is overwritten. To overwrite entries of
another version use the V option.

Fourth, from outside of Oberon, by running the Windows Regedit.exe program
and by editing the data via the Edit menu. After updating, Oberon must be
restarted to apply the new values.

For programmed access, four procedures are provided in the module Registry:

(* Associates a value with a (section, key) pair. *)
PROCEDURE Set (section, key, value: ARRAY OF CHAR);

(* Retrieves the value associated with a (section, key) pair. *)
PROCEDURE Get (section, key: ARRAY OF CHAR; VAR value: ARRAY OF CHAR);

(* Enumerates all keys and their values in a section. *)
PROCEDURE Enumerate (section: ARRAY OF CHAR; handler: EntryHandler);

(** Enumerates all sections. *)

PROCEDURE EnumerateSections*(handler: SectionHandler);

A section called [SystemInfo] contains the following details depending on
the host operating system:

Key Windows 95/NT Windows 3.1

OS Windows Windows
Processor Intel Intel
FileSystem VFAT/NTFS FAT
HostFilenamePrefix empty _ (underscore)

Remark: The registry is mostly of use to modules low in the module hierarchy,
and its extensive use is discouraged.

The registry data consists of user specific, critical data that can be backed up
in two different ways. First, inside of Oberon, using the RegistryToolscommands
described above. Second, by running the Regedit.exe program and by selecting
"Export Registry File..." in the Registry menu. Restoring is carried out with an
Import operation. This is particularly needed when upgrading an installed
Oberon version. Also, when an Oberon is shared by different users, users have
to import their personalized registry data, prior to using the system.

For Windows 3.1, the registry data is kept in the oberon.inifile. The registry file
is accessed when Oberon is started. If no explicit path is specified in the
command

oberon.exe [-i path\oberon.ini]
starting the Oberon application, the file is searched for in the following
directories:

(1) current directory,
(2) Windows system directory,
(3) Windows directory,
(4) in all directories listed in the PATH environment variable.

This file can be edited directly with an ASCII text editor or with an Oberon
editor. In the latter case, care must be taken to preserve the ASCII format by
using the commands EditTools.OpenAsciiand EditTools.StoreAscii. Also make sure to
access the oberon.inifile in the root directory of your Oberon system and to store
it back there, and not in some other current directory! It is much safer to
retrieve or update the registry data directly from Oberon with the commands
System.Setand System.Getwhich are described in Chapter 2. Finally, the
IniEdit.Panelprovides a graphical user interface for maintaining the configuration
data. After updating, Oberon must be restarted to apply the new values.

A.3 Oberon System3 for Linux

The registry provides the same consistent interface for programs to store
configuration data as is described in the previous section. There are however a
few differences:

o there is no "Directories" key in the registry section [System]. Instead,
the directories to search are defined in an environment variable
"OBERON".

o Oberon is started with the command oberon. The oberon.inifile is
searched in the directories named in "OBERON".

A section called [SystemInfo] returns the following details:

Key Value

OS Linux / X Windows
Processor Intel

A.3 MacOberon System3

The configuration data is kept in the resource fork of the Oberon application.
In principle the users do not have to edit this data themselves. Data is retrieved
and updated directly from Oberon with the commands System.Setand
System.Getwhich are described in Chapter 2. Changes are applied immediately.

A section called [SystemInfo] returns the following details:

Key Value

OS MacOS
Processor PowerPC (or MC680x0)

A.4 Informationwhich all systems have in common

Even if configuration data is stored in Oberon.Textfor PC Native Oberon and in
the registry for the other implementations, all these systems have a common
need for a stock of information. This central information is located in the
following registry sections (or in their equivalent group under PC Native
Oberon):

[Aliases] list of aliases for the generator procedures
[Documents] list of document extensions with their associated
generator
[FinderTemplates] list of document names to appear in a Finder

The 3 former section names are prefixed "Gadgets." in Windows 95, 98 and
NT.

[NetSystem] list of networking specifications
[PictureConverters] list of acceptable graphical information formats
[System] list of local system specifications
[SystemInfo] list of system values

Two keys are of particular interest in the [System] section. They are:
DateFormat and
TimeFormat

which influence the representation of the TimeStamp gadget and of the text
string generated by the commands Clocks.InsertDateand Clocks.InsertTime. The
default values are DD.MM.YYand HH:MM:SS. The section contains further details
on the format specifications in the form of comments.

Appendix B

Extended Language and Compiler for PC Native
Oberon

The PC Native implementation of Oberon System 3 comes with an improved
and slightly extended language and compiler. In the following we enumerate
and informally explain the new constructs and features. We should emphasize
that the sole purpose of this language extension is an increased expressiveness
and that it does not compromise the efficiency of the original language. We
consider both style and implementation of the extensions as completely
compatible with the "spirit" of Oberon and in particular with the principle of
"making it as simple as possible but not simpler".

B.1 Methods and initializerswithin record scopes

Traditionally in the Pascal line, record scopes are poorly used. In the course of a
current project (called Active Oberon) with the goal of unifying objects and
processes we upgrade record scopes by the following optional ingredients:

(a) a body,
(b) procedure declarations and
(c) an initializer.

The body is used to specify the intrinsic behavior of objects of this type and it
typically runs as a separate thread. Type−local procedures support the protected
access to objects of this type in a multi−process environment (using built−in
exclusive or shared locks) and the initializer guarantees atomic creation and
initialization of instances.

Syntactically, record types have thereby been brought into closer line with
modules, where the VAR keyword and the repeated name after the END
keyword are optional. One of the procedure declarations within a record scope
can be distinguished as initializer by adding a "&"−mark after the keyword
PROCEDURE. Any corresponding NEW statement must then supply the
initializer's actual parameters immediately after the traditional pointer
parameter.

In a single−process environment like Oberon System 3 there is no direct use
of record bodies. However, type−local procedures and the initializer concept
still make perfect sense. Type−local procedures can beneficially be used as
methods, because the ordinary object−oriented rules for inheritance and
covering apply. The actual benefits in comparison with the original Oberon
language are that (a) neither a "self"−parameter nor any qualification for the
access of type−local data is needed and that (b) methods are type−centered
rather than instance−centered.

Example:

TYPE
RP = POINTER TO R;
R = RECORD
VAR a, b: INTEGER;
PROCEDURE P (i: INTEGER): BOOLEAN;
BEGIN RETURN i <= a + b
END P;
PROCEDURE& Q (a0, b0: INTEGER);
BEGIN a := a0; b := b0
END Q;

END R;

VAR r: RP; a0, b0: INTEGER;

NEW(r, a0, b0)

B.2 Dynamic Arrays

Unless they appear as open procedure parameters, arrays in Oberon need a
specified size at compile time. In our extended language, we allow two kinds of
dynamic arrays.

The first kind still requires an explicit size specification in the declaration
that, however, may now be a variable expression. Because the value of this
expression must be well−defined at scope activation time, this kind of dynamic
array is applicable within local scopes only.

For the second kind of dynamic array no explicit size specification is needed
at declaration time. Syntactically, the size expression is replaced by a "*".
However, before using such an array it has to be created explicitly by a NEW
statement that specifies the size in the form of an expression. For both kinds of
dynamic array an arbitrary dimensionality is possible.

Syntax:

Type = ARRAY [Interval { "," Interval }] OF Type.
Interval = Expr | "*".

Example:

TYPE A = ARRAY * OF REAL;
VAR a: A;
.. NEW(a, 100); ...

TYPE B = ARRAY *, * OF REAL;
VAR i: INTEGER; b: B;
.. NEW(b, i, i+1); ...

TYPE C = ARRAY * OF ARRAY * OF REAL;
VAR i, j: INTEGER; c: C;
.. NEW(c, i+1); ...; NEW(c[i−1], j); ...

PROCEDURE P (n, i: INTEGER);
VAR a: ARRAY n+1 OF REAL;

BEGIN ...
END P;

B.3 Abstract Operators

Oberon supports the definition of abstract data types but lacks a corresponding
support for the definition of abstract infix operators. This is unfortunate,
because the ordinary procedural notation is clumsy in combination with
nesting. Therefore, we allow the overloading of operators by redefinition.
Syntactically, a redefinition is identical to a procedure declaration, where the
procedure name is replaced by the operator symbol, for example by "*". It
should be noted that the identification of operators in the context of an
expression is done at compile time, that is, it does not depend on the dynamic
types of the operands. The identification algorithm is: (a) identify all matching
declarations, i.e. declarations whose formal parameter types are (direct or
indirect) base types of the corresponding actual parameter types and (b) select
the matching operator that lexicographically minimizes the "type−distance
vector", where the components of this vector are the level differences of actual
type and corresponding formal type from left to right. Typically, Oberon does
not allow structured types for function return values. In the interest of nestable
abstract operators, this restriction is removed in our extended compiler.

Syntax:

ProcDecl = PROCEDURE {ProcTags} (IdentDef | '"'OpDef'"' ["*"])
[FormalPars] ";" Scope (ident | '"'OpDef'"').

OpDef = Relation | AddOp | MulOp | "˜".
Relation = "=" | "#" | "<" | "<=" | ">" | ">=" | IN.
AddOp = "+" | "−" | OR.
MulOp = " * " | "/" | DIV | MOD | "&".

Example:

TYPE
A = RECORD ... END;
B = RECORD ... END;
A1 = RECORD (A) ... END;
B1 = RECORD (B) ... END;

PROCEDURE "*" (a: A; b: B): A;
BEGIN ... (* implementation 1 *)
END "*";

PROCEDURE "*" (a: A1; b: B): B1;
BEGIN ... (* implementation 2 *)
END "*";

PROCEDURE "*" (a: A1; b: B1): B;
BEGIN ... (* implementation 3 *)

END "*";

VAR a: A; b: B; a1: A1; b1: B1;

a*b identifies implementation 1
a1*b identifies implementation 2
a*b1 identifies implementation 1
a1*b1 identifies implementation 3
(a*b)*b identifies implementation 1 twice
a1*(a1*b1) identifies implementations 3 and 2

B.4 Additional Compiler Features

1. The Native Oberon compiler has been improved, so that
"forward"−declarations are no longer needed. They are, however, still accepted
for compatibility reasons.

2. If types RP and R are connected by the pair of declarations (DD), then RP is
now consistently regarded by the compiler as a representative of R in type tests
and type guards. This allows types of pointer−based records to be kept
anonymous and (DD) to be replaced by a single declaration (D).

(DD) TYPE RP = POINTER TO R; R = RECORD ... END;
(D) TYPE RP = POINTER TO RECORD ... END;

3. The language extension described above is a functional superset of
Oberon−2. However, in the interest of compatibility with existing Oberon−2
programs, the PC Native Oberon compiler accepts Oberon−2 constructs under
the option "\2".

Appendix C

How to get Oberon System 3

Oberon System 3 can be obtained via anonymous file transfer:
ftp://ftp.inf.ethz.ch/pub/Oberon/System3/

The subdirectory names for the different implementations are:

Native for Intel−based PC
Win32 for Windows 95 and Windows NT (supports long file names)
Win32s for Windows 3.1, WfWG 3.11, Windows 95 and Windows NT
Linux for Linux on Intel−based PC
Macintosh for MacOS on PowerMac and 68K−based Apple Macintosh II

MacOberon can also be obtained from:
ftp://ftp.ics.uci.edu/pub/oberon/System3/Macintosh/

The Oberon home page URL is: http://www.oberon.ethz.ch
The Oberon System 3 home page URL is: http://www.oberon.ethz.ch/system3
The Oberon newsgroup is: news:comp.lang.oberon

For further information, please contact

Institute for Computer Systems
ETH Zentrum
CH−8092 Zürich
Switzerland

Telephone +41 (0) 1 632 7311 Facsimile +41 (0) 1 632 1307
E−mail: oberon@inf.ethz.ch

Bibliography

[Caf96] Max Caflisch. Die Entstehung der Syntax−Antiqua
OFFICINA, Mitteilungen des Hauses Schwabe & Co., Basel, 1996.

[Car86] Luca Cardelli. Building User Interfaces by Direct Manipulation
Proceedings of the ACM SIGGRAPH Symposium on User Interface
Software, vol. 20: 233−240, 1986.

[Cre95] R. B. J. Crelier. Separate Compilation and Module Extension
PhD Thesis, Institut für Computersysteme, ETH Zürich, 1995.

[Der96] Jörg Derungs
LayLa − Layout Language − eine Beschreibungssprache für Gadgets
Semesterarbeit, Institut für Computersysteme, ETH Zürich, 1996.

[Ebe87] Hans Eberle
Development and Analysis of a Workstation Computer
PhD Thesis, Institut für Computersysteme, ETH Zürich, 1987.

[FK96] Michael Franz and T. Kistler. Slim Binaries
Technical Report No. 96−24, Department of Information
and Computer Science, University of California, Irvine; June 1996.

[Fra94] Michael Franz
Code Generation On−The−Fly: A Key to Portable Software
PhD Thesis, Institut für Computersysteme, ETH Zürich, 1994.

[Gut94] Jürg Gutknecht
Oberon System 3: Vision of a Future Software Technology
Springer − Software − Concepts and Tools, 15: 26−33, 1994.

[Mar94] Johannes L. Marais. Oberon System 3
Dr. Dobb's Journal, #220: 42−50, October 1994.

[Mar96] Johannes L. Marais
Design and Implementation of a Component Architecture for Oberon
PhD Thesis, Institut für Computersysteme, ETH Zürich, 1996.

[ML97] J.R. Mühlbacher, B. Leisch, B. Kirk, U. Kreuzeder
Oberon−2 − Programming with Windows
Springer Verlag, 1997.

[Mös93] Hanspeter Mössenböck
Object−Oriented Programming in Oberon−2
Springer Verlag, 1993.

[Mös96] Hanspeter Mössenböck and Niklaus Wirth
The Programming Language Oberon
Institut für Computersysteme, ETH Zürich, 1996.
Available in Oberon.Report.Text and in
http://www.ics.uci.edu/˜oberon/report.html

[Rei91] Martin Reiser
The Oberon System − User Guide and Programmer's Manual
Addison−Wesley Publishing Company, 1991.

[RW92] Martin Reiser and Niklaus Wirth
Programming in Oberon − Steps beyond Pascal and Modula
Addison−Wesley Publishing Company, 1992.

[Sal95] Patrick Saladin. Watson − A Smart Browsing Tool
Semesterarbeit, Institut für Computersysteme, ETH Zürich, 1995.

[Sal96] Patrick Saladin. Columbus − Die Entwicklung eines neuen Objekt−
Inpektors für Oberon System 3 und Gadgets
Master's Thesis, Institut für Computersysteme, ETH Zürich, 1996.

[WG92] Niklaus Wirth and Jürg Gutknecht
Project Oberon − The Design of an Operating System and Compiler.
Addison−Wesley Publishing Company, 1992.

[Wir88] Niklaus Wirth. The Programming Language Oberon
Springer − Software − Practice and Experience, 19(9), 1988.

[Wir73] Niklaus Wirth. Systematic Programming: An Introduction
Prentice−Hall, Inc. , 1973

[Zel93] Emil Zeller. Data Compression Techniques
Semesterarbeit, Institut für Computersysteme, ETH Zürich, 1993.

[Zel97] Emil Zeller.
Seamless Integration of Online Services in the Oberon Document
System − Joint Modular Languages Conference 1997, Linz, Austria.
Springer − Lecture Notes in Computer Science − Vol. 1204, 1997.

An extensive publication list is found at:
http://www.oberon.ethz.ch/books.html

	Introduction and Design Principles
	Introduction
	Design Principles
	A Tour through the Chapters
	System Implementations

	The Basic System
	Introducing the Oberon User Interface
	Concept of Commands and Tools
	Text Documents
	Mouse Commands
	Editing Commands
	Menu Commands
	Fonts
	Using Styles
	The EditTools Tool

	The System Tool
	Program Development Tools
	The Compiler Tool
	Compiler Error Handling
	Run-Time Error Handling
	How to Interprete the TRAP Information
	Trap from the Keyboard
	Practical Hints on how to Develop Programs
	Using HALT to Debug
	Using Assertions as a Debugging Tool
	Console Debugging (Windows Oberon)

	The Builder Tool

	The Backup Tool
	Archiving Tools

	The Gadgets User Interface
	Introduction
	A Gadget Classification
	Composing Gadgets Interactively with the Mouse
	Creating new Gadgets
	Attributes
	Columbus
	Object Views

	Inspecting Module Definitions with Watson
	Watson Settings
	Select Source
	Formatting Options
	Symbol File Option
	Watson Commands

	The Command Macros
	Composition Commands
	Documents and Desktops
	Desktop Commands

	Libraries
	User-Customized Menu Bars

	The Standard Gadgets Reference
	Introduction
	Boolean
	Button
	Calendar
	Caption
	CDTracks
	CheckBox
	Circle
	Clock
	ColorPicker
	ColorWell
	Columbus
	Complex
	CurrentDirectory
	CurrentLoad
	Dag
	DigitalClock
	Directory
	DirectoryView
	EventTimer
	Finder
	Histogram
	Icon
	Iconizer
	Integer
	LCD
	Line
	List
	ListGadget
	ListModel
	LogDoc
	View

	The Programmers Guide
	Introduction
	The Module Hierarchy
	Procedure Calls, Input and Output
	Texts
	The Display Space
	Messages and Broadcasting
	A Message Protocol
	Text Protocol Examples
	Introducing Gadgets
	Persistency and Libraries
	Programming New Gadgets
	Gadget Structure and Implementation Steps
	Default Message Handling
	The Class Inheritance Design Pattern
	The Model Gadget Design Pattern (Interface Inheritance)
	The Visual Gadget Design Pattern (Interface Inheritance)
	The Singleton Design Pattern
	The Container Gadget Design Pattern
	The Document Design Pattern
	Defining a New Message Type
	The Camera View Design Pattern
	Further Perspectives

	Applications and Examples
	Introduction
	Composing Gadgets with the Layout Language LayLa
	Simple Objects: NEW
	Syntactic Sugar
	Virtual Objects: VIRTUAL
	Using Public Library Objects: SCOPY, DCOPY and L.O
	Size

	Containers
	Lists: VLIST and HLIST
	Tables: TABLE
	Breaking the Formatting of Tables: SPAN and Break
	Placing Components by Hand: PLACE

	Configurations: CONFIG
	Reusing Layouts: INCLUDE
	LayLa Tool
	LayLa Description Debugging
	Customized Menu Bar Example

	The TextPopups Tool
	The ColorSystem Tool
	The Oberon System 3 Applications Collection
	PC Native Oberon Applications
	Oberon System 3 for Windows Applications
	Oberon System 3 for Linux and Macintosh Applications

	Appendix A: Configuring the System
	Introduction
	PC Native Oberon
	Oberon System 3 for Windows
	Oberon System 3 for Linux
	MacOberon System 3
	Information which all Systems have in Common

	Appendix B: Extended Language and Compiler for PC Native Oberon
	Methods and Initializers within Record Scopes
	Dynamic Arrays
	Abstract Operators
	Additional Compiler Features

	Appendix C: How to get Oberon System 3
	Bibliography

